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1.  INTRODUCTION 
V /v/v/wwwv 

Evidence is accumulating that the distribution of ocean internal 

wave energy among space-time scales may follow a universal law. Garrett 

and Munk (1972. 1975) have proposed tentative forms for this distribution 

that agree fairly well with a variety of spatial and temporal measure- 

ments taken in several locations.  It is t'»mp( ing to ascribe such a uni- 

versal distribution, if it indeed exists, to a saturation phenotranon, in 

wuich energy in excess of the saturated value at a given wavelength and 

frequency is quickly dissipat&d through nonlinear exchange or turbulent 

breaking. 

In another paper, Garratt and Munk (1972 A) explore this idea 

further. They argue that a saturated distribution will be marginally 

stable, experiencing instabilities only occasionally to balance the slow 

input of energy. Borrowing the inverse Richardson number, Ri , from 

the theory of parallel stratified flew as a measure of instability, they 

find that the values implied by their distribution are of an order that 

would indeed suggest marginal stability. 

Suppose we take this idea a step further:  If the limiting distri- 

bution is determined by physical saturation such that Ri , or some other 

suitable measure of excitation, attains a uniform, universal statistical 

level, we ought to be able to use this information to deduce a priori 

the. form of the distribution.  In this paper, such a saturation hypo- 

thesis is proposed and its consequences worked out in detail. 

For reasons that will be explained, a modified measure of excita- 

tion better suited to internal waves, tht; vortex intensity,  is introduced 

in place of the traditional Ri" .  The vortex intensity resembles Ri 

except that total vor^icity is substituted for velocity shear. As will 

be seen, the assumption of a statistically uniform level of excitation 

throughout the thermocline leads to an energy distribution that is 

physically reasonable and not in obvious contradiction to existing spatial 

and temporal measurements, yet quite different in cerl ^n respects from 

the distribution of Garrett and Munk. The major difi^rence is in the 
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I 
partitioning of energy among the normal modes or vertical wavenumbers, 

and this difference is not easily distinguishable observationally except 

through cross-spectral analysis of multi-depth data.  Curiously, the 

model of uniform vortex intensity developed here yields exact analytic 

preiictions of spatial autospectra and vertical coherence, independent 

of the density-stratification profile, and on this account the model is 

very directly testable. 

The treatment given here assumes no steady shear current and no 

rotatirn (no inertial waves).  One horizontal dimension, x, is used for 

notational convenience, but the generalization to two dimensions is 

straightforward. 
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LINEARIZED NORMAL MODE EQUATIONS 

The field c(x,z,t) of vertical fluid displacement is decomposed 

in the usual way into normal-mode oscillations of horizontal wavenumber 

k, phase speed c, and frequency w - ck, 

Ux.z.t) - 2a
m(
k) *m(z)exp[ik(x ^ cmt)L   (1) 

k,m 

the eigenfunctions (|) satisfying m 

2 

—-^ + (c Z N2(z) - O 4 = 0 
,2m a 
dz 

(2) 

and vanishing at the top and bottom of the water column (Phillips 1966, 

Ch. 5).  It is convenient to regard k as an arbitrary but fixed separa- 
«2 

tion parameter on which the discrete eigenvalues cm and eigenfunctions 

A depend; the eigenfunctions then make up an orthogonal and complete 
m 
set. We use the normalizing convention 

; 
A N'A dz * 6  , Tm  n     mn 

(3) 

according to which the completeness relation is symbolically 

N2(z) V* <k (z)4 (z') - «(z-z1) 
j^^     m   m 

(A) 

a-1 

Tht associated fields of horizontal velocity u and vertical velocity v 

are, for each mode. 



m^mm^ m  

U      "±80*' 
i.i m m m 

v-Tlakc^», f5) m m      mm ^  ' 

where ♦'   is shorthand fcr d(|i/dz and where the  factor exp[ik(x^c  t)] has 
m 

been absorbed into the mode amplitude a for brevity. 
m ' 

We aasnw   .hat the internal wave fields found in nature are homo- 

geneous and random so that their statistical properties are adequately 
2 

described by the me- .-square mode amplitudes, <|a | >, or more precisely 

by spectral densities A defined over all wavenumbers. 
"to 

<|a  2>-*-A (k)dk. m      "^TII 

Our aim is to determine these amplitude spectra, on the one hand from 

a principle of saturation, and on the other hand from empirical meas- 

urements of associated displacement, current, and energy spectra to which 

the amplitude spectra are uniquely related. 

