
""■ "' ■ ■^^nw«naa«a|^«p«m^vwwnBw—" i i in mj^b ^^^wm^^^^^r^mmm^ i ■ 1 ■■ ' ■ ■

■

V

A PORTABLE COMPILER FOR THE LANGUAGE C

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PREPARED FOR

NATIONAL SCIENCE FOUNDATION

ADVANCED RESEARCH PROJECTS AGENCY

MAY 1975

AD-A010 218

DISTRIBUTED BY:

mr
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

■"»"" « ' ■ ■ ' ' ~~mmm mmmm

S)
c/

00
rH
N e
O

157070

MAC TR-149

A PORTABLE COMPILER FOR
THE LANGUAGE C

Alan Snyder

May -1975

Rtproi-'uced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S D«paMment o* Conim«fCt
SpringflfldVA 22151

B ^

Work reported herein was supported in part by the Bell

Telephone Laboratories, Inc., the National Science Foundation Research Grant

GJ-34671, IBM Funds for research in Computer Science and by the

Advanced Research Projects Agency of the Department of Defense under ARPA

order no. 2095, ARPA Contract No Number N000K-70-A-0362-0006 and

ONRTask No. NR-049-189.

CAMBWDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

DPTMBimON STATEMENJ A

Approved for public xml
Dlftribution Unhniied

i
MASSACHUSETTS 02139

76

- — -

'" '' '-■■ ■ mt ■

I Rcpor, No>.GJJ46/l + NUUUl^-7U^
A-0362-0006 MAC TR-149

BIBLIOGRAPHIC DATA
SHEET

4. I II U anj Nuht lilt-

A Portable Compiler for the Language C

3. Recipient's Arci'niiun No,

5. Krfiort Dun ; Tssut'cr

May 1975

7. Viih.nK)

Alan Snyder
IVrlürniuij; Or^.ini.-in m !(■ ; i
No. MAC TR-149

9. l'irlornuKK Orftanizatiun N.inir and AJdress

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

545 Technology Square, Cambridge, Massachusetts 02139

10. PtOJCCI I.I-A «urk Inn No

II. (onttai I (.i.ini Not. (;.| |467 I

NOO014-70-A-0J62-()üüf.

M. ^ponsonn^ Orf<ani/.ation Name and Address

Office of Naval Research
Department, of the Navy
Information Systems Program
Arlington, Va 22217

Associate Program Director
Office of Computing Activities
National Science Foundation
Washington, D. C. 20550

13. l>p< ■'! Kipuri ,v I'rriud
Coveted : Intcriiii

Scientific Report
14.

15. Supplementary Notes

Revised version of an S.B. and S.M. Thesis
16. Abstracts xhis paper describes the implementation of a compiler for the programming

language C. The compiler has been designed to be capable of producing assembly-
language code for most register-oriented machines with only minor recoding. Most of
the machine-dependent information used in code generation is contained in a set of
tables which are constructed automatically f.om a machine description provided by the
implementer. In the machine description, the implementer models the target machine
by defining a machine-dependent abstract machine for which the code generator produces
intermediate code. The implementer defines the translation from an abstract machine
program to a target machine program by providing in the machine description a set of
simple macro definitions for the abstract machine instructions. In addition, macro
definitions may be provided in the form of C routines where addtional processing
capability 13 needed.

17. Key Words and Document Analysis. 17a. Descriptors

compilers
portable compilers
code generation
portability
machine descriptions
absti act machines
implementation languages

17b. Utntitiers Open-landed Terms

17c. (USA n lield/Croup PRICES SUBJECT TD GttNü!
18. Availability Statement

Approved tor Public Release;
Distribution Unlimited

19. Security (lass (Thi;
Rcpor:)

m LAssma
20. Security (lass (Tbis

Ca^c a*
 rN(i.ASSII II 1) n

71 \„ .1 I'a*.

-
22. I'n.

4-73- S.P
0**M NTIS-15 1REV 3-72»

THIS FORM MAY BH REPRODUCED
iMM [JC ' 4 J

tatmum mmm

"i "■-■ 'i" " ii ^mm^-^m^mm P^^^^^r—^^-^«^

MAC TR-149

A PORTABLE COMPILER FOR THE LANGUAGE C

Alan Snyder

May 1975

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

HMMMMU^MMM. tttthmtutwäiätiä MHMMM

r ■■■iai|ii ii HI i" iimmm^mmi^r "• ' "w*~*—*mimm\\ mi^am^mmr*m*^m^^mm *.K m i wmv^i^^^***

A PORTABLE COMPILER FOR THE LANGUAGE C

by

Alan Snyder \

ABSTRACT

\

This paper describes the implementation of a compiler for the programming language C. The compiler has
been designed to be capable of producing assembly-language code for most 'egisler-orienled machines
with only minor recoding. Most of the machine-dependent information used in code generation is
contained in a set of tables which are constructed automatically from a machine doscription provided by
the imolementer. In the machine description, the implementer models the target machine by defining a
machine-dependant abstract machine for which the code generator produces intermediate code. The
abstract machine is abstract in that it is a C machine: its registers and memory are defined in terms of
primitive C data types and its instructions perform basic C operations. The abstract machine is machine-
dependent in that »here ;s a close correspondence between the registers of the abstract machine and,'
those of the target maciine, and between the behavior of the abstract machine instructions and the
corresponding target machine instructions or instruction sequences. The implemonter defines the
translation from an abstract machine program to a target machine program by providing in the machine
description a set of simple macro definitions for the abstract machine instructions. In addition, macro
definitions may be provided in the form of C routines where additional processing capability is needed.

Thit report ii bmrd on n thrti» tuhmitted to the Department oj Electrical
Engineering nt the WomarAmu'iM /n«(ilulr of Technology on May 10, 1974 in
pnrtinl fulfillment of the requirement» for the Degree» of Bachelor of Science
and Ma»tvr of Science. Woik reported herein tea» »upported in part by the Bell
Telephone Laboratorie», Inc., the National Science Foundation Re»earch Grant
CJ-34fi7l, IBM fund» for retearch in Computer Science and by the Advanced
Re»enrch Project» Agency of the Department of Defen»e under ARPA oritr no.
2095, ARP/l Contract Number NOOOli-70-A-03f>2-0006 and ONR Tatk No. NR-
049-189.

MM^M — —— - - -

m «■■■m« 1 ■- ■«■

CONTENTS

CHAPTER 1. Introduction

1.1 Motivation
1.2 Background
1.3 Method

CHAPTER 2. Modeling the Target Machine

2.1 The Intermediate Language

2.1.1 Abstract Machine Instructions

2.2

2.1.1.1
2.1.1.2

AMOPs
REFs

2.1.2 Keyword Macros

The Machine Description

2.2.1 Defining the Abstract Machine
2.2.2 Defining the Object Language

CHAPTER 3. Generat ing Code for an Abstract Machine

3.1 Functions of the Code Generator
3.2 Generat ing Code for Expressions

3.2.1 Semantic : Interpretation
3.2.2 Code Generation

3.2.2.1 Specifying Desired Locations
3.2.2.2 TTEXPR
3.2.2.3 CGEXPR
3.2.2.4 CGOP
3.2.2.5 Selecting an QPLOC
3.2.2.6 Generating Code for Subexpressions
3.2.2.7 Register Management
3.2.2.8 Possibilities for Failure

CHAPTER f,. Conclusions

4.1 The Co mpiler

4.2 The Compiled Code
4.3 Summary of Resi ,lts
4.4 Further Work

.^—_,. — ■ .. —,_AJ, ■

wmi^e*rmmmt -—" mmi« 'ii »in I»IWP^^»P«<""«»^»W»P^HPI I»" •■«

REFERENCES

FIGURE 1 The GCOS Control Cards

APPENDIX I The Machine Description

I. Definition Statements

1.1 The TYPENAMES Statement
1.2 The REGNAMES Statement
1.3 The MEMNAMES Statement
1.4 The S1ZF. Statement
1.5 The UIGN Statement
1.6 The CLASS Statement
1.7 The CONFLICT Statement
1.8 The SAVEAREASIZE Statement
1.9 The POINTER Statement
1.10 The OFFSETRANGE Statement
1.11 The RETURNREG Statement
1.12 The TYPE Statement

2. The OPLOC Section
3. The Macro Section

APPENDIX II The Intermediate Language: AMOPs

APPENDIX III The Intermediate Language: Keyword Macros

APPENDIX IV The HIS -6000 Machine Description

APPENDIX V The HIS-6000 C Routine Macro Definitions

APPENDIX VI Overall Desertion of the Compiler

1. The Lexical Analysis Phase
2. The Syntax Analysis Phcse
3. The Code Generation Phase
4. The Macro Expansion Phase
5. The Error Message Editor
6. Invoking the Compiler Ph»ses

■M/M ■
-^ — ... - ..^^».-^--—

111 ^^m^m ■"■^ ■■ ■ "^w

5-

1. Introduction

This paper describes the implementation of a compiler for the programming language C [1,2], an
implementation language developed at Bell Laboratories and a descendant of the language BCPL [3]. The
compiler has been designed to be capable of producing assembly-language code for most register-
oriented machines with only minor receding. Versions of the compiler exist for the Honeywell H1S-6000
and Digital Equipment Corporation PDP-10 'omputers.

C is a procedure-oriented language. It has four primitive data types (integers, characters, a.id smgle-
and double-precision floating-point), four data type constructors (pointers, arrays, f.'notions, and records),
and a small but conveniei t set of control structures which encourage goto 'ess programming. An
important characteristic of C is the minimal run-time support needed. Although C supports recursive
procedures, C does not have built-in functions, I/O statements, block structure, string operations, dynamic
arrays, dynam.c storage allocation, «r run-time type checking. The only run-time data structure is the
stack of nrocedure activation records. Of course, to run any usef-jl programs, an interface to the
operating system is required, and a standard set of 1/0 routines has been defined in order to encourage
portability. But the implementation of these routines is optional and separate from the task of
i nplementing a C compiler which produces code for a given machine.

The compiler described in this paper was designed to be portable, that is, to be capable of generating
code for many target machines with a minimum of receding When considering portability, three classes of

machines can be defined:

1. Machines which can support C programs reasonably efficiently: This class of machines depends only
upon one's interpretation of the term "reasonably efficiently." Clearly, all real machines can run C
programs, limited only by some size constraint related to the availability of memory. However, the
following capabilities are desirable: (1) the ability to access the current procedure activation record
and the current argui <jnt list in a reentrant manner - this will require one or two base/index
registers depending upon the calling sequence, (2) the ability to reference via a pointer * unable -
this will require another base/index register or an indirection facility, (3) character addres mg, (4)
integer arithmetic, and (5) floating-point arithmetic. Not all of the above capabilities need be present
in the target machine; however, Ihe more that are missing, the more interpretive becomes the
execution of a C program. For example, the HIS-6000 is word-addressed; thus references to
character variables are interpretrd by a small run-time subroutine.

Machines for which the compiler can produce reasonably efficient code: This class of machines is
clearly a subset of tho first class; the size of the subset is again determined by one's definition of
reasonable. The better the correspondence between the target machine and the machine model
implicit in the compiler, the better will be the object code produced. On the other hand, if the
correspondence is poor, the compiler may be able to produce only threaded code or instructions to

be interpreted by software.

3. Machines which can support the compiler itself: Because the compiler is written in C, one mav think
that thib class of machines is identical to the second class of machines; however, there are added
restrictions which must be made in order to run the compiler on a given machine: the word size of
the machine must be sufficient to hold all values used by the compiler; any .mplementation restriction
on the size of procedures or data areas (as would be likely en the IBM S/360 because of addressing
deficiencies) must not be such as to prohioi» the proper execution of the compiler (this includes the
ability of the compiler to compile itst il In addition, there are operating system and configuration
restrictions: the memory size available to a program must be sufficient to hold the phas«. • of the
compier, file space for the source jf the compiler must be available and affordable; the I/O roi/mes
used hy the compiler must be implemented. This class of machines is not a subset of the second class
of machines sine«* the compiler does not use all of the features of the language, notably floating-point.

This paper concentrates on the second class of machines, those for which the compiler can produce

2.

MMMBM ~m^mm*mm—m

^mmr^mi^vmmm^^« m.v»m»itm*mmimmm<\ i urn* - ' MI ■»■'■■■ »«.

-6-

reasonabty efficient code, given the restrictions of the first class of machines, those which can support C
programs reasonably efficiently. Thus, throughout this paper, the term 'machine independence" will
generally refer to the ability of a compiler to produce code for many machines.

1.1 Motivation

One of the serious problems in the field of software engineering is the difiiculty of transferring programs
to new machines. This is caused in large part by the proliferation of different programming languages
and machines and the significant effort required to implement a compiler for any particular programming
language and target machine. One approach to solving this problem is to restrict programming languages
to a few standardized languages which are then implemented on all target machines of interest. A
disadvantage of this approach is that it conflicts with the desirability of having many specialized
languages for specialised problems. Another disadvantage it the fdct that continual progress is being
made in the development of programming languages so that by the time a ianguagt: is standardized and
widely available, it is already "obsolete." It is also difficult to achieve compatibility among the various
implementations of a standardized language. Even if the standard language is well defined, it is difficult
for compiler writers to restrain themselves from extending it and for users to restrain themselves from
using the language extensions. A similar approach to the problem of program transferability is to restrict
the number of target machines for which compilers must be written by requiring that each new machine
be compatible with a widely-used existing machine. The stifling of progress in computer architecture
which would result from this requirement is as undesirable as the stifling of progress in programming
languages which would result from adoption of the previous approach. In addition, if the new machines
are only upward compatible with the old machines, then problems may still remain with regard to
transferring programs from new machines to old ones.

An alternativ-.- approach to those of language restriction and machine compatibility is to develop
techniques that reduce \he effort required to write comp lers for various combinations of languages and
machines. These techniques may be directed at two subproblems, that of reducing the effort involved in
writing one particular compiler and that of reducing the effort involved in writing a family of related
compilers. The development of such techniques could have benefits in addition to improving program
transferability, such as making it easier to implement a new language or making languages more widely
available.

An early effort in this dirp-.'.ion was an attempt to devise a universal computer-oriented language UNCOL
[4], which is both lar^jage-mdependent and machine-independent, to which all programming languages
could be translateo and which itself could be translated with acceptoble efficiency into any machine
language. The idea was that one need write only one UNCOL-to-machme language translator for each
target machine and one source language-fo-UNCOL translator for each source language, rather than
having to write one compiler for each source language-machine language combination. In addition, if
UNCO', were well defined, then the various implementations of UNCOL could be made compatible, thereby
insuring the compatibility of the source language implementations. Unfortunately, the concept of a
univf». sal language has not led to a practical solution of the problem; the characteristics of source and
machine language independence are incompatible with the need for acceptably efficient translation from
UNCOL to machine language.

More practical techniques for reducing the effort involved in writing compilers result if one considers
techniques with more limited goals than those of the UNCOL project. One approach is to develop
techniques which reduce the effort involved in writing one particular compiler for some language-machine
combination. Examples of such techniques are parser generators and syntax-directed symbol processors
[5]. Another approach is to develop techniques for writ ng families of compilers for many source
languages and one target machine. An example of such a technique is a compiler writing system with
code generatior. primitives, such as FSL [6]. The third approach, and Ihe one which is taken in this work,
is that of the portable compiler, a compiler for a particular source language which can produce code for
many target machines. It should be noted that techniques such as parser generators, which can aid in the
implementation of a single compiler, can be equally useful in the implementation of more general systems
such as compiler writing systems and portable compilers

-— ..-—^^^——^—-

m^^^mmmm^^^-^mmmmmmm^mm

1.2 Background

A compiler can be considered to consist of two logical phases, analysis and generation. The analysis
phase performs lexical and syntactic analysis of the source program, producing as output some convenient
internal representation of the program, along with a set of tables containing lexical information and other
information derived from the declarative statements of the program. The generation phase then
transforms the internal representation into an object language program, using the information contained in
the tables produced by the analysis phase. One can confine the machine (object language) dependencies
Of a compiler to the generation phase by a suitable choice of internal representation, i.e. one which is
machine-independent. On the other hand, it is not practical to also confine the source language
dependencies of a compiler to the analysis phase since this would make the internal representation a
universal language. Thus the generation phase of a compiler is both source-language-depondent and
machine-dependent.

Most portable compilers require that the generation phase be completely rewritten for each target
machine [7,8]. This effort may represent onl> about one-fifth of the effort needed to rewrite the entire
compiler [8]. In the case of the BCPL compiler [9], for example, moving the compiler may require only
three to four weeks under ideal conditions (but otherwise may require up to five months). However, it
would be desirable if the amount of recoding necessary to generate code for a new machine could be
reduced.

On© approach is that advocated by Poole and Waite for writing portable programs [10,11]. They
advocate that before writing a program to solve a particular problem, one define an abstract machine for
which the program is then written. With this approach, in order to move the program to a new machine,
one need only implement the abstract machine on the target machine, typically via a macro processor.
The desired qualities of the abstract machine are that it contain operations and data objects convenient
for expressing the problem solution, that it be sufficiently close to the target machines o(interest sc that
acceptable code can easily be generated, and that the tools for implementing the abstr.-d machine be
easily obtainable on the target machines.

This technique can be applied to portable compilers by considering the problem to be the implementation
Of an arbitrary source language program. The operations and data objects convenient for expressing the
problem solution are then those which are basic to the source language. With this technique, a compiler
would be broken into two parts: a machine-independent translator from tK? source language to the
abstract machine language and a machine-dependent translator from the abstract machine language to the
target machine language. The translator from the absi act machine language to the target machine
language should be smaller and simpler than the conventional generation phase wou'd be; typically, it
consists of a set of macro definitions which map each abstract machine instruction into the correspondir^
target machine instruction or instruction sequence. Moving the compiler to a new machine bimply requires
rewriting the macro definitions.

The major difficulty with the abstract machine approach to portable software is in determining the
appropriate abstract machine. If the abstract machine is of a high level (i.e., very problem-orenled), then
the program will be very portable but the implementation of the abstract machine will be difficult. On the
other hand, if the abstract machine is of a low level (i.e., more machine-onented), then, un'-ss it
corresponds closely to the target machine, either the code produced will be inefficient or the
implementation will be complicated by optimization code.

The solution to this difficulty proposed by Poole ard Waite is to define a hierarchy of abstract machines,
ranging from a high-level problem-oriented abstract machine to a low-level, machine-oriented, and easy-
to-implement abstract machine. In this solution, the h'gh«r-lovel abstract machines are imolemented in
terms of the lower-level abstract machines, and o^ly the lowest-level abstract machine need be
implemented on a target machine in order to trans^e' fh*» program; once it is transferred, higher-level
abstract machine« nay be implemented directly in terms of the target machine in order to improve
efficiency. While ths technique may be useful for transferring particular programs, if is jrlikely that it

MMaaa^

1^^ "" *"

1

will be acceptable in practical terms as a compilation technique because of the need for additional
translation steps. An experiment by Brown [12] indicates that one may implement and then optimize a
low-level abstract machine in about the same time as it takes to implement a higher-level abstract
machine and that the resulting implementations are similarly efficient. Thus an alternative solution is to
use a low-level abstract machine, but allow the implementer to optimize as desired; this solution rs more
likely to be acceptable as a compilation technique. A third solution will be advocated in this paper.

The technique of rewriting the generation phase requires that a non-trivial translator from >he internal
representation to the target machine language be written for each new target machine. Similarly, the
abstract machine approach requires that a translator from the abstract machine language to the target
machine language be written for each new target machine; if reasonably efficient code is desired and the
abstract machine does not correspond very closely to the target machine, then this translator will also be
non-trivial.

