
AD-A009 936

PRIM USER'S MANUAL

Louis Gallenson, et al

University uf Southern California

Prepared for:

Advanced Research Projects Agency

April 1975

DISTRIBUTED BY:

KTDI
National Technical Information Service
U. S. DFPARTMENT OF COMMERCE

-. - -

-I- « n -r-- ^^—-

SECURITY CLASSIFICATION OF THIS PAGE (Whtn Dmf Enfrud)

REPORT DOCUMENTATION PAGE RE\D INSTRUCTIONS
BEFORE COMPLETING FORM

1 REPORT NUMBER

ISI/TM-75-1
2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle)

PRIM USER'S MANUAL

5. TYPE OF REPORT ft PERIOD COVERED

Technical

C PERFORMING ORG. REPORT NUMBER

7. AUTMORC»;

Louis Gallenson, Joel Goldberg, Ray Mason,
Donald Oestreicher, Leroy Richardson

8 CONTRACT OR GRANT NUMBERftj

DAHC 15 72 C 0308

9. PERFORMING ORGANIZATION NAME AND ADDRESS

USC/lnformation Sciences Institute
4676 Admiralty Way
Marina de I Rey, CA 90291

10. PROGRAM ELEMENT, PROJECT, TASK
AREA ft WORK UNIT NUMBERS

ARPA Order #2223

II. CONTROLLING C FFlCE NAME AND ADDRESS

Advcnced Research Projects Agency
1400 Wilson Blvd.

, Arlinntnn, Virninifl- ???n9
U MONlTORIN'O AGEWCY NAME 4 ADDR

52. REPORT DATE

April 1975
19- NUMBER OF PAGES

135
DRESSf/ MtfT*rt from Controlling O'Ucm) 15. SECURITY CLASS, (ot thla report)

Mm. DECLASSIFI CATION/DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol thla Report)

This document approved for public release and sale; distribution is unlimited.

17. DISTRIBUTION STATEMEN7 (of the mbattmct entered In Block 30, it different tram tieport)

IB. SUPPLEMENTARY NOTES

19. KEY WORDS ^Continue on raveree aide It nacaaamry and Identify by block number)

ARPANET, control memory, microprocessor, microprogramming,
microprogramming language, microvisor, MLP-900, operating systems,
resource sharing, TENEX, time sharing, writable control memory

20. ABSTRACT (Contlnua on ravaraa alda It nacaaamry mnd Identify by block number)

This document is a four-part technical manual to aid the usei^ of the Programming
Research Instrument (PRIM), a major time-shared microprogramming facility which
permits individual researchers to create specialized computing systems adapted to their
needs. The document consists of an overview, a user's guide, and reference manuals
for the General purpose Microprogramming language (GPM) and the MLP-900 micro-
processor.

DO i JJNM73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
S/N O102-O14-6601

»ICURITY CLAfSIFtCATlON OF THIS PAGE (Whmn Dmlm Bntmrmd)

JI

TO THE UStR:

We have worked hard to make this technical manual as accurate and complete as

possible. However, since mistakes are known to creep into even the most sincere

of efforts, we would appreciate your calling to our attention any technical or

typographical errors, omissions, inconsistencies, or ambiguities you notice while

perusing it. Postage-paid preaddressed reply cares have been included below for

your convenience. Plea-a jot down the problem and the page on which it occurs,

tear out the card, ana drop it in the mail.

Thank you.

The Publications Group at IS I

ERROR PAGE

prim

ERROR PAGE

j prim

ISI/TM-75-1
April 1975

ARPA ORDER NO. 2331

PRIM
User's Manual

Louis Gallenson

Joel Goldberg

Ray Masor

Donald Oestreicher

Leroy Richardson

_i rsii'iHSirv OF sorrmw CALIIOHSIA im
INFORMATION SCIHNCFS INSTITUTE

■/Y)Y) Admhahy Way/Marina del Reyf California <)n2()l
(2i i}sr:m i

THIS RPSEARCH IS SUPPORTfID BY THF ADVANCED RFSCARCH PROJECTS AGENCY UNDER CONTRACT NO DAHC15 72 C 030P AR^A ORDER

NO 2223 PROGRAM COD^ NO 1D30AND3P10

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE

OEFICIAL OPINION OR POLICY OE ARPA THE U S GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM

THIS DOCUMENT APPROVED EOR PUBLIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED

ii iJIHi ■ ■—i ■f.

ACKNOWLEDGMENT

The members of the PRIM project would like to gratefully acknowledge the into; est,
cooperation, tnd support they received from the STANDARD Computer Corporation,
manufacturers of the MLP-900 microprocessor. Special thanks are due to the firm's
president, Mr. James P. Hynes, whose many efforts on behalf of the project were and
are very much aooreciatpH

4 i

IHMM ■—^f-i - i - ■ - MIT»!»»

$

IM

CONTENTS

1. OVERVIEW /
1.1 Hardware i

1.1.1 PDP-10 2
1.1.2 MLP-9G0 2

1.2 Software 3
1.2.1 GPM and the GPM Compiler 3
1.2.2 lviLP-'900 Microvisor 3
1.2.3 PDP-10 Support Programs 4
1.2.4 User's Interpreter and Target Program 4

2. USER'S GUIDE 5
2.1 Introduction 5
2.2 MLP-EXEC 5

2.2.1 Access to MLF-EXEC 5
2.2.2 Command Format 6
2.2.3 Commands for Control of the MLP Context 7
2.2.4 Commands ior Control of the Target System iO
2.2.5 Commands for File Input/Output \2
2.2.6 Other Commands i3
2.2.7 MLP DDT H

2.3 The MLP-900 Microprogram Supervisor /6
2.3.1 Control Memory 17
2.3.2 Main Memory \1
2.3.3 Extended Stack \1
2.3.4 Microvisor Calls /fi
2.3.5 Communication ^with TENEX i9
2A6 User Microcode Action Requests i9

2.4 The TENEX MLP-900 Driver i9
IAA MLP'900 Context 2/
2.4.2 MLP-900 Target System 21

3. GENERAL PURPOSH MICROPROGRAMMING LANGUAGE
REFERENCE MANUAL 29
3.1 Introduction 29
3.2 Basic Language Svmbols 29

3.2.1 Identifiers 29
3.2.2 Reserved Identifiers 30
3.2.3 Numbers 30
3.2.4 Blanks 30
3.2.5 Nonalphanumenc Characters 30
3.2.6 Examples of Basic Symbols 31

3.3 Program Structure 31
3.3.1 Declarations 31
3.3.2 Statements 33
3.3.3 Closing 33

3.4 Pseudostatements 33
3.4.1 ORIGIN 33

1..H

IV

3.4.2 COMMENT 33
3.4.3 Output Control 34

3.5 Statements 3i
3.6 Assignment Statements 35

3.6.1 Arithmetic Assignment
3.6.2 Boolean Assignment
3.6.3 Data Transfer 37

3.7 Control Statements 40
3.7.1 B'ocK 41
3.7.2 BREAK 4;
3.7-3 Branches 41
3.7.4 Labels 42
3.7.5 DO.BEGIN 42
3.7.6 IF 43
3.7.7 Switch 44

3.8 Low-Level Statemerts 45
3.8.1 INCREMENT/DECREMENT
3.8.2 BLOT 46
3.8.3 CEDE 46
3.8.4 SHIFT 47
3.8.5 MULTIPLY/DIVIDE 47

35
37

46

4. MLP-900 REFERENCE MANUAL 48
4.1 Intr Juction 48
4.2 Operating Engine 40

4.2.1 General Registers 50
4.2.2 Mask Registers 50
4.2.3 Miscellaneous Registers 5i
4.2.4 Auw;';ary Memory 52
4.2.5 Exchange Hus 52
4.2.6 Translator Memory 53
4.2.7 Supervisor L anguage Board
4.2.8 User Language Board 53
4.2.9 GEAR 54
4.2.10 CEDE 57
4.2.11 SHIN 61
4.2.12 GENT 64

4.3 Control Engine 65
4.3.1 Fiip-Flops 65
4.3.2 Pointer Registers 69
4.3.3 Miscellaneous Registers 69
4.3.4 Subroutine Stack 70
4.3.5 BRAT 71
4.3.6 BENT 72
4.3.7 BORE 72
4.3.8 BRAD 73
4.3.9 BEAD 74
4.3.10 BLOT 75
4.3.11 MAST 78

i - -- —— -

.

4.3.12 MOVE 7S
4.3.13 User-Level Action Requests 80
4.3.14 Target System Interrupts 91

APPENDIX A. GPM RESERVtO WORDS fl5

APPENDIX B. USING THE GPM COMPILER 90

APPENDIX C. HARDWARE 'NSTRUCTION ENCODING 94
C.l Introduction 94
C.2 For the Operating Engine 94

C.2.1 A Operands 94
C.2.2 d Operands 95
C.2.3 Shift Amounts 95
C.2.4 GEAR 96
C.2.5 CEDE 97
C.2.6 SHIN 9H
C.2.7 GENT 99

C.3 For the Control Engine 99
C.3.1 FPp-Flops 99
C.3.2 CE Registers iOO
C.3.3 Relative Addresses 100
C.3.4 Boolean Expressions iÖO
C.3.5 BRAT 101
C.3.6 BENT 102
C.3.7 BORE 102
C.3.S BRAD 103
C.3.9 BEAD 103
C.3.10 BLOT M5
C.3.11 MAST m
C.3.12 MOVE 106

APPENDIX D. I/O INTERFACE 108
D.l Introduction 108
D.2 Commc md/Status Register 108
D.3 DATAO end DATAI 109
D.4 MLP-900 Interface Manipulation 109
D.5 PDP-1Ö Interface Manipulation iiö
D.6 IPLMode III

APPENDIXE. LANGUAGE BOARDS 112

REFERENCES 117

INDEX 118

VII

FIGURES

1.1 Basic PRIM Configuration i
1.2 MLP-900 Configuration 2
4.1 Operating engine: GEAR 55
4.2 Shifter Boundary Conditions 56
4.3 MINIFLOW Status Word 9
C.l A Operand Format 94
C.2 B Operand Format 95
C.3 GEAR Mmistep 97
C.4 CEDE Mimstep (J8
C.5 SHIN Mmistep 98
C.6 GENT Mimstep 99
C.7 F.n Encoding 99
C.8 CE.n Encoding 100
C.9 boolean Expression Encoding 101
CIO BRAT Mimstep 102
C.U BENT Mimstep 102
C.12 BORE Mimstep 103
C.13 BRAD Mimstep 103
C.14 BEADO Mimstep 104
C.15 BEAD1 Mimstep 104
C.16 BEAD2 Mimstep 105
C.l7 BEAD3 Mimstep 105
CAS BLOT Mimstep 106
C.19 MAST Mii.istep 106
C.20 MOVE Ministep 107
D.l Command/Status Register Format 108
E.l Language Board Input/Output Signals US

Preceding page blank

■'F^^ÄSPS^

VIII

-

TABLES

2.1 MLP Context 20
2.2 MP States 27
4.1 Operating Engine Address Space 50
4.2 GEAr< Flip-Flops 57
4.3 Flip-Flop«^ (Names and Groups) 66
4.4 Action Requests 82
C.l Shift Amount Encoding 96
C.2 GEAR Arithmetic Codes 96
C.3 CEDE Exchange Codes 97
C.4 SHIN Shift Codes 98
C.5 GENT B Operand Groups 99
06 Boolean Expression Types iOi
0.7 MAST Logical Codes 106
0.8 MOVE Codes 107

v#
1. OVERVIEW

The Programming Research Instrument (PRIM) projec' has created a fully protected
exper'vental computing environment with continuous multiuser access. The I/O and
user interaction facilities are provided by the TENZX time-sharing cystem[l,2] of Bolt
Beranek and Newman !;ic. (BBN). The computation facilities are provided by the
MLP-9C0, a flexible» powerful microprogrammed processor developed by the STANDARD
Computer Corporat;rn[3-6]. PRIM's multiaccess system allows each researcher to
create his own specialized computing engine that he ;an rhange r^nd adapt to his
specific needs.

PRIM is irmtomented on a system that can be viewed on 'our levels: hardware,
srftware, user intorpreter/emulatcr, and user tc. get program.

The PRIM hardware and software together provide a working environment in which
the user can implement his own computer in microcode and run that computer in his
target program environment.

1.1 HARDWARE

Tne hardware system is based on two processors: the Digital Equipment Corporation
PDP-IC and the STANDARD Computer Corporation MLP-900 prototype processor. The
PDr-lO and MLP-900 share memory as dual processors; the MLP-900 is a device on the
PDP-10 I/O bus (see Figure 1.1/.

1 ont)-in ^ I/O Bo» KA 1 C oar. \

\

'

BBN
Pager

Pager

i

Mem or
Bus

f Memory
Bus

256 K 4-v/Oy interleaved
36-bif memory

Mgure 1,1 Basic PRIM configuration

. ___ i ■ ■ ■ • ■>

OVERVIEW
Hardware

1.1.1 PDP-10

The PDP-10, connected to the ARPANET, ru.is under the BBN TENEX time-sharing
system on a paged virtual memory. The process, has 256K words of 36-bit memory.
The I/O performed by TENEX includes file, termiral, and network handling, swapping, and
ail other accesses to peripheral devices.

1.1.2 MLP-900

The MLP-900 is a vertical-word microprogrammed processor (microprocessor) that
runs sy chronously with a 4-MHz clock. It is char?cterized by two parallel computing
engines: the Or jting Engine (OE), which performs arithmetic operations, and the
Cor^ol Engine (CE), which performs control operations (see Figure 1.2). The OE
contains 32 36-bit general-purpose registers for operands and 32 36-bit mask
registers to sptcify operand fields. A IK 36-bit high-speed auxiliary memory is
associated with the OE. The CE contains 256 state flip-flops, a 16-word hardware
subroutine return stack, and 16 8 »It pointer registers.

OPERATING tNGINE
(I/O, arithmetic, logic)

Ge.ierai registers
32x36 bits, R.0-R.37

Auxiliary memory
IKxSöbits, A.0-A.1777

Mask registers*
16 x 36bits/M.0-M.17

CONTROL ENGINE
(Branches, testing)

Flip-flops
256x] bits, F.0-F.377

Pointer registers
16x8 bits, P.0-P.17

Subroutine stack
16xl6bits, S.0-S.17

CONTROL MEMORY
4kx36bits

■]6 x 36 bits privileged

Figure 1.2 MLP-900 configuration

The MLP-900 is accessible only through the FDP-10 as outline-' above (i.e., the I/O
bus and shared memory^; no provisions have been made for dir set connection of
peripheral device«:.

The speed arJ power of the MLP-900 may be conveniently understood in terms of
its ability to emulate bettpr "now,! machines. Emulation of the \BK'. 360 machine
language irr^ructions woulu produce an estimated execution rate as low as half that of
an IBM 3ÖC/65 A PDP-10 can be emulated at a rate approximating a KA10 CPU.
Ho"'-ver, in two high-level languages investigated, an estimated order-of-magnitude
Increase in execution rate of source statements can be attained by implementing those
languages d rectly rather than emulating an :ntermediate target machine.

-— —

OVERVIEW
Hardware

The MLP-900 is particularly well suited for investigating direct logusge emulation,
since it has the Mexibility of a large (4096 word x 36 bit) writable control memory, in
addition, through the use of special-purpose hardwire language boards, the basic
architecture of the MLP-900 can be conveniently expanded and its speed increased for
specialized language-processing tasks.

The environment of the MLr-900 further promotes easy experimentation and user
access. The TENEX host system vvil! provide not only complete I/O handlin- for the
MLP-900 but also a developed (and in many cases familiar) environment for users.
Together these two advanced systems shouM provide a most powerful and useful tool.

1.2 SOFTWARE

The PRIM software conf'ctu o^ the MLP-900 Microprogramming Supervisor
(Microvisor), the TFNEX Driver for the MLP-900, the TENEX MLP-EXEC program, which
provides interactive access to PRIM for a user at a TENEX terminal, and a compiler lor
the General Purpose Ki;<roprogramming Language (GPM).

1.2.1 GPM and the GPM Compiler

GPM is a high-level machine oriented language designed explicitly for the MLP-900.
As a high-level language, GPM o.fers a b'ock structure and statement syntax si .u'ar to
PL/1 o»- Algol. The soecific statement types defined T, GPM are generalizations of the
actual MLP-900 "MINIFLOW" instruction set; constructs completely foreign to MINIFLOW
(e.g., multiplLütion) do not appear in GPM. As a simple example of MINIFLOW
generalizaticn, consider that the result of a GEAR (GEneral ARithmetic) ministep may be
shifteu left or right only by 0, 1, 2, 4, 6, 8, 12, or 16 Llts; in GPM, any shift amount may
be specified, and tiie compiler will generate multiple shifts as required.

As the production language for '.r MLP-900, CfM is constrained to satisfy many of
the usual requiiements of an asse^' ly language. First, there is a well defined subset
of GPM statements that produces exactly one ministep per statement; the subset is
capable of generating all possible ministeps. Second, multi-miHstpp statements do not
generate implicit ^ue effects; for ex-- olt, a complex arithmetic assignment which
requires a temporary register for an intermediate result will generate a compile-time
error unless the program has explicitly declared some register to be available as a
temporary.

1.2.? MLP-900 Microvisor

The MLP-900 Microprogram Supervisor (Microvisor) is a small, fully protectei
resident system that controls the MLP-900 and its communication with the PDP-10. It
loads and unloads the user's MLP 900 context upon command from the FDP-10,
supports paging of the user target program, protects main memory and 4he rest of the
PDP-10 system from user interpreter e. rors, and provides that interpreter with some
services, such as an extended subroutine stack and calls for external communication.

■ ..,, —*.-.

OVERVIEW
Software

1.2.3 PDP-10 Support Programs

The PDP-10 TENEX software for support of the MLP-900 consists of a Driver to
control communication with—and sharing of—the MLP-900, and a subsystem (MLP-EXEC)
to allow easy interactive user access to The MLP-90Ü.

MLP-EXEC provides an environment in which the user at a terminal can compile,
load, execute, and debug MLP-900 microcode In a manner similar to that used for
debugging programs on the PÜP-10. In addition, he can create and debug target
programs and environments, although these tools must be provided at a very primitive
level, since K" P-EXEC cannot know the nature of the target environment.

The MLP-900 Driver is the extension in TENEX of the Microvkor; all communication
with the Mi.P-900 goes through the Driver. While new microcode "machines" can be
designad and debugged under the MLP-EXEC, completed ones will wck directly through
their own terminal subsystems, which will communicate directly with the Driver.

1.2.4 User's Interpreter and Target Program

The user's interpreter is a program written in GPM to run on the MLP-900; it
defines a (re-entrant^ MLP-900 control memory image. This image and all the
nonprlvileged registers and flip-flops within the MLP-900 comprise the MLP-900
context; users' contexts are 'oaded and unloaded as the MLP Driver shares the MLP
among different users.

The context defines the user's interpreter (or target machine) and operates upon
the user target program in a totally arbitrary way. The only constraint upon the target
program is that i(fit into a 5i2K 36-bit (virtual) memory space.

tß

nr

2. USER'S GUIDE

2.1 INTRODUCTION

As explained in Section 1.2 of the previous chapter, the PRIM software consist; of
the MLP-900 Microprogram Supervisor (Microvisor), the TENEX Driver for the MLP-SOO,
and the TENEX MLP-EXEC orogram, which provides interactive access to the MLP-'JOO
for a user at a TENEX terminal. This chapter provides a detailed guide to the PRIM
software (with the exception of the GPM compiler, which is discussed separatelv in
Chapter 3). Section 2.2 describes MLP-EXEC and the facilities 't provides to the user
for constructing, running, and debugging both MLP-900 microcode and the associated
target system. Section 2.3 describes the MLP-900 Microvisor and the services it
provides, as well as the restrictions it places on tnat microcode. Section 2.4 describes
the MLP Driver and the TENEX JSYS's required to communicate with it, which comprise
the interface to the MLP-900 used by MLP-EXEC. This section will be of direct interest
only to those who wish to replace MLP-EXEC with another subsystem of their own
design.

2.2 MLP-EXEC

MLP-EXEC is a TENEX subsystem that allows interactive access to the MLP-900 from
a user at a terminal. MLP-EXEC is modelled after the TENEX Exec in its general
command format; the specific commands are designed to allow user access to all phases
of MLP-900 operation.

2.2.1 Access to MLP-EXEC

As a TENEX subsystem. MLP-ExEC is entered by typing "MLP" to the TENEX Exec
program:

©MLP
MLP EXEC 1.0
>

The MLP-EXEC "prompt" character, ">", signals the user to enter a command. Upon
completion of command execution, MLP-EXEC prompts again.

Commands to MLP-EXEC can speci any of several types of actions:

• Control the loading, execution, aod debugging of the user's MLP context, a
structure which includes both the MLP-900 control memory and all the
(nonpnvileged) MLP-900 registers. All commands specific to the context are
prefixed by a period (.). The context defines the target machine and, in general,
its current state.

 - -- - ■ - - - - - ■ --- — ■

USER'S GUIDE
MLP-EXEC

• Control the loading and debugging of the target system, a 256K virtual memory
in which the target machine (as defined by the MLP context) runs. All
commands to control the target system are prefixed by a slash (/); in general,
tK se commands are identical to the TENEX Exec commands of the same name.

• Define the input/output files for MLP execution.

• Miscellaneous other commands, such as STATUS, QUITMLP, EXEC, and sc forth.

2.2.2 Command Format

A command consists of an initial key word (or portion of a key word) followed by
zero or more argument fields. MLP-EXEC pror.pts for each field required by the user's
command. The key word and argument fields are separated from one another by the
following field separator characters (separators): space, return, linefeed, tab, formfeed,
vertical tab, and Escape.

Additionally, two characters (Control T and Control C) act as complete commands in
themselves to control MLP execution and to provide status information on the MLP.

Command Key Words and Recognition

A key word is defined as a sequence of characters other than the separator
characters and the semicolon (which is used for comments).

Like TENEX Exec commands, MLP-EXEC commands can be abbreviated to just enough
characters to distinguish them from -^her commands. Similarly, if the abbreviated key
word is terminated by an Escape, the MLP-EXEC will, upon recognition, type back the
rest o' the key word. I* the command is not recognized, MLP-EXEC will ring the
terminal bell and await additional input.

Command Editing

Certain characters serve to edit a command key word, as follows:

• Control A,
Delete (DEL) - These backspace one character position, erasing the character
from the input.

• Control X - This erases the entire word so far entered.

• Control R - This types out the word so far entered.

These characters are also used for editing comn ^nd argument fields, except that
DEL cannot be used for backspacing a file name argument. An argument field
previously rompleted (i.e., fo'iowed by a field separator) cannot b^ edited.

T

>

USER'S GUIDR
MLP-EXEC

Comments in Commands

The semicolon (;) is used to begin a comment; everything from the semicolon to the
folloving return or linefeed is ignored by MLP-EXEC (but retyped by Control R).

Exampi*:
.>;THIS IS THE SAME AS A BLAhK LINETR
;THIS IS THE SAME AS A BLANK LINE
>EyEC; INVOKE THE TENEX EXEC

ISI-TENEX 1.31.1 ISI-TENEX EXEC 1.51.3

Command Termination and Confirr.ution

Most commands to MLP-EXEC are not executed until a confirming return or linefeed
is typed. The confirmation is normally not required, however, if the character
terminating the last argument field is a return or linefeed. Some commands require an
additional expiicit confirmation, since they change or destroy information. A few
commands require no confirmation, but are executed upon recognition of the last field.

Control C* Control C is valid at any time, terminating the current operation and
returning to the MLP-EXEC command level. During command input, the partial command
is aborted. During MLP e<ecution, that execution is interrupted (this is the only way to
stop a looping MLP progr jm).

Contrci I. Control T is valid at any time, and yields a message regarding the state
of the MLP and the value of the current address register.

