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{ This paper considers and unities twoc search problems

which have been extensively discussed. A class or' sequential

e

prroblems is proposed that includes both. A theorem is proved,
under arbitrary partial ordering constraints, characterizing a
strategy to minimize the expected cost or a successriul search.

The main tool is a set of tunctional sguations in strategy space.
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1. Twe Important Scarch 'réeblems

The t'irst scarci problem considers an obJect hidden in
the ktn of n boxes with probability Py - A search strategy
for trinding it is a permutation of a subset o¢f the r'irst n integers
saying wnat to do next it the object has not yet been round. Thus
(9,2,%,...) 1is interpreted to mean that box 9 is to be searched tirst;
ir the object is not found then box 2 is searched, etc. In this
section we consider the simplitied model in which a search cf a box
containing the object is sure to be successtul, although this
assumption is later relaxed. A search of box Kk costs ¢ it it 1s

Kk

unsuccesstul and Xy ir it i3 successtul.
Thereare at least two Kinds ¢t such sesrches. In a datection
search, the goal is tc 1rind an object in some search ot some box. In

a whereabouts scarch, the goal is to state correctly at the end of

a search which box ccntains an object. This can be accomplished either
by finding an object in the search, as In the detection case, or,
alternatively by guessing correctl:y at the end of an unsuccesstul
search which box contains an object. Seo Kadane (1971) ror a

treatment of optimal whersabouts search.

In this papsr, the t'irst search problem 1s to determine a search
strategy that includes cach ¢t the bexes and minimizes the expected
cost ot a detectior scarch. An earlier paper (Kadane (1968)), deals
with maximizing the probability ot & succasstul detection search

spending no mcre than some budget i@ (when X, ¢ rer all k).

'k

<
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2.
Let ui(izl,k) be any two disivint strategles. Then o=v,0,
is a strategsy which locks r'irst at the boxes specitied by Oqs

in the order specitied by o and then at the boxes specitied by o,,
o

1°
in the order specitied by V., until the object is recund or o is
exhausted. Also let o; be the strategy coensisting ol & search at
box kK onlyv,

For any stratesy o, let X{(o) be the cxpected ccst ot g,

P(o be the probability that ¢ is successtul and C(o be the
p

cost of o it o 1s unsuccessitul. Then we have the initial conditions

, *
\1.1) Clo

=
~—r
1]
Q
P

and the recurréence relations
X{0,05) = X(0;) + X(om) - P(oi)c(oz)
(1'2) C(Oﬂog) = C(Oj) + C(02)

P(oluq) = I'(c;) + i(o

[

).

-~
[

The rirst equatiorn in (1.2) arises because X(o;) +X(o0,) s
the cost of going ahead with o, even it the cbject was round using
0,- The probability of its being found in o5 s P(ol) and it
It was it is surc not to be round in c.. S0 C(o?) is the appropriate

cost.
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For consistency, it A 1s the empty strategy, det'ine
(1.5) c{n) = 1(a) = X(1) = ¢

Using *hese detinitions, C, X, and @' are asscciative and C and
P arc commutative. Froblems of this type are considered by
Bellman (1957), Black (196%), Blackwell (n.d., sce Matula (1964)),
Denby (1967), Greenuerg (1964), Kadane (1968), Matula (1964), and
Staroverov (1963), among others.

In the second search problem considered here, the event Ek

that an object is hidden in the kth of n boxes again has

probability p,, but E  ncw is independent or Ek:(k;ék'),
where in the tirst problem it was disjoint. Again a strategy, o 1is
a permutation ot a subset ot the t'irst n integers specitfying the
order in which the boxes are attempted until an object is found or o
is exhausted. Again there is a cost Ck t'or an unsuccesstul search
ot box k, and a cost Xy rer & successtul one, and once again the
problem is te r'ind a search strategy o that includes all boxes
and minimizes ths expected cost of the search.

For any strategy o, let V(o) be the expected cost of
using o and &{uv) be the probability that the strategy
is not successtul in rinding the object. Then we have the initial

conditions

V(o;) = PpXy (3 - P ey
(1.4)

N »

o(ak) = l—p}_\

Sl Pulota sl
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and the recurrenca relations

(1.5)

g For consistency, iI' A is the empty strategy, define f
o 5
(1.6) V(A) = 0, S(A) = 1.
|
gi Problems ot this type are considered by Bellman (1957), Dean (1966), X
. Garey (1973), Joyce (1971), Kadane (i969). Mitten (196C), Simon and
|
E : Kadane (1975), and Sweat (1970). 3
. | v
4 ¥ :
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5.