A more desirable goal for a portable compiler is that it have a generation phase which can be modified to
produce code for a new target machine by a process which is largely automatic. Implicit in this goal is
the requirement that the modification process obtain its knowledge about a target machine from a (non-
procedural) description of the machine. An early effort in this direction was the SLANG system [13],
which attacked the problem of describing a machine-dependent process (code generation) in a machine-
independent way. In the SLANG system, source language constructs are translated ir.to a set of basic
operations called EMILs; the EMILs are translated into absolute machine code using macro definitions and
instruction format definitions. The approach is s:milar to the abstract machine approach in that the EMILs
can be considered to be the instructions o an abstract machine; the difference is that the code
generation algorithm uses information contained in a machine description in order to tailor the EM1L
program to the target machine. The EMILs differ from the instructions of a Poole and Waite abstract
machine in that they are machine-oriented, rather than problem (source-language) oriented. In addition,
the code generator does not seem to know about registers other than index registers, which implies that
one will not be able to achieve the desired dose correspondence between the abstract machine and most
register-oriented machines. Nevertheless, the method of describing the instructions of a machine by
providing simple instruction sequences which interpret the abstract machine instructions seems to be a
good compromise between the desire to minimize coding and the difficulty of matnematically defining a
machine and utilizing such a definit'On in generating code.

Wore recently. Miller [14] has explored the problem of constructing ? code generator from a machine
description. Miller proposes that a generation phase be constructed in two steps. In the first step, the
language designer sptiifies the language-dependent part of the generation phase by writing a set of
procedural machine-independent macro definitions for the operations of the internal representation
produced by the analysis phase. These macro definitions define the operationa of the internal
representation, such as addition, in terms of machine-independent (i.e., language-oriented) primitives, su^h
as integer addition, which are created by the language designer. In the second s'ep, the implementer
provides a description of the target machine which is osed by an automatic code generation system
named DMACS (Descriptive Macro System) in order to fill out the macro definitions of the first step and
thereby produce a code generator for tht target machine. As was the case with the SLANG system, the
DMACS machine description defines the primitive operations by giving target machine code seque .es
which interpret them. In addition, however, the permitkd locations of the operands (in terms of their
being in memory or in particular renters) are specified as are the corresponding result locations. Thus
the primitives can be made to correspc d very closely to the instructions of the target machine so that
the code sequences in the machine description are simpler and the resulting object code is more efficient.

Both the SLANG system and DMACS are intended to be general in that they are not designed for a
specific source language. However, true generality is difficult to obtain and the systems do reflect
preconceived notions about source languages. It is believed that, since there are much more significant
Vai lations among languages than among machines, a practical implementation of a compiler for any
interesting language requires that the system be designed specifically for that language. This idea was
recognized to some extent HI DMACS where the primitives are created by the language designer as

—mmmmm ■ --— ■ - ■ ■

mmmi^mm^^mimi^mmmmmmmmrmmmmmmmw i inni UPM^WW^WW

convenient for expresiing the operations of the source language. On the other hand, DMACS contains no
notion of storage classes (different mechanisms for accessing variables of the same data type) which are
needed for C; the implementation of storage classes is machine-dependent and thus must be defined in
the machine description. In this paper, techniques similar to those used in the SLANG system and in
DMACS are used in the implementation of a portable C compiler.

1.3 Method

The goal of this research is to design a generation phase for a C compiler which can be modified to
produc? code for many machines by a process which is largely automatic. Some insight into this prob'em
can be gained by examining the corresponding, bu! better understood problem of the automatic
construction of an analysis phase. One common approach is the use of a parser generator [15]. A parser
generator is a program which accepts as input a grammar for a source language and produces as output a
set of tables which are used by a Lrguage-independent parsing algorithm. The parsing algorithm is
supplemented by a set of action routines which are provided by the implementer; these action routines
are called by the parsing algorithm at appropriate points to produce the output of the analysis phase.
The important characteristics of this process are as follows:

1. The analysis phase is divided into two parts, a language-independent part (the parsing algorithm) and
a language-dependent part (the parsing tables and the action routines).

2. The language-dependent tables are constructed automatically from a finite description of the language

(the grammar).

3. The analysis phase is "filled-in" by the implementer by providing information in a procedural form (the

action routines).

4. The choice of a specific parsing algorithm determines the class of languages -vhich can be handled by

the analysis phase.

The process of constructing an analysis phase can be made more automatic through the use of a compiler
writing system. In a compiler writing system, the action routines are in a sense built-m; the implementer
invokes these action routines from a higher-level description of the translation. The use of such a system
may involve much less effort than wou'd be required to write a complete set of action routines. However,
the important point here is that the use of built-in knowledge, as opposed to allowing the addition of
arbitrary procedural knowledge, restricts the class of translations (and thus source languages) which can
be handled by the automatically generated analysis phase.

For the compiler described in this paper, techniques analogous to those described m the preceding
paragraph are used in the implementat:on of the generation phase. The generation phase is split into two
parts, a machine-independent part and a machine-dependent part. The machine-independent part of the
generation phase is a mach.ne-mdependent code generation algorithm, corresponding to the language-
independent parsing algorithm of IK- analysis phase. Just as the choice of a particular parsing algorithm
limits the class of languages that the analysis phase can handle (the parsing algorithm is not completely
language-independent)', the choice of a particular code generation algorithm determines the class of
machines for which the compiler can produce reasonable (non-interpretive) code. The machine-dependent
part of the generation phase consists of a set of tables produced automatically by a stand-alone program
CT (Generate Tables) from a machine description, which corresponds to the grammar in the construction of
an analysis phase. The information contained in the machine description may be supplemented by a set of
routines which correspond to the action routines of the analysis phase. However, the compiler described
in this paper is closer to the compiler writing system approach in that implementer-supol-ed routines form
only a minor part of the generation phase. The extent to which the implementer can easily and safely
include such routines in the generation phase represents another factor determining the class of target

machines handled.

—j—I—HfcMMil ■^^■^■■mm --- -

■■ '■ '

10-

A code generation algorithm, if it is to he machine-independent, requires a mode' of a machine with which
to work. This model may express such notions as memory, registers, addressing, operations, and
hardware data types. In the machine description, the implementer defines hi. U.get machine in terms of
this model and also specifies the form of the object language. The class of machines for which the code
generator can produce acceptable code directly corrssponds to the generality of the machine model.

The machine model used by the C compiler is a C machine: a machine whose registers and memory are
described in terms of the primitive C data types and whose operations are primitive C operations. The
implementer models the target machine in terms of a C machine, producing an abstract machine. The
abstract machine may be very similar to or very different from the target machine, depending upon how
closely the target machine fits the machine model. The code generation algorithm, using its machine
model, produces code for the abstract machine. The "assembly" language of the abstract macliine is called
the intermediate language; an intermediate language program, which is in the form of a series of macro
calls, is translated into the target machine assembly language using a set of macro definitions, provided by
the implementer in the machine description. Assembly language was chosen over machine language for
the output of the compiler because it is far easier to describe and produce in a machine-independent
manner than machine code- or object modules.

The abstract C machine plays the same role in the C compiler as would a Poole and Waite abstract
machine. The difference is that instead of there being one fixed abstract machine, there is a class of
abstract machir ^s, corresponding to the variability in the machine model. This variability allows the
implementer to define a particular abstract machine which more closely resembles his target machine.
The result is that the translation from the abstract machine language to the target machine language
becomes simpler, and more efficient code is produced.

The process of modeling the target machine is described in chapter two. A detailed discussion of the
code generation algorithm is presented in chapter three. Conclusions are presented in chapter four.

MB MM Mi

lim it*Mim*w mViOT ~ ~ '■• ' ■ pi ■ •■ im ^

- u -

2. Modeling thr Target Machine

The code generator's model of a machine is an abstract C machine, a machine whose instructions perform
the primitive operations of the C language. The data types of the abstract machine are the primitive C
data types (characters, integers, and single- and doubL'-precision floating point), supplemented by one or
more pointer classes which are distinguished by their ability to resolve addresses. The basic addressable
unit of the abstraU machine memory is the byte, which holds a single character value (characters are the
smallest C data type). Values of the other abstract machine data types occupy an integral number of
bytes, possibly aligned in larger units of memory. Th:« ^Dstract machine has a set of registers which may-
be used to hold the operands of the abstract ma.- .« instructions. Each abstract machine register is
capable of holding values of some subset of the tract machine data types. The instructions of the
abstract machine are three-address instructions. .' .h address may specify an abstract machine register
or a location in memory; the mechanisms for re(e;.v<cing a memory location correspond to the primitive
addressing modes in C.

In the machine description, the impiementer describes the target machine in terms of this machine model
by defining a particular abstract machine for which the code generator produces intermediate code. The
impiementer specifies the sizes and alignments of the primitive C data types and defines pointer classes
as convenient. The impiementer defines the abstract machine registers, which generally correspond to
those registers of the target machine which are to be used in the evaluation of expressions. The
. p'ementer also specifies the registers which may hold values of each of the abstract machine data
/pes. In addition, the implemerter may specify that any two abstract machine registers conflict in the

target machine, meaning that oily one may hold a value at any one time. The impiementer defines the
abstract machine instructions n terms of their operand/result locations and possible side-effects on other
registers. In addition, the inplementer provides a set of macro definitions which implement the abstract
machine instructions on the target machine

2.1 The Irter »ediate Language

The interr.odr-.te language is the assembly language of the abstract machine. Using the information
contai. -»d in the tables constructed from the machine description, the code gensrator produces a
translatioi. cf the source program m the intermediate language. An intermediate language program
consists of a sequence of macro calls, each of which is expanded into one or more object language
statements using the macro definitions provided in the machine descriptior.. There are two types of
macros in the interrr.edialo language: The first type are macros which represent the three-address
abstract machine instructions. The second type are keyword macros which correspond to either
assembly-language pseudo-operations or instructions implementing the primitive C control structures.

2.1.1 Abstract Machine Instructions

The abstract machine instructions are three-address instructions which perform the evaluation of C
expressions. The operators of the abstract machine instructions are called abstract machine operators
(AMOPs), the addresses are called references (REFs).

2.1.1.1 AMOPs

AMOPs are basic C operations which are qualified by the specific abstract machine data types of their
operands. For example, in the HIS-6000 implementation there are four AMOPs corresponding to the C
operator V:

♦i integer addition
♦d double-precision floating-point addition
♦pO addition of an integer io a pomte' to a byte-aligned object
♦pi addition of an integer to a pointer to ? word-aligned object

MMMM

«'"»•" ' ' " '*m~**^mm*mm

- 12-

In addition, there are AMOPs for data movement, data type conversion, and conditional jumps. AMOPs are
represented in the compiler as an integer opcode with a value from 0 to 255. The various AMOPs are
listed in Appendix II.

2.1.1.2 REFs

A REF is a C-oriented description of the location of an operand or the result or an abstract machine
instruction. A REF may specify either a register of the abstract machine or a location in memory; the
possible classes of memory references include C variables of various storage classes (automatic, static,
external, parameter, temporary) as well as constants and indirect references. A REF is rep esented by a
pair of integers called REF.BASE and REF.OFFSET; REF.BASE determines either a particular register or a
particular class of memory references, REF.OFFSET deterhnnes the exact location given a specific memory
reference class. The possible values of REF.BASE are listed below with their interpretations (actual
integer values are shown for concreteness; the compiler itself uses manifest constants):

REF.BASE Interpretation

n 2 0 - register en (register numbers are assigned to the registers of the abstract
machine in a predictable manne, by GT)

-1 - an automatic or temporary variable; OFFSET is the offset of the variable in the
stack frame

-2 - an external variable, referenced by name; OFFSFT is an internal identifier
number

-3 - a static (internal) variable; OFFSET is an internal static variable number
-4 - a parameter; OFFSET is the offset of the variable or its address in toe

argument list
-5 - a label; OFFSET is an internal label number
-6 - an inieger constant whose value is OFFSET
-7 - a floating-point constant; OFFSET is an internal constant number
-8 - a character string constant; OFFSET is an internal string number
n s -9 - reference indirect throtgh a pointer in register • (-n - 9); OFFSET is the offset

of the reference relative to the pointer

The specific values of REF.BASE need not be referred to in most macro definitions; the exception is the
NAME macro, which converts a REF into a symbolic address.

The representation of a three-address instruction in thi intermediate language is that of a macro call with
five or seven integer arguments representing the AMOP and REFs for the result and the operands of the
AMOP. (Each REF consists of two arguments, REF.BASE and REF.OFFSET; only two REFs are provided in
the case of a unary AMOP.) The macro name used in the macro call is of a special form which specifies an
entry in a table produced from the machine description by the GT program; this table entry refers to the
represent ition of the corresponding macro definition from the machine description.

2.1.2 Keyword Macros

Keyword macros are those macro calls which, along wilh the three-address instructions, maKe up an
intermediate language program. Unlike AMOP macros whose names are generated by GT, the namos of
the keyword macros are predefined, as are their functions. For example, keyword macros are used to
define external variable names and internal labels, to specify initial values in storage, and to produce the
function prologs and epilogs. The various keyword macros defined in the intermediate language are listed
below along with a brief description of their functions; a more complete set of descriptions appears in
Appendix III.

MM

mmm •m'mmmmm^. ,, ■ — wwmm

13

macro function

HEAD
ENTRY
EXTRN
INT
CHAR
FLOAT
NFLOAT
DOUBLE
NDOUBLE
ADCONn
STRCON
EQU
ZERO
STATIC
STRING
ALIGN
LN
LABCON
LABDEF
IDN

END

PROLOG
EPILOG
CALL
RETURN
GOTO
LSWITCH
TSWITCH

prvduce header statements, if needed
defne an entry point
define an external reference
define an integer constant
define a character constant
define a floating-point constant
define a negative floating-point constant
define a double-precision float coistant
define a negative double-precision constant
define a class V pointer constant
define a pointer referencing a string constant
define a symbol
det'ne an area of storage initialized to zero
define a static variable
define the string constants
force an alignment of the location counter
define a line-number symbol
define a label constant
define an internal label
transla* J an miernal identifier number
into the corresponding assembler symbol
produce an end statement, if needed

produce the prolog code of a C function
produce the epilog code of a C function
produce a function call
produce code for a return statement
produce a jump to a label expression
produce a switch jump (list version)
produce a switch jump (table version)

The actual macro names which appear in an intermediate language program are abbreviations of the
names listed above.

2.2 The Maohinj Description

The machine description is a "program" written in a special-purpose language from which is constructed
the machine-dependent tables of the generation phase. The machine description has two functions: (1) it
defines the particular abstract machine for which the code generator produces intermediate code, and (2)
it specifies the translation from an intermediate language program to the corresponding object language
program.

The abstract machine is defined in two sections of the machine descriotion. First, a set of definition
statements defines the registers and memory of the ?Utract machine. Second, in the OPLOC section, the
AMOPs are defined in terms of their operand/result locations. The translation from the intermediate
language to the object language is specified by a set of macro definitions in the macro section of the
machine description. More information on the writing of a machine description may be found in Appendix
I; the machine description used in the HIS-6000 implementation is listed in Appendix IV.

2.2.1 Defining the Abstract Machine

In the machine description, the implementer first defines the registers of the abstract machine. For
example, the statement

MtM

■^^""■■■•"•■■^i mi i i^m^mmammmr^^^mm^^^m^mrnmmmm^mmi

- 14-

regnames (x0,xl,x2^3,x4,a,q,f);

defines the eight abstract machine registers used in the HIS 6000 implementation. The registers XO
through X4 correspond to the first five of eight HIS-6000 index registers, the A and Q correspond to the
accumulators, and the F register is a fictitious floating-point accumulator which corresponds to the
combined A, Q, and E (exponent) registers on the HIS-6000. The fact that the F register conflicts in the
target machine with the A and Q registers is specified by the statement

conflict (a,f),(q,f);

Tha remaining HIS-6000 index registers are not represented in the abstract rrachine since it was not
desired that they be used by the code generator in the evaluation of expressions; two of those registers
hold "environment pointers," the other is used as a scratch register by some of the macro definitions.
There is nothing that requires that the abstract machine registers be implemented as actual machine
registers on the target machine; they may also be implemented as fixed memory locations.

For convenient e, the abstract machine registers can be gathered into classes; for example, in the HIS-
6000 implementation, the statement

class x(x0,xl,x2,x3,x4), r(a,q);

defines the class of index registers X and the class of general registers R.

The implementer also defines the classes of abstract machine pointers. Pointer classes are necessary on
machines which are not byte-addressed since pointers to byte-aligned objects will be handled differently
than pointers to word-aligned objects. In the HIS-6000 machine description, the statement

pointer p0(l), pl(4);

defines the class P0 of byte pointers and the class PI of word pointers. The "4" indicates that the value
of a PI pointer is always a multiple of four bytes. The fact that there are four bytes per word on the
HIS-6000 is specified in the statement

size l(char), 4(int,float), 8(doubleh

A similar statement is used to specify the alignment restrictions.

The statement

type int(r), char<r), float(f), doublet), p0(r), pl(x);

defines the registers which can hold values of each of the abstract machine data types. For example, in
the HIS-6000 implementation, word point jrs are held in the index registers X while byte pointers are held
in the general registers R.

The definition of the abstract machine is completed in the OPLOC section of the machine description
where the implementer specifies the behavior of the abstract machine operations in terms Of their
operand/result locations. For example, the location definition

♦d: f,M,f;

specifies that the AMOP '+d' (double-precision floating-point addition) can take its first operand in the F
register and its second operand in any memory location and, under these circumstances, the result is
placed in the F register. The construct on the right in the location definition is called an OPLOC; it
consists of three location expressions, one for the first operand, second operand, and result (reading from

misnm

 ■'" ^ wm r^^^mmmmmmmmi —— WW ••'• •

- 15-

left to right). A location expression may specify any set of abstract machine registers or any set of
memory reference classes; for example, the location expression

r|x

represents the set consisting of the general registers R and the index registers X, and the location
expression

• intlit

represents the set consisting of all memory reference classes except that of integer constants An OPLOC
may specify that the result is placed in ihe tirst or second operand location. For example, the location
definition

♦.: rMl!

specifies that the AMP Vi' (integer addition) takes its first operand in a general register and its second
operand in any memory location, and the result is placed in the register which contained the first
operand. This location definition is equivalent to

♦i: aMa; q,M,q;

which explicitly lists the two alternatives. An OPLOC may also specify that the contents of certain
registers are destroyed during the execution of an AMOPj for example, the location definition

••: qMq [ai

specifies that an integer multiplication destroys the contents of the A register.

2.2.2 Defining the Object Language

The translation from the intermediate language to the object language is specified by a set of macro
definitions included in the machine description; macro definitions are provided for the abstract machine
instructions and the keyword macroe. The simplest form of a macro definition is a single character string
which is substituted for the macro call during macro expansion. For example, the macro definition for
floating-point unary minus used in the HIS-6000 implementation is

-ud: FNEG"

This macro definition specifies that each occurrence of a '-id' abstract machine instruction is to be
translated into the assembly language instruction •FNEG" which complements the contents of the F
register. The macro definition for '-ud' is closely related to the focation definition for '-ud'

-ud: U;

which states that the operand is found in the F register and that the result is placed in the F register A
macro definition for an AMOP can assume that the actual operand/result locations appearing in an
abstract machine instruction satisfy the constraints specified m the corresponding location definition; ai
the same time, a macro definition must produce correct code for all combinations of operand/result
locations allowed by the location definition.

A macro definition for an abstract machine instruction can refer to symbolic representations of the
operation and the operand/result locations by using the character sequences «0 (operation). «F (first
operand), «S (second operand), and «R (result). These character sequences are abbreviations for calls to
an implementer-defined macro which converts an AMOP opcode or a REF into the desired object language

MMiM

" ' •ll1 I ! "Uli Ml

- 16-

representation. For example, the macro definition for Vi' (integer addition) in the HIS-6000
implementation is

♦•: " ADaR aS"

If the first operand location (which is also the result location) is the A register and the second operand is
en external variable "X", then the code produced by this macro definition is

ADA X

which adds the contents of "X" to the A register. A macro definition can also contain character strings
whose inclusion in the expansion of a ir.^ro call is conditional upon the locations of the operands end/or
result. An example is the HIS-6000 mecro de'irition 'o' '«' (left shift)

«:
(.intlit,):
(.-intlit,):

which produces different code sequences depending upon whether or not the second operand (the
number of bit-positions to shift) is an integer constant. A macro definition may include references to the
arguments of the macro call using the character sequences «0, «1, „. «9; a macro definition may include
embedded macro calls, such as the •lo(a'S)" in the last example, which returns the value of the integer
constant.

