i i Atk)

AD-A010 186

AN INTELLIGENT TUTOR: ON-LINE DOCUMENTATION AND HELP
FOR A MILITARY MESSAGE SERVICE

Jeff Rothenberg

University of Southern California

N _

Prepared for:

Advanced Research Projects Agency

May 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

P e

ARPA ORDER NO. 2223

ISI 'RR-74-26

May 1975

Jeff Rothenberg

An Intelligent Tutor: On-line Documentation and
Help for a Military Message Service

BESH S
MEEF 0P
UL way 23 1015 g‘

o |
JEEIETU Gl
Reproduced by D

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA, 22151

s

—

INFORMATION SCIENCES INSTITUTI

1676 Admivatty Wayf Marina del Rey[Califoriia
UNIVERSITY OF SOUTHERN CALIFORNIA | 2

TRIGUTION STATEMIKT AT |

Approvad for public ielease;
Distribution Unlimited

RN R A XS

SECURITY CLASSIFICATION OF THIS PAGE (When Darta Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

b—
! REPDRY NUMBER

IS|/RR-74-26

2. GOVT ACCRSSION NO.

3. RECIFIENT’S CATAILOG NUMBER

FD—AOIO [8b

& TiTLE 7end Subdtitie)

An Intelligent Tutor: On-line Documentation and
Help for a Military Message Service

TYPE OF REPORT & PERIOD COVERED

Research

PERFORMING ORG. REPORT NUMBER

7

AUTHOR(s,

Jeff Rothenberg

CONTRACT OR GRANT NUMBE R(e)

DAHC 15 72 C 0308

9

PERFORMING QRGANIZATION NAME AND ADDRESS
USC/Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90291

PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

ARPA Order #2223

Arlington, Virginia 22209

'! CDNTROLLING OFFICE NAME AND ADDRESS 12. REPDRT DATE
Advanced Research Projects Agency May 1975
140C Wiison Blvd. 13. NUMBER OF PAGES =

14 MONITORING AGENCY NAME A ADDRESS(11 diffsrent from Controliing Office)

SECURITY CL ASS. (of thie report)

S-H

CL;SSIFICATION DOWNGRADING

6 DISTRIBUTION STATEMENT rof this Report

This document approved for nublic release and sale; distribution is unlimited.

DD

7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

i-.\}n

|

’_A

8 SUPPLEMENTARY NOTES

KEY WORDS (Continue on reverse side if neceseary and identify by block number)

trial, tutorial, verbosity

Author-language, computer-aided instruction, documentation, error

reporting, help,

20. ABSTRACT (Continue on reveree eide If neceeeery and identify by bfock number)

(OVER)

DD |, :2:“;3 1473 eoimion oF 1 NOV 65 1S OBsOLETE
S/N 0102-014- 6601 <

l SECURITY CLASSIFICATION OF THIS PAGE (When Dete Bntered)
L]

B

URITY CLASSIFICATION OF THIS PAGE/When Date Entered)

20. ABSTRACT

The military messoge service proposed by ISI's Informoiion Automot
designed to provide full documentation, help, ond error-
The Tutor serves these functions by occessing a document
which contains multilevel descriptions for every

interfoce between the service ond the user. These descriptions ore expondable with
respect to the omount ond type of informotion presented, os well os with icspect to
the user's level of proficiency ond experience, os indicoted by a User Profile. The
Tutor olso provides o facility for on-line computer-aided instruction. It can be
invoked explicitly by the user's request for help, or by the Commar,
Processor ond User Monitor in response to unrecognized commands
operation, or error conditions.

ion project is
reporting facilities on-line.
otion (or Help) dota bose
"semontic entity" used in the

d Language
, inefficient

10/

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

e LN § pe—

ARPA ORDER NO. 2223

ISI/RR-74-26

May 1975

Jeff Rothenberg

An Intelligent Tutor: On-line Documentation and
Help for a Military Message Service

DDC |

r}*f{’f“‘_’f E[] |
Ul way 28 1915 || i

|
h&”@&’(f U L .
D

il INFORMATION SCIENCES INSTITUTE

4676 Admiralty Way] Marina del Rey[Califorma 90291 1

UNIWERSITY OF SOUTHERN CALIFORNIA (215)822:1511 1

THIS RESEAACH IS SUPPORTED BY THE ADVAMCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHC15 72 C 0308 ARPA ORDER !
NO 2223. PROGRAM CODE NO 3D30 AND 3P10

EWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR § AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE
'CIAL OPINION OR POLICY OF ARPA THE U S GOVEINMENT OR ANY OTHER PERSON OR AGENC'Y CONNECTED WITH THEM 1

DCUMENT APPROVED FOFft PUBLIC RELEASE AND SALE- DIST"IBUTION 1S UNLIMITED.

CONTENTS

Preface v
Summary vit

Introduction and Qverview |

Leveis of Detail Presented to the User J
Verbosity 3
Unobtrusive 4
Terse 4
Intermediate 5
Verbose 5
On-Line Manual 6
Tutorial 6
Expert Advice 6
Sophistication 7

Varying the Le ‘el of Detail Presented 8

Computer Natvete 8
User Experience with the Service 9
Totai Tirme on the Service 9
General Knowleage Level 9
General Proficiency 9
Familiarity with a Particular Feature 9
Recency 9
Frequency o/ Use and Performance 10

Repetitions of Help Pequests 10

Selection of Help 11
Example Questions 11
The Hypothesizer 12

Tutor Functions 14
Help 14
Requested by the User 14
Suggested by the User Monitor in "Background® 14
Suggested by the CLP or User Monitor in "Real-time" 15
Errors 15

il

Introduction of New Features 15
New User of the Message Service 15
User Requests to Expand His Capabilities 15
User Trying to Do Something He Doesn’t Yet Know Enough to Do

Documentation of This User’s Service 17
On-line Manual 17
Off-line Manuals 17
Translation Among Users 17

Error Reporting 17
Command Syntax Errors 18
Funct‘onal Module Semantic Errors 19

System Errors 19

Tutorials 20
Environment 20
Control 20
Data Protection 21
Tutorial Language 22

Input 22
Output 22
Control 22

Appendix |: He'p Data Base 25
Appendix ll: The Tutor /CLP Interface 28
Appendix lil: Yhe Tutor/User Monitor Interface 30

References 31

16

| e s c T Sl

PREFACE

This report is one of a planned collection of reports that describes the current
status and plans of the Information Automation project. It is intended to be read
by ARPA personnel, Computer Science personnel, and military personnel interested
N computer-based message handling design and implementation. Specifically, this
report describes the project element called the Tutor, whose purpose is to
provide integrated on-line assistance, documentation, and error reporting.

