AD-A009 936

PRIM USER'S MANUAL

Louis Gallensoun, et al

University of Southerrn California

Prepared for:

Advanced Research Projects Agency

April 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

A s bkt o




N

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BELOFE COREDET LG AR
1. REPORT NUMBER 2. GOVY ACCESSION NO.! 3. RECIPIENT'S CATALCG NUMBER
ISI/TM-75-1 /4‘_/7 A 06 S 9.3 b
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Technical

PRIM USER'S MANUAL

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s; 8. CONTRACT OR GRANT NUMBER(9)

Louvis Gallenson, Joel Goldberg, Ray Mason, leHC 1572 C 0308
Donald Oestreicher, Leroy Richardson

9. PERFQRMING ORGANIZATION NAME AND ADDRESS
USC/Information Sciences Institute

4676 Admiralty Way ARPA Order #2223
Marina del Rey, CA 90291

0. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

1l. CONTROLLING ZFFICE NAME AND ADDRESS 2. REPORT DATE

Advenced Research Projects Agency April 1975

w

1400 Wilson Blvd. T NUMBER OF PAGES

‘_r_ALLLng.tan.,ALi.[ginio 22209 135
4. JAONITORING AGERCZY NAME & ADDRESS(! dJdifferent from Controlling O*fice) 8. SECURITY CLASS. (of thie report)

smEsssssss 1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

This document approved for public release and sale; distribution is unlimited.

17. DISTRIBUTION STATEMENTT (of the abetract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree eide if neceseary and identify dby block number)
ARPANET, control memory, microprocessor, microprogramming,
m. croprogramming language, microvisor, MLP-900, operating systems,
resource sharing, TENEX, time sharing, writable control memory

20. ABSTRACT (Continue on reveree eide if neceeeary and identify by block number)

This document is a four-part technical manual to aid the useis of the Frogramming
Research Instrument (PRIM), a major time-shared microprogramming facility which
pemits individual researchers to create specialized computing systems adapted to their
needs. The document consists of an overview, a user's guide, and reference manuals
for the General Purpose Microprogramming language (GPM) ard the MLP-900 micro-
processor.

DD . o', 1473  €eoimion oF 1 nov 63 1S oBsOLETE
S/N 0102-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




T

TO THE UStR:
We have worked hard to make this technical manual as accurate and complete as
possible. However, since mistakes are known to creep into even the most sincere
of efforts, we would apfreciate your calling to our attention any vechnical or
typographical errors, omissions, inconsistencies, cr ambiguities you notice while
perusing 1t. Postage-paic preaddressed reply cards have been included below for
your convenience. Plea.2 jot down the problem and the page on which it occurs,
tear out the card, anua drop it in the mail.

Thank you.

The Publicatiens Group at ISI

ERROR PAGE

prim

ERROR PAGE

- ———— —— e = - —— T —— " ———

prim




|S|/TM‘75'|
April 1975

ARPA ORDER NO. 2331

PRIM

User’s Manual

Louis Gallenson
Joel Goldberg

Ray Masor

Donald Oestreicher

Leroy Richardson

INFORMATION SCIENCES INSTITUTE

4676 Admvalty Way/ Marina del Rt_]/Ca/lfnn/m 00291

,lﬂ\'ll'l:'KSi?"' OF SOUTHERN CALIFOKNITA (213)822-1511

|

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RFSEARCH PROJECTS AGENCY UNDER CONTRACT NO DAKHC1S 72 C 030R ARFPA ORDER

NO 2223 PROGRAM CODZ MO D30 AND 3P10
VIEWS AND CONCLUSIONS CONTAINED IN THiIS STUDY ARF THE AUTHOR S AND SHOULD NOT BE INTERPRETED AS REPREGENTING THE
OFFICIAL OPINIOM OR POLICY OF ARPA. THE US GOVERNMENT OR ANY OTHER FERSON OR AGENCY CONNECTTD WITH THEM

TH!S DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED




ACKNOWLEDGMENT

The members of the PRIM project would like to gratefully acknowiedge the intr: est,
cooperation, end support they received from the STANDARC Computer Corporation,
manufacturers of the MLP-900 microprocessor. Special thanks are due to the firm’s

president, Mr. James P. Hynes, whose many efforts on behalf of the project were and
are very much acoreciated

i &



CONTENTS

1. OVERVIEW 1

1.1 Hardware 1
1.1.1 PDP-10 2
1.1.2 MLP-900 2

1.2 Software 3
1.2.1 GPM and the GPM Compiler 3
1.2.2 MLP-900 Microvisor 3
1.2.3 PDP-10 Support Programs 4
1.2.4 User’s Interprster and Target Program 4

2. USER’S GUIDE 5

2.! Introduction 5

2.2 MLP-EXEC S
2.2.1 Access to MLF-EXEC 5
2.2.2 Command Format 6
2.2.3 Commands for Control of the MLP Context 7
2.2.4 Coramands ior Control of the Target System 10
2.25 Commands for File Input/Qutput 12
2.2.6 Other Commands 13
2.2.7 MILP DDT 14

2.3 The MLP-900 Microprogram Supervisor 16

2.3.1 Control Memoary 17

2.3.2 Main Memory 17

2.3.3 Extended Stack 17

2.3.4 Microvisor Calls 18

2.3.5 Communication with TENEX 19
2.3.6 User Microcode Action Requests 19

2.4 The TENEX MLF-900 Driver 19
2.4.1 MLP-200 Context 21
2.4.2 MLP-90C Target System 21

3. GENERA! PURPQSC MICROPROGRAMMING LANGUAGE
REFERENCE MANUAL 29
3.1 Introduction 29
3.2 Basic Language Svmbols 29
3.2.1 Identifiers 29
3.2.2 Reserved ldentifiers 30
3.2.3 Numbers 30
3.2.4 Blanks 30
3.2.5 Nonalphanumeric Characters 30
3.2.6 Examples of Basic Symbols 31
3.3 Program Structure 31
3.3.1 Declarations 31
3.3.2 Statements 33
3.3.3 Closing 33
3.4 Pseudostatements 33
3.4.1 ORIGIN 33




3.4.2 COMMENT 33

3.4.3 OQutput Control 34

3.5 Statements 34

3.6 Assignment Statemen!s 35
3.6.1 Arithmetic Assignment 35

3.6.2 Boolean Assignment 37
3.6.3 Data Vransfer 37
3.7 Control Statements 40
3.7.1 Block 41
3.7.2 8REAK 4:
3.7.5 Branches 41
3.7.4 Labeis 42
3.7.5 DO.BEGIN 42

3.7.6 IF 43
3.7.7 3witch 44
3.8 Low-Level Statemerts 45

3.8.1 INCREMENT/DECREMENT 46
3.8.2 BLOT 46

3.8.3 CEDE 46

3.8.4 SHIFT 47

3.8.5 MULTIPLY/DIVIDE 47

4. MLP-900 REFERENCE MANUAL 48

4.1 Intr Jduction 48

4.2 Operating Engine 45
4.2.1 General Registers 50
4.2.2 Mask Regislers 50
4.2.3 Miscellaneous Registers 51
4.2.4 Auvitary Memory 52
4.25 Exchange Rus 52
4.2.6 Translator Memory 53
4.2.7 Supervisor Language Board 55
4.2.8 User Language Board 53
429 GEAR 54
4.2.10 CEDE 57
4.2.11 SHIN 61
4.2.12 GENT 64

4.3 Controi Engine 65
43.1 Flip-Flops 65
4.3.2 Pointer Registers 69
43.3 Miscellaneous Registers 69
4.3.4 Subroutine Stack 70
435 BRAT 71
436 BENT 72
43.7 BORE 72
43.8 BRAD 73
439 BEAD 74
43.10 BLOV 75
43.11 MAST 78




43.12 MOVE 78

43.13 User-Level Action Requests 80
43.14 Target System Interrupts 81

APPENDIX A. CPM RESERVED WORDS3 85

APPENDIX B. USING THE GPM COMPILER 90

APPENDIX €.

C.l

Introducticn 94

HARDWARKE 'NSTRUCTION ENCODING 94

C.2 For the Operating Engine 94

c3

C.2.) A QOperands
C.2.2 8 Operunds
C.2.3 Shift Amounts
C.2.4 GEAR 96
C.25 CEDE 97
C.2.6 SHIN 98
C.2.7 GENT 99
For the Control Engine
C.3.1 Flip-Flops
C3.2 CE Registers

94
95
95

99

99

100

C.3.3 Relative Addresses 109
C.3.4 Boolean Expressions 100

C35 BRAT 101
C3.6 BENT 102
C3.7 BORE 102
C3.& BRAD 103
C3.9 BEAD 103
C.3.10 BLOT 105
C3.11 MAST 106
C.3.12 MOVE 106

APPENDIX D. 1/O INTERFACE

D.1
D.2
0.3
D.4
D5
D.6

Introduction 108

108

Command/Status Register 108

DATAQ and DATAI

109

MLP-900 interface Manipulation 109
PDP-10 Interface Manipulation 110

IPL Mode n

APPENDIX E. LANGUAGE BOARDS

REFERENCES 117

INDEX

118

112




1.1
1.2
4.1
4.2
4.3
C.l
C.2
C.3
C4
C5
C.6
c.7
C.8
C9
C.10
C.11
C.l2
C.13
C.14
C.15
C.16
C.17
cC.18
C.19
c.20
0.1
El

vii

FIGURES

Basic PRIM Configuration i
MLP-900 Configuration Py
Operating Zngine: GEAR 55

Shifter Boundary Conditions 56
MINIFLOW Status Word 9

A Operand Format 94

B Operand Format 95

GEAR Ministep 97

CECE Ministep 98

SHIN Ministep 98

GENT Ministep 99

7.n Encoding 99

CE.n Encoding 100

2nolean Expression Encoding 101
BRAT Ministep 102

BENT Minictep 102

BORE Ministep 103

BRAD Ministep 103

BEADO Ministep 104

BEADI Ministep 101

BEAD2 Ministep 105

BEAD3 Ministep 105

BLOT Ministep 106

MAST Mii.istep 10¢

MOVE Ministep 107
Command/Status Register Format 108
Language Board Input/Output Signals 113

Preceding page blank




viii

TABLES

2.1 MLP Context 20

2.2 }'LP States 27

4.1 Operating Engine Address Space 50
4.2 GEAK Flip-Flops 57

4.3 Flip-Flops (Names and Groups) 66
4.4 Action R:quests 82

C.1  Shift Amount Encoding 96

C.2 GEAR Arithmetic Codes 96

C.3 CEDE Exchange Codes 97

C.4 SHIN Shift Codes 98

C5 GENT B Cperand Groups 99

C.6 Boolean Expression Types 101
C.7 MAST Logical Codes 106

C.8 MOVE Codes 107

. " T T T T ——



L3

1. OVERVIEW

The Programming Research Instrument (PRIM) projec' has created a fully protected
experi~ental computing environment with continunus multiuser access. The !/O and
user irteraction facilities are provided by the TENIX time-sharing system[1,2] of Bolt
Beranek and Newman 'nc. (BBN). The computation facilities are provided by the
MLP-2CO, a flexible, pc:verful microprogrammed processor developed by the STANDARD
Computer Corporation[3-€]. PRIM’s multiaccess system allows each researcher to
create his own specialized computing engine that he :an :hange and adapt to his
specific needs.

PRIM is imacmented on a system that can be viewed on four levels: hardware,
scftware, user interpreter/emulatcr, and user to. get program.

The PRIM hardware and software together provide a working 2nvironment in which
the user can implement his own computer in microcode and run that computer in his
target program environment.

1.1 HARDWARE

The hardware system is based on two processors: the Digital EqLipment Corporation
PCP-1C and the STANDARD { omputer Corporation MLP-900 prototype processor. The
PDIF- (0 2nd MLP-900 share memory as dual processors; the MLP-900 is a device on the
PDP-10 1/O bus (see Figure 1.1).

POP-10 I/O_ Bus MLP-900
p
N
P?:B Pager
ger
Memory Memory
Bus Bus

256K 4-vioy interleaved
36-bit memory

Figure 1.1  Basic PRIM configuration

-



i il

OVERVIEW 2
Hardware

1.1.1 PDP-10

The POP-10, connected to the ARPANET, ruas under the BBN TENEX time-sharing
system on a paged virtual memory. The process~. has 256K words of 36-bit memory.
The 1/0 performed by TENEX includes file, termiral, and network handling, swapping, and
all other accesses to peripheral devices.

1.1.2  MLP-$00

The MLP-900 is a vertical-word microprogrammed processor (microprocessor) that
runs sy’.chronously with a 4-MHz clock. It is characterized by two parallel zomputing
engines: the Or Jting Engine (OE), which performs arithmetic operations, and the
Cor*rol Ergire (CE), which performs control operations (see Figure 1.2). The OE
contains 32 36-bit general-purpose registers for operands and 32 36-bit mask
registers to specify operand fields. A 1K 36-bit high-speed auxiliary memory is
associated with the OE. The CE contains 256 state flip-fiops, a 16-word hardware
subroutine return stack, and 16 8 it pointer registers.

OPERATING ENGINE CONTROL ENGINE
(1/O, arithmetic, logic) (Branches, testing)
Ge.eral register: Flip-flops
32x 3¢ bits, R.0-R.37 256 x 1 bits, F.0-F.377
Ausiiiary memory Pointer registers
1K x 36 bits, A.0-A.1777 16 x 8 bits, P.0O-P.17
Mask registers* Subroutine stack
16 x 36 bits, M.0- M. 17 16x 16 bits, $,0-5.17
CONTROL MEMORY
4K x 36 bits

16 x 35 bits privileged
Figure 1.2 MLP-900 configuration

The MLP-900 is accessible only through the FOP-10 as outline' above (i.e., the !/O
bus and shzred memory); no provisions have been made for dir:ct ccnnection of
paripheral devices.

The speed ar. pcwer of the MLP-900 may be conveniently understood in terms of
its ability to emulate better vnow. machines. Emulation of the IBM 360 mactine
language in~(ructions woulu produce an estimated execution rate as low as half that of
an IBM 330/65. A PDP-10 can be emulated at a rate approximating a KA10 CFU.
How_ver, in two high-level languages investigated, an estimated order-of-magnitude
increase in execution rate of source statements can be attained by implementing those
lang’.ages d rectly rather than emulating an ‘ntermediate target machine.




ésd

OVERVIEW 3
Hardware

The MLP-900 is particularly well suited for investigating direct lznguage emuiation,
since it has the ‘lexibility of a large (4096 word x 36 bit) writable contral memory. in
addition, through the use of special-purpose hardwzre languagze boards, the basic
architecture of the M_P-900 can be converiently expanded and its speed incteased for
specialized language-processing tasks.

The environment of the MLF-900 further promotes easv experimentation and user
access. The TENEX host system wil! provide not only complete 1/0 handlin~- for the
MLP-900 but also a developed (and in many cases familiar) environment for users.
Together these two advanced systems should provide a most powerful and useful tool.

1.2 SOFTWARE

The PRIM software conc'ste of the MLP-900 Micruprogrammirg Supervisor
(Microvisor), the TFNEX Driver for the MLP-900, the TENEX MLP-FXEC program, which
provides interactive access to PRIM for a user at a TENEX terminal, and a compiler ior
the General Purpose Microprogramming Language {GPM).

1.2.1 GPM and the GPM Compiler

GPM is a high-level machine -yriented language desigried explicitly for the MLP-500.
As a high-leve! languag., 3PM oifers a blnck struciur2 and statement syntax s.in'ar to
Pi./1 or Algol. The soecific siatement types defined in GPM are generalizations of the
actual MLP-900 "MINIFLOW" instruction set; constructs compietely foreign to MINIFLOW
{e.g., multiplication) do not appear in GPM. As a simple example of MNIFLOW
generalizaticn, consider that the result of a GEAR (GEneral ARithmetic) ministep may be
snifted left or right only by 0, 1, 2, 4, 6, 8, 12, or 1€ Lits; in GPM, any shift amount may
be specified, and tie compiler will generate multiple shifts as required.

As the produciicn language for 't MLP-300, ( M is constrained to satisfy many of
the usual requitements of an asser'ly language. First, ther2 is a well defined subset
of GPM statements that produces exactly one ministep per statement; the subset is
capable of generating all possible ministeps. Second, multi-ministep statements do not
generate implicit Liae effects; for ex: nle, a complex arithmetic assignment which
veguires a temporary register for an intermediate result will generate a compile-time
error unless the program has explicitly declaicd some register to be available as a
temporary.

1.2.2 MLP-900 Micreviser

The MLP-300 Microprogram Supervisor (Microvisor) is a small, fully protected
resider! system that controls the MLP-900 and its communication with the PDP-10. It
loads and unloads the user’s MLP-900 context upon command from the FOP-10,
supports paging of the user target program, protects mein memory and ‘he rest of the
PDP-10 system from user interpreter e:rors, and provides that interpreter with some
services, such as an extended subroutir2 stack and calls for external communication.

e o




OVERVIEW q
Software

1.23 PDP-10 Support Programs

The PDP-10 TENEX software fur support of the MLP-900 consists of a Driver to
controi communication with--and sharing of--the MLP-900, and a subsystem (MLP-EXEC)
tc allow easy interactive user access to the MLP-900.

MLP-EXEC provides an environment in which the user at a terminal can compile,
load, execute, and debug MLP-900 microcode in a manner similar to that used for
debugging programs on the POP-10. In addition, he can create and debug target
programs and environments, although these tools must be provided at a very primitive
level, since \!' P-EXEC cannot know the nature of the target environment.

The MLP-900 Driver is the extension in TENEX of the Microvisor; all communication
with the Mi.P-900 goes through the Driver. While new microcode "machines" can be
designad and debugged under the MLP-EXEC, completed ones will work directiy through
their own terminal subsystems, which witll communicate directly with the Driver.

1.2.4 User’s Interpreter and Target Program

The user’s interpreter is a progranr written in GPM to run on the MLP-900; it
defines a (re-entrant) MLP-900 contro! memory image. This image and all the
nonprivileged registers and flip-flops within the MLP-900 comprise the MLP-900
context; users’ contexts are 'oaded and unloaded as the MLP Driver shares the MLP
among different users.

The context defines the user’s interpreter (or target machine) and operates upon
the user target program in a totally arbilrary way. The only constraint upon the target
program is that it fit into a 512K 36 -bit (virtual) memory space.

o p—r - i sl A, T el il i = = B ——




(8]

2. USER'S GUIDE

2.1 INTRODUCTION

As explaineu in Section 1.2 of the previous chapter, the PRIM software corsist: of
the MLP-900 Microprogram Supervisor (Microvisor), the TENEX Driver for the MLP-¢09,
and the TENEX MLP-EXEC orogram, which provides interactive access to the MLP-100
for a user at a TENEX terminal. This chapter provides a detailed guide to the PRIM
software (with the exception of the GPM compiler, which is discussed separatel in
Chapter 3). Section 2.2 describes MLP-EXEC and the farilities it provides to the user
for constructing, running, and debugging both MLP-S00 microcode and the associated
target system. Secticn 2.3 describes the MLP-900 Microvisor and the services it
provides, as well as the restrictions it places on tnat microcode. Section 2.4 describes
the MLP Driver and the TENEX JSYS’s required to communicate with it, which comprise
the interface to the MLP-900 used by MLP-EXEC. This section will be of direct interest
only to those who wish to replace MLP-EXEC with another subsystem cf their own
design.

2.2 MLP-EXEC

MLP-EXEC is a TENEX subsystem that allows interactive access to the MLP-900 from
a user at a terminal. MLP-EXEC is modelled after the TENEX Exec in iis general
command format; the specific commands are desizned to allow user access to ail phases
of MLP-900 operation.

2.2.1 Access to MLP-EXEC

As a TENEX subsystam, MLP-EAEC is entered by typing "MLP" to the TENEX Exec
program:

@MLP
MLP EXEC 1.0

>

The MLP-EXEC "prompt” character, ">", signals the user to enter a command. Upon
completion of command execution, MLP-EXEC prompts again.

Commands to MLP-EXEC can speci  any of several types of actions:

® Control the loading, execution, and debugging of the user’s MLP context, a
structure which includes both the MLP-900 control memory and all the
(nonprivilegad) MLP-900 registers. All commands specific to the context are
prefixed by a period (.). The context defines the target machine and, in general,
its current state.




USER’S GUIDE 6
MLP-EXEC

® Contrdai the loading and debugging of the target system, a 256K virtual memory
in which the target machine (as defined by the MLP contexi) runs. All
commands to control the target system are prefixed by a slash {/); in general,
th.se commands are identical to the TENEX Exec commands of the same name.

® Define the input/output files tor MLP execution.

& Miscellaneous other commands, such as STATUS, QUITMLP, EXEC, and sc forth.

2.2.2 Command Format

A command consists of an initial key word (or portion of a key word) followed by
zero or more argument fields. MLP-EXEC gror.pts for each field required by the user’s
command. The key word and argument fields are separated from one another by the
foliowing field separator characters (separators): space, return, linefeed, tab, formfeed,
vertical tab, and Escape.

Additionally, two characters (Control T and Control C) act ac complete commands in
themselves to control MLP execution and to provide status information on the MLP.
Command Key Words and Recognition

A key word is defined as a sequence of characters other than the separator
characters and the semicolon (which is used for comments).

Like TENEX Exec commands, MLP-EXEC commands can be abbreviated to just enough
characters to distinguish them from -~ther commands. Similarly, if the abbreviated key
word is terminated by an Escape, the MLP-EXEC will, upon recognition, type back the

rest o' the key word. I the command is not recognized, MLP-EXEC will ring the
terminal bell and await additional input.

Command Editing

Certain characters serve to edit a command key word, as follows:

e Control A,
Delete (DEL) - Tese backspace one character position, erasing the character
from the input.

® Control X - This erases the entire word so far entered.

® Control R - This types out the word s0 far entered.

These characters are also used for editing command argument fields, except that

UEL carnot be used for backspacing a file name argument. An argument field
previously completed (i.e., foliowed by a field separator) cannot b~ edited.

preves — - e PP il i i kb




USER’S GUIDF. 7
MLP-EXEC

Comments in Commands

The semicolon (;) is used to begin a comment; everything from the seniicolon to the
following return or linefeed is ignored by MLP-EXEC (but retyped by Control R).

Exampla:
~THIS iS THE SAME AS A BLAMK LINETR
;THIS IS THE SAME AS A BLANK LINE
>EYEC; INVOKE THE TENEX EXEC
ISI-TENEX 1.31.1 ISI-TENEX EXEC 151.3
@

Command Termination and Confirmztion

Most commands to MLP-EXEC are not executed until a confirming return or linefeed
is typed. The confirmation is normally not required, however, if the character
terminating the last argument field is a return or linefecd. Some commands require an
additional expiicit confirmation, since they change or destroy information. A few
commands require no confirmation, but are executed upon recognition of the last fiald.

Control C. Control C is valid at any time, terminating the current operation and
returning to the MLP-EXEC command level. During command input, the partial command
is aborted. During MLP execution, that execution is interrupted (this is the only way to
stop a looping MLP program).

Contrci I. Control T is valid at any time, and yields a message regarding the state
of the MLP and the value of the current address register.

Exar. le:
<17>
MLP RUNNING AT LOC 451

2.2.3 Commands for Control of the MLP Context

These commands begin with a period (.) to distinguish them from similar commands
for the target system.

.LOAD

.LOAD prompts for a list of files to be locded (the file or files should be tire output
of a GPM compilatizn). The files are specified as a list of file specifiers, e.g., A.3.£BIN.
The list is termina.ed by a Return or a Delete (Delete cancels the command).

