AD-A010 218

A PORTABLE COMPILER FOR THE LANGUAGE C

[MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PREPARED FOR
NATIONAL Sci1eNCE FOUNDATION
ADVANCED RESEARCH PROJECTS AGENCY

May 1975

DISTRIBUTED BY:

NS

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

Q 157070
MAC TR-149
ey
o I A PORTABLE COMPILER FOR
| THE LANGUAGE C
Q
<X Alan Snyder
May -1975
K ! ’
: DDC-\
pyrann
JUN 3 =5 ﬂ
NATIONAL TECHNICAL G YT
E_ INFORMATION SERVICE B
1)S L:r;av:j\'“ j . A’"‘)n ':‘«,“ a
?_ Work reported herein was supported in part by the Eell
! Telephone Laboratories, inc., the Mational Science Foundation Research Grant
5[: GJ-34671, 1BM Funds for research in Computer Science und by the
i Advanced Reseaich Projects Agency of the Department of Defense under ARPA
order no. 2095, ARPA Contract No Number N00014-70-A-0362-0006 and
ONR Task No. NR-049-189.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY .,
CAMBRIDGE PROJECT MAC , MASSACHUSETTS 02139
ON STA A
Approved for public relecme;
Digtribution Unlimited ' 76

BIBLIOGRAPHIC DATA |- Report Nos. GJI4071 + NOUUL4=7042 3. Recipient®s Accession No.

SHEET A-0362-0006 MAC TR-149 A2/40r2/f

4. Title and Subratle 5. Report Date ¢ Tssued

May 1975

A Portable Compiler for the Language C 6.

7. Author(s) 8. l:crfurmmg Orgamzateen Re
Alan Snyder No- MAC TR-149

d 9. Performing Organization Name and Address 10, Project Tash Work Unn No.

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

1 Contract Caan Noe 313467 1
545 Technology Square, Cambridge, Massachusetts 02139

NO0O014-70-A-0362-0006

| 12 Sponsoring Organization Name and Address 13. Type ot l_(l‘l’"” S Pend
19 Office of Naval Research Associate Program Director Corgmil LDLErLR
[:‘ Department of the Navy Office of Computing Activities Scientific Report
¥ Information Systems Program National Science Foundation 14.

| 4 Arlington, Va 22217 z Washington, D. C. 20550

i 4 15. Supplementary Notes

't

| _Revised version of an S.B., and S.,M. Thesis

16. Abstracts This paper describes the implementation of a compiler for the programming
language C. The compiler has been designed to be capable of producing assembly-
language code for most register-oriented machines with only minor recoding. Most of
the machine-dependent information used in code generation is contained in a set of
tables which are constructed automatically f.om a machine description provided by the

: implementer. In the machine description, the implementer models the target machine

' by defining a machine-dependent abstract machine for which the code generator produces

intermediate code. The implementer defines the translation from an abstract machine

program to a target machine program by providing in the machine description a set of

simple macro definitions for the abstract machine instructions. In addition, macro

] definitions may be provided in the form of C routines where addtional processing
1 capability 13 needed.

17. Ky Words and Document Analysis. 170. Descriptors

compilers

portable compilers

code generation
portability

machine descriptions
abstiract machines
implementation languages

17b. Wentifiers /Open-linded Terms

T A

176, COMTI Freldfurou PRICES SUBJECT T2 Ciinice

18. Availability Statement 19. Security Class (This 20 Nosof Pages
Repor:) 7&.
Approved tor Public Release; 5 UNCLAS&F[%D
. . Security Class (This 22. Price =
Distribution Unlimited] Page ﬁ 4 ﬂ.’.)‘ @, QL)
UNCLASSIELED ' ~ N

FONM NTIS- IS (IREV. 3-72)

THIS FORM MAY BE REPRODUCED DseoMMbe Tae B

MAC TR-149

A PORTABLE COMPILER FOR THE LANGUAGE C

Alan Snyder

May 1975

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02138

\
\
\
\
\
\
\
\
1 A PORTABLE COMPILER FOR THE LANGUAGE C
| by \' .

Alan Snyder

ABSTRACT

This paper describes the implementation of a compiler for the programming language C. The compiler has
been designed to be capable of producing assembly-language code for most register-oriented machines
with only minor recoding. Most of the machine-dependent information used in code generation is
contained in a set of tables which are constructed automatically from a machine description provided by
the implementer. In the machine description, the implementer models the target machine by defining 8
machine-dependent abstract machine for which the code generator produces intermediate code. The
abstract machine is abstratt in that it is a C machine: its registers and memory are defined in terms of
primitive C data types and its instructions perform basic C operations. The abstract machine is machine-
dependent in that there is a close correspondence between the registers of the abstract machine snd;
those of the target macnine, and between the behavior of the abstract machine instructions and the
corresponding target machine instructions or instruction sequences. The implemonter defines the
translation from an abstract machine program to a target machine program by providing in the machine
description a set of simple macro definitions for the abstract machine instructions. In addition, macro
definitions may be provided in the form of C routines where additional processing capability is needed.

This report is based on a thesis submitied 10 the Department of Electrical
Engineering at the Massachusetts Institute of Technology on May 10, 1974 in
partial fulfillment of the requirements for the Degrees of Bachelor of Science
and Master of Science. Work reported hersin was supported in part by the Bell
Telephone Laboratories, Inc., the National Science Foundation Research Grant
GJ-34671, IBM funds for research in Computer Science and by the /dvanced
Research Projects Agency of the Depariment of Defense under ARPA order no.
2095, ARPA Contract Number N00014-70-A-0362-0006 and ONR Task No. NR-
049-189.

.

P

CHAPTER 1.

A
2
3
CHAPTER 2.

2.1

2.2

CHAPTER 3.

3.1
3.2

CHAPTER 4.

4.1
4.2
43
44

-3-

CONTENTS

Introduction

Motivation
Background
Method

Modeling the Target Machine
The Intermediate Language
2.1.1 Abstract Machine Instructions

2.1.1.1 AMOPs
2.1.1.2 REFs

2.1.2 Keyword Macros
The Machine Description

221 Defining the Abstract Machine
2.2.2 Defining the Object Language

Generating Code for an Abstract Machine

Functions of the Code Generator
Generating Code for Expressions

3.2.1 Semantic Interpretation
3.2.2 Code Generation

3221 Specifying Desired Locations

3.22.2 TTEXPR

3.2.23 CGEXPR

3.224 CGOP

3.225 Selecting an OPLOC

3.2.2.6 Generating Code for Subexpressions
3227 Register Management

3228 Pessibilities for Failure

Conclusions

The Compiler
The Compiled Code
Summary of Resuits
Further Work

REFERENCES

FIGURE 1 The GCOS Control Cards

APPENDIX I The Machine Description
1. Definition Statements

1.1 The TYPENAMES Statement
1.2 The REGNAMES Statement
13 The MEMNAMES Statement
1.4 The SIZE Statement

15 The ALIGN Statement

1.6 The CLASS Statement

1.7 The CONFLICT Statement

1.8 The SAVEAREASIZE Statement
1.9 The POINTER Statement

1.10 The OFFSETRANGE Statement
1.1 The RETURNREG Statement
1.12 The TYPE Statement

2. The OPLOC Section
3. The Macro Section

APPENDIX Il The Intermeciate Language: AMOPs
APPENDIX Il The Intermediate Language: Keyword Macros
APPENDIX IV The HIS-6000 Machine Description
APPENDIX V The HIS-6000 C Routine Macro Definitions
APPENDIX VI Overall Descr:otion of the Compiler

The Lexical Analysis Phase

The Syntax Analysis Phase

The Code Generation Phase

The Macro Expansion Phase

Thae Error Message Editor
Invoking the Compiler Phases

oL WM

1.

This paper describes the implementation of a compiler for the programming language C [1,2}, an
implementation language developed at Bell Laboratories and a descendant of the language BCPL [3]} The
compiler has been designed to be capable of producing assembly-language code for most register-
oriented machines with only minor recoding. Versions of the compiler exist for the Honeywell HIS-6000
and Digital Equipment Corporation FDP-10 computers.

Introduction

C is a procedure-oriented language. It has four primitive data types (integers, characters, and single-
and double-precision floating-point), four data type constructors (pointers, arrays, functions, and records),
and a small but conveniert set of control structures which encourage goto-less programming. An
important characteristic of C is the minimal run-time support needed. Althnugh C supports recursive
procedures, C does not have built-in functions, 1/0 statements, block structure, string operations, dynamic
arrays, dynamic storage allocation, .r run-time type checking. The only run-time data structure is the
stack of procedure activation records. Of course, to run any useful programs, an interface to the
operating system is required, and a standard set of 1/0 routines has been defined in order to encourage
portability. But the implementation of these routines is optional and saparate from the task of
1 nplementing a C compiler which produces code for a given machine.

The compiler described in this paper was designed to be portable, that is, to be capable of generating
code for many target machines with a minimum of recoding. When considering portability, three classes of
machines can be defined:)

1. Machines which can support C programs reasonably efficiently: This class of machines depends only
upon one's interpretation of the term "reasonably efficiently.” Clearly, all real machines can run C
programs, limited only by some size constraint related to the availability of memory. However, the
following capabilities are desirable: (1) the ability tc access the current procedure activation record
and the current argun:ent list in a reentrant manner - this will require one or two base/index
registers depending upon the calling sequence, (2) the ability to reference via a pointer \ariable -
this will require another base/index register or an indirection facility, (3) character addres-ing, (4)
integer arithmetic, and (5) floating-point arithmetic. Not all of the above capabilities need be present
in the target machine; however, lhe more that are missing, the more interpretive becomes the
execution of a C program. For example, the HIS-6000 is word-addressed; thus references to
character variables are interpreted by a smail run-time subroutine.

2. Machines for which the compiler can produce reasonably efficient code: This class of machines is
clearly a subset of tha first class; the size of the subset is again determined by one’s definition of
reasonable. The better the correspondence between the target machine and the machine model
implicit in the compiler, the better will be the object code produced. On the other hand, if the
correspondence is poor, the compiler may be able to produce only threaded code or instructions to
be interpretad by software.

3. Machines which can support the compiler itself: Because the compiler is written in C, one may think
that this class of machines is identical to the second class of machines; however, there are added
restrictions which must be made in order to run the compiler on 2 given machine: the word size of
the machine must be sufficient to hold all values used by the compiler; any implementation restriction
on the size of procedures or data areas (as would be likely cn the IBM $/360 because of addressing
deficiencies) must not be such as to prohibit the proper execution of the compiler (this inciudes the
ability of the compiler to compile itse (). In addition, there are operating system and configuration
restrictions: the memory size available to a program must be sufficient to hold the phase - of the
compi'‘er, file space for the source of the compiler must be available and affordable; the 1/0 routines
used by the compiler must be implemented. This ciass of machines is not a subset of the second class
of machines sinca the compiler does not use all of the ‘eatures of the larguage, notably floating-point.

This paper concentrates on the seconc class of machines, those for which the compiler can produce

Siascsh e Wan _aa. _acie ol el o

e .

< i

reasonably efficient code, given the restrictions of the first class of machines, those which can support C
programs reasonably efficiently. Thus, throughout this paper, the term "machine independencu” will
generally refer to the ability of a compiler to produce code for many machines.

i1 Motivation

One of the serious problems in the field of software engineering is the difiiculty of transferring programs
to new machines. This is caused in large part by the proliferation of different programming languages
and machines and the significant effort required to implement a conpiler for any particular programming
language and target machine. One approach to solving this problem is to restrict programming languages
to a few standardized languages which are then implemented on all target machines of interest. A
disadvantage of this approach is that it conflicts with the desirability of having many specialized
languages for specialized problems. Another disadvantage is the fact that continual progress is being
made in the development of programming languages so that by the time a ianguage is standardized and
widely available, it is already "obsolete.” It is also difficult to achieve compatibility among the various
implementations of a standardized language. Even if the standard language is well defined, it is difficult
for compiler writers to restrain themselves from extending it and for users to restrain themselves from
using the language extensions. A similar approach to the problem of program transferability is to restrict
the number of target machines for which compilers must be written by requiring that each new machine
be compatible with a widely-used existing machine. The stifling of progress in computer architecture
which would result from this requirement is as undesirable as the stifling of progress in programming
languages which would result from adoption of the previous approach. In addition, if the new machines
are only upward compatible with the old machines, then problems may still remain with regard to
transferring programs from new machines to old ones.

An oalternative: approach to those of language restriction and machine compatibility is to develop
techniques that reduce the effort required to write cumpilers for various combinations of languages and
machines. These techniques may be directed at two subproblems, that of reducing the effort involved in
writing one particular compiler and that of reducing the effort involved in writing a family of related
compilers. The development of such techniques could have benefits in addition to improving program
transferability, such as making it easier to implement a new language or making languages more widely
available.

An early effort in this dire<iion was an attempt to devise a universal computer-oriented language UNCOL
[4), which is both larguage-independent and machine-independent, to which all programming languages
could be transiated and which ilself could be translated wilh acceptable efficiency into any machine
language. The idea was that one need write only one UNCOL-to-machine language translator for each
target machine and one source language-to-UNCOL translator for esach source language, rather than
having to write one compiler for each source language-machine language combination. In addition, if
UNCOL. were well defined, then the various implementalions of UNCOL could be made compatible, thereby
insuring the compatibility of the source language implementalions. Unfortunately, the concept of a
unive.sal language has not led to a practical solution of the problem; Ihe characteristics of source and
machine language independence are incompatible with the nead for acceptably efficient translation from
UNCOL to machine language.

More practical techniques for reducing the effort involved in writing compilers result if one considers
techniques with more limited goals than those of the UNCOL project. One approach is to develop
techniques which reduce the effort involved in writing one particular compiler for some language-machine
combination. Examples of such techniques are parser generators and synlax-directed symbol processors
(5] Another approach is to develop techniques for writ.ng families of compilers for many source
languages and one target machine. An example of such a technique is a compiler writing system with
code generatiors primitives, such as FSL [6] The third approach, and lhe one which is taken in this work,
is that of the portable compiler, a compiler fer a particular source language which can produce code for
many target machines. It should be noted that techniques such as parser generators, which can aid in the
implementation of a single compiler, can be equally useful in the implementation of more general systems
such as compiler writing systems and portable compilers.