The Information Automation (IA) project [1] is currently developing methods to
automate various information handling tasks, with particular emphasis on message
processing for military command, control, and communications [2]. The project is
cponsored by ARPA, and is an integral part of both the client’s and ISI’s overall

program to explore the utilization of computer technology and methodology in
military environments,

Other project elements are referred to where appropriate, but are not defined
herein, since they are described in detail elsewhere. For a more comprehensive
discussion of other project elements, the reader is referred to project
documentation noted in the references. The primary modules of importance to the
present discussion are the Co:amand Language Processor (CLP) [3], the User
Monitor [4], and the Executive (Exec) 5]

L

S ———

vil

Preceding page blank

SUMMARY

The military message service provides full documentation, help, and
error-reporting facilities on-line.

The 1A Tutor serves these functions by accessing a documentation (or Help)
data base which contains multilevel descriptions for every "semantic entity” (cr
“term") used in the interface between ‘he service and the user. These
descriptions are expandable with respect to the amount (verbosity) and type
(sophistication) of information presented. They are expanded in accord with the
user’s level of proficiency and experience with the service, as indicated by a User
Profile.

In addition to purely text.al descriptions, the Tutor provides a tutorial facihity
for en-line, computer-aided instru-tion (CAi). Tutorials allow the user to go off
and "try” things. with the service in « protected mode.

The Tutor can be invoked explicitly by a request for help from the user, or by
the Command Language Procesor (CLP), or User Monitor, in response to
unrecognized commands, inefficient operation, or error conditions.

The Tutor interacts with the CLP [3] and the User Monitor [4] to suggest to
the user ways he can improve his effectiveness with the service. These include
replacing command forms with alternate ones, suggesting alternate command
sequences, and creating new commands.

In the normal mode, the Tutor "hypothesizes” what help the user wants, and
allows him to “refine" or "correct” this hypothesis by asking explicitly for
something different,

The Tutor is conceived as an omnipresent helpful adviser, always ready to
answer questions, make suggestions, interpret errors, and explain problems. This
facility is considered essential to the success of an on-line service in an end-user
envircnment,

1. INTRODUCTION AND OVERVIEW

The Information Automation (IA) project (1) 1s currently developing methods to
automate various information handling tasks, with particular emphasis on message
processing for military command, control, and communications [2) The usefulness of
this on-line service depends partlv an how well the service itself can help its users. A
fully integrated on-line Help faci'ty can greatly enhance the value of such a service.
Military users need a service they can use effectively, no matter how little or long ago
they were trained in its operation.

It is the purpose of the IA Tutor to help make the service usatle by (and
understandable to) its end-users.

To perform its task, the Tutor handles four interrelated functions:

® Help
(answering the user’s questions or offering advice)

® Introduction of new features
(e.g., when the user tries something for the first time)

® Documentation
(for reference and review of things the user already knows)

® Error reporting
(to provide helpful, rather than cryptic, error messages)

All functions are handled uniformly, in that the user always has the same options
(including various forms and levels of documentation) when interacting with the Tutor:
this interaction is referred to generically as "Help".

The term "documentation” is used to encompass all forms of information about the
service available to the user (including interactive forms such as tutorials).

It must be kept in mind that the Tutor is a facility for documenting and preoviding
help within the service. The actual documentation strategy can be specified only after
a particular target community has been studied in detail and an actua! command
language has been chosen for that community, Thus the Tutor is designed as far as
possible to access tables which contain the actual documentation rather than embodying
documentation in code.

INTRODUCTION AND OVERVIEW

The next sections of this document describe the forms of help the Tutor provides
across all functions. The functions listed above are then discussed in detail.

The final sections descrite the logical structure of the Help data base, the interface
between the Tutor and other modules (including the Functional Modules) [3], which
allows "table-driven” documentation, and the framework provided for writing Tutorials
(procedural documentation).

2. LEVELS OF DETAIL PRESENTED TO THE USER

The |A service is designed to present an interface which is tailored and adaptable to
its users. To this end, a User Profile 1s kept for each user (maintained jointly by the
User Monitor [4] and the Tutor), which records what kinds of operations the user has
performed, how much on-line training he has received, and how well he performs
various functions.

One of the prime functions of this User Profile is to allow the Tutor to tailor the
help it provides to a particular user.

The next section explains tne role of the User Profile in varying the Tutor’s
responses to the user. This section describes how the Tutor module varies those
responses for users at different levels of expertise. The primary axes along which
responses vary are

® Verbosity (how much explanation is given)
® Sophistication (what kind of explanation is given)

The following applies to the Tutor module in all its functional capacities, whether
invoked explicitly by the user or initiated on the user’s behalf by the service.

VERBOSITY

Depending on User Profile criteria described below (Chapter 3), the Tutor module
may initially respond to the user at any of the following levels (if the initial level
provides insufficient help, succeeding levels will be tried until the full gamut has been
run):

Unobtrusive
Terse
Interrigediate
Verbose
On-line manual
Tutorial
Expert advice

l.
3.
4.
5.
6
7.

This continuum of verbosity is discussed below. The examples given are meant to
be illustrative only. They do NOT represent the actual command interface language,

LEVELS OF DETAIL PRESENTED TO THE USER -

since this is only specified for a particular user community after detailed study. In all
examples, capitalized words are tirms the service knows about, The user can
selectively ask for more information on any one of these terms (see Chapter 4 below).

The example used below is the hypothetical command form:
TRANSMIT (MESSAGE-NAME, [to] ADDRESSEE-LIST)

Unobtrusive

When an experienced user who is already familiar with the system in general and
with the feature in question (as indicated by the User Profile) makes a careless or
typographical error, he does not want to be interrupted by half a page of explanation
about something te already knows. In some cases the CLP can actually correct these
errors and continue. In others, the Tutor is called, and it may ignore the mistake
entirely, or at most ask the user to repeat whatever he was trying to do by means of a

L “?" or simply repeating the originil prompt.

