AD-A007 932

EFFECT OF SOME ADDITIONS ON THE CRITICAL DIAMETER AND THE RATE OF COMBUSTION OF MIXTURES OF ALUMINUM WITH GELATINIZED WATER

A. V. Vasilev, et al

Foreign Technology Division Wright-Patterson Air Force Base, Ohio

11 March 1975

National Technical Information Service

Security Classification			-A007 932	
	DOCUMENT CONTR		n the executive event is clearly indi	
(Security classification of title, bod DRIGINATING ACTIVITY (Corporate outline)	7	20. REPO	AT SECURITY CLASSIFICATION	
Foreign Technology Air Force Systems C		2b. CROU	NCLASSIFIED	
U. S. Air Force	Onmaria		· · · · · · · · · · · · · · · · · · ·	
EPORT TITLE	TOUR ON MUR	DTALT AL DTANIE		
EFFECT OF SOME ADDI OF COMBUSTION OF MI	XTURES OF ALUM	INUM WITH GELA	TINIZED WATER	
ESCRIPTIVE NATES (Type of report and	Inclusive deles)			
Translation		2.1	•	
A. V. Vasil'yev, V.		and A. A. Shid	lovskiv	
R. V. VASIL JOV, V.				
EPORT DATE	J ^a	A. TOTAL NO. OF PAGES	76. NO. OF REFS	
1970		A. ORIGINATOR'S REPORT		
PROJECT NO.		FTD-MT-24-0237-75		
	1	Sb. OTHER REPORT NO(S) (Any other numbers that may be easigned this report)		
DISTRIBUTION STATEMENT				
	nelesse dist	ribution unlim	ited .	
Approved for public	Terease, area	TTOROTON MILITA	TUEU.	
Approved for public	Tereate, and	ribudion anili.	I VEU.	
Approved for public		2. SPONSORING MILITARY	ACTIVITY	
		2. SPONSORING MILITARY Foreign Tec	hnology Division	
UPPLEMENTARY NOTES		2. SPONSORING MILITARY Foreign Tec	ACTIVITY	
		2. SPONSORING MILITARY Foreign Tec	hnology Division	
UPPLEMENTARY NOTES		2. SPONSORING MILITARY Foreign Tec	hnology Division	
UPPLEMENTARY NOTES		2. SPONSORING MILITARY Foreign Tec	hnology Division	
UPPLEMENTARY NOTES		2. SPONSORING MILITARY Foreign Tec	hnology Division	
UPPLEMENTARY NOTES		2. SPONSORING MILITARY Foreign Tec	hnology Division	
UPPLEMENTARY NOTES		2. SPONSORING MILITARY Foreign Tec	hnology Division	
UPPLEMENTARY NOTES		2. SPONSORING MILITARY Foreign Tec	hnology Division	
UPPLEMENTARY NOTES		2. SPONSORING MILITARY Foreign Tec	hnology Division	
UPPLEMENTARY NOTES		2. SPONSORING MILITARY Foreign Tec	hnology Division	
UPPLEMENTANY NOTES DITRACT 20	ind by	2. SPONSORING MILITARY Foreign Tec	hnology Division	
DIPPLEMENTANY NOTES	ONAL TECHNICAL RMATION SERVICE	E SPONSORING MILITARY Foreign Tec Wright-Patt	Activity hnology Division erson AFB, Ohio	
NUPPLEMENTARY NOTES	ÖNAL TECHNICAL	2. SPONSORING MILITARY Foreign Tec	Activity hnology Division erson AFB, Ohio	
NUPPLEMENTARY NOTES	ONAL TECHNICAL RMATION SERVICE Department of Commerce	E SPONSORING MILITARY Foreign Tec Wright-Patt	Activity hnology Division erson AFB, Ohio	
NUPPLEMENTARY NOTES	ONAL TECHNICAL RMATION SERVICE Department of Commerce	E SPONSORING MILITARY Foreign Tec Wright-Patt	Activity hnology Division erson AFB, Ohio	
NUPPLEMENTARY NOTES	ONAL TECHNICAL RMATION SERVICE Department of Commerce	E SPONSORING MILITARY Foreign Tec Wright-Patt	Activity hnology Division erson AFB, Ohio	
NUPPLEMENTARY NOTES	ONAL TECHNICAL RMATION SERVICE Department of Commerce	E SPONSORING MILITARY Foreign Tec Wright-Patt	Activity hnology Division erson AFB, Ohio	

