OPTIMIZATION OF SURFACE CONTOURS FOR ELASTIC BODIES IN CONTACT

by T. S. ARORA and J. S. ARORA

MAY 1975

TECHNICAL REPORT FOR JULY 1974 TO APRIL 1975

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

prepared by: Division of Materials Engineering College of Engineering University of Iowa Iowa City, Iowa 52242

162059

ADA010405

Contract No.: DAA09-74-M-2020

AC-CR-75-005

JUN

prepared for: US Army Armament Command Rock Island, Illinois 61201

> NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield, VA. 22151

Technical Report No. 17

OPTIMIZATION OF SURFACE CONTOURS FOR ELASTIC BODIES IN CONTACT

by

T. S. Arora and J. S. Arora

May 1975

Project Title: MINIMUM STRESS CONTOUR DESIGN Contract No.: DAAA09-74-M-2020

This report is the M. S. thesis of T. S. Arora done under the supervision of Professor Edward J. Haug, Jr.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESS 17	ION NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtilio)	5. TYPE OF REPORT & PERIOD COVERI
OPTIMIZATION OF SURFACE CONTOURS FOR ELASTIC	Final Technical Report
BODIES IN CONTACT	July 1974 to April 1975
	6. PERFORMING ORG. REPORT NUMBER
	17
7. AUTHOR(+)	9. CONTRACT OR GRANT NUMBER(+)
T. S. Arora and J. S. Arora	DAAA09-74-M-2020
. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASI AREA & WORK UNIT NUMBERS
Division of Materials Engineering	
College of Engineering	
Town City Town 52262	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U. S. Army Armament Command	May 1975
AMSAR-RDT Rock Island Illinois 61201	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling O	Illico) 18. SECURITY CLASS. (of this report)
	Unclassifed
	154. DECLASSIFICATION DOWNGRADING
 16. DISTRIBUTION STATEMENT (of this Report) Distribution of this report is unlimited 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 difference) 	cont from Report)
 16. DISTRIBUTION STATEMENT (of this Report) Distribution of this report is unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different entered entered in Block 20, if different entered entered	cent from Report)
 16. DISTRIBUTION STATEMENT (of the Report) Distribution of this report is unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different entered entered in Block 20, if different entered e	rent from Report)
 16. DISTRIBUTION STATEMENT (of this Report) Distribution of this report is unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different supplementary notes 	cont from Report)
 16. DISTRIBUTION STATEMENT (of this Report) Distribution of this report is unlimited 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if difference in the statement of the obstract of the statement of the state	rent from Report)
 DISTRIBUTION STATEMENT (of this Report) Distribution of this report is unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different is supplementary notes 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block and supplementary and identify by block and supplementary block and suplementary bloc	rent from Report)
 16. DISTRIBUTION STATEMENT (of this Report) Distribution of this report is unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 30, II diffe 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse olde II necessary and identify by block r Contact Stress, Surface Design, Minimum Streeter 	rent from Report)
 16. DISTRIBUTION STATEMENT (of this Report) Distribution of this report is unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 difference) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side 11 necessary and identify by block of Contact Stress, Surface Design, Minimum Street 	rent from Report)
 16. DISTRIBUTION STATEMENT (of this Report) Distribution of this report is unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 diffe 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side 11 necessary and identify by block of Contact Stress, Surface Design, Minimum Street 10. ABSTRACT (Continue on reverse side 11 necessary and identify by block metabolic contact Stress) 	rent from Report)
 16. DISTRIBUTION STATEMENT (of this Report) Distribution of this report is unlimited 17. DISTRIBUTION STATEMENT (of the obstreet entered in Bleck 20, if difference on the obstreet entered in Bleck 20, if difference on the obstreet entered in Bleck 20, if difference on the obstreet entered in Bleck 20, if difference on the obstreet entered in Bleck 20, if difference on the obstreet entered in Bleck 20, if difference on the obstreet entered in Bleck 20, if difference on the obstreet entered in Bleck 20, if difference on the obstreet entered in Bleck 20, if difference on the obstreet entered in Bleck 20, if difference on the obstreet entered in Bleck 20, if difference on the obstreet entered in Bleck 20, if difference on the entered in Bleck 20, if difference on the obstreet entered in Bleck 20, if difference on the obstreet entered in Bleck 20, if difference on the entered in Bleck 2	rent from Report) rent from Report) ess, Linear Programming move) s of contacting elastic bodies to nitial contacting arc for the rough quadratic programming. The is then posed as a sequential
 16. DISTRIBUTION STATEMENT (of this Report) Distribution of this report is unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II difference on the statement of the abstract ontered in Block 20, II difference on the statement of the abstract ontered in Block 20, II difference on the statement of the abstract ontered in Block 20, II difference on the statement of the abstract ontered in Block 20, II difference on the statement of the abstract ontered in Block 20, II difference on the statement of the abstract ontered in Block 20, II difference on the statement of the abstract ontered in Block 20, II difference on the statement of the stat	rent from Report) rent from Report) ess, Linear Programming mbody s of contacting elastic bodies to nitial contacting arc for the rough quadratic programming. The is then posed as a sequential al solution is proved by the fac he sequence which is bounded below nonstrated for the problem of below monstrated for the problem of below tess is reduced considerably.

TABLE OF CONTENTS

ſ

k

¢

																	Ē	age
	LIST OF LIST OF LIST OF	FIGUR TABLE SYMBO	RES ES DLS	•		•	*	•	•	*	•	•	•	•	•	4 	•	iv vi vii
Chapte	er																	
I.	INTRODUC	TION	ł	•	•		,		ĸ	÷		,		÷	÷	÷.		1
II.	THE UNBO	NDED	CON	ITA ITA	CT	P	RO	BL	EM	F	OF	. E	LA	SI.	IC.			4
	2.1	Analy Pr	vtic	al	F	or	mu •	1a •	ti	on		of •	tr	ne •				4
	2.2	Seque	olut	ic	n n	ın Te	ea ch	r ni	pr qu	e	ra •	•	ıır				•	7
III.	CONTACT BEAMS	SURFA	ACE ELAS	DE	SI	GN FO	P	RO DA	BL	EM ON	IS	FC	R	•	×.			14
	3.1	Beam No	on) Ir	E1 nit	as ia	ti 1	c Ga	Fo	un	da •	ti.	.or	i W	rit	h.			16
	3.2	Initi Fo	all	.y lat	Be	nt n	В	ea	m	on •	a.	n	E1	as	sti	.c		29
IV.	CONCLUSI	IONS .											ļ					50
		Sugge	esti	lon	IS													51
	BIBLIOGH	RAPHY .																52
	APPENDIC	CES .			•	8		÷	•			÷		÷			÷	55
	APPEN	DIX A	1 2	FC	RM	UL	AT	IO	N	OF	N	(A)	RI	CE	S			6.6
	APPEN	JDIX H	3:	B, PR	A	RA	a, M	a LI	nd	IN	G		•	•	•	*	8	56 62

iii

LIST OF FIGURES

ł

Figure		P	age
1.	Geometry of Contacting Bodies		3
2.	Potential Contact Points for the Beam on Elastic Foundation	•	15
3.	Contact Stress vs. Contact Length from Quadratic Programming Solution	٠	17
4.	Contact Stress vs. Contact Length with $U = 0.01$.	×	22
5.	Gap Size vs. Potential Contact Point with U = 0.01		23
6.	Contact Stress vs. Contact Length		24
7.	Gap Size vs. Potential Contact Point		25
8.	Contact Stress vs. Contact Length with Augmented Cost Function.		26
9.	Gap Size vs. Potential Contact Point with Augmented Cost Function.		27
10.	Contact Stress vs. Contact Length from Quadratic Programming Solution with G = 0.0001.		31
11.	Contact Stress vs. Contact Length with $U = 0.01$ and $G = 0.0001$,		33
12.	Gap Size vs. Potential Contact Point with $U = 0.01$ and $G = 0.0001$.	÷	34
13.	Contact Stress vs. Contact Length with G = 0.0001.	•	35
14.	Gap Size vs. Potential Contact Point with G = 0.0001	•	36

Figure

1

8.

ſ

l

Page

15.	Augmented Cost Function and with G = 0.0001
16,	Gap Size vs. Potential Contact Point with Augmented Cost Function and with G = 0.0001
17.	Contact Stress vs. Contact Length from Quadratic Programming Solution with G = 0.001
18.	Contact Stress vs. Contact Length from Quadratic Programming Solution with G = 0.005
19.	Contact Stress vs. Contact Length with G = 0.001
20.	Gap Size vs. Potential Contact Point with G = 0.001
21.	Contact Stress vs. Contact Length with $G = 0.005.$
22.	Gap Size vs. Potential Contact Point with G = 0.005
23.	Two Bodies in Contact

LIST OF TABLES

TABLE

50

14

1.	COMPARISON OF RESULTS FOR LOADS t = 1000 lbs. AND t = 2000 lbs. FOR BEAM ON ELASTIC FOUNDATION	
2.	CONTACT STRESS DISTRIBUTION AND FINAL GAP FOR BEAM ON ELASTIC FOUNDATION t = 1000 lbs., U = 0.01	
3.	COMPARISON OF RESULTS FOR LOADS t = 1000 lbs. AND t = 2000 lbs. FOR AN INITIALLY BENT BEAM ON ELASTIC FOUNPATION	
4.	CONTACT STRESS DISTRIBUTION AND FINAL GAP FOR INITIALLY BENT BEAM ON ELASTIC FOUNDATION t = 1000 lbs., U = 0.01 40	
5.	COMPARISON OF RESULTS FOR BEAM ON ELASTIC FOUNDATION WITH NO INITIAL GAP AND WITH INITIAL GAPS FOR U = 0.01 48	
6.	COMPARISON OF RESULTS FOR BEAM ON ELASTIC FOUNDATION WITH NO INITIAL GAP AND WITH DIFFERENT INITIAL GAPS FOR t = 2000 lbs	

LIST OF SYMBOLS

1.

1

h

1

1

Symbol	
В	Matrix formed from influence coefficients of the two bodies.
A	Affine transformation accounting for rigid body displacement of Body 1.
a	Constant vector that depends on the externally applied loads to the two bodies and the initial gap between them at the potential contact region.
b	The vector of contour modifications.
C	The external load column vector for externally applied loads.
ε	Final gap size vector.
t	Total applied load.
W	Work done.
S	Contact stress vector for potential contact points.
J	Cost function.
^b n + 1	Upper bound on contact stresses
P	Projection matrix = $\begin{bmatrix} 0 & I \\ n & -m \end{bmatrix}$
In - m	An identity matrix of dimension (n-m).
t ¹	External force vector on Body 1.
Î	Index set for points in contact.
ĩ	Index set for points not in contact.
NC	Number of points in contact

vii

Symbol	
NNC	Number of points not in contact.
b ^O	Lower bound on contour modification.
b ¹	Upper bound on contour modification.
Н	Matrix that gives rigid body displacement at the points of application of t^1 .
x	X-coordinate of ith point.
đ	Rigid body coordinate vector for Body 1.
di	Initial gap between ith potential contact points.
n	Number of potential contact points.
771	Number of degrees of freedom

viii

Chapter I

1

INTRODUCTION

Many problems in continuum mechanics and mechanical system design involve elastic bodies that come into contact with each other, under applied loads. Such problems, called contact problems of elasticity, are nonclassical in the sense that one does not initially know the contacting region. Considerable research has been pursued in recent years to develop constructive methods of determining the contact region and contact stress distribution [1-4].

The geometry of two bodies that will come into contact under applied load is shown schematically in Figure 1(a). A numerical method of solution, by quadratic programming [5] has been developed, in which one selects a set of potential contact points, as indicated in Figure 1(a). The selection of potential contact points is explained in detail in [6]. The initial gap between the ith potential contact points is denoted by d_i . The rigid body displacement coordinates of Body One are indicated in Figure 1(a) and are represented by a generalized coordinate vector q, of dimension one to six. Once the potential contact points are defined on the two bodies, contact stress may be replaced by equivalent point loads, or contact forces, denoted as S; in Figure 1(b).