Example:
The user types the error
TRANSMIT (REPOPT1\
The Tutor either just beeps, or types back
“TRANSMIT (REPORT1 ?"
Note that this mode of response cannot occur for a naive or inexperienced user.

In addition, this response can never result from a request for help by the user, but
only from trivial error conditions.

Terse

Based on the User Profile, the Tutor module chooses terms the user knows, and
accesses a previously written sentence fragment (generally a few words). This is really
just an expanded prompt.

The message service supports a number of different language forms for each i

command as described in [4] The Tutor module always looks at what language form is]
being used so that the "terse” help provided always corresponds in style to the ‘a

48

LEVELS OF DETAIL PRESENTED TO THE USER 5

particular form. This means, for instance, that if the larguage form in question has a
three-word prompt, the Tutor responds with more than that. The Help data base and

language forms (prompts, xeywords, etc.) are integrated so the user never has to use
multiple terminologies.

Example:
The user hits the HE' key after typing
TRANSMIT (PEPQRT],
The Tutor responds with
"TRANSMIT [sends]
(MESSAGE-NAME [reportl], [to 7])"
Intermediate

This i1s intended to be a brief (one or more sentence) explanation in English (as
opposed to the "fragments” used in the terse form).

Example:
The user asks for more than tre terse response above and gets
“TRANSMIT sends a MESSAGE to a LIST of ADDRESSEES (or to a single

ADDRESSEE). It is entered as:
TRANSMIT (MESSAGE-NAME, [to] ADDRESSEE-LIST)"

Verbose

This response regins to provide some context and may be on the order of a
paragraph.

LEVELS OF DETAIL PRESENTED TO THE USER

Example:
The verbose form of the above example might be

"The TRANSMIT command sends a MESSAGE to a LIST of ADDRESSEES (or to a
single ADDRESSEE). The MESSAGE NAME is the first APGUMENT. The second
ARGUMENT is either a single ADDRESSEE, as in

TRANSMIT (REPORT, [to] J6)

or a LIST of ADDRESSEES, separated by commas, as in

TRANSMIT (MEMO,(to] Col. Jones, J6, John Smith).
MESSAGES are sent out to all ADDRESSEES at the same i{ime."

On-line Manual

Essentially, this provides all necessary context, relevant concepts, cross-references,
etc. It is basically stored text. However, the Tutor provides the user with ways to
select what he wants to see (see Chapter 4 below), so that he need not read through

large sections of the manual. (No example is given, since there is generally a large
amount of text available in the on-line manual.)

Tutorial
This is a mixed procedural-textual mode which leads the user through a sequence of

explanations, . questions, tests, examples, and trials, It is discussed in more detail in
Chapter 6.

Note that there is a "procedural” aspect to all user interactions with the Tutor, since
the user can always select and control what help he gets, even when it is simple text.
The tutorials merely carry this procedural aspect further.

Expert Advice

This is not a facetious last resort: The user may have questions which require
human intelligence to :nswer. In such cases, the user is referred to one of several

human experts for further help. People he knows (indicated in the User Profile) are
given preference if they satisty the “expert" criterion.

T

LEVELS CF DETAIL PRESENTED TO THE USER 7

In a large installation, it may be effective to maintain one or two experts on-line
who can communicate with users in trouble. Such experis would require access to the

tools for interpreting the user’s context, history, Profile, etc., normally used by the
Tutor.

SOPHISTICATION ‘access categories)

For documentation purposes, the service e organized around "semantic entities”,
which include all commands, data-type names and other terms used in the service (see
Appendix 1). Each of these is documented under several standard headings called
"access categories" (see Appendix 1). These categories are designed to provide an
ordered sequence of Increasingly sophisticated explanations. An unsophisticated user
may simply want to kiiow what some comr.and does, whereas a sophisticated user may
want to know its side-effects or the context in which it works,

The user can explicitly ask for information via any one of these categories (see
Chapter 4). Otherwise, the Tutor estimates his sophistication via ine User Profile (see
Chapt~r 3) and provides him with documentation from the appropriate categories.

The next section describes low the Tutor selects the level of detail to be presented
to the user.

d. VARYING THE LEVEL OF DETAIlL PRESENTED

The previous section described the varying levels of detail which the Tutor can
present to the user. This section deals with how the Tutor selects the appropriate
levels for a given user. The statistics referred to below ¢re gathered and maintained
by the User Monitor. The techniques for g thering them, and the data structures kept,
are described in [4].

For each access to the Help Data Base (new Help request, expansion of keywords in
a previous Help response, etc.) the User Profile is consulted for the user’s history on
the semantic entity in question, and appropriate documentation is selected. The
parameters used for varying the Tutor response to a particular user are given below:

Computer naivete (user experience with computers)

User experience with this service

Frequency of use and performance on some particular feature
Repetitions of a request for help

Each of these measures 1s discussed in turn belyw.

COMPUTER NAIVETE

This is an initial measure of expected receptivity to the service, based on the
categorizations of users (determined by pretesting) described in Chapter 5 of Ref. [4].
Users who have been exposed to computers previously are less “conputer naive", and
are likely to be more receptive (unless their experiences were bad, in which case they
may be less receptive). In any given target installation, there might be several levels of
users with respect to computer naivete (da.a processing personnel, clerks, generals,
etc.), and there would be several corresponding initial Profiles for these classes of
users,

The Tutor module will imitially have a single Help data Lase used for all users
(though later implementations may deveiop different documentation for each class of
user). This information will be used by the Hypothesizer (described below in Chapter
4) to deternmine how "deep" into a given explanation the Tutor module should go for a
first response to a given user. For example, computer naive users are given tutorials
on new topics in preference to simpler documentation which might be enough for a
computer programmer using the service for the first time. In addition, computer naivete
(sophistication) conditions the Hypothesizer's selection of an access category whenever
the Tutor is describing a term to the user.

VARYING THE LEVSL OF DETAIL PRESENTED 9

USER EXPERIENCE WITH TIFE SERVICE

This will be measured along several axes as per statistics kept by the User Monitor
(see [4)):

Total Time on the Service

This modifies the computer naivete measure, under the assumption that the longer
the user has been exposed to the service, the more familiar he is witih it and thr more
sophisticated he is in its use. It is a coarse measure, since the user may have spent
three months performing relatively few kinds of tasks.

General Knowledge Level

This is measured by the fullness of the Transaction Relative Fr equency Distribution
Matrix (TRFDM) (Chapter 11 of (8], for which the User Monitor keeps several
measures. It is combined with the Lser's total time on the service to produce an
estimate of his level of experience.

