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Abstract

The theory of nonzero sum differential games (NZSDG) is extended

for a class of pvoblems in which the nonlinear system equations have

Sbounded control variables appearing linearly. For terminal cost

functions this class of problems is shown to exhibit "bang-bang" type

control lava with the possibility of singular controls. A condition

is derived to test for continuity of the influence functions when

controls switch from a nonsingular to & singular control on singular

surfaces. Two generalized Corms of the transversality conditions

are derived for NZSDG theory extending results of Dreyfus and Isascs.

NZSDG theory is shown to be useful in modeling combat problems

in which the goals of the players are not diametrically opposed.

A two player and a three player penetrator-interceptor problem are

presented as a NZSDG. Numerical solutions for a totally singular problem

are carried out to illustrate application and a typical solution. A

two player NZSDG pursuit-evasion problem is analyzed in which the cost

functions of the two players are different functions of the terminal

range and angle off.

x~ii
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I. Introduction

Isaacs [17] introduced differential gaem theory in 1954. and

since that time many researchers have investigated the theory for

application to combat problems between two vebc.lea. (A fairly

complete reference list is compiled in ref. [15]). The theory

introduced by Isaacs is a zero sum theory- so called because the

goals of the two players are assumed to be precisely opposite.

Many conflict situations, most notably pursuit-evasion type conflicts,

are adequately modeled by this theory, the result being simultaneous

"optimal" solutions for each player. However, there are aspects of

the pursuit-evasion differential gams that cannot be modeled by the

zero sum theory. When the goals of the two players are not diametri-

cally opposed or if there are more than two vehicles in the conflict,

each with a different goal, then a more general theory is required.

Recent investigations (8, 27, 33] of nonzero sum differential game

((NZSDG) theory have shown this theory to be much more general, and

in fact, zero sum differential game and optimal control theory can

be considered as subclasses of NZSDG theory. This NZSDG theory can

be used to model two player combat problems in which the goals of

the players are not precisely opposite, and problems in which there

are more than two players.

One of the primary obstacles in application of NZSDG theory

to practical problems is the fact that the influence functions in the

±|
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generali2ed Ruler-Lagrange equations and thb partial derivatives

of the value function In the generalized Eamilton-Jacobi-Bellman

partial differential equations can be diecontinous when controls

are discontinuous. This problem does not occur in optimal control

problems and rarely fccure in zero sum differential gane problesas

19). If these discontinuities do occur in a problem, the solution

becomes quite difficult since special conditions such as the

Weierstrass-ErdA-ann corner conditions must be imployed to calculate

the discontinuities.

Vurpose of Dissertation

The purpose of this dissertation is to extend NZSDG theory to

enable solutions for a class of combat problems involving two or

more vehicles.

The or!'giual work in this dissertation consists of: (1) generalizing

to NZSDC theory the tranaversality conditions of Isaacs' (17] zero aur

differential game theory and of Dreyfus' (101 optimal control theory.

This generalization is desired since these !orms of the transversality

conditions are familiar and easy to apply. (2) developing a theorem

which tests whether the influence functions are continuous at the

junction of nonsingular trajectories with singular surface. for a class

of terminal cost problem with nonlinear state equations and bounded

linear controls. This theorem allows one to test a problem in the

class to determine if the influence functions will be continuous on

singular surfaces. Influence function continuity considerably eases

the cbtaitn•ng of solutions. (3) applying the theorem above and NZSDG

theory to NZSDG penetretor-intexceptor problems and to a two player

S . . . •. . .m ms sm me s m m m ms • •
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NIZSDG pursuit-evation problem.

Culde to Suhasguant Chapters

In Chapter II the mathematicsl background and necessary theory is

presented. Chapter YlI defines the class of problemi considered in

this Mssertation and the influence function continuity theorem is

stated and proved. Chapter Is presents a two player and three player

NZSDG interceptor-penetrator problem. The solutions .rnd control laws

are characterized, and for the totally singular problem numerical

solutions are obtained. Chapter V defines a two-aircraft NZSDG pursuit-

evasion problem in which the goals of the piayers are not precisely

opposite. The problem is posed as a fixed terminal time, terminal cost

problem. The control laws and singular surfaces are characterized for

the general problem, and two special cases are examined by finding some

backward solutions.

The significant contribution of this dissertation is to show that

NZSDC theory can be employed to model combat problems with two or more

combatants and that equilibrium solutions can be obtained from the

theory's applicatinn; also that the use of NZSDG theory results in a

more general problem and provides more flexibility and realism in

modeling the goa-s of each corbatant.

S • • •" " - ==• •m~ I ll••l |m 3
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1i. Nonzero Sum Differantial Game Theory

This chapter presents the definitions, concepts, and theory of

a deterlniatic NZSDG. Necessary conditions for an equilibrium

solution and special conditions on witching surfaces are presented.

The results of Case, Ho, Prasad, Rtaga4, Sarme, and Starr Ref. [18, 14,

15, 16 27, 28, 31, 33] are the primary sources for the material in this

chceiter.

Problem Formulation

Essential to every differential game problem are three entities

I. Players

ii. Cost Functions

IItI. Information Sets

The role of each of these entities in NZSDG theory is discussed below.

The state of the N Players In a NZSDG is govirned by the vector

differential equation

x - f (x, t, U) x (to) - x0 (2.1)

where x is the n-dimensional state vector containing the state

components of the N players, t represents time, and

"U - (U
1

, U
2, .... Ui, . U.N. u) (2.2)

where U is the control vector of the Ith player, and generally player

i's choice of Ui is constrained to a constraint set 0 1. The state x

evolves from the initial state x0 to some final state x(tf) where

x(tf) lies on an n-dimensional terminal manifold

* [x(tf), tf] - 0 (2.3)

4
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An n-dim-nsional terminal surface in the n + I dimensional space of x

and t is chosen because of its analytic tractability. The final

time tf is free unless otLirvise specified. The manner i.tl wich x

evolves It determined by Eq (2.1) and the players' choice of controls.

The cost function of the ith player is

ji . *i [x(tf), tf] + stf Li [x(t), t, U) dt

to i - 1 .... N (2.4)

See Appendix A for a discussion of meaningful cost functions.

Finally, each player makes his control decisions based upon the

information available to him. For our purpose information can be

placed in two categories:

(1) knowledge of the capabilities and goals of all the players, and

(2) knowledge of the state x.

Perfect information in category (1) implies each player knows the

state equation Eq (2.1), the teasination criteria Eq (2.3), and the

cost functions Eq (2.4). The extent of information in category (2)

is usually represented by observation equations so that the ith player's

state information yi is given by

yi - hi (x, t) i - 1, . .. ,N (2.5)

Each player selects his control according to a rule (control lsw)

based on the observations,

ui, Ui(yi, t) i - 1, . N (2.6)

The function Ui is called player I's strategy. When player i's state

Information is perfect yi 2- x, and Eq (2.6) becomes

ui - Ui (x, t) (2.7)
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Eq 23.7" is called a closed-loop control law. fn the other hend,

L no state information except xo is known hy player i. then yi 3 x%

and the control law

--- •ui - u (xo, to, 0) (2.8)

is called an open-loop control law. These two control laws will

be considered in this dissertation along with another control law to be

discussed later called an "open-loop feedback control law".

Solution Conacetsý

Three solution concepts exist in the NZSDG theory: (1) equilibrium,

(2) mini-max (security), and (3) noninferior (Pareto optimal). This

dissertation is concerned only with the equilibrium solution; however,

the two remaining solutions will be discussed briefly.

Equilibrium Solution

In the equilibrium solution each player's goal is to minimize his

own cost function, thus making this solution a noncooperative one.

- The following mathematical definitions and equations define the

solution. Define the set of equilibrium strategies U* and the set

* (Ua; V1) as

U* = (UI.. UN*) (2.9)

and

* l i-I* I iNl(U*. U ) i (Ul..........U UI, U...+1. .. UN) (2.10)

For the NZSDG formulation in Eqs (2.1) - (2.8), If there exists a

strategy set U* such that

Ji (U*) < ji (Ua; Ui) I .- I N (2.11)

then Ua is said to be an equilibrium strategy. The trajectory

x* - x (No, to. Ua) (2.12)

is called an equilibrium trajectory.

6
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Mini-Max (SecurLt) Solution

One of the catgaoriea of InformstIon discussed tantier in cbhi

chapter Is knouledge of all players' cost functlo"a. if thin

information it not available to each player, then a player *ey adopt

a conservative viewpoint and assume aln other players are oppcaivg

bin. Such a strategy is called a mini-sax (securi-y) strategy. Starr

[331 points out that this solution is equivalcnt to solving V tw-

player zero-am games wherein for the Ith gam player I cslects a

strategy to minimize jt while all other players select strategies to

maximize Ji. Once player i has solved his zer asm gme (I ... .. N)

to determine his strategy, the N strategies are employed. According

to Starr [331, the resulting trajactor- is generAlly surprising to

each player because of -.a conservative approach taken by each.

For a further discussion of this solution, consult References [27, 28,

33, 351.

Noninferior (Pareto Optimal) Solution

If a negotiated or cooperative aslutiou can be agreed upon by

all the rlayers (such as in an economic situation), then all costs are

less than or equal to the corresponding costs of the eqkilibrium

solution. A noninferior solution has the property that any other

solution which gives a better result for one player also givas a worse

result for another player. Any negotiated solution should be chosen

from the set of noninferior solutions [351. Consult References [27, 28,

33, 35] for a further discussion of this solution concept.

Necessary Conditions for the Equilibritm Solution

Bellsman's Dynamic Progrming (or principle of optinality) and

Pontryagin's minimus principle can be generalized to the NZSDG problem

7
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to give two different necessary conditions for an equilibrium solution.

Bellmsn's principle repults in a set of generalized Hamilton-Jacobi-~

bellman (HJB) partial differential equations which the equilibrium

solution must satisfy. Furthermore, Bellman's principle requres the

assumption of perfect information [27] so that t,'e control laws are

closed-loop laws as in Eq (2.7). Pontryagin's minimum principle on the

other hand is usually associated with open-loop control laws as in Eq (2.8),

and this principle leads to a set of generalized Euler-Lagrange equations

(called influence functiot. equations in this dissertation) which together

with the state equation Eq (2.1) are the "Characteristic" equations for

the HJB partial differential equations. Thus the 11B equations constitute

much more general necessary condition.

In optimal control and zero 3um differential game problems the state

information available to the players has no effect on the form of the

influence function equations, but the state information assumed in a NZSDG

problem can have a marked effect on the form of these equations. This

effect will be made clear in the following sections. Because the 11B

equations are seldom solvable except for unconstrained quadratic cost

linear dynamics problems, all solutions are generally obtained from the

influence function equations. The main utility of the HJB equations is to

verify that an equilibrium oolution candidate obtained from the influence

function and state equations satisfies the H1B equations. This satisfaction

of the HJB equations is another necessary condition which an equilibrium

solution must meet.

8
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Eadlton-3acobi-,ellun Partial Differential Equations

Consider the equilibrium strategy U* of Eq (2.11). Define the

value V' for player I to be the cost of player ± on an equilibrium

trajectory with the general intial point (x, r),

S(x, 
t) [ [.x (tf), tfI + ftf L Ix* (•,) T, U*1 dT

t

i- •...•H (2.13)

Restricting U* to be piecewise continuous we see that • is

continuous and piecewise differentiable. The values can be shown

to satisfy the :,.yled system of partial differential equations hereafter

referred to as the EJB equations [271,

wit- in li. (z, Ui, t, U.; ui)
U:1 i - 1, . .,N (2.14) '

where

Bt - Li (x, t, U) +Wi f (x,t,U) (2.15)

with the boundary condition given on the terminal manifold

Wi [x (tf), tf] - 0 [x (tf). tf] (2.16)

If the minimization operation in Eq (2.14) is carried out subject

to all constraints, the equilibrium controls U'* are f.and to depend

functionally on Wx, x and t

Ui* - U'* Wix, x, t) i- 1 . N (2.17)

Substituting Eq (2.17) into Eq (2.14) we obtain another form for

the RJB equations -- a coupled nonlinear system of partial differential

equations

Wit (x, t) .i Ex, t, (wj1 )] (2.18)

i, j - 1, N

with the boundary condition given by Eq (2.16).
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The 11B equations are defined except on surfaces in the state space

on which the controls are discontinuous. For a rigorous development

of the 11B equation see Prasad [27] and Sarma 1311.

The advantage of a solution to the 1JB equations is clear, for

if an analytic expression is available for Wi(x, t) and WX then

from Eq (2.17) one sees that a closed loop control law is obtained.

Solving for the values W' I- equivalent to finding a field of

equilibrium solutions. Unfortunately, one is generally required to

settle for less if the problem dynamics are constrained or nonlinear.

The solution of the K1B equations by the method of characteristics

[10] is the alternative. The characteristic differential equations

for Eq (2.18) turn out to be the state equation Eq (2.1) and the

influence function equations from Pontryagin's minimum principle.

