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1. INTRODUCTION
ANV

Evidence is accumulating that the distribution of ocean internal

Wwave energy among space-time scales may follow a universal law. Garrett
and Munk (1972, 1975) have proposed tentative forms for this distribution
that agree fairly well with a variety of spatial and temporal measure-
ments taken in several locations. It is tempt:ing to ascribe such a uni-
versal distribution, if it indeed exists, to a saturation phenowanon, in
wrich energy in excess of the ssturated value at a given wavelength and
frequency is quickly dissipated through nonlinear exchange or turbulent
breaking.

In another paper, Garrztt and Munk (1972 A) explore this idea
further. They argue that a saturated distribution will be marginally
stable, experiencing instabilities only occasionally to balance the slow
input of energy. Borrowing the inverse Richardson number, Ri-l, from
the theory of parallel stratified flcw as a measure of instability, they
find that the values implied by their distribution are of an order that
would indeed suggest marginal stability.

Suppose we take this idea a step further: If the limiting distri-
bution is determined by physical saturation such that Ri—l, or some other
suitable measure of excitation, attains a uniform, universal statistical
level, we ought to be able to use this information to deduce a priori
the form of the distribution. 1In this paper, such a saturation hypo-
thesis is proposed and its consequences worked out in detail.

For reasons that will be exvlained, a modified measure of excita-
tion better suited to internal waves, the vortex intensity, is introduced
in place of the traditional Ri-l. The vortex intensity resembles Ri-l
except that total voriicity is substituted for velocity shear. As will
be seen, the assumption of a statistically uniform level of excitation
throughout the thermocline leads to an energy distribution that is
physically reasonable and not in obvious contradiction to existing spatial
and temporal measurements, yet quite different in cert :in respects from

the distribution of Garrett and Murk. The major dific.rence is in the




partitioning of energy among the normal modes or vertical wavenumbers,
and this difference is not easily distinguishable observationally except
through cross-spectral analysis of multi-depth data. Curiously, the
model of uniform vortex intensity developed here yields exact analytic
predictions of spatial autospectra and vertical coherence, independent
of the density-stratification profile, and on this account the model is
very directly testable.

The treatment given here assumes no steady shear current and no
rotaticn (no inertial waves). One horizontal dimension, x, is used for
notational convenience, but the generalization to two dimensions is

straightforward.




2. Vortex Intensitx‘ Its Progerties and Progosed Distribution
ANN NNV ANV

LINEARIZED NORMAL MODE EQUATIONS

The field f[(x,z,t) of vertical fluid displacement is decomposed
in the usual way into normal-mode oscillations of horizontal wavenumber

k, phase speed c, and frequency w = ck,

cnz,t) = Y a ) ¢ @emlikx F g0l W)
k,m

the eigenfunctions ¢m satisfying

d2¢

m

d22

+ (2 W) - k) 4, = 0 (2)

and vanishing at the top and bottom of the water column (Phillips 1966,
Ch. 5). It is convenient to regard k as an arbitrary but fixed separa-
tion parameter on which the discrete eigenvalues c;z and eigenfunctions
¢m depend; the eigenfunctions then make up an orthogonal and complete

set. We use the normalizing convention

2
/;mN ¢ndz = Gmn’ (3)

according to which the completeness relation is symbolically

o0
M) D e @0, = 82z, (%)

=1

The associated fields of horizontal velocity u and vertical velocity v

are, for each mode,

oo o e g




c ¢'

u =+ a
n mmm

vm =F 1 amk cm¢m’ (5)

where ¢' is shorthand f-r d¢/dz and where the factor exp[ik(x*cmt)] has
been absorbed into the mode amplitude 4 for brevity.

We assuue _pat the internal wave fields found in nature are homo-
geneous and random so that their statistical properties are adequately
described by the me’ .-square mode amplitudes, <lam|2>. or more precisely

by spectral densities A defined over all wavenumbers,

<Ja_ t>—A (k)dk.
m ~m

Our aim is to determine these amplitude spectra, on the one hand from

a principle of saturation, and on the other hand from empirical meas-
urements of associated displacement, current, and energy spectra to which
the amplitude spectra are uniquely related.