For example, the total wave energy in a water column of unit sur- 

face area, at a given k. 

i/[u 2   2   2 2 
+ v + N c ]dz, (6) 

becomes with the aid of Equations (1) through (5) 

• £ l«J2 o 
m 

so that the spectral density of energy in each node is 

^m(k) -P An(k)- W 



VORTEX AMPLITUDE AND INTENSITY 

To treat the topic of internal wave excitation as generally as 

possible, we need an absolute dlaensionless measure of local amplitude 

that plays a role for internal waves analogous to that of slope for sur- 

face gravity waves.  One candidate is the ratio of current shear to local 

Väisälä-Brunt frequency. u'/NU). whose square, the Inverse Richardson 

number Ri" , is the measure of intensity used by Garrett and Munk to 

assess tne degree of saturation of their proposed energy distribution 

(1972 A) and earlier by Phillips (1966. Ch. 5) to estimate an upper 

limit to the possible excitation of the first (interface) mode.  This 

normalized amplitude has a serious defect when applied to waves in a 

vertical continuum, as can be seen in its normal »ode expansion via 

Eqs. (2) and (5). shown here at a single wavenumber k for simplicity: 

u,(x.r.t)/N(Z) - N"
1(z) a c (p" 

m m o 

-N-^Z) ]r.mcjk2-c;;V(z)]v (9) 

This amplitude becomes infinite in regions of vanishing stratification 

(except at k - 0). regions where the local flow is stable potential flow. 

The infinities arise because of the k2 terms in the above expression, a 

clue that the shear amplitude, borrowed from stability theory for parallel 

shear flow, has not been properly adapted to flows having horizontal 

periodicity. 

This difficulty vanishes when the shear u' is replaced by total 

wave vorticity 

3x  3z 
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to define a vortex amplitude 
1 

c H n/N; (10) 

the expansion of this quantity is 

e(x,z,t) - N'1(r) Ea c (k2< -f"] 
mm    mm 

- N(Z) V*a c'S , 
/ *   m m m (U) 

showing that the amplitude is well defined regardless of the detailed 

shape of the stratification profile.  The generalized definition of 

local intensity is then 

e (x.z.t) - n2/N2, (12) 

•1 . 
which reduces to Ri"  in the long-wave limit, IcO. 

Equation (11) above indicates that the vortex amplitude and inten- 

sity are confined to stratified layers even though part of the kinetic 

energy may reside elsewhere in unstratified regions.  Intuitively, the 

question of instability comes down to the mutual interaction of vortex 

layers, an interaction in which neighboring unstratified flow can be 

view.:a as playing a more or less passive role.  On this basis, the vor- 

tex intensity would seem to be a plausible measure of the local tendency 

to Instability. 

As a general descriptor of internal wave excitation, the vortex 

intensity has another very desirable property: 



Vortex intensity is a conserved dencity' 

Consider a system of internal waves, again at fixed k for simpli- 

city, with an arbitrary, time-dependent vertical structure. We can define 
2 

a total excitation I per unit surface area by integrating e over the 

vertical column. 

I = /e2dz. (13) 

a definition analogous to that for total energy, with e replacing dis- 

placement and velocity.  Squaring Eq. (11), we get 

1 - /y* a*a c"1c"1* N2(> Jz, 
I £^   m n m n Tm  n 

(14) 

and by the orthogonality rule of Eq. (3) we find 

■E t ■ ^  la I  c  ■ const: m'  m (15) 

In the limit of linearized dynamics, the excitation I belonging to a 

group of waves remains unchanged as the group propagates vertically 

through different, possibly dissimilar, parts of the thermocline. 

The excitation has dimensions of length denoting both the 

level of intensity and the total depth of the water column involved. 