When the bodies come into contact, a force distribution over the surfaces arises and high contact stresses may occur over some parts of the contact region. This is undesirable, since plastic deformation of the bodies may occur, or high normal forces may lead to wear of machine parts that move relative to each other. This can be quite important in precision machines. The objective of this work is to develop a technique for adjusting the contour of one or both of the bodies in order to achieve a minimum peak contact stress between the bodies, under a given load.

A related problem was solved by Conry [6], in which the design objective was to select the contour to achieve a constant stress over the contact arc. A linear programming method was presented in [7,8] to implement this design objective. In general, one cannot achieve a constant stress distribution over the contact arc when kinematic constraints define limits on modification of the contours of the bodies. This will be particularly critical in precision cams and fasteners that require precise location of parts. The design objective selected in this work is to minimize the peak contact stress, subject to constraints on the extent of modification of surface contours.

Body 2

lo

1(a).

1(b).

Chapter II

THE UNBONDED CONTACT PROBLEM FOR ELASTIC BODIES IN CONTACT

2.1 Analytical Formulation of the Problem

The elastic contact problem formulation of [6] will be employed as the model of the elastic contact problem. Only a brief summary of this analytical formulation will be presented here. The gap variable $\boldsymbol{\mathcal{E}}$, due to a stress distribution S, is given by the equation

 $\mathcal{E} = BS + Aq + a + b$ (2.1.1)

where B is a matrix formed from influence coefficients of the two bodies, A is an affine transformation accounting for rigid body displacement of Body 1, a is a constant vector that depends on the externally applied loads to the two bodies and the initial gap between them at the potential contact region, and b is the vector of contour modification to be selected. Formulae for B, A, and a are given in Appendix A.

Equilibrium of Body 1 is obtained through direct application of the principle of virtual work, which results in the linear equation

$$A^{T}S = C \qquad (2.1.2)$$

where the column vector C depends on the externally applied load, and is given in Appendix A.

Compatibility conditions between the two contacting bodies require that the product of each gap variable and contact stress be zero. Analytically, this is

$$\mathbf{\xi}_{;S}_{;} = 0, i = 1, 2, \dots, n$$
 (2.1.3)

where n is the number of potential contact points. This condition may be interpreted as stating that either the gap or the contact stress must be zero at each point on the contacting bodies. Further, the gap and contact stress must be non-negative. Analytically these conditions are

 $s_i \ge 0, \epsilon_i \ge 0, i = 1, 2, \dots, n$ (2.1.4)

As is shown in [6], Equations (2.1.1)-(2.1.4) are the Kuhn-Tucker necessary conditions for solution of a convex quadratic programming problem, which may be stated as

minimize
$$A^{T}S + \frac{1}{2}S^{T}BS$$

subject to constraints $A^{T}S = C$
 $S \ge 0$ (2.1.5)

This problem may be solved through direct application of the simplex technique of quadratic programming [5]. It is also shown in [5] that if a solution exists, it is unique and may be reliably determined, through application of a simplex technique for quadratic programming [6].

The cost function to be minimized in this design problem is the maximum contact stress,

$$J = \max_{i} S_{i} \qquad (2.1.6)$$

Since this maximum value function is difficult to treat analytically, it may be replaced by defining an upper bound $b_{n + 1}$ on the contact stress, through the set of inequalities

 $\phi_i = S_i - b_{n+1} \leq 0$ (2.1.7)

The cost function J of equation (2.1.6) may now be replaced by an equivalent problem of minimizing the upper bound on contact stress

$$\overline{J} = b_{n+1}$$
 (2.1.8)

subject to constraints (2.1.7).

Finally, it is often required that both upper and lower bounds be placed on modifications of the surface contours of the two bodies. Analytically, these conditions may be stated as

$$\Phi_{n+i} = b^{\circ}_{-} b_{i} \leq 0$$
, $i = 1, ---, n$ (2.1.9)

and

 $\Phi_{2n + i = b_i - b^1 \leq 0, i = 1, \dots, n}$ (2.1.10)

where b^O and b¹ are the lower and upper bounds on contour modification, respectively.

The design problem may now be stated as follows: Determine the design variable vector b and the upper bound $b_{n + 1}$ to minimize \overline{J} , subject to constraints (2.1.1) - (2.1.4), (2.1.7), (2.1.9) and (2.1.10).

2.2 <u>Sequential Linear Programming</u> <u>Solution Technique</u>

With an initial estimate of the contour (normally b = 0), one may solve the contact-analysis problem of equations (2.1.1) - (2.1.4) to obtain the contact arc and contact stresses. Using this solution, define the index sets

 $\hat{I} = \{i_1, i_2, \dots, i_{NC}\}$

of points in contact and

 $\tilde{I} = \{ j_1, j_2, \dots, j_{NNC} \}$

of points not in contact, where NNC is the number of points not in contact. The stresses at points in contact will be denoted as the NC dimensional vector \hat{S} .

Define \hat{B} as the matrix B with rows and columns corresponding to points not in contact removed, \hat{A} as the matrix A with rows corresponding to the points not in contact removed, and the vectors \hat{a} and \hat{b} as the vectors a and b with components corresponding to points not in contact removed.

One may now state the set of conditions that must be satisfied if the contact arc is not changed; namely

$$\hat{\mathbf{E}} = \hat{\mathbf{BS}} + \hat{\mathbf{Aq}} + \hat{\mathbf{a}} + \hat{\mathbf{b}} = 0$$
 (2.2.1)

The equilibrium equations (2.1.2) must still be satisfied with contact loads applied only on the fixed contact region, so one obtains

$$\hat{A} \hat{T} \hat{S} = C \qquad (2.2.2)$$

The objective now is to determine the reduced design variable \hat{b} so that peak contact stresses are reduced

as much as possible, keeping the same contact region and satisfying conditions (2.1.7) - 2.1.10).

The gap variable outside the prescribed contact region must remain non-negative, so

$$\widetilde{\mathbf{\varepsilon}} = \widetilde{BS} + \widetilde{Aq} + \widetilde{a} + \widetilde{b} \ge 0 \qquad (2.2.3)$$

where \tilde{B} is the matrix B with columns corresponding to points not in contact and rows corresponding to the points in contact removed, \tilde{A} is the matrix A with rows corresponding to points in contact removed, and vectors \tilde{a} and \tilde{b} are the vectors a and b with rows corresponding to points in contact removed. Here, the reduced vector \tilde{b} represents the estimates of the contour design variable from the preceding iteration. Finally, it is necessary to impose the condition,

Ŝ ≥ 0 (2.2.4)

The design modification problem is now to determine the reduced vector b and b_{n+1} to minimize

 $\overline{J} = b_n + 1$

subject to:

(2.2.5)

(2.2.5, con'd.)

 $\hat{S} \leq \hat{b}_{n} + 1$ $\hat{b}^{0} - \hat{b} \leq 0$ $\hat{b} - \hat{b}^{1} \leq 0$ $\hat{B}\hat{S} + \hat{A}q + \hat{a} + \hat{b} = 0$ $\hat{A} T \hat{S} = C$ $\tilde{\mathcal{E}} = \tilde{B}\hat{S} + \tilde{A}q + \tilde{a} + \tilde{b} \geq 0$ $\hat{S} \qquad \geq 0$

This formulation for determining the modified contour variable is simply a linear programming problem in the variables \hat{s} , q, and \hat{b} which can be solved with standard linear programming codes.

Following each solution of the linear programming problem, the contact stresses and gap variables must be evaluated to determine the contact surface to be employed in the next iteration. Any potential contact point for which $\tilde{\boldsymbol{\mathcal{E}}}_j = 0$ is included in the contact surface for the next iteration. At any points in the preceding potential contact surface for which $\hat{\boldsymbol{S}}_j = 0$, it is presumed that separation will occur in the subsequent iteration, so these points are deleted from the vectors $\hat{\boldsymbol{\mathcal{E}}}$ and $\hat{\boldsymbol{S}}$. These modification rules form the basis for definition of the next linear programming problem to be solved for the optimum contour on an adjusted contact arc. This process is continued until no new points come into contact and no points that were previously in contact are released.

Each linear programming solution will reduce the value of the peak stress, until the process stops. Analytically, this condition can be written as follows

where the superscript on $b_{n + 1}$ denotes the iteration number. Combining (2.2.6) one obtains

 $b_{n+1}^{(o)} \ge b_{n+1}^{(1)} \ge \dots \ge b_{n+1}^{(k)}$ (2.2.7)

This gives a sequence of non-increasing real numbers, called a monotone sequence, that is bounded below by zero. Any non-increasing sequence that is bounded below is convergent [9], so the sequence of solutions of linear programming problems (2.2.5) must converge.

It was observed from preliminary calculations that as the value of U is increased, peak stress decreases, but a stage is reached when stress at all the points in the contact region is the same. The peak stress obtained in this case is a local minimum and no contour design variable reaches its allowable limit. This situation can be avoided by adding a penalty function to the cost function that is intended to broaden the contact region. The penalty function used here is as follows

$$J = b_{n+1} + \delta_1 \sum_{j=1}^{NNC} \tilde{\varepsilon}_j$$
 (2.2.8)

where δ_1 is a small constant greater than zero. The linear programming with the augmented cost function (2.2.8) finds an absolute minimum of the peak contact stress.

The process described above is summarized in the following algorithm:

- Step 1. Estimate the design variables (normally $b^{(0)} = 0$).
- Step 2. Solve for \hat{S} and \hat{E} by quadratic programming, using the necessary conditions (2.1.1)-(2.1.4).

Step 3. Form index sets \hat{I} and \hat{I} for points of contact ($S_i \ge 0, \mathcal{E}_i = 0$) and for points not in contact ($\mathcal{E}_j \ge 0, S_j = 0$), respectively. Step 4. Construct \hat{B} , \hat{A} , \hat{a} , and \hat{b} for i i and A, B, a, and b for j i.

- Step 5. Solve the linear programming problem (2.2.5) for \hat{s} , q, and \hat{b} . (The cost function may be changed as given in (2.2.8) if necessary). Step 6. Evaluate $\tilde{\epsilon}$ from (2.2.3).
- Step 7. From new \hat{I} to include points for which \mathcal{E}_j = 0 and deleting points for which $S_j = 0$ and form \tilde{I} of points for which $\mathcal{E}_j \ge 0$ and $S_j = 0$.

Step 8. If I is unchanged, terminate; otherwise return to Step 4.

Chapter III

CONTACT SURFACE DESIGN PROBLEMS FOR BEAMS ON ELASTIC FOUNDATIONS

Examples are presented to demonstrate the technique developed in Chapter II. Two cases of the design problem with a beam on an elastic foundation are considered: (1) with no initial gap; and (2) with an initial gap.

A point load is applied to the center of the beam, as shown in Figure 2(b). Only vertical displacement of the center of the beam is chosen to represent its rigid body displacement. Formulation of the matrices B, A, a, b, and C for this problem is explained in detail in [2]. A quadratic programming problem is solved to obtain the contact arc as input to the linear programming problem.

The design variables b_i are limited by the constraint $b_i \notin U(1 - \frac{x_i^2}{L^2})$, where x_i is the horizontal distance of the ith potential contact point from the center of the beam, L is half the potential contact length (as only half of the beam is considered due to symmetry), and U is a constant greater than zero.

Figure 2. Potential Contact Points for the Beam on Elastic Foundation.

3.1 Beam on Elastic Foundation with No Initial Gap

The following material properties are used: Young's modulus of the beam material = 340,000 psi; diagonal element of the flexibility matrix for the elastic foundation = 0.00005 in./lb.; height of the beam = 0.5 in.; and width of the beam = 1.0 in.

The quadratic programming problem was solved for 25 potential contact points on half of the beam, with an interval size of 0.06 in. Potential contact length, as shown in Figure 3(a) is taken as 2.88 in. The contact length obtained numerically was 1.38 in., with loads of 1000 lbs. and 2000 lbs. A quadratic programming code called ZORILLA [10] was used to solve this quadratic programming problem. Results are presented in Figure 3(b).