General Proficiency

T'e User Monitor similarly keeps performance measures over the entire transaction
matrix (see Chapter 1] of Ref. (4]), which indicate how well the user does in general
with the service. This tells the Tutor module wkhat to expect when introducing a user to
something new, and how likely he ic to make mis! skes.

Farmiliarity with a Particular Feature

The Transaction Training S'atistics (TTS) file in the User Profile provides a measure
of the usar’s kiowledge level of a ziven feature, along with an indication of how much
previous help has been provided (e.g., whether or not he has had a tutorial on this
subject). In general, the Tutor mcdule tries not to give the user a verbose explanation
for something he probably knows about. Not. tnat this is overridden when the user
repeats a request for help, indicating that he wants to see more.

Recency

All the "knowledge-level" and “familiarity” information the Tutor accesses about the
user is tempered by a time axis, so that if the user has been on leave for three months
he is not still expected to remember things he knew intimately before his leave. This is
provided free by the User Monitor to some extent, since it keeps statistics within a

VARYING THE LEVEL OF DETAIL PRESENTED 10

sliding window of time which tends to forget old history; however, the Tutor can alsn
look at time stampc associated with when ‘he user last did something.

FREQUENCY OF USE AND PERFORMANCE

Thr.ce mecsures in the TRFDM give a good Indicaiian of what kind of help to
proviue, Just as important, they can tell the Tutor when it ic vulikely that the user is

in doubt about comething, a~d thic can improve the Tutor’s hypotheses as to what the
user wants help with,

REPETITIONS OF HELP REQUESTS

In general, if the user asks for help twice in a row, h rrobably does net want to
see the same thing twic2. If the first response (e.g, to . n avperienced user) was a
terse description, the second response should contain mo.e uctail. (There is an
important exception to thi:. especially for verbose ou nputs (on the order of a screenful
of text or more), the user will frequently went to rodisplay what he has just seen in
order to reread it. The service-wide REDO command will be used for this purpose by
the Tutor unless the Screer Control Module (3] supports <ome way to scrcil back what
has already appeared or the screen.) This increasing help ‘*erminates eventually, since
there is only a finite depth to the help offered, but the Tutor always realizes that the

user wants more help. The ultimate level is to refer the user to a person who can
provide further help.

WY — L bhe 4 e e e 6y

11

4. SELECTION OF HELP

The essence of the Tutor module i1s to be relpful. This requires that the user be
able to irteract with the Tutor to get the kind of ! _Ip he needs. Before it can help the
user, the Tutor must know whee he needs help with, what kind of halp he needs (what
he wants to know about it), and low much help he wants. In addition, the user must
always be abie 15 find out kow to get the help he needs (that is, how to teil the Tutor
what he wants).

The Tutor prefers to be active in this interaction, asking the user questions to
ascertain what he wants rather than having to deal with arbitrary free-form inputs from
the user. However, the user is always in control.

EXAMPLE QUESTIONS

The following examples should give some idea of the xinds of questions the user
needs answered. These are examples of questions the user may have, not of the actual
forms he might use in asking them. (These forms are dependent on the command
language.)

1. Explain sometting specific:

"Explain term x"

"What wouid happen if | did x ?"

"What does ABORT do (now) *"

"What does command "q" do ?"

“What are the side-effects of doing x ?"
"Does x have the effect z ?"

2. Explain current state:

"What do you (the Tutor) want ?" (when interrupted because of some error during
command input)

"What’s wrong with what | did (e.g., how did | get here [into Tutor])?"

"Why did the service produce that last output (e.g. "[confirm]") 7"

"What aid | just do (or what did | do 3 commands ago, or what have | been doing)?"
"What are my options at this point ?"

"What would happen if | did this (what I'm about to do) ?*

— S

SELECTION OF HELP 1.2

o

Zxplain how to do something:

"How can | abort (or undo) what | just dic (or something else) ?"

"Whe! rlse do | need to do to go on from here "

"How do | ask you (Tutor) a specific question ?"

"How can | perfcrm s0ome cperation (not necessarily an exect table command) x ?"

The above groups of questions are handled as follov.s:

1. The user asks atout some term and then <elects a particular aspect (access
category) of that term (e.g., the side-efiacts of x).

2. The user asks about thc special term STATE (synonyms: WHERE-AM-I, etc.). This is
explained under the categories: options, function, etc. (see Appendix 1) which allow
asking various things about the current state. The CLP is consulted to produce
output for this term by looking at what the user is in the process of Joing (see
Appendix ll). The user can also invoke a tutorial at this point to try praceeding in
the Protected Mode.

3. The user accesses the "how" category of the Help data base (see Appen fix), which
explairs how to proceed, or how to use a particular term if one is supplie d.

THE HYPOTHESIZER

The Tutor may be invoked either by the user or by the service, as discussed below
(see Chapter ©). In all cases, there exists an invocation context which coneists of the
recent transactions that had occurred between the user and service at the noment of
invocation. This includes varicus aspects of the CLP's "parse state” (see Append'v i),
partially completed commands, errar concditions, User Monitor “suggestions”, and recently
used names of relevant data types.

Using this context, along with the User Profile, tne Tutor prepares a hypothesis for
what the user wanted help with (even if *he service invoked Help for the user). The
normal mode for the Tutor s to prepare a hypothesis f‘or what the user wants, at each
invocatior and attempt to provide 1t. (The actual help presented i1s further conditiored
by the User Profile, as described above in Chapters 2 and 3.)

In addition to this “hypothesizing” capability, the Tutcr provides a uniform
framework of interactions whereby the 1'ser can refine, correct or ignore the Tutor's
hypotheses and ask for something different. By assumpticn, the Tutor never provides
verbose responses on the first invocation, so incorrect hypotheses will not be overly
annoying. Whenever the user is in the presence of the Tutor, he has ceriain universal
options:

e s

SELECTION OF HELP

® Ask for help abou! some specific item, regardlesc of the Tutor’s hypothesis
(either type the name of a term or point to one aiready displayed)

® Ask for options virsus explanation

This is not normally a Tutor function, since the CLP (see (3]) provides for showing the
user the legitimate values that he can ‘ype for an argument, in response to a "?" (or

similar input). For example, if ‘e user his written (but not sent) messages named
REPORT1, MEMO, and MUNITIONS STATUS, and .hen he enters

"TRANSMIT ("
the CLP responds with
“[MESSAGE-NAME }:

REPORT 1
MEMO
MUNITIONS STATUS."

