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Chapter I 

INTRODUCTION 

Many problems in continuum mechanics and mechanical 

system design involve elastic bodies that come into con- 

tact with each other, under applied loads.  Such prob- 

lems, called contact problems of elasticity, are non- 

classical in the sense that one does not initially know 

the contacting region.  Considerable research has been 

pursued in recent years to develop constructive methods 

of determining the contact region and contact stress 

distribution [l-4]. 

The geometry of two bodies that will come into con- 

tact under applied load is shown schematically in Fig- 

ure 1(a).  A numerical method of solution, by quadratic 

programming [5] has been developed, in which one selects 

a set of potential contact points, as indicated in Fig- 

ure 1(a).  The selection of potential contact points is 

explained in detail in [6],  The initial gap between the 

ith potential contact points is denoted by d,.  The rig- 

id body displacement coordinates of Body One are indi- 

cated in Figure 1(a) and are represented by a general- 

ized coordinate vector q, of dimension one to six. 

Once the potential contact points are defined on the two 
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bodies, contact stress may be replaced by equivalent point 

loads, or contact forces, denoted as S. in Figure 1(b). 

When the bodies come into contact, a force distribu- 

tion over the surfaces arises and high contact stresses may 

occur over some parts of the contact region.  This is unde- 

sirable, since plastic deformation of the bodies may occur, 

or high normal forces may lead to wear of machine parts that 

move relative to each other.  This can be quite important in 

precision machines.  The objective of this work is to devel- 

op a technique for adjusting the contour of one or both of 

the bodies in order to achieve a minimum peak contact stress 

between the bodies, under a given load. 

A related problem was solved by Conry [6], in which the 

design objective was to select the contour to achieve a con- 

stant stress over the contact arc.  A linear programming 

method was presented in [7,8] to implement this design ob- 

jective.  In general, one cannot achieve a constant stress 

distribution over the contact arc when kinematic constraints 

define limits on modification of the contours of the bodies. 

This will be particularly critical in precision cams and 

fasteners that require precise location of parts.  The de- 

sign objective selected in this work is to minimize the peak 

contact stress, subject to constraints on the extent of 

modification of surface contours. 



Body 1 

d. 
l 

Body 2 

Ka). 

Kb). 

Figure 1.  Geometry of Contacting Bodies. 



Chapter II 

THE UNBONDED CONTACT PROBLEM FOR 

ELASTIC BODIES IN CONTACT 

2.1  Analytical Formulation of the Problem 

The elastic contact problem formulation of [6] will 

be employed as the model of the elastic contact problem. 

Only a brief summary of this analytical formulation will 

be presented here.  The gap variable £, due to a stress 

distribution S, is given by the equation 

£=BS+Aq+a+b (2.1.1) 

where B is a matrix formed from influence coefficients 

of the two bodies, A is an affine transformation account- 

ing for rigid body displacement of Body 1, a  is a con- 

stant vector that depends on the externally applied loads 

to the two bodies and the initial gap between them at 

the potential contact region, and  b  is the vector of 

contour modification to be selected.  Formulae for B, 

A, and a  are given in Appendix A. 

Equilibrium of Body 1 is obtained through direct 

application of the principle of virtual work, which re- 

sults in the linear equation 



to 

5 

ATS  =  C (2.1.2) 

where the column vector C depends on the externally ap- 

plied load, and is given in Appendix A. 

Compatibility conditions between the two contacting 

bodies require that the product of each gap variable and 

contact stress be zero.  Analytically, this is 

g.S.  =  0 , i  =  1,2, , n    (2.1.3) 

where n  is the number of potential contact points. 

This condition may be interpreted as stating that either 

the gap or the contact stress must be zero at each point 

on the contacting bodies.  Further, the gap and contact 

stress must be non-negative.  Analytically these condi- 

tions are 

S. ^ 0, E      %   0,  i = 1,2, , n   (2.1.4) 

As is shown in [6], Equations (2.1.l)-(2.1.4) are 

the Kuhn-Tucker necessary conditions for solution of a 

convex quadratic programming problem, which may be 

stated as 

minimize   ATS + | ^ 

subject to constraints ATS  C    [ (2.1.5) 

S £ 0 
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This problem may be solved through direct application of 

the simplex technique of quadratic programming [5],  It 

is also shown in [5] that if a solution exists, it is 

unique and may be reliably determined, through applica- 

tion of a simplex technique for quadratic programming 

[6]. 

The cost function to be minimized in this design 

problem is the maximum contact stress, 

J = Max S. (2.1.6) 
i 

Since this maximum value function is difficult to 

treat analytically, it may be replaced by defining an 

upper bound b     on the contact stress, through the 

set of inequalities 

*i =Si "bn + 1* °       (2-1'7) 

The cost function J of equation (2.1.6) may now be re- 

placed by an equivalent problem of minimizing the upper 

bound on contact stress 

J =  bM   , (2.1.8) n + 1 

subject to constraints (2,1.7). 
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Finally, it is often required that both upper and 

lower bounds be placed on modifications of the surface 

contours of the two bodies.  Analytically, these condi- 

tions may be stated as 

$n + i = b° _ bi^ 0 , i = 1, , n   (2.1.9) 

and 

^2n + i = b- - b ^ 0 , i = 1, , n (2.1.10) 

where b  and b  are the lower and upper bounds on contour 

modification, respectively. 

The design problem may now be stated as follows: 

Determine the design variable vector b and the upper 

bound b   ,  to minimize J, subject to constraints n + 1 

(2.1.1) - (2.1.4) , (2.1.7), (2.1.9) and (2.1.10). 

2 . 2 Sequential Linear Programming 

Solution Technique 

With an initial estimate of the contour (normally 

b = 0), one may solve the contact-analysis problem of 

equations (2.1.1) - (2.1.4) to obtain the contact arc 

and contact stresses.  Using this solution, define the 

index sets 
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A 
I    = \LV   l2' '   Src; 

of  points  in contact and 

1   -       (V   j2' '   jNNcj 

of points not in contact, where NNC is the number of 

points not in contact.  The stresses at points in con- 
A 

tact will be denoted as the NC dimensional vector S. 
A 

Define  B as the matrix B with rows and columns 

corresponding to points not in contact removed,  A as 

the matrix A with rows corresponding to the points not 
A A 

in contact removed, and the vectors  a  and  b  as the 

vectors  a  and  b with components corresponding to 

points not in contact removed. 

One may now state the set of conditions that must 

be satisfied if the contact arc is not changed; namely 

£    AA    A      A    A 
E = BS+Aq + a+b = 0 (2.2.1) 

The equilibrium equations (2.1.2) must still be satis- 

fied with contact loads applied only on the fixed con- 

tact region, so one obtains 

A T A 
* ' 9 ■ C (2.2.2) 

The objective now is to determine the reduced design 
A 

variable b so that peak contact stresses are reduced 



as much as possible, keeping the same contact region and 

satisfying conditions (2.1.7) - 2.1.10). 

The gap variable outside the prescribed contact re- 

gion must remain non-negative, so 

6 = BS+Aq + a+b^0 (2.2.3) 

where  B  is the matrix B with columns corresponding 

to points not in contact and rows corresponding to the 

points in contact removed,  A  is the matrix A with 

rows corresponding to points in contact removed, and 

vectors  a  and  b are the vectors  a  and  b with 

rows corresponding to points in contact removed.  Here, 

the reduced vector b represents the estimates of the 

contour design variable from the preceding iteration. 

Finally, it is necessary to impose the condition, 

S > 0 (2.2.4) 

The design modification problem is now to deter- 

mine the reduced vector b and b   ,  to minimize n + 1 

J - bn + 1 

subject tot (2.2.5) 
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§ < b 
*       n  +  1 

b°  -  b    £   0 
* 1    ^ b  -  bx   £    0 
AA A A A 
BS+Aq   +  a+b  =  0 

A   *   S   =   C 

=     BS+Aq+a+b^O 
A 
S £ 0 

(2.2.5, con'd.) 

This formulation for determining the modified contour var- 

iable is simply a linear programming problem in the vari- 
A A 

ables  s, q, and  b which can be solved with standard lin- 

ear programming codes. 

Following each solution of the linear programming 

problem, the contact stresses and gap variables must be 

evaluated to determine the contact surface to be employed 

in the next iteration.  Any potential contact point for 

which £ . = 0  is included in the contact surface for the 

next iteration.  At any points in the preceding potential 
A 

contact surface for which S . = 0, it is presumed that 

separation will occur in the subsequent iteration, so 
A A 

these points are deleted from the vectors  £  and  S . 

These modification rules form the basis for definition 

of the next linear programming problem to be solved for 

the optimum contour on an adjusted contact arc. 

This process is continued until no new points 
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come into contact and no points that were previously in 

contact are released. 

Each linear programming solution will reduce the 

value of the peak stress, until the process stops. 

Analytically, this condition can be written as follows 

(o) 
r* ♦ 1 

(l) 
n + 1 £ 

n + 1 

,(2) 
n + 1 

l 

(2.2.6) 

(K- 1)   >       ,00 bn + 1   J 

where the superscript on b   , denotes the iteration n + 1 

number.  Combining (2.2.6) one obtains 

5(o) 
n + 1 bn + 1> *  n + 1   (2.2.7) 

This gives a sequence of non-increasing real numbers, 

called a monotone sequence, that is bounded below by 

zero.  Any non-increasing sequence that is bounded be- 

low is convergent [9], so the sequence of solutions of 

linear programming problems (2.2.5) must converge. 

It was observed from preliminary calculations that 

as the value of U is increased, peak stress decreases, 

but a stage is reached when stress at all the points in 



f 

12 

the contact region is the same.  The peak stress obtained 

in this case is a local minimum and no contour design vari- 

able reaches its allowable limit.  This situation can be 

avoided by adding a penalty function to the cost function 

that is intended to broaden the contact region.  The 

penalty function used here is as follows 

NNC       ~ 
J = bn + 1 +51 ^ = 1   £j       (2-2'8) 

where c\ is a small constant greater than zero.  The linear 

programming with the augmented cost function (2.2.8) finds 

an absolute minimum of the peak contact stress. 

The process described above is summarized in the 

following algorithm: 

Step 1.  Estimate the design variables (normally b 

= 0). 
A        c 

Step 2.  Solve for S and o by quadratic programming, 

using the necessary conditions (2.1.1)- 

(2.1.4). 
A      +s 

Step 3.  Form index sets I and  I  for points of con- 

tact (S. ^ 0, £. =0) and for points not in 

contact ( € .   ^ 0, S . = 0), respectively. 
A   A   A A 

Step 4.  Construct B, A, a, and b for lei and A, 

B, a, and b for jel. 
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Step 5.  Solve the linear programming problem (2.2.5) 
A        A 

for S, q, and b.  (The cost function may be 

changed as given in (2.2.8) if necessary). 

Step 6.  Evaluate £ from (2.2.3). 
A o Step 7.  From new I to include points for which C. 

