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Abstract

The theory of nonzero sum differential games (NZSDG) is extended
for a class of problems in which the nonlinear system equations have
bounded control variables appearing linearly. For terminal cost
functions this class of problems is shown to exhibit '"bang-bang" type
control laws with the possibility of singular controls. A condition
18 derived to test for continuity of the influence functions when
controls switch from a nonsingular to a singular control on singular
surfaces. Two generalized forms of the transversality conditions
are derived for NZSDG theory extending results of Dreyfus and Isaacs.

NZSDG theory is shown to be useful in modeling combat problems
in which the goals of the players are not diametrically opposed.

A two player and a three player penetrator-interceptor problem are
presented as a N2SDG. Numerical solutions for a totally singular problem
are carried out to illustrate application and a typical solution. A

two player NZSDG pursuit-evasion problem is analyzed in which the cost

functions of the two players are different functions of the terminal

range and angle off.
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I. Iatroduction

Isaacs [17) introduced differential gare theory in 1954, and

since that time many researchers have investigated the theory for
application to combat problems between two veb_.cles. (A fairly
complete reference list is compiled iv ref. [15]). The theory
introduced by Isaacs is a zero sum theory- so called because the
goals of the two players are assumed to be precisely opposite.
Many conflict situatione, most notably pursuit-evasion type conflicts,
are adequately modeled by this theory, the result being simultaneous
"optimal" solutions for each player. However, there are aspects of
the pursuit-evasion differential gamz that canvot be modeled by the
zero sum theory. When the goals of the two players are not diametri-
cally opposed or if there are more than two vehicles in the comflict,
each with a different goal, then a more general theoxy is required.
Recent investigations [8, 27, 33] of nonzero sum differential game
(NZSDG) theory have shown this theory to be much more general, and
in fact, zero sum differential game and optimal control theory can
be considered as subclasses of NZSDG theory. This NZSDG theory can
be used to model two player combat problems in which the goals of
the players are not precisely opposite, and problems in which there
are more than two players.

One of the primary obstacles in applicatfon of NZSDG theory

to practical problems is the fact that the influence functions in the
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generalired Euler-Lagrange equations and th: partial derivatives
of the value function in the generalized Hawilton-Jacobi-Bellman
partial differential equations can be discontinous when controls
are discontinucus. This problem does not occur in optimal control
problems and rarely cccurs in zero sum differential gane problems
[9]. 1If these discontinuities do occur in a problem, the solution
becomes quite difficult since special conditions such as the
Welerstrass-Erdmann corner conditions must be employed to calculate

the discoatinuities.

Purpose of Dissertation

The purpose of this dissertation is to extend NZSDG theory to
enable solutions for a class of combat problems involving two or
more vehicles.

The original work in this dissertation consists of: (1) generalizing

to NZSDG theory the transversality conditions of Issacs' [17] zero aum

differential game theory and of Dreyfus' [10] optimal control theory.
This generalization is desired since these forms of the transversality
conditions are familiar and easy to apply. (2) developing & theorem
vhich tests whether the infiuence functions are continuous at the
junction of nonsingular trajectories with singular surfaces for a clase
of terminal cost problems with nonlinear state equations and bounded
linear controls. This theorem allows one to test 3 problem in the
class to determine if the influence functions will be continuous on
singular surfaces. Influence functioun continuity considerably eases
the cbtaining of solutions. (3) applying the theorem above and NZSDG

theory to NZSDG penetrstor-intetrceptor problems and to a two player
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NZSDG pursuit-evasion problem.

Guide to Subseguent Chapters

In Chapter II the mathematicsl background and necessary theory is
presented, Chapter TII defines the class of problems considered in
this 3jssertation and the influence function continuity theorem is
stated and proved. Chapter Iy presents 2 two player and three player
NZSDG inserceptor-penetrator problem. The solutions ..nd control laws
are characterized, and for the totally singular problem numerical
solutions are obtained. Chapter V defines a two-aircraft NZSDG pursuit-
evasion problem in which the goals of the piayers are not precisely
opposite. The problem is posed as a fixed terminal time, terminal cost
problem. The control laws and singular surfaces are characterized for
the general problem, and two special cases are examined by finding some
backward solutions.

The significant contribution of this dissertation is to show that
NZSDG theory can be emploved to model combat problems with two or more

combatants and that equilibrium solutions can be obtained from the

theory's applicatinn; also that the use of NZSDG theory results in a

more geueral problem and provides more flexibility and realism in

wodeling the goa.s of each combatant.
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1I. N o Sum Differantial Game Theory

Thia chapter presents the definitifons, concepts, and theory of
a deterwinistic NZSDG. Neceasary conditions for an equilibrium
solution and special conditions on switching surfaces are presented.
The results of Case, Ho, Prasad, Ragaia, Sarma, and Starr Ref. [18, 14,
15, 16 27, 28, 31, 33] are the primary sources for the material in this
chepter.

Problem Formulation

Essential to every differential game problem are three entitics
1. Players
11, Cost Functions
i3, Information Sets
The role of each of these entities in NZSDG theory is discussed below.
The state of the N Players in a NZSDG is gov:rned by the vector

differential eguation

;-f(x. t, U) x(to)-xo

vhere x is the n-dimensional state vector contsining the state
components of the N players, t represents time, and

us(ul, U2, ..., U, .., 0N (2.2)
vhere Ui is the control vector of the tth player, and generally player
1's choice of Ul 1s constrained to a constraint set n‘. The state x
evolves from the initial state X, to some final state x(tf) where
x(tg) lies on an n-dimensional terminal manifold

v Ix(tp), £l = 0
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At u-~dimensional terminal surface in the n + 1 dimensional space of x
and t is chosen because of its anslytic tractability. The final

time t¢ is free unless otlervise specified. The manner ia vhich x
evolves iz determined by Eq {2.1) and the players' choice of controls.

The cost function of the ith player is

I e 4l [x(eg), te) + ffu [x(t), t, U] dt
fo tel, ... K
Sae Appendix A for a discussion of meaningful cost functions.

Finally, each player makes his control decisions based upon the
information available to him. For our purpose information can be
placed in two categories:

(1) knowledge of the capabilities and goals of all the players, and

(2) knowledge of the state x.

Perfect information in category (1) implies each player knows the

state equation Eq (2.1), the te.mination criteria Eq (2.3), and the
cost functions Eq (2.4). The extent of inforwation in category (2)

1s usually represented by observation equations so that the ith player's
state information yl is given by

yi = hi(x, t) 1.1, ..., N (2.5)
Each player selects his control according to a rule (control law)

based on the observations,

ul = gl (i, ¢) 11, ..., N (2.6)

The function UL is called player i's strategy. When player i's state
information is perfect yl = x, and Eq (2.6) becomes

ul wul (x, t) 2.7
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Eq 2.7} is called a closed-loop controi law. €n tha other hend,
i{ no state information except xo 1s known by player i, then y‘ 3 X,
and the control law

ul e vl (x, £, © (2.8)
is called an open-loop control law. These two control laws will
be considered in this dissertation along with another control law to be
discussed later called an "open-loop feedback control taw".
Solution Concepts

Three solution concepts exist in the NZSDG theory: (1) equilibrium,
(2) mini-max (security), and (3) noninferior (Pareto cptimal). This
Gisgertation is concerned only with the equilibrium solution; however,
the two remaining solutions will be discussed briefly.

Equilibrium Solution

In the equilibrium solution each player's goal is to minimize his
own cost function, thus making this solution a noncooperative one.
The following mathematical definitions and equations define the
solution. Define the set of equilibrium strategies U* and the set
(U*; v1) as

e @t L L L, o

@' uhy s, L et e WY L (2.10)
Yor the NZSDG formulation in Eqs (2.1) - (Z2.8), if thero exists 2

strategy set U* such that

o) <3t s oh tel, ..., N

then U* is said to be an equilibrium strategy. The trajectory
x* = x (xgs tos UY)
is called an equilibrium trajectory.
6
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Mini-Max (Security) Sclutiom

One of the catigories of informstionm discuszed roxlier fo this
chapter is knowledge of all players' cost funckions. 3If this
information it not available to each player, then & playar wsy adopt
a conservative viewpoint and assume all other plavers ars oppceing
him., Such a strategy is called 2 miri-aax (securily) strategy. Starrc

{33]) points out that this solution is equivalcat to solring ¥ two

player zero-sum games whersin for the ith gana player 1 gslects a

strategy to minimize J while all other playars select strategies to
saximize Ji. Once player 1 has solved his zero sum grue (1 » 1, . . ., )
to determine his strategy, the N stratagies are employed. According

to Starr [33], the resulting trajactory is generdlly surprising to

each player because of “hLa conservative approach taken by each.

Tor a further discussion of this solution, consult Refarences [27, 28,

33, 35]).

Noninferior (Pareto Optimal) Sclution

If a negotiated or cooperative solutiou can be agreed upon by
all the playere (such as in an economic situation), them all costs are
less than or equal to the corresponding costs of the egquilibriom
solution. A noninferior solution has the property that any other
solution vhich gives a better result for one player also gives ¢ worse
result for another player. Any negotiated solution should be chosen
from the set of noninferior solutions [35). Consult References [27, 28,
33, 35] for a further discussion of this solution concept.

N y Conditions for ths Equilibrium Solution

Bellman's Dynamic Programming (or principle of optimality) and

Pontryagin's minimum principle can be generalized to the NZSDG problem
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to give two different necessary conditions for un equilibrium solution.
Bellman‘s principle results in a set of generalized Hamilton-Jacobi-
beilman (HJB) partial differential equations which the equilibrium

solution must satisfy. Furthermore, Bellman's principle requres the
assumption of perfect information [27) so that tiie control laws are
closed-loop laws as in Eq (2.7). Pontryagin's minimum principle on the
other hand is usually associated withk open-loop control laws as in Eq (2.8),
and this principle leads to a set of generalized Euler-Lagrange equations

(called influence functiou equations in this dissertation) which together

with the state equation Eq (2.1) are the "Characteristic" equations for

the HJB partial diffevential equations. Thus the WJB equations constitute
«~ much more general necessary condition.

In optimal control and zero 3um differential game problems the state
information available to the players has no effect on the form of the
influence function equations, but the state information assumed in a NZSDG
problem can have a marked effect on the form of these equations. This
effect will be made clear in the following sections. Because the HJB
equations are seldom solvable except for unconstrained quadratic cost
linear dynamics problems, all solutions are generally obtained from the
influence function equations. The main utility of the HJB equations is to
verify that an equilibrium solution candidate obtained from the influence
function and state equations satisfies the HJB equations. This satisfaction
of the HIB equationsis another necessary condition which an equilibrium

solution must meet.
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Hamilton-Jacobi-Bellman Partial Differential Equations

Consider the equilibrium strategy U* of Eq (2.11). Dafine the
value H" for player 1 to be the cost of player £ cn ar equilibrium

trajectory with the general intial point (x, ¢},

t
wox, ©) = ot [ (), t )+ " L [x* (0), 1, UM] dr
t

fe], ..., %

Restricting U* to be plecewise continuous we see that wt is
continuous and piecewise differentiable. The values can be showm
to satisfy the ~.uyled system of partial differential equations heveafter

referred to as the HJB equations [27],

1 )
Hit--linll (x,Hix, t, Uk; U)

ot 1ml, ..., N

vhere

i

el b, 0 +W SRR

with the boundary condition given on the terminal manifold

i
Vix (e, £ = 0! [x (e, £ (2.16)
1f the minimization operation in Eq (2.14) is carried out subject
*
to all constraints, the equilibrium controls Ui are feand to depend

functionally on wix’ x and t

o eutt o, x, 0 121, ..., N 2.17)
Substituting Eq (2.17) into Eq (2.14) we obtain another form for
the HJB equations -~ a coupled nonlinear system of partial differential
equations
v 0o x e o0 (2.18)
1, 4=1, ..., N
with the boundary condition given by Eq (2.16).

9
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The HJB equations are defined except on surfaces in the state space
on which the controls are discontinuous. For a rigorous development
of the HIB equation see Prasad [27) and Sarma [31].

The advantage of a solution to the HJB equations is clear, for
if an analytic expression is available for wi(x, t) and H"' then
from Eq (2.17) one sees that a closed loop control law is obtained.
Solving for the values Wl 4o equivalent to finding a field of
equilibrium solutions. Unfortunately, one is generally required to
settle for less if the problem dynamics are constrained or nonlinear.
The solution of the HJB equations by the method of characteristics
[10] is the alternative. The characteristic differentisl equations
for Eq (2.18) turn out to be the state equation Eq (2.1) and the
influence function equations from Pontryagin's minimum principle.

