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I. GENERAL INTRODUCTION

This work was undertaken over a period of three years, during which
Lire research in nonlinear optics was increasingly concerned with both
phenomena of higher order than X(g) nonlinearities and with applica-

tions of nonlinear optical techiiques to spectroscopic problems.

e o e e e i

This final report discusses progress made in th: growth and applica-

tion of the chalcopyrite crystals CdGeAs AgGaSe_ and AgGaS, to the gen-

ek 2 2

eration of tunazble infrared radiation. The bulk of this report is work

that comprised R.F. Begley's Ph.D. thesis. However, the Appendices include
work of Mr. M.M. Choy, Dr. D. Chemla, Dr. R.L. Herbst and Dr. S. Ciraci.
The recent tremendous need for tunable infrared radiation reaffirms our
early expectations that the chalcopyrite crystals will make an important

contrihution as new nonlinear optical materials.

A. NONLINEAR OPTICAL PRNCESSES

The first part of this report considers the development of high peak
power, short pulse, tunable infrared sources based on nonlinear optical
processes in semiconductor materials. The primary laser source considered
is the atmospheric pressure TEA-CO2 laser, whose high efficiency, large
output powers and relatively small operating cost make it an ideal basis
for high power, tunable infrared devices.

The principal nonlinear material considered is CdGeAsg, a chalcopyrite
crystal with %2 m symmetry. The linear and nonlinear optics properties of

. ] . 1- .
this material have been examinel by several workers. b Due to its large
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birefringence, CdGeA52

harmonic generation within a large part of its transparency range from

can be phasematched for second, third, and fourth

2.4 to 18 um. 1In addition, this crystal can be phasematched for difference
frequency mixing of a CO and CO2 laser to generate wavelengths between

11.4 and 16.8 um.s When pumped with 5.3 um, CdGeAs, looks promising as a
parametric oscillator source covering the range from 7 to 18 um.h ioreover,
this crystal has the highest figure of merit for second order nonlinear
interactions of all materials, with the exception of tellurium. Figure 16
illustrates the transparency ranges and figures of merit of all nonlinear.
crystals currently in use. Finally, CdGeA82 has a large burn density of

33 MW/cm2 for a 200 nsec long pulse from a TEArCOe laser.h These last two
facts point to the possibility of doing very efficient nonlinear interactions
in quite small crystals. We have, for example, measured second harmonic
conversion efficiencies of 2¢ and conversion to third harmonic of 10-6 in a

2 mm long crystal using a 50 KW, 200 nsec pulse from?é'coe laser.3 If we
extrapolate to a 1 nsec pulse with lO8 W peak power and a 1 cm long crystal,
we predict theoretical conversion efficiencies of 60% for second harmonic

and 30f for third harmonic generation.

Such large conversion efficiencies indicate that both three and four
frequency parametric processes can be well above threshold in Just a few
millimeters of material. The three frequency parametric process can be
phasematched, as mentioned above. The four frequency parametric process,
using two photons of 10.6 um as a two frequency punmp to generate both a
longer and a shorter wave, is phasematched only very close to 16.6 um,

The calculated parametric gains of several nonlinear materials with

a length of 1 cm end an input pump intensity of 1 MW/cm2 are shown in Fig. 2.

6
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For CdGeAs,, a 5% gain at 1 Mw/cm2 implies a gain of approximately 1.5

at 30 Mw/cm2 which is just below the burn density for 200 nsec long

prises. For a l nsec pulse with 108w/cm2 we reach a gain of 5 in a
1l cm long crystal. Burn densities of 1 GW/cm2 reported in p-typ=
germanium8 with a 1.7 nsec pulse raise the exciting possibility that

burn densities in CdGeAs2 may be about the same with 1 nsec pulses.

For a 1l GW/cm2 input intensity super-radiant gains of nearly 50 in a 1 cm

CdGeAs2 oscillator crystal are possible.

In order to fully evaluate the pctentials of this material for effi-
cient nonlinear opticy vve have constructed two co,, laser systems. The
first device consists of a pin discharge atmospheric pressure laser oscil-
lator, which is modelocked with a germanium acousto-optic modulator. The
modelocked pulse train, consisting of twenty 1 nsec wide pulses, each
separated by 10 nsec, is passed through an electro-optic selector arrange-

ment which picks out a single 1 nsec pulse. That pulse is in turn ampli-

7 8

fied in a three pass CO - 107 W.

5 amplifier to reach a peak pover of 10

The second laser device is a high pressure, 1 meter long CO2 laserx

oscillator which operates hetween 5 and 10 atmospheres. At these pressures
the individuval rotational lines are so pressure broadened that they overlap
significantly. By making a three mirror cavity, with a dilfraction grating
as a cuning element, the output of this laser can be continuously tuned
across the 9 to 11 um range of the CO2 molecule.

Four aspects of the work performed at Stanford are covered in this

report. First, the crystal growth of CdGeAs AgGaSeg, and AgGaS, are

2’ 2

described. Second, the design and operation of the ! nsec system is

discussed in detail. Third, a theoretical treatment is provided, both
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for higher order nonlinear optical processes in CdGeAse, and for the
origins of its large third order nonlinear susceptib.".?.ity.7 Finally,
a description of the experimental work performed to date with this source
is given. Saturation mechanisms, particularly free carrier absorption,
are discussed.

At this point one might ask what applications require both high peak i
powers and tunability from a source operating at wavelengfhs from 2 to
20 pum. We can separate the applications of such sources into three cate-
gorics: spectroscopy, chemical kinetic studies, and optical pumping
studies.

Perhaps the most active area of laser spectroscopy at present is the
} study of vibrational rotational spectra of molecules, many of whose lines
lie in the near infrared. Such spectra can be used, for example, as
indicators of the composition of the atmosphere by remote air pollution

. 10
detection schemes.9’

A second, and perhaps much less explored area is
two photon absorption spectroscopy.

Most optical spectroscopy of solids,11 for example, has been done by
reflectivity techniques. Since the first experiments on two photon absorp-
2 tion near the fundamental absorption edge using visible and ultraviolet i
sources,12-17 it has been clear that this technique allows one to probe the ?
properties of bulk materials as well as of the surface states. The principal
advantage of this technique is that each photon lies within the transparency
range of the material. Tunable infrared sources then should have consider-
able application in two photon spectroscopy of semiconductors whose band gap

energies lie in the near infrared. Moreover, high peak power sources should

allow studies of nonlinear interactions not accessible by conventional

spectrometers. Third order nonlinearities, as we shall see later, are
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sensitive to the shapes of the energy bands, for example.

Applications of lasers to chemistry have been reviewed by Moore.19
Vibrational and rotational relaxation processes, as well as energy transfer
mechanisme, can be studied with tunable infrared sources with pulses in the
nanosecond and picosecond regimes. The question of inducing chemical reactions
by selectively exciting vibrational levels has received much attention,
particularly with regard to isotope separation.

Finally, optical pumping of high pressure gasec appears to be an
important technique for the generation of wavelengths across both the near
end far infrared with pulse widths of 1 nsec and shorter.20 2! With high
peak power tunable sources one can now consider multiphoton pumping upper
vibrational levels of simple molecules, exactly on rescnance, to produce
lasing action at a variety of wavelengths in the infrared.

An excellent review on infrared tunsble sources and current spectro-
scopy research is given by Hinkley, Nill and Blum.28 A table summarizing
their comparison of performance characteristics of various tunable infrared
sources is shown in Table I.

Important materials used in nonlinear optics devices are tabulated in
Table II. Of the approximately forty chalcopyrite crystals only four are
used for nonlinear optics: ZnGer, AgGaSz, CdGeA52 end AgGaSe2. The

enormous output powers and high efficiency of C02 lgsers, coupled with the

large nonlinear figure of merit or CdGeAs,, make this particular combination

a very promising source for high power, tunable infrared radiation.

R N




TABLE I

TUNABLE INFRARED SOURCES

Source Wavelength Highest -1 Output
Range (pm) Resolution (cm ~)| Power
3 Semiconductor 1- 34 3 X 10-6 100 W pulsed
L Diode Laser
1
Gpin-Flip 5 - 16 3 X 10:2 1 KW pulsed
Raman Lasers 9 - 14 3X 10
Gas Lasers -3 ’
Zeeman Tuned 3-0 3 X 10_2 l-10mw cw
High Pressure 9 -11 3 X 10 10-100 MW pulsed
CO2
; Nonlinear
| Optics
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NONLINEAR OPTICAL DEVICES

TABLE 1II

Source Wavelength Material Pump
Range (um)

Parametric 0.4k - 4 Li"J3 Ruby

esedliaton 0.4 - 3.6 LiNbO3 Nd:Glass/YAG
1.2 - 8.5 AgBAsS3 Nd:CaWOh
3.4 - 7.9 Ccdse Dy:CaF,
9.8 - 10.4 Cdse Na:YAG

4‘»-‘\.

L% fference 3.0 - 4.5 LiN'bO3 Ruby/dye

Frequency - .

Generation 3.2 - 5.6 Ag3ASS3 Ruby/dye
4.1 - 5.2 LiIo3 Ruby/dye
10.1 - 12.7 Ag3A583 Ruby/dye
4.6 - 12.0 *AgGas, Ruby/dye
7.0 - 15.0 *AgGaSe2 Nd: YAG
11.4 - 16.8 *CdGeAs,, co/co,

Two Photon '

Mixing 9.0 - 11.0 GaAs Coe,xlystron

Four Photon _ ol

Mixing 2.0 - 2.0 K vapor Dye/dye

*

Chalcopyrites

B

]
!
{
|
{
|

toxl s
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B. CRYSTAL GROWTH

1. CdGeAge

During this program we have evaluated three growth techniques for
CdGeAsE, vertical Bridgeman growth, Czolchralski growth, and growth from
Bismuth-Cd solution. Our results show that CdGeAs2 self nucleates on the
container walls and grows rapidly in a nearly dendritic way. These experi-
ments sugjest that serious consideration be g.ven tc an oven design with =
very steep gradient or to the proper design of a Czolchralski growth furnace
for CdGeAsg. During the study program we did obtain a single crystal ap-
proximately 1 cm X 1 cm X 15 mm in size. When fabricated, this crystal
yielded an oriented crystal 6 mm long by 8 mm X 8 mm area. We are now
evaluating this crystal for co,, laser second harmonic generation (SHG).

The enormous nonlinearity of CdGeA52 make further growth studies important

if future advantage is to be taken of this unique material.
2. AgGaSe2 and AgGa$,

In a previous progress report we included a preprint of the paper
"Growth of AgGaSe2 for Infrared Applications" by R. K. Route, R.S. Feigelson,
and R, J, Raymakers.29 This paper described the growth of single crystal
AgGaSee. Since then, we have extended our work to include the growth of
AgGaS2 and have successfully grown single crystals up to 1 cm diameter by
I, ¢cm in length.

During our previous growth work, we noted the consistent poor optical

quality of both AgGaSe2 and AgGaS2 due to optical scattering centers. For

1

example, the measured optical loss at 1.15 pm due to scattering was 2 cm

for both crystals.

Rl b
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In an attempt tc improve the optical quality we tried two growth modi-
fications. The first was to dope AgGaSe2 with TZ 1in order to improve
the growth rate. This procedure proved not to be of value. The second
was to rapidly quench the crystals from a high temperature (~ TOOOC) to
room temperature. The quenching procedure did improve the optical quality
by an order of magnitude reducing the loss to mnear 0.2 cm"1 - 0.1 cm_1 at
1.15 um.

