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SECTION 5

ERROR RATE ESTIMATION UTILIZING CHAN14EL MEASUREMENTS
BASED UPON RECEIVED SIGNALS ALONE

This section of the report deals with the specification and
analysis of techniques for predicting error rates for the fading
channels of interest. A variety of techniques are considered
varying in complexity and performance. It has been pointed out
in Section 2 that the LOS channel should be analyzed on a quasi-
stationary basis because bad performance occurs only during deep
fades which, by link design, are (hopefully) made to be rare. It
is more meaningful, for channel quality monitoring of LOS channels,
to estimate the error rate at each instant of time due to the ob-
served channel strength and frequency selectivity, than to
average over an assumed stationary fading channel because the
fading is too slow to obtain meaningful averages over the time
duration of the fading state. Thus, the results here should be
regarded as applicable to the HF, Troposcatter, and Satellite
Scintillation channels although strictly for comparison purposes
we have presented average error rate estimates for the LOS chan-
nel also. When the fading is flat over the typical DCS LOS band-
width of 14 MHz, a very reliable estimate of quasi-stationary
error rate is obtainable by using the measured IT(f,t)1 2 in an
appropriate error rate formula. The existence of frequency selec-
tivity may be determined from measurements of jT(kF,t)j 2 but
quasi-stationary error rates cannot be estimated knowing IT(f,t)1 2

alone. Special probing signals are required to estimate T(f,t).

The discussion below is divided into six sections. Sections
5.1- 5.3 analyze three classes of techniques for average error rate
estimation due to flat fading in diversity-combining receivers.
An appropriate "instantaneous" error rate is determined and then
averaged over the fading for the techniques of Section 5.1. In
Section 5.2, the probabilities that instantaneous SNR's are below
thresholds are measured and related to the desired error probabi-
lities. For Section 5.3 a formula is assumed relating average
error rate to SNR and to diversity branch correlation. Measure-
ments of the latter are used in the formulas to estimate error rate.
Section 5.4 presents examples of the estimation of irreducible
error rate due to fast fading and frequency-selective fading.
Section 5.5 r(nsiders the estimation of error rate for an FDM-FM
data transm],sion system. Section 5.6 discusses the error rate
estimation problem for advanced anti-multinath modems which employ
in-band diversity. Finally, Section 5.7 deals with the analysis
of error rate estimation techniques when interference is present.
In all analyses complex Gaussian fading statistics are assumed.
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5.1 Flat Fading Error Rate Estimation by Averaging
""instantaneous" Error Rates

5.1.1 Introduction

In this section we address the problem of estimating the
error rate of a flat fading channel by averaging instantaneous
error rate estimates. Two techniques are examined. The first
technique uses estimates of the instantaneous SNR on each diver-
sity branch to form error rate estimates for each of the diversity
branches. The branch error rate estimates are then used to
estimate the channel error rate, assuming independently fading
diversity channels. The second technique that is examined is to
use instantaneous SNR estimates to estimate the ENR at the output
of the diversity ccmbiner. The combiner output SNR is used to
estimate an error rate at that instant. These instantaneous
error rates are averaged to form an estimate of the channel error
rate. This technique does not require the assumption of indepen-
dently fading diversity channels. However, it is more difficult
to estimate error rates when the modem error rate is low. A
technique is proposed for alleviating this problem by amplifying
the apparent error rate and extrapolating to the correct value.

Finally, a technique is studied for predicting short-term
error bursts.

5.1.2 Use of Diversity Branch Error Rate Estimates for
Error Rate Prediction

In this section we consider the problem of estimating the
error rate of a flat fading channel from estimates of the instan-
taneous error rate on each diversity branch, assuming independently
fading diversity branches. Figure 5.1 is a block diagram of the
system to be analyzed. The estimation procedure is as follows.
The data signal is transmitted over the diversity channel, picked
off at RF (or IF) in the receiver, and sent to a magnitude-squared
channel transfer function estimator of the type analyzed in
Section 4.1. The output of the estimator is sampled and combined
with an estimate of the noise power to form an estimate of the
instantaneous SNR. From this instantaneous SNR estimate, we ob-
tain an estimate of the instantaneous error rate for that diversity
branch. These are averaged to form an estimate of the average
error rate, which are combined with the average error rate esti-
mates of the other diversity branches to give a channel error rate
estimate. A possible correction for the bias in the error
probability estimator is shown in dashed lines.
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For analysis purposes, a 2-phase DCPSK system is used. This
scheme is sufficiently similar to other signaling schemes so tht.t
the results of this section can be used for comparison purposes.
For a 2-phase DCPSK system and Gaussian noise, the error rate
conditioned upon the SNR is given by

P - (5.1)
2

where y is the SNR. From (5.1) and estimates of the signal-to-
noise ratio on the kth diversity branch and in the pth sampling

instant, we can form an estimate of what the ensemble error rate
would be on this branch and at this sampling instant if the other
branches were not there:

1 '"kp
Pkp •e (5.2)

where is an estimate of the SNR on the kth branch and at the
pth ins tnt. Assuming stationarity, the error rate on the kth
branch can be formed by averaging the above estimates. This gives
an estimate of the error rate for the kth branch acting alone:

KAiP 21 K -Ykp

Pk 1 e (5.3)-k 2Kp=l

For many diversity combining techniques, it is possible to
express the error rate of the channel approximately in terms of
the error rates of the particular branches acting alone when
independent fading occurs on the diversity branches. For example,
with M the order of diversity, we can express the error rate by
[5.1]

M
P e Cq Pk (5.4)

k=1

where

for equal gain combining

C = M! 2MI for selection combining

2 M1I for maximal ratio combining
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Equation (5.4) is exactly true for maximal ratio combining, asymp-
totically true for low error rates, but sLill useful for error
rates up to 10-2 to 10-1 for the other combining techniques.
From (5.4) we can estimate the error rate by

A M

P C P^k (5.5)

k=1

The ability of (5.5) to estimate the error rate will be
determined. From (4.250) of Section 4.3, the estimate of the
SNR on the kth diversity branch and at the pth sampling instant
can be approximately represented by

A

7~kp = ( C +kp) kp + 6kp (5.6)

where Ykp is the actual instantaneous SNR, and ckp and 6 kp are
independent estimate errors with first- and second-order error
moments approximately given by

Ckp 6 kp 0

2 2
Ckp C

6 2 =2 2(57

where, for the estimator of Figure 4.1, c and E are, respectively,
given by (4.57) and (4.100). In (5.7), .r1 is the mean SNR of the
kth diversity branch. Using (5.6) in (5.3), the estimate of the
error rate on the kth diversity branch acting alone is given by

Ak IL E - 1(l+Ekp)ykp+6kp:]

k 2K [ ke (5.8)

p=1

Averaging over the instantaneous SNR estimation errors and
channel fluctuations gives

E{Pk} E (5.9)
p=l

5-5



Since the estimation errors due to the channel selectivity, 6kp,
are independent of the errors due to noise and data, Eko,

E{Pk} = 1-K E jeP E e (5.10)

For zero mean complex Gaussian channels, Yk has a one.-sided
exponential distribution with mean Ik. ThereforE, performing the
average over the channel fluctuations gives

E{P'k.} =K E -kp E + (5.11)k1 p= I !k+ I + (kp -ki

The channels studied have allowed sufficiently accurate esti-
rnation of the magnitude squared of the channel transfer function
so that E. Al can be accurately expressed in terms of the first-
and seconA-order moments of the error. Therefore, we can approxi-
mate (5.11) by L 2 2 r2

EE 'S2 kk

E{ 2(k + 1) (.2

Noting that for the system considered we have [5.1] for the
average error rate of the kth diversity branch acting alone

1
Pk 2 (rk- 1) (5.13)

and upper bounding slightly the term in (.2 by assuming I'k/(r kl)l,
it immediately follows that

E{Pk} P + 2 - 1- + k (5.14)
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llence, the diversity branch error rate estimator is biased. The
quantity c is known and a. will normally be measured. If cS
could be estimated, the bias could be corrected. While insuffi-
cient time was available to study this question, it appears that
(S can be measured.

The error variance in estimating Pk will be determined next.
Squaring (5.8) and averaging gives for the second moment of the
estimate of the error rate for the kth diversity branch acting

aP 12 a n e Efp^2ý 1K(KE 1+ckp)ykp+6kp+(l+Ekq)ykq+6ki

4K p=l q=1

(5.1.5)

To evaluate the above expectation, the joint density of _kp
and yk must be known. For a complex Gaussian channel, the
joint aensity is a function of the correlation coefficient of
the channel complex envelope. In particular, defining

7 • I ~~E {T*(Ft 't)Tk (F'tq)[

Ppq E{ITk(f,t) I 2 (5.16)

where Tk(f,t) is the time-varying channel transfer function of the
kthr diversity branch, then the joint density of 7kp and Ykq can be
expressed as [5.2]

(1 2P). Pq)
P(Ykp'ykq) = 12 1(l 2 `O[ r,~ _ P2 'le(.7k pJd -k1pq'

Using (5.17) to perform the average over y and _kq gives for
the second moment of the error rate estimate on the k diversity
branch acting alone
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rA~K K - p+ q

74K2 p=l q=1 X!-P) +rk(2+

(5.18)

Expressing Efp2 in terms of the first- iad second-order
moments of the errors gives

2 2 22•=l+ 2EST'k+E
E P$ 4 K ( 2 rk+l)

+Cr + 2E K K 1
+ 2 2 (5.19)

4 K p=l q=1 (lk+ 1) - (ppqrk)
p~q

where the errors at different sampling times were assumed to be
independent.

To simplify notation, we define c(Ppq) as

(p 2

2
O(Ppq) (rk+1) i2 (Ppqrk) (5.20)

where we note that 4(ppq) -0 as Ppq-0. Figure 5.2 presents typi-
cal time dependencies 0or the functions discussed in this section.

Substituting the above expression for O(ppq) into Eq. (5.19)
and using the e pression for Pk given by (5.13) gives approxi-
mately for ENPJ

2(22+ 2 1- 22 2) K K
E4P2  ~ Sri c 2( s [I(Do +l (5.21)

k 4 K( 2 rk+l) k 4K2 p=l q=l

p#q
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Using (5.12) and (5.21) to evaluate the variance of the
S error rate estimate of the k diversity branch acting alone gives

212 2 22 2 22 2
I+ 2 cS k+C l+Es-ik+ 2 c 1+ r + 2 •E K K

2 ____ _ S 2 S k 2 K
ek 4 K( 2 Pk +1) K k K2 kp=l q=1 pq

P#q

(5.22)

who-re higher than second-order error moments were considered
negligible.

For stationary scatter channels, pq can be expressed in
terms of i tn-tql and, for equally spaced samples, Ppq can be ex-
pressed in terms of Ip-ql. Thus, for this case, the double sum
of (5.22) can be written as a single sum giving

2 2 2 +C2 22+ 22
2  

- l+ 2 Srk + lI+ES-k 2PA^ 4K(2rk + 1) - K PkP k

2r2 + 22 K-i
l+ cS"k 2 e2 E (K-r) D[p(r)] (5.23)

K2  k r=1

where p(r) -ppq with r= Ip-qj.

When K is large, •[p(r)] contributes to the above sum only
when K-r: K. Furthermore, the second term is negligible for all
cases of practical interest. Therefore, the variance of the
estimator is closely given by

1+21 2 2 + 2  1 + I + + 2E 2  K-ICr2;j S • 2P rI •[p (r)] (5.24)
A 41E( 2 rk+i) K 2PJ k (I k

Therefore, from (5.14) and .(5.24) we can express the esti-
mate of the error rate of the kth diversity branch acting alone by
by A

Pek = Pk(l +0) (5.25)
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where

2

2 =P
2

Py 2

k

Substituting (5.25) into the pression for the error rate
estimate of (5.5) gives

P = C (1 + (5.26)
e kl )=I+l

One may readily compute the mean a•-%d variance of Pe (5.26). For
small ek

12E+S~ M~ (5.27)
e{l 'v Pk1l+ME+ 2~e( k=l

for independent diversity channels.

The estimator of the error rate is biased. For the systems
of interest, the effect of this bias should be assessed and, if
the bias is unacceptable, the filter parameters of the magnitude-
squared channel transfer function estimator of Figure 4.1 can be
chosen to reduce this bias for the expected range of rk's.

From (5.26) and (5.27) the variance of the error rate esti-
mate for small wk is given by

2 2 MPk

a 2 e2 k~l •(5.28)P e = 2P
P ~k=lPk

Examples are presented in Section 5.1.5 to illustrate the
effectiveness of the error rate estimator analyzed above.
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While the above calculations of error bias and variance
assumed Gaussian noise, it appears that the results will not
differ significantly for atmospheric noise. (Calculations of
error rate with atmospheric rather than Gaussian noise have been
carried out by Bello [5.171.) This may be deduced by noting that
the curves of error rate vs. SNR for atmospheric noise (see
Figures 2 and 3 of [5.17]) are similar to those for Gaussian noise.
These comments apply to all. the error rate estimation techniques
and will not be repeated.

5.1.3 Use of Diversity Combiner Output Instantaneous SNR
Estimates for Error Rate Prediction

In this section we address the problem of estimating the
error rate for a flat fading channel by averaging instantaneous
error rate estimates determined after pseudo-diversity combining.
Figure 5.3 is a functional block diagram of the error rate esti-
mator to be considered. The estimation procedure is as follows.
The data signal is transmitted over the diversity channel, picked
off at RF (or IF) in the receiver, and sent to a magnitude-squared
channel transfer function estimator of the type analyzed in Sec-
tion 4.1. The output of this estimator is sampled and combined
with an estimate of the noise power to form an estimate of the
instantaneous SNR. This instantaneous SNR estimate, along with
instantaneous SNR estimates from the other diversity branches, is
sent to a simulated diversity combiner. This simulated combiner
produces an estimate of the combiner output SNR at that instant.
An instantaneous error rate is then computed and averaged to give
an error rate estimate.

For analysis purposes, the modem is chosen to be a two-phase
DCPSK system employing Mth order maximal ratio combining. A
statististically stationary channel with independent fading on
diversity branches will be assumed to simplify'calculation.
However, it should be noted that the aethod does not require any
assumption about the dependence or statistics of the fading. It
requires only that the additive noises beGaussianand independent.

For ideal maximal ratio combining and independently fading
diversity branches, the instantaneous DNR at the combiner output
is the sum of the input SNR's [5.1]. Hence, the SNR at the com-
biner output and at the pth sampling instant will be estimated by

M

*P k=lYkp (5.29)
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where • are the estimates of the SNR on the kth diversity branch
and at t*ie pth sampling instant.

Furthermore, recalling [from (5.1)] the expression for the
error rate of a two-phase DCPSK system in Gaussian noise, we can
form an estimate of what the ensemble error rate would be at the
pth sampling instant:

A

(p) I Y "p
P e 2 e (5.30)

An estimate of the average error rate can be obtained by
averaging these instantaneous error rates. Hence, the average
error rate estimate is given by

M

A K kYkp
PC = e (5.31)

Representing the estimated instantaneous SNR's by Eq. (5.6),
the error rate estimate becomes

M

1 K =l kp (l+Ekp)+6ko
Pe mK e (5.32)p=l

where Ckp and akp are errors in estimating Ykp"

The effectiveness of the above error rate estimate is deter-
mined by evaluating its bias and rate of convergence. We will
assume that the errors are indcependent of each other and of
Furthermore, the diversity brai'ches will be assumed to fade
independently in the evaluation of estimator performance. Note,
however, that the technique itself is valid for dependent diver-
sity channels since conditional error rr.tes are computed only
with the diversity combined SNR. Therefore, we can write

iK M -eYkkp Ee-ykP(l+EkP)(

p=l k=1
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Using (5.7) to represent the moments of the errors, then in
a manner similar to that shown in Section 5.1.2, it can be shown
that E{e]e. can be closely approximated by

E{P~ 1 -2 r +m M]Pe (5.34)
• ~k=I

where higher than second-order moments of the error were neglected

and where, for the system analyzed, the error rate that we are

estimating is given by 2

2 g r (rk+1)
k=-

Comparing (5.27) with (5.34), we note that the biases for

the two error rate estimators considered in this section are
identical.

The second moment of P is found by squaring and averaging
(5.32) to give e

K2 K F' Yk=1p kP kq kq kp kqj
-2 1 K [K lE{P FE e (5.35)

4K2 p=l q=l

Assuming that the errors in estimating the instantaneous SNR's
at different sampling instants are independent, we have

21 1- K M k e{26kp E e

E{P 4K p=l k [
K K M(6++ I1 2 Efe" )p "q JeYk(E)+-kq(+ckq)

4K p=l q=l k=il
pýýq L

(5.36)
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Performing the above averages and neglecting higher than
second-order moments of the error, it follows that we can closely
approximate the second moment of the error rate estimate by

2 2l+ME2+ 2S rk

I + Mi cE rk
T 2X k=l

4K • (2kk+l)

k=1

[1~ 2+2 M k]PS+ 2MC2 +C E e K K

+ k~l _% !~(Ppq4.1 (5.37)
4K2  p= q=

p#q

where ppq is defined by (5.16) and where

P = 1.
e 2 (rk+ I)

@'Apq = (rk+I)2 ] -M (5.38)
pk=].

Also, when M=1, 4l1(Ppq) reduces to t(p ) as given by (5.20).

In fact, it is easy to see that when M the error rate esti-

mates given by (5.5) and (5.31) are identical, as are the tech-

niques given by Figures 5.1 and 5.3.

For a stationary scatter channel, the double sum of (5.37)

can be reduced to a single sum by defining p(r) as in the previous

section. This gives for the variance of the estimate

+ME +2EcS= rF 2 [+2ME+S r 1 e K-1

2 Z 0 rl i[p (r)]
A = + K =
PM

Pe 4K ? (2,k+l)
k=l

(5.39)
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where the terms that fall off faster than and higher than
second-order error moments were neglected.K

For the usual case of not strongly correlated diversity
branches, the error rate computed at the diversity combiner out-
put will be very much lower than the error rate of each branch
acting alone. As with an error counting procedure, the error
rate estimate variance varies as the reciprocal of the error
rate that it is desired to measure. Thus, the variance of the
P estimate for method 2 will normally be much worse than for
method 1.

A variant of method 2 was presented in Section 3 which re-
duces greatly the variance of the Pe estimate. Briefly, the
apparent SNR is reduced by a factor r in the conditional error
rate estimates. Because the apparent SNR is much less, the
apparent error rate is higher and a much smaller variance of the
error rate estimate (and bias) is achieved. The correct error
rate is estimated by extrapolation with the aid of a theoretical
error rate vs. SNR curve. It was shown in Section 2 that the
procedure is exact at high SNR and will work for a wide class of
fading statistics, additive noises, modulation techniques, and
diversity combiners.