Influence Function Differential Equations

Assuse that the information set of each player is perfect which
implies a closed-loop control law for each player; then the necessary
conditions which must be satisfied on an equilibrium trajectory are the

state equation

x=f (x, t, U%) x (t) = x, (2.19)

and the influence function equations

. N
ao@ter wtyuipe
i=1
jpt
where

e, t, 0 +2l s, ¢, W

i%

and U7 is the admissible minimizing control in the equation
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w® - ain wl (x, 21, ¢, vr 5 D) 2.22)
ui

The summation term in nq (2.20) is absent in optimsl control and gero

sum differential game prcblems, and as we will see in later chapters,

varies according to the information set assumed. For example, if
perfect observations are assuwed as in Eq (2.7), ij is generally
nonzero in Eq (2.20); however, if no observation other than initial
conditions are assumed ar in Eq (2.8) then ij is identically zero.
The influence function Ai is identicz) to the partial derivative of the i

value Hxi, when Hxi is evalusted along an equilibrium trajectory. The

easential difference between Al and Hxi is that i1l is a function of g
time only and Wxi is a function of both state x and t regarded as E -
instantaneous initial conditions. Matheastically the relztionship 1

may be written
M@a-ulpe, o (2.22)

where x* (t) evolves according to the stat‘e equation Eq (2.19). 3

It is important to note that the influence equations are valid over

the same regions as the HJB equations and solutions of the influence

function equations and state equation must satisfy the HJB equations.

The influence function equations ave well defined except on surfaces

in the state space where the controls vt are digcontinuous. Appendix B
presents & formal derivation of the influence function equations from
the HJB equations.
The boundary conditions for the influence function equations
Eq (2.20) are specified in terms of the state and time on the terminal
manifold, and these boundary conditions are generally called transversality

conditions. Several forms of the transversality conditions exist;

however in this dissertation we will use a generalized form of Dreyfus's

11
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transversality condition because of its ease of application. The
generalization of the Dreyfus [10] form of the transversality
conditions along with a generalization of the familiar Isaacs [17]
form are presented in Appendix C. Also in Appendix C is presented
the more gereral Berkovitz form [5] due to Sarma [31]. The Isazcu
form and Berkovitz form sre presented since both are in general use,
The Dreyfus form requires a terminal cost functior of the form
3w ¢l x (rg), £f) 1=1, ..., K (2.24)
so that L1 = 0 in Eq (2.4). This is not overly restrictive
since every problem with a cost function containing an integral can be
easily converted to an equivalent terminal cost problem {17]. See
Appendix C for the details of this conversion.

The Dreyfus form of the transversality conditions is

M () = [k - 6119 ¥,)

t=t (2.25)

f
where 0 and ‘b are total time derivatives.
Since the state equation boundary conditions are specified at t,
and the influence function bcundary conditions are specified at s
a two point boundary value problem (TPBVP) results. Assuming that a
solution exists, we see that solving the TPBVP is equivalent to finding
a candidate for the equilibrium solution to the original NZSDG; hence
the NZSDG problem has been transformed into an equivalent TPBVP.

Solutions to the TPBVP are called candidates for an equilibrium

solution since the TPBVP is a necessary but not sufficient condition.
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Switching Surfaces
When we attempt to solve the TPBVP consisting of the state and
influence function equations Eqs (2.19) and (2.20), we often find that

the equilibrium controls are discontinuous, especially if there are

control constrsints present. These discontinuities in control

occur on switching surfaces in the state-time space, the surfaces
being classified as transition, singular, dispersal and ubxwx'l.:l.1
The HJB and influence function equations aze generally not defined on

these switching surfaces, and the partial derivatives Hi!, Hit )

and the influence functions Al can be discontinuous when the
trajectory crosses or enters these switching surfaces.

Special conditions must be satisfied on these surfaces which

serve to continue solutions across or along the surfaces. The

following sections describe the surfaces and give conditions for

their construction.

Transition Surface

The transition surface is one on which the generalized Weierstrasc-

Erdmann cotner condition holds [28]). Let (+) and (=) denote one-sided

limits on respective sides of the transition surfsce, then the following
corner conditlion holds {28], provided that the trajectory is not

parallel to the surface:

The names “transition” and "dispersal" are due to Isaacs [17] while
"abnormal" surfaces are surfaces like Isaacs' "barrier". Abnormal
surfaces are discussed in Ref. [27].
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G-y ae - (oAl ax =0 (2.26)
i=1,...,N

The variations dx and dt are arbitrary variatiomns on the transition
surface, If the transition surface is parametrized, say by the n -
dimensional paramzter ¢ vhere
[ ] ("1' 02, « « +y ON)
such that the surface is described by the parametric equations
t=7T (a) x=x (o)
then Eq (2.26) takes the form [28]

il - ui-) /20 - I -1 axfac = 0 (2.27)
i=1, ., ., N

In Reference [28] it is prover that if all controls except v* are
continuous on player i's transition surface and the trajectory is not
parallel to the aurface, then Xi. the 1th players influence function
vector, is continuous on the surface (remember that the influence
functions for the other players AJ, i 4 j, may be discontinuous).

Singular Surface

Singular surfaces consist of a family of trajectories on which for

at least one player, say the 1th, a control component ul j* is on the

interior of its constraint set for a nonzero time interval and the

coefficient of Ui 3 in the Hamiltonian function is identically zero,

so that

.o Wt | =0 (2.28)
u} vl yl
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on this time interval. The most common and important case occurs

vhen the control l!"j appears linearly in the state equation and the
Hamiltorian. We will consider only this linear case. For this case
Eq (2.28) does not suffice to determine the minimizing (singular)
control since u*j does not appear in Eq (2.28). A higher order
necessary condition called the generalized Legendre Clebshe condition
[10, 29] 1s required to test the singular control which is generally
determined by Eq (2.29) below. Although the above references
developed the Legendre-Clebsh condition only for optimal control problems
the result has been extended to zero sum differential games [1] and to
NZSDG [28]. Since al " is identically zero on the singular arc, so are

]
3
all of its time derivatives, thus

H"

ooy
Uij Huij « s .m0 (2.29)

Successive differentiation as in Eq (2.29) with substitution of the
state and influence function equations for player 1 genc rally results in
an equation coutaining l.l"j explicitly. Robbins [29) shows that Af

U‘j appears st all in Eq (2.29) it first appears explicitly in an even

time derivative of Hii . Not only does Eq (2.29) often provide an
u

equation which determines Ui , but it also provides useful relations

b1
axong the state and influence function variables which must hold along
the singular arc. The necessary condition for a singular control

Uij to be an admissible equilibrium control is the satisfaction of
the inequality

-1) ¥ 37201 [ a%k/aeZk gl ) 5 0
b ] "15 -
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Robbins [29] calls the quantity 2k the "degree" of the singularity
where

a*rac?* uwl a0 (2.31)

vt
3 i

is the equation in which U 3 first appears explicitly.

1t is possible that more than one control component is singular
on the same time interval. In this case Eq (2.30) is applied to each
control component. If one of the control cowponents say Uij has a
lower degree of singularity, when Uij first appears in Eq (2.30) the
functional relationship between Uij and the state and influence
function variables is determined. This result is substituted back
into Eq (2.30) to eliminate Uij from the equation then successive
differentiation is again employed to find the control component with the
next higher degree of singularity.

Jacobson and Speyer {19, 20, 32], and McDannell and Powers (23}
have derived new necessary conditions and new sufficient conditions
for totally singular optimal control problems; however, it is not
known whether these conditions can be readily extended to zero sum
and nonzero sum differential games.
Digpersal Surface

A dispersal surface for player i is a surface from which player i
can play more than one equilibrium strategy without changing his cost.
Exomples of this type of surface are found in Isaacs' Homocidal Chauffer
Game and Game of Two Cars [17]. The followiag equation characterizes

the dispersal surface for player i {27, 28]:

il (x, oL, U, ) g - ab ax e wt (x, aY, U, 0ae (2.32)
U1

- Ai dx
k'z,.-o,p

16
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whers p is the number of equivalent strategies sand k indicates

the ktk equivalent strategy. dx and dt are arbitrary variatioss on

the dispersal surface. The dispersal surface can oceur in
pursuit-evagion problems. A typical situation illustrating the
nature of the surface occurs when player 1 has the option of making
an equilibrium control choice of either a turn right or a turn left.
As its name "dispersal surface" implies, trajectories generally
diverge from the surface.
Abnormal Surface

In this dissertation normal problems have been assumed; however,
examples of sbnormal surfaces appear in the literature and need to be
sentioned. The main examples of such surfaces are Isaacs' semipermeable
surfaces with the barrier surface a specias case [17). Prasad {27])
points out that another abnormal surface is Isaacs' Equivocal Surface
vhich is a dispersal surface for one player and a singular surface for
the other. The reader interested in abnormal surfaces is referred to
Ref [27].

This chapter has presented the background and theory of NZSDG
to acquaint the reader with the topic. The two approaches to necessary
cornditions provide the HJB equations and the influence function equations.
In practice, for nonlinear or constrained problems it is usually required
to solve the TPBVF consisting of the influence function equations and
state equation in ovder to obtain equilibrium solutions. The conditions
necessary to construct the varicus switching surfaces which are required
in solving the TPBVP were presented. It should be noted however, that

these conditions are generally difficult to apply.
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XIII. A Class of Nonlinear NZSDG Problems with Controls Appearing Linearly

A broad class of differential game problems involves a nonlinear
dynamical system with controls appearing linearly in the state equation.
This chapter treats the terminal cost NZSDG which results from the
above type of dynamics with constrained contrcls. The following sections
define the yroblem class, formulate the differential game, HIB equations,
influence function equations, TPBVP, define the control switching
functions, and present conditions under which the influence functions are
continuous on singular surfaces. The singular surface occurs frequently
in many problems and is often the only switching surface involved in the
problem; therefore, it is important to know the behavior of the influence
functions on this surface. If the influence functions are continuous at
the junction of a trajectory and a singular surface the solution of the
TPBVP is considerably easier.

Chapters IV and V are devoted to two examples from this class of
problems.

Problem Statement
For the class of problems considered in this chapter the state

equation is

. N
xeg@+I A @uletix, V)
je1 (3.1
x (to) - X,

The control variable, Ui corresponding to the ith player is a sca.ar
and 1is constrained such that the following inequality holds

il <1 1el, ..., N (3.2)
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(The problem can be generalized for vector controls with the major
effect being notational complexity). The state vector x coutains the
state componsnts of the N players.

The goal of each player is to choose an admissible control strategy
U1* guch that his swn terminal cost function

e gl (x (e, ) (3.3

is minimixed. x (tg) and t. satisfy the termination criteria

£
v [x (e, tfl =0 (2.3)
We assume perfect information which implies closed-loop ctrategies

for each player; however, it vill be shown for this class of

problems that the closed-loop and open-loop control laws will result

in the same influence function equations hence the same equilibrium

solutiens.

Formulation of the HJB Equations, Influence Function Equations and the TPBVP

We can formulate the HJB equations,

H: (x, t) = - min al (x, t, H:. ux; vd) (2.14)

1
v tel, ... N

wix (e, tp) = o [x (ep), tel
1=1, ..., N

i

where H® is given by

N
gevieav, g+ M@l (3.4)

=

The admissible UL* which minimizes H! in Eq (3.4) (holding the other

*
controls u’ s J ¥ 1, at their equilibrium values) is (by inspection of
%q (3.4))

v o - e 0 aD) (3.5)
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where
sgn (y) = 1 y>0

-1 y<0 (3.6)

Eq (3.5) holus except when the argument wixAi satisfies the equation,

3.7

*
over a nonzero time interval. In this event {t is possible for Ui

to be
singular, and the necessary conditions given by Eqs (2.28) through (2.31)
must be applied to determine the control Ui* and test its admissibilicy
as a candidate for an equilibrium control.

We can now write the HJB equations fzc this problem in the ferm

N
W= -l gz At u¥*) (3.8)

t =1
with the boundary condition given by Eq (2.16). Eq (3.8) is a system of
first order nonlinear coupled partial differential equations where the
equations are coupled through the last term of the r.h.a.. This equation
cannot, in generai, be solved in closed form; however, it is an additional
necessary condition since the state and influence function equations are
the characteristic equations for the HJB equations and therefore wust
satisfy it.

The influence function equations for this class are

N N R
Aaoatg 41 Ao A
= =1 *
i=1, ..., N 3.9)
The terminal boundary conditions for Eq (3.9) are given by Eq (2.25).

