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1. INTRODUCTION AND SUMMARY |

2w

, ‘This Scientific Report summarizes the studies performed during 1972
E for AFCRL under Contract No. F19628-72-C-0202. The objective of the

study program is the investigation of techniques to obtain hemispheric scan

’g‘ coverage (no more than 6 dB antenna gain fall oif or oscillation over the

hemisphere) by using an array of waveguide apertures covered by a

S AP AN AN A AR N

dielectric slab. The array is on a cylindrical ground plane of large radius

it

(R =100 A) and its aperture gain is betwesn 20 and 30 dB above isotropic.

The most significant result of the study it that hemispheric scan coverage

CORTA T ¥

- is indeed achievable with dielectric covered arrays.
4 : The analytical study of the radiation from an array of waveguide aper-
i tures covered by dielectric has been developed in three steps.

In a first phase of the study the properties of infinite cylindrical arrays
covered dielectric have been investigated. The problem has been approached
by separately enforcing the continuity of the EM fields at the air-dielectric
and at the dielectric-cylinder interface,

The continuity of the EM fields at the air-dielectric interface is enforced
by representing in both media the fields as a superpositicn of modes LSE
and LSM with respect to the direction of the axis of the cyiinder. The curva-
ture of the air-dielectric interface causes coupling between LSE and LSM
modes, which are decoupled in the planar case. The matching of the fields
at the second interface is performed by resorting to the ""eigenexcitation"
method, presented in a previous report [1]. The fields external to the
cylinder are represented by a set of space harmonics matching the symmetry
of the array excitation and the field in the waveguide elements by a super-
position of normal waveguide modes. The continuity of the fields is enforced
by using Galerkin's method. This rigorous analysis of dielectric clad
cylindrical arrays leads to rather involved expressions for the element
driving point admittance and for the far fields. An approximate analysis
is introduced to simplify the design of these structures. A number of

numerical examples illustrates the good approximation given by the

1
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simplified analysis in the case of large cylinders. Numerical results are
presented for the case of an array on a cylinder with radius of approximately
100A. The array element patterns snow the presence of resonance dips
much more pronounced than the notches due to grating lobe phenomena.

The computations show that there are only minor differences in the
element pattern and in driving point admittance between dielectric-clad
cylindrical arrays of large radius and the corresponding planar arrays.
These results indicate that the coverage performance of a finite dimension
array (aperture gain 20 - 30 dB) over a large cylinder can be evaluated
with excellent approximation by the means of a plane array model.

In the second phase of this study program efforts were directed at the
investigation of the radiation properties of finite arrays of waveguide ele-
ments in an infinite ground plane covered by an infinite dielectric sheet.

The main result of the second part of the studies consists of a method of
analysis of finite arrays. The method is based on enforcing the continuity

at the array apertures of the space waves, represented by a Fourier double
integral, and of the fields in the waveguides, represerted as a superposition
of waveguide modes. This nm.2thod, since it does not require the inversion of
large matrices in determining of the mutual coupling coeffici:nts between
array elements is especially valuable in the analysis of large arrays of
waveguide elements. Computations of the coverage of zn array of 61

circular waveguide elements show that it 1s not possible to obtain hemispheric
coverage from arrays in an infinite ground plane covered by dielectric. No
radiation can take place in directions close to endfire because the energy
leaving the array is trapped in a surface wave propagating along the dielectric
sheet. In order to achieve endfire coverage the energy bound to the surface
wave must be radiated in free space by terminating the dielectric ~heet.

In the last phase of the program the radiation properties of surface wave
excited dielectric wedges have been studied by generating a transmission
line model. The patterns and the reflection coefficients of several tapered
two-dimensional wedges were investigated. It has been found that for
dielectric tapers over 1A long there is practically no reflection of the sur-
face wave at the wedge discontinuity. From the two dimensional wedge
rmodel a simple model of three-dimensional wedges has been generated to

evaluate the radiation from finite arrays covered by finite slabs of dielectric

2
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. _ in an infinite ground plane. The analytical results show that, by properly |

tapering the dielectric wedge, it is possible to obtain hemispheric scan

o

coverage from an array of 20 - 30 dB aperture gain. In the conical region

T P T T R

of =65 deg semiaperture around the array normal the coverage is provided
by the space wave radiated by the 2lements, while the endfire and near
endfire coverage is provided by the radia.ion from the tapered wedge. The
interference between the space wave and the wedge radiation produces high
sidelobes in the array pattern at certain scan angles.

| This report is organized in three sections summarizing the three phases

of the study program. In Section 2 the analysis and the numerical results
relative to infinite periodic cylindrical arrays covered by dielectric are
presented. Section 3 is devoted to the analysis of finite planar arrays in

an infinite ground plane covered by a dielectric sheet over an infinite

ground plane. Section 4 deals with finite arrays covered by a finite dielectric
sheet. The appendices of the report present with some detail the
justification of the mathematical models used in evaluating the radiation

from dielectric covered arrays,
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2. ANALYSIS OF PERIODIC ARRAYS OF WAVEGUIDE
APERTURES ON CONDUCTING CYLINDERS
COVERED BY DIELECTRIC

e L

WA A A U TS

oI

2.1 General Remarks i

Cylindrical arrays covered by dielectric are suited for airborne and
missile borne application as the dielectric layer provides a natural radome !
for the antenna. t
The radiation from slots on a cylinder covered by dielectric has been ]
studied by several authors and a fairly extensive literature exists on this :
topic. Early works by Wait and Mientka [2] and Wait and Conda [3] are
based on representing the fields external to a cylinder as a superposition
of modes TE and TM to the direction of the cylinder axis and on enforcing
the continuity of the tangential fields at the lielectric discontinuity.
More recently Sureau and Hessel [4] have performed a mutual coupling
analysis for arrays of thin infinite axial slits on cylinders covered by
dielectric, Their analysis resorts to expanding the fields external to the
cylinder in modes LSE [5] with respect to the radial direction. Sureau and
HHessel show the presence of resonance dips in the array element pattern.
The axial slit model, although it gives some excelicat physical insights,
represents an idealized structure and dces not provide the ccmplete infor-
mation required for a three-dimensional array design.
In this report a systematic analysis of cylindrical arrays of waveguide
apertures covered by dielectric is presented with the aim of providing an
effective design tool for these antennas. The approach taken consists in
expanding the fields external to cylinder in modes LSE and LSM [6] with
respect io the zxial direction and enforcing the continuity of the tangential
fields at the dielectric discontinuity. The field matching at the array
aperture is performed by resorting to the ''eigenexcitation' method [1].
For each array eigenexcitzlion the field continuity at the waveguide apertura.

is enforced by applying Galerkin's method [7].

Preceding page blank
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2,2 Reflection at Cylindricel Dielectric Discontinuities

The reflection of cylindricai -2ves at cylindrical dielectric discontinui-
ties has been studied by several authors [8-9] and has resulted in express.ions
for the fields which are rather involved and without clear physical inter-
pretation. In this section the analysie of cylindrical discontinuities is
performed to point out scme phenomena at these discontinuities and to
cast the results in a form readily usable for phased array analysis. Since
only cylindrical dielectric discontinuities are dealt with in this section,
there is no need to specify the array structure other than the radius of the
cylindrical array and the external radius of the dielectric layer,

With reference to Figure 1, the dielectric region (a < P < b) and the free
space region (b < p) can be thought of as two series radial transmission
lines with a discontinuity in the dielectric loading at s = b,

The fields in the two radial transmission lines can be represented as a
superposition of modes LSE and LSM with respect to the axial direction
z [6]. In the free space region only cutward propagating waves are present

and the following expressions hold for the transverse (to p) fields.

LSE Modes
+ o0 + 00
Hz = E e-me / F(n, w) Hr(12) (0 ﬁz - w2 ) e-‘]WZ aw (1)
n=-o0 -0
+ 00 + o0

B, =3 je ik / Fow_ @) o\ 202 oi% 4y (2)

2 2 =°
w

4 oo + oo
) Sjus 1 awF(n, w) ., (2) z 2 -jwz
H¢_- E e - / —-———kz-wz Hn (P‘Jk -w e dw (3)
n=- oo 4
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DIELECTRIC

Figure 1 - Geometrical Reference

LSM Modes
400 it00 .
Ez = Z g IO / E(n, w) Hr(\Z) (p ka - wz) e V7 dw (4)
n= -~ oo - 00
+ 00 + o0
E.=. Z e-]nd) A / nwE(n, w) H(Z) (p\h(Z ) WZ) e IVZ 4o (5)
] [ 2 2 n
k - w
Nn= - oo - 00
+ 00 4 o0
H = - v e-Jnda J]_f_ E(n, w) H' ‘2)(9‘,1(2 _WZ) TIWZ sy
¢ y, $ 5> n
n=- oo -0C k™ -w

In Equations (1) - (6) Hr(zZ) is a Hankel function, H:_l(z) its derivative
with respect to the argument, F(n, w) and E(n, w) are the modal currents

and voltages respectively, w is the wave number in the axial direction, (A

7
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n are the free space impedance and admittance respectively. For w > k the

outward propagating waves are renresented by Hr(12) (-jp\[wz - kz ) The
selected modal representation is analogous to the expansion in TE and TM
modes (with respect to the array normal) of the space harmonics in planar
array theory [7]. This can be seen by introducing Equations (1) - (6) in the
radial component field equations [13] and taking the limit for p—+. In the
dielectric reginon outward and inward propagating waves are present and the

fields can be represented by:

LSE Modes

+ oo + o0
H = z e~I09 /I(p, n, w) e V% qw (7)
4
n=-w - 00
1 2 2
I{p, n, w) = C(n, w) Hr(12) (v k? - w2) + D(n, w) Hr(x ) (p ke -w )
(8)
+ 00 i +:°
3 o”in9® € SR SR, < T -jwz
E¢- z je - / 5 AT I (p,n,w)e dw
€ k> -w
n=-oo -0 €
+ o0 + oo
H. = e"ind 1 —~ 8% 1 (pn,w)e IV dw (9)
] p kZ 2
-w
n=-oo -0c0 €
LSM Modes
t oo 4 00
E = Z gRine / Vg, n,w)e VW dw (10)
P
n=- oo -00
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- V(p, n, w! = A(n, w) lléz) (p\[ki Z )+ B(n, w) II(” ( \/—;—-__“7)

(11

¥
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b oo +oo
E, = - e-jn¢ L —2Y¥ _ v(p n, w) e W qw
) ) 2 2
k -w
n=-oo - 00 €
. + 00 k + o0
Hy = - Z e r_e f—zl“'z— a‘j‘V(p,n,w)e"‘W" dw (12)
€ k™ -w 5
n=-o00 - 00 €

In Equations (7) - (12) A(n, w) and B(n, w) are the voltage amplitudee of
the incident and reflected LSM modes, C(n, w) and D(n, w) are the current
amplitudes for the incident and reflected LSE modes. The Hankel functions

(2) and Hr(1 ) represent an outward and an inward propagating wave, H’ (@)
and H'(l) are the derivatives of H (2) and H (oL with respect to the argument
ke, §(_. » M, represent the propagatmn consta it, the characteristic impedance
and tile characteristic admittance in the dielectric region. For w > ke the

~ outward and the inward propagating waves are represented by

Hn \-ijv - k;r) andH( ) ( JpV ’ respectively, to satisfy the

radiation coadition.
By enforcing the continuity of all the transverse field components
(Appendix A) at r = b, the following expressions for the amplitudes of the

transmitte) and reflected fields are obtained:

‘?-’(b\/k_—?-_) il (bm)

F(n, w) = C(n, w) i : .+ D(n, w) — - (13)
H‘(lz)(b K2 . wl ) Hr(lz) (b VK2 - w?
Héz) (b kg -w H(l) (b 3 = w2

E(n, w) = A(n, w) + B(n, w) — (14)

Hr(l?_)(b N ) iz (b N )
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B(n, w) I'E(n, w) A(n, w) + T'HE(n, w) C(n, w) (15)

1"

D(n, w! I‘EH(n, w) A(n, w) + T‘H(n, w) C(n, w) {16)

H

The explicit expressions for [‘E(n,w), [‘HE(n,w), ]"EH(n,w), FH(n,w) are
given in Appendix A.