2. A Convenlent Class of Problems Embracing Both Search Problems

This section owes a large, but not transparent, debt to
the paper of Rau (1971). The class of problems propcsed below is
a proper subset or the class proposed by Rau; these relationships
are not pursued in this paper. Suppose that three rurctions f, F
and G are def'ined on strategies o; consisting ot a single search
or box k. Suppose also that f, F and G are extended tc

arbitrary strategies by the recurrence relations

(2.1)  F(oy0,) = Floy) + F(aoy) + G(ol)r(oe)

(2.2)  t(040,) = t(0y) + [1+mG(oq)]r(0y)

(2.3)  G(og0,) = G(og) + (1 +mG(o,)]16G(0,)

where m is a tixed number. For an empty strategy A, we take

(2.4) F(n)

1
[
—~
>
]
«
—
-
—
il
(@]

First we estaplish a basic theorem about the system 2.1-3:

Theorem 1

With the above detinitions, F, F and G are derined conslstently

on strings ot arbitrary length. In particular

(2.5) F((ab)ec) = F(a(bc))
(2.6) r((ab)c) = r(a(be))
(2.7) G((ab)c) = G(a(be))
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Proor:

F((ab)c)

F(a(be))

thus

1]

T N

F(ab) + F(c) + G(ab)r(c)

F(a) + F(b) + G(a)r(b) + F(c) + r(c)(G(a) +G(b) + mG(a)G(b)]
F(a) + F(bc) + G(a)r(bc)

F(a) + F(b) + F(c) +G(b)r(c) + G(a)[r(b) + [1 +mG(b)]r(c)]

F((ab)c) = F(a(bec)), proving (2.5).

The proor's of (2.6) and (2.7) are similar, and are thererore

omitted.

QED

Next we establish thst the two search problems of

section 1 are special cases of the system 2.1-3,

Proof:

Theorem 2

(2)

(b)

(a)

When m=0, assoclating f with -C, G with P,

and F with X, the system (2.1-3) yields the
recurrence relations (1.2).

When m=-1, associating F and -y with V,

and G with 1+3 yields a consistent set of recurrence

relations identical with (1.5).

Let m=0, and make the substitutions indicated.
(1.2) 1is immediate.
Let m= -1, and consider (2.3):

1-8(gy05) = 1~5(0,) + 8(0y)[1 - §(0,)]

= 1-35(0,)s(0,).




E

Now the second equation of (1.5) is immediate.

(2 4

Next consider (2.1):

V(0102) = V(oi) v V(oz) - G(ol)v(og)
= V(ol) + S(ol)v(oa)

which reproduces the first equation or (1.5)

e ———p T
R —— o sy b e

TP YT vy e TV

Finally, c.nslider (2.2):
- V(o40,) = -V(oy) - S(07)V(0,)
which again reproduces the rirst equation of (1.5).
This shows that the substitutions yield a consistent set

{ of equations identical with (1.5).

QED.

The tact *hat the rirst equation ot (1.5) has two

(identical) generalizations in (2.1) and (2.2) causes no problem

v ——
.

in the sequel.

Thus the system (2.1) to (2.3) is a class o1 sequential

problems including both search problems proposed in section 1.

i i e Db cumption e mar, Dl et B d bl ;
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31 Constraints

Reconsider the t'irst search problem of secticn 1 where
now there 1s a probabllity aJ k ol overlooklng the object in
2
the Jjth search of box Kk given that it is in box k and has

not been found before the Jjth search of box k. Then the un-

conditional probabllity pJ K that the Jth search or box k is
>

successful (Lir it is in the search strategy) satisries

s
i
.-
3
F .
-
=

| 1 = 1 - n . 3
(3:3) Py = Prlt -y k) %3k
"\QJI <J

Additionally the Jjth search of box Kk «can be supposed to ;{

co3t some amount cJ k if it is unsuccessiul and xj " it it is
» 2

successful. The notaticn can be simplitied by denoting the Jjth
search of box k by a single index, say 1. Thus Py is the prcb-
abllity of success, ¢y the cost if unsuccesstul and Xy the cost 1if |
successtul, of some search. It the object is tfound in he Jjth search 5n
of box k, it 1s tound in no other search ot any box. Hence

the events that the object is found in the Jjth search of 7

Ej,k

box k are disjoint. In effect this observation allcws « 0 e

3ok T
without loss orf generality, at the cost ot introducing a constraint

X on the optimal strategy. A strategy is called feasible i the Jjth
search of box k 1is preceeded by the (j-1)st search or box k