This remarkable improvement in crystal quality has led to a careful
study of the quenching process. The work is still in prograss but the

main points are clear. Both AgGaSe2 and AgGaS, suffer a phase separation

2
upon slcw cooling which leads to optical scatter centers. The phase sepa-

ration occurs near 700°C for AgGaSeg.

Crystals can be cycled through the
quenching process and reprcduce the desired optical quality improvement.
And, finally, large single crystals can be queached without cracking.

The details of this important crystal quality breakthrough are being

studied and prepared for publication.

- 11 -
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II. THE TEA-CO, LASER SYSTEM
=y

A. INTRODUCTION

The literature on CC2 lasers, both conventional low pressure and
pulsed atmospheric TEA discharges, is vast. This report describes the
high peak power short pulse laser system engineered at Stanford. The
description of the 1 nsec system is more from a practical construction
point of view, and ample reference to the existing literature is provided
to supplement the theoretical aspects of the first system's operation.

A discussion of a 10 atmosphere CO, laser designed at Stanford, and an

2
alternative scheme to laser triggered spark gap switching is given

30

elsewhere.

B. 1 nsec TEA-CO2 LASER-AMPLIFIER SYSTEM

1. Background

This laser system was engineered and constructed with two objectives
in mind: first, to study higher order nonlinear optical processes which
become very efficient when high peak power pulses are used. However, since
all materials will burn at approximately 1-1.4 J/cm2 input energy density,
it is necessary to reduce the laser pulse width to limit the total energy.
Secondly, it was necessary to answer the many questions that needed investi-
gation, particularly in producing stable, large volume gas discharges at
high pressures and in producing short pulses at 10.6 um. Laser development
in this field in the past four years has been impressive, with output powers

now in the gigawatt range and energies of 300 J in one nanosecond long pulses.

_12-
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There are several excellent review zznrticlessl_33 that describe the
development of CO2 lasers from the first cw laser of Patelah to the
pr2sent 300 J system in Canada.35

The basic problem of providing uniform electrical dischsrges in large
volumes of high pressure (1 - 20 atmospheres) gases has been attacked in
many ways. Electrode structures for truansverse excitation range from pin
discharge geometries,36_38 three electrode struct;uresag"‘+3 and resistive

-45 L46-18 .

electrodes,hh to more exotic structures, including electron beam
controlled di.scharges,i'"9 which are not discussed here. An alternative

approach to electron beam pumping for producing stable, large volume dis-
charges is the use of ultraviolet radiation to preionize the laser medium.ljo-59
Measurements nf the electrical characteristics,60 of the spatial and temporal

61-64 65

behavior of the gain, and of the spectrsl content™ of TEA-CO,, dis-

2

charges have been made by several workers. Finally, several authors have
attempted to fit theoretical models to TEA-002 lasir charact;eristics.66-71
Two 1 nsec C02 laser systems of comparable design, although with higher output

powers, have been discussed in the literature.72-7h

2. Design and Operation

The overall system design is shown schematically :a Fig. 3. =
a. Laser Oscillator

The pin discharge oscillator is similar in design to one built by

36

Robinson. It consists of 400 - 1,000 Q0 resistors connected in parallel

for a cathode and an aluminum plate for an anode. We obtained a stable, arc-

B T T e

free oscillat~r when the resistors were cut off with equal length tips and

both electrodes are mounted on a plexiglas frame to keep them parallel. The

10-meter curvature, high reflecting mirror is internal to the laser tube.
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FIGURE 3. General layout of 1 nsec TEA laser system.
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A sodium chloride window at Brewster's angle provides polarized output
and an adjustable aperture maintains TEMoo mode operation. The output
mirrer is a flat 65¢ reflecting germanium mirror loceted 141.61 cm from
the high reflector. Output pulses from such an oscillator are typically
200 neec in duration ard 0.5 - 1.0 MW peak power in TEMoo mode, at a
repetition rate of several pulses per second.

Since the oscillator has been used for higher order nonlinear optics
processes investigations, we wanted as stable an output puise as possible.
At low enough gains, namely whe:a the discharge voltage is low or the mirrors
slightly detuned, no mode beating occurs and this oscillator runs at approx-
imately 54 peak-to-peak stability over sixty minutes of operation. Figure 4
shows the results of a measurement of the laser stability. Wwe used a
crystal of CdGeAs2 to produce THG of the laser output. The third harmonic
signal was monitored as a function of time and shows 134 peak-to-peak
fluctuations. Moreover, by doing SHG in the same crvstal and allowing the
fundamental laser frequency to mix with the SHG signal, we again generate
a 3 w signal. Here, however, the fluctuations should be proportional to
twice the laser fluctuations rather than three times, as in the THG case. 1
The result of these measurements is that the laser operates in TEMoo mode
at 54 peak-to-peak stability over long periods of time. At higher voltzcges,
and with proper alignment mode beating occurs and the laser output stability
degrades considerably. Finally, when completely modelocked, the pulse-to-
pulse stability is again about % .

b. Modelocking

15-76

The modelocker consists of a germanium acousto-optic modulator

block driven by a 360 y-cut LiNbO, transducer operating as a Bragg

3
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deflector (9B = 41.4' inside and 2° 46' outside the crystal). Light
enters the modulator in the [110] direction polarized along the [111]
direction for maximum interaction. The acoustic driving frequency
50.313 MHz is half the cavity mode frequency (c¢/2L) . 1In designing such
a modulator with high index of refraction material (n = 4.00 at 10.6 pm in
Ge), one must consider alternative designs to Brewster angle cu', pieces
(9B = T6° in Ge) 1in order to make reasonably small modulators. By making
plane parallel faces the size of the modulator is reduced considerably but
etalon effects may be introduced into the laser cavity. By anti-reflection
coating the modulator faces,the bandwidth of this etalon can be made seversl
times larger than that of the laser cavity77 and therefore reduce the problem
of cavity instabilit&. The same modulator with no anti-reflection coating
seriously affects laser stability, since the bandwidths are then comparable.
Figure 5 shows the pulse train detected by a fast strontium barium niobate
(SBN) pyroelectric detector78 and displayed on a Tektronix 790} oscilloscope.
The upper trace shows a superposition of 10 modeloc ced pulse trains,
illustrating both very clean modelocking and small peak-to-peak fiuctuations.
The lower trace shows a 2 nsec pulse width which is the limiting resolution
of the 7904 plug-in. The actual pulses are 1 nsec wide.

c. Pulse Selector

The train of 1 nsec pulses, separated by 10 nsez, passes through a
pulse selector consisting of a CdTe electro-optic crystal,T 82 a crossed

polarizer, laser triggered spark gap,83-8h

and coaxial cable charged to
the correct voltage. The modelocked train enters the electro-optic crystal,
reflects off the Ge Brewster angle plate polarizer and triggers the

pressurized spark gap. A length of coaxial cable, charged to twice the

- 17 -
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FIGURE 5,
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(b)

(a) Modelocked CO, pulse; (b) individual pulses, resolution
limited by oscilloscope preamp bandwidth.
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half wave voltage of the electro-optic crystal, then discharges across the

crystal. By picking the length and impedance of the cable correctly (1
this case 2 ft of 73 (1 cable), one can impress a square wave of approximately
1 nsec rise snd fall times and 10 nsec base width on the crystal. The
polarization of a single 1 nsec pulse is then changed by 900, allowing it
to pass through the Ge polarizer and out to the CO2 amplifier. The
CdTe electrc-optic crystal is 46 mm long and 5 X 5 mm in cross section.
The half wave voltage is 4.35 kV, so the transmission line must be charged
to at least 8.7 kV (twice what appears across the crystal). Light propagates
in the [110] direction in the crystal, with both electrical pulse and light
polarization along the [110] direction for maximum interaction.82 The CdTe
crystal is mounted in a brass plate electrode structure designed to match
the characteristiz 73 Q impedance of the transmission line.85

The pulse selector assembly is by far the most unstable part of this
entire system. It is quite difficult to trigger the spark gap reliably over
more than 100 pulses without readjustment of the laser focus. More importantly,
however, such a fast spark discharge radiates very high frequency noise
(1 - 10 GHz) which makes detection of the switched out 1 nsec laser pulse
very difficult on any fast detector. By using a slow but sensitive pyro-
electric detector és an energy monitor we have observed stable switehing of
pulses from the modelccked pulse train. By replacing the Spark.gap with a
completely electronic detection and switching system, it appears possible to
make a noise free, reliable pulse selector. A suggested design is discussed

in reference 30.
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d. Amplifier

The single 1 nsec pulse then passes through a three pass, modified
Rogowski profile CO2 amplifier.86 To make the discharge more uniform,

two arrays of spark sources called "sliding Sparks"87-89 line the sides

of the electrode structure. The spark sources were made in a transmisszion

line geometry tc allow easy handling. By milling a pattern of rectangular

tabs on the top of double copper clad circuit board, one creates a trans-

mission line with gaps, which can be modeled as an array of capacitors

coupled together by the st-ay capacitance of each gap. A pulse propagates

on this line by arcin. .cross each gap, thus emitting UV radiation into the

laser plasma. The geometry of the electrodes for both laser oscillator and

amplifier is shown in Fig. 6. The amplifier has two internal mirrors made

by depositing gold coatings on flat glass so that the amplifier can be used

for 1. 2, 3 or 5 passes. We have measured the single pass gain to be y%/cm

of excited volume. Typical c02 amplifier gains range from l%/cm to h%/cm,

depending on gas mixture, electrode structure, preionization techniques, and

discharge voltage. In this amplifier we are limited in voltage to 30 kV by

our power supply and can only operate at 300 torr pressure. The measured

gain is quite good under these circumstances. It would be necessary to

modify the high voltage electronies to allow operation at higher voltages

and pressures to raise the gain.

In contrast to the resistively ballasted oscillator which operates on

CO2 and He alcne, the amplifier requires a 2 : 1 : 3 ratio of C02, N2 and He

to operate stably. Since bcth oscillator and amplifier bower supplies are

the same, it appears that the impedances of each eleccrode structure are not

the same.

The switching thyratron likes to look into 2 50 Q load; apparently

£ ? e W e
7. . T T L 2 .
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FIGURE 6. Oscillator and amplifier electrode structures.
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by adding nitrogen to the amplifier medium we balance the capacitahce of the
electrode structure to make the amplifier look more like a 50 Q load.

When properly impedance matched, both devices emit relatively little
électrical noise by comparison to the laser triggered spark gap.

e. Electronics

The circuit diagrams for the system rate generator and master control,
thyratron trigger circuits, and high voltage electronics are shown in
Figs. 7 to 9. The modelocking electronics is not shown here. It consists
of a standard Tektronix 190B signal generator operating at 25.157 MHz, and a
Heathkit DX-60 transmitter modified to operate in pulse mode at twice the
oscillator frequency. Since the effective impedance of the acousto-optic
modelocker is 2.2 (1, it is necessary to use a pi network to match the
50 Q1 output impedance of the Heathkit transmitter.

