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UptLmal Detection Search

by

Joseph B. Kadane and Herbert A. Simon

This paper considers and unit'ies two search problems

which have been extensively discussed. A class of sequential

problems is proposed that includes both. A theorem is proved,

I [under arbitrary partial ordering constraints, characterizing a

strategy to minimize the expected cost of a successful search.

I The main tool is a set of functional equations in strategy space.

I '
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1. Two Import-int Scar,-h . . rcblemi

The first scarcil oroblem considers an object hidden in

the kth of n boxes with probability p," A search strategy

for finding it is a permutation of a subset of the first n integers

saying what to do next it the object has riot yet been found. Thus

(9,2,`,...) is interpreted to mean that box 9 is to be searched first;

if the object is not found then box 2 is searched, etc. In this

section we consider the simplified model in which a search of a box

containing the object is sure to be successful, although this

assumption is later relaxed. A search of box k costs ck it' it is

unsuccessful and xk it" it is successful.

Thereare at least two kinds of such searches. In a detection

search, the goal is to find an object in some search of some box. In

a whereabouts search, the goal is to state correctly at the end of

a search which box contains an object. This can be accomplished either

by finding an object in the search, as in the detection case, or,

alternatively by guessing correctly at 'the end of an unsuccessful

search which box contains an object. See Kadane (1971) for a

treatment of optimal whereabouts search.

In this paper, the first search problem is to determine a search

strategy that includes each fcf th- bo-xEs and minimizes the expected

cost of a detection search. An earlier papt:.r (Kadane (1968)), deals

with maximizing thL probabLility of a succeŽssful detectlotn search

spending no minre tihan some budgt !I (wben x. k for all k).
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Let o,=.,~ be any two dis,,uiont strateGies. Trien e= O~-

is a stratetry which loo)cks f'irst at the boxes. sýect: iCd by 011

F n the ordeýr specI Vi'ed b; N51 and thon at the boxes-i specified by 2,

Lnr the o rderi spec ifled by oý: unitil U>:t()ijct is focunct or 0 is

7exhausted. Al so le(,.t a.- to the strateg,-y consisting of a search at

box k only.

For any strateg-,y a, Ict X(o) be the expected cost of a,

F(o) be the probability that o -is su,2cessful arid C(o) bc the

cost of a it'f is unsucc-essful. Ttitri We have the Initial conditions

Xkc) =P.ix 1 +( ~P)k

C(a$) 'kC

and the recurrence relations

XO 0a2 ) X(0 1 ) + X(Oat - F(O1 )C(0 2 )

(1.2) C(01.02) C(01) 4- C(Os2 )

The first equation in (1.2) arises because X(o1 ) + X( 02) is

the cost of going, aheýad with o cven If the (,bioct was round using

a'The probab ill ty of lts he ig- fo un d rin 1 1s 1,(o,) and if'

it was it is 0sf:c niot to be, founid ini c-.So0 C(OC)) is the appropriate

cost.



For consistency, if A is the empty strategy, define

C(1.) c(r) (A) x() = cI

Using tnes.: definitions, C, X, and i are associative and C and

P are commutative. F-roblems of this type are considered by

Bellman (1957), Black (1965), Blackwell (t,.d., 6ee Matula (1964)),

Denby (1967), Greenberg (1964), Kadane (1968), Matula (i964), and

Staroverov (1965). among others.

In the second search problem considered here, the event Ek

that an object is hidden in the kth of n boxes again has

probability Pk' but Ek new is independent of Ek (kgk'),

where in the first problem it was disjoint. Again a strategy, a is

a permutation of a subset of the first n integers specifying the

order in which the boxes are attempted until an object is found or a

is exhausted. Again there is a cost ck foe an unsuccessful search

of box k, and a cost xk for a successful one, and once again the

problem is to find a search strategy o that includes all boxes

and mi.nimizes the expected cost of the search.

For any strategy o, let V(o) be the expected cost of1

using o and S'o) be the probability that the strategy

is not successful in fi.ndlnf the object. Then we have the initial

conditions

*K) xPk(k - p Pk)Ck

ik (1.)