However, the Tutor also provides thi; option in case the user hits Heip by mistake

wher he really meant ">, (It is the intent of the service to be helptul and not to punish
the user for rmistakes.)

® Refine the Tutor's hypothesis in the iollowing ways:

More local (e.g., arguments rather than comrrands)
Mere zlobal
Refer to something done earlier/later than
that hypothesized
Different access categories
Get help with getting Help

® Expand the help shown

Whenever there i1s documentation shown, whatever the level,

the user can always ask
for raore (or less) along each of several axes (-ee Appena:x 1).

More/less verbosity

More /iess sophistication

Different access category

Expand any keyword shown in the currently displayed explanation

14

E 5. TUTOR FUNCTIONS

{ The above sections have descrined the Tutor/user interface, which is the crux of
' the Tutor. Chapter 6 discusses tutorials per se. This section outlines each of the |
major functions of the Tutor, which are performed by means of this interface. |

HELP {

The basic idea of the Help function is to provide good first approximations to what
the user needs help with, and then to allow painless interaction for the user to refine
(or correct) these hypotheses. These approximations are based on the User Profile, the
CLP’s state (the stetus of the command in progress), and the overall context of what the
user is doing.

L\ This function can be factored into cases depending on how “active” the service is in
; offering help:

Requested by the User

The user has a Help key which he can always hit to get relevant help and advice
about what he is doing. This may include descriptions of commands, menus of allowed
arguments or alternate techniques. or accessing a dictionary to check spelling when the
user is entering text.

Suggested by the User Monitor in "Background"

On the basis of statistics gathered between sessions, the User Monitor arrives at
recommendations for changes in the user’s habits and language forms such as Inefficient
Dialogue Eiements (i.e., language constructs that do not prohibit useful work, but do lead
to poor performance), as well as Recurrent Dialogue Sequences that might be replaced
with shorter constructs (see Chapter 9 of [4]).. The Tutor accesses these "suggestions”
through the Potential Dialogue Improvement file ‘PDI) in the User Profile. The User
Profile also contains a preference for each user as to when such suggestions should be
made (the default is at the start of a session, or 0~ request). The Tutor then suggests
these changes to the user at the appropriate time. (The user can always choose to
ignore this advice.)

g e e O

TUTOR FUNCTIONS 15

Suggested by the CLP < User Monitor in "Real-time"

On the basis of real-time measurements arising from the CLP’s inability to parse an
input, the User Monitor may also arrive at recommendations to be mace immediately to
alleviate the error condition. This is done by replacing the dialogue element that could
not be parsed with an alternate form, as described in [4]. The Tutor is then invoked to
make suggestions to the user, providing help as if the user had requested it. (In most
of these cases, the user can ignore the suggestions and continue with minimal
interruption.)

For details of the actioris taken by the Tutor in these cases, see Appendix Il and [4]

Errors

All modules are expected to detect errors and pass control back to the Tutor, which
then acts as if the user had requested help about this error condition.

INTRODUCTION OF NEW FEATURES

This is not identical with "documentation” per se (as covered below), since it
involves cases in which the user is expanding what he knows about the service.

There are several cases, all handled by essentially the same mechanisms.

New User of the Message Service

New users are described by default Profiles (which are pre-tailored on-site), and
are introduced to the basic service by means of tutorials written for the particular user
population. The intent of this introduction is to be self-sifficient after minimal (less
than one hour) individuai/classroom training which concentrates on using the terminal,
editing text, and getting help.

User Requests to Expand His Capabilities

Either out of curiosity, anticipated need, or immediate need, the user may want to
find out about something he has not yet done. This is similar to the introduction phase
above, except that once the user has used the service, his Profile contains information
relevant to further training. The language forms he knows and prefers, and his error
rates using certain constructs are used to optimize the introduction of some new topic
to facilitate his learning to use it effectively.

TUTOP FUNCTIONS 16

The main probiem here is one of the user’s cemmur.cating with the Tutor abr ut
whai he wan's to know. The major cases are as follows:

a. The user asks for an expansion of something he knows, or something related to
what he knows - this is the simplest case, since the Help data bese is hierarchical, with
the User Profile determining how deep the description goes. in this case the Tutor
modifies the Profile to allow greater depth of explanation. (Note that documentation
has both depth of explanation for any single item and breadth, which extends to related
items.)

b. The user asks abou. something he has heard of from another user - in this
case he will use terms that should be familiar to the service, except that user-defined
synonyms (and "macros”) require that the Tutor ask whom he heard it from (to access
the proper private definition).

¢. The user asks how to do something. That is, he asks for help by "function”,
where the terms he knows may not correspond to service functions - this is not handled
in the general sense of English-language requests for informat an, as the service does
not support English sufficiently. The mai'y approach 1s to present menus (see next
item).

d. The user selects the iter. to he explained from a menu, which can zero in on
what he is looking for.

User Trying to Do Something {le Duesn't Yet Know Enough to Do

It is unclear whether the CLP i1s even able to detect this case. If not, it may still
arise when the user begins somethirg and then asks for help when he finds he can’t
procead, which should reduce to case (c) above.

When the user trizs a command (or a form of a command) he has never used before,
tre CLP generates a warning to the Tutor. Based on the User Profile (which reflects
not only what commands the user knows, but also how mucn he likes to experiment) the
Tutor gives the user one of several levels of warning, essentially asking if he wants
help before trying this.

This case is tricky, because a novice user may make a typographical error that
changes the simple command he wanted into some complex command he has never seen.
He must not be further confused by the Tutor asking if he really meant the complex
command. The only handle on this situation is the user’s general level of knowledge (as
indicated by the User Profile). This can at best suggest that he really meant the
simpler command. Also included here are "ghost user" issues (an experienced user

R ———

TUTOR FUNCTIONS 17

sitting down at the terminal of an inexperienced user, without telling the service so that
it can switch Profiles). Should the user be denied the use of the complex command until
he has confirmed that he really meant it? Should the Tutor come pack and ask if he is
really whom he claims to be? These issues are deferred for now.

