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THE BEARING CAPACITY OF FLOATING ICE PLATES 
SUBJECTED TO STATIC OR QUASI-STATIC LOADS 

A Critical Survey 

by 

Arnold D, Kerr 

INTRODUCTION 

Frozen lakes and rivers have been utilized since early times for transportation and storage 
purposes.   In Russia,", in the absence of bridges, railroad tracks have been placed over frozen 
rivers since about 1890.   Floating ice plates have been increasingly utilized as airfields for the 
landing of aircraft.1 " " ',, "' as platforms for storage in logging operations," "' as platforms 
for the construction of river structures,'* '" as off-shore drilling platforms in the northern regions," 
and as aids m various other civilian and military operations.*  Tlui successful defense of Lenin- 
grad during World War 11 was greatly facilitated by the "ice road" ove. Lake Ladoga."  The recent 
oil discoveries in northern Alaska have increased the interest in the arctic ice cover for off-shore 
drilling purposes.  A rational utilization of floating ice plates for all these activities requires the 
knowledge of their bearing capacity when they are subjected to loads of short and long duration. 
Such information is also needed for the design of icebreakers." '" 

Field observations reveal that when a vehicle is small and rel; lively heavy it may break 
through the K e plate immediately after placement.  In such cases,  he plate response may be con- 
sidered elastic up until failure.   For relatively light vehicles, the ice plate deforms elastically 
at the instant of loading, but sustains the load.  However, as time progresses, the ice plate con- 
tinues to deform in creep, especially in the vicinity of the vehicle, and after a certuin time inter- 
val the vehicle may break through the ice. 

In the past, numerous attempts have been made to determine the bearing capacity of floaluig 
Ice plates subjected to vertical loads.   Particularly, since World War II, many papers containing 
test data and related analyses have been published.  However, in spite of these publications, 
there Is as yet no reliable analytical method for predicting the bearing capacity of floating Ice 
plates subjected to static or dynamic loads.  This is particularly the case for floating Ice plates 
reinforced by pressure ridges, a phenomenon often encountered In the Arctic." m for which not 
even test data can be located in the literature. 

One of the main reasons for the lack of reliable methods for determining the breakthrough 
loads of Ice plates li the difficulties Introduced by the fact that the lower surface of an ice 
plate Is always subjected to the melting temperature of about O'C, at which the mechanical prop- 
erties of Ice vary drastically with small changes of temperature.  Other difficulties are the depend- 
ence of th« mechanical properties of the ice plates upon the rate of freezing, the velocity of the 

• Kefs. 5. 17, 25, 40, 82. 120. 
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THt. Bt.AHINC CAl'ACITY OF H.OATINC KE PLATES 

W»m Mom Hi" plalc (lunrm tWe ttwtto» prorass, the salmily of tin water, etc.   Discussions of 
Ihr tm-c haimal pioju-nu-s oj ",. h.u,. i,.(ciiilv bera prefleatcd by Voltl^ovskli,,4, WFPIM and 
Assur,1*' '*' l.aviov." and Ho^orodskn it al.' 

AnottitT main reason is ilie lark ol effective coimimnicalion UNmR the various investigators, 
paitlv ( aused by the languatie hainei.   Tins lias lesulted in the duplu ation o( analyses and tests, 
otten lendeied useless by the same shortromint^.   Also, the intiodiu tion ol tocanvcl solutions foi 
lloatinn ice plates and their sulisequent utilizatioe for comparison with test data have not helped 
m solving the pioblems under consideiation. 

The purpose of this report is to present a critical survey of the liteiatme on the bevtag 
( apacitv of floatint; K e plates.   Fust, the various analytical attempts to deten e the beannp ca- 
pa( iiv aie teviewed, poupcd ac( (»idin^ to the used •failure cnteiion.-'   Th.s is followed by a dis- 
cussion ol lest data and then relation to the analytical results.   The report concludes with a sys- 
tematii summary of lesults, a discussion of obseived shortcomings, and ice ommendations lor needed 
invpslinalions.   H is hoped t! it this suivey and summary of results will establish a sense of direc- 
liun in the n.vest mat ions ;md will (ontiibute toward developing meihods lor detei mining the bearing 
i apac itv ol lloatiiiL: u e plates. 

ANALOGY METHOD 

The analogy method ol predictin^ the besting capacity of a floating ice plate subjected to 
■ sfaDc refticaJ loud, discussed bv Korunov," M is based on the notion of the analogy of two 
plates.   KOTtnov assumed that the ice plates under consideiation are homogeneous and Isotropie 
and that for two plates with thicknesses ft, and kg the comapondioft failure moments W, and if. 
in cvlindru al bending are 

», 

ft.,' 
u.. 

(1) 

Assummu that the failure stress r7f for the two plates is the same, it follows that 

(8) 
*l     »j8 

^     ft/ 

(Considering the ef|e( t of two different loads, P, ai tint on the plate with thickness ft, and P^ act- 
Ing on the plate with thickness ft^,, Korunov assumed that W is proportional to P, and obtained 
from eq 2 

P,       ft,' 
—       J-   . CD 
Pg       ft./' 

f!(|uation '{ may be rewntten as follows 

• Noli' lliai ■ «j ■', was used, in 19:iH, l.y M'iskalov fn I. H6, p. bt). 
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THK HtARIsa CAPACITY Oh' FLOATIMG ICE PLATES 

'all Ah 

I 

(li 

where <4 - P, /fc^-'.  Arcordm^ to the above method, if an allowable load P, of an ice plate of thn k- 
MM h. is known (fiom a ten», then the allowable load P,,, o| an tcfl plate~of different thickness 
may be computed it the „f values are the same fat both plates.    Tims, the coefficient A in eq J || 
to lie determined tnmi a spentic test. 

Son short, oiiiinns m Hi.' derivation of eq 1 weie discussed by I.anutin and Shnlman.'"   It 
should also ba noted that in a MoatiiiK ice plat« ihc bcidm« stress distribution may not be linear 
across the plate thu kness,s. therefore, eq 1   in the above derivations may not I»»' admissible. 
Nevertheless, lie. ause of it-, fxtr. me simplicity and its a^ieement with various test results, eq J 
found wide popularity, as shown IU the follov ing table (valid for P     „, metric tons and h in 
centimeters). 

So Dim c Load 

Koinnov ' 
Peschanskn'" 0.01 

Letodev'* 
0.0166 

InstriK tions of the Kimmeenn^ 
('omniittee of the Red Army*4 

Lysiiklnn"' 

Whft'h'd vein, les 
Iiacked vehicles 

0.0070 
0.0123 

Wheeled vehicles 0.0082 
Tracked vehicles 0.0123 

To demonstrate the use of eq 1 let us determnip the necessary ice thict.ness for the crossing 
of a river by a truck «eighing W meine tons, accoidmn to Korunov."   Usinn eq } the necessary 
ice thickness is 

h      \ TOT) ^"Tfi      10 . ()      (>() (Mi. 

Additional examples of the use of eq J were presented by Moskatov," Lysukhin" and Gusev." 

In order to take into consideration the effects of temperature, the dimensions of load distri- 
bution, and the salinity of Ice, Zubov1" modified eq I as follows 

KMsA /r C.) 

where K, U. and s are the correspondmn correction coefficients.   Discussions of this extension 
are presented in ref. 7,r) and 1S4. 

Basing his wotk on field experience witii fresh water ice. Korniiov.'n in 19r)6, iiKKlified eq 1 
by latrodacing a correction coefficient n whu h takes into consideration the condition of the ice 
as follows 

I 
P.,     - A I*    m tons, 

n 

In the above formula A    0.01 and n is related to ,>f as follovs 

(6) 



THE BEARING CAPACITY OF FLOATINL ICE PLATES 

('f(k^;/cm,) 1 1^ 17 25 38 

n 4.8 2.0 1.4 1.0 0.(i 

2 

—I 1 L^ 
Kj 20 

.   i 
30 

l 
40 

for T'  -7 C. 

A uraph of these v '.lues is niven in Figure 1.  This 
uraph may be represented by the equation 

25 n = — , 
a. 

Substituting this into eq 6, we obtain for T • -7' C 

I 
Pall' 

a,        (hg/cm^) 

Figure i. Correctlo<; coeHicientiias re/atorf        or 

irm 
o{h     in tons 

tofai/uresf.    s f>r fKorunov" ). 
f^l,  ■ (kioik      in kilonrams (7) 

Oj values were stipulated by Korunov"1 for five types of ice.   Korunov" also introduced another 
correction coefficient for thaw temperatures. 

M( THOD BASED ON THE BENDING THEORY OF ELASTIC PLATES 
AND THE CRITERION o^, «= <»f 

This ire.hod of predictmg the liearinp capacity of a (loatiPK plate subjected to loads of short 
duration consists of the followinn three steps: 

1. Determination of the maximtm stress amaI in the floating ice plate due to a given load, as- 
suming that the ice plate is elastic. 

2. Determination of the load at which the first crack occurs  Pcr, utilizing the criterion 

"mat      "f • (8' 

3. Correlation of Pcr with the breakthrough load Pf.  This step, disregarded by many investi- 
gators, is needed because, according to field tests, for various plate geometries, the occurrence 
of the first crack does not cause breakthrough; therefore, for these cases Pf > Pcr. 

In the criterion in eq 8, of is the "failure stress." It is usually obtained by loading a tloating 
ice beam to failure and then computing the largest bending stress at which it failed.   In the located 
literature, amax is determined using the classical bending theory of thin elastic plates. TTiese results 
are reviewed in the following. 