I o) 1 -
I



and the recurrent0? relations

V((.5) o"V ic - +

(1-5 s~ojo2 . s{•)s(,b)2
Ik

For consistency, it' A is the empty strate{gy, define

(1.6) V(A) 0, S(A) = 1.

Problems of this type are considered by Bellman (1957), Dean (1966),

Garey (197)), Jo'yce (1971), Kadanc (1969), M:tten (1960), Simon and

Kadane (1975), and Sweat (1970).

I;I
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2. A Convenient Class of Problems Embracing Both Search Problems

This section owes a large, but not transparent, debt to

the paper of Rau (1971). The class of' problems proposed below is

a proper subset of the class proposed by Rau; these relationships

are not pursued in this paper. Suppose that three functions f, F

and G are defined on strategies ok consisting of a single search

of box k. Suppose also that f, F and G are extended to

arbitrary strategies by the recurrence relations

(2.1) F(o 1 0 2 ) - F(O) + F((2 ) 4 G(cL)f(0 2 )

(2.2) f(a102) = f(1) + [l+mG(ol)]f(o2 )

(2.3) G(oGc 2 ) = G(c7) + [1+mG(ol) G(o 2 )

where m is a fixed number. For an empty strategy A, we take

(2.4) F(A) = f(A) = G(A) = 0

First we estaolish a basic theorem about the system 2.1-5:

Theorem 1

With the above deffnitions, F, F and G are defined consistently

on strings of arbitrary length. In particular

(2.5) F((ab)c) = F(a(bc))

(2.6) f((ab)c) = f(a(bc))

(2.7) G((ab)c) - G(a(bc))

a!
• ' , i . ........ ...I • • | •i ... .. I I ' " I
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F((ab)c) = F(ab) + F(c) + G(ab)f(c)

= F(a) + F(b) + G(a)f(b) + F(c) + f(c)(G(a)+G(b)+mG(a)G(b)]

F(a(bc)) = F(a) + F(bc) + G(a)r(bc)

= F(a) + F(b) +F(c) +G(b)f(c) + G(a)[f~b) + [I+mG(b)]f(c)

thus F((ab)c) = F(a(bc)), proving (2.5).

The proofs of (2.6) and (2.7) are similar, and are therefore

omitted.

QED

Next we establish that the two search problems of

section I are special cases of the system 2.1-3.

Theorem 2

(a) When m=O, associating f with -C, G with P,

and F with X, the system (2.1-3) yields the

recurrence relations (1.2).

(b) When m= -1, associating F and -f with V,

and G with I-S yields a consistent set of recurrence

relations identical with (1.5).

Proof:

(a) Let m=0, and make the substitutions indicated.

(1.2) is immediate.

(b) Let mr--i, and consider (2.3):

I - S(o 1 o 2 ) I S(a1-) + S(0 1 )[i _ -(0 2 )]

= 1 -S(oi)S(o 2 ).



Now the second equation of (1.5) is immediate.

Next consider (2.1):

v(1 j2) V(01 ) 1 V(02 ) - G(oI)V(0 2 )

Sv(01) + s(OI)v(02)

which reproduces the first equation of (1.5)

Finally, c.nslder (2.2):

- V(0o0 2 ) = -V(0 1 ) - S(0 1 )V(12)

which again reproduces the first equation of (1.5).

This shows that the substitutions yield a consistent set

of equations identical with (1.5).

QED.

The fact that the first equation of (1.5) has two

(identical) generalizations i-n (2.1) and (2.2) causes no problem

in the sequel.

Thus the system (2.1) to (2.5) Is a class of' sequential

problems including both search problems proposed in section 1.
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.5: Constraints

Reconsider the first search problem of section 1 where

now there is a probability 01j,k of overlooking the object in

the Jth search of box k given that it is in box k and has

not been found before the Jth search of box k. Then the un-

conditional probability Pj,k that the Jth search of box k is

successful (Lf it is in the search strategy) satisfies

(5.1) PJk Pk(I 'J,k) 1 cj,,k.