At this stage, one has the contact arc to be employed in the linear programming problem of (2.2.5). Equations (2.2.5) can now be written as:

 $\overline{J} = b_n + 1$ $\widehat{S} - b_n + 1 \leq 0$ $\widehat{b} \geq b^0$ $\widehat{b} \leq b^1$ $\widehat{BS} + \widehat{Aq} + \widehat{b} = -\widehat{a}$ $\widehat{A}^T \widehat{S} = C$ $\widehat{BS} + \widehat{Aq} \geq -\widetilde{a} - \widetilde{b}$ $\widehat{S} \geq 0$ (3.1.1)

Figure 3. Contact Stress vs. Contact Length from Quadratic Programming Solution.

The linear programming subroutine used to solve (3.1.1) is explained in [11] and is summarized in Appendix B. This subroutine requires that the right hand side values of constraints must be given as a separate vector, all elements of which must be positive. If $b^{\circ} = -U[1-\frac{x^2}{L^2}]$ and $b^1 = U[1 - \frac{x^2}{L^2}]$, then Equations (3.1.1) can be rewritten as

$$\overline{J} = b_{n} + 1$$

$$\widehat{S} - b_{n} + 1 \leq 0$$

$$\widehat{-b} \leq -b^{0}$$

$$\widehat{b} \leq b^{1}$$

$$\widehat{BS} + \widehat{Aq} + \widehat{b} = 0, \text{ as } \widehat{a} = 0$$

$$\widehat{A}^{T} \widehat{S} = C$$

$$-\widehat{BS} - \widehat{Aq} \leq \widehat{a} + \widehat{b}$$

$$(3.1.2)$$

The linear programming subroutine used solves only maximization problems, so the cost function is replaced by $J = -b_{n+1}$. Since q_r can be positive or negative, the vector q is decomposed into positive and negative parts as follows:

$$q = q^{\dagger} - q^{-}$$

$$q^{\dagger} = q \qquad \text{when } q \ge 0$$

$$= 0 \qquad q \le 0 \qquad (3.1.3)$$

$$q^{-} = q \qquad \text{when } q \le 0$$

$$= 0 \qquad q \ge 0$$

Now an LP tableau is formed as follows:

where the vector NBP $\begin{bmatrix} 0 & 0 & -1 & 0 & 0 \end{bmatrix}$ of dimension (1, 2m + 1 + 2 * NC + NGE) represents the cost function and NGE is the number of constraints of the form ≥ 0 , and m is the number of degrees of freedom. The Matrix \overline{B} , defined as

		m	m	1	NC	NC
	NC	0	0	-I	0	I
	NC	0	0	0	I	0
	NC	0	0	0	-I	0
	NC	Â	-À	0	I	B
	m	0	0	0	0	Â
	NNC	-Ã	Ã	.0	0	₩ B

contains constraint coefficients. Its dimension is (4 * NC + m + NNC , 2 * m + 1 + 2 * NC + NGE) and the vector $RQ^{T} = \begin{bmatrix} 0 & | & -b^{\circ} & | & b^{1} & | & o & | & c & a^{+}b^{\circ} \end{bmatrix}$, of dimension (1, 4 * NC + m + NNC), is the vector of right hand side values of the constraints.

The design problem was solved with loads t = 1000lbs. and t = 2000 lbs., with a range of values of contour

modification limit U. Results are presented in Figures (4 - 9). All the calculations were done on an IBM 360/65 computer. Table 1 shows the comparison of results for different loads and values of U ranging from 0.01 to 0.05. It is observed that the contact length for the optimum design, with a fixed value of U, varies with applied load. However, when the value of U is changed in the same proportion as the loads, it is noted that the contact length is the same for both cases (and peak contact stress are proportional). As the value of U is increased, the contact length appears to increase and the value of peak stress decreases. A stage is reached when stress at each point in the contact region is the same, which stops the iterative process. In the case of U =0.025, t = 1000 lbs., and U = 0.05, t = 2000 lbs., no contour design variable's constraint reaches its tolerance limit. The cost function was augmented with penalty function and the linear programming problem was solved for the above case. The results are presented in Figures (8 - 9). It is also observed that the contour design variable constraint at the center point of the contact region is always tight.

Table 1 presents peak stress, computing time and contact lengths for several numerical examples. Solutions of the linear programming problem converge in at most 8

Figure 4. Contact Stress vs. Contact Length with U = 0.01.

Figure 5. Gap Size vs. Potential Contact Point with U = 0.01.

Figure 6. Contact Stress vs. Contact Length.

Figure 7. Gap Size vs. Potential Contact Point.

TABLE 1

•

10

COMPARISON OF RESULTS FOR LOADS t = 1000 lbs. AND t = 2000 lbs. FOR BEAM ON ELASTIC FOUNDATION

LOAD t	SR. NO.	U	PEAK STRESS 1bs./sq.ir	COMPUTING TIME (SEC	NO.) OF ITRNS	TIME/ ITRN (SEC)	CON- TACT LENGTH (IN.)
	1	.01	562,9	38.80	5	7.36	1,86
	2	.015	499.2	48.12	6	8.02	1.98
1000	3	.02	457.4	72.08	8	9.01	2.22
	4	.025	426.43	91,27	9	10.14	2.34
	1	.02	1125.6	36.87	5	7.374	1.86
2000	2	.03	998.25	48.94	6	8.157	1.98
	3	.04	914.8	73.00	8	9.125	2.22
	4	.05	852.87	93.17	9	10.35	2.34

iterations, with computing time per iteration varying only between 7 and 10 seconds. In all cases, peak stress is reduced considerably and the contact arc increases. For example, for t = 1000 lbs., the peak stress of the nonmodified design was 1120 lbs./in.² and contact arc length was 1.38 in. By adjusting the contours of two bodies, with a tolerance limit of U = 0.01 and t = 1000 lbs., Table 2 shows the peak stress reduces to 552.9 lbs./sq. in. and the contact arc length becomes 1.86 in.

3.2 Initially Bent Beam on an Elastic Foundation

The initial gap between a beam and elastic foundation is given by the formula $G\left[1-\frac{x^2}{L^2}\right]$, where x is the distance from the center of the beam, and G is a constant greater than zero. Matrices B, A, b, and C are the same as for the problem in the preceding section, except that the vector a is obtained from the expression given above.

The quadratic programming problem was solved for 25 potential contact points on the half beam, with an interval size of 0.06 in. The potential contact length, as shown in Figure 10(a) is 2.88 in. With G = 0.0001 the resulting contact length was 1.38 in., for loads 1000 lbs. and 2000 lbs. These results are shown in Figure 10(b). The quadratic programming code ZORILLA [10] was again used to solve this problem.

TABLE 2

1

1

CONTACT STRESS DISTRIBUTION AND FINAL GAP FOR BEAM ON ELASTIC FOUNDATION t = 1000 lbs., U = 0.01

POINT NO.	CONTACT STRESS lb./sq.in.	TOLERANCE LIMIT (in.)	FINAL GAP SIZE FOR MODIFIED CONTOURS (in.)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	562.886 562.889 562.891 562.891 462.892 562.892 562.893 562.893 562.893 562.893 562.895 562.891 562.885 393.626 59.206 0.0	0.100000E-01 0.9982634E-02 0.9930551E-02 0.9843744E-02 0.9722218E-02 0.9565968E-02 0.9374995E-02 0.9149302E-02 0.8888885E-02 0.8593746E-02 0.82638863-02 0.7899299E-02 0.7499997E-02 0.7499997E-02 0.7065967E-02 0.6093744E-02 0.6093744E-02 0.5555548E-02 0.4982639E-02 0.4982639E-02 0.4374996E-02 0.3732643E-02 0.3055555E-02 0.2343752E-02 0.1597222E-02 0.8159771E-03 0.0	0.9999964E-02 0.9910598E-02 0.9614620E-02 0.9165816E-02 0.8595929E-02 0.7923093E-02 0.7147454E-02 0.6315298E-02 0.5400788E-02 0.4458770E-02 0.3493937E-02 0.2511400E-02 0.1511019E-02 0.5030558E-02 0.0

Figure 10. Contact Stress vs. Contact Length from Quadratic Programming Solution, with G = 0.0001.

One now has the contact arc to be employed for solving the linear programming problem:

Minimize

$$\bar{J} = -b_{n} + 1$$

subject to constraints

 $\hat{S} - b_{n+1} \leq 0$ $-\hat{b} \leq -b^{0}$ $\hat{b} \leq b^{1}$ $-\hat{B}\hat{S} - \hat{A}q - \hat{b} = \hat{a}$ $\hat{A}^{T}\hat{S} = C$ $-\hat{B}\hat{S} - \hat{A}q \leq \hat{a} + \hat{b}$ $\hat{S} \geq 0$ (3.2.1)

A linear programming tableau is formed from Equations 3.2.1, as explained in the previous section. The linear programming problem was solved and results are presented in Figures (11-16). A comparison of the results for two loads, t = 1000 lbs. and t = 2000 lbs., is given in Table 3. Values of U used are proportional to applied load for the cases t = 1000 lbs. and t = 2000 lbs. The peak stress obtained for t = 1000 lbs. is exactly half that for t = 2000 lbs. and t = 2000 lbs. Thus, contact arc length and peak stress are dependent on both value of applied load and U. Table 4 gives the optimum stress

Figure 13. Contact Stress vs. Contact Length with G = 0.0001.

ω 5

Figure 14. Gap Size vs. Potential Contact Point with G = 0.0001.

Figure 16. Gap Size vs. Potential Contact Point with Augmented Cost Function and with G = 0.0001.

TABLE 3

COMPARISON OF RESULTS FOR LOADS t = 1000 lbs. AND t = 2000 lbs. FOR AN INITIALLY BENT BEAM ON ELASTIC FOUNDATION

LOAD t	SR NO	. U	PEAK STRESS lbs./sq.i	COMPUTING TIME n. (SEC.)	NO.OF ITRNS	TIME/ ITRN (SEC.)	CONTACT LENGTH (in.)
1000	1	0.005	677.6	21.90	3	7.3	1.62
	2	0.01	561.7	39.05	5	7.81	1.86
	3	0.015	498.7	49.32	6	8.22	1.98
	4	0.02	457.1	71.82	8	8.98	2.22
2000	1	0.01	1356.0	21.65	3	7.217	1.62
	2	0.02	1124.05	41.37	5	8.274	1.86
	3	0.03	997.2	49.17	6	8.195	1.98
	4	0.04	914.6	73.74	8	9.22	2.22

k

-

TABLE 4

r

CONTACT STRESS DISTRIBUTION AND FINAL GAP FOR INITIALLY BENT BEAM ON ELASTIC FOUNDATION t = 1000 lbs., U = 0.01

COMPANY OF THE OWNER	And the second		
POINT CONTAC NO. STRES 1b./sq in.	T TOLERANCE S LIMIT . (in.)	INITIAL GAP (in.)	FINAL GAP (in.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.100000E-01 0.9982634E-02 0.9930551E-02 0.9843744E-02 0.9722218E-02 0.9565968E-02 0.9374995E-02 0.9149302E-02 0.9149302E-02 0.8888885E-02 0.8593746E-02 0.8593746E-02 0.8263886E-02 0.7899299E-02 0.7499997E-02 0.765967E-02 0.6597217E-02 0.6597217E-02 0.6597217E-02 0.6593744E-02 0.5555548E-02 0.4374996E-02 0.4374996E-02 0.3732644E-02 0.3055555E-02 0.2343752E-02 0.1597222E-02 0.8159771E-03	.100000E-03 0.9982637E-04 0.9930554E-04 0.9843748E-04 0.9722220E-04 0.9565971E-04 0.9374999E-04 0.9149304E-04 0.8888886E-04 0.8593748E-04 0.8263886E-04 0.7899302E-04 0.7499997E-04 0.7499997E-04 0.7065968E-04 0.6597218E-04 0.6597218E-04 0.6597218E-04 0.6593745E-04 0.5555548E-04 0.4982639E-04 0.4982639E-04 0.3732644E-04 0.3732644E-04 0.2343752E-04 0.1597222E-04 0.8159771E-05 0.0	0.9999931E-02 0.9929962E-02 0.9638943E-02 0.9196758E-02 0.7991239E-02 0.7174265E-02 0.6328776E-02 0.6328776E-02 0.5433228E-02 0.5433228E-02 0.3522005E-02 0.2532016E-02 0.2532016E-02 0.1539212E-02 0.5400113E-02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

distribution, tolerance limit, initial gap, and final gap at the potential contact points. Peak contact stress with U = 0.01 and t = 1000 lbs. was found to be 561.712 lbs./sq. in. This peak stress is not much different from the one obtained in the case of beam on elastic foundation with no initial gap.