For example, the total wave energy in a water column of unit sur-

face are:., at a given k,

E = —;—/(:[uz * vo & Nzcz]dz, (6)

becomes with the aid of Equations (1) through (5)

2
E=op E |a_| (7)

so that the spectral density of energy in each mode is

E () = 0 A (k). (8)




VORTEX AMPLITUDE AND INTENSITY

To treat the topic of internal wave excitation as generally as
possible, we need an absolute dimensionless measure of local amplitude
that plays a role for internal waves analogous to that of slope for sur-
face gravity waves. One candidate is the ratio of current shear to local
Vaisala-Brunt frequency, u'/N(z), whose square, the inverse Richardson
number Ri-l, is the measure of intensity used by Garrett and Munk to
assess tne degree of saturation of their proposed energy distribution
(1972 A) and earlier by Phillips (1966, Ch. 5) to estimate an upper
limit to the possible excitation of the first (interface) mode. This

normalized amplitude has a serious defect when applied to waves in a

vertical continuum, as can be seen in its normal mode expansion via

Eqs. (2) and (5), shown here at a singie wavenumber k for simplicity:

-1
u'(x,z,t)/N(z) = N " (2) ac ¢"
E : mmm
m

= N 12) E amcm[kz-c;zNz(z)hm. 9)
m

This amplitude becomes infinite in regions of vanishing stratification

(except at k = 0), regions where the local flow is stable potential flow.

The infinities arise because of tle kz terms in the above expression, a

clue that the shear amplitude, borrowed from stability theory for parallel
shear flow, has not been properly adapted to flows having horizontal
periodicity.

This difficulty vanishes when the shear u' is replaced by total
wave vorticity

- ov Su
ax 9z




to define a vortex amplitude

e = Q/N; (10)

the expansion of this quantity is

e(x,z,t) = N-l(z) Zaucm(kz%'@;)
m

= N(z) E"m";l%' (11)
m

showing that the amplitude is well defined regardless of the detailed
shape of the stratification profile. The generalized definition of
local intensity is then

ez(x,z,t) = QZ/NZ, (12)

which reduces to Ri-1 in the long-wave limit, k+0.

Equation (11) above indicates that the vortex amplitude and inten-
sity are confined to stratified layers even though part of the kinetic
energy may reside elsewhere in unstratified regions. Intuitively, the
question of instability comes down to the mutual interaction of vortex
layers, an interaction in which neighboring unstratified flow can be
viewea as playing a more or less passive role. On this basis, the vor-
tex intensity would seem to be a pPlausible measure of the local tendency

to Iastability.

As a general descriptor of internal wave excitation, the vortex

intensity has another very desirable property:
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Vortex intensity i8 a conserved dencity.

Consider a system of internal waves, again at fixed k for simpli-
city, with an arbitrary, time-dependent vertical structure. We can define

a total excitation I per unit surface area by integrating e2 over the

I = /;zdz, (13)

a definition analogous to that for total energy, with e replacing dis-

vertical column,

placement and velocity. Squaring Eq. (11), we get

AL =3l
1= fZ amancmlcnl¢mN2¢ndz, (14)

m,n

and by the orthogonality rule of Eq. (3) we find

2 =2
I = Z Iam| c, = const: (15)

In the limit of linearized dynamics, the excitation I belonging to a
group of waves remains unchanged as the group propagates vertically
through different, possibly dissimilar, parts of the thermocline.

The excitation has dimensions of length denoting both the
level of intensity and the total depth of the water column involved.
Equation (15) suggests that the excitation is partitioned among the modes

according to

2 -
1= la |2, (16)

which together with Eq. (7) implies that the mode energy and excitation

are related by
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g

2
E pc S (17)

PROPOSED ENERGY PARTITIONING

We now pass to a statistical description and replace a given sys-
tem of waves by an ensemble of systems in which the mode amplitudes are
random in phase and amplitude. The ensemble will be stationary in time
(at least with respect to mean squares and products such as energy,
excitation, and space-time covariances) if the mode amplitudes are uncor-
related:

*

2
<a_a > = <|am| >6 . (18)

Defined thus in terms of mean square amplitudes, the ensemble is formally
in equilibrium under linearized dvnamics. This should be distinguished
from physical equilibrium, which is attained when the mean square ampli-
tudes slowly adjust themselves to bring the generation mechanisms, non-
linear energy exchange among modes and wavenumbers, and dissipation into
balance. We assume that the time scale for the processes of physical
equilibrium is much longer than the oscillation periods w;l so that the
stationary ensemble with linearized dynamics is a useful model of
equilibrium over many periods.

