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THE BEARING CAPACITY OF FLOATING ICE PLATES
SUBJECTED TO STATIC OR QUASI-STATIC LOADS

A Critical Survey

by
Arnold D. Kerr

INTRODUCTION

Frozen lakes and rivers have been wtilized since early times for transportation and storage
purposes. [n Russia,'” in the absence of bridges, railroad tracks have heen placed over frozen
rivers since about 1890. Floating ice plates have heen increasingly utilized as airfields for the
landing of aircraft,' *' ** '* ' a5 platforms for storage in logging operations,* ' as platforms
for the construction of river structures,'* '** as off-shore drilling platforms in the northern regions,”
and as aids in various other civilian and military operations.* The successful defense of Lenin-
grad during World War I1 was greatly facilitated by the *ice road’* oves Lake Ladoga.** The recent
oil discoveries in northern Alaska have increased the interest in the arctic ice cover for off-shore
drilling purposes. A rational utilization of floating ice plates for all these activities requires the
knowledge of their bearing capacity when they are subjected to loads of short and long duration.
Such information is also needed for the design of icebreakers.*® !'*

Field observations reveal that when a vehicle is small and rel: tively heavy it may break
through the ice plate immediately after placement. In such cases, he plate response may be con-
sidered elastic up until failure. For relatively light vehicles, the ice plate deforms elastically
at the instant of loading, but sustains the load. However, as tine progresses, the ice plate con-
tinues to deform in creep, especially in the vicinity of the vehicle, and after a certain time inter-
val the vehicle may break through the ice.

In the past, numerous attempts have heen made to determine the bearing capacity of floating
ice plates subjected to vertical loads. Particularly, since World War 11, many papers containing
test data and related analyses have been published. However, in spite of these publications,
there is as yet no reliable analytical method for predicting the bearing capacity of floating ice
plates subjected to static or dynamic loads. This is particularly the case for floating ice plates
reinforced by pressure ridges, a phenomenon often encountered in the Arctic,” '*® for which not
even test data can he located in the literature.

One of the main reasons for the lack of reliable methods for determining the breakthrough
loads of ice plates i3 the difficulties introduced by the fact that the lower surface of an 1ce
plate is always subjected to the melting temperature of about 0°C, at which the mechanical prop-
erties of ice vary drastically with small changes of temperature. Other difficulties are the depend-
ence of th2 mechanical properties of the ice plates upon the rate of freezing, the velocity of the

* Refs. 5, t7, 25, 40, 82, 120,
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waier betow the plate during the fieezing process, the salinity of the water, ete. Discussions of
the mechanical properties of 1ee have tecenly been presented by Vourkovskii,”* Weeks and
Assie,'™ ' Baviov,” and Bogorodskiy et ab”

Another main reason 1s the lack ol elfective commumication ameng the various investigators,
partty caused by the Linguage bamier, This has resulted in the dupheation of analyses and 10s81s,
ohien tendeied nseless by the same shorteomings.  Atso, the inttoduction of meoneet sotutons for
Hoating ice plates and their subseegnent unlizatior for comparison with test data have not helped
n solving the problems under ¢ onsideration,

The purpose of this repornt is to present a eritical survey of the Iiterature on the hearing,
capaciy of floanng we plates. Y'ust, the varions analytical attenpts 1o deternnne the hearmg, ca-
pacayare 1eviewed, grouped aceording 1o the nsed “'tailure eritenion.” Thes is foltowed by a dis-
cussion of test data and then relation 1o the analytieal results.  The report coneludes with a Sys-
tenatie sumnary of results, a dhsenssion of ohserved shorteomings, and recommendations lor needed
mvestigations. 1t 1s hoped that this smvey and summary of results witl establish a sense of diree-
tion m the snvestigations and will contiibute toward developing methods Yor deter numng the beanng
capacity of floating ice plates.

ANALOGY METHOD

The analogy method of predicting the bearing capacity of a floating ice plate subjected to
a static vertical load, discussed by Komnov,™ * is based on the notion of the analogy of two
plates. Kormov assumed that the ice plates under consideration are homogeneons and isotropie

and that for two plates with thicknesses hy and by, the corresponding failure moments My and M,
in evlindrieal bendwg, are

)
M
h,*
M, op—
2 (Ir o

Assuming that the tailure stress oy for the two plates s the same, it follows that

>
e

2)

x| x
|

Considening the efteet of two different loads, P' acting on the plare with thickness hl and PB act-
ing on the plate with thickness "2' Korunov assumed that M is proportional to P, and obtained
from eq 2

3)

Ll P
l

Fquation 3 may be rewritten as foltows

* Note Lhat »g 3 was used, i 1938, by Moskatov (el KE, po H1).
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2l

- Ab ()

where A « !.:, /h_,:. Accordmy, to the above method, 1T an allowable load P2 of an ice plate of thick-
ness h, s knowtt (fronr 4 test), then the allowable load I'n” of an ree plate of different thaekness
nay be computed 1t the ug values are the same for both plates. Thus, the coeffieient 4 1n eq bs
to be determined trom a specitic test,

Some shortconmgs m the derivation of eg 1 were discussed by Lagutin and Shulman.™ Nt
should also be noted tlat w o tloating 1ce pliate the bendmyg stress distribution may uot be hinear
across the plate thickness®'. therefore, eq 1w the above dervations may not be admissible,
Nevertheless, beciause of its extro me simphierty and s agreement with various test results, eq |

found wule popularity, as shown i the follov g table (valid for Pd“ 1 metrie tons and h in
centimeters).

Source Load A
Kotuov™’
Peschanskin'" .01
Lebedov” !
Zuboy'* -
lustructions of the Kngmeermy, Wheeled velineles 0.0070
Commttee of the Red Army** Tracked vehicles 0.0123
Lsiuklin® Wheeled vehicles 0.0082
g LA Tracked vehicles 0.0123

To demonstrate the use of eq 4 let us determime the necessary ice thicl.ness for the crossing
of ariver by a truck weighmg 36 metrie tous, according to Korunov.* Using eq t the necessary
1ee thickness 1s

h \T00\%% 106 - 60en.

Additional examples of the use of eq 1 were presented by Moskatov,* Lysukhin®? and Gusev.®

In order to take mto consideration the effects ol temperature, the dimensions of lead distri-
bution, and the salinity of 1ce, Zubov'** modified eq 1 as follows:

P KMsARW (5)

a

where K, M, and s are the corresponding correction coefficients. Discussions of this extension
are presented in rel. 75 and 151,

Basing s work on field experience with fresh water 1ee, Korunov,”™ in 1956, moditied eq 4
by mntroducing a correction coelficient n which takes mto consideration the condition of the ice
as follows:

P nlAh2 inn tons. (6)

In the above formula A - 0.01 and n is related to g as follovs:
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5 opkg/em’)| 5 112 117] 25| 38
< =7°C.
r n 4.8]2.0{1.4]1.0[06™ T 7
4}
} A graph of these v~lues is given in Figure 1. This

graph may be represented by the equation

4 o \
t 25
n= -,
2t \ a,
:

s — Substituting this into eq 6, we obtain for T < =7°C
b
t Ry ey S SRR | P, = —l—oh2 in tons
o} IC 20 30 40 all = o5 1
o {kg/cm?)

1
Figure 1. Correction coelficientnas related or
to failure st. s o, (Korunov’™).
o 3 3
! P;” =04 o ™ in kilograms. (7)
| o, values were stipulated by Korunov’ for five types of ice. Korunov™ also introduced another
correetion coefficient for thaw temperatures.

ME THOD BASED ON THE BENDING THEORY OF ELASTIC PLATES
AND THE CRITERION og,, & o

This me.hod of predicting the bearing capacity of a floating plate subjected to loads of short
duration consists of the following three steps:

1. Determination of the maximum stress Om in t he floating ice plate due to a given load, as-

suming that the ice plate is elastic.

ax
2. Determination of the load at which the first crack occurs P,,. utilizing the critérion

Tmax = 9f- ®)

3. Correlation of P, with the breakthrough load P,. This step, disregarded by many investi-

cr . .
gators, is needed because, acording to field tests, for various plate geometries, the occurrence

of the first crack does not cause breakthrough. therefore, for these cases P{ > P,

In the criterion in eq 8, o, is the ‘‘failure stress.’’ 1t is usually obtained by loading a floating
ice beam to failure and then computing the largest bending stress at which it (ailed. In the located
literature, Omax i determined using the classical bending theory of thin elastic plates. These results
are reviewed in the following.

The response of a homogeneous and isotropic elastic plate that rests on a liquid and is sub-
jected to a static vertical load ¢ is described by the partial differential equation

Dcwiew-g 9)

w(x, y) = plate deflection at (x, y)
D = flexural rigidity of the plate
y = specific weighi of the liquid.
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ﬁl’gure 2. A floating ice plate subjected to a distributed
load q over a circular area of radius a.