The quadratic programming problem was again solved for the same data, but with an initially bent beam on an elastic foundation with G = 0.001 and G = 0.005. The results are presented in Figures (17-18). It is observed that, as the value of G is increased, peak contact stress decreases. In the case of G = 0.005 contact length for 1000 lbs. and 2000 lbs. loads differs. It is also observed that peak contact stress depends on the applied load.

Once the contact arc is known from the contact analysis problem, the linear programming problem was solved for G = 0.001 and G = 0.005, with two different loads in each case. Results are presented in Figures (19-22). Table 5 shows the comparison of results with U = 0.01, for a beam on an elastic foundation with no initial gap and with an initial gap. Table 6 shows the comparison of results for t = 2000 lbs. with values of U ranging from 0.01 to 0.05. It is noted that the peak contact stress decreases if the value of U and G are increased.

Figure 19. Contact Stress vs. Contact Length with G = 0.001.

Figure 20. Gap Size vs. Potential Contact Point with G = 0.001.

Figure 21. Contact Stress vs. Contact Length with G = 0.005.

TABLE 5

E

h

COMPARISON OF RESULTS FOR BEAM ON ELASTIC FOUNDATION WITH NO INITIAL GAP AND WITH DIFFERENT INITIAL GAPS FOR U = 0.01

		and the second sec			
LOAD	LOAD G CONTACT CONTACT NUM STRESS LENGTH · OF		NUMBER • OF	TIME/ITRN	
(1bs.)		(1bs./ sq. in)	(in.)	ITRATIONS	(sec.)
	0	562.9	1.86	5	7.36
1000	.0001	561.7	1.86	5	7.81
	.001	556.4	1.86	4	8.6
	.005	533.4	1.98	4	9,375
	0	1358.5	1.62	3	7.25
2000	.0001	1356.0	1.62	3	7.22
	.001	1349.5	1.62	2	7.92
	.005	1317.8	1.62	2	8.5

TABLE 6

COMPARISON OF RESULTS FOR BEAM ON ELASTIC FOUNDATION WITH NO INITIAL GAP AND WITH DIFFERENT INITIAL GAPS FOR t = 2000 lbs.

G	ITEM	QP SOLUTION	LINEAR PROGRAMMING SOLUTION					
					U			
			0.01	0.02	0.03	0.04	0.05	
0 .0001 .001 .005	CONTACT STRESS lbs./in. ²	2242 2240 2220 2170	1358.5 1356 1349.5 1317.8	1125.6 1124 1118.4 1094	993.25 997.2 994.5 973.3	914.8 914.6 911.1 895.2	852.87 852.6 849.2 833.9	
0 .0001 .001 .005	CONTACT LENGTH in.	1.38 1.38 1.50 1.50	1.62 1.62 1.62 1.62	1.86 1.86 1.86 1.86	1.98 1.98 1.98 2.10	2.22 2.22 2.22 2.22 2.22	2.34 2.34 2.34 2.34	

Chapter IV

CONCLUSIONS

The technique presented here to solve surface contour design problem is quite simple, and has given consistently good results. By adjusting the contours of the contacting bodies, the stresses developed are reduced considerably. The problem of a beam on an elastic foundation demonstrates some of these facts. The peak stress of the unmodified structure is highest at the center of the beam and decreases at the end points of the contact region. The contact design problem gives a relatively constant stress distribution on the contact region, with much reduced peak contact stresses.

Tolerance limits affect the solution as is shown in Table 6. In this problem, the load and design tolerance limits have a measurable effect on the solution of the design problem. However, as shown in Table 1, the solution changes proportionally if the load and tolerance limit are changed in the same proportion.

Suggestions

R

This design method can be extended to other problems as follows:

- Asymmetrical problems for beam on an elastic foundation.
- Circular inclusion problems for elastic bodies in contact.
- 3. Multibody contact problems.

	55
1.	Singh, D. P. <u>Investigation of An Unbonded Contact</u> <u>Problem</u> . Ph.D. Dissertation, Dept. of Mechanics and Hydraulics, University of Iowa, Iowa City, Iowa, April, 1970.
2.	Chand, R., <u>Solution of General Unbonded Contact</u> <u>Problems by Quadratic Programming and Finite Ele-</u> <u>ment Techniques</u> , Ph.D. Dissertation, University of Iowa, Iowa City, Iowa, April, 1974.
3.	Conry, T. F., <u>The Use of Mathetmatic Programming</u> in <u>Design for Uniform Load in Nonlinear Elastic</u> <u>Systems</u> , Ph.D. Thesis, Mechanical Engineering Dept., Univ. of Wisconsin, Wisc., January, 1970.
4.	Yoon, K.E. <u>Analysis of Contact Problems by Means</u> of an Optimization <u>Technique</u> , Ph.D. Dissertation, Department of Mechanics and Hydraulics, University of Iowa, Iowa City, Iowa, August, 1970.
5.	Hadley, G. <u>Nonlinear</u> and <u>Dynamic Programming</u> . Addison-Wesley Publishing Co., Inc., London, 1964.
6.	Chand, R., Haug, E. J., Rim K., Analysis of Un- bounded Contact Problems by Means of Quadratic Programming. <u>J. Opt. Theory and Appl</u> . To Appear, 1974.
7.	Haug, E. J. <u>Engineering Design Handbook</u> . <u>Computer</u> <u>Aided Design of Mechanical Systems</u> . HQ U.S. Army Material Command, 5001 Eisenhower Avenue, Alexandria, Va-22304, July 1973.
8.	Hadley, G. <u>Linear Programming</u> . Addison-Wesley Publishing Co., Inc. Reading, Massachusetts, U.S.A. London, England, 1962.
9.	Goldburg, Richard R. <u>Methods of Real Analysis</u> , Xerox College Publishing, Waltham, Massachusetts, Toronto, November, 1963.
10.	Soults, D. J., Zrubek, Janet J. and Sposito, V.A., <u>'ZORILLA' Reference Manual</u> , Numerical Analysis- Programming Series, No. 9. Statistical Laboratory. Iowa State University, Ames, Iowa, May, 1969.

and the state of the second state of the secon

11. Kuester, James L., Mize, Joe H. Optimization <u>Techniques with Fortran</u>. McGraw Hill Book Co., New York, 1973.

APPENDICES

والمرابع فيعاقب الأردي والمراجع

ľ

1

1

10

APPENDIX A:

10

FORMULATION OF MATRICES B, A, a, and C

The compatibility condition for deformation is given by

$$\mathbf{E} = \mathbf{u}^1 + \mathbf{u}^2 + \mathbf{d} \ge 0 \tag{A-1}$$

where $\boldsymbol{\varepsilon}$ is the gap vector after deformation of two bodies, u¹ and u² denote the normal displacement vectors of potential contact points on Bodies 1 and 2, and d is the vector of initial gap between the two bodies.

Body 2 of Figure 23 is fixed, so only rigid body displacement for Body 1 is considered. The displacement of points on Body 1 is due to rigid body displacements and elastic deformation. Elastic deformation of points on Body 1 is determined relative to zero values of the rigid body coordinates, and total displacement is found by superposition. Generalized displacement coordinates are denoted by q.

The total displacement of potential contact points on Body 1 can be written in vector form as

$$u^{1} = P^{T}u^{1}_{e} + Aq \qquad (A-2)$$

where u_e^1 is a reduced vector of elastic displacements of potential contact points on Body 1. The vector u_e^1

.

is determined with q = 0, so it cannot contain displacement components that are used as rigid body degrees of freedom. The projection matrix P is given by $P = \begin{bmatrix} 0 & I_{n-m} \end{bmatrix}$, where n is the number of potential contact points and m is the number of degrees of freedom. The matrix A is an nxm affine transformation that contributes to rigid body displacements.

The deformation vector u^1_e is further decomposed as

$$u^{1}_{e} = F^{1}PS + V^{1}_{e} \tag{A-3}$$

where F^1 is the flexibility matrix for Body 1, with q = 0, and V^1_{e} is the vector of elastic displacements of potential contact points due to externally applied forces t^1 on Body 1, with q = 0. From equations (A-2) and (A-3),

$$u^{1} = P^{T}[F^{1}PS + V^{1}_{P}] + Aq \qquad (A-4)$$

For Body 2,

$$a^2 = F^2 S + V_e^2$$
, (A-5)

where F^2 is an nxn flexibility matrix for potential contact points on Body 2, and V^2_{e} is displacement of potential contact points on Body 2, due to externally

applied forces.

Equation (A-1) can now be written as

$$\boldsymbol{\mathcal{E}} = (\mathbf{P}^{T}\mathbf{F}^{1}\mathbf{P} + \mathbf{F}^{2})\mathbf{S} + \mathbf{Aq} + \mathbf{P}^{T}\mathbf{V}^{1}_{e} + \mathbf{V}^{2}_{e} + \mathbf{d} \ge 0, \quad (\mathbf{A}-6)^{2}$$

SO

$$B = P^{T}F^{1}P + F^{2}$$
$$A \equiv A$$

and

$$a = P^{T}V^{1}e + V^{2}e + d$$

Equilibrium Equations

The work done by stresses and the applied forces on Body 1, due to rigid body displacements only, is

$$W = S^{T}Aq + t^{T}Hq \qquad (A-7)$$

where H is a matrix that gives rigid body displacement at the points of application of t^1 .

Varying the rigid body displacements, the principle of virtual work gives

$$\delta W = S^{T} A \delta q + t^{1} H \delta q = 0 \qquad (A-8)$$

Thus,

.

14

11

1

$$(S^{T}A + t^{1}H)\delta q = 0 \qquad (A-9)$$

Since all components of q are independent, it is necessary that

$$A^{T}S + H^{T}t^{1} = 0 \qquad (A-10)$$

or

$$A^{T}S = -H^{T}t^{1}$$

Defining

$$C = -H^{T} t^{1}$$
(A-11)

Equation (A-10) can be written as

$$A^{T}S = C \qquad (A-12)$$

APPENDIX B:

.

