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1 A TRACT

’ e"sl'hecprevious parametric-instability explanation of the jump in the Stokes intensity lg as a
function of laser intensity 1] in stimulated Raman scattering experiments is valid for many
solids, liquids, and gases (with high optical dispersion dn/dA and high Raman frequency w¢),
while a few materials (low dn/dX and wf) should show an enhanced gain, lg ~ exp ILZ, which is
greater than the usual stimulated-Raman gain but not as great as the jump result. Previously
anoralous experimental results, which show both types of behavior, are explained, For high dis1
persion the steady state is not reacied until a time much greater than the Raman phonon relax-
ation time. A phonon parametric instability studied previously in another context can reduce the
Stokes intensity. Experiments to detect the phonon instability are suggested. In the earlier
golden-rule analyses (perturbation theory treatment of occupation numbers) the enhancement
was lost by neglecting the increase of the vibrational amplitudes above their thermal equilibri-
um values. Even though the probability of an individual ion or molecule being excited is small,
the occupation number of the phonon in the Raman process is large. In the previous mode-
amplitude analyses, the enhancement was lost in the method of linearizing the norlinear differ-
ential equations. By solving these same mode-amplitude equations without using the previous
linearization scheme, the enhancement is obtained and the equivalence of the mode-aniplitude
and golden-rule Boson-occupation-number analyses is demonstrated explicitly. The loss of
phase information in using the occupation numbers is unimportant. Analysis indicates that
Raman active crystals fail at intensities If which are greater than the valuc IR of I at the jump
by an amount I that is generally of the order of or less *han Ig. A typical value of IR at the
ruby frequency is a few GW /cmZ, which is less than other intrinsic-mechanism thresholds. The
temperature rise from the phonons generated near the sample surface is sufficient to cause ma+
terial failure when 1 > lf, Expressions are derived for the rate at which radiation is scattered
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ABSTRACT (Continued)

and absorbed because of surface roughness on a semi-
infinite material in the presence of a dielectric over-

plasmon coupling. A formalism developed previously is
utilized. A series of numerical calculations which ex-
plore .he roughness-induced scattering and absorption of
uv radiaion for aluminum overcoated Ly aluminum oxide

induced coupling to the surface plasmon shifts toward the
visible as the thickness of the oxide layer increases. Ti.e
size of the dip is controlled strongly by the degree of
correlation between the roughness on the vacuum -oxide
interface, and that on the oxide-substrate surface. The
temperature rises T of laser-irradiated metals have
drastically different magnitudes and dependences on ma-
terial paramcters such as thermal conductivity K and
heat capacity C, on the sample thickness £ and lateral
dimension L, and on the operating conditions such as the
laser-beam diameter D and pulse duration t. The behav-
ior depends on the relative magnitudes of D, £, L, and the
thermal diffusion distance d. The highest of tiie recentl¥
measured copper damage thresholds of 125 to 750 J/cm
for 0. 6 ysec pulses at 10. 6 ym are likely to be quite near
the intrinsic limit set by the simple process of melting
from the intrinsic absorption. The intensity at which the
cavity mirrors of recently developed xenon uv lasers fail
is explained. The theoretical value of T for metals ir-
radiated for 20 seconds with 10. 6 ym radiation is ~ 100
too small to explain recent experimental damage results,
the discrepancy probably being related to plasma ignition
at the sample surface. The steady-state value of T for
cooled metals is not reduced substantially by increasing
the cooling efficiency past a certain point. For t < 71,
where the characteristic time T depends on both the
cooling and £, cooling the metal is not effective in pre-
venting the temperature rise.

layer, which can greatly enhance the radiation to surfacet

is presented. The reflectivity dip produced by roughnesst
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PREFFACE

This Fourth Technical Report describes the work performed on Contract
Number DAHC15-73-C-0127 on Theoretical Studies of High-Power Ultraviolet
and Infrared Window Materials during the period from June 30, 1974 through
December 6, 1974. As in the past, previously reported results are not re-

\ peated in the present report. ‘The work on the current contract is a continua-

tion of that of the previous Contract Number DAHC15-72-C-1029.

The following investigators contributec to this report:

Dr. C.J. Duthler, principal research scientist

Dr. A. A. Maradudin, consultant, University of California, Irvine, California
Dr. D. L. Mills, consultant, University of California, livine, California

Dr. L.J. Sham, consultant, University of California, San Diego, California
Dr. M. Sparks, prircipal investigator

In preparation for presentations at the Advanced Research Project Agency's
Materials Research Couiicil Studies of High Energy Laser Mirror Materials and
of Erosion of Infrared Windows at La Jolla, California in July 1974, the following
interestiag results were obtained: (a) In some cases, the infrared laser damage
to mirrors can be explained by the simple process of ordinary intrinsic absorp-
tion, with the temperature dependence of the intrinsic absorptance A determined
from the relation A ~ p, where p is the clectrical resistivity. Thus, it is not
necessary to invoke nonlinear processes as thought when the meeting was ar-
ranged. In other cases, the laser ignition of plasmas at the surface obscures

the ordinary heating effect. (b) Calculations of the temperature rise in




laser-irradiated metals and transparent materials vield important results that

should be useful in mirror, metal target, and window-materizls tests. (c) A model
of surface absorption with i bulk and surface contribution to the electron relaxation
frequency was proposed to explain the anomalous temperature dependence of A ob-
served at China Liake. Subsequent investigations of the model turned up difficulties
in the explanation, but indicated that further studies would be promising. The re-
sults from the surface model may also be related to the problem of laser ignition

of plasmas at solid surfaces,

The mirror-damage results and the results for the temperature rise in laser-
irradiated metals are included in Sec. I of the present report. The case of trans-
parent material will be included in a subsequent report, as will a brief report of
the surface-absorption model. At the suggestion of Dr. M. Hass, our previous
analysis of molecular-ion absorption was applied explicitly to the case of potas-
sium bromide (Sec. 11). The emphasis in the remainder of the program was on

ultraviolet materials.




A. INTRODUCTION AND SUMMARY

Work on the enhancement in the stimulated Raman scattering process, which

was discussed briefly in the previous technical report, has been completed. The

final results are contained in the present report. In addition to a more complete

description of the former results, three new results are reported: (1) Itis shown

in Sec. B that materials with low optical dispersion and small Raman frequencies

can exhibit an intermediate Stokes gain that is lower than the strong enhanced

i

gain that gives rise to a jump in Stokes intensity is as a function of laser intensity

I, , but greater than the previous linear Raman gain. l'or this intermediate-gain

|
2 Y , ; :
case, I ~ exp I, . Experimental results, which show both types of behavior, are
S P xp P

now explained. For high dispersion, the steady state is not reached until a time

much greater than the Raman phonon relaxation time. A phonon parametric insta-

hility studied before in another context can reduce the Stokes intensity. Lixperi-

ments to detect the phonon instability and measure the magnitude and temperature

dependence of “half-frequency” phonons Q (with frequencies w(y t w.q ~ W )

are suggested.

(2) ‘Ihe reasons for the absence of the enhancement in other treatments of

Raman amplification were discovered (see Sec. C). In the carlier golden-rule

analyses (perturbation theory treatment of occupation numbers), the enhancement

was lost by neglecting the increase of the vibrational amplitudes above their ther-

mal equilibrium values. Even though the probability of an individual ion or mole-

cule being excited is small, the occupation number of the phonon in the Raman

process is large. In the previous mode-amplitude analvses, the enhancement was



lost in the method of linecarizing the nonlinear differential equations. By solving

these same mode-amplitude equations without using the earlier linearization
scherue, the enhancement is obtained and the cquivalence of the mode-amplitude
and golden-rule Boson-occupation-number analyses is demonstrated explicitly.

The loss of phase information in using the occupation numbers is unimportant,

(3) In Sec. D an analysis of laser damage to materials by this enhanced
stimulated Raman scattering mechanism shows that the damage threshold for
Raman active crystals may be lower than the threshold for other mechanisms

such as electron avalanche and self focusing.

As mentioned in the Preface, it was discovered in preparing for presenta-
tions at the Advanced Research Projects Agency Materials Reseatch Council
Studies at T.a Jolla, California in July, 1974 that in some cases the infrared laser
damage to mirrors can be explained by the simple process of ordinary intrinsic
absurption. One group was already aware of this result, but apparently it was
not generally realized that it was not necessary to invoke nonlinear effects to
explain the damage chreshold, The increase in absorptance with ilicreasing tem-
perature and consideration of the 0.2 gsec peak in the nominal 10. 6 psec pulse
are important in obtaining agreement between the theory and the Hughes experi-

mental results,

At the conference concern was expressed that the experimental results of
Saito, Charlton, and Loomis were different from those of the [ughes Malibu group,
particularly with respect to differences between copper and molybdenum. We sug-

gested that the differences could be related to the fact that for the 0. 6 ysec pulses

in the tughes experiments the thermal diffusion distance d was much less than




Sec. A

the sample thickness £, while d >> £ was satisfied for the 20 sec pulses in the
experiments of Saito, Charlton, and Loomis. The differences in the volumes that
vere heated means that the temperatures in the two cases will Lave different de-
pendences on the thermal conductivity K and heat capacity C. It was found that
the simple procedure of using an effective heated volume to find the temperature
rise requires extreme care in general. Fortunately, an exact simple solution was
obtained for the maximum tempevature rise in ¢ realistic model that includes the

most difficult case of d >> 4. These results were combined with previously un-

published results to form a relatively complete treatment of laser heating of

metals in Sec. F.

!
L
‘-ll The theoretical results appear to explain the Hughes experimental results.

? However, they clearly show that the theoretical value of the temperature in the

I expe: iments of Saito and coworkers is two orders of magnitude too small to ex-

l plain the experimental damage results. It appears that ignition of a plasma at the
metal surface is responsible for the difference. Until this plasma ignition result
is understood, the differences between results for copper and molybdenum cannot
be considered as significant. In particular, the different dependence of T on K

and C for the two cases of d >> £ and d << £ cannot be used to explain the

present differences.

The theoretical intensity at which the cavity mirrors of recently developed
xenon uv lasers fail is in good agreement with the exnerimental values. Further
results of the theory are as follows: The steady - state value of T for metals
cooled with a surface-heat-transfer coefficient h is not reduced substantially

by increasing the cooling efficiency past a certain point (h > hl; = K/2).




Sec. A

FFor t < T, where the characteristic time T depends on both £ and h, cooling the
metal is not effective in preventing the remperature rise. The temperature rises T
of laser-irradiated metals have drastically different magnitudes and dependences
on material parameters such as thermal conductivity K and heat capacity C, on
the sample thickness £ and lateral dimension L, and on the operating conditions
such as the laser-beam diameter D and pulse duration t. The behavior depends

on the relative magnitudes of D, £, L, and the thermal diffusion distance d.

The long-standing problem of the anomalously large absorption by some oxi-
dized aluminum samples (the absorption by A1203 is not sufficiently strong to
explain the great absorption) motivated the study of the effect of a dielectric over-

‘. layer on a rough aluminum sample. See Sec. E. In some samples the presence of

a layer of A1203 on a smooth aluminum surface may be sufficient to cause the
measured absorption, as recently realized by tl. Ehrenreich (private communica-
tion) and by Maradudin and Mills in the previous technical report. In other samples,
the absorption is too great to be explained by this result. A preliminary study in
which the results of Sec. E are applied directly to this problem suggests that a
rough 1\1203 layer should give rise to the greater observed absorption, while a
smooth A1203 layer should give rise to the lesser observed absorption. This will

be discussed in detail in a future report.

In the previous technical report an estimate of the strength of the two-photon
absorption process in transparent materials indicated that this process may have

the lowest threshold of the known failure mechanisms. In view of this importance

of the two-photon absorption process and the fact that the accuracy of the theoreti-

cal estimate may be as low as two orders of magnitude, an improved estimate is




important, Unfortunately, even the one-photon absorption process is not well
understood. In fact, even the explanation of absorption edges and the values of

the energy gaps in tre simple alkali halides are curreatly controversial. It ap-
pears that o relatively simple tight binding calculation may resolve at least some
of the difficulties. The final analysis of the two-photon absorption has therefore
been delayed for a short time in order to consider some of the fundamental prob-
lems whose answers are needed before a completely satisfactory tres :ment of the
two-photon problem can be undertaken. The approach to the one-photon absorption
problem is sufficiently simple that it appears that it can be used in conjunction
with techniques from our previous treatment of magnetism and phonon prchlcius

to obtain information on states in the gap of wide bandgap materials.

Two papers presented at the Advanced Research Projects Agency Fourth
Laser Window Conference at Tucson, Arizona in November, 1974 are included
in Secs. G and H. Sec. H is an extension of the previous treatment of molecular-
ion-impurity infrared absorption (second technical report). It is emphasized that
the absorption frequencies result from the internal modes ot the molecular-ion
impurity which are shifted and broadenzd only slightly by the particular host
crystal. Consequently the previous analysis, which emphasized KC1, is directly
applicable to KBr and is approximately valid for other jonic crystals containing
halide ions. The absorption frequencies of several molecular-ion impurities are
given and it is suggested that the overlapping absorption lines from several poly-
atomic ions, all of which contain oxygen, could account for the broad previously

unidentified absorption peak near 9.5 ym.




B, STIMULATED RAMAN SCATTERING: ENHANCED STOKES GAIN AND |
EFFECTS OFIF ANTI-STOKES AND PARAMETRIC PHONON PROCESSIES

M. Sparks
Xonics, Incorporated, Van Nuys, California 91406

It is shown that the previous parametric-instability explanation of
the jump in the Stokes intensity IS as a function of laser intensity IL in
stimulated Raman scattering experiments is valid for many solids, liquids,
and gases (with high optical dispersion dn/dX and high Raman frequency
wf). while a few materials (low dn/dX and wf) should show an enhanced
gain, IS ~ cxplg , which is greater than the usual stimulated-Raman gain

but not as great as the jump result. The previously anomalous experimental

results of Grun, McQuillan, and Stoicheff and of others, which show the jump

in IS , and of llagenlocker, Minck, and Rudo, which show both types of be-
havior, are explained. The instability is expected to be important in laser
damage of Raman active crystals and possibly in determining the limiting
diameter of self-focused beams. The transient solution for the case of high
dispersion indicates that the steady state is. not reached until a time much

greater than the Raman phonon relaxation time, It is also shown that a

phonon parametric instability studied previously in another context can
reduce the Stokes intensity. Experiments to detect the phonon instability
and measure the magnitude and temperature dependence of "half-frequency”

phonons Q (with frequencies (,.;Q + w-Q : u:f) are suggested.




I. INTRODUCTION

Stimulated Raman scattering was first observcdl and :mnlyzed2 in 1962, It was
recently rcalizcd3 that a parametric instability in the Raman Stokes process causes
a Stokes-intensity gain enhancement that has significant consequences including a
nearly discontinuous increase, or "jump,’ in the Stokes intensity lg asa function
of the laser intensity IL in the absence of self focusing and feedback. Such jumps
had been observed, but were not understocd. The instability is expected to be im-

portant in laser damage in solids that have first-order Raman-active modes, the

]
damage thresholds being well below the l()mW/cm‘ valuc typical for alkali halides,

which are first-order Raman inactive. It is possible that the limiting diameters of
self-focused beams may be determined by the stimulated Raman scattering process

in some materials.

Another recent study4 considered the effects of a parametric instability oi
phonons on nonlinear infrared absorption. In the Raman Stokes process, a laser
photon L is annihilated and a Stokes photon S and a fundamental (Reststrahl)
phonon f are created. These created phonons f can split into two phonons Q and
-Q, and this three-phonon process is subject to the same parametric instability
discussed in Ref. 4. In terms of the diagram in Fig. B1, parametric effects are in-
volved at both vertices R and P, corresponding to the stimulated-Raman-scattering

enhancement and phonon instabilities, respectively.

The physical interpretation of these instabilities is rather simple. Ior the
Raman process, the balance of the energy put into the f phonons by the Raman
process against that removed from the { phonons by relaxation is a kev to the
explanation. The power out by relaxation (by interaction with impurities or other

phonons, for example) increases linearly with the number of phonons ng, which is




Sec. B

just the condition nat a relaxation time exists. On the other hand, the power into
the f phonons increases nonlinearly with increasing ng since the Raman process is
a three-Boson process (which results in products of Boson occupation numbers in
the expression for the power). Thus, at a critical value of the input power, which
is proportional to the laser intensity, the amplitude n, becomes very large. The
value of lS is also large since a Raman event creates one f phonon and one S

photon. The critical value of lL is denoted lR .

Any three-Boson splitting process is potentially unstable parametrically. There
are analogies between the twvo instabilities considered here and previous instabili -
ties in ferromagnetic resonm:ce‘kl (premature saturation of the main resonance,
subsidiary absorption below the main resorance, and parallel pumping absorption),

plasma physics,4b and electronic dcviccs.4c

In the present paper, two distinct effects are considered. First, it is shown
that the jump in lS is expected to exist \n many materials (with high optical dis-
persion). By contrast, in a few materials with low optical dispersion, such as
hydrogen gas for the rotational Raman mode, the enhanced gain is greater than
the usual gain2 of stimulated Raman scattering, but is not sufficiently great to
give a jump in IS as a function of lI . Second, it is shown that the phonon para-

4

metric instability has two important effects on stimulated Raman scattering.

Ihe first effect concerns tie previous aobservation™ that ll and IS were dis-
continuous at the input surface of the sample when ll > lR . It was pointed out
that this zeroth-order result was related to an infinite (but integrable) value of

the fundamental -phonon occupation number ne at the surface, and that the infinity

and resulting discontinuities would be removed by higher-order effects such as
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nonlinearities in the Raman oscillators. The parametric instability in the

f phonons is one such effect that reinoves the discontinuities. Two central re-
sults of the phonon-parametric instability study4 are that the fundamental-mode
occupation number ne is limited to values below a critical value np and that
there is an effective relaxation frequency 'f‘f of the fundamental phonor that is
greater than the usual linear value I‘f as a result of an increase in the occupa-
tion numbers ng of the phonon modes into which f decays. Consequently, the
discontinuity obviously is removed since ne is limited to a value below the thres-
hold value np , thus removing the infinity in ne. For IL = IR , the spatial build up
of IS depends on the phonon instability. In gases, the nonlinearities in the oscilla-
tions of the individual molecules can limit the amplitudes of oscillation, in analogy

with the phonon-instability limit in solids.

The second effect of the phonon-parametric instability is that in the rather
rare case in which the phonon instability occurs at IL < IR , the Stokes intensity
is reduced. Since the enhanced Stokes gain is a result of an increase in the occu-
pation numbers ne of the fundamental phonon, and both the enhanced and ordinary
gain depend on ff, the phonon instability can reduce both the ordinary and en-
hanced stimulated Raman scattering by reducing the value of ne and increasing
the value of ’f‘f. It is suggested in Sec. VII that experiments in which this reduc-
tion of IS is observed should afford a method of measuring the magnitude and
temperature dependence of the lifetimes of the phonons well away from symmetry

points in the Biillouin zone.