1.2 Background

A compiler can be considered to consist of two lugical phases, analysis and generation. The analysis
phase performs lexical and syntactic analysis of the source program, producing as output some convenient
internal representation of the program, along with a set of tables containing lexical information and other
information derived from the declarative statements of the program. The generation phase then
transforms the internal representation into an object language program, using the information contained in
the tables produced by the analysis phase. One can confine the machine (object language) dependencies
of a compiler to the generation phase by a suitable choice of internal representation, i.e. one which is
machine-independent. On the other hand, it is not practical to also confine the source language
dependencies of a cimpiler to the analysis phase since this would make the internal representation a

universal language. Thus the generation phase of a compiler is both source-language -dependent and
machine-dependent.

Most portable compilers require that the generation phase be completely rewritten for each target
machine [7,8] This effort may represent only about one-fifth of the effort needed to rewrite the entire
compiler [8] In the case of the BCPL compiler 9], for example, moving the compiler may require only
three to four weeks under ideal conditions (but otherwise may require up {0 five months). However, it

would be desirable if the amount of recoding necessary to generate code for a new machine could be
reduced.

One approach is that advocated by Poole and Waite for writing portable programs (10,111 They
advocate that before writing a program to solve a particular problem, one define an abstract machine for
which the program is then written. With this approach, in order to move the program to a new machine,
one need only implement the abstract machine on the target machine, typically via a macro processor.
The desired qualities of the abstract machine are that it contain operations and data objects convenient
for expressing the problem solution, that it be sufficiently close to the target machines of interest sc that
acceptable code can easily be generated, and that the tools for implementing the abstr:ct machine be
easily obtainable on the target machines.

This technique can be applied to portable compilers by considering the problem to be the implementation
of an arbitrary source language program. The operations and data objects convenient for expressing the
problem solution are then those which are basic to the source language. With this technique, a compiler
would be broken into two parts: a machine-independent translator from the source language to the
abstract machine language and a machine-dependent translator from the abstract machine language to the
target machine language. The translator from the absiract machine language to the target machine
language should be smaller andJ simpler than the conventional generation phase would be; typically, it
consists of a set of macro definitions which map each abstract machine instruction into the correspondir.g
target machine instruction or instruction sequence. Moving the compiler to a new machine simply requires
rewriting the macro definitions.

The major difficulty with the absiract machine approach to portable sottware is in determining the
appropriate abstract machine. If the abstract machine is of a high leve! (i.e., very problem-oriented), then
the program will be very portable but the implementation of the abstract machire will be difficult. On the
other hand, if the abstract machine is of a low level (i.e, more machine-oriented), then, un'ess it
corresponds closely to the target machine, either lhe zode produced will be inefficient or the
implementation will be complicated by optimization code.

The solution to this difficulty proposed by Pocle ard Waile is to define a hierarchy of abstract machines,
ranging from a high-level problem-oriented abstract machine to a low-level, machine-oriented, and easy-
to-implement abstract machine. In this solution, the higher-lavel abstract mazhines are imolemented in
terms of the lower-level abstract machines, and orly the lowest-level abstract machine need be
implemented on a target machine in order to transfer the program; once it is transferred, higher-level
abstract machinec riay be implemented directly in terms of the target machine in order to improve
efticiency. While this technique may be usetul for transferring particular programs, it is unlikely that it

|

will be acceptable in practical terms as a compilation technique because of the need for additionat
translation steps. An experiment by Brown [12] indicates that one may implement and then optimize a
low-levet abstract machine in about the same time as it takes to implement a higher-levet abstract
machine and that the resulting implementations are similarly efficient. Thus an alternative solution is to
use a low-level abstract machine, but allow the implementer to optimize as desired; this solution is more
likely to be acceptable as a compilation technique. A third solution will be advocated in this paper.

Y S S—

The technique of rewriting the generation phase requires that a non-trivial translator from (he internal
representation to the target machine language be written for each new target machine. Similarly, the
abstract machine apprnach requires that a translator from the abstract machine language to the target
machine language be written for each new target machine; if reasonably efficient code is desired and the
abstract machine does not correspond very closely to the target machine, then this translator will also be
non-trivial,

A more desirable goal for a portable compiler is that it have a generation phase which can be modified to
produce code for a new target machine by a process which is largely automatic. Implicit in this goal is
the requirement that the modification process obtain its knowledge about a target machine from a (non-
procedural) description of the machine. An early effort in this direction was the SLANG system [13],
which atlacked the problem of describing a machine-dependent process (code generation) in a machine-
1 independent way. In the SLANG system, source language constructs are translated irto a set of basic
3 operations called EMILs; the EMILs are translated into absolute machine code using macro definitions and
instruction format definitions. The approach is s'milar to the abstract machine approach in that the EMILs
can be considered to be the instructions 0 an abstract machine; the difference is that the code
k- generation algorithm uses information contained in a machine description in order to tailor the EMIL
program to the target machine. The EMILs differ from the instructions of a Poole and Waite abstract
machine in that they are machine-oriented, rather than problem (source-language) oriented. I[n addition,
the code generator does not seem to know about registers other than index registers, which implies that
one will not be able to achieve the desired close correspondence between the abstract machine and most
register-oriented machines. Nevertheless, the method of describing the instructions of a machine by
providing simple instruction sequences which interpret the abstract machine instructions seems to be a
good compromise between the desire to minimize coding and the difficulty of mathematically defining a
machine and utilizing such a definition in generating code.

More recently, Miller [14] has explored the problem of constructing 2 code generator from a machine
description. Miller proposes that a generation phase be constructed in two steps. In the first step, the
language designer spe:ifies the language-dependent part of the generation phase by writing a set of
procedural machine-independent macro definitions for the operations of the internal representation
produced by the analysis phase. These macro definitions define the operations of the internal
representation, such as addition, in terms of machine-independent (i.e., language-oriented) primitives, such
as integer addition, which are created by the language designer. In the second step, the implementer
provides a description of the target machine which 15 used by an automatic code generation system
named DMACS (Descriptive Macro System) in order to fill out the macro definitions of the first step and
thereby produce a code generator {or the target machine. As was the case with the SLANG system, the
DMACS machine description defines the primitive operations by giving target machine code seque-ces
which interpret them. In addition, however, the permitted locations of the operands (in terms of their
being in memory or in particular reg'<*zrs) are specified as are the coriesponding result locations. Thus
i the primitives can be made to correspord very closely to the instructions of the target machine so that
' the code sequences in the machine description are simpler and the resulting object code is more efficient.

Both the SLANG system and DMACS are intended to be general in that they are not designed for a
specific source language. However, true generality i1s difficult to obtain and the systems do reflect
preconceived notions about source languages. It is believed that, since there are much more significant
variations among languages than among machines, a practical implementation of a compiler for any
interesting language re:|uires that the system be designed specifically for that language. This idea was
recornized to some extent . DMACS where the primitives are created hy the language designer as

convenient for expressing the operations of the source language. On the other hand, DMACS contains no
notion of storage classes (different mechanisms for accessing variables of the same data type) which are
needed for C; the implementation of storage classes is machina-dependent and thus must be defined in
the machine description. In this paper, techniques similar to those used in the SLANG system and in
DMACS are used in the implementation of a portable C compiler.

1.3 Method

The goal of this research is to design a generation phase for a C compiler which can be modified to
produce code for many machines by a process which is largely automatic. Some insight into this probl'em
can be gained by examining the corresponding, but better understood problem of the automatic
construction of an analysis phase. One common approach is the use of a parser generator [15} A parser
generator is a program which accepts as input a grammar for a source language and produces as output a
set of tables which are used by a linguage-independent parsing algorithm. The parsing algorithm is
supplementad by a set of action routines which are provided by the implementer; these action routines
are called by the parsing algorithm at appropriate points to produce the output of the analysis phase.
The important characteristics of this process are as follows:

1. The analysis phase is diviced into two parts, a language-independent part (the parsing algorithm) and
a language-dependent part (the parsing tables and the action routines).

2. The language-dependent tables are constructed automatically from a finite description of the language
(the grammar).

3. The analysis phase is "filled-in" by the implementer by providing information in a procedural form (the
action routines).

4. The choice of a specific parsing algorithm determines the class of languages which can be handled by
the anaiysis phase.

The process of constructing an analysis phase can be made more automatic through the use of a ccmpiler
writing system. In a compiler writing system, the action routines are in a sense built-in; the implementer
invokes these action routines from a higher-level description of the translation. The use of such a system
may involve much less effort than would be required to write a completa set of action routines. However,
the important point here is that the use of built-in knowledge, as opposed to allowing the addition of
arbitrary procedural knowiedge, restricts the class of translations (and thus source languages) which can
be handled by the automatically generated analysis phase.

For the compiler described in this paper, techniques analogous {o those described in the preceding
paragraph are used in the implementation of the generation phase. The generation phase is spht into two
parts, a machine-independent part and a machine-dependent part. The machine-independent part of the
generation phase is a machine-independent code generation algorithm, corresponding to the language-
independent parsing algorithm of thz analysis phase. Just as the choice of a particular parsing algorithm
timits the class of languages tha! the analysis phase can handle (the parsing algorithm is not completely
language-independent), the choice of a particular code generation algorithm determines the class of
machines for which the compiler can produce reasonable (non-interpretive) code. The machine-dependent
part of the generation phase consists of a <ot of tables produced automatically by a stand-alone program
GT (Generate Tables) from a machine description, which corresponds to the grammar in the construction of
an analysis phase. The information contained in the machine description may be supplemented by a set of
routines which correspond to the acticn routines of the analysis phase. However, the compiler described
in this paper is closer tc the compiler writing system approach in that implementer-supplied routines form
only a minor part of the generation phase. The extent to which the implementer can easily and safely
include such routines in the generation phase represents another factor determining the class of target

machines handled.

-10 -

A code generation algorithm, if it is to be machine-independent, requires a mode! of a machine with which
to work. This model may express such notions as memory, registers, addressing, operations, and
hardware data types. In the machine description, the implementer defines hi. ta: get machine in terms of
this model and also specifies the form of the object language. The class of machines for which the code
generator can produce acciptable code directly corresponds to the generality of the machine model.

The machine model used by the C compiler is a C machine: a machine whose registers and memory are
described in terms of the primitive C data types and whose operations are primitive C operations. The
implementer models the target machine in terms of a C machine, producing an abstract machine. The
abstract machine may be very similar to or very different from the target machine, depending upon how
closely the target machine fits the machine model. The code generation algorithm, using its machine
model, produces code for the abstract machine. The "assembly” language of the abstract machine is called
the intermediste lenguage; an intermediate language program, which is in the form of a series of macro
calls, is translated into the target machine assembly language using a set of macro definitions, provided by
the implementer in the machine description. Assembly language was chosen over machine language for
the output of the compiler because it is far easier to describe and produce in a machine-independent
manner than machine code or object modules.

The abstract C machine plays the same role in the C compiler as would a Poole and Waite abstract
machine. The difference is that instead of there being one fixed abstract machine, there is a class of
abstract machir.es, corresponding to the variability in the machine model. This variability allows the
implementer to define a particular abstract machine which more closely resembles his target machine.
The result is that the translation from the abstract machine language to the target machine language
becomes simpler, and more efficient code is produced.

The process of modeling the target machine is described in chapter two. A detailed discussion of the
code generation algorithm is presented in chapter three. Conclusions are presented in chapter four.

pa—

- 11 -

2. Modeling the Target Machine

The code generator’s model of a machine is an abstract C machine, a machine whose instructions perform
the primitive operations of the C language. The data types of the abstract machine are the primitive C
data types (characters, integers, and single- and doublz-precision floating point), supplemented by one or
more pointer classes which are distinguished by iheir ability to resolve addresses. The basic addressable
unit of the abstract machine memory is the byte, which holds a single character value (characters are the
smallest C data type). Values of the other abstract machine data types occupy an integral number of
bytes, possibly aligned in larger units of memory. Thi abstract machine has a set of registers which may
be used to hold the operands of the abstract ma: e instructions. Each abstract machine register is
capable of holding values of some subset of the - :iract machine data types. The instructions of the
abstract machine are three-address instructions. .':.h address may specify an abstract machine register

or a location in memory; the mechanisms for refe:c'\cing a memory location correspond to the primitive
addressing modes in C,

In the machine description, the implementer describes the target machine in terms of this machine model
by defining a particular abstract machine for which the code generator produces intermediate code. The
implementer specifies the sizes and alignments of the primitive C data types and defines pointer classes
as convenient. The implementer defines the abstract machine registers, which generally correspond to
those registers of the target machine which are to be used in the evaluation of expressions. The
implementer also specifies the registers which may hold values of each of the abstract machine data
lypes. In addition, the implemer.ter may specify that any two abstract machine registers conflict in the
target machine, meaning that only one may hold a value at any one time. The implementer defines the
abstract machine instructions n terms of their operand/result locations and possible side-effects on other
registers. In addition, the implementer provides a set of macro definitions which implement the abstract
machine instructions on the target machine.

2.1 The Inter:iediate Language

The intermediute language is the assembly language of the abstract machine. Using the information
contan.od in the tables constructed from the machine description, the code gensrator produces a
translatior, ct the source program in the intermediate language. An intermediate language program
consists of a sequence of macro calls, each of which is expanded into one or more object language
statements using the macro definitions provided in the machine descriptior. There are two types of
macros in the intermediats language: The first type are macros which represent the three-address
abstract machine instructions. The second type are keyword macros which correspond to either
assembly-language pseudo-operations or instructions implementing the primitive C control structures.

2.1.1 Abstract Machine Instructions

The abstract machine instructions are three-address instructions which perform the evaluation of C
expressions. The operators of the abstract machine instructions are called abstract machine operators
(AMOPs), the addresses are called references (REFs).

2.1.1.1 AMOPs

AMOPs are basic C operations which are qualified by the specific abstract machine data types of their

operands. For example, in the HIS-6000 implementation there are four AMOPs corresponding to the C
operator '+

+ integer addition

+d double-precision fioating-point addition

+p0 addition of an integer {0 a pointer to a byte-aligned object
+pl addition of an integer lo a pointer to a word-aligned object

-

Y, o

In addition, there are AMOPs for data movement, data type conversion, and conditional jumps. AMOPs are

represented in the compiler as an integer opcode with a valua from 0 to 255. The various AMOPs are
listed in Appendix II.