Influence Function Differential Equations

Assume that the information set of each player is perfect which

implies a closed-loop control law for each player; then the necessary

conditions which must be satisfied on an equilibrium trajectory are the

state equation

f(x, t, U) x (to) - xo (2.19)

and the influence function equations

- - (1i1+ £ luj UJx)* i - 1. N (2.20)

where

H- Li (x, t, U) + Ai f (X, t, U) (2.21)

and UI* is the admissible minimizing control in the equation

"10
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H * . mln H i (x, ki, t, U* ; U
1
) (2.22)

Di

The summation term in zq j2.20) is absent in optimal control and sear

sum differential game problems, and as we will see in later chapters,

varies according to the information set assumed. For example, if

perfect observations are assumed as in Eq (2.7), Ux is generally

nonzero in Eq (2.20); however, if no observation other than initial

conditions are assumed ar in Eq (2.8) then Uj is identically zero.

The influence function AI is identical to the partial derivative of the

value W. , when %1l is evaluated along an equilibrium trajectory. The

essential difference between Ai and W.' is that Ai is a function of

ime only and W x is a function of both state x and t regarded as

instantaneous initial conditions. Mathematically the rel~itionship

may be written

A' (t) - Wx I x* (t), t] (2.22)

where x* (t) evolves according to the state equation Eq (2.19).

It is important to note that the influence equations are valid over

the same regions as the HJB equations and solutions of the influence

function equations and state equation must satisfy the IJB equations.

The influence function equations are well defined except on surfaces

in the state space where the controls U' are discontinuoua. Appendix B

presents a formal derivation of the influence function equations from

the HJB equations.

= I The boundary conditions for the influence function equations

Eq (2.20) are specified in terms of the state and time on the terminal

manifold, and these boundary conditions are generally called transversality

conditions. Several forms of the tranaversality conditions exist;

however in this dissertation we will use a generalized form of Dreyfus's

11
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transversality condition because of its ease of application. The

generalization of the Dreyfus (10] form of the transversality

conditions along with a generalization of the familiar Isaacs [17]

form are presented in Appendix C. Also in Appendix C is presented

the more ger.,al Berkovitz form [5] due to Sarma (311. The losscs.

form and Berkovitz form ore presented since both are in general use.

The Dreyfus form requires a terminei cost function of the form

ji ( *i [x (tf). tf] i - 1, N (2.24)

so that Li - 0 in Eq (2.4). This is not overly restrictive

since every problem with a cost function containing an integral can be

enasily converted to an equivalent terminal cost problem [17]. See

Appendix C for the details of this conversion.

The Dreyfus form of the transversality conditions is

ii i •~~~~i (tf).[ -(i; x
t - tf (2.25)

where * and ; are total time derivatives.

Since the state equation boundary conditions are specified at to

and the influence function bcundary conditions are specified at tf,

a two point boundary value problem (TPBVP) results. Assuming that a

solution exists, we see that solving the TPBVP is equivalent to finding

a candidate for the equilibrium solution to the original NZSDG; hence

the NZSDG problem has been transformed into an equivalent TPBVP.

Solutions to the TPBVP are called candidates for an equilibrium

solution since the TPBVP is a necessary but not sufficient condition.

12
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Switching Surfaces

When we attempt to solve the TPBVP consisting of the state and

influence function equationa Eqs (2.19) and (2.20), we often find that

the equilibrium controls are discontinuous, especially if there are

control constraints present. These discontinuities in control

occur on switching surfaces in the state-time apace, the surfaces

being classified as transition, singular, dispersal and abnormal.
1

The RIB and influence function equations are generally not defined on

these switching surfaces, and the partial derivatives W X, W t

and the influence functions X' can be discontinuous when the

trajectory crosses or enters these switching surfaces.

Special conditions must be satisfied on these surfaces which

Sserve to continue solutions across or along the surfaces. The

following sections describe the surfaces and give conditions for

their construction.

Transition Surface

The transition surface is one on which the generalized Weierstrs• -

ErdA.nn corner condition holds (28]. Let (+) and (-) denote one-sided

limits on respective sides of the transition surface, then the following

corner condition holds [28], provided that the trajectory is not

Sparallel to the surface:

1. Thw nmines "transition" and "dispersal" are due to Isaacs [17] while
!• "•"abnormal" surfaces are surfaces like Isassos' "barrier". Abnormal
Sim surfaces are discussed in Ref. [27).

13
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(Hi+ - Hi-) dt - (Ai+- Ai-) dx -0 (2.26)

i- I, . .. N

The variations dx and dt are arbitrary variatl.ns on the transition

surface. If the transition surface is parametrized, say by the n -

dimensional parameter a where

a (01, 02 , on)

such that the surface is described by the parametric equations

t = T (a) x- x (a)

then Eq (2.26) takes the form (28]

ýHi+ - Hi-) 3T/•a - (Ai+ - A'-) Dx/Io - 0 (2.27)

i - I, . .. , N

In Reference [281 it is prown- that if all controls except U * are

continuous on player i's transition surface and the trajectory is not

parallel to the surface, then Ai, the ith players influence function

vector, is continuous on the surface (remember that the influence

functions for the other players AJ, i 0 J, may be discontinuous).

Singular Surface

Singular surfaces consist of a family of trajectories on which for

at least one player, say the ith, a control component Ui is on the

interior of its constraint set for a nonzero time interval and the

coefficient of U • 
1
n the Hamiltonian function is identically zero,

so that

Hi . 0 lHi I . 0 (2.28)
U j Ui Ui

14
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on this timne interval. The sost common and important case occurs

when the control Ui appears linearly in the state equation and the

Hamiltonian. We will consider only this linear case. For this came

Eq (2.28) does not suffice to determine the minimizing (singular)

control since U
1 

does not appear in Eq (2.28). A higher order

necessary condition called the generalized Legendra Clebohe condition

[10, 29] Is required to test the singular control which is generally

determined by Eq (2.29) below. Although the above references

developed the Leaendre-Clubah condition only for optimal control problems

the result has been extended to zero sum differential games [1] and to

NZSDG 128). Since Hi is identically zero on the singular arc, so are

all of its time derivatives, thus

*i ". " . .• 0 (2.29)l' ij Uij

Successive differentiation as in Eq (2.29) with substitution of the

state and influence function equations for player i gen :ally results in

an equation containing UI, explicitly. Robbins [29] shows that if

Lappears at all in Eq (2.29) it first appeasr explicitly in an even

time derivative of Hi . Not only does Eq (2.29) often provide an
Ui

equation which determines UiJ. but it also provides useful relations

among the state and influence function variables which must hold along

the singular arc. The necessary condition for a singular control

to be an admissible equilibrium control is the satisfaction of

the inequality

(-1) k 3/aUi [ d
2
k/dt

2
k Hi ) 0 (2.30)

J~utj

15
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Robbins [29] calls the quantity 2k the "degree" of the singularity

where

d
2
k/dt

2
k Hi - 0 (2.31)

ui
j

"is the equation in which Ui1 first appears explicitly.

It is possible that more than one control component is singular

on the same time interval. In this case Eq (2.30) is applied to each

control component. If one of the control components say U% has a

lower degree of singularity, when Uij first appears in Eq (2.30) the

functional relationship between Uij and the state and influence

function variables is determined. This result is substituted back

into Eq (2.30) to eliminate ut from the equation then successive

differentiation is again employed to find the control component with the

next higher degree of singularity.

Jacobson and Speyer [19, 20, 32], and McDannell and Powers [23]

have derived new necessary conditions and new sufficient conditions

"for totally singular optimal control problems; however, it is not

known whether these conditions can be readily extended to zero sum

and nonzero sum differential games.

Dispersal Surface

A dispersal surface for player i is a surface from which player i

can play more than one equilibrium strategy without changing his cost.

Examples of this type of surface are found in Isaacs' Homocidal Chauffer

Game and Game of Two Cars [17]. The following equation characterizes

the dispersal surface for player i (27, 28]:

Hi (X, At, Ui, t) dt - Ai dx - Hi (x, Aik, Ukk t)dt (2.32)

-A dx

k-2, ••.p

16
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where p is the namber of equivalent strategies and k indicates

the kth equivalent strategy. dx and dt are arbitrary variatio.,s on

the dispersal surface. The dispersal surface can occur in

pursuit-evasion problem. A typical situation illustrating the

nature of the surface occurs when player I has the option of making

an equilibrium control choice of either a turn right or a turn left.

As its name "dispersal surface" impliea, trajectories generally

diverge from the surface.

%buorml Surface

In this dissertation normal problems have been assumed; however,

examples of abnormal surfaces appear in the literature and need to be

mentioned. The main examples of such surfaces are Isaaca' semipermeable

surfaces with the barrier surface a speciai case [17]. Proead [27]

points out that another abnormal surface is Isaacs' Equivocal Surface

which is a dispersal surface for one player and a singular surface for

"the other. The reader interested in abnormal surfaces Is referred to

Ref [27].

This chapter has presented the background and theory of NZSDG

to acquaint the reader with the topic. The two approaches to necessary

conditions provide the ILJB equations and the influence function equationr.

In practice, for nonlinear or constrained problems it is usually required

to solve the TPBVF consisting of the influence function equations and

state equation in order to obtain equilibrium solutions. The condttions

necessary to construct the various switching surfaces which are required

in solving the TPBVP were presented. It should be noted however, that

these conditions are generally difficult to apply.

17
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XII . A Class of Nonlinear NZSDG Problems with Controls Appearing Linearl

A broad class of differential eame problems involves a nonlinear

dynamical system with controls appearing linearly in the state equation.

This chapter treats the terminal cost NZSDG which results from the

above type of dynamics with constrained controls. The following sections

define the problem class, formulate the differential Same, ILIB equations.

Influence function equations, TPBVP, define the control switching

functions, and present conditions under which the influence functions are

continuous on singular surfaces. The singular surface occurs frequently

in many problems and is often the only switching surface involved in the

problem; therefore, it is important to know the behavior of the influence

functions on this surface. If the influence functions are continuous at

the junction of a trajectory and a singular surface the solution of the

TPBVP is considerably easier.

Chapters IV and V are devoted to two examples from this class of

problems.

Problem Statement

For the class of problems considered in this chapter the state

equation is
Nx - g (x) + I Aj Wx Uj} - f (x, U)

j -. (3.1)
x (to) - X,

The Lontrol vgrisble, corresponding to the ith player is a scalar

and is constrained such that the following inequality holds

ui <_ 1 i - 1. . N (3.2)

18
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(The problem can be generalized for vector controls with the major

effect being notational complaeiry). The state vector x contains the

state components of the N players.

The goal of each player is to choose an admissible control strategy

UP such that hia z•n terminal cost function

Ji - *I [I (tf), tf)] (3.3)

Is minimized. Z (tf) and tf sattsfy the termination criteria

( X (tf), tf] - 0 (2.3)

We aseem perfect information vhich implies closed-loop etrategies

for each player; however, it Pill be shown for this clasa of

problems that the closed-loop and open-loop control lav will result

in the am influence function equation. hence the same equilibrium

solutions.

Formulation of the NJB Equations. Influence Function Equation. and the TPBVP

We can formulate the tUB equations,

Hi (x, t) - - .n Hi (z, t, Wi. u*; Ui) (2.14)t .
-1, . . .N

Wi [x (tf)d tf] - 4i Ix (tf), tf] (2.16)

where H
1 

is given by
N

Hi. Wi f - Wix g (X) + E AJ (W) u (3.4)
x j -lI

The admissible U which minimizes Hi in Eq (3.4) (holding the other

controls U , j ÷ I, at their equilibrium values) is (by Inspection of

:i i+ t +SI (3.4))

U --*sgn (W. A) (3.5)

19
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where

sgn (y) 1 y > 0

-1 y < 0  
(3.6)

Eq (3.5) holds except when the argument Wix A satisfie3 the equation,

W1X A - 0 (3.7)

over a nonzero time interval. In this event it is possible for Ut* to be

singular, and the necessary conditions given by Eqs (2.28) through (2.31)

must be applied to determine the control Ui* and test its admissibility

as a candidate for an equilibrium control.

We can now write the HJB equations f~c this prbblem in the formS~N
W1t - Wx [g (x) + E Aj Uj*] (3.8)

with the boundary condition given by Eq (2.16). Eq (3.8) is a system of

first order nonlineat coupled partial differential equations where the

equations are coupled through the last term of the r.h.3.. This equation

cannot, in general, be solved in closed form; however, it is an additional

necessary condition since the state and influence function equations are

the characteristic equations for the 11B equations and therefore must

satisfy it.

The influence function equations for this class are
SN N

+ A UP + I Aj Ul*

J-l x J-l X

=i .. ,N (3.9)

The terminal boundary conditionsfor Eq (3.9) are given by Eq (2.25).