In Eq (3.9) Uj* is given by

*
v e - sgn 1 D) (3.10)
or in the event the argument Xj Aj satisfies the equation
Madeo (3.11)
%
over a nonzero time interval, the control UJ may be singular and
20
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must be determined by the necessary conditions, Eqs (2.28) through

(2.31). 1In Eq (3.9) 4¢ § = 4, 2%

A" !I:* is identically aero

(sze Appendix B), In any event, the expression ij‘ in the Jast
ters in the r.h.s. of Eq (3.9) is either identically zero in regions
where the controls are constant or undefined on switching surfaces.
In solving the influence fraction equations, the special conditions
for the varisus surfaces outlined in Chapter II must be used to
continue solutions across the switching surfaces. In the event a

trajectory lies in a switching surface such as in the case of a

singular control segment, special az s to be di d later in

this chapter must be employed.
The equation for the influence fumctions holding between switching
surfaces, can now be written

. N
.ot (3‘+tAiuJ*) 1=1, ...,H¥ (3.125
j=1

Contro)l Lavs

Eqs (3.5) and (3.10) defining the control U:li are known as a
"bang-bang" control law, so that the controls for this class of problems
are "bang-bang" with the possibility of singular controls when Eqs (3.7),
or (3.11) holds. The development thus far in this chapter assumes
perfect information, bu: now let this requirement be relaxed. Suppose
uo state observations except x (to) are permitted. Then, according teo

Eq (2.8),

wl = vl (x,, £, ) (2.8)
Hence l.l,‘1 in the influence function equations Eq (3.9) is identically zero
and the influerice function equations for the open-loop control law
problem become

it

N
--x‘(s,+:AiuJ*) 1=1,...0N
31

21
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which are identical to the closed-loop influence function equations

Eq (3.12) for this class. Thus the open-loop trajectory is identical to
the closed-loop trajectory for a given set of initial conditions. This
identity is caused by the control constraints Eq (3.2) and the linearity
of the controls in the state equation Eq (3.1) and is not dependent on
the information pattern., Because the open-loop and closed-loop control
laws result in identical trajectories, in this class of problems a
sampled data feedback solution (i.e., an open-loop solution using each
new sample point as an updated initial condition) approaches the closed-
loop solution in the limit where the sample interva. ‘3 allowed to
approach zero. This limiting behavior is not true in the general NZSDG
since Starr [33} as chown that the so called open-loop feedback solution
(where the initial conditions are updated instantaneously along the
trajectory) and the closed-loop solution are different for linear prob-
lems with no control constraints.

Conditions for Influence Function Continuity Along Singular Surfaces

In higher dimensional problems ( n > 3 ) singular surfaces which
Is: acs calls "universal" surfaces [17} occur frequently when bounded
controls appear linearly in the state equation as in the class considered

in this chapter. The singular surface is characterized by the fact that

trajectories rater the surface from either side then proceed along the

surface itself. Letting M denote the singular surface, the situation
in two dimensions is depicted in Fig. 1.

From Chapter II we know that the HJB equations are not necessarily
defined on switching surfaces (which includes the singular surface M,
but the HJB equations are valid on either side of M if we regard the

partial derivatives in Eq (3.8) as one sided, If we can show that the

22
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Singular
Surface

Trajectories

Terminal Surface

Fig. 1. Singular Surface

partial derivatives, Wix and Wig are continuous on M, then we do not
need to restrict these partials to be one-sided, and we can conclude
that the HJB equations, Eq (3.8), and thexefore the influence function
equatioas Eq (3.5) are defined on M.

Hence we establish the following theorem:

Given tae NZSDG with the state equation

x=g (x) +j§1Aj @ vl % (5) = x,

lvdl <1

with the terminal manifold given by
Y Ix(td, tg1=0

and cost functions given by

How el x (tg), tg )
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If the following conditions are met then for player k, Hkx and Hkt are
continuous on M:
1. z{x) and A-1 (x), j=1, . ... , N, are continuous vector
functions of x and linearly independent for all x.
M is a singular surface of the coatrol vl where M can be entered
from ejther side by employing Ui* = +1 on one cide of M or
Ul* = -1 on the other side of M. Let M' be the side of M
corresponding to Uﬁ = +1 and M~ be the side of M corresponding
to U¥* = -1,
The controls Uj*, j # 1, are constant uest M,
On M the term Hkx Al (where ka is considered to be a one gided
deraivative) is identically zero,

w“x a0 kL (3.14)

The inner product B (x) A1 is not a constant over any

nonzero time interval; B (x) 1s defined below.

HJB equations for player k are

N
t--wkg(x)-xwk Ad ui* k=1, ...,N8 (3.8
b3 j'l x

Eq (3.8) 1s detined on either side of M but not on M itself, therefore
the partial derivatives Hkx and "kt must be consi: ed as one-sided
on Mt and M~. Designate 'Jk"'x and H'-""t as one sideu partial derivatives
on Mt and H“'x and Hk‘t as one-sided partial derivatives on M .

On M, which 1s a singular surface for player i, the switching
function Hi‘ Al is identically zero (H’-x is defined on M [27, 28])

ui‘ Al=o (3.15)

From Eq (3.8) and condition iv. above we can write the equations
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Wit Al @ gk al- -0
(3.16)

¥
WhH Wkt [ g (OF + & e R A T

N
t A ui*-1 a0
Jol

Since g (x) and Al (x), =1, ..., N, are continuous in x, and th,
j ¥ i, is constant in the neighborhood of M under consideration, by
continuity arguments

Aft = AJ- = AS 3.17)

N
g O+ 2 PRAE b SR (3.18)
j-

N
g (0~ + &£ al-ud*- 3H
1=

N
g fx) + ad Uj* hL24
i=1

B (x) is the time derivative of the equilibrium state vector except

the component containing vl By assumption i. B (x) and

Al (x), $=1, ..., N, are linearly independent vectors.
From Eqs {(3.16), (3.17), and (3.18) we can now write the equitions
CME L W S ket (3.19)
- R Wk« R, - R B () (3.20)

Now "Hc and w“',._ are constants on an equilibrium trajectory along M

s ince the state equation ie autonomouvg and the prublem has terminal cost

functions; hence Eq (3.20) tecomes
ck = (Wit - W) B (R ki

Returning 10 Eq (3.19) cne of two conditions exist; either (a),
(Wk"'x - =) = 0, or (), (Hk*: - k'k"x) 1s orthogonal to AL, Conditfon

(a) together with Bq (3.20) ioply Wkt kT and WKFL e 5% L we will
x x t t

2z
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show by contradiction that only (a) is possible. ‘o obtain a contradic-
tion to (b) suppose (») is true. Then the vector (Hk"x - Hk‘x) lies in
a hyperplane orthogonal to Al at each x along a trajectory. In Eq (3.21)
on the other hand, the vector (Hk”'x - Hk'x) iies in a cone about the
vector B (x) for each x along the trajectory. Lnspection of Eqs (3.19)
and (3.20) reveals that in order for both equations to be satisfied for
each x along a trajectory the inner product <B (x), Al (x)> must be
constant which is impossible by assumption v. (Since B (x) is the time
derivative of most of the state vector while Al (x) is only the control
coefficient for the ith player, assumption v. is a very reasonable one
and is not likely to be violated in any realistic problem.) Thus, the
contradiction to (b) 1s establiched.

The conditions

+ o gk- = WK
wke X wk x " ¥x

= Wkm e gk
Whry = WRT = WS,

imply that Hkx and Hkt are continuous. Furthermore, because of this
continuity, the HJB equations and thus the influence function equations
are defined on the singular surface. The advantages of this continuity
were enumerated in the introduction to this chapter, and of course

the validity of the HJB equations and influence function equations is
essential to obtain singular trajectories. Application of the theorem
will be illustrated in the problems of Chapters IV and V and in Chapter
V it is shown that there are problems for which the theorem does not

hold.
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IV. Interceptor-Penetrator Problems

In this chapter we use a simple model té illustrate the application
of the theory presented in Chapter II and III and also the salient
f eatures of the intercept problem treated ss a N2SDG. The state
equation used to model the vehicles' aotion is the same type as in Eq
(3.1) of Chapter III so that the control laws are the "bang-bang”
variety with the possibility of singular controls. The theorem of Chapter
I1I which tests the continuity of the influence functions on the singular
surfaces is applicable, and the influence functions will be shown to be
continuous on the singular surfaces. Two problems are coasidered:
(1) 2 two player intercept problem with one player, the attacker "a",
attenpting to reach a fixed target and the other player, the defender "d",
attempting to intercept a. Terminstion of the game is achieved when d
achieves a separation distance from a of some arbitrary length, say f.
We will assume throughout that termination aiways takes place although
an important part of any practical problem is assuring oneself that
termination can indeed be accomplished., The defender's goal is inter-
ception in minimum time while the attacker's goal is minimization of his
final range o the target; (2) a three player problem which is the same
as (1) except that another defending player ¢ {s added. The termination

criteria is taken to be when either c or d intercepts a. General solu-

ticns are discussed, and the totally singular solution is solved.l

1. 1In considering the gsingular surfaces we will be concerned only with
the singular surfaces vhich intereect the terminal manifold since
these appear to be the only significant singular surfaces in the
practical intercept problem. Intermediate singular arcs can occur as
in Isaacs' homocidal chaueffer problem [17), however these intermediate
arce seem to occur vhen the players are initially inside each other's
turning radius--a case which will not be considered in this dissertation.
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The theorem of Chapter III is xhown to be satisfied so that the
influence functions are continuous on the singular surfaces. This
continuity allows the totally singular problems to be solved numeri-
cally. Numerical solutions of both the two and three player totally
singular problems are carried out to illustrate application.

Problem Formulation - Two Players

The equations of motion for the two players are

x4 = vd cos y4

yd = vd gin 9

yd=cdu

x% = V2 cos v

y3 = V8 gin 2

y =c*v
Define the state vector x to be

= (xd, yd, 44, 22, ¥R, ya) 4.2)
Fig. 2 shows the inertial position and velocity of the two players
and the inertial position of the attacker's target.

The termination criteria nceded to end the game is taken to be the

satisfaction of the equation

Yix (e, el =12 [ - pd - yd7 o0l =0 @)
t=t
£

where £ 1is arbitrary (In a practical problem & could represent maximum
launch range for the defender's ordnance. See Fig. 4). The part of

the intercept problem which makes it a nonzero sum game is the difference
in the goals of the two players. The defender's goal is minimization

of the game termination time te while the attacker's goal is minimization

of the final range to his target (xl., ’T)‘ The cost functions for the
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Yy Attacker
Target S
@ «*, yh

(Xgs ¥y)

Defender

d

(xd, y

Fig. 2. Inertial Position and Velocity of the
Attacker and Defender

defender and sttacker are respectively

J" - [x (tf), :fl -t

e bt x (e, t] = 12 (G0 - 2P+ O° - y,)zlt_tf

We can now proceed with the formulation of th:e IJB equations, the
influence function equations and the TPBVP. The Hamiltonian functions are

B = 2% 4 v cos v0 4 " v atn yd + 24 A

(4.5)
+ A.xl V. cos 1. + A". v? sin y' + X.Y‘ Aty

where the superscript "s" is to be replaced by either "a" for the
attacker or "d" for the defender. The systems of HJB equations for the
two players is

Hdt--ninﬂd

We ol Ix (e, e
u
2 a
H‘t--u‘i;nﬂ W fx (), tf]
29
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vhere 1% in Eq (4.5) is replaced with the partial derivatives H'x.
The influence function equations for the two players are

¢ " 0

2* yd 0

s d .8 d s d
xvd v (Axdsiny —xydcosy)

s 0

v (A'x‘ sin y‘ - Xsy. cos v‘)

When referring to the influence function equations for the attacker or
defender, repiace the superscript "s" with "a" or "d" respectively.
Note the absence of either control in the influence function equations
Eq (4.7), (4.8), and (4.9) which means that these equations are coupled
only at the terminal manifold by the transversality conditions. The

transversality conditions are given by Eq (2.25) and in component form are

a - xd) -
a d

-G -y

(e = - v/ v () o

o
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.a .
-9 (/Y (tp)

where
Ya =* - xd) v® cos Y* - ¥4 cos Yd) + (-

d

" sin v* - v° ain yd)

and

;l(tf) = [ (x‘ - ,T) v® cos ¥2 + (yﬁ - y'l‘) v? sin Y‘]t_'tf (4.10)

* %
The minimizing controls u and v are
*

u = - sgn A ~,d

v* - - ogn A.Ya (4.11)

except on singular manifolds where u‘t = 0 and/or v* = 0 are employed.
Appendix D containg the derivation of these singular controls. The
TPBVP whose solution is equivalent to solving the NZSDG posed consists
of the state equations Eq (4.1) with the controls u* and v* substituted
from Eq (4.11) (or singular controls if appropriate), and the
influence function equations for both players as given by Eq (4.7).
Control Laws

The equations in Eq (4.11) are bang-bang control laws, so that the
econtrol pair is always one of the following:

*
1. v =¥

*
2, u =90
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*
3. uw =3

4. u* =0 v* =0

As stated in Chapter III, a closed-lcop control law requires the
solution for all the switching surfaces. The location of the state
relative to these surfaces then completely specifies the nonsingular
controls u* and v’.» Trajectories lying along a singular surface have
controls from the control pairs 2., 3., or 4. above. These singular
trajectories are discussed below.
Singular Surfaces

In Appendix D the Legenldre~Clebsh necessary conditiona are applied
to derive the admissible sincular control candidates u* - 9 and/or
v* = 0. Additional requirements for a singular control u” are that on

a singula: trajectory for d

(4.12)

d d d d
A xd €O8 Y +12 yd siny €0 (4.13)

*
For a terminal singular trajectory on which u s singular, using

Eqs (4.7), (4.8), (4.9) and (4.12) it can be shown that

2 g2
stnyd e -2 g7 0%+ x‘yd)”z]t_tf

2
de)llz 1

2
cosyd-[—ldxd/(xdxd-i-x tat
f

tn v s g /2l = 100 -y 1 G- )

et

By substituting the expressions for sin yd and co‘u yd from Eq (4.14)
into the inequality in Bq (4.13) we see that the irequality is strictly
satisfied.