Exam le:
<TT>
MLP RUNNING AT LOC 451

2.2.3 Commands for Control of the MLP Context

These commands begin with a period (.) to distinguish them from similar commands
for the target system.

.LOAD

.LOAD prompts for a list of files to be loaded (the file or files should be toe output
of a GPM compilation). The files are specified ^s a list of file specifiers, e.g., A.S.*.BIN.
The list is terminaed by a Return or a Delete ^Delete cancels the command).

.LOAD first clears the previous context; each file specified Is then loaded into
control memory. Any overlap of loaded files is ignored; any overlapped location will
have as its value the last item loaded in that location. If any fj'a specifies a starting
address, then that address Is retained by MLP-EXEC as the starting address for
execution.

- -— - - - ■ -

USER'S GUIDE
MLP-EXEC

As a cafety feature, any locations not loaded by any of the files are loaded with
Halt ministeps. It should also be noted that contrul memory locations 7000 through
7755 are not part of the user's context; although those locations may be loaded with
the .LOAD command, they will not be loaded into the MLP's control memory. These
locations may be used to preload certain of the MLP registers; if not otherwise se*, thoy
will be set to 0. For more informaiion, see Section 2.4 on the MLP-90U Driver.

Example:
>L0AD

GPM BINARY FILES: TEST1.B1N,<USER2>«.BIN

LOADED TEST1.BIN;5
LOADED <USER2>TEST3.BIN;4
LOADED <USER2>TEST4.BIN;4

Errors:
If one or more of the files cannot be loaded, an error message will be given, tut loading
will continue on the files remaining to be loaded.

.START

.START initiates 'JLP execution of the context, beginning at the starting address,
after amending parts of the context as follows:

P.6 <- 2 ! STACK POINTER
S.2 <- Starting address;
S.l <- 7200 ! ILLEGAL, to detect stack underflow
ARL.5 ♦■ FALSE;
CE.13 ♦■ 0;
INPW «- FALSE;
CE.12 ^-0(77);

After the context is swapped into control memory, microcode execution is always
initiated by a RETURN mimstep.

Errors:
NO PROGRAM No MLP context has been loaded

.CONTINUE

.CONTINUE resumes execution of the MLP context "as 'S after interruption.

Errors:
NO PROGRAM No MLP context has been loaded
NOT STARTED

i- .

USER'S GUIDE
-%. MLP-EXEC

.RESET

.RESET clears the MLP context. The jse of .START at this point will cause the error
message "NO PnOGRAMH to be typed.

.ENTRY

.ENTRY allows ^he user to set the starting address manually as an octal number, or
as a hexadecimal number preceded by an apostrophe {').

.RUN

.RUN prompts for the name .1 the GPM binary files to be run, LOAOs them, and
.STARTs them at the starting address of the last file loaded.

Example:
>.RUN

GPM BINARY FILES: TEST.MLP
LOADED TEST.MLP;!

Errors:
All the errors possible under .LOAD and START are possible.

.SAVE

.SAVE prompts for the file name? under which to save the current MLP context, and
saves the context on the file so that it can be restored with a subsequent .GET
command. Both control memory and all registers are saved.

Example:
>.SAVE
FILE NAME: TEST2.MLP[NEW FILE]

Errors:
? NO CONTEXT TO SAVE No context has been loaded

.GET

.GET prompts for the name of a file which was SAVEd, then restores the MLP
context from that file. The starting address is obtained from the restored stack.

Example:
'.GET

FILE: TEST.SAVE[Old version]

USER'S GUIDE
MLP-EXEC

10

Errors:
FILE NOT GETTABLE The file was not originally

saved in such a way that it
can be restored into the MLP
context using MLP-EXEC.

.DDT

.DDT invokes MLP DDT to let the user examine and change the MLP context
currently loaded. MLP DDT is described separately rater in this section.

ARSTATUS

Reports all of the MLP AR's associated with external events. For each active event,
the associated AP(s) are specified by an S-bit mask, with the most significant bit (200)
corresponding to F.130 and the least significant bit (001) to F.i37.

.EOF

Sets trie AR mask associated with the end-of-file condition (or any MLP input
channel). The mask is specified as an octal number less than 256.

.INPUT

Sets the AR mask associated with the input-ready condition for a given MLP input
channel. The AR(s) is sent to the MLP-900 wnenever that channel's input buffer
becomes nonempty, or whenever the buffer remains nonempty after a byte is read.
{AR(z/ is sent once per byte.)

2.2.4 Commands for Control of the Target System

These commands begin with a slash (/) to distinguish them from similar commands for
the MLP context.

/LOAD

/LOAD runs the standard TENEX loader to load relocatable binary file(s) into the
target system address space. Descriptions of the loader, which is identical to the
TENEX Exec "LOADER" com; land, can be found in Refs. 7 and 8.

USER'S GUIDE 11
ML0-EXEC

Evample:
>/LOAD
*/S
♦TEST.MLP
LOADER 3+3K CORE
MAX 400 WORDS FREE
EXIT
TC
>

/GET

/GET clears the current target, then does a GET into the target system address
space of a core image saved by SAVE or SSAVE. It is identical to the TENEX Exec "GET"
command.

Example:
>/GET
FILE: TEST.SAV[0!d version]

/MERGE

/MERGE is similar to GET but does not require initial clearing of the target system.
It is identical to the TENEX Exec "MERGE" command.

Example:
>/MERGE
FILE: TEST3.SAV[0id version]
>

/DDT

/DDT invokes the TENEX DDT package on the target system. It is identical to the
TENEX Exec "DDT" command.

/SAVE, /SSAVE

These commands SAVE or SSAVE the core image (except DDT if invoked) on a file.
SSAVE is reserved for shared files. These commands differ from TENEX Exec only in
saving the entire address space automatically.

Example:
>/SAVE

TARGET SPACE ON FILE: FOO.SAV [New version]
>

■ i ■ ■ i r

USER'S GUIDE 12
MLP-EXEC

/RESET

/RESET clears the target system. It is Idcruical to the TENEX Exec "RESET"
command; it also causes (he context to become "NOT STARTED."

/MEMSTAT

/MEMSTAT gives a page-by-page md.cation of the state of the target system, it is
identical to the TENEX Exec "MEMSTAT" command.

2.2.5 Commands For File Input/Output

INPUT, OUTPUT, APPEND

These commands establish a TENEX file for reading, writing, or appending (sequential
mode only) by the MLP program on a given channel. Arguments are file name, channel
number, and byte size for opening a file. Files can be independently assigned to each
of the 16 input and 16 output channels available (channels are numbered 0 through 15).

Example:
>INPUT

FILE: A.8 [Old version]
ON MLP CHANNEL: 0
WITH BYTE SIZE: 7

Each file is opened ("thawed") co that reading and writing may be done to the same
file simultaneously. If a file is already open on the channel, the MLP-EXEC, after
additional confirmation, closes and releases the old file.

CLOSINPUT, CLOSOUTPUT

These commands close a channel; each requires an explicit confirmation.

Example:
>CLOSINPUT

INPUT CHANNEL NUMBER: 4
CLOSING A.B;5
[CONFIRM]

FILESTATUS

This command types the current assignment of files to MLP channels (and to TENEX
JFN's).

USER'S GUIDE 13
^ MLP-EXEC

Example:
>FILESTATUS
CHAN: JFN: FILE: POSITION:
INPUT FILES:
C 5 A.B;4 332
OUTPUT F'LES:
0 6 A.B;5 1 0

2.2.6 Other Commands

EXEC

This command loads and starts an inferior TENEX Exec, without affecting the state of
the MLP context or target system. The use, may return to MLP-EXEC by executing a
QUIT from the TENEX Exec.

Example:
>EXEC
ISI-TENEX 1.51.0 ISI TENEX EXEC 1.77.6
fl);miscellaneous stuff that the user wants to do...

fS)Ql il r

>

QUlTMLP

This command exits from the MLP-EXEC. The MLP context and target system are
cleared before exiting.

LOGOUT

This command clears the context and the target system and logs out the job.

? (The Help Command)

This command lists alt the MLP-EXEC commands available.

STATUS

This commana prints a brief summary of the state of both context and target
system, e.g.,

>STATUS
CONTEXT LOADED. ENTRY ADDRESS 0
NO TARGET SYSTEM LOADED

(The context can be run without a target system; the first memory reference, if any, will
cause termination due to an illegal memory reference.)

M ' —

USER'S GUIDE 14
MLP-EXEC

2.2.7 MLP DDT

MLR DDT, entered by the .DDT commsnd from MLP-EXEC, allows Ihe user to examine
and modify his context (the corresponding facility for the target space is TENEX DDT,
invoked by the /DDT command).

Examining MLR Locations

MLR locations are of two kinds: control memory and register locations. Control
memory locations are specified by numeric addresses, e.g., 172, or ^39.* The registers
are specified by symbolic addresses, e.g., P.O or R.36.

To evimine a specific location, type its address, followed by a slash (/).

Example:
74/
74 0 GEAR 2 360 127 27 R.27*-R.27{M.17)«; P.4/
P.4/5

In this example the user examined control memory location 74 (octal). After the
GPM listing-format typeout, the user asked to see the contents of register P.4; P.4 was
typed out as an octal number.

Examining Consecutive Locations

After a location is examined, the characte- linefeed may be used to examine the
next location following; the character between " and " may be typed to examine the
location preceding.

Example:
P.4/ P.4/
P.5/ 27
M.5/
M.5/ 144
M.4/ 67

Changing Typeout Modes

The typeout mode is initially octal. To change to hexadecimal, type ESC (the escape
key) X; to change back to octal, type ESC 0 (letter Q).

Modification of a Location

The location last examined may be modified. Two methods are available for
modification.

» A leading apostrophe indicates a hexadecimal value on input.

^ -

... iwawMii— _^_^

USER'S GUIDE 15
MLP-EXEC

Direct Modification

An open location (including a control memory location) may be set to a m'meric
value by typing the value followed ^y return, linefeed, or "T". If linefeed or T' is
typed, the nex^ following or preceding location will be typed out and opened for
modirication. The new value may be entered in either octal or hexadecimal; as noted
earlier, hexadecimal values are indicated by typing a leading apostrophe ('). (Note that
if the numeric value given is not a valid octal or hexadecimal integer, a question mark (?)
is typed and the modification 's not made.)

If the location being modified has fewer significant bits than the number supplied,
the least significant bits of the r.umber become the new value.

GPM Modification

To change a control memory address with the aid of GPM, proceed as follows:

• Examine the location (this opens it for modification).

• Type "*": The prompt "GPM:" is made on the next line.

• Type in the new statement (or statements).

• Terminate the change with Control Z.

The GPM statement(s) are compiled and loaded beginning at the currently open
location. (Note that more than one consecutive location can be changed in this wayj if
ORIGIN statements are included, noncontiguous areas of control memory may be
changed.)

Before typing Control Z, the change can be aborted by typing Control Q.

Breakpoints

A single breakpoint can be set in control memory, target memory, or both. To set a
control memory breakpoint, type

<address> ESC E

where "<address>" is the control memory address. To dear it, type

ESC B

(no address).

- - --

USER'S GUIDE 16
MLP-F.XEC

To sei a target memory breakpoint, type

<addres5> ESC T

To clear it, type

ESC T

Action at a Breakpoint

A control memory breakpoint will cau^e execution of the specified location to halt
the MLP and to type out the address of the location at which execution so halts. A
target memory breakpoint will cause a similar halt upon any reference to the specified
target memory location The control memory address of the FOP or SAD ministep
causing the reference will be the interrupted MLP program counter (PC) value.

Single-Step Execution

To execute a single control memory instruction, type

<address> ESC S

or simply

ESC S

(The current location is used for <addre5s>.) After each step the address and contents
of the new control memory location are typed out and openeo for modification.

Resuming Execution

Normal MLP execution may be resumed by typing

<addres5> ESC P

or

ESCP

2.3 THE MLP-900 MICROPROGRAM SUPERVISOR

The MLP-900 Microprogram Supervisor (Microvisor) performs the usual functions
expected of an operating system, except that it is written in m crocode and supervises
the execution of microcode. The Microvisor interacts only with the user microcode and
the TENEX MLP Driver; it does not provide any facilities for—rr impose any restrictions
upon—the user target system.

USER'S CUIOE
Thp MLP-?. 0 Microp-ogram Supervisor

17

v .*"

user microcode always runs in user mode on the MLP-9^0j it is subject to the
restrictions imposed by the MLP-900 hardware, explained in detail throughout Chapter
4 and summarized here:

• The BLOT ministeos which reference control memory (RCM, WCM, and WBP) are
prohibited in user mode. If attempted in user mode, they generate a Supervisor
Ffifilities Action Request (SUPVF AR). User microcode is therefore incapable of
modifying itself.

• Certain registers are privileged and can be modified only in supervisor state;
an attempl to modify one while in the user state generates a SUPVF AR. The
privileged registers include the (paging) translator memory (XLATOR.777), half of
the Cc miscellaneous registers (MISC.20 thru MISC.37), anu seven bytes of the
CE flip-flops. These flip-flops and registers conf jl the main memory paging,
the i/0 bus communication with the PDP-10, the internal AR (interrupt) system,
and other critical functions.

• User mode microcode may not brarrh to a supervisor mode location, except for
designated supervisor entry points; an attempt to do so results in a PROT
(Protection) AR.

2.3.1 Control Memory

The Microvisor occupies control memory from 7000 to 7755 (octal), inclusive; these
locations are not available tor user microcode. This includes all the locations associated
with AR's of thp first four priority levels; all such AR's are handled entirely by the
Microvisor. Locdtions 7756 through 7777 (octal) are associated with the lowest AR
priority level (ARL.5) and target system interrupts; these locations are loaded as part
the user microcode context.

2.3.2 Main Memory

All main memory references by the user microcode are mapped into the target
system virtual memory. Page faults are handled by the Microvisor and the TENEX MLP
Driver in the same way that TENEX handles them directly for TENEX processes.

2.3.3 Extended Stack

The Microvisor provides for automatic storing and reloading of the MLP subroutine
stack-upon-stack overflow anc underflow; no distinction is made between occurrences
in user mode and supervisor mode. The extended stack is stored in the last page of
auxiliary memory (A 1400 th'ongh A. 1777), using successive 16-word blocks as needed.
The four most significant bits of P.6, the stack poin'.c-r, are used as the extended stack
block index; 0 sele^ A.1400-1417, 1 select A.1420-1437, ... 15 selects
A.1760-1777.

USER'S GUIDE 18
The MLP-900 Microprogram Supervisor

Upor stack overflow, the thirteen words at the bottom of the stack (S.l through
S.15) are stored in the parallel words of the current stack extension block and the stack
and its pointer adjusted appropriately. Upon underflow, thirteen words are reloaded
and the stack again adjusted. Words 0, 14, and 15 of each extension block are neither
used nor destroyed; they may be used for other purposes.

An "extended stack overflow" fault is generated, and the microcode halted,
whenever a stack overflow uses block zero. There is no provision for detecting
extended stack underflow; if desired, underflow protection may be provided by planting
an error address in the stack The maximum amount of stack space available, with P.6
initially set to one, is 209 words (15 stacked blocks of 13 plus 14 more in the actual
stack. The minimum amount available, with P.6 initially set to 241 (block 15, word 1), is
the 14 words of actual sfack; auxiliary memory win not be used except in the case of an
(erroneous) overflow or underflow of the stack. Intermediate initial values in P.6 will
allow other sizes of effective stack—and commit appropriate amounts of auxiliary
memory to the maintenance of that stack. The user's stack requirenents must allow not
Only for the maximum nesting in both mam and AR code, but also for four levels of
Microvisor stacking.

The nth entry from the top of the stacK, 0 <= n < 15 (octal), is located as follows (all
numbers are octal):

If (P.6 ana 17) > n
then S.O ® (P.6 - n)
else A. 1400 ® (P.6 + 15 - n)

2.3.4 Microvisor Calls

Microvisor functions are available to the microcode via calls to designated
Microvisor entry points. A juments are passed in register R.?/, and R.36 when needed;
replies are received in the same registers. The p.ntry n^mes and their locations are
Known by the GPM compiler, entry names are of the form "MLP.xxx".

CALL MLp.ST0P no arguments
Terminates microcode execution and informs the Driver; if continued, execution
will resume at the next ministep.

CALL MLP.PUT R.37 contains the output line number.
R.36 contains the data

Transmits the data to the Driver and return« immediately. Any error will result
in an asynchronous halt of the microcode at some subsequent point.

CALL MLP.GET R.37 contains the input line number.
Gets a byte of data from the TENEX Driver and returns it in R.36. Any error
will result in an immediate halt of the microcode; optionally end-of-file is
signaled via a user-level AR.

USER'S GUIDE 19
The MLP-900 Microprogram Supervisor

2.3.5 Communication with TENEX

The microcode can perform I/O on TENEX files through the two Microvisor calls
which transmit data to and from the PDP-10. A maximum of sixteen lines are available
for input (to the MLP), and sixteen for output. Each Microvisor call transmits one byte
of (up to) 36 data bits. Each lir =? actually used must first be defined at the TENEX end
(e.g., via the INPUT and OUTPUT con nands in MLP-EXEC); the use of an undefined line,
or an error on a defined line, causes execution to terminate due to a "Communication
Error."

Since I/O is done through the TENEX Driver, it is quite expensive; large data
transfers are better done via the shared target system memory.

When the microcode is halted while in an input-wait stele, F.162, the input-wait
flip-flop, is set; clearing the flip-flop before continuing execution will turn th^
interrupted GET into a null operation. Conversely, setting the flip-flap will cause an
extra GET on the line specified in R.37.

2.3.6 User Microcode Action Requests

The MLP AR's covered by ARL5 (F.130 through F.137), plus the target system
interrupt AR, are entirely at the disposal of the user. The control memory locations
(7756 through 7777) and the flip-flops involved are all part of tne user MLP context.

User AR's can be generated by the user language board (the null language board
does not generate any AR's;, by the tracing mechanism, and by direct user ministeps.
In addition, the Microvisor will pass an AR to the microcode when an appropriate
external event (such as end-of-file) occurs; the particular AR associated with a given
event is determined by the AR masks in the MLP context.

Tracing of a Microvisor call results in a total of three trace AR's: the first
immediately after the call—or immediately before the first Microvisor ministep—the
second and third upon exit 'from the call, one v*hile still in the Microvisor, and one just
before the continuation ministep.

2A THE TENEX MLP-900 DRIVER

Access to the MLP-900 from a TENEX process is accomplished via the MLP Driver in
TENEX. Communication with the driver is done through a series of JSYS's which mimic
(roughly) the JSYS's for subsidiary fork control (see Chapier 6 of the TENEX JSYS
Manual). The two principal elements involved in cre?fing and running the MLP are the
MLP context (the user microcode together with all the MLP registers) and the target
system upon which the context is tc operate The calling process must build both
before establishing access to the MLP.

■fc--'*^" lll^^ - ■ — ■ — ■-■-- ■ T-

USER'S GUIDE
The TENEX MLP-900 Driver

20

Table 2.1
MLP CONTEXT

Relative

Locatipn Content?

0 Control memory location 0
1 Control memory location 1

6777 Ccitrol memory location 6777
7000 R.O
7001 R.l

7037 R.37
7040 M.0

7057 M.17
7060 MISC.O

7073 MISC.13 (an unimplemented register)
7074 MISC.36 (Target Address Comparand)
7075 MISC.37 (Control Memory Address

Comparand)
7076 MISC. 16 (VAR)
7077 MISC. 17 (MDR)
7100 (CE.O, CE.l), right justified
7101 (CE.2, CE.3)

7157 (CE.136, CE.137)or S.17
7160- 7177 Not assigned
7200 JFN for output line «0

7217 JFN for outpuf line »17
7220 JFN for input line «0

7237 JFN for input line «17
7240 AR mask for end-of-file
7241- 7257 Other AR masks
7260- 7277 input ready AR masks for

line: 90-nl7
7300- 7677 internal Driver information

7700- 7755 Not assigned
7756 Control memory location 7756

7777 Control memory location 7777
10000 A.O

11777 A.1777

USER'S GUIDE 21
*• The TENEX MLP-900 Driver

2.4.1 MLP-900 Context

The context is a structure that contains all the data necessary to load the MLP and
begin (or resume) execution of the desired microcode. It includes not only an image of
the MLP-9C/? control memory, but also the internal MLP-900 registers and some cells
used by the Driver to implement MLP-900 communication with the PDP-10.

The context is 10 memory pages (5120 words) long, and must begin on SL page
boundary in the caller's address space. Its internal form is shown in Table 2.1.

Within the miscellaneous register«:, MISC.36 and MISC.37 are mapped into the context
in place of MISC.14 and MISC.15, which do not exist. The two comparand registers,
althougl- privileged, are loaded as part of the context, as are the two compare arming
flip-flops, F.i60 and F.161, and the 'nput-wait flip-flop, F.152. The microcode, however,
cannot affect either the comparands or the flip-flops.

Each of the AR masks consists of an eight-bit right-justified mask which is OR'ed
into the user AR byte (CE.13) by the Microvisor when the given event occurs. If the
mask is zero, the microcode cannot detect the condition.

Note that control memory locations 7000 to 7755 are occupied by the Microvisor
and are therefore not considered part of the user context.

The output and input JFIM's are used for the MLP-900/PDP-10 communication
available to the user microcode. When the microcode transmits a word to the PDP-IO
over a given line, the driver effectively does a BOUT of the received data to the
selected output JFN; similarly, when the microcode requests a word from the PDP-10
over a given line, the driver does a BIN using the selected input JFN.

The JFN's can be any usable JFN except 0, which is used to terminate MLP execution
when referenced.

Files must be opened (and positioned if necessary) before MLP execution begins;
any file error will terminate MLP execution.

2.4.2 MLP-900 Target System

The target system is the memory upon which the MLP context is to operate. It is
defined as a TENEX fork (or process), either the caller or a subsid'ary fork established
solely for this purpose. Typically, the target system fork will never be started on the
PDP-10; it exists to define an addres> space for MLP execution. The target fork AC's
are mapped into locations 0 through 17 of the target memory as seen by the MLP.*

z

* For the convenience of the reader, the presentation of ihe commands (hat follow is
intended to duplicate the formal of the TENEX tier's Mnminl[S].

.__

USER'S GUIDE
The TENEX MLP-900 Driver

22

CMLP
Creates MLP context and target system.
ACCEPTS IN 1: the pointer to tne MLP context in the

caller's address space.
2: a fork handle for the target system.

CMLP

RETURNS ♦ 1: if unsuccessful, error number in 1
■»■2: if successful, MLP handle in 1.

The MLP handle returned is used in succeeding SMLP, HMLP, and RMLPS calls; it
remains valid until killed by a KMLP call. The context and the target system are bound
to the MLP until the caller executes a subsequent KMLP on the returned handle. Any
attempt to re-map context pages or kill the target system fork will yield undefined
results.

CMLP ERRORS:
CMLPX1:

CMLPX2
FRKHX1
r"RKHX2
FRKHX3

context not on page boundary
MLP not available
illegal fork handle
cannot manipulate a superior fork
cannot reference multiple forks

USER'S GUIDE 23
The TENEX MLP-900 Driver

KMLP
Kills MLP
ACCEPTS IN 1: MP handle

KMLP

RETURNS M: always

Kills the MLP association established by CMLP, releasing the binding of context and
target system.

Generates an illegal instruction pseudo-interrupt on error conditions Tsted below.

KMLP ERRORS;
MLPX1: invalid MLP handle

11

USEfTS GUIDE 24
Tha TENEX MLP-900 Driver

IMLP

Interrupt MLP

ACCEPTS IN 1: MLP Handle
2: AR Mask

RETURNS >i: Always

IMLP

Passes the indicated AR's to the microcode. B28 set:, F.130, B29 sets F.131, ...
B35 sets F.137. If the microcode is halted, the bits are set in the memory image of the
context.