In Eq (3.9) UJ* is given by

UP . - sgn (ij AJ) (3.10)

or in the event the argument Xj AJ satisfies the equation

Xj AJ - 0 (3.11)

over a nonzero time interval, the control UJ* may be singular and

20
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must be determined by the necessary conditions, Eqs (2.28) through

(2.31). In Eq (3.9) i1 j - 1, XI Ai Ul* Is Identically Lorox

(see Appendix 3). In any event, the expression U, in the last

term in the r.h.s. of Eq (3.9) in either identically zero in regions

where the controls are constant or undefined on switching surfaces.

In solving the influence feaction equations, the special conditions

for the varlnus surfaces outlined in Chapter II must be used to

continue solutions across the switching surfaces. In the event a

trajectory lies In a switching surface such as in the case of a

singular control segment, special arguments to be discussed later in

this chapter muat be employed.

The equation for the influence functions holding between switcbtng

surfaces, can now be written

- A (g + Z AJ UJ ) i 1, .... N (3.12)
J-l

Control Laws

Eqs (3.5) and (3.10) defining the control UP are known as a

"bang-bang" control law, so that the controls for this class of problems

are "bang-bang" with the possibility of singular controls when Eqs (3.7),

or (3.11) holds. The development thus far In this chapter assume

perfect information, bus now let this requirement be relaxed. Suppose

On state observations except x (to) are permitted. Then, according to

Eq (2.8),

ui - Ui (o, to, t) (2.8)

Hence U.I in the influence function equations Eq (3.9) is identically zero

and the influence function equations for the open-loop control law

problem become
N

Ai ,- +(g1 " AjUe) i- 1 .... .N (3.13)
x

21
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which ate identical to the closed-loop influence function equations

Eq (3.12) for this class. Thus the open-loop trajectory is identical to

the closed-loop trajectory for a given set of initial conditions. This

identity is caused by the control constraints Eq (3.2) and the linearity

of the controls in the state equation Eq (3.1) and is not dependent on

the information pattern. Because the open-loop and closed-loop control

laws result in identical trajectories, in this class of problems a

sampled data feedback solution (i.e., an open-loop solution usintg each

new sample point as an updated initial condition) approaches the closed-

loop solution in the limit where the sample interva, 'a allowed to

aproach zero. This limiting behavior is not true in the general NZSDG

since Starr [33j ýas shown that the so called open-loop feedback solution

(where the initial conditions are updated instantaneously along the

trajectory) and the closed-loop solution are different for linear prob-

lems with no control constraints.

Conditions for Influence Function Continuity Along Singular Surfaces

In higher dimensional problems ( n 13 ) singular surfaces which

Is~acs calls "universal" surfaces [17] occur frequently when bounded

controls appear linearly in the state equation as in the class considered

in this chapter. The singular surface is characterized by the fact that

trajectories ,.nter the surface from either side then proceed along the

surface itself. Letting H denote the singular surface, the situation

in two dimensions is depicted in Fig. 1.

From Chapter II we know that the HJB equations are not necessarily

defined on switching surfaces (which Includes the singular surface M,

but the HJB equations are valid on either side of M if we regard the

partial derivatives in Eq (3.8) as one sided. If we can show that the

22
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- • - ;jSingular
• Surface

Trajectories

Terminal Surface

Fig. 1. Singular Surface

partial derivatives, W'x and Wit are continuous on M, then we do not

need to restrict these partials to be one-sided, and we can conclude

that the HJB equations, Eq (3.8), and therefore the influence function

equations Eq (3.9) are defined on M.

Hence we establish the following theorem:

Given toe NZSDG with the state equation
N

x - g (x)3+jEIAJ (x) UJ x (to) -x, (3.1)

Uj i

with the terminal manifold given by

S[ x (tf), tf ] = 0 (2.3)

and cost functions given by

ji x (tf), tf ) (3.3)
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If the following conditions are met then for player k, Wk. and Wk t are

continuous on M:

I. 3(x) and AJ (x), j - 1, . ... , N, are continuous vector

functions of x and linearly independent for all x.

ii. N is a singular surface of the control Ui where M can be entered

from either side by employing Ui* = +1 on one cide of M or

Ui* - -- on the other side of M. Let N+ be the side of M

corresponding to Ui* - +1 and H- be the side of M corresponding
____• = • 4*

to Ui- - -1.

iII. The controls UP*, j 0 1, are constant neer M.

iv. On X the term Wk. Ai (where Wkx is considered to be a one sided

derivative) is identically zero,

wk Ai - 0 k~i (3.14)

v. The inner product B (x) A is not a constant over any

nonzero time interval; B Wx) is defined below.

Proof

The 13JB equations for player k are
NWk kt . -wkx g Wx - E Wk. AJ UJ* k - I. . . . , N (3.8)

-- -- -:J-1

Eq (3.8) is detined on either side of H but not on H itself, therefore

the partial derivatives Wk and uk must be conuf; ed as one-sided

on e4 and M-. Designate Wk+, and WkIt as one sideu partial derivatives

on H+ and Wk-x and Wk-t as one-sided partial derivatives on K .

On M, which is a singular surface for player i, the switching

function Wix Ai is identically zero (Wix is defined on M [27, 28])

Wi Ai - 0 (3.15)

From Eq (3.8) and condition iv. above we can write the equations
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Wkt- A + - w k•k A' _- -0 (3.1.

N
Wk+t + Wk+1  (X)+ + E AiI+ Ui*+I W- + B (sf- +

J-1
N
Z AJ- Ui*i - 0

J.l

Since g (xn) and AJ (Wn, J - 1, ... *N, &ae continuous in inand UP*,

J 0 i, is constant in the neighborhood of Mf under consideration, by

continuity arguments

AJ+ - J - AJ (3.17)

and
N

B (z) Bg (x)+ + E AJ+ t;J' jifi (3.18)
J .1
N

i-i
- g+ A (x)- +k- : A J- -0 J- o

- g(x) + E AJ U1 j"i
i-i

B (W i the time derivative of the equilibrium state vector except

the component containing U i. By assumption i. I (xn) and

AJ (x), J - 1, . . ., N, are linearly independent vectors.

From Eqs (3.16), (3.17), and (3.18) we can now write the equrtions

(Wk+.-Wkx) A' 0 k i0 i (3.19)

-J+ - - dB () (3.20)

Now 1vk+ and Wktare constants on en equilibrium trajectory along H

a inca the state equation ts autonomove and the problem has terminal cost

'functions; hence Eq (3.20) be'conts

Ck . (W') - Vk ( ) B (x) k Ji1 (3.21)

Returning to Eq (3.19) one of two conditions exibti either (a),

(Wk+1 - Wk-t) . 0, or (b), (Wk+r Wl-x) is orthogonal to Ai. Conditon)

(a) tugether eith Eq (3.20) imp, y Wk+s . anJ Wk . k W., will

2ý
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show by contradiction that only (a) is possible. To obtain a contradic-

tion to (b) suppose ('.) is true. Then the vector (W41 - uk- 1) lies in

a hyperplane orthogonal to A' at each x along a trajectory. In Eq (3.21)

on the other hand, the vector (Wkcx - wk-,) lies in a cone about the

vector B (x) for each x along the trajectory. Lnspection of Eqs (3.19)

and (3.20) reveals that in order for both equations to be satisfied for

each x along a trajectory the inner product <B (x), Ai (x)> must be

constant which is impossible by assumption v. (Since B (x) is the time

derivative of most of the state vector while Ai (x) is only the control

coefficient for the ith player, assumption v. is a very reasonable one

and is not likely to be violated in any realistic problem.) Thus, the

contradiction to (b) is establiched.

The conditions

wk+x - wk-. -k_

-k t . Wk-t = Wkt

imply that Wkx and Wkt are continuous. Furthermore, because of this

continuity, the IHB equations and thus the influence function equations

are defined on the singular surface. The advantages of this continuity

were enumerated in the introduction to this chapter, and of course

the validity of the HJB equations and influence function equations is

essential to obtain singular trajectories. Application of the theorem

will be illustrated in the problems of Chapters IV and V and in Chapter

V it is shown that there are problems for which the theorem does not

hold.

26
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IV. Interceptor-Penetrator Problems

In this chapter we use a simple model t6 illustrate the application

o f the theory presented in Chapter It and III and alsa the salient

features of the intercept problem treated as a NZSDG. The state

equation used to model the vehicles' motion is the same type as in Eq

(3.1) of Chapter III so that the control lav are the "bang-bang"

variety with the possibility of singular controls. The theorem of Chapter

I II which tests the continuity of the influence functions on the singular

surfaces is applicable, and the influence functions will be shown to be

continuous on the singular surfaces. Two problems are considered:

(1) s two player intercept problem with one player, the attacker "a",

a ttempting to reach a fixed target and the other player, the defender "d",

attempting to intercept a. Termination of the game is achieved when d

a chieves & separation distance from a of some arbitrary length, say 1.

We will assume throughout that termination always takes place although

an important part of any practical problem is assuring oneself that

termination can indeed be accomplished. The defender's goal is inter-

ception in minimum time while the attacker's goal is minimization of his

final range to the target; (2) a three player problem which is the same

as (1) except that another defending player e is added. The termination

criteria is taken to be when either c or d intercepts a. General solu-

tions are discussed, and the totally singular solution is solved.
1

1. In considering the singular surfaces we will be concerned only with
the singular surfaces which intersect the terminal manifold since
these appear to be the only significant singular surfaces in the
practical intercept problem. Intermediate singular arcs can occur as
in Isaacs' homocidal chaueffer problem [171, however these intermediate
arcs asem to occur when the players are initially inside each other's
turning radius-a case which will not be considered in this dissertation.
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The theorem of Chapter III is ahown to be satisfied so that the

influence functions are continuous on the singular surfaces. This

continuity allows the totally singular problems to be solved numeri-

cally. Numerical solutions of both the two and three player totally

singular problems are carried out to illustrate application.

Problem Formulation - Two Players

The equations of motion for the two players are

id - Vd cos Yd

;d = Vd sin Yd

4d. cd u

(4.1)
ia = Va cos ya

ya . Va sin Ya

. ca v

Define the state vector x to be

=T , (xd, yd, yd, xa, ya, ya) (4.2)

Fig. 2 shows the inertial position and velocity of the two players

and the inertial position of the attacker's target.

The termination criteria needed to end the game is taken to be the

satisfaction of the equation

y [x (tf), tf] - 1/2 [ (xd - xa)
2 

+ (yd - ya) 2 _ = 0 (4.3)
t=tf

where I is arbitrary (In a practical problem t could represent maximum

launch range for the defender's ordnance. See Fig. 4). The part of

the intercept problem which makes it a nonzero sum gSae is the difference

in the goals of the two players. The defender's gpal is minimization

of the game termination time tf while the attacker's goal is minimization

of the final range to his target (xT, yT) The cost functions for the
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y

S..•.y Attracker

Target Va & I
- (xn,ye)

, (xT' YT) vd

Defender

S(xd yd)

Fig. 2. Inertial Position and Velocity of the

Attacker and Defender

defender and attacker are respectively

-d . 0d Ix (tf), tf] - tf (4.4)

-a *. 01 (tf[ t),f] . 1/2 xa - 2 + (ya - yT)2 f

SWe can now proceed with the formulation of tlhe IUB equations, the

influence function equations and the TPBVP. The Hamiltonian functions are

Vsa d yd Vd yd c d

H A'dVd cosy + A yd V an + 1 d c
-- • (4.5)

+AsXaza acog ya +As yaVa *inya + Anyca v

where the superocript "s" is to be replaced by either "a" for the

attacker or "d" for the defender. The systems of HJB equations for the

two players is

Wdt . -- niH wRdWd . dx (tf), tf]u (4.6)

Wat . - &in Ha wa. _a (t (f), tf]
v
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where A in Eq (4.5) is replaced with the partial derivatives We .

The influence function equations for the two players are

-d 0

Ad 0

yd= Vd (ISad sin y d 8yd cos d

(4.7)

. 0

ya

"A a ,v (.111 sin a _ ya co. a)

When referring to the influence function equations for the attacker or

defender, replace the superscript "s" with "a" or "d" respectively.

Note the absence of either control in the influence function equations

Eq (4.7). (4.8), and (4.9) which means that Lhese equations are coupled

only at the terminal manifold by the transversality conditions. The

transversality conditions are given by Eq (2.25) and in component form are

- (xa _ d)

- (ya _ yd)

0

A-d (t f - I (f) (xax d) (4.8)

(ya - y)

0

3=tf
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0 -(x- xd
0 _Y' - yd)

a(tf) . 0(X T) - ;(tf) (tf) 0
(xa - T) (xe- xd

(ya - YT) (ya - yd8

Lr0 t-tf 0 t-tf

where

-(xa -dx) (Va cog ya _-Id cog yd) + (ya _ yd) (4.9)

(Va sin ya - Vd sin Yd)

and

*a(t) = [ (xa - ST) Va coe ya + (y - yT) V sin Ya t.t (4.10)

except on singular manifolds where u* - 0 and/or v -0 are employed.

S i Appendix D contains the derivation of these singular cont.rols. The

•'I TPBVP whose solution is equivalent to solving the NZSDG posed consists
of the ine controls u and v substituted

from Eq x 4.11) (oo r aifolds controls if appropriate), and the

influence function equations for both players as given by Eq (4.7).