Eq (4.14) implies that the flight path angle yd is such that the

velocity vector for the defender lies on his line of sight to the
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attacker at termination. The situztion is depicted in Pig. 3.

Similarly, in order for v* to be singular Eqs (4.12) and (4.13) with

a" replacing "d" must hold along the singular trajectory. For a

*
terwinal singular trajectory on which v is singular

nny‘-[x' TN

yo ! Yl (4.15)

t=t £

R e R A 3
R T
where 3. and ¥ are given by Eqs (4.9) and (4.10). Eq (4.15) implies
that the singular trajectory for the attacker has a constant flight
paih angle which depends-upon the relative position of both players at
termination and the target. Typical singular trajectories are depicted
in Fig. 4.

Continuity of the Infinence Functions

The requirements of the continuity theorem in Chapter III are met
(by inspection) with the possible exception of condition iv. which must
be checked. If condition iv. is met then the influence functions are
continuous at the junctions with and on the singular surfaces in this
problem. We now show that condition iv. is satisfied. Assume player
d switches from a nonsingular to a singular control.

Since A* v and W* v are identical on an equilibrium trajectory,

condition iv. Eq (3.14) applied to this problem requires that
2 =0 (4.16)

along every trajectory in d's singular surface. Because A* L and
v

v v are identical on an equilibrium trajectory, 2 ¥ ~an be regarded

as the sensitivity of player a's cost function to a variation in the

£light path angle yJ of player d. From Eqs (3.14), (4.7) and (4.16) we
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can now develop a relatiopship among the influence function variables of
both player a and player d which must hold on d's singular surface. It
is then easy to demonstrate that the relationship holds which in turn
implies the continuity of the influence functions.

From Eq (3.14) all time derivatives of x'*d are also zero;

therefore from Eq (4.7) the equation P - 0 Tequires that .

A'xdsinyd-x‘ydcoayd-o

tanvdnx'yd/x'xd
Eq (4.77V implies that the flight path angle of player d can be specified
in terms of piayer a's influence functions. Since tan yd is a constant
on d's “erminal singular trajectory and is specified by Eq (4.14), we
can write a relation bet cen player a and player d's influence functions

vhich must hold on the singular surface,

a e d d
b\ yd /X " (A v /X xd)t-tf (4.18)

Since the terms in Eq (4.18) are constants, we need only to assure our-
selves that the equation and thus condition iv., is satisfied at tf.

This verification can be made from the transversality conditions Eq (4.8)

0% 1%

- 16* - yh 7 6=, 4.19)
f

t-tf
= tan yd(:f)
d d

= () yd /A xd)

t'!f

We have now shown that the condigions of the theorem of Chapter IIL
are satisfied for player d's singular surface so that the influence

functions are continuous on this singular surface and the HJB equations
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and influence function equaitions are defined on it. A symmetrical
argument holds for player a's singular surfaces. It nay be possible
that a player switches from a nonsingular to a singular control while
the other player is already using a singular control. This s’uation
is merely the intersection of the two singular surfaces and no unusual
behavior 1s associated with this intersection.

Totally Singular (Long Range) Problem

When long ranges are involved in the trajectory of each vehicle

and the turn radii of the vehicles are very small compared to these
ranges, then the equilibrium trajectories are totally singular except
for the initial turning segments. In the context of the problem at
hand, the trajectories are straight lines. This simplification makes
the problem’s solution fairly simple.

Suppose the trajectory of each vehicle is totally singular.

Then from Eqs (4.14) and (4.15) we have
tan v3 = (&* - yd) [ & - xd)lt_t
f

4

R Py‘-yr)—(o'/Y) o -y
tan y =

[(x' - x) - G /M et ) tee,

* *
Using the singular controls u = v = 0 and the state equation

Eq (4.1) we obtain the algebraic equations

xd(t) - xd(co) + (¢t - t) v? cos yd

yd(t) - yd(to) + (¢t - t) v¢ atn yd
a

x*(t) = x‘(to) + (t - to) v* cos Y

yi®) =yt e ) + (e - £ ) VP etn 4t
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Let to = 0. For corvenience define a poiaut (;d, ;d) along the flight
path of the defender as

'id(t) - Xd(t) + £ cos yd

) = y4®) + 1 stn ,d
so that Eq (4.22) becomes

d d

;d(t)-x°+(vdt+ 1) cos y

Fweyl + e+ namy

x3(t) = x‘o + 7 ¢t cos Y
yh(t) = y‘o + V¢t ain ¥
At tf, the points (;d, ;d) and (xa, y‘) are identical,

e = 2t
(4.25)

e = vt

Eqs (4.20), (4.21), (4. 4) and (4.25) constitute the TPBVP. Note
that the unknowms Ta’ yd, and tf are all determined at the unknown
terminal point.
Numerical Method

The following simple algorithm can be used to numerically solve

the TP3VP for y‘ . yd, and t Let the superscript "o indicate the

£
initial guess while the superscript "1" indicates the computed value

based on the initial guess.

Algoritha
o
d
1. Guess y , tfo.

2. ¢ a°® a° a°® a®
. Calculate [x (tf), y (:f)] and [x (tf), y (tf)] from Eqs

(4.22), (4.24) and (4.25).
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a°
Calculate ¥ from Eq (4.21).

o o
Calculate [x* (co), ya (to)l from Eg (4.22) using final

conditions in 2, and 3. as initial conditions.
a° a®
Determine the error between [x (to), y (to)] and

O CRIR

o 1 o
Correct yd and tfo by setting Yd - Yd +A7d and

t1-

[+]
¢ "t ot

o

Replace yd and t,° by

dl
£ Y

and tfl and repeat steps 2. through

6. Ayd and At may be determined by a number of schemes, many
of which may be implemented by using the optimization program
AESOP (Automated Engineering and Scientific Optimization
Program) {12, 13]. Continue the iterations until the error
ir Step 5. has been reduced to a suitable bound.

The above algorithm is implemented to illustrate a numerical

solution.
Initial Conditions In‘tial Guess
d a°

@) =0 x*0)~2000 v¢e1000 v9 -1 radian

2 =0 y30) =100  v*« 500 S-S

X =0 yp = 500 L =25

Program AESOP [13] was used with an IBM 7094 dizital ccmputer to
ebtain the corrections Avd, a tf in the alpgorithm. Md and Al:f were
selected zo minimize the error in Step 5.,

o o

N a a 2 2 a 2,1/2
(errory = {{x'(tr)) = x" ()] + {y () -~y ()]}
Using three minutes of machine time, the error was reduced from the

initial guess error of 114 to a final error of .063. The final error

38




DS/MC/T1-3

repzesents a distance difference of .063 between the calculated

o o
initial poiut x* (), a (t)) and the zctual initial point xa(to),

y.(to). The computed values of Yd, v®, and tfcorresponding to the

final error are vd - 54.6“, = 261.60, and t. = 1,51,

£
In 22 actual intercept problem the algorithm could be employed
to provide a sampled data feedback control law provided the sample
intervals are small. I this control law the state is sampled at
discreet times and the sampled etate Is used as a new initial condition.
Enploying the algorithm for each state sample updates the £light path
angles yd and v& and the time to intercept, tf.
If one of the players, say a, employs a nonequilibrium control
lav, this feedback control law for player d insures a better final
cost for player d. It should be ncted that the smaller the sample
interval is the quicker will be player d's resction to nonequilibrium
play by player a.

Three Player Formulation

Three player differential games have been solved for purasuit-
evezion problems (4}, however, the games are posed as zero-sum games
with the third player introduced by some artifice such as a constraint
or a specified guidance law rather than as an ..dependent minimizing
player. In this section an additional independent player will be
added to the problem of two players already presented in this chapter.
The selection of the third player's cost function dictates the degree
of his cooperarion with the original defender ct the twe player game.

Consider the two player problem in this chapter, and add to the
state 2quation Eq (4.1) the equations of motion for the third player

whom we ghall csll the cooperating player "¢,
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[w i
The state vector is now
e LN R R R A SRR L) %.27)
Suppose that the goal of the cooperating player is identical to
the original defender's goal of interception of the attacker in minimum

time,
S £ (4.23)

Depending on the relative positions of the players and assuming termi-
nation can take place, one or the other of the defenders achieves
intercept first with the possibility of simultaneous intercept. If
there were a termination criteria such as Eq (4.3) for each of the
defenders, the termination would be ambiguous., To avoid this problem
a new single termination criteria is formulated which includes the

termination criteria for each player,

Yix (e, £ = 12 (¥ [ ¥)

-1/2 [(xd _ xa)Z + (yd _ ya)Z R 12]

((xc - xa)2 + (yc _ ya)z - k2)
-0

k 1s the radius of c's capture circle and ¢ is the capture circle

radius for d. The game is terminated the first time Eq (4.29) is sat-

isfied,

TPBVP for the Three Pleyer Problem

The set of influence function equations for this problem are the
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equations in Eq (4.7) plus the equations for the third player,

.X‘xd'o

;‘syd'O
;‘syd'vd (x’xdsin yd—x’yd cos yd)

s

A ge 0
‘s

A ye

]
Yy

v¢ (szc sin y* - 3%, cos o

yc

Aea® 0

s

A ya

'8 s a 8 a

xY.vv'(xx,uny -xy.cosy)
where s is one of tne set (d, c, a) which refers to the defender,
cooperating defender and attacker respectively, thus Eq (4.30) contains
27 component equations.

The transversality conditions are

PN (U et (2.25)

Eq (2.25) is expressed in component form in Appendix E for this problem.
The bang-bang control laws for the original defender and attacker
remain unchanged while the control law for the cooperating defender has

the same fora,

*
w = - 8gn Acyc 4.3%)

The singular control for each player is unchanged,
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The necessary conditions for player d to have a singular control are

d
x A 0 (4.33)

d d d d
A 1 + 0 4,34
xd 818 Y A,d cos y « ( )

*
and if the problem terminates with a singular control u = 0, then on
the singular trajectory

/2]

2 2
stn vl = [ - Adyd /o8 <4 ¥ 3 ,d)l tet,

a2

2
cos vd -[- xdxd / (xd A+ yd)l/zl

t-tf

bn o = 10" - 0h 16t -,

*
For player c to have a singular control v = 0,

"0 (4.36)

c [ c ¢ <
Ve siny +2 ¥ cos y -0 (4.37)

*
and if the problem terminates in a gingular control w = 0, then on the

singular trajectory

2
c c c
ainy-[—lyc/(x x¢

2
c 1/2
+ A yc) ]t-tf

1/2
]:-:£

2
c
+ 2
yc)

2
cos v* = [ -2/ O ¢

c a c a c
tan y = [(y" -y) / (x "‘”:-:f
*
Finally, for v to be a singular control

x‘Y.-o
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Ay etn vt 4 x". cosy* 20 (6.40)

*
and if the problem terminates in a singular control v = 0, then on

the singular trajectory

& a M a
a (7 -y) - /Y) vy

tan Y = (4.41)

Gt -x) - (37D awnt et

The inequalities of Eqs (4.34), (4.37) and (4.40) are showm to hold with
strict inequality in the same manner as in Eq (4.13).