= 0 and deleting points for which S . = 0 

and form I of points for which G • ^ 0 and 

S . = 0. 
J 

A 
Step 8.  If I is unchanged, terminate; otherwise re- 

turn to Step 4. 

k» 
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Chapter III 

CONTACT SURFACE DESIGN PROBLEMS FOR 

BEAMS ON ELASTIC FOUNDATIONS 

Examples are presented to demonstrate the tech- 

nique developed in Chapter II.  Two cases of the design 

problem with a beam on an elastic foundation are con- 

sidered!  (1) with no initial gap; and (2) with an ini- 

tial gap. 

A point load is applied to the center of the beam, 

as shown in Figure 2(b). Only vertical displacement of 

the center of the beam is chosen to represent its rigid 

body displacement. Formulation of the matrices B, A, a, 

b, and C for this problem is explained in detail in [2]. 

A quadratic programming problem is solved to obtain the 

contact arc as input to the linear programming problem. 

The design variables b. are limited by the con- 
xi2   X 

straint  b.A U (1 - —^  ), where x. is the horizontal 1 Lz x 

distance of the ith potential contact point from the 

center of the beam, L is half the potential contact 

length (as only half of the beam is considered due to 

symmetry), and U is a constant greater than zero. 
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t q2 = 0 

X 

2L 

(a) 

|*0.06*| 

12      i   i+1 
n + 1 

/////////////////////////////////////////// 

(b) 

Figure 2.  Potential Contact Points for the 
Beam on Elastic Foundation. 
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3.1  Beam on Elastic Foundation with No Initial Gap 

The following material properties are used: Young's 

modulus of the beam material = 340,000 psi; diagonal ele- 

ment of the flexibility matrix for the elastic foundation 

= 0.00005 in./lb. ; height of the beam = 0.5 in.; and width 

of the beam = 1.0 in. 

The quadratic programming problem was solved for 25 

potential contact points on half of the beam, with an in- 

terval size of 0.06 in.  Potential contact length, as shown 

in Figure 3(a) is taken as 2.88 in.  The contact length ob- 

tained numerically was 1.38 in., with loads of 1000 lbs. 

and 2000 lbs.  A quadratic programming code called ZORILLA 

[lO] was used to solve this quadratic programming problem. 

Results are presented in Figure 3(b). 

At this stage, one has the contact arc to be employed 

in the linear programming problem of (2.2.5).  Equations 

(2.2.5) can now be written as: 

3 = bn + 1 

S " bn + 1 £ 0 

b >  b° 

b $  b1 (3aa) 

A A     A       A       A 
BS + Aq + b = -a 
A T A AS  = C 
*/A     #*/ ^ ^/ 

BS + Aq > -a-b 

S       ? 0 
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Figure 3.  Contact Stress vs. Contact Length from Quadratic 
Programming Solution. 
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The linear programming subroutine used to solve (3.1.1) 

is explained in [ll] and is summarized in Appendix B. 

This subroutine requires that the right hand side values 

of constraints must be given as a separate vector, all 

x2 
elements of which must be positive.  If  b  = -u[l-r~2 ^ 

. 2 
and b  = u[l - ^Z  ]' then Equations (3.1.1) can be re- 

written as 

I  = bn ♦ 1 
S " bn + 1 < 0 

-b ^ -b° 

b <  b1 

»A    A     A ,, (3.1.2) 
BS + Aq + b = 0, as  a = 0 
A  T» A 
A L  S = C 

-BS - Aq ^ a r b 

The linear programming subroutine used solves only max- 

imization problems, so the cost function is replaced by 

J= -b     .  Since q   can be positive or negative, 

the vector q  is decomposed into positive and negative 

parts as follows: 

q  =  q+ - q" 

(3.1.3) 
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Now an LP tableau is formed as follows : 

NC 

NC 

NC 

NC 

m 

NNC 

m m NC NC 

0     ;     0   ;    -1 '    o     ;    o 

w- _.- —._.+.—..... 

0            0          -I 

 , , , 

o    ;   o        o 

o     ;    i 
 »-.... 

I               0 

.    |          9 

o    ;    o   ;    o 

 t i  
A      !   -A             0 

 I J „ 

r T * 

-I                0 

I L  
I           A 

i     ;    B 

0          0    ;     0 

 1 [  

-A    ;    A   !    o 

A 
0               A 

 ♦.  

o    :   B 

^m     *■ •■       — 

+ 
q 

0 
q 

-b° 
bn+l 

■ b1 

A 
b 

0 

A 
S 

c 

la+b 
I L.          ■ L>               m* 

(3.1.4) 

•        ' 
where the vector NBP [ 0 I 0 j -1   0-0   of dimen- 

sion    (l,  2m  +  1  +  2  *  NC  + NGE) represents 

the cost function and NGE is the number of constraints 

of the form ^ 0, and  m  is the number of degrees 

of freedom.  The Matrix  B,  defined as 



NC 

NC 

m 

r. 
m 

o 

o 0 

-I 

0 

NC 

0 

NC 

0 
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B = 

NC 

NC 

0 

A. 
A 

0 

-A 0 

-I 0 

A 
B 

to m 0 0 0 
A 

0       A 

NNC -A A 0 0 B 

contains constraint coefficients.  Its dimension is 

(4 * NC f m + NNC , 2*m+l+2*NC+ NGE) and the 

vector RQ  = [ 0 | -b  'bio   c ; a+b ], of dimen- 

sion (1, 4 * NC + m + NNC), is the vector of right hand 

side values of the constraints. 

The design problem was solved with loads t = 1000 

lbs. and t = 2000 lbs., with a range of values of contour 
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modification limit U.  Results are presented in Figures 

(4 - 9).  All the calculations were done on an IBM 360/65 

computer.  Table 1 shows the comparison of results for 

different loads and values of  U  ranging from 0.01 to 

0.05.  It is observed that the contact length for the op- 

timum design, with a fixed value of U, varies with ap- 

plied load.  However, when the value of  U  is changed in 

the same proportion as the loads, it is noted that the 

contact length is the same for both cases (and peak con- 

tact stress are proportional).  As the value of  U  is 

increased, the contact length appears to increase and the 

value of peak stress decreases.  A stage is reached when 

stress at each point in the contact region is the same, 

which stops the iterative process.  In the case of U = 

0.025, t = 1000 lbs., and U = 0.05, t = 2000 lbs., no 

contour design variable's constraint reaches its tolerance 

limit.  The cost function was augmented with penalty func- 

tion and the linear programming problem was solved for the 

above case.  The results are presented in Figures (8 - 9). 

It is also observed that the contour design variable con- 

straint at the center point of the contact region is al- 

ways tight. 

Table 1 presents peak stress, computing time and con- 

tact lengths for several numerical examples. Solutions of 

the linear programming problem converge in at most 8 
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TABLE  1 

COMPARISON OF RESULTS FOR LOADS 
t = 1000 lbs. AND t = 2000 lbs. 
FOR   BEAM  ON  ELASTIC   FOUNDATION 

LOAD        SR. U PEAK COMPUTING        NO.      TIME/     CON- 
t NO. STRESS TIME   (SEC.)   OF        ITRN     TACT 

lbs./sq.in. ITRNS   (SECOLENGTH 
(IN.) 

01        562.9 38.80 7.36     1.86 

1000 

.015     499.2 

.02        457.4 

48.12 

72.08 

6 8.02     1.98 

8 9.01     2.22 

.025     426.43 91.27 10.14     2.34 

.02     1125.6 36.87 7.374   1.86 

2000 

.03        998.25 48.94 

.04        914.8 73.00 8 

8.157   1.98 

9.125   2.22 

.05       852.87 93.17 10.35     2.34 
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iterations, with computing time per iteration varying only 

between 7 and 10 seconds.  In all cases, peak stress is 

reduced considerably and the contact arc increases.  For 

example, for t = 1000 lbs., the peak stress of the non- 
2 

modified design was 1120 lbs./in.  and contact arc length 

was 1.38 in.  By adjusting the contours of two bodies, 

with a tolerance limit of U = 0.01 and t = 1000 lbs., 

Table 2 shows the peak stress reduces to 552.9 lbs./sq. in, 

and the contact arc length becomes 1.86 in. 

3.2  Initially Bent Beam on an Elastic Foundation 

The initial gap between a beam and elastic foundation 

is given by the formula G [ 1 - x  ], where x is the dis- 

tance from the center of the beam, and G is a constant 

greater than zero.  Matrices B, A, b, and C are the same 

as for the problem in the preceding section, except that 

the vector a  is obtained from the expression given above, 

The quadratic programming problem was solved for 25 

potential contact points on the half beam, with an inter- 

val size of 0.06 in.  The potential contact length, as 

shown in Figure 10(a) is 2.88 in.  With G = 0.0001 the re- 

sulting contact length was 1.38 in., for loads 1000 lbs. 

and 2000 lbs.  These results are shown in Figure 10(b). 

The quadratic programming code ZORILLA [lO] was again used 

to solve this problem. 
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TABLE   2 

CONTACT  STRESS   DISTRIBUTION  AND  FINAL  GAP 
FOR   BEAM  ON   ELASTIC   FOUNDATION 

t   =   1000   lbs.,   U  =   0.01 

POINT CONTACT TOLERANCE FINAL GAP SIZE 
NO. STRESS LIMIT FOR MODIFIED 

lb./sq.in. (in.) CONTOURS (in.) 