1

FTD-MT- 24-0237-75

EDITED MACHINE TRANSLATION

FTD-MT-24-0237-75 11 March 1975

EFFECT OF SOME ADDITIONS ON THE CRITICAL DIAMETER AND THE RATE OF COMBUSTION OF MIXTURES OF ALUMI-NUM WITH GELATINIZED WATER

By: A. V. Vasil'yev, V. V. Gorbunov, and A. A. Shidlovskiy

English pages: 7

ostra Weinsteinen weinsteinen weinsteinen der State der Stat State der Stat

> Source: Izvestiya Vysshikh Uchebnykh Zavedeniy, Khimiya i Khimicheskaya Tekhnologiya, vol 13, nr 3, 1970, pp. 318-321.

Country of origin: USSR Requester: AFRPL/XPI This document is a SYSTRAN machine aided translation, post-edited for technical accuracy by: SSgt Frank C. Vaughn Approved for public release; distribution unlimited.

11

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT, STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD-MT- 24-0237-75

Date 31 Mar 19 75

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM Transliteration Transliteration Block Italic Italic Block Ρp R, r P A, a A a A , . Сc C S, 8 B, b G 60 6 6 Τт T, t V, v 8 B B m . Уу U, u Гг 8 Gg У y φφ F, f Ø D, d ø Дд Д 8 X Kh, kh Хх Eв Ye, ye; E, e* X E Zh, zh Цц Ц Ts, ts Жж N ж ж 4 4 Ch, ch Z, z 4 З э 3 . · I, 1 Шш Sh, sh Ш Ии И - H ш Shch, shch Щщ Щ · Йй Y, y ш Â đ 11 K, k Н к Ъъ Ъ K ĸ Y, y L, 1 Ыы Ы Лл Л R M 1 Ь MM M, m Ьь ۵ M M Ээ E, e Нн N, n 9 H N Юю Ю Yu, yu 0, 0 0 o Ю 0 0 .Яя Я Ya, ya P, p Пп Π

*ye initially, after vowels, and after ъ, ъ; e elsewhere. When written as ë in Russian, transliterate as yë or ë. The use of diacritical marks is preferred, but such marks may be omitted when expediency dictates.

GREEK ALPHABET

Alpha	A	α	æ			Nu	N	ν	
Beta	В	β				Xi	Ξ	ξ	
Gamma.	Г	Υ				Omicron	0	9	
Delta	Δ	δ				Pi	п	π	
Epsilon	Ε	ε	ŧ		2	Rho	P	ρ	9
Zeta	Z	ζ				Sigma	Σ	σ	ç
Eta	Н	η				Tau	Т	τ	
Theta	Θ	θ	\$			Upsilon	Т	υ	
Iota	I	l				Phi	φ	φ	φ
Kappa	Κ	n	κ	x		Chi	Х	Х	
Lambda	٨	λ				Psi	Ψ	ψ	
Mu	М	μ				Omega	Ω	ω	

FTD-MT-24-237-75

MÍ

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Bergheren over die erste der der Sterne Sterne der Sterne in der Sterne in der Sterne im Sterne Sterne Sterne S

	Rus	sian	English
	sin		sin
•	cos	•	COB
	tg		tan
	ctg		cot
	sec		sec
	COS	ec	CSC
• .	sh	· .	sinh
	ch	•	cosh
	th		tanh
	cth		coth .
•	sch		sech
	esel	h	csch
	arc	sin	sin ⁻¹
	arc	cos	cos ⁻¹
	arc	tg	tan ⁻¹
	arc	ctg	cot ⁻¹
	arc	sec	sec ⁻¹
	arc	cosec	csc ⁻¹
	arc	sh	sinh ⁻¹
	arc	ch ·	cosh ⁻¹
÷.,	arc	th	tanh
	arc	cth	coth ⁻¹
	arc	sch	sech ⁻¹
	arc	csch	çsch ⁻¹

rot curl lg log

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this translation were extracted from the best quality copy available.