5.1.4 Error Burst Estimation

In this section we examine the problem of estimating error
bursts from estimates of the instantaneous error rate. The error
burst estimates can be used to distinguish error bursts caused by
the channel from those caused by the equipment.

The estimator given by Figure 5.3 will be examined for its
ability to estimate short-term error bursts. A two-phase DCPSK
system employing maximal ratio combining will be used for the
analysis. For this system, the error rate estimate is given by
[repeating (5.32)]

M

1 K k Z1kkp(l+Ekp)+6kp
Pee = 2 K E e (5.40)

p=l

where M is the order of diversity, Yk is the SNR on the kth
diversity branch at the pth sampling ?nstant, and ckp and 6kp
are errors in estimating '/k due to noise, data, an the
selectivity of the channel.
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It will be assumued that the samples are taken close enough
together such that the SNR can be considered to be constant in
each sampling interval. Since the fading rate of the channel is
much slower than the data rate, many data bits will be received
between samples of the output of the magnitude-squared channel
transfer function estimator. We will assume that N data bits are
received for each SNR sample. Therefore, since, from (5.40),
there are K SNR samples on each branch, NK data bits are
received in the time interval over which we are estimating error
bursts.

The fraction of data bits received in error during the ob-
servation interval is given by

K NPC 1 K j3(p,e) (5.41)

p=l

where

l, if the ,th data bit in the pth
sampling interval is in error

) 0, otherwise

In this section, we will examine the use of the error rate
estimate given by (5.40) as a means of estimating PC given by
(5.41). The effectiveness of this estimator is determined by the
mean-squared difference given by

MSD = E(PC P )21 (5.42)

By direct substitution, MSD can be expressed as

N 2
KN K r- Y k (l+Ek)+6kp

MSD E 2K k=1 (5.43)

1 5t=k18
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To evaluate the MSD, we will first find the MSD conditioned
upon Eckp, "kp' 8kp}. This conditional mean-squared difference

is given by

K K N N ()MID• 2 Ejf3(p,,t)P(q,n) ly~kpCkp,6kpl
ýYkp'ckp'6kp} (NK) p--lq=i t=l n=l

M

- K K N Y=kq (+Ekq kq.- 172 e E A(p,•,)[•kp,•kp, kp

2NK p=1 q-1 t=lI
M

K K N ~Ykp +kp +kp ,

-2 e kC P2 e Ej(q,n)jF k,E 6kp,6kp
2NK p=l q=l n=l

M
"1 klPkp kp kp4/kq ( +kq )+6kq

+. e (5.44)
4K2 p=l q=l

Recalling the assumption that the SNR estimates are taken
close enough together such that the SNR can be assumed constant
in a sampling interval and also recalling (5.1), then for the two-
phase DCPSK system considered, the required expectations are given
by N

E= Ykp

E 1(p)l•Tkp,•kp,6kp 7 e (5.45)

M
1 "k=•lkp

1e ,~ if pq and t=n

E pn'kp'kpkP1 
-k- 1 kp+-/kq

Ie , otherwise
4

(5.46)
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Substituting (5.45) and (5.46) into (5.44) gives for the
conditional mean-squared difference

i M
1 K K k=i

MSDf - e
Sykp'"kp'°kpl 74K2 p=l q1l

M
-k P(l+Ekp)+ kp+ikq

ke

M
"E Y kq(l+Ekq)+6kq+>'kp

k=l
- e

-M M

K Z -2 1 Yk

eklkp 1 k=lKN I - e (5.47)

Using the joint probability density function for Ykp and Ykq
given by (5.17), the conditional mean-squared difference given
above can be averaged over the instantaneous signal-to-noise ratio
samples to give the mean-squared difference conditional upon the
instantaneous SNR estimation errors. Performing this average
gives
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MSD{ , _ K

K2  M

""kp kp 4 p1l~ 2 2kP 2

TI - r~ Ppq) k

k=1

M

- 6 kpk=l
e

M )(i+ )+Yrk(2+Ekq)+l

a [I2( Pp-q Ekq

k=1

M

: ~~k=I1 m

e

M [r 1•2 -ppq2 + Ekq) k(+ Ekq)+k+
k=l

k=1 kp±
6 kq

2+f (rk+ l) 4 ff ( 2 12kerl)

k=1 k=1

where rk is the mean SNR on the kth diversity branch and p is
the channel correlation coefficient defined by (5.16). ThFqmean-
squared difference can be closely approximated by the first- and
second-order moments of cknand 6 Therefore, averaging (5.48)
over the errors in estimating the magnitude squared of the chan-
nel transfer function gives for the mean-squared difference
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2
.r2 M 2

X1 + E I (2rk+ 1)2 S kMSD = P -+(5.49)
Se M M

4 g (2rk+l) 2K f (2rk+1)

k=1 k=1

where

p 1
e M

2 T (rk+ l)
k=l

is the average error rate of the system.

It should be noted that as K-+, the mean-squared difference
given by (5.49) goes to zero. However, from (5.34), the estimate
given by (5.40) is a biased estimate of error ratq and, since PC
given by (5.41) converges to the error rate, then Pe is also a
biased estimate of PC" This bias can be included in the expres-
sion for the MSD to obtain

2M 2 M
I I k=l (2T-k+ 1)2+S k=l

MSD = Pe M +

4 f ( 2 1-k+ i) 2K f (2rk+ 1)

k=1 k=l

+ 2 2

+ P 2 kCS M 2 + ME2] (5.50)
k=l 2 E r 

I

The performance of the error burst estimator considered in
this section will be discussed in the following section along
with the performance of the error rate estimators previously
considered.
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5.1.5 Estimator Performance

In this section, the performance of the estimation techniques
analyzed in the previous sections will be presented. For illus-
trative purposes, the channel models (HF, LOS, Tropo, and
Satellite) used in Section 4.1 to analyze the performance of the
magnitude-squared channel transfer function estimator will also
be used in the examples of this section.

From (5.24), (5.28), and (5.39) the determination of the
error rate estimator performances requires the functional descrip-
tion of the channel correlation function. To illustrate the
performance of these estimators, two representations for p(r)
were used; one is the Gaussian correlation function and is
given by

S2B 2r 2(ArT)2

pG(r) = e (5.51)

and the second is the double pole correlation function given by

P DP(r) = [1 + iTlrI BAr] e- rlBAT (5.52)

where

B is the channel rms Doppler spread

Ar is the time between samples

It should be reiterated that the above representations for
the channel correlation function are for illustrative purposes
only, and are not meant to represent the actual correlation
functions for the various channels. It was found in the examples
that the performance of the error rate estimators is relatively
invariant for the above two correlation functions and, thus, the
performance of the estimators may be robust with respect to the
shape of the correlation function. The performance presented is
for the double pole correlation functio.

Figure 5.4 and 5.5 present the error rate estimator perfor-
mance for the estimator analyzed in Section 5.1.2, while
Figures 5.6 and 5.7 illustrate the performance of the estimator
analyzed in Section 5.1.3. The estimation errors cxj given by
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(5.28) and (5.39) are used as the measure of the estimator per-
formance. The performance of the estimators for other time
intervals, still large such that the sums in (5.24) and (5.39)
do not change appreciably, can be determined from these figures
by noting that a- decreases as the inverse of the square root

e

of the number of samples. Thus, if the performance for a time
interval of four times the specified time is desired, it can be
determined by decreasing a^ by a factor of 2 from the perfor-

mance presented.

Table 5-1 presents the parameters used to evaluate the error
rate estimation techniques. As pointed out in Section 2, the LOS
channel should be analyzed on a quasi-stationary basis. The LOS
channel has been included in Table 5-1 to make clear that reliable
average error rate measurements on LOS links are meaningless
because of the long measurement time required - 1667 minutes.

From Figures 5.4 to 5.7, we note that the estimator of Sec-
tion 5.1.2 is superior to the estimator of Section 5.1.3. Since
the bias of Error Rate Estimators I and 2 can be significant for

SHF channels, it is shown on these performance curves. This bias
was calculated using estimator filter parameters for which the
bias 's minimized at each SNR. Therefore, this represents an
upper bound on performance. Due to this bias, these estimators
are not recommended for use on HF channels. For the other chan-
nels of interest, the bias can be made negligible by proper filter
parameter selection. Use of the error amplification technique
presented in Section 3 will also reduce the error rate bias
significantly.

Figures 5.8 - 5.11 present the performance of the error burst
estimation technique analyzed in Section 5.1.4. A short time in-
terval (15 seconds) is used in the example because good short-term
error burst estimates can aid an operator in quickly distinguishing
an error burst due to the channel fading from one due to equipment
failure.

From the figures we note that the best error burst estimates
(small MSD) are obtained for the channels for which good estimates
of the instantaneous SNR are possible (LOS, Satellite, Tropo).
For the channels that do not allow good estimation of the instan-
taneous SNR, the error burst estimator of Section 5.1.4 is of
questionable usefulness.
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TABLE 5-1

PARAMETERS USED TO EVALUATE ERROR RATE ESTIMATION TECHNIQUES

Parameter Estimation RMS Doppler
Time Spread

Channel (s) (Hz)

Tropo 5 1.0

HF 10 0.5

Satellite 25 0.2
Ionospheric
Scintillation

LOS 1667 0.003
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Figure 5.8 Performance of Error Burst Estimator for
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5.2 Flat FadinF Error Rate Estimation from Measured Fade
Probabilities

5.2.1 Introduction
For a flat fading Rayleigh fading channel, the probability

that the signal-to-noise rati.o fades below a level can be related
to the average error rate of the channel. In this section, we
use measured fade probabilities as a means of estimating the
error rate of a flat fading channel. Two techniques for esti-
mating the error rate are considered. The first technique uses
the fade probabilities to form estimates of the error rate each
diversity branch would have if acting alone, and then uses these
estimates of branch error rates to estimate the error rate of
the channel. The second technique uses the fade probabilities of
the output of the diversity combiner to estimate the average error
rate. While simpler to implement than the techniques described
in Section 5.1, these techniques are approximate, requiring that
the SNR be large compared to unity.

5.2.2 Relationship Between Fade Probabilities and Error
Rate

For a nonselective Rayleigh fading channel, the error rate
for many modems can be directly related to the probability that
the signal-to-noise ratio fades below a level. In this section,
we will determine this relationship.

The error rate for many modems operating over a nonselective
Rayleigh fading channel can be approximated by [see Ref. 5.1,
chapter 10]:

p eP S rk>> 1 (5.53)

Tr k
k=l

where M is the order of diversity and rk is the mean SNR on the
kth diversity bianch. Equation (5.53) is a good approximation
when rkz I. The constant S is dependent upon the order of diver-
sity, -the type of combining, and the modulation technique.
Table 5-2 gives values of S for some modulation schemes and
diversity combiner techniques.

The probability that the SNR at the output of the diversity
combiner is below a level is approximately given by [see Ref. 5.1,
chapter 10]
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TABLE 5-2

VALUES OF S SUCH THAT P
e rk

k=l

Combining M-1 xima I Equal
*echnique Ratio Selection Gain

Modulation Combining Combining Combining
Scheme ....... _ _ _ .

Coherent ( 2 .), ( 2

PSK MI 2./T 2M/2

2M-1(M ( 1 -1)(M ) 2M
Coherent 2 2 "M
FSK M! ff 1 2M!

Differentially !(2
Coherent 2 2
PSK 2(M -)!

Noncoherent 2P- 2 MIM! MOM'

FSK 2 (M - !)!

rk is the mean SNR on the kth diversity branch

M is the order of diversity
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Prob..Q/J V XM ; for X«k k1,.%9..,M

irk (x> 1)
k=1

where

V = -- for maximal ratio combining

V = 1 for selection combining

ITV = foWr equal gain combining
M! (M - V)I

The fade probability given by (5.54) is a good approximation
when X<<Fk. Combining Eqs. (5.53) and (5.54), it follows that

PeV XM
Prob. { r. X1 Ad es for X <<rk, k=l,...,M (5.55)

(X> 1)

From the expressions for V and S, it is easy to show that
for the three combining techniques considered, the ratio V is the
same for all combiners. In particular, for DCPSK and noncoherent
FSK, the fade probability is given by

rb{ X} e2cl M 5.6
Prob. ! A M! ; for X<Fk, k,...,M (5.56)

(x> 1)

where a -1 for DCPSK, a =1 for noncoherent FSK. For the coherent
detection techniques

2 /7- lM XM Pe57
Prob.{ýy X} - 1 ; for x<<rk, k=1,...,M (5.57)

(M - )!(X> 1)

1
where 1 for PSK, R'= for FSK.

2
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Therefore, the probability that the SNR at the output of the
combiner falls below a level is directly related to the probe-
bility of error. In Sections 5.2.3 and 5.2.4, we will examine
two techniques for estimating error rate from measured fade
probabilities.

5.2.3 Use of Fade Probabilities on Each Diversity Branch
for Error Rate Estimation

In this section, we will use error rate estimates for each
diversity branch to predict the system error rate. The error
rates of the diversity branches are estimated from their fade
probabilities. Figure 5.12 is the block diagram of the estimator
to be analyzed. The estimation procedure is as follows. The
data signal is transmitted over the diversity channel, picked off
at RF (or IF) in the receiver, and sent to the magnitude-squared
channel tratisfer function estimator of the type analyzed in
Section 4.1. The output of this estimator is sampled and com-
bined with an estimate of the noise power to form an estimate of
the instantaneous SNR. This instantaneous SNR estimate is then
compared with a threshold, quantized and summed to form an esti-
mate of the error rate on the kth diversity branch. This error
rate estimate, combined with error rate estimates from the other
diversity branches, is then used to estimate the average error
rate.

To estimate tho error rate for one diversity branch acting
alone from fade probabilities, either (5.56) or (5.57) should be
used with M =1. Therefore, the ensemble error rate on the kth

diversity branch, assuming the other diversity branches are not
there, can be approximately related to the fade probability by

A Prob.{yk:X}
P l x T. (5.58)

where Yk is the instantaneous SNR on the kth diversity branch and
A can be found from (5.56) or (5.57) for the modems considered.

IR implementing the technique to estimate the error rate on
the kt diversity branch acting alone, the fade probabilities will
be estimated from the instantaneous SNR estimates by

V 1 K
Prob.{k X} X 1 b (5.59)

p=l p
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where

I, if Xkp x 4
bp

o0, otherwise

and Ykp is an estimate of at the pth sampling instant.

Therefore, the error rate on the kth diversity branch will
be estimated by

KP K* b (5.60)
k=l P

To evaluate the effectiveness of the error rate estimator
given in Figure 5.12 to estimate error rate, we must determine
the convergence of Pk to Pk0 From Eq. (5.6), for the magnitude-
squared transfer function estimator of Section 4.1, the estimate
of the instantaneous SNR can be expressed as

Ykp Y kp(l +Ckp) + 8kp (5.61)

where Yk is the actual signal-to-noise ratio on the kth diversity
branch a d at the pth sampling instant. The parameters Ek and

are errors in estimating Ykp due to noise, data, and tke
selectivity of the channel.

From (5.59) and (5.60), the expected value of Pk can be
given by

A K ( X-6k)l

E{Pk} = T- Prob. Yk! I+E(5.62)

p=l l+kp-

Using (5.58) to express the above probability, averaging
over the error parameters gives

E{Pk} = Pk(l+E 2  (5.63)

where the moments of the errors in estimating Yký are given by
(5.7) and higher than second-order terms of thes errors are
considered negligible.
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Therefore, the estimate of the error rate on the kth diver-
* sity branch is biased due to the error in estimating the

magnitude squared of the channel transfer function. The second
moment of Pk can be found from (5.60) to be given by

jp2n. ' (5.64)
x K2 p=l q=1l

?2

From the definition of bp, and noting that 2 =bp , it imme-
diately follows that

o2b A 2 A2  K K r

Kl -= X Pk(1 + 2 2 p " Ykp :2 I+ C Ykq
X K p=1q=1 p'Cq

P0q
(5.65)

With the joint density of the SNR samples p(7kpykq) given
by (5.17), we have

X-6 kpX-8 k

Prob - ~k X - +Ekp l+Ejkq

1roA kp l+Ep )kq l+k~ f f P(Ykp~ykq dykp dykq

0 0

(5.66)

For analysis purposes, we will assume that the SNR samples
are spaced far enough apart in time such that for all Ykp r X,
Ykq X, we have

2 P9p small

rk~l pq)

VYkp + kq. small (5.67)

rk(1 -P 25q)
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With the above assumptions, then p(Ykpykq) can be closely
approximated by

P pk i(1.pp) Ykp5Ykq X (5.68)

Since in order for the error rate to be related to the fade
probability we must have X<< rk, then the small argument approxi-
mation of (5.67) will be valid if p is not too near 1. Substi-
tuting (5.68) into (5.67), integratPirg with respect to y1 and

Yk_, and averaging over the errors give for the joint fatg
prgbabi lity$ X" 8kp' X"8kq X2 (l+ 2E2 )
Prob. kpXl+ 21 kq E 2 (5.69)

kp kp 9r +Ckqý (1 p)

Substituting (5.69) into (5.65) gives after some simplifica-
tion

A 2 p(1 + 2c) K K
Eq -2 A 2 + 2 (5.70)

il#4 KX Pk K(=1 +1-p 2
plq - ppq

For a stationary scatter channel and equal spacing between
samples, we can express p in terms of r p-q. Therefore,
letting p(r) =P in (5.78ý, the double sum can be replaced by
a single sum toPgive for the variance of P

Pk

2 2 2 2
2  A p 2  Pk(+ 2c ) 2Pk (I+ 2 2 K-i
.Atk-KX pk(l+2)K K + 2  F, O[p(r)](K-r)

P k Kr=1
(5.71)

where
A 2

Lb-p(r)] 2
i-p (r)
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If p[p(r)J contributes significantly to the sum only when
r<< K and if (as should be the case) the second term is negli-
gible, then the variance of k is

2 APk 2 2P (1+2c 2 ) K-1
Pk .(l+K ) + K - j •[p(r)] (5.72)

From (5.60) and (5.72), the estimate of the error rate on
the kth diversity branch acting alone can be expressed as

Pk P k(I +00k (5.73)

where

2

2 Pk
C? P 2

Proceeding as in (5.25) to (5.28), the mean and variance for
estimating the error rate with the technique of Figure 5.16 is

AM2
P = P (1 + )e e

2
2 P2M P'k

a2  e E 2 (5.74)
P k=lPeP

The performance of this estimator will be illustrated in
Section 5.2.5. However, it should be noted that in implementing
the error rate estimator analyzed in this section, a choice of
the level must be made. From Section 5.2.2, the level on each
diversity branch must be much less than the mean SNR of that
branch. This allows us to relate the fade probability on that
branch to the error rate of that diversity branch acting alone.
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Furthermore, from (5.72) the rate of convergence of the estimator
increases as the level, X, increases.