Next, considcr the consequences of the anti-Stokes process, in which a laser

photon and a fundamental phonon are annihilated and an anti-Stokes photon is cre-

ated. The jump in IS is related to the large number of f phonons created in the
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Raman process, as discussed above. The anti-Siokes precess in which these
create.! phonons are annihilated can conserve wave vector and energy (within the
linewidth for the process) for forward scattering if the optical dispersion dn/dX
is low, but not if it is high. Thus, for low optical dispersion, thc anti-Stokes
process reduces the value of Nes thereby reducing the Stokes gain to a value

(~exp IL2 roughly) intermediate between the fully enhanced value and the expo-

nential value (~exp IL) of the original theories.

FFor high dispersion, the forward-scattering anti-Stokes process does not
conserve energy and wave vector; thus, the previous enhanced-gain resv.t, which
was derived by neglecting the anti-Stokes process, is valid. ‘o1 scattering at an

< angle emxA from the forward direction, the anti-Stokes process can conserve
energy and wave vector. Thus, as 0 increases, IL decreases and ]A increases
to a peak value at emxA » provided the aspect ratio (length to diameter) of the
laser beam is sufficiently small to allow the Stokes and anti-Stokes beams to

w remain in coincidence with the laser heam, roughly speaking.

The transient solution of Sec. IV for the high-dispersion case shows that the
steady state is not attained until a time much greater than the Raman phonon re-

laxation time. Only the steady state is considered in other sections.

In the analysis, the equations of motion of the occupition numbe. s, rather
than the mode amplitudes, are considered. This greatly simplifies the analysis.
A priori it is not expected that the resulting loss of phase information is importan:
since the parametric process amplifies the thermally excited modes that have the

4-
proper phase. This is indeed the case in previous calculations. 6 ‘ihe problem




of phases has been settled by Sparks and Wilson, 7 by rederiving the
enhanced stimulated Raman scattering results with phase information included,
starting from Maxwell's equations and the elastic-wave equation with coupling

added in the standard way.

They have also identifizd the points at which the enhancement was lost in
previous analyses, which used either the equations of motion of the Boson occupa-
tion numbers obtained from perturbation theory (the golden rule) or the equations
of motion of the mode amplitudes (creation and annihilation operators or Fourier
components and their complex conjugates of the electric field, for example). In the
previous golden-rule type analyses, the enhancement was lost by neglecting the
deviation of the vibrational amplitude from the thermal equilibrium value. Although
ne becomes large as mentioned above, the probability of an individual ion or mole-
cule being excited is small, roughly speaking. Specifically, nf/N << 1] is usually
satisfied, where N is the number of unit cells or molecules. It was this fact that
the individual ions or molecules are not highly excited that led to the assumption
that the thermal equilibrium values were maintained in the previous analyses.

There are similar results for other three-Boson processes. For example, in

ferromagnetism, magnon occupation numbers are large at the threshold, while the

probability of an individual electron spin being excited to the spin-down state is small.

In the previous mode-amplitude analyses, reducing the nonlinear equations to
parametric linear equations (that is, linear equations with time-dependent coeffi-
cients) by assuming that the laser mode amplitude a, = bL exp (- ith ), where
bL is a constant, resulied in the loss of the enhancement. The saine linearization

scheme applicd to well known magnon parametric instabilities results in the loss of

11
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the steady -state solution, even though damping is included and a stcady-state
solution is expected on the basis of simple physical arguments. By solving the
same equations without using this linearization scheme, the difficulties were
removed and the equivalence of the mode-amplitude and golder. -rule results was

demcnst-ated explicitly for the stimulated-Raman-scattering and magnon problems,

Finally, the standard practice of considering only three waves is followed here
since the analysis is greatly simplified. It can be shown that including all Stokes

waves that are amplified does not change the central results.

12
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II. HIGH-OPTICA L-DISPERSION CASE. OF COUPLED STOKES
PHOTONS AND FUNDAMENTAL PHONONS :

The anti-Stokes process is neglected in the present section. It is shown in

Sec. V that this is a good approximation in the common case of high-optical dis-

persion,

‘The enhanced stimulated Raman effect can be obtained simply from the equa-
tions of motion of the Stokes-photon and f-phonon occupation numbers g and ng
as follows: Using the standard perturbation-theory result 2111'1-2 | <t i) |2 6 ()
for the transition rate between initial state |i) and final state |f) to calculate the
rate of change of the occupation number ne of the f phonons resulting from the

Stokes process and relaxation givcsB’ 8

- ) -l :
dn./dt = I"f ' [(ns+nf+l)nL ngn ] n, ne+ng 2.1
where I"f is the relaxation frequency of the f phonons (enhanced by the phonon in-
stability),4 Ff is the thermal-equilibrium value of ne, and the threshold value n

R
of nI is3

-

~ P~ ~ 2 ~
/] = = \/ /
ag/V o= L/Cy Cp = 21 [Vp|” Vblwg)
where V is the volume of the sample, VR is the Raman matrix element divided by
$, and 6((7:5), with Z‘S [T Wt wg is the line-shape factor obtained by re- !
placing the delta function by a lLorentzian of width 1"f . On resonance, that is at

[N

a':,; = 0, the value of § is 6(3."5) = l/nl"f. The wave-vector Kronecker delta in

VR was eliminated by the summation over Stokes modes, and S in (2.1) is the

single wave-vector-conserving Stokes mode.

13
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~2
On resonzice, R ~ l"t_ as scen from the equations below (2, 1); thus

_ 2 - .
"R ° "Rnop? y = L/T (2.2)

~

wherce np nop is the (linear) value of R with I‘f - I"t., and y is the enhancement
factor for the relaxation ot the fundamental modc.4 The term -;f "S"f/"R in (2.1)
is important in the saturation region (where a substantial fraction of the laser in-
tensity is converted to Stokes intcnsity\.3 This depletion of the laser beam is neg-
lected in the present paper. In this case, the steady-state solution to (2. 1) isg

P

. Yy one+ lLR(nS+l)
f ' 2 » (2.3)

4 ¢ » = = - ' - . ' E 9 ’
where lLR : IL/lR nL/ with lL hw cn ‘/\. lR ﬁ“’l,cl,nR /Y,

nop
and cp is the velocity of the laser beam. Fq. (2.3) reduces to the previous rcsult3

-

TR nop

in the limit of 72 =1,

For lLR =0, (2.3) gives ne = Ht" of course. 'the increase in the value of n
caused by the reduction in the value of the denominator in (2. 3) as ILR increases

is the key to the enhancement in the gain.,

The gain-cnhancement result and its relation to the previous results showing
no enhancement can be seen explicitly as follows: ‘The equation of motion for the
number of Stokes photons, which is obtained by the sime method used in deriving

(2. 1), is3

dnS/dt = 5ly(l1s+nr+l)-dns/ax 2.4)

~

_ -1 )
where | ly = B I gY ~with B = Ti/cg.
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. ' For the formal case of ne = Hf and vy = 1, the steady-state solution to
I- 1
.[ (2.4) is
|
E | ng = (Hf+1)[cxp(f3c1LRx)-1]+ns(0)cxp Bl gXx - (2.5)

For BcILRx << 1 and nS(O) =0, ng = (Hf+l)ﬁcILRx, which is the
spontaneous -emission result. The last term on the right-hand side of (2.5) is

the ,.vevious expression for stimulated Raman scattcring,?' that is, the exponential-
gain result without enhancement. With nS(()) = 0 and exp Bc ILRx >> 1, (2.5)
gives "amplification of noise” with exponential gain, In previous treatments,2 the
first term in (2.5) was missing. Thus, special arguments were required to deter-

mine the va'le nS(O) when there was no incident Stokes wave.

Substitutirg (2.3), rather than the ne = 'ﬁf as above, into (2.4) and solving

the resulting 2quation for the case of 'y2 = 1 gives

ng = (Rg+ 1) [cxp(B ; 2. 6)

x)-1]+ nS(O)cxpBgnewx

gnew

where 88

_ -1 Sl
g new - (I"f/cs) ILR (1- ILR) , which is a central result of Ref. 3.

These two results (2.5) and (2. 6) show explicitly that the enhancement in the gain

seen in (2. 6) results from the increase in ne above its thermal equilibrium value,

as already mentioned.

Notice that although ng is large, the probability of an individual ion or molecule
being excited is small, roughly speaking. Specifically, ne /N << 1 is usually satis-
fied, where N is the number of unit cells or molecules. The fact that the individual
ions or molecules are not highly excited led to the assumption that the ther mal equi-

librium values were maintained in some previous analyses. Thus the enhancement

was not obtained. There are similar results for other three-Boson processes.




For example, in ferromagnetism, magnon occupation numbers are large at the
threshold, while the probability of an individual electron spin being excited to the

spin-down state is small, as already mentioned.

The effect of enhancement of the phonon relaxation frequency, that is, the
effect of -yz > 1, is considered in Secc. VI, One effect of the enhancement should

be mentioned here. In (2.6), 8

@ new cannot become negative as a result of ! - ILR

becoming negative. The reason is that (2, 6) is valid only for the case of -yz =1,

which restricts ILR to values less than unity. [For the case of 1 > 1, the value

LR
of IS is determined by solving (2. 1) and (2.4), with the nonlinear term v~1"fnS "f/nR

added, and using the values of ‘y2 from Sec. VI.
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I, LOW-OPTICAL-DISPERSION CASE OF
COUPLING OF S, A, AND f MODES

In this section the effect of including the anti-Stokes contribution (dnf/dt )A
to the equation of motion of ng is considered. In Sec. V it is shown that this A-f
coupling must be included when the optical dispersion is low. Using the same

perturbation-theory method used in deriving (2. 1) gives
- 20 .
(dng/dt), = 2"|VR\ 8 (wy)[(n +npt1)ny nonel o (3.1)

where n, is the o- :upation number of the anti-Stokes mode and Wy= Wy + We Wy
This contribution (3. 1) must be added to the right-hand side of (2. 1), which gives

_ 221~
dnf/dt =2 \VR‘ I‘f Nga» where

= (ng.+n

£ S+1)nL+(nf+nL+1)nA-n ne

L

S A+1)nL . (3.2)

The cancellation of the {irst term nen, and the last term -nc.n, removes the
formal divergence in ng in (2.3), thereby reducing the enhancement in the Stokes

gain, Speciiically, the steady-state solution to this equation for dnf/dt is

n, = n,+ 1 )’-2(n+n

¢~ "¢t R gty *t1) - (3.3)

Substitution into (2.4} yiclds

1 2

; - - -3 |
dng/dx = Bl ¥ (ng A+ 1)+ B LY " (ngrny+ 1) . (3.4)

17
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There is another process contributing to dnS /dx to this order -- the
second-order process in Fig,B2, in which two laser photons are annihilated and
one Stokes and onc anti-Stokes photons are created, with a fundamental phonon
as the intermediate state. Both time orderings of the vertices and both directions
of the f arrow must be included as usual. I‘or this case of output photons having

frequencies wp and wg» which differ irom wp by iu:f, the intermediate-state

2
A wfz] vanishes. The standard procedure of
. 2 1% 2 2. = . 2. 2
replacing wy by (wf t 5 I"f) = we + I‘fwf then gives I‘f Wg

] denominator, and the standard perturbation-theory treatment yields

energy denominator [ (w; - wg)

for the energy

2 -3
dns/dx = BCILR‘)' (ns+nA+1)

Adding this contribution from the two-laser-photon process to the result (3. 4)

for the Stokes process gives

1 2 -3

(n IR Y

(ng+n, +1) . (3.5)

dns/dx = ﬂclLRy +nf+1)+2ﬁcl S A (3.5)

S

Since the result (3. 5) for dnS/dx contains Ny, the equation for n, must be
considered simultancously. If every f phonon created in the Stokes process were
annihilated in an anti-Stokes process, the anti-Stokes photons would be created at
the same rate as that of the Stokes photons. llowever, there are other processes
competing for the annihilation of the f phonons, such as the splitting of the f
phonons into two other phonons Q and -Q, as an example. Thus, fewer anti-

Stokes photons are generated in general, although the anti-Stokes generation rate

| can approach that of the Stokes photons.




The equation for n, corresponding to (3.5) is obtained by the same method

used above:

1 3

+n, +1) . (3.6)

3 al = . 2 -
dn, /dx = Bl gy (ng-np)+2B 1ip y “(ng+ny

For y = 1, these simultancous equations (3.5) and (3. 6) for n, and ng are

lincar and can be solved easily as follows: lor y = 1, (3.5) and (3.6) can be

written as

dxn>=£ln)+lu) (3.7)

where | n) is the vector with components (A |n) = n, and (S |n) = ng»

that is

nA nf+2ILR

ln)—> 4 ‘u>—’BcILR _

i nS an+21LR

' £—>2BCIU{2

The arrow indicates the representation in the | AY, | S) basis. The solution to

(3.7) with |n) = 0 at x = 0 is
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~

£ -1 )
: Iny = £ ) ) =z )\il(clx-l)lzi)(lilu) : (3.8,

i=*1

! where | Li) are the orthonormal eigenvectors of the Hermitian operator £ and

the A are the eigenvalues: £ | 44 Y = )\i I li) . The eigenvalues of £ are

2 1 -2 b/
A, = 28 1 ¢ [1: (1+31LR ) | ) (3.9)
and the eigenvectors are
1/2
1 -1 1 -2
phr *OF gL
|2,> » C, , (3.10)
- - 1
) where the normalization constants have the values
-1
R T BRI S :
s 7 Yzl Ot gl : (8, 1)
The term i = +1 in (3.8) is much greater than the term i = -1; thuy, the
scalar product of | n) with |S) is
-1 A, X
ns=<S|n)‘= )\+ (c -l) (S|£+)(£+|u) . (3.12)
N l D = O
For ILR << 5 )\+ 2 BcILR , (S |£+) =c, = 1, and (!L+|u)
> BcILR (nf +1). Thus, (3.12) yields
BcILR &
- 1
ng = (nf+l) (c -l) . forILR <<§ (3.13)

20
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o 1 ) 2 o
For Iy >> 30X, = 48,17, (8] 4) = ¢,

il 2 , and (3. 12) gives

(g, lu) = 4@y 77 1y

2
el
ng = ¢ for lLR >>

The low-dispersion results (3.13) and (3. 14) are casy to interpret. For

l T o ' 3 HES ay » 1¢r! -
ILR << 30 Ay << ng and dns/(lx is given by the first term on the right-hand

side of (3.5), which is casily integrated to give (3.13). For 1 >> 21 , (3.5) and

1.R
(3.6) give dnA/d:. o dnS/dx and ny, = ng in the gain region. Thus (3.5) with

. 2 . . : .
N, = Ng gives d nS/dx > 4BclLR ng» which gives (3. 14) on integration.

The result (3. 8) also indicates that the anti-Stokes intensity is comparable to

the Stokes intensity when ILR > 1 in the Iow-dispersion case. In particular, for
|

1 . ) A o
lLR < 3 lA/lS : S lLR' and for1 lLR > 2'IA/IS e | 7ILR' These results

follow dircctly from (3. 8): Taking the scalar product of (3.8) with | A) gives (3. 12)

with § replaced by A. Thus, n, /ng = (A | !L*.)/( Al £+). With (3. 11), this gives
= -2 172

nA/"S = -71- ILR l +(1+ % ILR2) / , from which thke stated rcsults are evident.

It should be mentioned that even when AT IS' the values of lS and lA can be so

small that second Stokes, second anti-Stokes ond oti - higher-order intensitics

arc negligible. The enhanced- relaxation case of y2 2 1 is considered in Sec. VI,




IV, TRANSIENT SOLUTION

For the high-dispersion case, the transient solution to the coupled equations

H (2.1) and (2.4) is obtained as follows: Kroll's solulionmfor the case of no gain
il
E enhancement suggests a trial solution of the form
. 1/2 _
ti ng = ng, exp [ (Axt) Bt | 4.1)
i
} with cs-l ans/at negligible. Eliminating ne from (2. 1) and (2. 4) by neglecting
:
i the ﬁf and 1 terms, taking the derivative of (2, 4) with respect to time, and neg-
lecting & an/at and 32 ns/a t2 gives
‘2n /3xdt + T, (1-1 ,)un /ax-c-ll"zl n. =0 (4.2)
° g f LR’“"s S *f 'LR'S ¥ 655

Substituting (4, 1) into (4.2) anc solving for A and B gives

2 _y

, 2 -1 1
Ng = ngy exp [ (4T cg™ 1) pxt) ((I-Tg)t]

—
-
L]
v

~—

for

2

-2
Ires/Iy & v & Lip (1-Lg) " (x/cg) . (4

In solving (4.1) and (4.2  he term %(A/tx )1/2 was neglected with respect to
the terms that are independent of t. The left-hand inequality in (4.4) is required

in order for this approximation to be valid.

Substituting t = ILR (1 - ILR )-2 (x/cs) from the right-iand side of (4, 4)

B sy ol

into (4. 3) gives the steady-state solution Ng = Ng, CXp (ﬁg v ). See (2.6).

Iere ng() is the small value of nS cvaluated at the non..ero value of
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At = [LRCS/rfz' corresponding to the left-hand side of (4. 4). In other words,

in considering the transient solution to (2. 1) and (2. 4), the very short-time,
small-x region is neglected [ left-hand incquality in (4. 4) |; thus, the steadyv-

state limit of this solution corresponds to the last term in (2, 6).

. ; : _ i -2 ,
For t greater than this value, thatis t >t = ILR(I ILR) (x/cs),

the steady-state solution is valid. With the definition of Bg — under (2. 6),

tss c¢an be written as

-l ’.2 _
= O = r . A
tss = Tt Bgncwx(I ILR) Tf‘*le (1 ILR) (4.5)

where 7, = 1/1"f and g = I;./cS lR is often called the Stokes gain. In the gain

x >> 1 is satisfied; thus t >> T,.. 'This important result (4.5)
gnew Ss f

shows that the steady state is not reached until times much greater than the

region, 8

Reststrahl phonon lifetime T¢ and that the greater x, the longer it takes to

reach the steady state. It is important to realize that tes is a function of IL'
Thus, in a curve of IL as a function of IS' the steady state could be attained at
small values of IS while the transient solution applies at large values of [S . This

would give a shape of the Ig ' lL curve that is different from both the transicnt

and steady-state shapes.

The left-hand inequality in (4. 4) is the same as Kroll's results since the en-
hancement does not affect the region of very small ng. In the limit ILR << ] of no
gain cnhancement, (4,5) reduces to Kroll's result, Loy = 'rfgle, and the result
(4. 3) for ng reduces to Kroll's result.

The transient solution for the low-dispersion case has not been considered.