Because of the termination criteria Eq (4.29), one or the other or
both of the defending players will make the intercept and cause termi-

nation. Recalling the termination criteria function
d <
Yilx(, e )=121y])lv]=0

Y = 0 implies the following possibilities;

@ v-o (playsr d intercepts first)

w a0 (player c intercepts first)

(c) Yd =¥ =0 (simultaneous intercept)

If (a) holds in a problem, then examination of the transversality
conditions in Appendix E reveals that the trajectory of the attacker
does not depend on the position of the nonintercepting player c. In
other words, the attacker and intercepting player d have the same
trajectories as in the two player gams where the nonintercepting player
¢ 1s excised from the problem. The nonintercepting player's trejectory
is determined by Eq (4.38) which implies that if a singular arc is
attained by player ¢, at termination his line of sight to the attacker
is coincident with his velocity vector. The situation is depicted in

Fig. 5. A similar statement holds for case {b).
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Cooperating
Defender

4-————_——“—‘———“::I:::::'

]

Defender

Fig. 5. Typical Three Player T:iajectory

Consider case (c¢). In the two player problem, if a third player
(the cooperating defender) is added to the problem and if his capability
permits, the three player problem soluvion will differ from the solutions
for cases (a) and (b) where the attacker and one of the defenders play
as if the second defender were not present. When the cooperating
player can influence the solution, but not force case (b) then case (c)
holds and the intercept is made simultaneously by both defenders.
Examination of the transversality conditions for the attacker in
Appendix E, reveals that for case (c), x'x. (tf) and xay‘(tf) are
indeterminate. Application of 1'Hospital's rule to Eq (4.41) removes
the indeterminacy. The resulting equation for tan y' is

R R AR R N AR R A |

x'-&r*-;‘ [(xc—x')/\.r°+(xd-x‘)/id]

tan 1‘(tf) -
t-tf
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The expressions for 3‘, ¥ and ‘lﬂ are found in Appendix E.

The theorem of Chapter III is satisfied on the terminal singular
surfaces of all three players. This can be verified in the same
manner as in the earlier two player problem of this chapter.

We can now proceed to develop the totally singular solution.

Totally Singular Three Player Problem

As in the two player problem, if the turn radii are assumed very
small compared to the total range of each player, then the problem
reduces to one in which the trajectories are totally singular - in this
problem, straight lines in the plane. Pollowing the format of the two
player totally singular problem, the equations defining the flight path
angles are given by Eqs (4.35), (4.38) and (4.41) repeated here for

reference,

tan yd - (G0 -y /P - xd)lt_tf

tan v© = (% - y%) / P - "c)]:-:f

o* - yp) - (ot ¥ av/ay“,

G- x) - 8 W et

tan y = (4.41)

t-tf

If a simultaneous intercept occurs, Eq (4.41) is replaced by Eq
(4.43). The gtate equation is integrated using the singular controls
L *

u, v, andw to give (assume t = 0)
xd(:) - xdo + vd t cos yd

) y, + v tatn y?

xS(t) x°° + V% t cos y©

y(®) =y 4 V€ ¢ st §C
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<*(e) - xlo + V%t cos v*

y*(e) = y* + v ¢ sin
Define ;d, _a. ;c, ;'1: by the following equations,

;d(t) xdo + ( Vd t + 2) cos yd

d
o

d

;'d(t) y + (v e+ 0 sy

X5 xco + ( VC £ + k) cos yc

70 = yS + (V4K sin

When t - te, one of three conditions holds; either

@ ?:d(tf) = x*(t;) and }d(tf) = y(ep)

(b) ;"(zf) - x’(:f) and ¥°(te,) = yh(tp)

or (c) both (&) and (b).

Case (a) corresponds to intercept by player d, case (b) corresponds to
intercept by player ¢ and case (c) corresponds to simultaneous intercept.
The TPBVP consists of finding the angles ya, yc. and yd which are
defined at the unknown terminal point by Eqs (4.35), (4.38) and (4.41)

such that the conditions in Eq (4.46) are met.

Numerical Method
An algorithm which can be used to solve numerically for the unkncwn
angles in the TPBVP is based on the threz intercept conditions of Eq (4.42).
Algorithm
1. Assume intercept by player c.
2, Solve the two player (c and a) NZSDG using the algorithm for
the two player totally singular problem. This provides an

intercept time for player c.

46
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3. Determine whether player d is capable of intercepting first
in the solution in 2. by computing player d's time to inter-
cept. If so, the assumption in 1. is not correct, go to &,
If not so, the assumption is correct; determine player d's
flight path angle by Eq (4.32),
Assume intercept by player d.
Solve the two player (d and a) NZSDG using the algorithm for
the two player totally singular problem,
Determine whether player c is capable of intercepting first in
the solution in 5. by computing piayer c's time to intercept.
If so, the assumption in 4. is not correct; go to 7. If not so
the assumption is correct; determine player c's flight path
angle by Eq (4.38).
Reaching this point implies simultaneous intercept. The TPBVP
vhich must be solved consists ui satisfying the initial conditions
for the problem, the transversality conditlons, Eqs (4.35),
(4.38) and (4.41) and the termination criteria, Eq (4.42c).
Eq (4.43) are the equations of mution for the three vehicles.
The following steps yiclds a numerical solution to the simultaneous
intercept situaticn:

(a) Guess yda

(]
Using Eqs (4.45) and (4.46c), solve for Yc and tfo which gives
simultaneous intercept for players c and d.

(]

o ) o
(e) With yd » v° , and :fo calculate {x° (tf). Sl (tf)] and

[ a° d° a° a°
% (tf), y (tf)]. Compute [x (tf), y (tf)] from Eqs (4.24)

and (4.25).
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o
(d) Using Eq (4.38) solve for y‘ .

o o o
(e) Using Yl and tfo, compute [xa (to), y. (to)] from Eq (4.44).

0 0
(f) Compute the distance error between [x* (to). ya (to)] and

the initial point for player a, [x‘(to), y'(:o)],
1 1 [}
(g) Define yd by the equation Yd = Yd + Ayd

&® at
(h) Replace y in (a) by y .

(1) Repeat steps (b) through (h) until} the error in (f) has

been reduced to some suitable bound. Program AESUP [13) may

be used to obtain the correction Ayd to reduce the error in

(f) to neaurly zero. The error is computed as in the two

player problem.

The algorithm is implemented to illustrate a numerical solution.
The parameter values of the two player totally singular problew are
used so that the effect of the third player on the trajectories of the
origincl two players may be obse.ved. Three different gpeeds for the
third player c¢ will be used to fllustrate the three cases in Eq (4.42).
Initial Conditions

H0) x2(0) = 2000 v « 1000  cCase (A) V© = 500

o y*(0) = 1000 vé

500 Case (B) v© = 1000
x5(0) = 0 x =0 25 Case (C) V© = 1500
y€(0) = 1500 yy = 590 k=25

The computed values of yd, Yc' Ya for cases (A), (B) and

(C) are given in Table I.




DS/MC/71-3

Table I

Numerical Results for the Three Player Problem

Target
Range

(A) 1311
(») 1317
©) 1526

The trajectories of the three player game for cases (A) (B) and (C)
are depicted in Fig. 6. Note that in case (A) the trajectories for players
a ard d are identical to the two player game since the capability of the

added player ¢ is not sufficient to cause the attacker to change his flight

path angle ya. When player c has sufficient speed to affect the solution

but not to effect intercept by himself, the attacker changes his flight
path angle from that of the two player problem so as to cause a
simultaneous intercept. Finally 1f c's speed is sufficiently large, the
attacker plays only against ¢ as in case (C).

Summarizing, in this chapter two simplified intercepter penetrator
problems were formulated using NZSDG theory. The continuity theorem of
Chapter III was shown to hold on the terminal singular surfaces which
implied influence function continuity on the surfaces. This continuity

permitted the numerical solution of the totally singular problems.
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Fig. 6. Three Player Totally Singular Intercept Problem
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V. A Pursuit-Evasio: Problem

Pursuit-evasion problems have classically been posed as two-player
zero sum differential games in which the goals of the players are
alwvays opposite. However, in rea) -tic situations it is not alwvays
clear that the goals of the players are exactly opposite so that zero
sum differential games do not suffice to model the situation. It is
this aspect with which this chapter is concerned. Here we solve a
two player fixed terminal time NZSDG in which the players have conflicting

but not diametrically opposite goals.

Denoting the "pursuer" by p and the "evader" by e, the goal of p

is to minimize a function of the final relative range and p's line of
sight error while the goal of e is to minimize a different (but not
opposite) function of the relative range and p's line of sight error.
Relative range and the line of sight error of the pursuer are chosen
because of the importance of these functioms in pursuit-evasion problems.
The dynamic wodel for the two vehicles is taken from Ref. [S] where it
was used in the analysis of a zero sum differential game of the pursuit-
evasion type. The problem considered in this chapter will be shown to
satisfy the theorem of Chapter III which implies continuity of the
influence functions when the contruls are discontinuous as the trajectory
joins a singular surface.

The objective of this chapter is to tharacterize the solutions t»
a NZSDG pursuit-evasion problem; therefore solutions will be completed

only to the extent necessary to illustrate the solution behavior.
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Problem Foimuincion

The dyrwaic model for this problem consists of twc vehiclea moving
in a planc. The equations governing the wotion for each vehicle in a

vertical plane are

x=Vcosy

= Vsiny
= (I-D)/m - g sin v
«L/mV

where x and y are spatial coordinates in the plane of motion, V is the
speed, Y the flight path inclination w.r.t. the x axis, T the thrust, and
n the mass. The aerodynamic forces are defined by the drag and lift

2 2

$ Cp and L = 1/2p V" § i

equations D = 1/2 p V
If the induced drag due to lift is small compared to the total drag,
it is possible to approximate the drag D by assuming zero induced drag
due to lift. This approximation is especially appropriate when the
vehicle speed is great and the acceleration in the lift vector direction
is limited because of structural or pilot considerations. To show this,

define the load factor n as the ratio of lift force nagnitude to vehicle

weight,

n= (5.2)

For a vehicle with a load factor limit Boax the maximum 1lift coefficient

cL is dependent upon the vehicle speed according to the equation
= K (Y, g, 9, 5, “m ) ¢5.3)

X
v2
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Aasuming Noex’ ™ 8 0 and S constant for a given flight regime, CL

is iaversely proportional to the square of the speed. Assume that the

total dcoag coeffinient can be represented by the drag polar equation

CD-CD°+kCL

2 (5.4)

where (:D is the zero lift drag coefficient. Then CD is also a
o max

function of vehicle spsed

2
GG kK
o v

For a typical supersonic fighter aircraft a graph of CD vs. Mach
(]

(5.5)

nunber is depicted in Fig. 7 which shows that CD approaches an
°
~ssymptotic value at speeds above M = 2.5. For the same aircraft Fig. 8

shows typical graphs of CL and CD ve. V. At V = 2700 ft/sec. the
nax max

CD ve. M for & Typical Supersoric Pighter
(-]

53
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V (ft/see)

1 V ({ft/sec)
1000

Fig. 8. CL and CD vs. V for a Typical Supersonic ‘ighter
max max
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maximum induced drag factor ka. is less than 5% of the zero lift
max

drag coefficient cD + Thus at high speeds the induced drag due to

o
1ift can be neglected without significantly affecting the dynamic model.

Using the load factor n as a control variable and neglecting the

induced drag factor kCLz, the equations of mot.on for & vertical plane

become

.