Equation (13) suggests that the excitation is partitioned among the modes 

according to 

I  I2 -2 1 m1  m (16) 

which together with Eq. (7) implies that the mode energy and excitation 

are related by 

  "-•— 



mimm 

E - pc2 I . (17) 
m    m ra 

PROPOSED ENERGY PARTITIONING 

We POW pass to a statistical description and replace a given sys- 

tem of waves by an ensemble of systems in which the mode amplitudes are 

random in phase and amplitude.  The ensemble will be stationary in time 

(at least with respect to mean squares and products such as energy, 

excitation, and space-time covariances) if the mode amplitudes are uncor- 

related: 

<a* a > = <la I2> 6  . (18) 
m n      m1   mn 

Defined  thus  in terms of mean square  amplitudes,   the ensemble  is  formally 

in equilibrium under  linearized dynamics.     This should be distinguished 

from physical equilibrium,  which  is attained when the mean  square  ampli- 

tudes  slowly adjust themselves to bring the generation mechanisms,   non- 

linear  energy exchange among modes  and wavenumbers,  and dissipation   into 

balance.     We assume that the time scale for the processes of physical 

equilibrium  is much longer  than  the  oscillation periods u      so  that   tne 
m 

stationary ensemble with linearized dynamics is a useful model of 

equilibrium over many periods. 

Can we bypass the  intervening physics and directly characterize 

the saturated,  "fully aroused"  internal wave field by means of  the vor- 

. ex amplitude?    We have argued  that  the vortex intensity is a plausible 

measure of local excitation relative  to instability,  and have sliown that 

it  is  the density of an invariant,   the so-called excitation  1.     A rea- 

sonable guess is that in a saturated  field,   the excitation is uniformly 

distributed in depth and among length scales.    We make the following 
hypothesis: 

8 
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At a given wavenmberj  the exaltation is partitioned unifowly among the 

modes. 

This proposed distribution implies the following relation among 

modal mean-square amplitudes and energies: 

<I > - I   , m - 1,2,   ... (19a) m o 

<|aj2> - c* Io. (19b) 

<E > - pel I, (19c) m mo 

where I    is the universal excitation per mode. 

Tote I energy is finite. 

The total mean energy is 

uu 

<E> - pi   V* c2; 
o Z-^   m 

m-1 

(20) 

now c    is a declining function of m (see Figure 1), which in the limit 

of high mode numbers  is not badly approximated by the V<KB values 

-1 1    -1    f c* n x(m - -^ )  x   /N(z)dz. (21) 

2   -2 
Thus c ~ m , and even for infinitely many excited modes, the total 

energy is finite. 

Practically speaking, some sort of mode cutoff is required to keep 

the total excitation from diverging.  Viscosity, if nothing else, will 

-         . . „   
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2 
damp modes of vertical scale h where a) h is lass than the kinematic 

m 
viscosity.  It Is Important to observe nevertheless that the total 

energy, and other properties such as predicted coviriances of displace- 

ment and velocity, will be very weakly dependent on mode cutoff, so that 

for most purposes the cutoff can be ignored. 

The vox ex amplitude ia atatiatically unifom in depth and vertical wave- 

number. 

The two-depth covariance of the random vortex a iplitude field 

e(x,z,t) has a simple form, as deduced from expression (11) via the com- 

pleteness relation: 

<e(x,z,t)e(x,z,,t)> - N2 Y^ <a*a >c"1c"1((. (zU (z') 
£^     m n m n Tm  Tn 
m,n 

I N2 Y% UH («' o   / /m      Ym 

I 6(2-2'). (22) o 

Amplitudes at different deptas are completely uncorrelated, and the field 

e is seen to be spectrally white with respect to vertical wavenumber: 

The vortex amplitudes are in a state of "maximum chaos". 

DISTRIBUTION OVER HORIZONTAL SCALES 

To generalize the foregoing from a particular horizontal wave- 

number to all wavenumbers simultaneously, one merely replaces every mean 

square quantity by its corresponding spectral density.  The f ndamental 

spectrum is then, by hypothesis, the universal excitation spectrum I(k) 

and the related mode-amplitude and energy spectra are 

11 
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K(k)  " c^k)I(k). (23) 

and 

4(k) " P^CWKk). (2A) 

Extending the hypothesis that the excitation is partitioned uniformly 

over all degrees of freedom, we might speculate that I(k) is white or 

what we might call "geophysically white", i.e.. containing a fixed amount 

of excitation per octave, so that I(k) ~ k"1. As Phillips found earlier 

for a hypothesized universal Richardson spectrum, this power law is not 

steep^enough to account for existing observations. A power law closer 

or k  appears to be necessary, as will be shown in the next 
section. 