Since we require 2.7 kV on the transmission line for operation of the
CdTe electro-optic crystal, and we must maintain a rise time of 1-2 nsec,
it seemed impossible at first to use an avalanche transistor array for the
pulse selector electronics. Consequently we had to use a laser triggered
spark gap as our fast switch. DC voltage is provided by a Variac and DC
power pack. However, by using a transmission line transformer it now appears
that an array of approximately 32 avalanche transistors can be used to generafe
L4-5 kV across the electro-optic crystal. A block diagram of the proposed

electronics is shown in reference 30.
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ITII. NONLINEAR OPTICS THEORY

This section presents a theoretical treatment of higher order non-

linear optical processes in crystals witn 12 m symmetry. It begins by

determining the equations for second (SHG), third (THG) and fourth (FHG )
harmonic generation in a ccystal with absorption at the fundamental fre-
quency @ and each of its harmonics 2w, 30 and hw . Also considered
is the case of nonphasematched mixing to produce higher harmonics, namely
O+w> 30, o+ 30> bo , and 2w+ 2w > o . ALl equations are

derived in cgs units.

A, SECOND, THIRD, AND FOURTH HARMONIC PROCESSES

1, Nonlinear Polarization Equations

Throughout, this discussion follows the works of Midwinter and Warner ?
on second order90 and third order91 processes, keeping in mind that they
arc missing a factor of 2 for the case of second order mixing, and factors
of % or & for third order mixing.96

We can write the general tensor equations for this crystal class for

second, third and fourth harmonic generation processes as

Poo® digi By By
Byo= b By B B, E

< et i i
: T G e o o e e B e e L e ki pe
» Smic it 4 .
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If we restrict ourselves to frequencies in the transpsrency range of
the material snd assume Kleinman symmetry,92 the nonzerc elements of
the d, c, end b tensors can be determined snd are shown in Fig. 10.
The reduced subscript notation is explained in Fig. 11 for all three
processes. In Appendix I a practicel discussion is presented for cal-
culating higher order nonlineer coefficient tensors from those of lower
rank. Equations (3.1) are written out in detail as shown in Fig. 12.
The cases of SHG and THG have been discussed by Kildalh and are simply

summarized here. The case of FHG is treated in detail.

2. Fourth Harmonic Generation

a. Effective Coefficients
With the exception of Se, CdGeAs2 is the ornly crystal that phase-
matches for FHG in the infrared. From Fig. 10 we see that there are two

independent, nonzero components of the FHG tensor for a crystal with 2 m

symmetry, assuming Kleinman symmetry. For convenienc-, let us define

P14 = Pa Pi(5) = % B:2)

Then, from Figs. 10 and 12(b) we have

- 3 r 3 21
P, =b, [hEyEz] + by LhEzEy +12 EyEzExJ
P =b, (bLEE] + b, TWEES + 12 E E 5]
Yy otz B -"Tzx X zy (3.3)
P =

b » 'WE E3 4 L ®3
. = by, [l2ExEyF§] * by {UE.E3 + 4z B3]
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FIGURE 12(a). Tensor equations for

2w, 3w nonlinear polarizations.
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For FHG we have four possible types of rhasematching situations. They

are given below with the correspending index matching equations for a

positive birefringent crystal.

E
|
E
E
g_
E
s
]
4

ey

Type I e+e+e+eoo0 hne(e,w) = hno(hw)
1 Type II e +e +e + 0= o 3ne(e,w) + no(w) = hno(Mm) )
} (3.4
? Type III e +e + 0+ 0 = o 2ne(°,w) 4 2noGn) = hno(hw)
f Type IV e + o0+ 0+0- o0 ne(e,w) + 3no(w) = hno(hw)
Here e

and o refer to extraordinary and ordinary waves. Only the
: first two types phasematch in CdGcAsE.

We must now calculate the effective nonlinear coefficients for the

SR B e e

Type I and Type II processes. From Eq. (3.4) for the Type I process it

is evident that

Sieoni sl 4 il

sin @
P(bw) = P (ko) = | -cos g P(he)
o] .
(3.5)
-cos § cos ¢
E(o) = E_(0) = -cos 6 sin ¢ E(w)
sin @
The geometry is explained in Fig. 13.

Combining Egs. (3.3) and (3.5) we have
Py,

= - hbasinBG cos fsin ¢ - th[COSBGSin esid3¢ + 3 cos9sin ec052¢ sin @]
E

°%=+<"’

= = hbasin39cos gcos ¢ - th[COSBGsin ec053¢ + 3 COSBQSin Gsin2¢ cos @]

(3.6)

o




o Py

R

Since

sin ¢'\
Py = cos¢/ P=szin¢-Pycos¢

0
we have
Fx 220 i - [4b_sindpcos B + Lb cosJesin e(sin2 g+ 3 EoE ?)] gdn" )
R B

(2.7)
-P cos @
n = [hbasin38cos o + thcos3Bsin 8 (3 sin2 g + cBst g) 1 0032 )
E

We define the FHG effective coefficient as Pb(hm) = bops Eu(m) and from

Eq. (3.7) we determine it to be

2 2
= D i 3
beff(I)' 2[b_sin” 8§ + bB cos® 8) sin2 6 cos 2 @ (3.8)

for Type I phasematching in crystals with L2 m symmetry. Tt should be
noted that for 43 m symmetry this expression reduces to beff(EB m) =
2ba sin 2 6cos 2 ¢. In a similar way we calculate “he Type II effective

coefficient to be

By . 2 2o . . 3 -
beff(II)= Lib, sin” & + by cos” #] sin 8 sin 2 $isin” pcos p] (3.9{.

3

The angles 6, @, and p are again defined by Fig. 13 and Ee = & sinp-

3

It is easy to show that the expression sin” » €0s p is maximized when

iﬁég . Moreover, cos 2 §

n . . 3
p =+— +nx, in which case 4 sin’ p COS D

-3

is maximum for ¢ = O , whereas sin 2 ¢ is maximum for £ =

. Thereforé

+£1a
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FIGURE 13. Geometry of angles 9, ¢, o used in harmonic generation

calculations.




the maximized equations in terms of 8 alone are

Type I  P(hw) = 2[by + (b[3 - ba) e 8] sin2 6 Eh(w)
(3.10)

Type II P(kw) ih‘/i- (by + (bB - ba) gGoo" 8] sin 9 El*(m)

2
From index of refraction data due to Boyng we calculate a phasematching

angle for ) = 10.6 um of Gm = 67.85o in which case

"
Type I P(hw) = 1.406 [b, + .lh2(bB - ba)] E ()

Type T P(io) ~ L.406 b, E'(w) (3.11)

for ) = 10.6 um . Two problems arise in looking at this phasematching
process. There is a good possibility of wave vector walk-off in any crystal
long enough to give appreciable signal. One can bdssibly generate hw by
mixing 3w + w > Lw since THG is phasematched theoretically at 64° for

A = 10.6 um and the two processes could overlap. From Boyd's index data

the turning point of the Type II FHG curve occurs at A = 13 uym and Bm = 82°,

In this case

Type II P(hw) ~ 1.29 b, E*(w) (3.12)

for ) = 13 um. Even though the Type II process has the advantage of being
phasematched close to 90° so that walk-off is not a problem, it is nevertheless
quite difficult at present to consider generating enough radiation at 13 pm

to actually observe the Type II - FHG process.
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Since the index of refraction measurements for this crystal are not
yet that accurate, we must consider these FHG calculations as approximate.
However, the fortunate proximity of phasematched Type II - THG with
Type I - FHG bears further investigation. 1In the case of producing 3w
by mixing 2w + w = 3w , the THG output depended on the SHG signal.7
Similarly, here it is possible to consider the mixing process 3w + © = Lo
where the FHG output will depend on the THG signal. We have in fact observed
FHG due to this mixing process.

b. FHG Fower and Conversion Efficiency

We can calculate the FHG rower at phasematching, taking into account
the properties of a focused beam and the transmission of the crystal faces.
Since for all crystal sizes of interest here the effective length of the
focal region is much larger than the crystal length, we can use a plane wave
analysis.gh—97 The electric field in a medium can be written in this

approximation as

E(w) = A(z,0) exp(-1 oyz) expli(k;z - wt)] (3.13)

for propagation along some direction z. The FHG polarization is given then

by
Pl (ko) = b_, A*(w) exp(-22) expli(bk 2 - kat)] (3.14)

In the thin slab between 2z’ and z’+ d z’, the increment of the FHG signal
%-97

can be obtained from Maxwell's equations and is given Lty

2ni w,
ah(z,h0) = — (=) P(ho)exp(-ikz’ + i bo t)dz’ (3.15)
n c

L .
where the geometry is shown in Fig. 14 and o), is the refractive index

at o = ey . This generated signal is somewhat absorbed in the (£ - z’)

e
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FIGURE 1L. Generation of the harmonic wave in a thin slabp within a
sample.
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distance remaining in the material. Consequently the increment in the
FHG signal at the end of the crystal, due to that produced in the thin

slab, is given by

2xi ay,
dA(z,hw) = — — PNL(hw) exp(-ikuz’ )exp[-1 l‘(z-z’)]dz’ exp(ikwt) (3.16)
n, ¢
or
2ni wy, L
dA(z,hw) = | — — bopp A (w) exp(-%auz) exp(-4az’) exp(iskz’)dz’exp(ibat)
n ¢
4 (3.17)
where
ba = 20 - %au and Ak = hkl -k,
Ignoring the time dependence we have
2 2ri (.l)u u 2
A(L,hw) = f aA (hw) = [-—-— b ep A (a))exp(--%auz) ] f exp(idk-prc)z/dz?
o n, ¢ o
(3.18)
Intezrating, we get
2ni ay, ) exp(idk - ax)e - 1
ALyho) = [—— = b A'(w) exp(-tays) (3.19)
n, ¢ (iak - aQ)
Now
|E(2,%0)[% = [A(,40)[2 = AL, bw)a* (2, k)
2rnee 2 h(aag) - co
o N cosh(a cos(aks)
lE(Z,l&w)| = 2{ bors Au(w)J exp(- ), £ )exp(-422) [ 5 5 ]
n, c (ak)™ + (Aa)

(3.20)




We cen write the power generated at Uw as P(bw)=A< S> where § is

n
a c 2

the Poynting vector S8 = o iEl and A = —— for a Gaussian beam.
" 2
c 2 2 c 2 2
Plhw) = 77z ¥, |E(4)|” = 1z Y, |A(kw)| (3.21)

where W), is the beam waist. Since the electric field amplitudes are

related by transmission factors at the faces we can write

¢ o 2 2 [16P(w) \ &
P(ho) = (—6_ ”E) (ﬂ beff> (ti ey /“2—> exp[- (22 + 309, )¢]

g c cw p
d nh 1 3

cosh(Aw2) - cos(ake)
X 2 [ 5 5 ]
(ak)™ + (Ax)

(3.22)

as the general expression for the FHG power coming out of a crystal. We
have used the facts that E(w) (inside) = t E(w) (outside) and

1
E(lw) (outside) = — E(ba) (inside)98 end that -(8x + ) = -(reozl + 3 ah)‘

If we consider the case of phasematching, Ak - 0 , then we can simplify the

last term as follows

[cosh(AkE) - cos(Akz)] [l + %(AGE)Q -1+ %(Akﬂ)e]
= I3

(k)% + (ax)? @k)2 + (aa)?