2.1.1.2 REFs

A REF is 8 C-oriented description of the location of an operand or the result of an abstract machine
instruction. A REF may specify either a register of the abstract machine or a location in memory; the
possible classes of memory references include C variables of various storage classes (aLtomatic, static,
external, parameter, temporary) as well as constants and indirect references. A REF is rep-esented by a
pair of integers called REF.BASE and REF.OFFSET; REF.BASE determines either a particuler register or a
particular class of memory references, REF.OFFSET deterinnes the exact location given a specific memory
reference class. The possible values of REF.BASE are listed below with their interpretations (actual
integer values are shown for concreteness; the compiler itself uses manifest constants):

REF.BASE Interpretation

nz0 - register sn (register numbers are assigned to the registers of the abstract
machine in a predictable manne: by GT)

-1 - an automatic or temporary variable; OFFSET is the offset of the variable in the
stack frame

-2 - an external variable, referenced by name; OFFSFT is an internal identifier
number

-3 - a static (internal) variabie; OFFSET is an internal static variable number

-4 - a parameter; OFFSET is the offset of the variable or its address in the
argument list

-5 - a label; OFFSET 1s an intarnal label number

-6 - an inleger constant whose value is OFFSET

-7 - a floating-point constant; OFFSET is an internal constant number

-8 - a character string constant; OFFSET is an internal string number

ns-9 - reference indirect through a pointer in register # (-n - 9); OFFSET is the offset

of the refercnce relative to the pointer

The specific values of REF.BASE need not he referred to in most macro definitions; the exception is the
NAME macro, which converts a REF into a symbolic address.

The representation of a three-address instruction in tha intermediale language is that of a macro call with
five or seven integer arguments representing the AMOP and REFs for the result and the operands of the
AMOP. (Each REF consists of two arguments, REF.BASE and REF.OFFSET; only two REFs are provided in
the case of a unary AMOP.) The macro name used in the macro call is of a special form which specifies an
entry in a table produced from the machine description by the GT program; this table entry refers to the
representution of the corresponding macro definition from the machine description.

2.1.2 Keyword Macros

Keyword macros are those macro calls which, along wilh the three-address instructions, make up an
intermediate ianguage program. Unlike AMOP macros whose names are generated by GT, the namcs of
the keyword macros are predefined, as are their functions. For example, keyword macros are used to
define external variabie names and internal labels, to specify initial values in siorage, and to produce the
function prologs and epilogs. The various keyword macros defined in the intermediate language are listed

below along with a brief description of their functions; a more complete set of descriptions appears in
Appendix Ill.

L jge

macro function

HEAC produce header statements, if needed
ENTRY define an entry point

EXTRN define an external reference

INT define an integer constant

CHAR define a character constant

FLOAT define a floating-point constant

NFLOAT define a negative floating-point constant
DCUBLE cefine a double-precision float co istant
NDOUBLE define a negative double-precision constant
ADCONN define a class “n" pointer constant

STRCON define a pointer referencing a string constant
EQU define a symbol

ZERO define an area of storage initialized to zero
STATIC define a static variable

STRING define the string constants

ALIGN force an alignment of the location counter
LN define a line-number symbol

LABCON define a label constant

LABDEF define an internal label

IDN translat? an internal identifier number
into the corresponding assembler symbol
END produce an end statement, if needed

PROLOG produce the prolog code of a C function
EPILOG produce the epilog code of a C function

CALL produce a function call
RETURN produce code for a return statement
GOTO produce a jump to a label expression

LSWITCH produce a switch jump (list version)
TSWITCH produce a switch jump (table version)

The actual macro names which appear in an intermediate language program are abbreviations of the
names listed above.

2.2 The Machin. Description

The machine description is a "program" written in a special-purpose language from which is constructed
the machine-dependent tables of the generation phase. The machine description has two functions: (1) it
defines the particular abstract machine for which the code generator produces intermediate code, and (2)

it specifies the translation from an intermediate language program to the corresponding object language
program.

The abstract machine is defined in two sections of the machine descriotion. First, a set of definition
statements defines the registers and memory of the zLstract machine. Second, in the OPLOC section, the
AMOPs are defined in terms of their operand/result locations. The translation from the intermediate
language to the object language is specified by a set of macro definitions in the macro section of the
machine description. More information on the writing of a machine description may be found in Appendix
I; the machine description used in the HIS-6000 implementation is listed in Appendix IV.

2.2.1 Defining the Abstract Machine

In the machine description, the implementer first defines the registers of the abstract machine. For
example, the statement)

* + o e o I T DT

regnames (xO,x1,x2,x3,x4,a,q,1);

defines the eight abstract machine registers used in the HIS-6000 implementation. The registers X0
through X4 correspond to the first five of eight HIS-6000 index registers, the A and Q correspond to the
accumulators, and the F register is a fictitious floating-point accumulator which corresponds to the
combined A, Q, and E (exponent) registers on the HIS-6000. The fact that the F register conflicts in the
target machine with the A and Q registers is specified by the statement

conflict (a,f)(q,f)%

Tha remaining HIS-6000 index registers are not represenled in the abstract machine since it was not
desired that they be used by the code generator in the evaluation of expressions; two of those registers
hold “environment pointers,” the other is used as a scratch register by some of the macro definitions.
There is nothing that requires that the abstract machine registers be implemented as actual machine
registers on the target machine; they may also be implemented as fixed memory locations.

For convenience, the abstract machine registers can be gathered into classes; for example, in the HIS-
6000 implementation, the statement

class x(xO,x1,x2,x3,x4), r(aq);
defines the class of index registers X and the class of general registers R,

The implementer also defines the classes of abstract machine pointers. Pointer classes are necessary on
machines which are not byte-addressed since pointers to byte-aligned objects will be handied differently
than pointers to word-aligned objects. In the HIS-6000 machine description, the statement

pointer pO(1), p1(4)

defines the class PO of byte pointers and the class Pl of word pointers. The "4" indicates that the value
of a Pl pointer is always a multiple of four bytes. The fact that there are four bytes per word on the
HIS-6000 is specified in the statement

size l(char), 4(int, float), 8(double);

A similar statement is used to specify the alignment restrictions.

The statement
type int(r), char(r), float(f), double f), pO(r), pl(x); !
defines the registers which can hold values of each of the abstract machine data types. For example, in

the HIS-6000 implementation, word poinizrs are held in the index registers X while byte pointers are held
in the general registers R.

The definition of the abstract machine is completed in the OPLOC section of the machine description
where the implementer specifies the behavior of the abstract machine operations in terms of their
operand/result locations. For example, the location definition

+d: fM.f;

specifies that the AMOP *+d’ (double-precision floating-point addition) can take its first operand in the F
register and its second operand in any memory location and, under these circumstances, the result is
placed in the F register. The zonstruct on the right in the location definition is called an OPLOC; it
consists of three Iacation expressions, one for the first operand, second operand, and result (reading from

4 1 -

left to right). A location expression may specify any set of abstract machine registers or any set of
memory reference classes; for example, the location expression

r|x

represents the set consisting of the general registers R and the index registers X, and the location
expression

~ intlit

represents the set consisting of all memory reference classes except that of integer constants. An OPLOC

may specify that the result is placed in ihe tirst or second operand location. For example, the location
definition

+i: rM,1;

specifies that the AMOF °+i° (integer addition) takes its first operand in a general register and its second

operand in any memory location, and the result is placed in the register which contained the first
operand. This location definition is equivalent to

+: 3|My‘? QrMoq;

which explicitly lists the two alternatives. An OPLOC may also specify that the contents of certain
registers are destroyed during the execution of an AMOP; for example, the location definition

*i: aMq [a}
specifies that an integer multiplication destroys the contents of the A register.

2.2.2 Defining the Object Language

The transiation from the intermediate language to the object language is specified by a set of macro
definitions included in the machine description; macro definitions are provided for the abstract machine
instructions and the keyword macros. The simplest form of a macro definition is a single character string
which is substituted for the macro call during macro expansion. For example, the macro definition for
floating-point unary minus used in the HIS-6000 implementation is

-ud: " FNEG®

This macro definition specifies that each occurrence of a -1:d" abstract machine instruction is to be
translated into the assembly language instruction "FNEG" which complements the contents of the F
register. The macro definition for *-ud' is closely related to the {ocation definition for *-ud’,

-ud: f,.l;

which states that the operand is found in the F register and that the result is placed in the F register. A
-macro definition for an AMOP can assume that the actual operand/result locations appearing in an
abstract machine instruction satisfy the constraints specified in the corresponding location definition; ai
the same time, a macro definition must produce correct code for all combinations of operand/result
locations allowed by the location definition.

A macro definition for an atstract machine instruction can refer to symbolic representations of the
operation and the operand/result locations by using the character sequences #0 (operation), #F (first
operand), S (second operand), and #R (result). These character sequences are abbreviations for calls to
an implementer-defined macro which converts an AMOP opcode or a REF into the desired object language

ey

-16 -

representation. For example, the macro definition for '+ (integer addition) in the HIS-6000
implementation is '

+i: = ADsR 5"

If the first onerand location (which is also the result location) is the A register and the second operand is
an external variable "X", then the code produced by this macro definition is

ADA X

which adds the contents of "X" to the A register. A macro definition can also contain character strings
whose inclusion in the expansion of a r.a:rn call is conditiona! upon the locations of the operands and/or
result. An example is the HIS-60G0 macro definition fo- ‘<<’ (left shift)

<<;
(,intlit,): i sFLS %o(#'S)"
(,~intlit,): " LXLS #S

»FLS 05"

which produces different code sequences depending upon whether or not the second operand (the
number of bit-positions to shift) is an integer constant. A macro definition may include references to the
arguments of the macro call using the character sequences #0, #1, .. #9; a macro definition may include

embedded macro calls, such as the "%o(#’3)" in the last example, which returns the value of the integer
constant. '

A macro definition may also be spacified in the .urm of a C routine. C routine macro definitions are used
when processing is needed which is beyond the capabilities of the simple macro scheme so far described.
C routine macro definitions may define global variables, perform arithmetic and logical operations, and
select code sequences on conditions other than operand locations. In the present implementation,
however, C routine ma:ro definitions are unable to interact with the code generation algorithm. In the
HIS-6000 implementation, C routine macro definitions are used to translate REFs into GMAP symbols, to
translate the source language representations of identifiers and floating-point constants into GMAP, to
define character string constants, and to butfer characters while defining storage for variables (GMAP
does not have a byte location counter, as is assumed in the intermediate language). The C routine macro
Jefinitions used in the HIS-6000 implementation are li-ted in Appendix V.

-17 -

3. Generating Code for an Abstract Machine

The most interesting part of the compiler is the code generator since, unlike most code generators which

produce -ode for a fixed target language, the code generator of the C compiler is designed to produce
code for a class of abstract machines.

T

8.1 Funotions of the Code Generator

The code generation process consists of three fairly distinct functions. First, there is the generation of
intermediate language statements to define and initialize static data areas and constants. Second, there is
the translation of source language control structures into labels and branches. Third, there is the
translation of source language expressions into sequences of abstract machine operations.

The C compiler is designed to produce assembly language code for conventional machines; thus, the
intermediate language statements for defining and initializing static data areas directly correspond to
assembly language statements which define symbols, define constants, and align the location counter. The
only complication is that the code generator must use the size and alignment information from the machine
description in order to specify the sizes and alignments of data areas. More information and redundancy
could be added to the intermediate language in order to accomodate a larger class of target languages;
see [16] for examples. Another possible improvement would be to emit segment specifying instructions
s0 that the output could be segregated into different segments according to whether it is code, pure data,
impure data, or uninitialize’) data.

The process of translating source language control structures in‘o labels and branches is rather
straightfoward. The only complications come when emitting conditional branches which test the value of
an expression; these problems are covered in the next section.

8.2 Generating Code for Expressions

k The generation of code for expressions is the most difficult part of the problem. The code generator

must generate a correct sequence of abstract machine instructions to carry out the indicated operations.

The operand and result locations it specifies in the abstract machine instructions must conform to the

location definitions provided in the machine description. Moreover, the code generator must keep track of

the locations of all intermediate results and correctly administer the abstract machine registers and
temporary locations.

The generation of code for expressions is performed in two steps, semantic interpretation and code
generation.

3.2.1 Semantic Interpretation

The code generator receives expressions in the fcrm of syntax trees whose interior nodes are source
lznguage operators and whose leaf nodes are identifiers and conslants. Thus, an expression can be
considered to consist of a "top-level” operator along with zero or more operand expressions. The first
step in the processing of an expression consists of translating a tree in this form to a more descriptive
form whose interior nodes are AMOPs. This translation involves checking the data types of operands,
inserting conversion operators where necessary, and choosing the appropriate AMOPs to express the
semantics of the source language operators. The selection of an AMOP to replace a source language
operator is based primarily on the dala types of the operands. For example, on this basis, an addition
operator may be translated into either integer addition, double-precision floating-point addition, or one of
a number of pointer addition AMOPs. However, it is useful to be able to choose AMQPs also on the basis
of what is provided in the machine description. The basic idea is that of defaults. 1f the semantics of a
particular AMOP can be expressed in terms of a composition of more basic AMOPs, then the AMOP can be
left undefined in the machine description; the code generator can use the equivalent composition of
AMOPs instead. The advantage cf havirg optional AMOPs is that the implementer need define one of

- 18 -

these optional AMOPs in the machine description only 1! his definition will result in sufficiently better code
than will be producad using the equivalent composition of more basic AMOPs.

An example of this technique is the bandling of a class of C operators called assignment operators. An
example of an acsignment operator ic "=+, where "L =+ R" is defined to be the same as "L = L + R" except
that Ire expression L is evaluated only once (it may contain side-effecls). Consider an expression
"L =0p If tho corresponding abstract machine assignmen! operator is defined in the machine
description, then the source language assignment operator is translated inlo that abstract machine
operater; otherwise, the expression "L =op R" is converted to the equivalert form "L = L op R", except
that there is only one copy of “L" having two pointers to it (a flag is set in the root node of "L" so that
later routines will recognize this fact). Therefore, a particular abstract machine assignment operator need
be included in the machine description only if the code sequences it gererates are better than the code
that would be generated by the equivalent assignment expression. An examole from the HIS-6020
implementation is the abstract machine operator '=+i' (integer addition-assignrent) which is translated
into an add-to-storage instruction. The corresponding floating-point assignment operator *s=+d’ is not

defined in the machine description since no fioating-point add-to-storage instruction exists on the
machine.