060y e )
Solutions for the infinite plate subjected to a con-

\ centrated load P, and to a load uniformly distributed over

050+ | ' a circular area, were presented by Hertz*' in 1881, In
1929 Bernshtein® utilized this discussion for the deter-
040+ . mination of the allowable load for an infinite ice plate,
Cla) '\\ Using the criterion in eq 8, in conjunction with the solu-
030 \\ [ tion for an mfiuaite plate subjected to a uniform .loud over
a circular area, as shown in Figure 2, Bernshtein obtained
20 . & q L ____l_ 0,’)2 (10a)
3(1+v)Cla)
019 where
L _ v = Poisson's ratio for the plate material
o o0z o084 )0 08 Cla) - a given function of a a/f. as shown in Fig-
2 ure 3
Figure 3. C(a) vs a graph.* a - radius of the eircular area subjected to the
nniform load q - P/na®
D7y

D - ER¥/(1201 AN

If Omax = Or is a valid criterion, then P,  is the load mtensity at which the plate eracks.

To demonstrate the use of eq 10a, Bernshtein computed the Onag duetoa railroad car weighing
24 tons for a 70-cm-thick ice plate as follows (ref. 8, para. 20):

Assuming that E = 550,000 t/m* and v = *,, he obtained

2-\/2 - 150 m.
4

He then assumed that the effect of the weight of the railroad car may be represented by a load uni--
formly distributed over a circular area with radius a - 1.54 m. Hence, a = a/f = 0.134. From Fig-
ure 3, it follows that C(a) - 0.417. For the above values eq 10a yields

24,000x 3 xix().'ﬂ'f
3 = 8,16 kg/cm?.

max

(70)2

* This is a modified graph. In the original version,! the C(a) presented is for P in tons, A in meters, and 0
in kilograms per square centimeter.
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The next step is to check whether o, < oy Additional numerical analyses are given in ref. 8.
Other nunerical examples, based on the Bernshtein solution, were presented by Volkov'** in 1940
and by Bregman and Prosknriakov (ref. 11, part 1V, section 7) in 1943.

The determination of the load P for a floating infinite plate based on eq 9, the criterion in
eq 8, and the assumption that the load q - P/(na®) is distributed uniformly over a circular region
of radius a was also presented by Wyman'*® in 1950, Kubo™ in 1958, and Savel'ev'** in 1963. Wyman
obtained for the load P, the equation

na )

P+ ——————0ah".
sr 3(1u‘)kel'aor (H09)

This is identical to eq 10a, noting that

Cla) - kei (a). (11

na

The determination of Pcr, assuming that the uniform Inad is distributed over a square area with

sides b, was obtained by Golushkevich®’ in 1944. The derived expression yields loads that are
very close to those obtained from eq 10.

Solutions for an infinite plate were also presented by Schleicher'”* in 1926, Korenev® in 1954,
Korenev®® in 1960, and Korenev and Chemigovskaia®® in 1962.

A solution for the infinite plate subjected to a row of equidistant loads was pesented by
Westergaard' in 1923, in terms of a triconumetric series. Solutions to similar problems (periodic
load distribution), also in terms of tigonometric series, were presented by Lewe®® in 1923, Muller®” *
in 1952, and Panfilov'® ** in 1963 and 1964. Sh:khter and Vinokurova'”® discussed related prob-
lems in 1936.

Since eq 9 is linear, it appears that when the plate is subjected to several loads, the method
of superposition should be used. This idea was demonstrated by Kerr*® in 1959 for the solution of
the floating ice plate subjected to a row of equidistant loads. A major advantage of this approach
is that the distribution of the loads on the floating plate may be arbitrary, whereas the use of
trigonometric series is suitable only when the loads act along straight lines, all loads along a line
are of the same intensity and distribution and the distance between them is the same.

The analysis of floating ice plates for arbitrary load distributions may be greatly simplified
by utilizing influence surfaces.'*? Charts of such surfaces were presented by Pickett and Ray''*
in 1951 for concrete pavements. Influence surfaces for bending moments, more suitable for ice
plate problems, were presented by Palmer®® in 1971. Pzlmer’s charts could also be used for the
determination of load distributions on the plate that yield the largest possible bending moments.
An attempt 1o solve such a problem without influence surfaces was made in 1965 by Nevel and
Assur.”* They considered the problem of the most unfavorable distribution of crowds on a floating
ice plate from the point of view of bearing capacity, based on the criterion in eq 8. This problem
was recently analyzed by Palmer®® using influence surfaces.

Bernshtein’s* eq 10a is shown as the solid line in Figure 4. Shulman'*? in 1946 simplified
eq 10a by replacing the curve for 0.07 < a < 0.65 with a straight line described by the expression

. 3/
P - 0.375 o,(n2 , 7.&1@ h ") (12)
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.5 la

F] .:"I - +
0' h |
05,} / |
r |
| |
|
I . ' : ' ]
o2 04 a6 o8 1a
a

. i
Figure 4. P./ogh* vs a.

Panfilov’’ 1n 1960 proposed the expression

P, 03751+ Lla)h® (12b)

cr

based on the idea of a straight-line approximation. Panfilov’s approximation (eq 12h)1s the same
as the one presented by Shulman,'*? since for v 0.3

. 3\7f|2(|-v2)y 2z UF 5y )
1.1 h~ ! h L /_ ., (13)

Panfilov’’ 21so proposed the following approx imation:

on o
P - o, (11)
K1+ 0)(0.682 + 0.0194° - In a)

However, since this is not much simpler than the exact expression (eq 10a or 10h), its usefuluess
is questionable.

In 1964, Panfilov'’* attenipted to derive another approximate expression for Pop» assuming ihat

the deflections of a floating ice plate subjected to a concentrated force P may be expressed ap--
proximately as follows:

w(Xx, y) = Wy exp -A(x +y) sinﬂ + €OS ix sin Ly + COS ﬂ) (15)
VI V2 v2 vZ V2

where

A - Vy/D. (16)

From the equilibrium equation

I

P <ty [ w dx dy. (17)
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Panfilov determined the only unknown, wy, as

PR (18)

® 85D

Comparing the resulting w(x, y) witi the exact solution, and finding that the agreement was relatively
close, Panfilov determined the bending moments, using the relations (ref. 142, p. 81)

Ry R
M(x, y) -D("_W g .;"_“’)

ax®  y*
(19)
')2 Y
Mx. y) T "_"’)
0y3 0x2

and the approximate w(x, y) given in eq 15. For the bending, moments under the load P, he obtained

. (20)

M0, 00 M0, 0 - TP
’ 8

Equating this expression with M. = n!h: 6, Panfilov obtained for v - !, the expression

Poy = oph®. (21)

At this point, note that the relative closeness of the approximate and exact deflections (in the
sense of comparing two graphs) does not imply that the second derivatives are also close. Thus,
for example, wherzas the exact solution for the elassical plate theory (used by Panfilov) yields
infinite moments under the concentrated load P,* Panfilov's approximate solution yields the finite
value shown in eq 20. This point may be demoustratea further by comparing the graphs for the
bending moment M (x, 0) based on eq 15 and or the exact solution. It may be shown that, although
the deflections are relatively close, the bending moments based on eq 15 do not approximate
closely the actual hending moments, especially in the vicinity of the load.

Other approximate solutions for the infinite plate were discussed by Korunov’ in 1967. As-
suming that Bernshtein’s® eq 10a is the correct expression for predicting the bearing capacity,
Korunov pruposed the empirical expression (for h in centimeters).

6

2 .
Pcr = I—(-)—O ah in tons
or rewritten
P - 60ah?® in kilograms (22)

cr

and then showed that for special situations, it agrees with the results of eq 10a. Noting that eq
22 is based on o - 24 kg/cm?, it follows that

* To determine the stresses under the load, the correction derived by Westergaard (ref. 142, p. 275) may be
used.
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2 O.I- T 1 T T ./ 1.
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0% . i
f_ > . ’ for P ] I /
g e @
L/ i i i i ] =
0 0.2 ) a4 06 T H i
a
Figure 5. A comparison of approximations for Ba Figure 6. Semi-infinite plate with free edge
with exact graph. subjected to load P.
P
= . 2.5a.
o,h2 \

Note, that, according to eq 22, for a given g¢, P, is proportional to the second term 1 eq 12a
or 12b, h *, whereas eq 21, derived for a - 0, is proportional to the first term, h“. Note also the
difference between eq 7, suggested by Korunov, and eq 21, derived by Panfilov. A comparison of
various approximate expressions for Pcr with the one based on eq 10a is shown mn Figure 5.

It appears that, instead of deriving numerous approximate expressions for eq 10 inat differ
substantially from each other and are not much simpler than the exact expression,* tirst it must he
established whether eq 10 is suitable for predicting the bearing capacity of floating ice plates for
loads of short duration. This and related questions will be discussed later.

Solutions for the floating semi-nfinite plate with a free edge subjected to latera' 10ads were
presented by Westergaard'** in 1923, Shapiro'?” in 1943, and Golushkevich" in 1944, using Fouier
integral methods. Shapiro’s results were verified and extended by Nevel’? in 1965.

In 1950, Zylev,'*” using thz criterion in eq 8 presented calculations of the bearing capacity of
a floating semi-infinite ice plate subjected along its free edge to vertical and horizontal loads. How-
ever, Zylev's approximate solution of eq 9 for the vertical load, recently included in a number of pub-
lications,'* ** is incorrect, as shown below.