42
£ (3.23)
for Ak -» 0.
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Therefore for phasematched FHC we have

3 2\ /- 2
16 w_\ [2; 2
P(lw) = 0—5— <—;><—T?i LI z> <tlith> Pl‘(a)) exp [-%(ozh + hal)z] (3.24)

Wl nh

Since ), = bw = b (%ﬂ) ¢ , we have for the generated FHG power

, 2 2
(o) = (26)° ( >é6«r (L' eff z) (t:tb) P () exp [-4(o, + ket )]

(3.25)
) _on 8

where tl = T+ °&nd th = 85 from the Fresnel equations,” and

m =n for phasematching. The FHG conversion efficiency is given by

2 b beff £ i < >2
>(l6 i ) T 1 h PB(a)) exp[——(a‘ + Lo )l

P(la) 16)3
P(w) i (c <

—

P-FOJI 1N

(3.26)

Cc. Angular Half Width

Kildalh has given a rlear description of the calculation for the
angular half width of generated SHG and THG signals. Such a measurement
is important for several reasons. First it serves as a check on the type
of process one is actually observing; mixing and harmonic generation, for
example, have different angular tolerances. Second, it is an indication
of the practical angular tolerance limits one encounters in turning a

crystal to phasematch different input frequencies. Third, it serves as one

- 4o -
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: measure of the quality of the crystal. We cen briefly summerize Kildal's

work and extend it to the case of FHG. Let us return to Eq. (3.22) and

assume that Aa = O for simplicity. This equation reduces then to

15\ v, o, (U Pege ¥ 2 ° 3 2 (pks
pla) = () (5 ) (26x) -—-———-) (5,) Po) sinc® (82) G.27)
W) n
. N . 2AkE 1 . 3
The half width at half power 1s given when sinc 5= =73 which occurs k.

when -A—2k£ = 1.4 radians or &k = 2.8/z. Now we must calculate the

varistion of A&k with 6 for each type of phasematching, where

sk - k() 49
fo):)
Type I e+et+e+e = O AkI =k, - hkl = kh(h‘w) - lLkl(a),e)
- 8x bne(e)
or AkI = - — A8
., A, 2®
- - - - - -
& Type II e+e+e+0 - O AkII = kh - ukl = ku(““’) - 31;1(0),9) = kl(w)
3
i
’ -6x  dn,(e)
)\l 08
Now one can write ne(e) as ]
1 cos2 e sirx2 8
2 = 2 ¥ ) (3'29) ‘
ne(e) n_ n, 3




and the Poynting vector walk-off angle n98 as

nz(e) 1 1
tan 7 = — - —5 ) sin2e (3.30)

n n

e o

From these two expressions one finds
bne(e) ‘
= - ne(e) tan q (3.31)
[oL:]

Finally, for near normal incidence A6 external = nA6 internal. Combining

this result with Eqs. (3.28) and (3.31) we find

A
e R —————————————
A I ext 8.98;2 tan T]
\ no(Mm) (3.32)
8811 ext =

6.73% tan 7 ne(w,e)

3. Summary of Harmonic Generation Results

At this point we can tabulate the results for SHG,h THG,h and FHG

in a crystal with L2 m symmetry. The effective nonlinear coefficients
for the various phesematching conditions are given in Teble 3. The
expressions for output powers at the harmonic frequencies, in terms of
the input power at « , are shown in Table 4. Finally the angular half
widths are given in Table 5. It should be noted that the widths get
narrower as we go to higher order harmonics. The tuning curves for these

three processes are shown in Figs. 15 and 16.

- 42 -




-Csyeopy ut seaino Buyuny oSue SHS ST FANOIL

(6ap) 379NV ONIHOLVW 3SVHd 9HS
0L 09 05 4

] | | I

o
(wr) HION3TIAVM

0

_h3_




o i i Lhbo it - Ol cfee bie . __Daiga ot gt e Dodee L SR iat,
B i e i i ey T e o D i D L Tal X L P WA [, b ¥ f=a e R

*%syo9p) uT seAno> Suruny o1fue OHI pue SHL ‘9T FUNOIA

¢sVo9PD NI 9H4 ANV 9HL ¥OJ ITONV ONIHOLVW 3ISVHd
(e]0]] 06 08 0L 09 0S oY o€

_ | _ T T I |
—S
O9HL I 3dAL =
1
OHL II 3dAL m _
m =
OHA I3dALS o1 Z _
-
I
'S
— 3
9SH4 II AdAlN -
\
\\ \
_ — Gl
\\
-




TABLE III

EFFECTIVE NONLINEAR COEFFICIENTS FOR HARMONIC GENERATION

Harmonic Type

SHG I dl = d.“+ sin2gcos 28

= = L] e . .
II g d,) sin & sin 2@ sin 2p

THG I c, = - % (cll -3 c18) cos> g sink @

1

2 . 2 . 2
IT - [2 (cll- 3c18) cos” g sin 2¢+c16 sin” g

¥ C.p COS 8] cos sin° p
18 P

1 2
- = - 3 ; cos
III 11 = & (cll 3 cl8) cos & sink @ sinp p
FHG |I b = 2[b sin® 8 + b cos® 81 sin28@ cos 2
I~ “FT1(s) 1(5)
II b.. = L4[b sin2 8+ b c052 6] sin 8 sin2¢ [sin3pcos 0]
II 1(k) 1(5) '

where PI(2u>) = d; Ee(a)) , ete.,

- 45 -

S i et T aet

- A

s o e




UL Y e e O S e b A el S

TABLE IV

POWER EQUATIONS FOR HARMONICS

2
(fit2> Pg(w) exp[- -;—(a2 + 2al) 2]

16\ 2 /v 5 BncfszB’E 1

P(3w) = -—> (—-g)(l&r —s tlt3 P3(a)) exp[- 5((13 + 3(11) £]
c .Wl n)
16\ /v RN 2 |

P(ko) = <—> w—g><l6n2>< L ff—) <t§*tu> P'(w) expl- F(a, + bay) £]
c W n ) ’

where W, > W, are beam waists,

factors and O& - ah are loss constants for beams with « - by . 8

the effective interaction length.

t, >t

1 n are electric field trensmission

is
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TABLE v

ANGULAR HALF WIDTHS

A1
SHG I Ael = ——
4.5 2 tan 7,
A n_(2w)
0 Lo = = 0
2.25 £ tan 7 ne(m,e)
A
THG I b0, - L
6.75 £ tan 7
Ay no(3w)
II ABII =
4.5 £ tan 7 ng (w,8)
A n_ (3w)
ITI ae - = L -
2.25 £ tan 7 ne(m,e)
A
FHG I ABI = 1
8.98 2 tan T
A n_(4o)
II 80, = 1 °
6.73 £ tan 7 ne(m,a)
where £ = crystal length, Ay = input wavelength T = walk-off angle

—h"(_




B. MIXING PROCESSES

1. o+ 20 - 3w

There are two mixing processes that can generate 3w and kw which

should be discussed. The first process

w + 20 > 3w (3.33)

is not phasematched and occurs along the direction of phasematched SHG.
By using two sources cne at 10.6 um and the other at 5.3 um we can have
phasematched mixing. In terms of ordinary and extraordinary polarizations
the only combination of importance here is

- - -

E () + E_{20) » E_(30) - (3.34%)
Because of positive birefringence, the harmonics must be ordinary waves.
Moreover, orly the extraordinary weve at w will generate a mixing signal,
since Eo(w) +'Eo(2w) cannot give ‘Eo(3w). Since this is a second order
process, we have some effective mixing coefficient dmix (effective). We
can determine its form by writing down the expressions in Figs. 10 - 12

96

for a mixing process.

Px(3w) = 2d,, [Ey(w) EZ(E‘m) + Ey(2a>) Ez(w)]
Py(3w) = 2d,, [Ex(a)) Ez(&u) + Ex(E‘w) Ez(w)] ﬁ
P,(30) = 24, [E, (o) E,(20) + E (2w) E (o)) (3.35)

Note here P(3w) = P (3w) s0 PZ(Bw) = 0. Also E(2w) = Ej(2w) so that

E, (2w) = 0 . These equations reduce then to

dJ

—
g

~r
1}

2d)) E_ z(ao,e) Eo,y(&u)

H

ae}

—

|3

~r
1}

2d,), Ee’z(w,e) Eo,x(&u'} 5 B )
- L8 -
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where P_(3w) = sin ) Po’x(Bm)-cos ¢ Po’y(Bw)and Ee’z(m,e) = sin p sin & E(w).
/ Note the degeneracy factor 2 is in agreement with other authors. Now

from Table 3 we have

P (2w) = - d;) sin & sin 2 @ sin 2 p E° (o) (3-37)

and we can calculate the magnitude of A(2w) to be96

2rra;2

n2c

A(zi 2w) = i ders Ai exp[- %(O‘z + 2al) z'] 2! (3.38)

where dSHG = dlh sin 6 sin 2 ¢ sin 2 p. Now we assume that for the

mixing process we have a coherence length ['c , where

5 = - - 6n n, + 2n,
bk =k, +k, -k =—[l ‘-n3

b= — = (3.39)

and that the magnitude of E(2w) is constant and given by its value at

(2 - -;‘- 2,), namely

i Nl
A(L - 3 Lo 2w) i

2 1 1
depr A (w) [2 - 2 Zc] exp [- 2(a2 + 20tl) £]

(3.40)
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Foliowing the same procedure as for the FHG case, we calculate the power

at (3w) due to mixing to be

i i e i il s I MR e - e e e E

QhﬂB d 2 2
)(16:2> dMD‘Q M 5 (2 - 2 1e) (titB) Plo)
/ n.n_i

273

-2

!—FO \Luz N

2 0
exp - 2(0f2 + 3al) z]

(3.41)

where dsHG

-d) sing sin?2 @ sin 2 p

T

- 2dlh sin Osin p

2. o+ % - Lo
The case of non-phasematched mixing of a THG signal with the funda-
mental to produce a signal at ’'wo can be analyzed similarly. By analogy

to Eq. (3.34) we have
E () + E (30) » B_(4) " (3.42)

The coherence length for this process is given by

b 14
£c= - R _}_{, = (3']"3)

Here we are concerned with mixing against a signal at 3w generated in

=

o g A

_smeima ok owrcad
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a type II-THG process. The calculated output power at Lo is given by

B R F R ot P P R e

2 3 2

16 3 w l+81r C 1 2
P(hw)=<—) (—%) @) dMDz{ TGy (-5 8,) (titu) P (o)

¢ Wy nym\

X exp (- %(03 + hal) L]
(3.14)
where &y = - 24,, sin 8sin p
. 2

S = %[(cll-3c18)sin2 2p cosa+ 16 sin°6+ 18 cos28] sin p cos p

At this point it should be noted that the process 2w + 2w - bw does not

work because all three waves are ordinary waves when we consider mixing of a

SHG signal with itself to give FHG. On the other hand, if we have an external
source for the 2w signals we can polarize the input waves to make this

mixing process possible as well.
3. Angular Half Widths

We calculate the angular half widths for these two mixing processes

by the same procedure used in Egs. (3.28) to (3.32)

W+ 2m -5 3w
X n_(3w)
8011 ext = . > (3.145)
2.25 £ tan p ne(e,w) )
and
o+ w2 b
" n_(Lw)
8 . = s - (3.16)
AL exy 2.25 # tan p nE(;,hﬁ
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IV. EXPERIMENTAL AND THEORETICAL WORK ON HIGHER ORDER NONLINEAR

PROCESSES 1IN CdGeAs2

A, INTRODUCTION

Since CdGeAs2 has the largest figure of merit for second order
nonlinear optics processes,h and since, as shown in Section III, it can
be phasematched for third and fourth harmonic generation processes, we
undertook an experimental and theoretical investigation of these two
interactions. The results on THG experiments in CdGeAse, and the theoretical
models used to calculate contributions to the third order susceptibility
from bound electrons and free carriers are discussed in Appendix II.
This section gives a summary of the application of the Bond Charge Mode199-101
to the calculation of fourth harmonic tensor coefficierts. The results of
the third harmonic investigation of CdGeAs2 are discussed and the potential

power outputs at the third caud fourth harmonics of 10.6 um are examined.

