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1. INTRODUCTION AND SUMMARY 

This Scientific Report summarizes the studies performed during 1972 

for AFCRL under Contract No.   F19628-72-C-0202.    The objective of the 

study program is the Investigation of techniques to obtain hemispheric scan 

coverage (no more than 6 dB antenna gain fall off or oscillation over the 

hemisphere) by using an array of waveguide apertures covered by a 

dielectric slab.    The array is on a cylindrical ground plane of large radius 

(R * 100 A ) and its aperture gain is between 20 and 30 dB above isotropic. 

The most significant result of the study ie that hemispheric scan coverage 

is indeed achievable with dielectric covered arrays. 

The analytical study of the radiation from an array of waveguide aper- 

tures covered by dielectric has been developed in three steps. 

In a first phase of the study the properties of infinite cylindrical arrays 

covered dielectric have been investigated.    The problem has been approached 

by separately enforcing the continuity of the EM fields at the air-dielectric 

and at the dielectric-cylinder interface. 

The continuity of the EM fields at the air-dielectric interface is enforced 

by representing in both media the fields as a superposition of modes LSE 

and LSM with respect to the direction of the axis of the cylinder.    The curva- 

ture of the air-dielectric interface causes coupling between LSE and LSM 

modes,  which are decoupled in the planar case.    The matching of the fields 

at the second interface is performed by resorting to the "eigenexcitation" 

method, presented in a previous report [l].    The fields external to the 

cylinder are represented by a set of space harmonics matching the symmetry 

of the array excitation and the field in the waveguide elements by a super- 

position of normal waveguide modes.    The continuity of the fields is enforced 

by using Galerkin's method.    This rigorous analysis of dielectric clad 

cylindrical arrays leads to rather involved expressions for the element 

driving point admittance and for the far fields.   An approximate analysis 

is introduced to simplify the design of these structures.    A number of 

numerical examples illustrates the good approximation given by the 
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simplified analysis in the case of large cylinders.    Numerical results are 

presented for the case of an array on a cylinder with radius of approximately 

100 X .    The array element patterns show the presence of resonance dips 

much more pronounced than the notches due to grating lobe phenomena. 

The computations show that there are only minor differences in the 

element pattern and in driving point admittance between dielectric-clad 

cylindrical arrays of large radius and the corresponding planar arrays. 

These results indicate that the coverage performance of a finite dimension 

array (aperture gain 20 - 30 dB) over a large cylinder can be evaluated 

with excellent approximation by the means of a plane array model. 

In the second phase of this study program efforts were directed at the 

investigation of the radiation properties of finite arrays of waveguide ele- 

ments in an infinite ground plane covered by an infinite dielectric sheet. 

The main result of the second part of the studies consists of a method of 

analysis of finite arrays.    The method is based on enforcing the continuity 

at the array apertures of the space waves,  represented by a Fourier double 

integral,  and of the fields in the waveguides,  represented as a superposition 

of waveguide modes.    This method,   since it does not require the inversion of 

large matrices in determining of the mutual coupling coefficients between 

array elements is especially valuable in the analysis of large arrays of 

waveguide elements.    Computations of the coverage of rn array of 61 

circular waveguide elements show that it is not possible to obtain hemispheric 

coverage from arrays in an infinite ground plane covered by dielectric.    No 

radiation can take place in directions close to endfire because the energy 

leaving the array is trapped in a surface wave propagating along the dielectric 

sheet.    In order to achieve endfire coverage the energy bound to the surface 

wave must be radiated in free space by terminating the dielectric "heet. 

In the last phase of the program the radiation properties of surface wave 

excited dielectric wedges have been studied by generating a transmission 

line model.    The patterns and the reflection coefficients of several tapered 

two-dimensional wedges were investigated.    It has been found that for 

dielectric tapers over IX   long there is practically no reflection of the sur- 

face wave at the wedge discontinuity.    From the two dimensional wedge 

model a simple model of three-dimensional wedges has been generated to 

evaluate the radiation from finite arrays covered by finite slabs of dielectric 

2 
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in an infinite ground plane.    The analytical results show that,  by properly 

tapering the dielectric wedge,  it is possible to obtain hemispheric scan 

coverage from an array of 20 - 30 dB aperture gain.   In the conical region 

of *=65 deg semiaperture around the array normal the coverage is provided 

by the space wave radiated by the elements, while the endfire and near 

endure coverage is provided by the radiation from the tapered wedge.    The 

interference between the space wave and the wedge radiation produces high 

sidelobes in the array pattern at certain scan angles. 

This report is organized in three sections summarizing the three phases 

of the study program.    In Section 2 the analysis and the numerical results 

relative to infinite periodic cylindrical arrays covered by dielectric are 

presented.    Section 3 is devoted to the analysis of finite planar arrays in 

an infinite ground plane covered by a dielectric sheet over an infinite 

ground plane.    Section 4 deals with finite arrays covered by a finite dielectric 

sheet.    The appendices of the report present with some detail the 

justification of the mathematical models used in evaluating the radiation 

from dielectric covered arrays. 
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2. ANALYSIS OF PERIODIC ARRAYS OF WAVEGUIDE 
APERTURES ON CONDUCTING CYLINDERS 

COVERED BY DIELECTRIC 

2. 1   General Remarks 

Cylindrical arrays covered by dielectric are suited for airborne and 

missile borne application as the dielectric layer provides a natural radome 

for the antenna. 

The radiation from slots on a cylinder covered by dielectric has been 

studied by several authors and a fairly extensive literature exists on this 

topic.    Early works by Wait and Mientka [2] and Wait and Conda [3] are 

based on representing the fields external to a cylinder as a superposition 

of modes TE and TM to the direction of the cylinder axis and on enforcing 

the continuity of the tangential fields at the  lielectric discontinuity. 

More recently Sureau and Hessel [4] have performed a mutual coupling 

analysis for arrays of thin infinite axial slits on cylinders covered by 

dielectric.    Their analysis resorts to expanding the fields external to the 

cylinder in modes LSE [5] with respect to the radial direction.    Sureau and 

Hessel show the presence of resonance dips in the array element pattern. 

The axial slit model,  although it gives some excelle'-it physical insights, 

represents an idealized structure and does not provide the complete infor- 

mation required for a three-dimensional array design. 

In this report a systematic analysis of cylindrical arrays of waveguide 

apertures covered by dielectric is presented with the aim of providing an 

effective design tool for these antennas.    The approach taken consists in 

expanding the fields external to cylinder in modes LSE and LSM [6] with 

respect to the r.xial direction and enforcing the continuity of the tangential 

fields at the dielectric discontinuity.    The field matching at the array 

aperture is performed by resorting to the "eigenexcitation" method [1]. 

For each array eigenexcitction the field continuity at the waveguide aperture 

is enforced by applying Galerkin's method [7]. 

Preceding page blank 
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l. 2   Reflection at Cylindrical Dielectric Discontinuities 

The reflection of cylindrical ..-^ves at cylindrical dielectric discontinui- 

ties has been studied by several authors [8-9] and has resulted in expressions 

for the fields which are rather involved and without clear physical inter- 

pretation.    In this section the analysis of cylindrical discontinuities is 

performed to point out seme phenomena at these discontinuities and to 

cast the results in a form readily usable for phased array analysis.    Since 

only cylindrical dielectric discontinuities are dealt with in this section, 

there is no need to specify the array structure other than the radius of the 

cylindrical array and the external radius of the dielectric layer. 

With reference to Figure 1, the dielectric region (a < P < b) and the free 

space region (b < p) can be thought of as two series radial transmission 

lines with a discontinuity in the dielectric loading at f = b. 

The fields in the two radial transmission lines can be represented as a 

superposition of modes LSE and LSM with respect to the axial direction 

z [6].    In the free space region only outward propagating waves are present 

and the following expressions hold for the transverse (to p) fields. 

LSE Modes 

H 

(■CO 

n = -oo 

+ oo 

12) |WZ 
'jn0     I    F(n, w) H^'    (P   Yk~ - w~ ) e  J       aw \Tv (1) 

+ oo +oo 

E    =   >-     je-jn* £     f       F(n.w)     H, (2) (pN/k2 _w2) e-jwz dw     (2) 

n=- oo V k    - w 

H^-r     e"^   1      f   ™£ii^H(2)(pVkZ-w 
n=-oo 

2    -jwz , 
)e dw    (3) 
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Figure 1 - Geometrical Reference 

LSM Mode 8 

4-00 

*vE e 
n=-oo 

-jn0 
+ oo 

f    E(n,w) H[
2)
 (pVl , 2 2V    -jwz  , k    - w  ) e dw (4) 

+ oo + oo 

E 
n=-oo 

•jn0 I     f      "y*"' p H1"' (p\ k" - w") e nw,E(n' y> H^
2)
 (pVk 

k 
Vk2 - w2) e"JWZ dw   (5) 

H    -.V\-Jn*    ill     r     E(n'w)      H'(2)(pVk2-w2)e-JWZdw(6) 
<t>      ^ S J    jri    2      n 

n=-oo 4 k   - w 

In Equations (1) - (6) H(2) is a Hankel function, HJ^     its derivative 

with respect to the argument, F(n, w) and E(n, w) are the modal currents 

and voltages respectively, w is the wave number in the axial direction,  f 
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17 are the free space impedance and admittance respectively.    For w > k the 

outward propagating waves are represented by H ' -jpVw - k ). The 

selected modal representation is analogous to the expansion in TE and TM 

modes (with respect to the array normal) of the space harmonics in planar 

array theory [7]. This can be seen by introducing Equations (1) - (6) in the 

radial component field equations [13] and taking the limit for p—♦ <». In the 

dielectric region outward and inward propagating waves are present and the 

fields can be represented by: 

LSE Modes 

+ 00 +00 

-jwz 
w) e dw 

n--oo 

(7) 

Kp.n, w) - C(n, w) H(2) (W** - W
Z) + D(n, w) H<U (pVk* - w' 

(8) 
+ 00 

,= 2 ^t) EA =    }       je 

n= - 00 

+ 00 

I   (p, n, w) e dw 
,2        2    dp k^  - w 

-00    c 

+ 00 + 00 

H     -   V     »-Jn* I      /"   —2- 
n = -oo 00    e 

—2" I (p, n, w) e dw 
w 

(9) 

LSM Modes 

E 

1 00 i <x> 

. = 2 °~>n* f \t-1 . \      -lwz  j V(p, n, w) e  •        dw 

n=-oo 

(10) 
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V(p.n.w) ~- A(n.w) 11^ (p\Tk^ - w2 ]+ B(n, w) H[1) (p\kj - w2 ) 

11 
foo +co 

n=-oo -oo     c 

E0="l       P"jn^     /      7^Vv(P.n,w)o—dw 

■(- oo +00 

iwz ' dw    (12) 

n= -00 -00      6 

In Equations (7) - (12) A(n, w) and B(n, w) are the voltage amplitudee of 

the incident and reflected LSM modes,  C(n, w) and D(n, w) are the current 

amplitudes for the incident and reflected LSE modes.    The Hankel functions 

H *     and H *   ' represent an outward and an inward propagating wave, H' 
n       m    n iZ) (1) 

and H,y   ' are the derivatives of H v   ' and H v   ' with respect to the argument, n n n 
k  , ?. ,   1?   represent the propagation constant, the characteristic impedance 

and t'ae characteristic admittance in the dielectric region.    For w > kf the 

outward and the inward propagating waves are represented by 

Hn
2) (-jpVw2"- k^2]  and H^ (-jpVv? - k^)   respectively, to satisfy the 

radiation condition. 

By enforcing the continuity of all the transverse field components 

(Appendix A) at r = b, the following expressions for the amplitudes of the 

transmitted and reflected fields are obtained: 

H<2>(bVky^n      H^WbVzrx) 
F(n, w) = C(n, w) — ■  , + D(n, w) — 2 ———— '(13) 

H <2> (b VkTT^~) H<2> (b Vk^^2") 

H
(2WbVk|TX)       H(i>(b\/ky:w2) 

E(n, w) = A(n, w) —  ' + B(n, w) —n - - '(14) 

H<2)(b>tr7^2~) H<2)(b\£ 2 2 
- w 
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B(n, w) = rE(n, w) A(n, w) +   rHE(n, w) C(n, w) (15) 

D(n, w) = rEH(n, w) A(n, w) +  r-H(n, w) C(n, w) (16) 

E HE EH H 
The explicit expressions for r   (n, w),   T      (n,w),   r^   (n, w),   r   (n,w) are 

given in Appendix A. 