The response of a homogeneous and Isotropie elastic plate that rests on a liquid and is sub- 
jectel to a static vertical load <j is described by the partial differential equation 

where 

D ?* * * yw - q 

w(x, y) - plate deflection at (x, y) 
D - flcxural rigidity of the plate 
y m specific weigh, of the liquid. 

(9) 

aaMBI^^^_iaaa___Ba»   
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THE BEARING CAPACITY OF FLOATING ICE PLATES 

060 

0 50- 

040 

C 'a) 

0 30 

0 20 

0 10 

Figure 2.  A llodttng ice plate subjected to a distributed 
loud q over a circular area ol radius a. 

Solutions tor the infinite plate subjecti'd to a con- 
CflOtraled load P, and to a load uniformly distributed over 
a circular area, were presented by Hertz" in 1881.   In 
1929 liernshtein' utilized this discussion for the deter- 
mination of the allowable load for an infinite ice plate. 
Usin^ the criterion ui eq 8, in conjunction with the solu- 
tion for an mfiinte plate subjected to a uniform load over 
a circular area, as shown m Figure 2, Bernshtein obtained 

I 
o.h 

"     %Uv)C{m)   r 
2 (10a) 

where 

■ H C(a) 

Figure 3.  Cfa) vs a graph.* 

i 
n 

Poisson's ratio for the plate material 
a given function of u    a'/, as shown in FIR- 

nre 3 
radius of the circular area subjected to the 
uniform load q    P/rru2 

Wv 
EhMiai   ^1. 

If e^,-     (7f is a valid criterion, then Pcr is the load intensity at which the plate cracks. 

To demonstrate the use of eq 10a. Bernshtein computed the »       due to a railroad car weighinp 
24 tons for a 70-cni-thick ice plate as follows (ref. 8. para. 20): 

Assuming that £    580.000 t '■' and v - ',, he obtained 

'-vr ll.SOm. 

He then assumed that the effect of the weight of the railroad car may be represented by a load uni- 
formly distributed over a circular area with radius a 1.54 m. Hence, a = a/l = 0.134. From Fig- 
ure 3. it follows that C(a)    0.417.   For the above values eq 10a yields 

24.000*3*^*0.417 

"max       ^4  -  8-,6 W™'- 
(70)^ 

• This is a modified paph.   m the original version,' tha C(a) presented is for P in ions, b in meters, and a 
In kilograms per square centimeter. 

________^_ 



6 THE BEARING CAPACITY OF FLOATING ICE PLATES 

The next step is to check whether »__      of.   Additional numerical analyses are niven in ref. 8. 
Other numerical examples, hased on the Bernshtem solution, were presented by Volkov1" in 1940 
and hy BragMM and Proskunakov (ref. 11, part IV, section 7) in 1943. 

The determination of the load P    for a floaltaf infinite p/ale based on eq 9, the criterion in 
eq 8, and the assumption that the load q    P/inu2) is distributed uniformly over a circular repion 
of radius a  was also presented by VyMa"' in 19r)0, Kubo" in 1958, and Savel'ev"5 in 1963.  Wyman 
obtained for the load Pj., the equation 

1(1 . i Ikei'a 
o.r (Iflb) 

This is identical to eq 10a. noting that 

C(a) 
ker(a) 

"u 
(ID 

The determination of Prr, assuming that the uniform load is distributed over a square area with 
sides b, was obtained by (Jolushkevich" in 1944.  The derived expression yields loads that are 
very close to those obtained from eq 10. 

Solutions for an infinite plate were also presented by Schleicher'" in 1926, Korenev*" in 1954, 
Korenev"' in 1960, and Korenev and Clu■ml^Ulvskala,, in 1962. 

A solution for the infinite plate subjected to a row of equidistant loads was Resented by 
WnilniMWl'" in 1923. in terms of a UfeOMOwettlo series.  Solutions to similar problems (periodic- 
load distribution), also in terms of UlROMMlrir series, were presented by Lewe" in 1923, Mliller" 
in 1952. and Panfilov100 "" in 19()3 and 1964.   Sh 'khter and Vinokurova'" discussed related prob- 

lems in 1936. 

Since eq 9 is linear, it appears that when the plate is subjected to several loads, the method 
of superposition should be used.  This idea was demonstrated by Kerr"1 in 1959 for the solution of 
the floatum ice plate subjected to a row of equidistant loads.  A major advantage of this approach 
is that the distribution of the loads on the floating plate may be arbitrary, whereas the use of 
tnnonometnc series is suitable only when the loads act alonp straiph; lines, all loads alonp a line 
are of the same intensity and distribution and the distance between them is the same. 

The analysis of floatinn ice plates for arbitrary load distributions may be preatly simplified 
by utilizing influence surfaces.142   Charts of such surfaces were presented by Pickett and Ray"" 
in 1951 for concrete pavements.   Influence surfaces for bending moments, more suitable for ice 
plate problems, were presented by Palmer" in 1971.   Palmer's charts could also be used for the 
determination of load distributions on the plate that yield the largest possible bending moments. 
An attempt to solve such a problem without influence surfaces was made in 1965 by Nevel and 
Assur."  They considered the problem of the most unfavorable distribution of crowds on a floating 
ice plate from the point of view of bearing capacity, based on the criterion in eq 8.  This problem 
was recently analyzed by Palmtr" using influence surfaces. 

BernshtPinV eq 10a is shown as the solid line in Figure 4.  Shulman"1 in 1946 simplified 
eq 10a by replacing the curve for 0.07 < a • 0.65 with a straight line described by the expression 

rr 0.37 ■loAh2 i 7.8a^V4j (12a) 

 -    -     - ■ 
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3 n 

05- 

Eigurt'4.   \\.T'"f\\~ vs a. 

Fanfilov" in 1960 proposed the expiession 

P,r     0.375(1 . l.l«)or*
c 

(lih) 

based on the idea o»' a strainht-lme approximation.   F'anlilovs approximation (cq t2b) is the same 
as the one presented by Slullman.1,, since for t     0.:} 

2 v'^- ''i 

Panfilov" ;.lso proposed the followuin approximation 

(13) 

Kl » i)(().6H2 , 0.01%^ -Ina! 
-<>{h~. (ID 

However, since this is not much simpler than the exact expression (eq 10a or 10b), its usefulness 
is questionable. 

In 1961. Panfilov10* attempted to derive another approximate expression for Prr. assuming ,hat 
the deflections of a floating ice plate subjected to a concentrated force P may be expressed ap- 
proximately as follows; 

w(x, y) ■>-hl<-"H s3)(s,"3"083) (15) 

where 

From the equilibrium equation 

ly j   I  w dx dy. 

(16) 

(17) 

- n     IIM-II. 



8 THE BEARING CAPACITY OF FLOATING ICE PLATES 

I'anfilov dcifrmuicd it»- only unknown, w0, as 

8,715 

Comparing llie resulting w{x, y) witii tlif exact solution, and lindinc that the agreement was relatively 
(lose, Panfilov deterriuned the Ix-ndinj; nioments, usinn the relations (ref. 142, p. 81) 

M,(x, y) 

Myfx, y) öl****) 
W8   'ixs i 

(19) 

and the approximate w{x, y) pven in eq 15.   For the bendinn moments under the load P, he obtained 

UM, 0)     Mv(0, 0)     (JLLi±P . (20) 

Kquatin^ this expression with W(.r      (»f h" 6, Panfilov olitained lor .     ', the expression 

Pcr - affc2. (21) 

At this point, note that the relative closeness of the approximate and exact deflections (m the 
sense of comparing two graphs) does not imply that the second derivatives are also close.  Thus, 
for example, whereas the exact solution for the classical plate theory (used by Panfilov) yields 
infinite moments under the concentrated load P,* Panfilov's approximate solution yields the finite 
value shown m eq 20.   This point may be demonstrates further by compannji the graphs for the 
bending moment Mx(x, 0) based on eq 15 and or the exact solution.  It may be shown that, although 
the deflections are relatively close, the bending moments based on eq 15 do not approximate 
closely the actual bending moments, especially m the vicinity of the load. 

Other approximate solutions for the infinite plate were discussed by Korunov" in 1967.  As- 
suming that Bernshtein's" eq 10a is the correct expression for predictinp the bearinp capacity, 
Korunov proposed the empirical expression (for h in centimeters). 

P.. ■ — ah in tons cr      10() 

or rewritten 

P(.r      60ah2 in kilograms (22) 

and then showed that for special situations, it agrees with the results of eq 10a.   Noting that eq 
22 is based on of    24 kp/cm', it follows that 

• To determine the sUesses under the load, the rorrertion derived by Wester^aard (ref. 142, p. 275) may be 
used. 
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-7~r 

Figure 5.   A comparison of approximations for P, 
with exact graph. 

Figure 6.   Semi-infinite plate with free edge 
subjected to load P. 

ar/r 
2.5«. 

Note, that. acrordinK to eq 22. for a Riven yf. Pcr is proportional to the second term in eq 12a 
or 12h, h 4. whereas eq 21, derived for a     0. is proportional to the first term. h'~.   Note also the 
difference hetween eq 7. su^ested hy Korunov. and eq 21. derived hy Panfilov.   A comparison of 
various approximate expressions for Prr with the one based on eq 10a is shown in Figure 5, 

It appears that, instead of deriving numerous approximate expressions for eq 10 mat differ 
substantially from each other and are not much simpler than the exact expression.* t.rst it must be 
established whether eq 10 is suitable for predicting the bearing capacity of floating ice plates for 
loads of short duration.   This and related questions will be discussed later. 