It should be noticed from Equations (15) - (16) that there is cross cou-

AN

7' '1g between LSE and LSM modes, which are decoupled for an infinite

pi...ar dielectric interface. The cross coupling terms [‘Ed(n,w) and
FHL(n, w) are due to the curvature of the dielectric discontinuity and tend

to zero as b+oo. For b-som, [‘E(n,w) and [‘H(n,w) tend to the plane case

values as shown in Appendix A.

2.3 Infinite Cylindrical Arrays of Waveguide Apertures Covered by
Dielectric

2.3.1 Aperture Field Matching

The model of the array consiscs of a regular grid of circular
apertures of radius T, fed by a waveguide of the same cross section on
an infinite cylindrical surface of radius "a''. The array lattice is defined
by twc vectors 83 and 8, as shown in Figure 2 where the axial and circum-
ferential spacings between elements are called 2h and d respectively. The
array has N elements in each circumferential ring. The dielectriclayer cover-
ing the array has an externalradius b and a dielectric constant €. The array
waveguides are filled with dielectric with dielectric constant €¢'. Only the
two orthogonal TE11 modes are assumed to be propagating in the waveguide.

The element aperture transverse electric field distribulion will be
assumed to be represented with good accuracy by a superposition of Q
waveguide modes (the two TEll's plus higher order modes). The vector
mode functions for the TE]\1 polarized in the axial and circumferential
direction will be denoted by N (s) and e, (s) respectively, s being a pusition

vector. The higher order modes e, (s) are ordered by decreasing cutoff-

frequency.
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+ AXIAL DIRECTION
|

Els) = Z Z 2[513 (u )e (s - ms

Figure 2 - Cylindrical Array Lattice

In matching the tangential fields at the array dielectric interface the
eigenexcitation method will be used. The eigenexcitation approach to the
analysis of cylindrical arrays has been presented in detail in previous
reports [1-15].

Let the ciement ports of the axial mode be excited by the eigen-

excitation e(u ) [1]; then the transverse electric field at the array elements

is given by:

-ju’ (rns1 + rsz) L Q

L By - r8y) i (17-

r=- o0

where I‘l(go) is the reflection coefficient of the actively excited axial TEll
mode, and the other l‘s(go) represent the coupling coefficients of the modes
paseively excited, In Equation (17) 613 is Kronecker's delta and s is a

pesition vector over the arravy surface defined by its components (a¢, z)

11
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From the results of the previous section the electric field in the dielectric
region can be represented by a suverposition of LSE and LSM modes. Their
expression is obtained by inserting Equations (15) and (16) in
Equations (7) - (12).

By enforcing the continuity of the tangential electric field at the

array-dielectric interface, the following expressions are established for the
amplitude of the external fields (Appendix B),

+ o
AG 4 pNw) = 50 ) 1 E (s w) RE N, w)
q= -
N_k .
b —fe |1 LpNw 5, (18)
J ke d kZ 2 ot 7 —()’
€ -W
+ 4‘7¢(_l_1_0. w) RHE (i+pN, w)} & w-wopq)
+ o
Cii + pN,w) = 25 2 F,ta_, Wik irpN, w)
q:
-nfkp_e 1 (UpNw =y, w) (19)
=) k a 2 ¢tz '—o
¢ ]<‘ -w

+ ‘Fd;(go’w) R“(HpN,w) 6w - wopq)

In Equahons (18) and (19) § (w-w

) is the Dirac delta function k =
opq pe

2
\l;tf -w, 52(20, w) and ?(go, w) are components of the vector:

12
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where ;‘ (——L, w) are the Fourier transforms of the vector mode functions
g_s(s).HThe d~.finition of R (i+pN, w), R (1+pN w), and RE (i+pN, w)
and R"" (i+pN, w) are given in Appendix B, Introducing Equations (18) and
(19) in the LSE and LSM mods expressions one can directly verify that the
external tangential electric field is expressed by a Floquet's double series
having the periodicity of the array structure,

The continuity of the tangential magnetic field can be approximately
enforced by applying a procedure analogous to the plane case [7-12]. The

tangential magnetic field at the reference element aperture is given by:

Q
= A
Hi(s)=p_x z Yo lbyg - Tgiu) e (s) (20)

s=1

80 being a unit vector in the direction of the external normal at the reference
element. The external tangential magnetic field is given by the following

Floquet's expansion (Appendix B)

+00 4 o0 .
+ ... 1 "opgs &
B &) 53 z z € [2tug g} o Zopq’
P - o g=-
- 7 5 [ £ 20
+b (gopq) é‘z(gopq)] z - ¢ (g_opq) ¢(9-0pq) (20a)
- Al
+d (u q z(gapq)] ¢‘

If the equality of ~ (s) and H (8) is approximately enforced, the following
set of linear equatmns is obtamed for the f‘s (go) (Appendix B):

Q
Y Loy - rleg)l= 2 (61 + Tg (uy) I Ly lu )ik, s=1,...Q) (1)

s=1

13
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where 6”( and bls arc Kronecker deltas and Lks (p{‘) are mutual admittances
between modes for a given eigenexcitation, The rather involved expressions
of Lks (gﬂ) are given in Appendix B, By solving the system of Equation (21),
the tangential electric field distribution at the waveguide apertures is deter-
mined for each eigenexcitation so that the array element pattern can be
evaluated. This will be discussed in the next section,

So far only the axial mode has been actively excited. If the circum-
ferential TEll is actively excited, a system of equations analogous to
Equation (21) is ottained by applying the procedure described for the active
excitation of the TE11 mode axially polarized. The new system of equations
is obtained from Equation (21) by interchanging the index 1 with the index 2.

The response to the general excitation is obtained by superposition.

2.3.2 Eigenpatterns-Array Element Pattern

The far field of the eigenexcitations can be found by employing the
expansions (Equations (28) and (22)) of the tangential electric field on the
array and by using Equations (13) and (14) for the transmitted fields at
the air-dielectric interface.

With the notation of the preceding paragraph, at r = b the transmitted
field amplitudes are given by:

C (i + pN, w)|.(2) (b
F i+ pN, w) = 1(2) (bk 1+pN(bk ) + r(1+pN ) 1+pN(bk )
i+pN
(22)
) —L—PA("Z)‘ N ) pEH Gy p, w1 (k)
ivpn (PKp)
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E(i N, w) ALLL P, ) “(2.) (bk )y 1 (1 t pN, w) ](:))N“) )
£(1 + pN, w) = .
(2) N (bk ) LR R
(23)
C(i + pN, w) _HE H(1) (bk
+ : . )
( ) (bk ) (i+pN,w) i4pN'" pe
where kp = kz - wz. The electric field at any point (p, ¢, z) is expressed
by a Floquet's double series:
too +00
. - (2) ‘/ 2 ) -ji+pNjg -jw__ 2 2
E (po, 2) -zz E(Bopq +pN( k- Wopq) e e ° opq (24)
p:oup:oo
(1+pN)w
1 P_(i (2) 2 2
1, 2) = 3 H. -
Folpr %) = 2 Z lP (—opq) i+pN (p 8 Wopq)
p=-eop= -oo Yopq
(25)
F W @ ( J 2 2 i -
. — ’ . -j(i+pN) - W !
* Jn‘[_——P'LprN(”‘k ) Wopq)}l e PG o-I¥ope
k

The components of the far field of an eigenexcitation can be simply evaluated

from Equaticns (24) and (25) applying straightforward asymptotic expansions
of the Hankel functions.

The asymptotic expansions for the electric field are found to be

given by:

15
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/ 2

hm : E ]
E 2 E B v ——
w I<k p=-o0 Tp¥k - wopq

N e
e™ (p 5 'wom”wopq)

j(i +pN) e—j(i+pN)¢ (26)

(1* pN)

F(u
hm E¢— Z z _OPq J
Iwo I<k p—-oo onk

( k2 - w2 tzw )
JititpN)g -j \P¥ opq '~ opq

The components of the far field of the eigenexcitations can be expressed in

(27)

spherical coordinates (r, 6 , ¢ ) in terms of an E8 and E¢ component which
are obtained from Equations (26) and {27} by a simple coordinate transfor-
mation [1]. With straightforward manipulations, the far field g(r, § , ¢, i)

of the eigenexcitations is established as:

gir, 8,0, i) ‘/” 51n0 [936(0.¢. i) +$g¢(9.¢, i)]
lg
Yopq

(28)

22 .
ji (% - ¢) e_jr(wopq cos 8 + ‘[k - Wooa sinf )
(k 2 W(Zypq)lfli

e
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where and are defined as follows:
Bg 2N &y

E(u .
<o¢.x)-kz PN -9)

(u ) . m
k u -ipNeL -
g¢(o,¢.i):;z —Bd__ I -¢)

pe-eogkZ . w
o

Pq

The array element pattern is obtained by summing the contribution of all
eigenexcitations [1] and is expressed by:

T N
2h ol
F(r,0,0) = ‘/,,r L ] Y G 0)Gg 0,6, 0

< T e
opq! k --Z—E i=-N

-jr{w cosf 4 V - smo )
+0 g, (6,0, 1)) *—=R4

(k ) 1/4

dw _(29)
[¢]

The integral in Equation (29) can be evaluated for r woby an

application of the stationary phase method obtaining:
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{ N
[ - --ikr 3 A
Fir,0,0) = Vi 2 2 e3@-2 [0g 0,0, 0
IWopqlgk i=-N 9

(30)

+ $g, 0,9, 1]

The array pattern for a general excitation is given by an expression analogous
to Equation (30), where the eigenpatterns go(O, ¢, i) and g«5 (9, ¢, i) are

weighted by suitable factors depending on the particular array illumination.

18
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2.4 Remarks

In the previous subsections a rigorous method for the analysis of cylin-
drical arrays covered by dielectric has been established, The results have
shown that, due to the curvature of the air-dielectric interface, there is
coupling between LSE and LSM radial modes. These coupling phenomena
are reflected in rather involved expressions for the driving point admit-
tance and the radiated fields of the eigenexcitations., It has also been shown
that as the radius of curvature of the cylinder is increased the coupling
between LSE and LSM modes decreases proportionally, so that for zero
curvature (planar case) no coupling is present. Cylindrical arrays of large
radius of curvature are particularly interesting, since they model a con-
formal array mounted on the skin of a large aircraft. As this is the most
likely application of cylindrical arrays covered by dielectric, in the
following paragraphs we will concentrate our attention on cylinders of large
radius. For such cylinders (radius = 100)), the coupling coefficients

FHE

respectively for most of the cylindrical harmonics carrying real power

and FEH are very small (order of 10-3) with respect to FE and [‘H

(n<<b «/ ki - w2 ) and become appreciable only for harmonics with high

circumferential periodicity (nxb+/ k;{- wz).

E H

If the approximation of setting I' =0, FE = 0 for all harmonics in
cylinders of large radius is made, an error will be introduced in the evalu-
ation of the radiated power and of the mutual coupling admittance. This
error, however, will affect only the pattern predictions for Ligh scan angles,
where the harmonics with high circumferential periodicity are strongly
excited. As for the mutual coupling, an error will be introduced in the

driving point admittance of the elements relative to the eigenexcitations with

i=b ,/kg - wz. However, the setting of FHE = 0 and FEH = 0 will result in
a substantial simplification of the analysis for cylinders of large radius. If
FHE =0 and FEH

simplified, allowing much easier evaluation.