It should be noticed from Equations (15) - (16) that there is cross cou- 

r1 ng between LSE and LSM modes,  which are decoupled for an infinite 
EH 

pi^.ar dielectric interface.    The cross coupling terms T      (n,w) and 
HE 

T      (n, w) are due to the curvature of the dielectric discontinuity and tend 
E H 

to zero as b-*oo.    For b-*e°,   T   (n, w) andT   (n, w) tend to the plane case 

values as shown in Appendix A. 

2. 3   Infinite Cylindrical Arrays of Waveguide Apertures Covered by 
Dielectric 

2. 3. 1   Aperture Field Matching 

The model of the array consists of a regular grid of circular 

apertures of radius r  , fed by a waveguide of the same cross section on 

an infinite cylindrical surface of radius "a".    The array lattice is defined 

by two vectors s, and s_? as shown in Figure 2 where the axial and circum- 

ferential spacings between elements are called 2h and d respectively.    The 

array has N elements in each circumferential ring.   The dielectric layer cover- 

ing the array has an external radius b and a dielectric constant e .    The array 

waveguides are filled with dielectric with dielectric constant e'.    Only the 

two orthogonal TE.. modes are assumed to be propagating in the waveguide. 

The element aperture transverse electric field distribution will be 

assumed to be represented with good accuracy by a superposition of Q 

waveguide modes (the two TE.   's plus higher order modes).    The vector 

mode functions for the TE.. polarized in the axial and circumferential 

direction will be denoted by e.  (s) and e_ (B) respectively,   8_ being a pusition 

vector.    The higher order modes e    (s) are ordered by decreasing cutoff- 

frequency. 

10 
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AXIAL DIRECTION 

0.282Ax-^ 

r
e = 0. 203A 

£'=2.54 

Figure 2 - Cylindrical Array Lattice 

In matching the tangential fields at the array dielectric interface the 

eigenexcitation method will be used.    The eigenexcitation approach to the 

analysis of cylindrical arrays has been presented in detail in previous 

reports [1-15], 

Let the dement ports of the axial mode be excited by the eigen- 

excitation eju^) [1]; then the transverse electric field at the array elements 

is given by: 

N-l 

StH) =   E        Z     e 

m=0      r=-oo 

-ju^ms^ + r£2) ', Q 

£f5l8
+  rs (uo)es (s - ms 1 - rs2) 

«8=1 
(17 

where  T^u^) is the reflection coefficient of the actively excited axial TE 

mode,  and the other   r (u^) represent the coupling coefficients of the modes 

passively excited.    In Equation (17) 8,    is Kronecker's delta and s is a 
is — 

position vector over the arrav surface defined by its components (a0, z). 
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From the results of the previous section the electric field in the dielectric 

region can be represented by a superposition of LSE and LSM modes.    Their 

expression is obtained by inserting Equations (15) and (16) in 

Equations (7) - (12). 

By enforcing the continuity of the tangential electric field at the 

array-dielectric interface, the following expressions are established for the 

amplitude of the external fields (Appendix B), 

A(i + pN,w) - 1 
2rr 

+ j 

7       K<Ho' L*       )    v. -o 
w) R    (ifpN,  w) 

q = -oo 

1       (i+pN)w -,   . . 
a ,   L C. 'A  —t) 

k ( -w 

+ /0<vw) RHE (i+pN,w) 6( w-w        ) opq 

(18) 

+ ^ 
1       V*        I - EH 

C(i + pN.w) = j^    2,       Kz(~o'w)R   * (i+PN'w) 

"   J 
V K t p« 1    il^S       ?      (U    ,   W) 

a    , 2 2     «■ z   —o 
k(    - w 

(19) 

+ *VVw)   KH(i+pN,w)[     ö(w-wopq) 

In Equations (18) and (19) 6 (w-w       ) is the Dirac delta function k 
opq pf 

kf " w  '  ^z^o'  w^ am* ^^Ho»   w) are components of the vector: 

L (UQ,  w) 

S=1L -J 
,  w) 
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fi+£N where £    ( '*"■-,  w) are the Fourier transforms of the vector mode functions 

3       a F HE jru 
e  (s).    The definition of R     (i+pN,  w),  R        (i+pN,  w),  and R        (i+pN,  w) 

8       H 
and R     (i+pN,  w) are given in Appendix B.    Introducing Equations (18) and 

(19) in the LSE and LSM mods expressions one can directly verify that the 

external tangential electric field is expressed by a Floquet's double series 

having the periodicity of the array structure. 

The continuity of the tangential magnetic field can be approximately 

enforced by applying a procedure analogous to the plane case [7-12],    The 

tangential magnetic field at the reference element aperture is given by: 

H.(s)=p    x — t o 
s = l 

V«ls-    rs<ü0H£s(s) (20) 

pQ  being a unit vector in the direction of the external normal at the reference 

element.    The external tangential magnetic field is given by the following 

Floquet's expansion (Appendix B) 

+ 00 4°o 

M;<£> * 2    2 
•JU s J-opq- 

oo     q= - oo 

[a(u       ) S  (u       ) L  -opq   0-opq 

+ b (u       ) S   (u       )] z - [c (u       ) £ (u       ) 
-opq   * z'-opq   J -^opq      0-opq 

(20a) 

+ d (S >^.(H )1    ♦ 
I 

—opq     zv-opq        v I 

If the equality of H^ (e) and FT   (B) is approximately enforced,  the following 

set of linear equations is obtained for the  T   (u ) (Appendix B): 

Q 
Ykt6lk-   rk(uo)]=2     [6lB+   r8(uo)]Lks(uo)(k,s=l,...Q)      (21) 

8=1 
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where 6.,   and 6,    are Kronecker deltas and L,     (u ) are mutual admittances Ik Is ks   -o 
between modes for a given eigenexcitation.    The rather involved expressions 

of L,     (u ) are given in Appendix B.    By solving the system of Equation (21), 
K S    "—"O 

the tangential electric field distribution at the waveguide apertures is deter- 

mined for each eigenexcitation so that the array element pattern can be 

evaluated.    This will be discussed in the next section. 

So far only the axial mode has been actively excited.    If the circum- 

ferential TE.. is actively excited,  a system of equations analogous to 

Equation (21) is obtained by applying the procedure described for the active 

excitation of the TE.. mode axially polarized.    The new system of equations 

is obtained from Equation (21) by interchanging the index 1 with the index 2. 

The response to the general excitation is obtained by superposition. 

2, 3. 2   Eigenpatterns-Array Element Pattern 

The far field of the eigenexcitations can be found by employing the 

expansions (Equations (28) and (22)) of the tangential electric field on the 

array and by using Equations (13) and (14) for the transmitted fields at 

the air-dielectric interface. 

With the notation of the preceding paragraph,  at r = b the transmitted 

field amplitudes are given by: 

M            V         C   (i  1   PN'    W) 
F   U    1    pN,   W)   -—7y\    

H(2)
K1(bk   ^ 

hH>s,itr|i+pN,w)Hs:;N(bkpE 

(22) 

+ Aiip^ rEH a. PN, w) H|;;N (bk   , 
"i+PN (bkP) 
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E(i t  pN,  w) 
A(i j  pN,w) 

H-2)v (bk
n> l+pN P 

1,iipN(bkpe)  '   ,,E(i  '  pN*  w)HilPN,l)kpe) 

(23) 

,  C(i + pN, w) HE (1)     ,, 
H(2)    {bk   ,      "(i+pN,w) "i+pN(D pe' 

i+pN      p 

where k     - \ k    - w  .     The electric field at any point (p, 0,   z) is expressed 

by a Floquet's double series: 

too +oo 

,    ^? ^T    T->, v TT 2       ,   ./, 2 Z.    - i(i+pN <a - jw       z    .~„. 
E   (p, 0,   z   =>   >     Eu H:     TV,   pV k     - w e J      K     ve  J   opq       24 

z y Zrf^-rf °Pq       i + pN   p opq' r^ 
p=oop=oo 

+ 0O        -foo 
j j   (ifpN)i 

p=-oop=-oo  v opq 

2       2 
- w 

opq 

(25) 

'       " Wopq 

The components of the far field of an eigenexcitation can be simply evaluated 

from Equaticns (24) and (25) applying straightforward asymptotic expansions 

of the Hankel functions. 

The asymptotic expansions for the electric field are found to be 

given by: 

15 

i - .  - ^MHMflMMM 



iwpi»'- " "u"   .»iMi|BMll|lll||lll|PMWil^^ ,ymww»Jt.^,ii,t[,w,mmm.¥mi»«w<. 

UNCLASSIFIED 

+ oc 

um E , y    y E(U   ) t/ — 
p«o    z       ^ ^        -opq     W r 2        2 

opq    ~ r •" Ik        Wopq 

-j (pVk     - w        + z w        I « J \   ' opq opq/ 

2j j(i+pN) e-j(i+pN)<p      (26) 

F(^-) J »< .(i4pN) 
Z Z     n    r~i 2~" V      f 

V      |<k    p=-oo    */k    -w "ff,oVl» opq ** If opq 1 

lim V Z       Z   7 .-TT   W    i j (27) 

Iw      |<k   p=-oo    t/k    -w "jroWk    - w --- ™ opq T opq 

, w 2        2 
e-j(i+pN)0 e-j    yi opq opq, 

The components of the far field of the eigenexcitations can be expressed in 

spherical coordinates (r, 0 , <j> ) in terms of an E   and E. component which 

are obtained from Equations (26) and ^2.7) by a simple coordinate transfor- 

mation [1],    With straightforward manipulations, the far field g*(r,  Q ,   $ ,  i) 

of the eigenexcitations is established as: 

g(r, 0,0,  i) =y  nr
Zline   ][ [H0(&,0,i)    t^(M,il] 

iw       |<k opq | 

(28) 

ii ( 4   - 0)    - ir(w         cos 0  +   Wk     - w         sinö ) 
eJ       2       y   e  J        opq         '    opq  

."2        2     .1/4 
k     - w opq 
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where g. and g^ are defined as follows: 

0 <p 

E (u ) 
,(0,0 , i) = k 

+ oo 

•-*       /   2 ? 
n=-oo¥k      -   w 

* opq 

-ppq        e-jpN frg -*) 

H{B 
F(u       ) 

-°pq •jpN(| -0) 

•yb pr.oo^k2 _ w2 
opq 

The array element pattern is obtained by summing the contribution of all 

eigenexcitations [l] and is expressed by: 

F(r,0 ,0 ) 

JL    N 
2h 

|wopq|<k JjL i=.N 

\0%  (0, 0, i) 

+<p g    (0,0 ,  i)] 
jr(w^^ COS0 i   Vk" ~w- sin^ ' o2S_ 

2       2 
i 
°pq 

(k2 - w2      ) 1/4 
opq 

dw    (29) o 

The integral in Equation (29) can be evaluated for r-*«>by an 

application of the stationary phase method obtaining: 
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IN 

F(r,fl ,0 ) =  Vj 
jk r I      I 

|Wop^ki='N 
e"j(0' Z][he(6t4>.  i) 

(30) 

+   $g+(6, * ,  i)l 

The array pattern for a general excitation is given by an expression analogous 

to Equation (30),  where the eigenpatterns g  (0,0,   i) and g    (0, 0 ,   i) are 
0 0 

weighted by suitable factors depending on the particular array illumination. 
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2. 4   Remarks 

In the previous subsections a rigorous method for the analysis of cylin- 

drical arrays covered by dielectric has been established.    The results have 

shown that, due to the curvature of the air-dielectric interface, there is 

coupling between LSE and LSM radial modes.    These coupling phenomena 

are reflected in rather involved expressions for the driving point admit- 

tance and the radiated fields of the eigenexcitations.    It has also been shown 

that as the radius of curvature of the cylinder is increased the coupling 

between LSE and LSM modes decreases proportionally,   so that for zero 

curvature (planar case) no coupling is present.    Cylindrical arrays of large 

radius of curvature are particularly interesting,   since they model a con- 

formal array mounted on the skin of a large aircraft.    As this is the most 

likely application of cylindrical arrays covered by dielectric,  in the 

following paragraphs we will concentrate our attention on cylinders of large 

radius.    For such cylinders (radius » 100X), the coupling coefficients 

r       and T       are very small (order of 10    ) with respect to T    and T 

respectively for most of the cylindrical harmonics carrying real power 

(n«b V : 2        2 k   - w    ) and become appreciable only for harmonics with high 

/~2        2 
na;b v* circumferential periodicity (na;b V^I - w~). 