.LOAD first clears the previcus context; each file specified is then loaded into
control memory. Any overlap of loaded files is ignored; any overlapped location will
have as its value the last item loaded in that location. If any fi'e specifies a starting
address, then that address is retained by MLP-EXEC as the starting address for
execution.




USER’S GUIDE 3
MLP-EXEC

As a cafety feature, any locations not loaded by any of the files are loaded with
Halt ministeps. It should also be noted that contrul memory locations 7000 through
7755 are not part of the user’s context; although these locations may be loaded with
the .LOAD ccmmand, they will not be loaded into the MLP’s control memeory. These
Incations may be used to preload certain of the MLP registers; if not otherwise set, they
will be set to 0. For more informaiicn, see Section 2.4 on the MLP-90u Driver.

Example:
>LOAD
GPM BINARY FILES: TESTI.BiN,<USER2>%.BIN
LOADED TEST1.BIN;S
LOADED <USER2>TEST3.BIN;4
LOADED <USER2>TESTA4.BIN;4
>
Errors:

If one or more of the files cannot be !oaded, an error message will be given, vut loading
will continue on the files remaining to be loaded.

START

.START initiates ALP executicn of the context, beginning at the starting address,

after amending parts of the context as follows:

P.6 « 2 ! STACK POINTER

S.2 « Starting address:

S.1 « 7200 ! ILLEGAL, to detect stack uinderflow

ARL.S « FALSE;

CE.13 ~ 0;

INPW « FALSE;

CE12 «0(77)
After the context is swapped into control memory, microcode execution is always
initiated by a RETURN ministep.

Errors:
NO PROGRAM No MLP context has been lcaded
.CONTINUE
.CONTINUE resumes execution of the MLP context "as 1" after interruption.
Errors:

NO PROGRAM No MLP context has been loaded
NOT STARTED




USER’S GUIOE 9
MLP-EXEC

.RESET

.RESET clears the MLP context. The use of .START at this point will cause the error
message "NO PPOGRAM" to be typed.

.ENTRY

.ENTRY allows the user tc set the starting addres< manuaily, as an octal number, or
as a hexadecimal number preceded by an apostrophe (°).

.RUN

.RUN nrampts for the name ., the GPM binary files to be run, LOADs them, and
.STARTs them at the starting address of the last file loaded.

Example:
> RUN
GPM BINARY FILES: TEST.MLP
LOADED TEST.MLP;1

Errors:
All the errors possible under .LOAD and START are possible.
.SAVE
.SAVE prompts for the file namz under which to save the current MLP context, and

saves the context on the file so that it can be restored with a subsequent .GET
command. Both control memory and all registers are saved.

Example:

> SAVE

FILE NAME: TEST2.MLP[NEW FILE]

>
Errors:

? NO CONTEXT TO SAVE No contexi has been loaded
.GET

.GET prompts for the name of a file which was .SAVEd, then restores the MLP
context from that file. The starting address is obtained from the restored stack.

Example:
~.GET
FILE: TEST.SAVE[Old version]

>




USER'S GUIPE 16

MLP-EXEC
Errors:

FILE NOT GETTABLE The file was not originally
saved in such a way that it
can be restored into the MLP
context using MLP-EXEC.

.0DT

.DDT invokes MLP DDT to let the user examine and change the MLP context
currently loaded. MLP DDT is described separately iater in this section.
ARSTATUS

Reports all of the MLP AR’s associated with external events. For each active event,
the associated AR(s) are specified by ar 8-bit mask, with the most significant bit (2GO)
corresponding to F.130 and the least significant bit (001) to F.137.
.EOF

Sets e AR mask associated with the end-of-file condition (or any MLP input
channel). The mask is specified as an octal number less than 256.
ANPUT

Sets the AR mask associated with the input-ready condition for a given MLP input
channel. The AR(s) is sent to the MLP-900 wnenever that channel’s input buffer
becomes nonempty, or whenever the buffer remains nonempty after a byte is read.
(AR(z) is sent cnce per byte.)

2.2.4 Commands for Control of the Target System

These commands begin with a slash (/) to distinguish them from similar commands for
the MLP context.

/LOAD
/LOAD runs the standard TENEX loader to load relocatable binary file(s) into the

target cystem address space. Descriptions of the lvader, which is identical to the
TENEX Exec "LOADER" com:yand, can be found in Refs. 7 and 8.




USER’S GUIDE 11
MLP-EXEC

Eyample:
>fLOAD
*/S
*TEST.MLP
LOADER 3+3K CORE
MAX 400 WORDS FREE
EXIT
1C

>
JGET

/GET clears the current target, then does a GET into the target system address
space of a core image saved by SAVE or SSAVE. It is identicai to the TENEX txec "GET"
cemmand.

Example:
>/GET
FILE: TEST.SAV[O!d version]

>

/MERGE

/MERGE is similar tc GET but does not require initial clearing of the target system.
It is identical to the TENEX Exec "MERGE" command.

Example:
>/MERGE
FILE: TEST3.SAV[OIid version]

>

/DOT

/CDT invokes the TENEX DDT package on the target system. It is identical to the
TENEX Exec "DDT" command.

/SAVE, /SSAVE

These commands SAVE or SSAVE the core image (except DDT if invoked) on a file.
SSAVE is reserved for shared files. These commands differ from TENEX Exec only in
saving the entire address space automatically.

Example:
>/SAVE
TARGET SPACE ON FILE: FOO.SAV [New version]

>




USER’S GUIDE 12
MLP-EXEC

/RESET

/RESET clears the target system. It is idcitical to the TENEX Exec "RESET™
command; it also causes the context to become "NOT STARTED."

/MEMSTAT

/MEMSTAT g:ves a page-by-page indication of the state of the target system. it is
identical to the TENEX Exec "MEMSTAT" command.

2.25 Commands For File Input/Output
INPUT, QUTPUT, APPEND

These commands estabiish a TENEX file for reading, writing, or appending (¢zyuential
mode only) by the MLP program on a given channel. Arguments are file name, channel
number, and byte size for opening a file. Files can be independently assigned to each
of the 16 input and 16 output channeis available (channels are numbered 0 through 15).

Example:
>INPUT
FILE: A.B [Old version]
ON MLP CHANNEL: 0O
WITH BYTE SIZE: 7

>

Each file is opened ("thawed"”) <5 that reading and writing may be done to the same
file simultaneously. If a file i1s already open on the channel, the MLP-EXEC, after
additional confirmation, closes and releases the old file.

CLOSINPUT, CLOSOUTPUT
These commands close a channel; each requires an explicit confirmation.

Example:
>CLOSINPUT
INPUT CHANNEL NUMBER: 4
CLOSING ABS
[CONFIRM]

el

FILESTATUS

This command types the current assignment of files to MLP channels (and to TENEX
JFN's).




USER’S GUIDE 13

MLP-EXEC

Example:
>FILESTATUS
CHAN: JFN: FilE: POSITION:
INPUT FILES:
C 5 AB;4 382
OUTPUT FILES:
0 6 A.BS 1 0

2.2.6 Other Commands
EXEC

This command loads and starts an inferior TENEX Exec, without affecting the <tate of
the MLP context or target system. The use. may return to MLP-cXEC by executing a
QUIT from the TENEX Exec.

Example:
>EXEC
ISI-TENEX 1.51.0 ISI TENEX EXEC 1.77.6
/;miscellaneous stuff that the user wante to do...

@QUIT

>

QUITMLP

This command exits from the MLP-EXEC. The MLP context and target system are
cleared before exiting.

LOGOUT

This command clears the context and the target system and logs out the job.
? (The Help Command)

This command lists ali the MLP-EXEC commands available.
STATUS

This command prints a brief summary of the state of both context and target
system, e.g.,
>STATUS
CONTEXT LOADED, ENTRY ADDRESS O
NO TARGET SYSTEM LOADED
(The context can be run without a target system; the first memory reference, if any, will
cause termination due to an illegal memory reference.)




USER’S GUIDE 14
MLP-EXEC

2.2.7 MLP DOT

MLP 0DT, entered by the .DDT command from MLP-EXEC, allows the user to examine
and modify his context (the correspunding facility for the target space is TENEX DDT,
invoked by the /DDT command).

Examining MLP Localions

MLP locations are of two kinds: control memory and register locations. Control
memory locations are specified by numeric addresses, e.g., 172, or ’A39.x The registers
are specified by symbolic adcresses, e.g., P.0 or R.36.

To evmine a specific iccation, type its address, followed by a slash (/).

Example:
74/
74 0 GEAR 2 360 127 27 R27<R.27(M.17)%; P.4/
P4/5

In this example the user examined control memory location 74 (octai). After the
GPM listing-format typeout, the user asked to see the cortents of register P.4; P.4 was
typed out as an octal number.

Examining Consecutive Locations
After a location is examined, the character linefeed may be used to examine the

next location tollowing; the character between " and " may be typed to examine the
location preceding.

Example:
P.4/ P.4/ 5
PS5/ 27
ME/
M5/ 144 )
M.4/ 67

Changing Typeout Modes

The typeout mode is initially octal. To change to hexadecimal. type ESC (the escape
key) X; to change back to octal, type ESC O (ietter C).

Modification of a Location

The location last examined rmay be modified. Two methods 4re available for
modification.

et cccn - -

* A leading apostrophe indicates a hexadecimal value on input.

i s d )




USER’S GUICE 15
MLP-EXEC

Direct Modirication

An oper location (including a control memory location) may be set to a numeric
value by typing the value followed “y return, linefeed, os "1". If linefeed or "T" is
typed, the next following or preceding location will be typed out and opened for
moditication. The new wvalue may be entered in either octal or hexadecimal; as noted
earlier, hexadecimal values are indicated by typing a leading apostrophe (*). (Note that
if the numeric value given is not a valid octal or hexadecimal integer, a question mark (?)
is typed and the modification .s not made.)

If the location being modified has fewer significant bits than the number supplied,
the least significant bits of the r.umber become the new value.

GPM Modification
To change a control memory address with the aid cf GPM, proceed as follows:
® Examine the location (this opens it for modification).
® Type "s": The prompt "GPM:" is made on the next line.
® Type in the new statement (or stetements).
¢ Terminate the change with Controi Z.

The GPM statement(s) are compiled and loaded beginning at the currently open
location. (Note that more than one consecutive location can be changed in this way; if
ORIGIN statements are included, noncontiguous areas of contro! memory may be
changed.)

Before typing Control Z, the change can be aborted by typing Control Q.

Breakpoints

A single breakpoint can be set in control memory, target memory, or both. To set a
control memory breakpoint, type

<address> ESC B
where "<address>" is the control memory address. To clear it, type
ESC B

(no address).

e i




USER'S GUIDE 16
MLP-EXEC
To set a target memory breakpoint, type
<address> ESC T
To clear it, type
ESCT
Action at a Breakpoint
A control memory breakpoint will cause execution of the specified location to halt
the MLP and to type out the address of the location at which execution so halts. A
target memory breakpoint will cause a similar halt upon any reference to the specified
target memory location. The control memory address of the FOP or SAD ministep
causing the reference will be the interrupted MLP program counter (PC) value.
Single-Step Execution
To execute a single control memory instruction, type
<address> ESC S
or simply

ESC S

(The current location is used for <address>.) After each step the address and contents
of the new control memory location are typed out and openea for modification.

Resuming Execution
Normal MLP execution may be resumed by typing
<address> ESC P
or

ESC P

2.3 THE MLP-900 MICROPRCGRAM SUPERVISOR

The MLP-900 Microprogram Supervisor (Microvisor) performs the usual functiens
expected of an operating system, except that it is written in m'crocode and supervises
the execution of microcode. The Microvisor interacts only witk the user microcode and
the TENEX MLP Driver; it does not provide any facilities for--cr impose any restrictions
upon--the user target system.

P T it ieiy et i




JSER'S NnUINE 17
The LILP-S. O Microprogram Supervisor

user microcode always runs in user mcde on the MLP-9N0; it is subject to the
restrictions imposed by the MLP-S00 hardware, explained in detail throughout Chapter
4 and summarized here:

® The BLOT ministeps which reference control memory (RCM, WCM, and WBP) are
prohibited in user mode. |If attempted in user mode, they generate a Supervisor
Facilities Action Request (SUPVF AR). User microcode is therefore incapable of
modifying itself.

® Certain registers are privileged and can be modified only in supervisor state;
an attemp. to modify one whiie in the user state generates a SUPVF AR. The
privileged registers include the (paging) translator memecry (XLATOR.777), half of
the C. miscellaneous registers (MISC.20 thru MISC.37), and seven bytes of the
CE flip-flops. These flip-flops and registers cont 3l the main memory paging,
the 1/O bus communication with the PDP-10, the internal AR (interrupt) system,
and other critical functions.

® User mode microcode may not brar -h to a supervisor mode location, except for
designated supervisor entry points; an attempt to do so results in a PROT
(Protection) AR.

2.3.1 Control Memory

The Microvisor occupies control memory from 7000 to 7755 (octal), inclusive; these
locations are not available tor user microcode. This includes all the locations associated
with AR’s of the first four priority levels; all such AR’s are handled entirely by the
Microvisor. Locations 7756 through 7777 (octal) are associated with the lowest AR
priority level (ARL.S) and target system interrupts; these locations are loaded as part
the user microcode context.

2.3.2 Main Memory

All main memory references by the user micrcrode are mapped into the target
system virtual memory. Page faults are handled by the Microvisor and the TENEX MLP
Oriver in the same way that TENEX handles them directly fo: TENEX processes.

2.3.3 Extended Stack

The Microvisor provides for automatic storing and relcading of the MLP subroutine
stack-upori-stack overflow anc underflow; no distinction is made between cccurrences
in user mode and supervisor mode. The extended stack is stored in the last page of
auxiliary memory (A 1400 through A.1777), using sucressive 16-word blocks as rneeded.
The four most significant bits of P.6, the stack poin’zr, are used as the extended stack
block index: O selertc A1400-1417, 1 selec’s A.1420-1437, .. 15 selects
A.1760-1777.

ke, NG 4 '-—‘.---_'-.!'n




USER'S GUIDE 18
The MLP-900 Microprogram Supervisor

Upor stack overflow, the thirleen words at the bottom of the stack (S.1 through
S.15) are stored in the parallel words of the current stack extension block and the stack
and its pointer adjusted appropriately. Upon underflow, thirteen words are reloaded
and the stack again adjusted. Words O, 14, and 15 ot each extension block are neither
used nor destroyed; they may be used for other purposes.

An “extended stack overflow" tault is gererated, and the microcode halted,
whenever a stack overflow uses block zero. There is no provision for detecting
extended stack underflow; if desired, underflow protection may be provided by planting
an error address in the stack. The maximum amount of stack space available, with P.6
initially set to one, is 209 words (15 stacked blocks of 13 plus 14 more in ‘he actual
stack. The minimum amount available, with P.6 initially set to 241 (block 15, word 1), is
the 14 words of actual stack; auxiliary memory wi. not be used except in the case of an
(erroneous) overflow or underflow of the stack. Intermediate initial values in P.6 will
allow other sizes of effective stack--and commit appropriate amounts of auxiliary
memory to the maintenance of that stack. The user’s stack requirerients must allow not
only for the maximum nesting in both main and AR code, but also for four levels of
Microvisor stacking.

The nth entry from the top ot the stack, 0 <= n < 15 (octal), is located as follows (all
numbers are octal):

If (P.6 and 17) > n
then S.0 @ (P.6 - n)
else A.1400 & (P.6 + 15 - n)

2.3.4 Microvisor Calls

Microvisor functions are available to the microcode via calls to cdesignated
Microvisor entry points. A guments are passed in register R.27, and R.36 when needed;
replies are received in the same registers. The entry names and their locations are
known by the GPM compiler; entry names are of the form "MLP.xxx".

CALL MLP.STOP nc arguments
Terminates microcode execution and informs the Driver; if continued, execution
will resume at the next ministep.

CALL MLP.PUT R.37 contains the output line number.
R.36 contains the data
Transmits the data to the Driver and return< immediately. Any error will result
in an asynchronous halt of the microcode at some subsecuent point.

CALL MLP.GET R.37 contains the input line number.
Gets a byte of data from the TENEX Driver and returns it in R36. Any error
will result in an immediate halt of the microcode; optivnally end-of-file is
signaled via a user-level AR.




T

USER’S GUIDE 19
The MLP-900 Microprogram Supervisor

2.3.5 Communication with TENEX

The microcode can perform I/O on TENEX files through the two Microvisor calls
which transmit data to and from the PDP-10. A maximum of sixteen lines are available
for input (to the MLP), and sixteen for output. Each Microvisor call transmits one byte
of (up to) 36 data bits. Each lir = actually used must first be defined at the TENEX end
(e.g., via the INPUT and OUTPUT zon .nands in MLP-EXEC); the use of an urd>fined line,
or an error on a defined line, causes execution to terminate due to a “"Communication
Error.”

Since 1/O is done through the TENEX Driver, it is quite expensive; large data
transfers are better done via the shared target system memory.

When the microcode is halted while in an input-wait staie, F.162, the input-wait
flip-flop, is set; clearing the flip-flop before continuing executiorn will turn the
interrupted GET into a null operation. Conversely, setting the flip-flop will cause an
extra GET on the line specified in R.G7.

2.3.6 User Microcode Action Requests

The MLP AR’s covered by ARLS5 (F.130 through F.137), plus the target system
interrupt AR, are entirely at the disposal of the user. The control memory locations
(7756 through 7777) and the flip-flops involved are all part of the user MLP context.

User AR’s can be generated by the user language board (the null language board
does not generate any AK’s), by the tracing mechanism, and by direct user ministeps.
In addition, the Microvisor will pass an AR to the microcode when an appropriate
external event (such as end-of-file) occurs; the particular AR associated with a given
event is determined by the AR masks in the MLP context.

Tracing of a Microvisor cail results in a total of three trace AR’s: the first
immediately after the cali--or immediately before the first Microvisor ministep--the
second and third upon exit from the call, ore while still in the Microvisor, and one just
before the continuation ministep.

2.4 THE TENEX MLP-900 DRIVER

Access to the MLP-900 from a TENEX process is accomplished via the MLP Driver in
TENEX. Communication with the driver is done through a series of JSYS’s which mimic
(roughly) the JSYS's for subsidiary fork control (see Chapier 6 of the TENEX JSYS
Manuai). The two principal elements involved in crerting and running the MLP are the
MLP context (the user microcode together with all the MLP registers) and the target
system upon which the context is tc operate. The calling process must build both
before establishing access to the MLP.




USER’S GUIDE 20
The TENEX MLP-900 Driver

Table 2.1
MLP CONTEXT
Relative
Location Contents
0 Control memory location O
1 Control memory lccation 1
6777 Cctrol memory location 6777
7000 R.O
7001 R.1
7037 R37
7040 M.C
7057 M.17
7060 MISC.0
7073 MISC.13 (an unimplemented register)
7074 MISC.36 (Target Address Comparand)
7075 MISC.37 (Control Memory Address
Comparand)
7076 MISC.16 (VAR)
7077 MISC.17 (MDR)
7100 (CE.O, CE.1), right justified
7101 (CE.2, CE.3)
7187 (CE.136, CE.137) or S.17
7160-7177 Not assigned
7200 JEN for outpul line #0
7217 JFN for output line #17
7220 JEN for input line #0
7237 JFN for input line #17
7240 AR mack for end-of-file
7241-7257 Other AR masks
7260-7277 nput ready AR masks for
lingz 20-217
7300-7677 Internal Driver information
7700-7755 Not assigned
7756 Control memory location 7756
7777 Control memory location 7777
10000 A0

11777 ALT77




Kr

USER’S GUIDE 21
The TENEX MLP-900 Driver

2.4.1 MLP-900 Context

The context is a structure that contains all the data necessary to load the MLP and
begin {or resume) execution of the desired microccde. It includes not only an image of
the MLP-9C? control memory, but also the internal MLP-900 registers and some cells
used by the Driver to implemeint MLP-900 communication with the PDP-10.

The context is 10 memory pages (5120 words) long, and must begin on a page
boundary in the caller’s address space. Its internal form is shown in Table 2.1.

Within the miscellaneous register<, MISC.36 arnd MISC.37 are mapped into the context
in place of MISC.14 and MISC.15, which do not exist. The two comparand registers,
althougt wrivileged, are loaded as part of the context, as are the two compare arming
flip-flops, F.160 and F.161, and the input-wait flip-flop, F.162. The microcode, however,
cannot affect either the comparands or the flip-flops.

Each of the AR masks consists of an eight-bit right-justified mask which is OR’ed
into the user AR byte ‘CE.13) by the Microvisor when the given event occurs. If the
mask is zero, the microcode cannot detect the condition.

Note that control memory locations 7000 to 7755 are occupied by the Microvisor
and are therefore nct considered part of the user context.

The output and input JFN's are used for the MLP-900/PDP-10 communication
available to the user microcode. When the microcode transmits a word to the PDP-10
over a given line, the driver effectively does a BOUT of the received data to the
selected output JFN; similarly, when the microcode requests a word from the PDP-10
over a given line, the driver does a BIN usirng the selected input JFN.

The JFN's can be any usable JFN except O, which is used to terminate MLP execution
when referenced.

Files must be opened (and positioned if necessary) before MLP execution begins;
any file error will terminate MLP execution.

2.4.2 MLP-900 Target System

The target system is the memory upon which the MLP context is to operate. It is
defined as a TENEX fork (or process), either the caller or a subsidiary fork established
solely for this purpcse. Typically, the target system fork will never be started on the
PDP-10; it exists to define an address space for MLP execution. The target fork AC’s
are mapped into locations O through 17 of the target memory as seen by the MLP.x

* For the convenience of the reader, the presentation of ihe commands that follow is
intended to duplicate the formai of the TENEX User's Manual[8].

i O i i i i



{!SER’S GUIDE 22
The TENEX MLP-900 Driver

CMLP
Creates MLP context and target system,
ACCEPTS IN 1: the pointer to tne MLP context in the
caller’s address space.
2: a fork handle for the target system.

CMLP

RETURNS +1:f unsuccessful, error number in 1
+2: 1f successful, MLP handle in 1.

The MLP handle returned is used in succeeding SMLP, HMLP, and RMLPS calls; it
remains valid until killed by a KMLP call. The context and the target system are bound
to the MLP until the caller executes a subsequent KMLP on the returned handle.
attempt to re-map context pages or kill the target system fork will yield undefined

results.

CMLP ERRORS:

CMLPX1: context not on page boundary
CMLPX2: MLP not available

FRKHX1: illegal fork handle

rRKHX2: cannot manioulate a superior fork
FRKHX3: cannot reference multiple forks




USER'S GUIDE 23
The TENEX MLP-900 Oriver

KMLP
Kills MLP
ACCEPTS IN 1: N'LP handle

KMLP
RETURNS +1: always

Kills the MLP association established by CMLP, releasing the binding of context and
target system.

Generates an illegal instruction pseudo-interrupt on error conditions I'sted below.

KMLP ERRORS:
MLPX1: invalid MLP handle




USER'S GUIDE 24
The TENEX MLP-900 Driver

IMLP
Interrupt MLP
ACCEPTS IN L: MLP Handle
2: AR Mask
IMLP
RETURNS +1: Always

Passes the indicated AR's to the microcode. B28 sets F.130, B29 sets F.131, ..
B35 sets F.137. If the microcode is halted, the bits are set in the memory image of the
context.

Generates illegal instruction pseudo-interrupt on error cunditions listed below.