Control Laws

The equations in Eq (4.11) are bang-bang control laws, so that the

cintrol pair is always one of the following:

1. u -1 v ,o--1
1.U* +I V* .4.

2. u -0 v -i
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3. u* vt - 0* *
4. u -0 v0 -O

As stated in Chapter 111, a closed-loop control law requires the

solution for all the switching surfaces. The location of the state

relative to these surfaces then completely specifies the nonsingular

controls u* and v-. Trajectories lying along a singular surface have

controls from the control pairs 2., 3., or 4. above. These singular

tra~ectoriea are discussed below.

Singular Surfaces

In Appendix D the Legendre-Clebsh necessary conditions are applied
*

to derive the admissible sinsular control candidates u - 0 and/or

v - 0. Additional requirements for a singular control u* are that on

a singular trajectory for d

Ad dd "-dd Y,. 0 (4.12)
•.: d " +" d •

X dxd Cos Y •dyd asin y d 0 (4.13)

For a terminal singular trajectory on which u Is singular, using

Eqs (4.7), (4.8), (4.9) and (4.12) it can be shown that

sind Y d . dy d/ +d d
2

1/2
y ^ xd yd) t-tf

dd d d2  d2  
1/2

c Y xd + A yd) t=tf (4.14)

Syd d/ [(Ya _ yd) / (xa _ xd)]ttf-- tany " [
1
dyd / dxd] t'tf= 'i-y)~'(

d I dBy substituting the expressions for sin y and coo y from Eq (4.14)

into the inequality in Eq (4.13) we see that the irequality is strictly

Ssatisfied.
Eq (4.14) isplies that the flight path angle yd is such that the

velocity vector for the defender lies on his line of sight to the
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attacker at termination. The situation is depicted in Fig. 3.

Similarly, in order for v to be singular Eqs (4.12) and (4.13) with

"a" replacing "d" must hold along the singular trajectory. For a
a

terminal singular trajectory on which v is singular

tan y a A a eya I A*xa It-tf (4.151)=•

f

S(ya _ T) _ (;a/ ),a _ yd)

-X _x) _ (,xf _ a d) It-tf
(•" •) i'Y) (2c )tt

where ;a and T are given by Eqs (4.9) and (4.10). Eq (4.15) implies

that the singular trajectory for the attacker has a constant flight

path angle which depends-upon the relative position of both players at

termination and the target. Typical singular trajectories are depicted

in Fig. 4.

Continuity of the Inflence Functions K

The requirements of the continuity theorem in Chapter III are met

(by inspection) with the possible exception of condition iv. which must

be checked. If condition iv. is met then the influence functions are

continuous at the junctions with and on the singular surfaces in this

problem. We now show that condition iv. is satisfied. Assume player

d switches from a nonsingular to a singular control.

Since •ad and Wayd are identical on an equilibrium trajectory,

condition iv.'Eq (3.14) applied to this problem requires that

A yd - 0 (4.16)

&along every trajectory in d's singular surface. Because )Ad and

are identical on an equilibrium trajectory, aon be regarded

as the sensitivity of player a's cost function to a variation in the

flight path angle yd of player d. From Eqs (3.14), (4.7) and (4.16) we
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At Attacker

Defender . Va(t)

- t

Defender's Terminal
Singular Trajectory

Fig. 3. Defender Singular Arc

Attacker

Target

Defender

Fig. 4. Typical Singular Trajectories for the

Attacker and Defender
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can now develop a relatiovship among the influence function variables of

both player a and player d which must hold on d's singular surface. It

is then easy to demonstrate that the relationship holds which in turn

implies the continuity of the influence functions.

From Eq (3.14) all time derivatives of ad are also zero;

therefore from Eq (4.7) the equation iayd - 0 requires that

sain d Xy cos od . (4.17)

or

tan Yd - Aayd / Aa d

Eq (4.171 implies that the flight path angle of player d can be specified

in terms of ;layer a's influence functions. Since tan y is a constant

on d's terminasl singular trajectory and is specified by Eq (4.14), we

can write a relation bet aen player a and player d's influence functions

'.hich must hold on the singular surface,

A lyd xd - (Adyd / Adxd)t.tf (4.18)

Since the terms in Eq (4.18) are constants, we need only to assure our-

selvcs that the equation and thus condition iv., is satisfied at tf.

This verification can be made from the transversality conditions Eq (4.8)

(ayd/ axd)ttf [( -yd) / (xa -x)] (4.19)

- tan y d(tf)

- (Adyd I Adxd)t -tf

We have now shown that the condi$ions of the theorem of Chapter III

are satisfied for player d's singular surface so that the influence

functions are continuous on this singular surface and the IJB equations
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and influence function equatfons are defined on it. A symmetrical

argument holds for player a's singular surfaces. It may be possible

that a player switches from a nonaingular to a singular control while

the other player is already using a singular control. This a'tuation

is merely the intersection of the two singular surfaces and no unu3ual

behavior is associated with this intersection.

- -Totally Singular (Long Range) Problem

When long ranges are involved in the trajectory of each vehicle

and the turn radii of the vehicles are very small compared to these

ranges, then the equilibrium trajectories are totally singular except

for the initial turning segrents. In the context of the problem at

* hand, the trajectories are straight lines. This simplification makes

the problem's solution fairly simple.

Suppose the trajectory of each vehicle is totally singular.

Then from Eqs (4.14) and (4.15) we have

tan Yd . [(ya - yd) (xa - xd)] (4.20)

tan-YT)- ( 'J •)Y-~ (4.20)

tan y . (4.21)[(x - x (.5 / (xa 
YTxd)Jt*

a 
4 (a a

Using the singular controls u - v - 0 and the state equation

Eq (4.1) we obtain the algebraic equations

* xd (t) - xd (to) + (t - to) Vd cos yddVdd 
yd

y t) - y d(to) + (t - to) sin d (4.22)

xe(t) - xS(to) + (t- to) Va cog Ya

ye(t) - ya(to) + (t - to) Va sin ya
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Let to . 0. For corvenience define a poinit -Yd) along the flight

path of the defender as

;d(t) _x(t) + I Cos
(4.23)

dt) - yd(t) +1 sin d

so that Eq (4.22) becomes

xd(t) _ xdo + (Vd t + l) cosy d

y (t) -y + (Vd t + 1) sinY (4.24)

x(t) - xa + Va t cog ya

a'._y Wet - y.o + V' t sin YO

At tf. the points (x , y ) and (x , ye) are identical,

z (t f - z (t f
(4.25)

y (tf) - ya(tf)

Eqs (4.20), (4.21), (4. 4) and (4.25) constitute the TPBVP. Note

adthat the unknowns Y Y , and tf are all determined at the unknown

terminal point.

Numerical Method

The following simple algorithm can be used to numerically solve

the T"3VP for a, d, and t Let the superscript "o" indicate the

initial guess while the superscript "'" indicates the computed value

based on the initial guess.

Algorithus
d° 0

1. Guess y t f

2. Calculate [xaO(f), y d(tf)] and [x0 (tf), Y, (tf)J from Eqs

(4.22), (4.24) and (4.25).
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Soca0
3. Calculate from Eq (4.21).

0 0

4. Calculate [xa (to), Ya (to)] from Eq (4.22) using final

conditions in 2. and 3. as initial conditions.
aO o

5. Determine the error between ax (to), ya (to)] and

[xa(to), ya(tO)].

d
1  

d° d

6. Correct o and t 0 by setting y d y +A d and

t f 1 t f° +Atf.

1 0 0 d

7. Replace y and tf by y and tf and repeat steps 2. through

d
6. by andarf may be determined by a number of schemes, many

of which may be implemented by using the optimization program

AESOP (Automated Engineering and Scientific Optimization

Program) (12, 13]. Continue the iterations until the error

ir Step 5. has been reductd to a suitable bound.

The above algorithm is irrplemented to illustrate a numerical

solution.

Initial Conditions Initial Guess
d d

xd(0) - 0 xa(o) - 2000 Vd 1000 Y = 1 radian

yd(0) - 0 ya(O) . 1000 Va - 500 tfo - 1.5

XT = 0 YT - 500 t - 25

Program AESOP [131 was used with an IBM 7094 digital computer to

obtain the corrections %ý, A tf in the algorithm. Ay d and atf were

selected to minimize the error in Step 5.,
0°. .21/2 2-

(error) - {[xa(to) - xa (to)]2 + [Ya(to) - Y (to)) 2 )1/

Using three minutes of machine time, the error was reduced from the

initial guess error of 114 to a final error of .063. The final error
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represents a distance difference of .063 between the calculated

initial point xa (to), ya (to) and the actual initial point Xa(to),

y & (to). The computed values of d, Ya. and tfcorresponding to the

final error are d . 54.6', ya - 261.6', and tf . 1.51.

In aa actual intercept problem the algorithm could be employed

' to provide a sampled data feedback control law provided the sample

intervals are small. Its this control law the state is sampled at

discreet times and the sampled state Is used as a new initial condition.

Employing the algorithm for each state sample updates the flight path

kngles y and ya and the time to intercept, tf.

If one of the players, say a, employs a nonequilibrium control

law, this feedback control law for player d insures a better final

cost for player d. It should be noted that the smaller the sample

interval is the quicker will be player d's reaction to nonequilibrium

play by player a.

Three Player Formulation

Three player differential games have been solved for pursuit-

evasion problemss (4], however, the games are posed as zero-sum games

with the third player introduced by some artifice such as a constraint

or a specified guidance law rather than as an -.,dependent minimizing

player. In this section an additional independent player will be

added to the problem of two players already presented in this chapter.

The selection of the third player's cost function dictates the degree

of his cooperation with the original defender ot the two player game.

Consider the two player problem in this chapter, and add to the

state equation Eq (4.1) the equations of notion for the third player

whom we shall call the cooperating player Icl",
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SC VC C
x - V cos Y

yc .Vc sinyc (4.26)

i -c Iwc _l

The state vector is now

xT (xd , d Xd , yC Yc, X. ya, ya) (4.27)

Suppose that the goal of the cooperating player is identical to

the original defender's goal of interception of the attacker in minimum

I time,

SIc c = tf 
(4.28)

Depending on the relative positions of the players and assuming termi-

nation can take place, one or the other of the defenders achieves

intercept first with the possibility oZ simultaneous intercept. If

there were a termination criteria such as Eq (4.3) for each of the

defenders, the termination would be ambiguous. To avoid this problem

a new single termination criteria is formulated which includes the

termination criteria for each player,

'(x (tf), tf 1/2 [1 yT ] (4.29)

l 1/2 [(x d - a) 2 + (yd ya)2 2

[(xc - xa)
2 + (yc - ya)

2 
- k

2 ]

k is the radius of c's capture circle and t. is the capture circle

radius for d. The game is terminated the first time Eq (4.29) is sat-

isfied.

TPBVP for the Three Player Problem

The set of influence function equations for this problem are the
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equations in Eq (4.7) plus the equations for the third player,

iesd - 0

-ydV (A* sin d - A d Cos Y_

yc - 0 (4.30)

" Vc ()%xc sin Y'- Cos

xayc - o

Sya - 0

- a "axe sin a - Xe cos

where a is one of tne set (d, c, a) which refers to the defender,

cooperating defender and attacker respectively, thus Eq (4.30) contains

27 component equations.

The transversality conditions are
(t s f (fs / t-) (2.25)

Eq (2.25) is expressed in component form in Appendix 9 for this problem.

The bsng-bang control laws for the original defender and attacker

remain unchanged while the control law for the cooperating defender has

the same for.3,

w* - - sgn Ac yc (.

The singular control for each player is unchanged,
* *

u* " 0 v 0 W* - 0 (4.32)
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The necessary conditions for player d to have a singular control are

Ad i il- 0 o(4.33)

Ad Yd + Xd d _ (34

x1 d @in~ y d Cos Y 1_ 4.4

a
and if the problem terminates with a singular control u - 0, then on

the singular trajectory

sin -d [ - Ad yd / (). xd -' d2 
yd)/2]It -tf

Sd 
. [ _ Adxd / (Ad

2 xd + Xd
2  )1/2] (4.35)

or
]ild (ya yd xa xd

tan Y- - y ) / Cx - x)) Lt
f

For player c to have a singular control v - 0,

-i i! .0 (4.36)

x•c sin yC + xcc C 0 (437)

and if the problem terminatee in a singular control w - 0, then on the

singular trajectory

sin .c - [ - AcyC / ( Xc + AC )1/2

COS ! - I (A' 2 xc+ xC2 yc)1/ t-t2 (4.38)

or

tan Y c _ (, a [ ci y ,c a _ co ntro f

a
Finally, for v to be a singular control

A a -. o (4.39)
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As.. s in Ye + lay. coo a, 0 (4.40)

and if the problem terminates in a singular control v - 0, then on

the singular trajectory

S Y' - ( - Y -( I ) , 61 a,
tan (*s a) ( W W f (4.41)

The inequalities of Eqs (4.34), (4.37) and (4.40) are shown to hold with

"strict inequality in the same manner as Li Eq (4.13).