HE EH 
If the approximation of setting T       = 0, T       =0 for all harmonics in 

cylinders of large radius is made, an error will be introduced in the evalu- 

ation of the radiated power and of the mutual coupling admittance.    This 

error, however, will affect only the pattern predictions for high scan angles, 

where the harmonics with high circumferential periodicity are strongly 

excited.    As for the mutual coupling,  an error will be introduced in the 

driving point admittance of the elements relative to the eigenexcitations with 

yZ 2 HE EH 
k    - w .    However, the setting of V       =0 and   T       =0 will result in 

a substantial simplification of the analysis for cylinders of large radius.    If 

T        =0 and T        =0,  all the formulas of tht 

simplified, allowing much easier evaluation. 

HE EH 
r        =0 and T        =0,  all the formulas of the preceding sections are greatly 
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In the next subsection particular attention will be devoted to comparing 

the results between the "rigorou?" and the "simplified" approach to the 

analysis of a large radius («100X) cylinders.   It will be shown that the 

"simplified" method produces acceptable results for most design purposes. 

In the previous analysis the presence of a matching network in the array 

elements has not been taken explicitly into account, because with a proper 

selection of dielectric constant and thickness of the dielectric sheet 

covering it should be possible to achieve good broadside matching conditions. 

Should a matching network in the elements be required to meet specific 

design purposes, the previous analysis remains valid and only a minor 

change should be introduced in Equation (21).    The matching of cylindrical 

array elements has been extensively discussed in previous reports [i-15], 

where the modification for Equation (21) can be found. 

2. 5   Selected Numerical Examples 

In this subsection a number of illustrative examples will be presented 

to show the effects of a dielectric layer on a cylindrical array. 

Several dielectric constants and thicknesses have been considered for 

the dielectric layer covering the array.   As the antenna is intended to be 

mounted on the skin of an aircraft the dielectric layer should be weather 

resistant and have good mechanical characteristics.    Materials,  like the 

IRTRAN widely used in radome technology,  are suitable for this application 

and have a dielectric constant e   * 4.    This value of e    has been chosen for r r 
the computations. 

The thickness of the layer should be chosen on the basis of various 

considerations.    In view of future developments a dielectric thickness is 

selected so as to give rise to surface wave-type phenomena only for scan 

angles bigger than 60 deg from the element normal.    For e    =4, this 

requirement is satisfies by a dielectric thickness of «0.1 in.    The dielec- 

tric can be used to provide better matching conditions for the radiating 

elements than in the case of no dielectric covering,  so that matching net- 

works are not required in the element waveguides.    To maximize the array 

gain it is convenient to provide good matching for the eigenexcitations 

with i =0.   This would correspond to broadside match in planar arrays. 

20 
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Since the dielectric characteristics have roughly been specified, the only- 

free parameters left to achieve the desired match are the element size and 

the lattice spacing.    Several trials have been performed and a satisfactory- 

solution was found with a dielectric thickness of 0. 088 in. and the array 

lattice of Figure 2.    The element spacing is 1.1546 in. in the circumfer- 

ential direction and 0. 3333 in. is the spacing between circumferential rings 

of elements.   The cylindrical array has a radius "a" of 113.93 in, corres- 

ponding to « 97X at 10 GHz, the center frequency for this antenna.    There 

are 620 apertures in one circumferential ring.    The array elements are 

open-ended uniform circular waveguides with 0.24 in.  radius.    The elements 

are filled with a dielectric material with e   = 2. 54.    Only the two orthogonal 

TE.. modes are above cutoff over the band of this array (10 GHz ± 0. 5 GHz), 

all higher order modes are well below cutoff. 

The selected lattice and cylinder radius are very close to a case con- 

sidered in previous reports [1-15],  so the comparison between dielectric 

covered and uncovered cylindrical arrays will be performed at no cost of 

additional computations. 

While performing the numerical analysis, attention was devoted to the 

question of relative convergence of the solution [14], peculiar to the appli- 

cation of Galerkin's method.   No relative convergence condition is present 

in this case.   It was found that, if nine waveguide modes (the fundamental 

TE. . plus the first eight below cutoff modes) are used in Equation (21), 

no appreciable variation of the T   (u ) is detected by employing additional 

modes.    For each eigenexcitation u   400 space harmonics have been used 

in the computations. 

Figure 3 shows in the circumferential plane the reflection coefficient 

of the TE,. circumferentially polarized (actively excited) and the excitation 

coefficients at the element apertures of the higher order modes.   The 

coefficients are plotted versus u   = i/a, the circumferential periodicity of 

the eigenexcitations.   The coefficients have been computed using the 

"rigorous" method of analysis, whereby the coupling between LSE and LSM 

modes is taken into account.   In Figure 3 the reflection coefficients for an 

infinite planar array, with the same lattice and dielectric cover, are also 

shown.   As can be seen, no substantial difference exists between the two 

cases except for high values of u   = i/a. 
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Figure 3 - Modal Excitation 

Figure 4 compares the reflection and excitation coefficients obtained 

by applying the "rigorous" and the "simplified" analysis.    The results snow 

no ereat difference between the two cases except for values of i/a ranging 

between 0.8 and 1.02.    The "simplified" analysis gives coefficients values, 

which are in between the "rigorous" solution and the planar case and close 

to the iatt-r.    It appears that the "simplified" analysis takes properly into 

account the curvature of the ground plane, while the curvature of the die- 

lectric interface is "rectified".    Figure 5 »hows the reflection coefficient 

and the excitation coefficient (rigorous solution) of the waveguide modes 

at the element apertures, where the axial TE.,  mode is actively excited. 

In the same figure are shown the coefficients obtained by applying the infinite 

planar array model.    For this polarization the difference between the results 

is always very minor and becomes noticeable only for values of i/a > 0. 9 

and for the TE.. mode.    In this case the simplified approach gives excellent 

results for i/a up to 0. 95. 
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F gure 4 - Modal Excitation 

REFLECTION   ne 

EXCITATION 
COEFFICIENT 

0.4 

0.2 0.4 0.6 0.8 
EIGENEXCITATION NUMBER (u0) 

Figure 5 - Modal Excitation 
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Figure 6 plots the realized gain pattern, in the circumferential plane, 

of any array element with circumferential polarization actively excited 

(rigorous solution).    On the same figure are shown the pattern of an element 

in an infinite planar array and the pattern computed following the 

"approximate" solution.    In all three cases a deep notch appears in the 

patterns.    While the cylindrical arrays present a finite notch depth, the 

infinite planar array has a dip of infinite depth.    The nature of these notches 

has been already explained elsewhere [4] in terms of leaky wave effects and 

needs no further discussion.    It is, however, worth noticing that the mini- 

mum of the notch in the cylindrical patterns is slightly closer to the element 

normal than the position of the null in the plane array pattern,   showing a 

slightly slower leaky wave propagating on the cylindrical array surface. 

Moreover,  it is worth noticing that the "approximate solution gives only the 

gross features of the element pattern, without reproducing the oscillations 

around the notch. 

REALIZED  0 
GAIN 
PATTERN 

(dB) 'OH 

CIRCUMF POLAR 
CIRCUMF. PLANE 

R» 96.53 X 

CYLINDRICAL 
"RIGOROUS 

 PLANE ARRAY 

 CYLINDRICAL 
APPROXIMATE 

T 
20 40      60 

4>(deg) 

Figure 6 - Array Element Pattern 
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In Figure 7 the pattern evaluated from the "rigorous" solution ;s 

compared with the element pattern of an uncovered cylindrical array with 

comparable lattice and radius of curvature [1],    It can be seen that the 

notch caused by the dielectric layer is much deeper than the dip due to 

grating lobe effects and that the pattern disturbances around the notch are 

more pronounced in the case of the dielectric covered array.    These results 

are in agreement with the experimental evidence [31] collected for plane 

arrays, where the notches in the element pattern due to bound waves are 

always more pronounced than the notches due to grating lobe effects. 

In Figure 8 the array element pattern in the circumferential plane for 

axial polarization is presented.    Comparing the "rigorous" and "simplified" 

cylindrical solution with the plane case, one can see that the differences 

are very minor up to about 85 deg from the element normal. 

In the axial plane practically no difference is present between the 

cylindrical and the plane array element pattern.   In Figures 9 and 10 the 

realized gain of an element is plotted for circumferential and axial polari- 

zation respectively. 
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Figure 7 - Array Element Pattern 
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Figure 8 - Array Element Pattern 

10 

20 

dB REALIZED GAIN 
PATTERN 

30 

40 

50 

1 

- 

- 

Ci 
A> 
R 

»CUMF P0 
(IAL PLANI 
■ 96.53 X 

.ARIZATIOI i 

 1   1  • ""'   1 
e 

—^ 
0      10     20    30    40    50    60    70     80    90 

(deg) 

Figure 9 - Element Gain for Axial Polarization 
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Figure 10 - Element Gain for Circumferential Polarization 

Finally the isolated element pattern has been computed with the "one 

mode" approximation.    Figure 11 and 12 show the isolated element pattern 

in the circumferential plane for axial and circumferential polarization.    As 

expected, the patterns show a smooth variation versus angular direction. 

2. 6   An Asymptotic Model for Small Arrays on Cylinders of Large Radius 

The analysis of finite arrays of waveguide elements on dielectric clad 

cylinders of large radius can be rather easily derived from the theory of 

this section.    However,  since the mutual admittances between elements in a 

finite cylindrical array are expressed as series of integrals of the type in 

Equations (1) - (12) [16],  the effort required to numerically evaluate the 

driving point admittance of the array elements is much greater than in the 

case oi the infinite periodic structure,  even if asymptotic expansions of 

Hank el functions are used in the computations. 
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In this condition it is convenient to use an asymptotic model for finite 

arrays on cylinders of large radius.    The numerical results of this section 

show that there are only small differences between the driving point admit- 

tance and the radiation pattern of an element in an infinite periodic cylin- 

drical array of large radius covered by dielectric and the corresponding 

planar case.    The close similarity of the results obtained by using the 

planar and the cylindrical array models suggests that a planar array model 

can be employed with excellent approximation in predicting the coverage 

performance of a finite array extending only over a limited circumferential 

and axial sector of a large cylinder.    The aperture of the arrays considered 

in this study (aperture gain 20-30 dBi) extends only a few degrees (2 to 10) 

over the circumferential direction of a cylinder with 100 X radius.    In these 

conditions the mutual coupling between elements, which determines the 

aperture driving point admittance,  practically takes place in a planar 

environment,   so a planar array model should give an excellent approximation. 

In predicting element pattern performance the pi ana/ model gives 

consistently lower levels of endfire radiation in the circumferential plane 

than the cylindrical model,  while no difference is present in the axiai plane. 

So if hemispheric scan coverage from a finite array on a large cylinder 

is predicted by using a planar model the array is bound to exhibit even better 

coverage performance than predicted,  at least in the circumferential plane. 

On the basis of these considerations and the numerical results previously 

shown, the coverage of finite arrays covered by a dielectric sheet on 

cylinders of large radius has been analyzed by using a planar array model. 

The analysis of finite planar arrays is presented in the next section. 
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3. FINITE ARRAYS IN AN INFINITE GROUND PLANE 
COVERED BY A DIELECTRIC 

3. 1   General Remarks 

The analysis of finite arrays in an infinite ground plane has been per- 

formed by various authors.    The element pattern due to the limited extent 

of the array dimensions has been clearly illustrated for arrays of parallel 

plate waveguides [17-18],    More recently the mutual coupling between 

elements in finite arrays of circular waveguides has been presented and 

compared with the infinite array case [19-20]. 

The basic approach to the analysis of finite arrays of waveguides in 

an infinite ground plane consists in formulating an integral equation in the 

unknown amplitude of the magnetic field at each aperture.    The integral 

equation can be solved by straight forward application of Galerkin's method. 