Generates illegal instruction pscudo-mterrupt on error conditions listed below.

IMLP ERRORS:

MLPX1: Invalid MLP handle

USER'S GUIDE
The TENEX MLP-900 Driver

25

Starts (or resumes) MLP execution.
ACCEPTS IN 1: MLP handle

SMLP

SMLP

RETURNS ♦ 1: always

Causes the context bound to the MLP handle to be loaded into the MLP-900 and
microcode execution to begin (or resume). The Microvsor passes control to the context
microcode via the Ö0RE (Return) mimstep; therefore, the start/resume address is
defined by the vJue of P.6 and the appropriate stack word in the context. It does
nothing if MLP already started.

Execution of the context microcode continues until either the microcode halts
(voluntarily or due to a fault) or the caller does an HMLP; upon termination of execution,
the caller is sent a pseudo-mterrupt on channel 23. Between an SMLP and the
subsequent termination of execution detected by the pseudo-interrupt routine or by a
RMLPS—the context "belongs" to the MLP and the Driver; a^v attempt to read or modify
it is invalid.

Generates an illegal instruction pseudo-interrupt on error conditions listed below.

SMLP ERRORS:
MLPX1: invalid MLP handle

USER'S GUIDE 26
The TENEX MLP-900 Driver

HMLP
Halts MLP execution
ACCEPTS IN 1: MLP handle

HMLP

RETURNS +1: always

Terminates MLP-900 execution of the context microcode. Does nothing if the
context is already halted or was not started.

Generates illegal instruction pseudo-interrupt on error conditions listed below.

HMLP ERRORS:
MLPX1: invalid MLP handle

USER'S GUIDE 27
The TENEX MLP-900 Driver

RMLPC

Reads MLR status.
ACCEPTS IN 1: MLP handle

RMLPS

RETURNS +1: always, with status word in 1, execution
time (in nnilliseconds) in 2.

The MLR status word consists of a state code in the left half and the microcode
program counter ./a'ue in the right half (see Table 2.2).

TABLE 2.2
MLR STATES

Code
(Octal) Status Context

-1 Unrecoverable Driver Error Stop(*) Valid
0 Running Invalid
1 I/O Wait Invalid
2 Volunta y Termination Valid

^> (CALL STOP by the microcode)
4 Target System Address Compare Stop Valid
5 Control Mem. , Adcress Compare Stop Valid
6 Supervisor Facility Violation Fault Valid
7 Protection Violation fault Valid

10 Extended Stack Overflow Fault Valid
11 Communication Fault Valid
12 Target System Memory Reference Fault Valid
13 "Recoverable" MLR Error Stop«*) Valid

The validity c^ the context applies to the image of the context in the caller's
address space. When it is valid, it may be inspected and/or modified arbitrarily.

In the cases marked (*), the Driver has also printed a message on its primary output
file. If an unrecoverable error, the Driver has also been killed, and tl^e MLP handle is
no longer valid. This represents a hardware or system software failure z.'hich should
be reported to system personnel.

RMLPS ERRORS:
MLPX1: invalid MLP handle

- - - -

%*

29

3. GENERAL PURPOSE MICROPROGRAMMING LANGUAGE REFERENCE MANUAL

3.1 INTRODUCTION

The General Purpose Microprogramming Language (GPK/., ;= - ~'.vel language
developed by the PRIM project as a machine-dependent microprou «. ming language for
the MLP-900. It contains many special-purpose language forms reflecting actual
MLP-900 hardware features.

The assembler philosophy underlies the design of GPM, which allows the
programmer to create any instruction sequence and requires no run-time support
system, although syntactic block structure and high-level control structures are
provided to assist the programmer. GPM is the primary language for the MLP-900 (no
assembly language is prr ded) and, as such, was designed to be used by both the
diagnostic programmer ana me researcher.

3.2 BASIC LANGUAGE SYMBOLS

GPM programs are composed of five basic symbols or syntactic entities. They are
as follows:

• Identifiers (id)
• Reserved identifiers
• Numbers (number)
• Blanks
• Nonalphanumeric characters

3.2 1 Identifiers

id ::=
. word I word I id . subid

subid ::=
word I number

word ::«
alpha I word alpha I word digit

number ::■
digit I number digit

digit ::-
0 I 1 I ... I 6 I 7

alpha ::«
& I 9 I A I B ! ... I Y I Z I
a I b I ... I y I z

Preceding page blank

GPM MANUAL 30
Basic Language Symbols

An identifier «s a string of words (alphanumeric strings) or numbers separated by
periods. The first field must not be a number, and words cannot begin with a digit (0 -
7). The last number (all-numeric) field is referred to as the index; it is used extensively
for reserved identifiers (e.g., R.O is general register 0 and R.17 is general register 17).
Nonreserved identifiers are used in four places in GPM:

• TITLE statement

• EQUATE statement

• Block name

• Labels

3.2.2 Reserved Identifiers

Reserved identifiers have the same syntax as identifiers and include all special
symbols in GPM. In the case of indexed reserved identifiers, they are all assumed to
have zero origin and will be referred to in this manual by their upper bound. All
reserved identifiers are upper-case.

Example:
There are 32 general registers (R.O - R.37). R.37 will appear in all descriptions to
represent

R.O I R.l I ... I R.36 I R.37

Reserved identifiers cannot be .jsed as labels or as the title. A complete list of all
reserved identifiers is given in Appendix A.

3.2.3 Numbers

All numbers in GPM, including identifier index fields, are octal. Y. 1973 is two
identifiers, i.e., Y.l and 973. The numerals 8 and 9 are letters.

3.2.4 Blanks

All nonprinting characters (space, tab, linefeed, carriage return, and formfeed) are
blanks. Blanks separate numbers and identifiers; otherwise they have no syntactic or
semantic function. There is one additional blank character, an arbitrary string starting
and ending with a percent sign (7). This is not the preferred method of comment, as
will be treated in detail in the discussion of the GPM listing format in Appendix B.

3.2.5 Nonalphanumenc Characters

All nonalphanumenc characters are reserved. Except for the period (.), they are all
self-terminating and cannot appear as part of any symbol.

GPM MANUAL 31
^ Basic Language Symbols
i>

3.2.6 Examples of Basic Symbols

The string R.l ABC«1248X 12A.B;C.3.4.X is interpreted as

R.l Reserved identifier; index » 1
ABC Identifier
« Character
124 Number
8X Identifier
12 Number
A.B Identifier

J Character
C.3.4.X Identifier; index = 4

3.3 PROGRAM STRUCTURE

program ::=«
TITLE id body closing

body ::-
declarationlist ; statementlist I statementlist

declarationlist ::=
declaration I declarationlist ; declaration

statementlist :;=
statement I statementlist ; statement

A GPM program starts with a title declaration. The title must be a nonreser/ed
identifier. The body of the program has two parts: a declaration list and statement list.
The program ends with a closing or FINISH statement.

3.b.l Declarations

declaration ::=
pseudostatement I TEMPORARY rlist I
EQUATE symbol symbol I EQUATE symbol symbol number I
DEFAULT TEST mode I DEFAULT CLEAR mode I
DEFAULT MASK M.17

rlist ::«
R.37 I rlist R.37 I M.17 I rlist M.17

mode ::=
MODE TRUE I MODE FALSE

The declarations define conditions that will be active for the scope of the body in
which they are made. They fall into two general groups: The first group (EQUATEs)
defines new symbols, and the second (TEMPORARY and DErAULTs) defines conditions

GPM MANUAL 32
Program Structure

relative to operating engine compilation. Pseudostatements are listed under
declarations because they may appear anywhere in the program. They are discussed in
Section 3 4.

EQUATE

There are two form? of the EQUATE statement. The iirsf takes two symbols and
equates the first to the second. For example, after the declaration EQUATE PC R.3:
every occurrence of PC within the scope of the declaration will be interpretec as R.3.
The following are legal EQUATE statements:

EQUATE INDEX ^ 6;

EQUATE MINUS.ONE 777777777777;

EQUATE EQ EQUATE;

EQ INFINITE.LOOP.START DO.BEGIN;

The second EQUATE form is used to equate blocks of indexed ames. For example,
after the declaration EQUATE AC.O R.10 10; every occurrence of AC.O through AC.7
within the scope of the declaration will be interpreted as R.10 through . .17,
respectively.

TEMPORARY

The TEMPORARY deciaration declares .■*eneral registers or mas», registers that may
be used as temporaries by the code .enera^ors. This declaration allows more
complicated arithmetic operations and data fransfers to be compiled.

DEFAULT

Three conditions associated with arithmetic express ons will be fairly constant over
a large number of statements. Tnese may be set by the DEFAULT statement. They are
as follows:

• Test Mode. When this is true, no general registers are stored into, tnough the
operations aro done and the Gppropnat'- status 'üp-^Ops are modified. The
initial value is FALSE.

• Mask. The mask register defines the active parts of the regis'.ers for arithmetic
expression evaluation. The mitia1 value is M.O.

• Clear Mode. When this is irue, he parts of the rr-!ster that do not enter into
the calcu'ation, as controlled by the mask register value, are cleared to zero.
The initial value is FALSE.

GPM MANUAL 33
Program Stru ture

3.3.2 Statements

statement ::=
id : statement I substatement

The statement types are discussed in detail in Section 3.5. Al' statements may be
tagged by one or more identifiers, which can be used as program labels. Reserved
identifiers, numbers, and nonalphanumeric characters may nof be used as program
labels.

3.3.3 Closing

Closing :: =
FINISH I FINISH id

The closing statement of a GPM program is the reserved word FINISH, optionally
followed by an identifier. This identif --, if present, specifies the starting label of the
program to the MLP loader.

3.4 PSEUDC IATEMENTS

pseudostatement ::=
ORIGIN number I COMMENT (any string not containing a ;) I
outputcontrol

outputcontrol ::=
PRINTON I PRINTOFF I outputtype mode

outputtype ::=
HEXADECIMALCODE I NORM/^.CODE I LABELTABLE

Three classes of pseudostatements may appear anywhere in a GPM program: ORIGIN
statement, COMMENT statement, and output control statements.

3.4.1 ORIGIN

The GPM compiler produces absolute code. The ORIGIN statement is provided to
allow the programmer to specify where the code should be placed in control memory.
The number m the origin statement is the location to receive the next instructions
compiled. All succeeding instructions will be placed in consecutive locations. The initial
value for the origin is 0.

3.4.2 COMMENT

The COMMENT statement is provided tc allow the programmer to document his
program. In addition to the COMMENT statement, there is also a feature to allow
comments for each statement, as one might use in assembly code This feature is that
any string starting with an exclamation point (!) and terminated by a carriage return is
interpreted by the compiler as a semicolon (;).

GPM MANUAL 34
Pseudostatements

Example:
COMMENT comment facility example ;
R.O <- ü Izero general register zero
R.l ♦■ R.0 ♦ 1 ! set general register one to one
COMMENT end of comment facility example !!!!!!!

3.4.3 Output Control

Several pseudostatements are provided to control the generation of the output
listing. These can be brOKen into two areas: the source listing and the code listing. A
complete listing consists of the following four par'.s:

• The source file with errors flagged and corrections
made (where possible)

• The label table
• The compiled code listed in octal (normal code)
• The compiled code listed in hexadecimal

Source Listing Control

Two pseudostatements control the generation of the source iisting: PRINTON and
PRINTOFF. PRINCOFF will always turn off the Iisting; PRINTON will turn on the listing
only if there has been one PRINTON for each PRINTOFF, which enables the user to nest
PRINTOFF/PRINTON pairs. This is useful with nested INCLUDE files, which usually are
not desired tn the output listing. There is a compiler switch to allow all PRINTOFFs to
be ignored, thus forcing a complete listing.

Code Listing Control

Each of three pseudostatements controls one of the three other parts of the output
listing. If several of these statements appear, the last one will be in effect when the
listings are generated at the end of the :ompilation. The initial seltings are as follows:

LABELTABLE MODE FALSE;
NORMALCODE MODE FALSE;
HEXADECIMALCODE MODE FALSE;

However, there are compiler switches (see Section 3.9) to change these initial
settings.

3.5 STATEMENTS

subsfate »nt ::*
pseudos^tement I assignment I control I low level

Four classes of statements may appear in GPM programs: pseudostatements,
assignment statements, control statements, and miscellaneous statements.
Pseudostatements, which are discussed 'n Section 3 4, do not generate any code and
only condition the compilation or listing generation tl.at follows. Assignment statements,

GPM MANUAL 35
Statements

which are discussed in Section 3.6, evaluate expressions and move data within the
MLP-900. Control statements, which are discussed in Section 3.7, determine the control
flow of the program. Low-level statements, which are discussed in Section 3.8, are
machine-dependent statements that deal with MLP-^00 specific operations but do not fit
into the above categories (e.g., input/output).

3.6 ASSIGNMENT STATEMENTS

assignment ::=
arithmetic I boolean I datatransfer

The three types of assignment statements are as follows:

• Arithmetic. Assign the value of an arithmetic expression to a General
Register (0E).

• Boolean. Assign the value of a boolean expression to a flip-flop (CE).

• Data Transfer. Copy data from one machine register to another (0E and CE).

3.6.1 Arithmetic Assignment

arithmetic ::=
aleft *- arithmetic I aexp I aexp modifiers

alert •:=
R.3 I * P.17 I rD P.I7

modifiers ::=
modifier I modifiers modif'er

modifier :: =
{ M.17 H [M.17] I » I / number ! \ number

aexp ::=
aterm I aterm aop aexp

aterm :: =
apnmary I NOT apnmary

apnmary ::=
aleft I number I P.17 I (arithmetic)

aop :: =
* I - I MINUS I PLUS I AND I OR I XOR

The arithmetic assignment statement has three parts: result registers (alefts), an
arithmetic expression (aexp), and modifiers (modifiers). Only the arithmetic expression
must be present. The first two parts define an ordinary arithmetic calculation, wnile
the modifiers condition the evalaution of the expression.

tmm

GPM MANUAL 36
Assignment Statements

There are three types of modifiers; only one of each may be present. They specify
the mask, test mode, and final shift.

Mask

If no mask modifier is specified, the default mask and default clear mode will be
used. In nested expressions, the outer specification (if there is one) will replace the
default value. The mask (M.17) specifies which mask register wil' be used for the
calculation. The parentheses indicate deer mode false and the brackets indicate clear
mode true.

Test Mode

If the test mode symbol («) is not present, the default or outer specification will be
used, as with the mask. If it is present, the new test mode will be the complement of
the current default value.

Shift

If no shift is specified, none will occur. R.ght shif* (divide) is specified by a / and
left shift (multiply) is specified by a \.

Operators

No precedence is associated with any of the binary operators (aop). The unary
one's complement NOT is of highes1 precedence. If order of evaluation is important, it
must be specified with parentheses. The binary operators are

+ Two's complement add
Two's complement subtract

PLUS Long add (see Chapter 4)
MINUS Long subtract
AND Logical and
OR Logical or
XOR Logical exclusive or

Result

If no result is specified, the operation will be done with test mode true. Both *
P.17 and ra P.17 specify indirect references to the general registers. The character (S)
is a normal indirect; the register number is taker from the five low-order bits of the
specified pointer register. The character * is a special indirect; it acts like a norm
indirect, except that the low-order bit is forced to i in the register number.

Examples:
COMMENT if R.4 - R.l 1 GOTO eoual.tag ;
NOT (R.4 XOR R.ll) Iresult will be zero on equals
IF ZSP GOTO EOUAL.TAG ;

J
L^_

GPM MANUAL 37
Assignment Statements

COMMENT M.1 contains 7700, M.2 contains 77770 ;
COMMENT number in R.3 field M.l added to R.4 field M.2 ;
R.4 ^ R.4 *(R.3 [M.l] /3) (M.2) ;

3.6.2 Boolean Assignment

boolean ::=
F.377 «- bexp

bexp ::=
bexpr ! boolean

bexpr :: =
bterm I bexp bop bterm

bterm ::=
bprimary I NOT bpnmary

bpnmary ::=
F.377 I TRUE I FALSE I (bexp)

bop :: =
AND I OR I XOR

The boolean assignmerit statement provides a metnod to set flip-flops to ihe value
of a boolean expression. The boolean expression is composed of flip-flops and the
boolean constants TRUE and FALSE. The operators are the logical operators AND, OR,
XOR. and NOT.

As in the arithmetic expression, there is no orectdence between the binary
operators (bop), and the unary one's complemer* NOT is Of highest precedence. If
order of evaluation is important, it must be specified with parentheses.

Examples:
GI.3 «- GI.3 XOR GI.5 !if GI.5 then complement GI.3
G1.7 *- Gl.i OR GI.2 OR NOT GI.3 ;
Gl.ll *- ^GI.O AND GI.5) OR NOT (GI.7 AND GI.6);

3.6.3 Data Transfer

datatransfer ::=
dt36lft - dtnot dt36r'. dtmask I
dtlSlft - dtnot dtl5rt dtmask I
dtSlft *- dtnot dtSrt dtmask

dtnot ::=
NOT I (empty string)

—.

GPM MANUAL 38
Assignr.ient Statements

dtmask :.»
(number) I [number] I lempty string)

dt36lft ::-
oereg I oepg © P.17 I oepg * P,17 I X3US

oereg ::=«
7.37 I MISC.37 I M.17 I A.1777 I LB.1777 I
SUPVLB.377 I XLATOR.777

Oepg ::=
R.0 I MISC.O I M.O I A.PG.3 I LB.PG.3 I
SUPVLB.O I XLATOR.PG.l

dt36rt :: =
dt36lft I number I P.17

dtl6lft ::=
dt36lft H.l I (cereg) I (cereg , cereg) I S.17

cereg ::«
CE.137 I P.17 I XBUS.3

dtlGrt ::-
dtlGlft I number

dtSlft ::=
dt36lft B.3 i cereg

dt8rt :: =
dtSlft I number I F.377

The basic format of a data transfer statement is
left •- not right masK

The left and right fields are data ob^ects of matching size. The possible sizes are 36,
16, and 8 bits. The NOT field contains an optional one's complement NOT.

The mask notation is similiar to the arithmetic assignment, except that the mask is
specified as a constant number instead of as a mask register. The parentheses specify
a normal mask, where all masked-out (zero mask bits) bits remained unchanged. The
square brackets specify a clear mask where ^11 masked-out bits are zeroed. If no mask
is specified, an all-ones mask of the "opropruto size is used.

afLbli transfers

The 36-bit left operand: are OE registers. The right operands are either QE
registers, constants, or pointer registers. In the case of pointer regic'.ers, the
high-order 28 bits are zero. The OE registers are as follows:

GPM MANUAL
Assignment Statements

R.37
M.17

MISC.37
A.1777
LB.1777
SUPVLB.377

• XLATOR.777

39

32 general-purpose registers,

16 mask registers,

32 miscellaneous registers,

102^ auxiliary memory registers,

1024 language board registers,

256 supervisor language board

registers (only Microvisor mode

acces- allowed),

512 translator memory registers

(only ' Microvisor mode access

allowed).

in addition to direct references to OE registers, they may be referenced indirectly

through the pointer registers. OE registers are divided into pages of up to 256

registers. The 8-bit pointer registers can address any register within a page. It is

possible only to indirectly address registers within a fixed page. As with the arithmetic

assignment statement, the * indirect operator will force the low-order register number

bit to a 1.

16-bit transfers

There are four types of 16-left operands. These and constants comprise the

possible right operands. The (0\jr left operand types are as follows:

i) OE register Half-words - <dt36lft H.l>

Half-words are numbered from left to right. The high-order four bits are

never referenced. Thercfore, H. 1 refers to the low-order 16 bits and H.O

refers to the next lowest 16 bits. Note that whenever half-word

references are used, as the left side of a data transfer, the remainder of

the specified OE register is zeroed. Additionally, OE registers may not

appear as both left and right operands

2) C£ Double Register - <(cereg)>

The CE register double-register construct references an odd/even pair of

CE registers. The CE register explicitly named within the parentheses is

the first register of the pair. The two examples following will each cause a

swapped data transfer:

R.C H.I - (P.l);

(P.!)- (P.6);

3) General CE Double Register -
<^cercg, cereg)"-*

The CE register general double register construct is similar to the double

register construct described above except that both CE registers are

named explicitly. If tne general double register is not an odd/even pair, it

cannot be moved to or from an OE register half-word. The following is an

impossible data transfer:

(P.1.P.2) - R.17 H.O;

MMiaMMMft

GPM MANUAL 40
Assignment Statements

4) Subroutine Stack Register - <S.17>
The construct b.n is equivalent to (CE.100+2n) or {CE.100+2n,CE.101+2n).

Sdblt transfers

There are two types of 8-bit left operands. They are as follows

1) OE Register Byte -
Bytes are numbered from left to right. The high-order four bits are never
referenced. Therefore B.3 refers to the low-ord?r 8 bits, B.2 refers to the
next lowest 8 bits, etc. Note that whenever byte references are used as
the left side of a data transfer, the remainder of the specified ÜE register
is zeroed. Additionally, ÖE registers may not appear as left and right
operands.

2) CE Register - <cereg>
The CE registers are

• CE.137 All CE reg-sters;

• P. 17 pointer registers, (CE.40-CE.57);

• XBUS.3 CE exchange bus, {CE.70 - CE 73 as left operands; CE.64 - CE.67
as right operands).

In addition to the two operand types discussed above, 8-bit right operands may also
be either constants or flip-flops. In the case of flip-flops, the right operand is
interpreted as an 8-bit quanHy, where each bit if ^ copy of the value of the specified
flip-flop.

Examples:
R.O - NOT A.173 [777];
A.PG.O roP.l ♦• A.PG1 ^ P.i;
M.17 H.l #- NOT S.12;
M.I - 777777777777;
R.3 B.3 - P. 17;
R.3 *- P.17;
P. 17 ^CE.O;
i J - NOT F.144 (123);

3.7 CONTROL STATEMENTS

control ::=
block I break I branch I do I it I switch

There are six control structures in GPM. They are as follows:

• Block Prototype compound statement form,
• BREAK Standard block exit mechanism,
• Branches Unconditional transfer of program control,

GPM MANUAL 41
Control Statements

• DO Looping mechanism,
• IF Conditional execution and compilation,
• Switch Case analysis (index branch) mechanism.

3.7.1 Block

block ::-
BEGIN name body END name

name ::=
NAMED symbol I (empty string)

The BEGIN END block is the prototype compound statement form in GPM. The IF,
DO.BEGIN. and SWITCHON statements are special cases of the BEGIN block. All have the
characteristics ot the standard block in addition to special features of their own.

Scope

The block specifies the scope for any declarations that may appear in the
declaration part of the block body. In the special case blocks, the BEGIN END also
determines the scope of the control structure involved.

Names

Blocks can be named by follow,ng the BEGIN with "NAMED id," which enables the
program to refer to the block by name. This is used for two purposes. First, the END
may be named, thus closing all unnamed blocks within the named block; also, the block
name is used by the BREAK statement to specify which block to exit.

3.7.2 BREAK

break ::=»
BREAK name

The BREAK statement will cause program control to branch to the end of a
particular block. If no name is supplied to the BREAK, the current block will be exited.
If a name is supplied, then control will branch to the end ot that block.

This is different from a RETURN statement. The RETURN statement exits a
subroutine to the called location (determined at runtime), whereas the BREAK statement
exits a block to a block end (determined at compile time).

3.7.3 Branches

branch ::=
RETURN I GOTO label I CALL label

label ::-
location I < P.17 > I location < P.17 >

GPM MANUAL 42
Control Statements

location :;-
id I number I offset I id offset

offset ::-
♦ number I - number

The three types of unconditional branches are RETURN, CALL, and GOTO. The
RETURN statement transfers control to thr location on the top of the hardware
subroutine stack, and pops the stack. The CALL statement pushes the location of the
next sequential instrut'.^on in control memory onto the top of the stack ?,id does a
GOTO. The GOTO simply branches to the location specified by the label.