It is expected that central features will be the same as those discussed under (4.5).
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V. RELATION BETWEEN THE CASES OF HIGH AND LOW DISPERSION

Since energy and k conservation are involved in the arguments to follow, (2. 4)

is rewritten with the line-shape factor and wave vectors displayed explicitly

2 o~
dng(kg)/dx = 2"|"R| “Lb‘ws)[“s(hs)+“f(5L'Es”1] . (5.1)

According to (5.1), ns(ks) is coupled to “f(.lf,L - ES)' The equation of motion of
= H 3 K] i & - = =
nf(l(-L .If,s) is given by (2. 1) and (3. 1) with ne = nf(.ISL }SS) and n, = nA(ZhL lss),
where -ISA = EL+~f = ZEL'ES'
The line-shape factor 6(5‘.-3) in (5.1) is peaked at Wg = Wy ~wg " csks =0,
where wg = csks. For wg = 0, We = Wy " CSkS; thus, w, = w; * we - wy

becomes

wp = 2c k; ~cgkg -y |2k, - kgl - (5.2)

The peak in b(aA) is at ;A = 0, and the width is ~I‘f . First consider forward
scattering ks = kL. Then |2'I§L 'ES | = 2kL - ks. with Cp " Cg = 2(cL- cs)
and kL - ks = wf/cs+ kL(l - cL/cS), which is obtained by solving wg = 0 for

-ks and adding kL' (5.2) gives

~

wp = bcwf R bcs 2(l-cL/cs)[l+(l-cL/cS)wL/u:f] . (5.3)
When the shift Z’A is less than the width f‘f, that is
D= 5cwf/rf << 1 (5.4)

then 6(;/\) ] 6((:\8). while for D >> 1, 6(;/\) << 5(&5). Thus, for forward

scattering, both (dnf/dt)A and (dnf/dt )rS defined as the right-hand side of (2. 1),

S aame e



are included in dnf/dt when D «< 1, Only (dnf/dt)rS is included when

D >> 1.

In the latter case of D >> 1, called the high-dispersion case, the previous
results 3 such as (2. 6) are valid; while in the former case of low dispersion
(D << 1), the anti-Stokes process must be included, as in the analysis in Sec, IlI.
Specifically, "f(.'f. LT ES) is coupled to nS(ES) according to (5.1). For forward
scattering with high dispersion, "f(!f. L .'f,s) is coupled back to nS(ES) only. For
low dispersion, nA(ZEL = ES)' nf(.liL - ES) and nS(l(«S) are all coupled, For

D >> 1, I. should exhibit the jump; whilc for D << 1, the explﬁ-gain result

S
(3. 12) is expected.

The dispersion factor D in (5.4) can be written in terms of dn/d)\ as follows:

The first two terms in the Taylor series expansion of c(X) give
-1 ;
l-cL/cS = cp [dc(.\)/d)\]\)\s-)\L) .

= M = * D ) . {7y -l
With )\S - >‘L = cs/u.S CL/“‘L 2 )\wa/u_L for wel/wy, << 1, and ¢ ‘dc/dX

- -n"ldn/dx, this gives
l-cL/cS = (U-‘f/wL)(k/n)dn/dx . (5.3)

With this result, the second term in (5.3) is equal to (A\/n) (dn/dX), which is
negligible with respect to unity; thus GC >~ 2(1- CL/ cg ), and (5.4) and (5.5)

give

D = (2w’/w T) (A/n) dn/dx . . 6)

For the rotational Raman mode in gases, D << 1 tends to be satisfied,

while for solids, liquids, and the vibrational Raman modes in gases, D >> 1

25
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typically is satisfied. For example, for liquid nitrogen12 with wye = 2,330 cm-l

w; = 1.44 x 104cm-l, I"f = 0. 0670 cm-l, n = 1,20, and a typical value ofdn/d)\
= 3% l()-2(pm)-l, (5.6) gives D =230; thus, the previous results3 for high dis-

persion are valid. For the vibrational Ql (1) Raman mode in hydrogen gas13 at

300K and 100 atmospheres, we = 4,150 em™), @ . z

L
em™), 1w = 1.0, and dn/dy - 1073 (um)™Y, 5.6) gives D - 150, Again, the high-

- Laax10tem] T = 11410

dispersion results apply. Finally, for the rotational SO(I) Raman mode in hydrogen

gas at 300K and seven atmospheres,

1]

248 1, w, = Laax10* em, T,

7% 107 (pm)L, and (5.6) gives

(
= 4.7x103cem™, n = 1.0, and dn/d)

D= 8x 1()-2. Thus the low-dispersion results are applicable. "These cases are

discussed further in Sec. VIL,

Next, consider the case of scattering at angles away from the forward
direction. In the high-dispersion case, energy and k are not simultaneously
conserved for the Stokes and anti-Stokes processes for forward scattering,
However, energy and k can be conserved for scattering into a range of angles 8,
where ";L 2 ":’S = cos 8. The angle for exact energy conservation (line-shape
factors infinitely narrow) is easily obtained as follows. Consider the value of
|2k, - kgl in (4.2):

2 .2 /&
|2k, - k| = [4kL kg - 4k kg cose]

FFor 8 << 1, this reduces to

N i 2
|2}:L-1<S| = (2k; - kg) (1+67)

~ 2 s o .
Substitution into (4.2) gives wy = 6cwf - u:LG - Setting «, = 0 gives
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8 . = (8uw/w))'/? . (5.7)

2 _ar2 "
, emxA = 10 © radians.

For a typical case of 6_ = 5 x 1073 and we/wp = 2X 10°
Physically, these results have the following significance. In the high-dispersion
case, (2.6) and the results of Ref. 3 are valid for forward scattering. The Stokes
intensity decreases and the anti-Stokes intensity increases as 8 increases from 0
to emxA‘ At 0 = emxA' wave vector and 5 are simultaneously conserved for the
Stokes and anti-Stokes processes; thus the low-dispersion results (3. 12) to (3. 14)

arevalidat 8 = 6 As 6 increases further, both the Stokes and anti-Stokes

mxA °
intensities decrease. The anti-Stokes intensity is therefore strongest on ine sur-
face of the cone of half angle emxA . In Sec. 1I1 it is shown that the anti-Stokes

intensity becomes comparable with the Stokcs intensity when [LR > 1 (for energy

and '15 conserved ).

In considering the angle dependence of the Stokes and anti-Stokes intensities,

the beam aspect ratio

esam = rb/Lsam (5.8)

where 1y is the radius of the laser beam and Lsam is the sample length, must be

considered. If 6 > 6 , the scattered Stokes and anti-Stokes radiation at
mxA sam

angles iemxA leave the laser beam and [S is not amplified over the full length

Lsam . Finally, it should be mentioned that in experiments with multimode lasers,

simultaneous conservation of energy and k for the Stokes and anti-Stokes processes

may be possible even in the forward-scattering high-dispersion case.
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VI, EFFECTS OF ENHANCED PHONON RELAXATION

First consider the high-dispersion case. The enhanced relaxation of f
reduces the value of ng below that given in (2. 6). This can be seen directly
from (2.4) with dns/dt = (0, where reducing the value of ng and increasing
the value of ¥ in 31), reduces the value of d nS/dx . For yz > 1, (2.4) with
ne given by (2.3) is a nonlinear first-order differential equation which can be

solved by direct integration since dnS/dx is a function of n. only,

S
The behavior of the solution can be determined by considering limiting cases.

From Ref. 4,

¥ = (L-ng/n ! (6. 1)

where np is an upper bound to ne defined as

- = 1 2 .
np/.\ = p(nQ+ 2—)1["(2/SQLA.'-I"f 5 (6.2)

where I"Q is the relaxation frequency of the phonons Q into which f decays, p/SQ
is a constant of order unity typically, and N is the number of unit cells in the

crystal. Substituting (6. 1) into (2. 3) and neglecting yz 'ﬁf + ILR in (2. 3) gives

2 2 2
(Y - -Lp) = Y, (6.3)

where 12 % ILR nS/np 2

Negligible phonon enhanced relaxation corresponds to I, €< 1, Then, in the

2
region of interest (II R < 1), (6.3) gives )’2 ~ 1. Thus, the colution (2.6) is

valid as expected in the absence of enhanced phonon relaxation. ‘The solution to

(6. 3) for arbitrary 12 is




—
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4 1/2
1 LR
Y= g brhipt ) e | 1- /) z (6. 4)

& (IHLR+ 12)

IFor the case of a large phonon enhanced-rclaxation effect (12 >> 1), (6.4)

gives

Substituting this result into (2. 4) gives

/2

1
dlg/dx = B_(1,p 151 , (6.5)

which has the solution lg = -i- Bf LR IP x2 plus a constant. This value of IS is
less than the value from (2.6) and IS is increasing rather slowly as functions of
1LR (linearly) and of x (square law). The behavior of IS as a function of 1LR
according to the limiting cases of (6.5) and (2.6) is illustrated schematically in
Fig. B3. For np = o, the result (2.6) for no enhanced phonon relaxation is valid
for all ILR'é 1. As np decreases, the deviation from (2. 6) occurs at smaller

values of lS as shown in the figure.

Next consider the low-optical-dispersion case. We seck the solution of (3. 5)
and (3. 6) for the case of )'2 > 1, Itis clear that values of ng and n, arere-
duced when ‘)’2 > 1 since both dns/dx and dnA /dx are decreased according
to (3.5) and (3.6). Limiting cases of these nonlinear, coupled differential equa-

tions will be analyzed to determine the effect of the enhanced phonan relaxation,

The value of ¥ is obtained from (3.3) with ﬁ'f/ np << 1 and ng+n, >> 1,

which are well satisfied:

<
W

+l

B
(=)
~

SA2

29




21

9 SA2 = 9 since IA§ IS'

The f-mode amplitude is, from (6.6) and (6. 1),

where ISA2 = ILR(nS+nA)/np. Note that I, - 1

ne/ny = lIgpp/Ugpp +1)

The behavior of the solation to (3.5) is simple, IFor no Stokes input, ng = 0
at x = 0. First consider the case of ILR << ], for which n, is negligible. I‘or
very small x such that ng << 'ﬁf + 1 and ng + ng <<, ng increases linearly
with x. When ng reaches values >> Hf + 1, it increases approximately exponen-

tially until )’2 - 1 €< ] is no longer satisfied. I‘or example, for ILR << 1,

ng >> ﬁ'f + 1, and y = 1, (3.5) gives

ng ~ exp(BCILRx) .

As ng increases further, )’2 becomes greater than 1, according to (6.6). I‘or

N N 1/2 .
ISA2 o= ILRnS/np >>1, ¥ = (ILRnS/np) , and (3.5) gives

N 1/2
dns/dx = ﬁC(ILRnan)

According to (6. 8), ng increases rather slowly as x2.

Next consider the behavior of ng (x) for ILR >> 1 formally. I'or ng << ],
ng increases linearly with x. Notice that the slope is proportional to ILRZ , rather
than ILR as in the usual spontaneous-emission region. lor ng >> 1 and ISA2 << ],

(3.5) with n, = ng gives

2
ng ~ exp(48. 1 x)
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' As ng increases further, ISA2 > 21 ,1 /lp is no longer negligible, and the

LR 'S
7-3 terms in (3. 5) reduce the rate of increase of ng. For ISA2 >> 1, (3.5) be-
comes

1/2

/ 1/2
_ 1 2 3
dnS/dx = Bc ( 5 ILR npns) + Zﬁc ( .LRnp /2ns)

- 2
so that ng again increascs as x~ at very large values of x.

For a given thickness x, in the spontaneous-emission region at very small

e —

i values of ILR » Ng is rroportional to 1LR . For greater values of ILR » Ng in-

1
i i < -

i creases according to (3.8) as long as ISAZ << 1; ij.e., ng < 5 np/ILR 3

For larger values of 12 , 72 increases and ng increases much less rapidly than

. B - 1 . . . 2
in the case of ¥y = 1. For ng >> 5 np/ILR » Ng is proportional to ILR (times x7).
This behavior is similar to that already illustrated schematically in Fig. B3 for the

case of high dispersion.

e
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VII. APPLICATION TO EXPERIMENTS

There is evidence for the enhanced Stokes gain throughout the literature in
various types of experiments in gases, liquids, and solids.lo-17 However, there
is little data for which accurate quantitative comparison with experiment can be
made, a notable exception being the experiments on liquid oxygen and nitrogen by
Grun, McQuillan, and Stoicheff.12 As the laser power was increased, the Stokes
power exhibited successively regions of spontaneous emission, gain, the jump, and
a saturation region of little further increase. See I'igs. B4 and 5. There was no
self focusing. All known mechanisms for explaining the jump, with the possible
exception of oscillations due to feedback by Rayleigh scattering, were ruled out
by the authors. A simple calculation indicates that Rayleigh scattering is orders
of magnitude too small to cause feedback oscillations. For liquid nitrogen, the
value of D = 230 obtained in Sec. V indicates that the high-dispersion results of
Ref. 3 and (2.5) are applicable., The excellent agreement with the experimental
results over the full 11-decade change in IS is seen in Fig, B4, The theoretical
curve was plotted using the theoretical value of Bc = I"f/cS = 0.5l cm-l and the
observed values of the spontaneous-emission and saturation Stokes intensities and
adjusting the value of IR slightly to position the jump properly. Thus only the
scale factors for the axes, and not the shape of the curve, were adjusted to fit
the experimental points. Adjusting Bc to smaller values improves the fit, but
is unnecessary in view of the already satisfactory agreement and the scatter in
the experimental points. The jump, the saturation at large IL' the transition

from unamplified to amplified spontaneous emission, and the previously unex-

plaincd magnitude of g and deviation from exponential gain in the gain region
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0.3 < II /IR < 0.9 (resulting from g > B = gIL), are apparent in the

gnew g

theoretical curve. Second-order Stok:s radiation was observed at high intensities,

as expected. In this experiment and those below with one input beam, I"f = 1"f

should be satisfied.
The agreement between the theoretical result (2.5) and the experimental
Y =y 5 . . i s
points = for liquid oxygen is slightly better than the agreement for liquid nitrogen
as seen in g, B3. Also, the experimental and theoretical values of the ratio of
the values of IR for ()2 and .\'2 are in surprisingly good agreement: In the spon-

<< 1), (2.5) gives IS ~ (rf/CSIR ) IL' Thus,

tancous-cmission region (ﬁg _—

IR ~ I"f (cS S)-l, where S is the slope of the IS Vs II curve, Clements and

Stoicheff 19 have shown that the ratio (O2 to N, always) of the I‘f's is 0,117/0,067

2
1.75. The ratio of the cg's is 0,99, and from Ref, 12 the ratio of the slopes is

I.3. Thus, the ratio of the IR'S is 1.75/(0.99)(1.3) = 1.36, which is in much

better agreement with the experimental value of 1.23 than expected in view of un-

certainties in the experimental values of the parameters.

lHagenlocker and coworkcrs13 observed that the vibrational Raman Ql(l)
Stokes power generated by a laser beam focused in hydrogen gas at 100 atmo-
spheres and room temperature, where self focusing is not expected, increased
by 10 to 11 orders of magnitude as the laser power was increased by a factor of
two. See I'ig. 11 of Ref. 13. Such a sharp increase cannot be explained by normal
stimulated Raman gain,13 but agrees well with the present theory. For the vibra-
tional Raman Ql(l) mode in hvdrogen gas at 100 atmospheres and 300K, for which
the steady state was obtained in the experiments, the value of D = 150 obtained in
Sec. V indicates that the high-dispersion results are applicable; thus the observed

jump is expected.
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The laser intensity at the threshold was cstimatcdlg to be of the order of
250 MW/cni®. From the values of Ty = 2 x 10" sec™  and g1, /1, = 1.5x10”
ot _ 2 .
cm/W, the theoretical value of lR is rf]L/CS ﬁc'LR = 450 MW/cm™. The agree
2
ment is satisfactory since the experimental value of 250 MW /cm™ is only an order-
of-magnitude estimate and the values of the parameter in the theoretical result are

uncertain,

In the same experiments, Hagenlocker and coworkers noted that for the rota-

tional Raman So(l) modc20 in H, gas at seven atmospheres and 300K, £n ]S varied

2
as 1LR , rather than 1LR as expected at that time. As illustrated in Fig. o, the
agrecment with the low-dispersion theory is excellent over the full range of 13

3 decades change in ]S . FFrom Sec. V, D= 8% l()-2. indicating that the low-disper-

sion, exp(lLRz) results of Sec. I are indeed applicable.

In spite of the good agreement between experiment and theory in both of these
cases of H2 gas, difficulties in explaining the results remain, particularly con-

cerning the pressure P dependence of the threshold. The theory predicts that

) 2 21
1R = const, I"f/l’. With 1"f
10

= 3.8x 10 scc-l at 100 atmospheres, this result gives

¢ -
= 9,4x 10)scc Lat1o atmospheres and I"f

1R (100 atm) / 1R (10 atm) = 1.6 .

. 13 . . 3% @

The experimental value "~ of this ratic is 0.25, Even though the steady state was
not reached at 10 atmospheres, this decrease is not expected. A previous explana-
. 22 . . . : "

tion”” of the decrcase in terms of a transient analysis seems to be in error. The
predicted ratio was the same as that predicted here, but the experimental ratio is
1/4, rather than 4 as stated in Ref. 22, Enhanced gain from feedback is alwavs «
possibility in high-gain systems, and this effect could set in at values of ll < IR ,

thus rendering the parametric-instability enhancement unobservable.




McQuillan, Clements, and Stoicheff[b observed a very sharp jump in I as a
function of IL in diamond. No evidence for self focusing was found. Their explana-
tion of the jump as a feedback oscillation is plausible and may well be correct. The
reflectance is 0. 17 per surface. However, it is also possible that the instability is
involved. The thecoretical value of IR is 4. 4GW/cn12, and the experimental value
is 'at least ~1.1 (‘;W/cmz." It should be possible to determine the source of the
jump by, for example, tilting the sample and optical components at an angle with
respect to the axis of the beam in order to avoid amplification of the specularly
reflected Stokes beam, It is possible that a combination of feedback and the para-

metric instability are involved in the jump.

One fact favoring the instability mechanism in diamond is that the jump occurs
in the spontaneous-emission region rather than the gain region. The Stokes power
is linear in IL up to the threshold, as seen in Fig., 5 of Ref. 16. The oscillation cri-
terion is that 0, 17 cxp(Bc [I.R x)=z0.17exp(g 4 IL) = 1, which gives expg 4 1L
= exp(l.8). I'rom (2.5), in the spontaneous-emission region, exp (x4 IL) -l gil .
Since exp (1.8) - 1=5.05 >> 1.8, a significant deviation from linearity should have
been observed if the jump were caused by feedback. Physically, gain is required for

feedback oscillations, but the jump occurred in the spontaneous region, not the gain

region. Another factor favoring the instability mechanism is that the observed damage

threshold is consistent with the instability mechanism, but not with the feedback mech-

anism: Since the absorption (by the inelastic-scattering process)is not strongly peaked

at any volume element in the crystal in the feedback case, the temperature rise is
102 W/em?) (1078 sec) (0. 218 cm) L (1,56 ) /em3 K) 1 (1332 cm ™!/ 14,403 em ™) = 3K

for complete conversion of IL to IS. For *he instability case, the absorption length
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becomes extremely short as lLR approaches unity, Thus, the heated volume is
assumed to be limited by thermal diffusion. With a diffusion length of 1um for

4

10 nsec in diamond, the temperature rise is (3K) (0.218/ 10°%) = 6,000K, whict

is greater than the fracture temperature and melting temperature of diamond.