This procedure leads to a system of equations of the order M x N, where N 

is the number of array elements and M is the number of feedguide modes 

used to enforce the continuity of electric and magnetic fields at the aperture 

discontinuity.    As the number of array elements and of waveguide modes 

used in field matching increases,  one is faced with the inversion of large 

matrices ,    This operation is computer time consuming and poses serious 

limitations on the number of elements in the arrays which can be analyzed. 

The approach taken here for the analysis of finite arrays of waveguide 

elements in an infinite ground plane covered by a dielectric sheet if based 

on the formulation of an integral equation in the unknown magnetic fields 

at the element apertures.    However,  no inversion of large matrices is 

performed in evaluating the mutual coupling between elements. 

The matrix inversion operation is avoided by exploiting the symmetries 

in the array geometry in constructing the array scattering matrix.    Only 

the mutual coupling coefficients for a selected number of array elements 

is evaluated.    This requires the solution of a system of equations, an 

operation which can be performed by a computer at a much higher speed 

than matrix inversion. 
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3. 2   Network Model of Finiie Arrays 

In this subsection some gen*..-.1 properties of finite arrays of waveguide 

apertures in an infinite ground plane, which may be covered by an infinite 

sheet of dielectric, will be discussed.    The array apertures are of arbitrary 

shape and are fed by uniform waveguides of the same cross section.    The 

array lattice can be arbitrarily defined and need not be regular. 

It is convenient to represent the array-free space interface by a 

multiport network [ 21] ,  as shown in Figure 13a.    Each element consists of 

an M port unit (M is the number of waveguide modes used in enforcing the 

continuity of the tangential fields at the array-free-space interface); 

therefore an array of N waveguide elements can be represented by an M x 

N port network.    Only "free" excitations of this M x N port network will be 

considered, that is sets of waves incident to the element inputs ports.    Let 

the excitations of the array be represented by N x M dimensional column 

vector a.    The set of reflected waves at all ports is similarity represented 

by a N x M dimensional vector b.    The incident and reflected waves are 

related by the scattering matrix S of the network: 

b   =   S a (31) 

The scattering matrix S completely characterizes the network.    Ar.y 

particular property of S should be used in the analysis of the array and vice 

versa.    This approach has been followed in the theory of planar and 

cylindrical infinite periodic arrays, where the symmetry of the structures 

can be exploited for an immediate evaluation of the eigenvectors and the 

diagonalization of S (the eigenexcitation method [1-15]). 

In the case of an arbitrary finite array the scattering matrix S does 

not present any particular property that can immediately lead to its 

diagonalization.    In other words, for finite arrays there is no simple way 

to determine the eigenexcitations of the structure, which are those sets of 

incident waves exciting the same transverse electric field distribution at 

ail array apertures except for a progressive phase term.    It has been shewn 

[17] that for "large" arrays of regular lattice it is possible to approximate 

the finite array eigenexcitations through a perturbation of the eigenexcitations 
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Figure 13a - Network Representation of Array-Free Space Interface 
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of the infinite periodic structure.    This procedure cannot be applied to 

arrays of arbitrary lattice because the perturbation method does not 

converge to the solution.    The only way to determine the eigenexcitations of 

an arbitrary finite array is to actually solve (by numerical methods) the 

characteristic equation of the scattering matrix.    This approach presents 

substantial computational difficulties as the number of array elements 

increased, more over the eigenexcitations may not be orthogonal. 

There is a convenient method to determine the scattering matrix of a 

finite array.    It is well known [22] that the scattering matrix of a network 

can be obtained from the admittance matrix Y relating port voltages to 

port currents.    The following matrix relationship holds: 

(Y    U - Y)   (Y    U + Y) 
g - g -     -' 

-1 
(32) 

where y is a unit matrix of the same order as Y. The elements of the Y 

matrix can be grouped in submatrices relative to the ports of each array 

element in the following fashion: 

=11   =12 *   *  ' hu] 
v        Y Y 
^21   =22 *   •   •   •  i2N 

• • 

Y       Y Y 
=N1 =N2 ■   *  *  '  =NN 

where Y      are square matrices of the M order.    Y      represents the mutual =pq ^ =pq      f 
admittance between the M ports of element p with the M ports of element q. 

The elements of Y      can be determined only by solving the boundary con- 

dition problem at the array aperture.    This will be done in the next section. 

For the moment suppose that the Y matrix is known,   then the operations in 

Equation (32) can be performed.    The inversion of the augmented matrix 

Y would produce more information about the network than is needed to 
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determine the radiation properties of the array.    For this purpose,  only the 

columns of ,S relative to the actively excited ports are required; the other 

columns of S,corresponding to passively excited ports, do not need to be 

determined.    This fact can be exploited to reduce the computations required 

in the analysis of a small array.    Equation (32) can be viewed as a system of 

equations in the unknown columns X of S by writing: 

(Y    U + Y) X = E (33) 
6    ' "~— 

where E is a column of Y    U - Y. 

The system of equations (33) can be repeatedly solved only for those 

excitations (columns of Y    U - Y) corresponding to the actively excited ports 

of the network.    In these conditions only N columns of the N x M order £ 
N ~T*J 

matrix are obtained, forming a matrix S^   .   However,  the rectangular S 

matrix is sufficient to characterize the radiation property of the array, 
N since the product between S    and an N dimensional excitation column 

N ~* 
vector a   , whose components are the incident waves at the active ports, 

gives the reflection coefficients at the active ports and the excitation of 

higher order waveguide modes.    This procedure involves much less 

computations than the inversion of the matrix (Y    U + Y) and substantial 

computer time is saved for a given array size.    Moreover,  any symmetry 

in the array structure,  for example quadrantal symmetry,  can be easily 

exploited in reducing the number of excitations for which systems of 

Equation (33) is solved.    This approach is rigorously valid only for open 

ended uniform waveguides and is not correct if a matching network is 

present in the element feedguides.   An extension of this approach to the 

case of radiating elements backed by a matching network will be discussed 

in a latter section. 

3. 3   Boundary Condition Problem for Finite Arrays in an Infinite Ground 
Plane Covered by Dielectric 

The array geometry is conveniently established by the means of a 

set of vectors s_   ,  representing the position of the elements as shown in 

Figure 13b.    The N array elements are arbitrary apertures fed by 
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Figure 1 3b - Array and Dielectric Geometry 

waveguides of the same cross section.    Only one mode is assumed to be 

propagating in the waveguide elements.    The transverse modal function 

for the propagating mode in the nth feedguide is denoted by e11. (s),  the 

higher order modes e      (s) are ordered by increasing cutoff frequency. 

The dielectric layer covering the array has a thickness d,  a relative 

dielectric constant f ,  propagation constant k, and a characteristic 

impedance n d-    Assume that the mode e  . {s) is actively excited in some 

array elements.    Then the tangential electric field at the array apertures 

can be expressed as a superposition of waveguide modes: 

E^(s) lyKi.m + rnm)    eV(s-sn) (34) 

where 6   ,        is equal zero in the passively excited elements», while for the 

actively excited elements 
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.n „.-—"'l for m = 1 
1, m ~~"~~"-Q for m i 1 

In Equation (34)   T        represents the amplitude of the modes passively 

excited at the apex'ture of the nth element.    If the nth element is actively 

excited,   V   ■.  represents the active reflection coefficient of the e  . (s) mode. 

The external tangential electric field can be represented as a 

superposition of TM and TE waves [18]: 

jj   [£p(a)+$* (u)]e-J^du E+
t =   27-   ||      [ Ze (u) + * *   (u) j c--^-^.. (35) 

Enforcing the continuity between Equation (35) and Equation (34) the 

following relations are obtained: 

N        M 

*P<«)   =/2     Jl  (6ni +    Tn    )   B*     (u)ej^^n (35a) K-'      *—<      LmJ   yv  l.m '    m'      pm— *       ' n=l     m=l ' 

X^v 
SM   =2J     A.   <«ni        +fn    )   ^?        (u)ejü w-        *—4     t—4 l.m m    " \b  m   - n=l     m=l ' Y 

\ (35b) 

11    .   .        . . n In Equations (35a) and (35b)£       (u) and£ .       (u) are the components 

of the Forrier Transform of the mth waveguide mode defined as [23]: 

A n 

where the integral is extended over the nth aperture. 

The magnetic field at the waveguide apertures is given by: 

H-(s)   =    zx\\    7_](sni       -Tn    )   Yn     e11     (s - s   ) (36) -t  — *-V    *-4  \       l,m        m/        m~ m  —    — n
; x     ' n=l        m=l     \ » ' " n=l     m 
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In Equation (36) 6   j        and P       have the same definition as in Equation (34), 

Y       is the characteristic wave^u:^« admittance of the mth mode in the nth m ° 
feedguide and Ö is a unit vector in the direction of the external normal to 

the array.    The external Magnetic field is expressed by a superposition of 
TE and TM waves: 

■J* '^-" 

t^,u|-LFTM(|u||l     e-iildu 
d 'd J — 

(37) 

In Equation (37) 

for 

and 

"d  ■   ^d'-lul2" 

l»l2<^ 

w -j   VjupTT^ 

for 

Ivl   > kd . 

*       (|u|)and Fim(|u|) are defined as: 

F      (|u|) 

TE 
1 |H)cos™dd+jYrt^< I u| ) sin wdd 

Yd        (iuD cos V + J YTK
"(!U!) sinWjd" 

(38) 
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v™/l      \ s i    ■    •   xr    TM,|      I .       . , 
TW                Y        (  u   ) cos w.d + 1 Y ,       ( u   ) sin w ,d 

T^iM.i    t, d-d d ,_„, 
F   ('u')= - TM.rr. 77 . VTM„ ,. .—: (39) 

Y,       (|u| ) cos w ,d + j Y       (|u|)smwd 

where Yd
TE(|u|),   YTE(|u|),   Yd™(| u| ) and Y™( | u| ) are given in [7J. 

The quality between Equations (36) and (37) can be enforced by a straight- 

forward application of Galerkin's method.    By requiring that the difference 

between Equation (36) and Equation (37) has zero projection on the subspace 

spanned by z x e      (_s - s, ).   the following systems of equations is obtained 

(Appendix C): 

\ ' n=l    m=l 
6\,h+rn„J w 

(k = I,   ...N; h = 1,  ...M) 

In Equation (40) Yn      ,   expresses the mutual admittance between the 

mth mode of the nth element and the hth mode of the kth element.    The 
nk expression of Y        ,   is given in Appendix C.    It is easy to recognize 

that the system of Equation (40) can be cast in the form of Equations 

(32) or (33). 

3.4   Arrays of Uniform Circular Apertures 

In the preceding sections a general theory for arbitrary finite array 

of open ended feedguides covered by dielectric has been developed.    It has 

been shown that for uniform waveguides there is no need to determine 

the complete scattering matrix for the array in order to evaluate its 

radiation properties.    Let us now take into consideration arrays of 

apertures that can provide hemispheric scan coverage.    For this 

particular application a circularly polarized element is required; so 

circular or square apertures are a natural choice.    In the following we 

will deal with circular feedguide arrays.    However,  with minor changes 

the same considerations apply to arrays of square feedguides.    In practi. •; 
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an array of circular waveguide apertures will be rather poorly matched 

to free space.    The dielectric sheet covering the array can provide some 

matching, but, in general, a matching network will be required in each 

feedguide to avoid large reflections at the array aperture.    We assume 

that the same network is present in all elements.    In these conditions the 

procedure to obtain the array scattering matrix presented in the previous 

sections ceases to be valid,  because higher order modes may be incident 

at the aperture.    \»e will show now that the procedure remains perfectly 

valid if applied to an admittance matrix properly augumented to take into 

account the presence of a lossless matching network. 