for every k and every j > i. Clearly feasible strategies are

the only ones which make sensze.
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Constraints of this type are called "parallel" because
they can be graph<u as n parallel lines, cne for each box,
indicating that the Jjth search of Lox k must be preceeded by
the Jj-lst of box k and must precede the (Jj+1)st search of

box K.
A similar generalization ot the second problem woulid have

the Jjth search orf box k cost cJ Kk it unsuccesstul, ir
i

xj,k
successful, and have probability pj,k ot success. In order ror this
to be a valid generalization ot the second problem, the event EJ,k
must be independent or EJ',R' provided (J,k) # (J',k"). Again oniy

feasible strategies are interesting. See Kadane (1969) tor a discussion.

More generally, suppcse S 1is a set of searches and C 1is
a set of constraints, subset of SxS. Thus if c¢= (51’52) e C,
then search s; must be conducted betore search s,. The pair (S,C)

*
torm a graph. The transitive closure C off C 1is the subset of

Sx S such that (sl,s ) € C* ittt there exlist S.185500458 such that
(51,52) € C, (52’55) € C,... . Thus (S,C*) is again a graph, and
has all the constraints implied by c¢"  and transitivity. it

+*
(51’82) ¢ C then s, Is a predecessor of s, arnd s, 1is a

successor orf S+

We now restrict the discusslion to ;irepns such that, ir

*
(sl,s) € C, there is a finitc sequence (Si’SE""’Sr’S) such that

(51,52) € C,(sg,sﬁ) € b,...,(sr,s) € C. Notice that in the case of

parallel constraints above this restricticn ls satistied. A case

where it would not be satistied is where all searches o' box 1 had

to be completed betfore any searches of box 2 could be undertaken.
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10.

dith this restriction, it 84 is a predeccssor ¢or S5y and no
other predecessor ot S5 is a successcr corf Sy then Sy is an

immediate predecessor ot s and s is an immediate successor of -

2 2
The immediate graph C~ is rormed by (51’52) e CTir s, is an
immediate successor of 85
The case ot parallel constraints is then seen to satisry
the restriction that every search has no more than one immediate

predecessor and no more than one immediate successcr.

A cycle is a sequence ol arcs

y = (ul,...,uq)
such that
(1) each arc wes L < kg, has one endpoint in common with u
and the other endpoint in common with Up g+
(2) t:ie same arc does not appear twice
(3) the endpoint u; does nct share vith Uy, 1s the same as the

endpoint u does not share with v

q g-1’
A chain satisfies the first condition above only. DNo*- - «iat in a
cycle the endpoint Uy shares with Upe need nct L. .. successcr

in Uy - Thus (31’52)(Sj’“2)(35’51) is a cycle.

A connected grajh is a graphi which contains, tor every
two nodes X and y, a chain from x to y. 3Jince the relation,
X=y or there is a chain from x to y, is an equivalence relation,

e

the equivalence classes divide 3§ 1into connected components. Finally

a tree is a connected graph without cycles, and a rcrest is a graph

without cycles, i.e., a graph whose c¢onnected cocmponents are trees.

o DLt
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11.

A forest is thus a more general structure than parallel
constraints. The theory ot sections 4 and 5 applies to an
arbitrary graph ot constraints on S. However the Garey reduction
algorithm ot Section % applies especially weil to t'inite forests.
Further details about graph theory may be found in many books, for

example those of Berge (1962,1975).
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4: Search Over a Partially Ordered Set

In this section we prove a theorem abcut the optimal
strategy tor every member ot the class oI’ problems introduced in
Section 2 under arbitrary partial orderinyg, constraints. Thus
this section generaiizes tne main result ot Simon and Kadane (1975)
from the second search problem to the entire class.

Bet'ore stating and proving the thecrem, a f'ew lemmas are

necessary. Let S(a) = 1+mG(a), where G is derined n 2.3%

Lemma 1 G(ab) = G(ba) and S{ab) = S(a)s5(b)

' Proot

it

Pt G(ab) G(a) + [1+mG(a)]G(Db)
= G(a) + G(b) + mG(2)G(Db)

= G(b) + [1+mG(b))G(a)

il

= G(ba)

TR

S(ab) = 1 + mG(ab) = 1 +mG(a) + m(Gb)-kaG(a)G(b) = [1+mG(a)) [1+mG(b)]

= S(a)3(b).

s

Q- 5.D.