Therefore, at the outset, we have to agree to leave I(k) somewhat 

arbitrary, applying the uniform excUation principle only to the vertical 

degrees of freedom.  The dimensionality of the candidate universal 

spectrum is then reduced to one. and the spectrum ca S, empirically 

matched to spatial (tow) data at single depths. 

12 
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3.  Some Consequences ot the Proposed Distribution 

A uniformly excited internal-wave field will have certain observ- 

able characteristics that make it easy to distinguish by means of the 

appropriate measurements. As one might guess, the most definitive meas- 

surements will be those capable of directly resolving horizontal wave- 

number, i.e., multi-depth towed measurements, since the proposed distri- 

bution assigns energy over spatial scales.  Temporal data from moored or 

floating multi-depth measurements can provide additional checks, but as 

will be seen, probably cannot by themselves confirm the distributions. 

A striking and unexpected property of the uniformly excited field 

is the existence of simple closed-form predictions, independent of N(z), 

for spatial autospectra and vertical coherence spectra for the quantity 

C, vertical displacement. 

SPATIAL AUTO- AND CROSS-SPECTRA 

The instantaneous values of a random dlsplacemt; C field c can be 

expressed formally as an Integral over wavemnnber of the stochastic 

amplitudes a (k), 
m 

(x,z) = 'V*/am(kHm(z,k)exp[ikx]dk, 

m * 

(25) 

where the amplitudes have spectral densities A (k) and are mutually uncor- 

related at different k and m: 

<a (k)a (k,)> -A (k)ö  ÖCk-k') 
m   n       ^m   mn 

(26) 

It follows that the cross spectrum of t,  at two depths, z and z., is 

given by 

13 
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*i2^ - E^WW (27) 

with the slngle^depth autospectrum 

1 Zl- 
represented by the special case 

£i(k) ■ Zv^X) (28) 

By E,. c«, fol unlfor. excltatloni ^(k) m , ^ ^ ^ 

^(k) * ia) E '-♦.«■^♦.'■i)- (29) 

This is an equation for the (sy^etric) dependence of .  on the two 
arguments z    and z, at each k  Tf „ u ,. 12 

twice with L    2 " 22 fixed and differentiate twice with respect to .^ we get vla Eq  (2) 

_9 

dz 
—        V^ 2 
i hi-i ^ v.<-2><k-C*:2>*.c1). 

and subtractlay k2 times Z 

V"k2) -12 iN2(Z
l) E*-'^'*-*1!* 

m 

" i «(«j-tj). (30) 

u 

_—. ^ 
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Now aince C vanishes at the top and bottom of the water column, the same 

must hold for Z12, so that Eq. (30) has the unique solution 

-1 
Z12(k) - I(k)k sinh kz<exn(-kz>) (31) 

where z<, 2> are the ]esser and greater of the depths z and t,,*      An 

equivalent expression in terms of depth separation Az - z -■ is 

il2(k) ' I IWk'1 exp(-kAz)[l-exp(-2kz<)].       (32) 

Autospeatra 

The displacement autospectra are a one-parameter family 

^(z) - i l<k)k"1Cl-««P(-2kl)] (33) 

directly related to I(k).  The asymptotic limits 

zl(k), k < z 
-1 

~1 

j  k"1 I(k), k > z"1, (34) 

indicate an ..ncrease in negative spectral slope of unity from low to 

high wavenumber, with the transition occurring around k ~ z-1.  The 

spectral densities collapse to a single value for depths greater than 

k , and are proportional to z for depths smaller than k"1.  This behavior 

The form shown is for an effectively infinite bottom depth d, i.e., when 
kd»l.  Otherwise, replace exp(-kz>) by sinh k(d-z>)/sinh kd. 

15 



Is illustrated in Figure 2, for an assumed excitation spectrum of the 

form I(k) ~ k   .The tow specf.a of Charnock (1965), well known 

through their reproduction in  the monograph of Phillips (1966), are 

accounted for nicely by the prediction above (oee Figure 3) if we allow 

ourselves the freedom to  adjust the level and spectral slope (-1.5) of 

I(k).  Of course, this i.i barelv more than a consistency check, but we 

do observe a slope increase at kz ~ 1.0. 

Vertical coherence. 