5.2.4 Use of Combiner Output Fade Probabilities for Error
Rate Estimation

5.2.4.1 Introduction

As was shown in Section 5.2.2, for high SNR the probability
that the instantaneous SNR at the output of the diversity combiner
is below a level is directly related to the average probability of
error. Figure 5.13 is a block diagram of an error rate estimator
that utilizes the above-mentioned relationship. Up to the esti-
mation of the instantaneous SNR at the diversity combiner output,
the estimation procedure is identical to that of Error Rate
Estimator 2 discussed in Section 5.1.3. However, instead of
estimating the instantaneous error rate, the error rate estimator
of Figure 5.17 compares an estimate of the instantaneous SNR at
the diversity combiner output with a level to form an estimate of
a fade probability. These fade probability estimates are then
used to estimate the average probability of error of the channel.

From Eqs. (5.56) and (5.57), the error rate of the systems
considered can be estimated by

A B Prob. fy T
e (5.75)

where B is a constant dependent upon the particular modulation
scheme used, M is the order of diversity, and y is the instanta-
neous SNR at the output of the diversity combiner. The proba-
bility that the SNR at the combiner output fades below a level X
will be estimated by

P..I K
Prob.{y X} E b (5.76)

p=l P

where

1, if y g X
b-
p

0, otherwise
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thand y is the estimate of the SNR in the p sampling interval.Substituting Eq. (5.73) into (5.72) gives

K
B L b

e PM p (5.77)

5.2.4.2 Instantaneous Combiner Output SNR

To evaluate the effectiveness of Pe given by (5.77) to esti
mate the average error rate, it is necessary to relate the esti-
mate of the instantaneous SNR at the output of the combiner to
its actual value. We will derive this relationship for two of
the combining techniques considered in Section 5.2.2. It will. be
assumed that [see Eqs. (4.250), (5.6)]

Ykp = Ykp(l +ckp) + 6kp (5.78)

where Yk is the actual SNR on the kth diversity branch and at the
pth .am ?ing instant, and y^kp is the estimate of Ykp.

For selection combining, the combiner output SNR is the
largest of the input SNR. With small errors in estimating the
magnicude squared of the channel transfer function, the diversity
branch with the largest estimated SNR will usually have the
largest instantaneous SNR. Therefore, we can relate the estimated
and actupl SNR at the output of the diversity combiner at the
pth sampling instant by

Yp = p (l +Cp) + 6 p (5.79)

where

p5-45
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and c and ES are the errors in estimating the magnitude squared
of the channel transfer function and P is the mean SNR of the
diversity branch with the largest SNR Rt pth sampling instant.

For maximal ratio combining, the instantaneous SNR at the
output of the diversity combiner is the sum of the instantaneous
SNR's at the input to the combiner. Therefore, the estimate of
the SNR at the output of a maximal ratio combiner at the pth
sampling instant is given by

M
A 

A

•P k•lp Vkp (5,90)
k=

where M is the order of diversity.

Using (5.78) to express the estimates of the instantaneous
SNR, it follows that

M
Y•Ykp(l+Ekp) + 8 (5.81)

P k=l

where
M

6p 8k (5.82)
k=l

5.2.4.3 Error Rate Estimation

The performance of the error rate estimator presented in

Figure 5.17 will be determined in this section. Since the fade
probabilities for equal gain, maximal ratio, and selection com-
bining are approximately related by (5.54), the error rate for these

combining techniques can be estimated by simulating a selection
combiner and then adjusting for the actual combiner employed.
The error rate for selection combining and two-phase DCPSK

modulation is found from (5.56) to be given by

M! Prob. {PX1p PS=(5.83)
P 22XM

where y is the instantaneous SNR at the output of the selection
combine?. The fade probability will be estimated by
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K
Prob.~ 1 F, b~ (5.84)

1YP K p=1

where

(I ,if y X

p 1 pb p (5.85)

0 , otherwise

In (5.85, y is the estimate of the selection combiner out-
put at the ptn sampling instant, and can be represented by (5.79).
To determine the performance of Error Rate Estimator 4, we will
consider the case of equal mean SNR on each diversity branch. For
this case, the estimate of the instantaneous SNR at the combiner
output is given by

Y -- Yp(l+Ep + 8p (5.86)

where

EJ p E{6pj 0

2 E- r 621 c2 r 2

ELep} = E

t p S

and where r is the mean SNR on each of the diversity branches.
From (5.83) and (5.84), the error rate for selection combining is
estimated by K

M1 b

P = p (5.87)
S2K XM

The mean value of the error rate estimate is given by

5-47



MI K X-M! 1: Prob. ^4

EPS2xM I (5.88)

Using (5.54) to express the fade probability, it follows that

(I(
2 KXMIM

From Table 5-2, we can approximate (5.89) by

M

1

E{PSI K _p (5.90)

and neglecting higher than second-order error moments, we can
write

E{Ps• PS I M(M+1) 2 +M.(_-(1)1
LSJ L+ 2 + 2 X2 ] (591

Therefore, the error rate estimate is biasied due to the
errors in estimating the magnitude squared of the channel trans-
fer function. The second moment of the selection combiner error
rate estimate is found from (5.87) to be given by

KK

4K 2 X2 (5

and eglctig hghe thn scon-ore48ormmnsw a



Since E then

21 MIE1ý+ 1+ xSr°

" P2K p (Mr+) X•2

+ ,M) K q (5.93)
4X2MK22 l Z I q +C

p~q

To evaluate the joint probability that two samples of the
combiner output SNR are below some levels, we first express this
joint fade probability as

u v
Prob.{vp<Uvq-v} f p(yp :5 ) dy d, (5.94)

00VIP - p q p q

Using the small argument approximation for the joint density
of P(vl(py1 ) given by (5.68), we can obtain a small argument
approximati.n for p(,y ,vq)-by recalling that for selection
combining the SNR at Uhe output of the diversity combiner is
equal to the largest of the input SNR's. Therefore, it follows
that M2 M-I M-I

Thus, we can write

6 _____________q

Prob. YP---q-1+Tq- Mk (5.96)
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Performing the above expectations, neglecting their second-order
error terms, and substituting the end result int6 (5.93), the
variance of the error rate estimate is approximately given by

~, ~ ~ 2 M(M _i)(frI
2 MI- PS I+ (M + ) 2 + X2

PS 2KXM 2 2

2 M(+) M(M-I)C2S2 K-1+ | + M(M +I) C2+ X S r OPl
K 2

(5.97)

where

1 i[ lp2(r-]

A stationary scatter channel with p(r) =p~q (where r =Ip-ql) was
assumed, where p is the channel correla ion coefficient defined
by (.r.16). pq

To estimate the error rate when maximal ratio diversity com-
bining is used, it is only necessary to use Table 5-1 to determine
that the error rate for maximal ratio combining is related to the
error rate for selection combining by

P P (5.98)
MR MI S

Therefore, the error rate for maximal ratio combining
(similarly for equal gain combining) can be estimated by simu-
lating a selection combiner. From (5.91), (5.97), and (5.98),
it immediately follows that
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. N_!( -+( I, I) ._Is2E{PR P. PR1 2 C ,~ + M(-1

+ 22x2
-
1 MR , M(M +1) 2 2_2-Ic

O'MR 2K X-M I 2 + 2 X 2

+[I + M(M+l)E + X2 - 1l[p(r)]

KX 2 r1

(5.99)

A comparison of the flat fading error rate estimator
analyzed in this section with the error rate estimators previously
analyzed is most conveniently performed by considering examples.
In the following section we will present examples to illustrate
the performance of the estimators analyzed in Sections 5.2.3 and
5.2.4.

5.2.5 Performance of Error Rate Estimators

In this section we discuss the performance of the two error
rate estimators analyzed in Sections 5.2.3 and 5.2.4. For the
channel models considered in Section 4.1, examples will be pre-
sented to illustrate the effectiveness of using fade probabilities
to estimate the error rate for a flat fading channel. Since a
channel correlation function is required to evaluate the variance
of the error rate estimates, we will use the correlation functions
given by (5.51) and (5.52).

The comments of Section 5.1.5 regarding the channel correla-
tion function and the time interval over which the error rate is
measured also apply in this section. However, for some of the
channel models considered, samples of the SNR spaced every T sec-
onds, where T is the duration of the averaging filter of the
magnitude-squared channel transfer function estimator will result
in the small argument approximation [see Eq. (5.67)] not being
valid. For these channels SNR samples spaced farther apart will
be used.

For the examples, the level X was chosen to be equal to
one-fourth of the mean SNR. With the level set as above, the
assumption used in the derivations that X<<«r should not result
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in a large degradation of the error rate estimators. We should

- • note that the level is an estimator parameter that affects the

performance of the estimator and to achieve the performance pre-
dicted would necessitate prior estimation of the mean SNR.

Figures 5.14 and 5.15 demonstrate the performance of the
Error Rate Estimators given by Figures 5.12 and 5.13, respectively.
The rms Doppler spreads and the estimation times for the various
channels are presented in Table 5-1 of Section 5.1. As previously
mentioned in Section 5.1, the performance of the LOS channel is
presented for comparison purposes only. The long estimation
times required for the LOS channel make average error rate esti-
mation impractical.

Comparing Figure 5.14 with 5.15, it is seen that Error Rate
Estimator 3 is superior to Error Rate Estimator 4.

Comparison of the estimators analyzed in Section 5.2 with
those of 5.1 will be delayed until the last flat fading error
rate estimator is presented and analyzed in Section 5.3.

5.3 Flat Fading Error Rate Estimation from SNR Estimates

5.3.1 Introduction

For many systems it is possible to express the error rate
of a flat fading channel in terms of the mean SNR on each of the
diver- .ty branches. In this section we examine the use of in-
stan-aneous SNR estimates to form estimates of the mean SNR. The

* error rate will be estimated from these mean SNR estimates.

Also, by using the estimate of the branch envelope correla-
tion coefficient estimated in Section 4.3, the error rate for
dependently fading diversity branches can be estimated.

5.3.2 Flat Fading Error Rate Estimation for Independently
Fading Diversity Branches

The error rate for many digital systems can be expressed in
terms of the mean SNR on each of the diversity branches. There-
fore, for these systems, estimates of the mean SNR on each diver-
sity branch can be used to estimate the error rate. Figure 5.16
is the block diagram of the error rate estimator that will be con-
sidered in this section. The estimation procedure is as follows.
The data signal is transmitted over the diversity channel, picked
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off at RF (or IF) in the receiver, and sent to the magnitude-
squared channel transfer function estimator analyzed in Section
4.1. The output of this estimator is sampled and combined
with an estimate of the noise power to form an estimate of the
instantaneous SNR. These instantaneous SNR estimates are then
averaged to form an estimate of the mean SNR on each of the
diversity branches. This mean SNR estimate, along with the mean
SNR estimates on the other diversity branches, is used to form
an estimate of the error rate.

Section 4.3.4 addressed the problem of estimating the mean
SNR from the received data signal. From (4.253) and (4.256), an
estimate of the mean SNR on the kth diversity branch can be
expressed as

Srk + # ) (5 .100)

where

S2 K-i 2t ftk Ký R

In (5.100), E [see Eq. (4.104)] is the rms fractional error in
estimating thE magnitude squared of the channel transfer function,
K is the number of instantaneous SNR samples, and p(.) [see Eq.
(5.16)] is the normalized envelope correlation function evaluated
at the spacing between samples.

For analysis purposes, we will evaluate the effectiveness
of this error rate estimator for systems whose error rate can be
closely represented by

p = M S (5.101)

re

k=l

where M is the order of diversity and S is a constant dependent
upon the type of combiner used and the particular modulation
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scheme employed. Using (5.101) provides a conservative estimate
of estimator accuracy at low SNR. Values of S for several common
combining techniques and modulation schemes are given in Table 5-2
of Section 5.2.

From (5.101), the error rate can be estimated by

A S
e m (5.102)

k=1

Substituting the expression for the estimate of the mean SNR on
the kth diversity branch as given by (5.100) and averaging gives

P = P[+K(1+2p2 p 2(m) (5.103)

where was assumed to be uncorrelated with 8 if n# L, terms
that decrease faster than I/K where neglected, and only second-
order error terms were considered to be significant.

From the above expression for E4P }, we note that this
error rate estimate is asymptoticall ufnbiased. That is, as
K- C, EP e -Pe.

The variance of the estimator can be found to be given by

p 2 e + 2cp +2 E (5.104)P e m=

An rms fractional error for estimating error rate can be
given by

Se M + C p 2 K -1 p 2 ( m 2( 5 . 1 0 5 )
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Therefore, the performance of the estimator does not depend
upon the error rate to be estimated. It does depend upon the
number of SNR samples K, the order of diversity M, rms fractional

* error in estimating the magnitude squared of the channel transfer
function c and the correlation between instantaneous SNR
samples.

Figure 5.17 illustrates the effectiveness of Error Rate

Estimator 5 to estimate the flat fading error rate. As mentioned

in Section 5.1, the performance of the LOS channel is for compari-

son purposes only. The long estimacion time for the LOS channel

makes average error rate estimation impractical.

5.3.3 Error Rate Estimation for Correlated Fading on
Diversity Branches

Previously, we have assumed that the diversity branches have
faded independently. For many systems, the branches do not fade
independently and this dependent fading results in an increase in
the error rate since the full diversity effect is not realized.

To determine the effect of dependent fading upon the error
rate, we note that Pierce [5.3] has pointed out that the density
function of the instantaneous SNR at the output of a maximal-ratio
diversity combiner can be given for small y by

1 M-I

P (M-)! det (5.106)

where det is the determinant of the moment matrix of the set
ýTk flt)} of complex Gaussian random variables and T,(ft) is the
time varying transfer function on the ktn diversity hranch.

At high mean SNR, most of the errors are caused by the
occasional deep fades of the signal and a close approximation
to the error rate is obtained by using (5.106). Bello [5.4]
notes that this procedure yields asymptotically correct results
for high SNR's and upper bounds for all SNR's. Using this approx-
imation, we find that the error rate depends upon the diversity
channel correlations only through the determinant. Thus, one may
write

error rate with correlated fading
error rate with uncorrelated fading

moment matrix determinant with uncorrelated fading
moment matrix determinant with correlated fading

(5.107)
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With P and P , respectively, the error rates with uncorre-
lated and cgrrelat~d fading on diversity branches and with Mu
and M , respectively, the moment matrix determinants with
uncorKelated and correlated fading, we have

P PU (5.108)

C M CU

The above moment matrix determinants are given by
M

Mu cklrk

1kG* 12 13.
GI I G*3

0 12 13

MC C rk det G03 1

L . .. . . . GM* 'M I

C det AM (5.109)

where C is a constant and Gki is the complex branch correlation
coefficient defined by (4.254); that is,

G = . .... ((f (5.110)

[E ITj (f t) 2 2EITk(f,t) 62
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For the techniques involving the use of the magnitude-
squared channel transfer function estimates, we are only able
to estimate JGkjl. The estimation of Pkj 1Gkj1 2 was presented
and analyzed in Section 4.3.5. As will be demonstrated below,
the error rate for a system with correlated fading only on
"adjacent branches" is a function of pk and, thus, can be esti-
mated from the estimates of the magnitude squared of the channel
transfer function.

For the case of correlated fading only on adjacent diversity
branches, it follows that

C1

M C = A.k• lk det AM(51)

where AM is an MxM matrix given by

I G* 0
12

2 312 I 23" \

0 G 23 1 \AM G 3  1 I (5.112)

i \

GM\1,Mj
0--- 0

The determinant of _AM.can be evaluated by expanding in terms
of cofactors. This expansion yields a recursive formula forevaluating the determinant of AM. In particular, it follows that

det AM det AM_, - GM_,M12 det AM-2 (5.113)

where

det A1 = 1

det A2  1- 1G1 2 12

are used to initiate the recursive relationship.
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Since det AM must be greater than zero, then the representa-
tion given by (5.112) implies that for M large that IG jt5 1/2.
Of course, the above form should not be assumed unless Gjklj 0.1,
or so.

For the cases of highly correlated fading, JGjk1`O0, 9 , or so,
then the above representation is not valid. However, it may be
possible to upper and lower bound the moment matrix determinant.

Figure 5.18 presents a block diagram for estimating the
error rate over a diversity system with correlated fading on the
diversity branches.

The estimation procedure is as follows. The data signal is
transmitted over the diversity channels and picked off at RF (or
IF) in the receivers and sent to magnitude-squared channel trans-
fer function estimators. The output of these estimators is sent
to the error rate estimator analyzed in Section 5.3.2 to obtain
an estimate of the error rate assuming uncorrelated fading on
the diversity branches.

The estimates of the magnitude squared of the channel trans-
fer function are also sent to branch envelope correlation coeffi-
cient estimators of the type proposed in Section 4.3.5. These
branch envelope correlation coefficient estimates are used to
estimate the determinant of the normalized moment matrix. This
determinant estimate is then combined with the estimate of the
error rate that assumed uncorrelated fading to estimate the error
rate with correlated fading.

To illustrate the effectiveness of the error rate estimator
given by Figure 5.18 to estimate the error rate for correlated
fading on diversity branches, an example will be presented. For
analysis purposes, a dual diversity system will be considered.
For this system the error rate with correlated fading is closely
approximated by

PU (5.114)

C -p 1 2

where the estimation of pi2 was considered in Section 4.3.5 and
Appendix B. Therefore, the error rate with correlated fading
will be estimated by

P (5.115)

PC =i - P12
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Assuming that the correlated fading on the diversity branches
does not significantly affect the performance of the error rate
estimator of Section 5.3.2, then

Pu = P u(I +a) (5.116)

where

E[a]} -, 0 as K (the number of samples) -.

E[u2}• • = 2• P2(m)]

Furthermore, from (4.267) and (4.268) the estimate of the
branch envelope correlation coefficient can be given by

AI2 p1 2 + • (5.117)

where

Efft -* 0 as J (number of independent samples) --

2  • + 6012 + 2 212

The above expressions are applicable for the channels that
allow an accurate estimation of IT(f,t)1 2 .