= 0, all the formulas of the preceding sections are greatly
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In the next subsection particular attention will be devoted to comparing
the results between the '"rigorous' and the ''simplified' approach to the
analysis of a large radius (=100A) cyiinders. It will be shown that the
""'simplified'' method produces acceptable results for most design purposes.

In the previous analysis the presence of a matching network in the array
elements has not been taken explicitly into account, because with a proper
selection of dielectric constant and thickness of the dielectric sheet
covering it should be possible to achieve good broadside matching conditions.
Should a matching network in the elements be required to meet specific
design purposes, the previous analysis remains valid and only a minor
change should be introduced in Equation (21). The matching of cylindrical
array elements has been extensively discussed in previous reports [1-15],

where the modification for Equation (21) can be found.

2.5 Selected Numerical Examples

In this subsection a number of illustrative examples will be presented
to show the effects of a dielectric layer on a cylindrical array.

Several dielectric constants and thicknesses have been considered for
the dielectric layer covering the array. As the antenna is intended to be
mounted on the skin of an aircraft the dielectric layer should be weather
resistant and have good mechanical characteristics. Materials, like the
IRTRAN widely used in radome technology, are suitable for this application
and have a dielectric constant € =~ 4, This value of € has been chosen for
the computations.

The thickness of the layer should Le chosen on the basis of various
considerations. In view of future developments a dielectric thickness is
selected so as to give rise to surface wave-type phenomena only for scan
angles bigger than 60 deg from the element normal. For €. = 4, this
requirement is satisfiec by a dielectric thickness of 0.1 in. The dielec-
tric can be used to provid« better matching conditions for the radiating
elements than in the case of no dielectric covering, so that matching net-
works are not required in the element waveguides. To maximize the array
gain it is convenient to provide good matching for the eigenexcitations

withi=0. This would correspond to broadside match in planar arrays.

20
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Since the dielectric characteristics have roughly been specified, the only
free parameters left to achieve the desired match are the element size and
the lattice spacing. Several trials have been performed and a satisfactory
solution was found with a dielectric thickness of 0.088 in. and the array
lattice of Figure 2. The element spacing is 1.1546 in. in the circumfer-
ential direction and 0. 3333 in. is the spacing between circumferential rings
of eilements. The cylindrical array has a radius "a' of 113.93 in. corres-
ponding to = 97X at 10 GHz, the center frequency for this antenna. There
are 620 apertures in one circuinferential ring. The array elements are
open-ended uniform circular waveguides with 0.24 in. radius. The elements
are filled with a dielectric material with €= 2,54, Only the two orthogonal
TE11 modes are above cutoff over the band of this array (10 GHz + 0.5 GHz),
all higher order mcdes are well below cutoff.

The selected lattice and cylinder radius are very close to a case con-
sidered in previous reports [1-15], so the comparison between dielectric
covered and uncovered cylindrical arrays will be performed at no cost of
additional computations.

While performing the numerical analysis, attention was devoted to the
question of relative convergence of the solution [14], peculiar to the appli-
cation of Galerkin's method. No relative convergence condition is present
in this case., It was found that, if nine waveguide modes (the fundamental
TE11 plus the first eight below cutoff modes) are used in Equation (21),
no appreciable variation of the I' 5 (x_;o) is detected by employing additional
modes. For each eigenexcitation u 400 space harmonics have been used
in the computations.

Figure 3 shows in the circumferential plane the reflection coeificient
of the TIE:11 circumferentially polarized (actively excited) and the excitation

coefficients at the element apertures of the higher order modes. The

. coefficients are plotted versus u_ = i/a, the circumferential periodicity of

the eigenexcitations. The coefficients have been computed using the

"'rigorous' method of analysis, whereby the coupling between LSE and LSM
modes is taken into account. In Figure 3 the reflection coefficients for an
infinite planar array, with the same lattice and dielectric cover, are also
shown., As can be seen, no substantial difference exists between the two

cases except for high values of u, = i/a.
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Figure 3 - Modal Excitation

Figure 4 compares the reflection and excitation coefficients obtained
by applying the ''rigcrous'' and the "simplified" analysis. The results show
no ereat difference between the two cases except for values of i/a ranging
between 0.8 and 1.02. The "simplified" analysis gives coefficients values,
which are in between the '"rigorous' solution and the pianar case and close
to the latt~r. It appears that the ''simplified' analysis takes properly into
account the curvature of the ground plane, while the curvature of the die-
lectric interface is ''rectified''. Figure 5 shows the reflection coefficient
and the excitation coefficient {rigorous solution) of the waveguide modes
at the element apertures, where the axial TE11 mode is actively excited.
In the same figure are shown the coefficients obtained by applying the infinite
planar array model. For this polarization the difference between the results
is always very minor and becomes noticeable only for values of i/a >0.9

and for the TE11 mode. In this case the simplified approach gives excellent

results for i/a up to 0. 95.
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Figure 6 plots the realized gain pattern, in the circumferential plane,

- of any array element with circumferential polarization actively excited
(rigorous solution). On the same figure are shown the pattern of an element
in an infinite planar array and the pattern computed following the
"approximate' solution. In all three cases a deep notch appears in the
patterns. While the cylindrical arrays present a finite notch depth, the
infinite planar array has a dip of infinite depth. The nature of these notches
has been already explained elsewhere [4] in terms of leaky wave effects and

needs no further discussion. It is, however, worth noticing that the mini-

mum of the notch in the cylindrical patterns is slightly closer to the element
normal than the position of the null in the plane array pattern, showing a
slightly slower leaky wave propagating on the cylindrical array surface,
Moreover, it is worth noticing that the "approximate solution gives only the
gross features of the element pattern, without reproducing the oscillations

around the notch,
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Figure 6 - Array Element Pattern
\'.
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In Figure 7 the pattern evaluated from the '""rigorous' solution s

et s L

compared with the element pattern of an uncovered cylindrical array with

vyt cans

comparable lattice and radius of curvature [1]. It can be seen that the
notch caused by the dielectric layer is much deeper than the dip due to |
grating lobe effects and that the pattern disturbances around the notch are

- more pronounced in the case of the dielectric covered array. These results
are in agreement with the experimental evidence [31] collected for plane !
arrays, where the notches in the element pattern due to bound waves are

always more pronounced than the notches due to grating lobe effects.

In Figure 8 the array element pattern in the circumferential plane for
axial polarization is presented. Comparing the '"rigorous'' and ''simplified"
cylindrical solution with the plane case, one can see that the differences

are very minor up to about 85 deg from the element normal,

In the axial plane practically no difference is present between the

SRRTEETE Y| [

cylindrical and the plane array element pattern. In Figures 9 and 10 the

realized gain of an element is plotted for circumferential and axial polari-

zation respectively.
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Figure 7 - Array Element Pattern
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Figure 10 - Element Gain for Circumferential Polarization

Finally the isolated element pattern has been computed with the '"one
mode' approximation. Figure 11 and 12 show the isolated element pattern
in the circumferential plane for axial and circumferential polarization. As

expected, the patterns show a smooth variation versus angular direction.

2.6 An Asymptotic Model for Small Arrays on Cylinders of Large Radius

The analysis of finite arrays of waveguide elements on dielectric clad
cylinders of large radius can be rather easily derived from the theory of
this section. However, since the mutual admittances between elements in a
finite cylindrical array are expressed as series of integrals of the type in
Equations (1) - (12) [16], the effort required to numerically evaluate the
driving point admittance of the array elements is much greater than in the
case ot the infinite periodic structure, even if asymptotic expansions of

Harkel functions are used in the computations.
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In this condition it is convenient to use an asymptotic model for finite
arrays on cylinders of large radius, The numerical results of this section
show that there are only small differences between the driving point admit-
tance and the radiation pattern of an element in an infinite periodic cylin-
drical array of large radius covered by dielectric and the corresponding
planar case. The close similarity of the results obtained by using the
planar and the cylindrical array models suggests that a planar array model
can be employed with excellent approximation in predicting the coverage
performance of a finite array extending only over a limited circumferential
and axial sector of a large cylinder. The aperture of the arrays considered
in this study (aperture gain 20-30 dBi) extends only a few degrees (2 to 10)
over the circumferential direction of a cylinder with 100\ radius. In these
conditions the mutual coupling between elements, which determines the

aperture driving point admittance, practically takes place in a planar

environment, so a planar arrav model should give an excellent approximation,

In predicting element pattern performance the planas model gives
consistently lower levels of endfire radiation in the circumferential plane
than the cvlindrical model, while no difference is present in the axiai plane.

So if hemispheric scan coverage from a finite array on a large cylinder

is predicted by using a planar mcdel the array is bound to exhibit even better

coverage performance than predicted, at least in the circumferential plane.
On the basis of these considerations and the numerical results previously
shown, the coverage of finite arrays cavered by a dielectric sheet on
cylinders of large radius has been analyzed by using a planar array model.

The analysis of finite planar arrays is presented in the next section.

29
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3. FINITE ARRAYS IN AN INFINITE GROUND PLANE
COVERED BY A DIELECTRIC

3.1 General Remarks

The analysis of finite arrays in an infinite ground plane has been per-
formed by various authors. The element pattern due to the limited extent
of the array dimensions has been clearly illustrated for arrays of parallel
plate waveguides [17-18]. More recently the mutual coupling between
elements in finite arrays of circular waveguides has been presented and
compared with the infinite array case [19-20].

The basic approach to the analysis of finite arrays of waveguides in
an infinite ground plane consists in formulating an integral equaticn in the
unknown amplitude of the magnetic field at each aperture. The integral
equation can be solved by straight forward application of Galerkin's method.
This procedure leads to a system of equations of the order M x N, where N
is the number of array elements and M is the number of feedguide modes
used to enforce the continuity of electric and magnetic fields at the aperture
discontinuity. As the number of array elements and of waveguide modes
uced in field matching increases, one is faced with the inversion of large
matrices ., This operation is computer time consuming and poses serious
limitations on the number of elements in the arrays which can be analyzed.

The approach taken here for the analysis of finite arrays of waveguide
elements in an infinite ground plane covered by a dielectric sheet iz based
on the formulation of an integral ejuation in the unknown magnetic fields
at the element apertures. However, no inversion of large matrices is
performed in evaluating the mutual coupling between elements.

The matrix inversion operation is avoided by exploiting the symmetries
in the array geometry in constructing the array scattering matrix. Only
the mutual coupling coefficients for a selected number of array elements
is evaluated. This requires the solution of a system of equations, an

operation which can be performed by a computer at a much higher speed

than matrix inversion,

Preceding page blank "
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3.2 Network Model of Finiie Arrays

In this subsection some genc..' nroperties of finite arrays of waveguide
apertures in an infinite ground plane, which may be covered by an infinite
sheet of dielectric, will be discussed. The array apertures are of arbitrary
shape and are fed by uniform waveguides of the same cross section. The
array lattice can be arbitrarily defined and need not be regular.

It i1s convenient to represent the array-free space interface by a
multiport network [ 21] , as shown in Figure 13a. Each element consists of
an M port unit (M is the number of waveguide modes used in enforcing the
continuity of the tangential fields at the array-free-space interface);
therefore an array of N waveguide elements can be represented by an M x
N port network. Only ''free' excitations of this M x N port network will be
considered, thatis sets of waves incident to the element inputs ports. Let
the excitations of the array be represented by N x M dimensional column
vector a. The set of reflected waves at all ports is similarily represented
by a N x M dimensional vector b, The incident and reflectec waves are

related by the scattering matrix S of the network:

E =

[{]¢)

a (31)

The scattering matrix S completely characterizes the network. Ary
particular property of S should be used in the analysis of the array and vice
versa. This approach has been followed in the theory of planar and
cylindrical infinite periodic arrays, where the symmetry of the structures
can be exploited for an immediate evaluation of the eigenvectors and the
diagonalization of S (the eigenexcitation method [1-15]).