A macro definition may also be specified in the .orm of a C routine. C routine macro definitions are used
when processing is needed which is beyond the capabilities of the simple macro scheme so far described.
C routine macro definitions may define global variables, perform arithmetic and logical operations, and
select code sequences on conditions other than operand locations. In the present implementation,
however, C routine r.:ro definitions are unable to interact with the code generation algorithm. In the
HIS-6000 implementation, C routine macro definitions are used to translate REFs into GMAP symbols, to
translate the source language representations of identifiers and floating-point constants into GMAP, to
define cha. acter string constants, and to buffer characters while defining storage for variables (GMAP
does not have a byte location counter, as is assumed in the intermediate language). The C routine macro
definitions used in the HIS-6000 implementation are 'xAed in Appendix V.

•FLS %o(e'Sr
LXL5 •S
•FLS 0,5-

- -

■■-"♦•• . fggagttmmm

17

3. Generating Code for an Abstract Machine

The most interesting pirt of the compiler is the code generator since, unlike most code generators which
produce code for a fixed target language, the code generator of the C compiler is designed to produce
code for a class of abstract machines.

3.1 Functions of the Code Generator

The code generation process consists of three fairly distinct functions. First, there is the generation of
intermediate language statements to define and initialize static data areas and constants. Second, there is
the translation of source language control structures into labels and branches. Third, there is the
translation of source language expressions into sequences of abstract machine operations.

The C compiler is designed to produce assembly language code for conventional machines; thus, the
intermediate language statements (or defying and initializing static data areas directly correspond to
assembly language statements which define symbols, define constants, and align the location counter. The
only complication is that the code generator must use the size and alignment information from the machine
description in order to specify the sizes and alignments of data areas. More information and redundancy
could be added to the intermediate language in order to accomodate a larger class of target languages;
see [16] for examples. Another possible improvement would be to emit segment specifying instructions
so that the output could be segregated into different segments according to whether it is code, pure data,
impure data, or •minitialize'l data.

The process of translating source language control structures in'o labels and branches is rather
straightfoward. The only complications come when emitting conditional branches which test the value of
an expression; these problems are covered m the next section.

3.2 Generating Code for Expressions

The generation of code for expressions is the most difficult part of the problem. The code generator
must generate a correct sequence of abstract machine instructions to carry out the indicated operations.
The operand and result locations it specifies in the abstract machine instructions must conform to the
location definitions provided in the machine description. Moreover, the code generator must Keep track of
the locations of all intermediate results and correctly administer the abstract machine registers and
temporary locations.

The generation of code for expressions is performed in two steps, semantic interpretation and code

generation.

3.2.1 Semantic Interpretation

The code generator receives expressions in the term of syntax trees whose interior nodes are source
l?nguage operators and whose leaf nodes are identifiers and constants. Thus, an expression can be
considered to consist of a "top-level" operator along with zero or more operand expressions. The first
step in the processing of an express'on consists of translating a tree in this form to a more descriptive
form whose interior nodes are AMOPs. This translation involves checking the data types of operands,
inserting conversion operators where necessary, and choosing the appropriate AMOPs to express the
semantics of the source language operators. The selection of an AMOP to replace a source language
operator is based primarily on the data types of the operands. For example, on this basis, an addition
operator may be translated into either integer addition, double-precision floating-point addition, or one of
a number of pointer addition AMOPs. However, it is useful to be able to choose AMOPs also on the basis
of what is provided in the machine description. The basic idea is that of defaults. If the semantics of a
particular AMOP can be expressed in terms of a composition of more basic AMOPs, then the AMOP can be
left undefined in the machine description; the code generator can use the equivalent composition of
AMOPs instead. The advantage of havir.g optional AMOPs is that the implementer need define one of

HMMMgi -—MMHOi

- 18-

these optional AMOPs in the machina deocnption only i.' his definition will result in sufficiently better code
than will be producid using the equivalent composition of more basic AMOPs.

An example of this technique is the t andlmg of a cla^s of C operators called assignment operators. An
example of an assignment operator is W, where "L -♦ R" is defined to be the same as "L - L ♦ R" except
that tt-*« expression L is evaluated only once (it may contain siJe-effects). Consider an expression
"L -co If tho corresponding abstract machine assignmen! operator is defined in the machine
oescnption, then the source language assignment operator is translated into that abstract machine
operator; otherwise, the expression "L -op R" is converted to the equivalent form "L - L op R", except
that there is only one copy of V having two pointers to it (a flag is set in the root node of "L" so that
later routines will recognize this fact). Therefore, a particular abstract machine assignment operator need
be .otluded in the machine description only if the code sequences it generates are better than the code
that would be generated by the equivalent assignment expression. An exanole from the HIS-6000
implementation is the abrtract machine operator W (integer addition-assignr,,ent) which is translated
into an add to-storage instruction. The corresponding floating-point assignment operator '•♦d' is not
defined in the machine description since no floating-point add-to-storage instruction exists on the
machine.

Other examples of optional A.^OPs which have been implemented are the pointer comparison operators
for pomter-, other than class PO pointers 'the default is to convert to the "greatest common denominator"
pomter class for which the operation is implemented) and the test for null/non-null pointer operators (the
Jefault is to convert the pointer to an integer and test for equality/inequality with 0). Other promising
candidates for being optional AMOPs are the various increment and decrement AMOPs.

3.2.2 Code Generation

The second step in the processing of an expression is the generation of a sequence of abstract machine
instructions to carry out the evaluation of the expression. This code generation is performed by a set of
recursive routines, some of which will be described in this section. The operation of the code generation
routines is basically top-down. When a call is made to generate code to evaluate an expression, a set of
desired locations for the result of that evaluation is also specified. This specification, along with other
available information about the operands of the fop-level operator of the expression, is used to choose
one of the OPLOCr, from the top-level operator's location definition in the machine description (location
definitions are described in section 2.2.n. From the chosen OPLOC and. possibly, the desired locations for
the result of the expression are derived sets of desired locations for the operands of the top-level
operator. Recursive cal.s are then made to generate code io evaluate the operands into these desired
'ocntons. Next, an abstract machine instruction is emitted for the lop-level operation. Finally, if
necessary, abstract machine instructions are emitted to move the result of the expression to an
acceptable location.

3.2.2.1 Specifying Desired Locations

A s«! of desired result locations is speuf'»d by a structure called a LÖC. A LOG structure has two integer
members, LOG FLAG and LOG.WORD. The possible values of LOCJLAG are listed below along with their
interpretations:

~mm*-A MM

I

- 19-

LOC FLAG int«rpr«talion

0 the "result" is the internal laM specified by LOC.WORD (used only for
conditional jump AMOPs)

1 the result is to be placed in a register; acceptable registers are specified by
one-bits in LOC.WORD (bit 0 corresponds to register number 0. etc.)

2 the result is to be placed in memory acceptable classes of memory references
are specified by one-bits m LOC.WORD (this field is used only to select registers
for pointers in indirect references)

3 the result may be left in any location acceptable tor values of the particular
data type

Note that a particular memory location is never specified as the desired location for a result; rather,
classes of possible memory locations are specified.

For convenience, if the LOG passed to the top-level code generation routine specifies that the result is
desired in a register, then all registers not capable of containing the particular data type of the
expression being evaluated (as defined in the TYPE statement of the machine description) are removed
from the LOC. Similarly, if the LOC specifies memory reference classes, then all indirect classes where the
pointer register is jnable to hold pointers of the corresponding pointer class (as specified by the TYPE
statement) are removed from the LOC. Thus where the code generator simply desres that a value be in a
register, it may provide a LOC specifying that the result may be left in any register.

The removal of "impossible" registers from a LOC is not performed when such an action would leave no
remaining acceptable registers; this situation can actually occur in certain special cases, such as return
statements, where an operation requires a value in a register not normally used to hold values of that

type.

3.2.2.2 TTEXPR

The top-level code generation routine is TTEXPR. The function of TTEXPR is to generate a sequence of
abstract machine instructions which will evaluate a given expression and leave the result m an acceptable
location, as specified by a LOC parameter. The operation of TTEXPR begins with the removal of
impossible cases from the LOC parameter, as descnbed above. Then, TTEXPR passes the expression and
LOC parameters to a routine CGEXPR, which generates abstract machine instructions to evaluate the
expression, using the LOG parameter as a non-binding indication of preference. Finally, TTEXPR calls the
routine CGMOVE to emit, if necessary, abstract machine instructions to move the result to an acceptable
location.

3.2.2.3 CGEXPR

The function of CGEXPR .s to generate a sequence of abstract machine instructions which will evaluate a
given expression. CGEXPR is given a LOC argument .vhich specifies preferred locations for the result of
the expression; however, unlike TTEXPR, this specification is non-hmdmg and is used only where a choice

exists.

The operation of '-GEXPR consists basically of tasting for a set of special cases and then performing the
appropriate action, which is usually to call another routine which does the real work. The first special
case is where the expression node is shared and the expression has already been evaluated; in this case,
no action need be taken. Another special case is where the top-level operator is a conditional AMQP and
a value is desired (as opposed to a jump, which is the usual case); m this case, a routine JUMPVAL is
called to emit the des.red code. The other special cases involve particular top-level operators:

MMM

20 -

indirection, assignment, conditional expression, function call, and the "leaves" ot the expression tree,
identifiers and literals: in these cases, the code generation routine co-responding to the particular top-
level operator is called. Finaily, in all other cases, the routine CGOP is called to emit code to evaluate the
expression.

3.2.2.4 COOP

The function of CGOP is to emit code to evaluate an expression whose top-level operator is not on-s
special-cased by CGEXPR. Like CGEXPR, CGOP is passed a LOC indicating non-binding preferences for the
location of the result of the expression.

The operation of CGOP is performed in six steps. First, a routine CHOOSE is called to select an OPLOC
from the top-level operator's location definition in the machine description. Second, desireo locations for
the operands of the top-level operator are determined. Third, a routine EXPR2 is called which maKes
recursive calls on TTEXPR to emit code to evaluate the operands into the desired locations. Fourth, code
is emitted to save any registers which are specified in the machine description to be clobbered by the
execution of the top-level operator. Fifth, the exact location of the result of the expression is
determined. Sixth, the actual abstract machine instruction for the top-level operator is emitted.

If the result location specified by the LOC parameter is a label, or if the selected OPLOC specifies that the
result is left in the first or second operand location, then the exact location of the result of the
expression is fixed. Otherwise, a particular register must be chosen from the set of registers specified in
the result field of the OPLOC (the compiler is currently unable to handle OPLOCs which specify a set of
memory references as the location of the result). In the search for a result register, the priorities are as
follows: first, free registers which are preferred result locations^ second, busy registers which ere
preferred result locations; third, free registers which are not preferred result locations; and fourth, busy
registers which are not preferred result locations. If a busy register is selected, register contents are
saved in temporary locations as necessary.

For the purposes of finding a result register, a registei containing an operan^ is considered free and a
register containing a pointer to an operdnd is giyen lowest priority. A register containing a pointer to an
operand is protected because the implementation of a AMOP may alter the contents of the result register
before the operand referenced by the pointer in that register is used. An example is the following HIS-
6000 code for the AMOP '♦pT (addition of an integer to a pointer to a word-aligned object):

LXLO !
ADLXO P

This code loads index register 0 with the integer 1 and then adds to register 0 the pointer P. (The code
for the AMOP includes the load instruction since m general integers cannot be stored in the HIS-6000
index registers as they are only halfword registers.) If the coce generated for P leaves P referenced
through index register 0, the load instruction will "clobber" register 0 before P is accessed by the add
instruction:

LXLO
ADLXO

I
0,0

However, if index register 0 is protected, index register I will be chosen instead to hold the result,
producing the following correct code:

LXL1
ADLX1 0,0

mm. M^Hi ______

71 -

3.2.2,6 Selecting an OPLOC

The purpose of OPLOC selection is to select a set of operand/-esult locations for the top-lnvel operator
Of an expression by choosing one of the OPLOCs from the location definition of the operator in the
machine description. The choice of operand/result locations will affect the amount of code produced to
evaluate the expression, both because of different code sequences whicS may be produced by the macro
definition for the operator and because of additional loading, storing, and saving operations which may be
required in order to set up the operands and move the result to an acceptable location. A general
solution, taking into account all possible locations of operands and results, is a complex optimization
problem. Instead, a more limited spproacn has been taken which us s the provided preferences for
result locations and available information about the possNe result locations of the top-level operators in
the operand subexpressions. Fo* example, if an operand i» an identifirr, then its location is known to bo
a memory referer.ee of a particular class. Similarly, various operators may be defined in the machine
description to always place their result in one of a particular set of registers. Using information of this
sort, plus knowledge about the current register usage, a rough estimate can be made of the number of
additional load and store instructions which will be required for each OPLOC in the location definition;
from the set of OPLOCs, the one with thj lowest additional cost is chosen.

For example, consider the expression "I ♦ (J / K)." (For clarity, source language operator symbols ar^
used in this example to represent the corresponding integer abstract machine operations.) Assume the
following location definitions (the OPLOCs are numbered for future reference):

r,r,l; (1)
rMl; (2)
M,r,2; (3)

rl^.l [r2l (i)
r2,r,l [r3]i (at
r3.r,l [r4) (6)
ri,M,l [r2]; <7>
r2,M,l [r3]; (8i

r3,M,l [r4]; (0)

Here M represents all memory reference classes and r represents a set of general registers consisting of
rl, r2, r3, and r4. The division operator is modeling a machine instruction which produces pairs of results
(the quotient and remainder) in adjacent registers. For the division abstract machine operator, only the
quotient is used; the other register is considered to be "clobbered" by the execution of the operator.
Note that one can deduce from these location definitions that both operators always leave their results ii
general registers.

The generation of code for the expression "I ♦ (J / K)" begins with the selection of an OPLOC from the
location definition of the V operator In this case, all of ths OPLOCs specify the same set of result
locations (the general registers); thus, the dtyftd locations tor the result of the expression does not
affect the choice of OPLOCs. Instead, the choice s »ade on the basis of the possible locations for the
operands. In thi,^ case, the first operand » a vr J > ; which is known to be a memory reference of a
particular class. The second operand n the result of a division operator which is known to leave its
results m either rl, r2, or r3. On this oasis, OPLOC (3) is chosen because no extra operations are needed
to move the operands into acceptable locations, whereas both OPLOCs (I) and (2) do require such extra
operations.

Mext, a recursive call is made to generate code to evaluate the subexpression "J / K.' The desired
locations for the result of this expression are those specified by the chosen V OPLOC .or its second
operand, namely r, the set of general registers. However, since the V OPLOC specifies that the second
operand location is also the location of the result of the '♦' operator, the intersection of that location set
with the set of desired locations for the result of the '♦' operator is used instead, if that intersection is

-22-

non-null. Thus, the following factors are used in selecting an 0H10C for the T operator: first, which of
the possible result registers (rl, r2, r3) are desired result locations; second, which of the possible result
registers are free; and third, which of the "clobbered" registers (r2, r3, r4) are free. In this particular
situation, the possible location of the first operand (J) is a rnemO'y reference and thus does not favor any
of the OPLOC.-. However, the second operand, which is also Known to be a memory reference, favors
OPLOCs (7), (B), and (9).

In addition, when selecting an OPLOC from a location definition, certain OPLOCs may be rejected entirely
because they specity conditions which can not be me.. For example, if an OPLOC specifies (either directly
or indirec^'y through en operand location) »hat the result is left in a register, but the result is desired in
memo.y, then that OPLOC will be rejected if a temporary location is not acceptable. The OPLOC is
rejected because, given a value in a register, the only general method by which the code generator can
make that value into a msmory reference is by sawing it in a newly allocated temporary location. (Recall
that a specific memory location is not provided for the result, only a set of acceptable memory reference
classes.) Similarly, if the result «ill be in memory and is desired in memory, then that OPLOC will b»
rejected if there are one or mere possible result memory reference classes which are net acceptable
result locations; this is done because the code generator is not capable of transforming a memory
reference from one class '3 another. Similar checking is performed on the operand location specifications
in the OPLOC: if an opertnd is required by the OPLOC to be in memory but not all non-indirect memory
reference classes are allowed, then that OPLOC will be rejected if the operand operator is not guaranteed
to place its result in an acceptable memory location or if it can place its rosult in a register but
temporary locations are not acceptable. The^e 'estrictions allow a location definition to contain extra
OPLOCs which apply only in special cases sincj such OPLOCs will never be chosen unless the special
cases hold.

An example of how the OPLOC selection method can be utilized in the writing cf a machine description is
the following definition of the VpT AMOP (addition of a integer to a pointer to a word-aligned object)
taken from a hypothetical HIS-6000 machine description (the described OPLOC selection method was not
implemented at the time the actual HIS-6000 machine description was written). The shortest code for
executing the '+pr operation in the general case is

LXLO I
ADLXO P

where 1 is the integer in the low-order half of a word in memory and P is the pointer in the high-order
half of a word in memory. The result of this operation is left in an index register; thus the OPLOC for this
code sequence is

MMx;

However, if both the integer and the pointer must be computed into registers (which occurs frequently in
referencing elements of an array), the integer and the pointer must first be stored into temporary
locations before this code sequence can be applied. Therefore, using the given code sequence under
these circumstances results in excessive object code. The desired code is

ALS 18
STA TEMP
ADLXO TEMP

which shifts the integer in the general register into the high-order halfword, stores it into a temporary
location, and adds it to the pointer in the index register. The OPLOC for this code sequence is

x,r,l;

-23-

In th« case where the pointer is in an index register and the integer is a constant "n", then the desired

code is

EAXO n,0

with an OPLOC of

x.intlit,!;

The described OPLOC selection method allows all three OPLOCs to be included in the location definition for
'♦pi'. In part cular, it guarantees thai the third OPLOC will never be selected unless the seconv operand
is an integer constant

3.2.2.6 Generating Code for Subexpressions

After an OPLOC has been selected, CGÜP calls a routine EyPR2 to make recursive calls on TTEXPR to
generate code to evaluate the operands o* the top-level abstract machine operator. The LOC arguments
passed to TTtXPR in these calls are ta en from the operand fields of the selected OPLOC and, in the case
of operators which place their result in an operand location, the desired locations for the result of the
top-level operator. If there are two ope'ands, EXPR2 makes sure that the two operanos will not require
the use of the same register (for example, by using a register to hold both one operand and a pointer to
the other operand); this is done by checking the LOCs for "overlap" and removing certain possibilities. In
addition, EXPR2 evaluates first the operand which is more complicated on the basis of the sizes of the
subtrees for the two operands; this tends to reduce the number of saving and restoring op. -ations
performed. In the course of generating code to evaluate an operand of a binary abstract machine
operator, it may be necessary to use the register containing the alrtady computed value of the other
operand or a pointer used to reference it, in which case code is generated to save the contents of this
register in a temporary location. Thus, -ifter generating code to evaluate both operands, EXPR2 calls a
routine RESTORE to generate code, if necessary, to restore the saved value to its original register

3.2.2.7 Register Management

The status of the various abstract machine registers with regard to register allocation is contained in an
array of structures called REGTAB. Each element structure of the array represents the current state of
one abstract machine register. An element structure consists of two members: UCODE, an integer
indicating the current use of the register, and REP, a pointer to the subexpression tree whose value is
currently in the register. The possible values of UCODE are listed below with their interpretations:

UCODE Interpretation

0 the register is free

-1 the register contains the value of the expression pointed to by REP

-2 the register has been markecl "do not use unless necessary" for the purpose of
finding a register for the result of an AMOP; although the register contains a pointer
to one of the operands of the AMOP, it is free in that it may be selected as a las!
resort without having to save its contents.

n>0 the register does not directly contain a value, but there are "n" conflicting registers
containing values which must be saved before this register can be used.