Solutions for the floating semi-:nfinite plate with a free ed^e subjected to later;'1 loads were 
presented by Westergaard'" m 1923. Shapiro'" in 1943. and Golushkevich" in 1944. using Fouiier 
integral methods.   Shapiro's results were verified and extended by Nevel" in 1965. 

In 1950. Zylev."' using tha criterion in eq 8 presented calculations of the bearing capacity of 
a floating semi-infinite ice plate subjected along its free edge to vertical and horizontal loads.   How- 
ever. Zylev's approximate solution of eq 9 for the vertical load, recently included in a number of pub- 
lications,14 m is incorrect, as shown below. 

For the se  i-infinite plate shown in Figure 6. Zylev1" assumed an approximate solution of 
the form 

w(x. y) - |cosh(ax) » I' sinh(ax)lf(y) (23) 

where 

F = 1 for x < 0 

P - -1       for x • 0. 
(24) 

Substituting eq 23 into differential eq 9 with q ■* 0. he obtained an ordinary differential equation of 
fourth order for f(y). To determine the four constants, he used two regularity conditions at infinity 
and the conditions 

• A prospective user of eq 10 does not have to be fafilur with Bessel functions if he utilizes the C(a) vs a 
graph shown in Figure 3. 
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Wjix, 0)      () (25) 

IM ac 

0       -» 
(26) 

Note that, for the chosen deflection surface (eq 23). dv/rix is discontinuous alonj; »he y-axis. 
wluch is not the case in an actual plate.  Th.> quantity d^w/dx* is also discontinuous alonp the 
y-axis. this implies that for the assumed deflection surface there exists a line load along the y- 
axis.   This is in contradiction to the assumed plate load shown in Figure 6.   Furrhermore. along 
the free edge, where the largest stresses are anticipated, the boundary conditions for a free edge 
are not satisfied.  Therefore, the validity of Zylev's solution for the semi-infinite plate. ;>ven for 
the deternination of an approximate Pcr. is questionable. 

According to Zylev's1" results, the largest bending momem t^kes place at the point x     0 and 
y     1.14 \7).   On the basis of this analysis 

where 

PCI       O.HAIl     B**)"1»,»8 
(27) 

(28) 

According to S.iapiro's results. (;max takes place under the load.   Utilizing criterion in eq 8, the 
load at which the first crack oc-curs becomes 

S(al<7f/)' 

where Sdj) for i     0.36 is given in Figure 7. 

(29) 

In 1960, Panfilov'" compared the values of the load Pcr for the infinite plate as well as the 
semi-infinite plate.   The corresponding grap'is are shown in Figure 7.  This comparison shows that 
Pc| for the semi-infinite plate, according to Zylev"' (dashed line), is much higher than P,,, accord- 
ing to Shapiro'1' and CJolushkevich."   In 0    b'£ < 0.5. it is even higher than the Prr of the infinite 
plate.   In view of this comparison and the obvious errors contained in Zylev's solution, it is sug- 
gested that eq 27 should not be used for the analysis of the semi-infinite plate with a free edge. 

5 *> 

ID   \ 3.0 
V   zrl  in) pi 

fP    )   ^ \   Cr / «ton .nf   pi 

20 

05 

Fißiirv 7. Comparison of ana/ydca/ results. Figure 8.   (Pa)inS pl/(Pcr)senii inl pl vs b/^ 
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ArcorduiK to Panfilov." it follows from Figmt 7 that fcr 0.07    fc/|     1.0 

(Prr)inf pi '?2- ^Kt^mi-inl pi 

A more precise relationship is shown in Figure 8. 

On the basis of the tiraph for the semi-infinite plate shown in Figure 7. PinfUov** proposed 
for tl»e interval 0.07    b /     1 the following approximate expression; 

Pcr      0.16(l.2.;i()^„fh^ (30) 

Panfilov'04 attempted fo derive an approximate expression for P., for the problem sliown in Figure 
6, assuming that 

w(x. y) w expl- 4 (x * y) 1 fsin ^L f cos tl\cos H (31) 

However, the result obtained, similar in form to eq 21. is of questionable value.   The objections 
raised in connection with eq 21 also apply here.   Note that the deflection surface (eq 31) does 
not satisfy the differential eq 9 or the boundary conditions alon« the free ed^e. where the stresses 
are determined for comparison with criterion in eq 8. 

The semi-infinite plate subjected to equidistant loads P alon^ the free edjie was analyzed by 
Westernaard'" in 1923.  Similar problems were solved by Panfilov"" m in 1963.   The publications 
of Shekhter and Vmokurova,'" and Korenev and Chernigovskaia" also contain solutions to re- 
lated problems. 

The solution for the semi-infinite plate, simply supported alonn »he strainht edpe and sub- 
jected at any point of tlvi plate to a concentrated force P, as shown in Figure 9. was derived by 
Kerr50 in 1959.   UsinR th? method of images, the following exact closed form solution was obtained: 

w(x,y)   17k\kei\^{x'xo)*,y2] **\*Si***J**r*\ (32) 

y 
■» 

Figure 9.  Semi-inlinite floating p/ate. simply sup- 
ported along the straight edge and subjected to a 

load P. 

—    ■    -    ■ —"■———-■ 
- -   ■   - 

  -      .. -     . - 
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In 1971. Palmer'" utilized fins solution to construct a number m influence surfaces for bend- 
ing momenis. 

A mimerical solution for the sem/-in/inj(e plate, flumped alonn the edf;e and subjected to a 
foice P at a point on ttie plate, was presented by Korenev" in 1960. 

An analysis of a lloaling infinite strip, free alonf; both edges and subjected to a lateral load, 
was presented by Shapiro"* in 194^. utilizing the Fourier integral method.   Detailed results for 
similar problems were presented by Panfilov1" m in 1966 and 1970. 

The solution for a lloatinc infinite strip, simply supported along both elges and subjected to 
a concentrated force P at any point on the plate, was presented by Kerr'0 in 1959, utilizing the 
method of images.   The resulting deflection was given as a rapidly converging infinite series of 
fundamental solutions for the infinite plate.   Other solutions for this problem were presented by 
■MtargMrd**1 in 1923, in terms of Fourier series and by Nevel" in 1965 in terms of a Fourier in- 
tegral.   A solution for a similar problem was presented by Panfilov'"' in 1966, also using the 
Fourier integtal method. 

The infinite .strip, with clamped boundaries, was analyzed by Nevel" in 1965 and by Panfilov'0' 

in 1966, using Fourier integral methods. 

In 1960. Kashtelian4' presented calculations fc. the direct determination of Pf |tliat is, by 
eliminating step 3 (p. 4) in the above procedurel that are based or. the observation that the carry- 
ing capacity is reached when the wedges, which form initially, break off.  However. Kashtelian's 
solution for the wedge-shaped plate, on which his calculations are based, is incorrect, as shown 

in the following. 
For the rectangular comer plate with free edges, shown 

^« in Figure 10. Kashtelian assumed an approximate solution 

w(x. y) - / expl <i(x • y)lcos(uX)cos(ay) (33) 

where a and f are unknown parameters.   From the condition 

ij    I  YW dxdy (34) 

Figure JO.  A floating rectangular 
comer plate with tree edges  sub- 
jected to load P at the comer. 

0   0 

Kashtelian obtained 

f      ia2p (35) 

Then, utilizing the Bubnov-Galerkin method, for a one-term approximation he used 

I"   (Uw , Hy dxdy - 0 (36) 

0   0 

and determined from it 

(37) 

__ 
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Thus, according to eq 35 

/ 2P 
188) 

It should be noted that the above analysis contains an error; namely, because the assumed de- 
flection expression (eq 33) does not satisfy the bOMdary conditions of zero moments and zero she,. 
nu; forces along the free boundary, eq 36 is not complete.   According to the principle of virtual dis- 
placements, the pro;:er Bubnov-GaL-rkin equation for a one-term approximation v/= fwAx, y) is 

mm •»> (» 

|    |(DvV » kwyw^aty » fMy(x. (»w,   (x, 0)dx - f VJx, 0^,(1, 0)dx ♦ 
0    0 

I «,(0. y)»-,   (O.y)dy - j ^(0, y)w1(0,y)dy - Pn-^O, 0) . 0 (39) 

where Mx and My are given in eq 19 and 

K.CO.jr) - -O|«r.IIt*(2-^.tfJi.0 

(40) 
Vf{M,<»        0|%yy<(2   ^.Iiy|y0. 