Lemma 2: Then

F(abcd) - F(acbd) = [1+mG(a)) r(c)G(b) - £(b)G(e)?

T VT TR

Proof:

 ———

F(abed) - F(acbd) = Flabe) + F(d) + G(avbc)t(d) - F(acb) - F(d) - G(acb)f(d)

= F(a) + F(bc) + G(2)r(be) - F(a) -~ #(eb) - G(a)t(eb)

F(abc) - F(acb)
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F(bc) - F(eb) + G(a)[f(bc) - f(cd)]

F(b) + F(c) +G{b)r(c) - F(b) - F(c) - G(e)r(b)
+ G(a)[f(b) + r(c) +mG(b)t(c) - £(b)-t(c) ~mG(c)tr(b)]

i

G{b)f(c) - G(ec)r(b) +mG(a)[G(b)t(c) - G(c)t(b)]
[1+mG(a)][G(b)f(c) - G(c)f(b)]

Q.E.D.
; We seek to minimize F over strategies. Let g(a) = f(a)/G(a),
where a 1is a strategy.

A strategy on a set of nodes T 1is any ordering of the

nodes of T that satisties the order constraints on those nodes. Let

-

A and B be two mutually exclusive sets ot nodes, and C their

set sum. Then A and B are interchangeable itt there exist a
strategy c = (ab) and a strategy ¢’ = (b’a’) where c¢ and c’
are strategies on C, a and a’ strategies on A and b and b’
strategies on B. It A and B are interchangeavle, ir a 1is

any strategy of A and it b 1is any strategy ot B, then (ab)

L A AT TS+ 5 - et

and (ba) are strategies ot (.

Theorem 3
Suppose G(a) > O and 1 +mG(a) > O tor all a. If

b and c¢ are interchangeable in (abcd) and it ¢(c) > #(b),

MmN ) (g,

then (abcd} can be improved by interchanging b and ¢, and
hence is not optimal.
; Proof:

Using Lemma ¢,

(1 +mG(a)]{r(c)a(b) - t(b)G(c)}
(1 + mG(a)1G(b)G(e)[&(c) -4(b)] > O

F(abcd) - F(acbd)

i

Q. E.D.




14.

Let A be a partially ordercd set of nodes, and let
it contain B and C = A-B. Irt there exist stratepies b on B
and ¢ cn C such that a - (bc) 1is a strategy on A, then B 1is
an initial subset ¢r' A and C 1is a terminal subsct o' A.

A strategy of a set of nodes D tor which 4 assumes
its greatest value over strategies on D is called the best strategy
on D and is designated %(D). An initial sect, D of the set
T for which #(t(D)) is maximal over all initial sets of T is
called a best set or T.

Theorem 4:

Suppose D is a best set off T. Suppose O is an arbitrary
strategy n T having the ferm eh where e and h are strategies on
the non-overlapping sets E and H. E and H may be chosen without
loss of generality so that

(1) DcE

(i1) The last element of e 1is a memter of D. Thus

e consists ot t(D) possibly interspersed with nodes
of T-D, and the last element ¢t e 1is a node in D.

If e contains any nodes not belonging to D, then e
can be improved (weakly) by moving these "intruding" nodes beyond the
last node of D, that is, by bringing the nodes ot D tc the front of
e with the remaining nodes of e tollowing them.

Ir D i3 contained in no best set ¢t T and F(eh) < «

then the improvement above ic strict.

.
1
e
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" Lemma 3 Let A and AUB be Initial sets of T such that:
(1) A 1is the best set of T, with best strategy jt_(g) = a and
r (2) b 1is any strategy for B.
2 Then £’ > #(p)-
: If AUB is not a best set of T, then €' = g(a) > £(ab) _;'_.
Proot; 3
{ Since A is the best set of T, ¢’ = #(a) > 4(ab).
Ir AUB 1is not a best set or T, then g = Z(a)>g(ab)
Now
l. #{apb)G(ab) = r(ab) :i
* = r(a) + [L+mG(a)li(D)
= #(a)G(a) + [1 +mG{a)ld(b)G(b).
: But G(ab) #(a) > G(ab)#(ab). "-’
Thus
2 G(ab) #(a) > £(a)c(a) + [1+mG(a)]g(b)G(n). : f--'.
* Expending the left-nand side, -'
(G(a) + [1+mG(a)lG(b)) d{a) > #(a)G(a) + [1+mG(a)] &(b)G(b). | '
i.e., g.a) > 4(b). ’
If AUB 1is not a best set or T, then G{ab)d(a) >G(ab)g(ab) implies 9
g(a) > g(b) by the same arFumant. 3
Q.E.D.
1 :
{ ‘.