1 562.886 0.1000000E-01 0.9999964E-02 
2 562.888 0.9982634E-02 0.9910598E-02 
3 562.889 0.9930551E-02 0.9614620E-02 
4 562.891 0.9843744E-02 0.9165816E-02 
5 562.891 0.9722218E-02 0.8595929E-02 
6 462.892 0.9565968E-02 0.7923093E-02 
7 562.892 0.9374995E-02 0.7147454E-02 
8 562.894 0.9149302E-02 0.6315298E-02 
9 562.893 0.8888885E-02 0.5400788E-02 

10 562.893 0.8593746E-02 0.4458770E-02 
11 562.895 0.82638863-02 0.3493937E-02 
12 562.888 0.7899299E-02 0.2511400E-02 
13 562.891 0.7499997E-02 0.1511019E-02 
14 562.885 0.7065967E-02 0.5030558E-02 
15 393.626 0.6597217E-02 0.0 
16 59.206 0.6093744E-02 0.0 
17 0.0 0.5555548E-02 0.0 
18 0.0 0.4982639E-02 0.0 
19 0.0 0.4374996E-02 0.0 
20 0.0 0.3732643E-02 0.0 
21 0.0 0.3055555E-02 0.0 
22 0.0 0.2343752E-02 0.0 
23 0.0 0.1597222E-02 0.0 
24 0.0 0.8159771E-03 0.0 
25 0.0 0.0 0.0 
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One now has the contact arc to be employed for solv- 

ing the linear programming problem: 

Minimize      — = -b  +1 u    n 

subject to constraints 

S   "  bn  +  1   ^    0 

-b   £   -b° 
A    -        1 

(3.2.1) 
b   ^     bJ 

AA A A A 
-BS   -  Aq   -   b  =   a 
ATA 
A        S      =     C 

A/A >S/ ^y *>S 

-BS   - Aq   ^    a   +  b 
A 
S   > 0 

A linear programming tableau is formed from Equations 

3.2.1, as explained in the previous section.  The linear 

programming problem was solved and results are presented 

in Figures (11-16). A comparison of the results for two 

loads, t = 1000 lbs. and t = 2000 lbs., is given in 

Table 3.  Values of  U used are proportional to applied 

load for the cases t = 1000 lbs. and t = 2000 lbs.  The 

peak stress obtained for t = 1000 lbs. is exactly half 

that for t = 2000 lbs. and the contact length is the 

same for t = 1000 lbs. and t = 2000 lbs.  Thus, contact 

arc length and peak stress are dependent on both value 

of applied load and U.  Table 4 gives the optimum stress 
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TABLE 3 

COMPARISON OF RESULTS FOR LOADS t = 1000 lbs. 
AND t = 2000 lbs. FOR AN INITIALLY BENT 

BEAM ON ELASTIC FOUNDATION 

LOAD  SR.   U     PEAK    COMPUTING NO.OF TIME/  CONTACT 
t    NO.        STRESS     TIME    ITRNS ITRN    LENGTH 

lbs./sq.in. (SEC.)       (SEC.)    (in.) 

1  0.005   677.6 21.90 7.3 1.62 

1000 

2  0.01    561,7 

3  0.015   498.7 

39.05 

49.32 

5 7.81 

6 8.22 

1.86 

1.98 

4  0.02    457.1 71.82 8    8.98 2.22 

1  0.01   1356.0 21.65 7.217    1.62 

2  0.02   1124.05   41.37 

2000 

3  0.03    997.2 49.17 

5    8.274    1.86 

6    8.195    1.98 

4  0.04    914.6     73.74     8    9.22 2.22 
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TABLE 4 

CONTACT STRESS DISTRIBUTION AND FINAL GAP FOR 
INITIALLY BENT BEAM ON ELASTIC FOUNDATION 

t = 1000 lbs., U = 0.01 

POINT CONTACT   TOLERANCE INITIAL FINAL 
NO STRESS     LIMIT GAP GAP 

lb./sq 
in. 

(in.) (in.) (in.) 

1 561.712 0.1000000E-01 .1000000E-03 0.9999931E- -02 
2 561.714 0.9982634E-02 0.9982637E-04 0.9929962E- -02 
3 561.717 0.9930551E-02 0.9930554E-04 0.9638943E- -02 
4 561.719 0.9843744E-02 0.9843748E-04 0.9196758E- -02 
5 561.721 0.9722218E-02 0.9722220E-04 0.8627117E- -02 
6 561.721 0.9565968E-02 0.9565971E-04 0.7991239E- -02 
7 561.720 0.9374995E-02 0.9374999E-04 0.7174265E- -02 
8 561-720 0.9149302E-02 0.9149304E-04 0.6328776E- -02 
9 561.722 0.8888885E-02 0.8888886E-04 0.5433228E- -02 

10 561.722 0.8593746E-02 0.8593748E-04 0.4489828E- -02 
11 561.722 0.8263886E-02 0.8263886E-04 0.3522005E- -02 
12 561.722 0.7899299E-02 0.7899302E-04 0.2532016E- -02 
13 561.717 0.7499997E-02 0.7499997E-04 0.1539212E- -02 
14 561.719 0.7065967E-02 0.7065968E-04 0.5400113E- -02 
15 406.454 0.6597217E-02 0.6597218E-04 0.0 
16 62.750 0.6093744E-02 0.6093745E-04 0.0 
17 0.0 0.5555548E-02 0.5555548E-04 0.0 
18 0.0 0.4982639E-02 0.4982639E-04 0.0 
19 0.0 0.4374996E-02 0.4982639E-04 0.0 
20 0.0 0.3732644E-02 0.3732644E-04 0.0 
21 0.0 0.3055555E-02 0.3055555E-04 0.0 
22 0.0 0.2343752E-02 0.23437t32E-04 0.0 
23 0.0 0.1597222E-02 0.1597222E-04 0.0 
24 0.0 0.8159771E-03 0.8159771E-05 0.0 
25 0.0 0.0 0.0 0.0 
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distribution, tolerance limit, initial gap, and final 

gap at the potential contact points.  Peak contact stress 

with U = 0.01 and t = 1000 lbs. was found to be 561.712 

lbs./sq. in.  This peak stress is not much different from 

the one obtained in the case of beam on elastic founda- 

tion with no initial gap. 

The quadratic programming problem was again solved 

for the same data, but with an initially bent beam on an 

elastic foundation with G = 0.001 and G = 0.005.  The re- 

sults are presented in Figures (17-18).  It is observed 

that, as the value of G is increased, peak contact stress 

decreases.  In the case of G = 0.005 contact length for 

1000 lbs. and 2000 lbs. loads differs.  It is also ob- 

served that peak contact stress depends on the applied 

load. 

Once the contact arc is known from the contact analy- 

sis problem, the linear programming problem was solved 

for G = 0.001 and G = 0.005, with two different loads in 

each case.  Results are presented in Figures (19-22). 

Table 5 shows the comparison of results with U = 0,01, 

for a beam on an elastic foundation with no initial gap 

and with an initial gap.  Table 6 shows the comparison of 

results for t = 2000 lbs. with values of U ranging from 

0.01 to 0.05.  It is noted that the peak contact stress 

decreases if the value of U and G are increased. 
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TABLE 5 

COMPARISON OF RESULTS FOR BEAM ON ELASTIC FOUNDATION 
WITH NO INITIAL GAP AND WITH DIFFERENT 

INITIAL GAPS FOR U = 0.01 

it 

LOAD G CONTACT CONTACT NUMBER TIME/ITRN 
STRESS LENGTH OF 

(lbs.) (lbs./ 
sq. in.) 

(in.) ITRATIONS (sec.) 

0 562.9 1.86 5 7.36 

.0001 561.7 1.86 5 7.81 

1000 

.001 556.4 1.86 4 8.6 

.005 533.4 1.98 4 9.375 

0 1358.5 1.62 3 7.25 

.0001 1356.0 1.62 3 7.22 

2000 

.001 1349.5 1.62 2 7.92 

.005 1317.8 1.62 2 8.5 
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TABLE 6 

COMPARISON OF RESULTS FOR BEAM ON ELASTIC FOUNDATION 
WITH NO INITIAL GAP AND WITH DIFFERENT INITIAL 

GAPS FOR t = 2000 lbs. 

G ITEM QP LINEAR PROGRAMMING 
SOLUTION SOLUTION 

0.01 0.02 

I 

0.03 0.04 0.05 

0 2242 1358.5 1125.6 993.25 914.8 852.87 

.0001 CONTACT 2240 1356 1124 997.2 914.6 852.6 

.001 STRESS 2220 1349.5 1118.4 994.5 911.1 849.2 

.005 
2 

lbs./in. 2170 1317.8 1094 973.3 895.2 833.9 

0 1.38 1.62 1.86 1.98 2.22 2.34 

.0001 
CONTACT 

1.38 1.62 1.86 1.98 2.22 2.34 

.001 
LENGTH 

1.50 L.62 1.86 1.98 2.22 2.34 

.005 
in. 

1.50 L.62 1.86 2.10 2.22 2.34 

* 
vD 
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Chapter IV 

CONCLUSIONS 

The technique presented here to solve surface con- 

tour design problem is quite simple, and has given con- 

sistently good results.  By adjusting the contours of 

the contacting bodies, the stresses developed are re- 

duced considerably.  The problem of a beam on an elastic 

foundation demonstrates some of these facts.  The peak 

stress of the unmodified structure is highest at the 

center of the beam and decreases at the end points of 

the contact region.  The contact design problem gives 

a relatively constant stress distribution on the con- 

tact region, with much reduced peak contact stresses. 

Tolerance limits affect the solution as is shown 

in Table  6.  In this problem,  the  load  and 

design tolerance limits have a measurable effect on the 

solution of the design problem.  However, as shown in 

Table 1, the solution changes proportionally if the 

load and tolerance limit are changed in the same 

proportion. 
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Suggestions 

This design method can be extended to other prob- 

lems as follows: 

1«  Asymmetrical problems for beam on an elastic 

foundation. 

2. Circular inclusion problems for elastic bodies 

in contact. 

3. Multibody contact problems. 

M 
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The  compatibility condition  for deformation  is 

given by 

£=u1+u2+d^0 (A-l) 

where £ is the gap vector after deformation of two 

1     2 bodies, u  and u  denote the normal displacement vec- 

tors of potential contact points on Bodies 1 and 2, 

and d is the vector of initial gap between the two 

bodies. 

Body 2 of Figure 23 is fixed, so only rigid 

body displacement for Body 1 is considered.  The dis- 

placement of points on Body 1 is due to rigid body 

displacements and elastic deformation.  Elastic de- 

formation of points on Body 1 is determined relative 

to zero values of the rigid body coordinates, and 

total displacement is found by superposition.  Gen- 

eralized displacement coordinates are denoted by q. 

The total displacement of potential contact 

points on Body 1 can be written in vector form as 

u1 = PV^ + Aq (A-2) e 

where u  is a reduced vector of elastic displacements 

of potential contact points on Body 1.  The vector u 
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is determined with q = 0, so it cannot contain dis- 

placement components that are used as rigid body de- 

grees of freedom.  The projection matrix P is given 

by P = [O | I   1, where n is the number of potential ta  • n-mJ r 

contact points and m is the number of degrees of free- 

dom.  The matrix A is an nxm affine transformation 

that contributes to rigid body displacements. 

The deformation vector u  is further decomposed 

as 

uXe = F
1PS + V1e (A-3) 

where F  is the flexibility matrix for Body 1, with 

q = 0, and V  is the vector of elastic displacements 

of potential contact points due to externally applied 

forces t  on Body 1, with q = 0.  From equations (A-2) 

and (A-3), 

u1 = PT[F1PS + V1 ] + Aq (A-4) 

For Body 2, 

u2 = F2S + V2 , (A-5) 

2 where F  is an nxn flexibility matrix for potential 
2 

contact points on Body 2, and V  is displacement of 

potential contact points on Body 2, due to externally 
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so 

T 1     2 

A 5 A 

and 

T 1     2 a = PV  + VZ  + d e    e 

Equilibrium Equations 

The work done by stresses and the applied forces 

on Body l, due to rigid body displacements only, is 

T 
W = STAq + t1 Hq (A-7) 

where H is a matrix that gives rigid body displacement 

at the points of application of t . 