Comparing the f value given in eq 38 with the corresponding values of the exact solution of an 
infinite plate, f - P/(8^ yO). and the (incorrect) approximate solution by Zylev'" for a semi-infinite 
plate, f - p/{2^yD), Kashtelian.** without justification, generalized his solution for the rectangular 
comer plate to a solution for a wedge ot any opening angle 6 (Fig. 11) by assuming that 

l4h p_ 

To 
(41) 

Figure 11.  Floating wedge shaped 
plate of opening angle <£ subjected 

to load P at the tip. 

an equation which satisfies eq 38 for <^    o 2 and the 
other two cases (<^ - 2n and d» = rr) mentioned above. 
Utilizing criterion in eq 8. he then obtained for the "fail- 
ure load" of a floating wedge plate of opening angle 6 the 
expression 

(-V' —-,»a. \*l   0.966    f 
(42) 

Note that, according to field observations." when ö    120°, Pcr    Pf.  Thus, according toeq 42. 
for a floating wedge with 4 = »r/2. as shown in Figure 10. the breakthrough load is 

,* a.h' fVf gfft 

\2/   0.966 
0.259affti 

Observations in the field indicate that the failure mechanism of a semi-infinite plate subjected 
to a force P at the free edn proceeds as follows.  First, a radial crack forms, which starts under the 

- _— 



■   " ■   '  ' '- — 

14 THE BEARING CAPACITV OF FLOATING ICE PLATES 

Figure 12.   Fuilurv mechanism ol a 
llouttng seni-inlinitv plutv subjected 

a/onp the tree edge U> a loud P, 

Figure 13.   Failure mechanism lor a large lloating 
plate subjected to a load P. 

load and propagates normal to the free boundary.  Tins is followed by the formation of a circumfer- 
ential ciiuk that causes final failure, as shown in Figure 12.   According to Kashtelian,4" the failure 
load for this case is equal to the failute load of two free floatmj: wedges, each of opemnp anple 
<i>    rr 2; 

Pf      2 . 0.27^o(h' O.SISo.ft1 (43) 

In a similar > ay. Kashtelian" determined the Pf for an inlinite plate.   Assuminp that n is the 
MMbM <>f radial cracks and that the n formed wedges are all of equal opening anple, i.e.. 4>n - 2r/n, 
as shown in Figure 13. tlie following expression for the failure load results: 

P, .ft if a 
V" "I o.' «*6 n » 0.966 

afh' 

Noting that n - 7K/+%, this expression may also be written as 

"■£)-.' (44) 

where <f> is the opening anple of the fornn-d wedges. Note that, with decreasing ^^ tlie load Pf 

in eq 44 decreases and that the above approach does no» take into consideration the effect of the 
wedpe-in moments alonp the cracks. 

Kashtelian showed that the results of 150 tests on floating ice plates agree closely with the 
bearing capacity values based on eq 43 and 44. In view of the errors discussed above, however, 

this agreement is not convincing. 

An approximate solution for the quarter plate with free edges loaded at the apex was also pre- 

sented by Westergaard1" in 1948. 

An exact close form solution for the quarter plate smpiy supported along the edges and sub- 
jee ted at any point of the plate to a concentrated force P was presented by Kerr" in 1959. usint? 

the method of images. 

The response of a narrow infinite wedge resting on a liquid base, as a beam problem, is des- 
cried by an ordinary differential equation with a variable coefficieit. This equation was solved 
by Dieudonee" m 1957 by means of the Laplace method of integral on.  Nevel" in 1958 solved it 

_.. ... ._      ._  
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>  b 

Figure 14.   Wedge shaped plate subjected 
to a load P     qb. 

and the flexural rigidity El as 

usmg the method of Frohemus.   Nevel's solution 
consisted of a sum uf four infuiite series which 
were evaluated and are presented as graphs in 
ref. 90.   An approximate solution for large values 
of x, was presented by Het^nyi." 

An early attempt to determine the carrying 
capacity of a floating ice plate, utilizing a float- 
ing wedge solution, was described by Papkovich"1 

in IMS.   In this analysis it was assumed that the 
wedge response is governed by a modified bending 
theory of beams (Fig. 14) by stating the base 
parameter as 

Ml)      y(b » 2xtgt\ Mr,) 

12(1   „«)\ 2) (46) 

where > is the specifu- weight of the liquid.   The term (1 - „«) was apparently included to get 
plate action for the wedge.   The deflection was assumed in the form 

where 

w(x)      A e"Al cos(Ax) 

VlElix)      V     Cftt 

(47) 

(48) 

and the unknown constant A was determined by minimizing the total potential energy.   Substituting 
the determined 

lA^P 

•n 
into eq 47 yields the deflection 

2\2P wix) 

1» • "dl 
The bending moment is 

e"Axcos(Ax). 

(49) 

(50) 

d^w i2 «-AJ lf(x) - -El—    -EI(x)2A\': e*^ c08(Ax) 
dx2 

  -      --   
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and the stresses in the upper and lower Lbers were obtained as 

W(x) 
i 

From the condinon do/dx    0. the position of the largest stress, x     w (4A), was determined.  Sub- 
stitutinp this value into the above equation, it follows that 

0. IS , 
"mw      "   A A   Eh. (51) 

! - |/Ä 

UtlllitaR the failure criterion in eq 8. »^     «r. ,t follows fror., eq 51. usinn eq 48 and 49. that 

<      "    0.9       "f"   • (52) 

Noting eq 48. the above expression for the failure load of a wedge of opemnp angle </. may also be 
written as 

'■f ± yjT^ ^|.- .|l|. (53) 

Pointing out that an ice plate breaks up under the weight of an icebreaker into wedges and that P. 
in eq 53 is of the form 

P, = A^h2* ^h5'4 {rA) 

Papkovich suggtsted that eq 54 be utilized for the determination of an empirical expression for 
the breakthrough load of an ice plate by determining the parameters Al and As from field test data. 

Although eq 53 is only an approximation (for example, the corresponding bending moment at 
x ^ 0 is ^ 0), its dependence upon h is identical with that of expressions in eq 12a and 12b for the 
infinite plate and eq 30 for the semi-infinite plate, respectively.  Even the term ftv/yT appears in 
the proper place.   This observation will be of importance in the discussion of test d'.ta presented 
in ref. 98. 

For solutions to other plate problems, whose response is governed by differential eq 9. refer- 
ence is made to the books by Schleicher.1" Shekhter and Vinokurova."' Korenev." " and Korenev 
and Chemigovskaia". to the survey articles by Korenev" M and Saverev'"; and to the literature 
on the analysis of highway and airport pavements. 

When a (loating ice plate seals the liquid base, in addition to the buoyancy pressure kw{x, y), 
the liquid exerts a uniform pressure p* on the plate.   In such cases, an additional condition has to 
be imposed on the solution to reflect this situation.   The unknown p* is determined from this 
condition. 

If the assumption that the liquid is sealed and incompressible is justified, then this addi- 
tional condition is 
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//' 
JA      0 (55) 

where the integration extends over the doriain of the plate A. 

Floating plates subjected to condition expressed in eq 55 were analyzed by ICerr" " and 
Nevel."   Kerr and Becker" solved plate problems by assuminR that the sealed liquid is compres- 
sible.   They showed that the effect of the sealed liquid depends not only upon its relative com- 
pressibility but also upon the sealed volume    the larger the sealed volume, the smaller the seal- 
abil.ty effect.  This result MRRMta that the use of eq 55 for the analysis of an ice plate that 
covers a river or a lake, as sun^ested recently by Mahrenholtz." is not justified. 

The analyses reviewed in this section are based on eq 9. the differential equatkn for a homo- 
geneous and isotropic thin el; stic plate.   In an actual floating ice plate, the material parameters 
vary across the thickness of ;he plate; hence, the floating ice plate is nonhomo^eneons.  This 
variation is very pronounced in sea ice plates as well as in a plate whose upper surface is sub- 
jected to very low air temperatures. 

An early attempt to take into consideration the variation of Young's modulus E (ref. 11. p. 73) 
is incorrect because the investigators did not take into consideration that when E varies across 
the plate thickness the resulting stress distribution is not linear. 

According to recent analyses by Newman and Forray.M Assur.' and Panfilov.1" when Young's 
modulus E var.es with the plate thickness ft. and Poisson's ratio v is assumed to be constant, eq 9 
is still valid if the (lexural rigidity is 

h-zo 

/) 
I 7    f   •• £(zWz (56) 

-'o 

and the position cf the reference plane is determined from the condition 

h-zr -70 

( zE{z)ilz = 0. (57) 
'o 

For the utilization of the available solutions of eq 9 also for nonhomogeneous plates with 
E = E(z), it had to be shown that, except for eq 56. the corresponding boundary conditions are the 
same as those for homogeneous plates.  This was done recently by Kerr and Palmer." who sys- 
tematically formulated this problem utilizing Hamilton's principle in conjunction with the three 
dimensional theory of elasticity.   Kerr and Pai.mer" also showed that even though the plane sec- 
tion hypoihesis is assumed, the resulting bending stress distributions are not linear across the 
plate thickness.   An example is given in Figure 15.  This finding suggests that the well known 
stress equation 

mmi 

M„ 

/r 

■ 
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Hi) > 

I 

Figure ii.   Stress distribution 
in the plate (or a given Kf/J. 

Time 

Figure /6.   Deflection vs time 
curves (or a doming ice plate and 

(ixed loads. 

utilized by various i.ivestipators in cunjunction with the criterion m eq 8, or for the determination 
of the failure stress <;( from tests on floating ice beams, may not be applicable in peneral. 

It should be noted that highly concentrated loads often cause pum h-tl rough failures, for such 
situations, that is, for very small a, the above methods may not be suitable and a different approach 
may have to be utilized to determine the breakthrough load. 

METHOD BASED ON VISCOELASTIC THEORIES 

It was observed in the field that for loads that do not cause an instantaneous breakthrough 
the ice plate deforms at first elastically and then, w:th progressing time, continues to deform in 
creep, especially in the vicinity of the load.   Two characteristic deflect ion-vs-time curves for 
fixed loads P are shown in Figure 16.   Curve 1 represents the case when, after a lime, tlie rates 
of deformation diminish and the ice plate and load come to a standstill.   This curve corresponds to 
a safe load for any length of time under consideration.   Curve 11 represents the case wh-n, after a 
time, the rates of deformation increase and at time tf the load breaks through.   Thus, the load that 
corresponds to curve II is safe for time t    t(. but then it has to be moved to another location to 
prevent breaktlirough.   The above field observations suggest that for an analytical determination 
of breakthrough loads which do not cause immediate failure a viscoelastic analysis must be 
conducted. 