Can we bypass the intervening physics and directly characterize
the saturated, "fully aroused" internal wave field by means of the vor-
+ex amplitude? We have argued that the vortex intensity is a plausible
measure of local excitation relative to instability, and have siiown that
it is the density of an invariant, the so-called excitation I. A rea-
sonable guess is that in a saturated field, the excitation is uniformly

distributed in depth and among length scales. We make the following
hypothesis:




At a given wavenumber, the excitation is partitioned uniformly among the

modes.

This proposed distribution implies the following relation among

modal mean-square amplitudes and energies:

<Im> = Io’ m=1,2, ... (19a)

<la_|?> = ci T, ; (19b)

’ (190)

<E > = pc2 I
m m o

where Io is the universal excitation per mode.

Totcl energy is finite.

The total mean energy is

@

2
<E> = .
pIo E s (20)

m=]

now c_ is a declining function of m (see Figure 1), which in the limit

of high mode numbers is not badly approximated by the WKB values
e, =~ n-l(m - -211 )-1 ﬁ(z)dz. (21)

Thus ci ~'m-2, and even for infinitely many excited modes, the total
energy is finite.

Practically speaking, some sort of mode cutoff is required to keep

the total exc:itation from diverging. Viscosity, if nothing else, will
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damp modes of vertical scale h where wmhz is l2ss than the kinematic

viscosity. It is important to observe nevertheless that the total
energy, and other properties such as predicted coviriances of displace-
ment and velocity, will be very weakly dependent on mode cutoff, so that

for most purposes the cutoff can be ignored.

The vor ex amplitude is statistically uniform in depth and vertical wave-

number.

The two-depth covariance of the random vortex aplitude field
e(x,z,t) has a simple form, as deduced from expression (11) via the com-

pleteness relation:

<e(x,z,t)e(x,z',t)> = N° Z <at:an>°;1°;1¢’m(z)¢n(z')

m,n

2 :
= IN E¢m(z)¢m<z )
m

= Io §(z-2'). (22)

Amplitudes at different deptis are completely uncorrelated, and the field
e is seen to be spectrally white with respect to vertical wavenumber:

The vortex amplitudes are in a state of "maximum chaos".
DISTRIBUTION OVER HORIZONTAL SCALES

To generalize the foregoing from a particular horizontal wave-
number to all wavenumbers simultaneously, one merely replaces every mean
square quantity by its corvesponding spectral density. The f ndamental
spectrum is then, by hypothesis, the universal excitation spectrum l(k)

and the related mode-amplitude and energy spectra are

11




2
4,00 = 201k,

En() = pe2()L(k). (24)

Extending the hypothesis that the excitation is partitioned uniformly
over all degrees of freedom, we might speculate that I(k) is white or
what we might call "geophysically white", i.e., containing a fixed amount
of excitation per octave, so that l(k)'v k-l. As Phillips found earlier
for a hypothesized universal Richardson spectrum, this power law is not
steep enough to account for existing observations. A power law closer

to k-l'5 or k-2 appears to be necessary, as will be shown in the next
section.

Therefore, at the outset, we have to agree to leave I(k) somewhat
arbitrary, applying the uniform excitation principle only to the vertical
degrees of freedom. The dimensionality of the candidate universal
spectrum is then reduced to one, and the spectrum ca ‘e empirically

matched to spatial (tow) data at single depths.




3. Some Conseguqu$£N2£N£kg Proposed Distribution

A uniformly excited internal-wave field will have certain observ-
able characteristics that make it easy to distinguish by means of the
appropriate measvrements. As one might guess, the most definitive meas-
surements will be thrse capable of directly resolving horizontal wave-

number, i.e., multi-depth towed measurements, since the proposed distri-

bution assigns energy over spatial scales. Temporal data from moored or
floating multi-depth measurements can provide additional checks, but as
will be seen, probably cannot by themselves confirm the distributions.