The routines used in register management are described below:

MM

1 ii ■ i ■' "-•> • ■ n i

-24-

CLEAR(R)

ECLEAR(E)
FREEREG<W)

GETREG(Wl,W2)

MARK(E)

NBUSY(W)
NFREE(W)
RESERVE(R,E)

RESTORE(E)

SAVE(R)

UNMARK(E)

Register R, which must directly contain the value of an expression, is mtie
available for use; its current value is not saved.
The register associated with the expression E, if any, is CLEARed.
A register from the set specified by W is made available for use; »he
contents of register; are Mvsd if necessary.
If possible, an unmarked register from the set Wl is made available for
use. Otherwise, if possible, an unmarked register from the set W2 is made
available for use. Otherwise, a marked tegister from the set Wl is made
available for use. Within each set, free registers are chosen in preference
to busy registers; if a busy register is chosen, its contents are saved.
If the expression E is an indirect reference, the register containing the
pointer is marked "do not use unless necessary."
Return the number of busy registers in the set W.
Reiurn the number of free registers in the set W.
Register R is al.ncated to hold the value of the expression E. Register R
must be avail;>L>ie for use.
If the value of the expression E (or a pointer in the case of an indirect
reference) has been saved in a temporary location, it is restored to the
original register.
Register R is made available for use by saving the contents of whatever
registers are necessary.
Undo a MARK.

The following is a typical series of calls made by CGOP in the generation of code for an expression E
whose top-level operator is a bin?ry operator with operands 0P1 and 0P2:

0PLX-CHOOSEvE,LOC)

EXPR2(OP1.0P2)

ECLEAR(OPI)
ECLEAR(0P2)

SAVE(»)

MARK(OPl)
MARK(0P2)

R-GETREG(»,*)

UNMARK(OPl)
UNMARK(0P2)

RESERVE(R.E)

- loose an OPLOC

.cursively generate code to evaluate
the operands into acceptable locations

make operand registers available for
the result

save "clobbered" registers, if any

mark registers used to hold pointers
to operands

select a result register

unmark any marked registers

reserve result register

3.2.2.8 Possibilities for Failure

The code generator can fail in two ways: (1) it can reach an impossible situation and announce a compiler
error, and <2) it can unknowingly generate incorrect code. Examples of impossible situations are (1)
discovering that there are no acceptable OPLOCs in the location definition for an operator, (2) being told
that the result must be placed in a register from the empty set of registers, and (3) discovering that an
essential location definition or macro definition of an abstract machine operator was not provided by the
implementer. The most likely cause of a failure is an incorrect machine description. Examples of errors

HBI^M J

• I II I ■ 1 ■ I I 11 I

25-

whicn can be made in the machine description are (1) an OPLOC specifying that both operands must be in
the some register, (2) an OPLOC specifying a set of memory reference classes for the result location, (3) a
macro definition containing errors, and (4) a macro definition which does not anticipate a particular
operand or result location, or combination thereof, allowed by the location definition or otherwise
essential (in the case of move operations which must be capable of moving among registers and between
registers and memory). Some of these errors could be detected by the program which processes the
machine description (GT). Another possible cause of failure is an abstract machine with an insufficient
number of registers. Such a machine may require that a register he used to hold both a pointer to an
operand and the result of an operation; as described above, this situation may result in incorrect code.
Hopefully, abstract machine models of real machines will not suffer from this problem. Of course, the
other possible cause of failure is a bug in the code generator itself. It would be interesting and useful if
such a code generation algorithm could be proven correct, given sensible restrictions on the machine
description and the assumption of correct macro definitions.

1

mm

^«■^■»■w» —

26-

4. Conclusions <

This paper has described the .mplementation of a portable comp.ler for the programming ianguaee C The
compHer was f.rst .mplemented by the author ,n a sev.n month per.od on the iLlI ÄiSSÄLS
Soence Research Center's PDP-11/45 UNIX system. The comp.ler was then SJHl^X^SdÄ

Ce son^oMhrr^f f0 ,he,H!S-60.00- ^^ m0n,h WaS *>** **W*I the comber unt^f ^

4.1 The Compiler

The major problem w.th the compiler itself is its speed. The compiler appears to be more than twice as
•tow M other compilers for s.milar source languages. This slowness is due almost entity to the u« of a

To /oend^rrp ase a rhfse"?,,keiy ,o be prcse^," <"*"-■* ^^^ **• S nStiTLj!
Le r^obem .nh^n? /r S ^ maCr0 eXPanSi0n PhaSe- The slo-ess of the compiler eemsfo
M^fan J Z m ,he C,0Sen COmp,ler s,ruc,urei no amoun, o' "ere recodmg is likely to
Sovin. '.h. I' r:?*'** 0f ,,me Spen, in ,he mi,cr0 exPa"s'0" Ph«e One approach towarS
•mprovmg the speed of the compiler would be to elimmate non-essenf.al orocessinp ..frh ,c fhf

mac'ro dirr300 ,n;rPre,a,i0n 0< ^^'-^ r^^^ of "a" a's and he resLlJoi
ca 1 ^ K e T? ,an8Ua8e C0U,d be m0d,f,ed S0 ,M ,he ^su" o' «^ expansion of a Lac^
ra her ^n 7' be "eeded

t
as an areu^"' * *****' -aero call and thus could be phnted Jirec ly

como ed ?nt0 ^r6. aS a l,r,:g and reSCanned G,Ver; ,h,S restrid'0n. ,he macro ötün^ons coMbe
be eld d r-Il "h ^ W H' "^^ Prm, S,rmgS and Ca,, 0ther P^edures. These procedures oulS

TK ^K r? S0UrCe 0f ,he COmpi,er 'S ab0u, 250K characters, the source o GT h SSuKMü^S^L

ha^'ade'rs nnr^: T*?£ ^^ ^ ^^ ^ exe-'able ^^1^4^^
oodabr i .^ »^'f8 0,ihe COde 0f the COde genera,0r ,s a resul, ^ designing the compHer to be
^lln! 1 ^ y * at a "^ genera,0r deS,gned ,0r a sPeci,lc machme would be much s3r Wher
pa ^cu a 1 'm^tre S 0 ^ !S5 S,em ,r0m ,he Par,icu,ar P^gramm.ng te hn.^ue used ^
requ res t'ha",' la^^^ '? repre

k
Sen,a,ion ^ a fu"c»io" •" core at one time 5unng code generation

parser seeml Jrl» f borage be reserved. Also, the use of a bottom-up table-driven LALR(l)
as does the UNlVr ' 'V l8r

Tl
er 1

syn,a)' *n*y™ Ph«e than would result from using recursive descent

c-lupport STcÄ" "^ S,Ze ^ ,h9 COmP"er '""^ ,he nUmber 0f COmpüt- ÄTÄ

.mPTe,men,theceonPr
a

0nb^h.S, " '^'Z** ^ **'* 0ne Prepared ,0 make the ******* necessary to
relahv. CL-H a"0,h

u
er

u
mach,ne. the s.ze d.fficulties and related costs would be outweighed by the

mäkmp , P
n W;.h.wh;cu

h 0ne ccj,d *** * • •OrWm .mplementat.on. One could then concentrate on
maRmg it more eff.c.nt. havmg the advantages of a C comp.ler to work with and the ab^ty to program°n

The least flexible machine-dependent component of the compiler is the code «neration aleorilhm H i.

ea lly8 inTf ^S ^ IS 0ne bU,l, ,n,0 ^ COmP"er ^^ pr0bl- ^^ ÄÄ eas.ly by mod.fymg the code generator is the IBM S/360 addressing problem Because a S/360
nst uchon cannot contam an arbitrary memory address. C external vanabfes must be r^crenced by hrs^

.oadmga reg.ster w.th a pomter to the variable (an address constant) and then usmg the reg.ster as i
base regier .n the actual instruction. These actions could be performed by the m^fo def nihot, us ng

JP"ai«p^HHP|«a«iRV«mmM" f*^mmm> Trvwmmfmmmmmm*

27

conditional expansion; however, it would be easier to modify the code generator to handle this particular
case.

The most direct method of moving a portable compiler based on a machine description requires access to
an existing implementation of the compiler. The process of moving a compiler written in its own language
from machine A to machine B is as follows: First, one writes a machine description for machine B.
Second, the machine description is used by a construction program running on machine A to produce a
new compiler which produces code for machine B. Third, the compiler on machine A is used to compile
the new compiler, producing a compiler which runs on machine A but produces code for machine B.
Fourth, the new compiler is used to compile itself, producing a compiler which runs on machine B and
produces code for machine B. This process is called a half bootstrap. On the other hand, the Poole and
Waite approach f^es not require the u^e of an existing implementation. One need write only an
interpreter or a translator for a very simple abstract machine language in order to move a program to a
new machine. This technique is called a full bootstrap. In practice, the need for a half bootstrap often
represents a significant obstacle to moving a program.

The full bootstrap method can be used to move a portable compiler based on a machine description as
follows: Initially, a simple imaginary machine is defined as a vehicle for bootstrapping. A compiler which
runs on and produces code for this imaginary machine is then constructed using the half bootstrap
method described above. Now, in order to move the compiler to a new machine, one imolements an
interpreter for the imaginary machine on the new machine. This action results in an "existing
implementation" of the compiler, running on the new machine, which can then be used to carry out the
half bootstrap as described above.

4.2 The Compiled Code

Although there are weak spots, the code produced by the compiler is good considering that it is almost
completely unoptimized. It is certainly better than would be produced if the abstract machine were the
typical machine-independent abstract machine with one accumulator and one index register, given the
same complexity of the macro definitions (they do not perform register allocation). Such an
implementation would not be able to fake advantage of the HIS-SOOO's two accumulators or the multiple
index registers, nor would it recognize the fact that byte pointers cannot fit in the index registers.

One of the weak spots in the compiled code concerns floating-point operations. The code generator
"performs" all floating-point operations in double-precision, issuing single-to-double conversion
operations before using single-precision operands. If is unable to utilize the HIS-6000 machine
instructions which operate on a single-precision operand in rremory and a double-precision operand in
the F register. Since the implementation of a single-to-double conversion is to load the single-precision
operand into the F register, very poor code is produced for single-precision floating-point expressions
(as opposed to very good code for double-precision expressions). One way to handle this situation would
be to implement a general subtree-matching facility for optimization. With such a facility, the implementer
specifies in the machine description that a particular combination of abstract machine operators (specified
in the form of a tree) is to be replaced by the code generator with a new abstract machine operator; the
new operator is defined by the implementer in the machine description just like any of the built-in
operators. In the floating-point case, one would specify that a subtree of the form (using a LISP-liKe
notation)

(double-prec-add («1 , single-to-double («2)))

would be replaced by

(single-prec-add («1 , »2))

where single-prec-add is a new ibstract marhme operator which would be defined to be the "FAD"
instruction. This method of subtree-matching can be compared to the hierarchy of abstract n.achmes

mmm mm —— mm mm "■'

-28

method in that the new abstract machine operators can be considered to be instructions of a higher-level
abstract machine. The differences are that, in the case of the subtree-matching method, the definition of
higher-level operalors is Of,\\ona\ (thus there is no multistage translation when optimization is not desired
or needed) and that the implementer defines the higher-level operators to suit his needs. The subtree-
matching approach to machine-dependent code optimization has been investigated by Wasilew [17].

Another weakness in the compiled code concerns array subscripting. Instead of placing the offset of an
array element into an index register and performing an indexed memory reference, the code generator
adds the offset to a pointer to the base of the array, producing a oointer (in an index ragister) which is
then used to reference the array element. Thus, the code generator regards index registers only as base
registers to hold pointers, and not as index registers to hold offsets. One reason for not implementing
the capability of using index registers for subscripting is t'at this method of subscripting is often not
possible. For example, on machines like the HIS-6000 with single-indexed instructions, this method can be
used only for e>fernal and static arrays; all other arrays require the use of an index register just to
reference the base of the array. (Actually, one can perform double-indexing on the HIS-6000 by using
an indirect word; however, this was not recognised at the time the compiler was written.) The capability
of using index registers for subscripting could be implemented using the subtree-matching facility
described above; one would test for subtrees of the form

(pointer-add (address-of (extern | static), <any>))

nnd replace them with a new abstract machine operator which would be defined to produce the desired
code. A more satisfying solution would give the code generator more knowledge about addressability so
that it could use index registers for subscripting whenever possible, based on information given in the
machine description.

A third weakness of the compiled code is the use of indirection. The code generator only indirects
through pointers in registers; it is unable to utilize an indirection-through-memory facility (except through
a specific location which implements an abstract machine register). Again, a better understanding of
addressing is what is really needed.

4.3 Summary of Results

Thi<; paper has presented a technique for the design of portable compilers and has demonstrated its
practicality through the implementation of a portable C compiler. The main difference between this work
and the previous work described in section 1.2 is that in this work, the system was designed specifically
for the language being implemented; it is this restriction which contributes most to the practicality of the
approach. In addition, this work has emphasized the concept of a machine-dependent abstract machine,
thus tying together the work on portable compilers and program transferability.

The advantages of the technique presented in this paper over the technique of rewriting some or all of
the generation phase are (I) that the implementer can modify the compiler to produce code for a new
machine with less effort and in less time, and (2) that the implementer can be more confident in the
correctness of the modifications. Almost the en» e code of the generation phase, already tested in the
initial implementation, is unchanged in the new mplementation. This code includes the code generation
algorithm, the register management routines, and the macro expander. Furthermore, the modifications
which must be made are localized in two areas, the machine description and the C routine macro
definitions. Tho implementer is primarily concerned with the correct implementation of the individual
abstract machine instructions. The interaction among the .e instructions, in terms of their correct ordering
and the use of registers and temporary locations, is handled by the code generation algorithm and need
not be of concern to the implementer. It is this reduct on in the complexity of the problem which leads
to the increased confidence in the results of the modification.

The portability of the compiler has been tested by the construction of version of the compiler for the
DEC POP-10. The initial machine description and macro definitions for the PDP-10 implementation were
written and debugged by the author in a period of two days.

mm wmmm *~m

29

4.4 Further Work

There are three main directions for further work. One is to develop machine models which will allow the
generation of acceptable code for a larger class of machines. Such machine models will have the effect of
reducing the complexity of the descriptions of machines which do not completely correspond to the
machine model described in this paper. With the HIS-6C X), for example, the only major area of
complexity in the machine description is that of character manipulation. One would desire a machine
model which allows the implementer to describe more conveniently the implementation of characters on
his machine. Similarly, a machine model which allows a better understanding of addressing would be
desirable.

Another direction for further work is to develop machine-independent code generation algorithms which
will produce more efficient code. In particular, the problem of register allocation under complex
constraints should be examined. In addition, techniques for allowing the implementer to extend easily and
safely the code generation algorithm through the addition of procedural knowledge should be developed.
Such techniques should allow the compiler to be modified to produce code for unanticipated new
machines.

The third direction for further work is to apply the technique of portable compilers to more complicated
and more powerful languages. The technique of using a machine-independent code generation algorithm
and a machine description, even aside from portability, results in a very clean and modular code
generator. It would b interesting to see if this technique could reduce the complexity of code
generators for large languages and whether portability could still be obtained without destroying the
efficiency of the object code.

am j

^^■■WWBPWPPPBPPIWWW«l*^',"''""i mi i«l^WPWW«IPSBPPlW»l»tP»Wl«p»^^"HP»l»|iiliiil"«n -^mmmi^^^mm

-Ü0-

Referenoes

1. Ritchie, 0. M., C R«l«r*nc* Manual, Bell Laboratories internal memorandum.

2. Snyder, A.. C Reference Manual, Bell Laboratories internal memorandum.

3. Richards, M, "BCPL: A Tool for Compiler Writing and System Programming," Prot SJCC
1969, pp. 557-566.

4. Strong, J., et. al, The Problem of Programming Communication with Changing Machines
— A Proposed Solution," Comm. ACM IA (Aug. 1958) pp. 12-18, 1:9 (Sept. 1958) pp.
9-15.

5. Feldman, J. and Cries, D., Translator Writing Systems," Comm. ACM 11:2 (Feb. 1968),
pp. 77-113.

6. Feldman, J. A., "A Formal Semantics for Computer Languages and Its Application in •
Compiler-Compiler," Comm. ACM 9:1 (Jan. 1966), pp. 3-9.

7. Englund, D. ard ClarK, E., The CLIP Translator," Comm. ACM 4:1 (Jan. 1961), pp. 19-22.

8. Halstead, M k, Machine-Independent Computer Programming, Spartan Books, Washington
1962.

9. Richards, M, The Portability of the BCPL Compiler," Software Practice and Experience
1:2(1971), pp. 135-146.

10. Poole, P. C. and Waite, W. M, "Portability and Adaptability," Advanced Course on
Software Engineering, Springer-Verlag, Berlin 1973, pp. 183-277.

11. Poole, P. C. and Waite, W. M.. "Machine Independent Software," Prot ACM Second
Symposium on Operating Systems Principles.

12. Brown, P. J., "Levels of Language «or Portable Software," Comm. ACM 15:12 (Dec. 72),
pp. 1059-1062.

13. Sibley, R. A., The SLANG System," Comm. ACM 4:1 (Jan. 1961), pp. 75-84.

14. Miller, P. L, Automatic Creation of A Code Generator from a Machine Description,
M.I.T. Project MAC Technical Report TR-85, 1971.

15. Aho, A. V. and Johnson, S. C, "LR Parsing," Computing Surveys 6:2 (June 1974), op. 99-
124.

16. Coleman, S. S., Poole, P. C, and Waite, W. M, The Mobile Programming System, jfWJS,'
Software Practice and Experience 4:1 (1974), pp. 5-23.

17. Wasilew, S. G., A Compiler Writing System with Optimization Capabilities for Complex
Object Structures, Ph.0. Thesis, Northwestern University, Evanston, Illinois 1971.

18. Johnson, S. C, Bell Laboratories internal document.

■ T—ai i i IIBM—mil i "-—

Wf^^mi^mw ————

-31

Figure 1 - The GC08 Control Cards

t program rlhs.onl
t limits .12kB100
t prmfl ht/.r.sny/ce
1 prmfl •l.r/wM«/X.e
t fde er,els,5l
• program rlhs,onl
t limits ,22k„100
1 prmfl hV,r,sny/tl
t prmfl el,r/w„«/X.e
t prmfl in/.l.s/Vc
S file to,tls,5l
1 file c&lcls,5l
t file er,els,5l
S file st,sls,5l
t data cz.copy
tl .fin «to 8cs Sei - Sst >Sel

1 endcopy
• program rlhs,onl
1 limits ,28^,100
1 prmfl h*,r,r,sny/t2
t prmfl e\,r/w„m/X.9
S file to.flr,5l
S file no,nls,5l
S file sy,yls,5l
t file er.els.SI
S file in,ils,5l
t data cz.copy
t2 . Sto «no Ssy Se r Sin »Sei

< endcopy
1 program rlhs,onl
1 limits ,34K„100
1 prmfl ht,r,r,sny/t3
S priril el,r/wB«i/X.e
S file er,els,5l
S file no,nlr,5l
S file sy.yls,5l
S file in,ilr,5l
S file ma,ml$,5l
S file hm.hls,5l
t data cz.copy
t3 . Ser tno Ssy . S in Sma Shm 5000 »Se

S endcopy
S program rlhs,Onl
S limits ,24k,, 100
• prmfl h*,r,r,sny/t4
t prmfl e\,r/w„m/X.e
1 prmfl 0t,r/w,l,ii/lg
S file cs,cls,5l
t file sy.ylr,5l
S file er,e 15,51
S file ma,mlr,5l
1 file st,slr,5i
1 file tim,hlf,5l

mmm ■~^- -■

■■m^^W^^*RlP*"BWWP^***^ umrw^ammwm* —-

-32

1 data cz,copy
t4. Sot Scs S$y Set

endcopy
break

■ Sma Sst Shm »Sei

program rlh$,onl
limits ,18k„1000
prmfl h«,r,r^ny/bt5
prmfl el,r/w„«/X.e
file er^lr,5l
file cs,clr,5l
data cz.copy

bt5 . Ser Scs »Sei
endcopy
endjob

-.—^-^^ -

 " ..in.ii.i i ■. i in »i i ii •■JM.ii IMJ < < PWI.X m, — -w——^—™,^™~———

-33-

Appendix I - The Machine Description

The format of the machine description is described in detail in the following sections. Examples are taken
from the HIS-6000 machine description given in Appendix IV in an attempt to explain the process of
writing a machine description which will result in the desired code being produced by the code generator.
The convention of writing syntactic alternatives on separate lines is used throughout.

1. Definition Statements

The machine description begins witn a series of definition statements. These definition statements are
described in the sections below in the order in which they should appear in the machine description.