1

1

PROGRAM LISTING

C C C MAIN PROGRAM * C * BEAM ON AN ELASTIC FOUNDATION WITH NO INITIAL GAP. C C *********** C C C DESCRIPTION OF PARAMETERS. C С DEL IS THE INTERVAL SIZE BETWEEN THE POTENTIAL CONTACT C POINTS(P.C.P.) C AL IS HALF THE P.C.LENGTH. C IS THE NO. OF DEGREES OF FREEDOM. MNM IS THE NO. OF P.C.PS. C NN C NC=NCI IS THE NO. OF POINTS IN CONTACT. IS THE NO. OF POINTS NOT IN CONTACT. C NNC C P IS THE EXTERNALLY APPLIED LOAD. C ITRN IS THE LINEAR PROGRAMMING ITERATION NUMBER. С IS THE NO. OF CONSTRAINTS PLUS ONE. M1 NO. OF DESIGN VARIABLES PLUS NO. OF GE. TYPE OF CONSTRAINTS. C NI C C $M1=1+4 \pm NC + MNM + NNC$ С N1=2*MNM+1+2*NC+NGE C C DESCRIPTION OF MATRICES. C C A1(NN,MNM) IS THE AFFINE TRANSFORMATION MATRIX FOR RIGID BODY С DISPLACEMENT CONTRIBUTION FOR BODY 1. C T(NN,NN) IS THE COMBINED INFLUENCE COEFFICIENT MATRIX. C F(NN,NN) IS EQUIVALENT TO T(NN,NN). С С FOLLOWING MATRICES ARE GENRATED FROM THE ABOVE TWO MATRICES. C
C BHAT (NN, NN) IS THE REDUCED MATRIX 'T' WITH ROWS AND COLUMNS C CORROSPONDING TO POINTS NOT IN CONTACT REMOVED. C AHAT(NN, MNM) IS THE MATRIX 'A1' WITH CORROSPONDING ROWS FOR C POINTS NOT IN CONTACT REMOVED. C BTEL(NN,NN) IS THE MATRIX 'T' WITH ROWS CORROSPONDING TO POINTS C IN CONTACT AND COLUMNS CORROSPONDING TO POINTS NOT C IN CONTACT REMOVED. C ATEL(NN, MNM) IS THE MATRIX 'A1' WITH ROWS CORROSPONDING TO C POINTS IN CONTACT REMOVED. C IS THE MATRIX OF CONSTRAINT CUEFFICIENTS. B(M1,N1) C C DESCRIPTION OF VECTORS. C C SA(NN) IS THE VECTOR OF TOLRANCE LIMIT FOR CONTOUR C DESIGN VARIABLES. C SSA(NN) IS THE VECTOR OF INITIAL GAP BETWEEN THE TWO BODIES C AT THEIR P.C.PS. С SB(NN) IS THE VECTOR OF CONTOUR MODIFICATIONS. C IS THE VECTOR 'SA' WITH COMPONENTS CORROSPONDING TO SAHAT (NN) C POINTS NOT IN CONTACT REMOVED. C ASHAT(NN) IS THE VECTOR'SSA! WITH COMPONENTS CORROSPONDING TO C POINTS NOT IN CONTACT REMOVED. C IS THE VECTOR 'SB' WITH COMPONENTS CORROSPONDING TO ASHAT(NN) POINTS NOT IN CONTACT REMOVED. C C SATEL(NN) IS THE VECTOR 'SA' WITH COMPONENTS CORROSPONDING TO POINTS NOT IN CONTACT. C IS THE VECTOR 'SA' WITH COMPONENTS CORROSPONDING TO SBTEL(NN) C POINTS NOT IN CONTACT. C ASTEL(NN) IS THE VECTOR'SSA' WITH COMPONENTS CORROSPONDING TO POINTS NOT IN CONTACT. C C RQ(M1) IS THE VECTOR OF R.H.S. VALUES OF CONSTRAINTS. C NBP(N1) COST FUNCTION ROW VECTOR. C K11(NN) IS THE VECTOR OF INDICED FOR POINTS NOT IN CONTACT. C K(NN) IS THE VECTOR OF INDICES OF POINTS IN CONTACT.