Substituting (5.116) and (5.117) into (5.115) gives

PU(I + )
P (5.118)

•C 1 - P12-

With the number of samples large enough so that good esti-
mates of PU and P1 2 can be obtained, then the estimate of the
error rate with correlated fading can be accurately expressed in
terms of the first and second moments of a and f. Therefore, we
can write
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A [2 1
PC r C I + + -)12 (5.119)

and it follows that

E{P} +C 1 4-3+6O +6 p (5.120)C 1.P1 )23+612+P12 1

Thus, the estimate of the error rate with correlated fading on
the diversity branches is asymptotically unbiased. The variance
of PC can be found from (5.119) to be given by

C

2 2 E 2 
4___1_2_ 2 3

oro PC +C + P (m)]+ 2  ( 6P12 +P 1 2 + 6p12 )}

(5.121)

where a and p were assumed to be uncorrelated and higher than
second-order moments of u and g were considered to be negligible.

Figure 5.19 shows the effectiveness of estimating the error
rate with correlated fading on the diversity branches. In this
figure, it was assumed that one independent sample of IT(f,t)1 2

can be taken every I/B seconds. Furthermore, for this figure we
let K=J, p(m)=0 if m#0. Therefore, from (5.121) we can
approximate the rms fractional error by

- 1/2
cr^ C + 6 p +p +6 p

( p )23+6P 1 2  12 12)
PC BT(5.122)

P C BT

In Figure 5.19, 20 log (Pc/oAC) vs. BT was plotted.
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5.3.4 Comparison of Flat Fading Error Rate Estimation
Techniques

In Sections 5.1 to 5.3, we proposed five techniques for esti-
mating the flat fading error rate from the received data signal.
The bias and convergence rate for these estimators were found and
examples illustrating performance were presented.

Error Rate Estimators I and 2 used instantaneous error rate
estimates to estimate the flat fading error rate. These estima.-
tors were found to be very sensitive to errors due to the selecti-
vity of the channel, which does not allow accurate estimates of
small instantaneous SNR's. For these error rate estimators, the
bias in estimating error rate is highly dependent upon the error
in estimating the instantaneous SNR due to the channel selectivity
ES (see Eqs. (5.14) and (5.34)]. In Section 3, an error amplifi-
cation technique using instantaneous SNR estimates is presented.
This technique is less sensitive to selectivity-induced estimation
errors.

Error Rate Estimators 3 and 4 used fade probabilities to
estimate error rates. One problem that arose in implementing
these techniques was the choice of a level which affected the per-
formance of the estimators. These estimators were not as sensi-
tive to channel selectivity (this may, in part, be due to the
analysis that used a fade distribution linear with the level) and
converged more rapidly at high SNR's than the corresponding tech-
nique of Error Rate Estimators I and 2.

Error Rate Estimator 5 used SNR estimates to estimate the
flat fading error rate. This technique converged the fastest of
all the techniques considered and was the least sensitive to
channel selectivity induced errors. In fact, as shown in (5.105),
the filter parameters of the magnitude-squared channel transfer
function estimator should be chosen to minimize the rms fractional
error given by (4.104).

In conclusion, Error Rate Estimator 5 is the reccnmended
technique for estimating the flat fading error rate with indepen-
dently fading diversity branches, and Error Rate Estimator 2 can
be used to estimate error bursts for channels that allow accurate
instantaneous SNR estimation.
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5.4 Irreducible Error Rate Estimation Due to Time and
Frequency Selective Fading

In this section, we a-.ress the problem of estimating the
irreducible error rate d -:c: :o time and frequency selective fading.
The irreducible error r s the error rate that cannot be re-
duced by increasing the -'i;gal-to-noise ratio.

Two types of systems will be considered. The first irredu-
cible error rate to be estimated is that due to time-,selective
fading in differential phase-modulated systems. The second irre-
ducible error rate is that due to frequency-selective fading in
FDM-FM systems. The frequency-selective fading causes the appear-
ance of an intermodulation distortion noise at the discriminator
output which results in an irreducible error rate.

5.4.1 Irreducible Error Rate of Differential Phase
Modulated Systems

Let the reference vector for the ith tone be given by

Joi

V' r. e + n'. + jn (5.123)
Vi ci si

where r! is the magnitude of the fading variable and o! is its
ang-le. The in-phase (cosine) additive term is given by n'i and

nsi is the quadrature (sin) term. Using capital letters to
represent complex variables, we can write for the reference
veA-tor

V1 = R' + N' (5.124)

and for the received vector

V = R + N (5.125)

where the subscripts i are dropped off to simplify the notation.
The complex fading variable R includes the modulated phase angle
which can be assumed to be zero for the analysis given below.

For the fast fading case, we have

E[RR*j = E[R' R'*] = S2  (signal power)

and

E[R' R* = E[RR'*] p eJS2 (5.126)
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where p and $ are the magnitude and phase of the channel corre-
lation coefficient between successive frames.

For a complex Gaussian process, the effects of the time
variations in R can be modeled exactly by assuming

-j/3/2
R= e R +Z

and

eiJ/2 R0 + Z' (5.127)

where R is the completely correlated part of R and R' and Z and
Z' represent the zero-mean independent parts of R and R'. Thus,
we have

E[RR'*] e~j 3 E[RoRf] =pe"'jS 2  (5.128)

The variance of the independent portions of R are given by

E[ZZ*] E R-R0)(R*-R )1

S2 _ 2pS 2 + p S 2  (5.129)

or

E[Z Z*] = 2(1 - p) (5.130)

Using the above results, we can reduce the fast fading
results to an equivalent slow fading result by noting that

V = R + N = R0 + Z + N (5.131)

Therefore, we can define an equivalent SNR by

r E 01 (5.132)
eq E [Z Z*] + E[NN*]1

or
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r-eq 2 (5.133)

S(l - p ) S~T

where T is the pulse duration.

The slow fading SNR is
S~2 T

r = ST (5.134)
No

Thus, the equivalent SNR can be expressed in terms of the slow
fading SNR by

req p (5.135)

Since p is the correlation coefficient between successive
• I. 2 B 2 T 2 '

frames, then p is very near to 1, and l-p -n1 B T Therefore,
the equivalent SNR can be approximated by

r q72r (5.136)eq P ( B T2 + 1

The irreducible SNR is the limit of (5.136) as r,. That is,

I

r'irr 1. 2 2B 2 (5.137)
_ir B T

The irreducible error rate is then found by using rirr as
the mean SNR. Figure 5.20 is a block diagram of the irreducible
error rate estimator. The estimation procedure is as follows.
The data signal is transmitted over the channel, picked off at
RF (or IF) in the receiver, and sent to one of the rms Doppler
spread estimators analyzed in Section 4.3.2. This estimate of
the rms Doppler spread is used to estimate the irreducible SNR,
which is then combined with irreducible SNR estimates of the
other diversity branches to form an estimate of the irreducible
error rate.
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As an example of the irreducible error rate estimator per-
formance, we will determine the ability of the estimator given
by Figure 5.20 to estimate the irreducible error rate for the
case where the irreducible error rate is related to the irredu-
cible SNR's on the diversity branches by

Pirr M (5.138)
9 irr

k-1

Therefore, we will estimate Pirr by
2M

Sd4M -N
Pirr = S( 2 T f B k (5.139)

k-1

2 2 twhere Bk is the estimate of B on the kth diversity branch.

We will consider two subcases of this example. The first
will assume that all the diversity branches have the same rms
Doppler spread and that one Doppler spread estimation is per-
formed. For this case, we have

i = S(Iv'f2)MT B (5.140)

For the rms Doppler spread estimators analyzed in Section
4.3.2, we can express B2 by

B E{BI + a (5.141)

where Ef} =0 and E a 2 depends upon the rms Doppler spread esti-
mations technique enlployed. Thus, the irreducible error rate
estimate can be represented by

Pirr = S(p2T2) (B{ 2} + (5.142)

Assuming that a sufficiently long enough estimation time is

used such that the irreducible error rate estimate can be
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accurately approximated by the first- and second-order moments
of a, then

E.{IP 1 iiWS ('2T2f T E {B}l+ 2 E }J(5.143)

Since E} ý decreases as the time used to estimate B2 in-

creases, then E{ 2a/'E 2  will probably be much less than I o,,
it follows that

E{Pir S ( 2TT) EM{B'} (5.144)

For the rms Doppler spread estimation techniques considered
in Section 4.3.2, the estimate of B2"is biased. Therefore, the
irreducible error rate estimate will also be biased.

The variance of the irreducible error rate estimate is given
by

orS2 (2T2) M Bj E{2} (5.1.45)Pirr2

Recalling that E1 } and Ea2• are the mean and variance for
estimating B2 , then it should be noted that the effectiveness of
estimating Pirr depends upon the rms Doppler spread estimation
technique used.

The second example to be considered using (5.139) is the
case in wbich the rms Doppler spread on each branch is estimated
separately. For this example we have

Bý = + (5.146)k ~~ +ik ak

where it will be assumed that the a kare independent. Substitu-
ting (5.146) into (5.139) and averaging gives
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I2E{Pir} ( 1 2 ) E (5.147)

k-1

2
Since EIB,) does not necessarily equal B2, then in general the
irreducible error rate estimate is biased. The variance of the
estimate can be easily found to be given by

2k2M [M 1r~ 2 ~t 518
2r \2 (1 2 T) 2t 'i] % -

where higher than second-order moments of a k were considered to
be negligible.

A comparison of (5.145) with (5.148) can be made for the
case where all the Bk are equal as are all the E a 21 . For this
case, (5.148) reduces to

2 2(1 2 2 2M 2i2M-2 2

SPirr
Since one would expect that

Eja -M -(5.150)

then for this case the variance given by (5.145) will be equal to
that given by (5.148).

2
Using the differentiation technique to estimate B and for

nondiversity operation, the fractional bias and estimation SNR
can be found from Section 4.3.2* to be given by

When the bias uncorrected estimates of IT(f,t)12 are used to
estimate B2 , then Appendix A should be used to modify (5.151).
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2 22
Pirr 2 (At)2 B2

S- 1/2

"irr K

irr / 1 2 2
L B2 (L)2 (5.151)

where EP is the rms fractional error in estimating the magnitude
squared of the channel transfer function, K is the number of inde-
pendent samples of iT(f,t)1 2 , and At is the spacing between
samples of IT(f,t)l used to approximate te 2 derirative. As
mentioned in Seccion 4.3.2, we must have 7T B (At)2<< 1.

Figure 5.21 presents the performance of the irreducible
error rate estimator for first-order diversity. In this figure,
it was assumed that an independent sample of IT(f,t)1 2 can be
taken approximately every I/B seconds; that is, that K =BTe,
where Te is the time interval over which the irreducible error
rate is estimated.

5.4.2 Irreducible Error Rate for FDM-FM Transmission

In this section we will address the problem of predicting
the irreducible error rate for FDM-FM troposcatter systems. The
frequency-selective fading causes the appearance of an intermodu-
lation distortion noise at the discriminator output and will pro-
duce an error rate that cannote be reduced by increasing the
signal-to-noise ratio, i.e., it produces an irreducible error rate.

Theories concerning intermodulation distortion in FM tropo-
scatter systems have been developed independently by several
authors [5.5]- [5.7]. We shall utilize the theory developed in
[5.5], which includes the effects of diversity combining and is
applicable to scatter communication channels with general delay
power spectrum Q(t). As with the others, this theory is limited
to the case in which the degree of frequency selectivity in the
rf signal bandwidth is small.

The intermodulation distortion is a realization of a sta-
tionary stochastic process. As such, it can be described in
terms of its probability density functions of all orders. In par-
ticular, it can be shown [5.51 that the function f(R) defined by:
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f (R) MR2 + - 3 R+,IA (5.152)

where 93/A3 and A/A4 are the skewness and excess of the tropo-
scAtter channel's Delay Power Spectrum, exists such that, for
Mt order maximal ratio predetection diversity combining Y(t),
the normalized (unity rms value) second-order intermodulation
distortion has a first-order probability density function, W(Y),
given by:

W(Y) 1 f MdR (5.153)
Go If4R)[1 + R ~(R)]M~

Equation (5.153) for the intermodulation noise probability
density function when maximal ratio predetection combining is used
has been derived previously by Bello and Nelin [5.5] and will not
be repeated here. The probability density function and cumulative
distribution for selection diversity combining has been derived
in [5.2], where it was noted that for M independent random vari-
ables having a continuous cumulative distribution function P(Y)
and a probability density function w(V), the probability that the
smallest of these variables, Y1 , is less than a value r is:

Prob{Wl( r I = 1 [lP(r)] M (5.154)

and the probability density function associated with (5.154) is:

w1 ) M = f -[I-P(r)lj__ - P(Y)] 1 w(Y) (5.155)

Equations (5.154) and (5.155) can be applied directly to
determine the distribution of intermodulation noise in a selec-
tion diversity FM system. The probability density function cf
Y for one branch is given by (5.153) with M =1, and, by inte-
grating it, P(') can be found. Then, direct substitution into
(5.154) and (5.155) results in the cumulative distribution and
density function of the smallest of N intermodulation noises.
As a selection diversity combiner is designed to choose the
receiver with the smallest of the input noises, the resulting
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statistics are those of the selection diversity intermodulation
noise.

Equations (5.153) and (5.154) have been evaluated numeri-
cally in [5.2] and the resulting noise distributions are shown
in Figure 5.22. It is seen that as the order of diversity in-
creases, the selection diversity cumulative distribution lies
uniformly to the left of the maximal ratio cumulative distribu-
tion, which implies that the irreducible error due to intermodu-
lation distortion will be lower for selection combining than for
maximal ratio combining.

A quantity of importance in practical application is the
ratio of the intermodulation distortion power to signal power in
a narrow frequency band located at some specified baseband
frequency, f. Denoting this quantity by n(f,t), we may write
[5.5]:

P .(f) L7 Y(t)
n(f,t) Pf (5.156)

P (f) 4x

where L is the rms multipath spread of the channel and, for a
modulating signal x(t), Pxk(f) is the power spectrum of x(t)k(t),
and P (f) is the power spectrum of x(t). As an example [5.5],
consiger the case of a Gaussian x(t) with a flat power spectrum
extending from aW to W Hz, and zero elsewhere. For this case,
77(f,t) for aW<f<W is given by

tj(f,t) = 2(1-a) (L2 [6dB f)[ L(-a) + 6A('aW

(5.157)

where

I , if aW<f< (l-a)W

6A=

0 , otherwise

I , if 2aW<f<W

S0, otherwise
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Equation (5.157) can be expressed as

-(f9t) 7(t) L4D(f) (5.158)

where

D~)•(devf22= • • a)+B 6,(la'

Thus, the rms multipath spread is the only channel para-
meter required to specify the distribution of n(f,t).

The error probability due to intermodulation noise can be
expressed in terms of the conditional probability of error as

PW( )d (5.159)
e f eLý_f )]W()d0

where W(y) is the probability density function of the normalized
intermodulation distortion and P (.) is the conditional proba-
bility of error.

Figure 5.23 is a block diagram of a technique for estimating
the irreducible error rate due to frequency selective fading.
The estimator uses estimates of the rms multipath spread to esti-
mate the irreducible error rate.

As an example to illustrate the performance of the estimator,
we will consider the systems analyzed in [5.2]. The systems are
called the Bell 301B and the Lenkurt 26B, and the irreducible
error rate was found in [5.2] to be given by Figure 5.24.

From Figure 5.24 the irreducible error rate can be estimated
by

P. = A L (5.160)irr

where A and C are constants. From Figure 5.24 we note that C
approximately equals the order of diversity. In a manner similar
to the procedure used to evaluate the irreducible error rate due
to time selective fading [Eqs. (5.140) to (5.145)], it follows
that
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cP

2 2 2 -~2.2 a 51
aI 1A C E {-J (5.161)
Pirr

where E{L ~and . are the mean and v;-riance of the estimates of

L2 (see Section 4.3 and Appendix A).

5.5 FDM/FM Error Rate Estimation

5.5.1 Introduction

This section considers the problem of es,ýtimating the error
rate o5 an FDM/FM system. The error rate for an FDM/FM system
can be approximately determined by separat:ely finding the error
rate due to nonswlective fading (i.e., due to additive noise) and
the error rate due to selective fading (i.e., due to intermnodula-
tion noise). The latter constitutes an irieducible eiror rate
from the point of view that it cannot be reduced by increasing
signal power. In order to approximate the error rate due to
additive noise and selective fading acting together, one may sum
the error rates due uo these disturbances acting separately.

5.5.2 Flat Fading.• Error Rate Estimation

In this section we present techniques for estimating the
flat fading error rate of an FDM/FM system from the received data
s igua l.

Using the results of Rice [5.81, Bello [5.9] was able to
derive an expression for tl'e discriminator output SNR. lie showed
that if the typical signaling element is a sinusoidal burst and
the instantaneous predetection combined input .)NR, p, is greater
than about 1. dB, the discrimiinator output instantaneous SNR after
coherent matched filter detection, s, is given by

s (P) ;L I (5.162)/ 2 .2 W f2 (5a),2

2W (l - a -- d(1. a)
5r- Bp
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where
22 mean-squared frequency deviation of modulation

s igna 1

B - IF bandwidth

r = B/I- (baseband assumed flat)

fd = location of data subcarrier

and the baseband extends from aW to W liz. In calculating (5.162)
it was assumed that there are enough baseband FDM signals so that
their sum has close to Gaussian statistics.

The SNR at the input to the discriminator is distributed
according to

M-1
WM(P) M p << r« k (5.163)

(M - 1)! ] r k
k=l

for maximal-ratio combining and

M-1
WS(P) p << r (5.164)

S ~Mk

Tf rk
k=l

for selection combining. The average error rate can be found by
averaging the conditional error rate over the distribution of the
instantaneous SNR. That is, we can write

CO

e f ees'p)] W(p) dp (5.165)
0

where P (s) is the conditional error rate.

Since thu case of p<<F is the region where most errors
occur, then the error rate can be accurately estimated from the
distribution of the errors for low SNR. Therefore, using (5.163)
ill (.5.165) we obtain
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- . .- n- .,,-

Ae P M Pees(p)]P ' dp (5.166)

9rk 0
k=1

where A is a constant dependent upon the diversity-combining
technique and order or diversity. Therefore, if P [s(p)] is
known in a functional form, the above integral canebe estimatedand the error rate can be expressed as

B B (5.167), grk
9k1k.=l

This expression has the same form as the error rates esti-
mated in Section 5.3 [i.e., see Eq. (5.101)]. Therefore, the
error rate estimation technique proposed and analyzed in Section
5.3 can be used to estimate the error rate for FDM/FM systems
with no intermodulation distortion. In fact, any of the tech- I
niques analyzed in Sections 5.1.5.2 and 5.3 can be used to

estimate the error rate due to noise alone.

