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INTRODUCTION

It has been known for some time that drag-reducing polymers inhibit
the inception of cavitation for some flow situations. Early experimental
investigations conducted by Ellis [1] showed that the pclymer content of
the water has a large effect on both cavitation inception and its
appearance on a hemispherical nosed cylindrical body. Photographs of
developed cavitation on such bodies illustiate a reduction in cavity size
for the same cavitation index when polymers of dilute concentration are
present in water. There also seems to be a noticeable difference in the
appearance of developed cavities [2,3] in the polymer solution as compared
to those formed at the same cavitation index in pure water.

More recent experimental investigations [4,5] extend the results of Ellis
for hemispherical nose shapes in a polymer solution. Also, work is being done
on the influence of polymer solutions on jet cavitation [6] and on the
bubble dynamics [7,8]. A survey of the state-of-the-art on effects of
polymer additives on inception is given by Acosta and Parkin [4].

This evidence on the inhibition of cavitation suggested that the
presence of polymers in water could suppress the cavity growth of
cavitation in the blade passage of a pump. If so, the pump could operate
at lower net positive suction heads and thereby attain higher suction
specific speeds before performance breakdown.

A series of experimental tests on a single stage axial flow pump
were undertaken to provide definitive information if higher suction
specific speeds would be obtained when pumping a dilute polymer solution.

The results of the performance of a single stage axial flow pump
operating in both water and a dilute polymer solution are discussed in
this report. The interest in determining the performance of a pump
operating in a dilute polymer solution arises with regards to application
on high speed hydrofoil craft. The intent being that polymer injection
would occur at the inlet of the waterjet intake system during hump or
take-off conditions. The associated increases in pump shaft speed and
pump inlet velocity as well as changes in pump size and weight could
make such an arrangement feasible.

TEST LOOP AND EXPERIMENTAL PROCEDURE

The test loop which was designed for the experimental evaluation
of an axial flow pump operating in water and a dilute polymer solution
is shown schematically in Figure 1. Tt consists of a closed loop
tunnel having a 6-inch dlameter plexiglass test sectior.. The main
drive pump of the tunnel is a double suction centrifugal pump powered
by a variable speed drive system. Tunnel velocity can be varied by
controlling the shaft speed of this pump. The pressure control system
is independent of tunnel velocity permitting a range of cavitation
performance to be obtained at a given velocity. The air content level




was controlled by air collection domes located at the top of the tunnel.
These were designed to collect and discharge the free gas which was
removed from the water with a vacuum. In this manner all tests were run
with the air content of the water at a relatively constant value of 8 ppm.

The single stage axial flow pump was mounted in the test section of
the water tunnel and driven by a variable speed 70 HP electric motor
located outside the tunnel. The shaft from the motor to the pump rotor
was strain gauged to measure shaft torque and a rpm counter on the motor
indicated shaft sp:ed. The total pressure upstream of the rotor was
measured in the settling section forward of the pump. The tunnel velocity
in the test section was checked by a previcus calibration which consisted
of photographing the passage of air bubbles through the test section over
a given time interval. By this means, test section velocity was obtaincd
and correlated with the pressure drop across the entrance nozzle to the
test section. This calibration was accomplished with pure water and
when a dilute polymer solution filled the tunnel.

The total head downstream of the pump was measured by means of a
wedge-type yaw probe traverse located just aft of the stator blade row,
The traverse provided local velocity and total pressure at any radius

‘and thereby permitted a mass averaged head rise across the pump stage to

be calculated. This energy traverse was performed when both water and =
polymer was being pumped. It has been shown that when polymers are used

that some error is normally associated with total pressure readings [9]

and the data presented for polymer solutions should be analyzed with this

in mind.

The axial flow pump stage used was originally designed as a propulsor
on the aft of a body of revolution. For this reason it was originally
designed to operate in the boundary laver coming from the hull of the body.
For its original application, the axial velocity component near the blade
hub sections is less than that experienced by the blade tips; however, in
its operation in the test loop the axial velocity was essentially constant
across the blade span. This deviation in the inlet velocity profile from
that which the pump stage was originally designed for, results in the blade
sections operating at an off-design condition from tip to root and
subsequently the pump stage gave a relatively low stage efficiency when
tested in the tunnel test loop.

The polymer used in the experiment was Polyox WSR-301 at a concentration
of 30 pounds of polymer per million pounds of water (ppm) in the 6-inch
water tunnel. This polymer solution was prepared by uniformly aspirating
the dry polymer with tap water. The solution was kept under a vacuum
aged in a container before being injected into the tunnhel to form a polymer
ocean.