For the se .i-infinite plate shown in Figure 6, Zylev'*’ assumed an approximate solution of
the form

w(x, y) = [cosh(ax) + I" sinh (ax)}{(y) (23)
where

=1 forx <0

(24)

I'= -1 for x > 0,

It}

Substituting eq 23 into differential eq 9 with q = 0, he obtained an ordinary differential equation of
fourth order for f{(y). Tc determine the four constants, he used two regularity conditions at infinity
and the conditions

* A prospective user of eq 10 does not have to be familiar with Bessel functions if he utilizes the C@)vsa 4
graph shown in Figure 3.
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Myx, ) 0 (25)
p [dyf)wd:. (26)
0 -~

Note that, for the chosen deflection surface (eq 23), dw/dx is discontinuons along the y-axis,
which is not the case in an actual plate. Th. quantity adw/ox3 is also discontinuous along the
y-axis; this implies that for the assumed deflection surface there exists a line load along the y-
axis. This is in contradiction to the assumed plate load shown in Figure 6. Furthermore, along
the fice edge, where the largest stresses are anticipated, the boundary conditions for a free edge
are not satisfied. Therefore, the validity of Zylev's solution for the semi-infinite plite, even for

the determination of an approximate P.,. is questionable.

According to Zylev's' results, the largest bending moment tnkes place at the point x - 0 and
y 1.14{D. On the basis of this analysis

A [ ;
P” 0.80(1 ™) och (27)
where
9
A »0.-18!)' (28)
N

According to Saapiro's resnlts, Umax t9kes place under the load. Utilizing criterion in eq 8, the
load at which the first crack occurs hecomes

P, Sl h® (29)

or

where S(a) for i 0.36 is given in Figure 7.

In 1960, Panfilov®® compared ihe values of the load P, for the infinite plate as well as the
semi-infinite plate. The corresponding grapis are shown in Figure 7. This comparison shows that
P, for the semi-infinite plate, according to Zylev'*’ (dashed line), is much higher than P., accord-
ing to Shapiro'?’ and Golushkevich.”” In 0 - b./£ < 0.5, it is even higher than the P, of the infinite
plate. In view of this comparison and the obvious errors contained in Zylev's solution, it is sug-
gested that eq 27 should not be used for the analysis of the semi-infinite plate with a free edge.

! 51
| 35— s }
S I 3.0 J
T2 - - (Du) it pi 5 !
h - Ve mtpr
' 5 f”'f Q’,g‘t (pu)sermml ol _#_FJ_,.--""_——H-._‘__E
’ t 2.5k !
| i
0 2.0 i 0"'.' i TJ{:
b/L

Figure 7. Comparison of analytical results.” Figure 8. (Pg)ins pl/(Pcr)semi im p1 VS b/,e
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According to Panfilov,” it follows from Figure 7 that for 0.07 - »/¢ - 1.0

P.)

crlinfl p

1 T2 lS(Pc)

t'semi-inf pl

A more precise relationship is shown in Figure 8.

On the basis of the graph for the semi-infinite plate shown n Figure 7, Pantilov*® proposed
for the interval 0.07 - b/f < 1 the following approxiniate expression:

A
P, - 0.16 (l , z.mz)u,rr’. (30)

Panfilov'®* attempted to derive an approximate expression for P

¢ for the problem shown in Figure
6, assuming that

wix, y) = W, exp-i__(x+y)l sin A—i + cosﬂ oos)‘—y. 31)
V2 i Ve V2

However, the result obtained, similar in form to eq 21, is of questionable value. The objections
raised in connection with eq 21 also apply here. Note that the deflection surface (eq 31) does

not satisfy the differential eq 9 or the boundary conditions along the free edge, where the stresses
are determined for comparison with criterion in eq 8.

The semi-infinite plate subjected to equidistant loads P along the free edge was analyzed hy
Westergaard'®' in 1923. Similar problems were solved by Panfilov'®* '°* in 1963. The publications
of Shekhter and Vinokurova,'” and Korenev and Chernigovskaia® also contain solutions to re-
lated problems.

The solution for the semi-infinite plate, simply suppcrted along the straight edge and sub-
jected at any point of the plate to a concentrated force P, as shown in Figure 9, was derived by
Kerr® in 1959. Using th2 method of images, the followinz exact closed form solution was obtained:

LA ikei
2nk

wix, y) =

Wix-x )% s y2] keilA\/(; rXx) v y? " (32)

<
A

Figure 9. Semi-infinite Mloating plate, simply sup-
ported along the straight edge and subjected o a
load P.
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In 1971, Palmer® utilized this solution to construct 4 number of influence surfaces for bend-
ing moments.

A numerical solution for the semi-infinite plate, clamped along the edge and subjected to a
force P at a point on the plate, was presented by Korenev®® in 1960.

An analysis of a floating infinite strip, free along both edges and subjected to a lateral load,
was presented by Shapiro' in 1942, utilizing the Fourier integral method. Detailed results for
similar problems were presented by Panfilov'®® '** in 1966 and 1970.

The solution for a floating infinite strip, simply supported along, both edges and subjected to
a4 concentrated force P at any powt on the plate, was presented by Kerr® in 1959, utilizing the
method of images. The resulting deflection was given as a rapidly converging infinite series of
fundamental solutions for the infinite plate. Other solutions for this problem were presented by
Westergaard'™ in 1923, in terms of Fourier series and by Nevel’? in 1965 in terms of a Fourier in-
tegral. A solution for a similar problem was presented by Panfilov'®® in 1966, also using the
Fourier integial method.

The infinite strip, with clamped boundaries, was analyzed by Nevel’? in 1965 and by Panfilov'®
in 1966, using, Fourier integral methods.

In 1960, Kashtelian*® presented calculations fc. the direct determination of Py [that is, by
eliminating step 3 (p. 4) in the above procedure] that are based on the observation that the carry-
ing capacity is reached when the wedges, which form initially, break off. However, Kashtelian's
solution for the wedge-shaped plate, on which his calculations are based, is incorrect, as shown
in the following.

For the rectangular comer plate with free edges, shown

7 in Figure 10, Kashtelian assumed an approximate solution
a8 wix, y) = [ expl-a(x . y)cos(ax) cos(ay) 33)
P / | ' where a and f are unknown parameters. From the condition
ot .
4 P yw dxdy @4)

=,
O "—

Figure 10, A floating rectangular
comer plate with free edges Sub-
jected to load P at the comner.

Kashtelian obtained

1.2
ta~ P 35)
Y

[

Then, utilizing the Bubnov-Galerkin method, for a one-term approximation he used

[(V4W v ﬂ)v dxdy - 0 (36)
o D

and determined from it

a Vl ) (37
4D

(=R N ]
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Thus, according to eq 35

2p

\vyD

38)

It should be noted that the ahove analysis contains an error: namely, because the assumed de-
flection expression (eq 33) does not satisfy the boundary conditions of zero moments and zero she:., -
g forces along the free houndary, eq 36 is not complete. According to the principle of virtual dis-
placements, the proper Bubnov-Galerkin equation for a one-term approximation i = fw,(x, y) is

o

(Dv“w + kw)wtdxdy ¢ JMY(X' 0w, (x, O)dx - Vy(x, O)Wt(x, O)Mdx +
'y
0

o 0. 9w, 10,920y - I V{0, y)wy(0, y)dy - Pw,(0,0) - 0
b 4
0 0

where M, and My are given 1n eq 19 and

V0, y) = —Dlw.," + (2'~u)w.,”|, 0

(40)
Vyix, 00 = D [w,y 0 Q-Wigy]yo0 -

Comparing the f value given in eq 38 with the corresponding values of the exact solution of an
infinite plate, f = P/(8\/yD), and the (incorrect) approximate solution by Zylev'*’ for a semi-infinite
plate, f = P/(2\/yD), Kashtelian,* without justification, generalized his solution for the rectangular
comer plate to a solulign for a wedge of any opening angle ¢ (Fig. 11) by assuming that

e

-

9

[ = l(:'.)h L 41)
2\é/ \VyD
e
f,—- ’ — an equation which satisfies eq 38 for ¢ = v/2 and the
’ other two cases (¢ = 2r and ¢ = n) mentioned above.
Figure 11. Floating wedge shaped Utilizing criterion in eq 8, he then obtained for the *‘fail-
plate of opening angle ¢ subjected ure load”’ of a floating wedge plate of opening angle ¢ the
to load P at the tip. expression

2
P = (2) 1 0!"2' 42)
7] 0.966

Mote that, according to field observations,* when ¢ < 120°, P., = P;. Thus, according to eq 42,

for a floating wedge with ¢ = n/2, as shown in Figure 10, the breakthrough load is

2 o h*
P = (1) —— =0.2590, 2.
2) .966

Observations in the field indicate that the failure mechanism of a semi-infinite plate subjected
to a force P at the free edrs proceeds as follows. First, a radial crack forms, which starts under the
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N = - \
JI /,,-f
Figure 12, Failure mechanism of a Figure 13. Failure mechanism for a large floating
tloating semi-infinite plate subjected plate subjected (o a load P.

along the free edge to a load P,

load and propagates normal to the {ree boundary. This is followed by the formation of 4 eircumfer-
ential crack that causes final failure, as shown in Figure 12. According to Kashtelian,*" the failure
load for this case is equal to the failme load of two free floating wedges, each of opening angle

é n'2

P, 2.<0.2390.h% 05180 h", (43)

In a similar v 4y, Kashtelian*® determined the Py for an infinite plate. Assuming that n is the
number of radial cracks and that the n formed wedges are all of equal opening angle, i.v., QSn = 2n/n,
as shown 1n Figure 13, the follewing expression for the failure load results:

oy 1\’ o B2
i "(:"' l) o - 4 o h*.
) ogo66 nx0.966 !