A striking and unexpected property of the uniformly excited field
is the existence of simple closed-form predictions, independent of N(z),
for spatial autospectra and vertical coherence spectra for the quantity

g, vertical displacement.
SPATIAL AUTO- AND CROSS-SPECTRA

The instantaneous values of a random displacemer: field { can be
expressed formally as an integral over waven:mber of the stochastic

amplitudes am(k),

t(x,2) = fam(kwm(z,k)exp[ikxldk, (25)
2

where the ampiitudes have spectral densities Ah(k) and are mutually uncor-

related at different k and m:
*
] =3 ; []
<ay(a (k')> = A (k)6 6(k-k') (26)

It follows that the cross spectrum of ; at two depths, z1 and Z,ys is
given by

13




21200 = 3 A,094,(2))0, () @27
m

with the single-depth autospectrum represented b

22 - 212

y the special case

500 = 34 ele). (28)

By Eq. (23) for uniform excitation,

éh(k) = ci(k)g(k), we then have
2
£12(k) = I(k) Catn (200, (z)). (29)
2

This is an equation for the (symmetric) dependence of glz on the two
arguments z, and Z, at each k.

If we hold 22 fixed and differentiate
twice with respect to Z,» We get via Eq. (2)

2

9 }: 2 2 = 2

32 2 212 = L Cm¢m(22)(k ‘Cm . )‘Pm(zl)’
m

1

and subtracting k2 times 212,

2
3 2 2

-k Z,, = -1 N(z,) (z,)¢ _(z,)
(32 2 >~12 ~ Nz, zm:% 290, (2,

1

=+ 1 6(21—22). (30)

14




Now since { vanishes at the top and bottom of the water column, the same

must held for 212' so that Eq. (30) has the unique solution
21,00 = 100K tsinh ke exn(-kz ) (31)

-t.
1 and 22. An

equivalent expression in terms of depth separation Az = z -z is

where z_, z, are the lesser and greater of the depths z

2,00 - % O exp (-kAz) [1-exp(-2kz_)]. (32)

Autospectra

The displacement autospectra are a one-parameter family
1 -1
Z,(2) = 5 Lk "[1-exp(-2kz)] (33)

directly related to I(k). The asymptotic limits

(zl(k), k < z-l

2l 10, k> 27 (34)

indicate an increase in negative spectral slope of unity from low to
high wavenumber, with the transition occurring around k “‘z-l. The
spectral densities collapse to a single value for depths greater than

k ~, and are proportional to z for depths smaller than k-l. This behavior

The form shown is for an effectively infinite bottom depth d, i.e., when
kd>>1. Otherwise, replace exp(-kz_) by sinh k(d-z_)/sinh kd. 1

15




1s 1llustrated in Figure 2, for an assumed excitation spectrum of the

form I(k) ~ k-l's. The tow spectia of Charnock (1965), well known {
through their reproduction in the monograph of Phillips (1966), are

accounted for nicely by the prediction above (see Figure 3) 1f we allow

ourgelves the freedom to zdjust the level and spectral slope (-1.5) of

I(k). Of course, this i3 barelv more than s censistency check, but we

do observe a slope increase at kz ~1.0.

Vertical coherence.

The two-depth coherer ce Spectra predicted by Eqs. (31) and (33)

are

©
~
=
S~
m

12t

/ 1/2
Iz-lzll (2, Z,)

1/2
sinh kz<
sinh kz>

exp(-kAz) (35)

In the low and high wavcnumber limit, the behavior is approximately

-1
>

‘(z</z>)”2. k <z
glz(k) ~

exp(-kaz), k > z<-1, (36)

indicating moderately high coherences at low wavenumber when the depths
are not too different and a rapid decline in coherence around kAz ~ 1.

The horizontal wavelength for p = 0.5 is about 9(Az). See Figure 4.
Transfer spectrum.