In addition to the unconditiond branches provided by the branch statements, GPM
also has conditional branches. These are special forms of the IF statement described in
Section 3.7.

3.7.4 Labels

There are basically two types of labels of branch destinations: relative and absolute.
Either type can be indexed by the value of a pointer register: The indexing is always
post-indexing, that is, the branch destination is calculated and the value of the pointer
register is then added. This addition might cause overflow, in which case the transfer
destination will wrap around to low control memory. If the label is only a oointer
register, then the index is relative to the next sequential instruction in control memory.

Absolute Labels

An absolute label mdy transfer a program label identifier (see Section 3.3) or an
absolute location specified by a number.

Relative Labels

A relative label may be merely an offset, specifying a transfer relative to the
current location in control memory, or an offset from some specified program label
identifier.

Examples:
GOTO TAG;
CALL 100 <P.3>;

TAG:
CALL TAG *3;
RETURN
GOTO -4;
CALL ♦1<P.>;

3.7.5 DOBEGIN

do ::-
DO.BEGIN name body END name

GPM MANUAL /J3
Control Statements

The DO.BEGIN statement unconditionally repeats the body of code contained within.
This is the looping construct in GPM. The loop is usually terminated with a BREAK

Example:
COMMENT const» uct n-bit mask - n is in general repister N ;
R.l ♦- 0 ! initialize mask result register
DO.BEGIN

P.l «- R.l + 1 \ 1 !add another bit to the mask
N «- N - 1 decrement count
IF ZSP BREAK Ibreak when count runs out

END; R.l f- R.l / 1 ?done

3.7.6 IF

if ::-
IF bexp THEN.BEGIN name body ELSE statementlist END name I
IF bexp THEN.BEGIN name body END name I
IF bexp BREAK name I IF bexp RETURN I
IF bexp CALL id I IF bexp GOTO id

There are two types of IF statements: block structured and conditional branch. The
first is for the conditional execution of sections of code and the second for the
conditional transfer of control. The first is sufficient in all cases, but the second is
easier and more efficient when appropriate.

Block Structured IF Statement

The block structured IF statement has two rorms, the most general of which is the IF
THEN.BEGIN ELSE END form. In this case the boolean expression is evaluated. If it is
true, the body following the THEN.BEGIN is executed. The statement list following the
ELSE will not be executed. If the boolean expression is false, the opposite will happen;
the body will not be executed and the statement list will be.

Any declarationr that follow the THEN.BEGIN will be active for both statements in
the body following the THEN.BEGIN and statements in the statement list following the
ELSE. The second form of IF simply omits the ELSE sections.

Conditional Compilation

The boolean expression is evaluated at compile time. If it evaluates to a constant
TRUE or FALSE, then the IF statement will compile code for the appropriate statements
only; no test will be compiled at all. ORIGINS and program label assignments can also be
conditionally compiled using this facility. There is no way to conditionally specify
declarations for a block.

Conditiop^l üranch IE SUtgmgnt

These IF statements do no^ contain either the THEN.BEGIN or the END. Immediately
following the boolean expression is a branch statement (BREAK, RETURN, GOTO, CALL).
The available branch statements are restricteo, and only label names may be used as
the GOTO or CALL destinations.

GPM MANUAL 44
Control Statements

The conditional branch IF statement is provided so programmers may write GOTOIess
programs without being penalized with inefficient code. Note that a BREAK inside a
block-structured IF statement will only BREAK out of the IF block if the BREAK is not
NAMED. This means that the following two statements are NOT equivalent:

IF ZSP THEN.BEGIN BREAK END;
IF ZSP BREAK;

3.7.7 Switch

switch ::»
switchblock I switchtag

switchblock ::-
SWITCHON < P.17 > INTO.BEGIN name body END name

switchtag ::»
CASE switcMist I ENTRY switchlist

switchlist ::-
switchvalue I switchlist , switchve »e

switchvalue ::»
number I number THRU number I number THRU I
THRU number I THRU

A switch statement has two components: first, a switch block that specifies the
pointer register to be used to index into the body of the block and second, a number of
switch tags that specify where each index 'alue is to start execution.

Switch Blochi

The switch block specifies a pointer register. The value of this register and the
switch tags within the switch block determine where in the body of the switch block
execution will begin.

Switch Iag£

There are two types of switch tag statements. The ENTRY statement specifies a list
of pointer register values that are to start execution following the ENTRY statement.
The CASE statement is equivalent to the ENTRY statement, except that the CASE
statement compiles a BREAK out of the switch block.

Switch Values

Switch values are either numbers or ranges of numbe-s. The range of a SWITCHON
can be a maximum of 0 through 377. On the THRU version of the switch value 0 is
assumed if the start is not specified, and 377 is assumed if the end is not specified.
A so, if some particular number has been assigned previously, the THRU specification
will ignore it. On the other hand, a single number specification will override.

 _—.. . . -.. .— -— ..„...^i , ,. ,.-1,.,

GPM MANUAL 45
Control Statements

Efficiency Cgnsideratigns

The first statement fonowing the INTO.BEGIN (after any declarations) should be an
ENTRY statement. A CASE will produce an unnecessary BREAK, and any other
statement will never be executed.

Each switch value declared produces one instruction overhead. The switch 'S
assumed to have a 0 origin. For example, a CASE 2 and 4 will have five (0-4)
instructions overhead.

Debugging Considf ration?

IVo clieck is made at run time as to the value of the pointer register. Any
unspecified values below ^e maximum specified value will transfer control to the
localion immediately following the switch block. However, values above the maximum
will transfer to a location beyond the switch block, producing strange results.

Examples:
SWITCHON <P.1> INTO.BEGIN

ENTRY 2,4;
COMMENT CASES 2,4;
CASE 1 THRU 6,10;
COMMENT CASES 1,3,6,JO;
ENTRY 5;
COMMENT CASES 1,3,5,6,10;
END

3.S LOW-LEVEL STATEMENTS

lowlevel ::«
inc/dec I blot I cede I shift I mul/div

The low-level GPM statements include the following:

• INCREMENT/DEC CEMENT
• BLOT
• CEDE
• SHIFT
• MULTiPLY/DIVIDE

GPM MANUU 46
Low-Leve! Statements

3.8.1 INCREMENT/DECREMENT

incr/dccr ::=»
■nde P. 17 BY num

inde ::=
INCREMENT I DECREMENT

This statement allows a constant to be added to or subtracted from a pointer
registe..

3.8.2 BLOT

blot •:=
blotcode label;

blotcode ::-
MCE I RSB I WSB ! RCM I WCM I WBP

See Chapter 4.

3.8.3 CEDE

cede ::=
cedeaddr I cededata I cedecomb

cedeaddr :;=
addrop 2 left aodrsign addrb testmode I
ROW testmode

addrop ::«
FIN I FOP I SAD I RMW

addrsign ::=
+ I -

addrb ::■■
aleft I number I P.17

te-öt mode ::=
.empty. I *

cededata :: =
dataop dt361f^ testmode

dataop ::»
WOP I SOP I WOS

cedecomb ::-
comtop aleft, addrb testmode

COmbOp ::=»
WIF I WON I WIN I W0p

See Chapter 4

_ ■ -

GPM .MNUAL 47
Low-Level Statements

G SHIFT

shift ::=
shop aleft shdir shamt shmask testmode;
shop ::-

SHIFT.DE L I SHIFT.EO.L I Sh'iFT.SINGLE.L I
SHIFT.DUALL I SHIFT.OE.C I SHIFT.RE.L I
SHIFTER! I NORMALIZE I SHIFT.RE.C

shdir ::»
LEFT I RIGHT

shamt ::»
© I num

shmask ::«
.empty I (M.17)

See Chapter 4.

3.8.5 MULTIPLY/DIVIDE

muldiv::-
mdop aleft BY aright mask testmode

mdop::»
MULTIPLY I DIVIDE

aright::»
aleft I number I p.17

mask::»
(M.17) I empty

testmode::«
* I empty

48

4. MLP-900 REFERENCE MANUAL

4.1 INTRODUCTION

The MLP-900 is a large vertical-word microprogramnable computer designed to
provide a general-purpose emulation host on which each u'.er can create his own
target machine. It is a synchronous machine with a 250-nanosecond cycle time, a
4096-word control memory, and a large set of internal registers. A number o'
original features help make the MLP-900 an exceptionally powerful
microprogramming tool; principal among them are a subroutine stack, a multi-level
interrupt mechanism, a two-state protection facility, paging and memory protection
hardware, and provision for user-specified language boards to provide a hardware
assist for particular applications.

The MLP-900 is characterized by two parallel computing engines, known as the
Goeratmg Engine (OE) and the Control Engine (CE). The OE is a 36-bit-wide
arithmetic and data transfer machine; it includes the hardware for the main memory
and external interfaces and the bulk of the register space, including a IK internal
mer" -y. The CE is the instruction sequencing and control unit; it includes the stack
hai. ng, interrupt, and protection mechanisms.

MLP-900 instructions are known as "mimsteps"; each engine has its own unique
instruction set. Ministep execution proceeds sequentially, either singly or in pairs.
At the beginning of »ach cycle, the CE fetches a pair of ministeps from control
memory--from the current address and its successor- and examines them. If the
first is an OE mimstep and the second is a CE mimstep, then the pair is executed
during this cycle; otherwise only the first ministep is executed (the other will be the
first mimstep of the next cycle, barring a branch).

With two exceptions, this parallelism is transparent to the user and serves only
to increase the effeclive machine speed: first, interengmc data transfers require
execution of an OE-CE pair; second, CE registers modified as a side effect of an OE
ministep cannot be sensed by a CE ministep immediately following. All changes to
the state of the machine occur simultaneously at the end of the cycle ("clock time");
all computations and decisions are therefore based uoon the values present at the
beginning of thf cycle.

The MLP-900 hardware recognizes two distinct execution states, known as user
mode and "Microvisor" (nrcrcprogram supervisor) mode. User mode microcode is
subject to three restrictions: (1) privileged mimsteps may not be executed; (2)
privileged registers (in both the OE and CE) may not be modified, und (3) a branch to
a Microvisor location other than a designated entry point is illegal. Violation of any
restriction results in a (privileged) interrupt and suppression of the current cycle.
These restrictions fully protect the external interface, the mam memory protection
and paging facility, and the Microvlscr itself from the user microcode; additionally,
the microcode is restricted from modifying itself.

The MLP 900 mam memory interface includes a memory protection and paging
scheme whic'.i, together with some Microvisor code, provides the user with a 256K

— — ■ ■ -

MLP-900 REFERENCE MANUAL 49
lntrodur:ion

virtual address space. The scheme mimics the memory management provided by the
BBN pager on the PDP-10.

The language board facility allows a major application to design its own
extension to the MLP-900 hardware, consisting of two PC boards, an OE board and a
CE board; the pa«r is referred to as a language board, and is intended for the
exclusive use of that one application. There is physical space for a maximum of four
language boards, of which one is the "'null" board for general use. Two bits in the
CE select the current board. The intended uses of a board include, but are not
limited to, target instruction decoding, effective address calculation, and
normalization.

Throughout this chapter, registers are referred to by their GPM names, and
register sets are referred to by the name of the last register in the set (the index
number is always an octal number). Thus R.37 refers to either the 32 general
regiftfvs or the last one of them, while R.15 refers to the thirteenth register of that
set.

4.2 OPERATING ENGINE

The operating Engine (OE) is a 36-bit data transfer and manipulation engine: it
also contains the interfaces with both mam memory and the PDP-10 I/O bus. The
computational facility consists of a three-input (two operands and a mask) "Primary
Adder" capable of various arithmetic and boolean functions, a "Primary Shifter," and
an "Extension Shifter" used for double-word shifts. Operands are takrn from, and
results stored into, the general registers (R.37); masks are taken fro».. fhe mask
registers (M.17). One byte of CE flip-flops (CE.14) is devoted to functions
associated with the adder and shifter(s). The interfaces consist of a number of
special registers and pseudo-registers (grouped together in MISC.37), the main
memory address translator (XLATOR.777), and the memory refe' "»ncing ministep
(CEDE).

Note that in all OE mimsteps involving a larg1? constant operand, the ministep
takes two control memory words; while the hardware handles tne decode
automatically, the nrogrammer must be aware of tne fact that such a ministep always
executes singly. A large constant is one which cannot be expressed in six bits (i.e.,
not in the range 0-63).

OPERANDS

The OE operands are contained in one sparse 12-bii address space. In addition
to the mnemonics shown in Table 4.1, .hese operands may be addressed as OE.O -
OE.7777.

E

MLP~900 REFERENCE MANUAL

Operating Engine

50

TABLE 4.1.

OPERATING ENGINE ADDRESS SPACE

GrCUP Extension Register Mnemon't Description

0000 000 xxxxx R.37 General Registers
0001 000 Oxxxx M.17 Mask Registers
0010 000 xxxxx MISC.37 Miscellaneous Reg.
Olxx XXX xxxxx A.1777 Auxiliary Memory
1000 000 OCOOO XBUS CE Exchange Bus
;ooi XXX X X X X X \ XLATOR.777 (protected)
1010 XXX xxxxx/ Translator Memory
1011 XXX xxxxx SUPVLB.377 (orotected)

3upv. Lang. Board
llxx XXX xxxxx LB.1777 Language Board

Indirect OE Operands. The OE registers may be addressed not only directly, but
also mdrectly through the Pointer Registers. As the Pointer Registers are only 8 bits
wide, the group is still specified in the instruction. There are two types of indirect
referencing available. Normal indirect {ft) uses the Pointer Register for the lower 8 bits
where applicable (i. e., nr.Iy t> bits are used when referencing the General Registers).
Special indirect (*) is similar, except that the low-order bit is forced to 1.

Examples:
P.O ft P.5
LB.I400 * P.il
XLATOR.400 ft P.7

The GEAR ana SHIN mimstepG indirect only to the General Registers, wh;le both
CEDE and GENT indirect to all OE registers.

4.2.1 R.37. General Registers

There are 32 general registers (R.G - R.37), ^ach 36 data bits wide. Four parity

bits, one for each 9-bif byte, are maintained with each register. All 32 reg'sters are

addressable as inputs to the Primary Adder. Except for R.37, the Shift Extension

Rt£\$\er, none of the General Register«, has a dedicated function.

4.2.2 M.17. Mask Registers

There are 32 mask registers. However, on'y 16 of them (M.0-M.17) can be

addressed by a* OE instruction. The high-order bit of the mask address is CE flip-flop

(F/F) MBS (F.167;. This F/F is protected and can only be set or reset by a mmistep in

Microv ior mode. Therefore, user proems see only 16 MasK Registers. The Mask

Registers condition the Adder functions to accomplish subword operations.

MLP-900 REFERENCE MANUAL 51
Operating Engine

4.2.3 MISC.97. Miscellaneous Registers

There are thirty-two Miscellaneous Registers (MISC.O - MISC.37) for different
dedicated functions. For addressing purposes, they have been gathered together in
one set of registers. The first sixteen (MISC.O - MISC.17) are available to the user; the
second sixteen (MISC.20 - MISC.37) are privileged and can be modified only by the
Microvisor, but can be read by the user using a GENT instruction. Some registers are
readable and writable, some are read-only, and others are unimplemented. A complete
list of the miscellaneous registers, their numbers, and their functions is given below.

0 Data Entry Switches
1 Main Memory Address Switches
2 Processor Address Swtches

The above three entries are pseudo-registers which make available the three
sets of switches on the console.

3 Unimplemented
The following two registers can be read and written and are highly tied into
Language Boards and the CEDE/WIN instruction. These registers can be treated as
Auxiliary Memory (Scratch registers) but are unlikely to be, since they are too
important' m their other functions. For more information on PIR and SIR, see the
section on Language Boards and the CEDE/WIN Instruction.

4 Primary Instruction Register (PIR)
5 Secondary Instruction Register (SIR)
6 Unimplemented

15
The folowmg two registers are used in memory referencing. For more information,
see the CEDE instruction.

16 Virtual Address Register (VAR)
17 Memory Data Register (MDR)

This concludes the registers available to the user. The succeeding registers are
privileged.

The next ten registers are involved in paging and page rault handling.
20 Address limit and User Base Register (ALR/UBR)

The ALR/UBR performs the same function as the similar register in the BBN pager.
21 Age and Process Use Register (AGER/PUR)

The AGER/PUR is analogous to the same register in the BBN pager.
22 Generated XLATQR Word

This is a psuedo-register containing the data for loading into translator menory at
the completion of a page fault.

23 Real Address Register (RAP)
This register is used by the MLP-900 when in transparent (nontranslate) address
mode.

24 Trap Status Word (TSW)
This is a pseudo-register which generates a TSW analogous to that generated by the
BBN pager.

MLP-900 REFERENCE MANUAL 52
Operating Engine

25 User Base Address (UBA)
This is a pseudo-register which generates the address for a Microvisor access to the
User's Page Table.

26 Core Status Table (CST)
The CST is a pseudo-register which generates the address for a CST reference.

27 Special Page Table (SPT)
The SPT is a pseudo-register which generates the address for a SPT reference.

30 Indirect Page Table (IPT)
The IPT is a pseudo-register which generates the address for a IPT register.

31 Key Register
This contains a 7-bit key value which determines the validity of XLATOR entries.
The following three registers are the control interface with the PDP-10. See
Appendix D.

32 DATAO

33 DATAI

34 Command/Status Register

35 Ummplemented

36 Virtual Address Compare Register (VADRC)
VADRC, when enabled by SARM.1, is compared to the virtual address (VAR) at every
Main Memory reference, and generates an AR (VAOR, F.124) when a match occurs.

37 Control Memory Address Compare Register (CMADRC)
When enabled by SARM.O, CMADRC is compared to the memory address at every
control memory reference, and generates an AR (CMADR, F.110) when a match
occurs.

A transfer to an ummplemented register is a no-op; a transfer from an
unimplemented register yields -1.

4.2.4 A.1777. Auxiliary Memory

There are 1024 words of 200-ns auxiliary memory, which can be used as a
scratchpad or cache. This memory can be accessed by the OE instructions CEDE and
GENT and the CE instruction BLOT.

4.2.fj XBUS. Exchange Bus

The CE Exchange Bus is a pseudo-register connected to the CE Exchange Bus (see
Gecticn 4.3.3.). Data transfers between the engines are accomplished by an OE-CE
instruction pair, with the OE instruction either a GENT or a CEDE ^which references the
Exchange Bus), and the CE instruction either a MOVE (which references the Exchange
Bus) or a BLOT (other than MOE). Since these instruction pairs are executed in parallel,

-

MLP-900 REFERENCE MANUAL 53
Operating Engine

1

the OE instruction (GENT or CEDE) must :ome first regardless of the transfer direction.
In transfers to the OE, any bits not loaded by the CC instruction are transferred as zero.
In transfers to the CE, any bits not used by the CE instruction are ignored. A reference
to the Exchange Bus without a paired CE instruction is undefined.

4.2.6 XLATOR.777. Translator Memory

The Translator Memory consists of 512 20-bit words used in translating virtual
addresses to real addresses. Each word consists of a 7-bit key value, a 9-bit real core
rddiess value, a write permit bit, a parity bit, and two unused bits. Whenever
translation is performed, the 9 high-order bits of VAR are used as an index into the
translator to select a translator word. The word is valid if its Key value matches the
key register (MISC.31); the write permit bit is "on" if this is a store. The Translator
Memory is privileged.*

4.2.7 SUPVLB.377. Supervisor Language Board

These registe s do not exist, and are not expectt vo oe added. They are
privileged.

4.2.8 LB. 1777. User Language Board

Provision is made for up to 256 36-bit registers on each of up to four Language
Boards in the MLP-900. The null Language Board, which is always LB.O, has no
registers. Other Language Boards, designed for specific users, may have up to 256
registers as needed. Note that the microcode can address all the registers on all the
Language Boards and »s not limited to the currently active Lc >guage Board. See
Section 4.4.

OPERATORS

The OE operators are as follows:

• GEAR General Arithmetic. Performs binary arithmetic, logical operations, and
single register shifts.

• CEDE Conditional External Data Exchange. Transfers addresses, target
instructions, and data between the OE and Mam Memory.

• SHIN Shift Instruction. Performs various single and double register shifts, plus the
iterated steps of multiply and divide loops.

t Caution: a GENT from the translator reads the word selected by the old value of
VAR, then modifies the 9 high-order bits of VAR to address the requested word,
which is not readable except by coincidence.

MLP-900 REFERENCE MANUAL 54
Operating Engine

• GENT General Data Transfer. Transfers data between the OE registers and to and
from the CE.

4.2.9 GEAR. GEnerai ARithmetic

The mmistep provides arithmetic and logical ca^-bility within the General Registers.

Syntax:

gear ::»
aleft «- aexp amodifier;

aleft ::»
R.37 I ♦ P.17 I S P.17

amodifier ::»
shift mask testmode

shift ::-
/ samount I \ samount I .EMPTY,

samount ::»
1 I 2 I 4 I 6 I 10 I 14 I 20

mask ::■
(M.17) I [M.17]

testmode ::=■
« I .EMPTY.

aa is identical to the specified aleft
ab ::-

aleft I number I P.17
aexp ::=

aa > ab I aa - ab I ab - aa I
aa PLUS ab I aa MINUS ab I ab MINUS aa I
aa AND ab I NOT aa AND ab I aa AND NOT ab I
aa OR ab I NOT aa OR ab I aa OR NOT ab I
aa XOR ab I NOT aa XOR ab I ab I NOT ab

Examples:

R.l *- R.l + R.2 (M.O);
R.7 «- R.7 - P.O /I [M.l] «;
R.37 *- 173 - R.37 \2 (M.2);
(»P.O - (»P.O XOR NOT 3 {M.17);
*P.17 ♦- *P.17 AND P.3 /4 [M.27] «;
fi)P.3 - NOT ©P.3 OR R.l7 \20 (M.21);
®P.l *- *P.l MINUS SBP.l (M.3) «;

Semantics:

The GEAR mimstep is used for arithmetic operations. It selects two operands and a
mask and routes them to the primary adder, and then specifies a shift of the result

- — ■ ~

MLP-900 REFERENCE MANUAL
Operating Engine

55

through the primary shifter. The result is then stored into the A operand. This
operation is shown in Figure 4.1 below.

A Operand B Operand

: 7^
^"A Primary Adder /

Zero Masked-Out Bits
2SP

SOS •

SHE ^-

I f Not Clear Mode

Pr inary
Shifter

A Operand

Figure 4.1 Operating Engine: GEAR.

MasKs

The requested operation 15 conditioned by the value of the specified Mask Register.
One (1) b.t m the mask 's ? masked-in bit.

Adder. The Primary Adder treats all the masked-in bits as one contiguous operand
field; carry generation is suppressed in masked-out bits, and carry propagates over
masked-out bits. The masked-out positions are all forced to zero at the Primary Adder
output.

Shifter. The shifter ignores the mask

Result Store into Ä- I" Clear mode [M. 17], the entire 36-bit ouptut of the primary
shifters is stored; if the shift amount is zero, then ail masked-out bits are cleared to
zero. In normal mode [M.17], only the mask^d-m bits are stored; the masked-out bits
remain unchanged.

IM - - ■

MLP-900 REFERENCE MANUAL 56
Operating Engine

Test Mode
If the test mode modifier <*> is present, the siore into the A operand i.» suppressed.
However, all applicable F/Ps (see Table 4.2) are set.

Operators
Al! valid operator combinations are listed in the syntax under aexp. All addition and
subtraction operators are two's complements. NOT is a logical operator (one's
complement). The PLUS and MINUS operators take F/F C0F.1 as an initial low-order
carry-in. These operators can be used to produce multiple-precision results.