B. THIRD HARMONIC EXFERIMENTS AND THECRY

1. Separation of Compcnents by Svmmetry Arguments

One of the principal points made in Appendix II is that nonlinear
fusceptibilities of various orders arise from different mechanisms in a
semiconductor material. In particular, we note that isotropic materials
have non-vanishing odd order susceptibility tensors while even order sus-
ceptitilities equal zero from symmetry considerations. In particular, for
semiconductor materials odd order susceptibilities arise from two sources:

electrons localized in crystal bonds, which reflect the symmetry properties
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of the crystal lattice, and the free carrier cloud, which has isotropic

symmetry. For crystals with 2 m symmetry, like CdGeAs,, we can compare

o3
nonzero third order tensor elements with those of systems with other
symmetries. Such a comparison is shown in Fig. 17 where the nonzero third
order tensor elements for uniaxiel L2 m symmetry are obtained from Fig. 10.
The fact that the 16 element is common to the case of L2 m and isotropic
symmetry suggest that this tensor component arises from a component of the
crystal with isotropic symmetry, such as the free carrier cloud. The

element cy T 3c18, however, appears to arise solely from a component
reflecting the symmetry properties of the particular crystal class, i.e.

the electrons localized in the bonds. From Table 3, moreover, it is

apparent that one can separate these tensor components, and hence the bond
electron and free carrier effects, by doing different phasematched THG
experiments. These points are summarized in Fig. 18. As discussed in
Appendix II, we have performed phasematched Type I ard Type II THZ to
measure the third crder tensor coefficients. Until now the only measurements
of third order susceptibilities in semiconducters have been carried out by
mixing experiments (2&1 "oy, = wB) in a nonphasematched configuration.
Consequently it was not possible to measure the tensor cc~fficients independ-
ently, as we have done in CdGeAs, .

2. Free Carrier Effects for Third Harmonic Generation

In Section III of Appendix II contributions to the third order suscept-

-109
ibility from free carriers are discussed.107 109

Since we were doing harmonic
generation rather than mixing experiments (where frequency differences can

get close to inverse relaxation times), the only contribution to the nonlinear

T

_‘)'3_




THIRD ORDER TENSOR ELEMENTS

ISOTROPIC AXIAL CUBIC UNTAXIAL

SYMMETRY  SYMMETRY  SYMMETRY  SYMMETRY
0 g ‘1173¢g 11 7 3¢
0 C16 ~ C18 0 C16 ~ C18

Cjg == NON-ZERO FOR ALL MATERIALS
=> LIKE AVERAGE REFRACTIVE INDEX

Cg-Cig ~ =>  INDICATES DIFFERENT BEHAVIOR BETWEEN
z DIRECTION AND xy PLANE
—> LIKE BIREFRINGENCE

¢1-3c;g  =>  INDICATES DEPARTLRE FROM |SOTROPY
—> PURELY DEPENDENT ON CRYSTAL
SYMMETRY

FIGURE 17. Analysis of THG tensor components by symmetry arguments.
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SEPARATION OF BOND ELECTRON AND FREE CARRIER EFFECTS
BY PHASE MATCHED THG

l

l

SYMMETRY OF CRYSTAL CLASS 42m

¢fC —> SYMMETRY OF ISOTROPIC ELECTRON CLOUD

TYPE I THG:

) BE
Copf < (€p1 - 3Cyg)

TYPE II THG:

BE
Copf = (€11 - 3¢Cyg)

BE + FC
+ lege - €13

+ (e ) BE * FC

FIGURE 18. Bond electron and free carrier contributions to third order
susceptibilities,
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susceptibility comes from the nonparabolicity of the energy bands.

We have extended the work of Kanello and Kildalh to the calculation

of third order nonlinear susceptibilities in ternary chalcopyrites. The

Kane model has been used Successfully to describe the third order properties

of elementary and binary compounds.loe'115 Details of the calculation of

the energy band shapes by our extension of Kane's model are given in Appendix

II. It has been demonstrated bty several authors that the third order

susceptibility due to nonparsbelic energy bands is given bylo7-lo9

h b
e - d Ec,v
; 2 T (&, )
24% VainwB(wl+ ab+ué) k ’ hkibkjbkkbkl

€ijke (“’1“’2‘”3 ) ==

(k.1)

where fo(E) if the Fermi-Dirac distribution function. Here we pick the

+ sign and Ec for n-type material, and the - sign and EV for p-type

material. A comparison of the energy band diagrams for chalcopyrite and

sphalerite materials is shown in Fig. 19. The parameters used in this model

for CdGeAs2 are also listed. As discussed in Appendix ITI, the results of'

this free carrier model for P-type CdGeAs,, are

2
(p) s x 1527 (p) _ (p) -27
= =2.5X - =
-P27 =)
™ L 15k 1027 C(n)_c(n)=6'3x1028N
16 18 16 (4h.2)
where N is the free carrier density. We use the fact that for
an isotropic medium, in this cese the free carrier cloud, 1y =‘3cl8.

We derive the following values for 11 167 and 8 from the free carrier

model using a carrier concentration of N = 1.24 X lOlo holes/cmB. (Note:
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SPHALERITE COMPOUND CHALCOPYRITE COMPOUND

.E Ec
‘E T_/
Ec
'-—_,,/////”' EEC::Eﬁ4-E:G
EG | :
k o k
- o — = E ={)
R \E : S.. By,
v E
' V
2
E\fz
-13 lzs
-\Eva \ E
Vs

FOR CdGeAs, Eg = 0.53eV, A=038ev, 8=-0.25eV

E, =0.20eV, Ez=-0.32eV

FIGURE 19. Band structure of sphalerite and chalcopyrite compounds.
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the value N = 5 X 1016 holes/cm3 given in Appendix II is incorrect).

-11
= =1, X
¢y 1.49 X 10 esu
Free carriers

-11

c18 = =0.5 X 10 esu (N = 1.24 X 1016
3
- holes/cm”)

= -3.1X 10
cl6 3.1 X 10 esu

These should be compared with the results of the Rond Charge Model

-11
= 1.8 %
cll 10 esu
-11
clB = 1.3 X 10 esu Bond Electrons
-11
g = 1.4 x 10 esu

3. Comparison of Theory and Experiment for Third Harmonic Generation

We can compare the values for the effective c's for Type I and
Type II THG by using the expressions in Table 5, keeping in mind that we
must use the free carrier and bond electron values in accordance with
Fig. 20.

Type I : c; = - % (cll - 3c18)BE cos39I

2 1 BE 2
. = g3 ] -2 e
Type II : cyp = §in p cos p [2(cll Jcla) cos €.

. 2 2 BE + FC
+(c,, sin“®__+ c_, cosp__) ]

16 II 18 17
(4.3)

In our experiments the phasematching angles are 8_ = 500, 9

I
COS P = —l—

= -

IT = 600, and




The crystals used were cut for maximized ¢ angle in each case.

Therefore,
11
es

't

“

= -0.14 X 10~

0
I

c -0.52 X 107 = oxm

IT

(b.)

By using the experimental setup shown in Fig. 20, we observe both Type.I

and Type IT THG signals in CdGeAsz. As described in Appendix II we observe
a signal at 3w by nonphasematched mixing of the second harmonic signal with
the fundamental 2w + @ = 3w . Since the value for dlh of CdGeAs2 is
knzwn to be 8.4 X lO-7 esu, by measuring direct Type II THG in the same
crystal, we obtain a value for the ratio cII/dlh° Finally, by observing
Type II THG in one crystal and Type I THG in a second crystal with the

same experimental setup, one can get the ratio ¢ A phasematching

/e
curve for Type II THG and its P3(w) power dependence are shown in Fig. 21.

From these experiments we have determined c_ and ¢,y to be

I I

lesi 0.6 X 107 esu

IA

Measured

- -11
|c | 2.5 X 10 esu
= (4.5)

Since our signal tc noise ratio was only 2 : 1 in the cr measurement

we must put an error range of + 50¢ on this measurement. It does, nevertheless,

compare favorably with the value given in Eq. (%.4) from the Bcad Charge Model

calculation. However, our measured and calculated ¢ differ by more than

II

one order of magnitude. There are several reasons to explain this discrepancy,

all of which bear further investigation.
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TYPE 11 THG TUNING CURVE

Exter 1al angular half widths
. 0 o
1 Dmeas. " 107 1

AP T— 4

500 external rotation

MW
I
(&)

oo 20 __20 10 3 !
.
BURN INTENSITY
THIRD HARMONIC POWER
Yy
100} 3

L
T :
i ]
:
3
l A A A AL A )
50 20 o) - 2 L} 'i
P' (hwW) 4

FIGURE 21. THG tuning curve and power dependence.
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Since the 1y coefficient contains a contribution from free
carriers which have been calculated from a modified Kane's model, we
might question the accuracy of the carrier concentration measurement.
The carrier concentration was measured by the Van de Pauw technique,ll&'117
which for bulk samples with possible microcracks and grain boundaries does
not have as much accuracy as we would like. It is not unreasonable that our
2arricr concentration measurement could be wrong by a factor of 2. Since
c;g and ¢ g in Eq. (4.17) are proportional to N from the form of the
equation a factor of 2 error in N gives a factor of 3 error in cII' {
One car :asily attribute part of the error to the experimental measurement
process since our crystal must have three angles 8 , ¢ and p aligned
correctly. Moreover, even though we tried to perform this measurement with
the laser unmodelocked (and with no mode beating), fluctuations in the laser
appear at least three times as large in the third harmonic fluctuations.
The dlh coefficient of CdGeAsg, as discussed in Appendix II, is accurate

to only + L0 . The ratio ¢ is accurate to + 25¢ .

11/
Since the Type II THG tuning curve shown in Fig. 21 compares well with
theoretical predictions for the halfwidth, it appears that we were not thermally

heating the sample. The angular difference of 12° (internal angle) between
Type II SHG and Type II THG, measured in the same material, is in good
agreement with the predicted angle difference in Figs. 3.6 & 3.7 . Consequently
it does not appear that we were producing additonal free carriers to break
phasematching. To chenge the birefringence by 0.0024 we only need to inject

an additional N = 5 X 10%° carriers/cmB, which would not affect the value

of cII as much as indicated in our measurements.