The two-depth cohererce spectra predicted by Eqs. (31) and (33) 

are 

P12(k) = 1*121 ^1 V 
1/2 

sinh kz 
exp(-kAz) 

s.lnh kz 

1/2 

(35) 

In the low and high wavcnumber limit, the behavior is approximately 

1l/2 . . -1 

P12(k) Ä 

J<*</S)1/2. K<] 

-1 exp(-kAz), k > z  , (36) 

indicating moderately high coherences at low wavenumber when the depths 

are not too different and a rapid decline in coherence around kAz ~ 1. 

The horizontal wavelength for p - 0.5 is about 9(Az).  See Figure 4. 

Transfer spectrum. 

A quantity usually used In other applications, the transfer 

spectrum 

16 
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T12(k) ■Jl2(iy£l(k)i (37) 

has « partlcilarly jl«ple predicted (*rm  ^  is the lesser depth): 

T12(k) - expHcAx). (38) 

The behavior of  the «ilti-depth autospectra and  transfer spectra pre- 

dicted above will Mice a uniforndy excited  internal-wave field easy to 

recognize on the basis of fairly simple analysis of multi-depth towed 

measurementr..     [A towed  thennistor-chain experiment has been conducted 

very recently  (NeWn.   1975)  and.   for the first  time,  data of sufficient 

scope and quality for analysis  in both horizontal and vertical dimensions 
will shortly be available.] 

Treatment of towed measurements 

reore- The spectral densities treated above, which are intended to 

sent distributions over ecalar  wavenumber in two dimensions, are not the 

same as tow spectra obtained by Fourier transform and should not be 

strictly compared.  The expected covariance of isotherm levels at two 

depths z1, z2 and two horizontal positions ^ x2 along the tow. 

C12(x1-x2) = <ax1.z1)c(x2.z2)>, (39) 

is related to the (equivalent one-dimensional) cross-spectral density 

Z12(V  by 

C12 (xi"x2) " 2^JJh2W  exP[ik(x1-x2)cose]dlcde      (40) 

where kcose is the projected periodicity along the tow direction of com- 

punents making an angle 6 with the tow direction-  Thus, 
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C12(xrx2) " f   Z12(k) Jo^lXi^hdk, (41) 

and the proper Inverse relation is the Hankel transform 

Z12(k) - k 

oo 

/ C12WJo (kx)xdx. (42) 

This indicates how true scalar wavenumber densities can be recovered 

from empirical linear covariances, either under the assumption of 

isotropy or after averaging over several tow directions. 

TEMPORAL SPECTRA AND COHERENCES 

The temporal spectrum S(u)) of a quantity or pair of quantities 

can be directly inferred from the spatial spectra S (k) under the assump- 

tion that the modal oscillation frequencies are reasonably well repre- 

sented by the dispersion relations cu (k) predicted by the eigenvalue 

equation (2).  Figure 5 is a representative dispersion plot for the 

sample N(z) profile of Figure 1.  Since the variance or covariance in 

the interval dw is a sum of contributions from all modes in the propor- 

tion 

~ V «<">*•• ^W^m 

where ^(k ) ■ a>, we have 

too» 21 S (k ) 
-m m 

du 

dk 

-1 

(43) 
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K, CYCLES/KM 

Figure 5. Modal Dispersion Frequencies, « (k), for the Profile of Figure 1. These were 

obtained, along with the associated eigenfunctions ^-(k), by numerical 

solution of the eigenvalue equation (2), and used in the sample 

calculations of temporal spectra. 
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For displacement (I.e.. Isopycnal) cross-spectra at .wo depths, the 

appropriate expression Is 

■ 

where c^ Is the modal group speed du^/dk. and where An and f are 

evaluated at k = ^(u,).  fa , modal sum at constant frequency! It seems 

preferable to use the rescaled eigenfunctions v> (z.co) - (c /c )1/2 4 (z k ) 

which comprise an orthonormal set for the time domain, as shown in the 

appendix.  The sum then reads 

m 

" W2]km1i(km)^m(zl)^(z2)- (♦«>) 
■ 

The autospectra and coherence spectra are accordingly 

^(03) ^^k^1 I(km^(Zl). (45) 

and 

/ i/2 

^12(a,) " ^i2(u,>lAzi^)Z2(a))^   • (A6) 

Unlike the spatial spectra, these quantities depend in a subtle way on 

the stratification profile implicitly through k^u). and no general 

formulae are immediately evident. 
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Certain qualitative features can be inferred. At low frequencies 

c  —► const. ■ 

d> ~~^   const. 