1.1 The TYPFNAMES Statement

The TYPENAMES statement defines the names which are used in the machine description to represent the
primitive C data types: character, integer, floating-point, and double-precision floating-point. The form of
the TYPENAMES statement is

<typenames_stmt>: typenames (<namejist>);
<namejist>: <name_list> , <natne>

<name>

The first name corresponds to the internal type number 0, the second with type 1, etc. Because the
internal type numbers are fixed m the compiler, the TYPENAMES statement should always be (equivalent
to)

typenames (char, int, float, double);

1.2 The REONAMES Statement

The REGNAMES statement defines the names of ihe abstract machine registers; these registers are
assigned internal register numbers (used in REF.BASE, section 2.1.1.2), starting with register number 0, in
the order in which they appear in the REGNAMES statement. The form of the REGNAMES statement is
similar to that of the TYPENAMES statement; for example, the REGNAMES statement used in the hlS-6000
implementation is

regnames (xO, xl, x2, x3, x4, x5, a, q, fh

In this example, all but the F register correspond directly to actual registers on the HIS-6000: registers
XO through X4 are the first five (out of eight) index registers, registers A and Q are the two
accumulators. The F registe.- is a fictitious floating-point accumulator which in rea'ity corresponds to the
combined A, Q, and E (exponent) registers. The fact that the F register conflicts with the A and Q
registers is specified in the CONFLICT statement, described below. Only those actual machine registers
which are to be used by the code generator in producing code to evaluate expressions should be included
in the REGNAMES statement; registers used only for environment pointers, auxiliary address calculations,
or other scratch calculations performed within the code for a single AMOP should not be included in the
REGNAMES statement. For example, on the HIS-6000, three index registers are not defined in the
REGNAMES statement: X7, which contains a pointer to the current stack frame, X6, which contains a
pointer to the current argument list, and X5, which is used as a scratch register by AMOPs which access
characters.

 - ■—^^^

 .»..-.. tmm m 1 1 "—

■IMMMaHMi

-34-
I

1.3 The MEMNAMES Statement

The MEM\AMES statement associates name;; with the various classes of memory references as specified
by negat ve values of REF BASE (section 7.1.1./). The form of the MEMNAMES statement is similar to fiat
of the TYPENAMES statement; for example, the MEMNAMES statement used in the HIS-6000
implementation is

memnames (reg, auto, ext, stat, param, label, intlit, floatlit, stringlit, ixO, ixl, 1x2, ix3,1x4, ia, iqh

The first nine names refer to predefined memory reference classes (REF.BASE - 0,-1,-2, ._ ,-8), the
remaining names refer to indirect references through the abstract machine registers defined in the
REGNAMES statement (REF.BASE - -9,-10, ...). The first name "reg" is never used; it serves only as a
placeholder. No name is provided lor indirect references through the F register since the F register is
not used to hold pointers and, being the highest numbered register, omitting it does not affect the
positions of the other names in the list.

1.4 The SIZE Statement

The SIZE statement defines the sizes of the primitive C data types in terms of bytes.
SIZE statement is

The form of the

<size_stmt>:
<size_defjist>:

<size_def>:
<typejist>:

size <size_defjist> ;
<size_defjist> , <size_def>
<size_def>
<integer> (<typeJist>)
<typejist> , <type>
<type>

The integers specify sizes in bytes; the types are the names of primitive C data types (as specified in the
TYPENAMES statement) with the corresponding size. For example, the SIZE statement used in the HIS-
6000 implementation is

size l(char),4(int,float),8(double);

All addresses computed by the compiler are in terms of byte addressing; byte addresses are converted to
word addresses for non-character operations by the macro definitions. For example, on the HIS-6000, if
the first element of an integer array begins at offset 0 in the static area, then subsequent elements of
the array are at offsets 4, 8, 12, 18, etc.

1.5 The ALIGN Statement

The ALIGN statement defines the alignment factors of the primitive C data types; these alignment factors
are in bytes. The (byte) address of a variable with an alignment factor V must be zero modulo "n"; for
example, on the HIS-6000, the (byte) address of an integer must be a multiple of 4. An alignment factor
must be divisible by all smaller alignment factors; this allows the compiler to assign addresser relative to
a base which satisfies the highest alignment restriction. The form of the ALIGN statement is similar to
that of the SIZE statement; for example, the ALIGN statement used in the HIS-6000 implementation is

align l(char),4(int,float),8(double);

1.6 The CLASS Statement

The CLASS statement is an optional statement which allows the implementer to define classes of abstract
machine registers which are used in similar ways; the register classes so defined can then be used in the
machine description as abbreviations for the corresponding lists of registers. The form of the CLASS
statement is

■■Mi MM

<class_stmt>:
<class_defjist>:

<class_def>:
<registerjist>:

35 -

class <class_detji$t> ;
<class_defjist> , <class_def>
<class_def>
<name: (<registerjist>)
<registerjist> , <register>
<register>

The name is the name of the register class, the registers ar« the names of the abstract machine registers
(as specified in the REGNAMES statement) which make up the corresponding register class. The CLASS
statement used in the HIS-6000 implementation is

class x(x0,xl,x2,x3,x4), r(a,q);

This statement defines the class of index registers X and the class of general registers R.

1.7 The CONFLICT Statement

The CONFLICT statement is an optional statement which allows the implementer to specify abstract
machine registers which conflict in the actual implementation. The form of the CONFLICT statement is

xonflict_stmt>:
<conflict_defJist>:

<conflict_def>:

conflict <conflict_defJist> ;
<conflict_def Jist> , <conflict_def>
<conflict_def>
(<register> , <re?i!iter>)

Each register pair specifies two abstract machine registers such that only one of the registers can be in
use at one time. The CONFLICT stalsment jsed in the HIS-6000 implementation is

conflict {a,f), (q,f)j

which indicates that the F register conflicts with both the A and Q registers.

1.8 The SAVEAREASIZE Statement

The SAVEAREASIZE statement is used to specify the size of the save area which is reserved at the
beginning of each stack frame. The save area is generally used for saving registers upon entry to a
function, for chaining stack frames together, and for holding other per-invocation information. The form
of the SAVEAREASIZE statement is

saveareasize <mteger> ;

The integer specifies the size (in bytes) of the save area The save area used in the HIS-6000
implementation is 16 bytes (4 words) long.

1.9 The POINTER Statement

The POINTER statement defines classes of pointers according to their resolution; these pointer classes
represent different implementations of pointers on the target machine. The resolution of a pointer
corresponds to the alignment facto-s of the objects to which it can refer; in particular, a pointer with a
resolution of V bytes can refer only to objects whose alignment factors are multiples of "n" bytes. The
primary use of pointer classes is on machines whose smallest addressable unit is larger than bytes; in this
case, two pointer classes are defined: one which can resolve only machine-addressable units and another
which can resolve individual bytes. By defining separate pointer classes, the implementer allows
computations invo'ving pointers which are known to refer to machine-addressable units to be performed
in terms of machine-addressable units, and therefore more efficiently. The form of the POINTER
statement is

■

im--iHinwmmmmmmf^nm^ i >■ nmum 't ■«» i. i^—n^w^pppi

-36 -

<pointt'r_stmt>: pointer <point8r_defJi5t> ;
<pointer_defJist>: «.pointer_defJist> , <pointer_def>

<pointer_def>
<pointer_def>: <name> (<integer>)

The ;>ames define the names of the pointer classes, the integers are the resolutions of the correspor ding
pointer classes. At least one and ro more than four pointer classes may be defined; these pointer clasies
are referred to as PO, PI, P2, and P3 in the specification of the AMOPs.

The POINTER statement used in the HIS-6000 implementation is

pointer pO(l), pl(4);

PO is the class of pointers to byte-aligned objects; PI is the class of pointers to word-aligned objects.
Word pointers can be held and operated upon in the index registers; byte pointers are operated upon in
the general registers and indirected through by subroutine

1.10 The OFFSETRANGE Statement

The OFFSETRANGE statement is an ontional statement which defines, for each pointer class defined in the
POINTER statement, the range of offsets permitted in references indirect via such a pointer (see section
2.1.1.2). The form of the OFFSETRANGE statement is

<offsetrange_stmt>: offsetrange <o(fset_defJist> ;
<offset_def..::st>: <offset_def_list> . <offset_def>

<offset_def>
<offset_def>: <poinfer_class_name> (<lo_bound> , <hi_bound>)

where the lo_bounds and hi_bounds are optional integers. Each of.set.def specifies the range of
allowablj offsets for a particular pointer class; this range is the set of integers not less than lo_bound
and not greater than hi_bound. If a bound is not present, then the range is considered unbounded in the
corresponding direction. If no range is specified for a pointer class, then only zero offsets are allowed;
any specified range must include zero.

1.11 The RETURNREG Statement

The RETURNREG statement specifies in which registers functions returning values of various types return
those values. Registers must be specified for types INT and DOUBLE as well as for all pointer classes
defined in the POINTER statement. The form of the RETURNREG statement is

<returnreg_stmt>: returnreg <return_def_list> ;
<return_defjist>: <return_defjist> , <return_def>

<return_def>
<return_def>: <register> { <type_list>)

The types may be names of primitive C data types as defined in the TYPENAMES statement or names of
pointer classes as defined in the POINTER statement; the corresponding register is defined to be the
register in which functions returning values of those types will place the returned values. For example,
the RETURNREG statement used in the HIS-6000 implementation is

returnreg q(int,pO,pl), f(double);

It is advised that pointers of all classes be returned in the same register in a compatible form to avoid
errors caused by mismatches in the declarations of functions returning pointers.

— ^>

 • i mmmii ^^^mm

37

1.12 The TYPE Statement

The TYPE statement defines which registers are to be used in the evaluation of expressions to hold
values of the various abstract machinu data types. The form of the TYPE statement is

<type_stmt>:
<type_def_list>:

<type_def>:

type <type_def Jist> ;
<type_defjist> , <tyDe_def>
<type_def>
<type> (<register Jist>)

The type is the name of a primitive C data type as defined in the TYPENAMES statement or the name of a
pointer class as defined in the POINTER statement; the registers are the abstract machine registers or
classes of abstract machine registers which may be used to hold values of the corresponding type. For
example, the TYPE statement used in the HIS-6000 implementation is

typechar(r),int(r),float(f),double((),pO<r),pl(x);

The registers specified in the TYPE statement need not include every register physically capable of
holding a particular type; only those registers which the implementer desires to use in evaluating
expressions of that type should be included in the TYPE statement. In the HIS-6000 example, only the
index registers (X) are specified for the pointer class PI even though the general registers (R) are
capable of holding such pointers and, in fact, a general register (the Q register) is used to hold such a
pointer when returned by a function call; this was done in order to minimize unnecessary use of the
general registers which are relatively few in number.

2. The OPLOC Section

In the OPLOC sectk n of the machine description, the AMOPs are defined in terms of the possible locations
of their operands and the corresponding locations of their results. Each definition consists of a list of
triples called OPLOCs; an OPLOC specifies a particular set of first operand locations, second operand
locations, and result locations. An OPLOC may also specify that one or more registers are clobbered by
the evecution of the code for an abstract machine instruction; this informs the code generator that it may
be necessary to emit instructions to save the contents of the clobbered registers before emitting the
abstract machine instruction. The forms of an OPLOC are

and

<Ioc_expr> , <loc_expr> , <loc_expr> ;

<loc_expr> , <;oc_expr> , <loc_expr> <clobber> ;

where a clobber 3 a list of one or more register names separated by commas and enclosed in square
bracKets. The location expressions specify locations for the first operand, second operand, and result,
respectively. A location expression specifies either a set of registers or a set of memory reference
classes; these sets may be specified using particular registers or memory reference classes along with
the operations of union ('j') and negation C-'). The syntax of a location expression is

■MMB

-38-

<loc_expr>: <register_expr>
<memory_expr>
1
2
<null>

<r*gister. .eKpr>: <r«gisfer_»xpr> | <r*gister_expr>
• <register_expr>
(<register_expr>)
<register_name>
<register_cl«ss_name>

<memory_expr>: <memory_expr> | <memory_expr>
" <memory_expr>
(<memory_expr>)
<memory_ref_cl»ss_n«me>
M
indirect

The negation operator V has precedence over the union operator f. The location expressions "1" and
"2" may be used only for the location of a result; they specify that the result is placed in the first or
second operand location, respectively. Only the location expression for the second operand of a unary
AMOP may be null. The location expression "M" represents the set of all memory reference classes; the
location expression "indirect" represents the set of all indirect memory reference classes.

The OPLOCs are associated with AMOPs in location definitions which consist of one or more AMOP labels
followed by one or more OPLOC-:

<loc_def>:
<AMOPJist>:

<AMOPJabel>:
<OPLOCJist>:

<AMÜPJist> <0PL0CJist>
<AM0PJist> <AMOPJabel>
<AMOPJabel>
<AMOP> :
<0PL0C_list> <0PL0C>
<0PL0C>

Each AMOP in the list of AMOP labels is associated with the list of OPLOCs; each OPLOC in the list of
OPLOCs represents an acceptable set of operand/result locations for each of the AMOPs. For example,
the location definition

♦d: -d: «d: /d: f.M.':

used in the HIS-6000 machine description specifies that the AMOPs for double-precision floating-point
addition, subtraction, multiplication, and division all take their first operand in the F register, their second
operand in memory, and place their result in the F register. Another example is the location definition

■«: •»; M,a,q; M,q,a;

which specifies that the AMOPs left-shift-assignment and right-shift-assignment both take their first
operand in memory, their second operand in a general register, and place their result in the other general
register. A third example is the location definition

•i: /i: qMq[?]=

which specifies that the AMOPs for integer multiplication and division both take their first operand in the
Q register, t(9ir seconc operand in memory, place their result in the Q register, and clobber the contents
of the A register in the process. Note that the location definitions

mm

-39

♦i: rMli

•jnd

♦i: r,M,r,

are not equivalent. The second definition allows the code generator to emit an abstract machine
instruction which adds an integer in memory to an integer in the A register and places the result in the 0
register; the first definition requires that the result be placed in the register containing the first operand

Ji!16 ?Pt?C section ^ ,he mach,ne description consists of a sequence of location definitions which deftne
the AMOPs of the intermediate language. (A small number of AMOPs should not be defined in the OPLOC
section of the machine description; these are indicated in Appendix II.) An AMOP may appear no morm
i lan once in the OPLOC section of the machine description.

3. The Macro Section

The macro section of the machine description contains the macro definitions for the AMOPs; these macro
definitions expand into the object-language statements needed to interpret the corresponding abstract
machine instructions. A macro definition consists of a list of AMOP labels followed bv a list of characte.
string constants. The list of AMOP labels specify that abstract machine instructions for these AMOPs are
to be emitted as macro calls which refer to this macro definition. The character st mgs make up the body
of the macro definition; they are wnMen out in sequence as the expansion of a corresponding macro call
The character strings may have optional location prefixes which test for a specific set of location« of the
operands and result; a character string with an attached location prefix is included in the expansion of the
macro call only if the test specified by the location prefix succeeds. A character string may contain
embedded macro calls and references to the arguments of the macro call (see Appendix VI, section 1)
The macro definition for an AMOP must correspond to the location definition for the AMOP in that correct
code must be generated for all combinations of operand/result locations that are allowed by the location
definition.

The macro definitions can refer to the AMOP and the operand/result locations by using the following
abbreviations:

meaning

symbolic representation c' operation
symbolic representation of first operand
symbolic representation of second operand
symbolic representation of result
internal representation of operation
internal representation of first operand
infernal representation of second operand
internnl representation of result

Recall that in the intermediate language representation of an abstract machine instruction, »he fi^st
argument of the macro call is the AMC3 opcode, and the following arguments are REFs for the result first
operand, and second operano (see section 2.!.1.2). The macro "n" is the implementer-defined NAME
macro which can return any convenient symbolic representation for an operation or operand/'esult
location; it is assumed to be implemented as a C routine called ANAME (see Appendix VI, section 4).

An example of a simple macro definition is the definition for integer addition used in the HIS-6000
machine description. The location definition is

abbreviation expansion

•0 *n(»0)
• F Xn(«3,«4)
• S Xn{mb,m6)
• R *n(«l,»2)
•'0 rO
•T •3,»4
•'S •5,a6
e'R • l,a2

*>: rMli

^MM

•m^*^~^m^^*m u iiinii M

-40-

•nd the macro definition is

♦i: " AD«R «S"

This location/macro definition of the AMOP '♦i' expands to produce assembly-language statements such es

ADA X (external variable "X")
ADQ 3,DL (literal "3")
ADA 0,2 (indirect through X2)
ADQ 5.7 (an automatic or temporary)

A more complicated macro definition is used for the AMQP '.ii' (move integer). This macro definition must
be capable of generating code to move an integer between a memory location and a general register or
from one general register to the other. Three character strings with location prefixes era used for the
three cases register-to-memory, memory-to-register, and register-to-register:

.ii:
(r„M): " STeF «R"
(M„r): " LD«R eF"
(r„r): " LLR 36"

The location prefixes consist of location expressions for the first operand, second operand, and result.
The operand and result locations of a pa-ticular macro call are cdnpared to the location expressions in
the location prefix (comparisons with a null location expression always succeed); if all three comparisons
succeed, the corresponding character string is included in the expansion of the macro call.

The macro section of the machine description may also define explicitly named macros; these may be
keyword macros (see section 2.1.2) or implementer-defined macros which are called in the definitions of
other macros. A named macro is defined by using the name of the macro in place of an AMOP in the
label(s) preceding the body of the macro definfion. A single macro definition may have both AMOP and
macro name labels; this is useful when it is desired that the defintion of one abstract machine instruction
itself contain another abstract machine instruction since the "internal" names used to refer to the macro
definitions of AMQPs are not accessible to :he writer of the machine description. An example of a
keyword macro definition in the HIS-6000 machine description is that for the ENTRY macro:

en: " SYMREf «0"

The argument to the ENTRY macro is an assembler symbol as produced by the 1DN macro (see Appendix
III).

The macro section of the machine description consists of the reserved word "macros" followed by a
sequence of macro definitions. Macro definitions must be provided lor most of the AMOPs of the
intermediate language (exceptions are indicated in Appendix II) and for all of the keyword macros of the
intermediate language which are not defined by C routines. An AMOP or a macro name may not be
defined more than once in the macro section of the machine description.

mmm mam^mm j

■ i «««iw^iapMMa^p^^wa^w^HwnniapnmaManB ■■ 111 n ■ ———<

-41 -

Appendix II - The Intermediate Language: AMOPs

The operations of the abstract machine are represented in the intermediate language as three-address
instructionsj the operator« of these instructions, called abstract machine operator« (AMOPs), «re described
in the table« below. For each AMOP i« listed it« opcode {in octet), it« «ymbolic representetici m the
machine description, the types of it« operands and result, and a description of the basic operation
involved. The type entry consists of a list of types for the first operand, second operand (if eny;, end
result of an AMOP, in that order; the types are taken from the following list of abbreviations:

c character
i integer
f floating-point
d double-precision floating-point
x any type
p any pointer
pO class 0 pointer
pi class 1 pointer
p2 class 2 pointer
p3 class 3 pointer
I a location (the result of a jump)

The following notes are referenced in the AMOP tables:

1 - This AMOP should be defined only if the corresponding pointer classes are defined.

2 - The definition of this AMOP is optional.
3 - OPLOCs should not be specified for this AMOP.
4 - This AMOP is used only in the tree representation of expressions internal to the code

generation phase: it should not appear in the machine description.
5 - This AMOP causes a side-effect on its (first) operand, which must be an lvalue;

therefore, all OPLOC« for this AMOP must specify memory a« the location of the (first)

operand.