"•'" J' <j

Additionally the Jth search of box k can be supposed to

coit some amount c if it is unsuccessful and xjk if it isJ,k j,

successful. The notation ccn be simplified by denoting the jth

search of box k by a single index, say i. Thus pi is the prcb-

ability of success, cI the cost if unsuccessful and x. the cost if

successful, of some search. If the object is found in .;he jth search

of box k, it is found in no other search of any box. Hence

the events EJk that the object is found in the Jth search of

box k are disjoint. In effect this observation allows a ik = 0

without loss of generality, at the cost of introducing a constraint

on the optimal strategy. A strategy is called feasible if the jth

search of box k is preceeded by the (j- 1)st search of box k

for every k and every j > i. Clearly feasible strategies are

the only ones which make sense.
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Constraints of this type are called "parallel" because

they can be graphi as n porallel liries, cne for each box,

indicating that the jth search of box k must be preceeded by

the J-lst of box k and must precede the kJ+ 1)st search of

box k.

A similar generalization of the second problem wouid have

the Jth search of box k cost cj,k if unsuccessful, xjk If

successful, and have probability pj,k of success. In order for this

to be a valid generalization of the second problem, the etient Elk

must be independent of EJ,,k, provided (j,k) / (J',k'). Again only

feasible strategies are interesting. See Kadane (1969) for a discussion.

More generally, suppose S is a set of searches and C is

a set of constraints, a subhet of S x S. Thus if c (slS2) E C,

then search sI must be conducted before search s2. The pair (S,C)

form a graph. The transitive closure C of C is the subset of

SxS such that (slps ) r C f iff there exist SlS2,...,s such that

(s1s2) IE C, (s2P s3) E C,...... Thus (S,C*) is again a graph, and

has all the constraints implied by C and transitivity. if

(S ,S2) e C then s1 is a predecessor of s2 and s2 is a

successor of s..

We now restrict the discussion to graphs such that, if

(SjS) c C*, there is a finite sequence (sl,s2,...,Sr, s) such that

(S, S2) IE C,(s 2 , s ) C ,...,(Srs s) c C. Notice that in the case of

parallel constraints above thIs restrictL•-- Is satisfied. A case

where it would not be satisfied is where all searchies C' box i had

to be completed before any searches of box 2 could be undertaken.
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tith this restriction, if sI is a predecessor of s2, and no

3ther predecessor of s2 is a successcr of s1 then s is an

immediate predecessor of s2 and s2 is an immediate successor of sI.

The immediate graph C is formed by (sips2) • C-1f sI is an

immediate successor of s2.

The case of parallel constraints is then seen to satisfy

the restriction that every search has no more than one immediate

predecessor and no more than one immediate successor.

A cycle is a sequence of arcs

such that

(1) each arc Uk; 1 < k K q, has one endpoint in common with k_1

and the other endpoint in common with Uik+.

(2) t:ne same arc does not appear twice

*() the endpoint u1  does not share wi.th u2  is the same as the

endpoint uq does not share wi.th Uq_. .

A chain satisfies the first condition above only. Not.- .,at in a

cycle the endpoint uk shares with u k+i need not U successor

in uk. Thus (sis,s ,Sj) i. a cycle.

A connected gra -h is a grapih which contains, for every

two nodes x and y, a chain from x to y. Since the relation,

x=y or tnere is a chain from x to y, is an equivalence relation,

the equivalence classes divide S into connected components. Finally

a tree is a connected graph without cycles, and a forest is a graph

without cycles, i.e., a graph whose connected components are trees.
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A forest is thus a more general structure than parallel

constraints. The theory of sections 4 and 5 applies to an

arbitrary graph of constraints on S. However the Garey reduction

algorithm of Section 5 applies especially well to finite forests.

,, Further details about graph theory may be found in many books, for

example those of Berge (1962,1975).
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4: Search Over a P artially Ordered Set

In this section we prove a theorem about the optimal -.

strategy for every member of the class oi" problems introduced in

Section 2 under arbitrary partial ordering constraints. Thus

this section generalizes the main result of" Simon and Kadane (1975).

from the second search problem to the entire class.

Before stating and proving the theorem, a few lemmas are

necessary. Let S(a) = 1+mG(a), where G is defined 'n 2.)