Prery
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Lemma 4: Let A be a set consisting of the mutually excluslve
Subsets or nodes R, ¢, and D, where B 1is an initlal bloc of A,
while € and D are interchangeable, hence also both terminal blocs.

v
Let the best strategy, t(A) be:

v
t(A) = (D,Cl.di,.c-,('kdk)o

where b is a strategy for &, ¢ = (51""’£k) is a strategy for

C and d = (d,,...,d.) is a2 strategy tor D. Then

—_n

gc ) 2#(d) 2ov-2 Blg) 2 ALl ).

Proor:

v
Suppose  #(d.) < (c;+1). Then by Lemma 2, t(A) could be

improved by exchanging d., and IR contrary tc the hypothesis that

e PRy Yz e g e g e - e

¢(A) is maximal. But the axchange is admissible, since C and D are

exchangeable. Simiiarly +n-s suppositicn that @(c,) < ¢(dl) leads to
L

o

+

a contradiction.
«-E.D.

Lemma 5: Given A, U, ¢, anl D as n Lomma 4, with ¢ = (El""’Ek)

‘ and d = (gi""’dk)’ suppose that A 1S a best set of T, so that
v : v
" v ’
#(A) = g'. Then (1) > #(r), ard therctore 7(D) > 8(R) = 8.

Proot':
Derine c = (2£1§¢"'C»)'
3
: 3
1 Then i A
! I(OdK) . r{e) + b(e)l(dk)

6 - flea) - — A
G(Odk) G() + 5(e)u(dk)
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f 1
Co L
\ % Ir ¢(dk) = r(gk)/c(gk) < g, then g(e)>¢g’. But e 1s a strategy ;§

for an initial bloc of A. and also of T[. Siuce ¢’ 1s maximal

- D

over all such blces, the incquality 1s a contradiction. Therefore {?
; ' d(dk) _>_ ¢" ;:"
. By Lemma i, E
P B(d,) < Bley) meeen Flny) x olcy)-
E Then ’ﬁ
S L] » " » \ . °
1 fla) - £(@)  w(a) + s(a)rldn) - 48(dy) . (e g)Flay)
G(d ~ . ~
(a) G(d;) + s(dy)r(d,)+. .. +5(d;)-- S(d_45)6(d,)
3
!
) B(a)6(d,) + 3(d;)6(dy)pa,)+. .. +5(dy). . S(dy _, B(d )g(dy)
G{dy) + S(c;)6(d.) +...+ 8(d;)..5(d,_,)G(dy)
i
Z ¢l' 14
Q. E.D. o
Lemma 6: Let (a ¢ d) and (ac’'d) bLe strategies over the same f
1

e

set ot nodes. Then

F(a e d) .- F(a ¢’ d).
it ¢’ is optimally crdered accordinys to  #£.
Prooft.

By repeated application ot Thecrem <.

<. E.D.

R e e L e
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We now proceed to the proot ot Theorem %, by introduclng

some neW notation. Suppcse (ai....,ar) and (bl""’br) are
strategies. Then let
Bi = (bl.-.bl)
L= (blalb2a2'°‘biai)
*
By = (by,q---b)
*
€y = (o) 85400 9p%)
v
A; = the best permutation ot (al...ai)
v
= a,)
A = (A 478
V* . Y
A; = the best permutation OI (ai+1...ar)
* V x
Ay = (8504 00)
For congistency define
y - A B,. = B* = A the null strateg
Co = Cr = Ay = A= DB, = Bp =1y ne Y.

Designate t(D} by A, and ¢ by C. SO that B, 1s a strategy

on the intruding nodes. ‘inue strotegy on T asserted Ly Theorem 5
to be an improvement over e¢h o then A B.a. 1T Flen) = = there
is nothing to prove. Thus tce prove the theerem We o suppose
F(eh) = F(Crh) < o and must show

F(Cn) - F(A 1 h) > O
Note that a's may be moved forward, interchanging them with b's,
since D 1is an initial bloc ot T.