Other examples of optional Ai4OPs which have been implemented are the pointer comparison operators
for painters other than class PO pointers /the default is to convert to the "greatest common denominator”
pointer class for which the operation is implemented) and the test for null/non-null pointer operators (the
default is to convert the pointer to an integer and test for equality/inequality with 0). Other promising
candidates for being optional AMOPs are the various increment and decrement AMOPs.

3.2.2 Code Generation

The second step in the processing of an expression is the generation of a sequence of abstract machine
instructions to carry out the evaluation of the expression. This code gensration is performed by a set of
recursive routines, some of which will be described in this section. The operation of the code generation
routines is basically top-down. When a call is made to generate code to evaluate an expression, a set of
desired locations for the result of that evaluation is also specified. This specification, along with other
availeble information about the operands of the top-level operator of the expression, is used to choose
one of the OPLOCs from the top-level operator's location definition in the machine description (location
detimitions are described in section 2.2.1). From the chosen OPLOC and, possibly, the desired locations for
the result of the expression are derived sets of desired lccations for the operands of the top-level
operator. Recursive calis are then made to generate code (o evaluate the operands into these desired
incations. Next, an abstract machine instruction is emitted for the top-level operation. Finally, if

necessary, abstract machine instructions are emitted to move the result of the expression to an
acceptable location.

3.2.2.1 Specifying Desired Locations

A set of desired result locations is specified by a structure called a LOC. A LOC structure has two integer

members, LOCFLAG and LOC.WORD. The possible vzlues of LOCFLAG are listed below along with their
interpretations:

-19 -

LOC.FLAG interpretation

0 the “result" is the interral !abel specified by LOCWORD (used only for
conditional jump AMOPs)

1 the result is to be placed in a register; acceptable registers are specified by
one-bits in LOC.WORD (bit 0 corresponds to register number 0, etc.)

2 the result is to be placed in memory: acceptable classes of memory references
are specified by one-bits in LOC.WORD (this field is used only to select registers
for pointers in indirect references)

3 the result may be left in any location acceptable tor values of the particular
data type

Note that a particular memory location is never specified as the desired location for a result; rather,
classes of possible memory locations are specified.

For convenience, if the LOC passed to the top-level code generation routine specifies that the result is
desired in a register, then all registers not capable of containing the particular data type of the
expression being evaluated (as defined in the TYPE statement of the machine description) are removed
from the LOC. Similarly, if the LOC specifies memory reference classes, then all indirect classes where the
pointer register is unable to hold pointers of the corresponding pointer class (as specified by the TYPE
statement) are removed from the LOC. Thus where the code generator simply desies that a value be in a
register, it may provide a LOC specifying that the result may be left in any register.

The removal of “impossible” registers from a LOC is not performed when such an action would leave no
remaining acceptable registers; this situation can actually occur in certain special cases, such as return
statements, where an operation requires a value in a register not normally used to hold values of that
type.

3.2.2.2 TTEXPR

The top-level code generation routine is TTEXPR. The function of TTEXPR is to generate a sequence of
abstract maching instructions which will evaluate a given expression and leave the result in an acceptable
location, as specified by a LOC parameter. The operation of TTEXPR begins with the removal of
impossible cases from the LOC parameter, as described above. Then, TTEXPR passes the expression and
LOC parameters to a routine CGEXPR, which generates abstract machine instructions to evaluate the
expression, using the LOC parameter as a non-binding indication of preference. Finally, TTEXPR calls the
routine CGMOVE to emit, if necessary, abstract machine instructions to move the result to an acceptable
location.

3.2.2.3 CGEXPR

The function of CGEXPR is to generate a sequence of abstract machine instructions which will evaluate a
given expression. CGEXPR is given a LOC argument which specifies preferred locations for the result of
the expression; however, unlike TTEXPR, this specificalion is non-hinding and is used only where a choice
exists.

The operation of _GEXPR consists basically of tasting for a set of spacial cases and then performing the
appropriate action, which is usually to call another rout:ine which does the real work. The first special
case is where the expression node is shared and the expression has already been evaluated; in this case,
no action need be taken. Another special case 15 where the top-level operator is a conditional AMOP and
a value is desired (as opposed to a jump, which is the usual case); in this case, a routine JUMPVAL s
called to emit the desired code. The other special cases involve particular top-level operators:

-20 -

indirection, assignment, conditional expression, function call, and the “leaves™ of the expression tree,
identifiers and literals: in these cases, the code generation routine corresponding to the particular top-

level operator is called. Finai'y, in all other cases, the routine CGOP is called to emit code to evaluate the
Axpression.

3.2.2.4 CGOP

The function of CGOP is to emit code to evaluate an expression whose top-level operator is not one
special-cased by CGEXPR. Like CGEXPR, CGOP is passed a LOC indicating non-binding preferences for the
location of the result of the expression.

The operation of CGOP is performed in six steps. First, a routine CHOOSE is called to select an oPLOC
from the top-level operator’s location definition in the machine description. Second, desirea locations for
the operands of the top-level operator are determined. Third, a routine EXPR2 is called which makes
recursive calls on TTEXPR to emit code to evaluate the operands into the desired locations. Fourth, code
is emitted to save any registers which are specified in the machine description to be clobbered by the
execution of the top-level operator. Fifth, the exact location of the result of the expression is
determined. Sixth, the actual abstract machine instruction for the top-level operator is emitted.

If the result location specified by the LOC parameter is a label, or if the selected OPLOC specifies that the
result is left in the first or second operand location, then the exact location of the result of the
expression is fixed. Otherwise, a particular register must be chosen from the set of registers specified in
the result field of the OPLOC (the compiler is currently unable to handle OPLOCs which specify a set of
memory references as the location of the result). In the search for a result register, the priorities are as
follows: first, free registers which are preferred result locations: second, busy registers which are
preferred result locations; third, free registers which are not preferred result locations; and fourth, busy
registers which are not preferred result locations. If a busy register is selectzd, register contents are
saved in temporary locations as necessary.

For the purposes of tinding a result register, a register containing an operand is considered free and a
register containing a pointer to an operand is given lowest priority. A register containing a pointer to an
operand is protected because the implementation of a AMOP may alter the contents of the result register
before the operand referenced by the pointer in that register is used. An example is the following HIS-
6000 code for the AMOP "+p1® (addition of an integer to a pointer to a word-aligned object):

LXLO !
ADLXO P

This code loads index register O with the integer 1 and then adds to register O the pointer P. (The code
for the AMOP includes the load instruction since in gereral inlegers cannot be stored in the HIS-6000
index registers as they are only halfword registers.) If the coce generated for P leaves P referenced

through index register O, the load instruction will "clobber” register O before P is accessed by the add
instruction: '

LXLO I
ADLXO 0,0

However, if index register O is protected, index register 1 will ba chosen instead to hold the result,
producing the following correct code: .

LXLI1 I
ADLX! 00

29T~

3.2.2.6 Selecting an OPLOC

The purpose of OPLOC selection is to select a set of operand/-esult locations for the top-Invel operator
of an expression by choosing one of the OPLOCs from the location definition of the operator in the
machine description. The choice of operand/result locations will atfect the amount of code produced to
evaluate the expression, both because of different code sequences which may be produced by the macro
definition for the operator and because of additional loading, storing, and saving operations which may be
required in order to set up the operands and move the result to an acceptable location. A gcneral
solution, taking into account all possible locations of operands and results, is a complex optimization
problem. Instead, a more limited approacn has been taken which us_s the provided preferences for
result locations and available information about the possihie result locations of the top-level operators in
the operand sube:xpressions. Fo- example, if an operand 15 an identificr, then its location is known to be
a memory reference of a particular class. Similarly, various operators may be defined in the machine
description to always place their result in one of a particular set of registers. Using information of this
sort, plus knowledge about the current register usage, a rough estimate can be made of the number of
additional load and store instructions which will be required for each OPLOC in the location definition;
from the set of OPLOCs, the one with tha lowest additional cost is chosen.

For example, consider the expression "l + (J / K)." (For clarity, source language operator symbols are
used in this example to represent the corresponding integer abstract machine operations.) Assume the
tollowing location definitions (the OPLOCs are numbered for future reference):

* rrls (n
rMl1; (2)
Mr,2; (3)
/: rirl [r2) (4)
r2,r,1 [r3}; (5)
rd,r,1 [rd} (6)
riMl [r2} 1)
r2M,1 [r3} (8)
r3M1 [rd]); 9)

Here M represents all memory reference classes and r represents a set of general registers consisting of
r1, r2, r3, and r4. The division operator is modeling a machine instruction which produces pairs of results
(the quotient and remainder) in adjacent registers. For the division abstract machine operator, only the
quotient is used; the other register is considered to be “clobbered™ by the execution of the operator.
Note that one can deduce from these location definitions that both operators always lesve their results in
general registers.

The generation of code for the expression " + (J / K)" begins with the selection of an OPLOC from the
location definition of the "+ operator. In this case, all of the OPLOCs specify the same set of result
locations (the gereral registers); thus, the desired ocations for the result of the expression does not
affect the choice of OPLQOCs. Instead, the choce = made on the basis of the possible locations for the
operands. In thiz case, the first operand is a varia | which is known to be a memory reference of a
particular class. The second operand is the result of a division operator which is known 1o leave its
results in either rl, r2, or r3. On this basis, OPLCC (3) 1s chosen because no extra operations are needed

to move the operands into acceptable locations, whereas both OPLOCs (1) and (2) do require such extra
operations.

Next, a recursive call is made to generate code 10 evaluate the subexpression "J /K. The desired
locations for the result of this expression are those specified by the chosen '+’ OPLOC .or its second
operand, namely r, the set of general registers. However, since the "+" OPLOC spetifies that the second
operand location is also the locaticn of the result of the '+ operator, the intersection of that location set
with the set of desired locations for the result of the '+’ operator is used instead, if that intersection is

-22-

non-null. Thus, the following factors are used in selecting an OPLOC for the /" operator: first, which ot
the possible result registers (rl, r2, r3) are desired result locations; second, which of the possible result
registers are free; and third, which of Ihe “clobbered” registers (r2, r3, r4) are free. In this particular
situation, the possible location of the first operand (J) is a memory reference and thus does not favor any

of the OPLOC:. However, the second operand, which is also known to be a memory reference, favors
OPLOCs (7), {(8), and (9).

In addition, when selecting an OPLOC from a location definitian, certain OPLOCs may be rajected entirely
because they speciiy conditions which can not be mei. For example, if an OPLOC specifies (either directly
or indirectly through an uperand location) that the result is left in a register, but the result is desired in
memo:y, then that OPLOC will be rejected if a temporary location is not acceptable. The OPLOC is
rejected because, given a value in a register, the only general method by which the code generator can
make that value into a msmory reference is by saving it in a newly allocated temporary location. (Recall
that a specific memory location is not provided for the result, oniy a set of acceptable memory reference
classes.) Similarly, if the result vill be in memory and is desired in memory, then that OPLOC will be
rejected if there are one or mcre possible result memory reference classes which are nct acceptable
result locations; this is done because the code 3enerator is not capable of transforming a memory
reference from one class 'o another. Similar checking is performed on the operand location specifications
in the OPLOC: if an operind is required by the OPLOC to be in memory but not all non-indirect memory
reference classes are allowed, then that OPLOC will be rejected if the operand operator is not guaranteed
to place its result in an acceptable memory location or if it can place its rosult in a register but
temporary locations are not acceptable. These restrictions allow a location definition to contain extra
OPLOCs which apply only in special cases since such OPLOCs will never be chosen unless the speciul
cases hold.

An example of how the OPLOC selection method can be utilized in the writing cf a machine cescription is
the following definition of the *+p1' AMOP (addition nf a integer to a pointer to a word-aligned object)
taken from a hypothetical HIS-6000 machine descrigtion (the described OPLCC selection method was not
implemented st the time the actual HIS-6000 machine description was written). The shortest code for
executing the *+p1’ operation in the general case is

LXLO l
ADLXO P

where | is the integer in the low-order half of a word in memory and P is the pointer in the high-order

half of a word in memory. The result of this operation is left in an index register; thus the OPLOC for this
code sequence is

M,M,x;

Hcwever, if both the integer and the pointer must be computed into registers (which occurs frequently in
referencing elements of an array), the integer and the pointer must first be stored into {emporary
locations before this code sequence can be applied. Therefore, using the given code sequence under
these circumstances results in excessive object code. The desired code is

ALS 18
STA TEMP
ADLXO TEMP

which shifts the integer in the general register into the high-order halfword, stores it into a temporary
location, and adds it to the pointer in the index register. The OPLOC for this code sequence is

x,r,1;

-23 -

In the case where the pointer is in an index register and the integer is a constant "n", then the desired
code is

EAXO n0
with an OPLOC of
x,intlit,1;

The described OPLOC selection method allows all three JPLOCs to be included in the location definition for

*+pl’. In part cular, it guarantees that the third OPLOC will never be selected unless the secon. operand
is an integer constant

3.2.2.8 Generating Code for Subexpressions

After an OPLOC has been selected, CGOP calls a routine EYPR2 to make recursive calls on TTEXPR to
generate code to evaluate the oparands ot the top-level abstract machire operator. The LOC arguments
passed to TTEXPR in these calls are ta en from the operand fields of the selected OPLOC and, in the case
of operators which place their result in an operand localion, the desired locations tor the result of the
top-level operator. If there are two operands, EXPR2 makes sure that the two operands will not require
the use of the same register (for example, by using a register to hold both one operand and 2 pointer to
the other operand); this is done by checking the LOCs for “overlap™ ard removing certain possibilities. In
addition, EXPR2 evaluates first the operand which is more complicated on the basis ot the sizes of the
subtrees for the two operands; this lends to reduce the number of saving and restoring op. -ations
performed. In the course of generating code to evaluate an operand of a binary abstract machine
operator, it may be necessary to use the register containing the already computed value of the other
operand or a pointer used to reference it, in which case code is generated to save the contents of this
register in a temporary location, Thus, after generating code to evaluate both operands, EXPR2 calls a
routine RESTORE to generate code, if necessary, to restore the saved value to its original register.