In the case of an arbitrary finite array the scattering matrix S does
not present any particular property that can immediately lead to i:a
diagonalization. In other words, for finite arrays there is no simple way
to determine the eigenexcitations of the structure, which are those sets of
incident waves exciting the same transverse electric field distribution at
all array apertures except for a progressive phase term. It has been shcwn
[17] that for "large' arrays of regular lattice it is possible to approximate

the finite array eigenexcitations through a perturbation of the eigenexcitations
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of the infinite periodic structare. This procedure cannot be applied to
arrays of arbitrary lattice because the perturbation method does not
converge to the solution, The only way to determine the eigenexcitations of
- an arbitrary finite array is to actually solve (by numerical methods) the
characteristic equation of the scattering matrix, This approach presents

substantial computational diificulties as the number of array elements

increased more over the eigenexcitations may not be orthogonal.

There is a convenient method to determine the scattering matrix of a
finite array. It is well known [22] that the scattering matrix of a network
can be obtained from the admittance matrix Y relating port voltages to

port currents. The following matrix relationship holds:

1
wn
1"

(Y U-% (Y, U+ (32)

- where U is a unit matrix of the same order as Y. The elements of the Y
matrix can be grouped in submatrices relative to the ports of each array
E - element in the foliowing fashion:

3 - -

Liy L= ae s

=<

X

3 o1 20 0 Xay

| N1 dnz - v 0 Inw
-

where zpq are square matrices of the M order. Y q represents the mutual
admittance between the M ports of element p with the M ports of element q.
- The elements of qu can be determinecd only by solving the boundary con-
dition problem at the array aperture. This will be done in the next section,
- For the moment suppose that the Y matrix is known, then the operations in

Ecuation (32) can be nerformed. The inversion of the augmented matrix

Y would produce more information about the network than is needed to
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determine the radiation properties of the array. For this purpose, only the
columns of S relative to the actively excited ports are required; the other
columns of S, corresponding to passively excited ports, do not need to be
determined._ This fact can be exploited to reduce the computations required
in the analysis of a small array. Equation (32) can be viewed as a system of
equations in the unknown columns X of S by writing:

(Y U+

8

na
e

)X =E (33)

where E is a columnof Y U - Y.
The system of equations (33) can be repeatedly solved only for those
excitations (columns of Yg U - Y) corresponding to the actively excited ports

of the network. In these conditions only N columns of the N x M order S

matrix are obtained, forming a matrix _S_N. However, the rectangular _§__N
matrix is sufficient to characterize the_;'adiation property of the array,
since the product between gN and an N dimensional excitation column

% vector _§N, whose components are the incident waves at the active ports,
gives the reflection coefficients at the active ports and the excitation of

E higher order waveguide modes. This procedure involves much less

; computations than the inversion of the matrix (Yg l__J_ + ;) and substantial

computer time is saved for a given array size. Moreover, any symmetry

in the array structure, for example quadrantal symmetry, can be easily
exploited in reducing the number of excitations for which systems of
Equation (33) is solved. This approach is rigorously valid only for open
ended uniform waveguides and is not correct if a matching network is
present in the element feedguides. An extension of this approach to the
case of radiating elements backed by a matching network will be discussed

in a latter section.

3.3 Boundary Condition Problem for Finite Arrays in an Infinite Ground
Plane Covered by Dielectric

The array geometry is conveniently established by the means of a
set of vectors 8 _, representing the position of the elements as shown in

Figure 13b. The N array elements are arbitrary apertures fed by
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REFERENCE
ELEMENT

a) bj

Figure 13b - Array and Dielectric Geometry

waveguides of the same cross section. Only one mode is assumed to be
propagating in the waveguide elements. The transverse modal function
for the propagating mode in the nth feedguide is denoted by enl(g), the
higher order modes enm(g_) are ordered by increasing cutoff frequency,
The dielectric layer covering the array has a thickness d, a relative
dielectric constant €0 propagation constant kd and a characteristic
impedance ng Assume that the mode enl(g) is actively excited in some
array elements. Then the tangential electric field at the array apertures

can be expressed as a superposition of waveguide modes:

A n n n )
Ege ﬁ ;(5 LT ) o) (34)

where 8 nl m is equal zero in the passively excited elements, while for the

actively excited elements
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In Equation (34) l‘nm represents the amplitude of the modes passively
excited at the apersture of the nth element. If the nth element is actively
excited, [‘nl represents the active reflection coefficient of the enl(g) mode.

The external tangential electric field can be represented as a

superposition of TM and TE waves [18]:

+ oo

Enforcing the continuity between Equation (35) and Equation (34) the

following relations are obtained:

-4 9 n n n jus
piu) = 2 , ) v T ) ép@e’ =" (35a)
n=l m= ’ ’

St
ie

Zn (35b)

£ _ . (D rh n j
w(l_l) = - e ) l,m+ m) gw m(l_l)e

. I n
In Equations (35a) and (35b)5p m(l_l) andé’w m(L_;) are the components

of the Fovrier Transform of the mth waveguide mode defined as [23]:
n el /f n jus_
¢ m (a) 2% e = m(g) s
n

where the integral is extended over the nth aperture.

The magnetic field at the waveguide apertures is given by:

- A n n n n
H, @ = zxi_ ﬁ_ (6 l,m-r m) Yme m(i'—ns ) (36)
nz=l m=
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In Equation (36) § nl R and an have the same definition as in Equation (34),
’

Ynm 1s the characteristic wavep=ida admittance of the mth mode in the nth
feedguide and 2 is a unit vector in the direction of the external normal to
the array. The external Magnetic field is e

TE and TM waves:

+00 A -
+ 1 [ d TE
H = e
i} H' (s) Zﬂf./_‘m PEY (u) kg F—tul)

xpressed by a superposition of

: (37)
k
= A ™ -
Ploty S=FM )] eminey,
d"4 =
- In Equation (37)
= Y Y 2
Yg = Vg = |u]
for
f\_lfz< kd'2
and
= wd B -j '!l—l, = kd
for

]g'2> kdz.

FTE(iui ) and FTM(I u|) are defined as:

YTE(]u[ Jeos w . d + j YdTE(lu]) sin w d
TR e i v TE .
d (luj) cos wdd+JY (1u) Sded

- FTE('U,): - = (3%)
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y ™ ™

d+jY, (|ul)sinwdd
TM(lu]) sin wd

(Jul) cos w

d
YdTM(]ul) cosw dtjY

FTM(lul) = (39)

where YdTE(lu] ), YTE(|u| " YdTM(]ul ) and YTM(I u|) are given in [7].
The quality between Equations (36) and (37) can be enforced by a straight-
forward application of Galerkin's method. By requiring that the difference
between Equation (36) and Equation {37) has zero projection on the subspace

k .
spanned by z x e (s - _gk), the following systems of equations is obtained
(Appendix C):

k _rk k _ nk ( k n )

k=1, ...N;h=1, ...M)

Joi EqaationyA0) Yo

mth mode of the nth element and the hth mode of the kth element. The

mh EXpresses the mutual admittance between the
c nk. 0 = c c : :

expression of Y mh 18 given in Appendix C. It is easy to recognize

that the system of Equation (40) can be cast in the form of Equations

(32) or (33).

3.4 Arrays of Uniform Circular Apertures

In the preceding sections a general theory for arbitrary finite array
of open ended feedguides covered by dielectric has been developed. It has
been shown that for uniform waveguides there is no need to determine
the complete scattering matrix for the array in order to evaluate its
radiation properties. Let us now take into consideration arrays of
apertures that can provide hemispheric scan coverage. For this
particular application a circularly polarized element is required; so
circular or square apertures are a natural choice. In the following we

will deal with circular feedguide arrays. However, with minor changes

the same considerations apply to arrays of square feedguides. In practir
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an array of circular waveguide apertures will be rather poorly matched
to free space. The dielectric sheet covering the array can provide some
matching, but, in general, a matching network will be required in each
feedguide to avoid large reflections at the array aperture. We assume
that the same network is present in all elements. In these conditions the
procedure to obtain the array scattering matrix presented in the previous
sections ceases to be valid, because higher order modes may be incident
at the aperture, We will show now that the procedure remains perfectly
valid if applied to an admittance matrix properly augumented to take into
account the presence of a lossless matching network.

Let us call L) (s) and _e_z(_g) the two orthogonal propagating TE11
modes. All higher order modes e (s) are below cut off. M - 2 higher
order modes are used to match the tangential electric and magnetic field
at the array aperture. On the basis of considerations of the preceding
sections, if no matching network is present, the aperture discontinuity
can be represented as a N x M port network characterized by the
admittance matrix Y relating aperture currents and voltages for each

mode as given by Equation (40):

;'[-z

=<

v (41)

If a lossless matching network is introduced in the element feedguides,
the new aperture modal voltages must be determined to evaluate the
array radiation. In addition the reflection coefficient in the generator
lines must be determined for the actively excited modes. The matching
network, which is the same for all TE11 mode ports, can be represented
in terms of a shunt susceptance and an ideal transformer. For the higher
order modes we suppose that the matching network provides a reactive
termination, wnich can be represented by a lumped susceptance as seen
at the element aperture. The equivalent network of the array aperture
and the matching network in the elements is shown in Figure 14 where the
admittance of the generator lines for the TE11 modes is called Yg and

port 1 of element i is actively excited. The reflection coefficient at port 1

of element 1 is called vlgl'
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Figure 14 - Finite Array Equivalent Network
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A relation identical to Equation (41) is still valid for aperture currents
- and voltage. Let us express the averture voltages in terms of the voltages
in the generator lines for the TE11 ports,
: = Writing Equation (41) more explicity we have:
f ~ L Iz 4N ¥y
L o1 Xo2 ++eer Lon £
: - : (42)
} e .
~ In Inidnze - - Inv/ \Un
r
]
1 = where
Eh
] - k k
vy /I1
k k
_ Y3 )
. » !
é' - Xk = . and —Ik = .
k k
» - Y Im
] - At the actively excited TE11 port we have:
3 i Ly 1 i 1 iy 2
‘ - Vg B Vinc'11=“n‘[(1'vl)nY

(43)
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For the passively excited TE11 ports the following relations hold:

k

v
vy K= B e, zpi =l @l e v (44)
T n r n g gr
For all other ports we simply have:
s L k
' = -jB_ V' (45)

Let us call n2 Yg =G, then, by inserting relations (43) - (45) in (42),

the following set of equations is obtained:
E=(+Y,r (46)

In Equation (46) E is a N x M dimensional column vector representing

the excitation. The components of E are obtained by multiplying the

(M x i + 1)th column of the matrix Y by - < except for the (M x i + 1)th

component which is given by:

V. e
1nc . 11
—a— LG+jB- Y

The N x M dimensional vector [ of Equation (46) represents the array
"'response'' to th.e excitation of-port 1 of element i. The components of
I’ are the total aperture voltages of the below cut-off modes (Vkm), the
aperture passive excitation of T}:':11 ports (ngr/n) and, for the active
port, a voltage (Vgll/n) which is directly related to the active reflection
coefficient in the generator line. The matrix ET in Equation (46) is a
diagonal matrix formed by the admittances terminating the ports

(G - jBorjB_).
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The systems of Equation (46) can be repeatedly solved for all the TE11
ports of the network, thus constructing a rectangular matrix S of Mx N
rows and 2N columns. The product between S and a 2N dimensional column
vector, representing the excitation of the TE;1 ports, gives the ''response'
of the array to a general excitation. The advantage of this procedure
consists in the fact that any array symmetry can be easily exploited in
reducing the number of excitations in Equation (46). The substantial savings
in terms of computer time as compared to the inversion of (Y + ,\=(T) will be

illustrated in a tater section.