Because of the termination criteria Eq (4.29), one or the other or

both of the defending players will sake the intercept and cause termi-

nation. Recalling the termination criteria function

T [x (tf), tf) - 1/2 [ Id] I c] - 0 (4.29)

y - 0 implies the following possibilities;

(a) yd - 0 (p~ayer d intercepts first)

(b) ve - 0 (player c intercepts first) (4.42)

(c) Td - Tc - 0 (simultaneous intercept)

If (a) holds in a problem, then examination of the tranaversality

conditions in Appendix E reveals that the trajectory of the attacker

does not depend on the position of the nonintercepting player c. In

other words, the attacker and intercepting player d have the same

trajectories as in the two player game where the nonintercepting player

c is excised from the problem. The nonintercepting player's trajectory

is determined by Eq (4.38) which implies that if a singular arc is

attained by player c, at termination his line of sight to the attacker

is coincident with his velocity vector. The situation is depicted in

Fig. 5. A similar statement holds for case (b).
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Cooperating
efender

Attacker

_ ' __Target 2

Defender

Fig. 5. Typical Three Player iajectory

Consider case (c). In the two player problem, if a third player

(the cooperating defender) is added to the problem and if his capability

permits, the three player problem solution will differ from the solutions

for cases (a) and (b) where the attacker and one of the defenders play

as if the second defender were not present. When the cooperating

player can influence the solution, but not force case (b) then case (c)

holds and the intercept is made simultaneously by both defenders.

Examination of the transversality conditions for the attacker in

Appendix E, reveals that for case (c), Xaxa (t.f) and a ya(t f) are

indeterminate. Application of l'Hospital's rule to Eq (4.41) removes

the indeterainacy. The resulting equation for tan ya is

a - c a /*c +yd _ a * d,a ya - + [ - ya) I - y - ya) i ] (4.43)
t a n Y ( t ) f x a _ - + ; a [ ( x c _ ) / ; + ( x d _ x a) / id , I t t f
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The expressions for ea ic and ; are found in Appendix E.

The theorem of Chapter III is satisfied on the terminal singular

surfaces of all three players. This can be verified in the same

manner as in the earlier two player problem of this chapter.

We can now proceed to develop the totally singular solution.

Totally Singular Three Player Problem

As in the two player problem, if the turn radii are assumed very

small compared to the total range of each player, then the problem

reduces to one in which the trajectories are totally singular - in this

problem, straight lines in the plane. Following the format of the two

player totally singular problem, the equations defining the flight path

angles are given by Eqs (4.35), (4.38) and (4.41) repeated here for

reference,

tan d . (ya _ yd) / (.a _ xd)]t-tf (4.35)

tan yc - (ya _ yc) / (xa _ x )]t-tf (4.38)

a (ya - _ _ ( a / ; ) ,/,ya
tan a a ia _ ý a(4.41)

(x
5
a~r -( I ) ay/ax Itf

If a simultaneous intercept occurs, Eq (4.41) is replaced by Eq

(4.43). The state equation is integrated using the singular controls

u ,v , and w to give (assume to - 0)

"x"-(t) _ xd_ + Vd t cos Y

- d W + Vd t sin d

xc(t) - x€ + Vc t cos Yc

yc(t) .yc + Vc tam c (4.44)
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a xt + a V , t Cos ya

ya(t) . + Va t sin Y

Define x , y , x , y by the following equations,

_ x-d xd Vd d
-xd(t) . d ( V t + )cos

y-d yd° d
ym da (t) - y d ( V d t + L) sin Y d

(4.45)

x (t) - xc + ( V t + k) cos Yc

y (t) yc° + ( Vc t + k) sin yc

When t - tf, one of three conditions holds; either

(a) x-d(tf) ý Xa(tf) and y d((t) ya(tf)

or (b) 'x-(t f) - xa(tfY) and Yc(tf) ya(tf) (4.46)

or (c) both (a) and (b).

Case (a) corresp'nds to intercept by player d, case (b) corresponds to

intercept by player c and case (c) corresponds to simultaneous intercept.

" The TPBVP consists of finding the angles ya, yc, and yd which are

defined at the unknown terminal point by Eqs (4.35), (4.38) and (4.41)

such that the conditions in Eq (4.46) are met.

S~Numerical Hethod

An algorithm which can be used to solve numerically for the unkncwn

angles in the TPBVP is based on the three inttrcept conditions of Eq (4.42).

1. Assume intercept by player c.

2. Solve the two player (c and a) NZSDG using the algorithm for

the two player totally singular problem. This provides an

intercept time for player c.
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3. Determine whether player d is capable of intercepting first

in the solution in 2. by computing player d's time to inter-

cept. If so, the assumption in 1. is not correct, go to 4.

If not so, the assumption is correct; determine player d's

flight path angle by Eq (4.32).

4. Assuime intercept by player d.

5. Solve the two player (d and a) NZSDG using the algorithm for

the wo player totally singular problem.

6. Determine whether player c is capable of intercepting first in

the solution in 5. by computing player c's time to intercept.

If so, the assumption in 4. is not correct; go to 7. If not so

the assumption is correct; determine player c's flight path

angle by Eq (4.38).

"7. Reaching this point Implies simultaneous intercept. The TPBVP

which must be solved consists vi satisfying the initial conditions

for the problem, the transversality conditions, Eqs (4.35),

(4.38) and (4.41) and the termination criteria, Eq (4.42c).

Eq (4.43) are the equations of motion for the three vehicles.

The following steps yiclds a numerical solution to the simultaneoun

intercept situaticn:

(a) Guess d
C° 

0
Using Eqs (4.45) and (4.46c), solve for y and tf° which gives

simultaneous intercept for players c and d.
(c with. d°0 yc° and t fo0 ] n
---c) With y, y , and tf° calculate [xc (t f), yC (tf)] and

-- 0 d , d° d°ao ao
C[ ttf), y (t)] Compute [x(t) y (tf)] from Eqs (4.24)

and (4.25).
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0a
(d) Using Eq (4.38) solve for Y

0 0 0
(a) Using ya and tf°, compute [xa (to), ya (to)] from Eq (4.44).

0 0

(f) Compute the distance error between [xa (to), ya (to)] and

the initial point for player a, [xa(to), Ya(to)].

"g Defied
1  d1  d0  

dy(g) Define by the equation y . y +

(h) Replace y in (a) by y

(i) Repeat steps (b) through (h) untiJ the error in (f) has

been reduced to some suitable bound. Program AESOP [13] may
d

be u3ed to obtain the correction Ay to reduce the error in

(f) to nearly zero. The error is computed as in the two

player problem.

The algorithm is implemented to illustrate a numerical solution.

The parameter values of the two player totally singular problem are

used so that the effect of the third player on the trajectories of the

originel two players may be obse.ved. Three different speeds for the

third player c will be used to illustrate the three cases in Eq (4.42).

Initial Conditions

xd(o) - 0 xa(o) - 2000 Vd - 1000 Case (A) Vc - 500

d a ayd(0) - 0 ya(o) - 1000 V 500 Case (B) Vc - 1000

x¢(0) - 0 XT - 0 1 - 25 Case (C) Vc - 1500

yc(O) = 1500 YT -
5 00  

k - 25

dcThe computed values of y , y , y and tf for cases (A), (B) and

(C) are given in Table I.
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Table I

Numerical Results for the Three Player Problem

C se d Target

SRange

(A) 261.6' 116.1* 54.6" 1.51 1311

(B) 253.6" 120.1' 59.90 1.47 1317

(C) 247.6* 115.3* 62.1' 1.09 1526

The trajectories of the three player game for cases (A) (B) and (C)

are depicted in Fig. 6. Note that in case (A) the trajectories for players

a ard d are identical to the two player game since the capability of the

sdded player c is not sufficient to cause the attacker to change his flightaI
path angle a . When player c has sufficient speed to affect the solution

but not to effect intercept by himself, the attacker changes his flight

path angle from that of the two player problem so as to cause a

simultaneous intercept. Finally if c's speed is sufficiently large, the

attacker plays only against c as in cave (C).

Sumarizing, in this chapter two simplified intercepter penetrator

problems were formulated using NZSDG theory. The continuity theorem of

Chapter III waj shown to hold on the terminal singular surfaces which

implied influence function continuity on the surfaces. This continuity

permitted the numerical solution of the totally singular problems.
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Fig. 6. Three Player Totally Singular Intercept Problem

50



DS/MC/71-3

S~I,

V. A Pursuit-Evaaio: Problem

Pursuit-evasion problems have classically been posed as two-player

zero sum differential games in which the goals of the players are

always opposite. However, in real" 'tic situations it is nft always

clear that the goals of the player. are exactly opposite so that zero

sum differential games do not suffice to model the situation. It is

this aspect with which this chapter is concerned. Here we solve a

two player fixed terminal time NZSDC in which the players have conflicting

but not diametrically opposite goals.

Denoting the "pursuer" by p and the "evader" by e, the goal of p

is to minimize a function of the final relative range and p's line of

sight error while the goal of e is to minimize a different (but not

opposite) function of the relative range and p's line of sight error.

Relative range and the line of sight error of the pursuer are chosen

because of the importance of these functions in pursuit-evasion problems.

The dynamic model for the two vehicles is taken from Ref. [5] where it

was used in the analysis of a zero sum differential game of the pursuit-

evasion type. The problem considered in this ckapter will be shown to

satisfy the theorem of Chapter III which implies continuity of the

influence functions when the controls are discontinuous as the trajectory

joins a singular surface.

The objective of this chapter is to .:haracterize the solutions to

a NZSDC pursuit-evasion problem; therefore solutions will be completed

only to the extent necessary to illustrate the solution behavior.
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Problem PF,.i.itcon

The dyiamic model for this problem consists of two vehicles moving

in a plane. The equations governing the motion for each vehicle in a

vertical pl•ne are

x - V coo Y

y - V sin Y (5,1)

V - (T-D)Im - g sin y

y - L/m V

where x and y are spatial coordinates in the plane of motion, V is the

speed, y the flight path inclination w.r.t. the x axis, T the thrust, and

sm the mass. The aezodynamic forces are defined by the drag and lift

equations D - 1/2 P V2 S CD and L - 1/2 p V2 S C .

If the induced drag due to lift is small compared to the total drag,

it is possible to approximate the drag D by assuming zero induced drag

due to lift. This approximation is especially appropriate when the

vehicle speed is great and the acceleration in the lift vector direction

is limited because of structural or pilot considerations. To show this,

define the load factor n as the ratio of lift force tagnitude to vehicle

weight,

L
n - W (5.2)

For a vehicle with a load factor limit n the maximum lift coefficient

CL is dependent upon the vehicle speed according to the equation
max

CL - n mg -K (H S, p, S, n X) (5.3)La maxma(.)
7/2 p V

2 S V2
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AAaaim1-g nsax, m, S, p, and S constant for a given flight regime, CL.

is Inversely proportional to the square of the speed. Assums that the

total dzalt coeffi'nient can be represented by the drag polar equation

where C D is the zero lift drag coefficient. Then CD is also a
0 max

function of vehicle speed

For a typical supersonic fighter aircraft a graph of CDvs. Mach
0

*number is depicted in Fig. 7 which shows that C D approaches an
0

;:asymsptotic value at speeds above M - 2.5. For the same aircraft Fig. 8

shows typical graphs of CL and C, vs. V. At V o2700 ft/sec. the
max max

.04

.03

.02

1 21

Fig, 7. CD vs, M for a Typical Supersoric Fighter
a
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Fig. S. CL and CD vs. V for a Typical Supersonic 'ighter
saxc max
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maxim= induced drag factor kC 2 is less than 52 of the zero lift

kL
max

drag coefficient CD Thus at high speeds the induced drag due to0

lift can be neglected without significantly affecting the dynamic model,

Using the load factor n as a control variable and neglecting the

induced drag factor kCL
2

, the equations of mot.on for a vertical plane

become

x - V coo y

y - V sin y
(5.6)

!- T/ - 1/2 p-V2S CD - (g sin y)
2 0

V

where the control variable n is constrained according to the inequality

In n ax (5.7)

Since gravity affects both vehicles almost equally, gravitational

effects will be neglected. If desired, after the control laws are

determined gravity can be replaced in the problem and the trajectories

computed to give approximate equilibrium trajectories in the presence

of gravity [25]., Considering two vehicles, a pursuer p and evader e

the state equations are (neglecting gravitational effects in the V equations)

%P - Vp cos yP

yP -V sinY

VP . TP/mp Dp VP2 CD p (5.8)

! ;! -P " Pg/vP
.e- .e cos Ye
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ye e sin O

where Dp *1/2 p s/ap and De - 1/2 p Se'/e

The controls np and n are constrained according to the inequalities

_. n~ - maPx MAl< eX (5.9)

Fig. 9 shove the coordinates of the two players as well as the

"angle-off" angle e and the range R between the vehicles. The range R

and angle off e are defined by the equations

R - (xe - xP) 2 + (ye - yp)211/
2  (5.10)

y 
Ve

Evader •y

(.e, ye)

R

Yr Pursuer

(xP, yP)

Fig. 9. Inertial Position and Velocity of the Evader
and Pursuer
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- - tan 1- - P

The problem in to find the equilibrium controls np and ne

for the terminal cost functions

3; p + p Ix (t/), if]

is (5.12)

SsIbjact to the state equations Eq (5.8) and the termination criteria

constraint

S*[x (tf ), t f] T - t f - 0 (5.13)

"T is a fixed number. To make this problem a NZSDG problem we require

p -j (5.14).