Lemma 1 G(ab) G(ba) and S(ab) S(a)S(b)

Proof

G(ab) G(a) + [1+mG(a)]G(b)

= G(a) + G(b) * mG(a)G(b)

= G(b) + [I+mG(b)IG(a)

= G(ba)

2S(ab) = 1 + mG(ab) I 1+mG(a) + m(Gb) +m 0(a)G(b) = [I+mG(a)] [L1+mG(b)]

= S(a)S(b).

Q.E.D.

Lemma 2: Then

F(abcd) - F(acbd) = [I+mG(a)l ff(c)G(b) - f(b)G(c)l

Proof:

F(abcd) - F(acbd) F(abc) + F(d) + G(abc)t'(d) - F(acb) - F(d) - G(acb)f(d)

- F(abc) - F(acb)

"- F(a) + F(bc) + G(a):f(be) -F(a) -F(cb) - G(a)f'(cb)
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= F(bc) - F(cb) + G(a)[f(bc) -f(cb)]

= F(b) + F(c) +G(b)f(c)- F(b) -F(c) - G(c)f(b)

+ G(a)[f(b) + f(c) + mG(b)f(c) - f(b)-f(c) - mG(c)f(b)]

= G(b)f(c) - G(c)f(b) + mG(a)[G(b)f(c) -G(c)f(b)]

= [1+mG(a)][G(b)f(c) - G(c)f(b)]

Q.E.D.

We seek to minimize F over strategies. Let 6(a) f(a)/G(a),

where a is a strategy.

A strategy on a set of nodes T is any ordering of the

nodes of T that satisfies the order constraints on those nodes. Let

A and B be two mutually exclusive sets of nodes, and C their

set sum. Then A and B are interchangeable iff there exist a

strategy c = (ab) and a strategy c' = (b'a') where c and c'

afe strategies on C, a and a' strategies on A and b and b'

strategies on B. If A and B are interchangeable, if a is

any strategy of A and if b is any strategy of B, then (ab)

and (ba) are strategies of C.

Theorem 3

Suppose G(a) > 0 and 1 +mG(a) > 0 for all a. If

b and c are interchangeable in (abcd) and if j(c) > O(b),

then (abcd) can be improved by interchanging b and c, and

hence is not optimal.

Proof:

Using Lemma 2,

F(abcd) - F(acbd) [1 +rnG(a)] f(c)G(b) - f(b)G(c)J

-- [ +mG(a)]G(b)G(c)[ý(c) - (b)I > 0
Q.E.D.
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Let A be a partially ordercd set of nodes, and let.

it contain B and C 7 A- B. Iff there exist strateC,.es b on B

and c on C such that a - (bc) is a strategy on A, then B is

an initial subset cf A and C is a terminal substt of A.

A strategy-of a set of nodes D for which ý assumes

its greatest value over strategies on D is called the best strategy

on D and is designated t(D). An initial set, D of the set

T for which ý(t(D)) is maximal over all initial sets of T is

called a best set of T.

Theorem 4:

Suppose D is a best set of T. Suppose c is an arbitrary

strategy n T having the form eh whore e and h are strategies -31

the non-overlapping sets E and Ii. E and H1 may be chosen without

loss of generality so that

(i) Dc E

(ii) The last element of e is a meinLer of D. Thus

e consists of t(D) possibly interspersed with nodes

of T- D, and the last element of e is a node in D.

If e contains any nodes not bulongintg to D, then e

can be improved (weakly) by moving these "intruding," nodes beyond the

last node of D, that is, by brinfging, the nodes ot D tc the front of±

e with the remaining node.,; of e followinigl them.

If D is contained in no best set of" T arid F(eh) <

then the improvement above I: ctr~ct.

1-
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Lemma 3 Let A and AUB_ be initial sets of T such that:-
V

(1) A is the best set of T, with btst strategy t(A) a and

(2) b is any strategy for 13.

Then ' (b)

If AU B is not a best sAt of T, then 5' = 6(a)>•(ab)

Proof:

Since A is the best. set of T, V' = O(a)_>O(ab).