C KI1(NN) IS EQUIVALENT TO K(NN). C II(NN) IS THE VECTOR HAVING COMPONENTS AS 1 OR 0. C 1 FOR POINTS IN CONTACT AND O FOR PTS. NOT IN CONTACT. C SHAT(NN) IS THE VECTOR OF CONTACT FORCES. C RBD(MNM) IS THE RIGID BODY DISPLACEMENT VECTOR. C RBD1(2*MNM) C Z (MNM) IS THE VECTOR HAVING COMPONENTS AS TOTAL EXTERNAL С APPLIED LOAD. С IS THE DISTANCE OF I TH P.C.P. FROM CENTER. X(I) С CST(NN) IS THE CONTACT STRESS VECTOR. C SIGN(M1) INDICATES THE TYPE OF CONSTRAINT USED. С -1 FOR GE. TYPE OF CONSTRAINT. С O FOR EQ. TYPE OF CONSTRAINT. С 1 FOR LE.TYPE OF CONSTRAINT. C С NOTE THAT C C THE DIMENSIONS OF THE MATRICES AND VECTORS SHOULD BE GIVEN AS C SHOWN IN THE BRACKETS.ACTUAL SIZE OF 'HAT' AND 'TELDA' MATRICES С AND VECTORS IS GENERALLY LESS. C HAT AND TEL ATTACHED TO THE MATRICES AND VECTORS C DENOTES A AND ~ RESPECTIVELY. C С C INPUT DATA FOR MAIN PROGRAM OF LP SUBROUTINE. С С С IST SET OF CARDS. READ IN MI,NI С 2ND SET OF CARDS. READ IN OR GENERATE MATRIX "B" C 3RD SET OF CARDS. READ IN OR GENERATE VECTOR 'RQ'. С 4TH SET OF CARDS. READ IN SIGN ACCORDING TO TYPE OF CONSTRAINT. C С C IMPORTENT NOTE.

```
С
C
C
      IN CASE OF BEAM ON ELASTIC FOUNDATION WITH INITIAL GAP
C
      A FEW CHANGES IN THE MAIN PROGRAM ARE NECESSARY.
С
С
      VECTOR SSA IS CHANGED.
C
C
      SSA IN THE EXAMPLE SOLVED IN THIS WORK IS TAKEN AS GIVEN BELOW.
C
C
      SSA(I) = 0.0001 * (1. - ((X(I)) * * 2) / (AL * * 2))
C
C
      FEW CHANGES IN MATRIX 'B' ARE AS FOLLOWS.
C
C
      B(I+3\neq NC,K1) = -AHAT(I,K1)
C 320 B(I+3*NC,K1+MNM) = AHAT(I,K1)
      B(I+3 \neq NC \cdot MM+I) = -1.
C
C 330 B(I+3 \neq NC, MM+NC+K1) = -BHAT(I,K1)
С
C
      INTEGER SIGN, GP, PG
      REAL NBP
C
      COMMON B(105,105), RQ(105), NBP(105), SIGN(105), KK(105), ITRN
      COMMON RRQ(105), KN, GP, PG
C
      DIMENSION SHAT(25), SA(25), ASHAT(25), SB(25), K(25), II(25)
      DIMENSION KI1(25), BHAT(25,25), SAHAT(25), AHAT(25,2), SSA(25)
      DIMENSION BTEL (25,25), ATEL (25,2), SATEL (25), SBTEL (25), ASTEL (25)
      DIMENSION K11(25), P(105), RBD(2), RBD1(4)
      DIMENSION T(25,25), A1(25,2), Z(2), SBHAT(25), F(25,25), X(25), CST(25)
C
      READ(5,3) PP, U, AL, DEL, MNM, NN, NC, NNC, NGE
C
    3 FORMAT(4F10.4,515)
```

```
Z(1) = PP
      Z(2) = 0.0
      DO 5 J=1, MNM
С
    5 READ(5,2)(A1(I,J), I=1,NN)
С
      DO 20 I=1, NN
   20 SSA(I)=0.
      DC 1 I=1,NN
      X(I) = (I-1) * DEL
    1 SA(I)=U*(1.-(((X(I))**2)/(AL**2)))
      DC 4 I=1,NN
      SB(I)=0.
С
    4 READ(5,2)(F(I,J),J=1,NN)
С
    2 FORMAT(5E15.7)
      DC 22 I=1, NN
      DC 22 J=1, NN
   22 T(I,J) = F(I,J)
      ITRN=1
С
С
      K(NC) EQUIVALENT TO KI1(NC) IS THE INDEX OF POINTS IN CONTACT.
C
С
      READ(5,40)(K(I), I=1,NC)
C
   40 FCRMAT(4012)
      DO 25 I=1,NC
   25 KI1(I) = K(I)
  725 CCNTINUE
      JJ=0
      DC 35 I=1,NC
   35 K(I)=KI1(I)
```

```
KO=0
      NM=0
      K2=0
      N12=0
      DC 42 I=1.NN
   42 II(I)=0
      DC 60 I=1, NN
      DG 70 NN1=1,NC
      L = K(NN1)
      IF(I-L)69,100,69
  100 KC=KO+1
      II(L)=1
CCC
      TC FORM MATRIX B- "HAT", A- "HAT", SMALL-A- "HAT", SMALL-B- "HAT",
      AND VECTOR OF INITIAL GAP FOR POINTS IN CONTACT.
С
      DO 220 KUI=1, MNM
  220 AHAT(KO,KUI)=A1(L,KUI)
      SAHAT(KO) = SA(L)
      SBHAT(KO) = SB(L)
      ASHAT(KO) = SSA(L)
      DC 71 J=1,NN
      DO 71 KM=1,NC
      M3=K(KM)
      IF(J-M3)71,200,71
  200 NM=NM+1
      BHAT(KO, NM) = T(I, J)
   71 CONTINUE
      NM=0
      GC TO 70
   69 K2=K2+1
      IF(NC-K2)70,80,70
   JJ=JJ+1
```

```
С
```

```
TO FORM MATRIX B-TELDA(BTEL), A-TELDA(ATEL), SMALL-A-TELDA
С
C
      (ATEL), SMALL-B-TELDA(BTEL), AND VECTOR OF INITIAL GAP FOR
С
      POINTS NOT IN CONTACT.
C
      DO 222 MZ=1, MNM
  222 ATEL(JJ, MZ) = A1(I, MZ)
      SATEL(JJ) = SA(I)
    SBTEL(JJ)=SB(I)
      ASTEL(JJ) = SSA(I)
      K11(JJ) = I
      DC 72 J=1,NN
      DC 72 KM3=1,NC
      M2=K(KM3)
      IF(J-M2)72,250,72
  250 N12=N12+1
      BTEL(JJ, N12) = T(I, J)
   72 CONTINUE
      N12=0
   70 CCNTINUE
      K2=0
   60 CONTINUE
  101 FCRMAT(/5E15.7/)
      N1=2*MNM+1+2*NC+NGE
      N=2 \neq MNM+1+2 \neq NC
      M1=1+4 \neq NC+MNM+NNC
С
С
      FORMULATION OF 'B' MATRIX.
С
      FCRMULATION OF VECTOR 'RQ'.
С
      DC 300 I=1,M1
      RC(I)=0.
      DC 300 J=1,N1
  300 B(I,J)=0.
C
```

```
С
      COST FUNCTION ROW FOR MAXIMIZATION PROBLEM(NBP).
C
      DO 310 I=1,N1
  310 NBP(NGE+I)=0.
      MM = 2 \neq MNM + 1
      NBP(NGE+MM) = -1.0
      DO 350 I=1.NC
      B(1, MM) = -1.0
      B(I, MM+NC+I) = 1.0
      B(I+NC, MM+I)=1.
      B(I+2\neq NC, MM+I) = -1.
      DC 320 K1=1, MNM
      B(I+3 \neq NC, K1) = AHAT(I, K1)
  320 B(I+3*NC,K1+MNM)=-AHAT(I,K1)
      B(I+3≑NC, MM+I)=1.
      DC 330 K1=1,NC
  330 B(I+3*NC, MM+NC+K1)=BHAT(I,K1)
      DC 340 K1=1, MNM
  340 B(4*NC+K1, MM+NC+I)=AHAT(I,K1)
  350 CCNTINUE
      DO 360 KJ=1, NNC
      DC 355 KI=1, MNM
      B(KJ+4 \neq NC+MNM, K1) = -ATEL(KJ, K1)
  355 B(KJ+4*NC+MNM.K1+MNM)=ATEL(KJ,K1)
      DC 358 KU=1.NC
  358 B(KJ+4 \neq NC+MNM, MM+NC+KU) = -BTEL(KJ,KU)
  360 CENTINUE
      DO 370 J=1,NC
      RC(J) = 0.0
      RQ(J+NC)=SAHAT(J)
      RQ(J+2*NC) = SAHAT(J)
  370 RC(J+3*NC) = ASHAT(J)
      DO 375 I1=1, MNM
  375 RC(4*NC+I1)=Z(I1)
```

```
DO 380 IJ =1, NNC
  380 RC(4*NC+MNM+IJ)=SBTEL(IJ)+ASTEL(IJ)
C
С
      SIGN INDICATES THE TYPE OF CONSTRAINTS.
С
      ONE FOR LESS THAN EQUAL TO TYPE OF CONSTRAINT.
С
      ZERO FOR EQUALITY CONSTRAINT.
С
      MINUS ONE FOR GREATER THAN EQUAL TYPE OF CONSTRAINT.
C
      SIGN(M1)=0
      MK=3*NC
      DO 399 I=1,MK
  399 SIGN(I) = 1
      KM1 = MK + 1
      KM2=MK+NC+MNM
      DC 420 I=KM1,KM2
  420 SIGN(I)=0
      KM3=KM2+1
      KM4 = KM2 + NNC
      DO 430 I=KM3,KM4
 430 SIGN(I) = 1
C
С
      ALL THE COEFFICIENT IN THE LP TABLEAU START LEAVING NGE-
С
      CCLUMNS BLANK.
C
      DC 600 I=1,M1
      DC 600 J=1,N
 600 B(I, NGE+J) = B(I, J)
      GP=0
      PG=0
C
      CALL LINP (M1, N, NGE)
С
С
      CHECK IF SOLUTION IS UNBOUNDED OR INFEASIBLE THEN TERMINATE.
C
```

```
IF(GP.EQ.1) GO TO 1000
      IF(PG.EQ.1) GO TO 1000
      DO 308 J=1,KN
C
С
      REARRANGING THE INDICIES OF THE VARIABPES IN A SERIAL ORDER.
C
      DC 308 I=2,KN
      P(J) = KK(J)
      IF(J-1)307,308,308
  307 IF(P(J)-KK(I))308,308,299
  299 KK(J) = KK(I)
      KK(I) = P(J)
  308 CONTINUE
      DC 298 I=1,KN
  298 RC(KK(I)) = RRQ(KK(I))
С
С
      RBD IS RIGID BODY DISPLACEMENT.
С
      IM=2*MNM
      DO 290 I=1, IM
  290 RBD1(I)=0.
С
С
      TO FIND THE RIGID BODY DISPLACEMENTS (SMALL- Q)
C
      DC 205 I=1, IM
      IF(KK(I)-IM)199,199,205
  199 KX=I
      IF(KK(I).LE.2)GO TO 202
      GO TO 275
  202 IF(KK(I).EQ.2) GO TO 280
      GC TO 285
  280 RBD1(2) = -RQ(KK(I))
      GO TO 205
  285 RBD1(1) = RQ(KK(I))
```

```
GC TO 205
  275 IF(IM.EQ.2) GO TO 205
  282 IF(KK(I).EQ.3) GO TO 283
      GO TO 284
  283 \text{ RBD1}(3) = RQ(KK(I))
      GC TO 205
  284 IF(KK(I).EQ.4)GO TO 279
      GO TO 205
  279 RBD1(4) = -RQ(KK(I))
  205 CENTINUE
      N21=0
      DC 281 J=1, MNM
      RBD(J) = RBD1(J+N21) + RBD1(J+1+N21)
      N21=N21+1
  281 WRITE(6,214) N21, RBD(J)
  214 FORMAT(/2X, 'RBD(', I1, ')=', E15.7/)
      KX = KX + 1
      FX2=RQ(KK(KX))
C
С
      TO GET THE CONTOUR DESIGN VARIABLES.
С
      CCNTOUR DESIGN VARIABLES START WITH INDEX OF RQ AS 2*MNM+2.
С
      J1=NC+MM
      DO 210 I=1,NC
      J2=KX+1
      JC=I+MM
      IF(KK(J2)-J1)206,206,221
  206 CONTINUE
      IF(KK(J2).EQ.J0) GO TO 203
  • GO TO 221
  203 KX=KX+1
      SB(K(I)) = RQ(KK(J2))
      GO TO 210
  221 SB(K(I))=0.0
```

```
210 CONTINUE
      WRITE(6,226) FX2
  226 FCRMAT(/2X, 'COST FN=', E15.7/)
      NCI=NC
      WRITE(6,211)
  211 FORMAT(/1X, 'SR.NO.', 3X, 'POINT', 9X, 'SHAT', 15X, 'EPHAT', 15X, 'SBHAT')
С
С
      CONTACT STRESS VECTOR FORMATION.
C
      DG 224 I=1.NC
      JK = KX + 1
      K12=MM+NC+I
      IF(KK(JK).EQ.K12) GO TO 277
      GO TO 278
  277 KX=KX+1
      SHAT(I) = RQ(K12)
      GC TO 224
  278 SHAT(I)=0.0
 224 CCNTINUE
С
С
      COMPUTE EPSLON "HAT".
C
      DO 225 I=1,NC
      EPHAT = SB(K(I)) + ASHAT(I)
      DO 208 K8=1, MNM
  208 EPHAT=EPHAT+AHAT(I,K8)*RBD(K8)
      DC 209 J=1,NC
  209 EPHAT=EPHAT+BHAT(I,J)*SHAT(J)
  225 WRITE(6,223) I,K(I), SHAT(I), EPHAT, SB(K(I))
  223 FORMAT(/5X, 12, 3X, 12, 3X, E15.7, 5X, E15.7, 5X, E15.7)
C
С
      COMPUTE EPSLON 'TELDA'.
C
      CHECK WHICH OF THE EPSLON TELDA IS ZERO.
C
```

```
WRITE(6,235)
  235 FCRMAT(/5X, 'POINT', 8X, 'EPSLON TELDA'/)
      DO 230 I=1, NNC
      EPTL=SBTEL(I)+ASTEL(I)
      DC 236 K7=1, MNM
 236 EPTL=EPTL+ATEL(I,K7)*RBD(K7)
      DC 240J=1.NC
  240 EPTL=EPTL+BTEL(I,J)*SHAT(J)
      WRITE(6,231) K11(I), EPTL
      IF(EPTL.LE.1E-04) GO TO 232
      GC TO 230
 232 II(K11(I))=1
 230 CCNTINUE
  231 FCRMAT(/5X, 15, 5X, E15.7)
C
С
      S-HAT IS THE VECTOR OF CONTACT FORCES.
C
     CHECK WHICH OF THE S-HAT ARE ZERO.
C
      POINTS WHERE S-HAT IS ZERO , IS LIFTED.
C
      KNC ARE THE NO. OF PTS. LIFTED.
C
      KNC=0
 251 FORMAT(/2X, 'KNC-NO.OF PTS. WHICH CAN BE LIFTED=', I3)
      DO 259 I=1.NC
      IF(SHAT(I))259,249,259
  249 KNC=KNC+1
      II(K(I))=0
  259 CCNTINUE
      WRITE(6,251)KNC
      NC=0
      DO 270 I=1,NN
      IF(II(I).EQ.0)GO TO 270
      NC=NC+1
      KII(NC) = I
  270 CONTINUE
```

```
NNC=NN-NC
      WRITE(6,255) NC, NNC
  255 FORMAT(/2X, 'NC=', I3, 2X, 'NNC=', I3/)
C
С
      COMPARE THE CONTOUR BETWEEN THE TWO CONSECTIVE ITRNS.
С
      IF(NCI-NC) 725,800,725
  800 CONTINUE
      JIK=0
      DC 825 I=1,NC
      IF(K(I)-KI1(I)) 728,825,728
  728 JIK=JIK+1
  825 K(I) = KI1(I)
      IF(JIK.EQ.0) GO TO 700
      GO TO 725
  700 WRITE(6,860)
  860 FCRMAT(/5X, 'FINAL RESULTS'/)
      WRITE(6,875) FX2
  875 FCRMAT(/1X, 'COST FN=', F12.6/)
      WRITE(6,405)
  405 FORMAT(/20X, "INITIAL GAP"/)
      WRITE(6,2)(SSA(I), I=1, NN)
      WRITE(6,403)
  403 FORMAT(/20X, 'TOLERANCE LIMIT'/)
      WRITE(6,2)(SA(I), I=1, NN)
      WRITE(6,880)
  880 FCRMAT(/5X, 'POINT', 7X, 'FINAL GAP ', 7X'CONTACT FORCE', 6X
     1 CONTACT STRESS')
      DC 900 I=1,NC
      CST(I)=SHAT(I)/DEL
  900 WRITE(6,890) K(I), SB(K(I)), SHAT(I), CST(I)
  890 FORMAT(/5X, 15, 5X, E15.7, 5X, E15.7, 5X, E15.7)
 1000 CALL EXIT
      END
```

```
С
     ******
С
С
     * SUBROUTINE LINEAR PROGRAMMING. *
C
     ******
С
      SUBROUTINE LINP (M1, N, NGE)
С
     INTEGER RNM1, RNM2, CLNM1, CLNM2, BLNK
                                                                         .LPFTN 1
     1
             IBN1(105), IBN2(105), NBN1(105), NBN2(105)
С
      INTEGER SIGN, GP, PG
           PIVOT, LST, XNBP, FN, CJBAR, X, VALUE, BP(105), PI(105), XPI(105)
      REAL
      REAL NBP
С
      CCMMON B(105,105), RQ(105), NBP(105), SIGN(105), KK(105), ITRN
      COMMON RRQ(105), KN, GP, PG
С
                                                                          LPFTN 5
      DATA BLNK/4H
                    1
      DATA NM1, NM2/ CCCC ', 'AAAA'/
С
                                                                          LPFTN 8
CC
                                                                          LPFTN 16
      INPUT PROGRAM
                                                                          LPFTN 17
С
                                                                          LPFTN 18
      NI = 5
      NC = 6
      IN=1
      M = M1 - 1
      DC 101 I=1,M
      IF(SIGN(I))108,107,106
 106 BP(I) = 0.
      GC TO 101
 108 BP(I) = -1.0
      B(I, IN) = -1.0
```

	NBN1(IN)=NM2	
	NBN2(IN) = IN	
	NBP(IN)=0.	
	I N = I N + I	
107		
101		
101	DC = 102 J = 1 N	
	NBN1 (J+NGE)=NM1	
102	NBN2(J+NGE)=J+NGE	
	N=N+NGE	
	DC 10 I=1, M	
	IF(BP(I)+1.0) 19,11,12	
11	I BN1(I)=BLNK	
	IBN2(I)=BLNK	
	GC TO 10	
19	BP(I) = -1.0	
10		
12		
	I B M 2 (I) = I	
10	CONTINUE	
C		LPFTN164
C	ACCUMULATE COUNT OF INFEASIBILITIES	LPFTN165
С		LPFTN166
	NINF =0	LPFTN167
	DO 6000 $I = 1, M$	LPFTN168
	IF(BP(I))6001,6000,6000	LPFTN169
6001	NINF = NINF+1	LPFTN170
6000	CENTINUE	105711370
0	CENEDATE INDICATORS FOR MINIMIZATION OF INFEASION ITY	LPFINI72
C	GENERATE INDICATORS FOR MINIMIZATION OF INFEASIBILITY	
6	DC 6101 J=1.N	LPFTN175

6102 6101	<pre>XPI(J) =0. D0 6101 I=1,M IF(BP(I))6102,6101,6101 XPI(J) = XPI(J)-B(I,J) CCNTINUE DC 6002 I=1.M</pre>	LPFTN176 LPFTN177 LPFTN178 LPFTN179 LPFTN180
6002	BP(I) = 0	LPFTN182
0002	WRITE(6,401)	Lititize
401	FORMAT(/2X, ************************************	
	WRITE(6,400) ITRN	
400	FORMAT(/5X, MAIN ITRN ND.= , 13/)	
	WRITE(6,402)	
402	FCRMAT(/2X, ************************************	
	IIKNFIIKN†I Tomace – 1	LDETN192
C	ITTAJL - I	LPFTN184
č	MAIN ROUTINE	LPFTN185
9201	WRITE(N0,9202)	
9202	FORMAT ("O ITERATION VAR IN VAR OUT OBJ FN",/)	LPFTN188
	IT = 0	LPFTN189
54325	CCNTINUE	LPFINI90
C	CALCHLATE SHADOW DRICES	LPFTN191
C	CALCOLAIL SHADOW FRICES	IPETN193
U U	DC 194 J=1.N	LPFTN194
	PI(J) = -NBP(J)	LPFTN195
	DC 194 $I=1, M$	LPFTN196
194	PI(J) = PI(J) + BP(I) * B(I,J)	LPFTN197
С		LPFTN198
C	SELECT BEST NUNBASIS VECTUR	LPFINI99
01.01	1 ST = - 0000001	LPPIN200
9101	K(0) = 0	I PETN202
		EL THEVE