Noting that n = 2n 'qbn, this expression may also be written as

P, - 2.08(‘1—)'-‘ 1ph? (49

”

where é_ is the opening angle of the formed wedges. Note that, with decreasing d:n. the load P,
in eq 44 decreases and that the above approach does not take into consideration the effect of the

wedge-in moments along the cracks.

Kashtelian showed that the results of 150 tests on floating ice plates agree closely with the
bearing capacity values based on eq 43 and 44. In view of the errors discussed above, however,
this agreement is not convincing.

An approximate solution for the quaiter plate with free edges loaded at the apex was also pre-
sented by Westergaard'*’ in 1948.

An exart close form solution for the quarter plate simpiy supported along the edges and sub-
Jected at any point of the plate to a concentrated force P was presented by Kerr® in 1959, using
the method of images.

The response of a narrow infinite wedge resting on a liquid base, as a beam problem, is des-

cribed by an ordinary differential equation with a variable coefficient. This equation was solved
by Dieudonec¢™®* in 1957 by means of the Laplace method of integration. Nevel*® in 1958 solved it
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.

.~

- X

Figure 14. Wedge shaped plate subjected
to aload P = gb.

and the flexural rigidity E] as

3
El(x) L( .2ng.‘§)
12(1-42) L

where y 1s the specific weight of the liquid. The term (1 -

using the method of Frobenius. Nevel's solution
consisted of a sum of four infinite series which
were evaluated and are presented as graphs in
ref. 90. An approximate solution for large values
of x, was presented by Hetényi.*

An early attempt to determine the carrying
capacity of a floating ice plate, utilizing a float-
ing wedge solution, was described by Papkovich'?
in 1945. In this analysis it was assumed that the
wedge response is governed by a modified bending
theory of heams (Fig. 14) by stating the base
parameter as

Kix) - )(b v 2x1g .;9) (45)

(46)

v?) was apparently included to get

plate action for the wedge. The deflection was assumed in the form

Ax cos(Ax)

k(x) \/'3)/( 1-
E(x) ER3

wix) Ae”

where

47

(48

and the unknown constant A was determined by minimizing the total potential energy. Substituting

the determined
2A%p

into eq 47 yields the deflection

Bl - 2a2 P o= Ax

o

The bending moment is

cos(Ax).

M(x)

2
- B _Eix24a2 e
dx?

(49)

(50)

AX cos(Ax)
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and the stresses in the upper and lower f.bers were obtained as

olx) = + ;1(_)() = I —Eh—, ArS oA Ccos(Ax).
(x) |

From the condition do/dx - 0, the position of the largest stress, x  n'(4A), was determmned. Sub-
stututing this value into the above equation, it follows that

0.15
<

| Y]

AAEN. (51)

"max

Utilizing the failure criterion in egq 8, Omax = g it follows froni eq 51, using eq 48 and 49, that

(Ab + g g)

= &

Pr 9 orh L (52)

Noting eq 48, the above expression for the failure load of a wedge of opening angle ¢ may also be
written as

w

g~
b 2 ‘Y 5/4 2 2' "
P, 5o V3(1-45) \/F;]h ’[E]h |or. (33)

(

Pointing out that an ice plate breaks up under the weight of an icebreaker into wedzes and that P
in eq 53 is of the form

5/4
Pp= A K24 Ayh (54)

Papkovich suggested that eq 54 be utilized for the determination of an empirical expression for
the breakthrough load of an ice plate by determining the parameters A, and A2 from field test data.

Although eq 53 is only an approximation (for example, the corresponding bending moment at
x = 0is £ 0), its dependence upon h is identical with that of expressions in eq 12a and 12b for the
infinite plate and eq 30 for the semi-infinite plate, respectively. Even the term b{,’;-’E appears in
the proper place. This observation will be of importance in the discussion of test ¢ata presented
in ref. 98.

For solutions to other plate problems, whose response is governed by differential eq 9, refer-
ence is made to the books by Schleicher,'’ Shekhter and Vinokurova,'” Korenev,* *' and Korenev
and Chernigovskaia®®; to the survey articles by Korenev®? ** and Savel’ev'®*; and to the literature
on the analysis of highway and airport pavements.

When a floating ice plate seals the liquid base, in addition to the bioyancy pressure kw(x, y),
the liquid exerts a uniform pressure p® on the plate. In such cases, an additional condition has to
he imposed on the solution to reflect this situation. The unknown p® is determined from this
condition,

If the assumption that the liquid is sealed and incompressible is justified, then this addi-
tional condition is
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ffwdA 0 (55)
A

where the integration extends over the dorain of the plate A.

Floating plates subjected to condition expressed 1 eq 55 were analyzed by {err’® ** and
Nevel.”* Kerr and Becker** solved plate problems by assuming that the sealed liquid is compres-
sible. They showed that the effect of the sealed lignid depends not only npon 1ts relative com-
pressibility but also upon the sealed volume: the larger the sealed volume, the smaller the seal-
ability effect. This resnlt suggests that the nse of €q 55 for the analysis of an ice plate that
covers a river or a lake, as snggested recently hy Mahrenholtz,'? is not justified.

The analyses reviewed 1n this section are based on eq 9, the differential equation for a homo-
geneous and isotropie thin elastic plate. In an actual floating ice plate, the material parameters
vary across the thickness of the plate; hence, the floating ice plate is nontomogeneons. This
variation is very prononnced in sea ice plates as well as in a plate whose upper surface is sub-
jected to very low air temperatures.

An early attempt to take into consideration the variation of Young's modulus E (ref. 11, p. 73)
1s mcorrect because the investigators did not take into consideration that when E varies across
the plate thickness the resulting stress distribution is not linear.

According to recent analyses by Newman and Forray,”* Assur,* and Panfilov,"’ when Young's
moculus E varies with the plate thickness h, and Poisson's ratio v is assumed to be constant, eq 9

is still vahd if the flexural ngidity is

h=-2zp

D 12 [ z°E(z)dz (56)
-2

and the position of the reference plane is determined from the condition

h-ZO

[ ZE(Z)(}Z = 0. (57)
:ZO

For the utilization of the available solutions of eq 9 also for nonhomogeneous plates with
E = E(z), it had to be shown that, except for eq 56, the corresponding boundary conditions are the
same as those for homogeneons plates. This was done recently by Kerr and Palmer,” who sys-
tematically formulated this prohlem utilizing Hamilton's principle in conjunction with the three
dimensional theory of elasticity. Kerr and Palmer** also showed that even though the plane sec-
tion hypothesis is assumed, the resulting bending stress distributions are not linear across the
plate thickness. An example is given in Fignre 15. This finding snggests that the well known
stress equation




18 THE BEARING CAPACITY OF FLOATiING ICE I'LLATES

— e

o 4
l / ’
- il ] n
@) b /1
. |
C
e l (] o |
- = : ¥ ] l I
b 1
| T: L= 14
_ 2
£ . | -
oll "
Time
Figure 15. Stress distribution Figure 16, Deftlection vs time
in the plate for a given E(z). curves for a floating ice plate and

fixed loads.

utilized by various iuavestigators in conjunction with the criterion in eq 8, or for the determination
of the failure stress o, from tests on floating ice beams, may not be applicable in general.

1t should be noted that highly concentrated loads often cause punch-tt rough failures, for such
situations, that is, for very small a, the above methads may not be suitable and a different approach
msy have to be utilized to determine the breakthrough load.

METHOD BASED ON VISCOELASTIC THEORIES

It was observed in the field that for loads that do not cause an instantaneous breakthrough
the 1ce plate deforms at first elastically and then, with progressing time, continues to deform in
creep, especially in the vicinity of the load. Two characteristic deflection-vs-time curves for
fixed loads P are shown in Figure 16. Curve 1 represents the case when, after a time, the rates
of deformation diminish and the ice plate and load come to a standstill. This curve corresponds to
a safe load for any length of time under consideration. Curve 1l represents the case when, after a
time, the rates of deformation increase and at time {, the load breaks through. Thus, the load that
corresponds to curve 11 is safe for time { - L but then it has to be moved to another location to
prevent breakthrough. The above field observations suggest that for an analytical determination
of breakthrough loads which do not cause immediate failure a viscoelastic analysis must be
conducted.

It appears that the small deformation theory of plates may be sufficient for plates which fol-
low curve I. However, the analysis of plates which respond according to curve Il is more c ompli-
cated because in the vicinity of the load, a region of prime interest, the small deflection theory
may not be valid for ¢ approaching t,. Also, as the plate deflections increase, the plate may start
to crack — a phenumenon not predicted by the usual theories of viscoelastic continua. To predict
cracking, a separate failure or crack criterion must be used. Also, after the first crack takes
place the analysis gets even more involved because of the introduction of additional, often irreg-
ular, plate boundaries.