FTD-MT-24-237-75

iv

EFFECT OF SOME ADDITIONS ON THE CRITICAL DIAMETER AND THE RATE OF COMBUSTION OF MIXTURES OF ALUMINUM WITH GELATINIZED WATER

State State State State

A. V. Vasil'yev, V. V. Gorbunov, and A. A. Shidlovskiy (Moscow Institute of Chemical Equipment)

It is known that the ignition and combustion of aluminum powder is substantially impeded by the presence of a strong highmelting oxide film on the surface of its particles [1, 2]. By disturbing the integrity of this film by means of any physical or chemical effects, it is possible to decrease its protective properties and, thus, contribute to the ignition and combustion of aluminum. One of the possible methods is the lowering of the melting point of the oxide film with the introduction of fluorides of the metals, which form with Al_{20} readily fusible complex compounds. As an example, it is possible to indicate a considerable decrease in the flash point of a mixture of KClO_h with Al with the addition of aluminum fluoride [3].

The effect of fluorides of Li, Na, K and Al on the critical diameter and the rate of combustion of a mixture of aluminum powder with water [4, 5] was investigated in the present work.

A weighed sample of water, gelatinized by 3% sodium salt of carboxymethyl cellulose (CMC), was thoroughly mixed with the

FTD-MT-24-237-75

1

aluminum powder (the average particle size of the aluminum was $1 \mu m$ and was determined on a PSKh-2 instrument) whose quantity corresponded to the stoichiometric composition of Al:H₂O=50:50. With the introduction of the addition the weighed sample of fluoride was preliminarily mixed with the aluminum powder. The low-solubility fluorides of Li and Al has particle sizes less than 50 µm. The plastic mixture was rubbed through a screen with a mesh of 160 µm in size by a rubber stopper for obtaining emall granules whose weighed sample was placed into a small glass beaker and pressed by hand to a density of 1.0-1.1 g/cm³ K_{compaction}=0.5-0.6).

The ignition of the charge was realized by a nichrome spiral, heated by an electric current, sometimes with an igniting primer in whose capacity was usually used a mixture close in composition to the investigated mixture and well ignited under the conditions of the experiment.

The experiment consisted of three sections: a) the determination of the critical diameter (d_{HP}) and rate of combustion at atmospheric pressure (in air): combustion time in this case was measured by a timer; the length of the section of charge on which the measurement was made, was 15-20 mm; b) the determination of the dependence of the rate of combustion on the pressure in an interval of 20-100 atm. in a bomb of constant pressure in a nitrogen atmosphere; a photorecorder was used for measuring the rate of combustion; c) the determination of the completeness of the oxidation of aluminum with the combustion of the mixture in a manometer bomb under increasing pressure up to 60-100 atm.; the volume of hydrogen which was separated with the combustion of the charge was measured.

The results of the experiment concerning the effect of metal fluorides on $d_{\mu\nu}$ of the mixture of Al:H₂O=50:50 are

FTD-MT-24-237-75

2

shown in Fig. 1. The greatest decrease in d_{KP} occurs in the case of the addition of Na and K fluorides readily soluble in water the introduction of the low-solubility fluorides of Li and Al affects the value of d_{KP} less. The introduction of additions is barely reflected in the rate of combustion; in all cases it was found within the range of 0.15-0.18 cm/s.

Fig. 1. Effect of the additions of metal fluorides on the critical diameter of the combustion of the mixture of $Al:H_2O=50:50$; ($\rho=1.0 \text{ g/cm}^3$, $H_2O+3\%$ CMC, average particle size of Al, 1 µm). Additions: 1 - KF; 2 - NaF; 3 -LiF; 4 - AlF₃. (Points on the curves are the smallest diameter of the charge at which combustion was observed). Key: (a) fluoride. Also, sodium hydroxide was tested as an addition to the Al+H₂O mixture. Aqueous solutions were prepared with its concentration of 0.04%, 0.4% and 0.8%, which had pHs of 12.0; 13.0 and 13.2 respectively.