If AU B is not a best set of T, then j i(a) > O(ab)

Now

$K(ab)G(ab) = f(ab)

ý f(a) + [l+mG(a)lf(b)
,•. = ý(a)G(-q) + [L1+ mGia)]o(b)G(b).

But G(ab) ,6(a) > G(ab)/(.ab).

Thus

G(ab) ý(a) > ý(a)G(a) + [i + mG(a) (b)G(b).

Expanding the left-hand side,

(G(a) + [l+mG(a)IG(b)) ,(a) €(a)G(a) + [i mG(a)] 9(b)O(b).

i.e., 9ý,a) >_ 6(b).

If AU B is not a best set of T, then G(ab)O(a) > G(ab)O(ab) implies

O(a) > O(b) by the same arFument.

Q.E.D.
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Lemma 4: Let A be a set consisting of the mutually exclasLve

subsets of nodes B, C, and D, where B is an initial Oloc of A,

while C and D are interchangeable, hence also both terminal blocs.
V

Let the best strateL'y, t.(A) be:

V
t A) - • , ' U c .d C , . ,'dk"

where b is a strategy for P,, c (cI . ,ck) is a strategy f'or

C and d (d. .. ,d ] s a rtrttgy for D. Thien
€(c,).-... k)

Proof:
V

Suppose ¢(d:) < (c,+ 1 ). Then by Lemma 2, t(A) could be

improved by exchancin:: d, ad . + contrary to the hypothesis that

ý(A) is maximal. But the exchaIL(g:_• is addm'ssibl , since C and D are

exchangeable. Sir'iar,', tu 'pIiti; tii.it (.(c) K ((d.) leads to

a contradiction.

Q.E.D.

Lemma 5: Given A, B, C, ano D as 'n Liiuna 4, with c= (cl,...,Ck)

and d (cI1,. .. dk)/ se tkat A "o a best set of T, so that

/(A) = •" Then v(i) •(A), and thoref'uro j'(D) > •(A) 0'

Proof:

Define c ( d,.c1 .. c ,,).

S~Then TefCdv) t'() + 6(fe)t'(dk)

G(ledk) G(k) )

: 1 : I i iI I I i 1
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If _ f(i < /6' th en ý(Q) B.• But e is a strategy

for an initial bloc t' A* and also of 'P. Sicc is maximal

over all such blocs, the inequality is a contradiction. Therefore

S6(dk) > •'*

By Lemma 4,

A(dk) -< •~(c) -- ''"- •(K) nec)

lhen

f(d) f(d,) + S(d 1 )f(dd)-'....+S(d1 ).. S(d,_)x'(d)j6(d) -)f(k
G(d) G(d]) + S(di)f(d,,)+. .. S(d 1 )., S(dkl)G(dk)

0(d)G(dj),- .3(d )G( 0)(d)+...-+s(dý•)..s(dk )(d )•(d)

d + S(di)G(d,) +...+ S(dl)..S(dkl)G(dk)
k-1 k)

> 95'

Q.E.D.

Lemma 6: Let (a c d) and (ac'd) bU: strategies over the same

set of nodes. Then

F(9 c d) :. F(a ,' dc).

if C' is optimally krd_,cd accordirn- to {.

Proof.

By repeated applLcatlon oa' Theorem 2r.

Q.E.D.
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We now proceed to tjjfý pr.t)f of Theorem >, by introducing

some new notation. Suppose (a.... ,ar) and (b 1 ,...,r are

strategies. Then let

Bi (b.. . b )

Bi (bi•...b r)

C (b¼ 1  b a
Ci =(bi~a•+...brar)

A. the best permutation of (a... a1 )

v.A.=(A a)

A1 - the best permutation of (a,+,...ar)

*V

Ai - (a +•A _•)

For consistency define

C = C A A Br , the null strategy.

Designate t(D) by Ar and c by Cr, so that Br is a strategy

on the lntrud.ng nodes. . w: strat:'gy on T asserted by Theorem

to be an improvement over e&i is then A 13 B rI I F(eh) c• there

is nothilng to prove. Thus tc: prvy tlhc theorem we suppose

F(eh) = F(C rh) < m and must siiow

F(Crh) - F(Arh) r r

Note that a's may be moved forward, interchanging them with b's,

since D is an inItal hblo(c o" T.