It appears that the small deformation theory of plates may be sufficient for plates which fol- 
low curve I.   However, the analysis of plates which respond according to curve II is more compli- 
cated because in the vicinity of the load, a region of prime interest, the small deflection theory 
may not tie valid for I approaching ff.   Also, as the plate deflections increase, the plate may start 
to crack - a phenomenon not predicted by the usual theories of viscoelastic continua.  To predict 
cracking, a separate failure or crack criterion must be used.   Also, after the first crack takes 
place the analysis gets even more involved because of the introduction of additional, often irreg- 
ular, plate boundaries. 

For an analytical determination of a "safe" load P «- Pf and a "time to failure" tf, it it de- 
sirable to have one viscoelastic theory for floating ice plates which for time t    0 yield the elastic 
response and for t     0 yield responses according to curve I or II. depending upon the load and the 

-_   
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matenal parameters of the k* (which m turn depend upon ,he te^oerature d.stnbut.on. sahn.ty 
eC).  Th.s theory should be supplemented by a crack or fa.lure criterion valid for the elast.c and 
ytsc^lasnc ran.e.   The elast.c theory .n conjunct.on w.th the crack cr.tenon -       - „, discussed 
above could. If proven comet, he a spec.al case of such a general theory. ' a,SCUSSe<1 

Anomer fa.lure cr.ter.on was pr.nosed by Zubov- ,„ 1*12 and by KobeKO et al." .n 1946   On 
t e bas.s of, e.r test data, they concluded that for loads of short or Ion, durat.on. a float.n. ice 
Plate fa.ls under the load when a certa.n deflec.on »  ls reached, that .s  when 

MI     -r (58) 

According to Kobeko et il..* for th.s cntenon it does not mat- 
ter whether the plate deflect.ons are purely elastic or v.sco- 
elastic, as shown in PfeM 17.   The criterion in eq 58 was 
also adopted by SaveFev (ref. 121. p. 438) in 1963 for the 
study of the effect of temperature and salinity on the carrying 
capacity of a floating ice cover. 

In 1961. Panf.lov" proposed the above criterion for float- 
.nn ice plates that are cracked in the dished area.   His justifi- 
cation was that in the dished area water besins to flood the 
upper surface of the plate, with a resulting loss of base pres- 
sure in this area.   It may be added that the flooding of the 
upper surface near the load also raises the temperature of the 
upper layers of the plate to about 0 C. thus decreasing the 
strength of the ice in the area of high stresses. 

From experiments on floating ice plates, with plate thicknesses ft from 1 to 6 cm and tempera- 
tures from -3 C to -8.5 C. Panfilov" found that tempera 

Figure 17.   Illustntion of the 
failure cntenon based on plate 

deflections. 

2.2VF 
(59) 

where wf and ft are given in centimeters. In this connection it is of interest to note that using 
criterion w^ «,, ,„ conjunction with eq 59 and the solut.on for an infinite (uncracked) elastic 
plate subjected to a concentrated load P ••»•« 

•mat      w(n, 0) 

.t follows that 

*/yB 
2.2vff 

or 

»12M -.Ä ' (60) 

Thus  according to the criterion in eq 59. the breakthrough load Pf is proportional to I«   It may also 
be of interest to note that if the largest deflection of the plate under consideration is expressed by 
the equation 7 

  



20 THE BEARING CAPACITY OF FLOATING ICE PLATES 

w 

\ } T) 

where . is a coefficient, then a Pf expression of the form shown in eq M correspondF to the 
criterion 

w. "\ T , 
OF (61) 

wtiere a and ß are (Efficients. 

Test data are needed to establish whether the failure criterion in eq 58 and its special forms 
in eq 59 or 61 are indeed valid for elastic as well as viscoelastic deformations. 

In the early attempts to take time effects into consideration for floating ice plates, one ap- 
proach utilized the solnt.ons for elastic bending and tried to fit the experimental data by modify- 
ing the elastic constants (ref. 11. p. 53).   In another approach, the elastic results wer- r.mltiplied 
by a time factor (1 . at"), where t is time and a and ß are constants to be determined from experi- 
mental data (ref. 6. eq 177).  However, these approaches have no rational foundation and their re- 
sults are of questionable value. 

Another early appro»ch was based on Zubov's hypothesis, which states that deflections of 
ice plates, especially at ctmparatively tnnh temperatures, are caused mainly by vertical shearrg 
forces (ref. 154, p. 49).  To verify Zubov's assumption. Zvolinskn'" analyzed a plate restuiR on 
a liquid, assuming that the deformations are entirely due to shearing action and that for creep de- 
formations the material obeys Newton's law of viscosity.   Althouf;h the resulting differential equa- 
tion was relatively simple, because of ihe prescribed initial conditions the obtained solution was 
rather involved:   Zvolinskii (ref. 156, p. 21) stated:   "In this formula the result is nc; self evident, 
and analyzing it does not help us to visualize the picture of the phenomenon." 

Zvolinskii used, for the initial condition, the elastic deflection surface caused by shear only. 
However, according to some experiments, shortly after the load is placed  the deflection surface 
agrees closely with the elastic deflection surface due to b'ndinn (ref. 8. Fig. 18).  Also, since 
the elastic defxections are telatively small, the effect of assuming that the elastic deformations 
are zero seems to be neRlipible compared with the introduced error of assuming shear as the only 
force responsible for creep deformations.  This assumption was made by Kerr," who attempted to 
simplify Zvolinsku's analysis in order to study the characteristic features of the creep deforma- 
tions based on Zubov's"* hypothesis. 

Recorded observations of the effect of static loads on the deformation of floatinp ice fields 
showed (Fig. 16) that in some cases the rates of deflection decreased after the load was placed 
and after a certain time interval the plate came to a standstill (ref. 8, p. 48; ref. 154, p. 146), 
whereas in other cases the rates of deflection increased until tne plate collapsed under the load. 
The observed decreasing and increasing rates of deflection should result from a general formula- 
tion of the problem.    However, because of the simplifying assumptions made, it was necessary*' 
to incorporate it by setting up two separate formulations for the decreasing and increasing rates 
of deformation.  Although some of the results obtained did agree with deflection expressions given 
by Zubov (ref. 154, p. 24; ref. 155, p. 148), because of tht various assumptions made, the result- 
ing analysis is not conclusive for the determination of breakthrough loads. 

The assumption that the predominant deformations of a floating ice p'ate are caused by 
shearing forces was also made by Krylov" in 1948. 

--- 
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The intense development of the linear theory of viscoelasticity after World War 11 also affected 
the formulation of ice plate problems.   In 1944, Golushkevuh" presented an analysis assum-np 
that ice behaves elastically for volumetric deformations and viscoelastically for deviatoric defor- 
mations.   His formulation was base-' on the linear bendinp theory of plates, linear constitutive 
equations, and the assumption that tie material parameters do not vary across the plate thickness. 
The equations obtained were linear.   The special case of an incompn-ssible material was analvzed 
in detail. 

A general forr.aation for viscoelastic plates, based on the linear bendinn theory of plates and 
the assumption that the constitutive equation is a linear relation of differential operators, was pre- 
sented by Freudenthal" in l^S.   The utilization of this equation for floating ice plates was dis- 
cussed bv Kheishin" in 1964.   As a special case. Kheishin analyzed an infinite ice plate sub- 
jected to a concentrated load P. assuming that the ice is incompressible for volumetric deformations 
and that it responds like a Maxwell body for deviatoric deformations.   A similar problem, when the 
load is distributed uniformly over a circular area, was analyzed in 1966 by Nevel/' who also pre- 
sented graphs and a comparison w-a the results of a test.   In 1970. lAkunin" presented solutions 
for various load distributions, assuming that the ice responds like a four element model, that is, a 
series combination of a Maxwell and Kelvin model.   In the above analyses, except for the paper'by 
lAkunm, it was assumed that the material parameters are constant throughout the plate. 

As discussed before, in an actual floating ice cover the material parameters vary with depth. 
In an attempt to take this into consideration. lAkunin4' derived an approximate formulation for a 
varying modulus of elasticity and coefficient of viscosity, and solved the formulation for a variety 
of load distributions.   He found that, as in the elastic case, the variation of material parameters 
across the plate thickness has a profound effect upon the stresses in the ice cover. 

A viscoelastic analysis of the ice cover based on Reissner's theory of plates, which considers 
the effect of bending as well as shearing forces upon the deformations, was presented in 1967 and 
1968 by Garbaccio."  Gyrbaccio assumed that the ice responds like a series ' ombination of a Max- 
well and Kelvin model and that the material parameters are constant throughout the ice plate. 

In 1961, Panfilov." citing shortcomings of linear theories, derived a differectial equation for 
floating ice plates, based on the linear bending theory of plates and the nonlinear viscoelastic con- 
stitutive equations proposed by Voitkovsku."4 "'  Additional derivations, along the same line, were 
presented in 1970 by Panfilov,'" who. however, gave no solutions to the derived differential equation. 

In 1962. Cutliffe et al.," using a nonlinear 
constitutive equation, made an attempt to analyze 
the time-dependent stresses of an ice cover. 

The linear bending theory and a nonluiear 
constitutive equation were also used by Gar- 
haccio" to analyze ice plate problems.  Gar- 
baccio attempten to obtain an approximate solu- 
tion of the resulting nonlinear formulation by a 
linearization technique. 