For an analytical determination of a "‘safe’’ load P < P, and a “‘time to failure"’ t,, it ic de-
sirable to have one viscoelastic theory for floating ice plates which for time ¢ = 0 yield the elastic
response and tor { - 0 yield responses according to curve | or 11, depending upon the load and the
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material parameters of the ice (which in turn depend npon the temnerature distribution, salinity,
etc.). This theory should be supplemented by a crack or failure criterion valid for the elastic and
viscoelastic range. The elastic theory in eonjunction with the crack criterion Orax = @p discussed
above could. if proven correct, he a special case of such a general theory.

Anotier failure criterion was pronosed by Zubov'** in 1942 and by Kobeko et al.*’ in 1946. On
the basis of thewr test data, they concluded that for loads of short or long duration, a floating ice
plate fails nnder the load when a ceriain deflection W, is reached; that is, when

A (58)
\ |- According to Kobeko et al.,* for this criterion it does not mat-
-~ ter whether the plate deflections are purely elastic or visco-
2 . elastic, as shown in Figure 17. The criterion in eq 58 was
P 4 S also adopted by Savel'ev (ref. 121, p. 438) in 1963 for the
|/ o study of the effect of temperature and salinity on the carrying
’/’,j- ' capacity of a floating ice cover.
[ L | = In 1961, Panfilov®® proposed the above criterion for float-
' ', ing ice plates that are cracked in the dished area. His justifi-
Tme cation was that in the dished area water begins to flood the
Figure 17. llustration of the upper surface of the plate, with a resulting loss of base pres-
{ailure criterion based on plate sure in this area. It may be added that the flooding of the
deflections. upper surface near the load also raises the temperature of the

upper layers of the plate to about 0°C, thus decreasing the
strength of the ice in the area of high stresses.

From experiments on floating ice plates, with plate thicknesses A from 1 to 6 cm and tempera-
tures from -3°C to -8.5°C, Panfilov®® found that

W' = 2.2\,7; (59)

where W, and A are given in centimeters. In this connection it is of interest to note that, using
criterion "max Wp 1D conjunction with eq 59 and the solution for an infinite (uncracked) elastic
Plate subjected to a concentrated load P

Wz - wi0,0) . <

D
it follows that

P!
WD

P, - 17.6‘/ yE ,hz. (60)
12(1-,2) !

Thus, according to the criterion in eq 59, the breakthrough load P, is proportional to Mo may also
he of interest to note that if the largest deflection of the plate under consideration is expressed by
the equation

2.2h
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wma X '_P
\)D

where ¢ is a coefficient, then a !’r expression of the form shown in eq 54 correspords to the
criterion

1
W oaF .t (61)
(N 5

where a and f are coefficients.

Test data are needed to establish whether the failure criterion in eq 58 and its special forms
in eq 59 or 61 are indeed valid for elastic as well as viscoelastic deformations.

lu the early attempts to take time effects into consideration for floating ice plates, one ap-
prozch utilized the solit.ons for elastic bending and tried to fit the experimental data by modify-
ing the elastic constants (ref. 11, p. 53). 1In another approach, the elastic results were rultiplied
by a time factor (1 ulﬂ), where t is time and a and £ are constants to be determined from experi-
mental data (ref. 6, eq 177). However, these approaches have no rational foundation and their re-
sults are of questionable value.

Another early approich was based on Zubov's hypothesis, which states that deflections of

ice plates, especially at ccmparatively high temperatures, are caused mainly by veitical shearirg
forces (ref. 154, p. 49). To verify Zubov’'s assumption, Zvolinskii'* analyzed a plate resting on

a liquid, assuming that the deformations are entirely due to shearing action and that for creep de-
formations the material obeys Newton's law of viscosity. Although the resulting differential equa-
tion was relatively simple, because of he prescribed initial conditions the obtained solution was
rather involved: Zvolinskii (ref. 156, p. 21) stated: ‘‘In this formula the result is nc: self evident,
and analyzing it does not help us to visualize the picture of the phenomenon.''

Zvolinskii used, for the initial condition, the elastic deflection surface caused by shear only.
However, according to some experiments, shortly after the load is placed the deflection surface
agrees closely with the elastic deflection surface due to br.ading (ref. 8, Fig. 18). Also, since
the elastic defiections are 1elatively small, the effect of assuming that the elastic deformations
are zero seems to be negligible compared with the introduced error of assuming shear as the only
force responsible for creep deformations. This assumption was made by Kerr,* who attempted to
simplify Zvolinskii’s analysis in order to study the characteristic features of the creep deforma-
tions based on Zubov's'** hypothesis.

Recorded observations of the effect of staiic loads on the deformation of floating ice fields
showed (Fig. 16} that in some cases the rates of deflection decreased after the load was placed
and after a certain time interval the plate came to a standstill (ref. 8, p. 48; ref. 154, p. 146),
whereas in other cases the rates of deflection increased until the plate collapsed under the load.
The observed decreasing and increasing rates of deflection should result from a general formula-
tion of the problem. However, because of the simplifying assumptions made, it was necessary®
to incorporate it by setting up two separate formulations for the decreasing and increasing rates
of deformation. Although some of the results obtained did agree with deflection expressions given
by Zubov (ref. 154, p. 24, ref. 155, p. 148), because of the various assumptions made, the result-
ing analysis is not conclusive for the determination of breakthrough loads.

The assumption that the predominant deformations of a floating ice plate are caused by
shearing forces was also made by Krylov™ in 1948.
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The intense development of the linear theory of viscoelastieity after World War 11 also affeeted
the formulation of ice plate problems. In 1944, Golushkevich® presented an analysis assuming
that ice behaves elastically for volumetrie deformations and viseoelastieally for deviatorie defor-
mations. His formulation was base? on the linear bending theory of plates, linear eonstitutive
equations, and the assumption that tt e material parameters do not vary across the plaie thiekness.
The equations obtained were linear. The special ease of an incompressible material was analyzed

in detail.

A general formulation for viscoelastic plates, based on the linear bending theory of plates and
the assumption that the eonstitutive equation is a linear relation of differential operaters, was pre-
sented by Freudenthal® in 1958. The utilization of this equation for floating iee plates was dis-

cussed by Kheishin®® in 1964. As a special case,

Kheishin analyzed an infinite ice plate sub-

jected to a eoneentrated load P, assuming that the iee is ineompressible for volumetrie deformations
and that it responds like a Maxwell body for deviatorie deformations. A similar problem, when the
load is distributed uniformly over a circular area, was analyzed in 1966 by Nevel,”* who also pre-
sented graphs and a comparison witii the results of a test. In 1970, 1Akunin®® presented solutions
for various load distributions, assuming that the ice responds like a four element model, that is, a

series combination of a Maxwell and Kelvin mrdel.

In the ahove analyses, except for the paper by

[Akunin, it was assumed that the material parameters are constant throughout the plate.

As discussed before, in an actual floating iee

eover the material parameters vary with depth.

In an attempt to take this into eonsideration, 1Akunin*® derived an approximate formulation for a
varying modulus of elasticity and coeffieient of viseosity, and solved the formulation for a variety
of load distributions. He found that, as in the elastic case, the varation of material parameters
across the plate thiekness has a profonnd effect upon the stresses in the iee cover.

A viseoelastie analysis of the ice cover based on Reissner's theory of plates, which considers
the effect of bending as well as shearing forees upon the deformations, was presented in 1967 and
1968 by Garbaccio.” Garbaecio assumed that the ice responds like a series ~ombination of a Max-
well and Kelvin model and that the material parameters are constant threaghout the jce plate.

In 1961, Panfilov,” eiting shorteomings of linear theories, derived a differertial equation for
floating ice plates, based on the linear bending theory of plates and the nonlinear viscoelastic con-
stitutive equations proposed by Voitkovskii.'** '** Additional derivations, along the same line, were
presented in 1970 by Panfilov,''' who, however, gave no solutions to the derived differential equation.

v . ; ; ; Y
|
ok
Y
N
06 .
Pe(t) e i
P, (0) - S l
0.4; —
0.2 L
| i L i e il i
o | 2 3 4 5 6

ty (hn)
Figure 18. Breakthrough loads vs breakthrough
time for a floating ice cover subjected to loads
of long duration.

In 1962, Cutliffe et al.,” using a nonlinear

| constitutive equation, made an attempt to analyze

the time-dependent stresses of an ice eover.

The lirear bending theory and a nonlinear
constitutive equation were alse used by Gar-

| baecio™ to analyze ice plate problems. Gar-

baccio attemptea to obtain an approximate solu-
tion of the resulting nonlinear formulation by a
linearization technique.