3.5 Radiation of Finite Arrays of Circular Waveguides in Infinite Ground
Plane Covered by Dielectric

The TE and TM components of the electric field from a finite array in
an infinite ground plane can be found by applying simple transmission line
considerations to Equation (35). It can be simply shown [24] that for any
point z >d (d = thickness of dielectric layer) the TE and TM components

of the e¢lectric field are given by:

E( : .[fmﬁ() T
X, ¥, 2)=57 ¢ (9. )
" TP M (ui) cos wya +5Y, ™ (lu) sin wa
Y ()
+E,(a) LTE FE . (47)

d (lu]) cos wdd + JYd “E') sin wdd
e-jw(z-d}e -jux da
All notations in Equation (47) are as established in previous sections. The
integrals in Equation (47) can be evaluated asymptotically for far field

computation. To this purpose, it is convenient to introduce the following

change of variables:
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u = tcosup x = r 8in@ cos ¢ !
= tsiny y = r sin 6 sin ¢ ’
w = sz-tz z-d = r cos @

then Equation (47) becomes:

n oo
E (r,0,9) =%j f[g',, &, w) P + £, 6 w0 PTE]
o o

-jr cos 6 sz - t'2 -jtr 8in 6 cos (¢ - u)

e e tdt dp

(48)

where PTM(t) and PTE(t) are defined by comparison with Equation (47). The
asymptotic evaluation of Equation (48) does not present any particular
difficulty as well known methods are available in the literature [25-26].

In Appendix D the the asymptotic evaluation of Equation (48) is treated

with some detail for the fundamental TE,, mode. The same procedure

can be applied to higher order modes with analogous results. For the

far TM component of the field of the TE,, mode of a single slot we

have:
= -jkr J, (ak sin )
r—~wEp(r,0, ¢) =§= e sin¢ k cos§ ———s P %k sin 6))
(48
and for the TE component: 2)
. -jkr ka J' (ak sin 0)
rl_l.ﬁ‘oEw (r, 0, 0) =i2‘-e cos ¢ cosf L PTE (k sin 6)

1 _(ka sinO)z
!
X1

(48 b°
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For the definition of A, a, Kk, Jl and Ji see appendix D.

Thereis, in addition, the contribution from the poles of PTE(‘t) and
PTM(t). If we suppose that only a P pole exists for the given value
of d and €. of the dielectric covering the array, the residue contribution

is given by:

. NpTM
Res =-jm A sin ¢ J. (at_) 21 (tp)
J ] wrt sinf _d .TM ‘

at (8) { 1ot

P
(49)

5 (B sin @ - con® gL - K5
e P P

where tp is the pole of PTM(t), NPTM(t) and DPTM(t) stand for numerator

and denominator of PTM(t), respectively, It is worth noticing that
i£quation (49) does not contribute to the radiated far field of the slot.

It is convenient to express the radiated far electric field in terms of
the 6 and ¢ components of the referenrre (r, §, ¢) used is the integral (48).
The 6 and ¢ components of the far field are simply related to E, and EW:

EO (r, 6,9, = Ep(r, 6, ¢)/cos b

E¢ (r, 6, ¢) Ew (r, 6, ¢)

-
Let us call Pl (6,9) the pattern relative to the TE11 mode considered

= -jkr
Pl (6, ¢

2lo

A
[8Ey(r, 6,¢) + 8 Ej (r,0,6)]

—)
The patterns Pi (6, ¢) relative to other modes can be obtained in an

analogous manner. Then the array pattern is given simply by:

=3 n ]Bin ia
P(o, ¢) =E Z Vv m € P_ (9, (50)
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§ where Vnm is the total voltage of the mode m on the nth aperture.
; Equation (50) is obtained by simple manipulation of Equation (48), considering

; the definition given for &'p and 54’ in Equations (35a) and (35b).

3.6 Gain of Finite Arrays

The realized gain of small arrays must be evaluated by the means of
the elementary definition of gain, since it is not possible to determine the
element area gain as in infinite periodic array theory [27].

The realized gain of an array in the direction (60, ¢o) of the spherical
coordinate reference used to evaluate the far field (Equation (48)) is given

f |
F by: |

Power Density at (6, ¢o) |

G (00, q’o) ~ Maximum Power Density Available Isotropically (51)
-
: As the far field intensity E (Bo, ¢o) in the direction (90, ¢o) can be
‘; evaluated, Equatior {51) can be written as: ,
H

= 2

|E 6, 6)|%m
F" °o o P /41rr2
. MAX

Where 1 is the free space impedance and pMAX is the maximum power

availatle in the generator lines. By recalling the definition of

3
F Equation (50), we have that:
: M N
2|2 2 _ n _ju s |3 2 "
|E 0y o[*=| D] vh_eolnl B (9,0 (2 (53)
m=1 \n=1

The maximum power available, if Ne elements are actively excited, is

given by:

Ne >
Paax ™ Vg 2 [Vl (54)
i=1
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Where Yg is the characteristic admittance of the propagating feedguide
mode and Vgi is the feedguide mou.l voltage incident from the generators
(Figure 14).
Inserting Equations (53) and (54) in Equation (52), the gain equation
for finite arrays is given by:
M N . 2

n
JB.oin >
47T Z Z Vm e Pm (00, ¢0)

G, o) = —im=lnsd (55)

It is important to note that the aperture field matching using Galerkin's
method, performed to determine the amplitudes of the array element modal
voltages, conserves power, as can be easily checked from Equations (36)
and (37). Thus gain expression (55) automatically takes into account any
reflection losses.

Equations (50) and (55) can be use” to determine the array radiation
properties for any arbitrary cxcitation. In particular they can be used to

evaluate the gain and the pattern of an element in the array environment.

3.7 Element Pattern and Gain in a Finite Array of Apertures in an Infinite
Ground Plane Covered by Dielectric

The planar model developed in the previous sections has been applied
to the evaluation of the radiation properties of an array of 61 cir-
cular waveguide elements. The array geometry is shown in Figure 15.
The waveguide elements of radius a = 0,203\ are loaded with a material
of relative dielectric constant €= 2.54, Only the two fundamental TEll
modes are propagating, all other modes are well below cut-off. The
irequzncy of operation of the anteuna is 10 GHz. The array area gain is
about 23cBi, and its angular extension over a cylinder of 100\ is 2.5 deg.

Several thickness and relative dielectric constant values have been
considered for the sheet covering the array. The results presented here

refer to a thickness d = 0.075 in. and a relative dielectric constant €. = 4,
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This particular choice of d and €. provides excellent endfire coverage, as
will be shown in the following subsections, and an acceptable broadside
match for all array elements (typical reflection coefficient '~ 0.3 so
that no matching network is required in the waveguide elements).

Only the two fundamental TE11 modes have been used in enforcing

the continuity of the tangential fields at the array aperture. This approxi-

mation gives good results in the prediction of element and array patterns [15].
With this two-mode model the mutuals at the aperture plane are expressed

by a matrix Y of dimension 122 x 122. The scatt2ring matrix S for the arrav

can be computed either by inverting the Y matrix as in Equation (32) or by
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solving a system of equations as in Equation (33). The matrix inversion
operation in this case requires =48 sec on a UNIVAC 1108 computer,
while the repeated solutior of the system of Equa*‘ion (33) requires only
17 sec, a reduction of 3:1 in computer time. The advantage of using the
repeated solution of Equation (33) versus the inversion of the matrix Y
becomes more substantial as the number of aperture modes used in
field matching is increased. While the computer time required to invert
a matrix roughly increase with the cubic power of the dimension of the
matrix, the computer time necessary to repeatedly solve Equation (33)
increases with the square of the order of the matrix. If four waveguide
modes are used in field matching at the array aperture,. the time required
to invert Y is about 6.5 min, while the repeated solution of Equation (33)
requires ;lightly over 1 min of computer time with a time reduction of
about 6:1.

A substantial amount of computation has been performed to evaluate
the radiation characteristics of the array in Figure 15. Only the most
illustrative results will be reported here for brevity.

Figure 16 shows the scattering coefficients in the axial direction when
the center element (element No. 1) is excited with unit voltage with the TE11
modes axially polarized. As it can be seen, the fall off of the coupling
coefficients versus distance from the active element is not as rapid as in
planar arrays without a dielectric cover. This phenomenon can be clearly
seen by comparing the results of Figure 16 with those in Figure 17, where
the coupling coefficients are plotted for same array with no dielectric sheet.
The slower fall off of the coupling coefficients in the dielectric covered array
1s due to the fact that the dielectric sheet supports a much stronger wave
over the aperture of the antenna than in the case of no dielectric. This
wave is partially reflected at the array boundary discontinuity, causing
ripples in the coupling coefficient values. The reflection it the array
boundary of a wave propagating over the antenna surface is clearly shown
in Figure 18 where the axial coupling coefficients are shown for element 17
excited with unit voitage at the TE11 axially polarized port. Figure 19
plots the scattering coefficients of the elements on a cardinal plane of the
array for element 31 excited with axial polarization. In this case a sub-
stantial coupling with the cross polarized TE11 port is present.
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Interesting results are shown by the element patterns in the array
environment. Figure 20 plots the circumferential plane pattern of the
center element excited with the TE mode axially polarized. In Figure 20
is also shown the pattern of the same element in an infinite planar array
environment. The same element in the finite array has slightly higher gain
(= 0.5 dB) than in the infinite array. No substantial difference is present in
the two patterns. The infinite array pattern has a wider beamwidth.

Figure 21 shows the axial plane pattern for axial polarization actively
excited in element 1 along with the corresponding infinite planar array
case. In this plane the finite size of the array produces substantial pattern
oscillations and the departure between finite and infinite array case is much
more marked than in the circumferential plane. It is worth noticing that
in the finite array pattern of Figure 21 no endfire radiation is present.

This is due to the fact that the energy propagating along the surface of the
array is trapped in a boun< wave and does not contribute to the far field of

the antenna.
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Figure 20 - Array Element Pattern
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Radiation pattern ripples, due to wne finite size of the array, are much
more marked for edge elements, as visible from Figure 22, where is shown
the axial plane pattern of element 57 excited with axial polarization. Pattern
ripples have about 5 dB amplitude and the element gain at broadside is
about 2,5 dB lower than the gain of the same element in an infinite array.

It is worth noticing that the finite array pattern shows more radiation than the
infinite array model on the side of the edge (§<- 70 deg), while on the side

cf the array the opposite is detected for 70 deg < <90 deg. Somewhat analo-
gous behavior is exhibited by the pattern of edge element 49 in the axial
piane, shown in Figure 23. Element pattern ripples are present in the cir-
cumferential plane patterns of element 57 and 49 excited with axial polariza-
tion, as shown in Figures 24 and 25, respectively,

The array element pattern oscillation, as shown in the previous figures,
can produce substantial variation in the broadside gain of the array elements.
In Figure 26 are shown the broadside gains of the slots positioned on the
axial and circumferential plane with the gain of the same slots in an infinite

array environment. The TE11 mode axially polarized is actively excited
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Figure 26 - Element Broadside Gain

in the elements. As it can be seen some elements have gain higher than
the infinite array, but in most elements the gain is lcwer and in some
instances substantially lower. The net effect is that the array has a lower
gain than expected by assuming each element having an equivalent area
gain equal to the infinite array cell area.

The behavior of the elements is not substantially different when excited
with circumferential polarization. The results given so far are representa-
tive for both polarizations.