3.2.2.7 Register Management

The status of the various abstract machine registers with regard to register allocation is contained in an
array of structures called REGTAB. Each element structure of the array represents the current state of
one abstract machine register. An elemert structure consists of two members: UCODE, an integer
indicating the current use of the register, and REP, a pointer to the subexpression tree whose value is
currently in the register. The possible values uf UCODE are listed below with their interpretations:

UCODE Interpretation

0 the register is free
-1 the register contains the value of the evpression pointed to by KEP
-2 the register has been markea “do not use unless necessary” for the purpose of

tinding a register for the result of an AMOP; although the register contains a pointer
to one of the operands of the AMOP, it 1s free in that it may be salected as a lasi
resort without having to save its contents.

n>0 the register does not directly ccntain a value, but there are “n” conflicting registers
containing values which must be saved before this register can be used.

The routines used in register management are describec below:

-24 -

CLEAR(R) = Register R, which must directly contain the value of an expression, is made

available for use; its current value is not saved.

The register associated with the expression E, if any, is CLEARed.

A register from the set specified by W is made available for use; ‘ne

contents of registerc are sived if necessary. !

GETREG(W1,W2) - If possible, an unmarked register from the set W1 is made available for
use. Otherwise, if possible, an unmarked register from the set W2 is made
available for use. Otherwise, a marked register from the set W1 is made
available for use. Within each set, free registers are chosen in preference
to busy registers; if a busy register is chosen, its contents are saved.

ECLEAR(E)
FREEREG(W)

MARK(E) - . the expression E is an indirect reference, the register containing the 1
pointer is marked "do not use unless necessary.”
NBUSY(W) - Re'urn tke number of busy registers in the set W.]
NFREE(W) - Reiurn the number of free registers in the set W.
RESERVE(RE) - Register R is al.ncated to hold the value of the expression E. Register R i
must be availaLie for use.]
RESTORE(E) - If the value of the expression E (or a pointer in the case of an indirect
reference) has been saved in a temporary location, it is restored to the 1
original register.]
1 SAVE(R) - Register R is made available for use by saving the contents of whatever
registers are necessary.
UNMARK(E) - Undo a MARK. .
The following is a typical series of calls made by CGOP in the generation of code for an expression E 3
whose top-level operator is a binary operator with operands OP1 and OP2:
] OPLOC=CHOOSE\E,LOC) choose an OPLOC
. EXPR2(0OP1,0P2) scursively generate code to evaluate
the operands into acceptable locations
ECLEAR(OP1) make operand registers available for
ECLEAR(OP2) the result
SAVE(s) save “clobbered” registers, if any
MARK(OP1) mark registers used to hold pointers
MARK(OP2) to operands
R=GETREG(s,s) select a result register
UNMARK(OP1) unmark any marked registers
UNMARK(OP2)
RESERVE(R,E) reserve result register

3.2.2.8 Possibilities for Failure

The code generator can fail in two ways: (1) it can reach an impossible situation and announce a compiler
error, and (2) it can unknowingly generate incorrect code. Examples of impossible situations are (1)
discovering that there are no acceptable OPLOCs in the location definition for an operator, (2) being told
that the result must be placed in a register from the empty set of registers, and (3) discovering that an
essential location definition or macro definition of an abstract machine operator was not provided by the
implementer. The most likely cause of a failure is an incorrect machine description. Examples of errors

-25 -

which can be made in the machine description are (1) an OPLOC specifying that both operands must be in
the sume register, (2) an OPLOC specifying a set of memory reference classes for the result location, (3) a
macro definition containing errors, and (4) a macro definition which does not anticipate a particular
operand or result location, or combination thereof, allowed by the location definition or otherwise
essential (in the case of move operations which must be capable of moving among registers and between
registers and memory). Some of these errors could be detected by the program which processes the
machine description (GT). Another possible cause of failure is an abstract machine with an insufficient
number of registers. Such a machine may require that a register he used to hold both a pointer to an
operand and the result of an operation; as described above, this situation may result in incorrect code.
Hopefully, abstract machine models of real machines will not suffer from this problem. Of course, the
other possibie cause of failure 1s a bug in the code generator itself, It would be interesting and usefu! if
such a code generation algorithm could be proven correct, given sensible restrictions on the machine
description and the assumption of correct macro definitions,

4. Conclusions

This paper has described the implementation of a
compiler was first implemented by the author in a sevan month period on the Bell Laboratories Computer

portable compiler for the programming language C. The

Science Research Center’s PDP-11/45 UNIX system. The com
resulting code moved to the HIS-6000. Another mon

version of the compiler compiled on the HIS-6000 succ
significant test of the compiler.

4.1 The Compiler

piler was then used to compile itself, and the
th was spent aebugging the compiler until the
essfully compiled itself. This was regarded as a

The major problem with the compiler itself is its speed. The compiler appears to be more than twice as
slow as other compilers for similar source languages. This slowness is due almost entirely to the use of a
macro expansion phase (a phase not likely to be present in ordin.-y compilers), since the compiler tends
to spend half or more of its time in the macro expansion phase. The slowness of the compiler seems to
be a problem inherent in the chosen compiler structure; no amount of mere recoding is likely to
significantly reduce the percentage of time spent in the macro expansion phase. One approach toward
improving the speed of the compiler would be to eliminate non-essential processing such as the
construction and interpretation of character-string representations of macro calls and the rescanning of
macro definitions. The macro language could be moditied so that the result of the expansion of a macro
call would never be needed as an argument to another macro call and thus could be printed directly,
rather than returned as a string and rescanned. Giver. this restriction, the macro definitions could be
compiled into procedures which simply print strings and call other procedures. These procedures could

be called directly by the code generator; alternatively, they could be called by a procedure which
interprets a suitable encoding of the intermediale language.

A second problem with the compiler is its size, in terms ¢f botn the amount of file space necessary to
support an implementation of the compiler and the amount of memory required to execute the compiler
phases. The source of the compiler is about 250K characters, the source o GT is about 80K characters;
thus, the file space required for source, object libraries, and executable files is on the order of 1M
characters. Only the size of the code o! the code generator is a result of designing the compiler to be
portable; it is likely that a code generator designed for a specific machine would be much smaller, Other
reasons for the large size of the compiler stem from the particular programming techniques used. In
particular, keeping the entire tree representation of a function in core at one time during code gener ation
requires that a large block of storage be reserved. Also, the use of a bottom-up table-driven LALR(1)

an would result from using recursive descent,
limits the number of computer systems which

parser seems to result in a larger syntax analysis phase th
as does the UNIX C compiler. The large size of the compiler
can support the compiler.

Despite these problems, it is believed that w

ere one prepared to make the investment necessary to
implement C on another machine, the

size difficulties and related costs would be outweighed by the
relative speed with which one cculd bri

Ng up a working implementation. One could then concentrate on
making it more efficient, having the advantages of a C compiler to work with and the ability to program in
C.

The least flexible machine -dependent component of the compiler is the cod

e generation algorithm, It is

acknowledged that a clean mechanism for allowing the implementer to tailor the code generation algorithm

through the addition of procedural knowledge would be an improvement. On the other hand, clinging to
the idea that the code of the compiler will never be touched is unrealistic. A likely prospect for
modification is the code rela ed to the calling sequence since it may be desired to use a system standard
calling sequence instead of the one built into the compiler. Another problem which would be solved most
easily by modifying the code generator is the IBM S/360 addressing problem. Because a $/360
instruction cannot contain an arbitrary memory address, C external variables must be referenced by first
Ioading a register with a pointer to the variable (an address constant) and then using the register as a
base register in the actual instruction, These actions could be performed by the macro definitions using

-27 -

conditional expansion; however, it would be easier to modify the code generator to handle this particular
case,

The most direct method of moving a portable compiler based on a machine description requires access to
an existing implementation of the compiler. The process of moving a compiler written in its own language
from machine A to machine B is as follows: First, one writes a machine description for machine B.
Second, the machine description 1s used by a construction program running on machine A to produce a
new compiler which produces code for machine B. Third, the compiler on machine A is used to compile
the new compiler, producing a compiler which runs on machine A but produces code for machine 8.
Fourth, the new compiler is used to compile itself, producing a compiler which runs on machine B and
produces code for machine B. This process is called a half bootstrap. On the other hand, the Poole and
Waite approach cies not require the uce of an existing implementation. One need write only an
interpreter or a translator for 2 very simple abstract machine language in order to move a program to a
new machine. This technique is called a full bootstrap. In practice, the need for a half bootstrap often
represents a significant obstacle to moving a program,

The full bootstrap method can be used to move a portable compiler based on a machine description as
follows: Initially, a simple imaginary machine is defined as a vehicle for bootstrapping. A compiler which
runs on and produces code for this imaginary machine is then constructed using the half bootstrap
method described above. Now, in order to move the compiler to a new machine, one implements an
interpreter for the imaginary machine on the new machine. This action results in an “existing
implementation™ of the compiler, running on the new machine, which can then be used to carry out the
half bootstrap as described above.

4.2 The Compiled Code

Although there are weak spots, the code produced by the compiler is good considering that it is almost
completely unoptimized. It is certainly better than would be produced if the abstract machine were the
typical machine-independent abstract machine wilh one accumulator and one index register, given the
same complexity of the macro definitions (they do not perform register allocation). Such an
implementation would not be able to take advantage of the HIS-6000's two accumulators or the multiple
index registers, nor would it recognize the facl that byte pointers cannot fit in the index registers.

One of the weak spots in the compiled code concerns floating-point operations. The code generator
"performs™ all floating-point operalions in double-precision, issuing single-to-double conversion
operations before using single-precision opersnds. It is unable to utilize the HIS-6000 machine
instructions which operate on a single-precision operand in memory and a double-precision operand in
the F register. Since the implementation of a single-to-double conversion is to load the single-precision
operand into the F register, very poor code is produced for single-precision floating-point expressions
(as opposed to very good code for double-precision expressions). One way to handle this situation would
be to implement a general subtree-malching facility for optimization. With such a facility, the implementer
specifies in the machine description that a particular combination of abstract machine operators (specified
in the form of a tree) is to be replaced by the code generator with a new abstract machine operator; the
new operator is defined by the implementer in the machine description just like any of the built-in
operators. In the floating-point case, one would specify that a subtree of the form (using a LISP-like
notation)

(double-prec-add (#1 , single-to-double (42)))
would be replaced by
(single-prec-add (=1 , »2))

where single-prec-add 1s a new abstract machine operalor which would be defined to be the “FAD"
instruction. This method of subtree-matching can be (ompared to the hierarchy of abstrac! n:achines

-28 -

method in that the new abstract machine operators can be considered to be instructions of a higher-level
abstract machine. The differences are that, in the case of the subtree-matching method, the definition of
higher-level operators is ngiional (thus there is no mullistage translation when optimization is not desired
or needed) and that the implementer defines the Higher-level operators to suit his needs. The subtree-
matching approach to machine-dependent code optimization has been investigated by Wasilew [17]

Another weakness in the compiled code concerns array subscripting. Instead of placing the offset of an
array element into an index register and performing an indexed memory reference, the code generator
adds the offset to a pointer to the base of the array, producing a pointer (in an index rugister) which is
then used to reference the array element. Thus, the code generator regards index registers only as base
registers to hold pointers, and not as index registers to hold offsets. One reason for not implementing
the capability of using index registers for subscripting is that this method of subscripting is often not
possible. For example, on machines like the HIS-6000 with single-indexed instructions, this method can be
used only for esternal and static arrays; all other arrays require the use of an index register just to
reference the base of the array. (Actually, one can perform double-indexing on the HIS-6000 by using
an indirect word; however, this was not recognized at the time the compiler was written.) The capability
of using index registers for subscripting could be implemented using the subtree-matching facility
described above; one would test for subtrees of the form

(pointer-add (address-of (extern | static), <any>))

and replace them with a new abstract machine operator which would be defined to produce the desired
code. A more satisfying solution would give the code generator more knowledge about addressability so

that it could use index registers for subscripting whenever possible, based on information given in the
machine description,

A third weakness of the compiled code is the use of indirection. The code generator only indirects
through pointers in registers; it is unable to utilize an indirection-through-memory facility (except through

a specific location which implements an abstract machine register). Again, a better understanding of
addressing is what is really needed.

4.3 Summary of Results

This paper has presented a technique for the design of portable compilers and has demonstrated its
practicality through the implementation of a portable C compiler. The main difference between this work
and the previous work described in section 1.2 is that in this work, the system was designed specifically
for the language being implemented; it is this restriction which contributes most to the practicality of the
approach. In addition, this work has emphasized the concept of a machine-dependent abstract machine,
thus tying together the work on portable compilers and program transferability.

The advantages of the technique presented in this paper over the technique of rewriting some or all of
the generation phase are (1) that the implementer can modity the compiler to produce code for a new
machine with less effort and in less time, and (2) that the implementer can be more confident in the
correctness of the modifications. Almost the en'i-e code of the generation phase, already tested in the
initial implementation, is unchanged in the new mplementation. This code includes the code generation
algorithm, the register management routines, and the macro expander. furthermore, the modifications
which must be made are localized in two areas, the machine description and the C routine macro
definitions. Tho implementer is primarily concerned with the correct implementation of the individual
abstract machine instructions. The interaction among the .e instructions, in terms of their correct ordering
and the use of registers and temporary locations, is haidled by the code generation algorithm and need
not be of concern to the implementer. It is this reduction in the complexity of the problem which leads
to the increased confidence in the results of the modification.

The portability of the compiler has been tested by the construction of version of the compiler for the
DEC PDP-10. The initial machine description and macro definitions for the PDP-10 implementation were
written and debugged by the author in a period of two days.

-29 -

4.4 Further Work

There are three main directions for further work. One is to develop machine models which will allow the
generation of acceptable code for a larger class of machines. Such machine models will have the effect of
reducing the complexity of the descriptions of machines which do not completely correspond to the
machine model described in this paper. With the HIS-6(0, for example, the only major area of
complexity in the machine description is that of character manipulation. One would desire a machine
model which allows the implementer to describe more conveniently the implementation of characters on

his machine. Similarly, a machine model which allows a better understanding of addressing would be
desirable.

Another direction for further work is to develop machine-independent code generation algorithms which
will produce more efficient code. In particular, the problem of register allocation under complex
constraints should be examined. In addition, techriques for allowing the implementer to extend easily and
safely the code generation algorithm through the addition of nrocedural knowledge should be developed.
Such techniques should allow the compiler to be modified to produce code for unanticipated new
machines.

The third direction for further work is to apply the technique of portable compilers to more complicated
and more powerful languages. The technique of using a machine-independent code generation algorithm
and a machine description, even aside from portability, results in a very clean and modular code
generator. It would b: interesting to see if this technique could reduce the complexity of code
generators for large languages and whether portability could still be obtained without destroying the
officiency of the object code.