MH-HBMHMB
MMHMI

"^■^■^'■"«w■»^»,w™*»»^r«•^pw■^^i■■lp■■■^p^^»■••»■w•■^'™w"!^^■•"^lwp■»^"^'^w*■"^■^»■'^••w•'■■"■"■^^,■■ll "■ "■■'■•m

42-

Un«ry Abstract MMhin« Op«ratort

opcod« symbol typM no.,1 bnk operation

0000 -ui *>*
0001 -ud 44
0002 ♦♦bi '.' 5
0003 ♦♦ai).i 5
0004 -bi u 5
0005 --ai ',' 5
0006 .BN0T i.i
0007 1 x." 4
0012 .sw ifi
0013 ♦♦be c,i 5
0014 ♦♦ae c,i 5
0015 -be c.i 5
0016 —*c c,i 5
0017 &u0 x,pO
0020 &ul x^l 1
0021 &u2 x.p2 1
0022 &u3 x.p3 1
0023 *u P.x 4
0024 —OpO P0.l 2
0025 --Opl Pl.l 1,2
0026 —0p2 P2.I 1,2
0027 —0p3 P3.I 1,2
0030 !-0p0 P0.l 2
0031 !-0pl Pl.l 1,2
0032 !-0p2 P2,l 1,2
0033 1-0^3 P3.I 1,2

unary minus
i'nary minus
pra-increment
post-increment
pre-decrement
post-decrement
bitwise negation
truth-value negation
switch
pre-increment
post-increment
pre-decrement
post-decrement
address of
address of
address of
address of
indirection
jump on null pointer
jump on null pointer
jump on null pointer
jump on null pointer
jump on non-null pointer
jump on non-null pointer
jump on non-null pointer
jump on non-null pointer 1

I

J

■«■^•■•P'^w-rwWIPlPP^Bi ^■"_
W9^m^^*^mi^**i^^**m ■ ■ "^ "

43

Conversion Abstract Machine Oporttort

opcod« symbol typM notes bnic operation

0040
0041
0042
0043
0044
0045
0046
0047
0050
0051
0052
0053
0054
0055
0056
0057
0060
0061
0062
0063
0064
0065
0066
0067
0070
0071
0072
0073
0074
0075
0076
0077

.ci

.cf
cd
.ic

.if

.id
ipO

ipl
.ip2
ip3

.fc

.fi

fd
dc
.d.
.df
.pOi
•pOpl
•p0p2
p0p3
•Pli
plpO
.Plp2
•Plp3
.p2i
■P2p0
.p2pl
■P2p3
.p3i
.p3p0
•p3pl
•p3p2

c.i

Cf
c,d
i.c

i,d
i,p0
•.pl
i.p2
i,p3
f(c
U
f.d
d.c
d.i

d.f
pO,i
pO,pl
pO,p2
p0,p3
Pl,i
pl.pO
P1.P2
Pl,p3
p2>i
P2,p0
P2,pl
p2.p3
p3,i
p3,p0

p3,pl
P3,p2

convert c to i
convert c tof
converl ctod
converl itoc
conver itof
converl • tod
converl itopO

1 converl i topi
1 conver ltop2
1 converl 1 to p3

converl f toe
conver f toi
conver f tod
conver d to c
convert dtoi
convert dtof
conver pO to i
conver pO to pl
conver pO to p2
conver pO to p3
conver pl toi
conver pl to pO
conver pl to p2
conver pl to p3
conver p2toi
conver 1 p2 to pO
conver t p2 to pl
conver t p2 to p3
conver t p3 to i
conver t p3 to pO
conver 1 p3 tc pl
conver 1 p3 to p2

a^HMBM

' " "' ■»^■^•' »^^

44

Binary Abctrac Machin« Operators

opcod« tymbol typat notM basic operation

0100
0101
0102
0103
0104
0105
0106
0107
OHO
Olli
0112
0113
0114
0115
0116
0117
0120
0121
0122
0123
0124
0125
0126
0127
0130
0131
0132
0133
0134
0135
0136
0137
0146
0147
0150
0151
0152
0153
0154
0155

+1

—H
♦d
-♦d
-i

—i
-d
—d
*i
-•i
»d
-«d
/i
-/'
/d
-/d
X
•X
«
m«

»
m»

&
-&
A

-A

.OR
-OR
&&
.IVOR
-pOpO

+pO
>pl
*P2
■»•p3
-pO
-Pi
-P2
-P3

..i.i

i,i,i
d.d,d
d,d,d
)>i>i
i,i,i
d.d/J
d.d.d

i.i.i
i,i,i
d,d.d
d.d.d

W
i,i,i
d.d.d
d,d,d
i,i,i
i,i,i

'.I.I

I.I.I

1,1,1

i.i.i
i.i.i

i.i.i

I.I.I

i.i.i
1,1,1

i,i,i
x,x,i
x.x.i
pO,pO,i
x.x.x
pO.i.pO
Pl.i.pl
P2.i,p2
p3,i,p3
pO,i,pO
Pl.i.pl
P2.i,p2
P3,i,p3

25

2,5

25

25

2,5

25

25

25

25

25

25

25

25

25
4
4

addition

addition-assignment
addition

addition-assignment
subtraction

subtraction-assignment
subtraction

subtraction-assignment
multiplication

multiplication-assignment
multiplication

multiplication-assignment
division

division-assignment
division

division-assignment
modulo
modulo-assignment
left-shift
left-shift-assignment
right-shift
right-shift-assignment
bitwise AND
bitwise /^ND-assigrment
bitwise XOR
bitwise XOR-assignment
bitwise OR
bitwise OR-ossi^nment
truth-value AND
truth-value OR
pointer subtraction
assignment
increment pointer by
increment pointer by
increment pointer by
increment pointer by
decrement pointer by
decrement pointer by
decrement pointer by
decrement pointer by

^m --■ - J

■ ""

A5-

Abttract Machin« Operators, continued

opcod« symbol typM notes basic operation

0160 .cc c,c 3 move character

0161 .ii '■' 3 move integer

0162 .ff IJ 3 move float

0163 .dd d.d 3 move double
0164 pOpO pO,pO 3 move pointer pO

0165 •plpl pl.pl 1.3 move pointer pi

0166 .P2p2 P2.p2 .3 move pointer p2

0167 p3p3 p3,p3 1,3 move pointer p3

0171 ? x.x.x 4 conditional

0172 : x.x.x 4 conditional

0200 mm\ i.i,l jump on equal

0201 M ..i.l jump on not equal

0202 <i i.i.l jump on less than

0203 >i i,i,l jump on greater than

0204 <-i 1,1,1 jump on less than or equal

0205 >-i i.i.l jump on greater than or equal

0206 ~d d,d,l
0207 !-d d.d.l
0210 <d d,d.l
0211 >d d,d.l
0212 <-d d.d,l
0213 >-d d,d,l
0214 -pO pO,pO,l
0215 !-pO pO,pO,l
0216 <pO pO,pO,l
0217 >pO pO,pO,l
0220 <-pO pO,pO,l
0221 >-pO pO^O.)
0222 «pi pl.pl.l 1.2
0223 !-pl pl.pl.l 1.2
0224 <pl pl.pl,l 1.2
0225 >pl pl.pU 1.2
0226 <.pl pl.pU 1.2
0227 >-pl pl.pl.l 1.2
0230 "P2 P2,p2,l 1.2
0231 !-p2 p2,p2,l 1.2
0232 <P2 P2.p2.l 1.2
0233 >P2 P2,p2.l 1.2
0234 <-p2 P2>p2,l 1.2

0235 >-p2 P2.P2.I 1.2
0236 "P3 p3,p3,l 1,2
0237 !-p3 p3,p3,l 1.2
0240 <p3 P3,p3,l 1.2
0241 >p3 p3,p3,l 1.2
0242 <-p3 p3,p3,l 1.2
0243 >-p3 p3,p3,l 1.2

^mmam MMaaaH«

r " — ■

Abstract Machine Operators, continued

-46

opcoda symbol typos notos basic oporalion

0260 ♦♦bpO P0,i,p0 5 pre-increment by
0261 ♦♦apO pO^pO 5 post-increment by
0262 -bpO pO,i,pO 5 pre-decrement by
0263 —apO pO,i,pO 5 post-decrement by
0264 ♦♦bpl pl.i.pl 1.5 pre-increme;.(by
0265 ♦♦apl pl,i,pl 1,5 post-increment by
0266 -bpl pl.i,pl 1^ pre-decrement by
0267 --apl PUPI 1.5 post-decrement by
0270 ♦♦bp2 P2.i.p2 1.5 pre-increment by
0271 ♦♦ap2 P2,i.p2 1.5 post-increment by
0272 ~bp2 P2,i1p2 1.5 pre-decrement by
0273 --f32 P2>i>p2 1.5 post-decrement by
0274 ♦♦bp3 P3>i>p3 1.5 pre-increment by
0275 ♦♦ap3 p3,i.p3 1.5 post-increment by
0276 "bp3 pS^pS 1.5 pre-decrement by
0277 ~ap3 p3,i,p3 1,5 post-decrement by

MM

mmmmmmmFi*^^^~~' ,, r-,— laiiMiK«-m juini

-47-

Ar.pendlx III - The Intermediate Language: Keyword Macros

The Keyword macros of the intermediate language »re described below in alphabetical order. Each
section is headed by the name of a macro and its (.ailing sequence; following is a description of the
arguments and the intended function of the macro call.

1. ADCONn: lAn(NAME) [n=04,2.31

This is a set of macros, one for each possible pointer class. NAME is an object-lan^jage symbol
constructed from an identifier by the IDN macro. The expansion of an ADCONn macro should define a
pointer constant of pointer class "n" which points to the external variable or function with the given
name. This macro is used in the initialization of static and external pointers and arrays of pointers.

2. ALIGN: IAL(N)

N is an integer specifying the CTYPE (an internal type specification) of an object for which the
appropriate alignment of the location courier must be made. The relevant CTYPEs are:

value ctyp«

2 char
3 int
4 float
5 double
6-9 pointer

The expansion of the macro call should be the pseudo-operations needed (if any) to properly align the
location counter. This macro is used in the initialization of static and external variables.

3. CALL: ICA(NARGS,AROP,0,PBASE,FOPPSET)

The CALL macro generates a function call. NARGS is an integer specifying the number of arguments to
the function call; ARGP is an integer specifying the byte offset in the caller's stack frame of the
arguments w/hich have been so placed by previous instructions. F8ASE and FOFFSET are integers whic^
together make up a REF specifying the location of the function being called (it may be indirect through a
pointer in a register); these are passed as arguments 3 and 4 of the macro call so that they may he
referenced as «F in the macro definition.

4. CHAR: 1C(I)

The CHAR macro produces a definition of a character constant whose value is thi integer I; it is used in
the initialization of static and external characters and arrays of characters. When producing code for an
assembler which does not have a byte locahon counter (for example, the HIS-6000 assembler GMAP), the
characters produced by CHAR macro calls must be stored in a buffer until either enough are accumulated
to fill a machine word or a macro call other than CHAR is issued; in this case, all macros which may follow
a CHAR macro must first check to see if there are any characters in the buffer and if so, print the
appropriate statement and clear the buffer.

6. DOUBLE: ID (I)

The DOUBLE macro produces a definition of a non-negative double-precision floating-point constant
whose C source representation is stored in the internal compiler table CSTORE at an offset specified by
the integer I (the compiler itself does not use any floating-point operations). This macro is used "n the
initialization of static and external double-precision floating-point variables and arrays.

-48-

6. END: XENDO

The END macro marks the end of the intermediate language program. It may produce an END statement, if
needed, or signal that any processing associated with the end ot the program should be performed.

7. ENTRY: ZEN (NAME)

NAMfc T an object language symbol constructed from an identifier by the ION macro. The expansion of
the ENTRY macro should define the symbol as an entry point, that is, one which is defined in the current
program but accessible to other programs.

8. EPILOG: lEP(FUNCNO,FRAMESIZE>

The EPILOG macro produces the epilog code for a C function. The epilog code should restore the
environment of the calling function and return to that function. In the HIS-6000 implementation, these
actions are performed by a subroutine. FUNCNO and FRAMESIZE are integers which specify the internal
function number of the function and the size in bytes of its stack frame, respectively. In the HIS-6000
implementation, these integers are used to define an assembly-language symbol whose value is the size in
words of the stack frame; this symbol is used by the code produced by the PROLOG macro which allocates
tlie stack frame.

0. EQU: lEa(NAME)

NAME is an object language symbol constructed from an identifier by the ION macro; it is to be defined as
having a value equal to the current value of the location counter.

10. EXTRN: ZEX(NAME)

The EXTRN macro is similar to the ENTRY macro except that it defines the symbol to be an external
reference, that is, one which is used in the current program but assumed to be defined in another
program.

11. FLOAT: 2F(I)

The FLOAT macro produces a definition of a non-negative single-precision floating-point constant; the
argument has the same interpretation as that of the DOUBLE macro.

12. GOTO: ?GO(0,BASE,OFFSET>

The GOTO macro produces an unconditional jump to a location denoted in the source program by a label
constant or expression. BASE and OFFSET together make up a REF which specifies the target location of
'he jump; these are passed as arguments 1 and 2 of the macro call so that trey may be referenced as «R
in the macro definition.

13. HEAD: 7.HD()

The HEAD macro marks the beginning of the intermediate language program. It may produce header
statements, if needed, or signal that any initialization processing should be performed.

14. IDN: 7.1 (X)

The IDN macro should expand to the object language representation of the identifier whose C source
representation is stored in the internal compiler table CSTORE at an offset specified by the integer X.
The processing performed by this macro may include the truncation of long names, the replacement of the
underline character (which is allowed in C identifiers), and the insertion of special characters) to avoid
conflicts oetween C identifiers and other object language symbols.

'

11 ■

Ag-

io. INT: UN (I)

The INT macro produces a definition of an integer constant whose value is specified by the integer I. It
is used in the initialization of static and external variables and arrays and in the construction of tables for

the LSWITCH macro.

16. LABCON: 1LC(N)

The LABCON macro generates an address const- . whose value is the address «responding to internal
label number N The LABCON macro is used to construct the tables for ttie LSWITCH and TSWITCH

macros.

17. LABDEP: IL(N>

The LABDEF macro defines the location of internal label number N

18. LN: ILN(N)

The LN macro associates the line in the source program whose line number is specified by the integer N
with the current value of the location counter. This macro may optionally produce a comment line in the
object program to aid in the reading of the object program, or it may define a line-number symbol to be
used in conjunction with a debugging system.

19. LSWITCH: ILS (N JLBASB »LOFFSETJBASB JOPPSET)

The LSWITCH macro should generate code which jumps according to the value of the integer whose
location is given by IBASE and I0FFSET (seleded from the locations permitted by the OPLOC for the sw
operation). This macro is immediately followed by N (N>0) INT macros (the cases), which are immediately
followed by N LABCON macros <the corresponding labels). A search should be made through the case list;
if a match is found, a jump should be made to the label defined by the corresponding LABCON macrc If
the integer matches none of the list entries, then a jump should be made to the internal label defined by

LBASE and LOFFSET.

20. NDOUBLE*. IND(I)

The NDOUBLE macro is »he same as the DOUBLE macro except that the value of the defined constant is

made negative.

21. NPLOAT: XNPd)

The NFLQAT macro is the same as the FLOAT macro except that the value of the defined constant is made

negative.

22. PROLOG: IP(FÜNCN0»PÜNCNAME)

The PROLOG macro produces the prolog code for a C function. FUNCNAME is an integer representing the
name of the function as it appears in the source program; its interpretation is the same as that of the
argument of the IDN macro. FUNCNO is an integer which specifies the infernal function number o. the
function; it may be used in conjunction with tha EPILOG macro to access the size of the function's stacK
frame. The PROLOG macro should define the «ntry point name and produce the code neiessary to save
the environment of the calling function and to set up the environment of the called function using the
information provided in the function call. In the HIS-6000 implementation, these actions are ^rfof med by
a subroutine. The PROLOG macro call appears in the intermediate language program immediately before
the first instruction of the corresponding function.

■MM

»^•»•■»p»»^ -^ " ■■-- •' i*mm^m^*^^^^mm^^mmi^\ ■ w

-50-

23. RETURN: %RT()

The RETURN macro produces the statements needed to return from a (unction to the calling function; in
general, this macro will result in a transfer to the EPILOG code. The returned value of the function is
loaded by preceding macro calls into the appropriate register as specified in the RETURNREG statement of

the machine description.

24. STATIC: ZST(N,S)

The STATIC macro defines the location cf the static variable whose internal static variable number is N. S
is the size of the static variable in bytes. Typically, this macro will define an assembly language symbol

by which the static variable can be referenced.

25. STRCON: 1SC(N)

The STRCON macro should generate a character pointer which points to the string constant whose
internal string number is N. The STRCON macro is used in the initialization of static and external

variables.

26. STRING: ISRO

The STRING macro mark: the place in thr object program where the string constants should be defined.
This macro is implemented as a C routine macro since substantial processing is involved.

27. TSWITCH: lTS(LO,LBASE,LOPPSETJBASE,IOPPSET,HI)

The TSWITCH macro produces an indexed jump based on the value of the integer whose location is given
by IBASE and ICFFSET (selected from the locations permitted by the OPLOC for the .sw operation). This
macro is immediately followed by a sequence of HI-LO*l LABCON macros defining the target labels
corresponding to integer values from L0 to HI. Values outside \m range should result in transfers to the

internal label defined by LEASE and LOFFSET.

28. ZERO: 'iZ(I)

The ZERO macro specifies the definition of a block of storage initialized to zero; the size in bytes of this
storage area is specified by the integer I.

^^M^n^ ^^MaMMMMBHaM

■'' '■" " w^mm* ■*-*■ wm^ma^mmm

51

Appendix IV - The HIS-6000 Machine Description

The machine description used in the HIS-6000 implementation is listed below. Much of its complexity is «
direct result of the fact thai the HIS-6000 is not byte-addressed. In the macro definitions, the character
sequence ^n* represents the newline character.

typenames (char,int,float,double);
regnames (x0>xl,x2>x3,x4,a,q,f);
memnames (reg,auto,ext,stat,paramllabel,intlit,floatlit^trir.glitlixO,ix 1,1x2,1x3,1x4^^);
size l(char),4(int,float),8(double);
align l(char),4(int,float),8(double);
class x(x0,xl,x2,x3,x4), r(a,q);
conflict (a,f),(q,f);
saveareasize 16;
pointer pO(l), pl(4);
returnreg q(int,pO,pl),f(double);
typechar(r).int(r),fi03t(f),double(f),pO(r),pl(x);

.sw: aMl[x4];
>p0: -pO: ♦i:-i:&:A: .OR: -pOpO: «: »: rMli
*pl: M,M,x;
-pi: x.q.l;
—»-i: -&: -A: -OR: M.r.l;
«.: /i: qMq[a];
♦d; -d: «d: /d: fMf;
X: q.M,a[q];
m«- ■»■ M,e,Mj S4,q,a;
&u: Ki„x;

autolextlstatlstrinfiiilialiq,/;
.B.NOT: .x: .Ci: r.li
-ui: —bi: \Kf\
Xf: .Cd: .if: id: Ml
.fc: .dc: .fi: .di: f..q;
.fd: HJi\
.df: -ud: f.,1;
.ipO: .pOi: r»l;

M..r;
.ipl: .pOpl: r„xi

M..x;
.pli: .plpO: x„r;

K,r;
♦ ■•■bi: M,.!;
♦ ♦ai; —ai: ♦♦be: ♦♦ac:
—be: —ac: M.ilqJ

M„q[a];
♦ ♦bp: —bp; MMrlx;
♦ ♦ap; —ap: M,M.a[q];

M,M.x;
-«0: !-0: <0: >G:< -0: >-0: r|f..r;
mmp- \mp: <p; >p- <"p: >»p: r|x,M.M;

•^^mMMaa

r
■"^ mmmr*^'"^* ^mmmmmr^mmm

52

macros

.sw:- TSX5 .SWTCH"

.Ci: "\\"

XC:
(auto,,): " EA«R 0,7\n-
(stat,,): " EA»R .STAT\n"
(ia,^): " STA .TEMP

LDQ .TEMP\n"
(iq.^): " STQ .TEMP

LDA .TEMP\n"
(auto|stat|indiroct„):
•^ifC^-T), A0«R «eo(«T)VO

TSX5 .CTO»R"
(ext|stringlit„):
■ LD«R »F

• RRL 27"
(r..r): ' EA.R 0,-FL

•RRL 18"
(r„auto|stat|indi rect|stringlit :
■ F.AX5 0,»FL\n"
(r,.auto): " EA«F 0,7\n-
(r,.stat): " EA«F .STAT\n"
(r„auto|stat): "ttfdto^'R), AD»F %co(«'R)\n,)

rsxa .•FTOC"
(rM8tringlit): " EA«F ■R

TSX4 .•FTOC"
(r„ext): " •FLS 27

ST«F •R
•FRL 27"