In the absenee of reliable analyses for pre-
dicting the bearing capacity of ice plates sub-
jeeted to loads of long duration, Panfilov,” in
1961, constructed from field test data the graph
shown in Figure 18. In Figure 18, t is the time
period between placement of the load and break-
through, F£(0) is the magnitude of the load
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Just sufficient to break through immediately after placement on the plate (at t, - 0), as discussed

in the previous section,* and P\(ty) is the load that breaks through after atime t,. Fromthe graph
shown, it follows that P{t) < PA0) for t; > 0. Thus, for example, a load that has to park safely on
the ice plate for 6 hours should be smaller than 0.4 Py(0), where Py (0) is determined from a separate
analysis. To represent analytically the graph shown in Figure 18, Panfilov proposed the expression

Pf(‘f) 1
PAOY 1, 0750

(62)

where ¢, is in hours. Solving this equation, the ‘‘safe’’ storage time is obtained as the time that
is smaller than

R (0) - Pye )8
4= —=———1 . (63)
0.75 P,(0)

A graph similar to the one shown in Figure 18 was presented and discussed, also in 1961, hy
Assur.?

Korunov’? in 1968 pointed out that eq 62 was obtained from tests on ice plates under specific
conditions. He then proposed the following modification of eq 63:

F(0) - Plt,)3
t = | —=—| K (64)
0.75 Pr(O)n

where K and n are correction coefficients which take into consideration the shape of the load and
the outside temperature.

In 1970, other expressions of the type shown in eq 62 were presented and discussed by Pan-
filov.''" A related discussion is presented in ref. 43.

METHODS BASED ON THE YIELD LINE THEORY OR LIMIT ANALYSIS

The yield line theory was utilized for the analysis of continuously supported plates by
Johansen*’ in 1947 and by Bernell’ in 1952. Persson'*® used it in 1948 for the analysis of a

floating ice plate. Assuming that the yield line moment per unit length is M. Persson obtained
for the case shown in Figure 2

4n
P = ) 65)
C Tn(1-062a7% M0 (

Using a similar approach, in 1961 Assur? presented for the breakthrough load the expression
P = ———— (68)

4
M.
] 0
l—l\/’—'a2
3¥2

* In the previous section, it is denoted for brevity's sake as Pr.
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The method of limit analysis was utilized by Meyerhof** i 1960 for the analysis of the beur-
ing capacity of floating ice plates. Assuming 1) that the ice plate is thin, rigid and ideally plas-
tic, 2) that it can, without cracking, resist a full plastic moment Mo, and 3) that the ice obeys the
Tresca yield condition, Meyerhof obtained for the case shown in Figure 2

Pl o Ak (1 . ga)uo 0.05 < a < 1.0, (67)

Assuming that the floating ice plate before failure is cracked radially into numerous wedges, Meyer-
hof obtained for the same case

4n
1

! - ~a
()

-

> Mo 0.2 <a < 1.0. (68)

In an extensive discussion of Meyerhof's paper,'” Hopkins questioned the degree of realism
in approximating the meehenical behavicr of ice as that of a rigid, perfectly plastic material. In

the same discussion, Wood as well as Hopkins questioned the use of the Tresca yield condition.

Recently, Coon and Mohaghegh™ also analyzed the floating ice plate by using the limit analy-

sis method but assumed that the ice obeys Coulomb’s law. Fe: the problem shown in Figure 2,
they obtained

Py - 2m(2.3 4 2.9a)M,. (69)

Additional results and discussions were presented by Coon and Mohaghegh and Meyerhof.** Re-
lated results were published by Korenev®' in 1955 and Serebrianyi'?* in 1960,

It should he noted that the often used expression for the limit bending moment M- 00h2/4 is
based on a stress distribution of a homogeneous plate, as shown in Figure 19a, whereas because
of the thermal gradient in the plate, the distribution of limit stresses,'' assuming that a full plas-
tic moment does exist, could be as shown in Figure 19b. Also, the assumption that the ice plate

can, without cracking, resist a full plastic moment M, may not
o be realistic, since its formation was not observed in the field.
When using the yield line theory, it may be more realistic to work
with cracks instead of yield lines, and wedge-in moments instead
of the plastic moment M, especially along the radial cracks.

A comparison of the various Pr expressions presented above
with Pc, formula (eq 10a) given by Bernshtein® is shown in Figure
20. For coaparison, it was assumed that g = 0q and that M,
ogh/4. Note that a different number in the demoninator of M
shifts ouly vertically a plotted graph. All Py /(ooh2) versus a
graphs obtained using Plasticity methods show the same charac-

teristics and may be represented by a straight line, as done in
eq 12a or 12h.

Figure 19. Limit stress dis-
tributions. a. Homogeneous
plate. b. Nonhomogeneous

plate.
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Figure 20. A comparison of Py expressions
with P, formula (in eq 10a).

COMPARISON OF ANALYTICAL AND TEST RESULTS

General Remarks

The mechanical properties of ice vary drastically in the vicinity of the melting (or freezing)
temperature of about 0°C. Because the lower surface of a floating ice plate is usually at the melt-
ing temperature, the plate response is obviously affected by it. This effect is especially severe
when the upper surface is also subjected to near 0°C temperatures, because then the temperature
throughout the plate is approaching the melting temperature.

To demonstrate the temperature variations with
time, consider a floating ice plate subjected for a long
time to an air temperature of =10°C. Assume that at
time t = O the air temperature rises to =1°C, the cor-
responding temperature distributions for different times
are shown in Figure 21. Although the temperatures at
the top and bottom surfaces are constant for t > 0, the
Liquid temperatures throughout the plate vary with time. Hence,
if two identical tests are performed before a thermal
steady state is established, the results may differ, de-
pending upon the time (after the temperature rise) a par-
ticular test is conducted.

10°C

Figure 21. Temperature distributions
in a floating ice plate for different
times 0 <t < o.

A similar situation takes place in the floating test beams used for the determination of the
failure stress o,, because after a beam is cut out from the ice the side walls come in contact with
the rising water and the outside air.

Another thermal problem may arise in a test when an ice cover in the field is loaded by pump-
ing water into a large tank that rests directly on the cover, for then the bottom of the tank, which
is made of metal or canvas, rests on the ice, and the upper surface of the ice plate in the contact




THE BEARING CAPACITY OF FLOATING ICE PLATES 25

region is subjected to near 0°C temperatures. This type of loading usually causes a change in the
stress distribution and a lowering of the strength of the ice in the area where failure usually starts,
thus affecting the test results.

These and related questions, such as the effect of a sharp drop of the air temperature, the
rate of loading, and the penetration of water through the ice plate during loading, have to be con-
sidered when the test data of floating ice plates are correlated with the analytical results, In the
following, various test results are discussed and correlated with analyses presented above.

Effect of Bending and Shearing Forces on Deflection of an Ice Cover

As shown in the previous sections, an analytical determination of the breakthrough load uti-
lizes a formulation for the ice cover. In order to simplify the necessary analyses, such a formula-
tion contains a number of assumptions. 1t is essential that the assumptions made be justified,
from a physical point of view, since otherwise the analytical results may have no relevance to the
actual problem under consideration.

One such assumption, included in the derivation of differential eq 9, states that a straight
line, normal to the reference plane, remains straight and normal to the deformed plane (sometimes
denoted as the Kirchhoff hypothesis). Physically, this kinematic assumption implies that the de-
flections are caused hy bending stresses only and that the effect of shearing forces is negligible,
This assumption, discussed at length in books on the strength of materials, has been proven to be
justified for the elastic response of slender beams aud thin plates made of a variety of materials.

On the other hand, basing his view on field ohservations, Zubov'** in 1945 su'gi.:ested that the
deflections of an ice cover are mainly caused by shearing forces, and hence the effect of bending
upon the deflections is negligible.

Because the resulting equations a‘e used for the analytical determination of P, (for additional
examples, see ref. 102), it is essential to determine whether Kirchhoff's or Zubov's assumption is
to be used for the formulation of ice cover problems. In this connection, note that the plate de-

}\ flections due to a load g, which is distributed over a circular area, according to eq 9, are'*?

wy(r) = g_a_[’l + ker (a)ber(Ar) - kei'(a)beil)\r)] 0O<rga
yla
(70)
wylr) = "_"[ber’(a)ker(m | l)ei’(a)kei()u)] A<
Yy

where A = {'y/D, whereas the differential equation for an ice plate, according to Zubov's hypothe-
sis, is

Ghv2w-yw = -q (71

where G is the shearing modulus and the corresponding deflections are

wl(r) e %[1 - (xa)Kl(xn)lo(xr)] O<r<a
(72)
Wg(r) = 2 (xa)ll(xa)l\’o(xr) Alr<e

)4
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Figure 22. Comparison of plate deflection curves based on

bending and shear theones.
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E!gure 23. Comparison of ice plate deflections
due to loads of short duration at -15°C < T < -7°C.*
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Figure 24. Comparison of ice plate deflections due to
loads of short duration at 0°C.'*

where 15, K, 1, and K, are Bessel functions and « = \,m . To show the different nature of
the deflection curves based on these two assumptions, eq 70 and 72 were evaluated numerically
for h =10 cm, v = 0.3, and E = 10.500 kg/cm’. For a/h = 1 aad 5, the corresponding valve of G
was determined using the condition that the largest deflections w(0) for both theories are equal.
The results are shown in Figure 22.