Varying the rigid body displacements, the prin- 

ciple of virtual work gives 

T 
6W   =  STA$q   f   t1   Hfcq      =     0 (A-8) 

applied forces. 

Equation (A-l) can now be written as 

£ = (P'VP + F2)S + Aq + P^V*  + V2  + d ^ 0, (A-6) 
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Thus, 

(S^ + tX   H)5q = 0 (A-9) 

Since all components of q are independent, it is 

necessary that 

ATS + HTt1 = 0 (A-10) 

to 

or 

T      T 1 

Defining 

C = -H1^1 

Equation (A-10) can be written as 

(A-ll) 

T A*S = C (A-12) 
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APPENDIX B: 

PROGRAM LISTING 



9 

c ***#*****************♦****»♦♦**********♦***#*******♦** 
C * ♦ 
C * MAIN PROGRAM * 
C * BEAM ON AN ELASTIC FOUNDATION WITH NO INITIAL GAP, * 
C * * 

c 
c 
C DESCRIPTION OF PARAMETERS, 
C 
C DEL     IS THE INTERVAL SIZE BETWEEN THE POTENTIAL CONTACT 
C POINTS1P.C.P.) 
C AL      IS HALF THE P.C.LENGTH. 
C MNM     IS THE NO. OF DEGREES OF FREEDOM. 
C NN      IS THE NO. OF P.C.PS. 
C NC=NCI  IS THE NO. OF POINTS IN CONTACT. 
C NNC     IS THE NO. OF POINTS NOT IN CONTACT. 
C P       IS THE EXTERNALLY APPLIEO LOAD. 
C ITRN    IS THE LINEAR PROGRAMMING ITERATION NUMBER. 
C Ml      IS THE NO. OF CONSTRAINTS PLUS ONE. 
C Nl      NO. OF DESIGN VARIABLES PLUS NO.OF GE. TYPE OF CONSTRAINTS. 
C 
C M1=1+4*NC+MNM+NNC 
C Nl=2*MNM+l+2*NC+NGE 
C 
C DESCRIPTION OF MATRICES. 
C 
C Al(NN,MNM)   IS THE AFFINE TRANSFORMATION MATRIX FOR RIGID BODY 
C DISPLACEMENT CONTRIBUTION FOR BODY 1. 
C T(NNfNN)     IS THE COMBINED INFLUENCE COEFFICIENT MATRIX. 
C F(NN,NN)     IS EQUIVALENT TO T(NNfNN). 
C 
C FOLLOWING MATRICES ARE GENRATED FROM THE ABOVE TWO MATRICES. 
C 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

BHATCNN.NN) 

AHAT(NNtMNM) 

BTEL(NN,NN) 

ATEL(NN,MNM) 

B(MI,N1) 

SA(NN) 

SSA(NN) 

SB(NN) 
SAHAT(NN) 

ASHAT(NN) 

ASHAT(NN) 

SATEL(NN) 

SBTEL(NN) 

ASTEL(NN) 

RQ(Ml) 
N6P(N1) 
Kli(NN) 
K(NN) 

IS THE REDUCEO MATRIX «T« WITH ROWS AND COLUMNS 
CORROSPONDING TO POINTS NOT IN CONTACT REMOVED. 
IS THE MATRIX «Al« WITH CORROSPONDING ROWS FOR 
POINTS NOT IN CONTACT REMOVED. 
IS THE MATRIX »T1 WITH ROWS CORROSPONDING TO POINTS 
IN CONTACT AND COLUMNS CORROSPONDING TO POINTS NOT 
IN CONTACT REMOVED. 
IS THE MATRIX «Al1 WITH ROWS CORROSPONDING TO 
POINTS IN CONTACT REMOVED. 
IS THE MATRIX OF CONSTRAINT COEFFICIENTS. 

DESCRIPTION OF VECTORS. 

IS THE VECTOR 
DESIGN VARIABL 
IS THE VECTOR 
AT THEIR P.C.P 
IS THE VECTOR 
IS THE 
POINTS 
IS THE 
POINTS 
IS THE 
POINTS 
IS THE 
POINTS 
IS THE 
POINTS 
IS THE 
POINTS 
IS THE 

VECTOR 
NOT IN 
VECTOR« 
NOT IN 
VECTOR 
NOT IN 
VECTOR 
NOT IN 
VECTOR 
NOT IN 
VECTOR« 
NOT IN 
VECTOR 

COST FUNCTION 
IS THE VECTOR 
IS THE VECTOR 

OF TOLRANCE LIMIT FOR CONTOUR 
ES. 
OF INITIAL GAP BETWEEN THE TWO BODIES 
S. 
OF CONTOUR MODIFICATIONS. 
•SA« WITH COMPONENTS CORROSPONDING TO 
CONTACT REMOVED. 
SSA« WITH COMPONENTS CORROSPONDING TO 
CONTACT REMOVED. 
•SB« WITH COMPONENTS CORROSPONDING TO 
CONTACT REMOVED. 
•SA« WITH COMPONENTS CORROSPONDING TO 
CONTACT. 
•SA« WITH COMPONENTS CORROSPONDING TO 
CONTACT. 
SSA« WITH COMPONENTS CORROSPONDING TO 
CONTACT. 
OF R.H.S. VALUES OF CONSTRAINTS. 
ROW VECTOR. 
OF INDICED FOR POINTS NOT IN CONTACT. 
OF INDICES OF POINTS IN CONTACT. 

2 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SHAT(NN) 
RBD(MNM) 
RBDI(2*MNM) 
2(MNM) 

X(I) 
CST(NN) 
SIGN(M1 

KIKNN)    IS EQUIVALENT TO MNN). 
II(NN)      IS THE VECTOR HAVING COMPONENTS AS 1 OR 0. 

1 FOR POINTS IN CONTACT AND 0 FOR PTS. NOT IN CONTACT, 
IS THE VECTOR OF CONTACT FORCES. 
IS THE RIGID BODY DISPLACEMENT VECTOR. 

IS THE VECTOR HAVING COMPONENTS AS TOTAL EXTERNAL 
APPLIED LOAD. 
IS THE DISTANCE OF I TH P.C.P. FROM CENTER. 
IS THE CONTACT STRESS VECTOR. 

)   INDICATES THE TYPE OF CONSTRAINT USED. 
-1 FOR GE.TYPE OF CONSTRAINT. 
0 FOR EO. TYPE OF CONSTRAINT. 
1 FOR LE.TYPE OF CONSTRAINT. 

NOTE THAT 

THE DIMENSIONS OF THE MATRICES AND VECTORS SHOULD BE GIVEN AS 
SHOWN IN THE BRACKETS.ACTUAL SIZE OF «HATf AND fTELDA« MATRICES 
AND VECTORS IS GENERALLY LESS. 
HAT AND TEL ATTACHED TO THE MATRICES AND VECTORS 
DENOTES A AND ~ RESPECTIVELY. 

INPUT DATA FOR MAIN PROGRAM OF LP SUBROUTINE. 

1ST SET OF CARDS. READ IN M1.N1 
2ND SET OF CARDS. READ IN OR GENERATE MATRIX «B« 
3RD SET OF CARDS. READ IN OR GENERATE VECTOR «RQ«. 
4TH SET OF CARDS. READ IN SIGN ACCORDING TO TYPE OF CONSTRAINT, 

IMPORTENT NOTE. 



* 

c 
c 
C     IN CASE OF BEAM ON ELASTIC FOUNDATION WITH INITIAL GAP 
C     A FEW CHANGES IN THE MAIN PROGRAM ARE NECESSARY. 
C 
C     VECTOR SSA IS CHANGED. 
C 
C     SSA IN THE EXAMPLE SOLVED IN THIS WORK IS TAKEN AS GIVEN BELOW. 
C 
C     SSAU) »0.OOOl* (1.-(CXU) 1**2 J/(AL**2 II 
C 
C     FEW CHANGES IN MATRIX «B« ARE AS FOLLOWS. 
C 
C     B(I+3*NC,K1)=-AHAT(I,K1) 
C 320 B<I+3*NC,K1+MNM)=AHAT(I,K1) 
C     B(I+3*NC,MM+I)=-l. 
C 330 B(I*3*NC,MM+NC+K1)=-BHAT(I.K1) 
C 
C 

INTEGER SIGN,GP,PG 
REAL NBP 

C 
COMMON BU05,105),RQ(105),NBP<105),SIGN<105)tKM 105),ITRN 
COMMON RRQ(105),KN,GP,PG 

C 
DIMENSION SHAT(25),SA(25),ASHAT(25)fSB(25),K(25),II(25) 
DIMENSION KI1(25),BHAT(25,25), SAHAT(25),AHAT(25, 2)f SSA (25) 
DIMENSION BTEL(25,25),ATEL(2 5,2),SATEL(25),SBTEL(25),ASTEL<25> 
DIMENSION K11(25),P(105),RBD(2),RBDIU) 
DIMENSION T(25t25)tAl(25«2)fZ(2)vSBHAT(25),F<25,25),X(25),CST(25) 

C 

c 
READ(5,3) PP,U,AL,DEL,MNM,NNtNC,NNC,NGE 

3 F0RMAT(4F10.4,5I5) 



c 

c 

c 

c 

s 

ZU)=PP 
Z(2)=0.0 
DO 5 J=1,MNM 

5 READ(5,2)(A1(I,J)VI*1VNN) 

DC 20 1=1,NN 
20 SSA(I)=0. 