Let us call e, (s) and eJjO tlie two orthogonal propagating TE 

modes.    All higher order modes e    (s) are below cut off.    M - 2 higher 

order modes are used to match the tangential electric and magnetic field 

at the array aperture.    On the basis of considerations of the preceding 

sections,  if no matching network is present, the aperture discontinuity 

can be represented as a N x M port network characterized by the 

admittance matrix Y relating aperture currents and voltages for each 

mode as given by Equation (40): 

I   = Y V (41) 

If a lossless matching network is introduced in the element feedguides, 

the new aperture modal voltages must be determined to evaluate the 

array radiation.    In addition the reflection coefficient in the generator 

lines must be determined for the actively excited modes.    The matching 

network, which is the same for all TE,. mode ports,  can be represented 

in terms of a shunt susceptance and an ideal transformer.    For the higher 

order modes we suppose that the matching network provides a reactive 

termination, which can be represented by a lumped susceptance as seen 

at the element aperture.    The equivalent network of the array aperture 

and the matching network in the elements is shown in Figure 14 where the 

admittance of the generator lines for the TE, , modes is called Y    and 
* 11 g 

port 1 of element i is actively excited.    The reflection coefficient at port 1 

of element i is called V   ,. 
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Figure 14 - Finite Array Equivalent Network 
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A relation identical to Equation (41) is still valid for aperture currents 

and voltage. Let us express the aoerture voltages in terms of the voltages 

in the generator lines for the TE. , ports. 

Writing Equation (41) more explicity we have: 

k 
h 

M. 

Y       Y Y =11 =12 =1N 

Y      Y =21 =22 
Y 
=2N 

\INIIN2----INN/  \W 

(42) 

where 

^k and 4 

/1* 

LM 

At the actively excited TE,, port we have: 

1 + V 

+ JB 

^  ^ V = i[  (' " W Y, 

(itvl)h inc 

(43) 
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For the passively excited TE., ports the following relations hold: 

V   k 

„  k gr      ,_ _ ,     ,,. Tk    _   1     ,_2 „        _.„, „    k 
I V ZL~   (r = 1,  2); IK    =--    (n   Y    - jB) V    K (44) n r      n    * a     J er y    ' 

For all other ports we simply have: 

Ik       =   -jB     Vk (45) 

2 
Let us call n    Y    =G,  then,  by inserting relations (43) - (45) in (42), 

the following set of equations is obtained: 

Ji=(X + YT)r (46) 

In Equation (46) E is a N x M dimensional column vector representing 

the excitation.    The components of £. are obtained by multiplying the 
V in/« 

(M x i + l)th column of the matrix Y by except for the (M x i + 1 )th 

component which is given by: 

-Ijp-   LG + jB-Y^] 

The N x M dimensional vector £ of Equation (46) represents the array 

"response" to the excitation of port 1 of element i.    The components of 

£ are the total aperture voltages of the below cut-off modes (V      ),  the 

aperture passive excitation of TE.. ports (V       /n) and, for the active 
i 

port,  a voltage (V    . /n) which is directly related to the active reflection 
6 

coefficient in the generator line.    The matrix Y_ in Equation (46) is a 

diagonal matrix formed by the admittances terminating the ports 

(G - jB or jBm). 
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The systems of Equation (46) can be repeatedly solved for all the TE., 

ports of the network, thus constructing a rectangular matrix | of M x N 

rows and 2N columns.    The product between S and a 2N dimensional column 

vector,   representing the excitation of the TE.. ports, gives the "response" 

of the array to a general excitation.    The advantage of this procedure 

consists in the fact that any array symmetry can be easily exploited in 

reducing the number of excitations in Equation (46).    The substantial savings 

in terms of computer time as compared to the inversion of (Y -t- Y_) will be 

illustrated in a later section. 

3. 5  Radiation of Finite Arrays of Circular Waveguides in Infinite Ground 
Plane Covered by Dielectric 

The TE and TM components of the electric field from a finite array in 

an infinite ground plane can be found by applying simple transmission line 

considerations to Equation (35).    It can be simply shown [24] that for any 

point z >d (d = thickness of dielectric layer) the TE and TM components 

of the electric field are given by: 

E (x,   y,   z ) = 2 

JM 

*P®TM 

(iu|) 

d      (|u|) cos wdd + jYd 
TM 

(|u I) sin w.d 

Yd
TE  (|u|) 

+ tj,^)       TV TV w       Y^ (|u|) cos wdd + jYj1* (|ui) sin wdd 

.-jw(z-d)    -ju«x du 

(47) 

All notations in Equation (4?) are as established in previous sections.    The 

integrals in Equation (47) can be evaluated asymptotically for far field 

computation.    To this purpose, it is convenient to introduce the following 

change of variables: 
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u 

V 

w 

t cos p 

t sin p 

- v^ 
x   =   r sin 0 cos 0 

y   =   r sin 0 sin 0 

z-d   =   r cos 0 

then Equation (47) becomes: 

E (r,0,0) =2; 

o     o 

^)P1M(t)+^(t,   M)PllL(t)] 

V2       2 
k   - t   -jtr sin0 cos (4> - p] 

tdt dfi 

(48) 

where P       (t) and P      (t) are defined by comparison with Equation (47).  The 

asymptotic evaluation of Equation (48) does not present any particular 

difficulty as well known methods are available in the literature [25-26]. 

In Appendix D the the asymptotic evaluation of Equation (48) is treated 

with some detail for the fundamental TE., mode.    The same procedure 

can be applied to higher order modes with analogous results.    For the 

far TM component of the field of the TE.. mode of a single slot we 

have: 

rlimir,     „*i     A   e"Jkr    ,     .   .                Jx(akgin 6) 
r—.Ep(r,0,0) = J-—-—sin« k cos0    k ging  P       (k sin 6) 

and for the TE component: 
(48 a) 

lim                               A e'jkr                          ka J'l (ak 8in 6) TF 
r-3iE^ (r, 0,0) =fS-^— cos 0 cos 0 ^- P       (k sin 6) 

1 (k a sinflV 

(48 b1 
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For the definition of A,   a,   k,   J. and J' see appendix D. 
TE There is, in addition, the contribution from the poles of P      (t) and 

P       (t).    If we suppose that only a PA     (t) pole exists for the given value 

of d and  e    of the dielectric covering the array, the residue contribution 

is given by: 

NP™ m  Res=-juAsin4> J} (atp)^^ sin0       d    rv^TM      „ 

e 
-jr (t    sine -j cos 0   *|t      - k ) 

(49) 

where t    is the pole of P        (t),   NP       (t) and DP       (t) stand for numerator 
P TM and denominator of P       (t),   respectively.    It is worth noticing that 

Equation (49) does not contribute to the radiated far field of the slot. 

It is convenient to express the radiated far electric field in terms of 

the 0 and 0 components of the refererr^ (r> ßf <p) used is the integral (48). 

The 6 and 0 components of the far field are simply related to E. and E, : 

EQ (r, 0, 0)   =   Ep (r, 0, 0)/cos0 

E0 (r, e, 0)   =   E^ (r,e,0) 

Let us call P.  (0,0) the pattern relative to the TE. , mode considered 

— ikr 
^(0.0)   =f [ÖEQ(r, 0,0) + 0E0(r,0,0)] 

-*■ 

The patterns P. (e, 0) relative to other modes can be obtained in an 

analogous manner.    Then the array pattern is given simply by: 

M     / N -us* 

m=l   \n=l 
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where V        is the total voltage of the mode m on the nth aperture. 

Equation (50) is obtained by simple manipulation of Equation (48),  considering 

the definition given iorSp and £. in Equations (35a) and (35b). 

3. 6   Gain of Finite Arrays 

The realized gain of small arrays must be evaluated by the means of 

the elementary definition of gain,  since it is not possible to determine the 

element area gain as in infinite periodic array theory [27], 

The realized gain of an array in the direction (0  , <t>  ) of the spherical 

coordinate reference used to evaluate the far field (Equation (48)) is given 

by: 

Power Density at (0 , <P  ) 
C  I ft     <h  \ — o       o 

o'   o'    Maximum Power Density Available Isotropically 
(51) 

As the far field intensity E (0 ,   0 ) in the direction 19 , *  ) can be 
o      o o      o 

evaluated,   Equation (51) can be written as: 

2 

G(*o'V 
E (0o. 0o) Vrj 

PMAX/4,rr 

(52) 

Where 17 is the free space impedance and PWAY ^S ^e maximum power 

available in the generator lines.    By recalling the definition of 

Equation (50), we have that: 

E (0o,  *o) 

M     /  N \ 

m=l  \n=l / 
"'moo 

(53) 

The maximum power available,  if N    elements are actively excited, is 

given by: 

N 
e     - 

PMAX = Yg   Z     |Vgi I 
i=l 

(54) 
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Where Y    is the characteristic admittance of the propagating feedguide 

mode and V  . is the feedguide moöd voltage incident from the generators 

(Figure 14). 

Inserting Equations (53) and (54) in Equation (52), the gain equation 

for finite arrays is given by: 

4ff 

G (*o.   *o)   = 

M N 

Z 2> 
m=l   \n=l 

m     *JH°"n|Pm«>o-*o> 

N, 
(55) 

i=l 

It is important to note that the aperture field matching using Galerkin's 

method, performed to determine the amplitudes of the array element modal 

voltages,  conserves power,  as can be easily checked from Equations (36) 

and (37).    Thus gain expression (55) automatically takes into account any 

reflection losses. 

Equations (50) and (55) can be UP^ to determine the array radiation 

properties for any arbitrary excitation.    In particular they can be used to 

evaluate the gain and the pattern of an element in the array environment. 

3. 7   Element Pattern and Gain in a Finite Array of Apertures in an Infinite 
Ground Plane Covered by Dielectric 

The planar model developed in the previous sections has been applied 

to the  evaluation of the  radiation properties  of an array of 61   cir- 

cular waveguide elements.    The array geometry is shown in Figure 15. 

The waveguide elements of radius a = 0. 203X are loaded with a material 

of relative dielectric constant e    - 2. 54.    Only the two fundamental TE. . 

modes are propagating, all other modes are well below cut-off.    The 

frequency of operation of the antenna is 10 GHz.    The array area gain is 

about 23 dBi, and its angular extension over a cylinder of 100X is 2.5 deg. 

Several thickness and relative dielectric constant values have been 

considered for the sheet covering the array.    The results presented here 

refer to a thickness d = 0.075 in.  and a relative dielectric constant e   - 4. r 
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Figure 15 - Array Geometry 

This particular choice of d and e   provides excellent endfire coverage, as 

will be shown in the following subsections, and an acceptable broadside 

match for all array elements (typical reflection coefficient r =* 0. 3 so 

that no matching network is required in the waveguide elements). 

Only the two fundamental TE,, modes have been used in enforcing 

the continuity of the tangential fields at the array aperture.    This approxi- 

mation gives good results in the prediction of element and array patterns [15]. 

With this two-mode model the mutuals at the aperture plane are expressed 

by a matrix Y of dimension 122 x 122.    The scattering matrix S for the arrav 

can be computed either by inverting the X matrix as in Equation (32) or by 
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solving a system of equations as in Equation (33).    The matrix inversion 

operation in this case requires  ^48 sec on a UNIVAC 1108 computer, 

while the repeated solution of the system of Equation (33) requires only 

17 sec,  a reduction of 3:1 in computer time.    The advantage of using the 

repeated solution of Equation (33) versus the inversion of the matrix Y 

becomes more substantial   as the number of aperture modes used in 

field matching is increased.    While the computer time required to invert 

a matrix roughly increase with the cubic power of the dimension of the 

matrix,  the computer time necessary to repeatedly solve Equation (33) 

increases with the   square of the order of the matrix.    If four waveguide 

modes are used in field matching at the array aperture., the time required 

to invert Y is about 6.5 min, while the repeated solution of Equation (33) 

requires slightly over 1 min of computer time with a time reduction of 

about 6:1. 

A substantial amount of computation has been performed to evaluate 

the radiation characteristics of the array in Figure 15.    Only the most 

illustrative results will be reported here for brevity. 

Figure 16 shows the scattering coefficients in the axial direction when 

the center element (element No.   1) is excited with unit voltage with the TE., 

modes axially polarized.    As it can be seen, the fall  off of the coupling 

coefficients versus distance from the active element is not as rapid as in 

planar arrays without a dielectric cover.    This phenomenon can be clearly 

seen by comparing the results of Figure 16 with those in Figure 17, where 

the coupling coefficients are plotted for same array with no dielectric sheet. 