V cos v

V sin v

T/m - 1/2 ¢ _Vé €y - (gsiny)
m °

ng
v
where the control variable n is constrained according to the inequality

Inl <=, (5.7

Since gravity affects both vehicles almost equally, gravitational

effects will be neglected. If desired, after the control laws are

determined gravity can be replaced in the problem and the trajectories
computed to give approximate equilibrium trajectories in the presence

of gravity [25]. Considering two vehicles, a pursuer p and evader e

the state equations are (neglecting gravitational effects in the V equations)

| P

x VP cos Y

;'p vP sin YP
™ -p VWi P
P D,

oPg/vP

v® cos ye
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ye - V* sin ¢*

e e, e
V =T /n - D,

Y& - neg /ve

vhere ‘Dp = 1/2 p SP/uP and De =1/2p 5%/t

The controls nP and n® sre constrained according to the inequalities

P 14 e e
10 < 0¥ L I 5.9

Fig. 9 shows the coordinates of the two players as well as the
“angle~off" angle 6 and the range R between the vehicles. The range R

and angle off 6 are defined by the equations

Rei(xt- p)2 + (ye _ y11)2]1/2 (5.10)

Evader

Fig. 9. Inertial Position and Velocity of the Evader
and Purouer
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a-m'l(z‘-zp)-yp

e
X—Xp

The problem i{s to find the equilibrium controls of and n®

for the terminal cost functions

F o d? Ix (e, 1)

« e (5.12)
3w [x (), tp)

subject to the state equations Eq (5.8) and the termination criteria

constraint

vlx (tp), t ]l =T-t =0 (5.13)
T is a fixed number. To make this problem a NZSDG problem we require

b LI o (5.14)

ary Conditions

Recall from Chapter II the two different formulations of the
equilibrium solution necessary conditions - the HJB partial differential
equations Eq (2.14) and the generalized Euler-Lagrange equations Eq (2.20).

For this problem the HJB equations are

H't--minﬂ' 8 ~p, e
s

n
vhere the boundary conditions for Eq (5.15) are
s
Ve d® x (), el

The Hamiltoniar functions are

LY P P ,8 P P8 PP _ pPyP2
H X‘choly +AyPV31n7 +Avp(‘1‘/n D*V! CD°)+

s
A% p oPg/vP
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+ A"e v® cos ye + A'y, v® sin ye + X.Ve (T%/a® - n‘v‘z CD L)
(-

+ x'y, n®g/ve (5.17)

shere Hox replaces 2% where H® is used in Eq (5.15).

0

* *
The equilibrium controls n” and 2% are found from the minimization

in Eq (5.15), to be
p*

R P
n n ax %80 Wop (5.18)

_e® e
n - -1 8,
nax

L (5.19)
Eqs (5.18) and (5.19) hold except where prp = 0 and/or Heye =0 on

a nonzero time interval. In the latter case the possibility of a singular
solution exists and must be checked.

The WIB equations Eq (5.15) are the most general form of the
necessary conditions; however, solutions to the HJB equations have not
been found for this problem so that we are forced to use the more
restrictive Euler-Lagrange equations which for this problem consist of
the state equation Eq (5.8) and the following influence function equations:

s
xP-o

L

_ 38 P_ ;8 P e b P, .8 pt . p2
Axpco:,y Xypuny +2xvpv DPCD°+XYPgn/V

A;x VP sin Yp -2* VP cos yp {5.20)

P yP

s e s e s e e s e/ a2
-xx,c“y —Ayeniny +2Xv¢V Decbo +XY.gn v
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i'.'. - x'x, v® sin v* - A"e v® cos y©

vhere s is replaced by either p or e.

* *
The minimizing equilibrium controls oP and n® are obtained from

Eqs (5.18) and (5.19) where Wpyp and He*e are replaced by APYP and Xeye

respectively on an equilibrium trajectory,

*
of - “pux sgn XPYP (5.21)

et e e
BT S8R Al (5.22)
When XPYP and/or Xeyg are identicslly zero on a nonzero time interval
the possibility of a singular solution must Le investigated as in Chapter II.

The teansveraality conditions for the influence function equations

Eq (5.20) are

WP (e) = o= (2, t)

2% (k) = 0%, [x (e, ()
Singular Controls

A detailed study of intermediate singular arcs is beyond the
scope of this dissertation hence we will consider only the important
class of singular surfaces which intersect the terminsl manifold.
(In problems with realistic initial conditions the intermediate singular
arcs are not likely to occur),

Eqs (5.21) and (5.22) indicate that the controls np* and nek are on
their respective constraint boundaries except possibly on singular surfaces

on which

APY, = 0 and/or A% o = 0
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To characterize the control laws on these singular surfaces, the
necessary conditions for singular controls are employed. The
resulting control laws are
*
P =0
for the pursuer’'s singular surface and
ek

n =0

for the evader's singular surface. Appendix D contains the
analysis leading to Eqs (5.25) and (5.26).

The control sequence for the pursuer ies comprised of control

P P
segments from the set ( -n' max, 0, +n max)' Similarly, the control

sequence for the evader is comprised of segments from the set ('“emax’

e
0, +n max)'

Influence Function Continuity on a Singular Surface

We now show that this problem satisfies the requirements of the
theorem in Chapter III for a certain class of cost functions, which implies
continuity of the influence functions on the singular surfaces.

Conditions 1. of the theorem is satisfied which can be verified by
examining the state equation Eq (107). By letting U® be the control and

defining

el <1

we see that condition ii. is satisfied.
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Condition 1ii. is satisfied since on either side c¢i a singular
surface, all controls are constant, and ve will make the reasonable
assumption that the neightberhood under consideration contains no
control switching surface except the singular surface. Condition v.
is satisfied by inspection of the state equation Eq (5.8). Ounly condition
iv. remains to be shown. Assume p has s singuliar control. Letting "i"

non

in the theorem be replaced by "p'" we must have from Eq (3.15)

e

w P

=0 (5.29)

on p's surface. Since singular trajectories proceed along the surface
itself, we will replace Her with Xeyp. For every trajectory in p's
singular surface we thus require

e

A yP

=0 (5.30)

The condition in Eq (5.30) can be met at the terminal surface provided

the transversality condition for xeyp (tf) is identically zero

e - e P -
Epp (0 = QD) =0 (5.31)

The condition in Eq (5.30) can be maintained on trajectories in the

singular surface provided

se
A +P (t) =0 (5.32)

on the surface. Eq (5.20) and Eq (5.32) imply that on trajectories in

p's terminal singular surface

e
P -
tan ¥y A o

e e e

123 <P Y yP (:f)/x <P (tf) (5.33)
In Eq (5.33) tan yP, which is a constant on p's singular surface, is
specified in terms of e's influence functions. From the transversality

conditions tan YP(t.) = (AP /P ) 8o that on p's terminal singular
£ yp' o xP =t
f
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surface the equality

e e P 4P
xy,,/x = Q ypn <p)

tet (5.34)

£
must hold. If Eqs (5.29) through (5.34) hold on p's singular surface,
then condition iv. of the theorem in Chapter III is met and we conclwde
that player e's i-{luence functions are continuous on p's singular
surface. A ~vmmetric argument holds for e's singular surface.

Range and Angle-Off Cost Functions

A class of cost functions for which Eqs (5.29) - (5.34) holds is

P e lar+ U-a) 071, 2 ¢ [0, 1) (5.35)
£

3° = [R - (1-b) 671, b ¢ (0, 1)
f

R and 0 are defined in Eqs (5.10) and (5.11). To make the problem a
NZSDG problem it is only necessary to choose a ¥ b in Eq (5.35). (If
a = b the game is equivalent to a zero sum differential game.) The cost
functions in Eq (5.35) are important in the formulation of pursuit-evasion
problems since both the terminal range and the terminal angle-off are
significant parameters.

We will now characcerize the singular surface for the pursuer, and
Egs (5.30) and (5.32) will be shown to hold for p's singular surface which
intersects the terminal manifold. In order to have & singular surface
for p wvhich intersects the terminal manifold, from Eqs (5.28) aad (5.31)

ve require

P -
A P (:f) 1]
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P - P NP
taa v (t) = (7 /) xp):_t (5.30)
£

so that from Eqs (5.35) and (5.36)

P
Mip (tg) = [2 (1-a) © (‘1)1:-:£ =0

which implies (for a ¢ 1)

[ (tf) =0 (5.39) '.’

Eq (5.39) implies that the pursuer has his velocity vector on the line

of sight to the evader at the final time. This can also be seen from

Eq (5.37) which when evaluated becomes

tan P (t) = [(2eP/3yP)/ 2eP/axP)] (5.40)
¢ .

- e_ P e - P
[(y" -y (x -x )]t-tf

P

Eq (5.40) implies that at te the flight path angle y' corresponds with

the line of sight angle, Thus, the singular trajectory for the pursuer
is a straight )line whose direction coincides with the pursuer's velocity
o vector at tf. Fig. 10 depicts the situation in which 2 trajectory for the
; pursuer contains a terminal singular arc.

Next we wish to show that Eqs (5.30) and (5.32) hold for the cost

functions in Eq (5.35), which means that when the pursuer is on his

singular surface condition iv. of the theorem in Chapter III is satisfied

implying continuity of e's influence functions. Eq (5.30) for this

problcm becomes

e
2% p (E) = [-2 (1-b) 6 (‘1)‘:-:f

€3
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Fig. 10. Singular Terminal Trajectory for the Pursuer

and from Eq (5.39) we conclude
e
A P (tf) =0
To show Eq (5.32) is true, we have from the transversality conditions

e e
0 %)

S Can i VIEus o) N LR O (5.42)
£

t-tf

By substituting from Eq (5.42) into the equation for i'yP Eq (5.20) we
see that ieﬂ, is zero on p's singular surface. Thus Eqs (5.30) and
(5.32) are satisfied on p's singular surface implying continuity of e's
influence functions.

Similar arguments hold for the evaders' singular surface. A
situatioe in which only the evader has a singular terminal arc ic depicted
in Fig. 11, Fig, 12 depicts a situation in which the singular surfaces

of both the pursuer and evader intersect resul:ing in a tail-chase situation.
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*, ¥
£ tf

Evader

Pursuer

Fig. 11. Singular Terminal Trajectory for the Evader

-, b7,
- Evader

”

Fig. 12. Typical Singular Trajectory for both Pursuer and Evader
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Open and Closed-Loop Control Laws

The control laws in Eqs (5.20), (5.22), and (5.23) are open-loop
laws since they require the solution of a two point boundary value
problem to obtain them. If, however, the singular surfaces and all other
switching surfaces in the problem are known, then closed-loop control
laws can te implemented simply by identifying on which side of a particular
switching surface the state is located.

In the class of problems considered in this dissertation, the influence

function equations are identical for both the open-loop and closed-loop

control laws; therefore, closed-loop control laws are theoretically
cbtainable by solving the open-loop problem at each instant of time along
a trejectory using the instantancous state as a new intial condition for
the solution of the TPBVP. This method results in the “open-loop
feedback" control law which for the class of problems in this dissertation
is the same as the closed-loop control law.

Cost Functions Special Cases

For the range and angle-off cost functions of Eq {5.35) we have the
following limiting cases

(2) a =1 Pursuer considers only final range

(b) Pursuer considers only angle-off

(c) Evader considers only final ranpe

(d) b = 0 Evader considers only final angle-off

Interesting cases result from (a) and {(d) and (b) and (c), and
serve to fllustrate applications of the NZSDG theory to pursuit-evasion
ganmes.

Cage I, (a= 1, b»0)

This czse occurs when the pursuer's gozl iz to minimize the relative
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range while the evader's goal is out-turning the pursuer. The cost
functions of Eq (5.35) become

P er ()

(5.43)

3° acg? (t,)
The 6 angles of interest are - x < 0 <% To solve a given initfal
value probleam using the cost functions, state equations and influence
function equations in Eqs (5.43), (5.8) and (5.20), a TPBVP must be
solved. The alternative 1¢ to examine the backward solutions from che
tarminal surfuce for clues to the solutions' behavior. The Jatter approach
will be followed for this problem.

Transversality conditions yield the terminal values for the

influence functions
\p (e = [ - (x"-x")/mt_tf
[ - (yo-yP

(te) = [ - (y°-y )/th_,:f

(t,)

()

e a2
[-28 (y -y")/R ]tutf
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[zo 6Nl

2 e)t-tf
- Aexp (ep)
- 26pp ()
“ye (gg) = 0
(e) =0

The open-loop equilibrium controls for this problem are given by Eqs

(5.21) and (5.22)

Pt _ _ P P
n n_ oy 887 A P {5.21)

e* e e
no=-n o sgm ve (5.22)

exrept when the arguments Apyp and/or 2® e 3T identically zero for
a nonzero time intevval. Y

By examining these control equations, the control laws in a region
near the terminal surface can be characterized., Examining the purcuer's
control first, from Eqs (5.21) and (5.44) we find that at tf, np* is

: p - P
undefined since A P (tf) 0. We thus require the derivative A v (tf)

® o
to determine n’ (:f), where tf

is the time an instant before reaching

the terminal surface,

o (t)) = o sgn [;pvp (t) ]
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sgn [APxP VP sin YP - Apyp yP cos yp]t_tf
- np‘.x sgn [ sin @ (tf)]
Eq (5.45) implies that the pursuer's control in a neighborhood of the
terminal surface is determined by the line of sight angle 6. At tf
the pursuer employs his control so as to rotate his velocity vector
toward the line of sight. We now show that this situstion holds fcr a
larger region and not just at te.
In Eq (5.45) ipyp can be expressed as

ipr » VP ain (ypf + ef - yp)

P - P =
YeEyY (tf) ef 0 (t

P

p (- p 3P
Since A P (tf, 0, ) P is opposite in sign to A P (tf) for a period
of time before reaching the terminal surface. If VP remains nearly

constant ipyp is nearly periodic, hence this period of time [tf°t1] is

determined approximately by setting

5t 'APY,, dt = 0 (5.47)
1
and solving for . Fig. 13 illvstrates typical vehavior of Xpyp vs.