This calculation showing that diamond damages at IL ® IR illustrates a result
that should be common to many Ramau-active crystals, This is an important result

since the typical values of IR - 109W/cm2 are much smaller than typical values of

10 2 .
~10"" W/cm” for breakdown in crystals, such as rocksalt-structure crystals, that
are not Raman active. Monitoring the Stokes intensity in damage experiments would

be interesting,

Since the instability may be involved in limiting the diameter of self-focused
beams, measuring the Stokes intensity in self-focusing experiments also would be
desirable. Indeed, Loy and Shen23 found that the laser light at the forward-moving
focus was converted into Raman radiation at such a high rate that little was left to
be detected over the background. Additional experiments to determine if seli-focusing
diameters are limited by the stimulated Raman scattering process would be useful.

A rough estimate indicates that the mechanism is feasible. With ILR = 10 at the

11

.12
focus in tolucnc,3 the transient result (4. 3) gives ng o Ngy exp[4(3.7x 10" "sec 1) 10

10 cm/sc:c]]/2 = IOIOnSO, which is sufficient to give

x (0.2cm) (10 sec) /2 x 10
complete conversion to Stokes radiation, It was assumed that the Stokes radiaticn
remains in coincidence with the forward-moving focus for 10-11 sec (corresponding

to a focal region of length 60 ym moving at velocity = 1,03 Cg for example).

In distinguishing between the parametric -instability source of the jump and

other sources, it is useful to realize that the jump is in IS as a function of IL'

but there is no jump as a function of sample length x. Thus, the jump in IS Vs X




R

Sec. B

24 . . . .
observed 4 in nitrobenzene at an unspecified constant value of 1L is expected to

be the result of self focusing. Indeed, this was verified in subsequent experi-

ments.
k Jumps similar to those discussed above have been observed in other investiga-
. . P o 13-17 : . .
tions in gases, liquids, and solids, but cocusing and/or self-focusing make

accurate comparison with the theory difficult. Nevertheless, a number of observed
jumps may result from an increase in intensity by self focusing and the parametric
instability in the region of high intensity. Amplifiers have not reached their ex-
pected gains, as the jump could not be suppressed no matter how much the feed-
back was reduced. The present interpretation of the jump as the parametric

instability at 1[ = IR explains the insensitivity to and lack of need for feedback.

A s

. : 26-28 . .

Next consider the experiments e in which both laser and Stokes beams are
incident on the sample, with both intensities 1 and IS less than IR . Using the
results of the present paper it is easy to show that in the experiments of Colles

and Giordmuinc23 the value of ng approaches the upper bound np closely (nf

= 0,994 np ). In the absence of the enhancement of the f phonon relaxation fre-
2 ! .

quency, the value of ng would have been a factor of ¥~ = 175 greater. The esti-

| mates in Ref, 29 correspond to this greater value, since the enhanced-relaxation

effect was unknown at the time of the experiment,

The detection of the phonon instability in these experiments has been difficult,
A simple method of observing the phonon instability would be to observe the Stokes
output from a sample with the incident Stokes intensity zero or very small, The
values of thickness x and intensity lLR are chosen to make 18/\2 << ] at room

temperature and ISA2 >> 1 at some low temperature such as 77 K. listimates

37




indicate that these temperatures should be appropriate for diamond. The
experiment affords a method of determining the magnitude and temperature de-
pendence of the lifetime I"Q'l of the phonons with uq + wq T @ Non-normal
incidence should be used to avoid feedback-type oscillations resulting from re-
flections at the surfaces, and care to avoid other reflections should be exercised.
It should be mentioned that for ultrashort lifetimes of the Q phonons,30 the steady

state may not be reached during the laser pulse duration.

Discussions with Dr, R, Orbach on the size of I"Q are gratefully acknowledged.
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Figure Captions

IFig. B1, Diagram of the Raman Stokes process R and phonon process P.
IFig. B2, The higher-order processes contributing to Stokes-photon generation.

Fig. B3. Schematic illustration of the effect of the phonon instability on the

Stokes intensity,

FFig. B4, Stokes-intensity-jump results in liquid nitrogen showing experimental
results (crosses) of Grun, McQuillan, and Stoichet‘t‘,12 the previous theoretical re-
sults, and the present theoretical results. The portion of the curve in the satura-

tion region I, /I, > 1 is from Ref. 3.
gion 1y /IR

Fig. B5. Stokes-intensity-jump results in liquid oxygen showing experimental
results (crosses of Grun, McQuillan, and Stoichetf, 12 and the theoretical result
from (2.6) (soliu curve). The dashed curve showing the saturation is sketched, not
plotted (in contrast to Fig, B4), since the saturation region is not of primary concern

here.

I'ig. B6., Comparison of experimental rotational Raman SO(l) Stokes power in
hydrogen gas of Hagenlocker, Minck, and Rado13 (points) with the explf-gain re-
sults and original theoretical results. The saturation of IS for IL > 4 results

from the depletion of the laser beam. The ordinate is in relative units and the

numbers on the abscissa correspond roughly to power in megawatts, according

to Ref, 13.







Sec, B

43




¥

Sec. B

dn 1g
|

np, 2Ny = (g +1)exp B, L

r ILRi

44




45

| ] I | | |
LiQUid NZ x x X .= —
102~ =
oy
(»]
- @ ]
o
-
1074 g —
at
] 4 &
~ e -
HU)
1076
08|
1010
/I DI B B N AT T
O 0204 0608 10 1.2 1.4 |6 1.8




Sec. B

Liquid 0

|0-G S—

10°8

|0‘|0

I I O T O

O 02040608 10 1.2 1.4 16 1.8 20 2.2
1, /1R

46



Sec. B

Ajisuaju| sayojs

47

Laser intensity I_




Sec, C

| C. ENHANCED STIMULATED RAMAN SCATTERING AND GENERAL
THREE-BOSON PARAMETRIC INSTABILITIES®

M. Sparks and ], Il. Wilson
Xonics, Incorporated, Vai: Nuys, California 91406

A recent theory of stimulated Raman scattering explained a Stokes-
intensity enhanced gain that had been observed but that was not predicted

by earlier theories. It is shown that in the earlier golden-rule analyses

R T B g S L | S e RN ——"

{ perturbation theory treatment of occupation numbers) the enhancement
was lost by neglecting the increase of the vibraticnal amplitudes above

. their thermal equilibrium values. Even though the probability of an indi-

vidual ion or molecule being excited is small, the occupation number of

the phonon in the Raman process is large. In the previous mode-amplitude
analyses, the enhancement was lost in the method of linearizing the non-
linear differential equations. By solving these same mode-amplitude equa-
tions without using the previous linearization scheme, the enhancement is
obtained 2nd the equivalence of the mode-amplitiide and golden-rule Boson-
occupation-number analyses is demonstrated explicitly. The analysis shows
explicitly that the loss of phase information in using the Boson occupation
numbers is unimportant. The results are applicable to other three-Boson

splitting processes that are important in ferromagnetism, phonon inter-

r actions, plasma instabilities, .nd device physics.




I. INTRODUCTION

Stimulated Raman scattering was first obscrvcdl and analyzed2'3 in 1962,
It was recently rcaljzcd4 that a parametric instability in the Raman Stokes pro-
cess causes a Stokes-intensity gain enhancement that explains a number of ob-
served anomalies including a nearly discontinuous increase, or "jump,” in the
Stokes intensity IS as a function of the laser intensity IL in the absence of self
focusing and feedback. The original purpose of the present investigation was to
determine why the early thcoric52’ : did not give the gain enhancement, while
the later thcory4 did. In addition to identifying the assumptions in both types of
the early theories that led to the loss of enhancement, the equivalence of the oc-
cupation number (n) rate-equation analysis and the mode amplitude (a and a+)
analysis is demonstrated, and the loss of phase information in the occupation-
nwnber analysis is shown to be unimportant. The results are of interest in the
general three-Boson splitting problem, which arises in a number of fields of

physics, as discussed below.

The characteristic feature of a parametric instability is that as the amplitude
ng of some mode 0 increases, the amplitude n of a mode k that is coupled to 0
first increases slowly, then increases rapidly to a great value as gy approaches a
critical value ne- IFor example, in the Raman process a laser photon is annihilated,

a Stokes photon is created, and a fundamental (Reststrahl) phonon is created. As the

laser-photon occupation number n, approaches a critical value nee the occupation




numbers ng and ng of the fundamental-phonon and Stokes-photon modes become
very large. This increase in the value of ng is the gain enhancement and "jump”

already mentioned.

Any three-Boson splitting process is potentially unstable parametrically.
There are analogies between the instability in the Raman process and previously
i 3PilEiase . o b .
studied instabilities in ferromagnetic resonance ~ (premature saturation of the

main resonance subsidiary absorption below the main resonance, and parallel

: : . 8 . . 9
pumping absorption), plasma physics, and electronic devices.

The physical interpretation of these instabilities is rather simple. The balance
of energy put into the f phonons by the Raman process against that removed from
the f phonons by relaxation is a key to the explanation. 'T'he power out by relaxation
(by interaction with impurities or other phonons, for example) increases linearly
with the number of phonons e, which is just the condition that a relaxation time
exists. On the other hand, the power into the f phonons increases nonlincarly with
increasing ne since the Raman process is a three-Boson process (which results in
products of Boson occupation numbers in the expression for the power). Thus, ata

critical value of the laser intensity, the amplitude ne becomes very large.

Previous analyses of stimulated Raman scattering and other parametric pro-
cesses used cither the equations of motion of the Boson occupation numbers obtained
from perturbation theory (the golden rule) or the equations of motion of the mode
amplitudes (creation and annihilation operators or Fourier components and their
complex conjugates of the electric field, for example). The equivalence of the re-
sults has not been demonstrated explicitly in the past. Indeed, in the case of stimu-

lated Raman scattering, the previous results from the mode-amplitude analysis co




not give the cnhancement obtained by the recent occupation-number analysis.
Furthermore, concern has heen expressed that the loss of phase informatica in

. . . 3
using the Boson occupation numbers may be important,

In the present paper the relation between the two approaches is demonstrated
explicitly and the points in the previous analyses at which the enhancement was lost
are identified. In the previous golden-rule type analyses, the enhancement was lost
by neglecting the deviation of the vibrational amplitude from the thermal equilibrium
value, Even though ne becomes large as mentioned above, the probability of an individ-
ual ion or molecule being excited is small, roughly speaking. Specifically, nf/l\' << ]
is usually satisfied, where N is the number of unit cells or molecules. It was this
fact that the individual ions or molecules are not highly excited that led to the as-
sumption that the thermal equilibrium values were maintained in the previous analy-
ses. There arc similar results for other three-Boson processes. For example, in
ferromagnetism, magnon occupation numbers are large at the threshold, while the

probability of an individual electron spin being in the reversed-spin state is small.

In the previous mode-amplitude analyses, the cnhancement was lost in the method
of lincarizing and decoupling the nonlinear differential equations for the mode ampli-
tudes Ay, ag, Ag, and their complex conjugates (or Hermitian conjugates in the
quantum-mechanical solution). It is shown specifically that reducing the nonlinear
cquations to parametric linear equations (that is, lincar equations with time-depend-
ent cocfficients) by assuming that the laser-field amplitude a L= bl‘cxp (-iw ¢ ), where

hl is a constant, results in the loss of the enhancement. The same linearization scheme

applied to well known magnon or phonon parametric instabilitics results in the loss of

the steady-state solution, even though damping is included and a steady-state solution

is expected on the basis of simple physical arguments, By solving the same equations
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without using this linearization scheme, the difficulties are removed and the
equivalence of the mode-amplitude and golden-rule results is demonstrated ex-

plicitly for the stimulated-Raman-scattering and magnon problems,

In considering the occupation numbers rather than the mode amplitudes, phase
information is lost. A priori it is not expected that the loss of phase information is
important since the parametric process amplifies the thermally excited waves that
have the proper phase. This was indeed the case in previous analyses. It should be men-
tioned that wave vector and frequency phase matching are included in the occupation
number approach. Wave vector phase matching arises from Kronecker deltas in
sums over wave vectors,and frequency phase matching arises from the energy-

. conserving delta function. The present calculation settles the question by showing

explicitly that the phases are unimportant.

The present analysis is concerned only with the steady-state solution. Important

results are indicated by underscored equation numbers,




: ; I, FERROMAGNETIC PARAMETRIC INSTABILITIES

In this section the analytical method is applied to the simplest three-Boson
parametric instability, The process, illustrated in Fig. Cl, is the annihilation
of one Bosor: 0 and the creation of two Bosons having equal frequencies and
damping, with negligible propagaticn of all three Bosons. As specific examples,
in the case of ferromagnetic subsidiary-resonance absox‘ption.':’-7 Boson 0 is a
uniform precession (wave vector k = 0) magnon, and in parallel pumping,
Boson 0 is a photon in the microwave cavity. In both cases, the output Bosons

are magnons having wave vectors k and -k. Propagation effects are negligible

since the magnons cannot propagate out of the sample and the sample is small
. with respect to the electromagnetic wavelength. The process also represents

phonon processes10 and other Boson processes.

It will be demonstrated tiat the equations of motion of the mode amplitudes van
be solved to give the golden rule results (expressions for occupation numbers ob-
tained by use of perturbation theory) directly. The same mode-amplitude equations
will be solved by an approximate method of converting nonlinear differential equa-
tions into linear differentic! equations with time-dependent coefficients, or so called
parametric equations, This approximate method, which is the same method used in
the early treatments of the stimulated Raman scattering, gives incorrect results in

the present magnon problem, as it did in the stimulated Raman scattering problem.

The Hamiltonian is

t t o cirna ot
Ja, T hw a a_ - (1ﬁBaOa+a

X :ﬁwoagao+ﬁw a T

+ +cc) 2.1)

where a; and a with i = 0, +, or - are creation and annihilation operators for

the 0, +5 » and -k Bosons, respectively, and B is a complex constant that is




Sec, C

(=

I'ig. Cl1. Three-Boson splitting process that exhibits a parametric instability.,




obtained in converting the Hamiltonian from spin operators to magnon creation and

7
annihilation operators. The v1lue of B will not be needed here.

.1.

The equations of motion for the a's and a''s are obtained from the Heisenberg

equations of motion:

da _/dt = -i(a , X] (2.2)

waere [a+.}C] is the commutator of a_ and X. livaluating the commutator in (2.2), with X
given by (2. 1), by using standard relations such as [a, ai ]=+1and [A,BC]

= [A,B]C + B[ A, C] gives

. +
da+/dt = -iw, a, - Baoa_ - ‘)’a+ . (2.3)

The term -ya, was added formally to account for damping. Repeating for a_ and

a, gives
1..
da-t_- /dt = j.c_a-t_- = B*a-(t;a+ -Ya_ " 2.4)
. x
da,/dt = -iuya, + Baa . (2.5)

This set of equations {2, 3)-(2.5) and the Hermitian conjugate equations is a set of

six nonlinear differential equations for the six variable ay and a with i = 0, +, -.

One method of solution is to linearize the equations by formally assuming that

- b ‘iwot d 1 _ b* int [*
a, = b,e and a, = bye where bO and 0, are constants, Then (2.3)
and (2.4) are a set of two parametric differential equations for a, and a_. Substi-

+

: == X . ,
tuting these expressions 10r a,; 4ana a along vith a, = h+exp(-1w+t) and a_

E 3
= b_exp(iw_t) into (2. 4) and (2. 5) and performing the derivatives gives




+

db_/dt = Bbyb_ - yb, 2.6)
db*_-/dt = B byb, —bef . 2.7)

The time-dependent coefficients were eliminated by assuming that the resonance

condition w. = w, + w is satisfied. Since these two equations are linear with
0 3 q

+

constant coefficients, their solution is simple. Taking the derivative of (2. 6) and

using (2.7) gives

2 2 2 2 .
d°b,/dt” + 2y db _/dt + (¥ - |Bby|")b, = 0 . (2.8)

Substituting the trial solution b_ = b+0 exp (At) into (2. 8) and taking the derivatives

gives
A2+ 2ya + (v - |Bby|%) = 0
which has th_ solution

A= -)’tIBb0| :

Thus, the solution to (2.8) is

i, t -yt

IBb |t ., ~|Bb,]|t
a, = e +e lbﬁj)e 0 +b()x 0

N . (2.9)

There is no non-zero steady-state solution except in the singular case of |B b0| =7.
The common expression "'parametric instability” arises from the fact that a, becomes
infinite as t » « when the amplitude | b() | of the zero mode is sufficiently great;

that is, when

Ib, 12> /|82 2. 10)

0




This solution (2.9) clearly is incorrect. Physically, a nonzero steady -state
solution is expected for any value of age and this is confirmed experimentally.

In the analogous treatment of stimulated Raman scattering in the following section,
this parametric linearization method also leads to difficulties. Specifically, the

enhancement in the Stokes gain is lost.

To resolve the difficulty, a method of solution other than the parametric lin-
earization used above is needed. One approach would be to linearize (2.3) simply

by considering aoat as a single variable, Since ag at is coupled to a, according

+-

to (2. 3), the standard procedure is to consider the equation ¢’ motion for d4ga

If this equation contains only a, and a, af (and no product a _a,a, ) then the two

+

linear differential equations could be casily solved. Unfortunately the equations
do not uncouple at this step. Furthermore, taking the derivatives of the additional
.1.

variables that appear in the aga_ equation couples in still more variables, and the

chain of equations becomes large.

A simpler method is to start with the operator aj a, =n., rather than a, .

Then the lleisenberg equations give
dn_/dt = (1-1‘n+ (2.11)

.i.

3 is added to account for damping. ‘ihis

where G = B u()aiaf + cc, and -Ta
same result (2. 11) can be obtained from the equation du: a+/dt = aid:1+/dt +cc
with an /dt givenby (2.3) and T = 2¥. 'The factor of 2in T = 27 arises as
usual from the fact that a ~ exp(-vt) implies | a |2 ~ exp(-27t). This second
derivation of (2. 11) establishes the consistency of introducing -Ya, into (2. 3) and

+
-I’ukau into (2. 11) and shows the equivalence of the two equations.




I'rom dG/dt = B(dao/dt)aj aT + BaO(daI/dt)aT+Ba‘ aida-t/dtntcc

and (2. 3)-(2.5) and their Hermitian conjugate equations, there results

dG/de = 2|B]? ng(n_tn_+1)-n n_|-TG

By the same method,
dn_/dt = G-T'n_ (2.13)

dn,/dt = -G . (2. 14)

There are scveral physical situations for which the solutions to (2. 11)-(2, 14) are

of interest. The first is that to which the golden rule is commonly applied. That is,
at time t = 0 the system is  rhe state in which Ny >> HO’ where H() is the thermal-
equilibrium value of Ng» and all other modes are in thermal equilibrium, roughly

.1.
speaking. The perturbation -ifi} “03+“T + c¢c is then applied for a time short with
respect to the time for ngy to reach 1_1'0 , but sufficiently long for energy conservation
to be well satisfied. The case in which ng is maintained at a constant value by the

microwave field in the cavity also is of interest. In both of these cases, n, is con-

0
stant, or approximatcly constant. llowever, d nO/(l . in (2. 14) is not zero because
(2. 14) is only the contribution to the rate of change of gy from the coupling to the
*+k modes. Stated differently, ‘l’m;()dn0 /dt from (2.14) gives the power from the
zero mode to the pair t+k, which is not zero in the steady state. The contribution

to dno/dt from the coupling of the zero mode to the microwave field could be

added, but this would carry us too far from the issue at hand.