	GO TO (751.552). IPHASE	LPETN203
751	LE(NINE)54321.54321.552	LPFTN204
552	CONTINUE	LPETN205
226	DC 9102 J=1.N	LPETN206
C		IPETN207
C	IGNORE ARTIFICIAL VARIABLES	LPETN208
C		LPETN209
	IF(NBN1(J)-BLNK+NBN2(J)-BLNK)651.9102.651	LPFTN210
651	CONTINUE	LPFTN211
	GC TO (6003.6004). IPHASE	LPFTN212
6003	IF(XPI(J)-LST)6005,6006,6006	LPFTN213
6005	KCOL=J	LPFTN214
	LST = XPI(J)	LPFTN215
	GC TO 9102	
6004	CCNTINUE	LPFTN217
	IF(PI(J)-LST)9103,9102,9102	LPFTN218
9103	KCOL = J	LPFTN219
	LST = PI(J)	LPFTN220
6006	CCNTINUE	LPFTN221
9102	CCNTINUE	LPFTN222
	IF (KCOL)54321,54321,9104	LPFTN223
C		LPFTN224
C	DETERMINE KEYROW	LPFTN225
С		LPFTN226
9104	KROW = 0	LPFTN227
	CJBAR = LST	LPFTN228
	LST = 1.0E20	LPFTN229
	DC 9105 I=1, M	LPFTN230
	IF(B(I,KCOL))9105,9105,9106	
9106	RATIO = RQ(I)/B(I, KCOL)	LPFTN232
	IF (RATIO-LST)9107,9105,9105	LPFTN233
9107	LST = RATIO	LPFTN234
	KROW=I	LPFTN235
9105	CONTINUE	LPFTN236

Status and an an an and a second

- 5

0112	IF(KROW)9112,9112,9114	LPFTN237
9112	ECOMATIC VADIARIE 1. 42.12.1 UNROUNDED 11	
7113	CD=CD+1	
	CO TO 54323	IDETN240
9114	CONTINUE	LPFTN240
C	CONTINOE	LEFTN241
C	TRANCEORM	LPFINZ42
c	TRANSFORM	LPTINZ TO
C	DIVIDE BY PIVOT	LPFTN244
0	PIVOT = B(KROW, KCOI)	LEFTINZED
	DC 9108 = 1.N	IDETN247
9108	$B(KROW_{a}) = B(KROW_{a})/PIVOT$	IDETN248
1100	RC(KROW) = RO(KROW)/PIVOT	IPETN249
	D0.9109 I=1.M	LPETN250
	IE(I-KR0W)9110.9109.9110	LPETN251
9110	$RC(I) = RQ(I) - RQ(KROW) * B(I \cdot KCOL)$	LPETN252
	$DO 4444 J = 1 \cdot N$	
	IF(J-KCOL)9111.4444.9111	LPETN254
9111	B(I,J) = B(I,J) - B(KROW,J) * B(I,KCOL)	LPFTN255
4444	CCNTINUE	
9109	CENTINUE	LPFTN256
	DO 9300 I=1,M	LPFTN257
9300	B(I,KCOL) = -B(I,KCOL)/PIVOT	LPFTN258
	B(KROW, KCOL) = 1.0/PIVOT	LPFTN259
С		LPFTN260
С	INTERCHANGE BASIS AND NONBASIS VARIABLES	LPFTN2
С		LPFTN262
	RNM1 = NBN1(KCOL)	LPFTN263
	RNM2 = NBN2(KCOL)	LPFTN264
	NBN1(KCOL) = IBN1(KROW)	LPFTN265
	NBN2(KCOL) = IBN2(KROW)	LPFTN266
	IBN1(KROW) = RNM1	LPFTN267
	IBN2(KROW) = RNM2	LPFTN268

and the same

-

81

	LST = NBP(KCOL)	LPFTN269
	NBP(KCOL) = BP(KROW)	LPFTN270
	BP(KROW) = LST	LPFTN271
	IT = IT + 1	LPFTN272
	IF(NBN1(KCOL)-BLNK+NBN2(KCOL)-BLNK)6201,6200,6201	LPFTN273
6200	NINF = NINF-1	LPFTN274
6201	CENTINUE	LPFTN275
С		
С	COMPUTE OBJECTIVE FUNCTION	LPFTN277
С		LPFTN278
	FN = 0.	LPFTN279
	DC 9301 I=1,M	LPFTN280
9301	FN = FN + BP(I) * RQ(I)	LPFTN281
	GC TO (7000.7001). IPHASE	LPFTN282
7000	SAVE = PI(KCOL)	LPFTN283
	DO 7003 J=1.N	LPFTN284
	PI(J) = PI(J) - SAVE*B(KROW,J)	LPFTN285
	$XPI(J) = XPI(J) - CJBAR * B(KROW \cdot J)$	LPFTN286
7003	CONTINUE	LPFTN287
	PI(KCOL) = -SAVE/PIVOT	LPFTN288
	XPI(KCOL) = -CJBAR/PIVOT	LPETN289
	GO TO 7004	LPETN290
7001	CONTINUE	
1001	DC 9302 J=1-N	IPETN292
9302	$PI(J) = PI(J) - CJBAR \neq B(KROW, J)$	IPETN293
1300	PI(KCPI) = -CIBAR/PIVOT	LPETN294
7004	CONTINUE	I PETN205
C	CHECK EOD ESSENTIAL ZERO	I PETN296
0		IDETN297
	DO 6111 I=1.N	I DETN298
		I DETNI200
	I = [ABS(X) = 0.0000116112.6112.6111	I PETNI300
6112	B(T, I) = 0	I DETNIZO1
4111	CONTINUE	L DETNIZO2
OTIT	CONTINUE	LEFTINOUZ

C		LPFTN303
C		LPFTN304
C	LUG ITERATION	LPFINSUS
C	WRITE (NO.9120) IT. IBN1 (KROW) . IBN2 (KROW) . NBN1 (KCOL) . NBN2 (KCOL) . FN	
9120	FCRMAT(19,7X,A2,13,8X,A2,13,3X,F13,3)	
	GO TO 9101	LPFTN309
С		LPFTN310
С		LPFTN311
54321	CCNTINUE	LPFTN312
	IF(IPHASE-1)8000,8000,54322	LPFTN313
8000	IPHASE = 2	LPFTN314
0004	IF(NINF)8003,8003,8004	LPFTN315
8004	WRITE(NU, 8005)	10571017
8005	FURMATE O SULUTION INFEASIBLE ,/1	LPFIN317
8003		I DETNALO
0005	WRITE(ND-8002)	CELLUDIA
8002	FORMATING SOLUTION FEASIBLE 1./)	PETN321
0002	GD TD 54325	
54322	CONTINUE	LPFTN323
С		LPFTN324
C	GUTPUT ROUTINE	LPFTN325
С		LPFTN326
	WRITE(ND, 301) IT, FN	
301	FGRMAT('1',' ITERATION', 15, ' OBJ FN ', F15.3/)	LPFTN328
	WRITE(NO, 302)	
302	FORMAT(3X, 'BASIS VAR', 17X, 'AMOUNT')	
	K N=O	
	DO 3033 I=1,M	LPFTN332
C		LPFIN333
	CUST KANGING	LPFIN334
L		LPFIN335

-

10.0

. 83

VALUE = 1.0E20LPFTN336 LPFTN337 1 ST = 1.0E20LPFTN338 DC 12300 J=1,N IF(NBN1(J)-BLNK+NBN2(J)-BLNK)12305,12300,12305 LPFTN339 LPFTN340 12305 CCNTINUE IF(B(I, J))12301,12300,12302 LPFTN341 12302 X = PI(J)/B(I,J)LPFTN342 IF(X-LST)12303,12300,12300 LPFTN343 LPFTN344 12303 LST=X LPFTN345 GC TO 12300 12301 X = -PI(J)/B(I,J)LPFTN346 IF(X-VALUE)12304,12300,12300 LPFTN347 LPFTN348 12304 VALUE = X LPFTN349 12300 CONTINUE LPFTN350 LST = BP(I) - LSTLPFTN351 VALUE = BP(I) + VALUEС С VARIABLES WITH NAMES AS 'CC' ARE SEPERATED . С THESE VARIABLES ARE THE DESIGN VARIABLES OF LP PROBLEM. C CC VARIABLES WITH NAMES 'AA' ARE ELIMINATED IN THE NEXT STEP. С THESE ARE THE SLACK VARIABLES. C IF(IBN1(I)-NM1)3033,306,3033 306 KN=KN+1 KK(KN) = IBN2(I)RRQ(KK(KN)) = RQ(I)WRITE(6,304)IBN1(I), IBN2(I), RQ(I) 3033 CENTINUE 304 FCRMAT(7X, A2, I3, 7X, F16.6) LPFTN 19 54323 CENTINUE RETURN LPFTN365 END

С	**	**	***	****	**:	* *
С	*					*
С	*	IN	PUT	DAT	Α.	*
С	*					*
C	**	**	***	***	**:	k#

P	U	AL	DEL	MNM	NN.	NC	NNC	NGE
1000.	0.01	1.44	0.06	1	25	12	13	0

A1-MATRIX.

0.100000E 01 0.100000CE 01

T-MATRIX.

ROW 1

0.500000E-04 0.000000E 00 0.0000000E 00 0.000000E 00

ROW 2

0.000000E 00	0.5002033E-04	0.5082351E-07	0.8131758E-07	0.1118117E-06
0.1423058E-06	0.1728000E-06	0.2032941E-06	0.2337882E-06	0.26428236-06
0.2947765E-06	0.3252706E-06	0.3557647E-06	0.3862589E-06	0.4167530E-06
0.4472471E-06	0.4777413E-06	0.5082351E-06	0.5387294E-06	0.5692230E-06

0.5997176E-06 0.6302112E-06 0.6607058E-06 0.6911994E-06 0.7216940E-06

ROW 3

0.000000E 00 0.5082351E-07 0.5016263E-04 0.2846118E-06 0.4065882E-06 0.5285647E-06 0.6505411E-06 0.7725175E-06 0-8944938E-06 0.1016469E-05 0.1138446E-05 0.1260422E-05 0.1382399E-05 0.1504375E-05 0.1626352E-05 0.1748329E-05 0.1870305E-05 0.1992281E-05 0.2114258E-05 0.2236233E-05 0.2358211E-05 0.2480186E-05 0.2602163E-05 0.2724139E-05 0.2846116E-05

ROW 4

0.000000E 00 0.8131758E-07 0.2846118E-06 0.5054889E-04 0.8233413E-06 0.1097787E-05 0.1372235E-05 0.1646682E-05 0.1921129E-05 0.2195577E-05 0.2470023E-05 0.2744470E-05 0.3018918E-05 0.3293365E-05 0.3567811E-05 0.3842259E-05 0.4391150E-05 0.4665600E-05 0.4940044E-05 0.4116706E-05 0.5214493E-05 0.5488939E-05 0.5763387E-05 0.6037832E-05 0.6312281E-05

ROW 5

0.000000E 00	0.1118117E-06	0.4065882E-06	0.8233413E-06	0.5130107E-04
0.1788988E-05	0.2276894E-05	0.2764800E-05	0.3252706E-05	0.3740612E-05
0.4228518E-05	0.4716424E-05	0.5204330E-05	0.5692236E-05	0.6180142E-05
0.6668048E-05	0.7155954E-05	0.7643855E-05	0.8131765E-05	0.8619662E-05
0.9107576E-05	0.9595473E-05	0.1008339E-04	0.1057128E-04	0.1105920E-04