Note that the response of an ice cover according to Zubov'*® is identical to the response of
the shear layer in the Pasternak foundation.*'
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As early as 1929, Bernshtein® compared the deflections of an ice field on the Volga River sub-
jected to loads of short duration, at air temperatures of -15°C - T < =-7°C, with cotres ponding re-
sults based on eq 9. This comparison is shown in Figure 23. Since the agreement is very close,
it was concluded that the use of eq 9, and hence Kirchtoff's hypothesis, is Justified for the formu-
lation of ice plate problems subjected to loads of short duration.

in 1968, Shmatkov'"' compared test data of an ice plate on Lake Baikal subjected 10 a vertical
load of short duration but at air temperatures of about 0 C with analytical results based on eq9
and 7. This comparison is given in Figure 24. On the basis of these data, Shmatkov concluded
that at air temperatures of 2bout 0°C the deformations are mainly caused by shearing forces.

This conclusion raises a serious question about the effect of the air temperature upon the
range of validity of ec 9 and 71 for the formulation of ice covers. A comparative study involving
more test data, especially at air temperatures near 0°C, is urgently needed to clarify this important
question. In these tests, a special effort should be made to separate the elastic from the nonelastie
deformations. It may also be advisable to note the difference between the crystallographic structure
of an 1ce cover formed over a lake 1n which the water is essentially at rest and that over a river in
which the water moves at a certain velocity, and the effect of a different crystallographic structure
upon the mechanical properties of an ice cover.

Determination of P,(0)

Test results and their relationship to the allowable load given by the analogy method were
discussed by Kliucharev and lziumov®’ in 1943 and by Kobeko et al.*® in 1946. In 1960, Gold*
compared eq 4 with the field results of the Cuanadian pulp and paper industry. The conclusion
from this comparison was that the formula given in eq 4 is not sufficient for the determination of
failure loads since the presence of cracks, therrmal stresses and natural variation in effective
thickness is not considered. Another reason could be that the failure load P, is not proportional
to h* but may be a more complicated function of h, as indicated by eq 10 and 12. Additional re-
sults were presented by Gold'® in 1971.

Frosh water Ica In order to establish which of the various
sm:?;"ﬁ‘;‘(;"('i‘i:’:‘; PSS Em (e} TGin [0 o fonu;as for P, and P{0) obtained using the
tal2s2¢m,(4)Sa8cm, (9110210 ¢m criterion o, . = 0, are suitable for predicting
L iy th g g R the earrying capacity of a floating plate sub-
2% =y 1 T 1 jected to loads of short duration, in the {ollow-
e ] ing the analytically obtained Py (0) values are
20 _,,,.-Q; _,,-«" 1 e compared with corresponding results from tests
M- S : conducted on floating ice plates.
P S . .
0. i » ot i Since the analyses are hased on an elastic
T < | theory, only the results of tests with very short
A i loading times to failure are of interest. Such
'0‘.’; " f,..-f”"f ' tests were recently conducted by Panfilov®® in
. s the laboratory as well as in the field. The lab-
05 - oratory tests were conducted at =10°C. The
floating plate was loaded by means of stamps
|y : i i ] of the dimensions shown in Figure 25. The
n 0 04 QF (B e

load for each test was placed statically at
> rates which caused breakthrough within 5 to '
v 20 sec. In addition to the failure loads P,

- 4 1 t whi i i :
Figure 25. Laboratory test results for infinite oads at which the first radial crack occurred

plates.”
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P, were recorded. The laboratory tests were conducted with fresh and salt water ice. The ice
plate thickness varied from 7 to 30 mm. The field tests were conducted on thicker ice plates. The
ice plate was loaded by placmg metal water tanks on a structure which in turn rested on the ice
plate and simulated the contours of wheel loads. The ice strength o was determined from floating
cantilever tests with the load aeting downwards. Additional details are contained in ref. 98.

The results of 56 laboratory tests for the infmite plate are shown in Figure 25,

The failures followed the usual pattern: first, the formation of radial cracks that emanated
from the region under the load. then, the formation of circunferential cracks, at which time the load
broke through the plate.

In Figure 25, Curve 1 is the P”. (arhg). aceording to the analyses by Bernshtein,” Golushkevich,?®’

and Wyman."' Curve 11 is proposed hy Panfilov’* as representing the test data and is desenbed
by the equation

This equation was ohtained by an averaging process. The test data show a scatter in a relatively
narrow band.

r ] Before proceeding with the discussion of these
Breantnrougn | 00d i) test results, 1n the following a different concept for
= the evaluation of ice plate tests is introduced. This
. F . - 1S necessary because averaging curves, such as
curve ][, are not suitable for most engineering pur-
w2 e o poses.

I From an engineering point of view, there is a
ate Loag need to determine safe loads, at which an object
may move or park briefly on a floating ice plate,
J or breakthrough loads, for the design of ice bhreak-
T ers, at which the plate definitely collapses. These
vy loads may be obtained by introdueing into the re-
Figure 26. Ilustration of new concept sults of field tests an upper envelope U and a lower
for evaluating breakthrough loads from envelope ., as shown in Figure 26. It is reasonable
test data. to expect that the area under envelope L contains
safe loads and the area above envelope U the
breakthrough loads. The area between the envelopes is the region of the test failure loads and
nothing definite can he said about it with r_pact to safety or breakthrough. Thus, only the re-
gions ahove curve U and below curve L are of interest and the test results are needed to separate
these two regions.

o

For the test da‘a of infinite plates show 1 Figure 25, the upper envelope U may be repre-
sented by the equat.on

P
I - 1.1%

2
orh U

and the lower envelope L by the equation
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Therefore, if the bounds shown in Figure 25 should prove reproducible by other investigators, a
safe load (for loads of short duration and T - =10"C) could be determined from the condition

b ¢
P (l.o. 12 2 Yo (73)
VUY

where o, 1s obtained from a floating cantilever beam test loaded downward.,

According to test data shown in Figure 25

tes ~
(P,“‘)L > 2P, (749)

Note, however, that the o, values for these two cases are usually not the same.

Panfilov’* observed that, if Pcr is the load at which the first crack takes place, then

)
test ~ «~ estl
pyot~2gen )

From the above two equations, it then follows that

cr

test ~ 1
s le, (76)

A proper analysis should yield that P, is equal to Pc‘f'“. Possible reasons that this is not so in
eq 76 are: 1) The o, values used in Figure 25 are those obtained by loading the cantilever beam
downward, whereas for the determination of Pcr the tensile stresses that crack the plate are in the
lower fibers of the plate where o, is smaller because of the higher temperatures; 2) The stress
distribution is not linear across the plate thickness and the stresses in the upper fibers are lar-
ger than those in the bottom fibers, whereas the analyses and test evaluation are based on a linear
distribution with equal stresses at the top and bottom fibers; and 3) The criterion Omax = Of May nc.
be valid.

According to analytical results by Kashtelian,** for an infinite plate that cracks into five
wedges (¢ = 2n/5)

P ]
L _2082~08
Urh2 n s

and when plates crack into six wedges (¢>n =n/3)

Py

> 0.7. :
0'h2 '

Thus, according to this analysis, P, values are obtained which are far below the test data pre- 5
sented in Figure 25.
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Also compare the graphs presented in Figure
20 with the test data of Figure 25. Note that the
0 8j | - upper graphs in Figure 20 are based on M, 00h2 1
B e T 4 and that they may be shifted toward the test data
2 -~y °g e hy choosing & larger number in the denonnnator of
i o g My
& -

- - The test results for a semi-infinite plate

1 subjected to an edge load, as shown in Figure 6,
are presented 1in Figure 27. The failures followed
the nsual pattern: first, the formation of a craek,
| which eminates under the ioad and is normal to
the free houndary; tk = the formation of a circun-
ferential crack at which the two wedges break off.

) In Figure 27, Curve 11s the P, according to
the analyses of Shapiro'’” and Golushkevich.?’
Curve 11 was proposed hy Panfilov®® as represent-
ing the test data, which show a scatter in a rela-
tively narrow band. 1t 1s deseribed by the equation

Figure 27. Results for semi-infinite plate.”
(Symbols as in Fig. 25.)

BLAN T, n.‘m;.

u{h2
It can be easily verified that the upper envetope U is described by the equation

P

(.__) 0.8 . 0.77 2
a h* l

4 u

and the lower e¢nvelope L by the equation

(—P_) - 0.35 0.30;_’ :

2

orh®h,

Hence, 1f the bounds shown in Figure 27 should prove to be reproducible by other investigators, a
safe load for the crossing of a long gap n a floating plate (a bridge between two semi-infinite
plates) could be determined from the condition

P (().'1.') + 0,39

)hzor.
VD 'y

On the other hand, the breakthrough load for a semi-infinite plate, often needed for the design
of 1cebreakers, should satisfy the condition

P ,(0.58 v 027 b )a,h2

ND/y
where o is determined from a floating cantilever test loaded downward.

According to the test data shown 1n Figure 27,for 0.1 < b/¢ < 1.0
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(P,“‘“‘)L ~16P,. b))
Panfilov observed that also for the semi-infinite plate
plest o % plest. (78)

Fiom eq 77 and 78, it then follows that

test -
Pc:s bt Pey (79)

lu view of the three possible shortcomings listed in the discussion of

the infinite plate, tais
agreement is very close.