Although this array cannot provide hemispheric coverage, its gain
performance versus scan angle has been evaluated. Figure 27 shows the
gain fall off versus scan angle of the array beam for axial plane scan with
axial polarization actively driven with uniform excitation at the array
elements. It is worth notic.ng in Figure 27 that for a steering command
to scan at Gs = 90 deg the peak of the antenna is at 6= 68 deg and a scan loss

of 4 dB is present, In these conditions at § = 80 deg the coverage is about
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Figure 27 - Array Coverage

8 dB down from broadside. As expec..., in the circumferential plane, the

3 gain fall off with scan for axial polarization is even more severe than in the
1 axial plane as shown in Figure 28.

t In order to achieve hemispheric scan coverage the radiation in the
endfire direction must be enhanced by letting the energy trapped in the die-

r lectric radiate in free space. This can be done by terminating the dielectric
, - sheet covering the array at some distance from the array edge. The radia-

tion properties of dielectric edges will be considered in the next section.
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4. FINITE ARRAYS OF WAVZGUIDE APERTURES COVERED
BY A FINITE DIELECTRIC SHEET

4.1 Radiation Patterns from a Surface Wave Excited Dielectric Wedge

The radiation properties of an E-mode excited, three-dimensional
dielectric wedge can be determined from the consideration of the simpler
two-dimensional, E-mode excited, wedged dielectric slab. The semi-
infinite, wedge terminated, dielectric slab is shown in Figure 29. The
i slab has width d, relative dielectric constant €. taper ang_l.e a, and is
excited at z = -0 with the dominant E-mode surface wave (H = ?0 H ).

- Although the reflection coefficient of the wedge interface (2=0) does
not alter radiation patterns, a well matched free space transition is
essential in obtaining substantial endfire radiation from a dielectric
slab covered array. Te facilitate the calculation of the reflection
coefficient, I', of the tapered wedge, the continuous taper is approximated

by infinite stepped sections of length dz, with a corresponding differential

impedance. Making use of available analysis for tapered waveguide

transitions [28], one finds the reflection coefficient at z=0 to be given by:

- ¥

rin :%fe-Zja(Z) Zc_l%_ [ln z (z) ] dz \56)
[o]

where g(z) is the surface wavenumber computed by assuming that the local

! wave number in a section of the dielectric wedge is equal to that of an

infinite slab of the same thickness. In Equation (56) Z (z) = g(z)/ glo).
The computed reflection coefficient magnitude versus taper length
foran € =4, d=0. 075N thick dielectric slab is plotted in Figure 30,
- The fall off and periodicity is similar to other taper matching transitions
described in (28], For a taper length greater than 0. 8\ the reflection

coefficient remains less than 0. 02, which provides a near perfect free

= 60
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space launching of the surface wave. For zero taper length the reflection

coefficient via Equation (56) is 0. 185, which in this limit checks with the

k - f(0)

simple calculation of |F| = l k + Blo)

Izo. 185 (k = 2n/)).

Figure 29 - Wedge Geometry
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Figure 30 - Wedge Reflection Coefficient
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The surface wave propagation constant distribution along the taper,
B (t), (implying B(z) directly, which is used in Equation (56)) is plotted in
Figure 31 for an € = 4 dielectric slab. The soiutions for g(t) are found

from the well-known transcendental equation:
€ ﬂz-k = erkZ-BZ tan 'JerkZ-Bt (57)

The surface wave propagation constant gives the near field phase distri-
bution used in calculating patterns. This assumed local phase behavior is
compared with results obtained using a quasi-optics approach [ 29-30] in
Figure 32, for an € = 2 and d = 0. 375X wedge. The good agreement in the
near field propagation constant distribution establishes confidence in the

pattern calculations.
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Figure 31 - Wedge Near Field Propagation Constant
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Two methods to determine the near field amplitude distribution were
tried. One approach relied on conservation of power flow in the z direction
and the simultaneous matching of boundary conditions assuming the existence
of only the surface wave mode. A second approach assumed infinitesimal
discontinuities radiating locally from Y oriented line sources. The change
in impedance levels implied a radiation conductance (to maintain perfect
match) associated with cach dz increment. Both these methods appear to
be poor approximations in predicting field amplitude behavior at the tip
discontinvity, Depending on geometry, both methods showed similar trends
of either an increased near field amplitude at the initial taper transition or
a fall off. However, the typical amplitude function was relatively constant.
Balling's [29-30] results for near field ampiitude also showed a relatively
constant amplitude, but comparisons with either of the simpler methods
wer ™ poor.

The quasioptics calculations were not pursued because of the complexity

in programming and excessive cost of computations. Moreover, patterns
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calculated using different amplitude functions produced very little change
within the main beam and only slight variations in sidelobe levels,
Because of the uncertainty of‘ the amplitude function, in particular,
what appeared to be a variation about some nominal constant value, a
uniform amplitude distribution was selected for computations.
From power conservation considerations the magnetic field amplitude

|IBl, normalized to the square root of the incident power, is

1
Bl _ 2k¢{hp 2 (58)
VP ﬁ(o)(p[hd+§-1£22—‘“‘]+hcos2hd
where
h = ye k2 - Bz
4
2 2
P =8 -k
and
§ = free space admittance.

The far magnetic field pattern computed in a standard manner is given by:

0
H(9) = /)> 2 Vﬁk—f IBl cos ht [B(t) sin a +
d
(59)
. d-t .
-j—= [B(t) cosa+ k sin (8 + a) ]
-jpcosa] e SIQ dt

Patterns computed via Equation (59) are presented in Figure 33 for
€. = 4, d = 0.075A wedge with taper length, ¢, as a parameter. Depending

on the extent of coverage required off the endfire direction a suitable taper

length can be chosen. 64
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4.2 Approximate Model for the Radiation from Surface Wave Excited
Three-Dimensional Dielectric Wedges

The radiation from a three-dimensional dielectric wedge can now be

4 approximately evaluated. We suppose that the dielectric sheet covering

; the array is disc shaped. This disc has a uniform thickness d over a

: radius r, then the thickness of this disc is tapered to zero over a length ¢.

- The uniform thickness section of the disc extends beyond the array

E boundary, as shown in Figure 34,
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Figure 34 - Dielectric Geometry

The following approximations are made in evaluating the radiation from

the dielectric taper:

1) Only one bounded wave is incident at the dielectric wedge.
This bounded wave is given by Equation (49) for 6 = n/2.

2) The distance of each point of the wedge from the array
elements is big enough so that Equation (49) can be applied.

3) An infinitesimal arc rdw of the aielectric wedge at the point rw
radiates as if it were part of an infinit< linear dielectric wedge
tangential to the dielectric disc at the point rw so that

Equation (59) can be used in the evaluation of the pattern,

With these approximations, the radiation pattern ‘rom the three-dimensional

disc wedge can be written as:

A o+m/2
6P (8,¢9) =qF (0){9\ / cos (W-¢)S (w) eJkr cos (w-¢) S1n0rd<f)60)
¢-n/2
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In lquation (60) 1 is free space impedance, F(6) is the far magnetic ficld
pattern (obtained through Equation (59)) of the infinitesimal arc rdw for unit
magnetic field excitation and S(w) is the wedge excitation at the point w. The

excitation S(w) is given by:

N -jt_r.
e P!
S(w) = (Hy; sinw+ HZi CO8 W) ————
e \[ri

where r, represents the distance between the ith element and the point rw

on the wedge. H]i and HZi represent the amplitudes of the magnetic field
incident to the wedge, respectively due to the TE11 mode axially polarized
and the TE11 circumferentially polarized excited at each array element
aperture. The relation between I—Ili and HZi and the modal aperture voltages

is simply given by:

™

( ) [—2.1— by (tp)
H .= -jnJ. (at | A
1,21 1 P t d ™
V P& s (t)‘t=tp
Kd cos wdd

v . 7
1,2i AR Jsmwdd

where the notations are as in Equation (49).
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4.3 Radiation of a Finite Array Covered by a Finite Size Dielectric Sheet

We can now evaiuate the radiation from the 6l-element array previously
considered, when the dielectric sheet is terminated at a certain distance from
the antenna edge.

With reference to Figure 34, several radii, r, and taper length £ have
been taken into consideration. For brevity, only the most representative
results, relative to the case d = 0,075 in., € 4, r= 3\ and £ = 3X, will
be presented here.

Figure 35 shows the element pattern in the array environmen* of element
1 (Figure 15) in the axial plane for axial polarization actively excited. The
paitern of the same element is superimposed in the cuse of no wedge.
Comparing the two patterns it can be seen that interference exists between the
space wave emanating from the excited element and the radiation from the
dielectric wedge. This interference causes the element pattern to have ripples

and rather deep notches. It should be noticed, however, that, because of the
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Figure 35 - Element Pattern in an Array Environment
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dielectric wedge, the element pattern shows a substantial radiation in the
endfire direction, as necessary to achieve hemispheric coverage, In the
circumferential plane the pattern of element 1, excited with axial polarization,
is not different from the one shown in Figure 20, because the symmetry of

the array and the dielectric cover is such that no wedge radiation is present
in this plane,

Figure 36, plotting the axial pattern for axial polarization of element 57,
shows very clearly how strongly the dielectric wedge can radiate when excited
by an array element close to it. In this case the peak of the wedge radiation
is about 5 dB higher than the direct radiation from the array element. In the
circumferential plare the contribution to the far field of element 57 is not as
substantial as in the axial plane as can be seen from Figure 37; it is

interesting to notice that, because of the dielectric taper radiation, this
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Figure 36 - Axial Pattern for Element 57
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Figure 37 - Circumferential Pattern of Element 57
H-plane pattern shows a finite value of radiation in the direction || =90 deg.

Analogous characteristics are present in the axial and circumferential patterns
of element 49 shown in Figures 38 and 39.

The coverage and pattern performance of the 61 -element array of Figure
15 has been evaluated. The interference between the space wave radiated by
the elements and the far field form the dielectric wedge, already pointed out
in the array element patterns, is probably the most interesting feature of the
array radiation,

Figure 40 shows the axial pattern of the array in the no scan condition,
The array illumination is a circular Taylor distribution with W = 2 and -20 dB
SLL; the elements are excited with axjal polarization. For this scan condition
the dielectric wedge is not heavily evcited and the array pattern presents the
oniy peculiarity of having some noticeable lobes in the direction close to end-
fire. As the scan angle is increased and the wedge is more excited, the array
pattern undergoes substantial distortion as can be seen from Figures 41, 42

and 43. The most dramatic effect of the interference is shown in Figure 43

giving the axial pattern of the array for 90-deg scan in the axial plane.
7C
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In this case the array main beam undergoes interference from the wedge
radiation for 6 = 6) degrees showing a rather deep notch, At this angle the
array space wave and the dielectric wedge contribute to the array pattern
with roughly the same amplitude and opposite phase. For 6> 65 deg,

the array pattern is practically due only to the wedge radiation, It is worth
noticing that in the region -90 deg =6 = -30 deg, a substantial radiation is
present due to the dielectric wedge. The array coverage (envelope of the
peaks of the beam) in two planes is shown in Figure 44, when the array is
excited with the polarization in the plane of scan, The coverage rerformance
in the two planes is substantially analogous, any difference is due to the array
geometry. The antenna coverage is provided by the space wave radiated by
the elements in the angular region < 50 deg, At= 60 deg there is a notch in
the coverage due to the interference between wedge and array element radia-
tion, while for the angular region > 65 deg the coverage is essentially provided

by the wedge radiation. The coverage in the region close to 90 deg has been
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Figure 44 - Array Coverage in Two Planes
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obtained by the giving the array elements phase commands which would stcer
the array main beam outside visible space. The maximum endfire coverage,
as shown in Figure 44, has been found for a phase command [_\io[ = % 1. I
Hemispheric scan coverage from the array is obtained by exciting the antenna
with circular pola:rization as shown in Figure 45, plotting the array coverage
in the circumferential and axial plane. Comparing Figures 44 and 45, it can
be seen that the notch at = 60 deg is only partially filled by using circular
polarization. Moreover, there is a 3-dB polarization loss in the endfire
direction. It should be noticed, however, that the coverage in Figure 45 does
not show a gain falloff greater than 6.5 dB, which is very close to the 6-dB
goal of this investigation.