%




By far the most important point to consider is that our modified
Kane model is too simplified a picture. Several workers already observed
that Kane's model leads to predicted valuves of effective masses and third
order susceptibilities 2 or 3 times smaller than actually observed. As
noted in Appendix II, Cardona118 in reflectivity and Faraday rotation
measurements, and Wynnell9 in third order susceptibility mixing experiments,
both observed such deviations of Kane's model's predictions from experiments.
In addition, Aspnes120 has shown that contributions to the second order
susceptibility from several points in the Brillouin zone must be considered.
He discussed the enhancement of the second order susceptibility from small
gap regions throughout the Brillouin ;one, rather than only at the direct

gap. Much more work on the band structure of CdGeAs2 needs to be dcne before

these points can te clarified.

L. Efficient Hermonic Generaticn in CdGeAs

2

At present all measurements in CdGeAs2 have tcen made with 200 nsec
pulses from TEA-CO2 lasers. Our 1 nsec system described in Chapter II was
not operating well enough to use for measurements. From Table 3 we can

derive expressions for the conversion efficiency into the nth harmonic by

taking the ratio I(nw)/I(w). =

&(2w) lr(1—6)(16 %) 7 ot ! 2(t2 t.) I(w) exp(- 2(a. + 20 )21
w) =7 t nk 1t w) exp[- 5(a, 1
2

1,2,16.2, 2. (3% Cepp £ 2 p

&(3w) = <g> (c—6) (16x )<——ﬁ-— (ti t3) T (w)exp|- %(a3 + 32, )2]
1316,3,1 . 2" Parg I 2 4 1

E(hw) = (2) (c )7 (1617) = (tl th) I (m)exp[-'gfah + hal)ﬂ]

n )

(4.6)

:
1
;
“i
4
|
1
i




Here &(nw) is the power conversion efficiency into the nth harmonic

and I(nw) is the intensity of the nth harmonic. In our experiments,
for example, we have measured conversion efficiencies of 24 for SHG and
lO-EZ for THG in a 2 mm long non-AR coated, p-type crystal with input
intensities of 20 Mw/cmg. Kildal® has measured 2 T4 SHG conversion efficiency
for a similar 9 mm long p-type crystal and «vu MW/cm2 input intensity.
Research on CdGeAs2 crystal growth at the Center for Materials Research
at Stanford indicates that this material can be made to grow n-type by
doping with indium or vanadium. Moreover, crystal growers.at both Stanford

and Lincoln Laboratories have produced 1 cm long pieces of CdGeAs Seeded

X
vertical Bridgeman growth using [111] oriented seeds looks promising as a
technique for growing large single crystals. Also, by using 1 nsec pulses
and focusing to intensities of 100 MW/cmE, it is possible to reach 604 SHG
and 30% THG conversion efficiencies in 1 em long crystals. As mentioned in
Chapter I, turn densities in p-type Ge for a 1.7 nsec pulse have been
measured at 1 Gw/cme. From the conversion efficiencies quoted above, if

the burn density of CdGeAs, is close to 1 Gw/cm2 one would expect 50 - 804

2

conversion to second and third harmonic in a 1 cm long crystal with tight

0 has shown that there is saturation of the SHG

focusing. However, Kildal
signal at high power densities with 200 nsec pulses. The origin of
saturation appears to depend on some nonlinear absorption mechanism involving
the SHG signal. No free carriers produced by multiphoton absorption were
detected; this is the primery saturation mechanism in Te,lel-122 which has

a smaller bandgap than CdGeAs,. Further work on the nature of the saturation

* mechanism in CdGeA52 is essential, particularly with 1 nsec pulses, in order

to fully evaluate its usefulness for high power infrared optics. We have
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examined phasemetched THG in liquids and gases as an alternative to THG

in CdGeAs,, but no experiments have been performed to date.123

C. FOURTH HARMONIC THEORETICAL PREDICTIONS
In Section II of Appendix IV the basic approach of the Bend Charge

Model is outlined. Starting from Penn's model102 for the dielectric constant

103

of a semiconductor and Phillip's and Van Vec’nten'sloh theory for the

dielectric properties of semiconductors, LevinelOl developed the Bond Charge
Model to calculate second order nonlinear susceptibilities of binary semi-

105

conductors. Chemla later extended this model to ternafy COmMpounds, and

the paper given in Appendix II is a generalization to third order suscept-
ibilities.

In this section we apply the Bond Charge Model to calculate the
fourth harmonic tensor coefficients in CdGeAse. We begin by writing the
polarizability of a bond in the language of Phillip's mean energy gap Eg

3DE
+ eozl) = (2a) > (4.7)

E
g

Q= -]3-'((1

[

5.3 X 10—9 ce , E = meh/2 ne . 13.6 ev. D is a

2, 2
where a_ = h"/me
correction factor near unity to account for effects of ~ore electrons and
Eg is given by

Ei = HE'FCQ (ll..8)

The homopolar and heteropolar energy gaps H and C are given in Pnillip's

s e e e oy = it e o S e L TR o e R et b S o e i e T s A i T




theory by

2| %y 2
Chp=Ll-5e | —-—| exp [- 5 ks(rA+rB)]
a T
i =" - 5 -
2 @y mwgy)T (g - )
AB

where Zp 2 Ty » Ty, B8TE the valence number, covalent radiusl06 and the
core radius of the A atom in the AB bond, and ks is a Thomas-Fermi
screening constant. Higher order susceptibilities arise from nonlinear
variations of the mean bond polarizability « with respect to electric
field. We can write the dipole of a bond in terms of a Taylor series

expansion of « :

Pi =a,, (E) E,

0%y
Pp= | @)l o 1 lg o 0By *ooer | By (4.1¢)
J

The derivative terms give the nonlinear susceptibility components for each

bond. TFor the case of FHG we have

1 o a4y
6 = —22 (4.11)

ijkfp = 3t
bEj OE, OE, E-o0

As discussed in Appendix ITI, we assume that we cen talk about these higher

order polarizabilities in terms of a bond chargelo:L q , located at distances

rA and rB from each atom in the bond. We calculate the variations in «
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with electric field by examining the variastions in Ty and ry with

electric field. It is shown in Appendix II that

a E

ArA = -ArB = 4 E parallel to bond axis;
g
o5 o} 5
Ara= 3 Ar_ = — E perpendicular to bond axis.
A 2 B 2
2rAq Equ

(4.12)

Since the variations in r, and rp are second order in E, , we

retain only even powers of ?L . Consequently the odd order derivatives of

a

13 with respect to FL vanish:

. 2p + 1
) hay
ol

A1l order derivatives in EII are retained. By using Eq. (4.13) and

; Kleinman symmetry one cen show that the elements of the fourth order

susceptibility of a bond are given by

3
) _1°°‘n#0
zzzzz || 6 N E?
|
3
6 = 6 = L il 0
XXxxx | 6 o =
> E
L + all permutations
3
5 B YO v =1
= = Z =
XX222 ||L bEx oE, bE2

f (4.14)

- 67 -




ke o sl s oo

By combining expressions Eq. (4.7) through (4.14) as discussed for
the casz of THG in Appendix II, we obtain an expansion for gII(AB) for
the fourth order polarizability of the bond between atoms

given by the following:

6|l(AB) = —="

g = 2
9 A
ofz
be A
g2=Tr3'+
9 A
-be2 ZA
Qe |,

Here q 1is the bond charge given by

-

u(efh - l)hiH + u(efi - l)giC + u(6fi - l)hlgiH
+’+(6fn - glC - 8(hlg2 + hzgl)HC

2)
-nge(hfh - 1)hlh2 + 2(1+fi - l)glg2 - 2(h3H +‘g3C)]

e

=~

+ 0.4(1 - fi)]e




where n is the index of refraction, fi the J'.onicitylo3 and the factor

3 arises from the fact that ~e have a tensor derivation. 1In CdGeA52 we
}

must derive the value of the polarizability for the CdAs bond and the

- ,

11 Te spectively.

Finally we must sum over the contributions of all bonds in the unit

GeAs bond, denoted by 511 and 6

cell of volume V.From Fig.3.1l we have two nonzero components of the macro-

scopic FHG tensor. 1In terms of the parameters r and o , which are a measure

of the distortion of the unit cell, we can exprass bl(h) and bl('j) as
the geometrical sum over the bond polarizabilities
16
hr 20, + Y1 204 .-
b = [(l+—-—-)5 -l +=—=+%)5 ]
%) " 4 /3y 3 37°n 3 93°°1
16 [
2T Oy s+ 2T gy .-
b = (L=-=+32)6 -(1L -5 -9 ]
15) ~ 4 /3y 3 311 3 3°°1n
(k.17)

c
where 7T = %8 L0 = % -1, and e and ¢ are the lattice constants. By

substituting the expressions Eq. (4.15) for 5;_1 and 6;.1 into Eq. (4.17)

(psing values of the parameters for CdAs and GeAs bonds found by interpolation

101,103-104

of values for other bonds, ) we .derive the values

2.80 % 10'18 esu

1Py (u)|

Ibl(5)| = 0.72 X lO-:L8 esu Units cm9/2/ ergB/2

(4.18)




This is the central result of this secticn. The only experimental results

on phasematched FGH in any material give a value of beff‘a 10~2l esu for

lithium formate.121+ The large nonlinear response of CdGeAs2 is apparent

in the three orders of magnitude difference between the two susceptibilities.
Finally we can estimate the conversion efficiencies to be expected for

FHG in CdGeAs2 with 108W/cm2 input intensity in a 1 nsec pulse. We assume a

1 cm long, AR coated crystal. From Eq. (4.6) we calculate a conversicn

1

efficiency of 10-84 for a typical p-type crystal (al = 0.5 em ’

o = 7.0 cm-l).

For a high resistivity sample (Oi'“ 0.0L em L y ~ 4.6 cm-l), and an
input intensity of lGW/cm2 the conversion efficiency should be about 1o'u%
for FHG. It appears that FHG in CdGeAs2 will never be a practical source
of infrared radiation, but coupled with SHG and THG results, it may provide

additional insight into the theoretical models for nonlinear susceptibilities.
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APPENDIX I

CALCULATION OF NONZERQO ELEMENTS CF nth RANK SUSCEPTIBILITY TENSORS

In this appendix we examine a very strvaightforward procedure for

determining the nonzero elements of a nonlinear optics susceptibility

tensor to any order from one of lower rank. Since most work in the past

has required consideration of conly X(l) s X(2) and sometimes x(3) tensors,
125-127

the direct inspection method has been most often used to simplify the

forms of tensors. However, one can easily see that this method can become

quite cumbersome for higher rank tensors. The total number of elements in

a tensor rank n is 3n , corresponding to a susceptibility of order
(n-1)

(n-l), namely ¥ . For fourth harmonic generation for example, n =5

and 35 = 243 elements. For a possible fifth order process n = 6 and

6

3" = 792 elements. Nevertheless, the direct inspection method has been

1-8
applied to fifth and sixth order tensors.