IMLP ERRORS:

MLPX1: Invalid MLP handle




- >

<y

4>
<)

USER’S GUIDE 25
The TENEX MLP-900 Driver

SMLP
Starts (or resumes) MLP execution.
ACCEPTS IN 1: MLP handle

SMLP
RETURNS +]: always

Causes the context bound to the MLP handle to be ioaded into the MLP-900 and
microcode execution to begin (or resume). The Microvisor passes confrol to the context
microccde via the BORE (Return) ministep; therefore, the start/resume address is
defined by the velue of P.6 and the appropriate stack word in the context. It does
nothing if MLP already started.

Execution of the contexi microcode continues until either the microcode haits
(voluntarily or due to a fault) or the caller does an HMLP; upon termination of execution,
the caller is sent a pseudo-interrupt on channel 23. Between an SMLP and the
subsequent termination of execution detected by the pseudo-interrupt routine 7r by a
RMLPS--the context "belongs” to the MLP ard the Driver; any attempt to read or modify
it is invalid.

Generates an illegal instruction pseudo-interrupt on error conditions listed below.

SMLP ERRORS:
MLPX1: invalid MLP handle




USER'S GUIDE 26
The TENEX MLP-90C Oriver

HMLP
Halts MLP execution
ACCEPTS IN 1: MLP handle

HMLP
RETURNS +1: aiways

Terminates MLP-900 execution of the context microcode. Does nothing if the
context is already halted or was not started.

Generates iliegal instruction pseudo-interrupt on error conditions listed below.

HMLP ERRORS:
MLPX1: invalid MLP handle




USER'S GUIDE 27
The TENEX MLP-900 Driver

RMLPS
Reads MLP status.
ACCEPTS IN 1: MLP handle
RMLPS
RETURNS +1: always, with status word in 1, execution

time (in mithseconds) in 2.

The MLP status word consists of a state code in the left half and the microcode
program counter va've in the right half (see Table 2.2).

TABLE 2.2
MLP STATES
Code
{(Qctal} Status Context
-1 Unrecoverable Driver Error Stop(x) Valid
0] Running Invalid
1 I/O Wait invalid
2 Voluntza: y Termination Valid
(CALL STOP by the microcode)
) Target System Address Compare Stop Valid
5 Control Mem. , Adcress Compare Stop Valid
6 Supervisor Facity Violation Fault Valid
7 Protection Violation Tault Valid
10 Extended Stack Overrlow Fault Valid
11 Communication Fault Vald
12 Target System Memory Reference Fault Valid
13 "Recoverable” MLP Error Stop(*) Valid

The validity cf the context applies to the image of the context in the caller’s
address space. When it is valid, it may be inspected and;or modified arbitrarily.

in the cases marked (%), the Driver has also printed a message on its primary output
file. If an unrecoverable errcr, the Driver has also been killed, and ire MLP handle is
no longer valid. This represerts a hardware or system software failure .hich should
be reported to system personnel.

RMLPS ERRORS:
MLPX1: invalid MLP handle




29

3. GENERAL PURFPOSE MICROPROGRAMMING LANGUAGE REFERENCE MANUAL
3.1 INTRODUCTION

The General Purpose Microprogramming Language (GPM., iz - ° ~---'_vel language
developed by the PRIM project as a machine-dependent microproy, .. -ming language for
the MLP-900. It contains many special-purpose language form: reflecting actual
MLP-300 hardware features.

The assembler philosophy underlies the design of GPM, which allows the
programmer to create any instruction sequence and requires no run-time support
system, although syntactic block structure and high-level control structures are
provided to assisl the programmer. GPM is the primary language for the MLP-300 (no
assembly language is prr~ ‘ded) and, as such, was designed to be used by both the
diagnostic programmer ana ine researcher.

3.2 BASIC LANGUAGE SYMBOLS

GPM programs are composed of five basic symbols or syntactic entities. They are
as follows:

Identifiers (id)

Reserved identifiers
Numbers (number)

Blanks

Nonalphanumeric characters

3.2 1 !dentifiers

id «=
.word | word | id . subid

subid u=
word | number

word =
alpha | word alpha | word digit

number :=
digit | number digit

digit =
ol1r..1617
alpha =
E191AIBI..IYIZI
albl..lylz

Praceding page blank




GPM MANUAL 30
Basic Language Symbols

An identifier is a string of words (alphanumeric strings) or numbers separated by
periods. The first field must not be a number, and words cannot begin with a digit (O -
7). The last number (all-numeric) field is referred to as the indey; it is used extensively
for reserved identifiers (e.g., RO is general register O and R.17 is general register 17).
Nonreserved identifiers are used in four places in GPM:

o TITLE statement

® EQUELTE statement

® Block name

® Labels
3.2.2 Reserved identifiers

Reserved identifiers have the same syntax as identifiers and include all special
symbols in GPM. In the case of indexed reserved identifiers, they are all assumed to
have zero origin and will be referred tu in this manual by their upper bound. All
reserved identifiers are upper-case.
Example:

There are 32 general registers (RO - R37). R.37 will appear in all descriptions to

represent

ROIRI 1 ..IR361R37

Reserved identifiers cannot be used as labels or as the title. A complete list of ali
reserved identifiers is given in Appendix A.

3.2.3 Numbers

All numbers in GPM, including identifier index fields, are octal. Y.1973 is two
identifiers, i.e.,, Y.1 and 973. The numerals 8 and 9 are letters.

3.2.4 Blanks

All nonprinting characters (space, tab, linefeed, carriage return, and formfeed) are
blanks. Blanks separate numbers and identifiers; otherwise they have no syntactic or
semantic function. There 1s cne additional blank character, an arbitrary string starting
and ending with a percent sign (7). This is not the preferred method of comment, as
will be treated in detail in the discussion of the GPM listing format in Appendix B.

3.25 Nonalphanumeric Characters

All nonalphanumeric characters are reserved. Except for the period (), they are all
self-terminating and canno! appear as part of any symbol.




GPNM MANUAL 31
= Basic Language Symbols
o
3.2.6 Examples of Basic Symbois

The string R.1 ABC#1248X 12A.B;C.3.4X s interpreted as

R.1 Reserved identifier; index = 1
ABZ Identifier

® Character

124 Number

8X Identifier

12 Number

AB Identifier

i Character

C.3.4.X Identifier; index = 4

3.3 PROGRAM STRUCTURE

program =
TITLE id body closing

body ::=
declarationlist ; statementlist | statementlist

declarationlist =
declaration | declarationlist ; dec!aration

statementlist ::=
statement | statementlist ; statement

A GPM program starts with a title declaration. Tkre title must be a nonreserved
identifier. The body of the program has two parts: a declaration list and statement list.
The program ends with a closing or FINISH statement.

3.0..  Declarations

declaration =
pseudostatement | TEMPORARY rlist |
EQUATE symbol symbol | EQUATE symbol symbo! number |
DEFAULT TEST mode | DEFAULT CLEAR mode |
DEFAULT MASK M.17

rlist =
R.37 I rlist R37 I M.17 | rhist M.17

mode =
MODE TRUE ! MODE FALSE

The declaralions define conditions that will be active for the scope of the body in
which they are made. They fall into two general groups: The first group (EQUATES)
defines new symbols, and the second (TEMPORARY and DETAULTs) defines conditions

i




GPM MANUAL 32
Program Structure

relative to operating engine compilation.  Pseudostatements are iisted under
declarations because they may appear anywhere in the program. They are discussed in
Section 3 4.

EQUATE

There are two forms of the EQUATE statement. The first takes two symbois and
equates the first to the second. For example, after the declaration EQUATZ PC R.3:
every occurrence of PC within the scope of the declaration will be interpretec as R.3.
The following are legal EQUATE statements:

EQUATE INDEX 3.6;

EQUATE MINUS.ONE 777777777777,
EQUATE EQ EQUATE;

EQ INFINITE.LOOP.START DO.BEGIN;

The sccond EQUATE form is used to equate blocks of indexed ames. For example,
after the declaration EQUATE AC.0 R.10 10; every occurrence of AC.O through AC.7
within the scope of the declaration will be interpreted as R.10 through .17,
respectively.

TEMPORARY

The TEMPORARY declaration declares 3eneral registers or mas). registers that may
be used as temporaries by the code .enera*ors. This declaration allows more
coraplicated arithmetic operations and data !ransfers to be compiled.

DEFAULT

Three conditions associatecd with arithmetic expres: sns will be fairly constant over
a large number of statements. These may be set by the DEFAULT statement. They are
as follows:

® Test Mode. When this is true, no zeneral registers are stored into, though the
operations are done and the zppropriate status flin-flnos are mcdified. The
initial value is FALSE.

® Mask. The mask register defines the active parts of the regisiers for arithmetic
expression evaluation. The initia' value 1s M.O.

® Clear Mode. When this is irue, .he parts of the r~;.ster that do not enter into
the calcu'ation, as controlled by the mask register value, are cleared to zero.
The initial value is FALSE.




GPM MANUAL 33
Program Stru:ture

3.3.2 Statements

statement =
id : statement | substatement

The statement types are discussed in detail in Section 3.5. All statements may be
tagged by one or more identifiers, which can be used as program labels. Rcoserved
identifiers, numbers, and nonalphanumeric characters may no' be used as program
labels.

333 Closing

closing i =
FINISH 1 FINISH id

The closing statement of a GPM prograin is the reserved word FINISH, optionally
followed by an identiiier. This identifi~-, if present, specifies the starting label of the
program to the MLP loader.

3.4 PSEUDC [ATEMENTS

pseudostatement =
ORIGIN number | COMMENT (any string not containing a ;) |
outputcontrol

outputcontrol =
PRINTON | PRINTOFF | outputtype mode

outputtype ==
HEXADECIMAL.CODE | NORMA L.CODE | LABEL.TABLE

Three classes of pseudostatements may appear anywhere in a GPM program: ORIGIN
statement, COMMENT statement, and output control statements.

3.4.1 ORIGIN

The GPM comptiler prod..ces absolute code. The ORIGIN statement is provided to
allow the programmer to specify where the code should be placed in control memory.
The number in the origin statement is the location to receive the next instructions
compiled. All succeeding instructions will be placed in consecutive locations. The initial
value for the orig:n is O.

3.4.2 COMMENT

The COMMENT statement is provided t¢ allow the programmer tc document his
program. In addition to the COMMENT statement, thcre is also a feature to allow
comments for each statement, as one might use in assembly code. This feature is that
any string starting with an exclamation point (!) and terminated by a carriage return is
interpreted by the compiler as a semicolon (;).




GPM MANUAL 34

Pseudostatements

Example:
COMMENT comment facility example ;
RO « 0 lzero general register zero
R.I«RO+ 1! sel general register one to one
COMMENT end of comment facility example !

3.43 Output Control

Several pseudostatements are provided to control the generation of the output
listing. These can be broken into two areas: the source listing and the code listing. A
complete listing consists of the following four paris:

® The source file with errors flagged and corrections
made (where possible)

® The label table

® The compiled code listed in octal (normal code)

® The compiled code listed in hexadecimal

Source Listing Control

Two pseudostatements coniroi the generation of the source iisting: PRINTON and
PRINTOFF. PRINTOFF will always turn off the listing; PRINTON will turn on the listing
cnly if there has been one PRINTON for each PRINTOFF, which enables the user to nest
PRINTOFF/PRINTON pairs. This i1s useful with nested INCLUDE iiles, which usualiy are
not desired in the output listing. There is a compiler switch to allow all PRINTOFFs to
be ignored, thus forcing a complete listing.

Code Listing Control

Each of three pseudastatements controls one of the three other parts of the output
listing. If several of these statements appear, the last one will be in effect when the
listings are generated at the end of the compilation. The initial seitings are as follows:

LABEL.TABLE MODE FALSE;
NCRMAL.CODE MCODE FALSE;
HEXADECIMAL.CODE MODE FALSE;

However, there are compiler switches (see Section 3.9) to change these initial
settings.

3.5 STATEMENTS

substate =nt =
oseudosiatement | assignment | control | iuw level

Four classes of statements may appear in GPM programs: pseudostatements,
assignment  statements,  contiol  statements, and miscellanrous  statements.
Pseudostatements, which are discussed n Section 34, do not gererate any code and
only condition tihe compilat:on or listing generation t!.at follows. Assignment statements,




GPM MANUAL 35
Statements

which are discussed in Section 5.6, evaluate expressions and move data within the
MLP-900. Control statements, which are discussed in Section 3.7, determine the control
flow of the program. Low-level statements, which are discussed in Section 3.8, are
machine-dependent statementz that deal with MLP-900 specific operations but do not fit
into the above categories {e.g., input/output).

3.6 ASSIGNMENT STATEMENTS

assignment =
arithmetic | boolean | datatrancfer

The three types of assignment statements are as follows:

° ithmetic. Assign the value of an arithmetic expression to a General
Register (OE).

® Boolean. Assign the value of a boolean expression to a flip-fiop (CE).
® Data Transfer. Copy data from one machine register to another (OE and CE).
3.6.1 Arithmetic A<signment

arithmetic =
aleft « arithmetic | aexp | aexp modifiers

aleit =
R 1xPl171aP.17

modifiers ::=
modifier | modifiers modifier

modifier :=
(MI17)YI[MI17 ]I 81/ number ! \ number

aexp u=
aterm | aterm acp aexp

aterm =
aprimary | NOT aprimary

aprimary =
aleft | number | P.17 | { arithmetic )

aop :=
+ 1 -1 MINUS | PLUS | AND ! OR | XOR

The arithmetic assignment statement has three parts: result registers (alefts), an
arithmetic expression (aexp), and modifiers (modifiers). Only the arithmetic expression
must be present. The first two parts define an ordinary arithmetic calculation, wnile
the modifiers condition the evalaution of the expression.




GPM MANUAL 36
Assignment Statements

There are three types of modifiers; only one of each may be present. They specify
the mask, test mode, and final shift,

Mask

If no mask modifier is specified, the default mask and default clear mode will be
used. In nested expressions, the outei specification (if there is one) will replace the
default value. The mask (M.17) specifies which mask register wil' be used for the
calculation. The parentheses indicate cleer mode false and the brackets indicate clear
mode true.

Test Mode

If the test mode symbol (#) is not present, the default or outer specification will be
used, as with the mask. |If it is present, the new test mode will be the complement of
the current default value.

Shift

If no shift is specified, none will occur. Right shif* (divide) is specified by a / and
reft shift (multiply) is specified by a \.

Qperators

No precedence is associated with any of the binary operators (aop). The unary
one’s complement NOT is of highest precedence. If order of evaluation is important, it
must be speciiied with parentheses. The binary operators are

+ Two’s complement add

- Two’s complement subtract
PLUS Long add (see Chapter 4)
MINUS Long subtract

AND  Logical and

OR Logical or

XOR  Logical exclusive or

Result

If no result is specified, the oseration will be done with test mode true. Both *
P.17 and @ P.17 specify indirect references to the general registers. The character ®
is a normal indirect; the register number 15 taker from the five low-order bits of the
specified pointer register. The character * is a special indirect; it acts like a norm
indirect, except that the low-order bit is forced to ! in the register number.

Examples:
COMMENT if R.4 = R.11 GOTO eaualtag ;
NOT ( R.4 XOR R.11 ) 'result will be zero on equais
IF ZSP GOTO EQUAL.TAG ;




of a boolean expression.
boolean constants TRUE and FALSE.
XOR, and NOT.

GPM MANUAL 37
Assignment Statements

COMMENT M.1 centains 7700, M.2 contains 77770 ;
COMMENT number in R.3 field M.1 added to R.4 field M.2 ;
R4 «R4+(R3[MIL]/3)M2);

3.6.2 Boolean Assignment

boolean =
F.377 « bexp

bexp u=
bexpr | boolean

bexpr =
bterm | bexp bop bterm

bterm =
bprimary | NOT bprimary

bprimary ==
F.377 1 TRUE | FALSE | { bexp )

bop =
AND | OR | XOR

The boolean assignment statement provides a metnod to set flip-flops to the value
The boolean expression is composed of flip-fiops and the
The operatcrs are the logical operators AND, OR,

As in the arithmetic expression, there is no preccdence between the binary
operators (oop), and the urary one’s complemert NO1 is of highest precedence.
order of evaluation is important, it must be specified with parentheses.

Examples:

GL3 « GL.3 XOR GI.5 "f GI.S then compiement GI.3
Gl.7 « Gl.1 OR GL.2 OR NOT GIL3;
Gl.11 « (GLO AND GI5) CR NOT (GL7 AND GL.6);

3.6.3 Data Transfer

datatransfer :=
dt36Ift « dtnot dt36ri dtmask |
dt16ift « dtnot dti6rt dtmask |
dt8Ift « dtnot dt8rt dtmask

dtnot ::=
NOT | (empty string)

e e e



GPM MANUAL 38
Assignraent Statements

dtmask =
( number ) | [ number ]| (empty string)

dt36ift =
oereg | oepg @ P.17 | oepg * P.17 | XBUS

oereg :=
R37 I MISC37 I M17 1 A1777 1 LB.1777 |
SUPVLB.377 | XLATOR.777

oepg =
RO I MISCO I MO | APG3 1 LBPG3I
SUPVLB.O | XLATOR.PG.1

dt36rt =
dt36lft | number | P.17

dt16ift ::=
dt36Ift H.1 | ( cereg ) ) ( cereg, cereg ) |1 S5.17

cereg u=
CE.137 I P.17 1 XBUS.3

dtlort =
dt16lft | number

dt8ift ::=
dt36lft B.3 | cereg

dt8rt =
dt8ift | number | F.377

The basic format of a data transfer statement is
left « not right mash
The left and right fields are data ob,ects of matching size. The possible sizes are 36,
16, and 8 bits.  The NOT field contains an optionai ore’s complement NOT.

The mask notation 1s simihar to the arithmetic assignment, except that the mask is
specified as a constant number instead of as a mask register. The parentheses spccity
a normal mask, where all masked-out (zero mask bits) bits remained unchanged. The
square brackets specify a clear mask where all masked-out bits are zeroed. If no mask
1s speaified, an all-ones mask of the ~opropriate size 1s used.

The 36-bit left operands are OE registers. The right operands are either OE
registers, constants, or pointer registers. In the case of pointar regiciers, the
high-order 28 bits are zero. The OE registers are as follows:




GPM MANUAL 39
Assignment Statements

® R37 32 general-purpose registers,

e M!l7 16 mask registers,

e MISC37 32 miscellanecus registers,

e Al777 10248 auxiliary memory registers,
e |B1777 1024 language board registers,
e SUPVLB377 256 supervisor language board

registers (only Micravisor mode
acces- allowed),

e XLATOR.777 512 translator memory registers
(only "Aicrovisor mode access
allowed).

In addition to direct references to OE registers, they may be referenced indirectly
through the pointer registers. OE registers are divided into pages of up to 256
registers. The 8-bit pointer registers can address any register within a page. It is
possible only to indirectly addrecs registers within a fixed page. As with the arithmetic
assignment statement, the x indirect operator will force the low-order register number
bit to a i.

16-bit transters

There are four types cf 16-left operands. These and ronstants comprise the
possible right operands. The four left operand types are as follows:

1) OE register Half-words - <di36ift H.]>
Half-words are numbered from left to right. The high-order four bits are
never referenced. Therefore, H.1 refers to the low-order 16 bits and HO
refers to the next lowest 16 bits. Note that whenever half-word
references are used, as the left side of a data transfer, the remainder of
the specitied OE register 1s zeroed. Additionally, OE registers may not
appear as both left and right operands

2) CE Double Register - <(cereg)>
The Ct regicter double-register construct references an odd/even pair of
CE registers. The CE register explicitly named within the parentheses is
the first register of the pair. The two examples following will each cause a
swapped data transfer:
RC H.1 « (P.]);
(P.1) « (P.6);

3) General CE Double Register -
<lcereg, cereg)>
The CE register general double register construct 1s similar to the double
register construct described above except that both CE registers are
named exphicitly. If tne general double register is not an odd/even pair, it
cannot be moved to or from an OE register half-werd. The following is an
impossible data transfer:
(P.1,P.2) « R.17 HO;




GPM MANUAL 40
Assignment Statements

4) Subroutine Stack Register - <G.17>
The construct S.n is equivalent to (CE.100+2n) or (CE.100+2n,CE.10] +2n).
8-bit transfers

There are two types of 8-bit left operands. They are as follows:

1)

2)

OE Register Byte -

Bytes are numbered from left to right. The high-order four bits are never
referenced. Therefore B.3 refers to the low-ord>r 8 bits, B.2 refers to the
next lowest 8 bits, etc. Note that whenever byte references are used as
the left side of a data transfer, the remainder of the specified OE register
is zeroed. Additionally, OE registers may not appear as left and right
operands.

CE Register - <cereg>
The CE registers are

® CE.137 All CE registers;
® P.17 pointer registers, (CE.40-CE57);

® XBUS.3 CE exchange bus, (CE.70 - CE 73 as left operands; CE.64 - CE.67
as right operands).

In addition to the two operand types discussed above, 8-bit right operands may also
be either constants or flip-flops. In the case of flip-flops, the right operand is
interpreted as an 8-bit quant'ty, where each bit ic 1 copy of the value of the specified

flip-flop.

Examples:

RO « NOT A.173 [777);
APGO » P.l « APGL @ P.i;
M.17 H.1 « NOT S.12;
M.l « 777777777777,
R3 B3~ P.17;
R3 « P.17;
P.17 « CE.0;
3 « NOT F.144 (123);

3.7 CONTROL STATEMENTS

control :

block | break | branch | do | 1t | switch

There are six control structures in GPM. They are as follows:

® Block Prototype compound statement form,
® BREAK Standard block exit mechanism,
® Branches Unconditional transfer of program control,




GPM MANUAL 4]
Control Statements

e DO Looping mechanism,
e IF Conditional execution and compilation,
® Switch  Case analysis (index branch) mechanism.

3.7.1 Block

block ::=
BEGIN name body END name

name ::=
NAMED symbol! | (empty string)

The BEGIN END block is the prototype compound statement form in GPM. The IF,
DO.BEGIN. and SWITCHON statements are special cases of the BEGIN block. All have the
characteristics ot the standard block in addition to special features of their own.

Scope

The block specifies the scope for any declarations that may appear in the
declaration part of the block body. In the special case blocks, the BEGIN END also
determines the scope of the control structure involved.

Names

Blocks can be named by follow.ng the BEGIN with "NAMED id,” which enables the
program to refer to the block by name. This is used for two purposes. First, the END
may be named, thus closing all unnamed blocks within the named block; also, the block
name is used by the BREAK statement to specify which block to exit.

3.7.2 BREAK

break :=
BREAK name

The BREAK ctatement will cause program contro! to branch to the end of a
particular block. If no name is supplied to the BREAK, the current block will be exited.
If a name i1s supplied, then control will branch to the end ot that block.

This is different from a RETURN statement. The RETURN statement exits a
subroutine to the calied location (determined at runtime), whereas the BREAK statement
exits a oluck to a block end (determined at compile time).

3.7.3 Branches

branch :=
RETURN | GOTO label | CALL label

label =
location | < P.17 > | location < P.17 >

R




GPM MANUAL 42
Control Statements

location ::=
id | number | offset | id offset

offset ::=
+ number | - number

The three types of unconditional branches are RETURN, CALL, and GOTO. The
RETURN statement transfers control to the location on the top of the hardware
subroutine stack, and pops the stack. The CALL statement pushes the location of the
next sequential instruciion in control memory onto the top of the stack 7.id does a
GOTO. The GOTO simply branches to the location specified by the label.

In addition to the unconditional branches provided by the branch statements, GPM
also has conditional branches. These are special forms of the IF statement described in
Section 3.7.