The slower fall off of the coupling coefficients in the dielectric covered array 

is due to the fact that the dielectric sheet supports a much stronger wave 

over the aperture of the antenna than in the case of no dielectric.    This 

wave is partially reflected at the array boundary discontinuity,  causing 

ripples in the coupling coefficient values.    The reflection  it the array 

boundary of a wave propagating over the antenna surface is clearly shown 

in Figure 18 where the axial coupling coefficients are shown for element 17 

excited with unit voltage at the TE. . axially polarized port.    Figure 19 

plots the scattering coefficients of the elements on a cardinal plane of the 

array for element 31 excited with axial polarization.    In this case a sub- 

stantial coupling with the cross polarized TE,, port is present. 
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Interesting results are shown by the element patterns in the array 

environment.    Figure 20 plots the circumferential plane pattern of the 

center element excited with the TE. , mode axially polarized.    In Figure 20 

is also shown the pattern of the same element in an infinite planar array 

environment.    The same element in the finite array has slightly higher gain 

(«0.5 dB) than in the infinite array.    No substantial difference is present in 

the two patterns.    The infinite array pattern has a wider beamwidth. 

Figure 21 shows the axial plane pattern for axial polarization actively 

excited in element 1 along with the corresponding infinite planar array 

case.    In this plane the finite size of the array produces substantial pattern 

oscillations and the departure between finite and infinite array case is much 

more marked than in the circumferential plane.    It is worth noticing that 

in the finite array pattern of Figure 21 no endfire radiation is present. 

This is due to the fact that the energy propagating along the surface of the 

array is trapped in a bound wave and does not contribute to the far field of 

the antenna. 
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Figure 20 - Array Element Pattern 
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Radiation pattern ripples, due to tne finite size of the array, are much 

more marked for edge elements,  as visible from Figure 22, where is shown 

the axial plane pattern of element 57 excited with axial polarization.    Pattern 

ripples have about 5 dB amplitude    and the element gain a* broadside is 

about 2. 5 dB lower than the gain of the same element in an infinite array. 

It is worth noticing that the finite array pattern shows more radiation than the 

infinite array model on the side of the edge (0<- 70 deg), while on the side 

of the array the opposite is detected for 70 deg< 0<9O deg.    Somewhat analo- 

gous behavior is exhibited by the pattern of edge elsment 49 in the axial 

plane,   shown in Figure 23.    Element pattern ripples are present in the cir- 

cumferential plane patterns of element 57 and 49 excited with axial polariza- 

tion,  as shown in Figures 24 and 25,  respectively. 

The array element pattern oscillation,   as shown in the previous figures, 

can produce substantial variation in the broadside gain of the array elements. 

In Figure 26 are shown the broadside gains of the slots positioned on the 

axial and circumferential plane with the gain of the same slots in an infinite 

array environment.    The TE. , mode axially polarized is actively excited 
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Figure 26 - Element Broadside Gain 

in the elements.    As it can be seen some elements have gain higher than 

the infinite array,  but in most elements the gain is lower and in some 

instances substantially lower.    The net effect is that the array has a lower 

gain than expected by assuming each element having an equivalent area 

gain equal to the infinite array cell area. 

The behavior of the elements is not substantially different when excited 

with circumferential polarization.    The results given so far are representa- 

tive for both polarizations. 

Although this array cannot provide hemispheric coverage,  its gain 

performance versus scan angle has been evaluated.    Figure 27 shows the 

gain fall off versus scan angle of the array beam for axial plane scan with 

axial polarization actively driven with uniform excitation at the array 

elements.    It is worth noticing in Figure 27 that for a steering command 

to scan at 6    =90 deg the peak of the antenna is at 6» 68 deg and a scan loss 

of 4 dB is present.   In these conditions at 6 = 80 deg the coverage is about 
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Figure 27 - Array Coverage 

8 dB down from broadside.    As expev...v_vl,  in the circumferential plane, the 

gain fall off with scan for axial polarization is even more severe than in the 

axial plane as shown in Figure 28. 

In order to achieve hemispheric scan coverage the radiation in the 

endfire direction must be enhanced by letting the energy trapped in the die- 

lectric radiate in free space.    This can be done by terminating the dielectric 

sheet covering the array at some distance from the array edge.    The radia- 

tion properties of dielectric edges will be considered in the next section. 
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4.  FINITE ARRAYS OF WAVEGUIDE APERTURES COVERED 
BY A FINITE DIELECTRIC SHEET 

4. 1   Radiation Patterns from a Surface Wave Excited Dielectric Wedge 

The radiation properties of an E-mode excited,  three-dimensional 

dielectric wedge can be determined from the consideration of the simpler 

two-dimensional,   E-mode excited, wedged dielectric slab.    The semi- 

infinite, wedge terminated, dielectric slab is shown in Figure 29.    The 

slab has width d,   relative dielectric constant £ , taper angle a,  and is 

excited at z = -oo with the dominant E-mode surface wave (H = y    H   ). ' o     y 
Although the reflection coefficient of the wedge interface (z=0) does 

not alter radiation patterns,  a well matched free space transition is 

essential in obtaining substantial endfire radiation from a dielectric 

slab covered array.    To facilitate the calculation of the reflection 

coefficient, T,  of the tapered wedge, the continuous taper is approximated 

by infinite stepped sections of length dz, with a corresponding differential 

impedance.    Making use of available analysis for tapered waveguide 

transitions [28],  one finds the reflection coefficient at z=0 to be given by: 

^.■jy.-w'iii. gun,., „6, 

where ß(z) is the surface wavenumber computed by assuming that the local 

wave number in a section of the dielectric wedge is equal to that of an 

infinite slab of the same thickness.    In Equation (56) Z (z) = ß (z) / ß(o). 

The computed reflection coefficient magnitude versus taper length 

for an e    = 4,  d = 0. 075X   thick dielectric slab is plotted in Figure 30. 

The fall off and periodicity is similar to other taper matching transitions 

described in [28].    For a taper length greater than 0. 8X the reflection 

coefficient remains less than 0.02, which provides a near perfect free 
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space launching of the surface wave.    For zero taper length the reflection 

coefficient via Equation (56) is 0. 185, which in this limit checks with the 

sim pie calculation of | r| = |~~   Pj°j I* 0. 185 (k = 2ir/\). 
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Figure 29 - Wedge Geometry 
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The surface wave propagation constant distribution along the taper, 

ß(t),   (implying   ß(x) directly, which is used in Equation (56)) is plotted in 

Figure 31 for an €    =4 dielectric slab.    The solutions for   ß(t) are found 

from the well-known transcendental equation: 

Sfi' f: ß 
2    tan   Jc   k2 •ßt (57) 

The   surface  wave propagation constant gives the near field phase distri- 

bution used in calculating patterns.    This assumed local phase behavior is 

compared with results obtained using a quasi-optics approach [ 29-30]   in 

Figure 32,   for an e   = 2 and d = 0. 375A. wedge.    The good agreement in the 

near field propagation constant distribution establishes confidence in the 

pattern calculations. 
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Figure 31 - Wedge Near Field Propagation Constant 
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Two methods to determine the near field amplitude distribution were 

tried.    One approach relied on conservation of power flow in the z direction 

and the simultaneous matching of boundary conditions assuming the existence 

of only the surface wave mode.    A second approach assumed infinitesimal 

discontinuities radiating locally from Y oriented line sources.    The change 

in impedance levels implied a radiation conductance (to maintain perfect 

match) associated with each dz increment.    Both these methods appear to 

be poor approximations in predicting field amplitude behavior at the tip 

discontinuity.    Depending on geometry,  both methods showed similar trends 

of either an increased near field amplitude at the initial taper transition or 

a fall off.    However,  the typical amplitude function was relatively constant. 

Balling's [29-30] results for near field amplitude also showed a relatively 

constant amplitude,  but comparisons with either of the simpler methods 

wer:* poor. 

The quasioptics calculations were not pursued because of the complexity 

in programming and excessive cost of computations.    Moreover,  patterns 
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calculated using different amplitude functions produced very little change 

within the main beam and only slight variations in sidelobe levels. 

Because of the uncertainty of the amplitude function,  in particular, 

what appeared to be a variation about some nominal constant value, a 

uniform amplitude distribution was selected for computations. 

From power conservation considerations the magnetic field amplitude 

|B|,  normalized to the square root of the incident power,  is 

IBI 2kUp 

(i(o)(p[hd + sin
?
2hd] + h cos2 hd 

_1 
2 

(58) 

where 

and 

J =   free jpace admittance. 

The far magnetic field pattern computed in a standard manner is given by: 

H (0)   =   y     2 
•it 

IBI cos ht [0(t) sin a + 

(59) 

- j p cos a]   e 
-J 

d-t 
sin a [0(t) cos a + k sin (0 + a) ] 

dt 

Patterns computed via Equation (59) are presented in Figure 33 for 

e    = 4,  d = 0. 075X   wedge with taper length,   g,  as a parameter.    Depending 

on the extent of coverage required off the endfire direction a suitable taper 

length can be chosen. ^ 
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Figure 33 - Dielectric Wedge Pattern 

4. 2   Approximate Model for the Radiation from Surface Wave Excited 
Three-Dimensional Dielectric Wedges 

The radiation from a three-dimensional dielectric wedge can now be 

approximately evaluated.    We suppose that the dielectric sheet covering 

the array is disc shaped.    This disc has a uniform thickness d over a 

radius r,   then the thickness of this disc is tapered to zero over a length C. 

The uniform thickness section of the disc extends beyond the array 

boundary, as shown in Figure 34. 
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Figure 34 - Dielectric Geometry 

The following approximations are made in evaluating the radiation from 

the dielectric taper: 

1) Only one bounded wave is incident at the dielectric wedge. 

This bounded wave is given by Equation (49) for 0 = /r/2. 

2) The distance of each point of the wedge from the array 

elements is big enough so that Equation (49) can be applied. 

3;     An infinitesimal arc rdw of the dielectric wedge at the point rcj 

radiates as if it were part of an infinite linear dielectric wedge 

tangential to the dielectric disc at the point ru so that 

Equation (59) can be used in the evaluation of the pattern. 

With these approximations, the radiation pattern 'rom the three-dimensional 

disc wedge can be written as: 

4>+it/Z 

0P (6,<t>) =7}F (0)0    f       cos (w -<p) S M e 

<t>-ir/2 

66 

jkr cos (co-0) sin0    (60) 
rdcj 

L„ '     —"-' --.:.-..-.--^-{Lii....,.   :...„-■-■,,-■ --w....-■■—■, ^u^maa^äa^mM 



UNCLASSIFIED 
In Kquation (60) tj is free space impedance,  F(0) is the far magnetic field 

pattern (obtained through Equation (59)) of the infinitesimal arc rdcd for unit 

magnetic field excitation and S(w ) is the wedge excitation at the point w.    The 

excitation S(w ) is given by: 

S(u) 

N 
= X) (Hn 

i = l 

sinu>+ H~. cosw) 
2i 

•jt  r 

P i 

^ 

where r.  represents the distance between the ith element and the point rw 

on the wedge.    H,. and H_, represent the amplitudes of the magnetic field 

incident to the wedge,   respectively due to the TE, , mode axially polarized 

and the TE, ,  circumferentially polarized excited at each array element 

aperture.    The relation between H.. and H2- and the modal aperture voltages 

is simply given by: 

NP™(t 
H l,2i '■-j'Ji«-vV^ i^Aii 

tp 

T,,        cos w,d Kd d 
1, 2i  1,w,      j sin w ,d 

where the notations are as in Equation (49). 
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We can now evaluate the radiation from the 61-element array previously 

considered, when the dielectric sheet is terminated at a certain distance from 

the antenna edge. 

With reference to Figure 34,   several radii,  r,  and taper length t have 

been taken into consideration.    For brevity,   only the most representative 

results,   relative to the case d = 0.075 in. , f   = 4,  r = 3A and t = 3X , will r 
be presented here. 

Figure 35 shows the element pattern in the array environment of element 

1 (Figure 15) in the axial plane for axial polarization actively excited.    The 

pattern of the same element is superimposed in the case of no wedge. 