A quantity usually used in other applications, the transfer

spectrum

16
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Figure 3. An Excitation Spectrum I(k) = (0.024)k']'5(MKS) Fits the Towed Displacement Spectra of
Charnock, as Reproduced in Phillips' Monograph (1966). The data appear to follow
the predicted change in slope at 45 cycles/hr, which corresponds to kz = 1 at

e reported depth and tow speed of 75 m and 11.5 kt. Although the pre-
diction is independent of N(z), the relative modal contributions are

th

not; for the profile of Figure 1, whose maximum is close to the
75 m depth of Charnock's measurements, the first mode accounts
for most of the predicted displacements.
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Figure 4. Spectra of Coherence.Plz(k). for Spatial Series of Vertical Displacement

at Two Dept®s in a Uniformly Ecited Field. These spectra are a

universal function of KZ] aid 22/21'




T = 2,00 /2 ), (37)

has a particularly simple predicted fo™m (z1 is the lesser depth):

Ilz(k) = exp(-lAz). (38)

The behavior of the multi-depth autospectra and transfer spectra pre-
dicted above will make a uniformly excited internal-wave field easy to
recognize on the basis of fairly simple analysis of multi-depth towed
measurements. [A towed thermistor-chain experiment has been conducted
very recently (Nelwscn, 1975) and, for the first time, data of sufficient
scope and quality for analysis in both horizontal and vertical dimensions
will shortly be available. ]

Treatment of towed measurements.

The spectral densities treated above, which are intended to reore--
sent distributiyns over scalar wavenumber in two dimensions, are not the
same as tow spectra obtained by Fourier transform and should not be

strictly compared. The expected covariance of isotherm levels at two

depths 2,y 2, and two horizontal positions X)s X, along the tow,

is related to the (equivalent one-dimensional) cross-spectral density
£,,(k) by

Cyp (x,-x,) = Tvlr/ﬁlz(k) exp[ik(xl-xz)cose]dkde (40)

where kcos® is the projected periodicity along the tow direction of com-
punents making an angle 6 with the tow direction. Thus,

20




[

C o (x)7x,) = / Z,, (k) Jo(klxl—le)dk, (41)
(o]

and the proper inverse relation is the Hankel transform

a0

le(k) =k / Clz(x)Jo(k.x)xdx. (42)

o

This indicates how true scalar wavenumber densities can be recovered
from empirical linear covariances, either under the assumption of

isotropy or after averaging over several tow directionms.

TEMPORAL SPECTRA AND COHERENCES

The temporal spectrum S(w) of a quantity or pair of quantities
can be directly inferred from the spatial spectra Sm(k) under the assump-
tion that the modal oscillation frequencies are reasonably well repre-
sented by the dispersion relations wm(k) predicted by the eigenvalue
equation (2j. Figure 5 is a representative dispersion plot for the
sample N(z) profile of Figure 1. Since the variance or covariance in

the interval dw is a sum of contributions from all modes in the propor-
tion '

S(w)dw = Z §m(km)dkm

where mm(km) = u», we have

-1
dw
m
$(w) = z : Sl | (43)
m m
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Figure 5. Modal Dispersion Frequencies, “’m(k)' for the Profile of Figure 1. These were
obtained, along with the associated eigenfunctions ¢m(k). by numerical
solution of the eigenvalue equation (2), and used in the sample
calculations of temporal spectra.




For displacement (i.e., isopycnal) cross—spectra at _wo derths, the

appropriate expression is
Z),() = Z,ém(k )c 6n(2)8_(2,) (44a)

where cgm is the modal group speed dw /dk, and where A and ¢ are

evaluated at k = k (w). In a modal sum at constant frequency, it seems
preferable to use the rescaled eigenfunctions P (z,w) = (cgm/c )1/2 ¢ (z, k )
which comprise an orthonormal set for the time domain as shown in the

appendix. The sum then reads

ZlZ(w) =Z’ém(km)cm 9 (zl)"om(zZ)
m

-1
Bl Z ktn l(km)‘pm(zl)‘pm(ZZ)' (44b)

m

The autospectra and coherence spectra are accordingly

5@ =0 Y it a6l (45)
m
and
1/2
212 = |2, | [lz; @z, @] . (46)

Unlike the spatial Spectra, these quantities depend in a subtle way on

the stratification profile implicitly through k (w), and ro general
formulae are immediately evident.