F(C rh) - F(A rh) -r.

F(Cr) + F(Ii) +G(c ), f'(ii) - .(PAjrlr) - F(h) -G(ArBr)f(b)-
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Now since the set of Cr is the same as the set cf Ar B r, and in view

of Lemma 1,

G(C,) = G(A .r r)

Then

F(Crh) - F(A r ) -) F(C )I- F(A rr)

Now Ar Br = A0BO. Also, by definit'lori or D, A0 - A0

Then

F(Cr) - F(ArTr) F(Cr) - F(AB

r v
L [F(C.A.B.) - F(C _A _B!

Considering the individual termns of tihe suwanation, we have:

V*

F(C 1 A1 B1 )- F(C.A._ 1.

= ,'(c_ .A 1 b -A B) - F.(c._•,1 •A.1 _L1 B J-"

L i-C

F(c. b .b.A. 1B.) - CAi.lb B)

VV
+ F-(•"( iA. .)-. F(C A)

But, by Lemma 6, FPc. h A " - Q.I'A71B) .

Therefore,

V
AF(C. •_ - . P CA . A

6L-'1ii
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Applying Lemnma 2, wlt i -i k --
v

Li w o, A ,
we get,

I ~~~F(C.A~i¾ ') - T.A .VV, 'A.i

V. 4  *

•- ( ) (:'(h. - )u( b. ) - I,'U ] w G( A . .)], whence

F(Cr) F(A oB ) Gc I • -- ( j)).

1. -

r 

re

- -_ --"

T2  = .

VConsider T 1 . A . _ s tii ,• • .: .:t. ral c -:, '1 n t.. .,'inina l bloc of D'

Hence, by Lenuna $r, ¢. A . ¢' :;
•-_I

T b

N ex t , co n s id <'r --, . i, uc r t. 5( ' .- r( _ S _

above, we obtain,
I " VF - : ' - " " ; •, • ,(A. 1
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' ~S nee G(A i\ )- u, we I:nve tuec ;drit itv:
V -t

SS(A; _1)G( - ) WP " . wl A.

Z s(Ai 1 ) G(A ' v,i J-i A J i -1 :( j G( i

U Us Lg this a3v.I.atoiOn 1i thu prev-ous one, and then changing

Sthe order of st;,wi~al iw,,', wtý fll.:A,

r r
T2 S(Bi 1i)G(bi )0(t)i)Zj

r,N . ( :; i , l t ( :

.V]. C. .V

a I a

Tert:eBut B s tSdIU4 i i ' of Lemma >

,.v Jt

with A as A.

Therefore, by that 1].t:tma, 00,(. •' I.rc,

r

z.-[I .4u. " 1.Z(i.$

T, G( li/•

y1[ . lP;

r!

<'

I
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r V2,S(BIj_)G(b,)S(Aj._I)G(A*._j'g1

r V
< [ ,

Combining, we have finally:

v(c,) - v(A'B)

r V
-\ . LS( Cj_j)G(bj )G(A*_ )]¢ -0) . #

This is the result we want, and the first statcrment in the theorem

i., proved.

I f D s conta.i",cd "n ' bi st t, .. t' ', then Lemma 3

implies O(B j) < g'. 'bis 'r tu0n "mp'Le3

V*T2 , •; S C• . )~ v, G( * /

,T l - .)G(v)G(A W,) and hence

V(Cr) - V(A 0 Bo) > T - T2 > ', whi.ch ctncludes the proof of theorem 4.

Q.E.D.

Theorem 4 implies the followl,:n- sti-uct.r.re for an optimal strategy:

Let BI be a best bloc of T, and c a best strategy of B1 .

Let B2  be a best bloc of T - Bi, and o- the best strategy of

B2 . . . ..  Then o = (o Note ti.it •B• > (2 ,

by construction.