—p 
so that if the excitation spectrum has the form of a power law, I ~ k , 

the mode coefficients in the sums (44, 45) behave as 

I c ~ uTP cp+1; 
•»•in m      m 

thus, in the low-frequency limit, the auto- and cross-spectra have a 

power-law dependence with the same slope as the spatial autospectra at 

low wavenumber. Note also that for any appreciable spectral slope, say 

D ~ 1.5-2. the factor cP  diminishes rapidly with mode order, since K m 
c ~ (m-1/2)  , so that the sums would tend to be dominated by the first 
m 
mode. This would suggest that the predicted coherences remain appre- 

ciable. 

For the thermocline of Figure 1, modal eigenfunctions have been 

computed numerically and used to construct displacement spectra and 

coherence spectra corresponding to I(k) ^ k * . These are shown in 

Figure 6. The autospectra resemble some observations in that they show 

the expected slope and -he cutoff at the local N(z); however, because 

of the first-mode domii^nce, .he low-frequency values scale as z rather 

than as N-1 at shallow depth, contradicting the rule derived from the 

WKB approximation. 

The predicted dominance of the first mode in temporal spectra 

means that temporal data are likely to be ineffective in determining 

contributions from modes higher than the first, if the distribution is 

truly uniformly excited.  Thus, temporal data probably cannot confirm 

such a distribution. On the other hand, certain serious departures from 

uniform excitation, such as a "top hat" distribution of the kind used by 

Garrett and Munk; en be detected in temporal data. 
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NORMAL MODES OR EQUIVALENT CONTINUUM? 

Whether one discusses energy partitioning in terms of normal 

modes or an equivalent continuum (a,, k) is partly a matter of indivi- 

dual preference.  Some argue that for energy at large vertical wave- 

numbers, the discrete normal-mode picture is. at best, a nuisaace. and 

at worst, misleading.  To the extent that the effects of shear currents 

are important, those normal-mode components whose phase speed is not 

substantially greater than the velocity shear across the thermocline are 

inaccurately represented.  However, in the vanishing-shear approximation, 

the normal modes are as complete a description as any. and they have the 

advantage of being an orthogonal set of "degrees of freedom." independent 

oscillators whose excitation can be systematically compared.  In retro- 

spect they seem to be essential to a rigorous description of a "uniformly 

excited" field because this field has most of its energy in the lowest 

few modes.  For example, at fixed k the first mode has as much as 75% 

of the total energy, and at fixed H even more. 

What is the equivalent continuum energy density for the uniformly 

excited field? If we define D(u,.k)d<i.dk as the energy in the entire 

vertical water column and in the frequency intervals d^.dk. then D is 

related to E by 
m ' 

D(a) .k) fc» * E (k) m     mm (A7) 

where ^ - ^-.^ is the modal frequency spacing at fixed k.  According 

to the WKB approximation, which is increasingly trustworthy at higher 

mode numbers, the eigenfunctions are determined by 

/ 
N>u) 

(N2(Z)/a)2-1)
1/2 dz Ä (m 1= (48) 
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To estlnate Au> , we can differentiate by m, 

-1/2 

kAuL. 
dz =x IT, 

2 
w 
m w) 

r.>d solving for A«"1, the "density of states" at the frequency w, we get 

1 a (irc^)"1 /N(1-^/N2)"1/2 dz. (A9) 
in 

2 
which, combined with 1 - pcmI, yields 

D(u),k)S PTTV^OO /N(l-ü)2/H2r1/2 dz. (50) 

The continuum density obviously depends on the detailed shape of the 

Vaisäla-Brunt profile, N(z), but if this profile is not pathological, 

the integral in Eq. (50) depends only weakly on co, so that at fixed k, 

D is at least roughly independent of u for frequencies distinctly less 

than the maximum.  Further, D approaches a well-defined limit as w-^O. 