F(Ch) - F(A & h)

F(C,) + F(n) + Gl )r(n) - F(A B) - F(h) - G(A B )r(b).

r

2 2yl Shiateld hulst 6l v e

St e
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19. b

Now since the set ot Cr is Lthe same as the setl ¢t ArBr’ and in view

ot Lemma 1,

G(C,) = G(A&,

Then
F(C h) - F(AB ) = F(C) - F(AB.).
*‘i- . o .. , V* +*
Now ArBr = AO“O' Also, by deflinition ot D, AO = AO .
Then
" - * ¥
F(Cr) - F(AR)) = F(Cr) - F(AUBU)

<

* *

V*
= iil[F(CiAlBi) - F(o, 1Ay ;B DT

Considering the individual terms of thwe summation, we have:

P Vi - Vo ¥
(CiAsRy) = FIC; 1A 18 5)
. . * x o V*
= PO 03A 4 By) - F(Cy 1A 4b4By)
af o~ * Y el Vo :
= #(C ;b Ai-1B1) - b(b_—lthl-lBl)
v )
+ F(t IR PPRE )y - P(Lw_in_lb]Bl)
. ¥ = \‘/l *
But, by Lemma 6, F(C:_ln A _]w.) - ¢ _1h A _1Ri) RS
Therefore,
] \,* ¥ i v‘ * '
F(CiA}_B?) - (¢ A -]Bi-.i)
~ Vi , . Y 2*
2 FOO _ybyhy gt ) = W00, g8y by By)e
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Applying Lemma ¢, with i1 a,
\Y
»* B
L= b Ay -0 L - 4
we get,
Vi x Vi x
F(C-A })‘.) - j\(fi"\_’_lr.‘ —l)

v, ‘ v
2 8¢, _rA _ulb) - FluL)a(A

*

:_1)], whence

"

\4
D (A(A] ;) - #(0y))

-3

*
F(C,) - F(AJB,) =

where,
r v, v
T1 = I 3P0 ,\‘J(b:\fx’\ﬂ; Wnr )
-— :—l - a 1 =d
r v,
T, = > S0, aG(e)60a , (b))
2 ol P=d - I ;
v
Conslider Il' A 1 s Lhe best Straros, of a teriminal bloe of
_ v,
Hence, by Lemma %, ¢(A ) ', 5o taal
r ‘ A ,
T2 S a(b G A.
-_— 2 -1 s .

Next, considor _1_, R R U A P i(__‘ —1) = 5(is _1)2‘(&1_1),
above, we cbtain,
14 V_*
— e AR A AWM A 3
P( = J_.:] I( . \l(. Jy vt ‘\ Rt _J)J([\. 1)

. —— - - ———
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Since _(_}_(Al_) = U, We have the identity:

v

. '
b\Aj_l)k.(A.l_l) - .»ja]., where

\]l V *

5(Ay_y) G(A*J_l) - 5(a;)0(A" )

LN

Using this cauation in Lhe previ.ous cnhe, and then changing

the order of summaticn, we {ind,

T, = X I S(B_.

i=1 ]“‘1 ! J
r J
= N & > (3, Yr{c.»
-3 :

R
-

But Bi sabisiler the conditions off B oof Lemma 5
L%

with A as A.
r
Therefore, by that lemma, ¢(bk.) ¢'. il nee,

T, <« [ a_ia(n.‘,lw
< JTl < i

N
—
N
o
’
——
o
.
b
~—

I~
~—
~
=
—_
AN
o]
—~
-
S
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© e
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r \Y

(=) 8By )G(by)s(a;_p)alay )¢

i

,V* ?
S(Ci‘l)G(bi)G\Ai_l)¢

TaS

[
1

M-

1

Combining, we have finally:

L
v(c.) - V(AOB

)

I~

L - T,

r V*
> _Si Ls{¢,_Ia(o;)a(a, )18 -¢") = o,

-

>

Thls 1s the result we want, and tne t'irst statement in the theorem
i3 proved.

It D is contained in ne Lest set oot T, then Lemma 3

implies g(B.) < g'. This in tum implles

dJd
s V* ,
T, ~ 2 8(C;_;)6(vj6(A, _,)¥", and hence
i=1 T ] o

*_*
v(C,) - V(AOBO) > Ty -7, > 0, which concludes the proor of theorem k.

Q-E.D.
Theorem 4 implizs the rollowing structure ror an cptimal strategy:

Let Bl be a best bloc ot T, and Cl a best strategy of Bl‘

Let B, be a pbest bloc of T-B and o¢., the best strategy of

1,
Bys.«. - Then o = (0102...). Note that  #(B,) > ¢(B2)2,.. s

by construction.

Corollary 1. If restricticns of the type "b. rrecedes bj” where bie B

K ¢

b, e BJ and 1 < j arc zdded to the provlem, ¢ s still optimal.