Necessary Conditions

Recall from Chapter II the two different formulations of the

equilibrium solution necessary conditions - the JIB partial differential

equations Eq (2.14) and the generalized Euler-Lagrange equations Eq (2.20).

For this problem the IJB equations are

wt -min He a .p, • (5.15)
na

where the boundary conditions for Eq (5.15) are

w - *e (x (tf), tf] (5.16)

The Hamiltonian functions are

He - X VP cos V + X P sin yP + AVP (TP/mp - D vp2 CD 0) +

X eyp nPg/Vp
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"+ A Ve Cos Ye + ISye V• sin Y e + Xave (Te/le - Deve
2 CD p)

+ :sYe neg/ve (5.17)

where W x replaces As where Hs is used in Eq (5.15).

The equilibrium controls n* and ne* are found from the minimization

in Eq (5.15), to be

nP* - n WPxp (5.18)

_Eqs

n .ie* . - neamax Sn We e (5.19)

Eqs (b.18) and (5.19) hold except where WPyp - 0 and/or Weye - 0 on

a nonzero time interval. In the latter case the possibility of a singular

solution exists and must be checked.

The HJB equations Eq (5.15) are the most general form of the

necessary conditions; however, solutions to the HJB equations have not

been found for this problem so that we are forced to use the more

restrictive Euler-Lagrange equations which for this problem consist of

"the state equation Eq (5.8) and the following influence function equations:

is 0
-- •xyP " 0

if - 0

iSvp - -Sxp cot yP - XSyp sin yP + 2 AeVp VP Dp CDoP + As p pp*/VP2

YVP sin yP Vp p (5.20)snpy x VZ p cosy

s Txe .0y

is ye - 0 •

iSve _ Xxe csYe _ Xsye sin ye + 2XSvea V• D e C Doe + X8Yea g n e*/ ve2
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is 7 t A Axe V, sin - Aye V Cos Y

where a is replaced by either p or e.

The minimizing equilibrium controls np* and ne* are obtained from

Eqs (5.18) and (5.19) where WPyp and Weye are replaced by XPyp and X eye

respectively on an equilibriue trajectory,

up* - .nPmax sgn Ap (5.21)

n - - nemax sgn aeye (5.22)

lWhen APyp and/or Ae.e are identically zero on a nonzero time interval

the possibility of a singular solution must be investigated as in Chapter II.

The tvansversality conditions for the influence function equations

Eq (5.20) are

I P (t f) - OPx Ix ( tf ), t f]

A.e (tf) - #ex [x (tf), tf] (5.23)

Singular Controls

A detailed study of intermediate singular arcs is beyond the

scope of this dissertation hence we will consider only the important

class of singular surfaces which intersect the terminal manifold.

(In problems with realistic initial conditions the intermediate singular

arcs are not likely to occur).

Eqs (5.21) and (5.22) indicate that the controls nP* and n a*re on

their respective constraint boundaries except possibly on singular surfaces

on which

Ap
9
P - 0 and/or Ae - 0 (5.24)
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To characterize the control laws on these singular surfaces, the

necessary conditions for singular controls are employed. The

resulting control laws are

n p* = 0 (5.25)

for the pursuer's singular surface and

ne* - 0 (5.26)

for the evader's singular surface. Appendix D contains the

analysis leading to Eqs (5.25) and (5.26).

The control sequence for the pursuer is comprised of control

segments from the set ( -np 0, +nP.a). Similarly, the control Smax, mx

sequence for the evader is comprised of segments from the set (-n ax.
e

0, +n max)*

Influence Function Continuity on a Singular Surface

We now show that this problem satisfies the requirements of the

theorem in Chapter III for a certain class of cost functions, which implies

continuity of the influence functions on the singular surfaces.

Conditions i. of the theorem is satisfied which can be verified by

examining the state equation Eq (107). By letting Us be the control and

defining

ns - namax Us s , p, L (5.27)

1u01 < 1 (5.28)

we see that condition ii. is satisfied.
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Condition iii. is satisfied since on either side o: a singular

surface, all controls are constant, and we will make the reasonable

assumption that the neightbvrhood under consideration contains no

control switchip; surface except the singular surface. Condition v.

is satisfied by inspection of the state equation Eq (5.8). Only condition

iv. remains to be shown. Assume p has a singular control. Letting "i"

in the theorem be replaced by "p" we must have from Eq (3.15)

we . 0 (5.29)
yp

on p's surface. Since singular trajectories proceed along the surface

itself, we will replace aeY with eYp For every trajectory in p's

singular surface we thus require

Xey = 0 (5.30)

The condition in Eq (5.30) can be met at the terminal surface provided

Sthe transversality condition for Xey (t f) is identically zero

, - (,e/,YP) = 0

The condition in Eq (5.30) can be maintained on trajectories in the

singular surface provided

•e (t) = 0 (5.32)

on the surface. Eq (5.20) and Eq (5.32) imply that on trajectories in

p's terminal singular surface

tan YP - *Yp/,exp _ e (t f)/ex p (tf) (5.33)

In Eq (5.33) tan yP, which is a constant on p's singular surface, is

specified in terms of e's influence functions. From the transversality

conditions tan YP(tf) - (APyp/APxp) so that on p's terminal singular
t=tf
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surface the equality

, e yp . e XP .( .XP y Apl XPP

St-tf 45.34)

must hold. If Eqs (5.29) through (5.34) hold on p's singular surface,

then condition iv. of the theorem in Chapter III is met and we conclude

that player e's i-Lluence functions are continuous on p's aingular

surface. A -vmnetric argument holds for e's singular surface.

Range and Angle-Off Cost Functions

A class of cost functions for which Eqs (5.29) - (5.34) holds is

S- [aR + (l-a) e2 ] t-tf a C [0, 1] (5.35)

J- - [-bR - (l-b) 02]t-tf b c [0, 1]

IR and 0 are defined in Eqs (5.10) and (5.11). To make the problem a

NZSDG problem it is only necessary to choose a 0 b in Eq (5.35). (If

a - b the game is equivalent to a zero sum differential game.) The cost

functions in Eq (5.35) are important in the formulation of pursuit-evasion

problems since both the terminal range and the terminal angle-off are

significant parameters.

We will now characterize the singular surface for the pursuer, and

Eqs (5.30) and (5.32) w1ll be shown to hold for p's singular surface which

intersectsthe terminal manifold. In order to have a singular surface

for p which intersects the terminal manifold, from Eqs (5.28) and (5.31)

we require

... P (tf) - 0 (5.36)
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and

taa yP (tf) (APyp/pxp) (5.37)

so that from Eqs (5.35) and (5.36)

(tf) - [2 (l-*) 0 (-1)J - 0 (5.38)

which implies (for a J 1)

Se (tif) 0 (5.39) -•

Eq (5.39) implies that the pursuer has his velocity vector on the line

of sight to the evader at the final time. This can also be seen from

Eq (5.37) which when evaluated becomes

tan yP (tf) -[(apayp)(ap/axP)5f t-t (5.40)

S[(ye - yp)/( ,e - xP)Jt -tf

Eq (5.40) implies that at tf the flight path angle yP corresponds with

the line of sight angle. Thus, the singular trajectory for the pursuer

is a straight line whose direction coincides with the pursuer's velocity

vector at t Fig.10 depicts the situation in which a trajectory for the

pursuer contains a terminal singular arc.

Next we wish to show that Eqs (5.30) and (5.32) hold for the cost

functions in Eq (5.35), which means that when the pursuer is on his

singular surface condition iv. of the theorem in Chapter III is sMtlified

implying continuity of e's influence functions. Eq (5.30) for this

probl*m becomes

A , (tf f [-2 (1-b) 0 f (5.41)

-- • (5.41
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Nee

.• 
(xey

t f

Evader

(x--, 
yP) t

Pursuer

Fig. 10. Singular Terminal Trajectory for the Pursuer

and from Eq (5.39) we conclude

Aeyp (tf) -C

To show Eq (5.32) is true, we have from the transversality conditions
. . .( yp/xe xp)t-t£ f - [(,e -yP)/(xe-xP)]t.tf . tan yP (t f) (5.42)

By substituting from Eq (5.42) into the equation for isyp Eq (5.20) we

see that iUp is zero on p's singular surface. Thus Eqs (5.30) and

"(5.32) are satisfied on p's singular surface implying continuity of a's

influence functions.

Similar arguments hold for the evaders' singular surface. A

situation in which only the evader has a singular terminal arc is depicted

in Fig. 11. Fig. 12 depicts a situation in which the singular surfaces

of both the pursuer and evader intersect resuling in a tail-chase situation.
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a• xeye) t' • fe

Evader

\ Pursuer

Fig. 11. Singular Terminal Trajectory for the Evader

ex e)S (xe, ye)t£ f

--P y ) Evader
(xP , s .

Pursuer

Fig. 12. Typical Singular Trajectory for both Pursuer and Evader
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Open and Closed-Loop Control Laws

The control laws in Eqs (5.20), (5.22), and (5.23) are open-loop

lams since they require the solution of a two point boundary value

problem to obtain them. If, however, the singular surface., and all other

switching surfaces in the problem are known, then closed-loop control

lawa can te implemented simply by identifying on which side of a particular

switching surface the state is located.

In the class of problems considered in this dissertation, the influence

function equations are identical for both the open-loop and closed-loop

control laws; therefore, closed-loop control laws are theoretically

obtainable by solving the open-loop problem at each instanr of time along

a trajectory using the instantaneous state as A new intial condition for

the solution of the TPBVP. This method results in the "open-loop

feedback" control law which for the class of problems in this dissertation

is the same as the closed-loop control law.

Cost Functions Special Cases

For the range and angle-off cost functions of Eq (5.35) we have the

following limiting cases

(a) a - 1 Pursuer considers only final range

(b) a - 0 Pursuer considers only angle-uff

(c) b - I Evader considers only final range

(d) b - 0 Evader considers only final angle-off

Interesting cases result from (a) and (d) and (b) and (c), and

serve to illustrate applications of the NZSDG theory to pursuit-evasion

games.

Case I. (a - 1, b - 0)

This case occurs when the pursuer's goal is to mini~mize the relative
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anewhile the evader's goal is out-turning the pursuer. The cost

functions of Eq (5.35) become

J -6 (tif)

The 6 angles of interest are - w 6 w. To solve a given initial

value probltm using the cost functions, state equations and influence

function equatfons in Eqs (5.43), (5.8) and (5.20), a TPBVP must be

olIved. The alternative. is to examsine the backward solutions from the

irzminal surface for clues to the solutiuns' behavior. The latter approach

will be followed for this problem.

Transversality conditions yield the terminal values for the

influence functions

Xp (tf) . (xe~xp)I/R)t

XP y (t f) _ (yey yP)IR] -

~vP f

,ýPvp (ti) - 0

Xp~e (td) - - kpXi (tf)

A",,e (tf) - Ap Yp (t f)

AX e (td) - 0

XP, e (tf ) - 0-e(r./ 2

-,X (t F 

-

- y~ ) R2I -

A. ~ eeY7
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yp (tf) - [2 6 (x.-xp)IR
2

AeVp (tf) - o

XeYp (tf) - (2O)t.t 
(5.44)

f

le xe (t f) . e Xe tfm (e XP (tf

A.(t,)- A (rf)

"yi yp f

e4 (tf) - 0

Xe (tf) - 0

The open-loop equilib"ium controls for this problem are given by Eqs

(5.21) and (5.22)

np*- - npx sgn Xp (5,21)

ne* ye- ne sgnAX (5.22)

except when the arguments XPyp and/or Ae e are identically zero for
Y

a nonzero time inrerval.

By examining these control equations, the control laws -n a region

near the terminal surface can be characterized. Examining the purnuer's

control first, from Eqs t5.21) and (5.44) we find that at tf, np* is

undefined since X (tf) 0 0. We thus require the derivative ý (tf)

to determine nP* (t) where t - is the time an instant before reaching
ff

the terminal surface,

np* (t') - Pmax sgn [XPyp (tf) ] (5.45)
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-. up2  aga (Apxp V .sin V cosPtt

i i s gn [ sin e (tf)1
maxf

Eq (5.45) implies that the pursuer's control in a neighborhood of the

"terminal surface is determined by the line of sight angle 0. At tf

the pursuer employs his control so as to rotate his velocity vector

toward the line of sight. We now show that this situation holds fcr a

larger region and not just at tf.

in Eq (5.45) 1Pyp can be expressed as

kPyp VP sin (YPf + ef YP) (5.46)

where

YPf -y P (tf) Of = (tf)

Since Xp~P (tf; - 0, )Pp is opposite in sign to P (tf) for a period

of lime before reaching the terminal surface. If VP remains nearly

constant !PYp is nearly periodic, hence this period of time [tf-tIl is

"determined approximately by setting

t f !pyp dt - 0 (5.47)
t1

and solving for t . Fig. 13 illtstrates typical uehavior of Y.Pp vs.