A ——

Certain qualitative features can be inferred. At low frequencies

Cm —» const.

¢ —» const.

so that if the excitation spectrum has the form of a power law, 1 n'k-p,

the mode coefficients in the sums (44, 45) bLehave as

I c ~'w-p cp+1;
~m m m

thus, in the low-frequency limit, the auto- and cross-spectra have a
power-law dependence with the same slope as the spatial autospectrz at
low wavenumber. Note also that for any appreciable spectral slope, say
p ~ 1.5-2, the factor cg+1 diminishes rapidly with mode order, since

o ~'(m-1/2)-1, so that the sums would tend to be dominated by the first
mode. This would suggest that the predicted coherences remain appre-
ciable.

For the thermocline of Figure 1, modal eigenfunctions have been
computed numerically and used to construct displacement spectra and
coherence spectra corresponding to I(k) ~'k-1'5. These are shown in
Figure 6. The autospectra resemble some observations in that they show
the expected slope and .he cutoff at the local N(z); however, because
of the first-mode dominance, the low-frequency values scale as z rather
than as N-l at shallow depth, contradicting the rule derived from the
WKB approximation.

The predicted dominance of the first mode in temporal spectra
means that temporal data are likely to be ineffective in determining
contributions from modes higher than the first, if the distribution is
truly uniformly excited. Thus, temporal data probably cannot confirm
such a distribution. On the other hand, certain serious departures from

uniform excitation, such as a "top hat" distribution of the kind used by

Garrett and Munk, c2n be detected in temporal data.
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NORMAL MODES OR EQUIVALENT CONTINUUM?

Whether one discusses energy partitioning in terms of normal
modes or an equivalent continuum (w, k) is partly a matter of indivi-
dual preference. Some argue that for energy at large vertical wave-
numbers, the discrete normal-mode picture is, at best, a nuisauce, and
at worst, misleading. To the extent that the effects of shear currents
are important, those normal-mode components whose phase speed is not
substantially greater than the velocity shear across the thermocline are
inaccurately represented. However, in the vanishing-shear approximation,
the normal modes are as complete a description as any, and they have the
advantage of being an orthogonal set of "degrees of freedom,'" independent
osciliaiors whose excitation can be systematically compared. In retro-
spect they seem to be essential to a rigorous description of a "uniformly
excited" field because this field has most of its energy in the lowest
few modes. For example, at fixed k the first mode has as much as 757
of the total energy, and at fixed w even more.

What is the equivalent continuum energy density for the uniformly
excited field? If we define D(w,k)dwdk as the energy in the entire

vertical water column and in the frequency intervals dw,dk, then D is
related to Em by

D(wm,k) Awm o Em(k) 47)

where Awm = mm-wm+1 is the modal frequency spacing at fixed k. According

to the WKB approximation, which is increasingly trustworthy at higaer

mode numbers, the eigenfunctions are determined by

k /(NZ(Z)/mj-l)l” dz = (@ - Y. (48)
N>w

Preceding page blank




To estimate Awm, we can differentiate by m,

2 -1/2
kAwm Wy
2 Nil - - dz ~ 1,
w N
m

sud solving for Am;l, the "density of states'" at the frequency w, we get
-1 2..-1 2,.2.-1/2
By~ = (nc k) / N(1-wl/N°) dz, (49)

which, combined with Eu = pcil, yields

R

D(w,k) = pn’lk'lyk)/N(1-m2/142)'1/2 dz. (50)

The continuum density obviously depends on the detailed shape of the
Vaisala-Brunt profile, N(z), but if this profile is not pathological,
the integral in Eq. (50) depends only weakly on w, so that at fixed k,
D is at least roughly independent of w for frequencies distinctly less

than the maximum. Further, D approaches a well-defined limit as w-»0.