From another point of view, one can apply the methods of group theory
to the task of expressing a tensor of rank n in terms of its irreducible
129-151

components of lower ranks, This technique has been used successfully

in nonlinear optics by Jerphagncn.l52 The use of such techniques, particularly
the realization that one can very clcsely associate the properties of higher
rank cartesian tensors with higher order spherical harmonics, leads to a

very elegant, but also very practical formulation of higher order tensors

for many physical problems.135 This method moreover, provides the only simple

way for finding the exact reletionships between the nonzero elements of a

tensor of rank n .
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In this appendix we simply borrow some points from these more
general trest.uents and consider the case of nonlinear optical susceptibility
tensors. There are three clesses of symmetry conditions we must consider:
the symmetry of the particular crystal class in question; overall permutation
13h . 135
symmetry; and Kleinmen symmetry. For a tensor of raak n &nd a
harmonic gen:retion process, n - 1 of the frequencies involved are the

same. Overall permutation symmetry allows one to permute n - 1 of the

tensor element subscripts without changing the value of the coefficient.

g . L g aghee | e ke o s ok il i ekl b M e B i

For SHG for exemple
d, = d, . (I.1)

If o1l of the frequencies in question are within the transparency range

; of the material, one often can neglect dispersion in the nonlinear
i« susceptibility. 1In thst cese Kleinmen symmetry holds, and one can permute

8ll n subscripts. Again for SHG we have

I.2
gk = Y & %t (I.2)

For a tensor of rank n , the application of Kleinman symmetry mekes the

tensor fully symmetric. The total number of independent elements is given

129 ]
by

<n + 2> _ (n+1) (n=+2)
B 2

n

For overall permutetion symmetry the tensor is symmetric in only n - 1



()

. R 12
indices. The total number of independent elements is given by

3 (n-fl) _ 3n(n+1)

n-1/ 7 2

-

Finally, from above, for the case of no special symmetriec there ere F
independent elements. The factor 3 , of course, comes from dealing with
a space with three dimensions x, y, z. Table I.l summarizes the number
of independent elements for different symmetry conditicns, before the
application of the properties of the crystel cless.. Kieinman symmetry is
a very powerful condition for reducing the number of independent tensor
elements end it should alweys be applied first before the symmetry properties
of the crystal are considered.

Next, we can write a tensor of rank n in two ways:156 first it is

the tensor product of n vectors

-tV o Wae..... ® t&) (1.3)
Secondly, it can be written as the tensor product of a vector with a
tenscr of rank (n - 1)

ijkl..... p i jel..... p (1.4)

In particular, one can write esch higher order nonlinear optics tensor as

the tensor product of a vector and the previcus lower crder tenscr.

' S s ® o (L)

ijk i ik
(3) (@)
Xij = B @ X jk1 (T=5)
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The prescription of “his 2rpendix, therefore, is to first apply
Eq. ().4) to gercrete the esppropriate nonzero elements of the n renk

tensor, but using the ¥leinwen symmetry reduced form of the (n-1) renx

tensor. Then, the properties of the particular crystal symmetry can bhe

epplied to the already much reduce? tensor. As s practicel example, we

can genereste the independent elements of yfsz and *fggz . We first

note that the linear susceptibility ygi) has six independent clements

(11 22 33 32 13 12) o ygi) (X.6)

(2)

where 1, 2, 3 gre short notati ‘or X, ¥, 2. To generate yijk we
write
fa -t @ KW
= (123) x (11 22 33 3 13 12)
(1.7)

If we write down all the possible combinstions in the product and keep

only the independent ones we have

~

(111 112 113 122 123 133 222 223 233 323) xi;g (1.8)

Note, there are ten independent coefficients as fredicted in Tzable I.1

for Kleinman symmetry.

(3)
of Yijkl 5

Using Eq. (1.2) we can determine the coefficients

(3)
Xijki

v @ x{) (1.9)




TABLE I.l

INDEPENDENT FLEMENTS OF A TENSOR OF RANK n

-~

Tensor Susceptibility |[No Symmetry |Overall Permutetion | Kleinman
Rank (n) jOrder (n-1) (3n) pon——— 3%@ S'(I;L::;!;j1+o)
2 1 (o) 9 - 6
3 2 (2w) 27 18 10
4 3 (3w) 81 30 15
5 b (bw) 2u3 L5 21
6 5 (5w) 729 63 e8




Writing out the product and keeping the independent elements gives

f11 12 112 1222 2222 2023 1333 2333 3333
\ 1133 1233 1122 1322 1123 2233 (3)
» X5 3ks
(1.10)
Hore there are fifteen independent coefficients, egain in agreement vith
Teble I.1. At this point we could apply the crystal class symmetry
properties, i.e. k2 m symmetry fo» CdGeAs2 and obtain the final expressions
for xiig and Yfggl . We would obtein the tensors shcwn in Fig. 10.
The procedure outlined here wee used to celcilate the FHG tensor for CdGeAs2
also shown in Fig. 10. The elternative approech of stariting with the 243
element generel tensor end using the direct inspection method firs', proved
too awesome to this author. Finelly, this technique was used to calculate the
nonzero independent elements of the fifth harmonic tensor, although it is .ot

shown in this manuseript.




EXPERIMENTAL AND TIEORETICAL STUDIES CF THIRD HARMCONIC GENERATION IN

APTENDIX 1I

THE CHALCOPYRITE CdGeAs

2

The extraordinarily large third order susceptibility measured for

CleeAa2 in THG experiments provoked a detailed investigation of the origins

of higher order nonlinear susceptibilities in semiconductcr crystals.

paper provided in this appendix summarizes the essential features, both

experimental and theorctical, of the large third order response in CdGeAs

The three principal results of this paper are the following:

1. All noulinear optical susceptibilities are due to anharmonic

response of electrons. However, by symmetry arguments one cen conclud»

that even order susceptibilities should reflect properties dep nding on

crystal symmetry alone. Consequently they should only involve electrons

localized in the crystal bonds.

hend, are still present in isctropic media.

free carrier cloud should exhibit odd order response, whereas its contrib-

0dd order susceptibilities, on the other

Consequently, the isotropic

ution to even order susceptibilities should be zero. This suggests the

interesti..g possibility of providing direct control over the megnitude of

higher order susceptibilities by controlling carrier concentration.

For

even order susceptibilities we wish to have a high resistivity material

to eliminate as many absorption mechanisms as possible. For odd order

susceptibilities the situaticn is not so obvious. Larger free carrier

concentrations lead not only to larger nonlinear coefficients, but usually

to larger ebsorption losses es well.

optimum nonlinear response.

At scme concentration there is an




2. Cd-GeAs2 hes enouph birefringence vo allow both Type I and Type IT

A careful exemination of ncnzero elementg of third harmenicz tenscrs

THG.

for various sywmetry materials revesals, »s discussed in Section IV, that

one can separate bond electron fron free carrier effects by phasemstching

experiments =2lcne.

3. The measuremen’ of several higher order nonlineer cpticel
susceptibilities in the some msterisl provides a new technique for studying
some properties of electron charge clouds and bend structure in semi-
ocoriductors. All order susceptibilities have contributions from bond
electrons, which are proportionasl to higher order multipole moments.

Such an investigetion could provide further insight to the models cur.ently
used to describe nonlinear opticel response, such s the Bond Charge MoA~i
or the Bond Orbitel Model. Free carriers, cn the other hand, ere respcnsive

to nonparebolic energy hands =rd provide a meaxns cof testirg Kane's Model

for energy band shepes, for exemple. These points h2ve been discussed

further in Section IV and are alluded to in the following paper.
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Abstract—Experimentsl and theoretical studies of third-harmenic
gencration (THG) in the chalcopyrite semiconductor CdGeAs, are
presented. The phase-maiching configy cations for THG are snalyzed from
the irreducidle components point of s1-w. A theory of the bound electren and
freecarrier contribution 10 the third -der suzcept'sility is presented. The
experimental results are glven. The effective nonlinear ~oefcient for tvpe-il
THG is mainly due 1o the Jree-carrier contribution, and for » hole concen-
tration of S X 10" ‘cm’ it is measured 1o be (13 =~ 6)10°: LSU. The prac-
tical applications of THG in CdGeAs, are dis.ussed.

1. INTRODUCTION

S INCE the first demonstration of phase-matched
second-harmonic ger eration (SHG) in AgGas$, (1)
the second-order optical effects of the ternary compounds
with chalcopyrite structure have been widelv studied
[2]-[6]. Their large nonlinear susceptibilities together with
their natural birefringence make them very attracuve for
nonlinear optical devices. Nonlinear optical mixing has
been recently achieved in ZnGeP, [7). AgGaS, [8]. [9]). and
AgGaSe, [10]. High efficiency sscond- 2nd third-harmonic
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Experimental and Theoretical Studies of
Third-Harmonic Generation in
the Chalcopyrite CdGeAs,

DANIEL S. CHEMLA, R. F. BEGLEY, an0o ROBERT L. BYER

generation (THG) has been demonstrated in CdGeAs,
(1), [12).

In additun to its large second-order nonlinearity
CdGeAs, has a correspondingly large third-order suscep-
tibility. In this pager we report both theoretical and ex-
perimental studies of the third-order susceptibility of the
H-1V-V, chalcapyrite compound CdGeAs,.

The third-order susceptibility is a tensor of rank 4
[13]-{15] In the case of THG this tensor ¢, is sSYmmetric
in the three last indices [16) and a contracted notation can
be used. Thus ¢, 0, — ¢, where m runs from O to 9 {16) and
the nonlinear polarization can be written as

P’ = ¢, (3w, 0, w, W)E"E,E” = ¢, 8. a)

The Einstein summation convention is assumed and &, is a
ten-element row matrix defined in Appendix I.

In a crystal. far from the electronic and vibrational ab-
sorption regions, the susceptibilities exhibit a very small
frequency dependence. Therefore, the Kleinman [17] con-
jecture is valid and c,,a is independent of the index per-
mutation so that only 15 of the 81 components are in-
dependent.

The intrinsic symmetry of a tensor is better understood
when ase is made of its decomposition into a sum of
irreducible components [1S]). The decomposition of the
symmetric fourth-rank tensor ¢, involves [19] a scular
(weight 0, one component) a deviator (weight 2, five com-

- 94 -




n

ponents), and 4 nonor (weight 4. nine components). The
scalar: ¢® = ¥, c,,,, is nonzero for all media and describes
the geometrical average of the Cartesian componenms. The
deviator: ¢,,' = ¥, 00 — 1/3¢%8,, is nonzero for the
uniaxial and biaxial crystals and describes a difference of
behavior between the crvstal axes. analogous to the
birefringence. The nonor: .0 * = c0 = 1/7 5, 8,4,
cnhl) + 1/35“.,‘.1 + ‘u‘m + ‘n‘;l“zr.t ('nn) dcscribc: ‘hc
deperture from isovropy. In the expression of ¢, % ¥,
denotes the summation cver the distinct permutations of
the four indices. The three irreducible components obey
different transformation laws and therefore have diff=reni
contributions to the effective third-order susceptibility un-
der phase-matching conditions.

Because the point group of CdGeAs, is 42m, the third-
order susceptibility tensor can be written in the contracted
notation {20]

-‘
t“ s e t'..('. .o

TR ST UMY ST R ()

2 TR ST TR

According to the Midwinter and Warner classification [20)
there can be three types of phase-matched third-harmonic
generation (PM-THG) in a cryvstal belonging to the class
42m. The corresponding eflective nonlinear coefficients for
a positive birefringence crystal are [20)

&) = —5(t||—k..)cos'lsin40, ete+e—o

(3a)

en = e,y — 3c,0) cos’ 0sin’ 2¢

+ {1e = ¢14) cos’ 0 + ¢,4) sin’ @ cos a.

etet+o—0 (I
e = [Mey — 3cy4) cos 0sin 4¢] sin a cos’ a,
ct+o4+o0—0 ()

where the angles 8 and ¢ defirie the direction of propaga-
tion for phase matching in the vivstalographnic axes A Y2,
and a is the angle between the fundamenta! field and the
XY plane.