Panfilov's test results for the infinite and semi-infinite plate show that

Ptesl) -~ test
( L inf plate 27 Pf semi-inf plate * L)

This contradicts the :xperimental findings reported by Kashtelian (ref. 48, p. 33). Equation 80
indicates that the effect of the wedj.e-in moments is not negligible if one attempts to compute Pr
analytically from wedge solutions. Without the wedge-in moments, F; of the infinite plate would

be equal to twice the Fy of the semi-infinite plate. In this connertior, note the corresponding re-
lationship obtained analytically and shown in Figure 8.

According to Kashtelian,* for the observed wedge formation, for a semi-infinite plate
¢ = n/2 and hence

P./(o,h®) - 0.518

a value which agrees with the test data shown in Figure 27 for a < 0.4,

Other test data for loads of short duration were obtained by 1Akunin;** however, these results
were not available for review.

Determination of A0

Early test results for ice covers subjected to loads of long duration were reported in refs.
6. 8, 45, 58 and 59. More recent test results were presented by Sundberg-Falkenmark,'" Franken-
stein,” Panfilov,”™ ' ''"* Stevens and Tizzard,'* and IAkunin.*® Although some writers compared
their test data with analytical results and found satisfactory agreement for certain situations, a
systematic study of available test data, supplemented with new test results, is needed to estab-
lish, first the proper plate theory for ice covers which will predict the deflectionrs as a function of
time, and then a failure criterion for the determination of Py(1) and .

In connection with the above studies it may also be useful to note the test results presented
by Black,’ Brunk,'* Butiagin," Frankenstein,” Gold et al.,” Korzhavin and Butiagin,*' and
Shishov,'® as well as the discussions by Assur,’ Dykins, IAkunin,* Pister,

"Mand the discus-
sion in ref. 140,

Determination of o,
For the analytical determination of Py(0), the value o, is needed. 1t is determined usually

from a beam cut out from an ice plate and tested in situ. A detailed description of such tests
was given by Butiagin (ref. 16, section 1V). A cantilever test beam is shown in Figure 28.




Other test data were presented by Brown,'? Frankenstein,
and Weeks and Anderson.

Tautiainen,'”
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Figure 28. Cantilever test beam for the determination of oy

147

17 18

Sokolnikov,'* Tabata et al.,'*

Related questions were discussed by Butiagin,’

Frankenstein,'' Kerr and Palmer,’® Lavrov,”” ™ Peschanskii,'* Savel'ev,'** Smirnov,'*’ and Weeks

and Assur.'"’

I* order to establish a standard procedure for the determination of o, 1t should be of interest
also to determine the effect of the rate of loading upon o as well as to clarify why Franken-

stein,?” *

using the test setup shown in Figure 28, found that the determined o, value was higher

when P acted upwards, whereas Butiagin,'* using the same setup, reported that, according to his
test results, the o, value was higher when P acted downwards.

SUMMARY AND RECOMMENDATIONS

When utilizing a floating ice plate for storage purposes or as a pavement for moving vehicles,
there is a need to know the magnitude of the breakthrough load P,(t) and the corresponding time to
failure t,. Until now, there has been no general theory in the literature suitable for the prediction
of Pr(t). The majority of papers Gi the bearing capacity of ice plates have dealt with the deter-
mination of P,(0), that is, the load which is just sufficient to break through the ice immediately
after it is placed on the ice cover. Only a few papers have dealt with the determination of P,(t).
The procedures for the determination of P,(C) and P(t) are summarized in the following:

P(0)

Pt)

Based on elasticity analyses

Based on plasticity analyses

Analogy method
for determina-
tion of Pl“.

Determination of]
Pcr based on
elasticitvtheory
of p_lates andcri-
terion Omax =9¢
Then correlation
of P,, and P(0).

Direct determin-
ation of Py(0) by
analyzing the
cracked plate.
Use of elasticity
theory and cri-
terion Oma

x=0ro

Determination
of Pr (0) using
yield line
theory.

Determination of]
P(0) using limit
load theory.

Lse of a viscoo
elastic theory
in conjunction
with a failure
criterion.

Attempts to determine P,(O) are based on elasticity as well as placticity theories:




THE BEARING CAPACITY OF FIL.OATING ICE PLATES 33

The foundations of the analog method, which utilizes relationships of an elasticity analysis,
are questionable. Thus, the results obtained with this method, although very simple, should be
used with caution. In this connection, note the position of eq 7 in Figure 25 as compared with
some findings by Gold.** **

Another approach is based on the elasticity theory of plates. In this procedure, for the given
load the maximum stiess in the plate Unay 1S determined first, then eq 8, Opax Y. 18 usedto deter-
mine P, a load which 1s just sufficient to cause the first crack. Since, according to field tests for
infinite and semi-infinite plates, P0) - Pcr. an empirical relation between P and P(0) is needed for
the determination of P,(O). Eqguation 74, which is based on data by Panfilov,” if proven to be gen-
erally valid, could be used as such an empirical relation for the infinite plate. 1u this procedure, o
1s determined from a floating ice beam that fails in tension in the botton: region of the cross section.

In still another approach, the empirical relation is eliminated and P (0) is determined directly,
by using the elasticity theory for the analysis of the cracked ice plate, which consists of wedges
that emanaie from the loaded region and the assumption that P(0) 1s reached when the wedges break
off. Equation 8 is also utilized as the crack criterion. The value f: '¢1s obtained from a floating
ice beam that fails in tension in the upper region of the cross section

The publications that follow either of these two approaches contain several questionable as-
sumptions, for example, although in a floating ice plate the material paraneters, especially E,
usually vary throughout the thickness, the expression valid for a linear distribution of bending
stresses is used exclusively for the determination of the maximum stress in the plate. Also, the
use of above equations for the determination of o, from a beam test may nat be justified.**

Another questionable practice is the utilization of eq 8 as the failure criterion. Equation 8 is
the well known maximum stress criterion.”® ™' It implies that the failure stress o, is not affected
by any other stresses at the point of failure. Tests have shown that eq 8 is applicable to a variety
of brittle materials when not subjected to hydrostatic compression. Although many publications
dealing with the bearing capacity of floating ice plates utilize eq 8, not a single publication could
be located which describes test results that prove, or disprove, the validity of this criterion for
floating ice plates. This situation is very unsatisfactory, since Onayx iD Plates is usually biaxial,
whereas ‘he o, value is determined from a test with uniaxial bending stress. In 1970, Panfilov"®
suggested the criterion

Uy~ poy <o (81)

which is the two-dimensional version of the well known maximum strain criterion. However, Pan-
filov''® did not offer sufficient experimental data to justify the use of this criterion either. In the
literature on the mechanics of materials, several other failure criteria are described that may or may
not he suitable for floating ice plates. For an early discussion related to plates on a Winkler base,
the reader is referred to section 9 of ref. 123. It appears that first it has to be established whether
the simple criterion in eq 8, which is also applicable for meterials with different o, values for ten-
sion and compression, is valid for floating ice plates subjected to vertical and in-plane loads.

An additional shortcoming of the publications that analyze the cracked plate is that the investi-
gators neglect the wedge-in moments in the radial cracks. This does not seem to be permissible,
in view of the tests by Panfilov,” who found that P(0) of an infinite plate is larger than 2P,(0)
for a semi-infinite plate.

The approaches for the determination of P,(0) that are based on plasticity theories utilize the
yield line or limit load analysis. For a discussion of a possible shortcoming of these two analyses,
the reader is referred to the listed references. Note that the yield line theory is conceptually related
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to the approach discussed above, which analyzes the cracked plaie. In this connection, it may be
more realistic to work with cracks instead of yield lines and wedge-in moments instead of plastic
moments, especially along the radial cracks.

In view of the variations of ice properties in an actual ice cover and their effect upon Py(0),
it may be advisable from a practical point of view to use the concept presented in Figure 26. 1lts
theoretical justification is that the straight-line upper or lower hounds of P,(O) are of the form

Py
- A+ Ba

2
afh

which relates the concept to the various analyses discussed above. This approach, if restricted to
straigat-line bonnds, is essentially the same as the one discussed by Papkovich,''* except for the
introduction of the notion of upper and lower bonnds for P(0). Also, note the similarity of the trend
of the graphs and test data shown in Figures 4, 20 and 25.

The experimental data for P,(O) presented by Panfilov®® (Fig. 25 and 27) show little scatter.
More test data are needed to establish whether the Pf values for other ice plates, tested under dif-
ferent conditions, fall in the same range.

The analytical determination of P;(1) has received much less attention than the determination
of P,(0). It is reasonable to assume that the necessary formulation consists of a viscoelastic plate
theory and a failure criterion. Thus, 1t is essential first to establish the range of validity of a
simple formulation consisting of a linear viscoelastic plate theory (a bending theory, a shear theory,
or a combination of both effects) in conjunction with a failure criterion of the type expressed in
eq H8.

Until reliable analytical methods are developed for predicting P,(t) and t,, from a practical
point of view, it appears advisable to establish whether the empirical relation expressed in eq 62

or a similar expression, as proposed by Assur,’ is generally valid. The test results needed for this
purpose are also necessary for formulating the proper failure criterion as well as for establishing
the validity of a chosen viscoelastic plate theary.
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