J

P gy e R A i M

Y,
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Proof': Let o Le a best strategy available in the inore restricted
problem. Since o is the besat stratery In o more rectricted
problem, F(o) < F(» However sines o patisties the added
restrictions, It 1s also tyue that (o) > F(nR). Then  F(o) = F(UR)

and ¢ 1is optimal.

Corollary 2: If restrictions of tie type asbove are removed, o is

still optimal.
ﬁ Proot':s Immediate from Ceorcriary 1.
; G- E.D.
4
X 3
! g
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. Garey Reduction Theorems

In a recent paper Garey (ly7;) gives some theorems and an
algorithm that reduces every vroblem that has a partial cordering
restricticn, and rinds an optimal strategy tur problems where tne

partial ordering graph C has an immediate graph ¢~ that torms

a rorest. Garey's results weres proved Ior the second 2xample or section 1.

The purpose o1 this section is to show that Garey's rcduction th :crems
and reduction algorithm apply to the whole class of problems developed
in section 2.

A search is called terminal iff it has no successors, and

initial if it has no predecessors. A secarch s 1s a maximal successor

ot search Sq i'f it is an immediate successcr cof s and satisties,

1
s’ 1s any immediate successor ol &4, ¢(S)21¢(Sl)' {For readers

k]

iz
comparing this treatment with Garey'., ncte that Garey's R satisties

R(s) = - 4(s).] A search is a minimal prodecoiscr of s2arch s
L

iff it is an immediate predecessor and satisties, it s’ is any

immediate predecesscr of s, Z(s") > #d(s).

Theorem 5: For any problem of the class considered here that has

an optimal strategy, let t. Dbe a nonterminal search having oniy
terminal succ..ssors. If t, Iis a maximal successor or t.1 satistying

J
d(tj) > ¢(ti) and tj has no other immedlate predecessors, then there

is an optimal solution in which the subsequence t.t. occurs.
a 15
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Proof:

Let ¢ be an optimal strate;y. I necessity ti occure
somewhere in ¢, and each of the successors ot ti’ say tgt%,...,
including tJ occur in o atfter ti' Let, without loss of generality

i i
0 = aotialtldgtq e drtjar+1

[

where eveiy &, excapt russibly ) contains no successor
or ti' Then every non-empty as cxeept a1 and ao is inter-

changeable with Li-l and ti. Theretfore, using the optimality of o

. ) i . i .
I ey is non-cmpty ¢(tk_1) > ¢(dk) Z_f(tk). If a 1is empty,
t;_l and ti are exchangeable and apain by the optimality of o

Bty 1) > Bl)).
Therefcre

flas) 2 #(6) 1...p Bl

4 o M

>
1/ <

(where empty ai's can be dropped from the above string of inequalities).

Since tj is maximal among successors to ti’

#t)) 2 BLty),

so equality obtains throughout the above cxpression.

. . i i .
g = aO”ialtjtiaQLE"'drar+1

is a strategy, and Theorem 2 implies

Now if a, is empty the theorem is proved. It not, it is exchangeable
with both ti and tj' Tnen
Blt) 2 #(2) 2 (1)

-~
H

d

IR NP Sorbaniadisg = o e
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by Theorem 2. Now d(tj) 2_¢(ti) by assumption, so equality

obtains in the above. Hence

V(c) = V(agja t;t, tl aa

2 2 ot r+1)

and the theorem is proved by optimality of o.
Q- E.D.

Theorem 6: Let tj be a terminal search having an immediate
predecessor t; such that ¢(ti) > ¢(tj). Consider the modified
problem which is identical to the given problem except that the
constraint graph C of the modified problem is formed from the
original constraint graph by replacing the constraint from ti to tJ

by a constraint from each immediate predecessor of ty to tj. Then

every optimal solution to the modified problem is also an optimal
solution to the original problem.
Proof':

Let o be an optimal solution to the moditied problem.
Suppose that tJ preceeds ti in o. Then we can write
g = (aotjaltiae), where ai's may be empty for 1i=0,1,2. Suppose a4

is not empty. All predecessors of tj must be in a since o 1is

0

a solution. Hence all predecessors of t; are in a also.