The steady-state solution to (2, 11)-(2. 13) is obtained by setting d G / dt

=dn, /dt = 0 and solving for n, and n_. 'This gives
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n_=n, = 2 ‘13\21"-2 [n0(2n++l)-ni] (2.15)

which are tha standard results obtained from the golden rule. The complete solution
to (2. 15) is simple, as discussed in Ref. 10. IFor the present purpose, it is suf-

ficient to neglect the n+2 term, which corresponds to neglecting saturation. Then

(2. 15) gives directly

n
e 1 70 1 L Fd 2
nosnc g R TR o et T/4BI (2. 16)
This same result is obtained simply from the golden rule as follows: The

standard expression (2 n/‘hz) | ¢f x| i |2 6 (w) for the transition rate between

states |i) and | f) gives

2 2 2
dn, /dt = (2n/8%) | ||, - [x|] | p(w) = Tn,

2 2
where | X |+ is the matrix element for increasing n _ by one, |3l is that for
decreasing n by one, and p(w) is the density of states. l'or a single transition

on resonance (wy = w, + w_) the appropriate value of p(w) is7'6'4 plw)=1/nT.

Using the usual expressions for the matrix elements of the a's and a+'s gives

1

dn+/dt=zl_n|2r' (n+1)(n_+1)ng=nn_(ng+1) [ ~Tn . (2.17)

+

Since the bracket factors in (2. 17) and (2. 12) are equal, the steady -state solution

to (2.17) is given by (2. 16) as already mentioned.

59
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Even though only the steady-state case is considered here, it should be

mentioned that the transient solutions of (2. 17) and of (2. 11)-(2. 14) are different

in general. The simplest case of n, n_ negligible, :.+(0) = constant, and Ny

= constant can be solved trivially to illustrate this point.
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1. MODE AMPLITUDE ANALYSIS OF ENHANCED
STIMULATED RAMAN SCATTERING

The Raman scattering process is more complicated than the magnon (or phonon)
case just considered because propagation of the laser and Stokes photon must be in-
cluded. In almost all practical cases the damping of the two photons, but not of the

phonon, is negligible; thus the photon attenuation is neglected.

The mode amplitude equations have been obtained classically from Maxwell's
equations with terms added to account for the coupling of the electromagnetic and
clastic waves. 1 Specifically, an interaction Lagrangian was added to the sum
of the electromagnetic and elastic Lagrangians and the field-amplitude equations
were obtained from the Lagrangian. The resulting second-order partial differential
equations were reduced to first-order partial differential cquationsll' 12 by standard

methods.,

In order to establish the connection between these first-order partial differen-
tial equations for the mode amplitudes and the equations for the occupation numbers,
the mode-amplitude equations will be rederived directly from the tlamiltonian

et 0 oo e R
K = lefaf a + ﬁwsasas + ‘thaLaL - (ih ) ay agag +cc) . 3.1)
Proceeding as in the case of magnons in the previous section, the lleisenberg equa-

tions of motion give

da

£ . ) + 1 ,
e iweae VaLaS -2-I‘af (3.2)
94 da

S o i - vVa al - S
g;— = -lwgag \aLllf Cg 5% (3.3)

6l
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aul . ga
* = -jw,a, + V aa. -c
3t L. L £°S

L

3.4
kT (3.4)

where the phonon velocity was neglected in (3.2) as usuala'4 and the damping term
- %I"af and the propagation terms -csa ag /dx and —cLaaL/ax were added phe-
nomenologically. (Considering the time derivatives in the !leisenberg equations to be
total derivatives, that is (d/dt)cS = 3/dt + Cg d3/3x for example, would give the

Cg and c terms in (3.3) and (3.4) directlv.)

Converting these equations (3.2)-(3. 4), which are identical to the classical
equations discussed above, to number -operator equations by using anf/ At

= atanf/at + cc, ctc. gives

anf
— = r-r(n -n ) (3-5)
t { { AR,
on an
S " S
_ - F - 3.6
t CS 3 X S_.)
an on
=L e g L (3.7)
ot L ax S
a I 112 ) I
Y 2| V|® [n (n+ng+1)-ngn - 5Tl (3.8)
t .4
[ Va acag +cc . (3.9)

Equation (3. 8) was obtained by substituting (3.2)-(3.4) into 31" /31t

i . TF . ve (nal T E T
= V(aaL/at)afaS + \’.nl‘(a.lf/at)as ¢ \d[‘df aas/at t cc. The terin

. Lt ot . N i . . S .
\gll(a[‘/ax) agag ! \cSaLaf ons/ax + ¢c vanishes since a Stokes photon is

created for every laser photon annihilated and the propagaticn of the two photons
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is the same for cg = ¢y . In (3.5) the term I‘ﬁf was added formally to allow
ng to relax to its thermal equilibrium value Hf, rather than to zero, 'This is
trivial in the occupation-number equation, but incorporating relaxation to a thermal

equilibrium value in the amplitude-operator equation (3. 2) is quite involved.S

Setting the time derivatives of e, Ngo and I’ equal to zero gives

c -a—nsi-4|v|2r'l[n(n+n +1)-n.n] (3. 10)

S 3Tx LV s 5o 3 2
and

-1 -

Np [nL(anrnsle)-nSnf -(nf-nf)= 0 (3.11)

where np = 1"2/4 | \Y |2 . Neglecting the saturation term Ngne in (3.11), as was

done in the previous section, and solving for ne gives
ng + (nL/nR) (nS+ 1)

n, = : (3. 12)
f -0, /ng —_

The saturation term has been treated elsewhere.10 These results (3. 12) and (3, 10)

with ng e neglected give the enhanced stimulated Raman scattering result

ng = (A + 1) [exp(B %)~ 11 +ng(0) exp B X (3.13)

g new gnew

- . -1 . N i )
where Bgnew T (I‘/cs) ILR (1 ILR) , with ILR = nL/nR . The results (3. 10)
(3.13) are identical to the results derived previously4 using the golden rule.
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IV. LOSS OF ENHANCEMENT IN PREVIOUS ANALYSES

Previous treatments of stimulated Raman scattering did not yield the
enhancement obtained in the previous section. ‘These analyses either specifically
assumed no increase in the vibrational energy above the thermal equilibxi . .n value

or solved equations (3.2) and (3. 3) or their equivalerts by a method equivalent to

that described below. In the former, (3.12) is replaced by

nf= nf .

Substituting this expression into (3. 10) and solving for ng gives

Bo1aX i

nS=(nf+l)(e 1)

where 8 ,. = 4|V lzn /Tce = (T/ce)(n, /n, ). This is just the Raman gain
old L S S LR

with no enhancement,

In the latter previous analyses, the nonlinear equations (3. 2) and (3. 3) were
linearized and decoupled froim (3.4) by assuming that bL in the definition
= lw Lt

aL = bLe 4. 1)

.1.

is independent of time. Then substitut:ng ae = bf exp (- iwft) and ag = b‘g exp(iwst)

into (3.2) and the Hermitian conjugate of (3. 3) gives




for the case of resonance, that is wp = wg towe- Setting the time derivatives

cqual to zero and eliminating bf from the two equations gives

~ 2 i
=S - | v|%n v b

which has the solution

B x
bs(x) = bS(O)c (4. 4)

where B = |V |2 nL/cS‘)/ , which shows no gain enhancement.

In order to further show how the assumption (4.1) causes the loss of en-
hancement, (4.2) and (4.3) with bL independent of time will be solved by
another method, in direct analogy with the solution of Sec, III where the time
dependence of bL was retained. By the same method used in Sec. III, (4.2)

and (4. 3) give

an
V= F-I‘nf (4.8)
on dng
S _ . s
e 1 ¢ S3x% (4.6)
: , ab
38 _ 9| v|%n, (ny+ng+ 1) - T - (cgVb, b.—== +cc) 4.7)
3t LY f S 2 S TLf 9x ¥ ‘

By neglecting the time dependence of bL’ the nonlinear term -2 | V |2nfnS in
(3. 8) is lost and the last term in (4.7), which did not appear in (3. 8) is gained.
The former makes the solution incorrect in the saturation region and the latter
eliminates the enhancement. Neglecting the time dependence of hl, is equivalent

to neglecting the last two terms in liq. (3.4) for da, /dt. By neglecting the last
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term cLa a L/ax in (3. 4), the cancellation of the similar term csa as/ax from
(3. 3) does not cceur in the equation for 3 F /3 t; thus, the last term in (4.7) is
present. Neglecting the other term V*afas in (3. 4) corresponds directly to the
absence of the term 2 | \Y \2 ngne in (4.7). This discussion indicates that the
physical significance of the linearization by using (4. 1) is that the effect of in-
creases in the amplitudes ac and ag on the amplitude a is neglected and the

spatial rate of change of ap is neglected while a comparable term of ag isre-

tained.

The loss of enhancement in (4.5)-(4.7) can be seen by setting the time
derivatives equal to zero, 3 ns/ax = ﬁns, and abs/ax = % Bhs in (4.5)-(4,7)

and eliminating I'. This gives
2|v\2n (n.+n. 1) -2 (T+ceB)ceBng = 0
LY s 2 S S S
¢gBng = I'ng

Neglecting 1 with respect to ne+ ng, which is well satisfied, and eliminating ng

gives

2|v|2r'1nL(cSB+ T) - %(csp+ T)cgB = 0

o 1 .
Dividing by ch(CSB + T') gives
B=4|V|*/cgT

in agreement with (4. 4).
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D. THEORY OF LASER-MATERIALS DAMAGE BY ENHANCED
STIMULATED RAMAN SCA'T'TERING

M. Sparks
Xonics, Incorporated, Van Nuys, California 91406

An analysis indicates that Raman active crystals fail at intenzities
If which are greater than the enhanced stimulated Raman-scattering
threchold intensity IR by an amount IT that is generally of the order
of or less than IR. A typical value of IR at the ruby frequency is a
few gigawatts per square centimeter, which is less than other intrinsic-
mechanism thresholds. At intensities 1 > IR , the excess intensity

I -1, is converted into Stokes radiation and phonons in a distance

R
£ << d, where d is the thermal diffusion distance for a 10 nsec
pulse. The temperature rise from the rapidly thermalized phonons in

the volume x < d is sufficient to cause material failure when I > If.

Stimulated Raman scattering was first observed in 19()2.l Within the last year
there has been interest in a parametric instability in the Raman Stokes processes that
causes a Stokes-intensity gain enhancement.z-5 Among the significant consequences
are the explanation of the previously anomalous nearly discontinuous increase in the
Stokes intensity lS as a function of the laser intensity IL in the absence of self focus-
ing and feedback. It was also menticned that this enhanced stimulated Raman scatter-
ing could be an important laser-damage mechanism having a threshold lower than

those of other well known damage mechanisms,
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In the present paper an analysis of the enhanced stimulated Raman scattering
shows that Raman active samples fail at intensities If that are greater than the
enhanced stimulated Raman scattering threshold irtensity IR by an amount I,r
which is usually of the order of or less than 1R . Typical values of IR for solids

are a few gigawatts per square centimeter at the ruby frequency.

Physically the mechanism for failure is simiply that at intensities above the
threshold the excess intensity above [R is converted into Stokes radiation in a very
thin layer of the sample near its surface. Since one phonon, called an f phonon, is
created for each Stokes photon created in the Raman process and the phonons rapidly

thermalize, thetemperature in the thin surface layer ircreases.

. . 3,5
'he general steady-state equations are

dnS/dx = (Bc/)’nm))[(ns+nf+l)nL-nSnf (1)

ng/ny = (F-1)75% = A/ - n @)

where ng, n; , and ne are the Bose Linstein occupation numbers for the Stokes
photons, laser photons, and fundamental phonons, Bc = l"f/cS ’ Tf is the linear
(low intensity) relaxation frequency of the f phonon, Cg is the velocity of the Stokes
wave, n, = v Ro* "Ro is the threshold value of N for enhanced stimulated
Raman scattering in the absence of phonon instabilities (which make y2 > 1 ),5

S

B = (nl - n’s‘)/nRO‘ Iistimations of the time constants indicate that the assumption

: . i 8
np is the threshold value of Ne for the phonon instability,” A= n ny /np NRoe and

that the steady-state results apply is well satisfied.

The solution to (2) is

yz-l = %-(/\HHI)t[%(/\HH:)z-B]l/2 ; (3)
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The inequalities N << np and n << np are well satisfied in all cases of interest
e . . €
except the case of ultralong-lifetime phonons in some materials at low lcmpcraturcs."7
: . - 7 . .
Since ng << np is extremely well satisfied (np/nS ~ 10", typically), the approxima-

tion
< -
ng < np (1 ns/nl ) (4)

is well satisfied until saturation (nS = nL) is approached very closely. When (4)

is satisfied, then A << B, and (3) gives

')’2-1"--;—(B~l)+%At[%(li-l)2+-;—A(Bfl)]l/z . 5)

The following limiting cases are of interest: IFor 1 - B >> [2A(B+ 1 )11/2, (5) and

(2) give
72-1*A/(I-B) n. = n.n,{(n,,-n, +n )-l (6)
. ' p % Bgly (Mg Ny Filg '
For B=1, y2-1 = Al/2, ne = Al/znp. and for B -1>>[2A(B+ 1)1Y2, (4)
gives
72-1 =B-1 > (7)
- , ng = oo

These results show that ne is small for B € | and large for B > 1, the transi-
tion region being very narrow, of order 2 Al/z. See FFig. N1, where in curve (a) the
ordinate side is such that A is visible. Then np is far off the scale. In (b) the ordi-
nate scale is such that np is visible. Then A is indistinguishable from zero. With 1
visible on the abscissa scale, the width of the transition region, in which ne increases

from its small value to np » 1s too small to he observable.
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Iig. D1, Increase in f-phonon-mode occupation number ne with increaaing

S -9 p i e S s S U .
B (nu) 2 nS)/an. the twe ordinate scales for the (a) and (b) curves

are explained in the text,
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‘the low-B result (6), which is valid when n L0 < o along with the differential

. . . . 32 .
equation (1). gives the previous enhanced stimulated Raman results.”” In this case

n. increases exporentially with increasing distance x from the sample surface, with

S

the characteristic distance B;l. Values of B;l range from ~ 102 to 1cm for typical
solids and liquids. ‘These values usually are not sufficiently small to cause sample

damage; thus the detailed results for this case need not be repcated here.

Substituting tire high-B resulis ne = np and Y = Bl/2 from (7) into (1) and using

ng + 1 <L np gives

-1/

1 1/2
Bc nanO

-2ns)

B 2
dnS/dx = (r‘LO

The solution with the boundary condition ng = 0 at x =0 is

_ f1-r1 - -1/2 2 |
ng = 30, ll [1 np(nLOnRO) ch] ‘ . (8)
According to (8), the value of Ng increases from ng = 0atx =0 to ng = fnLO
at x = 4, where
- 1/2
= (ng 40 /anc 0 9

This solution, which is sketched in Fig. D?,is valid for B -1 >> [2A(B +1)]1/2,
or B > 1 approximately. For example, (8) is valid for iig up ‘o one half of the asymp-
. 1 _ 1 _ e
totic value of 5010 for N = anO or up to 9/10 of 309 for N = 10 NRo- For

greater values of ng, the increase in ng is much slower. Consider the case of Nip

= 2n,, illustrated in Fig. D3 as ¢n example. F'rom the definition under (2),

RO
l - ~, Ay

R - = : isfi i

B=2(1 ns/2 ny )). l'or nS < nl,0/4' B satisfies B > 1, and nS increases

rapidly accerding to (8). [lor ng gnu)/4, B satisfies B Z 1, and ng increases
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Stokes Amplitude ng

Distance x

I“ig. D2, Distance required for ng to approach its asyimptotic value % Ny The [
, . — R F ~ - Lgll - 172
solution (10) is valid to the left of B = 1, At x = 5 4 5 Bc ("l,()"l{()) /np,
;o saml
HS = na /D ( '-Z' nl,“ )a 1
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Fig, D3. Rapid increase of Stokes amplitude g for x < £y (i.c., B > 1) and slow

N

increase for x > JLl (i.c., B € 1),
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much more slowly according to the previous low-B rcsult.s' 2 Thus, Ng increases to

the value nu)/4 in a distance (0.6 4 ), which is of order £, and thereafter increases

very slowly,

For the general case of Nro = MM with n > 1, the value of B is

B = n(l-ng/5n ) from the definition under (2). Thus B 51 for ng Z ng,
where
= 1 -
Ng, = fnw(l n ) . (10)

This result (10) shows that a fraction %(l - n-l ) of the incident laser radiation is
converted to Stokes radiation in a distance zn < 4. An expression for £ , which
is ecasily obtained from (8), will not be needed since zn < 4 and the thermal dif-

fusion distance d >> 4. The laser amplitude is reduced from N © "o in the

region x < zn.

Since one phonon of energy ‘hu:f is created for cach laser photon of energy ﬁwL

annihilated, the energy
e=1at (-1 e/« (11)
p 2 n f
is converted to fundamental phonons (and subsequently to heat) in the volume Q¢ ,

where Q. is the surface area.

The temperature rise A'l' is obtained from the heat capacity relation € = CVAT,
wher: C is the heat capacity per unit volume., The volume V is equal to dd, where
d is the thermal diffusion distance for the usual case of zn << d. With (11) and

I = an, where I = ﬁwI‘anRO/V, this gives

AT = (I/IR-I)AT2 (12)




R 3 - i — Ee

where

I |
A12 = 711{11) wf/wC(l s (13)

This result is valid for n > 0; thatis, 1 > IR . For 1 « lR » AT is sufficiently
small that AT = 0 can be used for the present purpose. See lig. D4, At 1 = 2 ll{ b
AT = AT,.

The thermal diffusion distance d is obtained from the standard relation be-

tween time and diffusion distanc08

)
[pulsc = 4Cd"/nK
9 or
= (aKe_ . /4C)? (14)
@7 AT bulse

where Kois the thermal conductivity, For most materials C ~ 2]/ c1113 K. ‘Thus, for
. . ~ P
tpulsc = 10 nsec, (14) gives d 2= I ym for K I W/emK or d = (,1um for K = 10
W/cmK.,
For AT = Awl'f, where A'If 1s the valve of At at which the crystal fails, (12)

gives

_ . 12,0 .
[o=dg % 1y by = 2CdATpw/wt - (PKC/t g VAT w/eg o (15)

‘This central result (15) shows that the failure intensity lf is greater than the Raman
instability threshold ]R by an amount l.l., whose value is determined by the frequency,

pulse length, material parameter (C, K, and wf), an’ the failure temperature A'If.
For Cak,, C 2.71J/cn)3l\' , K =0,09W/cmK, w, = 26()cm-l, and the melting
temperature is 't - 1400 C. A conplete study of failure would be complicated

melt

and the results would vary from sample to sample and application to application.
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In erder to obtain a rough estimate of the size of l.l., it is assumed that the melting
of an infinitely thin (negligible heat of fusion) laver of the surface constitutes failure,

= 1,400 K. With these values and t = 10 nsec at

Thus A’If = 1. pulse

- T ;
melt ambient

the ruby frequency w = 1.44 « l()4 cm-l, (15) gives d = 0. 16 ym and (14) gives

1T = 0,7 (I\V/sz . (16)

Analysis of the stresses in this case of a two-dimensional (radial and ~xial) tempera-
ture distribution is complicated and beyond the scope of the present paper. !lowever,
rough estimates indicate that iie sample may fracture before melting, therebv lowering
the value of I‘.. A detailed srudy is unwarranted at present in view of the uncertainty in
the value of I,. In fact, the value of ti:c criticai intensity I, is not known for Cal, and

s g ~ .
many other materials, Iv.rtherniore, l'l' < IR for most materials.