3.7.4 Labeis

There are basically two types of labels of branch destinations: relative and absolute.
Either type can be indexed by the value of a pointer register: The indexing is aiways
post-indexing, that is, the branch destination is calculated and the value of the pointer
register is then added. This addition might cause overflow, in which case the transfer
destination will wrap around to low control memary. If the label is only a nointer
register, then the index is relative to the next sequential instruction in control memory.

Absolute Labels

An absolute label may transfer a program label identifier (see Section 3.3) or an
absolute location specified by a number.

Relative Labels

A relative label may be merely an offset, specifying a transfer relative to the
current location in control memory, or an offset from some specified program label
identifier.

Examples:
GOTO TAG;
CALL 100 <P.3>;

TAG:

CALL TAG +3;
RETURN
GOTO -4
CALL +1<P>;

3.75 DOBEGIN

do =
DO.BEGIN name body END name




GPM MANUAL 13
Control Statements

The DO.BEGIN statement unconditicnally repeats the body of code contained within.
This is the looping construct in GPM. The loop is usuaily terminated with a BREAa

Example:
COMMENT constiuct n-bit mask - n is in general register N ;
R.1 « O !initialize mask result register
DO.BEGIN
Rl «R1 + 1\ 1!add another bit to the mask
N « N - 1 'decrement count
IF ZSP BREAK 'break when count runs out
END; R.1 « R1 /1 'done

376 |IF

if u=
IF bexp THEN.BEGIN name body ELSE statementlist END name |
IF bexp THEN.BEGIN name body END name |
IF bexp BREAK name | IF bexp RETURN |
IF bexp CALL id | IF bexp GOTO id

There are two types of IF statements: block structured and conditional branch. The
first is for the conditional execution of sections of code and the second for the
conditional transfer of control. The first is sufficient in all cases, but the second is
easier and more efficient when appropriate.

Block Structured IF Statement

The block structured IF statement has two {orms, the most general of which is the IF
THEN.BEGIN ELSE END form. In this case the boolean expression is evaluated. If it is
true, the body following the THEN.BEGIN is executed. The statement list following the
ELSE will not be executed. If the boolean expression is false, the opposite will happen;
the body will not be executed and the statement list will be.

Any declarations that follow the THEN.BEGIN will be active for both statements in
the body following the THEN.BEGIN and statements in the statement list following the
ELSE. The second form of IF simply omits the ELSE secticns.

The boolean expression i1s evaluated at compile time. If it evaluates to a constant
TRUE or FALSE, then the IF statement will compile code for the appropriate statements
only; no test will be compiled at all. ORIGINs and program label assignments can also be
conditionally compiled using this facility. There is no way to conditionally specify
declarations for a block.

Conditior2! gBranch |F. Statement

These IF statements do not contain either the THEN.BEGIN or the END. Immediately
following the boolean expression is a branch statement (BREAK, RETURN, GOTQ, CALL).
The available branch statements are restrictea, and oniy label names may be used as
the GOTO or CALL destinations.




GPM MANUAL, 44
Control Statements

The conditional branch IF statement is provided so programmers may write GOTOless
programs without being penalized with inefficient code. Note that.a BREAK inside a
block-structured IF statement will only BREAK out of the IF block if the BREAK is not
NAMED. This means that the following two statements are NOT equivalent:

IF ZSP THEN.BEGIN BREAK END;
IF ZSP BREAK;

3.7.7 Switch

switch =
switchblock | switchtag

switchblock =
SWITCHON < P.17 > INTO.BEGIN name body END name

switchtag u=
ZASE switchlist | ENTRY switchlist

switchlist ;=
switchvalue | switchlist , switchve 1e

switchvalue =
number | number THRU number | number THRU |
THRU number | THRU

A switch statement has two components: first, a switch block that specifies the
pointer register to be used to index into the body of the block and second, a number of
switch tags that specify where each index ‘alue is to start execution.

Switch Blocks

The switch block specifies a pointer register. The value of this register and the
switch tags within the switch block determine where in the body of the switch block
execution will begin.

Switch Tags

There are two types of switch tag statements. The ENTRY statement specifies a list
of pointer register values that are to start execution following the ENTRY statement,
The CASE statement is equivalent to the ENTRY statement, except that the CASE
statement compiles a BREAK out of the switch block.

Switch Yalues

Switch values are either numbers or ranges of numbe-s. The range of a SWITCHON
can be a maximum of O through 377. On the THRU version ot the switch value O is
assumed if the start is not specified, and 377 is assumed if the end is not specified.
A so, if some particular number has been assigned previously, the THRU specification
will ignore it. On the other hand, a single number specification will override.




GPM MANUAL 45
Control Statements

Effici Considerali

The first statement fouowing the INTO.BEGIN (after any declarations) should be an
ENTRY statement. A CASE will produce an unnecessary BREAK, and any other
statement will never be executed.

Each switch value deciared produces one instruction averhead. The switch is
assumed to have a O origin. For example, a CASE 2 and 4 will have five (0-4)
instructions overhead.

Mo zheck is made at run time as to the value of the pointer register. Any
unspecified values below the maximum specified value will transfer control to the
localion immediately following the switch block. However, values above the maximum
will transfer to a location beyond the switch block, producing strange results.

Examples:
SWITCHON <P.1> INTO.BEGIN

ENTRY 2,4;
COMMENT CASES ¢,4;
CASE 1 THRU 6,10;
COMMENT CASES 1,3,6,10;
ENTRY 5;
COMMENT CASES 1,35,5,10;
END

3.8 LOW-LEVEL STATEMENTS

lowlevel :=
incr/dec- | blot | cede | shift | mul/div

The low-level GPM statements incluce the following:

INCREMENT /DE(. REMENT
BLOT

CEDE

SHIFT

MULTIPLY/DIVIDE




GPM MANUAL 46
Low-Leve! Statements

3.8.1 INCREMENT/DECREMENT

incr/decr =
inde P.17 BY num
inde ::=

INCREIMENT | DECREMENT

This statement allows a constart to be added to or subtracted from a pointer
register.

3.8.2 BLOT

blot =
blotcode label;
blotcode =
MOE | RSB | WSB! RCM | WCM | WBP

See Chapter 4,
383 CEDE

cede =
cedeaddr | cededata | cedecomb

cedeaddr ::=
addrop 2 left aadrsign addrb testmode |
ROW testmode
addrop =
FIN I FOP | SAD | RMW
addrsign =
+| -
addrb ::=
aleft | number | P.17
testmode ::=
.empty. | &

cededata :: =

dataop dt361f4 testmoce
dataop u=

WOP | SOP | WOS

cedecomb =

combop aleft, addrb testmode
combop ::=

WIF | WON | WIN | WOF

See "Chapter 4.




GPM AANUA!L 47
Low-Level Statements

Kt SHIFT

shift =
shop aleft shdir shamt shmask testmode;
shop =
SHFT.DEL | SHIFT.EQO.L | SHIFT.SINGLE.L |
SHIFT.DUAL.L | SHIFT.QE.C | SHIFT.RE.L |
SHIFT.ER.L | NORMALIZE 1 SHIFT.RE.C
shdir =
LEFT | RIGHT
shamt ::=
@ | num
shmask =
.empty 1 (M.17)

See Chapter 4.
3.85 MULTIPLY/DIVIDE

muldiv::=
mdop aleft BY aright mask testmode
mdop::=
MULTIPLY | DIVIDE
aright::=
aleft | number ! p.17
mask::=
(M.17) | empty
testmode::=
% | empty




48

4. MLP-900 REFERENCE MANUAL
4.1 INTRODUCTION

The MLP-900 is a large verlical-word microprogrammable computer designed to
provide a general-purpose emulation host on which each u«er can create his own
target machine. It i1s a synchronous machine with a 250-nanosecond cycle time, a
4096-word control memory, and a large set of internal registers. A number of
original features help make the MLP-900 an exceptionally powerful
microprogramming tool; principal among them are a subroutine stack, a multi-level
interrupt mechanism, a two-state protection facility, paging and memory protection
hardware, and provision for user-specified language boards to provide a hardware
assist for particular applications.

The MLP-900 is characterized by two parallel computing engines, known as the
Gnerating Engine (OE) and the Control Engine (CE). The OE is a 36-bit-wide
arithmetic and data transfer machine; it includes the hardware for the main memory
and external interfaces and the bulk of the register space, including a 1K internal
me~--y. The CE is the instruction sequencing ana control unit; it includes the stack
ha.. g, interrupt, and protection mechanisms,

MLP-300 instructions are known as "ministeps”; each engine has its own unique
instruction set. Ministep execution proceeds sequentially, either singly or in pairs.
At the beginning of each cycle, the CE fetches a pair of ministeps from control
memory--from the currant address ana its successor--and examines them. If the
first is an OE ministep and the second is a CE ministep, then the pair is executed
during this cycle; otherwise only the first ministep is executed (the other will be the
first ministep cf the next cycle, barring a branch).

With twc exceptions, this parallelism 1s transparent to the user and serves only
to increase the effective machine speed: first, interengine data transfers require
execution of an OE-CE pair; second, CE registers mndified as a side effect of an OE
ministep cannot be sensed by a CE ministep immediately following. All changes to
the state of the machine occur simultaneously at the end of the cycle ("clock time");
all computatinns and decisions are therefore Sased upon the values present at the
beginning of the cycle.

The MLP-900 hardware recugnizes two distinct execution states, known as user
mode and "Microvisor” (m:zcrcprogram supervisor) mode. lser mode microcode is
subject to three restrictions: (1) privileged ministeps may not be executed; (2)
privileged registers (in both the OFE and CE) may not be modifiec; and (3) a branch to
a Microvisor location other than a designated entry point is illegal. Violation of any
restriction results in a (privileged) interrupt and suppression of the current cycle.
These restrictions fully protect the external interface, the main memory protection
and paging facility, and the Microsiser itself from the user microcode; additionally,
the microcode is restricted from modifying itself.

The MLP 900 main memory interface intiudes a memory protection and paging
scheme which, together with some Microviscr code, provides the user with a 256K




MLP-900 REFERENCE MANUAL 49
Introduc:ion

virtual address space. The scheme mimics the memory management provided by the
BBN pager on the PDP-10.

The language board facility allows a major application to design its own
extension to the MLP-900 hardware, consisting of two PC boards, an OE board and a
CE board; the pair is referred to as a language board, and is intended for the
exclusive use of that one application. There is physical space for a maximum of four
language boards, of which one is the "null” board for general use. Two bits in the
CE select the current board. The intended uses of a board include, but are not
limited to, target instruction decoding, effective address calculation, and
norma..zation.

Throughout this chapter, registers are referred to by their GPM names, and
register sets are referred to by the name of the last register in the set (the index
number is always an octal number). Thus R.37 refers to either the 32 general
registers or the last one of them, while R.15 refers to the thirteenth register of that
set.

4.2 OPERATING ENGINE

The Operating Engine (OE) 1s a 36-bit data transfer and manipulation engine: it
also contains the interfaces with both main memory and the PDP-10 1/0 bus. The
computationa!l facility consists of a three-input (two operands and a mask) "Primary
Adder” capable of various arithmetic and boolean functions, a "Primary Skifter,” and
an "Extension Shifter” used for double-word shifts. Operands are takrn from, and
results stored into, the general registers (R.37); masks are taken frun. the mask.
registers (M.17). One byte of CE flip-flops (CE.14) is devoted to functiors
associated with the adder and shifter(s). The interfaces consist of a number of
special registers and pseudo-registers (grouped together in MISC.37), the main
memcry address translator (XLATOR.777), and the memory refe: ncing ministep
(CEDE).

Note that in all OE ministeps involving a larg? constant operand, the ministep
takes two control memory words; while the hardware handles the decode
automatically, the nrogrammer must be aware of tne fact that such a ministep always
executes singly. A large constant is one which cannot be expressed in six bits (i.e.,
not in the range 0-63).

OPERANDS
The OE operands are contained in one sparse 12-bii address space. In addition

to the mnemonics shown in Table 4.1, .hese operands may be addressed as OE.O0 -
QE.7777.




MLP-920 REFERENCE MANUAL 50
Operating Engine

TABLE 4.1.

OPERATING ENGINE ADDRESS SPACE

Group  Extension Register ~ Mnemonic Description
0000 000 XXXXX R.37 General Registers
0001 000 Oxxxx M17 Mask Registers
0010 0co XXXXX MISC.37 Miscellaneous Reg.
Olxx XXX XX XXX Al1777 Auxiliary Memory
1000 000 0G000 XBUS CE Exchange Bus
1001 XXX xxxxx\ XLATOR.777 (protected)
1010 XXX xxxxx/ Translator Memory
1011 X XX XXX XX SUPVLB.377 (orotected)

Supv. Lang. Board
11xx XXX XX XXX LB.1777 Language Board

Indirect QE Qperands. The OE registers may be addressed not only directly, but
alsu indirectly through the Pointer Registers. As the Pointer Registers are only 8 bits
wide, the group 1s still specified in the instruction. There are two types of indirect
referencing avarlable. Normal indirect (@) uses the Pointer Register for the lower 8 bits
where applicable (1. e, ey © bits are used when referencing the General Registers).
Special indirect () 1s similar, except that the low-order bit 1s forced to 1.

Fxamples:
RO & P5
LB.1400 ¢ P.11
XLATOR.400 & P.7

The GEAR ana SHIN ministeps indirect only to the Gereral Registers, while both
CEDE and GENT incirect to all OE registers.

4.2.1 R37. General Pegisters

There are 32 general registers (RO - R.37), each 36 data bits wide. Four parity
bits, one for each 9-bit byte, are maintained with each register. All 32 registers are
addressable as inpu's to the Primary Adder. Except for R.37, the Shift Extension
Register, none of the General Registers has a dedicated function.

422 M.17. Mask Registers

There are 32 mask registers. however, only 16 of them (MO-M.17) can be
addressed by an OE instruction. The high-order bit of the mask address i1s CE fiip-fiop
(F/F) MBS (F.167). This F/F 1s protected and can only be set or reset by a ministep in
Microv sor mode. Therefore, user programe cce only 16 Mask Registers. The Mask
Registers condition the Adder functions to accomplish subword operations.




MLP-900 REFEPENCE MANUAL 51
Operating Engine

4.2.3 MISC.37. Miscellaneous Registers

There are thirty-two Miscellaneous Registers (MISC.0 - MISC.37) for different
dedicated functions. For addressing purposes, they have been gathered together in
one set of registers. The first sixteen (MISC.0 - MISC.17) are available to the user; the
second sixteen (MISC.20 - MISC.37) are privileged and can be modified only by the
Microvisor, but can be read by the user using a GENT instruction. Some registers are
readable and writable, some are read-only, and others are unimplemented. A complete
list of the misce!laneous registers, their numbers, and their functions is given below.

Data Entry Switches
Main Memory Address Switches
Processor Address Switches

N - O

The above three entries are pseudo-registers which make available the three

sets of switches on the console.

3 Unimplemented
The following two registers can be read and written and are highly tied into
Language Boards and the CEDE/WIN instruction. These registers can be treated as
Auxiliary Memory (Scratch registers) but are unlikely to be, since they are too
important in their other functions. For more information on PIR and SIR, see the
section on Language Boards and the CEDE/W!N Instruction.

4  Primary Instruction Register (PIR;

5  Secondary Instruction Register (SIR)

6  Unimplemented

15
The fclowing two registers are used in memory referencing. For more information,
see the CEDE instruction.

16 Virtual Address Register (VAR)

17 Memory Data Regisier (MDR)

This concludes the registers available to the user. The succeeding registers are
privileged.
The next ten registers are involved in paging and page iault handiing.
20 Address limit and User Base Register (ALR/UBR)
The ALR/UBR performs the same function as the similar register in the BBN pager.
21 Age and Process Use Register (AGER/PUR)
The AGER/PUR 1s analogous to the same register in the BBN pager.
22 Generated XLATOR Word
This is a psuedo-register containing the data for loading into translator meriory at
the completion of a page fault.
23 Real Address Register (RAR)
This register i1s used by the MLP-900 when in transparent (nontranslate) address
mode.
24 Trap Status Word (TSW)
This is a pseudo-register which generates a TSW analogous to that generated by the
BBN pager.




MLP-900 REFERENCE MANUAL 52
Operating Engine

25 User Base Address (UBA)
This is a pseudo-register which generates the address for a Microvisor access to the
User’s Page Table.
26 Core Status Table (CST)
The CST is a pseudo-register which generates the address for a CST reference.
27 Special Page Table (SPT)
The SPT is a pseudo-register which generates the address for a SPT reference.
30 Indirect Page Table (IPT)
The IPT is a pseudo-register which generates the address for a IPT register.
31 Key Register
This contains a 7-bit key value which determines the validity of XLATOR entries.
The following three registers are the control interface with the PDP-10. See
Appendix D.

32 DATAOQ

33 DATAI

34 Command/Status Register
35 Unimplemented

36 Virtual Address Compare Register (VADRC)
VADRC, when enabled by SARM.1, is compared to the virtual address (VAR) at every
Main Memory reference, and generates an AR (VADR, F.124) when & match occurs.

37 Control Memory Address Compare Register (CMADRC)
When enabled Ly SARM.O, CMADRC is compared to the memory address at every
control memory reference, and generates an AR (CMADR, F.110) when a match
occurs.

A transfer to arn unmplemented register 1s a no-op; a transfer from an
unimplemented register yields -1.

424 A.1777. Auxiliary Memory

There are 1024 words of 200-ns auxiliary memory, which can be used as a
scratchpad or cache. This memory can be accessed by the OE instructions CEDE and
GENT and the CE instruction BLOT.

4.2%5 XBUS. Exchange Bus

The CE Exchange Bus is a pseudo-register connected to the CE Exchange Bus (see
Seuticn 43.3). Data transters between the engines are accomplished by an OE-CE
instruction pair, with the OE instruction either a GENT or a CEDE (which references the
Exchange Bus), and the CE instruction either a MOVE (which reterences the Exchange
Bus) or a BLCT (other thar, MOE). Since these instruction pairs are executed in parallel,




MLP-900 REFERENCE MANUAL 53
Operating Engine

the OE instruction (GENT or CEDE) must zome first regardless of the transfer direction.
In transfers to the OE, any bits not loaded by the CC instruction are transferred as zero.
In transfers to the CE, any bits not used by the CE instruction are ignored. A reference
to the Exchange Bus without a paired CE instruction is undefined.

42.6 XLATOR.777. Translator Memcry

The Translator Memory consists of 512 20-bit words used in translating virtual
addresses to real addresses. Each word consists of a 7-bit key value, a 9-bit real core
7ddiess value, a write permt bit, a parity bit, and two unused bits. Whenever
translation 1s performed, the 9 high-order bits of VAR are used as ar index into the
transiator to select a translator word. The word i1s valid if its key value matches the
key register (MISC.31); the write permit bit is “"on" if this is a store. The Translator
Memory is privileged.»

4.2.7 SUPVLB.377. Supervisor Language Board

These registe 5 do not exist, and are not expecte ‘o pe added. They are
privileged.

428 LB.1777. User Language Board

Provision 1s mace for up to 256 36-bit registers on each of up to four Language
Boards in the MLP-300. The null Language Board, which is always LB.O, has no
registers. Other Language Boards, designed for specific users, may have up to 256
registers as needed. Note that the microcode can address all the registers on all the
Language Boards and is not limted to the currently active Ledguage Board. See
Section 4.4.

OPERATORS
The OE operators are as follows:

® GEAR General Arithmetic. Performs binary arithmetic, logical operations, and
single register shifts.

® CEDE Corditional Externai Data Exchange. Transfers addresses, target
instructions, and data between the OE and Main Memory.

® SHIN Shift Instruction. Performs various single and double register shifts, plus the
iterated steps of multiply and divide lcops.

s Caution: a GENT from the translater reads the word selected by the old value of
VAR, then modifies the 9 high-order bits of VAR to address the requested word,
which is not readable except by coincidence.




MLP-900 REFERENCE MANUAL 54
Operating Engine

® GENT General Data Transfer. Transfers data between the OE registers and to and
from the CE.

42,9 GEAR. GEnerai ARithmetic
The ministep provides arithmetic and logical ca) ~bility within the General Registers.
Syntax:

gear =
aleft « aexp amodifier;

aleft =
R371+P.171@P.17

amodifier .=
shift mask testmcde

shift ::=
/ samount | \ samount | .EMPTY.

samount ;=
1121i416110114120

mask ;=
(M17)Y1[M17]

testmode ::=
s | EMPTY.

aa is identical to the specified aleft

ab u=
aleft | number | F.17

aexp =
aa +ablaa-ablab-aal
aa PLUS ab | aa MINUS ab | ab MINUS aa |
aa AND ab | NOT aa AND ab | aa AND NOT ab |
aa OR ab | NOT aa OR ab | aa OR NOT ab |
aa XOR ab | NOT aa XOR ab | ab | NOT ab

Examples:

R1 «R.1 + R2 (MO);

R7 «R7-P0 /1 (Ml] s

R37 « 173 - R37 \2 (M.2);

®P.0 -« ®P.0 XOR NOT 3 (M.17);
P.17 « #P.17 AND P.3 /4 [M.27] &;
©P.3 « NOT @P.3 OR R.17 \20 (M.21);
@P.1 « =P ] MINUS aP.1 (M.3) #;

Semantics:

The GEAR ministep is used for arithmetic operations. It selects two operands and a
mask and routes them to the primary adder, and then specifies a shift of the result

TR S T




MLP-900 REFERENCE MANUAL 55
Operating Engine

through the primary shifter. The result is then stored into the A operand. This
operation is shown in Figur. 4.1 below.

Mask A Cperand B Operand

% !
V

Primary Adder

{Carrier)

lero Masked-Out Bits

—» /SP
SO0S —] .
Primary
SHE Shzfrter -
If Hot Clear Mode
A Cperand

Figure 4.1  Operating Engine: GEAR.

Masks

The requested operation is conaitioned by the value of the spe.ificd Mask Register.
One (1) bit in the mask 's a masked-in bit.

Adder. The Frimary Adder treats all the masked-in bits as one contiguous operand
field; carry generation is suppressed in masked-out bits, and carry propagates over
masked-out bits. The masked-out positions are all forced to zero at the Primary Adder
output.

Shifter. The shifter ignores the mask

Result Store into A. in Clear mode [M.17], the entire 36-bit ouptut of the primary
shifters 1s stored; if the shift amount is zero, then all masked-out bits are cleared to
zero. In normal mode [M.17], only the masknd-in bits are stored; the masked-out bits
remain unchanged.




MLP-900 REFERENCE MANUAL 56
Operating Engine

Test Mode
It the test mode modifier <#> is present, the siore into the A operand is suppressed.
However, all applicable F/F’s (see Table 4.2) are set.

Operators
All valid operator combinations are listed in the syntax under aexp. All addition and
subtraction operators are two’s complements. NOT is a logical operator (one’s
complement). The PLUS and MINUS oper2iors take F/F COF.1 as an initial low-order
carry-in. These operators can be used to produce multiple-precision results.

Shifts
All valid shift amounts are listed in the syntax under samount. The prefix /
designates a right (divide) shift and the prefix \ designates a left (multiply) shift.
The boundary shift conditions are shiown in Figure 4.2.

S0S =

SHE = S

Figure 4.2  Shifter boundary cenditions.

Flip-Flops
Table 4.2 lists all F/F's that may be affected by a GEAR.

COP - E.300, This pseudo-F/F contains the carry-out value for +, -, PLUS, and
MINUS. It 1s valid only during the current cycle.

COF.1 - E.14Q. This F/F contains the carry-out value of the most recent +, -,
PLUS, MINLJS operation executed.

COF.2 - E.141. This F/F contains a copy of the p.evious setting of COF.1, and
therefore of the second most recent +, -, PLUS, or MINUS executed.