Several FDM/FM systems were analyzed in [5.21. The
AN/GSC-4 is a 4-phase, 2400 b/s, DPSK modem. In [5.21, it was
found that the conditional error probability for the AN-GSC-4 is

Pe s(e)[2=33 erfc (5.168)12 r6.5 +3. 33 s (p)

where s(p) is given by (5.162).

The Bell 301B is a 40.8 kb/s digital data set that accepts
binary information at 40.8 kb/s and encodes it into 4-phase
DPSK. The conditional error probability for the Bell 301B is
[5.2]:

I 25 ']O5 erfc (5.169)

P2 .5 + 2, 35sr(p)
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Comparing the conditional error rates of the AN/GSC-4 and the
Bell 301B, one would expect that the two systems would have
virtually the same error rate.

The third modem to be considered in the Lenkurt 26B. The
Lenkurt 26B uses a duobinary modulation technique where the in-
formation is transmitted by an FSK modulation that deviates
+ 600 Hz relative to the center frequency of 1.7 kHz. The con-
ditional error probability for the Lenkurt 26B is [5.2]:

PC[S(0)] = • erfc (5.170)

Thus, for the above three FDM/FM modems, the error rate due
to flat fading can be estimated using any of the techniques ana-
lyzed in Sections 5.1-5.3.

5.5.3 FDM/FM Error Rate Estimation Due to Noise and
Intermodulation Distortion

To estimate the error rate due to noise and intermodulation
distortion, one may sum the flat fading error rate estimate of
Section 5.5.2 with the irreducible error rate estimate given in
Section 5.4.2. That is, the error rate for FDM/FM transmission
can be expressed as

P e P irr +PFF (5.171)

where P .. is the irreducible error rate due to intermodulation
distortion and for the Bell 301B and the Lenkurt 26B systems can
be estimnLted by [see Eq. (5.160)]

AC
A 2Pirr = A L (5.172)

where A and C are constants. The flat fading error rate is
given by (5.167) and can be estimated by

A BPFF B 14 (5.173)

FF 
A

k=1
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where M is the order of diversity, r is an estimate of the mean
SNR on the kth diversity branch, and kB is a constant dependent
upon the form of the conditional error rate.

From (5.171)- (5.173) the error rate for FDM/FM systems can
be estimated by

P mALC + B (5.174)
C~MA

k=l

This estimate can be implemented from the rms multipath
spread and the mean SNR estimates proposed and analyzed in
Section 4.3. Frequentiy, either the flat fading error rate or
the irreducible error rate will dominate and, for these cases,

A ence of P. can be directly related to the convergence
Of PFF onr Pirr" The estimation of PFF was considered in

Sections 5.1 to 5.3, while Section 5.4.2 considered the estima-
tion of P.irr.

5.6 Estimation of Error Rate for High-Speed Data Transmission

5.6.1 Introduction

In this section we address the problem of estimating error
rates for high-speed data transmission systems employing a
multipath-resisting receiver (e.g., maximum likelihood or non-
linear equalizers). For these systems, in-band diversity in-
creases the effective order of diversity and results in an
improvement in performance.

High-speed data transmission involves reception of signaling
elements corrupted by intersymbol interference. Optimum demodu-
lation techniques exist (e.g., maximum likelihood and nonlinear
equalizers) which are claimed [5.10],[5.1.1] to come close to eli-
minating the effect of intersymbol interference. The limiting
performance obtainable is just that associated with the matched
filter receiver for a single pulse. In this section we discuss
the estimation of error probabilities for this ideal multipath-
resisting receiver. For practical receivers, one must assign
some degradation in SNR. However, it appears that this degrada-
tion need not be more than I or 2 dB. Since the number of prac-
tical implementations possible is very large, it appears most
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meaningful to study the estimation of the performance of the
optimum receiver and then apply correction factors for the known
nonideal performance of the actual implemented receiver.

5.6.2 Single-Pulse Matched Filter System

The optimum performance we wish to compute is associated with
a system in which the receiver is a coherent matched filter re-
ceiver, matched to the response of each pulse and completely
eliminating the effect of intersymbol interference. For simpli-
city of notation, consider the pulse transmitted at t 0, and
let Ag(t),AG(f) denote the transmitted pulse and its spectrum,
respectively. The information is contained in the value of A
which takes on the values +I according to a binary alphabet.
Figure 5.25 gives the signal processing operations involved. The
pulse duration is so much smaller than the fading time constant
that the channel may be regarded as frozen in computing the pulse
response. Confining our attention to a single diversity channel
for a moment, the spectrum of the received pulse is AG(f) T(f,0)
and the transfer function of the matched filter is then
K*(f) T*(f,0). The complex sarLpled matched filter output is
given by

W = AfIG(f)1 2 1T(f,O)I 2df+fN(f) G*(f) T*(f,O)df

(5.175)

where N(f' is the complex spectrum of thu white additive complex
Gaussian noise. This spectrum is also white [5.12],

N*(f) N(f+F) = 2N0 6(F) (5.176)

where N is the one-sided power density of the real additive
noise.

Expression (5.175) is in the form

W = AS + N (5.177)

where N is a complex Gaussian noisp whose strength is readily
computed to be
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!N2!N 2NoS (3.178)

where

S = fG(lf)1 2 1T(f,O) 12d (.1.79)

Of course, S is a random variable dupendent upon the time of
transmission, but the fading is so slow relative to the bit rate
that, for purposes of analysis, we may consider S fixed for many
bits. Thus, we may evaluate bit error probabiliti.es by assuming
S fixed and then subsequently averaging over the statistics of S.

When diversity channels with independent additive noises
are included in the analysis, it is readily seen that we must
redefine S as

M2
S ]tG(f)2 LI iTk(f,0)! df (5.180)

k=l

where Tk(fO) is the transfer function of the k th diversity chan-
nel and M is the order of diversity. Equation (5.178) still
applies but with the new definition of S in (5.180).

The Re( I operation in Figure 5.25 corresponds to the co-
herent detection operation of the PSK system. Thus, prior to the
binary (• or >) decision, we use the variable

U = Re[W] = AS + Re(NJ (5.181)

The variable Re[Nj is real Gaussian with variance

Re2 [N 1 IN2 (5.182)

5.6.3 Estimation of S(t)

In order to estimate the bit error probability, the estiiaa-
tion of S(t) must be considered, where S(t) is given by

M

S(t) = fTG(f)12 kI k(f,) 2 df (5.183)
k=51
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Two techniques for estimating S(t) from the received data
signal may be used. The first approach uses samples in frequency
of an estimate of the magnitude squared of the channel transfer
function to express the integral as a finite sum. This approach
is presented in Figure 5.26. Therefore, the estimate of S(t ) is
given by

k(tp) = TF __ Tk(F q t 2 * IG(F q)I 2 (5.184)

k=1 __ l

where W= Q. AF is the bandwidth of G(f).

With the estimate of the magnitude squared of the channel
transfer function given by

2 2TF 1

ITk(Fq3tp) q pT(Fq tp)W (I.+Ckq) + 8 kq

(5.185)

where 6kq, Ekq are zero mean and independent estimation errors
with (see Section 4.1)

6kq E2{Irk(ft)22 }

a2  2 (5.186)
Ckq

where E and cS are given by (4.57) and (4.100), respectively.
From (5.184) and (5.185), the mean and variance of S(tp) condi-
tioned upon the channel transfer function are given by

M Q 2 2

2 22 M 4 4

or. E2,!Tk(F ýt )I JG(Fq)I( 18
-- PQ2 q= q"
2W2 Q M
ST 2r, 21lir(F )4 (5.188)+ S2  Ej E EIT k(F,t 'I q)I\

q=l k-l q
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For large Q, the summation of (5.187) converges to the de-
sired integral given by (5.183) and the variance of 9(t ) becomes
small. Thus, when Q is large, a good estimate of S(t ) can be
obtained. However, a large Q means that many magnituge-squared
channel transfer function estimators would be required.

The second approach for estimating s(t) that will be con-
sidered utilizes the technique employed to estimate the magnitude
squared of the channel transfer function. The estimator to be
considered is given by Figure 5.27 and has the same functional
representation as the magnitude-squared channel transfer function
estimator analyzed in Section 4.1. The averaging filter duration
will be chosen long enough to average out data fluctuations, yet
short enough not to filter the channel fluctuations. The band-
width of h(t) should be large enough to pass the signal without
distortion, but not so large that the amount of noise power
passed is excessive.

The estimate of S(t) averaged over the data and noise can be
given by

E{S(t)} = K(0)[H(O)2Jf JG(f)' 2 ,T(f,t) 2 df

+ 2N0 f J H(f) 2d (5.189)

where H(f) was assumed to be flat over the duration of G(f) and

K(0) = fk(t) dt (5.190)

The bias and variance of the estimator in Figure 5.27 can be com-
puted as was done for the estimation of IT(f,t)1 2 . Frequency-
selective distortion can be neglected because an integral of
IG(f)1 2 1T(f,t)1 2 over f is computed. Thus, the output averaging
filter can be adjusted to minimize the effects of time-selective
fading. It appears that the desired time-variant energy can be
estimated more accurately than IT(f,t)1 2 so that the second
approach is preferred.
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Once S(t) is estimated by either of the two methods presented
above, the error rate may be estimated from the conditional bit
error probability. Figure 5.28 presents a technique for esti-
mating error rate from estimates of S(t). As was shown in
Section 5.1.4, the conditional error rate can also be used to
estimate short-term error bursts.

5.7 Error Rate Estimation Based Upon Interference

In this section we describe the way that error rate estima-
tion is affected by errors in estimating the interference para-
meters and channel transfer function. The error rate predictions
used here are in the nature of upper and lower bounds on proba-
bility of error. This general approach is used here because of
the wide variety of interference that might occur on all of the
channels discussed in this report. Interference could take the
form of man-made noise, naturally-occurring interference, and
deliberate jamming. Due to the unpredictability of the inter-
ference, it is not feasible to attempt precise error-rate predic-
tions at a given SNR, and any results relating to specific
interference models, such as normally distributed interference,
would be of extremely limited utility.

In the work reported below, the additive interference will
be allowed to have general statistics. Restrictions on the inter-
ference will be minor. At first, we will describe how error rate
bounds can be developed by using as the only constraints a speci-
fication of the mean value, a, and an upper bound on the values
that the generalized noise variable can take on. Later, in this
section, we will replace the upper bound constraint with a
constraint on p, the probability that the interference variable U
exceeds some fixed threshold U'. The motivation for this new
approach arises from the simplicity of the schemes for estimating
p and the reliability with which it can be measured, as discussed
earlier in Section 4.5.4.3. In the development leading to both
of these schemes, the fading, as before, is assumed to be charac-
terizable as a complex-valued Gaussian process and is assumed to
be sufficiently slow and to have a sufficiently small degree of
frequency selectivity so that a received signaling element is
undistorted by the channel and differs from the transmitted
signaling element only in a random amplitude change and phase
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shift. System degradations due to fading that is not restricted
in this way have been treated elsewhere in this report. Since
the effect of these distortions can be reduced to the point where
system degradation is determined primarily by nonselective fading
and additive interference, it is this last situation that we con-
centrate on. Hence, with s(t) denoting the complex envelope
representation of a signaling element of duration T received in
the time interval O< t< T for a unit gain channel and no additive
noise, we have for the received signaling element r(t), including
fading and additive interference, the representation

r(t) = G s(t)+n(t) 0<t<T (5.191)

where G is a complex-valued normally distributed variable, and
n(t) is the additive interference.

It was poiated out in Section 4.5 that three important matched
filter receivers are characterized well by detector operation
that can be represented as the comparison of a quadratic form qL
with a zero threshold. The quantity qL is given by

L L
q jL IGp -+ I2 12 (5.192)

=l p=l

where L is the order of diversity, G is the complex-valued
normally distributed signal term on Phe pth diversity branch,
and p and n are complex noise terms due to the pth diversity
receiver. Specific forms were given in Table 4.5. For diversity
channels that fade independently, but with identical statistics,
the random variables {Gp} become mutually independent and identi-
cally distributed.

For future use, we note no loss of generality accrues if the
normalization

1 = 1 (5.193)

is used which means, effectively, that the quantities U and V
are "instantaneous" noise to average signal power ratios.
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As shown in [5.171, the problem of determining error rate
bounds is a double integral extremum problem that involves the
interference only through the joint probability density function
of the two interference variables, U and V,

L
U M L 2 (5.194)

L
p= 2Ij nl2 (5.195)

The upper bound on the double integral is achieved when U and V
are assumed to have nonzero values mutually exclusively, i.e.,

UV = 0 (5.196)

and the lower bound is achieved when

U = V (5.197)

It is demonstrated in [.5.17] that the error probability is
bounded in the following way:

fFL(A) GL(A) dA • PL• fFL(A) HL(A) dA (5.198)

where FL(A) is the probability density function for A, the arith-
metic mean of U and V.

U+VA = (5.199)

and HL(A) and GL(A) are given, respectively, by

L(A) -e (5.200)
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and

GL(A) =[i"eA I (A) (5.201)
-[L-1J]r

where I (A) is the modified Bessel function of order r.

For the general situation being treated here, the pdf F (A)
is not known. It is clear, though, that a maximization of the
right-hand side of (5.198)and a minimization of the left-hand side
leads to reliable bounds on error probability,* This extremization

problem only requires proper choice of the minimizing and maximi-
zing pdf's, a task which becomes extremely simple through applica-
tion of the "Completeness Theorem" proved in [5.17]. A reasonable
approach to the problem, of course, requires the application of
constraints, without which the bounds would be useless. The
physical basis for all of the discussion in this section is that
the constraints can be generated by direct interference
measurement.

5.7.1 Bounds on Error Rate

In order to plot the bounds on error rate as a function of
signal-to-noise ratio, it is necessary, here, to first define a
composite signal-to-noise ratio.

L 2

= 1 2L (5.202)

I[ L k2 + L 21 UL
Lk l k=1 ]

where the normalization in (5.193) has been used and aL is defined
as the mean of the noise variable U or A, i.e.,

UVA (5.203)

We point out that coherent PSK systems, for which U=V, require
only that the left-hand side of (5.198) be dealt with, i.e.,
minimize and maximize ' FL(A) GL(A) dA to get both upper and
lower bounds on the error rate.
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where A is just the arithmetic mean of U and V:

U+V

2

There are two constraints that are used in establishing the
error bound. The first of these is the maximum allowable peak
noise power to average signal power constraint defined below:

M (Peak A U

= Max Peak U (5.204)
YL2L) ekA

Max j ; UV= 0

The second is the maximum allowable peak-to-average interference
constraint or "crest factor'":

OL= Ma fPea U a (5.205)
2 Max Peak A U 0

aL

In both of these expressions, Peak A rnfr:s to the peak or maxi-
mum value of the variable A. The first thing to be noticed about
these expressions is that YL does not depend on a [or signal-to-
noise ratio; see (5.202)] whereas RL do, - This is because the
earlier constraint arises because of _,e finite dynamic ranges of
receivers, which cause the outputs to saturate for sufficiently
high input voltages, and it is safe to ZaS.;ume that detected
noises cannot exceed the design value of output signal power by
more than some factor, i.e., there i.; • ,ne factor YL for which
Peak U is always less than 2YLL. This factor, alone, places
limits on the integrals in (5.198)which cannot be exceeded; this,
in itself, is enough to give meaning to the extremization problem.
Unfortunately, the error bounds that would result from such a
formulation would be extremely weak.

The use of 0 has the effect of further constraining Peak U,
and has the end ehfect, typically, of tightening the bounds on
probability of error. As opposed to the constraint, YL, which
arises mainly from consideration of receiver limitations, the

5-100



constraint 9L arises solely from consideration of the interfer-
ence statistics. The use of some specific PL value requires
some a priori, knowledge of these statistics. This knowledge
could be obtained by utilizing realistic models of naturally
occurring or man-made interference. Unfortunately, the interfer-
ence is often of such an unpredictable nature that the only
reliable way to obtain any useful information about interference
statistics is through measurement. This fact, of course, was
the motivation for the measurement schemes discussed in Section
4.5 dnd much of the work to follow.

We now review the results of the extremization procedures
as reported in [5.17].

First we recall, as discussed earlier, that the left-hand
side of (5.198)must be minimized and the right-hand side maximized.
In the case U= V, we need only deal with the left-hand side of
(5.198). This gives us the three extremization problems listed
below:

I. (UV=O) Maximize the right-hand side of (5.198) to
get týIax.

1
II. (U=V) Maximize the left-hand side of (5.198) to

get pmax.
L

III. (U=V) Minimize the left-hand side of (5.198) to
get pmin

L

The maximizaLion problem for the UV=0 case is to maximize

AL

PL f FL(A) HL(A) dA (5.206)

0

subject to the constraint
AL

a L f AFL(A) dA (5.207)

0
where

MinLI , .L$ 2 1  (5.208)
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For the U=V case (problems II and III above) the extremization
problem involves

0L

PL I WL(U) GL(U) dU (5.209)

0

subject to the constraint

UL

L = f U WL(U) dU (5.210)

0

where

U = Mini2LyL LL 2A} (5.211)

The results of the extremizations as a function of p, the
SNR, are gi•ren by

ax(2/ L) " H L(L ýL/P) ; p >t L RL/11L

Max 
)(VOPL (2L/p) • HL(IL)/AL ; (2L/L) u p < L BL/WL (

HL(2L/p) 2/YL • P < 2L//•L

(5.212)

where OL is the point of tangency between a straight line emana-
ting from the origin and the HL(A) curve, and has the values
Al=0, 42=1.8, and A4 =4. 8 5 . For problem II, the results are:

(1/8L G G(2L 0L/p); p -2 2LL/VL
max

L(2L/p) GL(VL)/L ; 2L/vL• 2L13/VL (ULV)

GL(2L/p) I/YL p < 2L/vL

(5.213)
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where vL is analogous to AL; i.e.

GL(VL)/I) L Max{[GL(U)/Ul (5.214)

anid has the values z 1 =0, V 2=1.8, v4 =8. 8 .