DC 1 1=1,NN 
X(I )=(I-1)*DEL 

1 SMI)=U*(l.-(<(X(I))**2J/(AL**2))) 
DC 4 1=1,NN 
SB(I)=0. 

4 READ(5,2)(F<I,J),J=1,NN> 

2 F0RMAK5E15.7) 
DC 22 1=1,NN 
DC 22 J=1,NN 

22 T(I,J)=F(I,J) 
ITRN=1 

C 
C     K(NC) EQUIVALENT TO KIKNC) IS THE INDEX OF POINTS IN CONTACT, 
C 
C 

READ(5,40MK(I), 1=1,NO 
C 

40 FCRMATU0I2) 
DO 25 1=1,NC 

25 KI1(I)=K(I) 
725 CCNTINUE 

JJ=0 
DC 35 1=1,NC 

35 K(I)=KI1(I) 



I 

K0=0 
NP = 0 
K2 = 0 
N12 = 0 
OC 42 1*1,NN 

4? I IC I 1 = 0 
DC 60 1=1,NN 
OC 70 NN1»1,NC 
L=K(NN1) 
IF(I-L)69,100,69 

100 KC=K0+1 
II(L)=1 

C 
C     TC FORM MATRIX B-*HAT•,A-fHAT«»SMALL-A-«HATSSMALL-B-fHAT«, 
C     AND VECTOR OF INITIAL GAP FOR POINTS IN CONTACT. 
C 

DO 220 KUI=1,MNM 
220 AHAT(K0,KUI)=A1(L,KUI) 

SAHAT(KO)=SA(L) 
SBHAT(KO)=SB(L) 
ASHAT(KO)=SSA(L) 
DC 71 J=1,NN 
DC 71 KM=1,NC 
M3=K<KM) 
IF(J-M3)71,200,71 

200 NM=NM+1 
BHAT(KO,NM)=T(I,JI 

71 CCNTINUE 
NM = 0 
GC TO 70 

69 K2=K2*1 
IF(NC-K2)70,80,70 

80 JJ=JJ+1 

CD 



I 

C     TO FORM MATRIX B-TELDA(BTELI,A-TELDACATEL•tSMALL-A-TELDA 
C     (ATEL),SMALL-B-TELDA(BTEL),ANO VECTOR OF INITIAL GAP FOR 
C     POINTS NOT IN CONTACT. 
C 

DO 222   MZ=1,MNM 
222 ATEL(JJ,MZ)=Al(ItMZ) 

SATEL(JJ)=SA(I) 
. SBTEL(JJ)=SB(I) 
ASTEL(JJ)=SSA(I) 
K11(JJ)=I 
DC 72 J«1,NN 
DC 72 KM3=1,NC 
M2=K(KM3) 
IF(J-M2)72,250,72 

250 N12=N12*1 
BTEL(JJtN12)=T(I,J) 

72 CCNTINUE 
N12 = 0 

70 CCNTINUE 
K2 = 0 

60 CCNTINUE 
101 FCRMAT(/5E15.7/) 

Nl=2*MNM+l+2*NC+NGE 
N-2*MNM+1+2*NC 
M1=1+4*NC*MNM+NNC 

C 
C     FORMULATION OF «Bf MATRIX. 
C     FCRMULATION OF VECTOR «RQ«. 
C 

DC 300 I=lfMl 
RC(I)=0. 
DO 300 J=1,N1 

300 B(I,J)=0. 
C 



t 

C     COST FUNCTION ROW FOR MAXIMIZATION PROBLEM(NBP) 
c 

DC   310   I=1,N1 
310   NBP(NGE*I)=0. 

MH=2*MNM+1 
NBP(NGE+MM)=-1.0 
OC   350   I=1,NC 
B(I,MM)=-1.0 
B(I*MM*NC*II«UO 
BU + NC.MM+I)=1. 
B(I*2*NC,MM«-I )=-l. 
DC 320 Kl=ltMNM 
B(I+3*NC,Kl)=:AHAT(IfKl) 

320 B(I+3*NC,KH-MNM)=-AHAT< I,K1) 
B(I+3*NC,MM+I)=1. 
DC 330 K1=1,NC 

330 B(I+3*NC»MM+NC+Kl)=BHAT(IfKl) 
DC 340 K1*1,MNM 

340 B(4*NC+KlfMM+NC+I)=AHAT(I,Kl) 
350 CCNTINUE 

DC 360 KJ=1,NNC 
DC 355 K1=1,MNM 
B(KJ+4*NC+MNM,K1)=-ATEL(KJ,K1) 

355 B(KJ+4*NC+MNMtKl+MNM)=ATEL(KJ,Kl) 
DC 353 KU=1,NC 

358 B(KJ+4*NC+MNM,MM+NC*KU)=-BTEL(KJfKU) 
360 CCNTINUE 

DC 370 J=1,NC 
RC(J)=0.0 
RC(J+NC)=SAHAT(J) 
RC(J+2*NC>=SAHAT(J) 

370 RC(J+3*NCI=A$HAT(JI 
DO 375 I1=1,MNM 

375 RC(4*NC+Il)=Z(II) 

ä 



t 

DO 380 IJ =1,NNC 
380 RC(4*NC*MNM«-IJ)=SBTEL< IJ > +ASTEL ( IJ I 

C 
C     SIGN INDICATES THE TYPE OF CONSTRAINTS. 
C     ONE FOR LESS THAN EQUAL TO TYPE OF CONSTRAINT. 
C     ZERO FOR EQUALITY CONSTRAINT. 
C     MINUS ONE FOR GREATER THAN EQUAL TYPE OF CONSTRAINT. 
C 

SIGN(M1)=0 
MK=3*NC 
DC 399 I=1,MK 

399 SIGN(I)=1 
KM1=MK*1 
KM2=MK+NC+MNM 
DC 420 I=KMlfKM2 

420 SIGN(I)=0 
KP3=KM2+1 
KK4=KM2+NNC 
DC 430 I=KM3,KM4 

430 SIGN(I)=1 
C 
C     ALL THE COEFFICIENT IN THE LP TABLEAU START LEAVING NGE- 
C     CCLUMNS BLANK. 
C 

DC 600 1=1,Ml 
DC 600 J=1,N 

600 B(IfNGE+J)»BCIvJ) 
GP=0 
PG=0 

C 
CALL LINP (Ml,NfNGE) 

C 
C     CHECK IF SOLUTION IS UNBOUNDED OR INFEASIBLE THEN TERMINATE 
C 



* 

IF(GP.EQ.I) GO TO 1000 
IF(PG.EQ.l) GO TO 1000 
OC 308 J=1,KN 

C 
C     REARRANGING THE INDICIES OF THE VARIABPES IN A SERIAL ORDER. 
C 

DC 308 1=2,KN 
P(J)=KK(J) 
IFU-I )307,308,308 

307 IF(P(J)-KK(I))308,308,299 
299 KK(J)=KK(I) 

KK(I)=P(J) 
308 CCNTINUE 

DO 298 1=1,KN 
298 RC(KK(I))=RRQ(KK(II! 

C 
C     RBD IS RIGID BODY DISPLACEMENT. 
C 

IM=2*MNM 
DO 290 1 = 1,IM 

290 RBD1(I)=0. 
C 
C    TO FIND THE RIGID BODY DISPLACEMENTS (SMALL-«QM 
C 

DC 205 1 = 1, IM 
IF(KK(I)-IM)199,l99,205 

199 KX=I 
IF(KK(I).LE.2)G0 TO 202 
GG TO 275 

202 IF(KK(IJ.EQ.2) GO TO 280 
GC TO 285 

280 RBD1(2)=-RQ(KK(I)) 
GO TO 205 

285 RBDl(l)=RQ(KK(I)) 

to 



I ------ "V 

GC   TO   205 
275 IFCIM.E0.2I   GO   TO   205 
282 IF(KK(I).EQ.3)   GO   TO   283 

GC   TO   284 
283 RBD1<3)=RQ(KK(I)) 

GC   TO   205 
284 IF(KK(I).EQ.4)G0   TO   279 

GC   TO   205 
279 RBD1(4)=-RQ(KK(I)> 
205 CCNTINUE 

N21=0 
DC   281   J=1,MNM 
RBD( J) = RBD1( J+N21)+RBDKJ-H+N21> 
N21=N21+1 

281 WRITE<6»214)   N21»RBD(J) 
214 FORMAT(/2Xf•RBO(f,Ilf•)=«,615.7/) 

KX=KX+1 
FX2=RQ(KK(KX)) 

c 
C     TO GET THE CONTOUR DESIGN VARIABLES. 
C     CCNTOUR DESIGN VARIABLES START WITH INDEX OF RQ AS 2*MNM*2, 
C 

J1=NC+MM 
DC   210   1=1,NC 
J2=KX+1 
JOH-MM 
IF(KK(J2)-J1)206,206,221 

206   CONTINUE 
IF(KK(J2).EQ.J0)   GO   TO   203 
GO TO 221 

203 KX=KX+1 
SB(K(I))=RQ(KK(J2)) 
GC TO 210 

221 SB(K(I))=0.0 



¥ 

210 CGNTINUE 
WRITE(6,226) FX2 

226 FCRMAK/2X, «COST FN=*,E15.7/) 
NCI=NC 
WRITE(6f2ll) 

211 FCRMAK/1X, «SR.NO.« »3Xf« POINT •t9Xt'SHAT •f15Xt«EPHAT S15X,» SBHAT«) 
C 
C     CONTACT STRESS VECTOR FORMATION. 
C 

DC 224 1 = 1, NC 
JK=KX*i 
K12=MM*NC+I 
IF(KK(JK).EQ.Kl2| GO TO 277 
GO TO 278 

277 KX=KX*1 
SHAT(I)=RQ(K12) 
GC TO 224 

278 SHAT(I)=0.0 
224 CONTINUE 

C 
C     COMPUTE EPSLON «HAT«. 
C 

00 225 1=1,NC 
EPHAT=SB(K(I))+ASHAT<I) 
DO 208 K8*1,MNM 

208 EPHAT=EPHAT+AHAT(I,K8)*RBO(K8) 
OC 209 J=1,NC 

209 EPHAT=EPHAT*BHATCI,JI*SHAT(JI 
225 WRITE(6,223) I,K(I),SHAT(I),EPHAT,SB(K(I)) 
223 F0RMAT(/5X,I2,3X,I2,3X,E15.7,5X,E15.7f5X,E15«7> 

C 
C     COMPUTE EPSLON •TELOA«. 
C     CHECK WHICH OF THE EPSLON TELOA IS ZERO. 
C 

2 



T 

WRITE<6,235) 
235 FCRMAT(/5X,«POINT«,8X,«EPSL0N   TELDAV) 

DO   230   1=1,NNC 
EPTL=SBTEL(I)+ASTEL(I) 
DC 236 K7=1,MNM 

236 £PTL=EPTL*ATEL(I,K7)*RBD<K7) 
DC 240J=l,NC 

240 EPTL=EPTL4BTEL(I,J)*SHAT(J) 
WRITE(6,231) K11(I),EPTL 
lF(EPTL.LE.lE-04) GO TO 232 
GC TO 230 

232 I KK11I I))=l 
230 CCNTINUE 
231 FCRMAT(/5X,I5,5X,E15.7) 

C 
C     S-HAT IS THE VECTOR OF CONTACT FORCES. 
C     CHECK WHICH OF THE S-HAT ARE ZERO. 
C     POINTS WHERE S-HAT IS ZERO ,IS LIFTED. 
C     KNC ARE THE NO. OF PTS. LIFTED. 
C 

KMC = 0 
251 FCRMAT(/2X,«KNC-NO.OF PTS. WHICH CAN BE LIFTED=»,I3) 

DO 259 1=1,NC 
IFCSHATCII)259,249,259 

249 KNC=KNC+1 
I KK(I) 1=0 

259 CCNTINUE 
WRITE(6,251)KNC 
NC=0 
DO   270    1=1,NN 
IFUKI ).EQ.0)GO  TO   270 
NC=NC+1 
KI1(NC)=I 

270   CCNTINUE 

un 



V 

255 
C 
c 
c 

800 

728 
825 

700 
860 

875 

405 

403 

880 

900 
890 

1000 

NKONN-NC 
WRITE<6,255)   NC,NNC 
FCRMAK/2X, •NC=,tI3»2X,«NNC = 13/ I 

728,825,728 

COMPARE THE CONTOUR BETWEEN THE TWO CONSECTIVE ITRNS. 