DOCUMENTATION OF THIS USER'S SERVICE

Much of the documentation issue has already been addressed above. The remaining
functions are

On-line Manual

Essentially the same as Help, this presents a different organization to the Help data
for this user. It gives a coherent view of the service (or some aspect of it), in a form
to be read on-line, using terms this user knows.

Off-line Manuals

The Tutor has the capability to tailor off-line manuals in terms known to 2 particular
user, providing summary sheets, full-scale manuals, or levels of detail in between.

Translation Among Users

Though the differences between the services seen by ary two users at the same
level of proficiency is not expected to be great, it may still be helpful to provide a
translation capability for users to talk with each other {either in messages concerning
the service, or over their terminals) so that each one sees terms and forms he is
familiar with. Since the service is in some sense primitive-based, this is relatively
straightforward and can be provided by the Tutor if warranted. This is an area for
possible research and is not included in the initial implementation.

ERROR REPORTINGC

There are three kinds of errors which must be fie:ded for the user: unrecognizable
or malformed commands detected by the CLP, errors returned by the Functional Modules
being invoked, and system errors (e.g., resource limits).

The Tutor is responsible for telling the user about all errors so that he never sees
an uninterpreted error message. In line with the overall Help approach, the actual
message shown to the user is determined by his Profile so that experienced users get
more succinct (though never cryptic) messages than new users. In addition, the
expected frequency of occurrence of an error determines how much explanation is
given at any level: thus a rare error is explained carefully even to an experienced user.

TUTOR FUNCTIONS 18

It is imperative that ell errors of any kind return control to a single responsible
party (namely, the CLP) which in turn invokes the Tutor. The Exec prcvides several
crucial facilities for allowing modules to report their status when an error occurs,
including an error-stack which the Tutor can interrogate and a status-text area for each
process to record its current state (see [5]).

The Tutor requires of each service module (including Functional Modules) that it

® Report all errors to a (non-Tuter) Error-Handier ‘which saves state as necessary
for possible recovery).

® Define recovery procedures (if any) for each error (these are only of concern to
the Tutor in that it must be able to talk to the user about them).

® Define the semantics of the error and the recovery procedures for the Tutor in
the same way that Semantic Primitives are defined by Functional Modules.

Errors arc explained to the user just as if he had requested help on the subject--
that is, more explanation is always available, including advice from the Tutor on how to
cope with the error. This approach assumes that when an error occurs, the user
doesn’t merely want to know that it occurred, but also wants to do something about it
(recover, circumvent i, etc.).

The Tutor does not consider its responsibility to extend to error recovery per se.
That is, issues such as where control is returned after an error is explained to the user,
how much of the original state is saved, etc. are not of direct concern to the Tutor.
Huwever, the Tutor must explain such things to the user.

The three error types require somewhat different handling, as discussed below.

Command Syntax Errors (recognized by the CLP)

This case involves the CLP, User Monitor and Tutor interaction (see [4] and [2)).
The details are contained in Chapter 9 of Ref. [4], which describes the User Monitor.
Basically the CLP detects and reports such errors, the User Monitor may offer
suggestions for what action to take, and the Tutor makes the suggestions to the use:.
The Tutor cansults the User Profile here (as always) and avoids getting in the way of an
experienced user who is just making typographical errors. The help provided is
conditioned also by the sicte of the CLP’s processing of the command, which indicates
where the user made the mistana (or what the CLP doesn’t understand).

o

TUTOR FUNCTIONS 19

When the user makes a mistake, the Tutor module is responsible for advising him on
how to correct it or suggesting how he can perform the required action. This may
involve getting suggestions fiom the User Monitor (which may in fact have .nvoked the
Tutor). In order to get relevant suggestions, the Tutor may interact with the user to
determine, for instance, whether the problem involves the current command or the
response from the previous command. The Tutor then passes this information back to
the User Monitor to get an appropriate suggestion.

Functional Module Semantic Errors

These consist basically of semantic errors which the CLP cannot detect, such as
referring to a nonexistent message. The CLP/Functional Module/Tutor interfaces allow
the Functional Module to return an error to the CLP which the Tutor can explain to the
user in terms he understands. The definitions of functional module commands inc!ude
descriptions of error conditions and recovery procedures so that the Tutor can
communicate meaningfully with the user on this subject.

System Errors

These include all resource conflict or limit errors (such as lack of file space,
unavailability of some device, etc.). In some cases, the user need never be informed of
the error, since the CLP can find a way around the problem and produce the result the
user wanted. However, in other cases the user must figure out his own solution; in
these cases, the Tutor must provide advice on how the user can recover. This is

greatly enhanced if all system limit-errors are guaranteed to be “"soft" so that the user
is warned before the limit is actually reached.

6. TUTORIALS

The topmost level of documentation contained within the service proper (not
including referring the uscr to an expert for advice) is the Tutorial. It is characterized
by being more procedu-al than the simpler forms of dorumentation, even though it still
makes use of previously written text elements. It als> provides a special protected
envircrment for the user to "try” things without risk of erasing or sending messages by
accident. The Tutor module provides this environment indirectly, by conditioning the
actions of the CLP and Exec. The Tutor also provides a basic CAl ianguage [7] for
writing tutorials.

The intent of the tutorial facility is to provide a documentation mechanism which
makes the user more active (by responding to questions and trying things out) so that
he will overcome any reluctance to use the service.

ENVIRONMENT

The Tutor essentially dues two thinzs to enable the Protected (or Tutored) Mode. It
insures return of control from the CLP and guards aganst permanent modification of
data (via the Exec).

Control

The service is already assumed to return control to the CLP under all conditions.
The primary effect of this mode is simply to tell the CL.P to return control to the Tutor
whenever the user executes a command in this mode.

The only real extension required by this mode is that the Tutor will want to time the
user’s response and force control to return to the Tutor after a certain elapsed time,
regardless of what the user has done. (Even if the CLP normally performs a similar
function, the Tutor may want different time limits for different commands, and has to be
able to set this tin.e explicitly.)

The user can escape from this mode by means of the ALERT-CLP function, {assumed
to be a single keystroke or control character) which always returns him to the top
level, where he can talk directly to the CLP.