COMPARISON WITH THE DISTRIBUTION OF GARRETT AND MUNK 

For simplicity, we limit the comparison to frequencies u well 

below the maximum and set the inerlial i  quency to zero in the Garrett- 

Munk expression, which allows us to assume that the dispersion curves 

a) (k) are nearly straight lines: 

"LOO " Cn,k» m     m 

zm ot  Tr"1(M - -I)"1 /Ndz, 

E (m - i)"1«:*, (51) 
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and we adjust I(k) ~ k  to predict the same slope value for Isotherm 

spatial and temporal spectra as used by Garrett and Munk. We can then 

compare continuum density, along with equivalent modal energy an^ excita- 

tion.  A third distribution, one in which the energy is partitioned 

equally among the modes, with properties intermediate to the other two, 

has been added to the comparison below for purposes of discussion: 

Uniform 
Excitation 

Energy 
Rquipartltion 

Garrett- 
Munk '72 

D(a),k) k-
3 1.-1 "2 k  h) 

-3 

k2Vk) <-T'"2 const. (■-j) 

k^Ck) const. (m-j) 

^j <J 

Both the equal-energy and Garrett-Munk distributions require a mode 

cutoff j, which limits excitation in the (u),k) plane to the region 

■^D < cAk < (j-^fc. 

Note that both energy and excitation increase with mode number in the 

Garrett-Munk distribution, the latter quantity very rapidly. 

All three   tributions have been properly adjusted to exhibit the 

same autospectra tor both stationary and towed isotherm data.  Fortu- 

nately, they can be expected to predict very different vertical coherences. 

Fov example, compare the spatial cross spectra predicted for the uniform- 

excitation model. 

Z12(k) = ItOOk"
1 sinh k2< exp(-kz>). 
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with those predicted by energy equipartltlon C^OO ■ £(k)): 

m-l 

These latter become very abrupt functions of z^-^ ln the llinit of hi8h 

mode cutoff j, 

i12(k)-^p'
1I(k)M(«1)"

2«(«1-«2), 

suggesting an absence of measurable coherence between any but the nearest 

isotherms.  This comparison is a particular exsmple of how predicted 

coherences diminish with Increasing "modal bandwidth", and indicates how 

the moderate bandwidth of the uniform excitation model could be distin- 

guished from the higher bandwidth of a Garrett-Munk distribution in multi- 

depth data. 
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APPENDIX 

EIGENFUNCTIONS AT CONSTANT u 

Measurements of Internal waves In the time domain are more con- 

veniently described by a set of elgenfunctlons belonging to a common 

frequency u. When oi Is used as an Independent parameter, the eigenvalue 

equation reads 

^1 + ^N2^) " ,»23*L " 0' mm m (A-l) 

which Implies that the elgenfunctlons obey the orthogonality condition 

/■ 
2 2 

i^ (N -ü) )tp dz ■ 6 
m       m      mn 

(A-2) 

Because of the normalization chosen at m - n, these functions are related 

to the previously defined elgenfunctlons by some non-unit constant of 

proportionality, 

«P (z,w) - Y„(U))* (z,k (ü))), 
tn        m   m   m 

where k (u) lies on the  dispersion curve 

(A-3) 

k (u) ■ U)/c (u). 
m m 

(A-4) 

(See Figure 5.) At constant frequency the elgenfunctlons are complete 
2  2 

only on the portions of: the vertical domain where N -u  > 0; formally. 

[^(z)-^2] y^(An(z)^In(z
,) - öCz-z').        (A-5) 

^^^   m   m 
m»l 

A-l 
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The proportionality constant y    may be related to the group  speeds. 

c      = dw /dk - c  [l + — dc  /dk] 
gm ID men 

(A-6) 

as follows.  If we define a node-weighted average of a function f(z) by 

[f] E /$2fdz//$2dz. (A-7) 

then wo can compare the normalization for ^ , Eq. (A-2), with that for 
m 

♦.. Eq. (3), 

to derive 

AVdz - /*2(N2-u)2)dz - 1, 

[N2L - Y2([N2L -u.2) 

or 

Y2 - (1 - ^/[N2])"1 
m m 

(A-8) 

Now, first order perturbation theory applied to the self-adjoint equa- 

tion 

"    -2 2   2 
* + (c  N - k )4) - 0 
m    m m 

provides a relationship between small changes in the parameter k and 

eigenvalue c  (Courant and Hilbert 1965, pp. 353-6): 

[N2] 6c"2 - 6k2 - 0. L  -"m m 
(A-9) 

A-2 
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With a little algebra,   this becomes 

k dc. m        2,.2. 
räk— U1«/[N V 

and by  (A-6), 

Cgm/C
n " 1 " "I'^V (A-10) 

Thus,  according to  (A-8), 

\ "  (C»/Cgm)1/2- (A-11) 

A-3 
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