Corollary 1. If restrict. oni of the type b.. trcI-qb. where b E Bb,

b E B and i < j arc added tu ti. problem, C is still optimal.
j Jo



Proof: Let (1 be a best. ;tnat•t:t:,. available in the snore restricted

problem. Since o is the best :;trat'.v Iii a more restrlcted

problem, F(c) K F(-',Ij,). wvr s.i-nc , s.ti"s t-hiec 1,hr added

restrictions, it IQ 0lso truW that. (,) F( . Then F()- F(o)

and c is optimal.
Q.E.D.

Corollary 2: I' restrictions tt tI•.,: n,: :b ve an', rcmovuvd, o is

still optimal.

Proof: Immediate from Ccrc.sarv i.

4~E.D.

I::

L•I

t
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. arey Reduction Theorems .1

In a recent paper Garey (.L7-5) gives some theorems and an

algorithm that reduces every problem that has a partial ordering

restrict'on, and finds an optimal strategy for problems where the

partial ordering graph C has an imined!ate graph C that forms

a forest. Gare:y's results were proved for the second example of section 1.

The purpose of this stect'on is to show t.hat Garey's rcduction ti acrems

and reduction algorithm apply to the whole class of problems developed

in section 2.

A search is called terminal iff it has no successors, and

initial if it has no predecessors. A search s is a maximal successor

of search si iff it is an irmaediate successor of si and satisfies,

if s' is any immediate successor of s,, (s)> (s ). [For readers

comparing this treatment with Gar'y'., •ct.e that Garey's R satisfies

R(s) = - 6(s). ] A search Ls a min imal pvcsdc.:.:scr of "search, s

iff it is an immediate predecessor and satisfies, if s' is any

immediate predecessor of si, /(s') > 0(s).

Theorem 5: For any problem of the class considered here that has

an optimal strategy, let t. be a nonterminal search having only

terminal succ,'ssors. If t. is a maximal successor of ti satisfying

36(t) > e(ti) and t, has no other immediate predecessors, then there

is an optimal solution in which the sub,-sequence t-tA occurs.



Proof:

Let o be an optimal stratejy. (r" necessit~y t. occurs

somewhere in o, ard each of the successors of t1 , say t 0 t i

including t. occur in 0 after ti. Let, without loss of gene'ality

o-a tat ½t a a t a
C) A 1 1 2r jr+1-

where evesy ak except fosi,;Lb.y arfi, contains no successor

of ti. Then ever.y nion-tirpty ak, cxce:pt ar+1 and a0  is inter-

changeable with t' and Therefore, using the optimality of cchngabe it k -1 n k"K-i

if ak is non-empty $(t.l) O ¢(ak) _ <(t•). If ak is empty,

t and tk are exchangeable and again by the optimality of a

Therefore

(where empty a Is can be dropped from the above string of inequalities).

Since tj is maximal among successors to t,,

so equality obtains throughout the above expression.

0a 0 a aa .t..a. a
0Oi t ja2t2" arar+1

is a strategy, and Theorem 2 implies

V(o) = vk').

Now if ai is empty the theorem is proved. If not, it is exchangeable

with both t. and t.. Trit

(t > (a,) 6(t )
Ji

% I.
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by Theorem 2. Now 0(tj) Ž ý(ti) by assumption, so equality

obtains in the above. Hence

i i
V(a) = V(aoa t t t at .. arar~)

and the theorem is proved by optimality of o.

Q.E.D.

Theorem 6: Let t. be a terminal search having an immediate

predecessor t. such that 3(ti) > O(tj). Consider the modified

problem which is identical to the given problem except that the

constraint graph C of the modified problem is formed from the

original constraint graph by replacing the constraint from ti to t

by a constraint from each immediate predecessor of t. to t. Then

every optimal solution to the modified problem is also an optimal

solution to the original problem.

Proof:

Let o be an optimal solution to the modified problem.

Suppose that t5  preceeds t. in a. Then we can write

a =- (aot ati2a where aI's may be empty for i=0,1,2. Suppose a

is not empty. All predecessors of t. must be in a0 since o is j
a solution. Hence all predecessors of ti are in ao, also.

Finally, since tj is terminal, all predecessors of a are in a.