In the absence of reliable analyses for pre- 
dicting the bearing capacity of ice plates sub- 
jected to loads of long duration, Panfilov," in 

.      (hr) 1%1. constructed from field test data the graph 
Figure 18. Breakthrough loads vs breakthiough     shown in FlPire I8-   In Figure 18. t is the time 
time lor a floating ice cover subjected to loads      period between placement of the load and break- 

of long duration. through. Ff(0) is the magnitude of the load 

P,(|) 

P,(0) 

■ - 
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just sufficient to break through immediately after placement on the plate (at lf    0). as discussed 
in the previous section.« and P^t,) is the load that breaks through after a time l(.   From the graph 
shown, it follows that P^,) < P^O) for tf - 0.  Thus, for example, a load that has to park safely on 
the ice plate for 6 hours should be smaller than 0.4 Pr(0). where Pf (0) is determined from a separate 
analysis.  To represent analytically the graph shown m Figure 18. Panfilov proposed the expression 

W 1 
Pf(0) _  1 , 0.75^ (62) 

where tf is in hours.  Solving this equation, the "safe" storage time is obtained as the time that 
is smaller than 

rPf<0)-Pf(tf) 
ff =[o.75Pf(0) (63) 

A graph similar to the one shown in Figure 18 was presented and discussed, also in 1961. by 
Assur.2 

Korunov" in 1968 pointed out that eq 62 was obtained from tests on ice plates under specific 
conditions.  He then proposed the following modification of eq 63: 

rPf(0) - Pfati 

' ' [o.7.r>pf(())n (64) 

where K and n are correction coefficients which take into consideration the shape of the load and 
the outside temperature. 

In 1970. other expressions of the type shown in eq 62 were presented and discussed by Pan- 
filov.'"  A related discussion is presented in ref. 43. 

METHODS BASED ON THE YIELD LINE THEORY OR LIMIT ANALYSIS 

The yield line theory was utilized for the analysis of continuously supported plates by 
Johansen" in 1947 and by Bernell' in 1952.   Persson1" used it in 1948 for the analysis of a 
floating ice plate.   Assuming that the yield line moment per unit length is M0. Persson obtained 
for the case shown in Figure 2 

p'= ^KuiiOT''- <65, 

Using a similar approach, in 1961 Assur1 presented for the breakthrough load the expression 

I 
3 ¥2 

• In tlM prpvious section, it is denoted for brevity's sake   as P.. 
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The method of limit analysis was ut.lized by Meyerhof In 1960 for the analysis of the bear- 

inR capacity of floating ice plates.  Assuming 1) that the ice plate is thin. riRid and ideally plas- 
Mr, 2) that it can. without cracking, resist a full plastic moment UQ. and 3) tnat the ice obeys the 
Iresca yield condition. Meyerhof obtained for the case shown in Figure 2 

3. Irr (' (f')wo o.os 1.0. (67) 

Assuming that the floating ice plate before failure is cracked radially into numerous wedges  Meyer- 
hof obtained for the same case 

in 
Mr 0.2 ^ a < 1.0. (68) 

2 

In an extensive discussion of Meyerhofs paper." Hopkins questioned the degree of realism 
in approximating the mechanical behavicr of ice as that of a rigid, perfectly plastic material. In 
the same discussion. Wood as well as Hopkins questioned the use of the Tresca yield condition. 

Recently. Coon and Mohaghegh" also analyzed the floating ice plate by using the limit analy- 
sis method but assumed that the ice obeys Coulomb's law.   F.  the problem shown in Figure 2 
they obtained 

2M2.3 , 2.Qa)Mf (69) 

Additional results and discussions were presented by Coon and Mohaghegh" and Meyerhof '•  Re- 
lated results were published by Korenev61 in 19r,r. and Serebrianyi'" m 1960. 

It should be noted that the often used expression for the limit bending moment Un . aJt*/* is 
based on a stress distribution of a homogeneous plate, as shown in Figure 19a. whereas because 
of the thermal gradient in the plate, the distribution of limit stresses.'" assuming that a full plas- 
t.c moment does exist, could be as shown in Figure 19b.   Also, the assumption that the ice plate 

can. without cracking, resist a full plastic moment U0 may not 
be realistic, since its formation was not observed in the field. 
When using the yield line theory, it may be more realistic to work 
with cracks instead of yield lines, and wedge-in moments instead 
of the plastic moment UQ. especially along the radial cracks. 

A comparison of the various Pf expressions presented above 
with Pcr formula (eq 10a) given by Bemshtein' is shown in Figure 
20.   For comparison, it was assumed that a, ~ o0 and that Wn 

oj /4.  Note that a different number in the demoninator of U 
shifts only vertically a plotted graph.   All Pr/(cJ)2) versus a" 
graphs obtained using plasticity methods show the same charac- 
teristics and may be represented by a straight line, as done in 
eq 12a or 12b. 

"o 

Figure 19.   Limit stress dis- 
tributions,  a.  Homogeneous 
plate, b.  N on homogeneous 

plzte. 
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Coon and 
Mohaqheqh/[,ncrochea 

Figure 20.   A comparison o( Pr expression.': 
with Pcr tormula {in eq 10a). 

COMPARISON OF ANALYTICAL AND TEST RESULTS 

General Remarks 

The mechanical properties of ice vary drastically in the vicinity of the melting (or freezing) 
temperature of about 0' C.   Because the lower surface of a floating ice plate is usually at the melt- 
inn temperature, the plate response is obviously affected by it.  This effect is especiaVy severe 
when the upper surface is also subjected to near 0oC temperatures, because then the temperature 
throußhout the plate is approaching the melting temperature. 

o°c 
lO-C 

Liquid 

Figure 21.   Temperature distributions 
in a (loating ice plate (or different 

times 0 ^ t < ». 

To demonstrate the temperature variations with 
time, consider a floating ice plate subjected for a Ion« 
time to an air temperature of -10'C.  Assume that at 
time t » 0 the air temperature rises to -10C; the cor- 
responding temperature distributions for different times 
are shown in Figure 21.   Although the temperatures at 
the top and bottom surfaces are constant for t  ■ 0. the 
temperatures throughout the plate vary with time.  Hence, 
if two identical tests are performed before a thermal 
steady state is established, the results may differ, de- 
pending upon the time (after the temperature rise) a par- 
ticular test is conducted. 

A similai situation takes place in the floating test beams used for the determination of the 
failure stress a(, because after a beam is cut out from the ice the side walls come in contact with 
the rising water and the outside air. 

Another thermal problem may arise in a test when an ice cover in the field is loaded by pump- 
in« water into a large tank that rests directly on the cover, for then the bottom of the tank, which 
is made of metal or canvas, rests on the ice, and the upper surface of the ice plate in the contact 
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region is subjected to near 0oC temperatures.  This type of loading usually causes a change in the 
stress distribution and a lowering of the strength of the ice in the area where failure usually starts, 
thus affecting the test results. 

These and related questions, such as the effect of a sharp drop of the air temperature, the 
rate of loading, and the penetration of water through the ice plate during loading, have to be con- 
sidered when the test data of floating ice plates are correlated with the analytical results.  In the 
following, various test results are discussed and correlated with analyses presented above. 

Effect of Bending and Shearing Forces on Deflection of an Ice Cover 

As shown in the previous sections, an analytical determination of the breakthrough load uti- 
lizes a formulation for the ice cover.   In order to simplify the necessary analyses, Midi a formula- 
tion contains a number of assumptions.   It is essential that the assumptions made be justified, 
from a physical point of view, since otherwise the analytical results may have no relevance to the 
actual problem under consideration. 

One such assumption, included in the derivation of differential eq 9, states that a straight 
line, normal to the reference plane, remains straight and normal to the deformed plane (sometimes 
denoted as the Kirchhoff hypothesis).   Physically, this kinematic assumption implies that the de- 
flections are caused by bending stresses only and that the effect of shearing forces is negligible. 
This assumption, discussed at length in books on the strength of materials, has been proven to be 
justified for the elastic response of slender beams and thin plates made of a variety of materials. 

On the other hand, basing his view on field observations. Zubov1" in 1945 suggested that the 
deflections of an ice cover are mainly caused by shearing forces, and hence the effect of bending 
upon the deflections is negligible. 

Because the resulting equations a-e used for the analytical determination of Pf (for additional 
examples, see ref. 102), it is essential to determine whether Kirchhoff's or Zubov's assumption is 
to be used for the formulation of ice cover problems.  In this connection, note that the plate de- 
flections due to a load q, which is distributed over a circular area, according to eq 9, are'" 

w^r) - ^1 - i ker'(a)ber(A/) - kei7a)bei|Ar)l 

w2{r) = ifjber'WkeriAf) - bei'(a)keUA.r)| 

0 < r < a 

(70) 

a < r < - 

where A - \y/D. whereas the differential equation for an ice plate, according to Zubov's hypothe- 
sis, is 

Ghrfw -vw -    q (71) 

where G is the shearing modulus and the corresponding deflections are 

»iW-lQ-(«•)«, {«i^dcifl 0 < r < a 

(72) 

w2{r) = 1 OcaJ/jUaWjjUr) a < r < « 
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0 00b 

Figure 22.  Comparison ol plate deflection curves based on 
bending and shear theories. 
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Figure 23. Comparison ol ice plate deflections 
due to loads of short duration at -lSnC    T < -7nC.' 
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Figure 24.   Comparison of ice plate deflections due to 
loads of short duration at 0oC.m 

where /01 K0. / j and fC j are Bessel functions and « = \'Y/{Gli). To show the different nature of 
the deflection curves based on these two assumptions, eq 70 and 72 were evaluated numericalJy 
for ft = 10 cm, f = 0.3, and E - 10,500 kg/cm1. For a/ft = I a«d 5, the corresponding vali«e of G 
was determined using the condition that the largest deflections w(0) for both theories are equal. 
The results are shown in Figure 22. 