. -
e

10.

11.

12.

13.

14.

15.

16.

17.

18.

-0 -

References

Ritchie, D. M, C Reference Manual, Bell Laboratories internal memorandum.
Snyder, A, C Reference Manual, Bell Laboratories internal memorandum.

Richards, M, "BCPL: A Tool for Compiler Writing and System Programming,” Proc. SJCC
1969, pp. 557-566.

Strong, J, et. al, “The Problem of Programming Communication with Changing Machines

-= A Proposed Solution,” Comm. ACM 1:8 (Aug. 1958) pp. 12-18, 1:9 (Sept. 1958) pp.
9-18.

Feldman, J. and Gries, D., "Translator Writing Systems,” Comm. ACM 11:2 (Feb. 1968),
pp. 77-113.

Feldman, & A, "A Formal Semantics for Computer Languages and Its Application in s
Compiler-Compiler,” Comm. ACM 9:1 (Jan. 1966), pg. 3-9.

Englund, D. and Clark, E., "The CLIP Transiator,” Comm. ACM 4:1 (Jan. 1961), pp. 19-22.

Halstead, M. H, Mackine-Independent Computer Programming, Spartan Books, Washington
1962.

Richards, M,, “The Portability of the BCPL Compiler,” Software Practice and Experience
1:2 (1971), pp. 135-146.

Poole, P. C. and Waite, W. M, "Portability and Adaptability,” Advanced Course on
Software Engineering, Springer-Verlag, Berlin 1973, pp. 183-277.

Poole, P. C. and Waite, W. M, "Machine Independent Software,” Proc. ACM Second
Symposium on Operating Systems Principles.

Brown, P. J, “Levels of Language for Portable Software,” Comm. ACM 15:12 (Dec. 72),
pp. 1059-i062.

Sibley, R. A, "The SLANG System,” Comm. ACM 4:1 (Jan. 1961), pp. 75-84.

Miller, P. L, Automatic Creation of A Code Generator from a Mschine Descriplion,
M.LT. Project MAC Technical Report TR-85, 1971.

Aho, A. V. and Johnson, S. C., "LR Parsing,” Computing Surveys 6:2 (June 1974), pp. 99-
124.

Coleman, S. S., Poole, P. C., and Waite, W. M, "The Mobile Programming System, J£.%NJS,“
Software Practice and Experience 4:1 (1974), pp. 5-23.

Wasilew, S. G, A Compiler Writing System with Optimization Capabilities for Complex
Object Structures, Ph.D. Thesis, Northwestern University, Evanston, lllinois 1971.

Johnson, S. C., Bell Laboratories internal document.

-31 -

Figure 1 - The GCOS Control Cards

$ program rlhs,onl

$ limits ,12k,,100

$ prmf| hsrrsny/ce
$ prmfl elr/w,#/Xe
s file erelsSl

$ program rlhs,onl

g limits 22k, 100

$ prmfl hs,r,rsny/tl
$ prmfl elyr/w,»/%e
$ prmfl inrl,#/%.c

$ file to,t1s,51

g file cs,cls5l

3 file erels5|

$ file st,s1s.5|

$ data cz,copy

tl . $in $to 8cs Ser $st >Sel

$ endcopy

$ program rlhs,onl

$ limits 28k, 100
$ ormfl hs,r,rsny/t2
$ prmfl el,r/w,»/%9
$ tile to,t1r,5I

4 file no,nl1s5|

3 file sy,yls,5l

$ file erelsSl

s tile in,ils 5l

$ data cz,copy

12 . 8to $no 8sy Ser $in >>Sel

$ endcopy

$ program rlhs,onl

s limits ,34k,,100

$ prmfl ha,rr,sny/t3
3 prril elr/w,s/%e
$ file erels5l

3 file no,nlr5i

4 tile sy, 1s 5|

3 file in,ilr5l

$ file ma,mls,5|

$ file hm,h 15 5|

H data cz,copy

t3 . 8er 8no Ssy . 8in $ma Shm 5000 >>8el
S endcopy

S program rlhs,onl

s limits ,248k,,100

$ prmfl hs,r,rsny/t4
$ prmfl el,r/w,s/%e
3 prmtl ot,r/w,,s/%g
$ file ¢s,cls 5l

4 file sy,ylr5l

$ tile erels5l

$ file ma,mlr5|

$ file st,slr,5i

$ file hm,h1r 5l

$ data cz,copy

t4 . Sot $cs 8sy Ser $ma $st $hm >>gel
endcopy

break

program rlhs,onl
limits ,18k,,1000
prmfl hs,r,r.sny/bt5
prmfl olr/w,e/Xe
file erelr5l

file cs,clrSl
data cz,copy

biS . 8er Scs >>8el

endcopy

endjob

-32-

R b

-33 -
Appendix I - The Machine Description

The format of the machine description is described in detail in the following sections. Examples are taken
from the HIS-6000 machine description given in Appendix IV in an attempt to explain the process of
writing a machine description which will result in the desired code being produced by the code generator.
The convention of writing syntactic alternatives on separate lines is used throughout.

1. Definition Statements

The machine cescription begins witn a series of definition statements. These definition statements are
described in the sections below in the order in which they should appear in the machine description.

11 The TYPENAMES Statement

The TYPENAMES statement defines the names which are used in the machine description to represent the

primitive C data types: character, integer, floating-point, and double-pr=cision floating-point. The form of
the TYPENAMES statement is

<typenames_stmt>: typenames (<name_list>) ;
<name_lJist>: <name_list> , <name>
<name>

The first name corresponds to the internal type number O, the second with type 1, etc. Because the

internal type numbers are fixed in the compiler, the TYPENAMES statement should always be (equivalent
to)

typenames (char, int, float, double);
1.2 The REGNAMES Statement

The REGNAMES statement defines the names of ihe abstract machine registers; these registers are
assigned internal register numbers (used in REF.BASE, section 2.1.1.2), starting with register number O, in
the order in which they appear in the REGNAMES statement. The form of the REGNAMES statement is

similar to that of the TYPENAMES statement; for example, the REGNAMES statement used in the HIS-6000
implementation is

regnames (x0, x1, x2, x3, x4, x5, a, q, t)

In this example, all but the F register correspond directly to actual registers on the HIS-6000: registers
X0 through X4 are the first five (out of eight) index registers, registers A and Q are the two
accumulators. The F register is a fictitious floating-point accumulator which in rea'ity corresponds to the
combined A, Q, and E (exponent) registers. The fact that the F register corilicts with the A and Q
registers is specified in the CONFLICT statement, described below. Only those actual machine registers
which are to be used by the code generator in producing code to evaluate expressions should be included
in the REGNAMES statement; registers used only for environment pointers, auxiliary address calculations,
or other scratch calculations performed within the code for a single AMOP should not be included in the
REGNAMES statement. For example, on the HIS-6000, three index registers are not defined in the
REGNAMES statement: X7, which contains a pointer to the current stack frame, X6, which contains a

pointer to the current argument list, and X5, which is used as a scratch register by AMOPs which access
characters.

e

-34 -

1.3 The MEMNAMES Statement

The MEMNAMES statement associates name: with the various classes of memory references as specified
by negat.ve values of REF.BASE (section 2.i.1.7). The form of the MEMNAMES statement is similar to that

of the TYPENAMES statement; for example, the MEMNAMES statement used in the HIS-6000
implementation is

memnames (reg, auto, ext, stat, param, label, intlit, floatlit, stringlit, ix0, ix1, ix2, ix3, ix4, ia, iqQ)k

The first nine names refer to predefined memory reference classes (REF.BASE = 0,-1,-2, .. ,-8), the
remaining names refer to indirect references through the ahstract machine registers defined in the
REGNAMES statement (REF.BASE = -9,-10, ...). The first name “reg" is never used; it serves only as a
placeholder. No name is provided for indirect references through the F register since the F register is
not used to hold pointers and, being the highest numbered register, omitting it does not affect the
positions of the other names in the list.

24 The SIZE Statement

The SIZE statement defines the sizes of tha primitive C data types in terms of bytes. The form of the
SIZE statement is

<size_stmt>: size <size_def_list> ;
<size _def_Jist>: <size_def_list> , <size_def>
<size_def>
<size_def>: <integer> (<type_list>)
<type_list>: <type_list> , <type>
<type>

The integers specify sizes in bytes; the types are the names of primitive C data types (as specified in the
TYPENAMES statement) with the corresponding size. For example, the SIZE statement used in the HIS-
6000 implementation is

size 1{char),4(int,float),8(double);

All audresses computed by the compiler are in terms of byte addressing; byte addresses are converted to
word addresses for non-character operations by the macro definitions. For example, on the HIS-6000, if

the first element of an integer array begins at offset O in the static area, then subsequent elements of
the array are at offsets 4, 8, 12, 16, etc.

1.5 The ALIGN Statement

The ALIGN statement defines the alignment factors of the primitive C data types; these alignment factors
are in bytes. The (byte) address of a variable with an alignment factor "n” must be zero modulo "n"; for
example, on the HIS-6000, the (byte) address of an integer must be a multiple of 4. An alignment factor
must be divisible by all smaller alignment factors; this allows the compiler to assign addresses relative to
2 base which satisfies the highest alignment restriciion. The form of the ALIGN statement is similar to
that of the SIZE statement; for example, the ALIGN statement used in the HIS-6000 implementation is

align l(char),a(int,float),8(double);
1.6 The CLASS Statement

The CLASS statement is an optional statement which allows the implementer to define classes of abstract
machine registers which are used in similar ways; the register classes so defined can then be used in the

machine description as abbreviations for the corresponding lists of registers. The form of the CLASS
statement is

-35 -

<class_stmt>: class <class_def _list> ;

<class_def_Jist>: <class_def_list> , <class_def>
<class_det>

<class_def>: <name> (<register_list>)

<register_list>: <register_list> , <register>
<register>

The name is the name of the register class, the registers ara the names of the absiract machine registers
(as specified in the REGNAMES statement) which make up the corresponding register class. The CLASS
statement used in the HIS-6000 implementation is

class x(x0,x1,x2,x3,x48), r(a,q)

This statement defines the class of index registers X and the class of general registers R.

1.7 The CONFLICT Statement

The CONFLICT statement is an optional statement which allows the implementer to specify abstract
machine registers which conflict in the actual implementation. The form of the CONFLICT statement is

~conflict_stmt>: conflict <conflict_def_list> ;

<conflict _def_Jist>: <conflict_def_Jist> , <conflict_def>
<conflict _det>

<conflict _def>: { <register> , <register>)

Each register pair specifies two abstract machine registers such that only one of the registers can be in
use at one time. The CONFLICT staiemant used in the HIS-6000 implementation is

conflict (a,f), (q,f)

which indicates that the F register contlicts with both the A and Q registers.
1.8 The SAVEARFASIZE Statement

The SAVEAREASIZE statement is used to specify the size of the save area which is reserved at the
beginning of each stack frame. The save area is generally used for saving registers upon entry to a

function, for chaining stack frames together, and for holding other per-invocation information. The form
of the SAVEAREASIZE statement is

saveareasize <integer>;

The integer specifies the size (in bytes) of the save area. The save area used in the HIS-6000
implementation is 16 bytes (4 words) long.

1.9 The POINTER Statement

The POINTER statement defines classes of pointers according to their resolution; these pointer classes
represent different implementations of pointers on the target machine. The resolution of a pointer
corresponds to the alignment facto's of the objects to which it can refer; in particular, a pointer with a
resolution of "n” bytes can refer only to objects whose alignment factors are multiples of "n” bytes. The
primary use of pointer classes is on machines whose smallest addressable unit is larger than bytes; in this
case, two pointer classes are defined: one which can resolve only machine-addressable units and another
which can resolve individual bytes. By defining separate pointer classes, the implementer allows
computations involving pointers which are known to refer to machine-addressable units to be performed

in terms of machine-addressable units, and therefore more efficiently. The form of the POINTER
statement is

-36 -

<pointer_stmt>; pointer <pointer_def_list> ;

<pointer_def_list>: <pointer_def_list> , <pointer_def>
<pointer_def>

<pointer_def>: <name> (<integer>)

The names define the names of the pointer classes, the integers are the resolutions of the correspording
pointer classes. At least one and rio more than four pointer classes may be defined; these pointer classes
are referred to as PO, P1, P2, and P3 in the specification of the AMOPs.

The POINTER statement used in the HIS-6000 implementation is
pointer pO(1), pl(4)
PO is the class of pointers to byte-aligned objects; P1 is the class of pointers to word-aligned objects.

Word pointers can be held and operated upon in the index rigisters; byte pointers are operated upon in
the general registers and indirected through by subroutine.

1.10 The OFFSETRANGTY Statement

The OFFSETRANGE statement is an ontional statement which defines, for each pointer class defined in the

POINTER statement, the range of offsets permitted in references indirect via such a pointer (see section
2.1.1.2). The form of the OFFSETRANGE statement is

<offsetrange_stmt>: offsetrange <offset_def_list> ;
<offset_def_list>: <offset_def_list> . <offset_def>
<offset_def>
<offset _def>: <pointer_class_name> (<lo_bound> , <hi_bound>)

where the lo_bounds and hi_bounds are optional integers. Each of.set_def specifies the range of
allowabl2 offsets for a particular pointer class; this range is the set of integers not less than lo_bound
and not greater than hi_bound. If a bound is not present, then the range is considered unbounded in the

corresponding direction. If no range is specified for a pointer class, then only zero offsets are allowed;
any specified range must include zero.

1.11 The RETURNREG Statement

The RETURNREG statement specifies in which registers functions returning values of various types return
those values. Registers must be specified for types INT and DOUBLE as well as for all pointer classes
defined in the POINTER statement. The form of the RETURNREG statement is

<returnreg_stmt>: returnreg <return_def_list> ;

<return_def_list>: <return_def_list> , <return_def>
<return_def>

<return_def>: <register> (<type_list>)

The types may be names of primitive C data types as defined in the TYPENAMES statement or names of
pointer classes as defined in the POINTER staiement; the correspunding register is defined to be the
register in which functions returning values of those types will place the returned values. For exsmple,

the RETURNREG statement used in the HIS-6000 implementation is
relurnreg q(int,p0,p1), f(double);

It is advised that pointers of all classes be returned in the same register in a compatible form to avoid
errors caused by mismatches in the declarations of functions returning pointers.