In order to obtain a rough estimate of If for use until measurements of lR are

available, a typical value of | (}W/cmZ will be used. Then (14) and (15) give for Cal“2

If = l.7C\V/cm2 . (17)

IFor diamond, C = 1.56 J/cm3K, K =20W/cmK, w 1330 cm-l, and 'l‘l t=373()C.

f nel
I'be value of IR is approximately 1 to 4 GW/cm”™, lor lpulsc = 10 nsec and w = 1. 44

¥ I04cm-l, (15) gives d = 3.2um, and (14) gives

. = 1GW/em? o= 3-8 GW/em? . (15)

For ZnSe, C =2.6J/emK, K = 0,13 W/emK, w, - 207 em™), and AT, = 1500 K.

Thus d = 0,2pum and
. 2
I.. = 1.1 GW/ecm

Then if 1y = 1GW/cm2, 1. = 2 GW/cm?.

f
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Several additional comments are of interest. [I°irst recall that rocksalt-structure
crystals such as NaCl are not Raman active (first order). thus the enhanced stimu-

lated Raman scattering process should not limit the value ot I in these crystals. Most

f
other crystals ot currcin interest are Raman active. Macroscopic Raman-active im-

purities in rocksalt-structure crystals could of course lower the damage threshold.

Conversion of the Stok:s radiarion S to second Stokes radiation Sz. conversion of
82 to SS. and so forth, could cause additional heating of the crystal. towever, these
subsequent conversion processes are not usually important si.ce the inequality
IS < [R usually is satisfied; i.e., the threshold for conversion from S to 52 is not
reached. This is because the inequality l'l' < [R usually is satisfied. However, the

value of IT could be great for materials with large values of K and small values of

wes aS seen in (15).

‘Thermally induced optical distortion9 is negligible in general because d is so
small. The optical distortion is determined by the average over the sample thickness
of the temperature rise on the optical axis of the window. lor example, for a 1 cm-
thick sample of ZnSe with d = 0.2um and AT = 1500K, the average value of the
temperature rise is 1500 (2 x lo-scm/l em) = 0.03K, which causes negligible opti-
cal distortion.9 Finally, the relatively small temperature variation of C ane i\,
which were neglected, coulit be included if greater accuracy is required at a later

date.

P
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Abstract

We derive expressions for the rate at which radiation is
scattered and absorbed because of surface roughness on a semi-
infinite material, in the presence of a dielectvic overlayer. We
confine our attention to the case of normal incidence. A formalism
developed in an earlier paper by the present authors is utilized
in the discussion. We also present a series of numerical calculations
which explore the roughness-induced scattering and abscrption of
electromagnetic radiation for aluminum overcoated by aluminur. oxide,
in the ultraviolet region of the spectrim, The position of the
reflectivity din produced by roughness induced coupling to the sur-
face plasmon is found to shift toward the visible as the thickness
of the oxide layer increases. fhe size of the dip is controllced
strongly by the degree of corrclation between the roughness on the
vacuum-oxide interface, and that on the oxide-substrate interface.
Under conditions discussed in the text of the paper, the presence

of the oxide layer can greatly enhance the coupling between the

incident radiation and surface plasmons.




1. Introduction

In the presence of roughness on the surface of a material,
light incident on the substance may be scattered away from the
specular direction, and roughness~induced absorption
can occur, Both effects reduce the reflectivity of the material
below the intrinsic value expected for a semi-infinite sample with
perfectly smooth surface. The effect is particularly severe for
aluminum in the ultra-violet region of the spectrum, since in the
presence of surface roughness, the incident light may couple to
the surface plasmon with remarkable efficiency. b

There has been renewed interest in this problem recently, in
part because of the need for highly reflecting mirror -aterials
for use in the construction of cavities for lasers whi-h operate
in the ultra-violet region of the spectrum. While¢ aluminum has the
highest intrinsic reflectivity of any material in the near ultra-
violet, roughness-induced coupling of the incident radiation to
surface plasmons can decrease its reflectivity significantly, unless
"supersmooth'" surfacecs are prepared.(Z)

Another method that has proved useful in increasing the reflec-
tivity of aluminum films is to overcoat them wich a dielectric layer
after a very smooth "bare" aluminum surface has been prepared. Such
an overlayer will also be present anytime the aluminum has been
exposed to an atmosphere that permits oxidation of the surface.

One is then led to inquire about the effect of such a dielectric

layer on the surface roughness induced coupling to surface plasmons.

While this is a topic that ias been explored experimentally(z)’(s)’(4),

we know of no theoretical trcatment of the effect of a diel-ctric

overlayer on the roughness induced scattering and absorption of light,

83




Sec. E

There seems a critica) need for such a theoreti al analysis,
in our view. From simple considerations, one expects that a die-
lectric overlayer on a metal such as aluminum will shift the re-
flectivity dip (produced by the roughness induced coupl!ing to sur-
face plasmons) toward the visible. One would like to calculate the
magnitude of this shift for an overlayer of given thickness, and
a specified configuration of surface roughness. Perhaps more impor-
tant to understand is the relationship of the magnitude of the dip
to the nature of the roughness on the overlayer-substrate and over-
layer-vacuum interfaces.

The purpose of this paper is to present such a theory by
(5)

extending our earlier treatment of the surface roughness induced
absorption and scattering of electromagnetic radiation to the case
where a dielectric overlaye» is present on the surface of the material
of interest. In the interest of simplicity, we confine our attention
here to the case where the radiation is normally incident on the
surface. For this case, we obtain formulas for the angular distri=-
bution and polarization of the radiation scattered from the rough
surface into the vacuum above the material, for the fraction of the
incident radiation flux absorbed within the film, and the fraction
of the incident radiation flux absorbed by the substrate material.
The tireatment is valid in the limit that the amplitude of the
surface roughness is very small,

We also present a scries of numerical studies of the absorption
and scattering of radiation in the near ultraviolet (5-12eV) by

an oxidized surface of aluminum. We find here that the magni tude

of the reflectivity dip produced by roughness induced coupling of
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the incident radiation to surface plasmons depends very dramat.cally

on the manner in which the roughness ot the vacuum-oxide overlayer

is correlated with that on the ox.de-substrate interface.

Before we proceed with the detailed discussion, we elaborate

on this remark a bit., Consider a smooth oxide-vacuum interface

parallel to the x-y plane located at the position z = d, while the

smooth oxide-substrate interface is also parallel to the Xy plane

&t z = o. Now roughen cach interface, where cl(x,y) measures the

position of the oxide-vacuum interface at the point X,y above the

plane z - d. Similarly, cz(x,y) denotes the position of a point

on the rougher *d oxide-substrate interface above the plane z = o.

Then if we denote averages over a given interface by angular brackets,

we presume ‘Cl\ = (52\ = o. In our numerical calculations, we ex-

amine the following four situations, illustrated schematically in

Figure (1):

(i) Cl(x,y) = C2(x,y) everywhere. We refer to this as the re-
plicating film model (Figure 1{a)).

(ii) cl(x,y) - - (2(x,y) everywhere. We caldl this the non-uniform
film model. (Figure 1(b)). This might be a crude description
of a lumpy oxide overlayer.

(141) (Cf) = ((g), but Cl(x,y) and (2(x,y) very randomly with respect
to each other, so the cross correlation function ((1§2) vanishes
everywhere. Ye call this the random roughness model (Figure 1(c)).

(1v) {, = o but {; * o, i.e. the oxide-substrate interface is per-
fectly smooth, but the surface of the oxide is rough. We refer
to this as the rough oxide layer model (Figure 1d). It serves

as a model of a supersmooth aluminum surface overcoated with

a non-uniform oxide film.




the incident radiation to surface plasmons depends very dramatically
on the manner in which the roughness on the vacuum-oxide overlayer
is correlated with that on the oxide~substrate interface.
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to each other, so th: cross correlation function (Clcz) vanishes

everywhere. We call this the random roughness model (Figure 1(c)).

(2 = o but Cl # o, i.e. the oxide-~substrate interface is per-

fectly smooth, but the surface of the oxide is rough. We refer

to this as the rough oxide layer model (Figure 1d). It serves

as a model of a supcrsmooth aluminum surface overcoated with

a non-uniform oxide film.
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When we compare the results of the calculations for the four
cases described above, the position of the reflectivity dip is very
nearly the same for each case, for an overlayer of given thickness.
Hcwever, the magnitude ot the dip differs markedly in each case.

In case (i), the dip moves to lower photon energies as the oxide
thickness increases, with no dramatic change in its depth. In case
(ii), the dip agrin moves to lower frequencies, but increases very
substantially in depth, i.e. the roughness induced coupling of the
incident photon to the surface plasmon is increased markedly by the
presence of the overlayer. In case (iii), there is also considerable
enhancement of the roughness-induced coupling to the surface plasmon,
although the enhancement is smaller than for case (ii). Finally,

for case (iv), once the oxide layer becomes sufficiently thick (say
greater than SOA), the coupling between the incident radiation and
the surface plasmon is greatly decreased.

The above remarks show that in the presence of an oxide film
(or a dielectric overlayer), the strength of the roughness-induced
coupling to the surface plasmon depends very sensitively not only
on the amplitude of the roughness, but also on the manner in which
the roughness on the oxide-vacuum interface is correlated with that
on the oxide-substrate interface. This is a principal conclusion
of the present paper.

The remainder of the paper is organized as follows. In Section 1I,
we sketch the derivation of expressions for the roughuess induced
scattering of normally incident light, along with the roughness
induced absorption within the film on the substrate. The approach

is similar to that employed by us earlier(s), and although the final
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formulae are rather cumbersome for the present case, the presentation
here is brief. We then present the results of the numerical cal-
culations in Section III.

In an Appendix, we describe certain Green's functions of the
electromagnetic field equations, for the present geometry. These
Green's function: may be employed in a variety of problems. For

example, the limiting form of these Green's functions with retardation

ignored have formed the basis of a theory of the inelastic scattering

(6)

of low energy electrons by electronic excitations in semiconductors.
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I1. Derivation of the Theoretical Formulas

The geomatry which forms the basis of the present paper is
jllustrated in Figure (2). In the absence of roughness on the two
interfaces, the vacuum-overlayer interface is the plane z = d, and
the overlayer substrate interface the plane z = o. In the presence
cf roughness, the function cl(x,y) measures the elevation of point
(x,y) on the vacuum-overlayer interface relative to the plane z = d.
Similarly, Cz(x,y) describes the elevation of a point on the over-
layer-substrate interface relative to the plane z = o. The overlayer
material is presumed to be described by the isotropic, complex,
frequency dependent dielectric constant El, while the substrate is
described by the frequency dependent dielectric constant 62, again
complex and presumed isotropic. To study the reflectivity of the
structure, we look for solutions of Maxwell's equations which vary

harmonically with time:
BRt) - B, we 10t | (11-1)
where the electric field amplitude ﬁ(f,w) obeys

-

2 =g -—y =
v xV x E(x,w) - 5% €(x,w) E(x,w) = o. (11-2)
c

¥For the geoometry of Figure (2), for the spatially varying

dielectric constant we have
€(x,w) = 6(z-d-{, (x,y))

+ €,0(d + cl(x,y) -z) 6 (z-cz(X,y)) (I1-3)

+ 629((2(x’y) = Z) H
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where in Eq. (II-3), 8(x) is the Heaviside step function which
assumes the value unity when its argument is positive, and vanishes

when its argument is negative.
When both (1(x,y) and cz(x,y) are small, we expand the right

band side of Eq. (II-3) in a Taylor series by means of the well

known expansion
0(x + a) = g(x) + a 6(x) + ... , (X1-3)
where 6(x) is the Dirac delta function. Then Eq. (II1-3) reads

€X,w = €,(z,0) + & X, ) (11-5)

where

€, (2,0 = 0(z-d) + €,0(d-2)6(z) + €,0(-2) (11-6)

and

A €(x,w) = CI(X,y)(El-l)b(z-d) + (62-61)C2(X,y)6(z) . (I1I-7)

Then Eq. (I1-2) may be arranged to read

2 2
vx9xEX,w-% € (20 EXxw = i’-z A€, 0 E(X,w) . (II-8)
c
To solve Eq. (II-8) in the limit (l(x,y) and cz(x,y) are small,
we follow the approach used in our preceding paper.(s) We introduce

a set of Green's functions D“V(§ x’,w) which satisfy

2

w2 3 2 = =,
% 0—2' cO(z’w)bku - W + GXF v } D“V(x X' w)

(11-9)
- - '
4q bx 6(x ‘)

along with boundary conditions appropriate to the present scatter-

ing rroblem.

T T T T e T n s e RSN n T T T L
. . -
e - -



In terms of these Green's functions, we may rewrite Eq. (II-8)
in integral form

E (X,w) = E;?)(Q,w)
- (11-10)

2 - - - -
- i-i = fdax' Dw(x,x';w)AE (x','w) Ev (x’,w)
49c v
In Eq. (I1I-10), E§°)(§,w) is a solution of Eq. (II-8) with
A€ (;,w) = 0. The formal structure of Eq. (II-10) is identical to
Schrddinger's equation of quantum mechanics, when it is written

(7)

in integral form. For small AGE(;,Q», we may generate an approxi-
mation analogous to the first Born approximation of quantum mechanics
by iterating Eq. (II-10), and approximating the amplitude of the

scattered wave Eﬁs)(i,w) by retaining the first term. This gives

E®) X, W) - ——i“’z S [a3x' b GEGwac GLWE® G, W, (11-11)

The electric field amplitude Ezé

)(Q,uﬂ which appears in the
right hand side of Eq. (II-11) is the electric field u.ssociated
with the incident field, in the absence of surface roughness. The

/,w) are constructed in the Appendix of

Grcen's functions DW(;{.;
the present paper. Thus, it is a straightforward, (but algebrai-
cally complex) matte:r to evaluate the scattered fields in the
vacuum, within the overlayer, or within the substrate. We call
the reader's attention to the rather extensive discussions in
Reference (5), which explore a number of issues we do not examine

here.

As before, since the dielectric function Eo(z,w) which appears

on the left hand side of Eq. (II-9) depends on z only, oand not on
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x and y, one may represent the Green's function by the partial

Fourier decomposition

2
(;'x' ') = l__ﬂ_ i l“'ll‘(xll"xll)d (ﬁ"w|zz'). (11-12)
g (2m)?

We also write (where i = 1 or 2)

g x,y) -/—“7 L Ryex c &) . (11-13).

2m

We presume here that the incident electric field is normally
incident on the structure, with electric field parallel to the X

axis, Then we have
G W - b5, Bz . (11-14)

After these forms are substituted into Eq. (1I-11), the scattered
(8)

field assumes the form

4 2(2m>c
x dx (Ryo)zd) (11-15)
w (e K --. " = -d
) 2(21:)5c.2 (O)(“”°)/ a’ky e’ e Ly (ky) dux(k“wlzo) .

From the discussion in the Appendix, the functions d“V(K“w|2z:)
are related to a second set of functions guv(k"wlzz') via the

transformation

d“v(ﬁuuﬂzz') =;§L' S“:v(ﬁn)svlv(ﬁn)g“:v:(knwlzz') : (11-16)
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A A
By - k. X + kyy (11-17)

and the matrix S(K,) is given by

s @) =5 [-x K o (11-18)

One then has the relations

k2 k2
d_, (kywjzz’) = ;§ €,y (kywlzz ) + . gyy(k"w|zz’) (II-19a)
il i
= ' kxk r ’ : ’
dyx(k“w|zz ) = :351 Lgxx(kuuﬂzz ) - gyy(k“wlzz )] (11-19b)
|
Fad ? kx ’
dzx(k“w'ZZ ) = T gzx(k"wlzz D (II-19c)

To proceed, we now need to evaluate the scattered field in
the three distinct regions of .nterest: in the vacuum above the
overlayer, inside the overlayer, and in the substrate. We con-
sider each regime separately.

(a) The scattered fields in the vacuum above the overlayer,

and the angular distribution of the scattered radiation.

In this regime, we consider the limit z = + =, for fixed z’.

Then the Green's functions Bxx® B and €rx in Eqs. (II-19) have

yy
the form
N oo 7 > < Ao ! i
gyy(kuw|zz ) W Ey (kqwlz) Ey (k||u.|z ) (11-20a)
ey - An > < Jdo ! Iy
gxx(k"w]z‘. ) m Ex (k“wlz) Ex (k"u.lz ) (II-20Db)

Y} = 4" > . < ’ =
gzx(k“wlzz ) W EZ (k“(l.lZ) Ex (k"wlz ) (II 200)
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where for z > d, one Las

ik 2z
E;(k"w|z) - E, (kywlz) - e o (11-21a)
and
= ko 1koz
| Ex(k"wlz) bt (II-21b}
|
with 5 ;
o 2
| k, = (% - K )? - (11-22)

{ C

As discussed in the Appendix, the positive sguare root is to
be chosen in Eq. (II-22), and if ky > w/c, we choose

In(ko) >0

The remaining quantities in Egs. (11-20) and Egs. (II-21) are de-

fined in the Appendix.
The scattere« electric field has the form

E‘(‘s) (§,w) = Jr dzk" f:'“(i(‘",w)eik.x 5 (11-23)

where in Eq. (1I-23),

K=Ky +2k, - (11-24)

It is a short exercise to show that the time average of the

Poynting vector, (§), may be cast into the form

2 - “'* -
@ - 5 Re/ a2 yatig et K DR

X [K{E*(Eﬂw)-g(ﬁuw)} (11-25)

- E(Rn w) {E- E* (-l-(."'w)}:l
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We are interested here in the energy radiated into the vacuum,
Thus, we confine our attention to the contributions to the integral

() the

from the regions k< wk,k <w/c. As explained earlier,
regions with ky > w/ c describe scattered energy which is confined
to the near vicinity of the surface, and which propagates parallel
to it (i.e. storeu in surface plasmons excited by the incident
radiation, for example). The regions ky>w/c , ki > w/c give

(5)

contributions to the energy flux which are small, unless the
surface plasmon in mean free path is comparable to the linear
dimensions of the region illuminated by the incident beam.

We may calculate the Poynting vector by inserting the amplitudes
of the scattered fie.ds into (§), and then averaging over the distri-
bution of surface roughness, as we did before. The calculation
proceeds along very similar lines to our earlier work.