The minimization in problem III is slightly more complicated
and requires definition of aL' where O L is such that

_ L (ULGLrL_ GL(UL )

GL(UL) - GL(ML) = ax (5.215)

0L - UL UL[ UL UL J
A

Since aL is a function of UL' it is convenient to define

UL = f (U L) (5.216)

The lower bound on error probability, as a function of SNR, is
given by

G L(2L YL) - 2L(CL-!)S (2L yL);

Sp <P f/Y L L > 1

min
PL - L(2L fEL/p) - (2L/o) (PLE- 1)SL(2L, EL/P);

PLL/YL<P<2L/OL L> I

G L(2L/p) p > 2L/6L L> I

(5.217)

where 0 L is the solution to the equation

x = fL(PLx) (5.218)
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and where we have defined the maximum slope as

SL(UL) GL(UL) - GL[fL(UL)] (5.219)

SL A L(L)

All of the results catalogued above take cL considerably
simpler form for the nondiversity case, L=1. We have

Max
P1  H1 (2/p) p ! 2/y,

Pax GI(2/p) P l I/y,

mrin
1 (2/p)'GI(2y,)/2y 1  /Yi p'• I//1/

=(I/0I).GI(213I/p) pm Yl/I
(5.220)

Scme numerical results for different types of modulation and
for both nondiversity and dual diversity operation are shown in
FigureS 5.29- 5.31. The details of each physical situation are
entered on each figure.

5.7.2 Reliability of Bounds

5.7.2.1 Preliminary Comments

The curves presented in the previous section indicate that
with an extremely limited knowledge of noise statistics, i.e.,
the peak noise-to-average-signal ratio, yL, and the crest factor,

, one can develop meaningful bounds on probability of error as
a function of the signal-to-noise ratio. In this section, we
are not so much interested in how well one can generate curves of
this type as we are in the question of determining how weLl,
given a set of interference measurements (and channel transfer
measurements), we can find just the two numbers which bound the
error probability under the true noise condition. A schematic
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of the processing operation is given in Figure 5.32. The inter-
ference measurements are just those discussed earlier in
Section 4.5. The measurements of the mean value of the magnitude-
squared transfer functions can be obtained through use of the
estimation schemes utilizing received data only, as discussed
earlier in Section 4.1 or, alternatively, can be obtained by
making use of the special probing signals discussed in Section 6.
The exact details of the manner in which this latter measurement
is obtained will not be of large importance in the following
discussion.

As illustrated in Figure 5.32, the estimates PL and m

are determined by processing &L,^6 L, and Thf7. The estimates are
AA

used in different ways; aL and IGTI are used to estimate the
signal-to-noise ratio, p. This, of course, specifies tie point
at which the fw'ction forms in (5.212)- (5.220) must be calculated.
The estimate of PL enters as a parameter affecting both the value
of the bound and also the interval (and corresponding functional
form) that must be used; e.g., see the first line of Eq. (5.212).
The numerical processing, of course, just refers to numerical
implementation of the results presented in Section 5.7.1.

Finally, we point out that the emphasis in the remainder of
this section is on examining the feasibility of developing error
bounds from interference measurements. It is not necessarily
true that the analytical bounds presented in Section 5.7.1 consti-
tute the best approach to the problem from the viewpoint of
utilizing interference measurements. One reason for this relates
to difficulties associated with estimating the interference
maximum (crest factor) as discussed in Section 4.5. It would
seem that alternative approaches to the general problem of bound-
ing error rate could yield bounding curves that make more effec-
tive use of the interference measurements. An allt-,rnative
approach that does not make use of the crest factor constraint
is discussed in Section 5.7.3.

5.7.2.2 Bound Errors Arising from Errors in Interference
Measurement

We now examine the way that the error bounds, discussed in
Section 5.7.1 and illustrated in Figures 5.29 - 5.31, are affected by
errors in the interference measurements. As a first step in this
direction, we concentrate on determining the error in the signal-
to-noise ratio measurement.
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The problem of determining the degree of accuracy attainable
in estimating the signal-to-noise ratio, p, is central to evalu-
ating any schemes that use interference measurements to develop
error rate bounds. The reliability of the signal-to-noise ratio
estimate depends, of course, on the accuracy attained in esti-
mating the mean values of the channel and interference parameters
in (5.202). The assumption of identical statistics for G on each
diversity branch implies that

:qGk,2 2 [1L (5.221)

It was the assumption of identical interference statistics on
each diversity branch that led to

P = • (5.222)

and finally the normalization

½1GI2 (5.223)

that led to the right-hand side of (5.202).

Here, we note from the discussion of generalized noise vari-
ables in Section 4.5 that

G = g(0) T (5.224)

where the received signal is given by

y(t) = g(t) s(t) + n(t) (5.225)

where g(t) just represents the time-varying complex gain, i.e.,
the channel transfer function. Thus,
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I-- 2 T2 1g(t)0 2  (5.226)

and its estimate is given by

IG!2 = T2 jg(t)12 (1+CT) (5.22

= IGI2 (+ ET) (5.227)

where c just represents the error in estimating the mean-squared
value oT the channel transfer function. This error has been dis-
cussed at great length in Section 4.1 and elsewhere in this
report. Finally, using the normalization in (5.223) and the ex-
pression for p in (5.222),we obtain as our estimate for p

2 12

2L (5.228)
(I (+ CT)

aL

It is convenient to define fractional errors for p and a
and to denote them c and c., respectively. These random vari-
ables are defined according to

A 2
p P(l+C = (I+ ) (5.229)P a p~+p L P

and

a a(I+E ) (5.230)

Now, substituting (5.230) in (5.228) and comparing the result with
(5.229),we obtain the fractional error
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S T (5.231)

for the signal-to-noise ratio.

The other major factor on which the expressions for proba-
bility of error bounds in (5.212) and (5.213) depends is the crest
factor p Estimates of this quantity are formed from estimates
of aL and Umax, the maximum value of U, as discussed in Section 6.
In fact, we recall from (4.532) that BL has the form

A Peak U (5.232)OL = Max. leL

Defining a normalized error E. for the 6L estimate, we hr,'"

SL = PL(U+ ,) (+.233)

and for the normalized error in estimating U
max

A

The 8 L estimate is obtained numerically by dividing the Urmax esti-
mate by the a L estimate, i.e.,

= max (5.235)
L LR

Hence, using (5.230), (5.234), and (5.235), we obtain

Cu "

El? = i a (5.236)
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Thus, in (5.231) and (5.236) we have, respectively, expressions for
the fractional measurement errors in measuring the signal-to-noise
ratio, p, and the crest factor, 8 L*

In order to focus on a goal for the calculations, we will
concentrate on the reliability with which the upper bounds in
(5.212)can be determined from the measurements. We note that the
results that will be obtained cannot differ much from those that
would follow from a similar analysis applied to (5.213); in fact,
the fractional measurement error in determining pmaX and pmax is
exactly the same for the "middle range" of p values. For tLhe
other ranges, the results would be similar because of the very
similar smooth behavior of HL(x) and GL(X). For the lower bound,
the situation is not as clearcut. This is due to the complexity
of the expressions in (5.218). We point out, however, from
Figures 5.42 -5.45, that the slope of the lower bound is nowhere
steeper than it is for the upper bound. This is a rough indica-
tion that sensitivity to errors in the p estimate will be less
than, or comparable with, that for the upper bound. We also
point out that the absolute errors, all other things being equal,
will be less for the lower bound than the higher.

We now turn to direct calculation of the error in setting
the bounds. We first deal with the interval p > L AL/AL. For
these large p values, we make use of the Taylor's expansion of
HL(x) about x =O:

iLl 1 l1L+l L +
H(x)-x -LI I n+ L +- (5.237)L 2 LI, 2 ix (L +1)

Utilizing this approximation, we obtain

L-I L-1
Max 1 L L (5.238)
L P -L (L- 1)!

Now, using the estimates in (5.229) and (5.233) to forma an estimate
of p•Lx at these larger p values, Ne obtain
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hMax A PL f (5.239)

pp

PL =L (L- I)! (,P• 529
P

where

f(,) L .. (5.240)
(1 + C Pn

Taylor's expansion of this function about ec 0 and Ep 0
gives to first order the result

f(CPE ) I + (L-I)E)- LE (5. 241)

Thus, the upper bound on probability of error has the form

-Max maxy

PL P PL (I +E 1 ) (5.242)

where the fractional error is given by

C1 = (L- 1)Ec - Lc (5.243)

With the totally reasonable assumption that the P and p measure-
ments are weakly correlated, we obtain finally as the mean-squared
squared fractional error the result

2 < (2-++-2

+ RL (5.244)

For the "middle range" of p values, (2L/ ) )r p:9 L 3L/fL, we
note that the upper bound probability of errorLhas the general
form

-Max 54
PL = const(2L/P) (5.245)

This is also true for the middle range in (5.213).
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* Writing

-Max Max(i+ (5.246)

it is a simple matter to determine that

- C2 (5.247)
2 p

We now turn to the range of p consisting of the smallest values of
of p, 2/YLrp:5 2L/AL, we form [see (5.212)] the estimate

Max H[ LP(L ] (5.248)

With a Taylor's expansion with respect to cO, we obtain

-Max H 1L I dHL 12)CP(5.249)
PL J(P)[!l H&LL) d

The largest value of p in the interval of concern is 2L/ALO At
this value of p, the factor

E1p 2L dHLL (5.250)

takes on unity value (by definition of AL); it is smaller for all
other values of p. It follows immediately from the representation

-,Max Max ,
PL = x 3) (5.251)

that
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is a "worst-case" approximation for the mean-squared fractional
error.

From (5.231) and (5.236) we now utilize the reasonable
approximations

2 + C 2(5.252)

E 2u + C (5.253)

This allows us to represent our present results in terms of the
results derived earlier in Section 4.5. We obtain

7 L(T +E+ 2E) 2L L •p ŽL•L

2 22 + CE 2L

2 + 2 2/Y p < 2L/,L (5.254)
ET+ L L

It is clear that accurate measurements of the interference
mean and maximum values in combination with accurate measurements
of the channel transfer function magnitude-squared value can lead
to accurate determinrtions of the bounding curves for error rate.
To give a practical fecL for the effect of the measurement errors
on the bounding curve, we have included in the upper left-hand
corner of Figure 5.33a plot of the 95% confidence limit versus
rms fractional error in estimating the bounding probability.
Also shown in this figure are the 95' confidence limits
for the pulse noise jamming signal discussed in Section 4.5. It
is reasonable to expect for the naturally occurring types of
interference, that considerable improvement could be obtained.

Finally, we point out that the confidence limits at the
break points cannot be determined exactly by analytical means.
It is safe to assume, however, that the largest of the confidence
limits on either side of a juncture apply over a small region
about the juncture; the width of this region depends, of course,
on the accuracy with which the signal-to-noise ratio can be
estimated.
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5.7.3 An Alternative Approach

5.7.3.1 Introduction

Though estimates of 8L and aL can be used with reasonable
accuracy to develop error rate bounds by using the functional
relations in Section 5.7.1, it is not necessarily true that the
relations in Section 5.7.1 make the most effective use of the inter-
ference measurements. One of the major difficulties with the
earlier computational scheme was that it required estimates of
the probability density function maximum. Depending on the
amount by which the pdf tapers off at higher values, the occur-
rence of a value close to the maximum can be a very low proba-
bility event. This problem was discussed earlier in connection
with the work of Section 4.5. The use of the measurement maximum,
as a constraint for the extremization problem, was discussed in
Section 5.7.1. Here we discuss the use of a different constraint.
Within a reasonable range of operational choices, this new con-
straint relates to events of higher probability than was the
previous case.

We also note, for schemes aimed at measuring Umax, that
there is really no way of knowing how accurate the measurements
are without some a priori knowledge of the probability density
function. Without some other supporting measurements, the
operator of the system is to some extent working in the dark; he
has no knowledge of the quality of the measurements, nor how much
more time would be required to obtain more reliable measurements.
This is in contrast with the simple scheme for obtaining proba-
bility estimates discussed in Section 4.5.4.3. We recall that
the scheme presented there had as its goal the measurement of the
probability, p, that the generalized noise variable, U, exceeds
some fixed threshold, U'. The rms fractional error was given by

(5.255)
A

'W4e see that the measurement p itself provides some information
about the number of samples required to obtain a prescribed ac-
curacy in measurement. This leaves the operator sonic options,
(2;ther increasing M or decreasing the threshold, U', thus increas-
ing p and decreasing the error in (5.255).

The extra flexibility discussed above, in conjunction with
the superior convergence of the p estimate (as compared to the
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Umax estimate) motivates the use of the p measurement to develop
bounds on error rate for various communication systems.

5.7.3.2 Bounds on Error Rate: Problem Statement

As pointed out in Section 5.7.1, the problem of bounding
probability of error, in its most general context, is framed in
terms of the integral

AL

P f FL(A) HL(A) dA (5.256)

0

which is a precise expression for probability of error under the
mutually exclusive interference condition, UV =0, and in terms of
the integral

0L

PL =f WL (U) GL(U) dU (5.257)

0

which is the precise expression for probability of error under
the identical interfQrence condition, U =V. In both of these

expressions, AL and UL are appropriately determined upper limits
to be discussed below. In the first integral, A is just the
arithmetic mean of U and V. In both of the integrals, H (x) and
GL(x) are the known functions given earlier in Eqs. (5.200) and
(5.201),respectively, and FL(x) and WL(x) are the unknown proba-
bility density functions. Were these to be known exactly, or
exactly measurable, the problem would stop here; PL in (5.256)
could provide the upper bound on the error rate, and pL in (5.257)
the lower. In the absence of such complete statistical informa-
tion, one can only develop error bounds by maximizing the integral
in (5.256) and minimizing the integral in (5.257). When this
approach is taken, the incomplete statistical information avail-
able from the measurements plays the important role of constrain-
ing the extremalvalues that either integral can take on.

As in Section 5.7.1, the first of these constraints will be on
aL' the average value of the interference variable. The second

Actually, a single integral may be sufficient in some situations
(see Section 5.7.1), inwhich case error rate would be known
exactly.
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will be on p, the probability that the interference variable
exceeds some fixed threshold value. This differs from the "crest
factor" constraint used in Section5.7.1, but the work of Section
4.5 indicates that it can be more rapidly and reliably measured.
The detailed forms of the new set of constraints will be presented
below in Sections 5.7.3.3 and 5.7.3.4, where we use them to bound
probability of error for nondiversity operation.

To determine the upper limits of integration in (5.256) and
(5.257), wemake use of the factor, 7 L. Recall, from Section 5.7.1,
that this just puts an upper limit on the ratio of peak noise
power to average signal power and arises because of the dynamic
limitations of receivers; their outputs saturate when the input
voltage sufficiently exceeds the average signal power for which
the receiver was designed. Thus, from (5.204), we have

AL LYL (UV =0) (5.258)

and

A

UL = 2LvL (5.259)

In a similar vein, a probability constraint on U given by

p = Pr{U> 0 UL1 (5.260)

where O'is some number between 0 and 1 is exactly equivalent to
the probability of the event {2A> 0'6r ý in the mutually exclusive
interference case, UV=0. Hence, for' the integrals in (5.256)
and (5.257), the probability constraints will take the form

p = Pr{A> P'L L UV 0 (5.261)

and

p Pr{U > 3'2LYLJ (5.262)

We close this introductory section by demonstrating that the
p constraints in (5.261) and (5. 262) automatically place a constraint
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on a and, hence, the signal-to-noise ratio. In fact, from (5.259)

we have immediately

aL = U< 2 LYL (5-263)

Because of the special constraints here, however, this is not the
tightest upper bound on a L The tightest bound will be deter-
mined below. First, however, we treat the simpler problem of
determining the greatest lower bound. Utilizing the following
integral forms for these constraints

S2LV L
aL f UWL(U) dU 

(5.264)ULL

0

2LY

p =f WL(U) dU (5.265)
2P IL

and making the change of variable

U u (5.266)
z = 2Ly L

in (5.264) we have

a= (2L/L) 2 zWWL(2LyLZ) dz

0

1
(2LYL) 2 0'f WL( 2 LYLz) dz (5.267)

We note that equality is possible with an impulsive pdf. Hence
this is the greatest lower bound on uL. By making the same change
of variables in (5.265) the lower bound in (5.2 6 7)can be simpli-
fied. We obtain

aL • (2L YL) ) p (5.268)
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Now, we find the largest possible value of •L subject to the
representations in (5.264) and (5.265) and the additional obvious
constraint

2 LVLL
1 - ] WL(U) dU (5.269)

0

To do this, we make use of the cumulative distribution, CL(x),
where

x

CL(x) f f WL(U) dU (5.270)
0

We note immediately from (5.269) and (5.265) that

CL(2LVL) 1 (5.271)

and

CL(2fLYL) = Li-p (5.272)

Integrating aL in (5.264) by parts
2 LYL

aL = 2 LVL - f CL(U) dU (5.273)

0

it becomes clear that we need only minimize the integral in
(5.273). Because of the fact that CL(x) may be zero until
x= 29LYL,but then must jump to the value 1-p, we note that

2LYL 2 LYL

Min ] e(x) dx = Min f CL(x) dx (5.274)

0 2tY L

which, because of the fact that CL(x) is monotonically non-
decreasing, has the value
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2LY1

M f CL(x) dx (1-p) 2LYL(I- (5.275)

Combining with (5.273)we have finally that

(2LYL) ) /P ! aL L (2 LYL) [1 - ( - p)(l - f'] (5.276)

In terms of the signal-to-noise ratio, this restriction takes the
form

1 1
SL1E - (l-p)(l- 0)] : p Y L Ap (5.277)

For decreasing #/and p, the range of possible p values is trans-

lated to higher values as one would expect.

5.7.3.3 Error Rate Bounds: Analvsis and Numerical Results

In this section we develop the analysis leading to error
rate bounds for nondiversity operation and present the results of
the numerical calculations. Though only the results for non-
diversity operation are presented herein, we point out that an
examination of the earlier results (utilizing different con-
straints) and the analytical procedures indicates that the bounds
for diversity operation would be even tighter than those pre-
sented here; this is especially true in the case of the upper
bound.