ISP - E.301. This pseudo-F/F is set if the MASKED output of the Primary Adder
of this operation is zero. Active for all GEAR operations, it is valid only
during the current cycle.

ZRF.1 - F 142, This F/F contains the most recent setting of ZSP except in the
case of PLUS and MINUS, when it is set to the logical product of Z5P and its
prior value.

ZRF.2 - £.143. This F/F contains a copy of the previous setting of ZRF.|.




MLP-900 REFERENCE MANUAL 57
Operating Engine
S90S - E.146. f there is a nonzero right {/) shift, SOS is copied into bit O.

SOF - E.147. If there is a nonzero left (\) shift, the bits shifted out of bit 0 are
compared with SQS; if the comparison fails, SOF is set.

SHE - E.145. |If there is a nonzero left (\) shift, the last bit shifted out of bit O
will be in SHE. This happens after the GEAR cycle.

Table 4.2
GEAR Flip-Flops
cop +, -, PLUS, MINUS

COF.1 Same as above
COF.2 Same as above

ISP All GEAR operations
IRF.1 Same as above

IRF.2 Same as above

SOS Nonzero right (/) shift
SOF Nonzero left (\) shift
SHE Same as above

4.2.10 CEDE. Conditional External Data Exchange

CEDE is used to fetch and store main memory. All memory fetches or stores require the
execution of twe CEDEs. The fi-st provides the virtual or real address, depending on
TRBY (F.165), initiates a translate cycle if translating (i.e., if not TRBY), and, if reading,
initiates the memory fetch. The second CEDE, which need not follow immediately,
provides the data for a store or waits for the operand of a fetch. Some combined
forms wait for an operand and then begin a new fetch. Page fault ARs take place at
the time of the second instruction (the Wait or Store) and cause that instruction to be
suppressed.

Syntax:

cede:=
cedeaddr | cededata | cedecomb | cede b

cedeaddr::=
addrop addra addsign addrb testmode | ROW testmode
addrop::=
FINI FOP | SAD | RMW
addra:=
aleft (as in GEAR)
addsignu=
+ |-

addrb::=

L e e e s Pk A ) Samany



MLP-900 REFERENCE MANUAL 58
Operating Engine

aleft | number I P.17
testmode::=
# | EMPTY,

cededata:=
dataop dataloc testmode
dataop::=
WOP | SOP | WOS
dataloc::=
Oereg | oereg @ P.17 | oereg * P.17 | XBUS
Oereg:=
R37 IM17 I MISC37 1 A.1777 1 LB.1777 1
XLATOR.777 | SUPVLB.377

cedecomb::=
combcode addra, addrb testmode
combcode::=
WOF | WON
cede b=
b code addra « addsign addrb testmode
bcode::=
WIN | WIF
Examples:
FOP R3 + RS6;
SAD @ P.0 -2;
WOP XBUS;
WOF R.1, * P.2;
ROW;
SOP M.0 @ P.10;
Semantics:
Iype Name Rescription
Addr FIN VAR, A « A +/- B;
Fetch VAR-command-bits « "read”;
Instruction Translate;
Fetch
Comb  WIN Wait;
Wait for [PIR or SIR « MDR};
Instruction VAR, A « +/- B;
(VAR-command-bits « "read";
Translate;

Fetch];




MLP-900 REFERENCE MANUAL
Operating Engine

Addr FOP

Fetch Operand
Addr SAD

Set Address
Addr RMW

tRead-Modify-Write
Comb WIF

Wait

Iindirect & Fetch
Comb  WOF

Wait for Operand

& Fetch

Data soP

Store Operand
Data WOP

Wait for Operand
Data WOs

sWait for Operand,
Stream Mode

*+ Indicates a privileged CEDE.

59

LB Break-out

Identical to FIN

VAR, A « A +/- B;
VAR-command-bits - "store";
Translate

VAR, A « A +/- B;
VAR-command-bits « "read” &
"atore";

Translate;

Fetch;

(Must be followed by WOP and
then SCP within lime allowed
for RMW timeout.)

Wait;

A « MDR;

VAR « +/- B;
(VAR-command-bits « "read";
Translate;

Fetch]

Wait;

A ~ MDR;

VAR ¢« B;

VAR-coramand-bits « "read";
Translate;

Fetch

MDR « A;
Store (Preceding CEDE must be
SAD, or the WOP after RMW.)

Wait;
A « MDR

Wait;

A « MDR;

{WQS triggers an asynchronous
mode of continuous memory
fetching from successive




MLP-900 REFERENCE MANUAL 60
Operating Engine

Addr

Como

locations yn the £3~me memory
page at maximum ‘ory rate;
WOS must be executed in a loop
which is faster than the memory
i.e., one MLP-900 cycle, iest
data be lost without any

.adication.)
ROW Translate;
*Retrv Operation If "read" is set in VAR, Fetch

(Acts like FOP or SAD, or RMW,
depending on the old conients of

VAR)
WON Identical to WOF
‘Nait for Operand
and Fetch
Instruction

FOP and WOF are the basic memory fetch pair, while SAD and SOP are the b:
memory store pair,

Translate:

Fetch:

Store:

Wait:

Use contents of VAR as index ir‘o translator memory, and note
(internally) whether the transiation 1s OK.

if the translation is OK, in‘hiate  Faich ‘rom memory, remember that
inere is an outstanding Fe'ch, ornd increme~t VAR by one (oniy the 9 Least
Significant Bits are affected; if ‘rey were all ones, then they are made
zero, but there is no furtner carry). When the memory responds with the
data, 1t 1s stored in MDR and the remembered Fetch condition is cleared.
Tre Fetch for RMW does not increment VAR,

If the (most recent) translation is CK, initiate a memory store ~ycle
of the word in NMDR; if the translation is not OK, suppress this minister, nd
co' the PAGE AR reguest F/F (F.121). If the "store” command is not set in

O the result 1s undefined.

If the last translation is not OK, suppress this ministep and set the
PAGE AR request (F.121). If there is still a memory fetch in progress, wait
for it to complcte (ard the data to be in MDR).




MLP-900 REFERENCE * .\ of 61
Operating Engine

(...): Indicates an action which is LB conditional; is an output from the LE.
LB Break-out: An implicit MINIFLOW branch to a location determined by e
Language Board.
4.2.11 SHIN. SHift INstruction
The SHIN ministep provides single- and double-register shifting by both fixed and

variable amounts. In addition, two of the variants provide the basic shift-and-add step
required for multiplication and division operations.

Syntax:
shin =
shop aleft sshif! smask testmode |
mulop aleft BY a4b smask testmode
shop =
[ ..as is... ]
aleft ;=
R37 | @P.17 1 sP.17
sshift ur

RIGHT shamoun! | LEFT shamount
shamount :=

Ot 11214161101 1420! @
smask =

(M17) 1 .empty.
testmode ::=

2 | .empty.
mulop =

MULTIPLY | DIVIDE
ab =

aleft | number | P.17

(Note that aleft, ab, and test mode are identical to the same constructs in the
GEZR ministep; shamount is similar to samount, with the additior of “"@", while
smask is similar to mask, with the deietion of [ M.17 ")

Examples:

SHIFT.EO.L R.12 LEFT 6 ;
SHIFT.OE.C @P.4 RIGHT ® ;
MULTIPLY R.20 BY 12 (M.17) ;

Semantics:
The SHIN ministep for the shifting of either a single register (SHIFT.SINGLE.L) or an

even/odd register pair (SHIFT.OE.L, SHIFT.OEL, SHIFT.OE.C, SHIFT.DUAL.L, NORMALIZE,
MULTIPLY, and DIVIDE) or a pair comprised of the designated register and the




MLP-900 REFERENCE MANUAL 62
Nperating Engine

shift-extension register, R.37 (SHIFT.RE.L, SHIFT.ER.L, and SHIFT.RE.C). .ne s done in
two 36-bit shifterc, with the designated register entering the primar, .nifter, and the
implied register ..lciing the extension shifter; after shifting the primary and extension
shifters are copied back into the same two registers. The varicus shift operations
specify various ways of connecting the two shifters.

Aleft: Designates the primary register to be shifted. For the =ven/odd double
shifts, aleft should be even, the next-higher-numbered register is the implied
second register of the shift. If aleft is an odd-numbered register, then two
copies of its vaiue enter the shift; only the primary shifter value is stored (this
allows a circular sk:ft of a single odd register; there is no circular shift of a
single even register available). For the register/extension double shifts, R.37 is
the impliec register; there is no difference between an even aleft and an odd
aleft.

Mask: The mask, f any, ‘ects only the aleft register itself; the implied register is
always unmasked. M <ed-out bits of the register enter the shifter as zero
bits; their value is not altered by the shift ministep (as in the GEAR normal
mode).

Testmode: Testmode, if set, leaves all the General Registers unchanged; only F/F's (and
P.7 in an indirect shift) are affected by the execution of 2 tect mode SHIN.

Shift Direction and Amount: The direction must be specified in the ministep as either
RIGHT (/) or LEFT (\); the shift amount (in bits) may be either direct (allowed
values are identical with the GEAR) or indirect (®). Vacated bit positions are
set to zero in all left shifts, to the value of SOS in ail right shifts.

Indirect Shift: The shift amount 1s taken from the shift counter, P.7; the actual shift
amount is 0,1,2,4,10, or 20 (octal)--whichever is the largest value not exceeding
the contents of the pointer. The pointer is decremented by the amount of the
shift, and, if the new value 1s zero, the SHD (Shift Done) pseudo-F/F 1s set. A
paired BRAT ministzp car be used to create a one-cycle shift loop to shift by an
arbitrary shift amount. Note that an indirect shift cannot be paired with a BRAD
ministep, since the MLP cannot modify two pointers simultaneously.

Operations:

SHIFT.SINGLE.L 15 a singie register shift identical to the shifting of a GEAR; this SHIN
1s useful only for an indirect wingle register shift.

S' TTEOL, SHIFT.OEL, SH. T.DUALL, SHIFT.OE.C are the straight even/odd shift
vperations, differing in the connections between the two shift registers:

EO.L (Even intao Odd L near) -- bits shifted out of the even word (primary
shifter) enter the ©dd v.ard (extension shifter), while bits shifted out of the
odd word are losi.

OE.L (Odd into Even Linear) -- bits shifted out of the even word are lost, while
bits shifted out ¢\ the odd word enter the even word.

DUAL.L -- bits leaving either word are lost.

EOQ.C (Even and Odd Circular) -- bits shifted out of either word enter the other
one.




i, i S

MLP-900 REFERENCE MANUAL 63
Operating Engine

SHIFT.RE.L, SHIFT.ER.L, SHIFT.RE.C are the equivalent operations performed on the
register and R.37, the Extension, as a pair:
RF L (Resister .nto Extension Linear)

ER.L (Extension into Register Linear)
RE.C (Register and Extension Linear)

MULTIPLY is a single step of a muitiplication loop, with the evenfodd pair
representing the multiplicand and partial product, ard the second operand
representing the multiplier.

MULTIPLY X BY Y (M.2) is equivalent to the sequence
X1 « X1 AND | # ! X1 is the odd reg paired with X
IF ZSP THEN, BEGIN
XeY+0(MZ)
ELSE
XeX+Y(MZ)!add Y if LSB of X1 is set
END ;
SHIFT.EO.L X RIGHT | (M.Z);
except for timing, and consequently, F/F values.

DIVIDE is a single step of a division loop, with the =ven/odd pair representing the
dividend and quotient, and the second operand . epresenting the divisor.
DIVIDE X BY Y (M.2) is equivalent to the sequence

IF COF.1 THEN.BEGIN ! the current setting selects
X « X -Y(MZ) !either subtraction
ELSE
X « X +Y{MZ) !cr addition
END ;
SHIFT.OE.L X LEFT 1 M.2);
IF COF.1 THEN. BEGIN ! the new setting (from above)
X1 « X1 OR 1 !is the new quotient bit in X1
END ;
Except for timirng, COF.1 must be properly initialized for a divide loop;
subsequent iterations use the value set in the previous iteration.

NORMALIZE is a variant on SHIFT.OE.L in which the language board controls the
amount of shifting--and presumably the counting up of the exponent. The
operation is undefined on the NULL ianguage board.

Flip-Flops
The following F/F’s are used uniformly in all SHIN ministeps:

SOS - on all right shifts (including MULTIPLY) a copy of SOS is brought into
vacated bit positions--into the unconnected register in a linear shift;
into both registers in the dual shift; not used in a circular shift.

SHE - on all linear left shifts, SHE is set to the value of the last bit shifted out
of the unconnected register. Not affected by ciicular or dual shifts.

SOF - on all linear left shifts, SOF is set if any bit shifted out of the
unconnecte 1 register is different from the setting of SOS. Not atfected
by circular or dual shifts. SOF is never cleared by a shift.

SHD : pseduo-F/F which is valid only during an indirect shift cycle. SHD is set
only during a NORMALIZE cycle.

NMD - pseudo-F/F valid only during a NORMALIZE cycle.




MLP-9C0 REFERENCE MANUAL 64
Operating fngine

The following F/F's are associated with the acder, and are affected only by the

MULTIPLY and DIV!DE operations.
ISP, ZRF.1 - reflect a zero sum (ZSP is valid this cycie; {RF.]1 next cycle).

ZRF.2 - copy of previous value of ZRF.1.
COP, COF.l - refioct value of the carry cut of the adder. (COF 1 is also an inout

to DIVIDE.)
COF.2 - copy of previous vatue of COF.].

4212 GENT. GENeral gata Transfer

This ministep providee nata transfer to and from QE Registers. It is used in

conjunctior w:th the CE ...ri.step MOVE lo pruvide interengine data transfers.
Syantax:
gent =
genta « gentb ;| genta — gentc ;1 gentb « genta ;
genta =
gentar | genta- @ P.17 i gentar x P.17 | XBUS
gentar =

R37 I MISC.37 1 A.1777 | XLATQR.777 |
SUPVLB.377 I LB.1777

gentb =

gentor 1 gentbr ® P17 1 gentbr x P.17 | X3US
gentbr =

R37 I M.17 | MISC.37
gentc =

number | P.17
Exa~ples:

k.12 « 1234567 ;
MISC.12 ~ XBUS ;
Al23 - P.12;

M.1Z - LB.1234;
XBUS ~ A 1234 ;

Semantics:

GENT performs direct transfers of the contents of OE registers (Table 4.1). The
ccrtents of the right register 1 copied into the left register. Where XBUS is used as a
destination (left) or a source (right), the GENT must be paired with a corresponding
MOVE to transfer data in the CE.




MLF-900 REFERENCE MANUAL 65
Control Engine

4.3 CONTROL ENGINE
OPERANDS

The Control engine (CE) is the ministep decoding and sequencing unit; it includes th-
current (ministep) aadress register. The control memory interface, a 16-word
subroutine ~.ack (uced for both subroutine calls and interrupts), the interrupt and
protection mechanisms, 256 individually addressable F/F’s, and 16 8-bit pointer
registers.

CE ministeps allow conditionai branching, including subroutine call and return, and
simple F/F and pointer register computations.

MLP-900 interrupts are known as "Action Requests” (AR’s). There are 32 action
request levels, of which 24 are privileged. Of the eight remaining levels available to
user microcode, only two have dedicated functions; the others can be user-defined.

43.1 F.377. Flip-Flops

CE.0-CE.37 are 32 byte. of individually addressable F,/F’s known as F.0 - F.377.
These F/F's are divided into a number of functional groups. F.0 - F.277 are real F/F’s;
F.300 - F.377 are pseudo-F/F’s.

F/F’s may be set and tested directly by most of th. CE ministeps. Other ministeps
affect specific F/F’s indirectly as a side effect. For exampie, GEAR and SHIN use and
modify one byte of F/F’s, and determine some pseudo-F/F’s. Language Boards and AR’s
also use certain F/F’s.

Certain F/F’s are protected; that is, the user cannot modify them but can reference
them. These protected F/F’s are indicated in the tables and text below by an asterisk
(%) to the left of the F/F name.

Table 4.3 lists all the F/F's. The F/F number is the sum of the numbers at the top
of the column and in the extreme left row in which the F/F 1s located. Where the F/F
number appears (e.g., F.135), the F/F is unassigned; where tF.ee dashes (---) appear, it
is unimplemented.

The pseudo-F/F in CE 30 (F.300-F.307), plus SHD (F.353), reflect conditions which
arise in the current cycle, and are defined only when the ippropriate ministeps are
being executed; all other E/F’s reflect conditions as of the begirning of the current
cycle. A reference to any F/F in CE.30 causes a one-cycle “hiccup™; the cycie requires
two clocks to execute.




MLP-900 REFERENCE MANUAL 66

Co

00
01
02
03
04
05
06
07

10
1l
12
13
14
15
16
17

20
21
22
23
24
25
26
27

30
3!
32
33
34
35
26
37

ntrol Engine
Tabl: 4.3
Flip-Flops (Names and Groups)
FC F.40 F.100
ul.0 LBC.0 POWERs
1 N PANIC*
2 .2 OPARs=
3 3 EPARx
4 4 SOVF «
5 5 SUNF=
6 .6 UOVF
7 7 UUNF «
GL10 LBC.10 CMADRs
A1 A1 AERR=
12 12 BERR+
.13 13 PERRx
.14 .14 MMAL +
.15 15 MMNR#
.16 .16 MMERR«
17 A7 RMWTIME «
Gl.20 SLBC.O= TASKx
21 1 PAGEs
22 2% SUPVF *
23 3s PROT+
24 4s VADRx
25 B F.125%
2 6% F.126%
27 7x F.127%
GI.30 SLBC.10# TRAC
31 dls F.131
.32 .i2% F.132
.33 13s LBAR
.34 14s F 134
.35 152 F.135
.36 .16x F.136
37 A7« F.137

*+ Cee the AR cection following.

F.140
COF.1
ZRF.1

F.144
SHE
S0S
SOF

ARLS
TSIM
TSL
ITRAC
LBI.O
A
.2
3

SARM.O*
s
F.162%
F.163%
CKCs
TRBY*
CKTx
MBSs

ARL.1%
2%
.3t
Ax

MOD.Ox
A

SUPVLBs=

SUPVCTs




MLP-900 REFERENCE MANUAL 67
Control Engine

Table 4.3 (Continued)

F.200 f.240 F.300 F.340
00 Si.O IM.0 CoP SSW.0
0l 1 1 5P !
02 2 2 =oo 2
03 3 3 coo 3
04 4 4 THZ 4
05 5 5 WAR -5
06 6 6 NMD .6
07 7 7 CCP 7
10 SI.10 IM.10 TRUE ooc
11 1 11 oo NPT
12 12 Jd2 oo s
13 13 .13 =oo SHD
14 14 14 --- 0sIL.o
15 .15 .15 oo A
16 .16 .16 --- .2
17 A7 17 --- 3
20 $1.20 IM.20 OLB.O 2510
21 21 21 J A
22 .22 .22 .2 2
23 .23 .23 3 3
24 .24 .24 CcLB.O 4
25 .25 .25 A 5
26 .26 .26 2 6
27 .27 .27 3 7
30 SL.3N IM.30 cLB.4 Z51.10
31 31 31 5 11
32 .32 .32 .6 A2
33 .33 33 7 13
34 37 34 .10 T310
35 .35 .35 A1 B
36 .36 .36 A2 FSIO
37 37 37 13 A

The following are real F/F's:

Gl.O-37 (F.0-37) General Indicators: available to the user's MINIFLOW for abitrary usage.

LBC.0-17 (F.40-57) Language Board Controls: gensral-purpose indicators which are also
LB inputs.

#SLBC.0-17 (F.60-77) Supervisor Language Board Controls

+  See the AR section foliowing.




MLP-900 REFERINCE MANUAL 68
Control Engine

tPOWER; PANIC; OPAR,;..(F.100-127) Action Requests

TRAC; LBAR;...(F.130-137) AR’s (user leve!): Each F/F represents a specific pending AR
which causes a microcode interrupt whenever its appropriate level is enabled. Each
bit can be set either hy the specific occurrence it represernts or by a ministep.s

COF.1,2; ZRF.1,2; SHE, SOS, SOF (F.140-147) Carryout F/F, Zero F/F, Shift Extension,
Shift Out Sign, Shift Out Fiag: OE-associated (GEAR and SHIN) F/F’s; fully described in
the GEAR and SHIN sections.

ARL.5 (F..30) AR Lockout: user-level AR lockout.

TSIN (F.151) Target System Inhibit %

TSL (F.152) Target System Lockout #

ITRAC (F.153) Initiate Trace *

LBILO-3 (F.154-157) Language Board Indicators: four incicators which the Language
Board can both sense ara set.

*+SARM.O,1 (F.160,161) Supervisor AR Masks: control the compare Action Requests.

*CKC (F.164) Clock Control

«TRBY (F.165) Translator Bypass

#CKT {F.166) Check Test

*tMBS (F.I67) Mask Bank Selector: selects current mask bank.

*ARL.1-4 (F.170-173) AR Lockout: lockouts for privileged AR levels,

sM0D.0,1 (F.174, 175) Mode Bits: stored in Control Memory by a BLOT WCM.

*SUPVLB (F.176) Supervisor LB: selects Supervisor LB.

*SUPVCT (F.177) Supervisor Control: forces MLP-900 into supervisor mode regardless
of the mode bit in CM.

S1.0-37 (F.200-237) Target System Interrupt F/F’s:x

IM.0-37 (F.240-277) Target System Interrupt Masksx

The following are pseudo-F/F’s.

COP (F.300) Carryout Pseudo: see GEAR and SHIN instructions.

ISP (F.301) Zero Sense Pseudo: see GEAR and SHIN instructions.

THZ (F.304) Through Zero: see ERAD.

WAR (F.305) Wait AR: Wait AR (one of F.133-134) pending.

NMD (F.306) Normalize Done: LB output. See SHIN normalize.

CCP (F.307) Check Carry Pseudo: carryout from the check adder.

TRUE (F.3.:0): always set.

0OLB.0-3 (F.320-323) Operating Engine LB outputs

CLB.0-13 (F.324-337) Control Engine LB outputs: sense outputs for the current LB.

SSW.0-7 (F.3°0-347) Sense Switches: on the MLP control panels.

NPT (F.351) Interrupt Pending: a target system interrupt is pending.

SHD (F.383) Shitt Done: s2e SHIN.

051.0-3 (F.354-357) One Sense Indicate: senses a value of -1 (25%) in P.0-3,
respectively.

2S1.0-13 (F.360-373) Zero Sense Indicate: senses a value of O in P.0-13, respectively.

T1S51.0,1 (F.374, 375) Three Sznse Indicate: senses a value of 3 in P.0,1, respectively.

*  See the AR section following.




MLP-900 REFERENCE MANUAL 69
= Control Engine

FS1.0,1 (F.376, 377) Four Sense Indicate: senses a value of 4 in P.O,1, respectively.

4.3.2 P.17. Pointer Registers

There are 16 8-bit Pointer Registers, which can be used in the OE to indirectly
address registers (e.g., RO @ P.3 is the general register determined by the low-order 5
bits of F.3). The Pointer Reg:.sters can be loaded by a MOVE instruction, modified by
the BRAD instruction, and tested inuirectly througn the pointer-sense pseudo-F/F’s.

The following pointers have special-purpose functions:
P.0-3: used and modified by the BLOT ministep; stherwise generally available.
P.4-5: no dedicated functions.
P.6: Stack Pointer (See Stack Regsters).
P.7: Shift Counter for SHIN (see the SHIN instruction).
P.10-17: Pseudo-pointers set by the current Language Board.