Since the CLP is always parsing, whether the user is in the Tutor simply for help or
is in the Tutored Mode, a legal command to the CLP is always recognized. It is at the

TUTORIALS 21

CLP’s discretion, based on its own interpretation of the User Profile, whether to perform
the command or not. For example, the 11zer may have askec for help on one command
and may suddenly realize he wants to rerform some other command. Of zourse, he can
always get out to the CLP (by using ALERT-CLP), but if he simply types the legal
command, the CLP :till parses it and may just do it it the user is a sophisticated one.
Otherwise, the CLP can either ignore the command, objec! to it, create a new invocation
of the Tutor to deal with it, or (normal case) simply repcort the action to the present

invocation of the Tutor so that it can deal with the spurious input in the context of the
original request for Help.

An exception to this discretion arises when the user is typing an answer to a

Tutorial’s Input MATCH statement: in this case, the input must be passed on "quoted” by
the CLP (see Aprendix Il below).

Similar situations arise for commands the user has never typed before. These
issues are left to the discretion of the CLP.

Data Protection

In the Tutored Mode, the Exec allows the user to perform almost any function
without risk. (The ALERT-CLP function, for example, must always remain enabled, so
the user can still perform a “dangerous” function (e.g, erase text or senc a message
unintentionally) by first performing ALERT-CLP). For the majority of functions,
however, this mode protects the user from inadvertently deleting his own {or ¢ iyone
else’s) messages, sending practice messages to his commanding otficer, and the like.

This mode is made somewhat tricky (for the service) by the requirement that when
the user tries sc mething in the Tutored Mode it should perform as far as possible as it
would if he were not in this mode. The alternative is to simulate the results and
pretend to the user that the service has done what he asked, but this is avoided
wherever possible in the belief that sooner or later this leads to discrepancies between

how the service appears to the user when he is “in" as opposed to "out” of the Tutorea
mode.

The Exec provides this protection by catching all "dangerous” commands whenever

the Tutored Mode is on, and either copying any text that gets changed or simulating the
action of the command, as appropriate.

TUTORIALS 22

TUTORIAL LANGUAGE

The tutorial language is intended to run in the environment described above. Mt
provides facilities for creating interactive lessons.

The language is described under three types of facility: Input. Output, and Control.

Input

Pattern matching 1s provided to allow a lesson-writer (author) to specify fairly
flexible allowed responses in a MATCH statement. The basic technique is to match
keywords provided by the author. These can be AND'ed, OR’ed, or required in
sequence. Sequences may allow other words to be embedded (the default) or not.
Initia ly, this facility will be kept as simple as possible, while providing the power to
build patterns to match reasonable sets of inputs.

In addition to alternate terms and synonyms allowed by the author of the tutorial,
the service thesaurus (which supulies synonyms for terms' and user synonyms (from
the User Profile) will be automatically accessible for matcning, unless the author turrs
this feature off.

(When spelling correction is available elsewhere in the service, it will be provided
here also.)

Output

The author can provide explicit output and he can also access the full Help data
base for output. This allows lessons to make use of the Help documentation for their
own purposes. When this is done, the author can select all axes (verbosity,
sophistication, etc.) explicitly, can invoke the normal Tutor processes for selecting on
the basis of the User Profile, and can enable or disable the normal facility for the user
to interact with the Help documentation (expanding, etc.).

Control

When the author provides a resporice to be matched, several things happen. The
user’s response (whether it matches or not) is saved in an optional string-variable
supplied by the author. The MATCH statemert either succeeds or fails, and a
MATCH-switch is set for later testing, indicating whether the last MATCH succeeded or
failed.

TUTORIALS 23

The author thus has the option of splitting up possible response cases into different
MATCH statements or separating them later on the basis of the saved response. In
addition to the matrhing condition, the author can supply a time limit so that the match
faile if the user does not respond quickly enough.

® A conditional (testing the MATCH-switch) is provided for program flow control.

® The TRY command allows the user to go off to the CLP and try something in the
Tutored mode, while setting a time limit after which control returns automatically to
the Tutor.

e The tutorial language is embedded in BLISS (the implementation language). Lessons
can be written with minimal knowledge of BLISS, while computation and additional
facilities are available to sophisticated authors. The intent of this language is to
permit qualified CAI authors or service designer/implementers to generate tutorials
quickly and etffectively.

This CAl capability rounds out the Tutor’s repertoire of interactive instruction and
Help facilities.

25

Precciing page blank

,. APPENDIX I: HELP DATA BASE

The basic form of the Help data base can be visualized as a four-dimensional cube,
each of whose axes divides the total documentation space into several discrete levels.

The entire service is documented in terms of "semantic entities” which can be
thought of as one axis of tne 4-cube. Some of these entities are “semantic primitives”

which are defined independently (that is, using “pure” English), while some are defined
in lerms of other entities.

The semantic entities include

1. All commands and arguments (data-types,

2. Alternate names for entities, given by the thesaurus (see {30

3. Error-condition terms

4. Terms concerned with dialogue forms

5. Terms for internal service concepts

6. External user concepts (described in terms of the service)

7. Names of user-defined synonyms and macros (when the user defines a macro or
synonym for himself, he is asked (by the CLP) t¢ supply a short description for

his own use at a later time, which the Tutor adds to the data base ‘or that user,
to allow documenting ex‘ensions to the transaction matrix.

Each semantic entity is documented by a 3-cube of documentation elements, as
defined be'ow.

For any given semantic entity, documentation can be expanded along three
additional axes:

® Verbosity
® Sophistication
® Context

APPENDIX |

These axes are discussed in turn. !t should be noted that the hypercube is a
logical model rather than an implementai on. The actual documentation will not contain
as many discrete "packets” as implied by the 4-cube concept.

VERBOSITY

This has airecdy been discussed above. Documentation is a mixture of noise
(descripti'e) words which are “"pure" English, and keywords (semantic-entity-rames)
which can ve expanded recursively to generate verbosity as needed.

Included in this continuum (as its top levels) are Tutorials and expert advice.

SOPHISTICATION

For each semantic entity, documentation 1s organized into several categories of
"access”, which the vser can ask for explicitly. In addition, these categories are given
an ordering, so that the Hypothesizer can select the appropriate category depending on
the user’s sophistication (as given by the User Profile)

The categories defined initially are

Function

Describes the basic use or meaning of the term. For a command, this is just the
overall function performed by the command.

How to Use

Explains how to invoke functions and how to use data types properly,

Form

This cdiscusses the various forms of dialogue available fo- commands or data types.
In order to insure consistency, this documentation is actually writte.n once for each
dialogue form rather than once for each command, and the description of a iorm is
phrased in terms of the command the user is inquiring about.