We first deal with the problem of determining the upper
bound on probability of error. In keeping with the comments
accompanying (5.256),we attempt, through proper choice of F1(A),
to maximize the probability of error integral

V1
p= f FI(A) HI(A) dA (5.278)

0

subject to the constraints
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f1 - f AFI(A) dA (5.279)

0

and

p f F 1 (A) dA 0< , 1 (5.280)

and to the additional obvious constraint that the candidate pdf
integrate to 1. Applying the completeness theorem in [5.17]
separately to each of the intervals (0,.R' 1 ) and (3'y,' Y1 )' we
find that a general form for the maximizing pdf is

FMax -+(58)F (A) - ql8(A-A,) + q 2 6(A-A 2 ) (5.281)

where A1 < P, and A > " We note that this candidate pdf has
the four unspecifie3 parameters, ql, A1, q2, and A2 . Obviously,

ql+q 2  1 (5.282)

whereas application of the constraint on aI in (5.279) gives

a, 1  qlA1 '1 q 2A2  (5.283)

and application of the p constraint in (5.280) just indicates that
q2 =p, so that now the candidate pdf has just one unspecified
parameter, A1 ; i.e.,

FMax (A) = (1-p)6(A-AI) + p6(A-A 2 ) (5.284)

where

A (I - p)A 1  (5.285)
2 p
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Thus, the probability of error

p1  (l-p)HI(A + pHI(A2 ) (5.286)

must be maximized with respect to the unspecified parameter A1 .
To accomplish this, we note that

d Max
dPi P)[e - e(5.287)

and that the second derivative is negative throughout the inter-
val (a consequence of the fact that A2 >Al). It is immediately
apparent from (5.287) that pMax is maximized at A1 = A 2. Thus,
from (5o285)we determine that the maximum occurs at Al e=l; the
upper bound on probability of error has the value

Max
P1  = Hi (ai) (5.288)

This is the same as the upper bound determined under the earlier
constraint problem [see (5.220)].

We now turn to the problem of determining the lower bound on
the probability of error. In keeping with the comments accom-
panying (5.257),we attempt through proper choice of WI(A), to
minimize the probability of error integral

2Y1

p1  f w I (U) GI(U) dU (5.289)

0

subject to the constraints

2Y1

= f UWI(U) dU (5.290)

0

and
2v-

p = W I(U) dU (5.291)

2 R-)
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and, as before, the obvious restriction that the pdf integrate
to 1. Applying the completeness theorem, we have as a general
form for the minimizing pdf

Wmin(U) = q.6(U) + q2 (U- 2f/Yl ) + q 3 (U-Ul) (5.292)

which has the four unspecified parameters, ql, q2, q3 ' and U1 .

Obviously,

ql + q2 + q 3  1 (5.293)

whereas application of the constraint on a in (5.290) gives

"1 = q 2 (28/7 1 )+ q3 U (5.294)

and application of the probability constraint in (5.291) gives
the result

p q2 + q3  (5.295)

Solving these three equations, we obtain the results

ql= I- p (5.296)

q p UI - 1•l (5.297)

q3 UI. 20,YI~p (5.298)

3 U1  2/"Y I

This procedure leaves one degree of freedom through dependence on
the variable U . We now minimize
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Sin p U1 I x1 Fal2'v J 2" t G (U) (5.299)n U 2PIJ 1 ( 1) I+ [u -

with respect to U This is best accomplished by first rearrang-
ing the terms in 15.299). We obtain

min I(20Y1I (2+lYI)Gl ) FGI(UI) 1 G1 (29"YI1)

(5.300)

Since G5(U) is everywhere concave downward, a simple graphi-
cal construchion indicates clearly that the second bracketed term
in (5.300) is minimized at U1 = 2Y1. Evaluating the derivative of
the first term, we obtain

d['] 12 __ _ _) [+ G(U 1 ) - G(2 P'Y1 ) (

d U1  (U 1 - 29'y1) [0( 1) + - 20-'Y 1 J (531
which, because U is greater than 2P3 Yindicates that the first
term in (5.300) is minimized at U =2Y,, and ql, q , and q in
(5.296) through (5.298) take on tie values

q 1 -= 1-p (5.302)

(2Y )p - al
q2 = 2Y1 (1- ) (5.303)

•I"(2p/Y) p
q - 21( 1 ) p (5.304)

3 2Y, (I -/

Turning now to the dependence on al, we note from (5.276)
that u 1 is restricted because of the constraints to values
satisfying
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(2y 1 p p (5.305)

Hence, there is no value of a that allows q3 in (5.298) to take
on negative values. The situation is not as simple in the case
of the second impulse which vanishes as a reaches and exceeds
(2Y )p. In this case, the only way that the constraints can be
satisfied, especially the requirement for larger a1 , is that the
lower impulse begins to move to the right. The minimizing pdf now
has the form

Wmin(U) (1-p)6(U-U')+p6(U-2v 1 ) (5.306)

where the impulse strengths follow directly from the probability
constraint and the requirement that the pdf integrate to 1.
Applying the constraint on a1, it is easy to see that

=M a1  p (5.307)
•, 1-p

and, hence, that

Pm = (-p) G ( 1• + pG1 (2y 1 )

I > 2Y1 p (5.308)

It would seem at first glance that the behavior of (5.308)
at values of U' in excess of 20'y would require separate considera-
tion; this is because both impulses would fall in the region
(20yl,271 ) over which the integral defining the probability con-
straint lakes place. We note, however, that a value of U' ex-
ceeding 2ýY implies, from (5.307), a value of aI satisfying

> p(2^I) + 23'(-p)Y1  (5.309)

which can be rearranged to take the form
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a1 > 2Y [1 (1" p)(1 (5.310)
1

This places a outside of the range of possible a1 values given
in (5.27 6 ). TLus, the lower bound on probability of error has
been determined for all possible values of aj.,

Recalling from (5.202) that

p - 2/a I (5.311)

we summarize the above results in terms of the signal-to-noise
ratio:

p1  = H2 (5.312)

mini _ ("1271

.•P 1  = (lj-p) GI i- ) + pGI(2Y1 )
1 1minI (2p(l•] 2p 'Y 1 i 53

mm = (I -Pp) G (23' 1  + G1(2(2)

m1  [7IP - J [I" 1(1 Ip)

1 1
(5.314)

yi p yl/p l

Probability of error bounding curves determined from numeri-
cal calculation of these expressions are shown in Figures 5.34-
5.37. The curves shown hold exactly for the binary FSK case but
from the discussion in Section 5.7.1 can be thought of as worst-
case curve both in terms of probability of error and tightness
of bounds.

The first three curves are for increasing values of p,
p=0.001, p= 0.01, and p= 0.5, and various values of threshold J3

The increasing values of p imply increasing values of percentage
measurement error of p, as discussed in Section 5.7.3.1. These
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have, respectively, the approximate values f1OO-OTM, JIOOfM-, and
J17M (exact),where M is the number of independent samples, as
discussed in Section 4.5.4.3.

In each of these curves, the breakpoint [see (5.313) and
(5.314)A occurs at I/Ylp which is too far to the left to be
illustrated in Figure 5.36.

In Figure 5.37, the curves are plotted for fixed P and various
p.

These curves indicate clearly that measurements of the proba-
bility with which the noise variables exceed some threshold can
be used to develop bounding curves for probability of error. The
measurements are easy to obtain and with suitable operational
choices can be obtained with high accuracy.

With a greater number of thresholds, the measurements would
correspond to a simple histogram, and there is no doubt that one
could develop considerably tighter bounds.

5.7.4 Summary

In this section we discussed the way in which the inter-
ference measurements, covered earlier in Section 4.5, can be used
to develop bounds on the probability of error. To accomplish this,
we drew heavily on results published earlier in [5.17]. The way in
in which the error rate and the error rate bounds are related to
the measurements was discussed in Section 5.7.1. In this section,
we demonstrated how the probability of error integrals can be ex-
tremized by applying constraints on average interference power and
on the interference crest factor. The fact that these constraints
can lead to tight bounds on error probability was evidenced by the
curves presented in Figures 5.29 -5.31 which were taken from [5.1Y].
In Section 5.7.2 we discussed the accuracy with which the error
rate bounds can be determined from the interference measurements;
as one would expect, the errors in developing the bounding curves
depend in direct fashion on the errors in the measurement of the
interference mean value, maximum value, and on the error in esti-
mating the mean-squared value of the channel transfer function.
The relationship between the rmns errors in estimating these quan-
tities and in estimating the bound values was given in Section
5.7.2.2 [see (5.254)] and illustrated in Figure 5.33. It is clear
from the work of this section that reliable interference measure-
ments can lead to reliable bounds on error probability.

In Section 5.7.3 we tried an alternate approach to the prob-
lem of developing bounds on probability of error. This approach
made use of estimates of p, the probability that the interference
variable U exceeds some fixed threshold U' (see Section 4.5.4.4).
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Thus, the measurements, in effect, make up a simple two bin histo-
gram for the interference. It seems reasonable to expect that
variants of this approach could be used to bound error probability
when histograms with a higher number of bins are available.
Although the accuracy of determining the bounds was not investi-
gated as thoroughly as that determined earlier, the indication in
Section 4.5.4.4 that p can be measured reliably indicates also
that the bounds can be estimated reliably.
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SECTION 6

TECHNIQUES UTILIZING SPECIAL PROBING SIGNALS

The previous sections have been concerned with the area of
main interest to the present study, the in-service estimation of
modem performance based upon propagation medium limitations alone
(i.e., assuming a well-functioning modem) without the use of
special probing signals. A nLunber of concepts were developed
and analyzed yielding a number of techniques of wide applicability.
However, there are cases where special probing signals are needed
for the most reliable performance estimation. Thus, in the case
of LOS channels where deep fades can sometimes be highly frequency-
selective, the complex transfer function T(f,t) is needed to esti-
mate the performance of conventional suboptimum modems which do
not attempt maximum likelihood demodulation.

It is not possible to estimate a fading dispersive channel's
delay power spectrum Q(Q) from IT(f,t)12 . The most accurate pre-
diction of irreducible error rate for time-gated and anti-multipath
troposcatter modems is with the use of Q(Q). The measurement of
Q(Q) requires the use of special probing signals if processing is
to take place at RF or IF.

The HF channel was fou:id to be the most difficult to esti-
mate modem performance using the techniques of the previous
sections. Special probing signals could reduce estimation error.

The signal distortion properties of the channel are sometimes
characterized by measurements at three levels of decreasing
knowledge:

1) Measurement of system functions (e.g., time-variant
transfer function and impulse response).

2) Measurement of correlation functions of system
functions (e.g., frequency correlation function,
delay power spectrum, etc.).

3) Measurement of gross parameters of system function
(e.g., coherence bandwidth, Doppler spread, etc.).

We consider each of these in order.
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6.1 Out-of-Service Measurement

Here we assume that service has been interrupted and it is
desired to measure the channel characteristics.

6.1.1 System Function Measurement

The problem of probing and measuring system functions for
time-variant channels has been studied extensively by Bello and
Esposito [6.1], Bello [6.21,[6.3], and Bello and Pinto (6.4].

It has been found that for well-designed signal processing,
the accuracy in measurement of the system functions is essentially
invariant to the technique used. The system function channel
measurement technique used most often is the cross-correlation
technique employing a periodic probing signal containing a pseudo-
noise sequence of +18 0 0 modulating a carrier. A simplified block
diagram of the receiver processing is shown in Figure 6.1. The
received multipath-distorted PN waveform is mixed with a set of
delayed replicas of the transmitted sequence to extract samples
of the channel's complex time-variant impulse response at the
outputs of the lowpass filters. The filters have passbands flat
over the spectrum occupied by the fading channel, i.e., the
"total" Doppler spread.

If z(t) denotes the complex envelope of the transmitted
probing signal, g(t,ý) the complex envelope of the impulse re-
sponse of the channel, and n(t) the complex envelope of the
received additive noise, then the received probing signal is
given by

w(t) = z(t - ý) g(t,•) dý + 77(t) (6.1)

The cross-correlation operation to produce a (time-varying)
sample of the impulse response at =,r, g(t,T), is given by

g(t,r) = [w(t)z*(t -r)) ® k(t) (6.2)

where k(t) is the impulse response of the lowpass filtcr. For
this discussion, four assumptions will be made:
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1) The probing signal power spectrum is flat over W,
the bandwidth of the channel that it is desired to
characterize.

2) The lowpass filter k(t) is nondistorting to the time-
variant impulse response sample fluctuation. This
means that the nondistorting bandwidth of k(t) is
equal to or greater than the total Doppler spread
of the channel, Btot.

3) The bandwidth W is much bigger than Btot.

4) The product B totL>> 1, where L is the duration of the
channel impulse response.

Assumptions 3) and 4) are valid for the channels under dis-
cussion. Assumptions 1) and 2) are convenient for analysis
although not optimum for minimizing the estimation error due to
the combined effects of additive noise and distortion. However,
it will be seen below that by comparison with the incoherent
probing techniques of the previous sections, the output additive
noise is very much smaller so that we may be more generous here
in allowing some extra noise through, to essentially remove dis-
tortion effects.

With the above assumptions, the estimated impulse response
becomes

g(t,r) f Cz(r- ) g(t,$)dg + 7(t,r) (6.3)

where C (r) is the autocorrelation function of the probing signal,
and ?1(tr) is a noise (in effect a "noise channel") with power
spectral shape (for fixed r) proportional to IK(f)J 2

All radios have filters at the transmitter and receiver
which limit bandwidth. These may be defined to be part of the
channel to be probed or not, depending upon the objectives of
the probing. In either case, the probing signal would be de-
signed to have a flat spectrum over the band of interest and

h(t,r) = f Cz (r-) g(t, )dg (6.4)

would be the desired impulse response.
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It may be shown from the referenced work by Bello that, for
a dispersive channel with delay power spectrum Q(Q), the strength
of the desired term to the estimation mean-squared error is
is

rout Pin BK Q)d

where p is the input SNR measured in the bandwidth of the
receive signal. For a uniform delay power spectrum of width L,
(6.5) becomes

Pout ' Pin B KL (6.6)

KKSince BK can be set close to Btot, the total Doppler spread of the

channel, and since

S BtotL <<< 1 (6.7)

for the channels of interest, we see that excellent measurement
accuracy can be obtained with out-of-service probing because the
communication system is normally designed so that pin is >> 1.

6.1.2 Correlation Function and Gross Parameter Measurement

Since, on an out-of-service basis, the system function can
be measured with high accuracy for the channels of interest, the
only significant contribution to the estimation error for measure-
ment of a channel correlation function will be the channel fluc-
tuations which must be averaged out. One may show that the rms
fractional estimation error a always takes the form

S6 (6.8)

where K is an effective number of independent samples of the
channel during the averaging time. This may be equated approxi-
mately to the product of the observation time and the rms Doppler
spread of the channel. Thus, for example, if it is desired to
measure the delay power spectrum of a channel Q(Q), the rms
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estimation error due to channel fluctuations can be expected to
be

Q(4) (6.9)

Of course, if it is desired to measure Q(Q) where it is very
small, errors due to the additive noise would have to be con-
sidered. From (6.5) - (6.7) we see that as long as

»A.. >> s- (6.10)

Omax Pin

the noise effects may be disregarded.

The same three classes of techniques may be used for gross
channel parameter measurement with special probing signals as
were discussed in Section 4 for the received signal probe case.
In the present case, coherent processing techniques may be used
for the differentiation and level crossing approaches, and an
improved correlation function estimate may be used in the correla-
tion technique. Moreover, in addition to rms Doppler spread, a
mean Doppler shift may be measured. We briefly consider these
measurement techniques.

If a carrier is transmitted, the received process when
referenced to the carrier frequency has the spectrum P(f). It
is convenient to deal with the complex envelope of this received
process z(t), which has just this low-frequency spectrum P(f).
In [6.1] it is shown that the Doppler spread parameter B is given
by the following operations on z(t):

2

2B : Y. (6.11)S<z(t)12) (lz(t)12>

where the triangular brackets indicate time averages.

In actuality, the operations upon z in (6.11) would most
likely be carried out by operating on the "in-phase" and
"quadrature" components x(t) and y(t) related to z(t) by
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z(t) = x(t) + jy(t) (6.12)

It is shown by Bello [6.5] that in terms of x(t) and y(t),
B is given by

2ý 2 2B (k()2 + 0#) <xý - y! (6.13)

IT 2 +.2 2 2<x +y2) (x +y )

The in-phase and quadrature components (x,y) can be deter-
mined by multiplying the received carrier by both a local carrier
and a 900 shifted local carrier at the same frequency as the
received carrier (or as near to the same frequency as possible)
and then extracting the low-frequency components. Strictly
speaking, D is independent of mean Doppler shift, and thus pre-
cise knowledge of the received carrier frequency is not necessary.
However, as the local carrier frequency departs from the received
carrier frequency, the extracted x(t) and y(t) increase in band-
width, necessitating larger bandwidth filters and passing more
noise. Thus, from the point of view of maximizing signal-to-
noise ratio, it is desirable to keep the local carrier frequency
as near as possible to the received signal frequency. An esti-
mate of the mean Doppler shift defined as the centroid of the
power spectrum is provided by

f== - 1 (- ) (6.14)

21T (x 2+y 2

In practice, the derivatives may be approximated by differences
as was done for the envelope techniques in Section 4.

The measurement of multipath spread by differentiation tech-
niques follows an approach which is, in principle, dual to that
described above for Doppler spread, where the duality involves an
interchange of the roles of time and frequency. The frequency
derivatives would be approximated by differences between the
complex amplitudes of two received tones judiciously spaceA in
frequency.

For the level crossing approach, we may show from the results
of Rice [6.61 that the average number of times m the in-phase or
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;qufadrat~ure components of narrowband Guassian noise crosses zero

is given identically by the rms Doppler spread, i.e.,

-mB (6.15)

Thus, by counting zero crossings in some finite time interval, we
obtain an estimate of the rms Doppler spread.

Also, in an exactly analogous fashion, m, the number of
times/hertz that the real (or imaginary) part of the channel
transfer crosses zero is identically equal to the rms multipath
spread L, i.e.,

m = L (6.16)

The correlation techniques for measurement of multipath and
Doppler spread were discussed in Section 4. In that section,
they were based upon the channel envelope-squared time or fre-
quency correlation functions. Here the same procedure would be
used but they would be based upon the correlation function of the
real or imaginary parts of the transfer function..

The estimation errors for multipath and Doppler spread would
also be dependent primarily on the number of independent channel
samples in the averaging interval. The rms fractional error 6
would vary as 1/1rK, i.e.,

A (6.17)

1K

6.2 In-Service Measurement Techniques

The previous section considered various classes of channel
weasurement techniques utilized in the absence of data signal
transmissions, Out-of-service operation is highly undesirable.
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One may obtain channel measurement information utilizing probing
signals in the same frequency band and during in-service opera-
tion by multiplexing the data signal and probing signal together.
We may consider four basic multiplexing arrangements:

1) Data-probing time-division multiplex

2) Data-probing frequency-division multiplex

3) Data-probing FDM/TDM

4) Nonorthogonal multiplex

In each of these arrangements, the objective is to multiplex
and demultiplex the data and probing signals on an essentially
noninterfering basis. In the case of time-division-multiplex,
probing signals are inserted in series with data signals. Note
that the method of multiplexing incoming digital data can gener-
ally be independent of the way the probing and data signals are
multiplexed together. Thus, the TDM (time-division-multiplex)
of probing and data signals can occur with either FDM or TDM of
data subchannels. Furthermore, the multiplexing of probing and
digital data can occur at baseband, RF, or IF, yielding a large
number of potential combinations to be examined.