The influence of the length, ¢, of the dielectric wedge (the radius r is
kept constant) on the array coverage is shown in Figure 46 in the axial
plane with axial polarization excited. As it can be seen, for values of {

smaller than 3\ it is not possible to achieve hemispheric scan coverage
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Figure 45 - Array Coverage.Circular Polarization
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Figure 46 - Array Coverage versus Taper Leagth

because the gain falloff at endfire exceeds 3 dB, By increasing { to 4x it is
actually possible to achieve near endfire a gain greater than at broadside,
This selection of wedge length is not suitable for application because it
produces excessive array pattern distortions and excecsive back radiation of
the type shown in Figures 42 and 43, the region -90 deg =9 = -30 deg.

Pattern distortions, due to interference, and back radiation, due to
residual excitation of the wedge, constitute the main limitation for the use of
dielectric wedges to achieve wide'angle coverage. It is not possible to give
a general rule. In each case the increase in endfire coverage must be care-
fully traded off against the antenna pattern distortions.

Finally, the coverage variation versus frequency has been evaluated.
Figure 47 plots the axial plane coverage using circular polarization for three
frequencies: center (f° = 10 GHz), high (f° + 5 percent fo) and low (fo -5
percent f ). The wedge length is £ = 3 . All the three curves have been
normalized at their broadside gain value, There are some noticeable if not

substantial variations of the array coverage versus frequency. The low
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Figure 47 - Array Coverage versus Frequency

frequency curve has a notch at 62 deg from broadside, which is less deep than
the one relative to the other two frequencies. The endfire coverage at low
frequency is 8 dB below the broadside gain. The high frequency curve shows
a notch 7.5 dB deep at = 57 deg from broadside. On the other hand the high
frequency endfire gain is about 5,5 dB lower than the broadside value. The
circumferential coverage for circular polarization shows analogous behavior
versus frequency,

From these results it appears that it is possible to realize hemispheric
scan coverage with an 8-dB maximum oscillation over a 10-percent frequency
band, A hemispheric coverage with ® 6-dB maximum oscillation is realizable

only on a narrower band.
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5. CONCLUSIONS

In this study program the coverage obtainable by a small array covered
by a finite dielectric layer over a cylinder of large radius has been investi-
gated. The goal of the investigation was to achieve hemispheric scan coverage
(6 dB maximum antenna gain falloff or oscillation over the hemisphere). The
studies have shown that the radiation from a small array over a dielectric-
clad cylinder of large radius can be approximated with good accuracy by a
planar array model. An accurate method of analysis of finite arrays over
an infinite ground plane covered by dielectric was established tc evaluate
the coverage obtainable from these structures. The advantage of this method
over others previously available consists 1n the fact that no matrix inversion
is required to evaluate the electric field distribution at the array element
apertures, so relatively large arrays can be analyzed without significant
numerical effort.

The analysis has shown that hemispheric scan coverage is not achievable
by these structure, because the energy leaving the array in directions close
to endfire is trapped in the infinite dielectric sheet and does not contribute
to radiation. This trapped energy must be radiated in free space by termi-
nating the dielectric sheet in order to obtain endfire coverage.

An approximate model of the radiation from three-demensional dielectric
wedges was generated, so that the coverage of finite arrays covered by finite
size dielectric sheets could be analyzed. This approximate model shows
that for an array of ®23 dB aperture gain a substantial endfire coverage can
be obtained at the expense of array pattern distortions in directions close
to endfire. Computations have shown that hemispheric scan coverage can
be obtained with 6.5 dB maximum gain oscillation over the hemisphere. The
hemispheric coverage can be achieved over a relatively narrow band. If a
10-percent bandwidth is required, the coverage obtainable from a 23-dB
aperture gain array presents maximum oscillaticns of 8 dB.

The models generated during this study effort are somewhat pessimistic in

predicting the coverage of finite arrays covered by a finite dielectric sheet over a
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large cylinder because of the approximations introduced in the analysis.

The planar array used in modelling the cylindrical arrays predicts slightly
lower endfire radiation in the circumferential plane than a rigorous cylindrical
model, as shown by the analysis of infinite periodic arrays performed in Sec-
tion 2. A better than predicted endfire coverage in the circumferential plane
- can be expected for these structures. Another approximation has been
introduced in the analysis o/ the radiation from wedges by assuming that only
the energy relative to a surface wave is incident at the dielectric discontinuity.
This is correct only in a first approxiination. A more accurate model would
show t; at a spectrum of waves is incident at the dielectric discontinuity,

with . : effect of enhancing the endfire radiation of the dielectric wedge.

Litt)r investigation has been performed in this area and substantial studies
are still necessary to accurately predict radiation from three-dimensional
dielectric wedges.

= With these approximations the analysis performed for a 23-dB aperture
gain array predicts that hemispheric scan coverage is possible with a 6. 5-dB
maximum gain oscillation. This value is close enough to the goal set for

this investigation that a 6-dB maximum oscillation can be expected in

practice by a 23-dB aperture gain array covered by a dielectric sheet of

finite demension over a large cylindrical structure.
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APPENDIX A

CONTINUITY OF TANGENTIAL FIELDS AT
CYLINDRICAL DIELECTRIC INTERFACES

T.1e continuity of the H_and Ez components of the field is very simply
enforced and yields expressions (13) - (14) for the amplitudes of the trans-
mitted waves.

The enforcement of the continuity of H¢ and E¢ shows the coupling

between LSE and LSM modes and will be discussed in some detail.

Let us call:
¢, (nw) = By A1 \
11 T b K 2 K 2 )
P p €
g (1 (b )k, H (4) (bk )
C (n, w) = j -
Iv2 H (1)(bkn ) n(k% H (2) (bk ) nkp
n r€ n p
[ke H, Voo B P
€ ,q(n,wj = j - -
21 R (1) {k (2)
Lée pe H_ (d<pe) H, "ok )
_Hnl(z)(bkp) k Hn’(b)(bk ;) k 2 —]
e.(n,w) - - -
1 (2) nk (2) n_k
[ H bk ) p H bk ) T pGJ
(2) ' (2) bk K
e,(n, w) ] Zo (bkp) §1f - = (2)( P_c_) _g—kL]
2N (2) :
Hn (bkp) P Hn {bk pc) c pe€
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Then by introducing Equations (13) and (14) in Equations (2) to (6) and
equating the expressions for E¢and H¢ in the dielectric and in free space
atr =b, the following equations are obtained:

3 Hn(Z)(bkoe)
cu(n, w)B(n,w) + ¢ 12(n,w)D(n,w) = -

(n, w)A(n, w)
1) €11
Hn (bk pe) “
-1)
Hn(z)(bk )
t =7 ——- e,(n,w) C(n, w)
Pe

_ H @i
‘Czl(n,W)B(n,W) o Cll(n,W)D(n,W) = -H—'(l)(bk )
n pe

ez(n,w)A(n,w)

(A-2)

(@)
H_“(bk )

= c;,(n,w)C(n, w)

H Dbk
n pE€
= It is interesting to note in Equations (A-1 and A-2) that both reflected
waves B(n,w) and D(n,w) depend on A(r.w) and C{n, w) simultaneously
so that there is cross coupling between LSE and LSM modes.
. _ 2 - . s
By calling A(n,w) = €11 (n, w) clz(n,w) gZI(n,w), the followin

expressions are obtained for the amplitudes oi the reflected waves:

H Pk ) eptn,wie pmw) - ¢ nw)
Sl A (o, w)

(1)
= H Wbk, )

A(n,w)

(A-3)

Hn(z)(bk B e in,w) + )y, w)

+ < . (n,w)
H (1)(bk ) 11 A(n, w)
n p €

C(n, w)

Hn(Z)‘.bk 6) . (n w) Czl(n, W) i eZ(n, W)
H (1)(bk y Al A(n,w)
n P

D(n,w) = - A(n, w)

€
(A-4)

H Pk ) ey wicy n,w) - ¢ 2o, w)

C(n,w)

+
(1) A (n, w)
Hn (bkpe)
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The expressions for FL(n,w), FH(n,w), FEH

(n,w) and FHE(n,w) are imme-
diately established by comparing Equations (A-3) and (A-4) with Equations
(15) and (16).

From Equations (A-3) and (A-4) it can be seen that the cross coupling
coefficients between LSE and LSM modes are due to the curvature of the
dielectric interface, since both FEH(n, w) and I‘HE(n,w) depend on cll(n, w),
which in turn, is inversely proportional to the radius of curvature of the
dielectric interface. As b increases, the value of FHE(n,w) and FEH(n,w)
decrease as 1/b. For b sufficiently large (b = 100)) the contributions of
L (n,w) and I' E(n w) to the reflected field can be neglected for a large
number of cylindrical harmonics.

If the radius of curvature b of the dielectric interface goes to infinity,

the cross coupling coefficients FEH(n,w) and FHE(n,w) tend to zero, while

(2);
Hn _bkp€) e 2(n, w)

im 77 (n, w)=lim i (=)
boveo brw H k) 21 W)
n pe
o (2)
Fl (bl ) e (n,w)
lim FH (n, w)=lim a T pe L (A-6)
b4,r’ b'M ]_ln( )(bkp €) Clz(n) W)

It can be simply verified that the limiting values of Equations (A-5) and
(A-6) are the weli known reflection coefficients for a plane dielectric inter-
face except for a phase term due to the selection of the origin of the cylin-

drical coordinates.
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APPENDIX B

CONTINUITY OF TANGENTIAL ELECTRIC AND MAGNETIC
FIELD AT ARRAY APERTURE

To enforce the continuity of the electric field at the array aperture it is
convenient to operate on the Ez and E¢ components separately. .
Enforcing the equality between Equations (17) and (10) for each cylin-

drical harmonic, the following equation is established for E :

N-1 + .Zn

1 Z (i-n)m . -j(1-n) -Z—-Z-Nl . -jrj(wo-w)
& m=0 r+-=
| = (2) (B-1)
%; Z [513 4+ T n ]szs = w)} = Aln, w) [Hn (ak )
szl

- _E (1) HE (1)
+ T {n, w) Hn (akpe)] + T (n,w) Ci{n, w) Hn (akp()

In Equation (B-1) the summation in m is different from zero if and only
if the cylindrical harmonic index is n = i+pN (p is any integer) and in such
cagse the summation is equal to N. By using the expansion of a periodic

delta function [11] Equation (B-1) finally becomes [1]:

] Q P
5= E e z [.,15+ [S(go)Jé'zS(-—P—a , W) 6(w-wopq)

= =00 5:1

(B-2)
= A(i + pN, w) H‘Z) )+I"(1+pN W)H( (k )‘]
4 +pN 1+ N Pe
-
+I" (1-&pN w) C (i + pN, w)H+)N(ak
B-1




. UNCLASGSIFIED
.
]
2 where
b = Zrl _! - o ot .
wopq =w_+q ety and 4 (w wopq) is Dirac's delta function,
By enforcing the equality of Eg in a completely analogous fashion, the
following equation is obta ned:
+ oo (@]
L 2nN )1 14N
- 2m z Rz 2, [éls* Fs(l‘o>}{£¢s‘l'%"w’
i g=-oo s=1 g
: = 1 {i+pN)w i+pN, w k
i e A L SACRLAT F YRV R S S— B-3
'. a kﬁ -WZ ZS u ‘I opq) J ___2___2_ ( )
1 Y k¥ -w
; - €
| ”
3 i+pN 1(2) H 't (1)
1 B o [HHpN (c"(Pe) I (i+pN, w) “i+pN (ak )
EH (1)
? _ * FipN, w) A(i+pN, w) Hi+pN(ak pe)g
%L
i -~ The solution of the system »f Equations (B-2) and (B-3) yields expressions
3 (18) and (19) of Section 4, vith the following definitions of RE, RHE, REH, and
£ H
; - . (2) H (1)
H, tak, )+ T, H, k
R (i+ pN,w) = i+ pIN /'e) - (i+pN,w) "i+pN k)
1 _ A" (i + pN, w)
: HE (1)
s H. k k
% RHE (i+pN, w)=j (i + bN.lw) i+ pN s PE) "fkpe
A° (i + pN,w) €
1 (2) E (1)
nk H! y 3
RH % RNy o) & = € fe i+ pN (a‘(pe) i r(x + pN,w) "'i + pN [k pe)
ke L
A" (i +pN,w)
EH (1)

¢ : (ak . )
rEH (i+pN, w)= - (i+pN,w) i+pN “"pe

al 4 pN, w)
B-2
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where
1. _ 2y E (1)
A (1 +pN, w) = Hi—‘rpN (dkpe) * I-‘(i+pN, w) I_Ii+pN (akpe)
'(2) H ')
Hivpn @k + TiitaN, w) Hispn @Fp 1
(1) HE (1) EH
-Hi+pN (akpe) 1"(i+pN, w) "Ti+4pN (akpe) T.‘i +pN, w)

is the determinant of the coefficients of the system of Equations (B-2) and
(B-3).