Ontions

This describes more advanced uses o/ commands, options in specifying data types,
etc.

APPENDIX | 27

Side-effects

Discusces the less obvious effects of commands, or implications ot the use of a term
with respect (0 the rest of the service.

Uses

Discusses where a term appears (what a command is used for, where a given data
type is used, etc.). This shades over into Context below.

CONTEXT

This is logically an additional avis of documentation for each entity, but it is
provided by a separate access category which explicitly mentions relevant contextual
and background information. Since the user can selectively expand items of a
description shown to him, this allows a menu-like exploration of context information.

APPENDIX II: THE TUTOR/CLP INTERF ACE

Rules are supplied by the Tutor which allow the CLP itself to ask the Tutcr to
, supply the u.er with help on a particular semantic entity when it detects a problem.

The CLP (and Exec) supply several tunctions for the Tutor which provide access to
the parse state (the CLP’s partial recognition of the command the user typed) and the
invocation context (all those names and operations which the user has recently
referenced).

In all cases, the CLP returns the name of a semantic entity (command, argument data
type, etc.) which the Tutor can look up in the User Profile to determine appropriate
! responses based on the user’s experience with that term.

The returned item also carries with it an indication of status (completed
correctly/incorrectly, incomplete, etc.).

The Tutor is also able to ask, for any partially completed command:
"What are you expecting” (waiting for, allowed successors, etc.)
Each of the foliowing functions takes an argument <item> which can be
command
subcommand
argument

module/service
<context-name data-type>

(The latter allows asking for the last reference to something of a particular data
type, e.g., the last message read, the last date specified, etc.).

The access functions are

last (completed) <item>
current (in progress) <item>
previous <item>

APPENDIX i 29

“Levels” are defined as going up from arguments or subcommands toward higher
level commands, and the following are also provided:

next <item> up
next <item> down
<item> at level n

The CLP parses inputs typed to the Tutor, just as it does for any service module.

Several case: are worth distinguishing, however, since the user may type non-Tutor
commands when in the Tutor.

User Types Tutor Commands

This is a normal case, where the user types some command to tha Tutor itself (e.g.,

asking for a description of some term). The CLP merely parses the command and
passes it on to the Tutor.

User Types a Legal Non-Tutor Command

Here the user may be trying to execute some non-Tutor command, ignoring the fact
that he is "in" the Tutor. (Of course, he can always get out of the Tutor with the
ALERT-CLP or ABORT functiors, but he may not bother with them). The CLP parses this
command, recognizes it as legal and noi far ihe Tutor, and decides, at i*s own discretion
(on the basis of the User Profile) whether to honor it (aborting the Tutor) or not. If

not, the CLP alerts the Tutor to the fact that a non-Tutor command has been entered.
(This is similar to case "b" below.)

User Types to a Tutorial Language Input (MATCII) Statement

a. pure text (CLP ignores it)
b. legal command

This last cace represents a tutorial asking the user a quest'on whose answer is a
legal non-Tutor command. The Tutor must in this case alert the GLP to pass the input
on as text to the Tutor (effectively "quoting” it) without executing it, but the CLP can
also perform some cursory parsing to let the Tutor know if the command would have
been correc’. (In this mode then, the user must use the ALERT-CLP or ABORT functions

to exit the Tutor and again speak directly to the CLP in order tc execute a non-Tutor
command.)

APPENDIX I11I: THE TUTOR,/USER MONITOR INTERFACE

It is the Tutor’s job to maintain the Transaction Training Statistics (TTS) file in the
User Profile. This file is updated each time the Tutor helps the user, and it ccntains a
history of what kind of help (and how much) the user has received for each semantic
entity (not just commands).

Dialogue Remedy

When the User Monitor determines in real time that a dialogue element is ineffective
(e.g., leading to poor performance), it inotifies the Tutor, which takes action as f- _ws:

First, the Tutor must determine whether the user was having trouble with the
response from the previous command or with the input for the current command. This
is done by a simple procedure: the Tutor asks the user.

The algorithm for determining what remedy to suggest in either case is given in
Chapter 9 of Ref. [4], and is performed by the User Monitor itsclf.

In the case of "background” determination of inefficient dialogue elements, the Tutor
is concerned with the combined results of the User Monitor’s measures of frequency,
performance, and knowledge (the Tutor maintains this last statistic itself in the Profile).

Whenever a diaiogue element combines low values for knowledge and [Frequency
cr Performance] the Tutor attempts to provide rore training.

In addition, the mean and variance of performance alone are examined with res-ect
to changing the dialogue form of a command or splitting it into two commands (ce : [4])),
and Recurrent Dialogue Sequences are examined with respect to suggesting compounds
(macros) to the user. Note that the actual macro-building facility is provided by the
CLP, not the Tutor proper.

REFERENCES

Oestreicher, D. R, J. F. Heafner, J. G. Rothenberg, Connect: A User-Oriented

Communications Service, presented at ACM Annual Conference, San Diego, Calif.,
November 1974.

Ellis, T. O, L. Gallenson, J, F. Heafner, J. T. Melvin, 4 Plan for ConsoliZation
and Autowation of Military Telecommunications on Oaln, USC/Information
Sciences Institute, ISI/RR-73-12, May 1973,

Abbott, R. J, A Command Language Processor for Flexible Interface Design,
USC/Infsrmation Sciences Institute, ISI/RR-74-24, January 1975 .

Heatner, J. F, A Methodology for Selecting and Refining Man-Computer
Languages to Improve User's Performance, USC/Information Sciences Institute,
ISI/RR-74-21, September 1974.

Mandell, R. L, An Executive Design to Support Military Message Proce:sing
Under TENEX, ISI/RR-74-25 (in preparation),

Tugender, R, N. R, Qestreicher, Basic Functional Capabilities for a Military
Message Processing Service, ISI/RR-74-23 (in preparation).

Rubin, Sylvan, "A Simple Instructional Languzge,"” Computer Desisions, Nov. 1973,
p. 17-18.

BIBLIOGRAPIIY

Grignetti, Mario C; Gould, Laura C; Bell, Alan; Hausmann, Cathy; Passafiume,
Joseph J, Mixed-Initiative Tutorial System to Aid Users of the On-line System

(MLS), Semiannual Progress Report (Phase I), Bolt Beranek and Newman, Inc, May
15, 1974,