Comparing the two patterns it can be seen that interference exists between the 

space wave emanating from the excited element and the radiation from the 

dielectric wedge.   This interference causes the element pattern to have ripples 

and rather deep notches.    It should be noticed,  however,  that,  because of the 

Figure 35 - Element Pattern in an Array Environment 
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dielectric wedge,  the element pattern shows a substantial radiation in the 

endfire direction,  as necessary to achieve hemispheric coverage.    In the 

circumferential plane the pattern of element 1,  excited with axial polarization, 

is not different from the one shown in Figure 20,  because the symmetry of 

the array and the dielectric cover is such that no wedge radiation is present 

in this plane. 
Figure 36,  plotting the axial pattern for axial polarization of element 57, 

shows very clearly how strongly the dielectric wedge can radiate when excited 

by an array element close to it.    In this case the peak of the wedge radiation 

is about 5 dB higher than the direct radiation from the array element.    In the 

circumferential plane the contribution to the far field of element 57 is not as 

substantial  as  in the  axial plane  as  can be   seen from  Figure   37;  it is 

interesting to notice that,  because of the dielectric taper radiation,   this 
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Figure 37 - Circumferential Pattern of Element 57 

H-plane pattern shows a finite value of radiation in the direction |e|   =90 deg. 

Analogous characteristics are present in the axial and circumferential patterns 

of element 49 shown in Figures 38 and 39. 

The coverage and pattern performance of the 61-element array of Figure 

15 has been evaluated.    The interference between the space wave radiated by 

the elements and the far field form the dielectric wedge,  already pointed out 

in the array element patterns,  is probably the most interesting feature of the 

array radiation. 

Figure 40 shows the axial pattern of the array in the no scan condition. 

The array illumination is a circular Taylor distribution with TT = 2 and -20 dB 

SLL;  the elements are excited with axial polarization.    For this scan condition 

the dielectric wedge is not heavily excited and the array pattern presents the 

only peculiarity of having some noticeable lobes in the direction close to end- 

fire.    As the scan angle is increased and the wedge is more excited,   the array 

pattern undergoes substantial distortion as can be seen from Figures 41,  42 

and 43.    The most dramatic effect of the interference is shown in Figure 43 

giving the axial pattern of the array for 90-deg scan in the axial plane. 
70 
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Figure 40 - Array Axial Pattern in No Scan Condition 
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Figure 42 - Array Pattern 
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In this case the array main beam undergoes interference from the wedge 

radiation for 6« 60 degrees showing a rather deep notch.    At this angle the 

array space wave and the dielectric wedge contribute to the array pattern 

with roughly the same amplitude and opposite phase.    For 9 > 65 deg, 

the array pattern is practically due only to the wedge radiation.    It is worth 

noticing that in the region -90 deg — 0 — -30 deg,  a substantial radiation is 

present due to the dielectric wedge.    The array coverage (envelope of the 

peaks of the beam) in two planes is shown in Figure 44, when the array is 

excited with the polarization in the plane of scan.    The coverage performance 

in the two planes is substantially analogous,  any difference is due to the array 

geometry. The antenna coverage is provided by the space wave radiated by 

the elements in the angular region < 50 deg.   At «±60 deg there is a notch in 

the coverage due to the interference between wedge and array element radia- 

tion,  while for the angular region > 65 deg the coverage is essentially provided 

by the wedge radiation.    The coverage in the region close to 90 deg has been 
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obtained by the giving the array elements phase commands which would steer 

the array main beam outside visible space.    The maximum endfire coverage, 

as shown in Figure 44,  has been found for a phase command |u 2TT 

T 1.1. 
Hemispheric scan coverage from the array is obtained by exciting the antenna 

with circular polarization as shown in Figure 45,  plotting the array coverage 

in the circumferential and axial plane.    Comparing Figures 44 and 45,  it can 

be seen that the notch at « 60 deg is only partially filled by using circular 

polarization.    Moreover,   there is a 3-dB polarization loss in the endfire 

direction.    It should be noticed,  however,   that the coverage in Figure 45 does 

not show a gain falloff greater than 6. 5 dB, which is very close to the 6-dB 

goal of this investigation. 

The influence of the length,   I,  of the dielectric wedge (the radius r is 

kept constant) on the array coverage is shown in Figure 46 in the axial 

plane with axial polarization excited.    As it can be 3een,  for values of I 

smaller than 3X  it is not possible to achieve hemispheric scan coverage 
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Figure 46 - Array Coverage versus Taper Ltngth 

because the gain falloff at endfire exceeds 3 dB.    By increasing I to 4X   it is 

actually possible to achieve near endfire a gain greater than at broadside. 

This selection of wedge length is not suitable for application because it 

produces excessive array pattern distortions and excecsive back radiation of 

the type shown in Figures 42 and 43,   the region -90 deg —9 — -30 deg. 

Pattern distortions,   due to interference,  and back radiation,   due to 

residual excitation of the wedge,   constitute the main limitation for the use of 

dielectric wedges to achieve wide angle  coverage.    It is not possible to give 

a general rule.    In each case the increase in endfire coverage must be care- 

fully traded off against the antenna pattern distortions. 

Finally,   the coverage variation versus frequency has been evaluated. 

Figure 47 plots the axial plane coverage using circular polarization for three 

frequencies:   center (f    = 10 GHz),  high (f    + 5 percent f  ) and low (f    - 5 

percent f ).    The wedge length is i = 3 A   .    All the three curves have been 

normalized at their broadside gain value.    There are some noticeable if not 

substantial variations of the array coverage versus frequency.    The low 
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Figure 47 - Array Coverage versus Frequency- 

frequency curve has a notch at 62 deg from broadside,  which is less deep than 

the one relative to the other two frequencies.    The endfire coverage at low 

frequency is 8 dB below the broadside gain.    The high frequency curve shows 

a notch 7. 5 dB deep at ~ 57 deg from broadside.    On the other hand the high 

frequency endfire gain is about 5. 5 dB lower than the broadside value.    The 

circumferential coverage for circular polarization shows analogous behavior 

versus frequency. 

From these results it appears that it is possible to realize hemispheric 

scan coverage with an 8-dB maximum oscillation over a 10-percent frequency 

band.    A hemispheric coverage with « 6-dB maximum oscillation is realizable 

only on a narrower band. 
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5. CONCLUSIONS 

In this study program the coverage obtainable by a small array covered 

by a finite dielectric layer over a cylinder of large radius has been investi- 

gated.    The goal of the investigation was to achieve hemispheric scan coverage 

(6 dB maximum antenna gain falloff or oscillation over the hemisphere).    The 

studies have shown that the radiation from a small array over a dielectric- 

clad cylinder of large radius can be approximated with good accuracy by a 

planar array model.    An accurate method of analysis of finite arrays over 

an infinite ground plane covered by dielectric was established to evaluate 

the coverage obtainable from these structures.    The advantage of this method 

over others previously available consists in the fact that no matrix inversion 

is required to evaluate the electric field distribution at the array element 

apertures,   so relatively large arrays can be analyzed without significant 

numerical effort. 

The analysis has shown that hemispheric scan coverage is not achievable 

by these structure,   because the energy leaving the array in directions close 

to endfire is trapped in the infinite dielectric sheet and does not contribute 

to radiation.    This trapped energy must be radiated in free space by termi- 

nating the dielectric sheet in order to obtain endfire coverage. 

An approximate model of the radiation from three-demensional dielectric 

wedges was generated,   so that the coverage of finite arrays covered by finite 

size dielectric sheets could be analyzed.    This approximate model 3hows 

that for an array of te23 dB aperture gain a substantial endfire coverage can 

be obtained at the expense of array pattern distortions in directions close 

to endfire.    Computations have shown that hemispheric scan coverage can 

be obtained with 6. 5 dB maximum gain oscillation over the hemisphere.    The 

hemispheric coverage can be achieved over a relatively narrow band.    If a 

10-percent bandwidth is required,   the coverage obtainable from a 23-dB 

aperture gain array presents maximum oscillations of 8 dB. 

The models generated during this study effort a re somewhat pessimistic in 

predicting the coverage of finite arrays covered by a finite dielectric sheet ove r a 
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large cylinder because of the approximations introduced in the analysis. 

The planar array used in modelling the cylindrical arrays predicts slightly 

lower endure radiation in the circumferential plane than a rigorous cylindrical 

model,   as shown by the analysis of infinite periodic arrays performed in Sec- 

tion 2.    A better than predicted endfire coverage in the circumferential plane 

can be expected for these structures.    Another approximation has been 

introduced in the analysis OJ the radiation from wedges by assuming that only 

the energy relative to a surface wave is incident at the dielectric discontinuity. 

This is correct only in a first approximation.    A more accurate model would 

show t; at a spectrum of waves is incident at the dielectric discontinuity, 

with .    ' effect of enhancing the endfire radiation of the dielectric wedge. 

Littk investigation has been performed in this area and substantial studies 

are still necessary to accurately predict radiation from three-dimensional 

dielectric wedges. 

With these approximations the analysis performed for a 23-dB aperture 

gain array predicts that hemispheric scan coverage is possible with a 6. 5-dB 

maximum gain oscillation.    This value is close enough to the goal set for 

this investigation that a 6-dB maximum oscillation can be expected in 

practice by a 23-dB aperture gain array covered by a dielectric sheet of 

finite demension over a large cylindrical structure. 
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APPENDIX A 

CONTINUITY OF TANGENTIAL FIELDS AT 
CYLINDRICAL DIELECTRIC INTERFACES 

T.ie continuity of the H    and E    components of the field is very simply 
z z 

enforced and yields expressions (13) - (14) for the amplitudes of the trans- 

mitted waves. 

The enforcement of the continuity of H . and E^ shows the coupling 

between LSE and LSM modes and will be discussed in some detail. 

Let us call: 

,      .      nw    /    1 1 cn(nw) = T [-~z-~r 
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12 
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Then by introducing Equations (13) and  (14) in Equations (2) to (6) and 

equating the expressions ior E. and H0 in the dielectric and in free space 

at r = b, the following equations are obtained: 

Hn
(2)(bk     ) 

Cj^n, w)B(n, w) + c 12(n, w)D(n, w) = rjr Cj^n, w)A(n, w) 
H  x   '(bk      ) n pe 

+  Til e . (n, w) C(n, w) 
H U'(bk      )     i 

n pe 

(A-l) 

-c21(n,w)B(n,w) +   Cj   (n, w)D(n, w) 

«n
,2We> 
 7T) tL—   c     (n, w)C(n, w) 
H  u'(bk      )      Ll 

n pe' 

Hn(2)(bk
0e} 

—Til         e?(n, w)A(n, w) 
H   U'(bk     )     £- 

n pe 

(A-2) 

It is interesting to note in Equations (A-l and A-2) that both reflected 

■waves B(n, w) and D(n, w) depend on Afn.w) and C(n,w) simultaneously 

so that there is cross coupling between LSE and LSM modes. 

By calling A(n,w) -c,j2(n,w) - c  ~(n,w) c_.(n, w),  the following- 

expressions are obtained for the amplitudes of the reflected waves: 

(2) 2 
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The expressions for T   (n, w), T   (n, w), T      (n, w) and T      (n, w) are imme- 

diately established by comparing Equations (A-3) and (A-4) with Equations 

(15) and (16). 

From Equations (A-3) and (A-4) it can be seen that the cross coupling 

coefficients between LSE and LSM modes are due to the curvature of the 
EH HE 

dielectric interface,  since both T ""   (n, w) and T      (n,w) depend on c..(n,w), 

which in turn,  is inversely proportional to the radius of curvature of the 

dielectric interface.    As b increases,  the value of T      (n, w) and T      (n, w) 

decrease as 1/b.    For b sufficiently large (b S*100X) the contributions of 
EH HE 

T      (n, w) and T      (n, w) to the reflected field can be neglected for a large 

number of cylindrical harmonics. 

If the radius of curvature b of the dielectric interface goes to infinity, 
EH HE 

the cross coupling coefficients F      (n, w) and T      (n, w) tend to zero, while 

lim   r     (n, w)Älim 
b-»°o b-*°o 

H (2) 
•bkpe)  e 2*n,w) (A-5) 

H  (1'(bk     )   c21<n'w> 
n pe 

lim    r     (n, w)c=lim 
Hn(2)(bkpC^    ei<n'w> 

c
12(n,w) (A-6) 

It can be simply verified that the limiting values of Equations (A-5) and 

(A-6) are the well known reflection coefficients for a plane dielectric inter- 

face except for a phase term due to the selection of the origin of the cylin- 

drical coordinates. 
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APPENDIX B 

CONTINUITY OF TANGENTIAL ELECTRIC AND MAGNETIC 
FIELD AT ARRAY APERTURE 

To enforce the continuity of the electric field at the array aperture it is 

convenient to operate on the E   and E^ components separately. 