We comment on one point, however. When one averages over the

distribution of surface roughness, one cncounters averages of the

form (ei(.l;"),.l (j(ﬁﬂ)) . The two functions (el(ﬁu)”l el(ﬁﬁ)) and

(tz(fc."),.l ez(ﬁﬁ)) describe the nature of the roughness on the vacuum-
overlayer and overlayer-substrate interfaces, respectively. In
general, the "off diagonal" averages (el(‘ﬁ“)”l ez(ﬁﬁ)) and

(ez(ﬁn)‘ 21(§J)) will be also non-zero. These functions contain
jnformation about the manner in which the roughness on the vacuum-

overlayer interface 1s correlated with that on the overlayer-

substrate interface. These functions will vanish only if the
roughness on the outermost interface is distributed randomly relative
to that on the innermost interface, a possibility that seems unlikely

for a thin overlayer.
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By a straightforward generalization of our earlier definitions,

we write
A% o =, 2 - — -
(ci(k")(j(ku)) = (2m) b(kn-ku)bioj gij(k“) 5 (11-26)
where
gy ) "513; /dzr-,e‘“‘“"“ €y ()T (Fi)) (11-27)
i

In Eq. (II-26) and Eq. (II-27), the quantities 61 and 62 are the
root mean square roughness amplitudes for the vacuum-overlayer

interface, and the overlayer-substrate interface, respectively, i.e.
R

and

0 4
&, = (L5 (11-28b)

It follows from this definition that

2 2
/'d—g'l gn(ky) = %‘4 gzr)(k") =1, (11-2)
47 47 =

while no simple normalization requirement exists for glz(fn) or
- -9 - ‘
(ky), although necessarily glz(k“) = g21(k")

€21
The overlayer roughness configurations illustrated in Fig. (1)

can be seen to correspond to particular choices of ulz(ﬁu).

For example, the replicating film model of Figure (la) corresponds

to the choice gn(ﬁu) & gzz(fy) - glz(ﬁn), and the non-uniform film

model of Figure (1b) to the choice g"(iu) = gzz(ﬁ") = - glz(ﬁn).
With the above remarks and our preceding discussion in hand,

one may construct expressions for the angular distribution of the

scattered energy flux. We shall simply quote the results here, since

the algebrai - manipulations are lengthy and offer no enlightenment.




See. F

Ve let (dfs/dﬁ)dn be the fraction of the incident radiation

(recall we consider only normal incidence here) scattered into
final states with s polarization, directed toward the solid angle

d0. In a similar fashion, (dfp’dﬁ) describes the angular distri-

|
|

bution of radiation of p polarization. The direction of tke out-
going radiation is described by the spherical angles es and g

where o is measured from the x axis.

Before we write down the final cxpressions, we define the

following quantities:

Ky = (61 - sinzes)i - Im(x1)> o (11-30a)

Kg = (62 - sinzes)g " Im(K2)> o (I1=30b)

(I1-30c)
-2 w? s §_) sin (¥
Ky 1 2 €os 65) sin (T «,d)
w K2 w
e (6,w) = cos (E»Kld) - i ?; sin (3 x;d) (11-30d)

dp(es,w) =-(€2 cos es + xz) cos (%?Kld)

ds(es,w) = (K2 + cos @g) cos (% xld) ‘

(11-30e)
K €
-1 (COS 8s € ?f + E% Kl) sin (d.Q K1>

e - w
p(es,w) cos (c K1d> = & € 7% sin (i K d) . (11-30f)

-
-~
N
(e}
-

9%




We then haVe(g)

2 . 2
at . (8, ¢,) A cos“g_ sin“p_
d S T2 4 2 02

< re” |dg(ag,w)|%]d_ (0, |

X [éflél-lIzles(es,w|2|es(o,w)|2g11(g") (11-31)
2 2 .
T 0166 [TBgy (k)

+ 26,6, Re {(eI—l)(ez-el)e;(o,a»es<es,w)g12<ﬁu)}]

and

2 2 2
af (6, 0,) ) A cos”8; cos“p_|k, |
! dnp ﬂ2£1

|dp(95,w)|2|ds(o,w)|2

X [of|el-1|2|ap(es,w|2|es<o,w)|2g11<ﬁn) (11-32)
2 2 -

+ 93 1€0-€) %8y, (ki)

* * =

In Eq. (II-31) and Eq. (11-32), k| is the projection of the
wave vector of the scattered wave vector on a plane parallel to
the surface. Thus, the magnitude of E“ is given by

-t w .
|ku| = ¢ Sin g r (11-33)

(b) The scattered electric fields within the overlayer, and

the fraction of the incident energy absorbed within

the overlayer.
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To compute the scattered electric field within the film, we
may use Eq. (II-15), with the Green's functions d“x(ft’"wlzd) and
dux(ff"wlzo) given by Eq. (II-19).

If we define (as in the Appendix)

2
k, = (f% € - kﬁ) , Im (k) <o , (11-34)

then the electric field within the film has the form

=-ik.z

+ik.z
1 1 }. (11-35)

(s) =  _ 2 AKX [ (+) =) (3
E“ (x,w) Id ke {6“ (kp,we + 6“ (ky,we

where after some algebra, one finds

o (€,- 1) ik d
8,(‘0) (Ky,w) = - ———]2'-—2— g(©) (wd)e ° Al(kn)
2m-c
2 2
k k,k k
xa o l'x . Céll) 4 zy C(.|.)
Wy (g, Wk ky "W (kyyw)
(11-36)
2 2
u”(€,-€,) o kikk
_ g 21 E(O)(w,o)éz(k") ) g 2 X A(Il)
2m-c ky Wy (ky,w)
2
. A (D)
k"WL(k“,w) o o
(0.) — w2(€1-1) (0) ikodh v kxk
6y (ky,w) = - 55 E (w,d)e Cl(kn) —-21
(2m “c ky
k k
o1 () 1 (.L))
X0 —= C R N CT™) !
KW Gey,w) @ faflunw o ’
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(11-37)
) of (65-€))

(2m)“c

(O) A - kxk
£ (w,0) Ly (k) —;gl
]

k1k2 A(") _ 1 A(L) )

k%“’u (ky,w) © Wiy, @ o j

w2(€1-1)

(27)"c

ik d k k )
(o) ;7 (o) Ao o x C

e T(ky,w) = + E'V (w,d)e (ky)—5———— c

% ! C]_ ! k"“h (k",w) ¢

(11-38)

2
w(€,~€,) =
+ -————2—2—%—' E(O) ((0,0)Ez(kn)
(2m)“c

x 2

k k
A1)
k"Wu.(k" ,w) g

In Eq. (I1I-36), Eq. (11-37) and Eq. (II-38), we have as in

the Appendix,

3
ko, = (%5 € - kﬁ) In(ky) < O (11-39)
C

2

3
k, = (f% - 1) mk) 2o . (11-40)

() Cix)

The coefficients C , etc. are given by

g [1 + 0 ;%] (11-41a)

E__ +5 EZ (11-41b)

ik d -ick,d
o (11-41c)

(11-41d)




It is now a straightforward, but tedious matter to evaluate

the fraction of the incident radiation absorbed by the overlayer,
By symmetry, ihe only component of the Poynting vector which has

a non-vanishing value is the z component, (Sz) . The rate at which

J

energy is dissipated in the film is then L_L {(s )
Xy = z=d"’

- (8,)

Z=0

where LxLy is the area illuminated by the incident beam. We calculate
this quantity, and divide by rate at which incident energy strikes
the surface to form an expression for the fraction f(l) of the

incident energy absorbed by the overlayer. The quantity f(l) has

the form
PRSI ) ¥ fécly) (11-42)
4 o=t1 o’'=t. ’
where
’ *
(1) w 1 2 id[ok)~0 'k, ]
2000 = —% 5 Re| [d%ky(1-e )
4n°c [dg(o,w) |

2 2 2. (%
’51|5f4||es(o,u9| gulky) »

l

2 |k, | (k1|k +xIKy ) [ € Ky 1] & K,
Xi{ 0O CO% (ps 2 = ? + O k—
w Idp(k",w)l el k) 1 1
%
2 K k k
+0 sin2¢g £y 2 5 |1+ 0 —% 1+ o-Eg
c |ds(k||,w}| ky 1
| 1[ok,-ok’ 1d
f 2,, . 2 e 1771
| + bpleg-€1 " gpplky) e
2 2 .2 *
, 2 o2 Ikl (g Iy | +k”k1 1 , X0l 2 k5
XjJ 0 COs QG 3 - + 0" = —_—+ g —
¢ € kJ € ky
1 1

N e e ——



2 k

2 w 1 (o) kO
o sin“p 1+ o'~—-] 1 +0
5 o2 |ds(k”,w)|2 [ k;J k)

5 - -10k,d
6162(62-61)(61-1) es(o,w) e g12(k")

*

2

* 2, .2 * -

, o2 k(kq [k |7+ Kik Ik, ]__ .
*
€1

O COos ¢
S? |dp(k“,w)|2 L

2 k

L [1 + 0’

:ﬁ |ds(kn,w)|2 L

. 2
o sin“o

F +1o'k;d
0162(62-61)(61-1) es (o,w) e

2 2. % *
o cos c2 ko(k1|k1| + k.,kl)k2
O :?

2
|dp(kn,w)|

2 k

2 w 1
4+ o sin“gp —_—
S ¢2 a0 |2

In Eq. (I1-42), we have

k
ds(k“,w) = (ko-kz) cos (kld) -i(kl- ﬁl 2) sin(kld), (11-43)

(€2' ¥y g K
dp(kn,w) = (Ezko-kz) cos (kld)-1(-El _gl kl

°) sin(k,d).

(11-44)
The definitions of the remaining quantities may be found earlier
in the present section.
(c) The scattered electric fields within the substrate,
and the fraction of the incident energy absorbed within

the substrate,.
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We evaluate the scattered electric field within the substrate
through the use once again of Eq. (II-15) in concert with Egs. (I11-19).
Now we require the Gr2en's functions for z <o, z < z’. In this

regime we have

o in < > ’ _AE.
gxx(k"wlzz ) W EX (k"w‘Z) EX (k"w|z ) (II 45.1)
. Y e 47 < > r L
gyy(k,|w|zz ) m Ey (k||w|z) Ey (k||w|z ) (11-45b)
and
4 < >
Bzx(k“w‘ZZ') = m E, (kywl|z) E, (k"w|z') ’ (11-45c)
where
k ik.,z
< 2 2
E, (kyw|z) = - % © (11-46a)
ik,z
E; (cqwlz) = e : (11-46b)
and
ik,z
ES (kywlz) = e 2 . (11-46c)

The scattered field in the substrate then assumes the form

- = = ik,z (2) v
E;S)(x,w) - I dzkneik"'x"e 2 6# (k,w (11-47)

where the explicit form of the quantities ezz)(ﬁu,w) is

WP (e,-1)
el?) @y, 0 = + — £ (w,a), K (11-48a)
(21 ¢
2 2
ki k k
X x & E;(k"wld) - __L—i E>(k||w|d) )

Ky Wy (ky,w) W, (ky,wkj
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a?(e -61)

2 >
‘ Kk E- (kjw|o)

. S E(O)(u»o)éz(ﬁu) . ) EyE (kyw|o) )
(2m)°c ( kjWy (ky,w) knW (ky,w }
e)(, )(l?nw) = wj;; :) (o)(w,d)cl(k") —21’- (11-48b)
e - g
+ :éésyig—l (o)(uuo)zz(k") -—7¥

E;(k"wlo) E>(k||w|o))

K
2
KWy Ky, @) W, k), ‘

Ple.-1) . k_E (kyw|d)
(2) - g = _ 1 . (o) - xx VR
(ky,w) Z;;;g;g- E™ (w,d)E, (kyp) kyWy(ky,w
(11-48c)
03(62-61) kxE:(k"w|°)

(0) o
2m°c B (w o)ty (k) kyWy(ky,w

In reference (5), it was argued that in the limit that the

mean free path of the surface plasmon is short compared to the

linear size of the region of the surface illuminated by the incident

beam, then the dominant contribution to the energy absorption by

the substrate comes from the energy flow in the direction normal

to the surface, This rate is equal to LxLy (Sz) , where again

z:uo—




Lxl‘y is the area of the surface illuminated by the incident beam.
It is straightforward to compute this quantity, and divide it

by the energy/unit time that strikes the surface to obtain the
fraction f(z) of the incident energy absorbed within the substrate.

When this is done, we find the following expression:

(2) w 1 2
4 - d“k |Re(k,) |
rc |ds(o,<.u)|2 f Z

2 2
o2 Ik 17y + |k
x {cos“p, —5
W

2

2! o 2 2 o

anm Lt e e @
p

+ 26162Re([€;-1][€2-€1] e;(o,w)ep(k",aoglz(k"))

2 2 2 -
+ 85|€5m€ | |€p(k||,w)| € 59 (ku)] (11-49)
2 r
2 w 1 2 2 2 =
+ sin“p =5 n|67 |€,~1|°]e o, w) | g, (k)
S c Ids(kll.)w)l tl 1 S g 11

+ 26162Re([€;-1][€2-€1] e:(o,w)es(ku,aﬂglz(ﬁn))

)

20 2 2
82y € 121 €, (e 1 26, (R ‘

+

In Eq. (1I-49), we have introduced the yuantities

k

€ (kjw) = cos(k,d) - i E? sin(k,d) (11-50)

Ep(k.w) = cos(k,d) - i ek, sin(k,d) . (11-51)
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I1I. Numerical Calculations

! In this section, we present the results of a set of numerical
calculations of the change in reflectivity of the structure, in
the presence of surface roughness.

To carry out these calculations, we require values of the com-
plex dielectric constant El of the overlayer, and the complex
dielectric constant 62 of the substrate. We have chosen to carry
out the calculations for aluminum metal overcoated with an oxide
film. For the dielectric constant of the overlayer, we have
employed the dielectric constant of A4,203 films reported by Arakawa

(10) This data shows that the dielectric constant

and Williams .,
of Aczo3 is real below photon energies of o~ 8 eV, and absorption
sets in for photon energies higher than this value. For the dielectric
constant 62 of the substrate, we have employed the values for
aluminum reported by Ehrenreich, Philipp and Segall.(ll)
We also require values for the correlation functions gll(ﬁ),
gzz(ﬂu) and glz(ﬁ). We shall restrict our attention to the four
model situations depicted in Figure (1). In each case, o simple
relation exists between the three correlation functions, so we
only need specify one of them to proceed. The relations are as
follows:

(i) The replicating film model (Figure 1(a)).

Here we have Cl(x,y) = (2(x,y) everywhere so that

gu(ﬁn) = gzz(ﬁu) e glz(ﬁn) (I11-1)

and also
1= 6, - (111-2)
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(11)

(i11)

(iv)

The non-uniform film model (Figure 1(b)).

Here we have (l(x,y) = - Cl(xvY) everywhere. Then

Bll(ﬂn) = gzz(iu) = - ng(E") (111-3)
and again
61 & 62 g (111-4)
The random roughness model (Figure 1(c)).
In this model, we presume that the roughness on
the vacuum-oxide interface is uncorrelated with that

on the oxide~substrate interface. This means that
Klz(ﬂu) =0 , (111-5)

while gll(ﬁn) and gzz(ﬂn) bear no simple relation to

each other, in general. For simplicity, however, we

shall choose

Sll(ﬁn) - gzz(zu) and (111-6)

for this model, while the condition in Eq. (IV-5) holds
also,

The rough oxide layer model. We presvme the oxide-sub-
strate interface is perfectly smooth, while the interface
between the oxide film and the vacuum is rough. This
means that cz(x,y) = o0 everywhere, so we have the
conditions

€0 (ki) = gy, (K)) = o (111-8)
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Each of the four models described above requires knowledge
of one correlation function gll(E"), and the remaining correlation
functions may be obtained from it. As in our earlier calculations,

we choose a gaussian far gll(ﬁu):
‘II(R") - ﬂa2exp[-} azkﬁj ; (I1I-10)

The parameter a is the transverse correlation length. It is a
measure of the average distance between neighboring peaks on the
rough surface.

To begin, we calculate the change in reflectivity for a rough
surface of pure aluminum, with no oxide overlayer present. While
we presented similar calculations in our earlier work, in the pre-
sent calculation we have chosen a value for the transverse correla-
tion length which provides a rough fit to the data reported by

Endriz and Spicer.(12)

These authors have completed an extensive
series of experimental studies of the effect of roughness on the
reflectivity of aluminum in the ultra violet.

In their paper, Endriz and Spicer have also provided detailed
fits to their data. However, in their fitting procedure, they

(13)
employed theoretical expressions which have appeared in the literature,

(5), (14)

but which are in error. In our present calculations, we
have not attempted to obtain the kind of detailed quantitative fit
to the data attempred by Endriz and Spicer. Our interest here is
in a calculation which provides a reasonable qualitative fit,

We find that if we choose the transverse correlation length

a = 200X, we obtain results rather similar to th» e:perimental data.

In Figure (3), we present our results, for the case where the root
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mean square height of the roughness (the parameter §) is chosen

to be 12A. The dominant contribution to the roughness-induced

change in reflectivity comes from roughness induced coupling to

the surface plasmon. In aluminum, the surface plasmon energy is

10.6 eV, and one sees that the minimum in the dip in the reflectivity
occurs near, but below this energy.

We would like to comment on one feature of our calculation,
for pure aluminum. In the literature, it is frequently presumed(12)’(15)
that for frequencies above the surface plasmon energy, there is no
roughness-induced absorption by the substrate, and as a consequence
the roughness-induced change in reflectivity has its origin entirely
in the scattering of the incident light away from the specular
direction. As we pointed out earlier,(S) since the imaginary part
of the dielectric constant of the substiate is non-zero, there is
roughness-induced absorption present at all frequencies, even above
the surface plasmon frequency. For the parameters chosen to describe
pure aluminum, even at 12eV we find the dominant contribution to
the roughness induced change in reflectivity comes not from rough-
ness induced-scattering away from the specular direction, but rather
from absorpiion in the substirate. In the calculations reported
in the paper by Endriz and Spicer, the roughness induced scattering
1 rate was found to be considerably larger than that we calculate
here. These authors used a considerably larger value of the correla-
tion .ength (~ 1000i) than we have. We find that for larger values

of the correlation length, our calculated scattering rate increases

appreciably, but we can no longer obtain a reasonable fit to the

reflectivity change produced by roughness at lower energies where

the surface plasmon-induced dip occurs.
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In Figure (4), we present our calculations of the roughness-
inducvd change in reflectivity for the replicating film model
described above. One sees that as the thickness of the oxide
layer increases, the rellectivity dip shifts toward the visible.
The reason for the shift is that the presence of the oxide layer

(16) ;.

modifies the dispersion relation of the surface plasmon.
particular, for a metal with bulk plasma frequency ub, in the limit
that the wave vector k; - o, the surface plasmon frequency for a
metallic substrate overcoated with a dielectric layer with dielectric
constant € approaches the value u:D/(1+€)é rather than the value
ub/'Vf' associated with the metal-vi.cuum interface. We would then
expect that for large values of the overlayer thickness d, the re-
flectivity dip to shift downward in frequency to lie just below
“b/(1+€)§' If we choose € > 4 as a typical value for A{,0, in the
frequency range of interest, then ub/(1+€)% = 6.7eV. Thus, by the
time the thickness of the oxide layer reaches 100i, the calculations
show that the reflectivity dip lies near this asymptotic value.