1.12 The TYPE Statement

The TYPE statement defines which registers are to be used in the evaluation of expressions to hold
values of the various abstract machinu data types. The form of the TYPE statement is

<type_stmt>: type <type_def Jist> ;

<type_def_list>: <type_def_list>, <type_def>
<type_def>

<type_def>: <type> (<register_list>)

The type is the name of a primitive C data type as defined in the TYPENAMES statement or the name of a
pointer class as defined in the POINTER statement; the registers are the abstract machine registers or
classes of abstract machine registers which may be used to hold values of the corresponding type. For
example, the TYPE statement used in the HIS-6000 implementation is

type char(r),int(r),float(f),double(f),p0(r),p1(x);

The registers specified in the TYPE statement need not include every register physically capable of
holding a particular type; only those registers which the implementer desires to use in evaluating
expressions of that type should be included in the TYPE statement. In the HIS-6000 example, only the
index registers (X) are specified for the pointer class Pl even though the general registers (R) are
capable of holding such pointers and, in fact, a general register (the Q register) is used to hold such a
pointer when returned by a function call; this was done in order to minimize unnecessary use of the
general registers which are relatively few in number.

2. The OPLOC Section

In the OPLOC sectiun of the machine description, the AMOPs are defined in terms of the possible locations

of their operands and the corresponding locations of their results. Each definition consists of a list of
triples called OPLOCs; an OPLOC specifies a particular set of first operand locations, second operand
locations, and result locations. An OPLOC may also specify that one or more registers are clobbered by
the e*.ecution of the code for an abstract machine instruction; this informs the code generator that it may
be necessary to emit instructions to save the contents of the clobbered registers before emitting the
abstract machine instruction. The forms of an OPLOC are

<ioc_expr> , <loc_expr> , <loc_expr>;

<loc_expr> , <.0¢c_expr> , <loc_expr> <clobber> ;

where a clobber '3 a list of one or more register names separated by commas and enclosed in square
brackets. The location expressions specify locations for the first operand, second operand, and result,
respectively. A location expression specifies either a set of registers or a set of memory reference
classes; these sets may be specified using particular registers or memory reference classes along with
the operations of union ('') and negation ('~'). The syniax of a location expression is

<loc_expr>: <register_expr>
<memory_expr>
1
2

<null>

<register_expr>: <register_expr> | <register_expr>
~ <register_expr>
(<register_expr>)
<register_name>
<register_class_name>

<memory_expr>: <memory_expr> | <memory_expr>
~ <memory_expr>
(<memory_expr>)
<memory_ref_class_name>
M

indirect

The negation operator *~' has precedence over the union operator ’|. The location expressions "1 and
"2" may be used only for the location of a result; they specify *hat the result is placed in the first or
second operand location, respectively. Only the location expression for the second operand of a unary
AMOP may be null. The location expression "M" represents the set of all memory reference classes; the
location expression “indirect” represents the set of all indirect memory reference classes.

The OPLOCs are associated with AMOPs in location definitions which consist of one or more AMOP labels
followed by one or more OPLOC-:

<loc_def>: <AMOP_list> <QPLOC_list>

<AMOP_list>: <AMOP_list> <AMOP_Jabel>
<AMOP_label>

<AMOP_Jabel>: <AMOP> :

<OPLOC_list>: <OPLOC_list> <OPLOC>
<0OPLOC>

Each AMOP in the list of AMOP labels is associated with the list of OPLOCs; each OPLOC in the list of
OPLOCs represents an acceptable set of operand/result locations for each of the AMOPs. For example,
the location definition

+d: -d: #d: /d: f,M,f;

used in the HIS-6000 machine description specifies that the AMOPs for double-precision floating-point
addition, subtraction, multiplication, and division all take their first operand in the F register, their second
operand in memory, and place their result in the F register. Another example is the location definition

=<<; WD M,a,q; Mq,3;

which specifies that the AMOPs left-shift-assignment and right-shift-assignment both take their first

operand in memory, their second operand in a general register, and place their result in the other general
register. A third example is the location definition

si: Ji: q,Maqf2):
which specifies that the AMOPs for integer multiplication and division both take their first operand in the

Q register, th sir seconc operand in memory, place their result in the Q register, and clobber the contents
of the A register in the process. Note that the location definitions

-39 -

+i: rM1;

and
+i: r,Mr;

are not equivalent. The second definition allows the code generator to emit an abstract machine
instruction which adds an integer in memory to an integer in the A register and places the result in the Q
register; the first definition requires that the result be placed in the register containing the first operand

The OPLOC section of the machine description consists of a sequence of location definitions which define
the AMOPs of the intermediate language. (A small number of AMCPs should not be defined in the OPLOC
section of the machine description; these are indicated in Appendix 1) An AMOP may appear no more
11an once in the OPLOC section of the machine descriplion.

3. The Macro Section

The macro section of the machine description contains the macro definitions for the AMOPs; these macro
definitions expand into the object-language statements needed to interpret the corresponding abstract
machine instructions. A macro definition consists of a list of AMOP labels followed by a list of characie:
string constants. The list of AMOP labels specify that abstract machine instructions for these AMOPs are
to be emitted as macro calls which refer to this macro definition. The character strings make up the body
of the macro definition; they are written out in sequence as the expansion of a corresponding macro call.
The character strings may have optional location prefixes which test for a specific set of locations of the
operands and result; a characler string with an attached location prefix is included in the expansion of the
macro call only if the test specified by the location prefix succeeds. A character string may contain
embedded macro calls and references to the arguments of the macro call (see Appendix Vi, section 4)
The macro definition for an AMOP must correspond to the location definition for the AMOP in that corract

code must be generated for all combinations of operand/result locations that are allowed by the location
definition.

The macro definitions can refer to the AMOP and the operand/result locations by using the following
abbreviations:

sbbreviation expansion medning

=0 %n(=0) symbolic representation ¢ operation

3 %n(=3,84) symbolic representation of first operand
*S %n(#5,u6) symbolic representation of second operand
R in(n] u2) symbolic representation of result

»'0 0 internal representation of operation

»'F #3,84 internal representation of first operand
#'S #5,46 internal representation of second operand
*'R], 82 internal representation of result

Recall that in the intermediale language representation of an abstract machine instruction, the first
argument of the macro call is the AMOP opcode, and the following arguments are REFs for the rasult, first
operand, and second operand (see section 2.}.1.2). The macro "n" is the implementer-defined NAME
macro which can return any convenien! symbolic representation for an operation or operand/result
location; it is assumed 1o be implemented as a C routine called ANAME (see Appendiv VI, section 4).

An example of a simple macro definition is the definition for integer addition used in the HIS-60N0
machine description. The location definition is

+i: rtMtl;

S

_— i

and the macro definition is
+i: = AD=R 5"

This location/macro definition of the AMOP '+i' expands to produce assembly-language statements such as

ADA X (external variable "X")

ADQ 3,0L (literal "37)

ADA 0,2 (indirect through X2)

ADQ 5,7 (an automatic or temporary)

A more complicated macro definition is used for the AMOP ".ii’ (move integer). This macro definition must
be capable of generating code to move an integer between a memory location and a genera! register or
from one general register to the other. Three character strings with location prefixes are used for the
three cases register-to-memory, memory-to-register, and register-to-register:

"

(r.M): - STsF #R"
(M,r): - LDsR of"
(r,r) = LLR 36"

The location prefixes consist of location expressions for the first operand, second operand, and result.
The operand and result locations of a pa-ticular macro call are cempared to the location expressions in
the location prefix (comparisons with a null location expression always succeed); if all three comparisons
succeed, the corresponding character string is included in the expansion of the macro call.

The inacro section of the machine description may also define explicitly named macros; these may be
keyword macros (see section 2.1.2) or implementer-defined macros which are called in the definitions of
other macros. A named macro is defined by using the name of the macro in place of an AMOP in the
label(s) preceding the body of the macro defintion. A single macro definition may have both AMOP and
macro name labels; this is useful when it is desired that the defintion of one abstract machine instruction
itself contain another abstract machine instruction since the “internal® names used to refer to the macro
definitions of AMOPs are not accessible to he writer of the machine description. An example of a
keyword macro definition in the HIS-6000 machine description is that for the ENTRY macro:

en: & SYMREF #0"

The argument to the ENTRY macro is an assembler symbol as produced by the 1DN macro (see Appendix
111).

The macro section of the machine description consists of the reserved word “macros” followed by a
sequence of macro definitions. Macro definitions must be provided for most of the AMOPs of the
intermediate language (exceptions are indicated in Appendix 11) and for all of the keyword macros of the
intermediate language which are not defined by C routines. An AMOP or a macro name may not be
defined more than once in the macro section of the machine description.

-4] -
Appendix II - The Intermediate Language: AMOPs

The operations of the abstract machine are represented in the intermediate language as three-address
instructions; the operators of these instructions, called abstract machine operators (AMOPs), are described
in the tables below. For each AMOP is listed its opcode (in octal), its symbolic representatica in the
machine description, the types of its operands and result, and a description of the basic operation
involved. The type entry consists of a list of types for the first operand, second operand (if any), and
result of an AMOP, in that order; the types are taken from the following list of abbreviations:

c character

i integer

f floating-point

d double-precision floating-point
s any type

p any pointer

p0 class O pointer

pl class 1 pointer

p2 class 2 pointer

p3 class 3 pointer

| a location (the result of a jump)

The following notes are referenced in the AMOP tables:

1 - This AMOP should be defined only if the corresponding pointer classes are defined.

2 - The definition of this AMOP is optional.

3 - OPLOCs should not be specified for this AMOP.

4 - This AMOP is used only in the tree representation of expressions internal to the code
generation phase: it should not appear in the machine description.

§ - This AMOP causes a side-effect on its (first) operand, which must be an lvalue;

therefore, all OPLOCs for this AMOP must specify memory as the location of the (first)
operand.

-42-

Unary Abstract Machine Operators

opcode symbol types noi.s basic operation
0000 -ui ii unary minus

0001 -ud dd unary minus

0002 ++bi i 5 pre-increment
0003 +4ai i 5 post-increment
0004 - i 5 pre-decrement
0005 --aj ii 5 post-decrement
0006 .BNOT i, bitwise negation
0007 ! x,i q truth-value negation

0012 .sw ii switch

0013 ++be] pre-increment
0014 ++ac (K] post-increment
0015 --be ¢, pre-decrement
0016 --ac G, post-decrement
00i7 &uoO x,p0 address of

oo m

0020 &ul x,pl 1 address of

0021 &u2 x,p2 1 address of

0022 &u3 x,p3 1 address of

0023 U pPX 4 indirection

0024 ==0p0 pO,l 2 jump on null pointer
0025 ==0pl pl, 1,2 jump on null pointer
0026 ==0p2 p2| 1,2 jump on null pointer
0027 ==0p3 p3| 1,2 jump on null pointer
0030 !'=0p0 pO,l 2 jump on non-null pointer
0031 '=0p1 pl,) 1,2 jump on non-null pointer
0032 '=0p2 p2, 1,2 jump on non-null pointer
0033 =013 p3, 1,2 jump on non-null pointer

-43 -
Conversion Abstract Machine Operators

opcode symbol types notes basic operation
0040 ci C,i convertctoi
0041 .cf c,f convert c to f
0042 .cd cd convertctod
0043 c e convert itoc
0044 if i, convert i to f
0045 .id id convert i to d
0046 .ip0 i,p0 convert i to p0
0047 .ipl ipl 1 convert i to pl
0050 .ip2 i,p2 1 convert i to p2
0051 1p3 i,p3 1 convert i to p3
0052 fc f,c convert fto ¢
0053 fi f,i convert f to s
0054 {d fd convert f to d
0055 .dc dc convert dto c
0056 di d,i convert dtoi
0057 df df - convert d to f
0060 .pOi pO,i convert pO to i

0061 .pOp1l pO,pl
0062 .pOp2 pO,p2
0063 .pOp3 pO,p3
0064 pli pl,

0065 .plp0 pl,p0
0066 .plp2 pl,p2
0067 .plp3 pl,p3
0070 .pai p2,i

0071 .p2p0 p2,p0
0072 .p2pl pepl
0073 .p2p3 p2,p3
0074 p3i p3,i

0075 .p3p0 p3,p0
0076 .p3pl p3pl
0077 .p3p2 p3,p2

convert pO to pl
convert pO to p2
convert p0 to p3
convert pl to i

convert pl to p0
convert pl to p2
convert pl to p3
convert p2 to i

convert p2 to p0
convert p2 to pl
convert p2 to p3
convert p3to i

convert p3 to p0
convert p3 tc pl
convert p3 to p2

et Pt et Pt Pt Pt Pt Pt Pt Pt fmt P ft Pt s

Binary Abstrac: Machine Operators

opcode symbol types notes basic operation

0100 + i, addition

0101 =+ (KK 25 addition-assignment
0102 +d dd,d addifion

0103 =+d ddd 25 addition-assignment
0104 -i iy subtraction

0105 --j i 25 subtraction-assignment
0106 -d ddd subtraction

0107 =-d dd,d 25 subtraction-assignment
0110 $i i multiplication

0111 mti i 25 multiplication-assignment
0112 =d dd,d multiplication

0113 =3d ddd 25 multiplication-assignment
0l14 /i i division

0115 =/i i, 25 division-assignment
0116 /d ddd division

0117 =/d ddd 25 division-assignment
0120 ¥ i, moduylo

o121 =% i 25 modulo-assignment
0122 << i, left-shift

0123 a<< i 25 left-shift-assignment
0124 »>> i right-shift

0125 a>> iy 25 right-shift-assignment
0126 & i bitwise AND

0127 =& 0 25 bitwise AND-assigrment
0130 A i bitwise XOR

0131 =A i, 25 bitwise XOR-assignment
0132 .OR i bitwise OR

0133 =0OR i, 25 bitwise OR-assignment
0134 && X,X,i 4 truth-value AND

0135 .TVOR X, X, 4 truth-value OR

0136 -pOp0 p0,p0,1 pointer subtraction
0137 - X,X,X 4 assignment

0146 +p0 p0,i,p0 increment pointer by
0147 +pl plipl 1 increment pointer by
0150 +p2 p2,,p2 1 increment pointer by
0151 +p3 p3,i,p3 | increment pointer by
0152 -p0 p0,i,p0 decrement pointer by
0153 -pl plipl 1 decrement pointer by
0154 -p2 p2,,p2 1 decrement pointer by
0155 -p3 p3,i,p3 | decrement pointer by

g

symbol

.cc

i

ff

.dd
.pOp0
plpl
.pep2

.p3p3
?