Shifts
All valid shift amounts are listed in the syntax under samount. The prefix /
designates a right (divide) shift and the prefix \ designates a left (multiply) shift.
The boundary shift conditions are shown in Figure 4.2.

Figure 4.2 Shifter boundary conditions.

Flip-Flops
Table 4 2 lists all F/Ps that may be affected by a GEAR.

COP z F.3Q0. This pseudo-F/F contains the carry-out value for -♦•, -, PLUS, and
MINUS. It is valid only dunng fhe current cycle.

CQF.l z F.140. This F/F contains the carry-out value of the most recent ■♦•, -,
PLUS, MINUS operation executed.

QQEJL Z F.141. This F/F contam'; a copy of the p.evious setting of COF.l, and
therefore of the second most recent +, -, PLUS, or MINUS executed.

ZSP z F.3Q1. This pseudo-F/F is set if the MASKED output of the Primary Adder
of this operation is zero. Active for all GEAR oo*»rations, it is valid only
during fhe current cycle.

ZRF.l z F.142. This F/F contains the most recent setting of ZSP except in the
case of PLUS and MINUS, when it is set to the logical product of Z3P and its
prior value.

IBEJZ Z F.143. This F/F contains a copy of the previous setting of ZRF.l.

MLP-900 REFERENCE MANUAL 57
Operating Engine

SOS z F.i46. If there is a nonzero right (/) shift, SOS is copied into bit 0.

SOP i F.147. If there is a nonzero left (\) shift, the bits shifted out of bit 0 are
compared with SOS; if the comparison fails, SOF is set.

SHE z F.145. If there is a nonzero left (\) shift, the last bit shifted out of bit 0
will be in SHE. This happens after the GEAR cycle.

Table 4.2

GEAR Fhp-Flops

F/F Active Condition

COP ♦, -, PLUS, MINUS
COF.l Same as above
C0F.2 Same as above
ZSP All GEAR operations
ZRF.l Same as above
ZRF.2 Same as above
SOS Nonzero right (/) shift
SOF Nonzero left (\) shift
SHE Same as above

4.2.10 CEDE. Conditional External Data Exchange

CEDE is used to fetch and store main memory. All memory fetches or stores require the
execution of twe CEDEs. The frst provides the virtual or real address, depending on
TRBY (F.165), initiates a translate cycle if translating (i.e., if not TRBY), and, if reading,
initiates the memory fetch. The second CEDE, which need not follow immediately,
provides the data for a store or waits for the operand of a fetch. Some combined
forms wait for an operand and then begin a new fetch. Page fault ARs take place at
the time of the second instruction (the Wait or Store) and cause that instruction to be
suppressed.

Syntax:

cede:: =
cedeaddr I cededata I cedecomb I cpde b

cedeaddr::»
addrop addra addsign addrb testmode I ROW testmode

addrop::-
FIN I FOP I SAD I RMW

addra::-
aleft (as in GEAR)

addsign::»
♦ I -

addrb::»

-

MLP-900 REFERENCE MANUAL
Operating Engine

58

aleft I number I P. 17
testmode::»

* I .EMPTY.

cededata::-

dataop dataloc testmode
dataop::=»

WOP I SOP I WOS
dataloc::=

oereg I oereg ^ P.17 I oereg * P.17 I XBUS
oereg::»

R.37 I M.17 I MISC.37 I A.1777 I LB.1777 I
XLATOR.777 I SUPVLB.377

cedecomb::=

combcode addra, addrb testmode
combcode::=

WOF I WON

cede b::»

b code addra «- addsign addrb testmode
bcode:;=

WIN I WIF

Examples:

FOP R.3 f R.6;
SAD ;S) P.O -2;
WOP XBUS;
WOF R.l,* P.2;
ROW;

SOP M.O föP.lOi

Semantics:

Type !^ir£

Addr FIN
Fetch
Instruction

Comb WIN
Wait for

Instruction

Description

VAR, A ♦- A +/- B;
VAR-conmand-bits ♦- "read ;
Translate;
Fetch

Wait;
[PIR or SIR - MDR];
VAR, A *- +/- B;
[VAR-command-bits «- "read";
Translate;
Fetch];

^M^^H^anaM«

MLP-900 REFERENCE MANUAL
Operating Engine

59

Addr FOP
Fetch Operand

Addr SAD
Set Address

Addr RMW
♦Read-Modify-Write

LB Break-out

Identical to FIN

VMR, A <- A +/■ B;
VAR-command-bits - "store";
Translate

VAR, A ♦- A V- B;
VAR-command-bits ♦- "read" &
-•store";
Iranslate;
Fetch;
(Most be followed by WOP and
then SOP within lime allowed
for RMW timeout.)

Comb WIF Wait;
Wait A ♦■ MDR;
Indirect & Fetch VAR t- +/- B;

[VAR-command-bits *■ "read";
Translate;
Fetch]

Comb WOF Waif;
Wait for Operand A «- MDR;

& Fetch VAR <- B;
VAR-conmand-bits *- "read";
Translate;
Fetch

Data SOP MDR *- A;
Store Operand Store (Preceding CEDE must be

SAD, or the WOP after RMW.)

Data WOP Wait;
Wait for Operand A <- MDR

Data WOS Wait;
»Wait for Operand, A ♦- MDR;

Stream Mode (WOS triggers an asynchronous
mode of continuous memory
fetching from successive

* Indicates a privileged CEDE.

MLP-900 REFERENCE MANUAL
Operating Engine

60

Addr ROW
*Retn Operation

locations jn the s^^e memory
page at maximum ory rate;
WQS must be executed in a loop
which is faster than the memory
i.e., one iVlLP-900 cycle, test
data be lost without any
-idication.)

Translate;
If "read" is set in VAR, Fetch
(Acts like FOP or SAD, or RMW,
depending on the old contents of
VAR)

Comb WON
Wait for Operand

and Fetch
Instruction

Identical to WOF

FOP and WQP art? the basic memory fetch pair, while SAO and SOP are the b:
memory store pair.

Translate: Use contents of VAR as index in;o translator memory, and note
(internally) whether the translation is OK.

Fetch: if the translation is OK, instate Felch from memory, remember that
ihere is an outstanding Fe4cn, drö mceme^t VAR by onp (only the 9 Least
Significant Bits are affected; if fhey we^e all ones, then they are made
zero, but there is no further carry). When the memory responds with the
data, it is stored in MDR and the remtmbered Fetch condition is cleared.
The Fetch for RMW docs not increment VAR.

Store: If the ^most recent) translation is OK, initiate a memory store ^ycle
of the word m MDR; if the translation is not OK, suppress this mimstep, md
^e! the PAGE AR request F/F (F.i?l). If the "store" command is not set in

D ^he result is undefined.

Wait: If the last translation is not OK, suppress this rrvnistep and set the
PAGE AR request (F.1?I). If there is still a memory fetch in progress, wait
for it to complete (and the data to be in MDR).

MLP-900 REFERENCE K\s'\i.V 61
Operating Engine

[...]: Indicates an action which 's LB conditional; is an output from the LB.

LB Break-out: An implicit MINIFLOW branch to a location determined by U^
Language Board.

4.2.11 SHIN. SHift INstruction

The SHIN ministep provides single- and double-register shifting by both fixed and
variable amounts. In addition, two of the variants provide the basic shift-and-add step
required for multiplication and division operations.

Syntax:

shin ::»
shop aleft sshif' smask testmode I
mulop aleft BY ub smask testmode

shop ::=
[...as is...]

aleft ::-
R.37 I @P.17 I »P.17

sshift ::-
RIGHT shamoun* I LEFT shamount

shamount ::■
0 I 1 I 2 1 4 I 6 I 10 I 14 « 20 ! fl

smask ::*
(M.17) I .empty,

testmode ::»
* I .empty,

mulop ::»
MULTIPLY I DIVIDE

ab ::-
aleft I number I P.17

(Note that aleft, ab, and test mode are identical to the same constructs in the
GE^R ministep; shamount is similar to samount, with the addition of H®H, while
smask is similar to mask, with the deletion of "[M.17]H.)

Examples:

SHiFT.EO.LR.12LEFT6;
SHIFT.OE.C ^P.4 RIGHT ff ;
MULTIPLY R.20 BY 12 (M.17);

Semantics:

The SHIN ministep for the shifting of either a single register (SHIFT.SINGLE.L) or an
even/odd register pair (SHIFT.OE.L, SHIFT.OE.L, SHIFT.OE.C, SHIFT.DLUL.L. NORMALIZE,
MULTIPLY, and DIVIDE) or a pair comprised of the designated register and the

MLP-900 REFERENCE MANUAL 62
Operating Engine

shift-extension register, R.37 (SH1FT.RE.L, SHIFT.ER.L, and SHIFT.RE.C). in- is done in
two 36-bit shifte'-c, with the designated register entering the primar/ .nifter, and the
implied register .'c: mg the extension shifter; after shifting the primary and extension
shifters are copied back into the same two registers. The varicus shift operations
specify various ways of connecting the two shifters.

Aleft: Designates the primary register to be shifted. For the even/odd double
shifts, aleft should be even, the next-higher-numbered register is the implied
second register of the shift. If aleft is an odd-numbered register, then two
copies of its vaiue enter the shift; only the primary shifter value is stored (this
allows a circular shift of a single odd register; there is no circular shift of a
single even register available). For the register/extension double shifts, R.37 is
the impliec register; there is no difference between an even aleft and an odd
a!eft.

Mask: The mask, if any, 'ects only the aleft register itself; the implied register is
always unmasked. K/ ^ed-out bits of the register enter the shifter as zero
bits; their value is not altered by the shift mimstep (as in the GEAR normal
mode).

Testmode: Testmode, if set, leaves all the General Registers unchanged; only F/F's (and
P.7 m an indirect shift) are affected by the execution of ? te:t mode SHIN.

Shift Direction and Amount: The direction must be specified in the mimstep as eithe"
RIGHT (/) or LEFT {\); the shift amount (in bits) may be either direct (allowed
values are identical with the GEAR) or indirect (s). Vacated bit positions are
set to zero in all left shifts, to the value of SOS in all right shifts.

Indirect Shift: The shift amount is taken from the shift counter, P.7; the actual shift
amount is Ü,i,?,4,10, or 20 (octal)--whichever is the largest value not exceeding
the contents of the pointer. The pointer is decremented by the amount of the
shift, and, if the new value is zero, the SHD (Shift Done) pseudo-F/F is set. A
paired BRAT ministc-p car. be used to create a one-cycle shift loop to shift by an
arbitrary shift amount. Note that an indirect shift cannot be paired with a BRAD
mimstep, since the MLP cannot modify two pointers simultaneously

Operations:

SHIFT.SINGLE.L is a single register shift identical to the shifting of a GEAR; this SHIN
is useful only for an indirect ^ngle register shift.

S! "EO.L. SHIFT.0E.L, SH, T.DUAL.L, SHIFT.QE.C are the straight even/odd shift
operations, differing m ihe connections between the two shift registers:
EO.L (Even into Odd Lnear) -- bits shifted out of the even word (primary

shifter) enter the odd v.ord (extension shifter), while bits shifted out of the
odd word are lost.

OE.L (Odd into Even Linear) -- bits shifted out of the even word are lost, while
bits shifted out r i the odd word enter the even word.

DUAL! -- bits leaving either word are lost.
EO.C (Even and Odd Circular) -- bits shifted out of either word enter the other

one

MLP-900 REFERtNCE MANUAL 63
Operating Engine

SHIFT.RE.L, SHIFT.ER.L, SHIFT.RE.C are the equivalent operations performed on the
register and R.37, the Extension, as a pair:
RFL (Regster into Extension Linear)
ER.L (Extension into Register Linear)
RE.C (Register and Extension Linear)

MULTIPLY is a single step of a multiplication loop, with the even/odd pair
representing the multiplicand and partial product, and the second operand
representing the multiplier.
MULTIPLY X BY Y (M.Z) is equivalent to the sequence

XI <- XI AND 1 «! XI is the odd reg paired with X
IF ZSP THEN, BEGIN

X - Y ^ 0 (M.Z)
ELSE

X .- X <■ Y (M.Z) ! add Y if LSB of XI is set
END;
SHIFT.EO.L X RIGHT 1 (M.Z);

except for timing, and consequently, F/F values.
DIVIDE is a single step of a division loop, with the -»ven/odd pair representing the

dividend and quotient, and the second operand . ^presenting the divisor.
DIVIDE X BY Y (M.Z) is equivalent to the sequence

IF COF.l THEN.BEGIN ! the current setting selects
X «- X - Y (M.Z) ! either subtraction

ELSE
X ^ X ^ Y (M.Z) ! cr addition

END;
SHIFT.OE.L X LEFT 1 (M.Z) ;
IF COF.l THEN. BEGIN ! the new setting (from above)

XI «- XI OR i ! is the new quotient bit in XI
END;

Except for timing, COF.l must be properly initialized for a divide loop;
subsequent iterations use the value set in the previous iteration.

NORMALIZE is a variant on SHIFT.OE.L in which the language board controls the
amount of shifting--and presumably the counting up of the exponent. The
operation is undefined on the NULL language board.

Flip-Flops
The following F/F's are used uniformly in all SHIN mimsteps:

SOS - on all right shifts (including MULTIPLY) a copy of SOS is brought into
vacated bit positions—into the unconnected register in a linear shift;
into both registers in the dual shift; not used in a circular shift.

SHE - on all linear left shifts, SHE is set to the value of the last bit shifted out
of the unconnected register. Not affected by ciicular or dual shifts.

SOF - on all linear left shifts, SOF is set if any bit shifted out of the
unconnected register is different from the setting of SOS. Not affected
by circular or dual shifts. SOF is never cleared by a s^ift.

SHD : pseduo-F/F which !S valid only during an indirect shift cycle. SHD is set
only during a NORMALIZE cycle.

NMD - pseudo-F/F valid only during a NORMALIZE cycle.

MLP-900 REFERENCE MANUAL 64
Operating Engine

The following F/F's are associated with the aader and are affected only by the
MULTIPLY and DIVIDE operations.

ZSP, ZRF.i - reflect a zero sum (ZSP is valid this cycle; 1'RF.l next cycle).
ZRF.2 - copy of previous value of ZRF.I.
COP, COF.l - refjct value of the carry cut of the adder. (COF 1 is also an incut

to DIVIDE.)
COF.2 - copy of previous value of COF.l.

4.2.12 GEN~. GENprai aata Tran5fer

This mimstep provdis ^ata transfer to and from OE Registers. It is used in
conjunctior w.th the CE ...n.step MOVE to pro/ide mterengme data transfers.

Syntax:

gent :.=
genta - gentb ; I genta - gentc ; i gentb <- genta ;

genta ::=
gentar I genta- S P.i7 I gentar * P.17 1 XBUS

gentar :: =

R.37 I MiSC.37 , A.1777 I XLATOR.777 I
SUPVLB.377 1 LB. 1777

gentb :: =
genfer i gentbr n) D.17 i genlbr * P.17 I XBUS

gentbr :: =
R.37 i M.17 I MISC.37

gentc ::«
numoer I P.l7

Examples:

R.12 *■ 1234567 ;
MISC. 12 - XBUS ;
A.i23 - P.12 ;
M.12 - LB.i234;
XBUS - A 1234 ;

Semantics:

GENT performs direct transfers of the contents of OE reg'sters (Table 4.1). The
contents of the right register is copied into the left register. Where XBUS is used as a
destination (left) or a source (right), the GENT must be paired with a corresponding
MOVE to transfer data in the CE.

MLP-900 REFERENCE MANUAL 65
Control Engine

4.3 CONTROL ENGINE

OPERANDS

The Control engine (CE) is the ministep decoding and sequencing unit; it includes th-
current (ministep) address register. The control memory interface, a 16-word
subroutine lack (u:ed for both subroutine calls and interrupts), the interrupt and
protection mechanisms, 256 individually addressable F/F's, and 16 8-bit pointer
registers.

CE minlsteps allow conditional branching, including subroutine call and return, and
simple F/F and pointer register computations.

MLP-900 interrupts are known as "Action Requests" (AR's). There are 32 action
request levels, of which 24 are privileged. Of the eight remaining levels available to
user microcode, only two have dedicated functions; the others can be user-defined.

4.3.1 F.377. Flip-Flops

CE.0-CE.37 are 32 byte^ of individually addressable F/F's known as f'.O - F.377.
These F/Ps are divided into a number Of functional groups. F.O - F.277 are real F/F's;
F.300 - F.377 are pseudo-F/F's.

F/F's nay be set and tested directly by most of th. CE ministeps. Other ministeps
affect specific F/F's indirectly as a side effect. For example, GEAR and SHIN use and
modify one byte of F/F's» and determine some pseudo-F/F's. Language Boards and AR's
also use certain F/F's.

Certain F/F's are protected; that Is, the user cannot modify them but can reference
them. These protected F/F's are indicated in the tables and text below by an asterisk
(*) to the left of the F/F name.

Table 4.3 lists all the F/F's. The F/F number is the sum of the numbers at the top
of the column and in the extreme left row in which the F/F is located. Where the F/F
number appears (e.g., F.135), the F/F is unassigned; where th.ee dashes (—) appear, it
is unimpiemented.

The pseudo-F/F in CE 30 (F.300-F.307), plus SHD (F.353), reflect conditions which
arise in the current cycle, and are defined only when the appropriate ministeps are
being executed; all other F/F's reflect conditions as of the beginning of the current
cycle. A reference to any F/F in CE.30 causes a one-cycle "hiccup"; the cycle requires
two clocks to execute.

MLP-900 REFERENCE MANUAL
Control Engine

66

F.O

Tabh 4.3

Flip-Flops (Names and Groups)

F.40 F.100 F.140

00 ul.O LBC.O POWER* COF.l
01 .1 .1 PANIC* .2
02 .2 .2 OPAR* ZRF.l
03 3 .3 EPAR* .2
04 .4 A SOVF* F.144
05 .5 .5 SUNF* SHE
06 .6 .6 UOVF* SOS
07 .7 .7 UUNF* SOF

10 Gl.iO LBC.10 CMADR* ARL.5
11 .11 .11 AERR* TSIN
12 .12 12 BERR* TSL
13 .13 .13 PERR* ITRAC
14 .14 .14 MMAL* LBI.O
i5 .15 .15 MMNR* 1
16 .16 .16 MMERR* .2
17 .17 .17 RMWTIME« .3

20 GI.20 SLÖC.O* TASK* SARM.O*
21 .21 .1* PAGE* .1*
12 22 .2* SUPVF* F.162*

23 .23 .3* PROT» F.lb3*
24 .24 .4* VADR* CKC*
25 .25 .5* F.125* TRBY*
26 .26 .6* F.126* CKT*
27 .27 .7* F.127* MBS*

30 GI.30 SLBC.10» TRAG ARL1*
31 .31 .11* F.131 .2*
32 .32 .12* F. 132 .3*
33 .33 .13* LBAR .4»
34 .34 14* F.I34 MOD.O»
35 .35 .15* F. 135 .1*
36 .36 .16» F.136 SUPVLB*
37 .37 .17* F.137 SUPVCT*

See the AR section foliowmo.

MLP-900 REFERENCE MANUAL
Control Engine

67

Table 4.3 (Continued)

F.200 r.240 F.300 F.340

00 Si.O IM.0 COP SSW.O

01 .1 .1 ZSP .1
02 .2 2 --- .2
03 .3 .3 --- .3
04 .4 .4 THZ .4
05 .5 .5 WAR .5
06 .6 .6 NMD 6
07 .7 .7 CCP .7

10 SI.10 IM. 10 TRUE —

11 .11 .11 — NPT
12 .12 .12 --- —
13 .13 .13 — SHD
14 .14 .14 — OSLO

15 .15 .15 — .1
16 .16 .16 — .2
17 .17 .17 — .3

20 SI.20 IM.20 OLB.O ZSI.O

21 .21 .21 .1 .1
22 .22 .22 .2 .2
23 .23 .23 .3 .3
24 .24 .24 CLB.O .4
25 .25 .25 .1 .5
26 .26 .26 .2 .6
27 .27 .27 .3 .7

30 SI.30 IM.30 CLB.4 ZSI.10

31 .31 .31 .5 .11
32 .32 .32 .6 .12
33 .33 .33 .7 .13
34 .3" .34 .10 T5I.0

35 .35 .35 .11 .1
36 .36 .36 .12 FSI.O

37 .37 .37 .13 .1

The following are real F/F's:

GI.0-37 (F.0-37) General Indicators: available to the user's MINIFLOW for abitrary usage.
LBC.0-17 (F.40-57) Language Board Controls: gen.eral-purpose indicators which are also

LB inputs.
tSLBC.0-17 (F.60-77) Supervisor Language Board Controls

* See the AR oection following.

MLP-900 REFERENCE MANUAL 68
Control Engine

»POWER; PANIC; OPAR;...(F.100-127) Action Requests
TRAC; LBAR;...(F. 130-137) AR's (user level): Each F/F represents a specific pending AR

which causes a microcode interrupt whenever its appropriate level is enabled. Each
bit can be set either by the specific occurrence it represents or by a rninistep.»

COF.1,2; ZRF.1,2; SHE, SOS, SOF (F.140-147) Carryout F/F, Zero F/F, Shift Extension,
Shift Out Sign. Shift Out Flag: OE-associated (GEAR and SHIN) F/F's; fully described in
the GEAR and SHIN sections.

ARL.5 (F.i50) AR Lockout: user-level AR lockout.
TSIN (F.151) Target System Inhibit *
TSL (F.152) Target System Lockout *
ITRAC (F.153) Initiate Trace *
LDI.0-3 (F.154-157} Language Board Indicators: four indicators which the Language

Board can both sense and set.
tSARM.Ü.l (F.160,161) Supervisor AR Masks: control the compare Action Requests.
»CKC (F.164) Clock Control
*TRBY (F.165) Translator Bypass
*CKT (F.166) Check Test
♦MBS (F.I67) Mask Bank Selector: selects current mask bank.
♦ARL.1-4 (F.170-173) AR Lockout: lockouts for privileged AR levels,
*M0D.0,1 (F.174, 175) Mode Bits: stored in Control Memory by a BLOT WCM.
»SUPVLB (F.176) Supervisor LB: selects Supervisor LB.
»SUPVCT (F.177) Supervisor Control: forces MLP-900 into supervisor mode regardless

of the mode bit in CM.
SLO-37 (F.200-237) Target System Interrupt F/F's:*
IM.O-37 (F.240-277) Target System Interrupt Masks*

The following are pseudo-F/F's.

COP (F.300) Carryout Pseudo: see GEAR and SHIN instructions.
ZSP (F.301) Zero Sense Pseudo: see GEAR and SHIN instructions.
THZ (F.304) Through Zero: see BRAD.
WAR (F.305) Wait AR: Wait AR (one of F.133-134) pending.
NMD (F.306) Normalize Done: LB output. See SHIN normalize.
CCP (F.307) Check Carry Pseudo: carryout from the check adder.
TRUE (F.3i0): always set.
0L3.0-3 (F.32Ö-323) Operating Engine LB outputs
CLB.0-13 (F.324-337) Control Engine LB outputs: sense outputs for the current LB.
SSW.0-7 (F.3 0-347) Sense Switches: on the MLP control panels.
NPT (F.351) Interrupt Pending: a target system interrupt is pending.
SHD (F.353) Sh.ft Done: see SHIN.
OSI.0-3 (F.354-357) One Senss Indicate: senses a value of -1 (255) in P.0-3,

respectively.
ZSI.0-13 (F.360-373) Zero Sense Indicate: senses a value of 0 in P.0-13, respectively.
TSI.0,1 (F.374, 375) Three Sjnse Indicate: senses a value of 3 in P.0,1, respectively.

* See the AP section following.

MLP-900 REFERENCE MANUAL
Control Engine

69

•% *

FSI.0,1 (F.376, 377) Four Sense indicate: senses a value of 4 in P.0,1, respectively.