The expreesion of the external magnetic field can be obtained by
introducing Equations (18) and (19) for A(i+pN, w) and C(i+pN, w) in
Equations (7), (9), and (12) of Section 2. Some straightforward algebra is

involved and Equation (20a) is obtained for the external magnetic field, with

the following definitions of , b(u c ), and d(u ¢
e ing definitio a(g.opq) (—opq)’ (-Eopq’ (—opq)
alE ) = | e el ) # T 21 @k ) RP epn, w0
—opq i+pN Pq (i+pN, wopq) i+pN Pq opq
(B=4)
EH (H HE ..
i r‘(H»pN, w ) I_Ii+pN (akpq) B (PN, wopq)
_ (2) H (1)
Dl = | Higaey 8k) * Diien, & ) Pak )
opq Pq
(i+pNw
1 G : EH ,.
a kz - 5 R™" (i+pN, wopq) + R (i+pN, wopq)
- € poq
(B-5)
H . (1) E .
+ T (i+pN, wopq) Hi+pN (akpq) [R (1+pN, wopq)
1 (i+pN)wO
IS —2P4 R (i+pN, w }
a kZ - wl B opq’
€ opq

i et
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k
= _€ 1 E s
c(\—)’opq) =3 Cf —————-——2 5 R (i + pN, Wopq)
k™ -w
opq
') B . (1)
[Hi +pN (akpq) + T (i+pN, Wopq) H1+p’\1 (a kpq }

HE . '(1)

RH (i+pN, w_ )

+T (i + pN, Wopq) Hi+pN (akpq) —

g (1)

E . EH
+ R (i + pN, Wopq) T (i + pN, Wopq) i+pN (akpq)
(i + pN)w
1 M (2)
+ = kz —=3 (i+pN, w pq) H1+pN (akpq)
€ opq
H . (1)
T (i+pN, Wopq) Hi+pN p’* %
k 1
: 1 E
du  )=3 ¢ =% R (i+pN, w__ )
=opq’ ~ 7 ) T ‘/—2— > PR Wom
k™ -w
opq
(i + pN)w
1 opg HE '2)
h = kz -WZ (i + pN, Wopq) H1 +pN (akpq)
€ opq
E . . (1) HE . :
+ T (i + pN, kopq) H. +pN (akpq) +[R (i + pN, wopq)
(i + pN)w
opq H ,. HE . ;
+ o kz - WZ R™" (i + pN, Wopq) T (i + pN, Wopq
€ opq
E 1 (i+pN)w HE
+[R (i+pN, w___ ) + — °Pd RT™ (i+pN, w
L opg a kZ _WZ P, opq)
€ opq

(B-6)

(1)
)-IﬂN(k

Pq

)
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EH . (1) p M B
L (1 + pN, wopq) Hi+pN (akpq) + y k?' - wz
‘ opq
- ———2Fd R" (i 4+ pN, w + R i +pN
a 2 2 PN, opq) (i p,wpq)
| € opq
r (B-7)
(2) H - (1)
Hi+pN (akpq) + T  (i+ pN, wopq) Hi+pN (akpq)
In Equations (B-4) - (8-7), k= k2 - w2 . It is worth noticing that for

P4 G Oopq
(b-a)~—» 0 or for C—> € the expressions (B-4) - (B-7) tend to the equations

given in a previous report [ 1] for the tangential magnetic field on an infinite
cylindrical array with no dielectric cover.

The continuity of the tangential magnetic field at the array element
aperture can be enforced by applying Galerkin's method, whereby the
difference between _I-_{; (s) and Ht (s) is forced to have zero projection on
the modal functions Ao X & (s). By scalar multiplication of the difference
between Equations (20) and (20a) and the magnetic field modal functions

‘é\o x e (s), the following Q equations are obtained [1]:

Yy [61k - I‘k(go)]= z Z a(gopq) 5 (‘-lopq)g“ko (L‘opq) b
Q= o8 p= =0
é £
(Bopa’ €2 Yopq ‘o Mopq’ ' S Wopg) % (opq! Ez L
(B-8)
dlug o) €000 £y (8 ) 0 (k=1 , Q)
B-5
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Where the star denotes complex conjugate. The system of Equation (B-8)

can be cast in the form of Equation (21) by calling

too +oe
2
_ 4 A 5 ¥
Sl Bl s R 2 33(301)(1) bkq,(gopq) Ca0 955 *
q= ~0 p= -co
b e g “::
opq/ gk‘b Wopg) ¢ (opq ' “lgpg €, (g Zosliopg’ '

du )& w )€ (u )

“opq’ © opq’ " sz Sopq

where C is the elementary array cell area.
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APPENDIX C

_ﬁ CONTINUITY OF TANGENTIAL FIELDS AT
FINITE ARRAY APERTURE

By requiring that the difference between Equations (36) and (37) has

A
zero projection on the subspace spanned by z xgkh (s - s ) the following
equation is obtained:

k k k _ 1 A k
(61,h-l"h)Yh—2—"— fzxgh(s-gk)
Ak
+ 00
w
A
f Pey = FTF (u) (C-1)
da'd
- o0
+$ £ (u) x: Pty | e 928 an | @b
pr= Ws g e = k
where the first integration is extended over the kth aperture. By changing
order of integration and performing the integration on Ak’ Equation (C-1)
becomes:
kK k ke  _T™
6, o T ¥ ff £ £ (=g~ F M (un
dd
(C-2)
S v £, () —3 FTE(y) | o juek
= Vh 1, Kq = du

k * k * k
where § ph and £ yh aTe the components of € h (~u).

Inserting in Equation (C-2) expression {(35a) and (35b) for 5p(u) and u¢(u)
we finally obtain:
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1 N M
E k N
i (6 1.h-r Z (8" 1, e o R
é - =1 m=l

- N ) .

n k d ™
/Z[S pm(g)g o (E)W F (lai) (C-3)

; B - I 4 FlE -ju(s; -8, )
1 =&y DL gy 18) g, M)y eh S Shir

Equation (C-3) can be written as Equation (40) by defining the mutual

- admittance term Ynkmh as:
+ 00
k
- nk _ 1 [ n ko d TM
Y T ff £ o, (9 € @ F T (ul) ;
d d 1
oA 1
- |
3
n I Vi .TE -ju(s, -8, ) !
- "€ ym™® & yn (E)——kd F (lt_xl)] e "=k =h an
- From Equation (C-3) it is easy to derive the admittance expressions for an

infinite periodic array of waveguide apertures. Writing (C-2) for an

- arbitrarily chosenreference element, we can express the vector By = 8, in
terms of the lattice basis vectors 3, s, and the tangential electric
field at the array aperture can be given in terms of the electric field at the

reference element [23]¢
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+ o0 + o
Ju(s -8 )
2 : n n n -n z :
(6 l,m+ r m) § m (u} e — Z 1 m I‘m)
n gq=-o0

p—-oo

-jlutu)(ps; +q8,)

£m (u) e (C-4)
‘nserting Equation (C-4) in (C-3), we note that [11]:
+ oo
Z Z ~j(u+u )(ps +gs, 2 Z Z
P=-00 q=~-o00 pP=-00 Q=-co
6(u + u +tpt ot Q£2)
where & is Dirac's delta function, C is the lattice cell area and tl, 12 are
the reciprocal vectors of 8)» 8, By performing the integration,
Equation (C-3) becomes:
M +o0 400
(al,n'rh)Yhz Z lm+rm)z Z 8
m=1 pP=-c0 q--oo
£ (we" (u)k—d FIM a + (C-5)
pm &) & ph = Yy ul)
* Yd _TE

u=u+ pgl+q£2
where the brackets indicate tha the function is computed at the points
u=u + p_El + th2° Equation (C-5) is immediately recognized to be the

solution of the boundary condition problem for an infinite periodic ar ray of

waveguide apertures, as presented by several authors | 7-12] .
C-3




T

g < b3

UNCLASSIFIED

APPENDIX D
ASYMPTOTIC EVALUATION OF FAR FIELD

The asymptotic evaluation of Equation (48) is treated here with some
detail for the TElI

we have (Reference 1):

polarized in the y direction of Figure 48, For this mode

g, )= AZRET G ' (p-1)

a cos M

£, (tu)=A Jl' (at) (D-2)

2
at
1 '( ] )
*11
In Equations (D-1) and (D-2) '"a'' is the element radius, Jl is the Bessel
' 1
function of first kind and first order, JI is its derivative, x,. is the first root

1 11
of the Equation JI (x) = O. The amplitude constant A,

is obtained by normalizing the mode funtions. Inserting Equations (D-1) and

(D-2) in Equation (48) and separating the TM and TE components we get:

2m @0
A sin ™ exp .
E (r,9, ¢)= == J, (at) PT T (t) e t dt dp (D-3)
p 2w . t 1
o o
where

2

+tr sin 6 cos (¢ - p))

r
exp=-j[ r cos QVkZ-t
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E, (r,0, ¢) = f /a = GO 5 ’e.t) PTE(4) e %P ¢ 4t du (D-4)
al= ( - )

where

2
exp=-jl[ r cos Gsz-t +tr sin © cos (¢ - )]

Let us deal first with the integral in Equation (D-3). By performing the

integration in p, Equation (D-3) becomes:

J. (at)
E, (r,®, ¢)=-jAsin¢ j_l'{'_ pa M (t) 1 [Hl(z) (cr sin 8)

(o]

: 2 2

1 (D-5)
For large values of r we can write:
J, (at) . . ‘/ .
. . 1 ™ .1 -2
Ep ‘r""“-'JAsm“’f T P 07 Viireae
o}
. : 2 2
- ] ] -
e”J(rtsm + r cos k t)tdt+
00
J, (at) : -
. , 01 ™ (-3) ’ -2
= W e ———
1A sdn g / t E (t) 2 wtrsinB
o
ej(rtsine-rcoso ‘/kz'tz)tdt
(D-6)
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By the changing the variable t = - t in the secnnd integral of Equation (D-6)

and summing the two integrals we finally obtain |

+ oo
. J. (at) ——
lim _A . 1 ™ 2 exp
Toveo Ep (r,9, ¢) = > 8in ¢ j n P (t) ”—r‘]m e t dt
- G0

where

exp=~j(trs8in® + rcos @ yk” -t")

With an identical procedure the integral in Equation (D-4) is reduced to ;

+ o ¥

1
alJ, (at) e
A TE , 2 exp
2 > (t) Ttrsind © el

e E, (r,0, ¢) = -‘Az‘- cos ¢ j "
1 -(=)

) * 11
(D-8)

where

exp= -j(trsin® +r cos ® {l:z-tz)

The asymptotic evaluation of the integrals in Er .ations (D-7) and (D-8) does
not present any difficulty as well-known methods are available (References
25 and 26) and the results given by Equations (48 a-b) and (49) are promptly
established.
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