Therefore, the concentration of the polymer was fixed; however, the
changing polymer state was meonitored by a friction tube as shown in Figure 2.
The results of this device can be related to the molecular weight
distribution and an equivalent fresh polymer concentration as discussed
by Berman [10]. However, the usefulness of this device is limited because
of the limitation on tube Reynolds number, and on the shear rate as measured
by the device.




Preliminary results showed that the friction tube indicated that the
polymer solution in the tunnel was essentially water after ten minutes
of tunnel operation. The usefulness of the friction tube was restricted
to the assurance Lhat the initial polymer solution had maximum drag :
reduction effectiveness at all tube Reynolds numbers. i

A schematic of the instrumentation used for evaluating the performance
of the axial flow pump stage is shown in Figure 3. The data was visually
observed, recorded and subsequently reduced on an IBM 1130 computer. It 3
was originally thought that the installation of the axial flow pump stage
in the 6~inch test section in series with the main drive pump of the turnel
would permit a relatively wide range of flow coefficients. This was to be
accomplished by holding the shaft speed of the axial flow pump in the test
section constant and varying the shaft speed of the main drive pump of the
tunnel. It was found, however, that this was not possible since the power
available to the main drive pump was not sufficient. It was therefore
necessary to install orifice plates of various diameters in the vertical
legs of the tunnel and by this means vary the pressure drop in the tunnel
and obtain a range of flow coefficients. Three different orifice plates
were use” and by this means a limited number of flow coefficients could
b. obtaine! when the pump was subject to low inlet pressures and operated
wit.. profuse cavitation.

NONCAVITATING PERFORMANCE

The overall noncavitating performance is shown in Figure 4 as head rise
coefficient versus flow coefficient. A similar plot of stage efficiency
versus flow coefficient is shown in Figure 5. The efficiency curve indicates
that peak efficiency for this axial stage is near 0.26 and indicates a peak
efficiency of 0.62. As previously explained, this pump stage had originally
been designed for use on the aft of an axisymmetric body as a wake adapted
propulsor. The blade sections were therefore designed to accommodate an
axial inflow that had considerable variation in velocity and energy along
the span of the blade from hub to tip. As the rotor and stator was mounted
in the test section of the water tunnel, the velocity and energy at rotor
inlet was constant along the blade span. The blade sections are therefore
operating at an off-design condition and results in the low value of stage
efficiency that was recorded. The total head rise across the stage was
measured by means of a wedge probe traverse. The probe had a total pressure
port which had a diameter of approximately 0.040". The accuracy of the
total pressure measurements in polymer solutions is dependent on port
diameter, velocity, and polymer concentration [9]. For this reason, the
spanwise measurements of total head rise as a function of radial distance
from tunnel centerline shown in Figures 7, 9, 11, and 13 should be viewed
with some caution since a polymer solution of 30 ppm was being pumped and
the estimated error is tive percent. Similar plots using plain water in
the tunnel are shown by Figures 6, 8, 10, and 12.

An attempt was made to obtain data at the same flow coefficient when
water and polymer was used. However, some slight variation did occur in
flow coefficient, the maximum being about 3 percent. Essentially, the
same spanwise distribution of head rise occurred when using either water
or polymer at the same flow coefficient. The measured etficiency was




consistently lower when polymer was pumped but this could be attributed to
the above described inaccuracies associated with total head readings in
polymers.

CAVITATING PERFORMANCE

The precedure for obtaining the cavitating performance of the axial flow
pump stage differed from that when noncavitating performance was obtained.
It was found that as the total pressure at pump inlet was decreased and
cavitation became progressively more profuse in the passages of the pump
that the flow rate began to decrease. It was necessary to constantly
adjust the shaft speed of the main tunnel pump to maintain the tunnel velocity
at a constant value and maintain a constant flow coefficient through the
entire range of cavitation from inception to performance breakdown.

Cavitation tests were performed on the axial flow pump when the tunnel
was filled with water and alternately when filled with a polymer solution
having a concentration of 30 ppm of Polyox. The flow of the polymer around
the tunnel and through the pumps tended to degrade it rapidly with time;
however, for times up to 15 minutes, its degraded state was still relatively
effective on cavitation performance. As previously discussed, the
measurement of head rise through the pump stage is difficult to obtain
with polymers due to the inaccuracy of total head weasurements. 1u was
decided that shaft torque would be monitored as the tctal head at pump
inlet was varied. This torque was nondimensionalized by the shaft torque
that existed at noncavitating conditions.

Three flow coefficients were run to obtain the cavitating performance
data. These were all the flow coefficients that could be obtained with the
orifice configuratic.s available and the power range c¢f the main tunnel
pump.