(q.,ia):
-imoW), ADA %co(^R)\nl)

TSX4 .ATOC"
(a„iq):
■»fOW«*^ ADQ Xco(^R)\n))

isxa QTOC"

.ii:
(r„M): " ST.F •R"
(M,.r): " LD«R •F"
(r„r): " LLR 36"

.ff:
(f,.M): " FSTR •R"
(MHDI " FLD •F"

.dd:
•

(f,.M): " DFST •R-
(M..!): " DFLD •F"

.pOpO:
(r..r): " LLR 36"
(r„M): " ST«F •R"
(M,.r): " LO«R •F-

^m - -;j"--^ - - - -

■- ■i—- ———^—^, -~———-—^w™

53-

plpl:
(«„x): " EA»R 0.«3"
(x„M): " STZ •R

ST«K •R"
(M^x): " LD«R •F"
(x..q): ' EAQ 0,«3"

(q,.*): " EA«R 0,QU-
(M..q): " LDQ •F"
(q„M): " STQ •R"

.pOpl:
<r..x): " EA.R 0,-FU"
(Mwx): " LD-R •F"

.plpO:
()(„r): " EA-R 0.«3"
(M^r): " LD«R •r
.ic:" AN«F -0377,01"

.ipO:
(M.^): - LD«R •F"
(r„r): "\\"

..pi:
(r„x): " EA.R O.nFU"

.pOi:
(M..r): " LD«R •F"
(r„r): "\\"

.pli:
(x„r): " EA.R 0,«3"

.fd:" FLD •F"

.df: "\V

.et: .cd: .if: .id " LDQ 0,DL
LDE -35B25,DU
FNO"

.fi: .di: " UFA -71825.^'

fc: .dc: " UFA -ZIBZS.DU
ANQ -0377.DL"

♦i:- AD.R •S"
m

-i: SB.R •S"
•t: " MPY •S"
/i: *: " DIV •S"
♦d:- DFAD •S"
-d:" DFSB •S"
«d:- DFWP •s-
/d:" DFDV •S"
-♦i:" AS«S •R"

... _

« i'm~—^*mi^**em^m~m^*—~—^m i ■ i

»:
(.intlit,): "
(,-intlit,): "

•FRS
LXL5
•FRS

^(•'Sr
•S
0,5-

«:
(.intlit,): "
(,~intlit,): "

•FLS
LXL5
•FLS

^(•'S)"
•3
0.5"

-»: " LD^R
•RRS
ST^R

•F
O.^SL
•F"

-«: " LD«R
•RLS
ST«R

•F
O.^SL
•F"

♦pO:" •FRS
AD«F
•FLS

16
•S
16"

-pO:- •FRS
SB«F
•FLS

16
•S
16"

♦pl:" LXL^l
ADL»R

•S
•F-

-pl:" QLS
STQ
SQL^F

18
.TEMP
.TEMP"

-Ui:" LC^R •F"

--bi: " LD-R
SB«R
ST^R

•F
-1,DL
•F"

-ud:" FNEG-

♦♦bi: " AOS •F"

♦♦ai: " LD^R
AOS

•F
•F"

-ai: "

(,.a): "

(-q): "

LOA
LDQ
SBQ
STQ
SBA
STA

•F
•F\n"
-1.DL
•F"
-1.DL
•F"

54-

-- J

-— ■■•"•"•'»--■■"•■'■«■■WIPP»""'^—'—

55

♦+bp:
(-x): " LD-R «F

EA«R 1to(»'S)/4,«l
ST«R •F"

(..r): " LD»R •F
ADL«R XcoU'S)
ST»R •F"

-bp:
(»x): ' LD«R •F

EA«R -%o{*'S)/4M
ST«R •F"

(„r): " LOUR •F
SBL«R Xco(«'S)
ST»R •F"

*-»-ap:
(«x):- LD«R •F

EAX5 Xo(m'S)/4,*l
STX5 •F"

(..a|q): " LDA •F
LDQ •F\n"

(..a): " ADLQ ^^(«'S)
STQ •F

(..q): " ADLA XcUn'S)
STA •F-

—ap:
(»x): " LD«R »F

EAX5 -%0{»'S)!4.*[
STX5 •r

(„a|q): ' LDA •F
LDQ •F\n-

(«a): " SBLQ Xco(«'S) .
STQ •F"

(..q): " SBLA %co(»,S)
STA •F-

.BNOT: " ER«F -1"

&u:
(ia|iq„r):
"KifCXodiT). ADL«F ^co(»'F)\n,)\\"
<ia.1q): " LLR 36"
(«q„a): * LLR 36"
(auto|stit„r>: " EA«R ^(•3,0)
XtH'io^7), ADL«R Xco(mT)\n,)\\'
(ext|strirglitMr): ' ' EA«R •F"
(„x): " EA»R •F"

&:" AN«F •S"
-&:" ANS»S •r
A: - ER«F •S"
-A: " ERS»S •r
.OR: " OR«F •S"
-OR: " ORS«S •r

■M ^ ■ - - ■

m'r~~-~~*r~m^^*nm^iimmmimmmmmam*^~*mmmmm***'*^**~~~~^ — ■" iii^^^i^ivswiMMMiiPBOTHKaMBqMPwaawBpiBnvmmv^ni1 ".■■ in i ^^^n

56

-p:" CMP»F •S
TZE •R"

!-p:- CMPnF •S
TNZ •R"

<p:" CMPIIF •S
TZE ♦♦2
TIMC •R"

>p:- CMP«F •S
TZF **2
TRC •R"

<-p:- CMPnF »S
TZE •R
TNC •R"

>-p:- CMP«F •S
TRC •R"

jc:
(..f): " DFCMP -ODO\n
(»r): " CMP.R 0,DL\n"

"^ajcdiO, •2)"

-pOpO:" SBL«F »S
«FRL 16"

hd:"l GMAP"

jmp: " TRA •o-

0: "•1"

en:" SYMDEF •0"

exi- SYMREF •o-

st:" SYMREF .PROLG^
SYMREF .CTOA^C

.STAT EQU »-

p: "*dn(«l) EQU *
TSXO .PROLG
ZERO .fSmO'

CO: "-V20/II 1,16/0-

ca:" TSX1 •F
ZERO • l/4,»0

tt:" TRA .EPILG-

ep:" TRA .EPILG
.FS«0 CQU • 1/4-

go: - TRA «R"

a^M^MiMai»

pmVW •Jpwp^i ■ "■• •' »'■l"*ill ■ —^^—' '■■■

57-

'

cpq:
(autoj: " EAQ 0,7\n-
(statj: " EAQ .STAT\n"
(iaj: " LLR 36\n-
(auto|stat|indir«ctJ:
-Xif(%o(«'F), ADQ »co(»'F)\n,)\\

♦ ♦be:
(auto|stat|indirec J:
"Xcpq<0,0.0,«T)

STQ .TEMP
LDA .TEMP
TSX5 .CTQA
ADA LDL
ANA -O377,0L
EAX5 O^VL
TSX4 .QTOC"

(•xt J: " LOA •F
ADA -OlOOO,DU
STA •r

—be:
(auto|stat|indireetn):
"Xcpq(0,OlO.«'F)

STQ .TtMP
LDA .TEMP
TSX5 .CTQA
SBA l.DL
ANA -0377.DL
EAX5 0,AL
TSX4 .QTOC"

(•xtB): " LDA •F
SBA -OlO00,DU
STA •F"

♦♦ac:
(auto|stat|indir«ctJ:
-%epq<0,0.0.«'F)

STQ .TEMP
LDA .TEMP
TSX5 .CTOA
EAX5 l^VL
T<;X4 .QTOC"

(extj: " LDA •F
LDQ •F
ADQ -OlO00,DU

• STQ •F'

■BMMBa -'- '

^^^^^ammmm • "■

58-

-ac:
(auto|stat|indirectN):
-%cpq(010.0,«T)

(extM):

STQ .TEMP
LDA TEMP
TSX5 .CTOA
EAX5 -iM
TSX4 .QTOC"
LDA •F
LDQ •F
sao -01000,00
STQ •F"

(The set of AMOPs used in <.ie machine dtscription is slightly different than the set presented in
Appendix II, particularly with regard to the unary address operator, comparison operators, and pointer
increment/decrement operators; these differences represent potential machine dependencies which were
corrected after the H1S-6000 implementation was comp eted.)

immim J

—- ■ ' ■ ■

59

Appendix V - The HIS-6000 C Routine Macro Definitions

The C routine macro definitions used in the HIS-6000 implementation are listed on the following pagev A
C routine macro definition is written as a C function returning a character string value. This character
string is "substituted" for the macro call and rescanned by the macro expander; thus, it may contain
references to its arguments and embedded macro calls. The fo^mai parameters of the C routine are ARGC
and ARGV: ARGC is an integer specifying the number of (character-string) arguments presen» in the
associated macro call; ARGV is an array of pointers to those arguments.

When the following routines were written, the formatted prmt routine PRINT was capable of producing
Output only onto a file and not into a string in ;ore; thus, where formatting is necessary, these routines
print their output directly and return the null »nng. Although there are dangers inherent in this practice,
in these cases the effect is the same as if the formatted string were returned and printed normally. The
char.'.ter sequences '\r, '\n', and '\V represen tab, newline, and backslash, respectively.

■ -

•^^^mmmmm**^^*^**** ' ■■ ii»»!«,« n MI im ^MVnp«l«mimP*>P<«P<^WVX"^v mm •*m~^^^mmm~*~^m

60

char «fn[]
{-inVc".-f-."nt-,"d-,-nd";«lV«Jc",
"adr."z-."i-,"sr-,-endVn".;eqVln",
"otherVit"};
char («ff[]K)

{aint,acha»,a{loat,anegf,adouble,anegdtaalignlajcl

aadcon,azero,aidn,astringlaendlanamelaequ,aln,
other.aif);

int nfn 18,
lineno 0,
mflag 0,
packD[4l
pacKno;

char «aln(argc,argv) int arge; char •argv[]i

{lineno-atoi(argv[0]);
packfO-,
return(".N«0 EQU »"h
)

char «aequ(argc,argv) int arge; char »argv[];

(packfO;
return("»0eQU «");
}

char »aint(argc,argv) int arge; char •argv[]j

{packfO;
return("\tDEC\t»0");
}

char «achar(argc,argv) int arge; char »argv[];

{if <argc>0) packc(atoi{argv[0]));
return("\\"); /« conceal following newline */
}

char »af loat(argc,argv) int arge; char *argv[];

{packfO;
if (argc>0) print("\tDEC\tXm",atoi(argv[0]));
returr("");
}

char «adouble(argc,argv) int arge; char *argv[];

I

packfO;
if (arge>0)

{print("\tOEC\t");
return(adblc(atoi(argv[0])));
}

-eturnC");

■MHMMHH . ^

m<^,m''''^^^mi^^m^fmmf'rmf9irm''mmtam.mmmmmmmmmmrmmmirmi^Kmim^rw^^m'' ^'"' '"'■ "ll•, '' ■"■ i'i».»»*»"!» " ™«ii ■•■■■■•■■ mi" m«i« .■ in m i

}

char «anegf(argc,argv) int arge; char *argv[];

{packfOt
if (argc>0) print("\tOeC\t-%m",atoi<argv[0]));
return("");
}

char «anegdUrgc^rgv) int arge; char MrgvQ

{

pacKfO;
if (argc>0)

{print("\tDEC\t-");
return(adbl.:(atoi(argv[0])));
}

returnC");
}

char *astring(argc>argv) int arge; char «argv[];

{auto int i.f.lc.c;
auto char *cp;

lc-0; /« location coumnr in STRING file •/
f-xopen(pnome,fn_string,MREAD,BINARY);

while(l)
{packf(h
c-cgetc(f);
if(ceof(f)) break;
pr nt(".SXd\tEQU\t»\n",ie>,
IC**;
while(l)

{if (c—T)
{c-egete(f);
le**;
if (c—'O') c-'NO';
packe(e);
}

else
{packe(c)*,
if (!c) break;
}

c-cgete(f);
le+*;
}

}
eclose(f);
return(-\\-h
}

char «aencKargc.argv) int arge; char »argv[];

61 -

__

62 -

{pacKfO-,
return(-\tEND");
)

char *regnam«[] {"X0",,,Xl",-X2","X3",-X4VAVQ"n;

char tanaine(argc,argv) int argcj char «argvß

{auto int)ase,off et;

if (*rgc>U offset-atoKargvCl]); else offset-O-,
if (argc>0) base-jtoi{argv[0]); else base-0;
if (mflag) cprint{VNAVIE(Xd11W)\n"Ibasefoffset);
if (base>-0) returr (regnames[base3);
base - -base;
if (base >- c_indirect)

{print("%o,Xd"/)ffset/4,base-cJndirect);
goto check;
}

else switch(oase) {

case c_auto:

print(,,TWI7"loffset/4);

goto check;
case c_extdef:

return(-\i(el)-);
case c_static:

print(".STAT*Xd"^ffset/4);
goto check;

case c_param:
print(,,1Cd,6"Ioffset/4);
goto check;

case cjabel:
print(".LXd",offset);
break;

case c_i teger:
if (offset<0 || offset>32000) printC-WVoffset);
else print("Xd,DL",offset);
break;

case c_float:
print("-Xs",adblc(offset));
break;

case c_string:
print(".S«d",offset)i
break;
}

return("");
check:
if (offset*4) error(6025,lineno);
retur n("");
}

/ mmmmm$mmmmm»mm

AALIGN - titp\ location counter

'^mmrn

"■■■■

^1
63

•/

char «aalign(argc,argv) int arge; char »argv[];

{

switch(atoi(argv[0])) {
case ct_double:

pacKf();
return("\tEVEN");
}

return("\\-):
1

AX - emit conditional jump

•/

char «ajc(argc,argv) int arge; char «argvß

{auto int cond;

cond-atoi(argv[0]);

switch(cond) {

case cc_eqO: return{"\tTZE\t»r);
case cc.neO: r*turn("\tTNZ\t«l");
case ccJtO: return("\tTMI\t«r);
case cc_geO: return("\tTPL\t«l");

case cc_gtO: return("\tTZE\t»*2\n\tTPL\t«l"h
case ccJeO: return("\tTZE\t«l\n\tTMI\tel");

}
return("");
)

char tother(argc,argv) int arge; char «argvß

{switch(atoi(argv[0])) {
case 5: returnCQ");
case 6: return("A");

}
returnCBAD");
}

char «aif(argc,argv; int a.gc; char «argv[]{

{return(atoi(argv[0])?"«r:"«2");
}

/« PACK CHARACTERS INTO WORDS «/

packed) int i;

••"""^^■^^~"~'" ■ll" —■~v~~^m^^*'^^^m^^m^*'^~m*^^**m*»^*^*^*****^~*mwiir ■■npiKipppwpvw

-64

{

pa^ Kbfpackno+ +]-i;
if (pacKno>-4)

{printr\tVFD\t9/Xd,9/Xd,9/Xd,9/Xd\n"l

pacKb[0]1pacKb[i]1pacKb[2],pacKb[3]>-,
packno-O;
1

}

pacKfO

{

while(packno!-0) packc(O);

}

char *aadcon(argc,argv) int arge; char »argvß

{packfOj
return("\tZERO\t«0");
}

char *azero(argc,argv) inf arge; char *argv[i

{auto int i,j;

if (argc>0)
{i-atoi(argv[0]);
while(packno && i) {packc(0)ii—;}
j - i/4; i -X 4;
if (j>0) pnntCVBSSVXdNn'.j);
while(i—)packc(0);
}

raturnfW);

}

char «aid^argc.argv) int arge; char «argv[];

{auto char «cpl,«cp2;
static char n[7];
auto mt i.c;

if (argc>0)
{cpl - &cstore[atoi(argv[0])];
cp2 - n;
fOr((-0;i<6;i**)

{c - »cpl**;
if (c -- '_') c - VTi
»cp2 + + - c;
}

•cpZ-AO';
return(n);

I
returnC"'),

^^■MBMHJ

■•' ■ ■ ' "■'» ' ""
l • ■^i^i^wi^^-^5

adblc(i)

{auto char »cpl,«co2i
static char buf[30],
auto int c,flag;

flag-FALSE;
cpl - &cstore[i]i
cp2 - &buf[0]i

while(c - »cpl**)
(it (c — T)

{flag-TRUE;
c - 'D';
J

if (cp2 < &bS[27])
»cp2+* - c;

}
if (!flag)

{«cp2** - "D";
«cp2** - 'O';
}

•cp2** - '\0';
return<&buf[0]);
}

65

mm MMMMi

-66 -

Appendix VI - Overall Description of the Compiler

The compiler consists of four major phases. First, the lexical analysis phase (CD transforms the source
program into a string of lexical tokens such as identifiers, constants, and operators. Second, the syntactic
analysis phase (C2) parses the token string and produces a tree representation of each function
(procedure) defined in the source program. Third, the code generation phase (C3) transforms the trees
produced by the syntactic analysis phase into an intermediate language program consisting of a sequence
of macro calls representing instructions of the particular abstract machine defined by the implertv nter.
Finally, the macro expansion phase (C4) expands the macro calls, producing an object language program
as the output of the compiler. In addition, there is an error message editor (C5) which is invoked last in
order to format any error messages produced by the other phases. The phases of the compiler are
invoked in sequence by the control program (CC). The control program communicates with the various
phases by passing as arguments to an invoked phase a set of character strings representing file names
and an option list; the invoked phase returns a completion code which indicates whether or not any
serious or fatal errors occurred during th« execution of that phase. The various phases communicate
with each other using intermediate fi'ss.

The lexical and syntax analysis phases may be run sequentially as described above, or, where a system's
program size restrictions permii, may be combined into a single phase, thus eliminating the use of an
intermediate file. This option is implemented through the use of compile-time conditionals. The remainder
of this chapter will assume that the two phases are separate.

1. The Lexical Anp lysis Phase

The lexical analyzer reads in the source program and bredrs it into a string of tokens such as identifiers,
onstants, and operators. The lexical analyzer also interprets compile-time control lines which allow one

to include source from other files and to define manifest constants. The lexical analyzer produces output
onto three intermediate files: the TOKEN file, which contains the string of tokens, the CSTORE file, which
contains the source representations of identifiers and floating-point constants, and the STRING file, which
contains character string constants. The TOKEN file is passed to the syntax analysis phase; the CSTORE
and STRING files are not used until macro expansion. In addition, the lexical analyzer may write error
messages in an ip*ernal form onto thp ERROR file. A token is represented by a pair of integers called the
TYPE and the INDEX of the token. The syntax analyzer performs its analysis on the basis of the token
TYPE; thus most operators have a distinct TYPE, and there are separate TYPEs for identifiers, integer
constants, floating-point constants, and character string constants. The INDEX is used to distinguirh
particular identifiers or constants; for example the INDEX of an identifier is the index of the source
representation of the identifier in the array of characters written onto the CSTORE file.

The main routine Of the lexical analyzer consists of a loop which calls a routine GETTOK to return the
next token in the input stream and then writes the token onto the TOKEN file. This loop also contains
code to interpret compile-time control lines. GETTOK obtains input characters from a routine LEXGET
whifh contains the logic to switch the input between the primary source file and "included" files. Except
when processing character string constants, GETTOK translates the input characters using a translation
table On GCOS, this translation maps lower case into upper case, tabs into blanks, and carriage returns
into newlines. This table would he changed when moving the compiler to a system using other than the
ASCII character set. GETTOK partitions the character set into the following character classes:

67

1. letters
2. digits
3. apostrophe (')
4. quotation mark (")
5. newline
6. blank
7. period (.)
8. the escape character (\)
9. invalid characters
10. characters which a'A unambiguously single-

character operators (such as '{')
11. characters which may begin a multi-character

operator (such as '<* which may begin '<-')

GETTOK uses the character class of the current input character to determine its actions in anal/zing the
input string.