COMPARISON WITH THE DISTRIBUTION OF GARRETT AND MUNK

For simplicity, we limit the comparison to frequencies w well
below the maximum and set the inertial i1 quency to zero in the Garrett-
Munk expression, which allows us to assume that the dispersion curves

wm(k) are nearly strajght lines:

wm(k) = cmk,

o .-l 1.1
cg =T (M-3) dez,

: (- %)' c*, (51)

28




and we adjust I(k) ~'k-2 to predict the same slope value for isotherm
spatial and temporal spectra as used by Garrett and Munk. We can then
compare continuum density, along with equivalent modal energy and excita-
tion. A third distribution, one in which the energy is partitioned
equally among the modes, with properties intermediate to the other two,

hag been added to the comparison below for purposes of discussion:

Uniform Energy Garrett-
Excitation Fquipartition Munk '72
D(w, k) k.3 k-lm-z w-3
2 1,-2 1
k,gm(k) (m—i) const. (m 2
2 1,2 1.3
k'lm(k) const. (m-i) (m-i
m e =} <]

Both the equal-energy and Garrett-Munk distributions require a mode

cutoff j, which limits excitation in the (w,k) plane to the region
1 1
2v =ck= (j"'z‘)w.

Note that both energy and excitaticn increase with mode number in the

Garrett-Munk distribution, the latter quantity very rapidly.

All three sitributions have been properly adjusted to exhibit the
same autospectra for both stationary and towed isotherm data. Fortu-
nately, they can be expected to predict very different vertical coherences.

For example, compare the spatial cross spectra predicted for the uniform-

excitation model,

T

1 -1
glz(k) = 3L(k)k = sinh kz_ exp(-kz ),

29




with those predicted by energy equipartition (gm(k) = E(k)):

2, " o TIE(K) t ¢, (2109, (25)

n=1

These latter become very abrupt functions of z,-2, in the limit of high
mode cutoff j,

Z,,(k) —Po-lg(k)N(zl)-zd(zl-zz) ;

suggesting an absence of measurable coherence between any but the nearest
isotherms. This comparison is a particular example of how predicted
coherences diminish with increasing '"modal bandwidth", and indicates how
the moderate bandwidth of the uniform excitation model could be distin-
guished from the higher bandwidth of a Garrett-Munk distribution in multi-

depth data.
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APPENDIX
ANANAVN

EIGENFUNCTIONS AT CONSTANT w

Measurements of internal waves in the time domain are more con-
veniently described by a set of eigenfunctions belonging to a common
frequency w. When w is used as an independent parameter, the eigenvalue

equation reads

wm + c;z[Nz(z) - mz]qh = 0, (A-1)

which implies that the eigenfunctions obey the orthogonality condition

2 2
/wm(N -w )wm dz = Gmn' (A-2)

Because of the normalization chosen at m = n, these functions are related
to the previously defined eigenfunctions by some non-unit constant of

proportionality,
ﬂPm(Z, m) = Ym(w)¢m(zakm(m))’ (A'3)
where km(m) lies on the dispersion curve
km(m) = m/cm(m). (A-4)

(See Figure 5.) At constant frequency the eigenfunctions are complete

2
only on the portions of the vertical domain where Nz-m > 0; formally,

N (2)-a"] D py(2dey(a) = 6(z-2"). (a-5)

m=1




= - _k =
Co ¥ dmm/dk cm[l + : dcm/dk] (A-6)

as follows. If we define a mode-weighted average of a function f(z) by
. frzeaff :
(€], = /;mfdzlj ¢ dz, (A-7)

then we can compare the normalization for - Eq. (A-2), with that for

¢y Ea. (3),
./; N°dz = ﬁz(Nz w2)dy @ 1,

to derive
(v, = V2D
or

Y= a- W)™ (A-8)

Now, first order perturbation theory applied to the self-adjoint equa-
tion
n

-2 .2 2
¢m + (cm N™ -k )¢m

provides a relationship between small changes in the parameter k and

eigenvalue Cn (Courant and Hilbert 1965, pp. 353-6):

[Nz]mdc;z - &K% = 0. (A-9)

The proportionality coustant Yy, D8y be related to the group speeds,




With a little algebra, this becomes

de

T
.
and by (A-6),
Con/n = 1 - w2/ V] (A-10)
Thus, according to (A-8),
Yo = Cegle )2, (A-11)