IF(NCI-NC) 725,800,725 
CONTINUE 
JIK = 0 
DC 825 1=1,NC 
IF(K(I)-Kll(in 
JIK=JIK+1 
K(I)=KIKI ) 
IF(JIK.EQ.O) GO TO 700 
GC TO 725 
WRITE(6,860) 
FCRMAT(/5X,«FINAL 
WRITE(6,875) FX2 
FCRMAT(/1X,«COST FN 
WRITE(6,405) 
FCRMAT(/20X,»INITIAL 
WRITE(6,2)(SSA(I)f I 
WRITE(6,403) 
FCRMAT(/20X,»TOLERANCE LIMIT»/) 
WRITE(6,2)(SA(I),1=1,NN) 
WRIT6(6,880) 
FCRMAT(/5X,»P0INT»,7X,»FINAL  GAP 
l»CONTACT STRESS») 
DC 900 1=1,NC 
CST(I)=SHAT(I)/DEL 
WRITE(6,890) KU)tSB(KU) >,SHAT(I),CST<I) 
FCRMAT(/5X,I5,5X,E15.7,5XfEl5.7f5X»El5.7) 
CALL EXIT 
END 

RESULTS»/) 

•,F12.6/) 

GAP»/) 
1,NN) 

•,7X»C0NTACT FORCE»,6X 



c 

c 

c 

c 
c 

c 

V 

c ********************************** 
c * * 
C * SUBROUTINE LINEAR PROGRAMMING, * 
C * * c ********************************** 
c 

SUBROUTINE LINP (MlfN,NGE) 
C 

INTEGER  RNMl,RNM2tCLNMltCLNM2tBLNK tLPFTN  1 
L       IBN1(105),IBN2(105),NBN1(105I,NBN2(105) 

INTEGER SIGN,GP,PG 
REAL   PIVOTfLST,XNBPtFNfCJBAR,X,VALUEfBP(l05l,PI(105)tXPI(105) 
REAL NBP 

COMMON B(105f105),RQ(105),NBP(105),SIGN(105),KK(105),ITRN 
COMMON RRQ(105)tKN,GP,PG 

DATA BLNK/4H    / 
DATA NM1,NM2/,CCCC,,,AAAA1/ 

NI = 5 
NC = 6 
IN=1 
M=M1-1 
DC 101 I = 1,M 
IF(SIGN(I))108,107,106 

106 BP(I)=0. 
GC TO 101 

108 BP(I)=-1.0 
B(I,IN)=-1.0 

LPFTN  5 

LPFTN  8 
LPFTN 16 

C     INPUT PROGRAM LPFTN 17 
LPFTN 18 



? 

NBN1(IN)=NM2 
NBN2(IN)=IN 
NBPUN)*0. 
IN=IN*1 
GC TO 101 

107 BP(I)=-2.0 
101 CCNTINUE 

DC 102 J=1,N 
NBNM J«-NGE)»NM1 

102  NBN2(J*NGE)=J+NGE 
N=N+NGE 
DC 10 1=1,M 
IF(BP(I)+1.0) 19fll,l2 

11 I8N1(I)=BLNK 
IBN2(I)=BINK 
GC TO 10 

19 BP(II=-l.O 
GC TO 11 

12 CCNTINUE 
IBN1(I)=NM2 
IBN2(I)=I 

10 CCNTINUE 
C LPFTN164 
C     ACCUMULATE COUNT OF INFEASIBILITIES LPFTN165 
C LPFTN166 

NINF =0 LPFTN167 
DO 6000 I = 1,M LPFTN168 
IF(BP(I))6001,6000,6000 LPFTN169 

6001 NINF = NINF+1 LPFTN170 
6000 CCNTINUE 

C LPFTN172 
C      GENERATE INDICATORS FOR MINIMIZATION OF INFEASIBILITY LPFTN173 
C LPFTN174 

DO 6101 J=1,N LPFTN175 

CD 



7 

XPI(J)    =0. 
DC   6101    IM*M 
IFCBPU ) >6102,6101*6101 

6102   XPKJ)    =   XPKJl-BdiJI 
6101   CCNT1NUE 

DC   6002   I=1»M 
6002   BP(I)   =   0. 

WRITE<6,401) 
401 FCRMAK/2X,•***************♦********•/> 

WRITE<6,400)    ITRN 
400 FCRMAT(/5X,«MAIN ITRN N0.=«.I3/) 

WRITE(6f402) 
402 FCRMAK/2X,•************************•/) 

ITRN=ITRN4-1 
IPHASE = 1 

C 
C 

LPFTN176 
LPFTN177 
LPFTN178 
LPFTN179 
LPFTN180 
LPFTN181 
LPF7N182 

MAIN ROUTINE 

LPFTN183 
LPFTN184 
LPFTN185 

9201 WRITE(N0,9202> 
9202 FORMAT («0 ITERATION    VAR IN 

IT = 0 
54325 CCNTINUE 
C 
C      CALCULATE SHADOW PRICES 
C 

DC 194 J=1,N 
PKJ) = -NBP(J) 
DC 194 1=1,M 

194 PKJ) = PKJ) ♦ BPU)*B(IfJ) 

VAR OUT OBJ FNS/) 

C 
C 
C 

SELECT BEST NONBASIS VECTOR 

9101 LST = -,0000001 
KCOL = 0 

LPFTN188 
LPFTN189 
LPFTN190 
LPFTN191 
LPFTN192 
LPFTN193 
LPFTN194 
LPFTN195 
LPFTN196 
LPFTN197 
LPFTN198 
LPFTN199 
LPFTN200 

LPFTN202 
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C 
C 
c 

c 
c 
c 

GO TO (751,552),IPHASE 
751 IF(NINF)54321,54321,552 
552 CONTINUE 

DC 9102 J=1,N 

IGNORE ARTIFICIAL VARIABLES 

IFCNBNKJ)-BLNK*NBN2<J)-BLNK)651,9102,651 
651 CONTINUE 

GO TO (6003,6004),IPHASE 
6003 IFCXPKJ)-LST)6005,6006,6006 
6005 KCOL=J 

LST = XPIIJI 
GO TO 9102 

6004 CONTINUE 
IF(PKJ)-LST)9103,9102,9102 

9103 KCOL = J 
LST = PKJ) 

6006 CONTINUE 
9102 CONTINUE 

IF (KC0D54321,54321,9104 

CETERMINE KEYROW 

9104 KROW = 0 
CJBAR = LST 
LST = U0E20 
DC 9105 1 = 1,M 
IF(B(I,KCOL))9105,9105,9106 

9106 RATIO = RO(I)/B(I,KCOL) 
IF (RATI0-LST)9107,9105,9105 

9107 LST = RATIO 
KROW=I 

9105 CONTINUE 

LPFTN203 
LPFTN204 
LPFTN205 
LPFTN206 
LPFTN207 
LPFTN208 
LPFTN209 
LPFTN210 
LPFTN211 
LPFTN212 
LPFTN213 
LPFTN214 
LPFTN215 

LPFTN217 
LPFTN218 
LPFTN219 
LPFTN220 
LPFTN221 
LPFTN222 
LPFTN223 
LPFTN224 
LPFTN225 
LPFTN226 
LPFTN227 
LPFTN228 
LPFTN229 
LPFTN230 

LPFTN232 
LPFTN233 
LPFTN234 
LPFTN235 
LPFTN236 

§ 



¥ ■ft 

IF(KR0W)9112,9112,9114 
9112 WRITE(N0,9113) NBN1(KCOLI,NBN2(KCOL) 

9113  FORMATS VARIABLE •fA2,I3,
f  UNBOUNOEO •) 

GP=GP+1 
GC TO 54323 

9114 CCNTINUE 

TRANSFORM 

DIVIDE BY PIVOT 
PIVOT = B(KROW,KCOL) 
DC 9108 J=1,N 

9108 B(KROW,J) = B(KROW,JI/PIVOT 
RC(KROW) = RQ(KR0W)/PIV0T 
DO 9109 1=1,M 
IF( I-KROW)9110,9109,9110 

9110 RCU) = RQ(I) - RQ(KROW)*B(I,KCOL) 
DC 4444 J = lf N 
IF(J-KCOL)9111,4444,9111 

9111 B(IfJ) = B(I,J) - B(KROW,J)*B(I,KCOU 
4444 CCNTINUE 
9109 CCNTINUE 

DO   9300   1=1,M 
9300   B(I,KCOL)      =   -BU ,KC0L )/P IVOT 

B(KROW,KCOU   =   1.0/PIVOT 
C 
C 
c 

INTERCHANGE BASIS AND NONBASIS VARIABLES 

RNM1 = NBNKKCOL) 
RNM2 = NBN21KC0L) 
NBNKKCOL) = IBNl(KROW) 
NBN2(KC0L) = IBN2(KR0W) 
IBNKKROW) = RNM1 
IBN2(KR0W) = RNM2 

LPFTN237 

LPFTN240 
LPFTN241 
LPFTN242 
LPFTN243 
LPFTN244 
LPFTN245 

LPFTN247 
LPFTN248 
LPFTN249 
LPFTN250 
LPFTN251 
LPFTN252 

LPFTN254 
LPFTN255 

LPFTN256 
LPFTN257 
LPFTN258 
LPFTN259 
LPFTN260 
LPFTN2 
LPFTN262 
LPFTN263 
LPFTN264 
LPFTN265 
LPFTN266 
LPFTN267 
LPFTN268 
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C 
C 
c 

LST   =   NBP(KCOL) 
NBP(KCOL)   =   BP(KROW) 
BP(KROW)   =   LST 
IT   =   IT   ♦   1 
I F(NBNHKCOL)-BLNK+NBN2<KCOL)-BLNK) 6201,6200, 6201 

6200 NINF = NINF-1 
6201 CCNTINUE 

COMPUTE OBJECTIVE FUNCTION 

FN = 0, 
DC 9301 1=1,M 

9301 FN = FN ♦ BP(I)*RQ(I) 
GC TO (7000,7001),IPHASE 

7000 SAVE = PKKCOL) 
DO 7003 J=1,N 
PKJ) = PKJ) - SAVE*B(KROW,J) 
XPI(J) = XPI(J) - CJBAR*B(KROW,J) 

7003 CCNTINUE 
PI(KCOL)   =   -SAVE/PIVOT 
XPKKCOL)   =   -CJBAR/PIVOT 
GO   TO   7004 

7001 CCNTINUE 
DC 9302 J=1,N 

9302 PI(J) = PKJ) - CJBAR*B(KROW,J) 
PI(KCQL) = -CJBAR/PIVOT 

7004 CCNTINUE 
: CHECK FOR ESSENTIAL ZERO 

DO 6111 1 = 1,M 
DO 6111 J=1,N 
X=B(I,J) 
IF(ABS(X)-.0000001)6112,6112,6 111 

6112 B(I,J) = 0. 
6111 CCNTINUE 

LPFTN269 
LPFTN270 
LPFTN271 
LPFTN272 
LPFTN273 
LPFTN274 
LPFTN275 

LPFTN277 
LPFTN278 
LPFTN279 
LPFTN280 
LPFTN281 
LPFTN282 
LPFTN283 
LPFTN284 
LPFTN285 
LPFTN286 
LPFTN287 
LPFTN288 
LPFTN289 
LPFTN290 