4.3.2 P. 17. Pointer Registers

There are 16 8-bit Pointer Registers, wh'ch can be used in the OE to indirectly
address registers (e.g., R.O ® P.3 is the general rogistnr determined by the low-order 5
bits of P.3). The Pointer Reg.sters can be loaded by a MOVE instruction, modified by
the BRAD instruction, and tested moirectly througn the pointer-sense pseudo-F/F?s.

The following pointers have special-purpose functions:
P.0-3: used and modified by the BLOT mmistep; otherwise generally available.
P.4-5: no dedicated functions.
P.6: Stack Pointer (See Stack Registers).
P.7: Shift Counter ^or SHIN (see the SHIN instruction).
P.10-17; Pseudo-pointers set by the current Language Board.

The following pseudo-F/F's are TRUE if and only if the appropriate pointer has exactly
the specified value.

OSI.0-OSI.3: sense all ones (i.e., -i or 377(8)) in P.O through P.3, respectively.
ZSI.0-ZSU1: sense zero (0) in P.O and P.ll, respectively.
TSI.0-TSI.1: sense the value three (3) in P.O and P.i, respectively.
FSI.O-FSI.l: sense the value four (4) in P.O and P.i, respectively.

!f a BRAD modifies a pointer ^na simultaneously tests that pointer's sense
pseudo-F/F's, the old value of the pointer is sensed.

4.3.3 Miscellaneous Registers

The Miscellcneous CE Registers are CE.Ö0-CE.77. Their functions are

MINIFLOW Status Wo^d.

The double register pair (CE.hO,CE.61) is the MINiFLOW status wo-d, of which only 2
bits are used.

LB selects the active Language Board set.

00 01102 03104 06 06 07108 09 10 11 12 13 14 15

Figure 4.3 MINIFLOW status word.

MLP-900 REFERENCE MANUAL 70
Control Engine

Current Address BfisisifiL

The double register pair (CE.62,CE.63) :s the current address register. It contains
the address of the current instruction or of the first instruction of a pair. A MOVE to
the current Address Register is a no-op.

Exchange BU^L in-

CE.64 - CE.67 comprise the Exchange Bus into the CE from the OE. It is addressed
as XBUS.O - XBUS.3 on the left side of an assignment in the MOVE mimstep.

Exchange Bus Out.

CE.70 - CE.73 comprise the Exchange 3us out of the CE into the OE. It is addressed
as XBUS.O - XBUS.S on the right side o* rhe assignment in the MOVE ministep.

Exchange Busg^.

The Exchange Buses are pseudo-register^ connected to bits A to 35 of the
Exchange Bus m the OE XBUS.O connects to bits 4-11, XBUS.l to 12-19, XBÜS.2 to
20-27, and XBUS.3 to 23-35.

CE.74 - CE.77 do nor exist.

4.3.4 S.17. Subroutine Stack

The Subroutine Stack consists of 16 i6-bit registers. The Subroutine Stack,
together with P.6 (the Sta^ Pointer), is automatically used in subroutine calls and
returns, and AR's. A subroutine caii 'a BEAD or BENT ministep) branches to the
effective address and pushes the return address unto the top of the stac.V This is
done by incrementing P.6 oy 1 and then using the four low-order bits to select the
stack word to be loaded with the return address. In addition, if the four iow-order bits
of P.6 were 16(8) (indicating that the stack is now full), either a supervisor stack
overflow (F.104) or a user stack overflow (F.106) is requested, according to the mode of
the caller.

Taking an AR consists of pushing the interrupted address onto the stack and
branching to the AR entry point, simultaneously setting the appropriate lockout bit
(ARL1-5).

A return (i.e., a BORE ministep! loads the current address register from the top of
the stack and then decrements P.6 by 1. If the stack is empty (the four least significant
bits of P.6 are 0), and if ARL.2 is off, a stack underflow of the appropriate kind is taken
(F.105 if supervisor; F.107 'f user). The pointer is left unchanged and the current
address (i.e., the address of the BORE instruction) is stacked in S.O.

!

MLP-900 REFERENCE MANUAL 71
Control Engine

If the stack is empty but ARL.2 is on, the BORE returns normally, decrementing P.6
as it goes.

OPERATORS

The CE operators are:

• BRAT Srarrhwith Test - Provides conditional jumpc..

• 3ENT Branch and Enter - Provides conditional subroutine calls.

• BORE Branch or Return - Provides conditional subroutine returns.

• BRAD Branch and Modify - Provides loop control.

• BEAD Branch Extended Address - Provides conditional and unconditional
subroutine calls and jumps, ft has a larger addressing capability than BRAT
or BENT.

• BLOT Block Transfer provides loop control together with data transfers with
the OE

• MAST Manipulate Status - Manipulates F/F's.

• MOVE Movo CE Registers - This is the general data transfer instruction for
The CE.

4.3.5 BRAT. BRAnch with Test

This mimstep provides conditional jumps.

Syntax:

brat ::=
/IF booleanexp THEN GOTO relativelabel END;

booleanexp ::=
ffexp booisanop ffexp I
{F.377 - ffexp) I NOT (F.377 - ffexp)

ffexp :: =
NOT F.377 I F.377 i TRUE I FALSE

booleanop ::=
AND I OR I XOR

relativelabel ::=
sign number I identifier

sign ::=
♦ I -

MLP-900 REFERENCE MANUAL 72
Control Engine

Examples:

/IF (F.O - TRUE) THEN GOTO ^200 END;
/IF NOT (F.i - FALSE) THEN GOTO -177 END;
/IF F.3 OR F.3 THEN GOTO TAG 17 END;
/IF NOT F.4 AND F.5 THEN GOTO +7 END;
/IF F.377 XOR NOT F.377 THEN GOTO -3 END;
/IF NOT F.I OR NOT F.4 THEN GOTO +166 END;

Semantics:

The execution or the BRAT mmistep logically .^ce in two parts. First, the
boolean expression (booleanexp) is evdluatcd. If 'u^n expression evaluates to
true, then the branch is taken, otherwise exec jtion continues with the next instruction.

Boolean expression evaluation. If a store (<-) is specified in the boolean expression,
the store occurs whether the branch is taken or not. TRUE is the F/F (130) and FALSE
is NOT F.I30.

Brancn ä&SÜÜätiaü- The oranch aestmation is relative to the current instruction.
The limits on the branch destination are +200 and -177 inclusive. Ac with all relative
branches, addressing be/ond or before the ends of control memory wili cause a location
counter wraparound. Thus a transfer +70 from iocation 7747 will go to location 0037.

4.3.6 BENT. Branch and ENTer

This rrvnistep provides conditional subroutine calls.

Syntax:

bent ;: =
/IF booleanexp THEN CALL relativelabel END;

Examples:

/IF {F.17 ^ MOT F.i) THEN CALL SUB END;
/IF F.202 OR F.206 THEN CALL *•! END;
/IF F.4 XOR NOT F.77 THEN CALL -27 END;

Semantics:

The execution of the BENT mmstep is similiar to the BRAT. The only difference is
that when the branch is taken, a subroutine entry is executed. The address of the next
instruction is loaded into the subroutine stack (S.O - S.17).

4.3.7 30RE. Branch Or REturn

This mmistep provides conditional subroutine returns. (There is no unconditional
subroutine return.)

mmim - -

MLP-900 REFERENCE MANUAL 73
Control engine

Syntax:

bore ::-
/IF booleanexp THEN GOTO relate elabel ELSE RETURN END.

Examples:

/IF F.l OR NOT F.3 THEN GOTO -3 ELSE RETURN END;
/IF TRUE OR F.O THEN GOTO +1 ELSE RETURN END;

Semantics:

The e ecution of the ministep is identical to BRAT if the ooolean expression
evaluates to true. If the expression evaluates to false, then instead of continuing at the
next instruction, a subroutine return is executed. As \vith both BRAT and BENT, if a
store is indicated, it occurs whether the expression evaluates to true or false.

4.3.8 BRAD. BRanch And moDify pointer

This ministep provides primitive loop control.

Syntax:

brsd ::-
/bradop P.7 BY number ;
IF ffexp THEN GOTO relativelabe! END;

bradop ::-
INCREMENT I DECREMENT

Examples:

/INCREMENT P.3 BY 7;
IF F.l7 THEN GOTO TAG53 END;

/DECREMENT P.6 BY 10;
IF F.103 THEN GOTO -»-12 END;

Semantics.

The BRAD ministep is used for loop and count control. It increments or decrements
a counting pointer {P.O - P.7) and does a conditional relative branch. (Note that BRAD
should NOT be executed in a pair with a SHIN ministep using indirect shift.)

Pointer Options. If a noncounting (pseudo) pointer is specified, the contents of the
pointer are not modified.

Increment/Decrement Amounts. The largest increment is 7 and the largest
decrement is 10. The THrough Zero (THZ) pseudo-F/F is defined only for a BRAD
ministep. It is true when the ministep causes the pointer value to pass "through zero"

- ■■■■■Ill I III Mill fJ "-"'■—- -

MLF-900 3F.FERENCE MANUAL ^^
Control Engine

an INCREMENT which causes overflow or a DECREMENT which causes unde/flow the new
pointer value is correct modulo 400 (8).

4.3.9 BEAD. Branch Extended ADdrecs

This ministep provides unconditional jumps and subroutine calls. It additionally
provides for indexed jumps and subroutine calls. BEAD is the only transfer which can
address beyond the relative address rang'-» of --200(128) through +177(127).

Syntax:

bead ::»
beadO I bead! I bead2 I be3d3

beadü ::=
/IF ffexp THEN transferop label END;

'--adl ::=
/transferop label <P.17> ;

bead2 ::=
/transferor ♦! <P.17> ;

bead3 .:»
/IF ffe p THEN transferop s.gn labei cND ;

transferop ::=
CALL I GO i D

label ::=
number I identifier

Examples:

/IF F.l THEN GOTO TAG67 END;
/IF NOT F.l3 THEN CALL 200 END;
/CAL. TAG31 <P.b7>;
/GOTO 277 <P.11>;
/CALL *1 <P.4>;
/GOTO M <P.11>;
/IF TRUE THEN GOTO +3711 END;
/IF NOT F.il THEN GOTO ^TAG67 END;

Semantics:

There are rour types or 9EAD mmisteps. The major function of the BEAD is to
provide extended addressing capability. All BEADs can address all of control memory
All BEADs .^ay optiortclly execute a subroutine enter. The BEAD types are as follows:

• BEADO - Condition*. Absolute
♦ BEADl - Absolute plus Pointer
* BEAD2 - Relative plus Pointer
• BEAD3 - Conditional Relative

A '

MLP-900 ReFERENCE MANUAL 75
Control Engine

äEADfi : Conditional Absolute. If the specified F/F expression is true, control is
transferred absolutely to any location (label) in control memory.

BEADl z Absolute dui Pointer. Control is unconditionally transferred to the specified
location (label) offset by the 8-bit positive quantity in the specified pointer register.

BEAQZ z Relative plus Pr:nter. Control is unconditionally transferred to the next
instruction location p. ^e 8-bit positive quantity in the specified pointer register.
This instruction always u, 'fers in a forward direction.

BEAD3 - Conditional Relative. If the specified F/F expression ■/. true, control is
transferred relatively to any location in control memory.

4.3.10 BLOT. BLOck Transfer

BLOT is used to establish loops to transfer blocks of data. The execution of a
single BLOT ministep can simultaneously move one word of data, modify some pointers,
and conditionally branch. There are six types of BLOTs: one may be used to move data
in the OE, two reference fhe Subroutine Return Stack, and three reference Control
Memory (the only instruction *hat do so).

Syntax:

Dlot::»
blotcodo relativelabel;

blotcode::»
MOE I RSB I WSB I RCv, I WCM I V'BP

Examples:

RCM +7;
WBP -5;

Semantics:

There are six types of BLQTs.

• MOE - No CE data is moved (i.e.. step 1 below is null), but steps 2 and 3 (see
below) are performed;

• RSB - Move one word from Subroutine Stack to XBUS;

• WSB - Write ot word into Subroutine Stack from XBUS;

• RCM - Read one word f' jm control memory, ^end to XBUS;

• WCM - Write one wor'i into control memory from XBUS with good parity; and

MLP-900 REFERENCE MANUAL 76
Control Engine

• WBP - Write one word into control memory from XBUS with bad parity.

Three steps occur simultaneously in all types of BLOT transfers. They are as
fellows:

U Moving CE data to or from the XBUS, as specified by the BLOT type

2) Modifying Pointers
Pointer Register modification is identical for all six types of block transfers. P.O.
and P.2/P.3 (as a single 16-bit register) are each incremented by one and P.l is
decremented by one.

Note that tne data-move and conditional branch parts of the BLOT, plus any
paired OE mmistep, use the old values of the Pointer Registers.

3) Conditional Branching.
The conditional branch function is identical for all six types of block transfer.
Each time BLOT is executed, P.l (the word counter) is tested. When a count of
one is present, execution continues with the next r n. .. P.l contains any
count other than one, the control is transferred to ch address. A word
count of zero initially loaded into P.l may be used to ^ 256 words.

Th? data transfer functions for the various BLOTS are

MOE: No CE data is moved, but steps 2 and 3 above are performed.

Example:

Copy the ma^k registers to memory beginning at the location addressed by R.O
♦ 1.

P.O *- 0 ImasK pointer
P.l «-20 !loop count
SAD R.O +1 IThree instruction
SOP M.OftP.O Istore loop
MOE -2;

Comment: MOE just provides sequence control. All the data
is moved in the OE.

RSB: Read one word 'rom Subroutine Stock into XBUS (XBUS.2; XBUS.3)
WSB: Write one woro mto Subroutine Stack from XBUS

These BLOT transfers reao and write Subroutine Stack words. They are 16 bits
wide, read from or written to the rightmost 16 bits (i.e., half-one [H.l]) of XBUS.
The low-order 4 bits of P,3 select the itack word (S.0-S.i7).

mmmmemm^m

MLP-900 REFERENCE MANUAL 77
Control Engine

Example:

Copy the subroutine stack to Auxiliary Memory, beginning at A,14000®P.O
(assuming that P.O already has the correct initial index value).

P.i *- 20 !loop count
P.3 «- 0 .'Subroutine StacK Pointer
A.1400H)P.O *■ XBUS !Two Instruction
RSB -1 IGEN r/BLOT loop

Comment: Now P.O is 20 greater than at start. P.I - 0. P.3 » 20;

RCM: Read one word from Control Memory into XBUS
WCM: Wnte one word into Control Memory from XBUS with good parity
WBP: Write one word into Control Memory from XBUS with bad parity

These BLOT transfers are the only instructions that can reference control memory;
they are privileged. They are 36 bits wide, reading and writing to the X^US using
P.2/.3 to select the control memory address.

RCM and WBP are used only in diagnostics. WCM is used for swapping in a new
user.

A control memory word I- 40 bits v/ide. Thirty-six data or instruction bits come
from the XBUS, two mode bits come from F/F's MOD.O (F.174) and MOD.l (F.175). One
bit is a parity bit--either grod or bad-- and one is unused and is always 0. Parity is
generated automatically. WCM generates odd (good) parity; WBP generates even (bad)
pan'iy.

RCM will generate a control memory parity AR if parity is bad. If parity is good,
then the 36 data/instruction bits are moved to the XBUS; the mode bits cannot be
retrieved.

Example:

Loac! the first 7000 locations in control memory from main memor / starting at the
location addressed by R.O.
P.I *- 0 Igood for 256 iterations
P.2 «- 0; P.3 ♦- 0 !control memory address
LOOP:

FOP R.O *0;
WOS XBUS ITwo-instruction loop
WCM -1 !to read 400(8) words

R.O «- R.O ♦ 400;
R. 1 B.3 *- P.2;
R.l XOR 16;
/IF NOT ZSP THEN GOTO LOOP END;

MLP-900 REFERENCE MANUAL 78
Control Engine

4.3.11 MAST. MAnipulate STatus

This mmi^tep manipulates F/F's.

Syntav:

mast ::=
F.3/7 - ffexp booieanop ffexp ; I
/IF ffexp THEN F.377 - ffexp END ;

Examples:

/F.l «- F.i7 OR NOT F.20 ;
/F.33 •- NOT F.10Ö XOR F.13 ;
/F.106 - TRUE OR TRUE ;
/IF F.6 THEN F.l 11 - NOT M END;
/IF NOT F.l 1 THEN F.4 - F.22 END ;

Semantics:

There are two types of MAST mmisteps. the unconditional and conditional store.

UnconOitional MAST. This form of MAST stores a two-term boolean expression into
a third F/F. Any F/F's may be used several times. For example, the following will
complement F.7:

F.7 «- NOT F.7 OR NOT F.7 j

Conditiona: MAST This forrr, of MAST is much like the conditional BEAD. If the F/F
being tested is true, i store is made, in eithe.' case The program continues at the next
statement. For example, the following two MAST statements have the same result:

/F.7 - F.7 OR NOT F.10 ;

/IF NOT F.7 THEN F.7 - NOT F.lO END ;

4.3.12 MOVE. MOVE CE Registers

This mimstep provides data transfer between CE registers; it is also used in
conjunction with the OE mimstep GENT to provide mterengine data transfers.

Syntax:

move ::■
m: I mff I m I mc I mcl i mdb

mi ::«
CE.137 - number (numoer) ;

mff ::-
CE.137 <- F.377 (number) ;

-

MLP-900 REFERENCE MANUAL 79
Control Engine

m ::«
CE.137 ♦-CE.137 (number);

mc :;■
CE.137 -NOT CE.137 (numbe;);

•ncl ::-
CE.137 <- CE.137 [number];

mdb ::-
(CE.137) - {CE.137);

Examples:

CE.i? -5(7);
P.O - 17(75);
CE.111 - F.113 (355);
G0R.1 - G1R.3(377);
XBUS.3 - N0TCE.4(11);
CE.^ ♦- XBUS.O [174];
(CE.l)-(CE.O);
5.0 - (P.O) ;

Semantics:

The MOVE mims^ep moves data within the CE. There are six types of MOVE
ministeps. All but one set one CE register, making use of an immediate mask value
specified in parentheses or brackets. The mask value is similar to the Mask Register
i^sed in the OE; only bits corresponding to one's in the mask are modified. The last
type copies an even/odd register pair to another even/odd register pair; the mask is
not used.

• ^ove Immediate - CE.137 «- number (number);
All masked-in bits of the left CE register receive the corresponding value of the
specified right constant operand. As in the GEAR, the f.ask is specified in O's.

• MOVE F/F - CE.137 - F.377 (number);
Al! masked-in bits of the left CE register receive the value of the specified flip-flop.

• MOVE - CE.137 - CE.i37 (number);
All masked-m bits of the left CE register receive the corresponding value of the
specified right CE register.

• Move Complemented - CE.i37 - NOT CE.137 (number);
All masked-in bits of the !e;t CE register receive the complement of the
corresponding plue of »he specified right CE Register.

• Move and Clear - CE.i37 - CE.i37 [number];
Same as Move (3), but, in addition, the masked-out bits are chared to zero. Note
that the parentheses and Dockets (() and []) are used in t manner similar to the
GEAR operation.

tma

MLP-900 REFERENCE MANUAL 80
Control Engine

• Move Double Byte - (CE.137) - (CE.137);
Moves one pair of CE registers to another pair of CE registers. The pairs are
always an even/odd register pair. Thus (CE.4) and {CE.5) both specify the pair
(CEACE.5). When both registers specified are even or both odd, the move will be
normal, that is, even to even and odd to odd. However, when the specified registers
are one even and one odd, the move will be reversed, that is, even to odd and odd
to even. S.O - S.17 are defined as the appropriate double CE Registers to reference
the subroutine stack for the MOVE mimstep.

ACTION REQUESTS

There are 32 AR F/Ps (F.100-137). Each one is connected to an interrupt location
(see address on Table 4.4 uelow); in addition, each AR is associated with one of five
lockout levels (ARL.1-5). ARL.l locks out all ARs; ARL.2 all ARs on levels 2-5, etc.

When the CE senses the existence of an immediate AR that is not locked out, the
current clock cycle is inhibited (i.e., the current mstruction/mimstep is suppressed) and
in the next cycle the MLP-900 takes the AR oy performing a call (using the stack to
store the interrupted address) to the AR entry point, simultaneously setting the lockout
bit of the interrupt level being entered. For those ARs of type "Wait," the AR is left
pending until the next CEDE/Wait instruction, when the AR takes place (if not locked out
by a higher level), suppressing the CEHE/ Wait instruction. The A^ F/F's are not turned
off by the act of taking the AR, but must be turned off by the mter'upt routine code.

4.3.13 User-Level Action Requests

There are eight AR levels available to the user microcode: three immediate and five
wait. C* these eight, two (TRAC and LBAR) have assigned functions.

A user trace function is implemenfeJ through the TRAG AR and the ITRAC F/F.
Therefore, a TRAC AR routine of the fol.owmg form-

TRAC «- False;

<trace conditions>

ARL.5 - False;
IF (ITRAC •- True) Return

will be entered after every user mimstep (except other user AR routines). To initiate
tracing, TRAC must be set once.

LBAR is a Language Board output.

MLP-900 REFERENCE MANUAL 81
Control Engine

4.3.14 Target System Interrupts

A Target System AR takes place only during a CEDE/WIN (which represents the
beginning of a new Target System instruction cycles), if any Target System intcrupt
(F.200-237) and its corresponding mask (F.24C-277) are both set; furthermore, all
ARLI-5, TSL, and TSIN lockouts must be clear. In taking ? Target System Interrupt, no
lockout bit is set. If set Dy the microcode, TSl. prevents all Target System Interrupts
until it is cleared by the microcode. TSIN prevents the Target System inte'rupts at the
next CEDE/WIN, at which time TSIN is cleared Tlie pseudo F/F NPT (F.3!.l) is true if
any target system interrupt is set and enablec.

MLP-900 REFERENCE MANUAL
Control Engine

82

Table 4.4

Action Requests

BIT TYPE ADDRESS LEVEL CAUSE

POWER« Immediate 7700 ARL1 Power ICJS warning

.^NJIC* 7700 Interrupt caused by PÜP-10 clears
immediately

vt* *********t»t*M**

OPAR*

EPAR*

SUNF*

UOVF*

UUNF«

7702 ARL.2 Parity error from the odd bank of
the Control Memory

7704

7706

7710

7712

7714

Parity error from the even bank of
the Cwntrol Memory

Stack overflow from supervisor
mode

Stack underflow fron, supervisor
mode

Stack overflow from user mode

Stack underflow from user mode

*t**********±****^ *************************** M *;■*****■»:***************

CMADR*

AERP*

BERR*

PERR*

MMAL*

7716 ARL.3 Control Merrcry address comparand
(Misc.37) matches tne Current
Address Register while SARM.O
is on

772C

7722

7724

7726

Tho two adders in the OE
differed

Parity error on internal Exchange
Bus

Parity error in the translator
memory

Attempt to use VAR beyond that
allowed by ALR {Misc.20)

♦ Indicates a privileged AP

MLP-900 REFERENCE MANUAL
Control Engine

83

Table 4.4 (Continued)

BIT TYPE ADDRESS LEVEL CAUSE
t*tt*^**tt*tt**t****tt*t*t********t***********************************

MMNR* Immediaie 7730 ARL.3 Memory did not respond with correct
signal in time designated for M?rn
Memory timeout

MMERR* 7732 Main Memory parity error

RMWTIME* 7734 The SOP of a read-modify-wnte
sequence has not occurred within the
time designated for RMW timeout

tt**

TASK " 7736 ARL.a Interrupt from the PDP-10

PAGE» 7740 A CEDE Wait or Store notes that the
last translation is bad

SUPVF*

PPOT«

VADR*

7742

7744

7746

Attempt by user mode code to execute
a privileged mmistep or modify
a privileged register

An attempt by user mode code to
branc' into MicrovisOr code at other
than an entry point

Virtual address comparand (Misc.37)
matches VAR while SARM.l is on

F.125* " 7750 " Three unassigned AR's
F.126* " 7752
F.127* " 7754

tt*******t******\'***************************t*************************

TRAC 7756 ARL.5 Set by user microcode,
or by ITPAC aiter a one-cycle
delay

F.131
F.i32

7760
7762

Fwo unassigned AR's

LBAR Wait 7764

F.134 •■ 7766
F.135 it 7770
F.136 >• 7772
F.137 '• 77 74
— Win 7776

* indic^fer. a pri/ileged AD.