ROW 6

0.000000E 0	0 0.1423058E-06	0.5285647E-06	0.1097787E-05	0.1788988E-05
0.5254117E-0	4 0.3303528E-05	0.4065882E-05	0.4828235E-05	0.5590588E-05
0.6352941E-0	5 0.7115294E-05	0.7877644E-05	0.8639997E-05	0.9402351E-05
0.1016470E-0	4 0.1092706E-04	0.1168940E-04	0.1245176E-04	0.1321410E-04
0.1397646E-0	4 0.1473880E-04	0.1550115E-04	0.1626350E-04	0.1702584E-04

ROW 7

0.1728000E-06	0-6505411E-06	0.1372235E-05	0.2276894E-05
0.5439114E-04	0.5488941E-05	0.6586730E-05	0.7684514E-05
0.9880087E-05	0.1097788E-04	0.1207567E-04	0.1317344E-04
0.1536903E-04	0.1646680E-04	0-1756460E-04	0.1866238E-04
0.2085796E-04	0.2195574E-04	0.2305352E-04	0.2415132E-04
	0.1728000E-06 0.5439114E-04 0.9880087E-05 0.1536903E-04 0.2085796E-04	0.1728000E-060.6505411E-060.5439114E-040.5488941E-050.9880087E-050.1097788E-040.1536903E-040.1646680E-040.2085796E-040.2195574E-04	0.1728000E-060.6505411E-060.1372235E-050.5439114E-040.5488941E-050.6586730E-050.9880087E-050.1097788E-040.1207567E-040.1536903E-040.1646680E-040.1756460E-040.2085796E-040.2195574E-040.2305352E-04

ROW 8

0.000000E 00	0.2032941E-06	0.7725175E-06	0.1646682E-05	0.2764800E-05
0.4065882E-05	0.5488941E-05	0.5697299E-04	0.84671992-05	0.9961411E-05
0.1145562E-04	0.1294982E-04	0.1444404E-04	0.1593825E-04	0.1743247E-04
0.1892669E-04	0.2042089E-04	0.2191508E-04	0.2340930E-04	0.2490351E-04
0.2639773E-04	0.2789193E-04	0.2938615E-04	0.3088034E-04	0.3237458E-04

ROW 9

0.1921129E-05 0.000000E 00 0.2337882E-06 0.8944938E-06 0.3252706E-05 0.4828235E-05 0.6586730E-05 0.8467199E-05 0.6040865E-04 0.1236027E-04 0.1431190E-04 0.1626351E-04 0.1821514E-04 0-2016676E-04 0.2211839E-04 0.2407002E-04 0.2602163E-04 0.2797325E-04 0.2992488E-04 0.3187648E-04 0.3382812E-04 0.3577973E-04 0.3773137E-04 0-3968297E-04 0.4163462E-04

ROW 10

0.000000E 00	0.2642823E-06	0.1016469E-05	0.2195577E-05	0.3740612E-05
0.5590588E-05	0.7684514E-05	0.9961411E-05	0.1236027E-04	0.6482012E-04
0.1729015E-04	0.1976016E-04	0.2223020E-04	0.2470022E-04	0.2717024E-04
0.2964027E-04	0.3211029E-04	0.3458030E-04	0.3705033E-04	0.3952034E-04
0.4199038E-04	0.4446038E-04	C-4693042E-04	0.4940042E-04	0.5187046E-04

ROW 11

0.000C000E OC 0.2947765E-06 0.1138446E-05 0.2470023E-05 0.4228518E-05 0.6352941E-05 0.8782305E-05 0.1145562E-04 0.1431190E-04 0.1729015E-04 0.7032939E-04 0.2337880E-04 0.2642823E-04 0.2947764E-04 0.3252705E-04 0.4167526E-04 0.3557646E-04 0.3862588E-04 0-4472470E-04 0.4777408E-04 0.5082351E-04 0.5387289E-04 0.5692233E-04 0.5997172E-04 0.6302114E-04

ROW 12

0.000000E 00 0.3252706E-06 0.1260422E-05 0.2744470E-05 0.4716424E-05 0.7115294E-05 0.9880087E-05 0.1294982E-04 0.1626351E-04 0.1976016E-04 0.2337880E-04 0.7705843E-04 0.3074821E-04 0.3443801E-04 0.3812779E-04 0.4181759E-04 0.4550737E-04 0.4919713E-04 0.52886942-04 0.5657670E-04 0.6026651E-04 0.6395628E-04 0.676460SE-04 U. 7133585E-04 0.7502566F-04

ROW 13

0.000000E 00 0.3557647E-06 0.1382399E-05 0.3018918E-05 0.5204330E-05 0.7877644E-05 0.1097788E-04 0.1444404E-04 0.1821514E-04 0.2223020E-04 0.2642823E-04 0.3074821E-04 0.8512923E-04 0.3952038E-04 0.4391152E-04 0.4830268E-04 0.5269384E-04 0.5708495E-04 0.6147614E-04 0.6586725E-04 0.7025844E-04 0.7464956E-04 0.7904074E-04 0.8343186E-04 0.8782303E-04

ROW 14

0.000000E 00 0.3862589E-06 0.1504375E-05 0.3293365E-05 0.5692236E-05 0.8639997E-05 0.1207567E-04 0.1593825E-04 0.2016676E-04 0.2470022E-04 0.2947764E-04 0.3443801E-04 0.3952038E-04 0.9466373E-04 0.4981723E-04 0.5497073E-04 0.6012425E-04 0.6527771E-040.7043124E-04 0.7558471E-04 0.8073825E-04 0.8589170E-04 0.9104525E-04 0.9619871E-04 0.1013523E-03

ROW 15

0.0000000E 00 0.4167530E-06 0.1626352E-05 0.3567811E-05 0.6180142E-05 0.9402351E-05 0.1317344E-04 0.1743247E-04 0.2211839E-04 0.2717024E-04

0.3252705E-04 0.3812779E-04 0.4391152E-04 0.4981723E-04 0.1057839E-03 0.6176077E-04 0.6773762E-04 0.7371441E-04 0.7969131E-04 0.8566810E-04 0.9164499E-04 0.9762179E-04 0.1035987E-03 0.1095755E-03 0.1155524E-03

ROW 16

0.000000E 00 0.4472471E-06 0.1748329E-05 0.3842259E-05 0.6668048E-05 0.1016470E-04 0.1427124E-04 0.1892669E-04 0.2407002E-04 0.2964027E-04 0.3557646E-04 0.4181759E-04 0.4830268E-04 0.5497073E-04 0.6176077E-04 0-7547297E-04 0.1186118E-03 0.8233408E-04 0.8919531E-04 0.9605644E-04 0.1029176E-03 0.1097788E-03 0.1166400E-03 0.1235010E-03 0.1303622E-03

ROW 17

0.000000E 00 0.4777413E-06 0.1870305E-05 0.4116706E-05 0.7155954E-05 0.1092706E-04 0.1536903E-04 0.2042089E-04 0.2602163E-04 0.3211029E-04 0.3862588E-04 0.4550737E-04 0.5269384E-04 0.6012425E-04 0.6773762E-04 0.7547297E-04 0.9107571E-04 0.1332693F-03 0.9888226E-04 0.1066886E-03 0.1144952E-03 0.1223016E-03 0.1301082E-03 0.1379146E-03 0.1457212E-03

ROW 18

0.000000E 00 0.5082351E-06 0.1992281E-05 0.4391150E-05 0.7643855E-05 0.1168940E-04 0.1646680E-04 0.2191508E-04 0.2797325E-04 0.3458030E-04 0.6527771E-04 0.4167526E-04 0.4919713E-040.5708495E-04 0.7371441E-04 0.8233408E-04 0.9107571E-040.1498782E-03 0.1086910E-03 0.1175037E-03 0.1263166E-03 0.1351293E-03 0.15275496-03 0.1439421E-03 0.1615677E-03

ROW 19

0.000000E 00 0.5387294E-06 0.2114258E-05 0.4665600E-05 0.8131765E-05 0.3705033E-04 0.1245176E-04 0.1756460E-04 0.2340930E-04 0.2992488E-04 0.4472470E-04 0.5288694E-04 0.6147614E-04 0.7043124E-04 0.7969131E-04 0.8919531E-04 0.9888226E-04 0.1086910E+03 0.1685610E-03 0.1284410E-03

0.1383211E-03 0.1482012E-03 0.1580813E-03 0.1679613E-03 0.1778415E-03

ROW 20

0.000000E0.5692230E-060.2236233E-050.4940044E-050.8619662E-050.1321410E-040.1866238E-040.2490351E-040.3187648E-040.3952034E-040.4777408E-040.5657670E-040.6586725E-040.7558471E-040.8566810E-040.9605644E-040.1066886E-030.1175037E-030.1284410E-030.1894390E-030.1504476E-030.1614558E-030.1724642E-030.1834724E-030.1944808E-03

ROW 21

0.000000E 00	0.5997176E-06	0.2358211E-05	0.5214493E-05	0.9107576E-05
0.1397646E-04	0.1976016E-04	0.2639773E-04	0.3382812E-04	0.4199038E-04
0.5082351E-04	0.6026651E-04	0.7025844E-04	0.8073825E-04	0.9164499E-04
0.1029176E-03	0.1144952E-03	0.1263166E-03	0.1383211E-03	0.1504476E-03
0.2126351E-03	0.1748324E-03	0.1870302E-03	0.1992277E-03	0.2114255E-03

ROW 22

0.000000E0.6302112E-060.2480186E-050.5488939E-050.9595473E-050.1473880E-040.2085796E-040.2789193E-040.3577973E-040.4446038E-040.5387289E-040.6395628E-040.7464956E-040.8589170E-040.9762179E-040.1097788E-030.1223016E-030.1351293E-030.1482012E-030.1614558E-030.1748324E-030.2382702E-030.2017181E-030.2151659E-030.2286140E-03

ROW 23

0.000000E 00	0.6607058E-06	0.2602163E-05	0.5763387E-05	0.1008339E-04
0.1550115E-04	0.2195574E-04	0.2938615E-04	0.3773137E-04	0.4693042E-04
0.5692233E-04	0.6764609E-04	0.7904074E-04	0.9104525E-04	0.1035987E-03
0.1166400E-03	0.1301082E-03	0.1439421E-03	0.1580813E-03	0.1724642E-03
0.1870302E-03	0.2017181E-03	0.2664672E-03	0.2312262E-03	0.2459851E-03

ROW 24

0.000000E 00	0-6911994E-06	0.2724139E-05	0.6037832E-05	0.1057128E-04
0.1626350E-04	0.2305352E-04	0.3088034E-04	0.3968297E-04	0.4940042E-04
0.5997172E-04	0.7133585E-04	0.8343186E-04	0.9619871E-04	0.1095755E-03
0.1235010E-03	0.1379146E-03	0.1527549E-03	0.1679613E-03	0.1834724E-03
0.1992277E-03	0.2151659E-03	0.2312262E-03	0.2973471E-03	0.2634786E-03

ROW 25

0.000000E 00	0.7216940E-06	0.2846116E-05	0.6312281E-05	0.1105920E-04
0.1702584E-04	0.2415132E-04	0.3237458E-04	0.4163462E-04	0.5187046E-04
0.6302114E-04	0.7502566E-04	0.8782303E-04	0.1013523E-03	0.1155524E-03
0.1303622E-03	0.1457212E-03	0.1615677E-03	0.1778415E-03	0.1944808E-03
0.2114255E-03	0.2286140E-03	0.2459851E-03	0.2634786E-03	0.3310333E-03

POINTS IN CONTACT OBTAINED FROM QUADRATIC PROGRAMMING.

1 2 3 4 5 6 7 8 9101112