The concepts of TDM, FDM, and TDM/FDM are best understood by
imagining that the available time-frequency space (either at
baseband, IF, or RF) is divided up into two mutually exclusive
regions assigned to the probing signal and to the data signal.
In order for there to be little loss in channel capacity, the
percentage of time-frequency space devoted to probing signals
must be a small fraction of the total available time-frequency
space.

The first three techniques are orthogonal multiplexing
arrangements. The last technique has the advantage of using no
additional time-frequency space. However, it cannot always be
used because of the mutual interference created. We explore this
point for the use of an in-band wideband probing signal. There
are two requirements for utilization of this technique:

1) The probing signal must be at a low level relative
to the data signal at transmission, typically 20 dB
or lower to avoid degrading the communications.

2) The processing gain of the probing signal demodulator
must be high enough to overcome the large interfering
data signal.
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Generally speaking, the probing technique can be any wideband
coherent processing technique which spreads the probing signal
over time-frequency space. However, care must be exercised in
selection of this technique to see that discrete spectral com-
ponents are either low enough or properly placed so as not to
produce a local region of low data/prober power density ratio.
Presuming this care has been taken, we can estimate from Eqs.
(6.5)- (6.7) what the relation between channel parameters must be
to allow use of the nonorthogonal multiplexing technique for
measuring channel system functions. In this equation, we inter-
pret Pin as the ratio of prober power to data power, a value we
have quoted as being desirably -20 dB or smaller. If we desire
at least a 20-dB measurement SNR, Pout, then from Eqs. (6.6) and
(6.7) we see that the spread factor

s : 10-4 (6.18)

For troposcatter links, multipath spreads are not much bigger
than I ps, while Doppler spreads range from a fraction of I Hz
to 10 Hz. Thus, (6.18) will be well-satisfied for troposcatter
links. In the case of microwave LOS links, s is even smaller,
rarely exceeding 10-10 to 10-11. Thus, LOS links are ideally
suited for in-service probing. A similar calculation for iono-
spheric scintillation channels reveals these suitable also. For
HF channels, multipath spreads are usually less than 2 ms and
Doppler spreads less than 1 Hz. This yields s =2 x10- 3 which
violates (6.18). Thus, some difficulty may be anticipated in
utilizing a low-level probing signal in parallel with data trans-
mission for in-service probing on HF links. In the case of HF
links which are SSB, however, one or more frequency slots are
usually provided for pilot tones. These may be used for accurately
measuring gross channel parameters and the complex transfer func-
tion at those frequencies.

From a complexity point of viev, it would be best to effect
in-service probing in a way that would involve least changes in
existing equipment. The two techniques that make most sense from
this point of view, when applicable, are nonorthogonal multiplex
with low-level. wideband probing signals and tones placed at the
edge of or in the signal band. Of course, a series of tones
placed across the band may be regarded as a wideband probing
signal. We consider the applicability of these techniques for
each channel.
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In the case of HF channels, we have already pointed out that
a low-level PN prober would not be satisfactory because the spread
factor of the channel is too large. Since SSB with parallel sub-
carriers is used in HF, it is a simple matter to insert probing
tones in place of data subcarriers. This would always be at the
cost of reducing capacity, but frequently at least one tone is
provided anyway for AFC.

For the other channels, transmission signals are constant
envelope and nonlinear essentially hardlimiting power amplifiers
are used. In this connection we note that if a low-level probing
signal p(t) plus a constant envelope data signal exp[jQ(t)] are
fed to a hard limiter, the output may be expressed in the form

ej4 ,(t) + p(t_ = ej0(t) + I (t) - I *(t)iP(p t + ....

Jej'P(t) + p(t)l

(6.19)

2
where the missing terms are of the order of p . By keeping the
strength of p(t) 20- 30 dB below the constant envelope data signal,
the additional terms may usually be neglected. The only proviso
is the possible creation of discrete frequency components which,
although small, may fall on critical parts of the data signal
structure. This possibility must be examined in each case.

i -suming that the other terms may be neglected, we see that
the . Lobing signal has been reduced 6 dB by the hard limiting and
a spurious term comparable in strength to the probing signal has
appeared. The spurious term will only be harmful to the channel
measurement if exp[j2o(t)] is not a broadband signal. To take an
extreme case if the data signal is binary PSK, expfj2,o(t)] would
be a constant and the spurious signal would be the negative con-
jugate of the probing signal. Barring this special case, the
spurious signal would be a wideband signal contributing much
smaller data noise to the channel measurement than the data sig-
nal itself. In all cases of interest, the spurious signal pro-
duces no harm to the data signal demodulation because it is of
the same strength as the output probing signal which is already
at a very low level.

In view of the above, it would appear that either PN or
parallel in-band probing is feasible for LOS and troposcatter
links, the ultimate choice being cost.
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For satellite ionospheric scintillation channels, multipath
is not a factor of importance and a single low-level tone placed
adjacent to the data signal can be used to characterize the
channel.

6.3 Error Rate Estimation

The error rate estimation techniques discussed in Section 5
based upon processing the estimated values of the squared magnitude
of the transfer function may obviously be used when the actual
complex transfer function or impulse response is known. Moreover,
the bias errors, which were especially troublesome for HF channels,
will vanish and the variances of the estimation errors will reduce.
The latter reduction will not be so dramatic as the reduction of
biases because the unaveraged channel fluctuations usually repre-
sent the major source of estimation error variance.

Aside from the general benefits for HF channels, perhaps the
biggest bonus comes from the improved ability to estimate the
irreducible error probability produced by excessive multipath in
high-speed troposcatter modems and the condition error probability
due to deep frequency-selective fades on LOS links. Insufficient
time was available to evaluate the effectiveness of such estima-
tion techniques.
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APPENDIX A

GROSS CHANNEL PARAMETER ESTIMATION FROM
BIAS UNCORRECTED ESTIMATES

A.1 Introduction

In this appendix we address the problem of estimating gross
channel parameters from bias uncorrected estimates of the ulagni-
tude squared of the channel transfer function. In particular,
we will estimate the rms Doppler and multipath spreads using the
differentiation technique considered in Section 4.3, and the
mean SNR.

It will be shown that using bias uncorrected estimates does
not appreciably affect the performance of these gross channel
parameter estimators. Thus, the above gross channel parameters
can be accurately estimated without bias correction, and then
used to correct the bias in the magnitude-squared channel trans-
fer function estimates.

When the bias of the magnitude squared of the channel trans-
fer function estimate is not removed, this estimate can be
expressed as (see Section 4.1)

IT(F,tp )2 = IT(F,t p )12 (+p) + 6 (1)

where

Ef cp. = HL 2L KB2

E{6p} =x E{IT(f,t)'} + 2NO/P,(F)

p
S= E (2)

In the above expressions, JT(F,t()I is the estimate of the
magnitude squared of the channel tran fer function,IT(F,t )12 is
its actual value, and E and cS are given, respectively, by
(4.57) and (4.100).
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A.2 Estimation of the Mean SNR

The estimation of the mean SNR is performed by using the
estimates of the magnitude squared of the channel transfer func-
tion to form estimates of the instantaneous SNR, which are then
averaged to give the mean SNR estimate. We can define an instan-
taneous SNR by

7(t P IT(F,)t)12 (3)

p 2N 0  p()

and a mean SNR by

r1 j'tP) (4)

Using (1) we can estimate r by

P P(F) K1
r 2Nz K W IT(F'tp) 2(I+cp) + 8 (5)

Averaging over the errors and the channel fluctuations gives

E{37} r +1 (6)

where the estimation errors, c and 6p, were assumed to be inde-
pendent of the channel fluctuations.

Therefore, no correcting for the bias in estimating
IT(F,t )12 produces a bias in estimating r. However, sinm': this
bias ig a known constant, it can be corrected.

The second moment of the mean SNR estimate is given by
21 P z (F)2 p_1 K K Ftp p2

E =r E [ J 2 iT(Ft)I )(1+Cp) + 8
[I(• E 2 (1 +N qK 6qz 7
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After some simplification, we can express Eir 2}- by (where a
complex Gaussian scatter channel is assumed)

K, 1 22.21 a)2 2+1) + 2(-a)(2+1)

+ .2 p q l+Ppq) (8)
K2  pq1 F7

p~q

where p is the magnitude of the normalized channel correlation
functio qand is defined by

Pp E{*Ft p)T(F~t g)}(9Ppq El T(F,t)I 2}9

A

A Using the mean of r as given by^A(6) and the second moment of
r as given by (8), the variance of r can be found to be given by

a = 2+ 2 2 Ppq2 (10)
r K2  p-;q=

p~q

Comparing (10) with (4.255), we note that for 2>a>0, the
convergence of the mean SNR estimate using bias uncorrected esti-
mates of IT(F,tD)1 2 is faster than if these biases were not
corrected. For the channels considered in Section 4.1, a is a
usually positive number much less than 1 and, therefore, Eqs.
(10) and (4.255) are essentially equivalent.

2In summary, the use of unbiased estimates of IT(F,t )I to
estimate the mean SNR results in essentially the same performance
as would have resulted if bias corrected estimates of IT(F,tp )2
were used.
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A-3 Estimation of the RMS Doppler Spread

The rms Doppler spread can be estimated from the bias uncor-
rected estimates of IT(F,tn)1 2 using any of the three techniques
analyzed in Section 4.3.2. In this appendix we will use the
differentiation technique to determine the bias in e~timating B2

due to using bias uncorrected estimates of IT(F,t )I It is
felt that the convergence of the B2 estimator wily not be appre-
ciably affected by these biases.

From (4.169), the estimate of B2 for the differentiation
technique is given by

1ý1 T2 12 (11)
1(At) 2T 2

where

T A -K [,tp+At) -2 - T(F,tp) 12 K 2
T2 I K IT(F,tp)1 2 2 (12)

Using the bias uncorrected estimates of the magnitude
squared of the channel transfer function as given in (1), then
it follows that

E{TI} = 21T(ft)j [(l - 0 ,At )(l-a) 2 + 2E 2 + S

EfT 21T(f~t)l 2 2[ a+ 9 2+ E + 4N 0 T11 4N0  (3E{T21  2L 2  •2+ P (F) ( 23(F)

where p ,T is defined by (4.156).

The mean value of B can be determined in a manner analogous
to that used in Section 4.3.2. Therefore, for K large it follows

-* that
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2 2

B2 (1.)2 + 2

E( - 2 +.2 (14)

2 2 T \Ir

The iffect of not correcting the bias when estimating
IT(F,t )I is to produce a bias in estimating B2 even when the
effectý of E and cS are negligible. By comparing (14) with

1
(4.193), we note that if a and ý are negigible with respect to 1,

then bias correction may not improve performance significantly.

A.4 Estimation of RMS Multi-ath Spread

The rms multipath spread can be estimated from the bias un-
corrected estimates of IT(F,tp)1 2 using any one of the three
techniques analyzed in Section 4.3.3. For the differentiation
techniques, the bias in estimating L2 is the dual of (14). That
is

2 2
I- 2(I,) + 2 2

I2 (•F) 2 (15)

a .± E +E 5 + +

1Therefore, if a and f are negligible with respect to 1, then
bias correction may not improve performance significantly.
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APPENDIX B

DETERMINATION OF BIAS IN ESTIMATING THE
BRANCH ENVELOPE CORRELATION COEFFICIENT

B.- Introduction

In this appendix we address the problem of determining the
bias in estimating the branch envelope correlation coefficient.
Four cases will be considered. For each case considered, an upper
and a lower bound on the expected value of ý], will be found.
The expected value of Akj will be bounded wheA the correlation
coefficient formula (Figure 4.18) or the simplified formula
[Eq. (4.261)] is used with or without correcting for the biases
in estimating IT(f,t)1 2 .

B.2 Simplified Approach with Bias Correction

From (4.261) of Section 4.3, the branch envelope correlation
coefficient can be estimated by

T
"~k "- 1- 1 (1)Pkj T TiT j

where

Tk _ 1K [ITk(F,tp),2(l+ek)+ 6kp[ITj(F,t )P 2 (l++ )+ 6)
p=l

Tk K pýj lTk(F'tp) (1 +Ekp) + 6kp

1I K

T. = .K p, ITj(F,tp)(l+cjp) + 6. (2)

The bias that we will determine is the asymptotic bias; that
is, we will determine the bias assuming that the number of samples
K is sufficiently large. With this assumption, the mean of A

is Pkj
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E{~kj}l EfIMk (3)

E{TkTj }

From (2) with 8 and c uncorrelated, we have

E{T kj (1+Pkj )ITj(f•t) 2 ITk(f t)l2(l+ E Ekpcjp}) E{6k%}

E rkTj T ITj(ft) 12 ITk(ft)1 2 1 + + E c + . K. .

(4)

For large K

E{TkTj} = Irj U101 2 Irk(ftt)l2 (5)

Since we can bound. the moments of the errors by

0 E{tckpcjp} r 2

o E 8 6. E2 IT.(f't)I 2 IT(.t'l2 (6)
t kp jp. S I kft)

Using (4), (5), and (6) in (3) gives

S2 +2+2(7)Pkj EPkj l Pkj(I+ )+ c ES(7

B.3 Simplified Approach Without Bias Correction

In this section we will assume that the biases in estimating
IT(f,t)1 2 have not been corrected (except for the noise bias; see
(2) of Appendix A). For this case, (3) is still valid except
that the required expectations are given by
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E{TjTk} IT(ft)2 Tk(ft)

Ef~kjj Tkft)2 ITkU012'f+ at)I~l-

E{Tkj}~~~~ +~~~tt Ijft1Lipkj) f±~c e.}2o + cY1-

+ E{6kp'jpl (8)

Using (6) and (8) in (3), it follows that

PkJ(l)2 ! E{Pkj} : Pkj[(l )2+E] + 2 + (S (9)

B.4 Formula Approach with Bias Correction

In this section we will use the correlation coefficient
formula and determine the bias in estimating Pk*" This approach
is functionally presented in Figure 4.18 of Seciion 4.3. The
estimate of Okj is given by

Ak Tki -T k (10)okj 2(0

where

R I K [ITk(F,tp)!
2 (1+kE) + 6k2

p=l

K ]2

Rj E [ITji(F,t p)2(l+ Cjp) jp (11)

p=lJ

Using bias corrected estimates of IT(F,t )12 and assuming K
is sufficiently large, the it follows that (see Section 4.2):
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, } ..... 2 2
I t) 2 +(1 c )f

2)2 2 2(
R -2 lT f t:)I (2+ 2c + cS)

E~ia(4),(5),(1.0), oad (12) we have

Ikft) 1 - (13)
I +I 2 + 2c 2 + C2

ES

Us[ing (6), we cati bound E{ikjt by

+ 2 ) + C 2 21

2 •R2T (ý(f+ ) I2 ) + (4
i.+ C1+ 12~l~k} + 21C 2c 2

•ES

P, 5 Formtii-a ApEproach W~ rliut Bias Correction

When the formiula approach given by (10) is applied using
1bias uncorrected estimhuates of IT(f,t)i , then it is easy to
determine Chat for K(. sufficiently large

E{Rk T =~~k I Tk(f,t)12[(2 &2 + E+22]

j{j. - E2 {. +~[ E S+ 2C2 (15)
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Using (8) and (15), the expected value of Akj is

2E{8k, 8. }

Pkj(1 + E{ Ekpcjp} ) - 2.___2a2 +

SIT2 (f2t)12 k(f't)2
E{bkjl (I(- a)2 + 2 E2 + E2

From (6), we can bound E{Okj} by

.2 PE k k [i )2+C2] + C + 2 2

a)2 + 2 2 E S (1-) 2 +2 2+ 127
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APPENDIX C

MINIMIZATION OF THE RMS ERROR IN ESTIMATING 1T(f,t)1 2

CONDITIONAL UPON THE FADE LEVEL

In this appendix we address the problem of minimizing the rms
fractional error in estimating the magnitude squared of the chan-
nel transfer function conditional upon a given fade level. The
utility of this estimation is to obtain good estimates of IT(f,t)1 2

at a predetermined fade level. From (4.101) of Section 4.1.4 the
variince of the output of the IT(f,t)1 2 estimator is given by

62 IT T00 (F$ t)1 + CS IT(f ýt)I(122

where IT(f,t)l2 has not been normalized to 1, as is the case in
(4.101).

We can define a fade level by

A T00_ (F ,t ) 2

F-L (2)IT(f,t) 12

In Section I we used a fade level given by -10 log FL.

Using (2) in (1), it follows that
2S

62 = IT0(Fit)l4 2 + (3)
6 1 00(tl L L2

The rms fractional error conditional upon a given fade level
is defined as

A 62 CS
•C + = (4)

IT 0 0 (Ft)2I 2  F
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We would like to determine the filter parameters that mini-
mize (4). Assuming the functional form of the filters given by
(4.105) and with A3 m A1A it follows that

4 2'

1C 1 5 F(4 T2 2 L 2 J2
C 2-W + Ti 3F L FL)

+ 1~ B BTV -WL L (5)V1+ 3FL + "FL K)2 L

Comparing (5) with (4.108) of Section 4.1.5, we note that the
determination of W and T such that (5) is minimized is identical to
the minimization of (4.108). In fact, it should be noted that (5)
and (4.108) are identical except for a scaling of B and L.
Therefore, the optimuna filter parameters can be found from (4.116)
and (4.117) to be given by 1/6

F L 40i B L/ (6)
opt- L2/6 [1+A 2 1/4 1+ Al /4

(1 +A 2) 1 +A 2 +(rA~-, -A I+A1 2

and

1/6
FV3

T - FL 3/4 (7)

o T r B 2 6 1 + A 1F 1 + A 1I(I1+A1)[1 4 Aj 2 . (VA1A 2  f) Ai±2]

Comparing (6) and (7) with (4.116) and (4.117) we note that
when EC is minimized for a given value of FL, as opposed to minimi-

zing r , W and T change by a factor F/3/2Y. For example,o Nt o ....
if for a gi en chanlIipi it is desired to minimize CC for FL=0.001
(i.e., a 30 dB fade), then W and T are approximately one-
tenth of the values that inimuized Ec.
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Substituting the respective optimum filter parameters into
(5) and (4.108), then cC and c can be related by

cc 3 p (8)

In summary, optimum filter parameters have been found for
estimating IT(F,t)12 at a predetermined fade level. Also, (8)
can be used to evaluate the rms fractional error for the channels
of interest.
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