Language-Board-generated AR

Four unassigned AR's

Sorr»e " rge» S/s'em interrupt
(icn.^. rfrd its mask (IM.0-37)
^e both set

X ^

85

APPENDIX A. GPM RESERVED WORDS

Name (Range) Eauivaient

.FIN

.FOP

.GAD

.RMW

.ROW

.SAD

.SOP

.WIF

.WIN

.WOF

.WON

.WOP

.WOS

.WSS

A.O - 1777 OE.2000
A.PG.0 - 3 0E.PG.4
AERR F.lll
AND
ARL1 - 4 F.170
ARL5 F.150

B.O -3
BEGIN
BERR F.112
BLOT.O - 7
BREAK
BY

CALL
CASE
CCP F.307
CE.O - 377
CED.O - 177
CKC F164
CKT F.166
CLB.O - 13 F.324
CLEAR
CMADR F.110
COF.l - 2 F.140
COMMENT
COP F.300

DATA! 0E.1033
DATAO OE1032

I

Preceding page blank

Appendix A 80

DECREMENT
DEFAULT
DIVIDE
DO Dö.BEGIN
DO.BEGIN

ELSE
END
ENTRY
EPAR F.103
EQUATE
ERS F.340

F.O - 377
FALSE
FIN
FINISH

FSI.O - 1 F.376

GOR.O - 17 CE.O
GOROO CE.O
GOROl CE.l
GOR02 CE.2
G0R03 CE.3
GÖR04 CE.4
G0R05 CE.5
G0R06 CE.6
GOR07 CE.7
G0R08 CE.IO
G0R09 CE.ll
GORIO CE12
GOR 11 CE.l 3
GOR12 CE.14
G0R13 CE.15
GOR 14 CE.l 6
G0R15 CE.17
GiR.O - 17 CE.20
GIROO CE.20
G1R01 CE.21
G1R02 CE.22
G1R03 Ct.23
G1R04 CE.24
G1R05 CE.25
G1RÜ6 CE.26
G1P07 CE.27
GIROS CE.30
G1R09 CE.31
G1R10 CE.32

Appendix A g7

L^iKii CE.33
G1R12 CE.34
G1R13 CE.35
G1R14 CE.36
G1R15 CE.37
GI.O - 37 F.O
GOTO

H.O - 1

HEXADECIMALCCDE

IF
IM.0 - 37 F.240
INCREMENT
INDIRECT.O - 1
INTO INTO.BEGIN
INTO.BEGIN
lOOP.O - 17
ITRAC F.153

LABELTABLE
LB.O - 1777 OE.6000
LB.PG.0 - 3 OE.PG.14
LBAR F.133
LBC.O - 17 F.40
LBI.O - 3
LEFT

M.0 - 17
MASK

MBS F.167
MINUS
MISC.O - 37 OE.10OO
MMAL F.114
MMERR F.li6
MMNR F.115
MOD.O - 1 F.174
MODE
MOE
MULTIPLY

NAMED
NMD F.306
NCRMAL.CODE
NORMALIZE
NOT
NPT F.351

OE.O - 7777

Appendix A „,

OE.PG.O 17
OLB.C - 3
OP.Ü - 17

F.320

OPAR
OR

F.i02

ORIGIN
OSLO - 3 F.354

PO - 17
PAGE
PANIC
PERR
PIR

PLUS

F.121
F.lOi
F.113
OE.1004

POWER
PRiNTOFF

F.100

PRINTON
PRO! F.123

R.O - 37
RCM
RETURN
RIGHT
RMW
RMWTIME
ROW

F.117

RSB

S.O - 17
SAD

CED.40

SARM.0
SHD
SHE
SHIFT.O - 10

F160
F.353
F.145

SHIFT.DUALL
SHIFT.EO.L
SHIFT.ER.L
SHIFT.OE.C
SHIFT.OE.L
SHIFT.RE.C
SHIFT.RE.L
SHIFT.SINGLE.L
SI.O - 37
SIR
SLBC.O - 17
SOF
SOP

F.200
OE.1005
F.60
F.147

SOS
SOVF

F.146
F.104

89

♦

Appendix A

SSW.O - 7 F.340
SUNF F.105
SUPVCT F.177
SUPVF F.122
SUPVLB F.i76
SUPVLB.0 - 377 0E.5400
SWITCHON

TASK F.120
TEMPORARY
TEST
THEN THEN.3EGIN
THEN.8EGIN
THRU
THZ F.304
TITLE
TRAC F.130
TRBY F.165
TRUE
TSI.O - 1 F.374
TSIN F.151
TSL F.152

UOVF F.106
UUNF F.107

VADR F.124

WAR F.305 WAR F.305
WBP
WCM
WIF
WIN
WOF
WON
WOP
WOS
WSB

XBUS 0E.4000
XBUS.O - 3
XLATOR.O - 777 0E.4400
XLATOR.PG.0 - 1 OE.PG.11
XOR

ZRF.l - 2 F.142
ZSI.O - 13 P.360
ZSP F.301

~^*mtiimmmiimtimim*m

90

APPENDIX B

THE GPM COMPILER

The GPM Compiler is a fair'y large program written to run under TENEX. This
appendix describes use of the compiler, its listing formats, and the INCLUDE feature.

B.l Using the GPM Compiler

GPM is available as a TENEX subsystem, under the name GPM. The GPM command
prompt is "::"; commands consist of a single letter, and are executed immediately. The
"C* (compilf,-) command prompts for its source, binary, and listing files. Compilation
begins as soon as the last file is confirmed. Using NIL: for the binary file and/or the
listing file speeds up compilation considerably and is recommended if either file is not
needed.

Example:

@GPM

MLP-900 Language System
Type ? for help

K'ONDAY, NOVEMBER 11, 1974 14:29:01-PST
USED 0: 0: 0. 5 IN 0: 0: 1.45
Compiler Version GPM.4.74.9

:H HEXADECIMAL.CODE MODE TRUE
:L LABEL.TABLE MODE TRUE
:C

source file:PROGRAM.GPM;6 [Old version]
binary file:PROGRAM.BIN;6 [Old version]
listing file:PROGRAM.LST;l [New version]

TL
^PROGRAM.NAME ^1^1.4.74.9 1 l-NOV-74 14:30:57 P- 20 1,

7,**No Errors Detected**^

::Q
MONDAY, NOVEMBER 11, 1974 14:31:02-PST
USED 0: 0: 20.20 0: 2: 2.30

If no binary file is desired, the b'nary file should be output to NIL:. The same is
true for the listing file. The compilation will run more quickly If no listing Is generated.

The listing can be recompiled without any editing. For this reason, it is possible to
compile into the source file name. One should be careful, since the compiler will
"correct" all errors in the source and they will not appear after recompiling the listing
file.

Appendix B 91

In addition to tha "C" command, there are other GPM commands, as follows:

C Compile. Compiles GPM source program (shown in above example).

F Fast compilation. Sets flag for fast syntax check; no code generation.

H HEXADECIMALCODE MODF.*

L LABELTABLE MODE.^

N NORMALCCDE MODE.*

P PRINTON Forces complete listing; sets flag to suppress any PRINTOFF statements
in ihe program source.

Q Quit.

S Switch status. Prints the current switch settings as determined by the
commands F, H, L, N, and P.

T Teletype Test Compile. Same as C, except binary file is NIL: and both source and
listing file are TTY:

B.2 The INCLUDE Feature

The INCLUDE feature may be used anywhere in any GPM source file. It is simply
INCLUDE followed by a standard TENEX file name. Neither the INCLUDE nor the file
name, but rather the contents of the specified file, are passed to the parser. iNCLUDEd
files may INCLUDE other files. It is also good practice when working with INCLUDE files
to use the proper directory name within the file, so the file can be used by others.

Example:
PRINTOFF
COMMENT sample include file ;
BEGIN NAMED INCLUDE.FILE.SAMPLE
EQUATE R.5 INPUT !setup some register definitions
EQUATE R. 13 OUTPUT;
INCLUDE <OESTREICHER>SQUARE-ROOT.INC
COMMENT if this is used when not connected to <OESTREICHER>

it will still work ;
EIVJ NAMED INCLUDE.FILE.SAMPLE Iclose any open blocks
r'RINTON

B.3 The GPM Listing Format

* Controls generation of appropriate section of GPM listing. Setting alternates every
time the command is entered, and the new value is printed. Initial value Is false (i.e.,
no output).

wm ------ - -- - -———-• i I i -" ■■

Apoendix B 92

A complete GPM listing contains four parts as follows:

• The source programs with errors flagged and corrections made (where
possible).

• The label table.

• The compiled code listed in octal (normal code).

i> The compiled code list i in hexadecimal

Section 3.4 discussed the GPM pseudostatements that affect whether or not these
listings are produced. This appendix discusses in detail the contents of each part of
the listing.

Source Program

The source listing is primarily a formatted copy of the input with a few changes,
the most important is that all 7, text 7, comments are lost; only the COMMENT statements
and ! comments are maintained, because the compiler user the 7. text 7, comments In the
listing file for page headings and for error messages.

The output of the GPM compiler can be fed back into the compiler and processed,
usually with fewer errors. As the compiler attempts to correct errors, It either
"comments out" offending symbols or adds missing ones. If all the corrections made In
the output listing (possible new source) are satisfactory, no recompilation is necessary.

Label Table

The label table is output after the FINISH statement and is contained in ^*s. It has
three columns: octal location, hexadecimal location, and label name.

Example:
7, LABEL TABLE t
1 7702 FC2 TAGA t
t 7750 FE8 TAGR t

Octal Code

The code listing comes in five columns. The first is the location of the code word in
octal, followed by a flag digit and the op code. The fourth column then contains the
instruction coding in octal, which is finally followed by a translation of the single
instruction back into a GPM statement. This last column is provided to allow easy
reading of tie compiled code.

The flag digit is not copied to the MLP-900 by the loader. The 4 and 2 flags make
ORIGINS and Labels. The 1 flag is of interest because it marks long immediate
instructions and causes the location counter column to skip one.

 M^^ih^wMmm\ i ammm ■.„...— .

Appendix B 93

Example:
7.7701 0 BEAD 2 121 7027 /IF TRUE THEN GOTO 7027 END;7.
77702 1 GEAR 4 0 37 77 R.37 f R.37 OR NOT 777777777657(M.O);70

77704 0 GENT 0 2 33 36 MISC.33 ^.36;?,

Hexadecimal Code

The hexadecimal listing is the same as the normal, except that the location and
instruction coding appear in nexadecimal instead of octal.

Example:
7FC1 0 BEAD 2 91 El7 /IF TRUE THEN GOTO 7027 END;7
7FC2 1 GEAR 4 0 IF CF R.37 *-R.37 OR NOT 777777777657 (M.0);7
7FC4 0 GENT 0 2 13 CB MISC.33 <-R.36;7

—-— - ■ -

94

APPENDIX C

HARDWARE INSTRUCTION ENCODING

C.l INTRODUCTION

MLP-900 ministeps are each contained in 32 instruction bits, occupying the least
significant bits of the 36-bit control memory word; the four most significant bits are
used only in conjunction with the long immediate OE instruction, where the second word
contains a 36-bit literal constant. The first four bits of each ministep constitute the op
code, and the next four the sub-op; in general, the op code determines the format of
the remaining fields of that ministep. The most significant bit of the op code designates
the engine: 0 is an OE ministep, 1 is CE.

Four of the eight possible OE op codes are defined. The other four produce
undefined results, but the general flavor of their ministep decoding is the same. In
particular, the B operand decode applies to ALL OE ministeps (even defined ministeps
which have no B operand); whenever the B operand specifies long immediate data, the
following word is taken as a 36-bit literal rather than as a ministep.

C.2 FOR THF OPERATING ENGINE

C.2.1 A Operands

An OE A operand represents a reference to a general register (R.O - R.37) either as
an explicitly stated general register or as an indirect reference through a pointer
register (P.O - P. 17). The encoding is shown in Figure C.l.

02 03 04 05 06 07

Register

00 01 02 03 04 05 06 07

Pointer
Register

1
if

Figure C.l A operand format.

Examples:
R.13
flP.ll
• P.7

Appendix C 95

C.2.2 B Operands

An OE B Operand represents a reference to a general register (as in an A operand),
to a pointer register, or to an immediate operand. The encoding is shown in Figure C.2.

GO 01 I 02 03 04 05 06 07

t) 0 A Operand

00 01 03 04 05 os

0 1 Pointer Registei
(Pointer Data)

00 01 I 02 03 04 05 06 07

Figure C.2 B operand format.

C.2.3 Shift Amounts

The encoding for shift amounts for GEAR and SHIN ministeps is shown in Table C.l.

< >

——■ -—-- 1 * ■■ ■ ■ ,..■..., —_—^— ^_ .|[^ x

Appendix C 96

T^ble C.l

Shift Amount Encoding

Shift Ari'^unt Shift Code
Left Right

0 10 0
i 11 i
2 12 2
4 13 3
6 14 4

10 15 5
14 16 6
20 17 7

C.2.4 GEAR

aa *- aa op ab shift mask testmode ;

The GEAR internal coding is shown in Figure C.3. The arithmetic codes are listed in
Table C.2. The shift amount coding is found in Table C.l. The test mode and clear
mode bits are set to 1 to indicate that the mode is active. The A operand (aa) and the
B operand (ab) are coded as described in Sections C.2.1 and C.2.2, respectively.

Table C.2

GEAR Arithmetic Codes

Code Primarv Adder Operation

0 aa ♦- NOT aa OR ab
1 aa «- NOT aa AND ab
2 aa <- ab
3 aa <- aa AND NOT ab
4 aa «- aa OR NOT ab
5 aa ♦- aa AND ab
6 aa <- aa OR ab
7 aa <- NOT ab

10 aa <- aa XOR NOT ab
U aa <- aa + ab
12 aa ♦- ab - aa
13 aa <- aa + a 3 + COFl
14 aa ♦- aa - 30 + COFl
15 aa <- ab - aa ^ COFl
16 aa ♦- aa - ab
17 aa ♦- aa XOR ab

Appendix C 97

00 01 02 03 |Ü4 05 06 07
■ i »

08 09 10 11 12 13 14 15 ,16 17 18 19 20 21 22 23 24 25.26 27 28 29 30 31

GEAR

0 0 0*

Arith-
metic

Mask
Reg.

Shift
Amount

A Operand B Operand

Figure C.3 GEAR ministep.

C.2.5. CEDE

The evchange code determines the CEDE sub-op being executed. The A operand
and B operand of all CEDris, except WOP, SOP, J»nd WOS, are identical to GEAR in the
coding of the A and B operands; the Op A Extend and Op A Group are ignored. For
these three, the A operand specifies any OE regisfer; the 12-bit address Is coded in
three sections (the 4-bit group, the 3-bit extension, and the 5-blt register). The
operand may also be indirect through a pointer, in which case the Indirect addressing is
done within the indicated group and the Op A Extend is ignored. These CEDEs ignore
the B operand.

Testmode inhibits fetching, storing, translating, and the modification of any register,
but waiting and prge faulting are still performed.

The subtract bit, when set (i.e., 1), specifier two's complement subtraction instead of
addition for those CEDEs that do arithmetic; the subtract bit is ignored for other CEDEs.

For Exo ange Codes, see Table C.3 below.

Table C.3
CEDE Exchange Codes

FIN 0
WIN 1

FOP 2
SAD 3
RMW 5
WIF 7
WOF 10
SOP 11
WOP 14
WOS 15
ROW 16
WON 17

- - imm -

Appendix L 98

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 r; 17

4-»

ü
nj 4-1

i_ in
4-1 (U
jQ h-
3

LA)

18 19 20 21 22 23 :4 25 26 27 28 29 30 31

:EDE

0 D £M

Xchng
Code

i Op A
Wfextenc

m

Op A
Group

A Operand B Operand

■
Figure C.4 CEDE ministep.

C.2.6. SHIN

The SHIN internal format is shown in Figure C.5. The shift codes are listed in Table
C.4. The Mask, Shift amount, Test, A operand, and B operand (where uied) are identical
to that of utAR. indirect '■hift, if set, causes the shift amount—though not the shift
direction—to be ignored.

Table C.4
SHIN Shift Codes

0
1
2
3

5
b
7

10
11
12

Shift Operation

SHiFT.EO.L (Shift even into odd linear)
SHIFT.OE.L (Shift odd into even linear)
SHIFT.SINGLE.L
SHIFT.DUALL
SHIFT.EO.C (Shift even and odd circular)
SHIFT.RE.L (Shift register into extension linear)
SHIFT.ER.L (Shift extension into register linear)
SHIFT.RE.C (Shift register and extension circular)
NORMALIZE
MULTIPLY
DIVIDE

00 01 02 03 04 05 06 07 08.09.10 11 112 13 14 151 16 171 18 19 20 21 22 23 ?4 25.26 27 28 29 30 31

SHIN Shift Shift o
0) 4->

11 \ t Code
Mask

Amount
1-

C

in

1-

A Operand B Operana

Figure C.5 SHIN ministep.

■ *=>--«, »-,

u
Appendix C

C.27. GENT

99

gentx *■ genty;

The GENT internal coding is shown in Figure C.6. GENT takes two operands: A and
B. The direction of the transfer is controlled by the To/From b't as follows:

To/From Result
0 A- B
1 B-A

The 12-bit address for the A opeiand is coded m three sec'ons as described for
CEDE above.

The B operand is coded as described in Section C.2.2, except that when bits 0 and 1
are 0 the operand B group field is used; otherwise, the operand B group field must be
zero. The registers addressed by the operand B group field are shown in Table C.5.

If the A operand addresses the mask registers, or the destination is an immediate
value or a pointer register, the resulting operation is a no-op.

QD. S Group

0
1
2
3

Table C.5
GENT B Operand Group

Res^ter

R.37 - General Registers
M.17 - Mask Registers
MISC.37 - Misc. Registers
XBUS - Exchange Bus

CO 01 02 03

GENT

t 1 0

104

i
ll
1
i

09 10 11 12 13 14 15

Op A
Group

IIH 17

|0p B
Grp

18 19 20 21.22 23

A Operand

24 25.26 27 28 29 30 31

B Operand

Figure C.6 GENT ministep.

^
O

C.3 FOR THE CONTROL ENGINE

C.3.1 Fhp-Flops

The F/F's are divided into two groups. F.O - F.177 are all in group 0, and F.200 -
F.377 are all in group 1. Therefore, F.327 is coded as F/F number 127 in group 1.
This encoding is shown in Figure C.7.

 . —— -— ■-■ — -

Appendix C 100

GO C 1 C2 Oj 04 Ob 06 07

F/F Number F/F
(n mod 7.0G) Grp

n/
200

Figure C.7 F.n encoding.

C.3.2 CE Registers

A CE byte register consists of a 4-bit group number and a 4-bit register number
within group Thif encoding is shown in Figure C.8.

00 01 02 03 04 05 06 07

Register number
(n mod 20)

Group number
(n/20)

Figure C.8 CE.n encoding.

C.3.3 RELATIVE ADDRESSES

The relative addresses are coded into one byte. They are relative to the
continuotion address, or the next instruction word. Therefore, a skip is coded as a +1
instead of a +2. The relative offset is two's-complement and signed. The range of the
coded possibilities are -200 (10 000 000) through +177 (01 111 111). Because the
offset is relative to the ron'inuation address, the effect ranges for relative addresses
are -177 through +200.

C.3.4 BOOLEAN EXPRESSIONS

A boolean expression is enccdeo in two and one half bytes. Two bytes contain the
F/F's encoded as shown above. The half byte defines the function. Figure C.9 shows
where this information is placed n the instr^.f.on word. Table C6 lists the possible
functions.

F/F Expressions - A F/F and its associated true bit are used in BRAT, BENT, BORE,
BRAD, BEAD, and MAST to ^orm F/F expressions. If the true bit is on (1), then the
actual F/F value is used; if it is off (0), the complement is used.

Appen'': C 101

2104 05 06 07 08 09 10 11 12 13.14 15
Im i i Mi I I —l ■■

16 17 18 19 20 21.22 23|24 25.26 27.28 29 30 31

< co

F/F A

F.a

K/F B

F.b

Figure C.9 Boolean expression encoding.

■ est
Mode

00

Table C.6
Ooolear Expression Types

alms. STrue B9<)ie9n Exprg$?i9n

0
l
o

F.b «- NOT F.a
NOT (F.b *- F.a)
NOT (F.b «- NOT F.a)
F.b *- F.a

01 0 0 NOT F.b OP NOT F.a
1 F.b OR NOT F.a

1 0 NOT F.b OR F.a
1 F.b OR r.a

10 0 0 NCT F.b AND NOT F.a
1 F.b ;ND NO"!" F.a

1 0 NOT F.b AND F.a
i F.b AND F.a

i

C.3.5 BRAT

0 0 NOT F.b XOR NOT F.a
1 F.b XOR NOT F.a

1 0 NOT F.b XOR F.a
1 F.b XOR F.a

/IF booleanexp THEN GOTO relativelabel END;

The BRAT internal coding (Figure CIO) consists of the BRAT op code, a boolean
expression (Figure C.9), and a relative address (Section C.3.3).

t

^*^ -i -i " ■
— -— -

Appendix C 102

00 01 02 03 04 05 061 071 08.09.10 11 12 13.14 15 16 17 18 19 20 21 22 ?3 24 25.26 27 28 29 30 31

BRAT

10 0 0

4-J 0)

1) o

<

0)

L.
h-

CQ

F/F A F/F B Relative
Address ,

Figure CIO BRAT ministep.

C.3.6 BENT

/IF booleanexp THEN CALL relativelabel END;

The BENT internal coding (Figure C.ll) consists of the BENT op code, a boolean
expression (Figure C.6) and a relative address (Section C.3.3).

00 01 02 03 04 05 06 107

<U (U

BENT ■M (U
& -o

1

<u 0 K h-

10 0 1 i- x: < CO

08 09 10 11 12 13 14 75 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

F/F A F/F 8
Relative
Address

Figure C.ll BENT ministep.

C.3.7 BORE

/If bcoleanexp THEN GOTO relativelabel ; ELSE RETURN END;

The BORE internal coding (Figure C.12) consists of the BORE op code, a boolean
expression (Figure C.6) and a relative address (Section C.3.3).

■ - "r *

Appendix C 103

10 01 02 03 04 05 061 £2
4) V

BORE 3

v 0 H «-
10]*) h- z: < 00

08 09 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25.26 27.28 29 30 31

F/F A F/F B
Relative
Address

Figure C.12 BORE ministep.

C.3.8 BRAD

/bradop P.7 BY number; IF ffexp THEN GOTO relativelabel END;

00 01 02 03 08 09 10 11 12 13 M 15 16 17 18 19 20 21 22 23 24 25.26 27 28 29 30 31

Pointer
Reg.

Modifier F/F B Relative
Address

Figure C.13 BRAD minisfep.

C.3.9 BEAD

beadO I beadl I bead2 I bead3

There are four types of BEAD; they may all be used as a CALL or ^ GOTO. The
Enter bit shown in the four figures below control this. If Enter equals 1, the CALL is
done instead of a GOTO.

C.3.9a. BEADO

/IF ffexp THEN transferop label EK

The BEADO internal coding (Figure C.14) consists of a BEADO op code, a F/F
expression (Section C.3.4) and a 16-bii absolute address.