Note that the response of an ice cover according to Zubov1" is identical to the response of 
the shear layer in the Pasternak foundation." 
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As early as 1929, Bernshtein' compared the deflectioMS of an ire field on the Vol^a River suh- 
jected to loads of short duration, at air temperatures of -1 V C    T    -7' C. with carespondinn re- 
sults based on eq 9    This comparison is shown in Figure 23.   Since the apreement is very close, 
it was concluded that the use of eq 9, and hence Kirchhoffs hypothesis, is justified for the formu- 
lation of ice plate problems subjected to loads of short duration. 

tn 1968. Shmatkov1" compared test data of an ice plate on Lake Baikal subjected to a vertical 
load of short duration but at air temperatures of about 0 C with analytical results based on eq 9 
and 7'..  This comparison is juven in Figure 24.  On the basis of these data, Shmatkov concluded 
that at air temperatures of about 0 C the deformations are mainly caused by shearmp forces. 

This conclusion raises a serious question about the effect of the air temperature upon the 
ranpe of validity of eq 9 and 71 for the formulation of ice covers.   A comparative study involving 
more test data, especially at air temperatures near 0 C, is urpently needed to clarify this important 
question.   In these tests, a special effort should be made to separate the elastic from the nonelastic 
deformations.   It may also he advisable to note the difference between the crystallopraphic structure 
of an ice cover formed over a lake in which the water is essentially at rest and that over a river in 
which the water moves at a certain velocity, and the effect of a different crystallo^aphic structure 
upon the mechanu al properties of an ice cover. 

Detemlnatian of Pr(0) 

Test results and their relationship to the allowable load piven by the analogy method were 
discussed by Kliucharev and Iziumov" in 1943 and by Kobeko et al." in 1946.   In 1960. Gold'4 

compared eq 4 with the field results of the Canadian pulp and paper industry.   The conclusion 
from this comparison was that the formula given in eq 4 is not sufficient for the determination of 
failure loads since the presence of cracks, thermal stresses and natural variation in effective 
thickness is not considered.   Another reason could be that the failure load P. is not proportional 
to b* but may be a more complicated function of h, as indicated by eq 10 and 12.   Additional re- 
sults were presented by Gold" in 1971. 

F'tlK Wolf  In 

Son Wail' let (S-i%.l 
lAltit (■,(!> ttftMi.l'HOi 10 cm 

San Wait' IM IS-to X.I 
l»l2i2cm.m5i5cin.(JMO.iOciT 

Figure 25.  Laboratory teat results (or infinite 
p/atM.M 

In order to establish which of thp various 
formulas for Pf.r and P^O) obtained using the 
criterion CTBai ■ af are suitable for predicting 
the carrying capacity of a floating plate sub- 
jected to loads of short duration, in the follow- 
ing the analytically obtained Pf(0) values are 
compared with corresponding results from tests 
conducted on floating ice plates. 

Since the analyses are based on an elastic 
theory, only the results of tests with very short 
loading times to failure are of interest.  Such 
tests were recently conducted by Panfilov" in 
the laboratory as well as in the field.  The lab- 
oratory tests were conducted at -IOC.  The 
floating plate was loaded by means of stamps 
of tht dimensions shown in Figure 25.  The 
load for each test was placed statically at 
rates which caused breakthrough within 5 to 
20 sec.  In addition to the failure loads P., 
loads at which the first radial crack occurred 
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Pe| were recorded.   The laboratory tests were conducted with fresh and salt water ice.   The ice 
plate thickness varied from 7 to 30 mm.   The field tests were conducted on thicker ice plates. The 
ice plate was loaded by placing metal water tanks on a structure which in turn rested on the ice 
plate and simulated the contours of wheel loads.  The ice strength a, was determined from floatint; 
cantilever tests with the load acting downwards.  Additional details are contained m ref. 98. 

The results of 56 laboratory tests for the infmiie plate are shown in Figure 8S. 

The failures followed the usual pattern:   first, the formation of radial cracks that emanated 
from the repon under the load; then, the formation of circumferential cracks, at which time the load 
broke through the plate. 

In Figure 25. Curve I is the P/lof/r). according to the analyses by Bernshtem," Oolushkevich.' 
and Wyman.1" Curve II is proposed by Panfilov" as representing the test data and is described 
by the equation 

P 

7? 1.25 t LOS* 

Tins equation was obtained by an averaging process.   The test data show a scatter in a relatively 
narrow band. 

H ■ •    . ■ • ■        j'   •   > ) 1 

: 

•_ 

Before proceeding with the discussion of these 
test results, in the following a different concept for 
the evaluation of ice plate tests is in'roduced.  This 
is necessary becaust averaging curves, such as 
curve II, are not suitable for most engineering pur- 
poses. 

Sate t oods 

X 

From an engineering point of view, there is a 
need to determine safe loads, at which an object 
may move or park briefly on a floating ice plate, 
or hreaklbrough loads, for the design of ice break- 
ers, at which the plate definitely collapses.   These 
loads may be obtained by introducuig into the re- 
sults of field tests an upper envelope U and a lower 
envelope L, as shown in Figure 26.   It is reasonable 
to expect that the area under envelope L contains 
safe loads and the area above envelope U the 

breakt/irou/j/i loads.   The area between the envelopes is the region of the test failure loads and 
nothing definite can be said about it with rejpnct to safety or breakthrough.  Thus, only the re- 
gions above curve U and below curve L are of interest and the test results are needed to separate 
these two regions. 

For the test da'a of infinite plates showi  in Figure 25. the upper envelope U may be repre- 
sented by the equat.on 

Figure 26.  Illustration of new concept 
'or evaluating breakthmugh loads from 

test data. 

"f^U 

-  1.5 «. U' 

and the lower envelope L by the equation 

I-^M__^_ 
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Therefore, if the hounds shown in Figure 25 should prove reprodm ible by other investigators, a 
sale load (for loads of short duration and T    -10 C) could be determined from the condition 

<fo.u_U.f4. (73) 

where a, is obtained from a floating cantilever beam test loaded downward. 

Accoiding to test data shown in Figure 25 

Note, however, that the af values for ttiese two cases are usually not the same. 

Panfilov" observed that, if P(.r is the load at which the first crack takes place, then 

rcr ^W 

From the above two equations, it then follows that 

(74) 

(75) 

ptest 
cr lp   . 

1    cr (76) 

A proper analysis should yield that P(.r is equal to f**1.   Possible reasons that this is not so in 
eq 76 are; 1) The a( values used in Figure 25 are those obtained by loading the cantilever beam 
downward, whereas for the determination of P(,r the tensile stresses that crack the plate are in the 
lower fibers of the plate where a{ is smaller because of the higher temperatures; 2) The stress 
distribution is not linear across the plate thickness and the stresses in the upper fibers are lar- 
ger than those in the bottom fibers, whereas the analyses and test evaluation are based on a linear 
distribution with equal stresses at the top and bottom fibers; and 3) The criterion a      ^ a, mav nr 
be valid. 

According to analytical results by Kashtelian." for an infinite plate that cracks into five 
wedges (0n = 2ir/5) 

- = 2.08— ~0.8 
2 n 

and when plates crack into six wedges («^n = ff/3) 

P. 
— ^-0.7. 

ath' 

Thus, according to this analysis. Pf values are obtained which are far below the test data pre- 
sented in Figure 25. 

  ■ - -     -- 
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Figate '27.   Remlta /or semi-mlinitt- plate.' 
{Symbols as in Fi«. ^5.) 

Also compart' the ^aplis presented in Figure 
.'0 with the lest data of Figure 25.   Note that the 
upper graphs la Figure 20 are based on 14Q    oji* \ 
and that they may be shifted toward the test data 
by choosing a larger number m the denominator of 

The test results for a semi-infinite plate 
subjected to an edge load, as shown in Figure 6, 
are presented in Figure 27.   The failures followed 
the usual pattern    first, the formation of a (rack, 
which emanates under the load and is normal to 
the free boundarv. tl   '\ the formation of a circum- 
ferential cracl at which the two wedges break off. 

In Figure 27, Curve I is the P  , according to 
the analyses of Shapiro'" and Golushkevich." 
Curve II was proposed by Panfilov" as represent- 
ing the test data, which show a scatter in a rela- 
tively narrow band.   It is described by the equation 

r>f/r 
0.15 » 0.W I 

It can be easily verified that the upper envelope U is described by the equation 

{JA      0.58. 0.27 } 

and the lower envelope L by the equation 

/_P_\    , 0.35 ♦ 0.w5 • 

[fence, if the bounds shown in Figure 27 should prove to be reproducible by «her investigators, a 
safe load for the crossing of a long gap in a floating plate (a bridge between two semi-infmite 
plates)  could be determined from the condition 

P    (o.D f (». W-^-Wr;.. 

On the other hand, the breakthrough load for a semi-infinite plate, often needed for the design 
of icebreakers, should satisfy the condition 

p ./o.r>8 t 0.27 -p=J\0.^ 

where (;r is determined from a floating cantilever test loaded downward. 

According to the test data shown in Figure 27. for 0.1 ^  b/£ •   1.0 

 — 
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1.6 P  . 
(77) 

Panfilov ot)served tlia( also for ttie senii-mfinite plait« 

ntest   ^ ^ „lest 
er .1'     • (78) 

Fiom eq 77 and 78. it then follows that 

et ,irrr- (79, 

In view of the three possible shortcotmnKS listed in the discussion of the mfinite plate this 
agreement is very olose. 