P 1n the interval {tl, tf].
*
A similar analysis for the evaders control n® results in equations
analogous to Eqs (5.45) and (5.46),

ek - - e > _.e
n (k) = sgn [ie_f.‘.'. g oo8 (Ye+o. -y el (5 /8)
Ry

Eq (5.48) implies that the evader's control in a nefighborhood of the
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Fig. 13. Typical Behavior of xpyp V8. yp

terminal surface is determined by the line of sight 2ngle 8 and
the flight path angles of both players yp and yg. The evader employs
his control law so as to rotate the line of sight away from the velocity

vector of the pursuer. We now show that this situation also holds in a

larger region.
ieye can be expreseed as

- e p _ .
xYe 26,V cos(vf+0f )

Re

Since AeYe (tg) -0, XeYe is opposite in sign from Aeye (tf) for a

period of time before reaching the terminal surface. As in Eq (5.47) this
period of time [tz, tfl is determined approximately, provided vé 1s nearly

constant, by integrating
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¢ cos (P + 0, - ¥ de =0

£
]

and solving for tz.

Fig. 14 illustrastes typical behavior of Xe,e vs. ye backwards

from the terminal surface. As long as Aeye has the sane sign, the control

“e* is constant. The trajectories for p and e associated with Pigs. 13
and 14 are shown in Fig. 15. For this problem the singular solutions
appear to be pathological since the evader's cost function is defined
so as to avoid the tail chase situation or the pursuer singular arc
where 3 (tf) is zero. Therefore, we may concliude that the important
control laws in this special case are those closed-loop laws where the
pursuer employs his control to force the angle-off angle 6 to zero and
the evader employs his control to force the angle 6 away from zero

(hopefully to = radians.)
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Pursuer

Fig. 15. Typical Trajectories for the Special Case
am}l, b=
Case I1. (a= 0, b= 1)

In this case the pursuer considers only the final angle-off angle
] (tf) and the evader considers only the final range R (t f)‘ The cost

functions Eq (5.35) become

P -0? (e (5 51)

£
e

J” =-R (tf)

Again we will exzmine the backward trajectories to deduce the behavior
of the solutions.

Trangversality conditions yield the terminal values for tha influence

functions

W (e = [ 20 G°yPIRY)

t-tf
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2
WPop (e = [ -2 06*xP)/m Teae,
Pple,) = 0

P -
MWop (eg) =26 (ep)

p - - \P
Mye (tg) Ve (80
P - \P
Woe (e = =205 (&)
| P
! MWye (1) = 0
5 E
o PLE () =0 .
. R v (5.52) ¥ -
2 ! : e e _p 3
E Ve e = 1SN/, |
| E .
° e - e_p p -
Eop e = (G5D/RI, bt
’
. ! e ‘
' Vip (8g) = 0 ]
f : \& ) 0 e
. yP (tf -
3 . . 3
. 4 ; A & (tf) = - <P (tf)
E N L
3 3 e e 3
3 1 Aje )~ A ¥ {cp) :
| . e - .
o A ve (t.f) 0 E
A°Y. ) -0
R e The apen loop equilibrium controls for this provlem are the same as
o A 3
e Eqs {5.21) ama (5.22, except for the possibility of singular coatrols.

From the requiremeats for a pursuer termingl singular trajectory

2 -5
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XP

w=O

which in turn fwplies from Eq (5.52) that
[} (tf) =0 (5.55)

Eq (5.55) implies that the pursuers' velocity vector is on the line of

sight to the evader at tf. The evaders' singular arc is characterized by

-0 (5.56)

A
ye

=0

We have already shown that the evader's velocity vector must also

lie on the line of sight batween pursuer and evader at :f in order for e
to be-on a terminal singular arc. We therefore conclude that the singulsr
trajectories for this special case hav: the sane general character as
those in Figs. 10, 11, and 12.

Two special cases of the cost functions in Eq (5.35) have been
examined. In Case I where the purguer considers final range only and the
evader considers final angle-off only it is found that the singular surfsaces
play at insignificant vole in the problem eolution due to the fact tnat
the evadex's goal avoids the situation wherc the final angle-off becomes
zero. On the other band, in Case II where the oursuer considers only
final angle-off and the evader considers only final range, the singular
surfaces appear and do have a significant role in the solutions.

The probiem of this chapter iliustrates that NZSDG theory can

be us~d to model a pursuit-evasion combat situation in which the goals
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of the players are not posed as being diametrically opposite ag in

Zero sum games. The solutions are optinal for each player in the

sense of equilibrium optimality,
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VI. Conclusions

In this dissertation the theory of Nonzero Sum Differential Games
is extended so that the theory can be applied to some combat problems
between two or more combatants. Useful transversality conditions are
derived in Appendix C to augment the existing theory presented in
Chapter II.

A major difficulty in solving NZSDG problems is that in the equili-
brium solution the partial derivatives of the value functions and the
influence functions can be discontinuous on switching surfaces where the
controls are discontinuous. However, for a certain class of NZSDG in
which the state equation is nonlinear with the controls bounded and
appearing linearly, the partial derivatives of the value functions, and
the influence functions are continuous across the switching surfaces.

In Chapter III this class of problems is presented and a theorem to

test the continuity of the influence functions on singular surfaces is
derived. This is a significant result since the continuity of the
influence functions makes the equilibrium solution much easier to obtain.

Chapter IV presents two Intercept problems in a plane between first
two then three combatants. The problems are posed as NZSDG's in which

the players are first one then two defenders whose goal is to intercept

the attacking player in minimum time. The attacking playver's goal is

minirization of his range to a fixed position target before intercert
occurs. The problem is shown to satisfy the influence function continuity
theoram of Chapter III. The solutions are characterized by each player
making a hard turn to a particular heading then making a straight dash

on that heading until intercept occurs. When the initial turns are

neglecied, totally singular solutions result which can be easily obtained
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numerically, An algorithm is presented which solves the totally

singular problems.

Chapter V presents a pursuit-evasion problem of two aircraft in
which the goals ot the playevs are not diametrically opposed. The
cost functions of each player are different (but not opposite) functions
of the final range and angle-off. This problem 1s also shown to
satisfy the influence function continuity theorem of Chapter III. The
solutions to this problem ara characterized by trajectories which
consist of hard turns and straight dashes. Two special cases are
discussed in which first the pursuer considers only final range and
the evader considers only final angle-off. In this case the singular
arc (straight dash} appears to have no significant role in solutions
due to the nature of the evader's cost function. In the second special
case the pursuer considers only final angle-off while the evader con-
siders only final range. The usual iard turns and straight dashes for
both players appear in solutions for this case.

The results of this dissertation are significant because the use
of a NZSDG formulation to model combat situations results in a more
general problem in which the goals of the players are not required to be
diametrically opposite as in zero sum differential games. This means
that conflict situations can be modeled with more flexibility and realism
to reflect the actual goals of the opponents.

Many problems involving the complex aircraft in today's Air Force
inventory can be adiyuately modeled _.ing the class of problems pregented
in Chapter III and investigated in this dissertation. The state equation
of Chapter III, although linear in the control variables, often serves

as a close approximation to the state equation with nonlinear control
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variables, and yields solutions which sre ciose approximations of the
nonlinear solution. For this reason,the combat models which fit the
class of problems investigated give a basic insight into the nature of
solutions irvolving the more complex models with nonlinear control
variables in their state equation.

The author intends to investigate the extent to which the models
of aerodynanic vehicles can be linearized in \he control variables

so that results of this dissertation may be applied. In addition, it

is the author's intent to investigate the possibility of extending

the class of problems studied in this dissertation to include the fully

nonlinear models of aerodynamic vehicles.
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Appendix A
Cost Functions
The selection of meaningful cost functions is one of the most
important details in formulating any differential game, for these cost
functions influence the control strategies, the trajectory, and the
outcome of the game. Quantities to be weighted in a cost function are
generally either point functions such as terminal miss distance or path
functions which require accummulation by integration along a trajectory.
The following sections describe some meaningful cost functions for a
NZSDG.

Terminal Miss Distance

If player i's goal is to minimize the difference between his state
(or components thereof) and player j's state at the termination of the

game, his cholce of cost functions can be

it 1 xi(tf) - xj(tf) Mgt (A.1)

th and jth players

vhere xi and xj are the state components of the i
respectively; &'is a positive semi-definite weighting matrix used to
weight the state components of interest.
Minimym Time
If the goal of plaver i is to minimize the time to game termination
his choice of cost functions is either
Hat (A.2)
f
t
i 3

It = dt (4.3)

t0
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where tg is the smallest time such that the termination criteria is
satisfied.

Minimum Control Effort (minimum fuel)

Player 1's goal of game termination with the least control effort
18 reflected in the integral cost function
- If ut
A gty ¢
where Pip ts a positive semi-definite weighting matrix function.
Minimum Energy
Player i's goal of game termination with the least expenditure of

energy is reflected in the cost function

t
1. {f 1ot 1% ) 9t (A.5)
o E

vhere PiE is a positive semi-definite weighting matrix function. It
should be emphagized that caution and judgment must be used whenever a
combination of varfous goals are included in the same cost function.
The goal of minimizing time as in Eq (A.2) and the goal of minimizing
fuel or energy as in Eqs. (A.4) and (A.5) are directly conflicting, for
generally, minimizing time requires maximum effort. An example of this
situation is the cost function

tg .,

Haa te + (1-2) {: [i vt ”Pip(t) dt

where 0< a < 1.
Since both goals cannot be met simultaneously, the choice of the
weighting parameter a becomes a matter of judgment based on knowledge

of the problem.
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Appendix B
Pormal Derivation of the Influence Function Equations From the

HJB Equations.

This appendix presents the author's formal derivation of influence

function equations Eq (2.20) from the generalized HJB equations
Eq (2.18). The derivation is a generalization of Dreyfus's work in
Ref (10). Assume a normal problem. The HJB equations written in the

form of Eq (2.14) are

witn-miix[wixf(x, e+l e, m] 11,000,
U

(8.1)

where

=, ..., UH (8.2)

vl is bounded according to the equation

k@ o (8.3)

If the partial derivatives wit and wix are known for a particular
peint (x, t), then theoretically the equilibrium controls U* can be
determined from Eq (B.1) in terms of x and t. If the equations for
ivix and v':it are known, then equilibrium trajectories can be con-
structed forward in time from the point (x, t}, the controls being
determined from the known values of wix, wit, x and t in Eq (B.1).
Proceeding formally, the equation for !:Yix will be obtained. ilix can

be expressed as

Wy = wols 4 Wy

= Wy £+ e
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Assume that the equilibrium control vector U* is known in the form

Ut = U* (x, t) (B.5)
Then Eq (B.1) can be wriiten

Woewl e, -l 6,00 t-1, ... ,8 (86)
Taking a partial derivative w.r.t. x of both sides in Eq (B.6) yields

Wheg = Wy £-Wy (6 + fgeUn) - ali+tippu B

Assuming "ixt: - Hitx and substituting for wixt into Eq (B.4) from

Eq (B.7) results in the equation

Wheom o W £ L) -0, Fpe Ll ) UR 11, L L : NB)
B.

N
* *
Wy = - iy £y + 1Y) - ok et ! gy vy (.9)
i=1, .., ., N

Suppore that vt 1s interior to its constraint region defined in Eq

(B.3); then the minimizing vl in Eq (B.1) satisfies the equation

1 i
Wy fyi* + LT yix a0 (8.10)

% A
Substituting from Eq (B.10) into Eq (B.9) gives the equation for W,

. N
Wy = - (Wl £y + L) -5 o fyde + Lighe wI¥ (8.11)

R21

i=1,...,N
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Defining
-l el g
and on an equilibrium trajectory defining

s owt (8.13)

x

Eq (B.11) becomes Eq (2.20) of Chapter iI, the influence function
N

equations, At = - mi, - 351 e 0% i=1,...,N (B.14)
i

Suppus2 now that vl 15 on the boundary of its constraint region defined
in Eq (B.3), then 1t can be argued as in Ref [10] that Uix = 0.
Substituting Uix = 0 into Eq (B.9) and noting that the other controls
may not be on their constraint region boundaries so that ij (G 4 1)
is not necessarily zero, Eqs (B.1l) and (B.14) are again obtained.
Thus, the influence function differential equation holds whether or
not Ut* is interior to its constraint region.