The following pseudo-F/F’s are TRUE if and only if the appropriate pointer has exactly
the specified value.
0651.0-051.3: cense all ones (i.e, -1 or 377(8)) in P.0 through P.3, respectively.
Z51.0-7S1.11: sense zero (0) in P.0 and P.1!, respectively.
TSI.O-TSL1: sense the value three (3) in P.O and P.i, respectively.
FSI.O-FSI.1: sense the vaiue four (4) in P.0 and P.1, respectively.

't a BRAD modifies a pointer ana simuitareously tests that pointer’s sense
pseudo-F/F’s, the old value of the pointer is sensed.

4.3.3 Miscellaneous Registers

The Miscellaneous CE Registers are CE.B0-CE.77. Therr functions are

The double register pair (CE.AQ,CE61) is the MINIFLOW status word, of which only 2
bits are used.

LB selects the active Language Board set.

00 01102 03]04 05 06 07]08 09 10 1% 12 13 14 15

| -

/ 7
/ /j/é// i

Figure 4.3  MINIFLOW stotus word,

e . = - - Ty T :‘




MLP-900 REFERENCE MANUAL 70
Control Engire

Current Address Register.

The double register pair (CE.62,CE.63) :s the current address register. It contains
the address of the current instruction or of the first instruction of a pair. A MOVE to
the current Address Register is a no-op.

Exchange Bus In.

CE.64 - CE.67 comprise the Exchange Buc into the CE from the OE. It is addressed
as XBUS.0 - XBUS.3 on the left side of an ascignment in the MOVE ministep.

Exchange Bus Qut.

CE.70 - CE.73 comprise the Exchange 3us out of the CE into the OE. It is addressed
as XBUS.O - ¥XBUS.3 on the right side of the assignment in the MOVE ministep.

Exchapge Buses.

The Exchange Buses are pseudo-registers connected to bits 4 to 35 of the
Exchange Bus in the OE. XBUS.O connects to bits 4-11, XBUS.1 to 12-19, XBUS.2 to
20-27, and XBUS.3 to 28-35.

CE.74 - CE.77 do not exist.
434 S.17. Subpbroutine Stack

The Subroutine Stack corsists of 16 16-bit registers. The Subroutine Stack,
together with P.6 (the Stact Pointer), 1s automatically used in subroutine calls and
returns, and AR’s. A subrautine call Ja BEAD or BENT ministep) branches to the
effective address and pushes the return address onto the top of the stack. This is
done by incrementing P.6 oy 1| and then using the four low-order bits to select the
stack word to be loaded with the return address. In addition, if the four iow-order bits
of P& were 16(8) (indicating that the stack is now full), either a supervisor stack
overflow (F.104) or a user stack overflow (F.106) is requested, according to the mode of
the calier.

Taking an AR consists of pushing the interrupied address onto the stack and
branching to the AR entry point, simultaneously seiting the appropriate lockout bit
(ARL.1-5).

A return (i.e., a BORE ministep’ loads the current address register from the top of
the stack and then decrements P.6 by 1. If the stack is empty (the four least significant
bits of P.6 are 0), and if ARL.2 is off, a stack underflow of the appropriate kind is taken
(F.105 if supervisor; F.107 if user). The pointer is left unchanged and the current
address (i.e, the aadress of the BORE instruction) is stacked in S.0.




MLP-900

REFERENCE MANUAL 71

Control Engine

If the stack is empty but ARL.2 is on, the BORL returns normally, decrementing P.6
as it goes.

OPERATORS

The CE operators are:

BRAT Bran-h'with Test - Provides ccnditional jumps.

3ENT Brancih and Enter - Provides conditional subroutine calls.

BORE Branch or Return - Provides conditional subroutine ieturns.

BRAD Branch and Modify - Provides loop control.

BEAD Branch Extended Address - Provides conditional and unconditional
subroutine calls and jumps. !t has a larger addressing capability than BRAT

or BENT.

BLOT Block Transfer provides loop control together with data transfers with
the OE.

IMAST Manipulate Status - Manipulates F/F’s.

MOVE Move CE Registers - This is the general data transfer instruction for
the CE.

432 BRAT. BRAnch with Test

This ministep provides conditional jumps.

Syntax:
brat ::=
/IF booleanexp THEN GOTO relativelabel END;
booleanexp ::=
ffexp boolzanop fiexp !
(F.377 « ffexp) 1 NOT (F.377 « ffexp)
ffexp =
NOT F.377 | F.377 | TRUE | FALSE
booleanop :=

AND | OR | XOR

relativelabel ::=

sign number | identifier

sign

+1-




MLP-900 REFERENCE MANUAL 72
Control Engine

Examples:

/IF (F.0 « TRUE) THEN GOTC +200 END;

/IF NOT (F.1 «~ FALSE) THEN GOTO -177 ENC;
/IF F.3 OR F.3 THEN GOTC TAGL7 END;

/IF NOT F.4 AND F.5 THEN GOTO +7 END;

/IF F.377 XOR NOT F.377 THEN GOTO -3 END;
/IF NOT F.1 OR NOT F.4 THEN GOTQ +166 END;

Semantics:
The execution of the BRAT ministep logically ace in two perts. First, the
boolean expression (uooleanexp) is evaluated. |If . woan expression evaluates to

true, then the branch is taken, otherwise execution continues with the next instruction.

Boolean expression evaluation. If a store («) is specified in the boclean expression,
the store occurs wrether the branch is taken or not. TRUE is the F/F (130) and FALSE
is NOT F.130.

Brancn destiration. The oranch cestination is relative to the current instruction.
The limits on the branrch destination are +200 and -177 inclusive. Ac with all relative
branches, addressing beyond or before the ends of control memory wili cause a location
counter wraparound. Thus a transfer +70 from iocation 7747 will go to location 0037.
43.6 BENT. Branch and ENTer

This ministep provides conditional subroutine calls,

Syntax:

bent =
/IF booleanexp THEN CALL relztivelabel END;

Examples:

[IF (F.17 « NOT F.1) THEN CALL SUB END;

/IF F.202 OR F.206 THEN CALL +1 END;

/IF F.4 XOR NOT F.77 THEN CALL ~27 END;
Semantics:

The execution of the BENT ministep 1s similiar to the BRAT. The only difference is
that when the branch is taken, a subroutine entry is executed. Tre address of the next
instruction is loadea into the sukroutine stack (S.0 - S.17).

4.3.; 8O0RE. Branch Or REturn

This ministep provides conditional subroutine returns. (There is no unconditional
subroutine return.)

o o




MLP-900 REFERFNCE MANUAL 73
Control cngine

Syntax:
bore ::=
/IF booleanexp THEN GOTO relativ elabel ELSE RETURN END,
Examples:

/IF F.1 OR NOT F.3 THEN GOTO -3 ELSE RETURN ENO;
/IF TRUE OR F.0 THEN GOTO +1 ELSE RETURN END;

Semantics:

The e ecution of the ministep 1s identical to BRAT if the ooolean expression
evaluates to true. |If the expression evaluates to false, then instead of continuing at the
next instruction, a subroutine return is executed. As with both BRAT and BENT, if a
store is indicated, it occurs whether the expression evaluates to true or false.

438 BRAD. BRanch And molify pointer
This ministep provides primitive loop control.
Syntax:

brzd ::=

/bradop P.7 BY number ;

IF ffexp THEN GOTO relativelabe! END;
bradop =

INCREMENT | DECREMENT

Examples:

/INCREMENT P.3 BY 7;
IF F.17 THEN GOTO TAG53 END;

/OECREMENT P.6 BY 10;
IF F.103 THEN GCTO +12 END;

Semantics.

The BRAD ministep is used for loop ard count control. It increments or decrements
a counting pointer (P.0 - P.7) and does a conditional refative brarch. (Note that BRAD
should NOT be executed in a pair with ¢ SHIN ministep using indirect shift.)

Pointer QOptions. If a noncounting (pseudo) pointer is specified, the contents of the
pointer are not modified.

Increment/Decrement Amounts. The largest increment is 7 and the largest
decrement is 10. The THrough Zero (THZ) pseudo-F/F is defined only for a BRAD
ministep. It is true when the ministep causes the pointer value to pass "through zero”




MLF-900 REFERENCE MANUAL 74
Control cngine

an INCREMENT which causes overflow or a DECREMENT which causes unde. flow the new
pointer value is correct moduln 400 (8).

43.9 BEAD. Branch Extended ALdrecs

This ministep provides unconditional jumps and subroutine calls. It additionally
provides for indexed jumps and subroutine calls. BcAD is the only transfer which can
address beyond the relative address rang~ of -200(128) through +177(127).

Syntax:

bead ::=

beadO | beadl | bead? | tead3
beado :=

/IF ftexp THEN transferop labei ci\D;
“oadl u=

Jtransferop label <P.17>;
bead? :=

[transferor +1 <P.17>;
bead3 .:=

/IF ffe".p THEN transferop sign laber cND ;
transferop ::=

CALL I GOiD
iabel ::=

number | identifier

Examnles:

JIF F.1 THEN GOTO TAG67 END;

JIF NOT F.13 THEN CALL. 200 END;
JCALL TAG31 <P57>;

JGOTO 277 <P.11>;

JCALL +1 <P.4>;

JGOTO +1 <P.11>;

JIF TRUE THEN GOTO +3711 ENG;

JIF NOT F.11 THEN GOTO +TAG67 END;

Semantics:

There are four types or BEAD ministeps. The tnajor function of the SEAD is to
rrovide axtended addressing capability. All BEADs can address all of control memory
All BEADs ~ay optionc!ly execute a subroutine enter. The BEAD types are as follows:

® BEADO - Conditiona: Absolute
& BEADIL - Absolute plus Pointer
o BEAD? - Relative plus Pointer
® BEACD3 - Conditiona!l Relative

ot ik ot fl bt e




MLP-900 REFERENCE MANUAL 75
Control Engine

3EADO - Conditional Absolute. If the specified F/F expression is true, control is

transferred absoiutely to any location (label) in control memory.

BEAD] - Absolute plus Pointer. Control is unconditionally transferred to the specified
location (label) offset by the 8-bit positive quantity in the specified pointer register.

BEAD2 - Relative plus Pr'nter. Control is unconditionally transferred to the next
instruction location p.  the 8-bit positive quantity in the specified pointer register.
This instruction always tr. ‘~fers in a forward direction.

BEAD3 - Conditional Relative. If the specified F/F expression i: true, control is

transferred relatively to any location in control memory.
43.10 BLOT. BLOck Transfer
BLOT is used to establish loops to transfer blocks of data. The execution of a
single BLOT ministep can simultaneously move one word of data, modify some pointers,
and conditionaliy branch. There are six types of BLOTs: one may be used to move data
in the OE, two raference the Subroutine Return Stack, and three reference Control
Memory (the only instruction that do so).
Syntax:
olot:=
blotcode relativelabe!;
blotcode::=
MOE | RSB | WSB | RCw. | WCM | /'8P

Examples:

RCM +7;
WBP -5;

Semantics:
There are six types of BLOTs.

® MOC - No CE data is moved (i.2.. step 1 below is null), but steps 2 and 3 (see
below) are performed;

® RSB - Move one word from Suvroutine Stack to XBUS;
® WSB - Write o1  word into Subroutine Stack from XBUS;
® RCM - Read one word fr om control memory; send to XBUS;

¢ WCM - Write on2 worr, into vontrol memory from XBUS with good parity; and

Pap——




MLP-900 REFERENCE MANUAL 76
Control Engine

® WBP - Write one word irto control memory from XBUS with bad parity.

Three steps occur simultaneously in all types of BLOT transfers. They are as
feilows:

1) Moving CE data to or from the XBUS, as specified by the BLOT type

2) Modifying Pointers
Pointer Register modification is identical for all six types of block transfers. P.0O.
and P.2/P.3 (as a single 16-bit register) are each incremented by cne and P.1 is
decremented bty one.

Note that the data-move and conditional branch paris of the BLOT, plus any
paired OE ministep, use the old values of the Pointer Registers.

3) Conditional Branching.
The conditional branch function is identical for all six types of block transfer.
Each time BLOT is executed, P.1 (the word counter) is tested. When a count of

one is present, execution continues with the next i~ 1. . .1 contains any
count other than one, the control is transferred to ‘ch address. A word
count of zero initially loaded into P.1 may be used to . - 256 wards.

Tha data transfer functions for the various BLOTS are

MOE: No CE data is moved, but cteps 2 and 3 above are performed.

Example:
Copv the mask registers to memory beginming at the locatinn addressed by R.O
+1.
PO«0O 'mask. pointer
P.1 « 20 'loop count
SAD R.O +! 'Three instruction
SOP M.0aP.0 'store loop
MOE -2;

Comment: MCE just provides sequence control. All the data

is moved in the QF.
RSB: Read one word from Subroutine Stack into XBLIS (XBUS.2; XBUS.3)
WSB: Write one wora mto Subroutine Stack from XBUS

These BLOT transfers reaa and write Subroutine Stack words. They are 16 bits
wide, read from or written to the rightmost 16 bits (i.e, half-one [H.1]) of XBUS.
Tihe low-order 4 bits of P.3 select the stack word (5.0-5.17).




MLP-900 REFERENCE MANUAL 77
Control Engine
Exampie:

Copy the subroutine stack to Auxiliary Memory, beginning at A.14000@P.0
(assuming that P.0 already has the correct initial index value).

P.1 « 20 loop count

P3+«0 'Subroutine Stack Pointer
A.1400aP.0 « XBUS Two Instruction

RSB -1 'GENT/BLOT loop

Comment: Now P.0 is 20 greater than at start. P.1 =0. P3 = 20;

RCM: Read one word from Contro! Memory intc XBUS
WCM: Write one word intc Control Memory from XBUS with good parity
WBP: Write one word into Conirol Memory from XBUS with bed parity

These BLOT transfers are the only instructions that can reference control memory;
they are privileged. They are 36 bits wide, reading and writing to the X8!S using
P.2/.3 to select the control memcry address.

RCM and WBP are used only in diagnostics. WCM is used for swapping in a new
user.

A control memory word + 40 bits wide. Thirty-six data or instruction bits come
from the XBUS, two mode bits come from F/F’s MOD.O (F.174) and MOD.1 (F.175). One
bit is a parity bit--either grod or bad-- and one is unused and is always 0. Parity is
generated automatically. WCM generates odd (good) parity; WBP generates even (bad)
parily.

RCM will generate a control muemory parity AR if parity is bad. If parity is good,
then the 36 data/instruction bits are moved to the XBUS; the mode bits cannot e
retrieved.

Example:

Loac the first 70C0 locations in control memory from main memn(, starting at the
location addressed by RO.

Pl«0 'good for 256 iterations
P2« 0;P3«0 'control memory address
LOOP:
FOP R.O +0;
WOS XBUS "Two-instructior. loop
WCM -1 'to read 400(8) words
RO « RO + 400;
R.1 B3 « P.2;
R.1 XOR 16;

JIF NOT ZSP THEN GOTQ LCNHP END;




MLP-900 REFERTNCE MANUAL 78
Control Engine

43.11 MAST. MAnipulate STatus
This ministep manipulates F/F’s,
Syntax:

mast =
F.3/7 ~ ffexp booleanop fiexp ; |
[IF tfexp THEN F.377 « tfexp END ;

Examples:

[F.1 « F.17 OR NOT F.20 ;

/F.33 « NOT F.106 XOR F.13;
/F.106 « TRUE OR TRUE ;

JIF F.6 THEN F.11t « NOT F.4 END ;
/IF NOT F.11 THEN F.4 ~ F.22 END ;

Semantics:
There are two types of MAST ministeps, the unconditional and conditional store.

Unconditional MAST. This form of MAST stores a two-term bcoiean expression into
a third F/F. Any F/F's may be used several times. For example, the following will
complement F.7:

F.7 « NOT F.7 OR NOT F.7 ;

Conditiora: MAST.  Tris forrn of MAST is much like the conditional BEAD. If the F/F
being tested 1s true, a store is made. In eithes case the program continues a‘ the next
statement. For example, the following two MAST statements have the same result:

[F.7 «= F.7 OR NOT F.10 ;

/IF NOT F.7 THEN F.7 « NOT F.10 END ;

43.12 MOVE. MOVE CE Registers

This ministep provides data transfer between CE registers; it is also used in
conjunction with the OE ministep GENT to provide interengine data transfers.

Syntax:
move ;=
mi |l mff Il mimc!malimdb
mi =
CE.137 - number (nuraper) ;
mff ::=

CE.137 « F.377 (number) ;




MLP-900 REFERENCE MANUAL 79
Control Engine

m =

CE.137 « CE.137 (number) ;
mec :=

CE.137 « NOT CE.137 (numbe. ) ;
ncl =

CE.137 « CE.137 [number];
mdb =

(CE.137) « (CE.137);

Examples:

CE.17 «5(7);

P.O « 17 (79);

CE.1l11 « F.113 (355);
GOR.1 « GIR.3 (377);
XBUS.3 « NOT CE.4 (11);
CE.4 « XBUS.0 [174];
(CE.1) « (CE.O);

5.0 « (P.0O);

Semantics:

The MOVE ministep moves data within the CE. There are six types of MOVE
ministeps. All but one set one CE register, making use of an immediate mask value
snecified in parentheses or brackets. The mask value is similar to the Mask Register
ised in the OE; only bits corresponding to one’s in the mask are modified. The last
type copies an even/odd register pair to another even/odd register pair; the mask is
not used.

® ‘Jove Immediate - CE.137 « number (number);
All masked-in bits of the left CE register receive the carresponding value of the
cpecified right constant operand. As in the GEAR, the w.ask is specified in ()’s.

® MOVE F/F - CE.137 « F.377 (number);
Al! masked-in bits of the left CE register receive the value of the specified fiip-flop.

® MOVE - CE.137 « CE.137 (number);
All masked-in bits of the left CE register receive the corresponding value of the
specified right CE register.

® Move Complemented - CE.i37 « NOT CE.137 (number);
All masked-in bits of the le't CE register receive the complement of the
corresponding ‘2lue of the specified right CE Register.

® Move and Clear - CE..37 « CE.137 [number];
Same as Move (3), but, in addition, the masked-out bits are c'~ared to zero. Note
that the parentheses and orackets (() and []) are used in ¢ manner similar to the
GEAR operation.




MLP-900 REFERENCE MANUAL 80
Cortrol Engine

® Move Double Byte - (CE.137) « (CE.137)

Moves one pair of CE registers to another pair of CE registers. The pairs are
always an even/odd register pair. Thus (CE.4) and (CE.D) both specify the pair
(CE.4,CES). When buth registers specified are even or both odd, the move will be
normal, that is, even to even and odd to odd. However, when the specified registers
are one even and one odd, the move will be reversed, that is, even to odd and odd
to even. S.0 - S.17 are defined as the appropriale double CE Ragisters to reference
the subroutine stack for the MOVE ministep.

ACTION REQUESTS

There are 32 AR F/f’s (F.100-137). Each one is connected to an interrupt location
(see address on Table 4.4 velow); in addition, each AR is associated with one of five
lockout levels (ARL.1-5). ARL.l locks out all ARs; ARL.2 all ARs on levels 2-5, etc.

When the CE senses the existernce of an immediate AR that is ot locked out, the
current clock cycle ic inhibited (i.e., the current instruction/ministep is suppressed) and
in the next cycle the MLP-900 takes the AR by performing a call (using the stack to
store the interrupted address) to the AR entry point, simultaneously setting the lockout
bit of the interrupt level being entered. For those ARs of type "Wait," the AR is left
pending until the next CEDE/Wait instruction, when the AR takes place (if not locked out
by a higher level), suppressing the CENE/ Wait instruction. The AR F/F’s are not turned
off by the act of taking the AR, but must be turned off by the inte: upt routine code.

4.3.13 User-Level Action Requests

There are eight AR levels avallable to the user microcode: three immediate and five
wait. Of these eight, two (TRAC and LBAR) have assigned functions.

A user trace function is implemenied through the TRAC AR and the ITRAC F/F.
Therefore, a TRAC AR routine of the fol.owing form:
TRAC « False;

<trace conditions>
ARLS ~ False;
IF (ITRAC « True) Return
will ke entered after every user ministep (except other user AR rautines). To initiate

tracing, TRAC must be <et cnce.

LBAR i1s a Language Board output.




MLP-900 REFERENCE MANUAL 81
Control Engine

43.14 Target System Interrupts

A Target System AR takes place only during a CEDE/WIN (which represents the
beginning of a new Target System instruction cycies), if any Target System inte -rupt
(F.200-237) and its corresponding mask (F.24C-277) are both set; furthermore, all
ARL.1-5, TSL, and TSIN lockouts must be clear. In taking a Target System !nterrupt, no
lockout bit is set. If set by the microcode, TSl. prevents all Target Sysiem Interrupts
until it is cleared by the microcode. TSIN prevents the Target System inte ‘rupts at the
next CEDE/WIN, at which time TSIN is cleared Tie pseudo F/F NPT (F.3')1) is true if
any target system interrupt is set and enables.