Enforcing the equality between Equations (17) and (10) for each cylin- 

drical harmonic, the following equation is established for E : 

N-l        + °° .277... ..       , r 277 ... . -j—(,.-n)m      -j(i-n) --jj-      -jrj(wQ-w) 
e e ^ e 

m =0       r + - oo 

Q 
I 
a 

s = l 
«Is H   W Szs (a '   W) >   =A(n>   W) 

(2) 
(B-l) 

H       (ak     ) 

FE(n,w) u[l) (ak     ) 
n pe 

+ rHE (n, w) C(n, w) H(1) (ak     ) 
n pe 

In Equation (B-l) the summation in m is different from zero if and only 

if the cylindrical harmonic index is n = i+pN (p is any integer) and in such 

case the summation is equal to N.    By using the expansion of a periodic 

delta function [11] Equation (B-l) finally becomes [1]: 

+ r (u s   —o 
S      (—"— , w) / 6(w - w       ) 

opq zs       a 

= A(i + pN,   w) H^ M(ak     ) + TE(i + pN,   w) H^.Jak     ) i+pN       pf r i+pN      Pf 

(B-2) 

+ rHE (i + pN,   w) C (i + pN.  w) HJ^N (akpf) 
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where 

w - w    + q 4~+P '-  .  and fi (w - w        ) is Dirac's delta function, 
opq        o     n   h n opq 

By enforcing the equality of E^ in a completely analogous fashion, the 

following equation is obta ned: 

6ic+  r (u ) is        s   —o 
£.   ,i+pN      . 0s(—£-, w) 

a   k2 _w2      zs*      u 
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/ ^ k2
f - w2 
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J a 
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Pe' 

(B-3) 

+ r 
.EH 

H: (l) 
(iLpN, w)     (i+pN,w)     i+pN(ak pe) 

The solution of the system  )f Equations (B-2) and (B-3) yields expressions 
F"        HF       F"H 

(18) and (19) of Section 4,   vith the following definitions of R   ,  R      , R      ,  and 
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where 

A1  (i + pN,  w) = Hi+pN (akpf
) + F(i+pN,  w) Hi+pN (akpe

) 

HiipN <akpe) + ra+PN,  w^UpN^V 

-H
(1)

     fak    )  rHE H'
(1)    <ak    ) rEH 

"i+pN   ,aV    l(i+pN,   w)   Hi+pN  ,apf'    i+pN,w) 

is the determinant of the coefficients of the system of Equations (B-2) and 

(B-3). 

The expression of the external magnetic field can be obtained by- 

introducing Equations (18) and (19) for A(i+pN, w) and C(i+pN, w) in 

Equations (7),  (9), and (12) of Section 2.   Some straightforward algebra is 

involved and Equation (20a) is obtained for the external magnetic field, with 

the following definitions of a(u      ).  b(u      ),  c(u      ). and d(u      ). 6 opq        °pq      —opq' °pq 
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' (2) 

H.   ^'   (ak     ) 
i VpN        pq 

+ TE (i + pN,  k       ) H'J
1
^ (ak    ) v       r opq'     x+pN v     pq' 

HP 
R        (i + pN,   w        ) 

opq 

(i + pN)w „ 
1 H        opq   RH 
a       k2 - w2 opq 

€ opq 
r 

r        (i + pN,  w       ) H.j1'   (ak     ) 
opq       i+pN       pq 

F ,    (i+pN)w 
RE (i+PN.   w       > + I   __J29    RHE (i+pN> 

Pq'       ^     k2  .w2 " '"»"'•   Wopq} 

€ opq 
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TTI4 II) ,      (i   +  pN)w 

rEH(i + pN#w       )H!'      (ak     ) -f 1      - ,   PS K opq       i+pN        pq'      a     ^   _ w2 
f opq 

i   (i + pN)w „ 1 r        opq   „H ,. 

w 
2  ^   RH (i + pN,   w^) + REH (i + pN,   w__) 

opq' 
opq 

opq 

(B-7) 

H!!iw <ak™> + TH (i + pN,   w       ) H!!
,
.1 (ak     ) i+pN        pq r opq'     i+pN v     pq' 

tf2 In Equations (B-4) - (B-7), k      = \k~   -   w"     .    It is worth noticing that for 

(b-a)—>0 or for c—►«   the expressions (B-4) - (B-7) tend to the equations 

given in a previous report [ l]   for the tangential magnetic field on an infinite 

cylindrical array with no dielectric cover. 

The continuity of the tangential magnetic field at the array element 

aperture can be enforced by applying Galerkin's method, whereby the 

difference between H~ (S) and H   (s) is forced to have zero projection on 

the modal functions v   xe.   (s).    By scalar multiplication of the difference 
O      —K 

between Equations (20) and (20a) and the magnetic field modal functions 

$   x _e    (s),  the following Q equations are obtained [l]: 

oo oo 

a(W0 (WV^pq
)f 

b(u ) s (u) r\ (u  j * c(u   ) £ (u    ) s: (u    ) * 
-T3pq      z   -opq      k0   "^opq -opq     0  -opq      kz  -opq 

d(u       ) S   (u       ) £.'"    (u       ) |       (k - 1,  ....  Q) -opq      z -opq      kz   -opq   I *,...,*</ 

(B-8) 
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Where the star denotes complex conjugate.    The system of Equation (B-8) 

can be cast in the form of Equation (21) by calling 

+ 00   +00 

huMj = ~- y y a(u je" (u ) ^^(u_ ) + ks —o c    Z, 
P= -00 ~~°pq     k0 ~°pq      s0 ~°pq 

b(u       ) £'"      (u       )    5    (u       ) f c(u       ) £ 
K<p SZ 

pq' £\      (u        )   ^  .(u       )  f rn      kz   -opq      s0-opq 

d(u    J £'"    (u       )   £     (u       ) 
—opq —opq       sz-opq 

kz 

where C is the elementary array cell area. 
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APPENDIX C 

CONTINUITY OF TANGENTIAL FIELDS AT 
FINITE ARRAY APERTURE 

By requiring that the difference between Equations (36) and (37) has 
A       fc 

zero projection on the subspace spanned by z xe ,   (s - s   ) the following 

equation is obtained: 

«N.h-rW 2V // 

A k    / i z x S u (s - s, ) 

+ «g 
w 

^(U)r-p-FTE(|u|) 
cTd 

(C-l) 

+ *  S   (u)   -      ,n) 
d        F™(|u| e J du d A, 

where the first integration is extended over the kth aperture.    By changing 

order of integration and performing the integration on A, ,   Equation (C-l) 

becomes: 

.+ =«. 

<*kl,n-rkh>Ykh = jfjf,Lu)5k^(u)^-FTM(|u,) 
"m    Vd 

(C-2) 
w 

-^(«)^;h(U)^-FTE«iu,) 
■jusk 

du 

k     * k     * c k where I     ,     and f   ,,     are the components oft   ,   (-u). 

Inserting in Equation (C-2) expression (35a) and (35b) for £D(u) and 5   (u) 

we finally obtain: 
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N      M 

«l.,h-rkh'y\ E Eywo 
n= 1   m= 1 

+ 00 

a      ,  v  _k*      ;  ,    kd      „TM 
M^     ph(B)^-F  (lul) (C-3) 

5 .;.«, (a) 8   ,uu (a) 
w 

i//m J/h kd*d 
F        (|u|) •ju(sk-sh) 

du 

Equation (C-3) can be written as Equation (40) by defining the mutual 
nk 

admittance term Y    „.   as: 

rnk 
mh i If [^«<k;h«- W 

F        (|u|) 

n ,k* w 
f   ,     (u) ^     ,.   (u)-~- F 

TE 
(I ,„] .-*<v*h'd]i 

From Equation (C-3) it is easy to derive the admittance expressions for an 

infinite periodic array of waveguide apertures.    Writing (C-2) for an 

arbitrarily chosen reference element, we can express the vector s,   - s    in 

terms of the lattice basis vectors s,,  _s_ and the tangential electric 

field at the array aperture can be given in terms of the electric field at the 

reference element [23]! 
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n p=-oo    q=-oo 

-j (s + uJ (PI, + q£2) 
^m (u) e ° l (C-4) 

Inserting Equation (C-4) in (C-3), we note that [11]: 

+ 00      +00       . +00      +00 

p=-oo q p=-oo  q=. 00 

6(u + UQ + p tj + q i2) 

where 6 is Dirac's delta function,  C is the lattice cell area and t., £? are 

the reciprocal vectors of 8,,   s_?.    By performing the integration, 
Equation (C-3) becomes: 

M +00    +00 

m=l p=-oo q=-oo CT?d 

(im^/ph(ö)~-   F™   (|«,) + (C-5, 

■*      ,.,   Wd    „TE 

« = % + pi!+qt2 

where the brackets indicate that the function is computed at the points 

u = u    + pt,  + qt?.     Equation (C-5) is immediately recognized to be the 

solution of the boundary condition problem for an infinite periodic array of 

waveguide apertures,   as presented by several authors [ 7-12]  . 
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APPENDIX D 

ASYMPTOTIC EVALUATION OF FAR FIELD 

The asymptotic evaluation of Equation (48) is treated here with some 

il for the TE.. poli 

we have (Reference  1): 

detail for the TE.. polarized in the y direction of Figure 48.    For this mode 

£     (t,fi)= A^ij. (at) 
p t l 

*,.  (t,M)= A 
a cos ß 

i-<4-) 
xn 

2  Jl (at) 

(D-l) 

(D-2) 

In Equations (D-l) and (D-2) "a" is the element radius»   J, is the Bes9el 

function of first kind and first order,   J, is its derivative,   x. . is the first root 1 
of the Equation J. (x) = O.    The amplitude constant A, 

11 

1 

is obtained by normalizing the mode funtions.    Inserting Equations (D-l) and 

(D-2) in Equation (48) and separating the TM and TE components we get: 

2TT 

Ep  (r.e,  <|>) = 

where 

exo = 

A 
2ir Jj^Ji (at) P™(t) e exp t dt du 

o    o 

r  2    Z j [ r cos 6 \ k   -t     + tr sin 6  cos (<t>  - pj] 

(D-3) 
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2ir 

E^ (r.e,   4») A /     la cos u.    J   , ,TE (at) PllL(t)e expt dt du (D-4) 

1.1 

where 

exp = -j [ r cos ö^k   -t     + tr sin 9  cos (4>  - \i)] 

Let us deal first with the integral in Equation (D-3).   By performing the 

integration in \i,   Equation (D-3) becomes: 

Ep  (r.e,   <f>) -j A sin <t> 
JI (at)     PTM ... i   r       (2) .    fi  j:     P         (t) j I Hj        (tr sin 9 ) 

(1) + H  u' »tr sin 6 )]   e -j r cos 6 yk2 -   t2 , dt 
(D-b) 

For large values of r we can write: 

Ep   (r,e,   4.) = .j A sin 4> -]-^-   P™ (t)i     V     /2j    ft J J t 2      T   ir t r sin o 

-j (r t sin 0   + r cos 6  \/R 2 - t2)     d 

00 

/ t '•        f    irtrsin 

r 2      .2, j (r t sin 6   - r cos 0     \kc - t   v   Jt tat 
(D-6) 
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By the changing the variable t ~* - t in the second integral of Equation (D-6) 

and summing the two integrals we finally obtain 

+ «o 

as.*„„...♦, .$....♦ fi£!p™«„^=i 

(D-7) 
where 

exp = -j (t r sin 6  + r cos 9   W k     - t   ) 

With an identical procedure the integral in Equation (D-4) is reduced to 

+ - 

r-21.    E,   (r, 6,   *)   =   £- cos^ I IT t r si] 
aJ:'at)

2  pTE<t) V-r-H-B -exptdt .2 v '     1 IT t r sin 0 
i -(-¥) 

xn 
(D-8) 

wher«' 

exp = -j ( t r sin Q  + r cos 6    \ k    - t  ) 

The asymptotic evaluation of the integrals in Er -ations (D-7) and (D-8) does 

not present any difficulty as well-known methods are available (References 

2 5 and 26) and the results given by Equations (48 a-b)   and (49) are promptly 

established. 
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