-4-

Appendix C 104

00 01 02 03 04 Ob 061 07J 08.09 10 11 12 13 14 15 16 17 18 19 ?0 ?1 27 ?3|24 25.26 27 28 29 30 31

B AD 0 0

V
u

1-

1.
0)

c
LU

F/F A Absolute
F^tended Branch Address

Figure C.14 BEADO rr-misfep.

C.3.9b. BEAD1

/transferop label <P.17>;

The BEAD1 internal coding (Figure C.15) consists of a BEAD1 op code, a pointer
register number, and a 16-bit absolute address.

00 01 02 03 |04 0511 108.09 10 11 [16 17 18 19 20 21 22 23.24 25.26 27^28.29,30,31

BEAD

110 0
Pointer Absolute

Extended «ranch Address

Figure C.15 BEADl mlnlstep.

C.3.9c. BEAD2

/tra isferop -^1 <P.17>;

The BEAD2 internal coding (Figure C.16) consists of a BEAD2 op code and a pointer
register number.

Appendix C 105

00 C1 02 03 16 17 18 19 202122 ?3|24 25.26 27 28 29 30 31

Figure C.16 BEAD2 minis^ep.

C.3.9d. BEAD3

/IF ffexp THEN transferop sign label END;

The BEAD3 internal coding (Figure C.17) consists of a BEADS op code, a F/F
expression, and a 16-bit two's-romplement relative address. All relative addresses are
relative to the next instruction.

00 01 02 03 0405 061 1071

0) - \~\
BEAD L. 0)

1 1 1—

110 0 < UJ

08 09.10 11 12 13.14 15|16 17 18 19 20 21 22 23 24 25 26 27 2*? 29 30 31

F/F A Relative
Extended Branch Address

Figure C.17 BEADS ministep.

C.3.10. BLOT

blotcode relativelabel

The BLOT internal coding (Figure C.18) consists of the BLOT code and the relative
address (Section C.3.S).

Cfidfi. Mnemonic
0* RCM
i* WCM
2 RSB
S WSB
4 MOE
5» WBP

An asterisk (*) indicates a privileged code.

U --■■ ■ , ■ -. ^.^.^ : ■

Appendix C 106

16 17 18 19 202172 73124 25 26 27 28 29 30 31

Figure C.18 BLOT minisfep.

C.3.11 MAST

¥377 *■ ttexpa booleanop ffexpb;
/IF ffexpb THEN F.377 - ffexpa END;

The MAST internal coding (Figure C.19) consists of a MAST on code, a logical
function, tvo F/F exp- essions, and a result F/F. The MAST cgical function are:

Table C.7: MAST Logical Codes

0 IF 'fexpb THEN result - ffexpa
1 result «- ffexpa OR ffoxpb
2 result <- ffexpa AND ffexpb
3 result «- ffexpa XOR ffexpb

00 01 02 03|04 05 06 1071 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25.26 27 28 29 3C 31

MAST o c, Result '

MID J o
c o

Li.

l_

<
h-

m

F/F A F/F B F/F

C.3.12. MOVE

Figure C.19 MAST mlnistep.

move ::«
mi I mff I m I mc I mcl I mdb

mi ::•
CE.137 <- number (number);

mff ::-
CE.137-F.377 (number);

m ::•
CE.137-CE.137 (number);

Appendix C 107

^ J»-

mc ::-
CE.137 «- NOT CE.137 (number);

mcl ::-
CE.137 ^CE.137 [numbed;

mdb ::»
(CE.137)-(CE.137) ;

The From Address is a constant in the case of MOVE immediate; a F/F in the case of
the MOVE F/F; and a CE register for the other four MOVE's. The To Address is always
a CE register. The Immediate Mask is ar 8-bit constant; it is not used in the MOVE
double byte.

irble Co. MOVE Codes

U>de Mnemonic

o MSI
i MOM
2 MAR
3 MAC
4 MCL
5 MDB

00 01 02 03 04 06 06 07 08 09 10 11 1? .3 14 15 16 17 18 19 ?0 ?1 22 23 24 2b 26 27 28 29 30 31

MOVE

111)

MOVE

Code

From
Address

To
Address

Immediate
Mask

Figure C.20 MOVE minisN-p.

L-

108

APPENDIX D. I/O INTERFACE

D.l Introduction

The I/O interface between the MLP-900 and the PDP-10 contains four registers:

Command/status register
DATAO register
DATA! register
IPL address register

Misc.34
Misc.32
Misc.33
Not addressable

The MLP-900 can read or write these registers as part of the OE miscellaneous
register group; writing these registers is allowed only in Microvisor mode. The PDP-10
can read or write these registers via the CONO/I and DATAO/I instructions.

The ^!.P-900 is recognized as two devices on the I/O bus, MLPA and MLPB, with
MLPA intended for all normal communication and MLPB for assistance in saving and
r»storing the state of the inter i*-?.

D.2 Command/Status Register (Misc.34)

The command/status register is a 27-bit register, as shown in Figure D.I.

♦HDP-10 - — MLP -M"
Interface and^L

' MLP Status "T"
MLP —»-PDP-IO-

00 01 02 03 09 io n 12 13 14 15 16 17 18 19 ?0 21 22, 23 241 I25, 26 27 28 29 30 31 32 33 34. 36

Ul L. H- >- ^ ÜC or CD c U it: u i^ 4-) L.
u o o o <M Q < c o o o 4-» a> <_) »/I ■M 0)
0) in < < CO Q < — 1- < t/> *-> < a> 10 +J

_* -M •— Q < _^ c L. 1_ <u <ü 3 0) (U
in 0) > — o 0^ c OJ UJ ro u F .* CJ 3 E
(0 £ O < < _J _J Q 3 i: •M a ro in <D cr «0
h- ro i- H >- a. a. H Od o X) fD <u i_ Q a: 0) »-

u (.) < < — — Q- L. a a: OJ h- ct: ro
(0 •— Q Q (TJ o. a. a.

a_ r X -j
2:

Figure D.l Command/Status register format.

Bits

9-11
12-17
18

Priority interrupt level
Task parameter provided by the PDP-10 along with a task AR
Microvisor mode

ti^B^mmmm

^

Appendix D 109

19 DATAI active I set by writing the register
20 DATAO active I reset by reading the register
21 IPL data mode
22 IPL address moce
23 Task AR pending (F.120)
24 MLR running (F.164)
25 MLR Rower Up
26,27,30,31

Priority interrupts* any one causes an attempt
to interrupt over the I/O bus

26: Hard error PI
27: Data ack PI
30: Task ack PI
31: MLR request PI

28, 29, 32-35
Recuest parameter: exparding on the MLR requtsi PI

0.3 DATAO (MISC.32) and DAT/AI (MISC.33)

DATAO and DATAI are both a 36-bit data transmission registers, usable in either
direction. Each is accompanied bv ?n active bit in the command/status register.
Writing into one of these sete active; reading it resets active (without altering the data).
Note that an MLP-900 user may read these registers and, in so doing, clear the active
condition.

D.4 MLP-900 nterface Manipulation

The MLP-900 can read the command/status register and the DATAO and DATAI
registers via a GENT ministep. In addition, if SURVLB (F.176), the following
command/stafus fields are available directly:

• Tas^ parameter (bits 12-17) P.17
• DATAI active (19) F.326
• DATAO active (20) F.327
• Hard error PI (26) F.320
• Data ack PI (27) F.321
• Task ack PI (30) F.322
• MLR request PI (31) ^.323

In Microvisor state, the MLP-900 can load any of these three registers via a GENT
ministep. Writing the command/status register loads only bits 26-35; bits 0-25 cannot
be written directly. Furthermore, If the MLR request PI (bit 31) is zero (new value), the
MLP-900 requeM parameter (bus 28, 29, 32-35) is ignored; that field of the
command/status word h cleared. Setting one or more of the four PI bits (26, 27, 30,
31) causes the MLP-900 to interrupt the RDP-10 (if its priority interrupt level is not
zero); while their names are function-suggestive, the four PI Dits perform identically.

_■■

Appendix D 110

D.5 PDP-10 Interface Manipulation

The PDP-10 recognizes the MLP-900 as two devices on the I/O Bus: MPLA is device
424 and MLPB device 434.

The PDP-10 DATAI and DATAO operations transfer 36-bit values to and from the
DATAI and DATAO register*; the active bits are set by a DATAO operation and reset by
a DATAI operation.

DATAO-A loads DATAO, and DATAI-A reads DATAI. MPLB is "reversed-; DATAO-B
loads DATAI, and DATAI-B reads DATAO.

The PDP-10 CONI and CONO operations transfer 18 bits to and from the
command/status register.

CONO-A, MLPA (Commands Out)

Bill Function

18-20 New priority interrupt level*
21 Set IPL mode
22 Set panic AR (F. 101);
23 Set task request (F.120)
24 Set/reset clock iF.164)
25 Reset interface
26 Reset hard error PI
27 Reset data ack PI
28 Reset task ack PI
29 Reset MLP request PI
30-35 New task parameters

CONI-A (Status in)

Olli Function

18-25 Bits 18-25 of command/status register
26,27 Fits 26, 27 of command/status register I the PI
28,29 Bits 30, 31 of command/status register I bits
30-35 Bits 28, 29, 32-35 of command/status register; the MLP-900

request parameter

♦ These two fields are used to alter the appropriate Command/Status fields only if
either bii 22 or bit 23 is set in this CONO; otherwise the command/status fields are
cleared.

^

Appendix D 111

CONO-B, MLPB is a NOP

CONI-B (Read Commands)

Biti Functign

18-20 Priority Interrupt Level
21,22 Zero
23,24 Bits 23, 24 of Command/Status
25-29 Zero
30-35 Bits 12-17 of Command/Status (PDP-10 input parameter)

In general, the MLPB is needed only to save the state of the interface; all "normal"
communication is done via MLPA.

D.6 IPL MODE

IPL mode is used to load MLP-900 control memory directly over the I/O bus. IPL
mode is initiated by a CONO-A which sets IPL mode (bit 21). This puts the MLP-900
into IPL address mode; the next DATAO-A loads the IPL address register and puts the
MLP-900 into IPL data mode. Subsequent DATAO-A's are used to load successive
control memory locations, with the mode set to 2 (supervisor mode); the IPL address
register is incremented prior to each control memory store.

IPL mode is terminated by any CONO-A. If that CONO itself sets IPL mode, then the
MLP-900 is back in IPL addres* mode.

112

APPENDIX E. LANGUAGE BOARDS

An MLP-900 language board consists of a pair of boards (one from the OE, one from
the CE) which fit into one of four pairs of slots available. The list of available inputs
ana outputs for each board is fixed (and is identical for each of the four language board
positions). The board must obey general MLP-900 hardware conventions regarding
board selection, clock time requirements, and the like; the actual construction of
language boards must be done by MLP-900 personnel.

The primary functions of the OE board are as follows:

• (V'-tual) address transformation for all memory addresses.

• CEDE/WIN and WIF implementation (including indexing, conditional operand fetching,
and op code breakout).

• LB register maintenance.

The primary functions of the CE board are as follows:

• Decode of SiR and PIR into pseudo-F/Ps and pointers.

• Definition of normalization.

Figure E.l depicts ail the signal lines available to the language board pair. Most of
the input lines are the contents of specific registers, a ministep decode signal (indicating
the execution of a oarticular ministep), or a hardware bus. The outputs are divided into
pseudo-registers available to the microcode and control signals directcJ to the MLR
hardware.

Appendix E 113

Memory data reg. (36)

Primary sum (36)

LB reg, address (12)

LB reg. Read confrol (1)

LB reg. Write control (I)

TS interrupt pending

WINorWIF decodes

FIN or WON decode

Clock

LB select (1 of 4)

LB control F/F's (16)

Primary instr. reg.

Secondary instr. reg.

A operand

a.
jvj
01
(I).

(36^

(36)

(36)

COFl,COF2>ZRFl/ZRF2 (4)

Normalize decode (I).
**■

Operating

Engine

Language

Board

LiJ

L
3

D
A
T
A

(8)

Control

Engine

Language

Board

LB data bus (36)

Virtual memory address (18)

LB Action Request (1)»
LB indicators (5) m

WIN entry address (7) ^

State pseudo-F/F's (4)

Pseudo-pointer 15 i6} *
Inst. reg. load controls (3)fc

Memory cycle inhibit (]) m
Indexing inhibit (')fc

Stote pseudo-F/F's (12) m*-
Pseudo-pointers 8-13 (6x8^

Pseudo-pointer 14 (6)
-^

Normalize shift controls (3)

Normalize shift amounts (6)

Normalize shift done (1)

t Figure E,1 Language board input/output signals

i in--««

Appendix E 114

The input signals are as follows:

Memory data register: MDR

Primary sum: Output of the OE Primary Adder.

LB register address:
OE A operand address (used for referencing languabe board registers).

LB register Read/Write control:
Control signals set for transfer from or to the LB register (i.e., LB.1777 in a
GEMT or CEDE).

TS interrupt pending: NPT pseudo-F/F.

WIN/WIF decode:
Control signals for WIN and WIF, resoectively.

FIN/WON decode:
Con'-'Ol signal for either FIN or WON; can be used to distinguish instruction and
data memory references f desired.

Clock: The MLP-SOO clock pulse (for writing into LB registers).

LB se'ect: Decode of the LB select; turns the LB "on".

I.B control F/F's: L3C.17 F/F's.

Primary/secondary instruction registers:
PIR and SIR, respectively.

A operand: The OE A errand (for normalization, presumably).

COF1, COF2, ZRF1, ZRF2: The F/F's.

Normalize decode: Control signal for a SHIN Normalize.

The output signals and their definitions on the "null" language board are as follows:

LB data bus:
Used for OE A operand in WIN/WIF, and for the register value in LB register
Read operation.
[NULL: Undefined]

Virtual memory address:
The address which actually goes into VAR should this ministep be an
address-defining CEDE; the address is presumably a simple transformation of the
primary sum. Note that there is no associated control signal.
[NULL: 18 least significant bits of primary sum]

*

\'

i

Appendix E 115

L8 Action Request:
Control signal to set LBAP. r.133.
[NULL: Never set]

LB indicators:
Control signal and 4 data hits for LBI.3 F/Ps (if control signal is set, the data
goes into the four F/F's).
[NULL: Never set]

WIN entry address:
Branch address for the WIN ministep (op code treakout), any even !ocat *,\ from
0 to 126(376 octal).
[NULL: Undefined]

State pseduo-F/F's:
OLB.3 F/F's.
[NULL: Undefined]

Pseudo-pointer 15:
P.17, which is limited to the range 0 through 63.
[NULL: Undefined]

Instruction register load controls:
Control signals governing loading of FIR and SIR during WIN.
[NULL: Undefined]

Momory cycle inhibit: *
Control signal for Fetch inhibit during WIN and WIF.
[NULL: Undefined]

Indexing inhibit:
Control signal for B operand inhibit during WIN and WIF.
[NULL: Undefined]

State pseudo-F/F's:
CLB. 14 F/F's.
[NULL: Undefined]

Pseudo-pointers 8 - 14:
P.10 through P.16, of which P.16 is limited to the range 0 through 63.
[NULL: Undefined]

Normalize shift controls:
Control signals for norm lize shift amount (If amount is indirect).
[NULL: Undefined]

Normalize shift amounts:
Increment to P.7 during a Normalize ministep.
[NULL: Undefined]

-*>„■■-^- - — -- -^....■^■^- —-....

116

Normalize ^hift done:
The NMD pseudo-F/F.
[NULL: Undefined]

117

„
PEFERENCES

1 Bobrow, D. G., J. D. Burch, 0. L Murphy, R. L Tomlinson, "TENEX, A Paged
Time-Sharing System for the PDF-10," Commumcötio«.? of the ACM, Vol. 15, No.
3, March 1972, pp. 135-143.

2 Meyer, T. H., J. R. Barnaby, W. W. Plummer, TENEX Executive Language
Manual for Users, Bolt Beranek and Newman, Inc., Cambridge, Massachussetts,
April 1973.

3 MLP-900 Multilingual Processor—Principles of Operation, STANDARD Computer
Corporation, Santa Ana, California, 1970.

4 Annual Technical Report, May 1972-May 1973, USC/lnformation Sciences
Institute, ISI/SR-73-1.

5 Annual Technical Report, May 1973-May 1974; USC/lnformation Sciences
Institute, ISI/SR-74-2

6 Oestreicher, Donald R., A Microprogramming Language for the MLP-900,
USC/lnformation Sciences Institute, ISI/RR-73-7, June 1973.

7 DEC System-10 Assembly Language Handbook, Digital Equipment Corporation,
Maynard, Massachusetts, 1972.

8 TENEX User*s Guide, Bolt, Beranek and Newman, Inc., Cambridge, Massachusetts,
January 1973.

■ HI Ml ii - ■! - -

118

INDEX

1 33

1» 35,54

(47
0 35, 37, 38

) 47

* 38, 50, 54

+ 35, 42, 46, 54, 96

» 38

- 35, 42, 46, 54, 96

/ 35

J 33

<> 41,44

a 38, 50, 54

A.O - Auxiliary Momory 52
AND 35,37,54,71,96,

B.3 ' ~>
BEAD Branch Extended Address 74, 103
BEGIN 41
BENT Branch and Enter 72, 102
BLOT 46
BLOT Block Transfer 75, 105
BORE Branch or Return 72, 102
BRAD Branch and Modify Pointer 73
BRAT Branch with Test 71, 101
BREAK 41,43
BY 46,73

C - GPM Compiler Command 91
CALL 41, 43, 72, 74
CASE 44
CEDE 46
CEDE Conditional External Data Exi change 57, 97
COF.l - Carry-ou. Flip-Flop 1 56
COF.2 - Carry-out Flip-Flop 2 56

Index 119

C0F1 56
COMMENT 33
Conditional Compilation 43
Control Engine - Operands - Pointer Registers 69
COP - Carry-out Pseudo 56

Data Entry Switches 51
DECREMENT 46,73
DEFAULT 31
Default Listing Settings 34
DIVIDE 47
DO.BEGIN 42

ELSE 43
END 41, 42, 43, 44
ENTRY 44
EQUATE 31
Example, Assignment, Arithmetic 36
Example, Assignment, Boolean 37
Example, Basic Language Symbols 30
Example, COMMENT 33
Example, Data Transfer 40
Example, DO.BEGIN 43
Example, EQUATE 32
Example, Hexadecimal Code 93
Example, Include 91
Example, Label Table 92
Example, Octal Code 93
Example, SWITCHON 45

F - GPM Compiler Command 91
F.O - State Flip-Flops 65
F.IO - TRUE 68
F.101 110
F.104 - Supervisor Stack Overflew 70
F.106 - User Stack Overflow 70
F.120 109, 110
F.130 - TRUE 72
F.140 - COF.l 56
F.U1 -COF.2 56
F.142 - ZRF.l 56
F.i43 - ZRF.2 56
F.146 - SHE 57
F.146 - SOS 56
F.147 - SOF 57
F.151 -TSIN 68
F.152 -TSL 68
F.153 - ITRAC 68
F.164 109, 110
F.165 -TRr.r 57

Index 120

F. 167 -MBS 50
F. 174 - MOD.O 77
F.175 - MOD.l 77
F. 176 109
F.300 - COP 56
F.3Ü1 - ZSP 56,68
F.320 109
F.321 109
F.322 109
F.323 109
F.326 109
F.327 109
FALSE 31,37
FIN 46
FINISH 31
FOP 46
FOP - CEDE Fetch Operand 59

GEAR General Arithmetic 54,96
GENT General Data Transfer 64,99
GOTO 41, 43, 71, 74

H - GPM Compiler Command 91
H.1 33
HEXADECIMALCODE 33

IF 43
IF-THEN 71, 72, 73, 74
INCLUDE 91
INCREMENT 46,73
Index 30
Indirect OE Operands 50
Initial Clear Mode 32
Initial Mask 32
Intie Test Mode 32
INTO.BEGIN 44

L - GPM Compiler Command 91
LABEL TABLE 33
LB.O - User Language Board 53
LEFT 47

M.O - Mask Registers 50
Main Memory Address Switches 51
MAST Manipulate Status 78, 106
MBS 50
MDR - Memory Data Register 51
MINUS 35, 54, 56, 96
MISCO - Data Entry Switches 51
MISC.O - Misc. Registers 50

 - - - -

-

Index 121

MISC.l - Mam Memory Address Switches 51
M1SC.16 - VAR 51
MI5C.17-MDR 51
MISC.2 - Processor Address Switches 51
MISC.31 - Key Register 53
MISC.4 - PIR 51

MISC.5 - SIR 51
MOD.O 77
MOE 46
MOE - BLOT Move üperat.ng Engine 75
MOVE Move CE Register 78, 106
MULTIPLY 47

N - GPM Compiler Cornmana 91

NAMED 41

NORMALCODE 33
NORMALIZE 47
NOT 35, 37, 54, 56. 71, 96, 101

OE Register Page 39
OE.O - OE Registers 49

OR 35,37,54,71, 96, 101

ORIGIN 33

P - GPM Comniler Command 91
P.O - Pointer Rpgisters 69
P.17 109
f.b - Subroutine Stack Pointer 70
Page Fault Handling 51
PIN - CEDE Ketch Instruction 58
PIR - Primary Instruction Register 51
PLUS 35, 54. 56, 95
PRINTQFF 33
PRINTON 33
Processor Aadress Switches 51

Q - GPM Compiler Command 91

R.O - General Registers 50
R.37 - Shift Extension Register 50
PCM 46
RCM - BLOT Read Control Memory 75
RETURN 41,43,73
RIGHT 47
RMW 46
RMW - CEDE - Read Modi'y Wnte 59
ROM 46
ROW - CEDE 60
RSB 46
RSB - BLOT Read Subroutine Stack 75

. .i.. .

Index
122

S - GPM Compiler Corrmand 91
S0 80
S.O - Subroutine Stack 70
SAD 46

SAD - CEDE Set Address 59
SHE 57

SHIFT 47

Shift Extension Register 50
SHIFT.DUAL.L 47

SHIFT.EO.L 47

SHIFT.ER.L 47

SHIFT.OE.C 47

SHIFT.OE.L 47

SHIFT.RE.C 47

SHIFr.REl 47

SHIFT.SINGLE.L 47

SHIN Shift Instruction 61> 98

SIR - Secondary Instruction Register 51'
SOF - Shift-Out Flip-Flop 57
SOP 46

SOP - CEDE Store Operand 59
SOS - Shift-Out Sign 56

SUPVLB.O - Supervisor Language Board 53
SWITCHON 44

T - GPM Compiler Command 91
TEMPORARY 3,
THEN.BEGIN ^
THRU
TITLE
TRBY
TRUE

31
57
31, 37, 68

VfiR - Virtual Address Register 51

WBP 46
W3P - BLOT Write Bad Parity (CM) 76
WCM 46
WCM - BLOT Write Control Memory 75
WIF 46
WIF - CEDE Wait for Indirect & Fetch 59
WIN 46
WIN - CEDE Wait for Instruction 58
WOF 46
WOF - CEDE Wait for Operand & Fetch 59
WON 46
WON - CEDE 60
WOP 46
WOP - CEDE Wait for Operand & Fetch 59

 II llll ■■ -- -— - .-.-^—^^- __ .

Wy^Wyg-JViw^.,.

1 *■

Index
123

WOS 46
WOS - CEDE Wait for Operand (Stream) 59
WSB 46
WSB - ELOT Write Subroutine StacK 75

X9US - OE Exchange Bus 52
XLATOR.O - Translator Memory 53
XOR

\

35, 37, 54, 71, 96

ZRF.l - Zero Result Flip-Flop 1 56
ZRF.2 - Zero Result Flip-Flop 2 56
ZSP - Zero Sense Fseudo 56

35,38

35

35, 37, 47, 54

 - ■ - -- - - . - .- i mil«