MLP-900 REFERENCE MANUAL 82
Control Engine

Table 4.4
Action Requests

BIT TYPE ADDRESS LEVEL CAUSE

EEEREEERERRRRRERERERPRRRRRERR KRR EXEARF ERARARRRESEERRRERRRRRRRR RN ERS
POWERx Immediate 7700 ARL.1  Power lcss warnirg

28 NICs " 7700 " Interrupt caused by PDP-10 clears
immediately

RERRREKEERRREEFRRERERREREERRRREREREREIRRRRRRAREXF AR ERRRRRRRRERRRARER
OPARx " 7702 ARL.2 Parity error from the odd bank of
the Control Memory

EPAR® " 7704 " Parity error from the even bank of
the c.ntrol Memory

SQUFFx “ 7706 " Stack overflow from superviscr
mode

SUNF» ! 7710 “ Stack underflow from supervisor
mode

UOVF=x " 7712 " Stack overflow trom user mode

UUNF % " 7714 " Stack undertlow from user mode

EXKEEER R AR R KRR KRR KR KRR KRR R R KRR KRR T AR S KRR RN RK X

CMADRx " 7716 ARL3 Control Merrcry address comparand
(Misc.37) matches tne Current
Address Register wh.le SARM.O

is on

AERRx " 7720 " The: two adders in the OE
differed

BERR# " 7722 " Parity error on internal Exchange
Bus

PERRx " 7724 " Parity error in the translator
memory

MMAL= " 7726 " Attempt to use VAR beyond that

allowed by ALR (Misc.20)

*  Indicates a privileged AR




MLP-900 REFERENCE MANUAL 83
Control Engine

Table 4.4 {Continued)

BIT TYPE ADDRESS LEVEL CAUSE
BREEEEERXREREREKF ERRKRRR O R X R E R AR R R KRR RA KRR R EEKRERE LXK AL
MMNR= Immediaie 7730 ARL3  Memory did not respond with correct

signal in time designated for Main
Memory timeout

MMERR* " 7732 " Main Memory parity error

KRMWTIME* " 7734 " The SOP of a read-modify-write
sequence has not occurred within the
time designated for RMW timeout

I3 3 2222222 3222323223+ 233 32323232323 2232 2333323233332 3333232222213

TASK- " 7736 ARL4 Interrupt from the PDP-10

PAGE«x " 7740 " A CEDE Wait or Store notes that the
tast translation is bad

SUPVFx " 7742 " Attempt by user mode code to execute
a privileged ministep or modify
a privileged register

PROTx " 7744 " An attempt by user mode code to
pranc' into Microvisor code at nther
than an entry point

VADR: " 7746 " Virtual address comparand (Misc.37)
matches VAR while SARM.1 is on

F.125% " 7750 " Three unassigned AR’s

F.126% " 7752 "

F.127% " 7754 "

ERERERRRRTERRER R AR KRR R R R R X R R R KRR R KRR X KRR KA ER KR XL R

TRAC " 7756 ARLS5  Set by user microcode,
or by ITPAC aiter a one-cycle
delay

F.131 " 7760 " Two unassigned AR,

F.132 " 7762 "

LBAR Wait 7764 " Language -Board-generated AR

F.134 " 776€ " Four unassigned AR’s

F.135 " 7770 "

F.136 " 7772 "

F.137 " 7774 "

--- Win 7776  --- Some " rget sycten interrupt
(107 grd it mask (IMV-37)

—:__Tn_d(rafe'. a prinlesed AP ire both set




85

APPENDIX A. GPM RESERVED WORDS

Name (Range)

FIN
FOP
.GAD
.RMW
.ROW
.SAD
.SOP
WIF
WIN
WOF
WON
WOP
WO0S
WSS

A0 -1777
APGO -3
AERR

AND

ARL.1 -4

ARL.S

BO -3
BEGIN
BERR
BLOT.O0 - 7
BREAK

RY

CALL
CASE

ccp

CE.O - 377
CED.O - 177
CKC

CKT
CLB.O - 13
CLEAR
CMADR
COF.1 -2
COMMENT
CoP

DATA!
DATAOQO

Equivalent

OE.2000
OE.PG.4
F.111

F.170
F.150

F.112

F.307

F164
F.166
F.324

F.110
F.140

F.300

OE.1033
OE 1032

Preceding page blank




Appendix A

DECREMENT
DEFAULT
DIVIDE

Do
DO.BEGIN

ELSE
END
ENTRY
EPAR
EQUATE
ERS

FO - 377
FALSE
FIN
FINISH
FOP
FSLO - 1

GORO - 17
GOR0O
GORO1
GORUZ
GORO3
GOR04
GORO5
GOR06
GORO7
GOR08
GOR09
GORI0
GOR11
GOR12
GOR13
GOR14
GORI5
GIRO - 17
G1ROO
GLRO1
G1RO2
GLRO3
G1RO4
GIR0S
G1RO6
GLRO7
G1RO8
G1RO9
GIR10

DO.BEGIN

F.103

F.340

F.376

CEO
Ce.0
CE.l
CE2
CE3
Ct.4
CES5
CE.6
CE.7
CE.10
CEll
CE12
CE.13
CE.14
CE15
CE.16
CE.l7
CE.20
CE.20
CeE.21
Ce.22
Ct.23
Ce.24
CE.25
CE.26
CE.27
CE.30
CE31
CE32

8u

i




| e 2

Appendix A

GIRl!
GIR12
GIRI3
GIR14
GIR15
GLO - 37
GOTO

HO -1

HEXADECIMAL.CCDE

IF
IM.O - 37
INCREMENT

INDIRECT.O - 1

INTO
INTO.BEGIN
IOOP.0 - 17
ITRAC

LABEL.TABLE
LB.O - 1777
LBPGO -3
LBAR

LBC.O - 17
LBI.O -3
LEFT

MO - 17
MASK
MBS
MINUS
MISC.0 - 37
MMAL
MMERR
MMNR
MOD.O - 1
MODE
MOE
MULTIPLY

NAMED
NMD

NCRMAL.CODE

NORMALIZE
NOT
NPT

CEO - 7777

CE33
CE.34
CES35
CE.36
Ce.37
F.0

F.240

INTO.BEGIN

F.153

OE.6000
OE.PG.14
F.133
F.40

F.167

OE.1000
F.114
F.1i6
F.115
F.174

F.306

F.351

87




Appendix A

OcPGO 17
OLB.C -3
OP.O - 17
OPAR

OR

ORIGIN
0slo -3

PO -17
PAGE
PANIC
PERR

PIR

PLUS
POWER
PRINTOFF
PRINTON
PROT

RO - 37
RCM
RETURN
RIGHT
RMW
RMWTIME
ROW
RSB

S0-17
SAD
SARM.O
SHD

SHE

SHIFT.0 - 10
SHIFT.DUAL.L
SHIFT.EQ.L
SHIFT.ER.L
SHIFT.OE.C
SHIFT.OE.L
SHIFT.RE.C
SHIFTRE.L
SHIFT.SINGLE.L
SI1O - 37
SIR
SLBCO - 17
SOF

Sop

S0S

SOVF

&3

F.320

F.102

F.354

F.121
F.101
F.113
OE.1004

F.100

F.123

F.117

CtD.40

F.160
F.353
F.145

F.2C0
OE.1005
F.60
F.147

F.146
F.104

e




Appendix A

SSW.0 -7
SUNF

SUPVCT

SUPVF

SUPVLB
SUPVLB.O - 377
SWITCHON

TASK
TEMPORARY
TEST
THEN
THEN.BEGIN
THRU

THZ

TITLE
TRAC
TRBY
TRUE

TSLO -1
TSIN

TSL

UOVF
LUNF

VADR

WAR
wBP
WCM
WIF

WIN

WOF
WON
WOP
WO0S
wsB

XBUS

XBUS.0 -3
XLATOR.O - 777
XLATORPGO - 1

XOR
IRF.1 -2
2510 - 13
A

F.340
F.105
F.177
F.122
F.i76
QOE.5400

F.120

THEN.SEGIN

F.304

F.139
F.165

F.374
F.151
F.152

F.106
F.107

F.124

F.305

OE.2000

OE.4400
OEPG.11

F.142
F.360
F.301

89




90

APPENDIX B
THE GPM COMPILER

The GPM Compiler is a fairly large program written to run under TENEX. This
appendix describes use of the compiler, its listing formats, and the INCLUDE feature.

B.l1 Using the GPM Compiler

GPM is available as a TENEX subsystem, under the name GPM. The GPM command
prompt is ":"; commands consict of a single letter, and are executed immediately. The
"C" (compile:) command prompts for its source, binary, and listing files. Compilation
begins as soon as the last file is confirmed. Using NIL: for the binary file and/or the
listing file speeds up compilation considerably and is recommended if either file is not

needed.
Example:
e©GPM

MLP-900 Language System
Type ? for help
N INDAY, NOVEMBER 11, 1974 14:29:01-PST
USED 0:0: 0.5IN 0:0: 1.45
Compiler Version GPM.4.74.9

2H HEXADECIMAL.CODE MODE TRUE
ul LABEL.TABLE MODE TRUE

=C

source file:PROGRAM.GPM;6 [Old version)
binary fiie:PROGRAM.BIN;6 [Old version]
listing file:PROGRAM.LST;1 [New version]

T
7PROCRAM.NAME SPiv.4.74.9 11-NOV-74 14:30:57 P~ 20 7
72xNo Errors Detectedss7

=Q
MONDBAY, NOVEMBER 11, 1974 14:31:02-PST
USED 0:0:20.20 0:2:2.30

If no binary file is desired, the binary file should be output to NIL:. The same is
true for the listing file. The compilation will run more quickly if no listing is generated.

The :isting can be recompiled without any editing. For this reason, it is poscible to
compile into the source file name. One should be careful, since the compiler will
“correct” all errors in the source and they will not appear after recompiling the listing
file.

[y —

s T i s e S i



Appendix B 91

In addition to tha "C" command, there are other GPM commands, as follows:
C Compile. Compiles GPM source program (shown in above example).

F Fast compilation. Sets flag for fast syntax check; no code generation.
H HEXADECIMAL.CODZ MODE .+

L LABEL.TABLE MODE.«

N NORMAL.CCDE MODE.»

P PRINTON Forces complete listing; sets fiag to suppress any PRINTOFF statements
in the program source.

Q Quit.

S Switch status. Prints the current switch settings as determined by the
commands F, H, L, N, and P.

T Teletype Test Compile. Same as C, except binary file is NIL: and both source and
listing file are TTY:

B.2 The INCLUDE Feature

The INCLUDE feature may be used anywhere in any GPM sourc> file. It is simply
INCLUDE followed by a standard TENEX file name. Neither the INCLUDE nor the file
name, but rather the contents of the specified file, are passed to the parser. INCLUDEd
files may INCLUDE other files. It is also good practice when working with INCLUDE files
to use the proper directory name within the file, so the file can be used by others.

Example:
PRINTOFF
COMMENT sample include file ;
BEGIN NAMED INCLUDE.FILE.SAMPLE
EQUATE R.5 INPUT !setup some register definitions
EQUATE R.13 QUTPUT ;
INCi.UDE <OESTREICHER>SQUARE-ROQOT.INC
COMMENT if this is used when not connected to <QOESTREICHER>
it will still work ;
ENMU NAMED INCL.UDE.FILE.SAMPLE !close any open blocks
RINTON

B.3 The GPM Listing Format

- -

¢ Controls generation of appropriate section of GPM listing. Setting alternates avery
time the command is entered, and the new value is printed. Initial value is false (i.e.,
no output).




Appendix B 92

A complete GPM listing contains four parts as follows:

® The source programs with errors flagged and corrections made (where
possible).

® The labe! table.
® The compiled code listed ir octal (normal code).
& The compiled code list 1 in hexadecimal

Section 3.4 discussed the GPM pseudostatements that affect whether or not these
listings are produced. This appendix discusses in detail the contents of each part of
the listing.

Source Program

The source listing is primarily a formatted copy of the input with a few changes.
the most important is that all 7 text 7 comments are lost; only the COMMENT statements
and ! comments are maintained, because the compiler uses the 7 text 7 comments in the
listing file for page headings and for error messages.

The output of the GPM compiler can be fed back into the compiler ard processed,
usually with fewer errors. As the compiler atiempts to correct errors, it either
"comments out” offending symbols or adds missing ones. If all the corrections made in
the output listing (possible new source) are satisfactory, no recompilation is necessary.

Label Table

The label table is output after the FINISH statement and is contained in 7%’s. It has
three columns: octal location, hexadecimai location, and label name.

Example:
7 LABEL TABLE 7
77702 FC2 TAGA 7
7 7750 FES TAGF, yA

Octal Code

The code listing comes in five columns. The first is the location of the code word in
octal, followed by a flag digit and the op cede. The fourth column then contains the
instruction coding in octal, which is finally followed by a translation of the single
instruction back into a GPM statement. This last column is provided to allow easy
reading of tl.e compiled code.

The flag digit is not copied to the MLP-900 by the loader. The 4 and 2 flags make
ORIGINs and Labels. The 1 flag is of interest because it marks long immediate
instructions and causes the location counter column to skip one.

R N L P T T e Wy




Appendix B 93

Fxample:
727701 0 EAD 2 121 7027 /IF TRUE THEN GOTO 7027 END;7
727702 1 GEAR 4 037 77 R37 «R37 OR NOT 777777777657(M.O);%
77704 0 GENT 0 2 33 36 MISC.33 «R.36;%

Hexadecimal Code

The hexadecimal listing is the same as the normal, except that the location and
instruction coding appear in nexadecimal instead of octal.

Example:
7FC1 D BEAD 291 E17 /IF TRUE THEN GOTO 7027 END;7
7FC2 1 GEAR 4 0 IF CF R37 «R37 OR NOT 777777777657 (M.O);7%
7FC4 0 GENT O 2 1B CB MISC.33 «R.36;7




94

APPENDIX C
HARDWARE INSTRUCTION ENCODING
C.1 INTRODUCTION

MLP-9C0 ministeps are each-contained in 32 instruction bits, occupying the least
significant bits of the 36-bit control memory word; the four most significant bits are
used only in conjunction with the long immediate OE instruction, where the second word
contains a 36-bit literal constant. The first four bits of each ministep constitute the op
code, and the next rour the sub-op; in general, the op code determines the format of
the remaining fields of that ministep. The most significant bit of the op code designates
the engine: 0 is an OE ministep, | is CE.

Four of the eight possible OE op codes are defined. The other four produce
undefined results, but the general flavor of their ministep decoding is the same. In
particular, the B operand decode applies to ALL OE ministeps (even defined ministeps
which have no B operand); whenever the B operand specifies long immediate data, the
following word is takenas a 36-bit literal rather than as a ministep.

C.2 FOR THE OPERATING ENGINE
C.2.1 A Operands

An OE A operand represents a reference to a general register (RO - R.37) either as
an explicitly stated general register or as an indirect reference through a pointer

register (P.0 - P.17). The encoding is shown in Figure C.1.

03 04 05 06 07

Register

00 01|02|03 04 05 06| 07

1 Pointer iF
Register

Figure C.1 A operand format,

Examples:
R.13
@P.11
s P.7




-4 >

- »

Appendix C

C.2.2 B Operands

95

An OE B operand represents a reference to a general register (as in an A operand),
to a pointer register, or to an immediate operand. The encoding is shown in Figure C.2.

00 01|02 03 04 05 06 07

p 0 A Operand

00 01 03 04 05 06| 07

PR Pointer Registe:
(Pointer Data)

00 01102 03 04 05 06 07

P Short Immediate Data
(No sign extension)

—
1] o mesiace e

T
Figure C.2 B operand format.

C.2.3 Shift Amounts

The encoding for shift amounts for GEAR and SHIN ministeps is shown in Table C.1.




Appendix C 96

Table C.1
Shift Amount Encoding

ahift Azwunt Shift Code

Left Right

0 10 0
1 11 1
Z 12 2
4 13 3
6 14 4
10 15 5
14 16 6
20 17 7

C.24 GEAR

aa « aa op ab shift mask testmode ;

The GEAR internal coding is shown in Figure C.3. The arithinetic codes are listed in
Table C.2. Thke shift amount coding is found in Table C.1. The test mode and clear
mode bits are set to 1 to indicate that the mode is active. The A operand (aa) and the
B operand (ah) are coded as described in Sections C.2.1 and C.2.2, respectively.

Table C.2

GEAR Arithmetic Codes

Code Primary Adder Qperation
0 aa -~ NOT aa OR ab
| aa « NOT aa AND ab
2 aa « ab
3 aa « aa AND NOT zb
4 aa « aa OR NOT ab
3 aa « aa AND ab
6 aa+aaORab
7 aa « NOT ab
10 aa « aa XOR NOT ab
11 aa«aa+ab
12 aa +~ ab - aa
13 aa « aa +ay + COF1
14 aa « aa - b + COF1
15 aa « ab - aa + COF1
16 3a « aa - ab
17 aa « aa XOR 2ab

- . i bl s e S Sy Ao b e




Appendix C 97

00 01 0293}04 05 06 07]08 09 10 11]12 13 14 15116{17]18 19 20 21 22 23]24 25 26 27,28 29 30 31

| 8
GEAR JArith- Mask | Shift |§|& . - ;
) metic Reg. Amount [5(,2 A Opeiand Operan

Figure C.3 GEAR ministep.

C.25. CEDE

The evchange code determines the CEDE sub-op being executed. The A operand
and B operand of all CEDZs, except WOP, SOP, and WQOS, are identical to GEAR in the
coding of the A and B operands; the Op A Extend and Op A Group are ignored. For
these three, the A operand specifies anv OE register; the 12-bit address is coded in
three sections (the 4-bit group, the 3-bit extensior, and the 5-bit register). The
operand may also be indirect through a pcinter, in whicis case the indirect addressing is
done within the indicated group and the Op A Extend is ignored. These CEDEs ignore
the B operand.

Testmode inhibits fetching, storing, translating, and the modification of any register,
but. waiting and pcge faulting are still performed.

The subtract bit, when set (i.e., 1), specifies two’s complement subtraction instead of
addition for those CEDEs that do arithmetic; the subtract bit is ignored for other CEDEs.

For Exci.ange Codes, see Table C.3 below.

Table C.3
CEDE Exchange Codes

FIN 0
WIN |
FOP 2
SAD 3
RMW B
WIF 7
WOF 10
SOP 11
WOP 14
WOS 15
ROW 16
WON 17




Appendix C

00 0! 0203 05 06 07{08109 10 11}12 13 14 15

9¢

=
)
Py
~

18 19 20 21 22 23]24 2526 27 28 29 30 31

CEDE | Xchng
'R R Code

C.2.6. SHIN

Op A

Extend Group

Op A A Operand B Operand

Subtract
Test

Figure C.4 CEDE ministep.

The SHIN internal format is shown in Figure C5. The shift codes are listed in Table
C.4. The Mask, Shift amount, Test, A operand, and B operand (where used) are identical
to that of GEAR. Indirect <hift, if set, causes the shift amount--though not the shift
diraction--to be ignored.

Table C.4
SHIN Shift Codes

Code Shift Qperation
0 SHIFT.EQ.L (Shift even into odd linear)
1 SHIFT.OE.L (Shift odd into even linear)
2 SHIFT.SINGLE.L
3 SHIFT.DUAL.L
“ SHIFT.EN.C (Shift even and odd circular)
5 SHIFT.RE.L ( Shift register into extension linear)
6 SHIFT.ER.L (Shift extensicn into register linear)
7 SHIFT.RE.C (Shift register and extension circular)
10 NORMALIZE
11 MoLTIPLY
12 DIVIDE
00 01 0203]04 05 06 07|08 09 10 11112 13 14 1516417418 19 20 21 22 23|74 25 26 27 28 29 30 31
o . (8]
’ S: IIN . 22&? Mask A;Z;:‘t .f_:’ 5 A Operand B Operana
‘ |-

Figure C.5 SHIN ministep.

WP




L

¥ ¥

Appendix C 99

C.2.7. GENT
gentx « genty;

The GENT internal coding is shown in Figure C.6. GENT takes two operands: A and
B. The direction of the transfer is controlled by the To/From bt as follows:

To/From Result
0 A«B
1 B-A

The 12-bit address for the A opeiand is coded 'n three seci'ons as described for
CEDE above.

The B operand is coded as described in Section C.2.2, except that when bits O and 1
are 0 the ouerand B group field is used; otherwise, the operand B group field must be
zero. The registers addressed by the operand B group field are shown in Table C.5.

it the A operand addresses the mask registers, or the destination is an immediate
value or a pointer register, the resulting operation is a no-op.

Table C5
GENT B Operand Group
Qp B Group Register

R.37 - General Registers
M.17 - Mask Registers
MISC.37 - Misc. Registers
XBUS - Exchange Bus

W — O

00 01 02 03]04|05106 07]08]09 10 11312 13 14 15165 17118 19 20 21 22 23|24 25 26 27 28 29 30 31

Op Al Op A |0pB

xtend| Group |[Grp A Operand B Operand

Figure C.6 GENT ministep.

C.3 FOR THE CONTROL ZiNGiivE
C.3.1 Fup-Flops
The F/F’s are divided into two groups. F.0 - F.177 are all in group G, and F.200 -

F.377 are all in group 1. Therefore, F.327 is coded as F/F number 127 in group 1.
This encoding is shown in Figure C.7.

i np—— i i . Gacia proea e - i . e M s S i aacad o Mo



Appendix C 100

00 01 €2 03 04 05 06 07

F/F Number F/F
{(n mod 200) Grp
n/
200

Figure C.7 F.n encoding.

C.3.2 CE Registers

A CE byte register consists of a 4-bit group number and a 4-bit register number
within groug  This encoding is shown in Figure C.8.

00 01 02 0304 05 06 07

Register number| Group number
(n mod 20) (n/20)

Figure C.8 CE.n encoding.

€.3.3 RELATIVE ADCRESSES

The relalive addresses are coded into one byte. They are relative to the
continustion address, or the next instruction word. Therefore, a skip is coded as a +1
instead of a +2. The relative offset 1s two's-complement and signed. The range of the
coded possibilities are -200 (10 000 000) thrcugh +177 (01 111 111). Because the
offset is relative to the corntinuation address, the effect ranges for relative addresses
are -177 through +200.

C.3.4 BOOLZAN EXPRESSIONS

A boolean expression is enccied in two and one half bytes. Two bytes contain the
F/F's encoded as shown above. The half byte defines the function. Figure C.9 shows
where this information is placed iy the instr. t.on word. Table C6 lists the possible
functions.

F/F Expressions - A F/F and its associated true bit are used in BRAT, BENT, BORE,
BRAD, BEAD, and MAST to form F/F expressions. If the true bit is on (1), then the
actual F/F value is used; if it is off (0), the complement is used.




Appen- C 101

wr
07§08 09 10 11 12 13 14 15]16 17 18 19 20 21 22 23
2
o
e | e
_
o F.a F.b ///7
,/ 7
Figure C.9 Boolean expression encoding.
Table C.6
Dovlear Expression Types
sest
Moce ATrue BTrue Boolean Expression
00 0 0 b « NOTF.a
1 NOT (F.b « F.a)
1 0 NOT (F.b « NOT F.a)
5 ! Fb« F.a
e 01 0 0  NOTF. ORNOT F.a
1 F.b OR NOT F.a
1 0 NOT F.b ORF.a
1 FbORr.a
10 0 0 NCT F.b AND NOT F.a
1 F.b AND NQT F.a
1 0 NOT F.b AND F.a
i F.b AND F.a
1 0 £ NOT F.b XOR NOT F.a
1 F.b XOR NOT F.a
1 0 NOT F.b XOR F.a

1 F.b XOR F.a
C.3.5 BRAT
/IF booleanexp THEN GOTO relativelabel END;

The BRAT internal coding (Figure C.10) consists of the BRAT op code, a boolean
expression (Figure C.9), and a relative address (Section C.3.3).




Appendix C 102

00 01 02 03]04 05[06{07|08.09 10 11 12 13 14 15|16 17 18 19 20 21 22 23|24 25 26 27 28 29 30 31
ol 0 .
BRATS | el F/F A F/F B Relative
R Address
|
Figure C.10  BRAT ministep.
C.3.6 BENT

/IF booleanexp THEN CALL relativelabet END;

The BENT internal coding (Figure C.11) consists of the BENT op code, a boolean
expression (Figure C.6) and a relative address (Section C.3.3).

06]07]08 99 10 11 12 13 14 15[16 17 18 19 20 21 22 23|24 25 26 27 28 29 30 3N

00 01 02 02]04 05
WEE
T .
BENT n gl LiT F/F A F/F B Re:latlve
‘00|r-z<m Address
Figure C.11  BENT ministep.
C.3.7 BORE

/it becoleanexp THEN GOTO relativelabel ; ELSE RETURN END;

The BORE internal coding (Figure C.12) ccnsists of the BORE op code, a boolean
expression (Figure C.6) and a relative address (Section C.3.3).




103

Appendix C
<7
10 01 020304 05]06{07|08.09 10 "1 12 13 14 1516 17 18 19 20 21 22 23|24 2526 27 28 29 30 31
BORE I“ K f’fl Relativ
® ol-I= F/F A F/F B Addresse
181 0" * «|o
Figure C.12 BORE ministep.
C.3.8 BRAD

/bradop P.7 BY number; IF ffexp THEN GOTO relativelabel END;

00 01 020304 05 06]07]08 09 10 11112 13 *4 15]16 17 18 19 20 21 22 23|24 25 26 27 28 29 30 31
F/F B Relative

PointerModifier
Reg. Address |
Figure C.13 BRAD ministep.

C3.9 BEAD

bead0 | bead! | bead2 | bead3

There are four types of BEAD; they may all be used as a CALL or a GOTO. The
Enter bit shown in the four figures below control this, If Enter equals 1, the CALL is
done instead of a GOTO.

C.3.9a. BEADO

/IF ttexp THEN transferop label EN
The BEADO internal coding (Figure C.14) consists of a BEADO op code, a F/F

expression (Section C.3.4) and a 16-tit absolute address.




Appendix C 104

00 01 0203}04 05]06{07}08 09 10 11 12 13 14 1516 17 18 19 20 21 22 23]24 25 26 27 28 29 30 31

0
B AD =4 Absolute
300 ﬂt 8 :E F/F A E..tended Branch Address

Figure C.14 BEADO ministep.