The tests showed that the replacement of water in alkaline solutions leads to a significant decrease in $d_{\rm KP}$: with a content of NaOH of 0.04% a decrease in $d_{\rm KP}$ from 32 to 15 mm occurs. With an increase in the content of NaOH still a certain decrease

in d_{HD} to 13.0 and 12.8 mm respectively occurs.

The introduction into the mixture of 5% KCl not only does not decrease, but even somewhat increases (from 32 to 37 mm) the critical diameter; the mixture of $Al+H_2O$ with KCl burns very slowly and is uneven.

For the purpose of checking whether, the effect of the fluorides is specific only for aluminum mixtures, we tested an addition of LiF in a mixture of $Mg:H_2O=57:43$. The experiment

showed that the mixture without the addition burns with a diameter of 12 mm, and the introduction of 5% LiF increases the $d_{\rm NP}$ to 18 mm. Mixtures even with the addition of the fluoride and without it burn very unevenly.

To determine the dependence of the rate of combustion on the pressure charges with additions of metal fluorides in the amount of 1% with respect to the weight of aluminum¹ were used. The charge density was 1.0-1.1 g/cm³.

As can be seen from Fig. 2, with an increase in the pressure the rate of combustion is increased; the curves have a weakly expressed saturating nature. The addition of 1% of fluorides of alkali metals (Na, K, Li) increases the rate of combustion by approximately 1.5 times, without substantially changing the nature of the dependence of the rate on the pressure. The addition of 1% AlF₃ not only does not accelerate, but even retards the combustion process.

The completeness of the oxidation of the metal was determined in the manometer bomb. Charges 20-22 mm in diameter, which had a density of $0.45-0.55 \text{ g/cm}^3$ (D_{compaction}=0.2-0.3), were burned. The stoichiometric mixture of Mg+BaO₂ in a 2 g amount was used as the igniter. Attempts were made to ignite under the same conditions a mixture of (Al+H₂O)_{stoichiometric} without additions. The mixture was ignited with great difficulty, and combustion was reached only in two experiments; in this case the mixture was not rubbed through a screen, but was separated directly in a glass beaker, which served as the shell of the charge.

¹On a sample of LiF it was established that an increase in the content of fluoride in the mixture does not appear in the value of the rate of combustion and in the nature of its dependence on the pressure. The curve U=f(P) for a mixture of (A1+H₂O)_{stoichiometric}+5% LiF virtually coincides with the curve for a mixture which contains 1% LiF.

4

Fig. 2. Dependence of the rate of combustion on the pressure for a mixture of $A1:H_2O=50:50+1\%$ of metal fluoride ($\rho=1.0-1.1$ g/cm³; $H_2O=3\%$ CMC; particle size of Al 1 µm). Additions: 1 - NaF; 2 - KF; 3 - LiF; 4 without additions; 5 - AlF₃. Key: (a) U, g/cm² s; (b) P, atm.

The experiments showed that during the combustion of a mixture of (AI+H2O) eres without additions the completeness of the oxidation of aluminum was only 44-53%. The introduction of fluorides of Li, Na, K, Al to the mixture raises the completeness of the oxidation of aluminum to 68-74%. The manometric curves of P-T, obtained in the combustion of the mixture of Al+H₂O with additions of 1% fluorides, are shown in Fig. 3. In spite

of the significant attainable pressure (60-100 atm.), the combustion was slow and the total combustion time was from 7 to 25 seconds. The mixtures with NaF and KF (7 s) burned faster than the others rate of the slowest combustion was observed with the addition of LiF (13 s), and the process of the combustion of the mixture with the addition of AlF₃ was lengthened by 25 seconds, and the pressure increased only to 60 atm.