At a flow coefficient of 0.280, which is near to the peak efficiency
of the pump stage, a plot is shown in Figure 14 of the nondimensionalized
shaft torque versus suction specific speod when pure water was pumped.
Figure 15 presents a similar plot wher a 30 ppm polyr:r solution is purped.
Superimposed on this figure is the water data and it illustrates Aa
significent change in the suction specific speed at vhich perfermance
breakdown occurs when a polymer solution is puwped. Approximately a 25
percent increase in suction specific speed is achicve i before breakdown
occurs when polymer is present.

The effect of the polymer solution on performance may be partially
relzted to the shear rate of the polymer at the blade suiface. The
importance of shear rate was evident by reducing the puomp shaft speed
from 2742 to 1667 rpm while maintaining the same flow coefficient. The
effect of this decrease in shaft speed on cavitation performance is
illustrated in Fipgures 16 and 17. As reported for hemispherical nosed
bodies [5], the results show a decreasing effect of the polymer solution
on cavitation performance as the shear rate decreases.




Whereas the decrease in shaft torque as a function of suction specific
speed is rather ,radual, the pump performance in a polymer solution is much
more pronounced if plotted against the nondimensionalized total head at
pump inlet. The results of both 2750 and 1667 rpm shaft speed are shown
in Figures 13 and 19 fcr a flow coeffiicient of 0,280.

Similar plots of shaft torque versus suction specific speed and iotal
head at pump inlet for flow coefficients of 0.195 and 0.305 are shown by
Fipures 20 thru 23. The improvement in suction specific speed before
performance breakdown occurs is evident from these curves; hovover, the
increase is not as great for off-design performaunce as that for a flow
coefficient of 0.28. A plet in Figure 24 indicates the change in
cavitation performance at three flow coefficients when water and polymer
are used.

Of significance in Figure 24 is the reduced effect of polymer at flow
coefficients vther than that near the design condition or that near where
peak efficiency occurs., This effect may result from the blades operating
at such an off-design flow incidence that the flow about the blade leading
edge is of a nature that the polymers can not act to suppress the degree
of cavitation.,

The details of the cavitation patterns on the rotor with and without
polymers is shown by the photographs in Figures 26 ncar design operating
conditions. Figure 25 is a key to these photographs in that the numbers
on the photographs correspond to the numbers warked on Figure 25 and identify
the suction specific speed at which the pictures were taken.

Although some of the pictures de not show reduction of one type of
cavitation versus others, some definitive conclusions can be made.
Firstly, the structure of the cavitation bubbles appears smaller in water
than in the similar polymer cases. This could be related to the drastically
lowered surface tension in a polymer solution. Secondly, the quantity
of cavitation on the blades and in the passage is reauced in the polymer
sclution for equivalent amcunts of reduced torque.

SUMMARY AND CONCLUSIONS

... ...

The tests indicate that a dilute polymer solution increases the suction
specific speed at which cavitation effects the overall performance of an
axial flow pump. The improvement in resistance to cavitation breakdown is
more pronounced near the design flow co=efficient than at off-design
conditions.

The added resistance to cavitation performance br-akdown was found to
be dependent on pump shaft speed and this result is not inconsistent with
past results on the cavitation suppression ~f polymer solutions. This
effect has been reprrted in Reference [4]) with regard to incipient cavitation
and indicates that some consideration with respect to scale must be exercised
before directing this technique to a particular application. i
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Figure 14: Pump Performance as a Function of Torque
and Suction Specific Speed for a Flow
Coefficient of 0.280 in Water




-26- 20 March 1975

MLB:WSG: 1hm
1.0 . — —
\E)\

. 0.9 ~ POLYMER 4
- \/
> AXIAL PULIP STAGE WATER
= 6-INCH WATER TUNNEL |
= C8F  pLow COEFFICIENT. 0.280
S 27150 RPM
=
T 0TF i
O )
= i
g POLYOX 301, 30 ppm :
w 0.6 ©-POLYLIR AT T = 0 min ]
b4 O-POLYKIER AT T = 15 min
e & .

0.5k 8]uater b

0.4 1 1 | ' | 1 1 1 1

5,00 10, 000 15,000

SUCTION SPECIFIC SPEED, NQW/HSVM

ki e e i e,

o am
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at 1667 RPM
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at a Flow Coefficient of 0.195 at 2748 RPM




~33-~ 20 March 1975
MLB:WSG:1lhm

1.0 T 1 T
AXIAL PLEIP STAGE

DU 6-1MCH WATER TUNNEL
o, FLOW COTEFICIENT: 0,305
o 2053 BRI
o 0.8 1
=
-
o 07 .
=<
[+'4
g 0.6F POLYOX 301, 30 ppin .
& 4-POLYMER AT T < 0 min
(=4 0-POLYNER AT T = 15 min

0.5+ O-POLYMER AT T =30 iin .