The same general procedure as above may be used to show that on an
equilibrium trajectorv the equation for frlit is

We = - - oo v (8.15)
If the state equation Eq (2.1) is autonomous then Eq (B.15) reduces to

it =0 1e1,...,N (B.16)
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Appendix C

Infl Function Transversality Conditions

Three generally used forms of the transversality conditions are
presented in this appendix: the Dreyfus form {10}, the Isaacs form [17],
and the Berkovitz form [5]. The generalization of the first two forms
to a NZSDG is due to the author while the third form is due to Sarma
{31]. Since all the forms are in common use it was felt that each
form should be presented, and the use of any one form is a matter of
praference and convenience. Throughout the dissertation, however, only
the Dreyfus form is used.

For each form we assume an n-dimensional terminal manifold in the
space of x and t. For the Dreyfus and Isaacs form the terminal manifold

is described by the sealar equation

YIx (e, el =0 2.3

In Eq (2.3) tf is the smallest time t such that the equation is satis-
fied. If the final time is fixed, then Eq (2.3) is usually written

v-‘r-tf-o

vhere T is a fixed number.

Occasionally Eq (2.3) does not describe the terminal conditions;
for example, the termina} condition may be the state reaching a single
point (e.g., the origin). In this case a n-dimensicnal sphere of
radius § with the point at the center may be employed as an n-dimen-
sional terminal surface then a limit taken ( 6 » 0 ) to determine
the transversality conditions [27]. 1In the case of more than one
scalar equation describing the terminal surface it is generally necessary

to employ a Lagrange Multiplier technique such as found in reference [10j.
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Dreyfus Form

This form assumes a NZSDG with terminal cost functions, i.e.

1} e0in Eq (2.4); so we have
i 1
37 = ¢ Ix(ty), tfl (c.1)

This assumption is not overly restrictive since every problem with a
cost function containing an integral can be easily converted to an
equivalent terminal cost problem [17). To construct the equivalent
terminal cost problem assume only the ith player has an integral cost

such that x = ( x, x

function; define another state component Xx bl )

w1l
and

*ntl

i
-t xn+1(to) °
Then the cost function in the equivalent problem is

T x4y (e = PR (e, 8 ) (.3

We now proceed with the derivation of the Dreyfus form of the transver-
sality conditions.
Suppose the state equation is written

;t- £ (x, ¢, U*) x(to) -x,

Consider a point x(t) = Xes ts= tf, such that (xf, tf) lie on the
terminal manifold; that is
¥ (xg, :E) =0 (c.5)
Now consider a variationm, 5x£ on the terminal manifold. The change in
h

the i.t cost is

6.11 - ‘i.

i
xe oxg + ¢ (te) atg (C.6)

where Atf is the variation in terminal time induced by the variation
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&xf. The notation azg is used to distinguish tiie lu4i udent warisvion
&, from the induced variation At,. 4 is chc total time derivatiic
of 4%, Simtlarly,

&Y = Yxf oxg +y (tf) atg {C.7;

In order for the equation

v ( Xe + X, to 4 t:f) -0 (c.8)

59

1

X
K.
X3
3
A

to hold to first order,

§Y =0 .9

<o

Solving formally in (C.7) for at, ve have (assuming :r-l $0)
=1
Ate = - ¥ (tp) vxf 8¢ (c.10)

The influence function Ai (t) can be regarded as the sensitivity coeffi~

cient of the cost o a change in the state x at time t [10], so

that at t
£
A (tf) = & / 6xf (C.ll)

So, from Eqs (C.6) and (C.11) the equation for the influence function

variables at the terminal time is

i 1 )t PR
x(:f)-[ex-(olv)vx]t_tf i=1, ..., 8 (€12

b This equation may also be written in the form

O AR R RS ML)

Since £ [ x, t, U* (x, ()‘j), t) ] depends on the set “j) generally

in a nonlinear way, the equations in Eqs (C.12) and (C.13) are a set
of N coupled nonlinear vector equations in the N unknown vectors Ai (t f).

Isaacs Form

1
‘
H
|
H
: !
!
D

This form of the transversality conditions is a direct extension

91
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of the zero su differential game transversality conditions in reference
{17]. There are no restrictions on the form of the cost functions in

this method so that cost functions of the form in Eq (2.4) sre assumed,

t
et xep, )+ Frtxe, L0 1a1, .. L8 @0
%
The terminal manifold is described by Eq (2.3). Since many readers

are familiar with Isaacs' notation we will borrow notation from Ref.

{17).

Let the terminal manifold be paravsterized by the equations

xi(tf) - hi(sl’ 850 0 o an) 1=1, ..., 04l (C.14)

vhere we have let

)~ C

8= (al, 831 - 0w sn)
(c.15)

h = (hl, hz, o ey hn+l)

x = (x, t)

On the terminal surface, tbe value Wi of the ith player equals the
h

terminal portion of the 1t cost function,

whe) = olix(ep), 1] = oo (c.16)

If vector derivatives of both sides In Eq (C.16) are taken w.r.t. s we

have

i = i
W %" ] s i=3, ..., N (c.17)

or equivalently, since ;; - hs on the terminal surface

(c.18)

i=1, .. .,¥%

In compsnent notation, Eq (C.18) can be written
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kel, ., ., n (C.19 )
1i=21, ..., N

Eq (C.19) reduces to Isaacs' form [17] if N is set equal to 1, and f

and Li are autonomous (making wit - Hix

n+l

=-0),

Eq (C.19) provides nN equations in the (n+l) N unknowns Hix (tf),
i{=1,..+.,N3=1, .. ., ntl. N additional equations are required
to solve the system of equations, and fortunately, they are available.
From the HJB equations Eq (2.18) we have

i

v, o-- (w‘x £ +1h te1, ..., N 2.18)

where the equilibrium controls have been substituted into £ and L".
To cast Eq (2.18) into the notation of this Appendix, note that Hit in

Eq (2.18) is identical to wix
ekl

W

Let f be the augmented vector

i

Then Eq (2.18) can be written
i=1, ..., N (c.22)

"valuating Eq (C.22) on the terminal manifold by substituting the
parameters (sl, Bys o v s sn) provides the N additional equations
necessary to solve for the vix (tf). Eqs (C.19) and (C.22) are a set
of (at+l)N nonlinear equations in the (m+1)N variables “ixj (tf). Recalling

1

the equivalence of Ai and W x On an equilibrium trajectory, we see that

the solution of Eqs (C.18) and (C.22) gives us the valucs of xi(rf) and
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also the values of “it (tf). Caution must be used in the solution
since multiple solutions can occur corresponding to termination on
different sides of the terminal manitold. In such :ases the physical
situation dictates which solution is to be used,

Sarma - Berkovitz Form

A form of the transversality conditions which closely resembles
Isaacs' has been obtained by Sarma [31) by generalizing the zero sum
differential game results of Berkovitz [6]. A few notational changes
are required to present the results. In addition, Sarme has a more
general form of terminal surface consigting of the unicn of a finite

1

number of n-dimensional class C° manifolds. The terminal surface T

is defined by the equation

[+
T=U Tj (c.23)
i=1

where each T, 1s an n-dimensional (:1 surface. Each T 5 is parameterized

b
by the equations

te = T:I (o)

Xe ™ Xy (o)

where the parameter ¢ is
05(01,02.. .. ,an)
The transversality equations are

26}/30 + &t a1, /00 ~ 2t ¥, /%0 = 0

3

where the index j refers to the specific ‘I‘-1 on which Ey (C.26) is

evaluated. Eq (C.26) together with the KJB equations,
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w‘t-- (w*x £+1h 1el, ..., N (2.18)

evaluated on the terminal surface are sufficlent to solve for the

unknown Ai and wit on the terminal surface. (Again recail the

equivalence of xi and Wix on an equilihrium trajectory)
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Appendix D

Control Laws on Universal Surfaces

In this appendix the coatrol laws on singular surfaces are derived
for the problem in Chapter V. Similar results hold for the problem
of Chapter IV, The derivation is based on the necessary condition
for singuiar controls found in Eqs (2.28) - (2.30) repeated here for
reference,

i

H uij -0 (2.28)

(2.29)

(- nk a/au‘j e e ula1 2o (2.30)
3

Applying these equations, we consider the possibility of a singular
pursuer control (a similar argument holds for a singular evader control).

The first necessary condition is from Eq (2.28),

Similarly, all time derivatives of WP are zero, so that

w

UG I . )
xprYp...o (0.2)

Fron the influence function equations Eq (5.20), the equation for .APW is

P o P yP 4P P
¥ ¥V sin ¥ PV cos ¥ (0.3)

so that from Eqs (D.2) and (D.3}

Apxp sin f - xpyp cos Yp =0

tan ¥ = )‘pyp / x"x,,
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Taking a time derivative of both sides of Eq (D.3) and substituting

for Apxp, xpyp, v? and Y? from Eqs (5.8) and (5.20) we obtain the

equation for XPYP
AP =P P P P 4 yP P P
XYP 2 4 Xxpcosy +V Xypl:l.ny)-o
v
From Eq (N.5) there are three possibilities
P P P P
(a) A‘pcoay +Aypsiny 0

or
(b) o =0
or

(c) both (a) and (b)
It is easy to establish that (a) Ls not possible for from (a)
in yP = - AP P
tén v A yP“ <P

which is a contradiction to Eq (D.4). (b) is the only remaining

possibility so that on a singular surface for the pursuer the equilibrium

*
control candidate n® is
&
o’ =0 (p.6)

A similar result holds for the evaders singular control if it occurs,

2 .o ©.7)

Application of the necessary condition Eq (2.30) for a singular control

for the pursuer results in the requirement
x"xp cos yp + xpyp sin yp <0 (D.8)

Eq (D.8) must be satisfied on the pursuer 's singular surface, Similarly
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for an evader singular control, the inequality

e e e e
Axecosy +Ayesiny <0

must hold on the evader's singular surface. It is easily verified
that Eqs (D.8) and (D.9) are satisfied with strict inequality on

terminal singular trajectories for the pursuer and evader respectively.
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Appendix E

Transversality Conditions for the Three Player Problem

In this appendix the vector equation for the transversality

conditions in the three player problems of Chapter V is expanded into

component form.

From Eq (2.25) the transversality condition is*

2 e = 14, - P19 v ) s=a, ¢ d E€.1) 3
t=t E
! H4

where the cost functions for players s, ¢, and d are (see Eqs (2.4) and
(4.4))

Ffagla £ (E.2)

e 12 (atxp? + Gy
The termination criteria from Eq (4.29) is

. vix(tp), ) = 1/2 (v v) (£.4) {

3 =1/2 1602 + 0y - 0Y)

(622 + (r°=y™? - &

=0

The state vector x in component form is

T

x = (xd. yd

BRI SRR R ANE) (E.5)

The partisl and total derivatives in Eq (B.l) are

¢ = 0, 0,0, 0,0, 0,x"x, y'y, 0
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(xd-x.) wt:
ooy v°
0
x°-x%) "d
(yc_:,a) *d
0
-adx®) vo- () o
-0y vo-6y® ¥

0

- (x‘-—&r) v® cos ya + (y‘—y,r) v? sin ya

vhere f is defined from the state equation,

d d

ET , V sin yd, cdu, v¢ cos yc, V¢ sin yc, ccv, (E.11)

- (V':l cos Y

v? cos ¥2, V® sin ¥y, ¢ %)

Finally,

vR 2 vV -yt

- (xd-xa) (Vd cos yd- v? cos ya) wc +

(yd-ya) (Vd sin yd- v2 sin ¥*) v +
(xc-xa) (Vc cos yc— V3 cos 7.) wd +

7y (v sin v°- v® stn v®) o?
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The equations for vc and "d are

;c -2 [(xc-x‘) (Vc cos yc - V* cos 7‘)

+(yc-y°) (V¢ sin v¢ - V* sin y‘)]

!.ld -2 [(xd-x.) (V(l cos vd -v® cos ¥ +

(Yd-ya) o stn vd - V® stn ¥Y)

The equation for y which 1s required in applying -1'Hospital's

rule in the case of simultaneous intercept is
ez U940 i e

In the case of simultaneous intercept,
el

lnd.;z in Eq (B.16) becomes

v=vdyS
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