C.3.9b. BEADI
/transferop label <P.17>;
The BEADI internal coding (Figure C.15) consists of a BEAD1 op code, a pointer

register number, and a 16-bit absolute address.

00 01 020304 05/06{07]08 09 10 11112 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
%
7 Absolute
// Extended Rranch Address
7

%
7

Figure C.15 BEADI] ministep.

C.3.9c. BEAD2
Jtrasfercp +1 <P.17>;

The BEAD2 internal coding (Figure C.16) consists of a BEAD2 op code and a pointer
register number.




RIS T TR——

Appendix C 105

00 C1 02 03]04 05]06/07]02 09 10 11]12 13 14 15]16 17 18 19 20 21 22 23[24 25 26 27 28 29 30 31
BEAD ) 7
1o ,
o - ///// / /
_ / 7 / / 7
Figure C.16 BEAD2 ministep.
C.3.9d. BEAD3

/IF ffexp THEN transferop sign label END;

The BEAD3 internal :coding (Figure C.17) consists of a BEAD3 op code, a F/F
expression, and a 16-bit two’s-complement relative address. All relative addresses are
relative to the next instruction.

00 01 02 03]04 05]06{07J08 09 10 11 12 13 14 15{16 17 18 19 20 21 22 23 24 25 26 27 28 28 30 31
Q
J| - -
PEAD It = fcj U Extend zeéahv: Addr
1188 =5 xtended Branc ess
Figure C.17 BEAD3 ministep.
C3.10. BLOT

blotcode relativelabel

The BLOT internal coding (Figure C.18) consists of the BLOT code and the relative
address (Section C.3.3).

Code Mnemonic
(934 RCM
1% WCM
2 RSB
3 wsB
4 MOE
5% wBP
3 An asterisk (s) indicates a privileged code.




Appendix C 106
00 01 0203]04{05 06 07|08 09 10 11 12 13 14 15[16 17 18 19 20 21 22 23|24 25 26 27 28 29 30 31

0, W%

7

I BLOT FBLOT
|| 1 6 1}jCode

Figure C.18 BLOT ministep.

C3.11. MAST

F.377 « ttexpa bocleanop ffexpb;
/IF ttexpb THEN F.377 « ffexpa END;

The MAST internal coding (Figure C.19) consists of a MAST op code, a logical
function, tvio F/F expressions. and a result F/F. The MAST !cgical function are:

Table C.7: MAST Logical Codes

IF ffexpb THEN result « ffexpa
result « ffexpa OR ffexpb
result « ffexpa AND ffexpb
result « ffexpa XOR ffexpb

WM — O

00 01 0203

3
&

06]07]08 09 10 11 12 13 14 15}16 17 18 19 20 21 22 23}24 25 26 27 28 29 3C 31

MAST
1119

Result

F/F A F/F B F/F

Function
Code

A Tru2
B True

Figure C.19  MAST ministep.

C3.12. MOVE

move :=

mi | mff I m I mc!mcl | mdb
mi =

CE.137 « number (number) ;
mff =

CE.137 « F.377 (number) ;
m =

CE.137 « CE.137 (number) ;

oo



Appendix C 107

me =
CE.137 « NOT CE.1237 (number) ;
mcl ::=
CE.137 « CE.137 {numbe-];
mdb =

(CE.137) « (CE.137) ;

The From Address is a constant in the case of MOVE immediate; a F/F in the case of
the MOVE F/F; and a CE register for the other four MOVE’s. The To Address is always
a CE register. The Immediate Mask is ar 8-bit coastant; it is not used in the MOVE

double byte.
1eble Co: MOVE Codes
Code  Mnemonic

MSI

MOM
MAR
MAC
MCL
MO8

UObwNn —C

00 01 020304 05 06 07{08 09 10 11 12 2 14 15116 17 18 19 20 21 22 23{24 2526 27 28 29 30 31

From To Immediate
Address Address Mask

MOVE MOVE
I 1111 Code

Figure C.20 MOVE ministrp.

P

| T g ——



e e e s

APPENDIX D.

D.l Introduction

108

I/O INTERFACE

The 1/0 interface between the MLP-900 ana the PDP-10 contains four registers:

Command/status register

DATAOQ registor
DATA! register

IPL address register

Misc.34
Misc.32
Misc.33

Not addressable

The MLP-900 can read or write these registers as part of the OE miscellaneous

register group; writing these registers is allowed only in Microvisor mode.

The PDP-10

can read or write these registers via the CONO/I and DATAQ/I instructions.

The WML.P-900 is recognized as two devices on the 1/0 bus, MLPA and MLPB, with
MLPA intended for all normal communication and MLPB for assistance in saving ard
restoring the state of the inlerrc.2.

D.2 Command/Status Register (Misc.34)

The command/status register is a 27-bit register, as shown in Figure D.1.

PDP-10 =--»MLP ¥

*Interface and
MLP Status

4~ MLP --=PDP-10—¥)

0001020304050607080910111213141516171819?0?127?3?425262728]29303132333435
7/ v R
>~Q. » -] nlxial ol cf »|x ) B3 W .
- 3 - ojulolwal«] clo)] oju] +]| v|o]w -~ O
-—\.— o vlj<| o] |- t P=3 7 P =4 ! " &
LLQJ X o— Ol|X|Cl | - | v 3 [V}
oo > w o >|—=]o viclojw|ololElx|El S E
% - & Q) o c ol ||| ®| 2| 2 + @ Vi Q oo
/\.C—J - © cl=|i=la|e ||| o]l o] o] o] | || @ ©
4 o.— . || <L | =]— a| || aj- «< ©
// / / © o (=1 [=) © a a a
/// a x x ;
//////// // ! A ]
Figure D.1  Command/Status register format.

Bits

9-11 Priority interrupt level

12-17 Task parameter provided by the PDP-10 along with a task AR
18 Microvisor mode




Appendix D 109

19 DATAI active | set by writing the register
20 DATAQ active | reset by reading the register
21 IPL data mode

22 IPL address moce

23 Task AR pending (F.120)

24 MLP running (F.164)

25 MLP Power Up

26, 27, 30, 31

Priority interrupts: any one causes an attempt

to interrupt over the 1/0 bus
26: Hard error P
27: Data ack PI
30: Tack ack PI
31: MLP request PI

<8, 29, 32-3%
Recuest parameter: exparding on the MLP requecsi Fl

0.3 DATAQ (MISC.32) and AT Al (MISC.33)

DATAQ and DATAI are both a 36-bit data transmission registers, usable in either
direction. Each is accompanied by 2n active bit in the ccmmand/status register.
Writing into one of these sets active; reading it rasets active (without altering the data).
Note that an MLP-900 user may read these registers and, in so doing, clear the active
condition.

D.4 MLP-900 interface Manipulation
The MLP-900 can read the command/status register and the DATAO and DATAI

registers via a GENT ministep. In addition, if SUPVLB (F.176), the following
command/status fields are available directly:

® Tas« parameter (bits 12-17) P.17

® DATAI active (19) F.326
® DATAOQ active (20) F.327
® Hard error P1(26) F.320
® Data ack PI(27) F.321
® Task ack Pl (30) F.322
® MLP request Pl (31) F323

In Microvisor state, the MLP-900 can !oad any of these three registers via a GENT
ministep. Writing the command/status register loads only bits 26-35; bits 0-25 cannot
be written directly. Furthermore, !f the MLP request Pl (bit 31) is zero {new value), the
MLP-300 reques:. parameter (bits 28, 29, 32-35) 1s ignored; that field of the
command/status word 13 cleared. Setting one or more of the four Pl bits (26, 27, 30,
31) causes the MLP-900 to interrupt the PDP-10 (if its priority interrupt level is not
zero); while their names are function-suggestive, the four Pi pbits perform identically.




- o - e —

Appendix D

110

D5 PDP-10 Interface Manipulation

The PDP-10 recognizes the MLP-900 as {wo devices on the 1/0 Bus: MPLA is device
424 and MLPB device 434.

The PDP-10 DATAI and DATAO operations transfer 36-bit values to and from the
DATAI and DATAQ registers; the active bits are set by a DATAO operation and reset by

a DATAI operation.

DATAD-A loads DATAQ, and DATAI-A reads DATAI

loads DATAI, and DATAI-B reads DATAQC.

The PDP-10 CONI and CONO operations transfer
command/status register.

CONO-A, MLPA (Commands Out)

Bits

18-20
21
22
23
24
25
26
27
28
29
30-35

CONI-A (Status In)
Bits
18-25
26,27

23,29
30-35

Eunction

New priority interrupt levels
Set IPL mode

Set panic AR (F.101);
Set task request (F.120)
Set/reset clock (F.164)
Reset interface

Reset hard error Pl
Reset data ack Pl

Reset task ack Pi

Reset MLP request Pl
New task parameters

Eunction

Bits 18-25 of command/status register
Eits 26, 27 of command/status register
Bits 30, 31 of command/status register

MPLB is "reversed"; DATAQO-B

18 bits to and from the

| the PI
| bits

Bits 28, 29, 32-35 of command/status register; the MLP-900

request parameter

s These two fields are used to alter the appropriate Command/Status fields only if
either bii 22 or bit 23 is set in this CONO; otherwise the command/status fields are

cleared.




Appendix D 111

CONO-B, MLPB is a NOP

CONI-B (Read Commands)

Bits Eunction

18-20 Priority Interrupt Level

21,22 Zero

23,24 Bits 23, 24 of Command/Status

25-29 Zero

30-35 Bits 12-17 of Command/Status (PDP-10 input parameter)

In general, the MLPB is needed only to save the state of the interface; all "normal”
communication is done via MLPA,

D.6 iPL MODE

IPL mode 1s used to load MLP-900 control memory directly over the 1/O bus. IPL
mode is initialed by a2 CONO-A which sets IPL mode (bit 21). This puts the MLP-900
into IPL address mode; the next DATAQ-A loads the IPL address register and puts the
MLP-900 into IPL data mode. Subsequent DATAQ-A’s are used to load successive
control memory locations, with the mode set to 2 (supervisor mode); the IPL address
register is incremented prior to each control memory store.

IPL mode is terminated by any CONQ-A. If that CONO itself sets IPL mode, then the
MLP-900 is back in IPL address mode.




112

APPENDIX E. LANGUAGE BOARDS

An MLP-900 language board consists of a pair of boards (one from the OE, one from
the CE) which fit into one of fsur pairs of slots available. The list of avai'able inputs
ana outputs for each koard is fixed (and is identicai for each of the four language board
positions). The board must obey general MLP-900 hardware conventions regarding
board selection, clock time requirements, and the like; the actual construction of
larguage boards must be done by MLP-900 personnel.

The primary functions of the OF board are as follows:
® (Vi-tual) address transformation for all memory addresses.

® CEDE/WIN and WIF implementation (including indexing, conditional operand fetching,
and op code breakout).

® LB register maintenance.
The primary functions of the CE board are as follows:
® Decode of SiR and PIR into pseudo-F/F’s and pointers.
® Definition of normalization.
Figure E.1 depicts all the signal lines available to the language board pair. Most of
the input lines are the contents of specific registers, a ministep decode signal (indicating
the execution of a particular ministep), or a hardware bus. The outputs are divided into

pseudo-registers available to the microcode and control signals direcicd to the MLP
hardware.




Appendix E 113

Memory data reg. (36 LB data bus (36)
-4 —gr—
Primary sum (36L Virtual memory address (]8)’
LB reg. address (12) LB Action Request (1) -
LB reg. Read control (ll,ﬂ Operating LB indicators (5) -
LB reg. Write control (ll—_ Engine WIN entry address (7) -
TS interrupt pending (I)" Language State pseudo-F/F's (4)’
WIN or WIF decodes (2 Board Pseudo-pointer 15 (6) -
FIN or WON decode (1) Inst. reg. load controls (3)
- —
Clock (])._ Memory cvcle inhibit (1) -
Indexing inhibit (])’
L
LB select (1 of 4) 3
LB control F/'s (16) ] 2
|
A
(8)
11y
Primary instr. reg. (36;_ State pseudo-F/F's (12)
Secondary instr. reg. (36,)_ Craptimal] Pseudo-pointers 8-13 (6x8L
A operand (36,)_ Engine Pseudo-pointer 14 (6)
COF1,COF2,ZRF1,ZRF2 (4)’ Language Normalize shift controls (3) -
Normalize decode (]:)’_ Boer Normalize shift amounts (6)
Normalize shift done (1)
——
Figure E.1  Language board input/output signals




Appendix E 114

The input signals are as follows:
Memory data register: NDR
Primary sum: Qutput of the OE Primary Adder.

LB register address:
OE A operand address (used fcr referencing language board registers).

LB register Read/Write control:
Control signals set for transfer from or to the LB register (e, LB.1777 in a
GENT or CEOE).

TS interrupt pending: NPT pseudo-F/F.

WIN/WIF decode:
Control signals for WIN and WIF, resoectively.

FIN/WON decode:
Con’rol signal for either FIN or WON; can be used to distinguish instruction and
data memory references ‘f desired.

Clock: The MLP-S00 clock pulse (for writing into LB registers).
LB se'ect: Decode of the LB select; turns the LB “on".
1.B control F/F’s: LBC.17 F/F’s.

Primary/secondary instruction registers:
PIR and SIR, respectively.

A operand: The OE A cnerand (for normalization, presumabiy).

COF1, COF2, ZRF1, ZRF2: The F/F’s.

Normalize decode: Control signal for a SHIN Normalize,

The output signals and their definitions on the “null” language board are as follows:

LB data bus:
Used for OE A operand in WIN/WIF, and for the register value in LB register
Read operation.
[NULL: Undefined]

Virtual memory address:
The address which actually goes into VAR should this ministep be an
address-defining CEDE; the address is presumably a simple transformation of the
primary sum. Note that there is no associated control signal.
[NULL: 18 least significant bits of primary sum]




\ -,

Appendix E 115

L8 Action Request:
Control signal to set LBAP, r.133.
[NULL: Never set]

LB indicators:
Control signal and 4 data bhits for LBL3 F/F’s (if control signal is set, the data
goes into the four F/F’s).
[NULL: Never set]

WIN entry address:
Branch address for the WIN ministep (op code treakout), ary even iocat .. from
0 to 126 (376 cctal).
[NULL: Undefined]

State pseduo-F/F's:
OLB.3 F/F’s.
[NULL: Undefined]

Pseudo-pointer 15:
P.17, which is limited to the range O through 63.
[NULL: Undefined]

Instruction register load controls:
Control signals governing loading of PR and SIR during WIN.
[NULL: Undefined]

Memory cycle inhibit: \
Control signal for Fetch inhibit during WIN and WIF.
[NULL: Undefined]

Indexing inhibit:
Control signal for B operand inhibit during WIN and WIF.
[NULL: Undefined]

State pseudo-F/F’s:
CLB.14 F/F’s.
[NULL: Undefined]

Pseudo-pointers 8 - 14:
P.10 through P.16, of which P.16 is limited to the range O through 63.
[NULL: Undefined]

Normaiize shift controls;
Control signals for norm lize shift amount (\f amount is indirect).
[NULL: Ur.definec]

Normalize shift amounts:
Increment to P.7 during a Normalize ministep.
[NULL: Undefined]

. s it Wil i ot i i SR ) i . = : T Ty




Normalize .hift done:
The NMD pseudo-F/F.
(NULL: Undefined]

116




117

PEFERENCES

Bobrow, D. G, J. D. Burch,D. L. Murphy, R. L. Tomlinson, "TENEX, A Paged
Time-Sharing System for the PDP-10," Communications of the ACM, Vol. 15, No.
3, March 1972, pp. 135-143.

Meyer, 7. H, J. R Barnaby, W. W. Plummer, TENEX Executive Language
Manual for Users, Boit Beranek and Newman, Inc., Cambridge, Massachussetts,
April 1973.

MLP-900 Multilingual Processor--Principles of Operation, STANDARD Computer
Corporation, Santa Ana, California, 1970.

Annual Technical Report, May 1972-May 1973, USC/Information Sciences
Institute, IS1/SR-73-1.

Annual Technical Report, May 1973-May 1974, USC/Information Sciences
Institute, ISI/SR-74-2

Qestreicher, Dcnald R, A Microprogramming Language for the MLP-900,
USC/Information Sciences Institute, ISI/RR-73-7, June 1973.

DEC System-10 Assembly Language Handbook, Digital Equipment Corporation,
Maynard, Massachusetts, 1972.

TENEX User’s Guide, Bolt, Beranek and Newman, Inc., Cambridge, Massachusetts,
January 1973.

il el i i




118

INDEX
! 33
» 35, 54
( 47
0] 35, 37, 38
) 47
* 38, 50, 54
4 35, 42, 46, 54, 96
) 38

= 35, 42, 46, 54, 96

/ 35

; 33

< 41, 44

@ 38, 50, 54
A.0 - Auxiliary M>mory 52

AND 35, 37,54, 71, 96, 101
B.3 g

BEAD Branch Extended Address 74, 103
BEGIN 4]

BENT Branch and Enter 72, 102
BLOT 46

BLOT Block Transfer 75, 105
BORE Branch or Return 72, 102
BRAD Branch and Modify Pointer 73

BRAT Branch with Test 71, 101
BREAK 41, 43

BY 46, 73

C - GPM Compiler Command 91

CALL 41, 43,72,74
CASE 44

CEDE 46

CEDE Conditional External Data Exchange 57, 97
COF.1 - Carry-ou: Flip-Flop 1 56

COF.2 - Carry-out Flip-Flop 2 56




Eroan i Kl ol o Laic o o o

Index

COF1
COMMENT
Conditional Compilation

119

56
33
43

Control Engine - Operands - Pointer Registers 69

COP - Carry-out Pseudo

Data Entry Switches
DECREMENT

DEFAULT

Default Listing Settings
DIVIDE

DO.BEGIN

ELSE

END

ENTRY

EQUATE

Example, Assignment, Arithmetic
Example, Assignment, Boolean
Example, Basic Language Symbols
Example, COMMENT

Example, Data Transfer
Example, DO.BEGIN

Example, EQUATE

Example, Hexadecimal Code
Example, Include

Example, Label Table

Example, Octal Code

Example, SWITCHON

F - GPM Compilar Command
F.O0 - State Flip-Flops

F.10 - TRUE

F.101

F.104 - Supervisor Stack Overflcw
F.106 - User Stack Overflow
F.120

F.130 - TRUE

F.140 - COF.1

F.141 - COF.2

F.142 - ZRF.1

F.143 - ZRF.2

F.146 - SHE

F.146 - SOS

F.147 - SOF

F.151 - TSIN

F.152 - TSL

F.153 - ITRAC

F.164

F.165 - TRY

56

51
46, 73
31
34
47
42

43
41, 42, 43, 44
44
31
36
37
30
33
40
43
32
93
91
92
93
45

91

65

68

110

70

70

109, 110
72

56

56

56

56

57

56

57

68

68

68

109, 110
57




Index

F.167 - MBS
F.174 - MOD.O
F.175 - MUD.1
F.176

F.300 - COP
F.301 - ZSP
F.320

F.321

F.322

F.323

F.326

F.327

FALSE

FIN

FINISH

FOP

FOP - CEDE Fetch Operand

GEAR General Arithmetic
GENT General Data Transfer
GCTO

H - GPM Compiler Command
H.1
HEXADEC!MAL.CODE

IF

IF-THEN

INCLUDE

INCREMENT

Index

Indirect OE Operands
Initial Clear Mode
Initial Mask

Intie Test Mode
INTO.BEGIN

L - GPM Compiler Command
LABEL TABLE

LB.O - User Language Board
LEFT

M.O - Mask Registers

Main Metory Address Switches
MAST Manipulate Status

MBS

MDR - Memory Data Register
MINUS

MISC.0 - Data Entry Switches
MISC.0 - Misc. Registers

120

50

77

77
109
56

56, 68
109
109
109
109
109
109
3i, 37
46

31

46

59

54, 96
64, 99
41, 43, 71, 74

91
33
33

43
71,72,73,74
91

46, 73

30

50

32

32

32

44

91
33
53
47

50

51

78, 106

50

51

35, 54, 56, 96
51

50




Index 121

MISC.]1 - Main Memory Address Switches 51

MISC.16 - VAR 51
MISC.17 - MDR 51
MISC.2 - Processor Address Switches 51
MISC.3!1 - Key Register 53
MISC.4 - PIR 51
MISCS - SIR 51
MOD.O 77
MOE 46
MOE - BLOT Move Operating Engine 75
MOVE Move CE Register 78, 106
MULTIPLY 47

N - GPM Compiler Command 91
NAMED 4]
NORMAL.CODE 33
NOPMALIZE 47
NOT 35, 37,54, 56, 71, 96, 101
OE Register Page 39
OE.O0 - OE Registers 49

CoR 35, 37,54, 71, 96, 101
ORIGIN 33

P - GPM Compiler Command 91

P.0 - Pointer Registers 69
P.17 109
.6 - Subroutine Stack Pointer 70
Page Fault Handling 51

PIN - CEDE Fetch Instruction 58

PIR - Primary Instruction Register 51
PLUS 35, 54, 56, 95
PRINTOFF 33
PRINTON 33
Processor Aadress Switches 51

Q - GPM Compiler Command 91

R.O - General Reg:sters 50
R.37 - Shift Extension Pegister 50
RCM 46
RCM - BLOT Read Control Memory 75
RETURN 41, 43,73
RICHT 47
RMW 46
RMW - CEDE - Read Modi‘y Write 59
ROW 46
ROW - CEDE 60

RSB a6

RSB - BLOT Read Subroutine Stack 75




Index

122
S - GPM Compiler Command 91
S.0 80
S.0 - Subroutine Stack 70
SAD 46
SAD - CEDE Set Address 59
SHE 57
SHIFT 47
Shift Extension Register 50
SHIFT.DUAL.L 47
SHFT.EQ.L 47
SHIFT.ER.L 47
SHIFT.OE.C 47
SHIFT.OEL 47
SHIFT.RE.C 47
SHIFT.RE.L 47
SHIFT.SINGLE.L 47
SHIN Shift Instruction 61, 98
SIR - Secondary Instruction Register 51
SOF - Shift-Out Flip-Flop 57
SOP 36
SOP - CEDE Store Operand 59
SOS - Shift-Out Sign 56
SUPVLB.O - Supervisor Language Board 53
SWITCHON 44
T - GPM Compiler Command 91
TEMPORARY 31
THEN.BEGIN 43
THRU 14
TITLE 31
TRBY 57
TRUE 31, 37, 68
VAR - Virtual Address Register 51
wBP 46
W8P - BLOT Write Bad Parity (CM) 76
WCM 46
WCM - BLOT Write Control Memory 75
WIF 46
WIF - CEDE Wait for Indirect & Fetch 59
WIN 46
WIN - CEDE Wait for Instruction 58
WOF 46
WOF - CEDE Wait for Operand & Fetch 59
WON 46
WON - CEDE 60
WOP 46

WOP - CEDE Wait for Operand & Fetch 59

ez aas b B B ina s




Index 123

A r

Wos 46

WOS - CEDE Wait for Operand (Stream) 59

ws8 46

WSB - ELOT Write Subroutine Stack 75

XBUS - OE Exchange Bus 52

XLATOR.0 - Translator Memory 53

XOR 35, 37,54, 71, 96

ZRF.1 - Zero Result Flip-Flop 1 56

ZRF.2 - Zero Result Flip-Flop 2 56

ISP - Zero Sense Pseudo 56

( 35, 38

\ 35

- 35, 37, 47, 54