Panfilov's test results for the infinite and semi-infinite plate show that 

(PH » 2 7 (P1^) 
\ /inf plate ^f     /semi-mf plate' <80) 

This contradicts the -xperimental findinj-s reported by Kashtelian (ref. 48. p. 33).   Equation 80 
indicates thai the effect of the wedf,e-in moments is not ne^hpible if one attempts to compute P 
analytically from wedge solutions.   Without the wedge-in moments. Pf of the infinite plate would 
be equal to twice the Pf of the semi-infinite plate.   In this conne<nor. rote the correspondinc re- 
lationship obtained analytically and shown in Figure 8. 

According to Kashtelian." for the observed wedge formation, for a semi-infinite plate 
<i> • n/2 and hence 

Pcr/(af/r)      0..r,l8 

a value which agrees with the test data shown in Figure 27 for a < 0.4. 

Other test data for loads of short duration were obtained by lAkunin.'" however, these results 
were not available for review. 

DetermiMtion of Pf(o 

R   . E^rlyJeS,
J

r!S„UltS f0r iCe C0VerS subJected t0 loads of long duration were reported in refs 
b. 8. 4.). 58 and 59.  More recent test results were presented by Sundberg-Falkenmark '" Franken- 
stein.» Panfilov." '- "' Stevens and Tizzard.'" and lAkunin." Although some writers compared 
their test data with analytical results and found satisfactory agreement for certain situations  a 
systematic study of available test data, supplemented with new test results, is needed to estab- 
lish, first the proper plate theory for ice covers which will predict the deflections as a function of 
time, and then a failure criterion for the determination of Pf (0 and t.. 

In connection with the above studies it may also be useful to note the test results presented 
by Black.  Drunk." Butiagin." Frankenstein." Gold et al..» Korzhavin and Butiagin." and 
Shishov.'» as well as the discussions by Assur.1 Dykins.» lAkunin." Pister."'tand the discus 
sion in ref. 140. 

Detennlnation of a. 

For the analytical determination of Pf(0). the value o, is needed.  It is determined usually 
from a beam cut out from an ice plate and tested in situ.  A detailed description of such tests 
was given by Butiagin (ref. 16. section IV).   A cantilever test beam is shown in Figure 28. 

■ - - 
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Figure 28.   Cantilever tett beum lor the determination ot f»f. 

Other test data were presented by Brown," Frankenstein." " Sokolmkov."4 Tabata et al.,"* 
Taufiainen,"v and Weeks and Anderson.'"   Related questions were discussed by ButiagiB," 
Frankenstein," Kerr and Palmer." Lavrov," " Pesehanskn."* SaveTev.''' Smirnov,"' and Weeks 
and Assur.14' 

lr order to establish a standard procedure for the determination of (7f, H should be of interest 
also to detennine the effect of the rate of loading upon CTf, as well as to clarify why Franken- 
stein," * using the test setup shown in Figure 28, found that the determined (;f value was higher 
when P acted upwards, whereas nutiagin.14 using the same setup, reported that, according to his 
test results, the af value was higher when P acted downwards. 

SUMMARY AND RECOMMENDATIONS 

When utilizing a floatuig ice plate for storage purposes or as a pavement for moving vehicles, 
there is a need to know the magnitude of the breakthrough load Pf(0 and the corresponding lime to 
failure tf.   Until now, there has been no general theory in the literature suitable for the prediction 
of Pf(f).   The majority of papers on the bearing capacity of ice plates have dealt with the deter- 
mination of Pf(0), that is, the load which is just sufficient to break through the ice immediately 
after it is placed on the ice cover.  Only a few papers have dealt with the determination of Pf(l). 
The procedures for the determination of Pf(0) and Pf(I) are summarized in the following: 

P/0) P/t) 

Based on elasticity analyses                   Based on plasticity analyses 

Use of a visco- Analogy methoc Determination of Direct determin- Determination Determination of 
for determina- Pcr based on ation of Pf(0) by of Pf(0) using P(0) using limit elastic theory 
tion of Pll|. elastic it v theory analyzing the yield line load theory. in conjunction 

of plates and cri- cracked plate. theory. with a failure 
terionamax = af. Use of elasticity criterion. 
Dien correlation theory and cri- 
of Pcr and Pf(0). teriona^^a,. 

Attempts to determine P^O) are based on elasticity as well as placticity theories 

  ■-  -—    ■    '- - — 
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The foundulions o» the unulog method, wluch utilizes relationships of an elasticity analysis, 
are questionable.   Thus, the results ohtained with this method, although very simple, should be 
used with caution.   In this connection, note the position of eq 7 in Figure 25 as compared with 
some findinns bv tiold.'* " 

Another approach is based on the elasticity theory of phites. 
load the maximum stress in the plate a       is determined first, then eq 8. o 

In this procedure, for the given 
Of! is usedlo deter- 

mine Pct, a load which is just sufficient to cause the first crack. Since, according to field tests for 
infinite and semi-infinne plates, Pr(0)    Pcr, an empirical relation between Pcrand Pf(0) is needed for 
the determination of Pf (0).   Equation 74, which is based on data by Fanfilov"  if proven to be gen- 
erally valid, could be used as such an empirical relation for the infinite plate.   In this procedure, n. 
is determuied from a floating ice beam that fails in tension ui the bottom region of the cross section. 

In still another approach, the empirical relation is eliminated and Pf (0) is determined directly, 
by using the elasticity theory for the unalysis o( the cracked ice plate, which consists of wedges 
that emanate from the loaded region and the assumption that Pf(0) is reached when the wedges break 
off.  Equation 8 is also utilized as the crack criterion.  The value f    ■ f is obtained from a floating 
ice beam that fails in tension in the upper region of the cross section 

The publications that follow either of these two approaches contain several questionable as- 
sumptions, for example, although in a floating ice plate the material parameters, especially E. 
usually vary throughout the thickness, the expression valid for a linear distribution of bending 
stresses is ased exclusively for the determination of the maximum stress in the plate.   Also, the 
use of above equations for the determination of o, from a beam test may not be justified." 

Another questionable practice is the utilization of eq 8 as the failure criterion.  Equation 8 is 
the well known maximum stress criterion.'" "'   It implies that the failure stress Oj is not affected 
by any other stresses at the point of failure.  Tests have shown that eq 8 is applicable to a variety 
of brittle materials when not subjected to hydrostatic compression.   Mthough many publications 
dealing with the bearing capacity of floating ice plates utilize eq 8, not a single publication could 
be located which describes test results that prove, or disprove, the validity of this criterion for 
floating ice plates.  This situation is very unsatisfactory, since a[nax in plates is usually biaxial, 
whereas '.he ot value is determined from a test with umaxial bending stress.  In 1970. Panfilov"0 

suggested the criterion 

'l - ^"JJ = at (81) 

which is the two-dimensional version of the well known maximum strain criterion.  However. Pan- 
filov'"' did not offer sufficient experimental data to justify the use of this criterion either.   In the 
literature on the mechanics of materials, several other failure criteria are described that may or may 
not he suitable for floating ice plates.  For an early discussion related to plates on a Winkler base, 
the reader is referred to section 9 of ref. 123.   It appears that first it has to be established whether 
the simple criterion in eq 8, which is also applicable for materials with different a. values for ten- 
sion and compression, is valid for floating ice plates subjected to vertical and in-plane loads. 

An additional shortcoming of the publications that analyze the cracked plate is that the investi- 
gators neglect the wedge-in moments in the radial cracks.  This does not seem to be permissible, 
in view of the tests by Panfilov," who found that   Pf(0) of an infinite plate is larger than 2Pf(0) 
for a semi-infinite plate. 

The approaches for the determination of Pf(0) that are based on plasticity theories utilize the 
yield line or limit load analysis.   For a discussion of a possible shortcoming of these two analyses, 
the reader is referred to the listed references.   Note that the yield line theory is conceptually related 
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to the approach discussed above, which analyzes the cracked plate.   In this connection, it may be 
more realistic to work with cracks instead of yield lines and wed^e-in moments instead of plastic 
moments, especially along the radial cracks. 

In view of the variations of ice properties in an actual ic»! cover and their effect upon Pf(0), 
it may he advisable from a practical point of view to use the concept presented in Figure 26.   Its 
theoretical justification is that the straight-line upper or lower bounds of Pf(0) are of the form 

Pf 
 —      A t Ba 
a( tr 

which relates the concept to the various analyses discussed above.  This approach, if restricted to 
straig.it-line bounds, is essentially the same as the one discussed by Papkovich,'" except for the 
introduction of the notion of upper and lower bounds for Pf(0).   Also, note the similarity of the trend 
of the graphs and test data shown in Figures 4, 20 and 25. 

The experimental data for Pf(0) presented by Panfilov" (Fig. 25 and 27) show little scatter. 
More test data are needed to establish whether the Pf values for other ice plates, tested under dif- 
ferent conditions, fall in the same range. 

The analytical determination of Pf(0 has received much less attention than the determination 
of Pf (0).   It is reasonable to assume that the necessary formulation consists of a v/scae/astic plate 
tbi'ory and a /ai/ure criterion.  Thus, it is essential first to establish the range of validity of a 
simple formulation consisting of a Uneur viscoelastic plate theory (a bending theory, a shear theory, 
or a combination of both effects) in conjunction with a failure criterion of the type expressed in 

eq 58. 

Until reliable analytical methods are developed for predicting Pf(t) and tr from a practical 
point of view, it appears advisable to establish whether the empirical relation expressed in eq62 

or a similar expression, as proposed by Assur,2 is generally valid.  The test results needed for this 
purpose are also necessary for formulating the proper failure criterion as well as for establishing 
the validity of a chosen viscoelastic plate theory. 
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