e
lmi
<
>

>
==d
lad
<d

>d
<ed
>=d
=ap0
'ep0
<p0
© >p0
<-p0
>-p0
--pl
tep]
<pl
>p1
<-pl
>epl
--pz
tep?
<p2
>p2
<-p2
>-p2
--ps
'ep3
<p3
>p3
<.p3
>-p3

Abgtract Machine Qperators, continued

types
c,c

£t

dd
p0,p0
plpl
p2,p2
p3,p3
X, % X
%,X,X
il

il

i)

iy

iyl

iyl
d,d,
dd,|
dg,
dd,|
dd,|
dd,|
p0,p0,}
p0,p0)
p0,p0,!
pO,p0,!
p0,p0)\
p0,p0)|
plpl)
plpll
plpl)
plpl)
plpll
plpl)
p2,p2)
p2,p2)
p2,p2)
p2,p2,
p2,p2,)
p2,p2)
p3,p3)l
p3,p3)
p3,p3/
p3,p3,!
p3,p3/
p3,p3,

w;wb

—

—

[
N NN

—

—

—

[
R R S S S A S S S A S S)

o s Pms Bms beo P Pt G P B
NN NN

basic operation

move character
move integer
move float

move double
move pointer pO
move pointer pl
move pointer p2
move pointer p3
conditional
conditional

jump on equal
jump on not equal
jump on less than

jump on greater than
jump on less than or equal
jump on greater than or equal

Abstract Machine Operators, continued

opcode

0260
0261
0262
0263
0264
0265
0266
0267
0270
0271
0272
0273
0274
0275
0276
0277

symbol

++bp0
++ap0
--bp0
--ap0
++bpl
++apl
--bpl

--apl

++bp?2
++ap2
--bp2
Y4
++bp3
++ap3
--bp3
--ap3

types

p0,i,p0
p0,i,p0
pO,i,p0
p0,i,p0
plipl
pl,ipl
pl,ipl
plipl
p2,i,p2
p2,i,p2
P2,i,p2
P2,,p2
p3,i,p3
p3,i,p3
p3,i,p3
p3,i,p3

noles

5

5

5

5

1,5
15
1,5
15
1,5
1,5
1,5
1,5
1,5
1,5
1,5
15

- 46 -

basic operation

pre-increment by

post-increment by
pre-decrement by
post-decrement by
pre-increme:! by

post-increment by
pre-decrement by
post-decrement by
pre-increment by

post-increment by
pre-decrement by
post-decrement by
pre-increment by

post-increment by
pre-decrement by
post-decrement by

i7"
Anpendix III - The Intermediate Language: Eeyword Maoros

The keyword macros of the intermediate language are described below in alphabetical order. Each
section is headed by the name of a macro and its calling sequence; following is a description of the
arguments and the intended function of the macro call.

1. ADCONn: 17An(NAME) [n=0,1,2,3]

This is a set of macros, one for each possible pointer class. NAME is an object-language symbol
constructed from an identifier by the IDN macro. The expansion of an ADCONn macro should define a
pointer constant of pointer class "n™ which points to the external variable or function with the given
name. This macro is used in the initialization of static and external pointers and arrays of pointers.

2. ALIGN: ZALN)

N is an integer specitying the CTYPE (an internal type specification) of an object for which the
appropriate alignment of the location counter must be made. The relevant CTYPEs are:

value ctype

char
int
float
double
-9 pointer

PO DbWN

The expansion of the marro cal! should be the pseudo-operations needed (it any) to properly align the
location counter. This macro is used in the initialization of static and external variables.

3. CALL: 12CA(NARGS,ARGP,0,FBASE,FOFFSET)

The CALL macro generates a function call. NARGS is an integer specifying the number of arguments to
the function call, ARGP is an integer specifying the byte offset in the caller’s stack frame of the
arguments which have been so placed by previous instructions. FBASE and FOFFSET are integers which
together make up a REF specifying the location of the function being called (it may be indirect through a
pointer in a ragister); these are passed as arguments 3 and 4 of the macro call so that they may hse
referenced as sF in the macro definition. :

4. CHAR: 11C(I)

The CHAR macro produces a definition of a character constant whose value is th: integer I; it is used in
the initialization of static and external characters and arrays of characters. When producing code for an
assembler which does not have 2 byte location counter (for example, the HIS-6000 assembler GMAP), the
characters produced by CHAR macro calls must be stored in a buffer until either enough are accumulated
to fill a machine word or a macro call other than CHAR is issued; in this case, all macros which may follow
a CHAR macro must first check to see if there are any characters in the buffer and if so, print the
appropriate statement and clear the buffer.

6. DOUBLE: 1D(I)

The DOUBLE macro produces a definition of a non-negative double-precision floating-point constant
whose C source representation is stored in the internal compiler table CSTORE at an offset specified by
the integer 1 (the compiler itself does not use any floating -point operations). This macro is used in the
initialization of static and external double -precision floating-point variables and arrays.

WY TR e — ——— e R —— T p— il g Sp—

- 48 -

6. END: IENDQO

The END macro marks the end of the intermediate language program. It may produce an END statement, if
needed, or signal that any processing associated with the end of the program should be performed.

7. ENTRY: ZEN(NAME)

NAME. is an object language symbo! constructed from an identifier by the IDN macro. The expansion of
the ENTRY macro should define the symbol as an entry point, that is, one which is defined in the current
program but accessible to other programs.

8. EPILOG: 1IEP(FUNCNO,FRAMESIZE)

The EPILOG macro produces the epilog code for a C function. The epilog code should restore the
environment of the calling function and return to lhat function. In the HIS-6000 implementation, these i
actions are performed by a subroutine, FUNCNO and FRAMESIZE are integers which specify the internal
function number of the function and the size in bytes of its stack frame, respectively. In the HIS-6000
implementation, these integers are used to define an assembly-language symbol whose value is the size in
words of the stack frame; this symbol is used by the code produced by the PROLOG macro which allocates 1
the stack frame,

2. EQU: 1EQ(NAME)

NAME is an object language symbol constructed from an identifier by the IDN macro; it is to be defined as
having a value equa! to the current value of the location counter.

10. EXTRN: 1EX(NAME)

The EXTRN macro is similar to the ENTRY macro except that it defines the symbol to be an external
reference, that is, one which is used in the current program but assumed to be defined in another
program,

11. FLOAT: 7F{)

The FLOAT macro produces a definition of a non-negative single-precision tloating-point constant; the
argument has the same interpretation as that of the DOUBLE macro.

12. GOTO: 17GO(0,BASE,OFFSET)

The GOTO macro produces an unconditional jump to a localion denoted in the source program by a label
constant or expression, BASE and OFFSET together make up a REF which specifies the target location of
the jump; these are passed as arguments 1 and 2 of the macro call so that trey may be referenced as sR
in the macro definition.

13. HEAD: 7HD()

The HEAD macro marks the beginning of the inlermediale 'anguage program. It may produce header
statements, if needed, or signal that any initialization processing should be performed.

14. IDN: 72I(X)

The IDN macro should expand to the object language representation of the identifier whose C source
representation is stored in the internal compiler table CSTORE at an offset specified by the integer X.
The processing performed by this macro may include the truncation of long names, the replacement of the
underline character (which is allowed in C identifiers), and the insertion of special character(s) to avoid
conflicts between C identifiers and other object language symbols.

- 49 -

16. INT: 2IND)

The INT macro produces a definition of an integer constant whose value is specified by the integer 1. It

is used in the initialization of static and external variables and arrays and in the construction of tables for
the LSWITCH macro.

16. LABCON: 1ILC(N)

The LABCON macro generates an address const~ . whose value is the address corresponding to internal

label number N. The LABCON macro is used to construct the tables for the LSWITCH and TSWITCH
macros.

17. LABDEF: iL(N)
The LABDEF macro defines the location of internal label number N.
18. LN: 1LN(N)

The LN macro associates the line in the source program whose line number is specified by the integer N
with the current value of the location counter. This macro may optionally produce & comment line in the
object program to aid in the reading of the object program, or it may define a line-numbher symbol to be
used in conjunction with a debugging system.

19. LSWITCH: ILS(N,LBASE,LOFFSET,IBASE,IOFFSET)

The LSWITCH macro should generate code which jumps according to the value of the integer whose
location is given by IBASE and IOFFSET (selected from the locations permitted by the OPLOC for the .sw
operation). This macro is immediately followed by N (N>0) INT macros (the cases), which are immediately
followed by N LABCON macros (the corresponding labels). A search should be made through the case list;
if a match is found, a jump should be made to the label defined by the corresponding LABCON macrc If

the integer matches none of the list entries, then a jump should be made to the internal label defined by
LBASE and LOFFSET.

20. NDOUBLE: ND()

’

The NDOUBLE macro is the same as the DOUBLE macro except that the value of the defined constant is
made negative.

21. NFLOAT: :iNF(I)

The NFLOAT macro is the same as the FLOAT macro except that the value of the defined constant is made
negative.

22. PROLOG: 1P(FUNCNO,FUNCNAME)

The PROLOG macro produces the prolog code for a C function. FUNCNAME is an integer representing the
name of the function as it appears in the source program its interpretation is the same as that of the
argument of the IDN macro. FUNCNO is an integer which specifies the internal funiction number of the
function; it may be used in conjunction with thz EPILOG macro to access the size of the function’s stack
frame. The PROLOG macro should define the entry point name and produce the code necessary to save
the environment of the calling function and to set up the environment of the colled function using the
information provided in the function call. Inthe HIS-6000 implementation, these actions are erformed by
a subroutine. The PROLOG macro call appears in the intermediate language program immediutely before
the first instruction of the corresponding function,

23. RETURN: iIRTO

The RETURN macro produces the statements needed to return from a function to the calling function; in
general, this macro will result in a transfer to the EPILOG code. The returned value of the function is

loaded by preceding macro calls into the appropriate register as specified in the RETURNREG statement of
the machine description.

24. STATIC: 1IST(N,8)

The STATIC macro defines the location cf the static variable whose internal static variable numter is N. S
is the size of the static variable in bytes. Typically, this macro will define an assembly language symbol
by which the static variable can be referenced.

26. STRCON: 18C(N)

The STRCON macro should generate a character pointer which points to the string constant whose

internal string number is N. The STRCON macro is used in the initialization of static and external
variables.

26. STRING: 1S8R0

The STRING macro mark: the place in the object program where the string constants should be defined.
This macro is implemented as a C routine macro since substantial processing is involved.

27. TSWITCH: 1ITS(LO,LBASE,LOFFSET,IBASE,JOFFSET,HI)

The TSWITCH macro produces an indexed jump based on the value of the integer whose location is given
by IBASE and IOFFSET (selected from the locations permitted by the OPLOC for the .sw operation). This
macro is immediately followed by a sequence of HI-LO+. LLABCON macros defining the target labels
corresponding to integer values from LO to HI. Values outside lius range should result in transfers to the
internal labe! defined by LBASE and LOFFSET.

28. ZERO: 1Z()

The ZERO macro specifies the definition of a block of storage initialized to zero; the size in bytes of this
storage area is specified by the integer I.

- — -

=B =
Appendix IV - The HIS-6000 Machine Description

The machine description used in the HIS-6000 implementation is listed below. Much of its complexity is a

direct result of the fact that the HIS-6000 is not byte-addressed. In the macro dcfinitions, the character
sequ>nce '\n' represents the newline character.

typenames (char,int float,double);

regnames (xOx1,x2,x3,x4,3,q,f);

memnames (reg,auto,ext,stat,param,label,intlit,floatht,stringlit,ix0,ix1,ix2,ix3,ix4,ia,iq)
size l(char),4(int,float)8(double);

align l(char),4(int,float),8(double);

class x{xOx1,x2,x3,x4), r(a,q);

conflict (a,f),(q,f)

saveareasize 16;

pointer pO(1), pl(4);

returnreg q(int,p0,pt)f(double);

type char(r),int(r),fioat(f),double(f),pO(r),p L (x);

P

o —————— R —

SW: . anl[xa];
+p0: -p0: +i:-i:&:A: .OR: -p0p0: <<: >>: rMl;

+pl: MM,x;

-pl: X,Q»li

=+i: @&: =wA: =0R: M1

ti: /i a,Mgala};
+d: -d: »d: /d: fM/f;

%: aMalq)
a<l: a>>; M.Z.Qi ’.‘.q,a;
&u: M, x;

autolext|stat|stringliijialiq,r;

.BNOT: .c: .cit r,l:
"Ui: "'bi: M,,f;
.cf: cd: it ad: 3.f;
Sfc: .de: fiz dis fuci
l:' fd: Mnf;
.df: -ud: f.1;
.ipO: .p0i3 f,,l;
M,r;
apl: .pOpl: 8 1]
M, x;
.pli: .plp0: Xyl
M, r;
++bi: M, 1;
++ai: --ai; ++bc: ++ac:
--bc: --ac: M,alal;
M,alal;
++bp: --bp: MMrix;
++ap: --ap: MM,alq}
Muh"')Q[a];
MM,x;
==0: !=0; <0: >0: <=0; >=0: rit.r
map: !up: <p: >p: <=p: >=p: f|X,M,M;

macros
swe " TSX5
Ci: “*
.cc:
(auto,): " EAsR
(stat,): © EAsR
(1a,,q): " STA
L0Q
(iq,a): " STQ
LDA
(auto]stat|indirect,,):
"%if(%o(='F), ADsR
TSX5
(ext|stringlit,):
" LOsR
sRRL
(r,r) " EAsR
sRRL
(r,auto|stat]indirect]stringlit):
- EAXS
(r,auto): * EAsF
(r,stat): " EAsF
(r,autojstat): “%if(%o(#'R),
TSX4
(r,stringlit): * EAsF
TSX4
(r,ext): " #FLS
STaF
sFRL
(a,ia):
“%if(%o(s'R), ADA
TSX4
(a,iq)
*Xif(%o(«'R), ADQ
TSX4
Jit
(r, M) ° STwfF
(Mr): © LD«R
(rr) " LLR
A
(f,M): ° FSTR
(M,,f): " FLO
.dd:
(f,,M): * OFST
(M<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>