O’
Finally, since tj is terminal, all pr2decessors of a, are in 8q-
Hence tj and a, are interchangeable, and ay and ti are

interchangeablie. Then

B(t)) 2 dlay) 2 Blty).

s, i AP I AT M oA Sm it e
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If a, is empty, tj and t.l are interchangable, leading to

B(t5) > B(ty)
g by the optimality of o. But these inequalities are impossible by

t the assumption of the theorem that ¢(tj) < ¢(ti). Hence t;

precedes tJ in o. Hence o¢ 1is alsc a solution to the original

e e -

problem.

——————-

Let Or be an optimal solution to the original problem.

Since the original problem is the more restricted,

V(og) > V{o).

r)
Then V(o) = V(oR) and ¢ is optimal for the original problem.

Q-E.D.

m—

L; The tollowing theorems are duals to theorems 5 and 6.
Theorem 7: For any problem of the class considered here which has

an optimal strategy, let tj be a non-initial task having only
initial predecessors. If t; is a minimal predecessor of tj
satisfying ¢(ti) < ¢(tj) and t, has no other immediate successors,

then there is an optimal strategy in which the strategy titj occurs.

Theorem 8: Let t. be a terminal search having an immediate
i predecessor t, such that #(t,) > ¢(tj). Consider tne modified

problem which is identical to the given problem except that the

constraint graph C of the modified problem i1s formed from the

original constraint graph by renlacing the constraint that ti

precede tj by constraints that ti precede each lmmediate successor

ambas b n Ldea

LM teleean o

A
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28.

ot tJ. Then every optimal sclution for the moditied problem is also
a solution to the orlginal problem.

The proofs of Theorems 7 and 8 are the same as those
of Theorems 5 and 6, respectively, with the sense of each constraint
reversed, each inequality reversed, and each strategy reversed.

Garey then proposes the following reduction algorithm.

Algorithm 1.

Step (a) Select a ccnnected component, containing at least
one constraint trom the current reduced precedence graph. IT
none exists, go to step (i).

Step (b) Depending upon whether the component under consideration
has no multiple immediate predecessors or no multiple immediate
successors, go to either step (c) or step (f), respectively.

Step (c) Choose any nonterminal task t;, having only terminal

immediate successors, from the current reduced version of the component
under consideration. If no such task exists, go to step (a), having
completely reduced the chosen component

Step (d) Find a maximal successor ts of t;. it ﬁ(t3)<<¢(t;), ; 

go to step (e). Otherwise reduce the component by deleting t3 and
?
J"
(ti,té]. If the new task is terminal, go to step (c¢). Otherwise repeat

the constraint from t1 to t and replace tg by a new strategy

step (d).

i replace the 3*

Step (e) For each immediate successor té of t

’

constraint t; to tk by a constraint from the immediate predecessor

of t; to t.. Go to step (c).
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Step (f) Choose any noninitial task t&, having only initial

- 4 T W TT W SV Grm————

immeaiate predecessors, from the current reduced version of the
component unde: conslderation. If no such task exists, go to step(a),
having completely reduced the chosen component.

Step (g) Find a minimal predecessor t} of t&. 1r
¢(t3) < ¢(t;), go to step (h). Otherwise reduce the component by

deleting t; and the constraint from ti to té by a new strategy

[ti,t&]. If the new strategy is initial go to step (f). Otherwise

repeat step (g) with [ti,t&] acting as the strategy t&.

’

Step (h) For each immediate predecessor tk of t;, replace

[

the arc from té to té by an arc from t, to the immediate successor

of t&. Go to step (f).
Step (i) Let ti,té,...,té denote the remaining strategies in

the completely reduced precedence graph. Order them as ti ,té sererty
1 2 m

so that d(té ) 2 #(ty ), forall i, 1 <1 g m-l. Removing the
i i+l -7
brackets from this sequence results in an optimal solution to the

original problem.

Garey's algorithm completely reduces a forest, and will be of

benefit in an arbitrary partially ordered graph. Garey concludes

his investigation by saying that in the partially-ordered case "the proper

choice may depend somehow on the overall likelihood of success r'or the

complete set or tasks or ccrtain larpge subsets thereot', a non-local !
property which may be dirricult to use in an efricient algorithm." |
(Garey, 1973, pP. 55). We believe that Theorem 4 is the non-local

theorem sought by Garey. 1It's erricient use in algorithms depends on

the exploitation ot special structure to reduce the number of sets cver

which the best set o' T must pe searched tor.
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imposed in Kadane (1963), that piI be non-increasing in j

CiJ

for eacn 1, 1is thus seen to be the condition that each best bloc¢
consist ot only a single element.
In this sense Theorem 4 generalizes the result proposed,

but not proved, in Kadane (1968).
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