YP in the interval ft,, tf].

A similar analysis for the ev.,ders control ne* results in equations

analogous to Eqs (5.45) and (5.46),

n e* (t f n m5,. sgn [2efVef cos (yPf + O Z e)] (_ Y8)

Sf

Eq (5.48) implies that the evader's control in a neighborhood of the
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ApYP

I-

-2.0 -1.5 -1.0 -.5.5

-4000

-8000

Fig. 13. Typical Behavior of IPwp vs< Tp

terminal surface is determined by the line of sight engle 0 and

the flight path angles of both playets yP and Y . The evader employs

his control law so as to rotate the line of sight away from the velocity

vector of the pursuer. We now show that this situation also holds in a

larger region.

e ee Lan be expressed as

-e e 2 fV cos (YPf + 0 f _ ) (5.49)

Rf

Since Ae Y (tIf) O , Aewe is opposite In sign from 1 eYe (tf) for a

period of time before reaching the terminal surface. As in Eq (5.47) this

period of time It 2 , tf I is determined approximately, provided Ve is nearly

constant, by integrating

70



DSlNC/71-3

f tf cos (yPf + 0 - ye) dt - 0 (5.50)

t 2

and solving for t 2 "

Fig. 14 illustrates typical behavior of Aye vs. ye backwards

from the terminal surface. As long as A8ye has the same sign, the control

_ n is constant. The trajectories for p and a associated with Figs. 13

and 14 are shown in Fig. 15. For this problen the singular solutions

appear to be pathological since the evader's cost function is defined

so as to avoid the tail chase situation or the pursuer singular arc

where 0 (tf) is zero. Therefore, we may conclude that the important

control laws in this special case are those closed-loop laws where the

pursuer employs his control to force the angle-off angle 0 to zero and

the evader employs his control to force the angle 0 away from zero

(hopefully to w radians.)

ye Ye

2.0 -1.5 -1.0 -.5.5

-. 4

-.8

-I..

Fig. 14. Typical Behavior o e vs. e
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5000

Evader

4000

2000

Pursuer

x
-8000 0

-2000

Fig. 15. Typical Trajectories for the Special Case
a - 1, b - 0

Case II. (a - 0, b - 1)

In this case the pursuer considers only the final angle-off angle

e (tf) and the evader considers only the final range R (tf). The cost

functions Eq (5.35) become

-P 8 62 (tf) (5 51)

Je --R (tf)

Again we will examine the backward trajectories to deduce the behavior

of the solutions.

Tranoversality conditions yield the terminal values for tha influence

functions

-- ( tf ) [ 2 0 (y -y ) / 
2 t -t f
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A•Pyp (tf) - [ -2 6(xe-xP)/R2 -

A vP(if) - 0

A •p (tf) -- 2 (tf)

A 0x (tf) - - XP (tf)

APye (if) - 0 €[

lP e (t) - 0(.2

A ye (t) - 0(e--

x~p (t f)0

S(5.52)e

A ep (tf) - [(xe-xP)/Rlt.tf

Ayp (tf) - [(ye(-yP)IRlt~ t

9 fl

i ll 'vp (tf ) l - 0ep(f

Ae (tf) - 0

ka. e Ct,) - 0

The open loop equilibrium controls for this problem are tae same as

Eqs (5.21) a~o (5.22, except for *he possibility of singular controls.

From the requirements for a pursuer terainrl singular trajectory

fnl= - (5.53)
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and

XP - 0 (5.54)

which in turn implies from Eq (5.52) that

8 (tf) - 0 (5.55)

Eq (5.55) implies that the pursuers' velocity vector is on the line of

sight to the evader at tf. The evaders' singular arc is characterized by

n . 0 (5.56)

and

xee 0 (5.57)

We have already shown that the evader's velocity vector must also

lie on the line of sight between pursuer and evader at tf in order for a

to be-on a terminal singular arc. We therefore conclude that the singular

trajectories for this special case havi the same general character as

those in Figs. 10, 11, and 12.

Two special cases of the cost functions in Eq (5.35) have been

examined. In Case I where the pursuer considers final range only and the

evader considers final angle-off only it is fouud that the singular surfaceb

play an insignificant role in the problem eolution due to the fact that

the evader's goal avoids the situation where the final angle-off becomes

zero. On the other band, in Case II where tht oursuer considers only

final angle-off and the evader considers only final range, the sin3ular

surfaces appear and do have a significant role in the solutions.

The problem of this chapter illustrates that NZSDG theory can

be used to model a pursuit-evasion combat situation in which the goals
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of the players are not posed as being diametrically opposite as In
zero am games. The solutions are optimal for each player in the

sense of equilibrium optimallty.
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VI. Conclusions

In this dissertation the theory of Nonzero Sum Differential Games

is extended so that the theory can be applied to some combat problems

between two or more combatants. Useful transversality conditions are

derived in Appendix C to augment the existing theory presented in

Chapter It.

A major difficulty in solving NZSDG problems is that in the equili-

brium solution the partial derivatives of the value functions and the

influence functions can be discontinuous on switching surfaces where the

controls are discontinuous. However, for a certain class of NZSDG in

which the state equation is nonlinear with the controls bounded and

appearing linearly, the partial derivatives of the value functions, and

the influence functions are continuous across the switching surfaces.

In Chapter III this class of problems is presented and a theorem to

test the continuity of the influence functions on singular surfaces is

derived. This is a significant result since the continuity of the

influence functions makes the equilibrium solution much easier to obtain.

Chapter IV presents two Intercept problems in a plane between first

two then three combatants. The problems are posed as NZSDG's in which

the players are first one then two defenders whose goal is to intercept

the attacking player in minimum time. The attacking player's goal is

minimization of his range to a fixed position tirget before intercert

occurs. The problem is shown to satisfy the influence function continuity

theorem of Chapter III. The solutions ace characterized by each player

making a hard turn to a particular heading then making a straight dash

on that heading until intercept occurs. When the initial turns are

neglected, totally singular solutions result which can be easily obtained
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numerically. An algorithm is presented which solves the totally

singular problems.

Chapter V presents a pursuit-evasion problem of two aircraft in

which the goals oi the players are not diametrically opposed. The

coat functions of each player are different (but not opposite) functions

of the final range and angle-off. This problem is also shown to

satiofy the influence function continuity theorem of Chapter III. The

solutions to this problem ara characterized by trajectories which

consist of hard turns and straight dashes. Two special cases are

discussed in which first the pursuer considers only final range and

the evader considers only final angle-off. In this case the singular

arc (straight dash) appears to have no 3ignificant role in solutions

due to the nature of the evader's cost function. In the second special

case the pursuer considers only final angle-off while the evader con-

siders only final range. The usual iard turns and straight dashes for

both players appear in solutions for this case.

The results of this dissertation are significant because the use

of a NZSDG formulation to model combat situations results in a more

ganeral probl,•m in which the goals of the players are not required to be

diametrically opposite as in zero sum differential games. This means

that c.nflict situations can be modeled with more flexibility and realism

to reflect the actual goals of the opponents.

Hany problems involving the complex aircraft in today's Air Force

inventory can be adequttely modeled -.ing the class of problems presented

t.n Chapter III and investigated in this dissertation. The state equation

of Chapter III, although linear in the control variables, often serves

as a close approximation to the state equation with nonlinear control
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variables, and yields solutions which are close approximations of the

nonlinear solution. For this reason,the combat models whlch fit the

class of problems investigated give a basic insight into the nature of

solutions involving the more complex models with nonlinear control

variables in their state equation.

The author intends to investigate the extent to which the models

of aerodynamic vehicles can be linearized in Lhe control variables

so that results of this dissertation may be applied. In addition, it

is the author's intent to investigate the possibility of extending

the class of problems studied in this dissertation to include the fully

nonlinear models of aerodynamic vehicles.
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Appendix A

Cost Functions

The selection of meaningful cost functions is one of the most

important details in formulating any differential game, for these cost

functions influence the control strategies, the trajectory, and the

outcome of the game. Quantities to be weighted in a cost function are

generally either point functions such as terminal miss distance or path

functions which require accummulation by integration along a trajectory.

The following sections describe some meaningful cost functions for a

NZSDG.

Terminal Miss Distance

If player i's goal is to minimize the difference between his state

(or components thereof) and player J 's state at the termination of the

game, his choice of cost functions can be

ii .I x(tf) - xJ(tf) JJQi (A.1)

where xi and xJ are the state components of the ith and jth players

respectively; c is a positive semi-definite weighting matrix used to

weight the state components of interest.

Minimum Time

If the goal of player i is to minimize the time to game termination

his choice of cost functions is either

ji - tf (A.2)

or tf
Ji . f dt (A.3)

t

0
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where tf is the smallest time sULh that the termination criteria is

satisfied.

Minimum Control Effort (minimum fuel)

Player i's goal of game termination with the least control effort

is reflected in the integral cost function

i f 1 Ui i i dt (A.4)
to u (t)

where PiFIs a positive semi-definite weighting matrix function.

Minimum Energy

Player i's goal of game termination with the least expenditure of

energy is reflected in the cost function

Sf 2E(t) dt (A.5)

where Pi E is a positive semi-definite weighting matrix function. It

should be emphasized that caution and judgment must be used whenever a

combination of various goals are included in the same cost function.

The goal of minimizing time as in Eq (A.2) and the goal of minimizing

fuel or energy as in Eqs., (A.4) and (A.5) are directly conflicting, for

generally, minimizing time requires maximum effort. An example of this

situation is the cost function

-- . a tf + (1-a) • Ii U 11(t) dt (A.6)

where O< a < 1.

Since both goals cannot be met simultaneously, the choice of the

weighting parameter a becomes a matter of judgment based on knowledge

of the problem.
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Appendix B

Formal Derivation of the Influence Function Equations From the

HJB Equations.

This appendix presents the author's formal derivation of influence

function equations Eq (2.20) from the generalized HIB equations

Eq (2.18). The derivation is a generalization of Dreyfus's work in

Ref (10). Assume a normal problem. The HJB equations written in the

form of Eq (2.14) are

wit - - mi 1W[ x f (x, t, U) + Li U)] i 1, NU • f t ( x , t , =~ • - 1 , •

(B.1)

where

U-( u .= (U . A.u) (B.2,

Assume Ui is bounded according to the equation

K (Ui) < 0 (B.3)

If the partial derivatives Wit and Wix are known for a particular

point (x, t), then theoretically the equilibrium controls U* can be

determined from Eq (B.1) in terms of x and t. If the equations for

Ox and wit are known, then equilibrium trajectories can be con-

structed forward in time from the point (x, t), the controls being

determined from the known values of Wix, Wit, x and t in Eq (B.1).

Proceeding formally, the equation for *ix will be obtained. *ix can

be expressed as

X= Wxxký + Wixt i =1., .... ,.N (B.4)

- Wixx f + Wixt
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Assume that the equilibrium control vector U* is known in the form

Ut - u* (x, t) (B.5)

Then Eq (3.f) can be written

Wit - -Wix f (x, t, U*) - Li (x, t, U*) i - 1, .... N (B.6)

Taking a partiel derivative w.r.t. x of both sides in Eq (B.6) yields

WIix - -W. f - W.x (f. + fu* U'x) - (Lix + LiU* Ut1 ) (B.7)

Assuming Wr1 t - Witx and substituting for Wixt Into Eq (B.4) from

Eq (B.7) results in the equation

ii (Wix fx +Lix) (Wi f Ut+ LiUt ) Ut xi 1,.. N
(B.8)

or

•x (" - (x fx + Lix -X) • (wix fuj* + LIuj*) Ujx* (B.9)
x - if. ,..Ei

Suppore that Ui is interior to its constraint region defined in Eq

(3.3); then the minimizing Ui in Eq (B.1) satisfies the equation

Wix fui + Liui*tmO (3.10)

Substituting from Eq (B.10) into Eq (B.9) gives the equation for W x

N
. .Wi - (Wix f1 + Lix) - E (W. fUJ, + LiuJ*) Ui* (B.11)-- J-1 x

ji,
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Defining

Hi - Li + Wx f (B.12)

and on an equilibrium trajectory defining

Ai _= s x (B.13)

Eq (B.11) becomes Eq (2.20) of Chapter iI, the influence function
N

equations, Hi = - eix - J-l HiUj* uJ* i - 1, .... N (B.14)

joi

Suppuse now that Ui is on the boundary of its constraint region defined
in Eq (B.3), then iL. can be argued as in Ref (10] that U14 - 0.