LPFTN292 
LPFTN293 
LPFTN294 
LPFTN295 
LPFTN296 
LPFTN297 
LPFTN298 
LPFTN299 
LPFTN300 
LPFTN301 
LPFTN302 

CD 



? 

c 
c 
C      LOG ITERATION 
C 

WRITE (NO,9120)IT,IBN1(KROW),IBN2(KROW),NBN1(KCOL),NBN2(KCOL),FN 
9120 FORMAT(19,7X,A2,I 3,8X,A2f13,3X,F13.3) 

GO TO 9101 
C 
C 
54321 CONTINUE 

I FUPHASE- 1)8000, 8000, 54322 
8000 I PHASE = 2 

IF(NINF)8003,8003,8004 
8004 WRITE(N0,8005) 
8005 FCRMATCO SOLUTION INFEAS IBLE • ,/ • 

PG=PG+1 
GO TO 54323 
CONTINUE 
WRITE(N0,8002) 

8003 

8002 

54322 
C 
C 
c 

301 

302 

C 
C 
C 

FCRMATMO  SOLUTION FEASIBLE •,/) 
GO TO 54325 
CONTINUE 

OUTPUT ROUTINE 

WRITE(NOt301) IT,FN 
FCRMAT(•l,,,  ITERATI0NSI5,«  OBJ FN f,Fl5.3/) 
WRITE(N0,302) 
FORMAT(3X,«BASIS VAR«,17X, •AMOUNT») 
KN=0 
DO 3033 1*1,M 

COST RANGING 

LPFTN303 
LPFTN304 
LPFTN305 

LPFTN309 
LPFTN310 
LPFTN311 
LPFTN312 
LPFTN313 
LPFTN314 
LPFTN315 

LPFTN317 

LPFTN319 

LPFTN321 

LPFTN323 
LPFTN324 
LPFTN325 
LPFTN326 

LPFTN328 

LPFTN332 
LPFTN333 
LPFTN334 
LPFTN335 



V 

12305 

12302 

12303 

12301 

12304 
12300 

C 
C 
c 
c 
c 
c 
c 
c 

306 

3033 
304 

54323 

VALUE = 1.0E20 
LST = 1.0E20 
DC 12300 J = 1,N 
IF(NBN1(J)-BLNK+NBN2(J)-BLNK)12305,12300,12305 
CONTINUE 
IF(B(I,J)112301,12300,12302 
X=PI(J)/B(I,J) 
IF(X-LST)12303,12300,12300 
LST = X 
GC TO 12300 
X=-PI(J)/B(I,J) 
IF(X-VALUE)12 304,12300,12 300 
VALUE = X 
CCNTINUE 
LST = BP(I> - LST 
VALUE = BP(I) ♦ VALUE 

VARIABLES WITH NAMES AS •CC• ARE SEPERATED . 
THESE VARIABLES ARE THE DESIGN VARIABLES OF LP PROBLEM, 

VARIABLES WITH NAMES 'AA' ARE ELIMINATED 
THESE ARE THE SLACK VARIABLES. 

IFUBNK I )-NMl) 3033, 306,3033 
KN=KN+1 
KK(KN)=IBN2(I) 
RRQ(KMKN) ) = RQ( I) 
WRlTE(6,304)IBNl(I),IBN2(I)tRQ(I) 
CCNTINUE 
FCRMAT(7X,A2,I3,7X,F16.6) 
CCNTINUE 
RETURN 
END 

IN THE NEXT STEP, 

LPFTN336 
LPFTN337 
LPFTN338 
LPFTN339 
LPFTN340 
LPFTN341 
LPFTN342 
LPFTN343 
LPFTN344 
LPFTN345 
LPFTN346 
LPFTN347 
LPFTN348 
LPFTN349 
LPFTN350 
LPFTN351 

LPFTN 19 

LPFTN365 

00 
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c *************** 

c * ♦ 
c * INPUT DATA. * 
c * ♦ 
c *************** 

p u AL DEL 

1000. 0.01 

Al-MATRIX. 

1.44 0.06 

0.1000000E 01 
0.1000000E 01 
0.1000000E 01 
0.1000000E 01 
0.1000000E 01 

0.1000000E 01 
0.1000000E 01 
0.1000000E 01 
O.iOOOOOOE 01 
0.1000000E 01 

T-MATRIX. 

ROW  1 

0.5000000E-04 
O.OOOOOOOE 00 
O.OOOOOOOE 00 
O.OOOOOOOE 00 
O.OOOOOOOE 00 

ROW \ 

O.OOOOOOOE 00 
0.1423058E-06 
0.2947765E-06 
0.4472471E-06 

O.OOOOOOOE 00 
O.OOOOOOOE 00 
O.OOOOOOOE 00 
O.OOOOOOOE 00 
O.OOOOOOOE 00 

0.5002033E-04 
0.1728000E-06 
0.3252706E-06 
0.4777413E-06 

MNM  NN   NC   NNC  NGE 

1   25   12   13    0 

O.IOOOOOOE 01 
O.IOOOOOOE 01 
O.IOOOOOOE 01 
O.IOOOOOOE 01 
O.IOOOOOOE 01 

O.OOOOOOOE 00 
O.OOOOOOOE 00 
O.OOOOOOOE 00 
O.OOOOOOOE 00 
O.OOOOOOOE 00 

0.5082351E-07 
0.2032941E-06 
0.3557647E-06 
0.5082351E-06 

O.IOOOOOOE 01 
O.IOOOOOOE 01 
O.iOOOOOOE 01 
O.IOOOOOOE 01 
0.100000CE 01 

O.OOOOOOOE 00 
O.OOOOOOOE 00 
O.OOOOCOOE 00 
O.OOOOOOOE 00 
O.OOOOOOOE 00 

0.8131758E-07 
0.2337882E-06 
0.3862589E-06 
0.5387294E-06 

O.IOOOOOOE 01 
O.IOOOOOOE 01 
O.IOOOOOOE 01 
O.IOOOOOOE 01 
O.IOOOOOOE 01 

O.OOOOOOOE 00 
O.OOOOOOOE 00 
O.OOOOOOOE 00 
O.OOOOOOOE 00 
O.OOOOOOOE 00 

0.1118117E-06 
0.2642823E-06 
0.4167530E-06 
0.5692230E-06 

CO 
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0.5997176E-06     0.6302112E-06     0.6607058E-06     0.6911994E-06     0.7216940E-06 

ROW     3 

O.OOOOOOOE 00 
0.5285647E-06 
0.U38446E-05 
0.1748329E-05 

0.5082351E-07 
0.6505411E-06 
0.1260422E-05 
0.1870305E-05 

0.2 35 8211E-05  0.2480186E-05 

0.5016263E-04 
0.7725175E-06 
0.1382399E-05 
0.1992281E-05 
0.2602163E-05 

0.2846118E-06 
0.8944938E-06 
0.15C4375E-05 
0.2114258E-05 
0.2724139E-05 

0.4065882E-06 
0.1016469E-05 
0.1626352E-05 
0.2236233E-05 
0.2846116E-05 

ROW  4 

O.OOOOOOOE 00 
0.1097787E-05 
0.2470023E-05 
0.3842259E-05 
0.5214493E-05 

0.8131758E-07 
0.1372235E-05 
0.2744470E-05 
0.4116706E-05 
0.5488939E-05 

0.2846118E-06 
0.1646682E-05 
0.3018918E-05 
0.4391150E-05 
0.5763387E-05 

0.5054889E-04 
0.1921129E-05 
0.3293365E-05 
0.4665600E-05 
0.6037832E-05 

0.8233413E-06 
0.2195577E-05 
0.3567811E-05 
0.4940044E-05 
0.6312281E-05 

ROW 

O.OOOOOOOE 00 
0.1788988E-05 
0.4228518E-05 
0.6668048E-05 
0.9107576E-05 

0.1118117E-06 
0.2276894E-05 
0.4716424E-05 
0.7155954E-05 
0.9595473E-05 

0.4065882E-06 
0.2764800E-05 
0.5204330E-05 
0.7643855E-05 
0.1008339E-04 

0.8233413E-06 
0.3252706E-05 
0.5692236E-05 
0.8131765E-05 
0.1057128E-04 

0.5130107E-04 
0.3740612E-05 
0.6180142E-05 
0.8619662E-05 
0.1105920E-04 

ROW 

O.OOOOOOOE 00 
0.5254117E-04 
0.6352941E-05 
0.1016470E-04 

0.1423058E-06 
0.3303528E-05 
0.7115294E-05 
0.1092706E-04 

0.1397646E-04  0.1473 880E-04 

0.5285647E-06 
0.4065882E-05 
0.7877644E-05 
0.1168940E-04 
0.1550U5E-04 

0.1097787E-05 
0.4828235E-05 
0.8639997E-05 
0.1245176E-04 
0.1626350E-04 

0.1788988E-05 
0.5590588E-05 
0.9402351E-05 
0.1321410E-04 
0.1702584E-04 

en 
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O.OOOOOOOE 00 
0.3303528E-05 
0.8782305E-05 
0.1427124E-04 
0.1976016E-04 