2. The Syntax Analysis Phase

The syntax analyzer accepts as mpul the token string generated by the lexical analyzer and produces
output onto three intermediate files for the code generation phase: a tree representation of each function
defined in the source program is written onto the NODE file; a symbol table containing declarative
information about identifiers is written onto the SYMTAB file; and information regarding specified initial
values of variables is written onto the INIT file.

The mam routine of the syntax analysis phase is a table-driven LALR(l) parser. The tables are generated
by a parser-generator YACC, written by S. C. Johnson [18]. The input to YACC is a BNF-like description
of the syntax of C, augmented by action routines which are to be invoked by the parser when particular
reductions are made. YACC analyzes the grammar and prod'.xes a set of tables written in C which are
then compiled into the syntax analysis phase.

The tables produced by YACC represent instructions to the parser to test the TYPE of the cu-rent input
token, to shift the current input token onto the siack, to perforn a reduction and call an action routine, or
to report a syntax error. When a syntax error is discovered, the parser writes error messages onto the
ERROR file which give the current state of the parse. It then attempts to recover from the error so that
any additional syntax errors in the program can meaningfully be reported. The parser attempts a
recovery by popping states from the stack and/or skipping input tokens in various combinations. A
recovery attempt is considered successful if the next five input tokens are shifted without detecting a
new syntax error. If a recovery attempt is successful, error messages are written which describe the
recovery actions taken and parsing is continued. If a successful recovery cannot be made within a limited
region of the input program, the parser ceases execution after writing an error message.

The following C program illustrates the compiler's response to a syntax error, in this case unmatched
parentheses:

int c;
int f(file)
{if ((c-getc(fiie) !- 0) return(-l);
return(O);

}

The first error message, ted below, gives the state of the parse when the syntax error was discovered,
followed by a cursor symbol '_', followed by Ihe .text five input tokens. The next error message indicates
that the parser was able to recover from the error by skipomg the next two input tokens. The resulting
program, although syntactically correct, is meaningless. Therefore, in O'der to avoid extraneous error

-68-

messages, the code generation phase and the macro expansion phase »re not executed after syntax
errors have been detected.

3: SYNTAX ERROR. PARSE SO FAR: <ext_def_li5t> <function_dcl>
<blocK_head> IF (<e> _ RETURN (- 1)
3: SKIPPED: RETURN (

Che following program also contains a syntax error due to unmatched parentheses; however, since there
are no more right parentheses in the statement following the point where the error is detected, the
parser recovers from the error by deleting the unfinished IF clause.

int c;
mt f(file)
{if ((c-getc(file) — 0) c - -Ij
return(c);

)

3: SYNTAX ERROR. PARSE SO FAR: <ext_defjist> <function_dcl>
<blocK_head> IF (<e> _ C - - 1 j
3: DELETED: IF (<e>

The following program is an example of a syntax error from which the parser cculd not recover within its
allowed limits; thus, after skipping input tokens up to this limit, the parser gives up.

int c;
mt f<file)
{if ((c-getc(file) !- 0) c - 1;
else c - 0;
return(c);

}

3: SYNTAX ERROR. PARSE SO FAR: <ext_defjist> <function_dcl>
<block_head> IF (<e> _ C - 1 ; ELSE
3: SKIPPED: C - 1 ;
4: I GIVE UP

3. The Code Generation Phase

The code generation phase performs the following operations; (!) allocates storage for (determines the
run-time locations of) variables, (2) performs type checks on operands and inserts conversion operators
where necessary, (3) translates the tree representation of expressions into a more descriptive form with
AMOPs, (4) performs some machine-independent optimizations on expressions, (5) emits macro calls to
define names which may be referenced by other programs (ENTRY symbols) and to declare names which
are assumed to be defined in other programs (EXTRN symbols), (6) emits macro calls to define and
initialize variables, (7) emits macro calls to execute the control statements of each function defined in the
source program, and (8) emits macro calls to evaluate expressions.

The code generation phase reads the NODE, SYMTAB, and INIT files produced by the syntax analysis
phase and writes an intermediate language program in the form of macro calls onto two intermediate files,
the MAC file and the HMAC file. The HMAC file contains the macro calls defining ENTRY symbols and
EXTRN symbols which are produced last by the code generation phase but which, in some systems, may
be required to appear at the beginning of the assembly language program. The MAC file contains the
remainder of the intermediate language program.

The main routine of the code generation phase consists of a call to a routine SALLOC, which allocates run-

M^ .

-69

time storage and emits macro calls to define and initialize variables, followed by a loop which reads in the
tree representation of a single C function from the NODE file and generates code (macro calls) for that
function, followed by a call to a routine SDEF which emits macro calls to define ENTRY and EXTRN
symbols.

The generation of code for a C function begins with a call to a routine FHEAD with the name of the
function as an argument. FHEAD emits a PROLOG macro call which defines the entry point and produces
code to set up the proper run-time environment. FHEAD then allocates storage in the run-time stacK
frame for the automatic variables of the function; storage is allocated for automatic variables in order of
decreasing alignment requirement so that no space is wasted in the stack frame. The stack frame is
assumed to be aligned according to the strictest of the alignment requirements of the various C data
types (usually that of double-precision floating-point). A save area of the size specified in the machine
description is reserved at the beginning of the stack frame.

The call to FHEAD is followed by a call to the routine STMT to generate code for the compound statement
which is the body of the C function. The generation of code for the body of a C ft nction occurs on two
levels, the statement level and the expression level. The generation of code for sta.ements is handlt-d by
the routine STMT which takes one argument, a pointer to a subtree representing a C statement. STMT is
actually a very short routine which makes recursive calls to itself for the branches of a STATEMENT_L1ST
node and calls a larger routine ASTMT if the specified node is an actual statement (as opposed to a
statement list). The purpose of splitting code generation for statements into the iwo routines STMT and
ASTMT is to minimize the amount of stack space used while recursively descending the statement tree.

Following the call to STMT to generate code for the body of the C function, the size of the stack frame is
adjusted to be a multiple of the stack alignment and an EPILOG macro call is emitted. On the HIS-6000,
the EPILOG macro defines an assembly-language symbol whose value is the stack frame size; this symbol
is referred to by the code produced by the PROLOG macro which allocates the stack frame.

4. The Macro Expansion Phase

The macro expansion phase expands the macro calls on the HMAC and MAC intermediate files using the
information on the CSTORE anr TR1NG intermediate filss and places the result of that expansion on the
output file. The macro expander is not a general-purpose macro processor; in particular, there are no
built-in macro calls for defining macros or for handling local or global variables. Furtnermore, the total
number of characters (after any macro expansion) in the argument list of a macro call is limited to 100.
The maximum allowed dep'h of nested macro calls is 10.

The macro expander pre esses a stream of characters terminated by a NULL character. Within this
stream of characters, the characters T, '•', and 'V have special significance. The t' character indicates
the beginning of a macro call, which consists of the Tt', followed by the name of the macro, followed by a
(possibly null) list of character string arguments separated by commas and enclosed in parentheses. The
'«' character is used within the body of a macro definition to refer to the arguments of the macro call; the
character sequences '«0' through '«S' refer to a guments 0 through 9, respectively. The 'V character is
an escape character. The special interpretation of a character such as T, '•', T or V is inhibited when
that character is preceded by a 'V- In addition, the character sequences '\\', '\r\\ 'V' are used to
represent tab, newlme, and carnage-return, respectively A 'V character followed by a newline character
results in both characters being ignored; thus a macro which expands to a backslash will swallow the
newlme which followed the macro call in the input file. (A macro call in the input file which expands to
the null string will leave a blank line in the compiler output; this is generally a sign that the implemenler
has not completely specified the macro definition for an AMOP.) The backslash character itself ;s
represented by 'W'.

The normal operation of the macro expander consists of copying characters directly from the input stream
to the output stream. When a T is encountered, the name of the macro and the arguments of the macro
call are evaluated and collected in a buffer; thi^ evaluation may itself involve the processing of embedded

mam

-70-

macro calls. The input stream is then switched to the body of the macro definition and normal processing
is resumed. When a '•' is encountered, the argument number is read and the input stream is switched to
the corresponding character string argument of the current macro call, which is stored HI the associated
buffer. Normal processing is then resumed. The «.put stream operates in a stack-like manner in that
when the end of a macro definition or an argument trmg is reached, the input stream is restored to its
previous state. When end of file is reached on the HMAC file, the input stream is switched to the MAC
file; when end of file is reached on the MAC file, macro expansion is terminated.

There are three types of Macros which are handled by the macro expander. First, there are the macros
representing three-address abstract machine instructions, which arc produced by the code generator
while processing expressions. These macros are defined only in the machine description; the macro calls
are of a special form which directly specifies the internal number of the corresponding macro definition,
as assigned by GT. For example, the macro call X3 refers to macro definition number 3. Second, there
are the keyword macros which are produced by the code generator while processing function definitions
and statements. These macros may be defined either in the machine description or by C routines; the
macro calls specify the macro names as given in Appendix III. Finally, there are the macros which are
created by tfv* implementer and used within other macro definitions. These macros may be defined either
in lha machine description or by C routines; the macro calls specify the macro name as defined by the
implementer.

A macro which is defined in the machine description is specified as a list of one or more character string
constants, possibly with associated location prefixes for conditional expansion. Such a macro definition is
implemented as a list of pointers to the character string constants, along with associated integers
representing the conditions specified in the location prefixes, if any. The lists are accessed through an
array MACDEF, produced by GT, which is indexed by the internal macro definition numbers assigned by
GT to each macro definition in the machine description. As mentioned above, a macro call representing a
three-address abstract machine instruction directly specifies the macro definition number. Other macros
defined in the machine description are represented in a table produced by GT which associates the macro
names with the corresponding macro definition numbers.

Macros defined by C routines are represented in a table provided by the implementer which associates
the macro names with the corresponding C functions. This table consists of an array FN of pointers to
the character string macro names, an array FF of pointers to the corresponding C functions, and an
integer NFN specifying the number of entries in the table. It would be more convenient for the
implementer to specify the C macro definitions in the machine description and let GT construct NFN, FN,
and FF; however, this was not done because of the lexical difficulties associated with including C source in
the machine description.

The macro expander is implemented as two levels of get-character routines. The lower level routine,
GETC1, returns the next character from the current input source which may be either the input file
(HMAC or MAC intermediate file) or a character string in memory. If it is a character string, it may be
part of a definition of a macro specified in the machine description, an argument of the current macro call,
or the result returned by a C routine macro definition. The current state of the input stream is kept in a
stack of structures called input control blocks (ICBs); GETC1 user the top 1CB on the stack to determine
the source of the next character. The members of an ICB structure are listed below with their meanings:

nBBMMMM^—

71

F a flag indicating the type of the current input «ource (the input file, a macro
defined in the machine destnotion, or a character string)

LOCP if the current input sourre is a macro defined in the machine description, this s a
pointer to the current position in the list containing tht pointers to the char»;ter
strings which make up the macro definition

CP if the current input source is not the input file, this i» a pointer to the next
character in the current character string

ARGV[10] an array of pointers to the character string arguments of the current macro call

BASE[3] the REF.BASEs of the result, the first operand, and the second operand of the
current macro call, used when commuting conditional expansion

A NULL character indicates the end of a character string or end-of-i I on an input file; thus if the current
input character is NULL, GETCl updates the current state ui the input stream by advancing LOCP or by
popping an ICB off the stack or by switching the input file from the HMAC to the MAC intermediate file
GETCl returns the NULL character only upon end-of tile on the MAC intermediate file.

The higher level get-character routine is MGET. which implements the V, T, and 'V conventions. MGET
begins by calling GETCl to obtain a character. If the character returned is a backslash, then GETCl is
called agan to obtain the second character of the escape sequence and the appropriate action is taken:
If the escape sequence is '\t', 'Xn'i or V. then the character is taken to be fab, newlme, or carnage
return, respectively. If the second character is a newlme, then it is ignored, and MGET returns the 'esult
of a recursive call to itself. Otherwise, the second character is returned as the value of MGET (thus it is
protected from special interpretation).

If the resulting character is not a V or a T, then MGET returns that character directly. A V followed
by a digit results in pushing a new ICB onto the stack pointing to the appropriate chararter string
argument of the current macro call. A V followed by '0', T, 'S', or R' (see Appendix I, section 3) results
in a call to the C routine ANAME (which implements the NAME macro) with the appropriate arguments.
When a T is encountered, the macro name is collected and the arguments are assembled into a IOC-
character buffer. The macro name and the arguments are obtained by recursive calls to MGET so thai
embedded macro calls are expanded; the result of expanding an embedded macro call may include commas
Or right parentheses without interfering with the argument structure of the macro call being processed.
If the macro name is an integer, the correspondingly numbered macro definition from the machine
description is used; otherwise, the macro name is looked up in a hash table containing the names of all
defined macro names. If the macro is defined in the machine description, a new ICB is pushed onto the
stack with LOCP pointing to the btginning of the list of pointers to character strings which represents the
macro definition. Otherwise, if the macro is defined by a C routine, the C function is called and an ICB is
pushed onto the stack which points to the chararter string returned by that function; thus references to
arguments and embedded ,.iacro calls in the s;ring returned by the C function are processed. MGET then
resumes normal operation by calling GETCl. Note that the effect of a call to an undefined macro is to
replace the macro call by the null string; no error messages arc produced by the macro expai.der.

The mam routine of the macro expander consis's of initialization, including the setting up of the hash
table, followed by a loop which calls MGET repeatedly and writes the returned character onto the output
file; this loop terminates when the returned character is NULL.

5. The Error Message Editor

The error message editor Is invokad as ihe ^'J phas»; c' the compiler to read from the ERROR
intermediate file the error racordl written by the previous phases and to print error messages
corresponding to those error racord*. The error massaga editor allows variable daia, such as identifier

MM

-/2

names, to be mcluded m the pr-nted message.. In addition, error messages of arbitrary length can be
construe ed from a sequence of error records; the error message editor automatically breaks long output
Imes so that all output lines fit within a fixed page width.

An error record is a structure containing seven mlegerr: an error number, a line number, and five
arguments. The error number selects a basic error message strmP which contains the fixed text of the
error message and opt.onal indicators for including variable data. An indicator is a two-character
sequence beginning with a T; the character following the T defines the interpretat.on of the variable
data which will replace the md.cator when the strir* i« printtd The vanable data is specified by one or
more of the arguments m the error record. The arguments are associated with the indicators from left to
right: arguments are used as needed according to the mterrjretations specified by the indicators The
various mdicatori are listed below with their interpretations:

Xd print the next argument as a decimal integer

Xm print the string in the internal compiler table CSTORF which begins at the index
specified by the next argument

Xn print a string representing a node (operator) of the internal representation produced by
the syntax analysis phase, as specified by the next argument

XQ print a string representing the terminal or nonterminal symbol associated with the
parser state specified by the next argument

•it p-nt the source representation of the token whose TYPE and INDEX are specified by
the next two arguments

XX print a T

Only the arguments which are referenced by the basic error message string are specified when an error
record is written; the values of the remaining arguments in the record are undefined.

TH.lme number field in the error record associates a line in the source program with the error which
- i«d . particular error record, if a line number is given [LINENO > 0). it ,s printed out on a -.ew line,
followed by a colon, followed by the text specified by the error record; oiherw so (LINENO <- 0). the text
spec.fied by the error record is printed on the current line. Thus an error message consists of an initial
error record containing a line number followed by ?ero or more error records wittout line numbers In
this manner, an error message of arbitrary length can be construcf3d. For example, the message giving

current state of the parse when syntax error has been discovered (see section 2) is constructed
i. cm the following basic error message strings:

"SYNTAX ERROR. PARSE SO FAR: "
H Xq" (for each state on the parser stack)
" _" (represents the input cursor)
" Xr (for each of the next 5 input tokens)

The s/ntax analysis phase can produce these error messages withou: counting the symbols in the
message or knowing their lengths because the error message editor takes caro breaking long outp-jt

In addition to selecting a basic error message string m error number represents the severity level of
me corresponding error:

'**^—*^~ .——^. -- —^-^—.—

-73-

•rror number i«v«rity

1000 - 1999 error
2000 - 3999 serious error
4000 - 5999 fatal error
6000 - 6399 compiler error

A fatal error or a compiler error will terminate the current phase, ?.id no remaining phase (except the
error message editor) will be invoked; h addition, a compiler error message is automatically preceded by
the string

"COMPILER ERROR."

A serious error allows the current phase to continue execution, but all remaining phases (except the error
message editor) are skipped.

The error message editor writes its output onto the standard output unit, which is normally the user's
terminal in a time-sharing system or a line printer in a batch system. However, when the compiler is
submitted as a batch job by a time-sharing user, this output is redirected onto an error listing file. This
is accomplished by passing the argument "»Sei" to the error message editor which indicates that output
to the standard outp i unit is to be appended onto filecode EL (the error listing file). Redirection of
standard input and o '.put is a (not necessarily portable) feature of the C run-time system, rather than of
the compiler itself.

6. Invoking the Compiler Phases

The mechanisms for invoking a phase of the compiler, passing arguments to it, and returning a completion
code are operating system dependent. In general, the control program will be rewritten for each system
on which the compiler runs; on some systems, the control program may be replaced by a set of job
control cards (see Figure 1 on page 31). The source of the compiler phases need not be changed,
however; the operating system dependencies associated with the invocation of a C pre «ram are isolated
in two run-time routines, the startup routine .nd the exit routine. Tne startup routine receives control
from the operating system, establishes the C run-time environment, and calls the C routine named MAIN.
It is the responsibility of the startup routine to take the character string arguments, which may be
provided by the operating system or written cr> a temporary file, and arrange them as an array of
character strings which is then passed as an argument to WAIN. The exit routine EXIT it called upon a
return from MAIN; it may also be called directly b/ a C program The exit routine closes all open files
and returns control to the operating system. EXIT has one optional argument, a return code, which it
communicates to tte control program as a completion or abort code or by writing it onto a temporary file.

On UNIX, a phase of the compiler is invoked by calling the system routine FORK, which creates a new
process, followed by a call in the new process to 'he system routine EXECL, which overwrites the process
with the desired p^ase of the compiler and passes it a list of character strings as arguments. The old
proces-. waits 'or the execution of the compiler phase to finish by calling the system routine WAIT, which
waits for the process to die and returns its completion code.

On GCOS, two methods are used to ^nvOKe a phase of the compiler from tht control program, which runs
in time-sharng. The first method uses a routine SYSTEM, a C-caMable interface to the system caH CALLSS
which can invoke any time-sharmg subsystem (program). The character string arguments are pa^ed in
the system teletype buffer (using the system fall PStUDO) so that to the invoked program it appears that
it was invoked by a command typed at command lev'el with those arguments. The completion «-.üde is
stored (u^ing the system call CORFU) in the first word of the core file, a ten word buffer provided by the
operating system for communication betvuee»1 a 'jse *s subsystems. The disadvantage of running the
compiler phises in time-sharmg is that the compiler phases, bemg large programs, can take a very large
elapsed time to run. Thus this method is used only for the error message editor which prints error
messages on the user's terminal.

——a—MM—l — ■• ^.a^^^mt^m**

-74-

The second method uses a routine TASK, a C-callable interface to the TASK system call, to submit «
program as a special, high-priority batch activity. The elapsed time for a TASK activity is typically much
lower than for the same program run in time-sharing. The character string arguments are written onto a
temporary file which is -ead by the startup routine when in batch. The completion code is handled as
follows: if there is no argument to EXIT or the argument is 0, EXIT terminates normally and TASK will
return a status code of 0. Otherwise, EXIT aborts with the completion code as the abort code; the abort
code is then returned in the status code by TASK.

The compiler phases can also be invoked as normal GCOS batch activities by the sequence of control
cards shown in Figure 1. When these cards are submitted, IDENT and USERID cards are inserted at the
beginning of the deck and the characters V and T are replaced by the user's identification and the basic
component of the source file name, respectively. Thus if the user is 'B' and the source file is 'B/TEST.C,
the assembly-language output will be written onto the file 'B/TESTG' and the error messages will be
written onto the file 'B/TEST.E'. The generation of the control cards and the submission of the batch job
is performed by a time-sharing program (command). As the turn-around t,me for a normal batch job can
be quite long, this version of the compiler is used only for those programs which are too large to compile
using the other version of the compiler.

I

-• .^ i