Substituting Uix - 0 into Eq (B.9) and noting that the other controls

may not be on their constraint region boundaries so that •x(j 0 i)

is not necessarily zero, Eqs (B.11) and (B.14) are again obtained.

Thus, the influence function differential equation holds whether or

not Ui* is interior to its constraint region.

The same general procedure as above may be used to show that on an

equilibrium trajectory the equation for Wit is -

Wit = -Hi*t - Hi*u* U*t (B.15)

If the state equation Eq (2.1) is autonomous then Eq (B.15) reduces to

it -0 i - I1 N.....N (.16)
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Appendix C

Influence Function Tranesversality Conditions{I, Three generally used forms of the transversality conditions are

presented in this appendix: the Dreyfus form [10], the Isaacs form [17],

and the Berkovitz form f5]. The generalization of the first two forum

to a NZSDG is due to the author while the third form is due to Sarma

[31]. Since all the forms are in comson use it was felt that each

form should be presented, and the use of any one form is a matter of

preference and convenience. Throughout the dissertation, however, only

the Dreyfus form is used.

For each form we assume an n-dimensional terminal manifold in the

space of x and t. For the Dreyfus and Isaacs form the terminal manifold

is described by the scalar equation

T [ x (tf), tf] =0 (2.3)

In Eq (2.3) tf is the smallest time t such that the equation is satis-

fied. If the final time is fixed, then Eq (2.3) is usually written

TyT-t f0

where T is a fixed number.

Occasionally Eq (2.3) does not describe the terminal conditions;

for example, the terminal condition may be the state reaching a single

point (e.g., the origin). In this case a n-dimensional sphere of

radius 6 with the point at the center may be employed as an n-dimen-

sional terminal surface then a limit taken ( 6 * 0 ) to determine

the transversality conditions [27]. In the case of more than one* I
scalar equation describing the terminal surface it is generally necessary

to employ a Lagrange Multiplier technique such as found in reference [10].
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* Dreyfus Form

This form assumes a NZSDC with terminal cost functions, i.e.

Li - 0 in Eq (2.4); so we have

3 I - [x(tf), tfl (c.1)

This assumption is not overly restrictive since every problem with a

cost function containing an integral can be easily converted to an

equivalent terminal cost problem [17]. To construct the equivalent

terminal cost problem assume only the ith player has an integral cost

function; define another state component xn+1 such that x x( x, +)

and
=.l Li Xn+l (to) -0(C.2)

Then the cost function in the equivalent problem is

. [ x (tif), tf] + xn+l(tf) = [ (ti), if] (C.3)

We now proceed with the derivation of the Dreyfus form of the transver-

sality conditions.

Suppose the state equation is written

x - f ( x, t, Us) X(to) - x0 (c.4)

Consider a point x(t) - xf, t - tf, such that (xf, tf) lie on the

_* terminal manifold; that is

T' (Xe t f) - 0 (C.5)

Now consider a variation, 6xf on the terminal manifold. The change in

"the i th cost is

• xf8x + (C.6)
U i6x f6x f 4(tf) Atf(C6

f

where Atf is the variation in terminal time induced by the variation
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ENV The notation AZ.f is used to distinguish tUe :.h& ndat ria•lion

Sf from the induced variation Atf. i ai* Che total time ,V',vt!:.

of *. Similarly,

ay- T.fe + Y (ti) Atf ( 7

In order for the equation

v (xf+ xf, tf+ tf 0 (C.8)

to hold to first order,

-s , 0 (C.9)

Solving formally in (C.7) for atf we have (assuming -1 0

at -f (t f) 6x f(C.0)

The influence function A1 (t) can be regarded as the sensitivity coeffi-

cient of the cost J to a change in the state x at time t [10], so

that at tf

A I (tf) 611 / axf (C.ll)

So, from Eqs (C.6) and (C.11) the equation for the influence function

variables at the terminal time is

A I (t f) - [ f ix -( *i / ; )T. it., f. .I 1 (C.12) '.

This equation may also be written in the form

AI (t f) = [ 0x - ( €tx f + #1t ) / ( T. I + Tt ) x t-tf (C.13)

Since f [ x, t, U* (x, {xA), t) ] depends on the set (xi) generally

in a nonlinear way, the equations in Eqs (C.12) and (C.13) are a set

of N coupled nonlinear vector equations in the N unknown vectors xi (tf).

Isaacs Form

This form of the transversality conditions is a direct extension
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of the zero sum differential Same transversality conditions in reference

(17). There are no restrictions on the form of the cost functions in

this method so that cost functions of the form in Eq (2.4) are asemed,

[xi d. ti x f) f] + • i[.(t), t, U] dt i - 1, m. . (2.4)

t
0

The terminal manifold is described by Eq (2.3). Since many readers

are familiar with Isaacs' notation we will borrow notation from Ref.

117],

Let the terminal manifold be parai.~terized by the equations

xi(tf) - h(sl,8s 2 , . •., sn) i 1, . n+l (C.14)

where we have let

xn+l - t

a .- (al 1's2' .. .8n)

(c.l5)
2(hl h2' n+l

x - (x, t)

i tOn the terminal surface, the value V of the ith player equals the

terminal portion of the ith cost function,

W i(tf) - 1[x(tf), tf] - + (s) (C.16)

If vector derivatives of both sides in Eq (C.16) are taken w.r.t. a we

:•- have
SW- is 

i - 1, N (C.17)

or equivalently, since 8 - h. on the terminal surface

"f is. W ha i " 1 •, N (C.18)

In component notation, Eq (C.18) can be written

92

i- -a , = " " -• ; • = =. .



DS/HC/71-3

I n+l
k E W h k- 1,. n (C.19)

'k i-i xj Skii .
J-1, 'J k

Eq (C.19) reduces to Isaacs' form (17] if X is set equal to 1, and f

and L' are autonomous (naking Wit . W1  . 0).
xn+l

Eq (C.19) provideo nN equations in the (n*+)N unknowns Wi x(tf),

i - 1, . ,-., N; j = 1, . .. , n+l. N additional equations are required

to solve the system of equations, and fortunately, they are available.

From the ITB equations Eq (2.18) we have

wit .- f +L) i - i, . N (2.18)St -

where the equilibrium controls have been substituted into f and L

i
To cast Eq (2.18) into the notation of this Appendix, note that W in

Eq (2.18) is identical to Wi

W it =wi (C.20)t Xn+1l

Let f be the augmented vector

Then Eq (2.18) can be written

Wi_- + L' - 0 i - 1. N (C.22)
x

"•valuating Eq (C.22) on the terminal manifold by substituting the

parameters (Vl, 2. . .. sn) provides the N additional equations

necessary to solve for the wix (t f). Eqs (C.19) and (C.22) are a set

of (n+l)N nonlinear equations in the (n+l)N variables Wix (tf). Recalling

the equivalence of X' and W1x on an equilibrium trajectory, we see that

the solution of Eqs (C.18) and (C.22) gives us the values of A (.f) and
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also the values of W t (tf). Caution must be used in the solution

since multiple solutions can occur corresponding to termination on

different sides of the terminal manitold. In such cases the physical

situation dictates which solution is to be used.

Sarma - Berkovitz Form

A form of the transversality conditions which closely resembles

1ssacs' has been obtained by Sarma (31] by generalizing the zero sum

differential game results of Berkovitz (6]. A few notational changes

are required to present the results. In addition, Sarma has a more

general form of terminal surface consisting of the union of a finite

number of n-dimensional class C1 manifolds. The terminal surface T

is defined by the equation

a
T S U T (C.23)

J-1

where each T is an n-dimenaional C surface. Each T is parameterized

by the equations

SI" tf Tj (a)
if (c.24)

xf Xj (a)

where the parameter a is

a =- (a l' 02 ... O an) (C.25)

The tranaversality equations are

at i /ao + a3T i PCo - A axIaou 0 (c.26)
m i

where the index j refers to the specific Tj on which Eq (C.26) is

evaluated. Eq (C.26) together with the HUB equations,
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(W f + L ) i 1, . . N (2.18)

evaluated on the terminal surface are sufficient to solve for the

unknown A i and WIt on the terminal surface. (Again recall the

equivalence of Ai and Wix on an equilihrium trajectory)
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Appendix D

Control Laws on Universal Surfaces

In this appendix the control laws on singular surfaces are derived

for the problem in Chapter V. Similar results hold for the problem

of Chapter IV. The derivation is based on the necessary condition

for singular controls found in Eqs (2.28) - (2.30) repeated here for

reference,

""0 H i U 0 (2.28)
U IU U

Hi -H = 0 (2.29)

j ji

Sk 3laui d2k dt
2k 

H iU -> 0 (2.30)

SApplying these equations, ve consider the posetblity of a singular

pursuer control (a similar argument holds for a singular evader control).

The first necessary condition is from Eq (2.28),

X Yp -0 (D.1)

Similarly, all time derivatives of Pp are zero, so that

ip -A 'p . .... 0 (D.2)

From the influence function equations Eq (5.20), the equation for AP' is

-"PP " p pPy sin Yp - XP p cos Y (D.3)

so that from Eqs (D.2) and (D.3)

A•.P sin (p -' Pyp cos ' - 0 (D.4)

or

tan f . Xyp / Apxp
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Taking a time derivative of both sides of Eq (D.3) and aubstituting

for XP iy vP and yP from Eqs (5.8) and (5.20) we obtain thefo 'xP' )yP'

equatteun for XPp

"1P - nP g (vP PP cos Yp+ VP APyp sin yP) . 0

Vp (D. 5)

From Eq (P.5) there are three possibilities

(a) Ap Xp Cos YP + sin yP 0

or

(b) np - 0

or

(c) both (a) and (b)

It is easy to establish that (a) Is not possible for from (a)

tin yP - - APyP /PxP

which is a contradiction to Eq (D.4). (b) is the only remaining

possibility so that on a singular surface for the pursuer the equilibrium

Control candidate np* is

np -* 0 (D.6)

A similar result holds for the evader's singular control if it occurs,

ne* - 0 (D.7)

Application of the necessary condition Eq (2.30) for a singular control

for the pursuer results in the requirement

P cOS yC P + Pyp sin yP < 0 (D.8)

Eq (D.8) must be satisfied on the pursuer's singular surface. Similarly
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for an evader singular control, the inequality

exe cos e + 1eye sin e <- 0 (D.9)

must hold on the evader's singular surface. It is easily verified

that Eqs (D.8) and (D.9) are satisfied with strict inequality on

terminal singular trajectories for the pursuer and evader respectively.
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Appendix E

Transversality Condition, for the Three Player Problem

In this appendix the vector equation for the transversality

conditions in the three player problems of Chapter V is expanded into

component form. From Eq (2.25) the tranaversality condition ise

A- (ti) - C • /* - (ae/*) s s-a, c, d (E.1)
f t-tf

where the cost functions for players a, c, and d are (see Eqs (2.4) and

(4.4))

j c . j d . t f (E.2)

J- . 2 [(xa-z) + (ye-YT)2 (E.3)

The termination criteria from Eq (4.29) is

*•[x(tf), tfI - 1/2 [,dJ [1c) (E.4)

-. 1/2 [(xd-xa)2 + (yd ya) 2 
- 12]

((xc-xa)2 + (yC-ye)2 - kJ2 I
The state vector x in component form is

xT. (Xd, yd, d, xc, yc, xa, y a (E.5)

The partial and total derivatives in Eq (B.1) are

* c dx = 0 (E.6)

- (0, 0,0 0, 0' 0', -- , -T 0) (E.7)
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. .... ( x' - ) , C

(xC-xa) Vd

(y,-7,) vd

x- 0 (E.8)

_(xdCxa) ,C(xC_xa) ,d

_(yd_ya) C_(yC_ya) *d

c 'd 
0

1 d (E.9)

a = ax

- (xa-xT) Va cog ya + (yaCyT) Va sin ¥a (E.10)

vhere f is defined from the state equation,

fT- (Vd coa y , Vd an yd, Cdu, Vc Cos y, Vc sin ye, ccw, (E.11)

Va ... ya, Va sin ya Cav)

Finally,

-- 1/2 (0d *c +d C 0 OX f (E.12)

-(xd-xa) (Vd cogy-d_ Va cog ,a) c +

(ydy a) (Vd sin y d_ Va sin ya) *c +

(z xc-x) (Vc Cos Yc-va cos Y) a d+

C(ycya) (Vc sin ¥c_ Va sin a) d
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The equations for *c and * are
c;a c Cre

;c . 2 [(xZ-xa) (V' cos ye - Va Cos ya) (E.13)

+(yc-ys) (V' sin -c -va sin ya)]

d -2 [(x d-x a) (Vd Cos Td - Va Co. ys) + (E.14)

(yd ye) (Vd sin yd - Vasin . a)]

The equation for w vhich is required in applying .l'Hospital's

rule in the case of simultaneous intercept is

"1 - *•;d ,c + ; C *. +d -c d'c

*-11[, +~4' +,4,+4,4'~(E.15)

In the case of simultaneous intercept,

*C . *d . 0 (E.16)

and'4" in Eq (B.16) becomes

dC 
(E.17)
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