Fig. 3. Manometric curves of P- τ of the combustion of the mixtures Al:H₂O=50:50 with the addition of 1% metal fluorides. Additions: 1 - NaF; 2 - KF; 3 - LiF; 4 - AlF₃. Key: (a) P, atm.; (b) τ , s. The attempt to intensify the combustion of the mixture of (Al+H₂O)_{stoichiometric} in the manometer bomb by the addition to it of 5% NaCl did not succeed; this mixture could not be ignited. Testing of the mixture of (Mg+H₂O)_{stoichiometric} the addition of 10% LiF in the manometer bomb showed that under conditions of elevated pressure lithium fluoride does not intensify the combustion of the water-magnesium mixture: neither the time nor the maximum pressure nor the completeness of the oxidation of magnesium were changed substantially. In conclusion, let us note that experiments on the combustion of mixtures of $Al+H_2O$, which contain greater than 3%, we did not realize the quantity of fluorides of Na and K, since such mixtures turned out to be chemically unstable: 10-15 minutes after the preparation of the mixtures containing 5% NaF or KF, they began to strongly heat-up and the full boil-off of water from the mixture occurred. One should assume that along with the reversible hydrolysis of the fluorides of $2NaF+H_2OZNAHF_2+NaOH$ the process of the destruction of oxide film on aluminum proceeded here, i.e.,

and the second state of the second state of the second

 $Al_2O_3 + 12NaFaq + 3H_2O = 2Na_3AIF_6 + 6NaOH + 10 kcal¹$

but the alkaline medium conditioned the energetic oxidation of the uncovered metallic aluminum after the removal of the oxide film.

Determination of the pH of aqueous solutions of the fluorides of sodium and potassium (using a LPU-Ol potentiometer) gave values of 8.7 and 8.0 respectively. For the suspension of Al(OH)₃ prepared by us in water the pH turned out equal to 7.5. The addition to this suspension of aqueous solutions of flouorides considerably increased the alkalinity of the system. Measurement of the pH gave the following results: Al(OH)₃+NaFaq-11.4; Al(OH)₃+ +KFaq-10.8. A solution of LiF had a pH of 8.8, and after mixing with a suspension of Al(OH)₃-9.4. The suspension of AlF₂ individually had a pH of 6.9, and after combining with the suspension Al(OH)₃-7.7.

These experiments confirm the equations given above of reactions for the case of the fluorides of sodium (potassium) and, to a lesser degree, for lithium fluoride. Aluminum fluoride $\overline{}^{1}$ With the calculation for Na₃AlF₆ value ΔH_{298} =-784.8 kcal/mole is taken [6].

FTD-MT-24-237-75

and Al(OH)3, obviously, do not react with each other, and in this case a noticeable change in pH is not observed.

Finally, we prepared an 0.1 M aqueous solution of NaOH, which had a pH of 13, and with its use a mixture of Al+H₂O(NaOH) was made; the gelatinizer (CMC) was not used in this case, since the Al-powder was well moistened with an alkaline solution. This mixture was ignited and burned in the manometer bomb for 5-6seconds, after creating a pressure of 115-130 atm. The completeness of the oxidation of the aluminum was 73-74% in this case.

Conclusions

1. It is shown that the addition of 1-5% of fluorides of Li, Na, K and Al to a model mixture of (Al+H₂O)_{stoichiometric} improves its inflammability and decreases the critical diameter of combustion at atmospheric pressure. The fluorides of sodium and potassium readily soluble in water exert a greater effect on the ignition and combustion processes of the mixture than the hardly water-soluble fluorides of lithium and .aluminum.

2. The significant increase in pH of the aqueous solutions of NaF and KF with the addition to them of a suspension of Al(OH)₂ makes it possible to assume that the above-mentioned phenomena during combustion should be explained by the intense destruction of oxide film on particles of aluminum under the action of a hot aqueous solution of fluorides of sodium or potassium.

Bibliography

- А. А. Шидловский. Основы паротехники. Изд. «Машиностроение», М., 1964.
 А. М. Mellor, J. Glassman. Pyrodynamics, 3, 43 (1965).
 Е. S. Freeman, D. A. Anderson. Comb. and Flame, 10, 337 (1966).
 А. А. Шидловский. Докл. АН СССР, 51, 127 (1946).
 В. В. Горбунов, А. В. Васильев, А. А. Шидловский. Изв. ВУЗ СССР, Химия и хим. технология, 12, 1171 (1969).
 I. P. Goughlin, J. Amer. Chem. Soc. 80, 1802 (1958).

Department of chemistry

Submitted 12 December 1968

FTD-MT-24-237-75