O-WATER
0.4 A L 4 L L ]

RN W

5,60 10,000

SUCTION SPECIFIC SPEED. NQ“Z/HSV}M

Figure 22: Pump Performance as a Function of
Torque and Suction Specific Speed
Operating in Water and Polymer
Solution at a Flow Cocfficient of
0.305 at 2753 RPM




-34- 20 March 1975 ,
MLB:WSG:1lhm !

l 0 T T T T ] T T T T T
' ; AXIAL PUNIP STAGE
0.9F POLYMER —___ o 6-12CH WATER TULEL 8
. AJ_——— WATER
iy
= 0.8 FLOW COLFFICIENT: 0.305 h
- RPLE: 2053
o
= 07r POLYOX 301, 30 ppm .
f._f &-POLYMER AT T = 0 min
< 0.6 O-POLYMER AT T - 15 min A
o ©-POIYLER AT 1 = 30 run
= o - \WAILR
?j 0.5 1
o 4 Il 1 1 i J__ 1 1 L 1 l A 1 4 1_‘! 'y I3 A 1
0 5 10 b 20
Hsy
HEAD,
v2i 29
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Coefficient of 0.305 at 2753 RPM




ik i

*| SPECIFIC SPETD AT 3% TORQUE LOSS

SUCTIC

10,000

8.000

6,000

-35- 20 March 1975
MLB:WSG:lhm

T \
£ !

o
e
-—-—-.-‘-—\

- g//"- (o] —~
L n - 2150 RPN LR

o~ WATER i

o- POLYLER, 30 pem b}
LJ___L__;..J_L-i-uJ—_x_,J_,.J__J.__L_._J_-J._x -

0. 15 0.0 0.25 0.30

FLOW COLFTICITIY, ViU

Figure 24% Sunmary of Polvmer Influence on
Pump Per{ormance




-36- 20 March 1975
MLE:WSG:1lhm
1.0" \"D\ . q: T T T T
: NN POLYWER
0.9 4 e ' 7 .
\\\lPOLYOX 301, 30 ppm?

. N
~ WATER
§ 0.8f .
=
Z 0.7F .
= AXIAL PUMP STAGE
o 6-1CH WATLR 11t
= 06} FLOW CQEFFICIENT: 0.220 .
o 2750 RPL
bis)
g sk PHOTO NUMBEKS 1 THRU 12 -
e

4 i A 1 1 1 1 1

0 1 [

5,000 0.6 T Eom

SUCTION SPECIFIC SPLED, NQNZ/HSV3M

Figure 25: 1Index for Photographs of Pump Opcrating in
Water and Polvaer Soluticn at a Flow
Cocfficient of 0.2280 at 2750 RPM




Photovraph

0, 2360

RPM

Flow Coefficient

2750

i3

vaph

Pliot o

RYS Y

Reprod

best available copy.

uced from

]\I‘l.

terand

)

i1

"

54

fl;\']

Pihiotoor




20 March 1975
Lh:WSG:1hm

Af

- 38~

Mout osupledodo dung durivirarsy jo gdeadotouy

Reproduced from
best available copy.

ndueniotonyy
MOTIL (0L AU

WL jooy Moy




HopIn[Oy dowalod pue 103ey Ul durjeaade duwng Jurivaravy go gduvasoioyd  ryg oanalg

best available copy.

Reproduced from

vy Ydeadoaoyy

. Wy CLe
UOLINTOY dowA o] Wil 08 L t # ydeadoloyy

ORTTU - WOERL 3a0D ALY
RECP AL




e

e T

QG lnm

orr
T

1B

N

-

gorInos

oAV

uol n rc,ﬁ

4 buv 101¥

ot e

go3otid
dawk 1od

MUt DUl

qeaodyp dun

d

PRCTO T

qureilav

REELS ydeatoioyd

d i OLLEC
quaratl 300 Mmold

Y

-
[}

Aty

ng.ﬁu;

JUC;L

IRBLH

Re roduced from )
Pro vailable copY. i

best 2




uo oS Jomalod bu¥ a0y Ml x:_u:poz: duwrnyd quraeilavd I :am»x:u:;; syp cannid

ot  peon———

WS 1hm

.

20 March 1975

MLB

ced from
best available copY-

Reprodu

~41-

T1# ;L:»u;uCJz d X 0L L7 s :ac;u:uazz
wo1IN1os JowAl0d R U u:;wudwuuc; Mmo14 PRI

e i o e IR S

l.f.»nl.ivl._.li!:\..ct_._\:!t!!\cl&\ e s T o




g e

0 March 1975
MILB:WSG: 1hm

2

¥

UoT Inloy Jdawsfuq

714 yduaioloyd
ugrIn]oy AMBALTON

an

)

Jutvaoadg

dunyg Bupieitae) jo ydrasogong

Wd¥ 0Cl¢

AT RN S PV |

g, ydeasoloud
ANJUN

best available copy.

Reproduced from