0.1728000E-06 
0.5439114E-04 
0.9880087E-05 
0.1536903E-04 
0.2085796E-04 

0.6505411E-06 
0.5488941E-05 
0.1097738E-04 
0.1646680E-04 
0.2195574E-04 

0.1372235E-05 
0.6586730E-05 
0.1207567E-04 
0.1756460E-04 
0.2305352E-04 

0.2276894E-05 
0.7684514E-05 
0.1317344E-04 
0.1866238E-04 
0.2415132E-04 

ROW  8 

O.OOOOOOOE 00 
0.4065882E-05 
0.1145562E-04 
0.1892669E-04 

0.2032941E-06 
0.5488941E-05 
0.1294982E-04 
0.2042089E-04 

0.263 9773E-04  0.2 789193E-04 

0.7725175E-06 
0.5697299E-04 
0.1444404E-04 
0.2191508E-04 
0.2938615E-04 

0.1646682E-05 
0.8467199O05 
0.1593825E-04 
0.2340930E-04 
0.3088034E-04 

0.2764800E-05 
0.99614UE-05 
0.1743247E-04 
0.2490351E-04 
0.3237458E-04 

ROW 

O.OOOOOOOE 00 
0.4828235E-05 
0.1431190E-04 
0.2407002E-04 

0.2337882E-06 
0.6586730E-05 
0.1626351E-04 
0.2602163E-04 

0.3 38 2812E-04  0.3 577973E-04 

0.8944938E-06 
0.8467199E-05 
0.1821514E-04 
0.2797325E-04 
0.3773137E-04 

0.192U29E-05 
0.6040865E-04 
0.2016676E-04 
0.2992488E-04 
0.3968297E-04 

0.3252706E-05 
0.1236027E-04 
0.2211839E-04 
0.3187648E-04 
0.4163462E-04 

ROW   10 

O.OOOOOOOE 00 
0.5590588E-05 
0.1729015E-04 
0.2964027E-04 
0.4199038E-04 

0.2642823E-06 
0.7684514E-05 
0.1976016E-04 
0.3211029E-04 
0.4446038E-04 

0.1016469E-05 
0.9961411E-05 
0.2223020E-04 
0.3458030E-04 
C4693042E-04 

0.2195577E-05 
0.1236027E-04 
0.2470022E-04 
0.3705033E-04 
0.4940042E-04 

0.3740612E-05 
0.6482012E-04 
0.2717024E-04 
0.3952034E-04 
0.5187046E-04 

ROW 11 

oo 



* 

O.OOOCOOOE oc 
0.6352941E-05 
0.7032939E-04 
0.3557646E-04 
0.5082351E-04 

0.2947765E-06 
0.8782305E-05 
0.2337880E-04 
0.3862588E-04 
0.5387289E-04 

0.1138446E-05 
0.1145562E-04 
0.2642823E-04 
0.4167526E-04 
0.5692233E-04 

0.2470023E-05 
0.143U90E-04 
0.2947764E-04 
0.4472470E-04 
0.5997172E-04 

0.4228518E-05 
0.1729015E-04 
0.3252705E-04 
0.4777408E-04 
0.6302114E-04 

ROW 12 

O.OOOOOOOE 00 
0.7115294E-05 
0.2337880E-04 
0.4181759E-04 
0.6026651E-04 

0.3252706E-06 
0.9880087E-05 
0.7705843E-04 
0.4550737E-04 
0.6395628E-04 

0.1260422E-05 
0.1294982E-04 
0.3074821E-04 
0.4919713E-04 
0.6764609E-04 

0-2744470E-05 
0.1626351E-04 
0.3443801E-04 
0.5288694C-04 
0.7133565E-04 

0.4716424E-05 
0.1976016E-04 
0.3812779E-04 
0.5657670E-04 
0.7502566E-04 

ROW 13 

O.OOOOOOOE 00 
0.7877644E-05 
0.2642823E-04 
0.4830268E-04 
0.7025844E-04 

0.3557647E-06 
0.1097788E-04 
0.3074821E-04 
0.5269384E-04 
0.7464956E-04 

0.1382399E-05 
0.1444404E-04 
0.8512923E-04 
0.5708495E-04 
0.7904074E-04 

0.3018918E-05 
0.1821514E-04 
0.3952038E-04 
0.6147614E-04 
0.8343186E-04 

0.5204330E-05 
0.2223020E-04 
0.4391152E-04 
0.6586725E-04 
0.8782303E-04 

ROW 14 

O.OOOOOOOE 00 
0.8639997E-05 
0.2947764E-04 
0.5497073E-04 

0.3862589E-06 
0.1207567E-04 
0.3443801E-04 
0.6012425E-04 

0.8073825E-04  0.8 589170E-04 

0.1504375E-05 
0.1593825E-04 
0.3952038E-04 
0.6527771E-04 
0.9104525E-C4 

0.3293365E-05 
0.2016676E-04 
0.9466373E-04 
0.7043124E-04 
0.9619871E-04 

0.5692236E-05 
0.2470022E-04 
0.4981723E-04 
0.7558471E-04 
0.1013523E-03 

ROW 15 

O.OOOOOOOE 00 
0.9402351E-05 

0.4167530E-06 
0.1317344E-04 

0.1626352E-05 
0.1743247E-04 

0.3567811E-05 
0.22U839E-04 

0.6180142E-05 
0.2717024E-04 

oo 
cc 



* 

0.3252705E-04 
0.6176077E-04 
0.9164499E-04 

0.3812779E-04 
0.6773762E-04 
0.9762179E-04 

0*4391152E-04 
0.7371441E-04 
0.1035987E-03 

0.4981723E-04 
0.7969131E-04 
0.1095755E-03 

0.1057839E-03 
0.8566810E-04 
0.1155524E-03 

ROW 16 

O.OOOOOOOE 00 
0.1016470E-04 
0.3557646E-04 
0.1186118E-03 
0.1029176E-03 

0.4472471E-06 
0.1427124E-04 
0.4181759E-04 
0.7547297E-04 
0.1097788E-03 

0.1748329E-05 
0.1892669E-04 
0.4830268E-04 
0.8233408E-04 
0.1166400E-03 

0.3842259E-05 
0.2407002E-04 
0.5497073E-04 
0.8919531E-04 
0.1235010E-03 

0.6668048E-05 
0.2964027E-04 
0.6176077E-04 
0.9605644E-04 
0.1303622E-03 

ROW 17 

O.OOOOOOOE 00 
0.1092706E-04 
0.3862588E-04 
0.7547297E-04 
0.1144952E-03 

0.4777413E-06 
0.1536903E-04 
0.4550737E-04 
0.1332693E-03 
0.1223016E-03 

0.1870305E-05 
0.2042089E-04 
0.5269384E-04 
0.9107571E-04 
0.1301082E-03 

0.4116706E-05 
0.2602163E-04 
0.6012425E-04 
0.9888226E-04 
0.1379146E-03 

0.7155954E-05 
0.3211029E-04 
0.6773762E-04 
0.1066886E-03 
0.1457212E-03 

ROW 18 

O.OOOOOOOE 00 
0.1168940E-04 
0.4167526E-04 
0.8233408E-04 
0.1263166E-03 

0.5082351E-06 
0.1646680E-04 
0.4919713E-04 
0.9107571E-04 
0.1351293E-03 

0.1992281E-05 
0.2191508E-04 
0.5708495E-04 
0.1498782E-03 
0.1439421E-03 

0.4391150E-05 
0.2797325E-04 
0.6527771E-04 
0.1086910E-03 
0.1527549t-03 

0.7643855E-05 
0.3458030E-04 
0.7371441E-04 
0.1175037E-03 
0.1615677E-03 

ROW 19 

O.OOOOOOOE 00 
0.1245176E-04 
0.4472470E-04 
0.8919531E-04 

0.5387294E-06 
0.1756460E-04 
0.5288694E-04 
0.9888226E-04 

0.2U4258E-05 
0.2340930E-04 
0.6147614E-04 
0.1086910E-03 

0.4665600E-05 
0.2992488E-04 
0.7043124E-04 
0.1685610E-03 

0.8131765E-05 
0.3705033E-04 
0.7969131E-04 
0.1284410E-03 

oo 



• 

0.13832ilE-03  0.1482012E-03 

ROW 20 

0.1580813E-03  0.1679613E-03  0.1778415E-03 

0.0000000E 00 
0.1321410E-04 
0.4777408E-04 
0.9605644E-04 
0.1504476E-03 

ROW 21 

O.OOOOOOOE 00 
0.1397646E-04 
0.5082351E-04 
0.1029176E-03 
0.2126351E-03 

ROW 22 

O.OOOOOOOE 00 
0.1473880E-04 
0.5387289E-04 
0.1097788E-03 
0.1748324E-03 

ROW 23 

O.OOOOOOOE 00 
0.1550115E-04 
0.5692233E-04 
0.1166400E-03 
0.1870302E-03 

0.5692230E-06 
0.1866238E-04 
0.5657670E-04 
0.1066886E-03 
0.1614558E-03 

0.5997176E-06 
0.1976016E-04 
0.6026651E-04 
0.U44952E-03 
0.1748324E-03 

0.6302112E-06 
0.2085796E-04 
0.6395628E-04 
0.1223016E-03 
0.2382702E-03 

0.6607058E-06 
0.2195574E-04 
0.6764609E-04 
0.1301082E-03 
0.2017181E-03 

0.2236233E-05 
0.2490351E-04 
0.6586725E-04 
0.U75037E-03 
0.1724642E-03 

0.2358211E-05 
0.2639773E-04 
0.7025844E-04 
0.1263166E-03 
0.1870302E-03 

0.2480186E-05 
0.2789193E-04 
0.7464956E-04 
0.1351293E-03 
0.2017181E-03 

0.2602163E-05 
0.2938615E-04 
0.7904074E-04 
0.1439421E-03 
0.2664672E-03 

0.4940044E-05 
0.3187648E-04 
0.7558471E-04 
0.1284410E-03 
0.1834724E-03 

0.5214493E-05 
0-3382812E-04 
0.8073825E-04 
0.1383211E-03 
0.1992277E-03 

0.5488939E-05 
0.3577973E-04 
0.8589170E-04 
0.1482012E-03 
0.2151659E-03 

0.5763387E-05 
0.3773137E-04 
0.9104525E-04 
0.1580813E-03 
0.2312262E-03 

0.8619662E-05 
0.3952034E-04 
0.8566810E-04 
0.1894390E-03 
0.1944808E-03 

0.9107576E-05 
0.4199038E-04 
0.9164499E-04 
0.1504476E-03 
0.2114255E-03 

0.9595473E-0f. 
0.4446038E-04 
0.9762179E-04 
0.1614558E-03 
0.2286140E-03 

0.1008339E-04 
0.4693042E-04 
0.1035987E-03 
0.1724642E-03 
0.2459851E-03 

O 



• 

ROW 24 

O.OOOOOOOE 00 
0.1626350E-04 
0.5997172E-04 
0.1235010E-03 
0.1992277E-03 

ROW 25 

O.OOOOOOOE 00 
0.1702584E-04 
0.6302114E-04 
0.1303622E-03 
0.2U4255E-03 

0.6911994E-06 
0.2305352E-04 
0.7133585E-04 
0.1379146E-03 
0.2151659E-03 

0.7216940E-06 
0.2415132E-04 
0.7502566E-04 
0.1457212E-03 
0.2286140E-03 

0.2724139E-05 
0.3088034E-04 
0.8343186E-04 
0.1527549E-03 
0.2312262E-03 

0.2846116E-05 
0.3237458E-04 
0.8782303E-04 
0.1615677E-03 
0.2459851E-03 

©•6037832E-05 
0.3966297E-04 
0.9619871E-04 
0.1679613E-03 
0.2973471E-03 

0.6312281E-05 
0.4163462E-04 
0.1013523E-03 
0.1778415E-03 
0.2634786E-03 

0.1057128E-04 
0.4940042E-04 
0.1095755E-03 
0.1834724E-03 
0.2634786E-03 

0.1105920E-04 
0.5187046E-04 
0.U55524E-03 
0.1944808E-03 
0.3310333E-03 

POINTS IN CONTACT OBTAINED FROM QUADRATIC PROGRAMMING. 
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