Hence t. and a are interchangeable, and a1  and t. are

interchangeable. Tihen

.3(tj) L S(a.) 2 0(ti)
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If aI is empty, t. and ti are interchangable, leading to
t 1>

by the optimality of u. But these inequalities are impossible by

the assumption of the theorem that 0(t.) < 0(t.). Hence t

precedes t in a. Hence o is also a solution to the original

problem.

Let aR be an optimal solution to the original problem.

Since the original problem is the more restricted,

v(R) > V(o).

Then V(o) = V(OR) and a is optimal for the original problem.

Q.E.D.

The following theorems are duals to theorems 5 and 6.

Theorem 7: For any problem of the class considered here which has

an optimal strategy, let t. be a non-initial task having only

initial predecessors. If t. is a minimal predecessor of t.1 3

satisfying ý(ti) < 36(tj) and ti has no other immediate successors,

then there is an optimal strategy in which the strategy t t occurs.
i j

Theorem 8: Let t be a terminal search having an immediate

predecessor t. such that 0(t,) > C(t.). Consider the modified

problem which is identical to the given problem except that the

constraint graph C of the modified problem is formed from the

original constraint graph by replacing the constraint that t.

precede t. by constraints that t. precede each immediate successor
3 I-
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of t Then every optimal solution for the modified problem is also

a solution to the original problem.

The proofs of Theorems 7 and 8 are the same as those

of Theorems 5 and 6, respectively, with the sense of each constraint

reversed, each inequality reversed, and each strategy reversed.

Garey then proposes the following reduction algorithm.

Algorithm 1.

Step (a) Select a connected component, containing at least

one constraint from the current reduced precedence graph. If

none exists, go to step (i).

Step (b) Depending upon whether the component under consideration

has no multiple immediate predecessors or no multiple immediate

successors, go to either step (c) or step (f), respectively.

Step (c) Choose any nonterminal task t', having only terminal

immediate successors, from the current reduced version of the component

under consideration. If no such task exists, go to step (a), having

completely reduced the chosen component

Step (d) Find a maximal successor t' of t'. If 1(t') <$(tj),

go to step (e). Otherwise reduce the component by deleting t' and
the constraint from strategythe cosritfrmtjot, and replace t' by a new strategy

(t',t']. If the new task is terminal, go to step (c). Otherwise repeat

step (d).

Step (e) For each immediate successor t' of t', replace the
k 1

constraint t' to t' by a constraint from the immediate predecessor

of t' to t'. Go to step (c).

, k
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Step (f) Choose any noninitlal task t•, having only initial

imnieaiate predecessors, from the current reduced version of the

component undei consideration. If no such task exists, go to step(a),

having completely reduced the chosen component.

Step (g) Find a minimal predecessor t' of t'. If

0(t') < O(tI), go to step (h). Otherwise reduce the component by

deleting t' and the constraint from t' to t' by a new strategy

[tj, t']. If the new strateey is initial go to step (f). Otherwise

repeat step (g) with [t',tý) acting as the strategy t'

Step (h) For each immediate predecessor t' of t>, replace

the are from t' to t' by an arc from t' to the immediate successork jk

of t'. Go to step (f).

Step (i) Let t denote the remaining strategies in

the completely reduced precedence graph. Order them as t' ,..

so that $(t') > 0(t'i ), for all i, I < L m-1. Removing the
3- i+l

brackets from this sequence results in an optimal solution to the

original problem.

Garey's algorithm completely reduces a forest, and will be of

benefit in an arbitrary partially ordered graph. Garey concludes

his investigation by saying that In the partially-ordered case "the proper J
choice may depend somehow on the overall likelihood of suc__ss for the

complete set of tasks or ccrtain large subsets thereof, a non-local

property which may be dit'[icult to use in an efficient algorithm."

(Garey, 1973, p. 55). W, believe that Theorem 11 is the nun-local

theorem sought by Garey. It's efficient use in algorithms depends on

the exploitation of special structure to reduce the number of sets over

which the best set at' T mu.!t be searched for.



,• 351. i

imposed in Kadane (1968), that p be non-increasing in J

ij

for eacii i, is thus seen to be the condition that each best bloc

consist of only a sinjle element.

In this sensc Theorem 4 generalizes the result proposed,

but not proved, in Kadane (1968).

ii

I;=
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