Note that for the replicating film model, the magnitude of the
dip is not affected by the presence of the overlayer in any dramatic
manner,

In Figure (5), we present calculations of the roughness-induced
change in reflectivity for the non-uniform film model described
earlier, and illustrated in Figure 1(b). While the position of the
minimum in the reflectivity for each value of the oxide thickness
coincides quite closely with the minima displayed in Figure (4)
for the replicating film model, the most striking feature of the

results in Figure (5) is the very substantial enhancement of the
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strength of the coupling between the light and the surface plasmon.

" |

Note that in the calculations illustrated in Figure (5), we have
reduced the rms height of the roughness on each interface from
the value 124 used in Figure (3) and Figure (4) to the smaller
val = of 6A. Also, note the difference in the scale used on the
ordinate in Figure (4) and Figure (5).

At this point, we may appreciate that the position of the re-
flectivity minimum is controlled simply by the film thickness,
but the strength of the interaction between the incident wave and
the surface plasmon is a very sensitive function of the nature of
the correlation between the surface roughness on the oxide-vacuum
interface, and that on the oxide-substrate interface. The reason

for this is the following, if we compare the results in Figure (4)

and Figure (5). When (l(x,y) = - (2(x,y), as in the non-uniform
film model, the scattered electromagnetic wave from the oxide-
vacuum interface interferes constructively within the oxide film
with that which comes from the oxide-substrate interface. This
greatly enhances the coupling between the incident radiation and
the surface plasmoa, Note that in Figure (5), coupling to the sur-
face plasmon is strongest when d = 20i. On the same curve, one
sees an appreciable change in reflectivity above 9eV, well above

the surface plasmon-induced reflectivity dip. The large roughness

induced change in the reflectivity above 9eV comes from energy
- dissipation within the oxide layer; recall that one is past the
absorption edge of the oxide film in this energy range. The con- k
structive interference which produces strong conpling to thc surface i

plasmon thus also leads to considerable absorption within the oxide

film in the energy region above its absorption edge. We shall see
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that in the random roughness model, where there is no correlation
between the roughness on each interface (and hence no constructive
interference of the type jus: described), in the presence of the
oxide overlayer, the roughness induced coupling of the incident
radiation to the surface plasmon is still considerably enhanced

over the value for the pure aluminum surface, although the magnitude
of the enhancement is smaller than for the non-uniform film model.
This means that in the replicating film model, the two scattered
fields evidently interferc destructively, and the enhancement effect
provided by the oxide film is suppressed as a consequence,

In Figure (6), we present the results of our calculations for
the random roughness model (Figure 1(c)). Again the position of
the minimum in the change in reflectivity occurs at the same photon
energy as for the replicating film model. The strength of coupling
between the incident radiation and the surface plasmon is signifi-
cantly larger than is the case for the pure aluminum surface, al-
though the enhancement factor is considerably smaller in each case
than for the non-uniform film model in Figure (5).

In Figure (7), we display the results of the calculations for
the rough oxide layer model. As remarked earlier, we assume here
that the oxide-substrate interface is perfectly smooth, but roughness
is present on the oxide-~vacuum interface. For small values of the
oxide layer thickness, the interaction between the incident radiation
and the surface plasmon is enhanced, as in the other two examples
where destructive interference does not occur between the scattered
fields generated by the pair of rough interfaces. However, as the

oxide layer thickness increases, the strength of the effective
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coupling eventually begins to decrease. Quite clearly this occurs
because the fields associated with the surface plasmon are localized
to the inner interface, and as the oxide layer thickness increases,
the rough surface responsivle for the reflectivity dip moves suffi-
ciently far from the inner interface to cut off the coupling be-
tween the surface plasmons and the incident radiation.

With the results of the above four cases in hand, we make
some remarks about the experimental data.

Feuerbache~ and Steinman ‘1%

have studied roughness induced
reflectivity dips for aluminum films, and also for roughened films
overcoated with 50i of LiF. The position of the reflectivity
minimum of the roughened aluminum film overcoated with 50A of LiF
agrees quite well with the calculations presented above. (Of
course, our calculations were carried out for aluminum overcoated
with aluminum oxide, but in the spectral regime of interest, both

LiF and AL2 O3 are transparent, and their dielectric constants do

not differ greatly.) If one examines the magnitude of the reflectivity

dip they observe, then for the roughened film A RMAX

for the overcoated film, A‘RMAX ~ 0.45. Thus, while the overcoating

~ 0.25, while

procedure shifts the reflectivity minimum toward the visible, it
does not greatly affect the strength of the roughness-induced
coupling of the incident radiatior to the surface plasmon. This
suggests that the LiF overlayer has roughness on its outer surface
which tracks rather closely that on the LiF-substrate interface, as
in our replicating film model of Figure 1(a).

(17)

Stanford and Bennett have studied the effect of overcoating

& roughened Ag surface with films of A{, O; roughly 250% thick.
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They present several measurements in this paper. For a supersmooth

uncoated Ag surface, they find a smooth variation of the reflectivity,

with no sign of a dip characteristic of roughness induced coupling

to surface plasmons. For an uncoated surface they characterize

as "slightly rough'", the measured reflectivity tracks that of the

supersmooth surface, although a clear hint of a surface plasmon

dip is present. The surface plasmon dip appears as a clear feature

in data on a surface they characterize as 'relatively rough.” When

the slightly rough surface is overcoated with AL2 03, a very large

pronounced dip appears. The reflectivity change, only barely

visible for the uncoated surface, assumes a maximum of a 0.50 for

the overcoated. While these measurements are carried out on arather

different substrate-overlayer system than that considered here

(and also in a different wavclength regime), this data provides a

clear example of the behavior illustrated in Figure (5) and Figure (6),

where the overcoating produces an enormous enhancement of the rough-

ness induced coupling of the incident radiation to the surface plasmon.
The calculations in Figure (7) suggest that if a supersmooth

aluminum surface is overcoated with a dielectric, then if the

dielectric layer is sufficiently thick, the reflectivity of the

structure becomes relatively insensitive to the presence of rough-

ness on the outer surface of the overlayer. However, it must be

kept in mind that as the thickness of the oxide layer increases,

the reflectivity of the structure drops substantially in the ultra

violet even if both interfaces are perfectly smooth, as Ehrenrich

(18)

has pointed out recently. We illustirate this in Figure (8),
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where we present the reflectivity for aluminum overcoated with an
oxide layer of uniform thickness, for the case where both inter-
faces are perfectly smooth, The dot-dashed curve is the data of
Banning, L) which shows a decrease in reflectivity at large photon
energies of the sort expected for a surface overcoated with an
oxide film, Indeed, the data is fit reasonably by the curve for

d = 205, for photon energies above 9eV, It is tempting to suggest
that the measured reflectivity drops below the theoretical curve in
the region from 7 to 9 eV because of roughness induced coupling to

surface plasmons, However, it is difficult to see how superposition

of two distinct mechanisms could produce a curve as smooth and fea-

tureless as the data of Jsanning.




APPENDIX: CONSTRUCTION OF THE GREEN'S FUNCTIONS

FOR THE ELECTROMAGNETIC WAVE EQUATION

In Section II of the paper, we introduced a set of Green's

functions D“v(;,g’;w) that satisfy the differential equations

2

2
[A) d 2 =y,
E{? Eo(z,w)bl,“ - —a-x—l'ax—“ + 6A“V )DW(X,Xl,w)
’ (A-1)

= —0--0 ?
47 blub(x x")

along with the outgoing wave boundary conditions appropriate to
the present scattering problem. In Eq. (A-1), the dielectric
function Eo(z,ub is given by Ea. (11-6).

In an Appendix of our preceding paper(S), we derived the form
of these Green's functions for the semi-infinite dielectric, which

corresponds to the limit d - o in the present gcecmetry. In our

preceding paper, we constructed the Green's functions by directly

solving the differential equation Eg. (A-1). This procedure becomes

most cumbersome for the present geometry. We present here a much
more compact method of constructing the Green's functions,
As in the text, we write
2

e - - !
(;,;';uﬂ | d7ky elku-(xn‘xn) d“v(knuﬂzz') (A-2)

D
W (211)2

s and we note that one may write

2 .- - - !
6(x-X"') = a(z-z')/i’—‘—‘—"— eikn® (Xy=Xp) (A-3)

(2m?
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With these expressions, one may readily derive a set of one
dimensional, coupled differential equations for the functions
dw(ﬁnw!zz'). These equations simplify considerably if we perform
& coordinate rotation which aligns the X axis with the direction of

i.u. This is achieved by the action of the matrix

kx ky o
s &) = k_l..' -k, k, o© (A-4)
o o k g

We introduce a new set of functions gulu,(k"wlzZu) related to
d“(k“wlzz’) by the rotation just described:

dw(f(."w|zz') =2 g

STy “:v:(knwlzz') S“:V(Rn) Sva(ku) (A-5)

It is a straightforward matter to consiruct the equations

obeyed by the functions gw(k"w|zz'). These equations read

2
[eo(z,w) Q; - k|2| + —(17] g.. (kyw|zz® = 41 6(z-2') , (A-6)
c dz yy
w2 d2
[Eo(z,w) = + _T:I gxx(k"w]zz )
C dz
(A-7)
dg,. (kjw|zz’)
- 1k dzzx =496 (z-z')
d ’ w2 2 ’
~1k| 37 B, (kyw|zz’) + [Eo(z,w) " - k"] 8, (kywlzz’) = 0 , (A-8)
2 2

d e

[Go(z,w) f’g + —2] gxz(k"w|zz') - ikg; gzz(k"w!zz') =0 (A-9)

dz




-1ku % gXZ’. (k"w|zz ')

(A-10)

2
+[€°(Z,w) cﬂz - k%] gzz(k||w|zz') = 496 (z-2")

The remaining functions (gxy, gyx, gyx, gzy) obey homogeneous

equations, and thus vanish identically,

We begin with gyy(k"w|zz'), since Eq. (A-6) is uncoupled with
the remaining four equations. We first observe that for a medium
characterized by the z dependent dielectric constant Go(z,ab,

Maxwell's equations yield solutions of the form

EGqw|X) = ¥ Ey(k.,w|z)e“‘"" , (A-11)
. where Ey(kuw|z) obeys the homogeneous version of Eq. (A-6):
2 2
w 2 d
[Eo(z,w) :2- - ki + d—z-g] Ey(k"w|z) =0 . (A-12)

There are two linearly independent solutions of the differential

equation Eq. (A~12). We denote the two solutions by E;(k"w|z),

and E;(k"w|z), where "~ choose the functions to satisfy the boundary
conditions
> +ikoz
lim E_ (kyw|z) = e (A-13)
z -+ ¥
and
< +ikzz
lim Ey(k"aﬂz) =€ s (A-14)

z—.-m

where we define the quantities

of

ky o = (:g € g kﬁ) , In(k) ) <o (A-15)
s = ((w+ in)? _ 2 TR 5 B oY)
| o= T - H) |, may >
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In Eq. (A~15), we presume € and €y have a positive, non-zero
imaginary part, and for the proper square root to be chosen for ko,
we have added a positive imaginary infinitesimal in to the frequency.

The limit 7 - o is always to be taken in Eq. (A-16).

The Green's function gyy(kuadzz') is to be constructed so that

Eq. (II-11) describes a scattered wave which radiates into the

vacuum for z > d, and one that attenuates in the region z < o.

This Green's function is simply expressed in terms of E;(k“wlz)

and E;(kuw|z) as follows: (20)

' 4 > < ’ o !

Byy (kuw|z2") = LRSI {Ey(k"“’|z)ny(k"w|z Yol FR=EY)
(A-15)
+ E;(k"wlz)E;(kuaﬂZ') 0 (Z'-Z)} ’

where

3E, (kjw|z) _ 3E; (kyw|z)
W (ky,w) = TZL' Ey(k"wlz) = Tz! Ey(kliwlz) ’ (A-16)

(20)

is the Wronskian, a quantity independent of z.

The form given in Eq. (A-15) is valid for any function

€°(z,w). For the particular geometry of concern here, where

Go(z,aD is given by Eq. (II-6), it is a straightforward exercise

to construct these two functions. One has

+1ik =z
e ° , 2z >d
ik,z -ik,z
E;(k"wlz) = Af*)e LI Af*)e 1 ,0<z<d (A-17)
ik2z -ik,z

+ BWe 2 z<o

i
:
|
I Bil)e
k




E;(knwlz) = C(*)e 2 & C(*)e 1 , 0<z<d (A-18)

wher2 in these expressions, with ¢ = + or - ,
A(*) eikod ko -iokld i
0 '_f_(]+°k_1>e » (BE2E)
ik _d
k k
() _e ° o e (ko L\ o =
Bo -—1r—-[(1 +0C EI)COS(kld) i RI + 0 —;) 51n(k1d)] (A-20)
¢tV -3 (1+0 53) (A-21)
o k,y
ik d
k k k
(1) _e ° 2 2 L s
Dt =S [(1+0 §;>cos(kld) + i QEI + o E;) sin(k;d) |, (4-22)

and the Wronskian is given by

ikod

e 2 : :
W (ky,0) = - [ (kf-kok ) sin(k ) + 1(ko-k2)klcos(k1d)] (A-23)

The functions gxx(k"wlzz') and gzx(k"wlzz') obey the coupled
equations Eq. (A-7) and Eq. (A-8). These functions may be
constructed by generalizing the method used to obtain gyy(k“wlzz’).

We begin by noting that if we seek a solution of Maxwell's

equations in the form
Ekyuw|x) = {ﬁ E_(kjw|z) + z Ez(k"aﬂz)} elknx (A-24)

then the functions E_(kjw|z) and E,(kjw|z) satisfy the coupled

equations




{

w % + dd? ] B kiwlz) -1k 5 B, (kjal2) = o (A-25)
d w2 2 %
-1 ky 5z E, (kjulz) + [Go(z.w) = - kuJ E,(kyw|z) = o . (A-26)
¢

For the geometry under consideration here, where EO(Z,uD is
plecewise constant, we must have v.E = o everywhere except at the
singular points z = 0o and z = d. This requires (except at the
two points)

a:— Ez(k"w'z) + ik Ex(k"w|z) = 0 : (A-27)

Thus, if we are given Ez(k"w|z), then from Eq. (A-27) we may com-

to E, (kyw|z) as a consequence.

There are two linearly independent sets of solutions of the
system of equations from Eq. (A~-25) through Eq. (A-27), just as
when we examined Eq. (A~12). We append the superscript > to the
set E;(k"wlz), E:(k"uﬂz) for which E;(k"wlz) obeys the boundary

condition +ik z

lim E;(k"w|z) =e °©° , (A~-28)
2 - 4+ @

and we append the superscript < to the set for which

£ +ikzz
lim E (kjw|z) = e . (A-29)

Z ~ -

Before we proceed, we display the explicit form of the fields

> < »
Ex’z(k"w|z) and Ex,z(kuw|z). One has

pute Ex(k"wlz) in each regime of interest. We confine our attention

B ki s SR oo s e N T R R gy
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p E, (kyw|z) = %
i

k ik,z -ik.,z
B B W0 P e 147 _
B>(k“w|z) ¥ [A+ e Al e jro<z<d (A-31)
k ik,2z -ik,z
E% [Bi“) e 2 -gle 2 z <o
and
ik =z -ik z
Di“) ° 4 Df") e ° z>d
ik,z -ik,z
E; (kyw|2) { ci AP e 1 [ ocz<d (A-32)
ik,z
¢ 2 z <o
K ik 2z -ik 2z
e i% [Di") 8 Df') e ] , z>d
k ik,z )y =k,2z
ES(kywlz) = - ﬁ [ci DT e H] 0 <z <d (a-33)
k ik,2z
2 2
-He ’ 2 <O

In these expressions, one has, with ¢ = + or -,

k_. ik _d -ick,d
A((’u) -1 (-E-II+OT<-CI))C oy X (A-34)

e e e

121

N



B( 1 - eikod[(l; + 0 ;2>cos(k1d)-i (;Qil + 0 —El—)sin(kld)] (A-35)

o €2 2 1€2 €1ko
€ Kk
Wy . (2 2 Y
c, 32+ 0 22 (A-36)
1 1
ik d
Kk Kk K, €
) _e ° 2 . 2 182y . B
D+ [(62 + 0 E;)cos(kld, + 1(€1~EI o ko€1>sm(k1d)] (A=-37)

Given the fields defined in Eq. (A-30) - Eq. (A-I , we seek

solutions of Eq. (A-7) and Eq. (A-8) in the form

Byy (Kiw|zz ) aﬁ%ﬁiTZJ [E;(knuﬂz) E;(k"aﬂz’) 6 (z-z')

(A-38)
1 + E_(kyw|2) E (wl|z’) 6 (z’-z)]
and
’ 4 - - ,
gzx(kuuﬂzz ) = GFT%FTB)[E;(k"“ﬂz) h;(knaﬂz ) 8 (z=2)
(A-39)

+

E:(kanZ) E:(k||w|2') 8 (z ’-Z)]

Substitution of these forms into Eq. (A-7) and Eq. (A-8) show
that the solution indeed has the form of Eq. (A-38) and Eq. (A-39)
if we choose

W Gey,) = W (k) = W (ky,w) (A-40)

where Wxx(k",w) and sz(k",aﬂ are given by Eq. (A-18), but with
y replaced by x or z,
Explicit calculation shows that for our geometry wxx(k",w) and
Uéz(k",aﬂ are only piecewise constant, i.e. these functions
are constant everywhere, but experience jump discontinuities

at z = o and z = d. However, the function «wy(ky,w) is truly

]
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constant, with a value everywhere given by

a?k ik d k
(] o) 2
L (ky,w = —3 3 e [(62- E-) cos(kld)
ic ku o] (A-41)
k €,k
2 271\ .
+ 1(€1 k—l' - -Q?Z)S:u‘(kld)] A

Thus, we have left only the two functions gzz(k"wlzz') and
gxz(k“uﬂzz'). If we attempt to search for a solution of Eq. (A-9)
and Eq. (A-10) by constructing the direct analogues of Eq. (A-38)
and Eq. (A-39), we shall find the resulting functions fail to satisfy
Eq. (A-9) and Eq. (A-10). We recall that when we explicitly con-
structed the Green's functions in reference (5), we fourd that g,,
contained a term directly proportional to §(z-z’). Thus, we look

for a solution of the form

49 > <
By, (kyw|zz’) = PECTI™) [Ex(k"w|z)Ez(k“wIZ') 8 (z-2')

(A-42)
+ B (kyw|2)E, (kyw|z ) 6 (z '-z)]
for Byz? but for B,z Ve take
g,, (kiwlzz’) = T(z")6(z-2")
+ 774,(1?_",67 [E) (yw|2)ES (kw|z”) 8 (2-2) (A-43)

+ Ej(w|2)E, (alz) 8 (2'-2) ] .

This Jlorm indeed solves the differential equation with W;(k,,w)

given by Eq. (A-40) and Eq. (A-41) provided we choose

2
'Zz') = "™ — . (A-44)
W €O(Z',w)
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We now have the explicit form for all the Green's functions

required for the calculation of the scattered fields in each

region of interest.

p——
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