The combination (¢, = 3¢,4) is 2 component of the no-
nor. It characterizes the departure from isotrop inthe XY
plane. The combination (c,e — c¢,s) describes the difference
between the direction Y and Z and appears in the deviator.

itis well known from the theoretical {13). [21])-{26] and
experimental [27)-{30) studies of third-order ncnlinear
processes in elementary and binary compounds that in
semiconductors the third-order susceptibility arises from
two distinct contributions:

Cim = ‘.‘"IC + tl..‘ (‘)

IFRE JOLRNAL OF QUANTL M ELECTRONKCS, 2aSLARY 1973

where ¢...7¢ is the contribution from the free carniers and
¢, is the contribut:on from the bound electrons

In the crvstal the bound electrons have the ssmmetsy
d2m and contribute to all the effective nonlinear
coefficients. However, the free-carrier gas has a higher
symmetry. For example. the free-carrier contribution to
the second-order susceptibility vamshes in the dipole ap-
prouimation even in a noncentric semiconductor. In a
crystal with point group $2m the tree carriers are expected
toheisotropicinthe A'Y plane andthereforec,,’t = 3¢,.’ . In
type | and tvpe lil PM-THG only the bound electrons con-
tributetothe effective nonhnear coefficients. whereasiatvpe
11 PM-THG both the bound electrons and the free carniers
contribute. It snould be noted that thisresultis quite general
because in the majonity of cryvstal point groups the free-
carrier gas 1s isotropic or nearly isotropic in the XY plane.
The requirement of invariance uiidzr axial symmetry on a
tensor of rank n is equivalen: to the invariance under a rota-
tion 2x/mwithm > n.Inthecaseof THG the relevanttensor
isof rank 4. The possible phase-matching configurations for
the free-carrier gas are the same as for say. an hevagonal
crystal. From (20, Table 1 ]it can b. seenthatinthiscasetype
1 and type HI PM-THG are impossible. In the majority of
semiconductorsthe free-carrier contribution "0 PM-THG is
of type 11.

In all the previouslv reported determination of the
third-order susceptibilities of semiconductors only mixing
experiments (w;, + w, - w, = w, with w, > w,) had a sub-
stantial coherence length. Thus selective phase matching
could not be used to separate the two contribv(10ns 10 ¢, m.
The two effects wer= separated by varving the carrier con-
centration. In CdieAs, both type I (¢ + ¢ + ¢ — 0) and
type Il (¢ 4 ¢ + 0 — 0) PM-THG are aliowed 50 that free
carrier and bound electron contribution to ¢, can be
separated experimentally for the first time by choice of
crystal onentation.

Another aspect of this ssmmetry analvsis is that it
provides a useful guide to cvaluate the relaiive magnitude
of some irreducible components of unknow, high-rank
tensors like ... The irreduible components wer
weight of 1he tensor ¢, are a scalar and a deviatei The
bound elect:on contribution is related to the polarizaoility
[22]) of the bonds and the free-carrier contribution is
related to the derivatives of the energy with respect = the
wavevector [13]. From the linear optical and transp: -
properties of the crystal it is easyv to form a scalar and a
deviator. respectively. related to the bond polarizability
and the Jenivative of the energy. Therefore. an evaluation
of the ratio (¢,4 = ¢14)/ €14 €an be yiven for the two svstems
of charges within the crystal. Foc the bound electrons we
expect the ratio to be of the order of magnitude of (x -
X1)/xev Where x. and x, are the linear susceptibility com-
ponents. For the free carriers this ratio should be of the
same order of magnitude 2s(m — m_Y'm,, wherem and
m, are the effective masses of the carriers. For a p-type
CdGeAs, the rano 1s of the order of umity. for an n-1vpe
material it is of the order of 0.5 according to the effective
masses given in [31]
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CHEMLA ¢f of  THIRD-HARMDINIC GENERATION IN THE CHALCOPYRITE CDGLRAS,

The contnibution of the bound electrons 1s examined in
Section I1. In that section we generahize the “"bond charge
model™ [32] to a tensor form which enables us to calculate
all the components of the third-order polarizability of a
tetrahedral boid with axial symmetry.

In Section 111 we calculate the contribution of the free
carriers. This 1s performed by using Kildal's [31)
generalization of Kane's model [33] to crystils with
chalcopyrite structure.

In Section 1Y the experimental work is presented. The
effective nonlinear coefficients corresponding to type-l and
type-Il PH-THG have been compared. c;, has been
measured relative to d,.* by comparing PH-THG to the
mixing of the laser light with type-11 PM-SHG in the same
crystal but at different orientation 14,,°%¢ — 9,76 = ||®
% 1°) and to d,, by comparing PM-THG to PM-SHG.

Finally, the comparison of experimental and theoretical
results are discussed. The major practical consequence of
our work is to point out the possibilitv of high conversion-
efficiency type-11 PM-THG in heavily doped chalcopvrite
semiconductors.

11. THEORY OF THE THIRD-ORDER SUSCEPTIBILITY OF
THE Bounp ELECTRONS 1N A TETRAHEDRAL CRYSTAL

The most successful recent theory of the dielectric
properties of elementary and binary tetrahedral solids is
due to Phillips [34] and Van Vechten [2S]. Their theory
has successfully been extended to multibond tetrahedral
solids [36] and is the basis of several models describing the
second-order nonlinear susceptibilitics of various crystals
[32]. {37]-[40]. We present in this section a generalization
of the bond-charge model {32] to calculate all the com-
ponents of the noniinear optical susceptibiliti.s of different
orders, and we consider in more deta:i the case of the third-
order susceptibility.

To give a good description of all the components of the
susceptibilities we have to keep track of the tensor form of
the different quantities involved in the theory. The bond in-
terpretation of the Phillips and Van Vechten theory [36)
shows that a mean bond polarizability can oe
macroscopically defined in a way * hich includes the local
ficld <fTects by

o = Ya + 2a,) = Qa'D F *)
’

In (5) @, and a, are the parallel and transverse com-
ponents of the axially symmetric bond polarizability ten-
sor, 7, is the Phillips meun energy gap [34). [3¢]

El=E+C (6)

D is a correction factor close to unitv which describes the
core electron contributions {1%]. and a. = X% me? is the
Bohr radws and £, = me* "2 1< 1he hvdrogen onization
energv. In () the Penn correction factor bas heen
nezlected.
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Fig. . Vanstion of ithe bond-charge position under sn spplied field.

Following Levine [32] we assume that the nonlinear
susceptibilities arise from the variations of the linear
suscepiibility due to the applied field ¢. The microscopic
dipole of the bond p, = a,(¢)e, can be writien by expand-
ing the linear polarizability [41]

’l-’l"'+’l(’)+yl"‘+ Spa

- {(e,.).-- 4 (%‘:',-‘)..."

1(8a..
+3 (a.,a..),.."“ + }“' ™

This equation gives the relation between the different com-
ponents of the bond higher order polarizabilities and thz
derivatives of the linear polarizability components with
respect to the applied field

aﬂ.e & 1 G’a.,
B (-1-9—(-, )...7"" 2 (6(,6(.)...' ®

Itis important to note that the derivatives are evaluated at
vanishing field so that the model is dispersionless.
Therefore. Kleinman svmmetry [17] holds. iec.. 8,
Y: - e - -arcinvariantunder permutationsoftheir indices.

It is now nezessarv to calcuiate the field dependence of
the a,,. In the tond charge scheme [32] the motion of the
weakly bound a1d well-localized bond charge [42]. [43] ¢
is responsible for the bond polarizabilities. The
homopo!ar part £, and iie heteropolar part C of the mean
energy gap E, of the biatomic bond 4B are functions of
the covalemt radii {44) of the atoms z,, 7,.

If we interpret 7, and 7, as the distances between the
bond charges and the two atoms, then the variations of a
can be calculated through che variations of 7, and 7. Two
configurations have to be considered, as shown in Fig. 1,
depending on the directior. of the field with respeci to the
bond axis. First the applied field is parallel to the bond
axis, then &z, = — Arp = (a,. ¢.,/q) are first order in the
field. In the secoind case the field is perpendicular to the
bond axis and A7, = (a,%¢.*/2r.¢®) and Ary =
{,%_* 2raq™ are sccond order in the field. Thereiore. in
the expansion of the hinear polarizabilits in powers of the
apphed licid only the even powers of ¢, can appear.
Whatever is the dependence of the a,; in the field. their




4

odd-order derivatives in ¢, vamsh

whereas the odd- at.d even-order derivatives in ¢ . can be
nonzero.

This remark together with the Kleinman svmmetry {17)
conditions allows the cal-ulations of all the components of
the bond hyperpolarizabilities from ihe knowledge of the
mean linear polarizability alone.

Let us consider in detail the case of the second- an¢
third-order bond polarizabilities. The nonzero com-

ponents of the polarizabiliiies of the zxially symmetric
bond are

‘l - pnu
Y1 ™ Yeeeo

al - plll

Vi - Yiosee ™= hnu. Yii ™ Yeeer-

Using (8) and the Kleinman symmetry to rearrange the in-
dices
day) _ i&.) =
ﬂ; = (a!. ), ° (ah ) .

e 3G - 568 L - 103 -0

(9b)

(92)

.From the Phillips and Van Vechten theory we know a =
(@, + 2a,)/3 and therefore using ($), (8). und (9)

e sE) () a2
: algl... b 2 61.’ =0 b 4 m 100.
(10

The ab initio-calculations of Flytzanis and Ducuing [45])
have shown that 3,/8. << |. In the bond-charge model
this quantity goes to zero. It should be noted that in the
previous derivations of the bond second-order
polarizabilities {32] the factor 3 arising from the tensor
form of a,, and B,,, has been omitted. The fact that the
linear polarizability is nearly spherically symmetric is mis-
leading: even if @ >~ @ . > a, their derivatives are com-
pletely different. In the following we will use the relation a
> a; > a;, but carefully evaluate their derivatives ac-
cording to (9) and (10).

Let us write the expansion of the homopolar and the
heteropolar part of the mean energy gap in the following
way,

Ex(e) = E, + (ae)h, + (ae)'h, + - -- (11a)

ClO) = C+ (ae)g, + (ae)’gy + --- . (11b)

The quantities &, and g, are given in Table | for tne two
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TABLE |

Exonession 0F Tt Quastings Derinine Tine Demivarives OF THR
Homorotar asp HiTEROPOt ar PasT o Tie Mias Bosp ExirGy

Gar tor A Biatomic Boan 48

—& — -
 perallel 10 the bond ans
'__ﬁ z'+£'-) x-g;(,é‘—z"s)
- q o ’l‘ . q a rs

_ﬂ (" = ’.)E. - EA
q e +1n) @ +r)

§ perpendicular 10 1the bond anis

=T (:g_’f_';)
exp k,\ 2

R - h, =

be'1Z, Z, k. ("_ '_)
6 =0 L ™ 242 ["I ’.I £ > 3\, <+ ~
(,Z_ = Zg)] = (_,‘,'_a._ta)
A ry 2
M=o a=-M1_E

@ o tr)

configurations considered. Then expanding the mean
linear polarizability by using (5) and (11) gives

2 ’
mz (ME, + 2.C)a'e

ale) = a —

‘ ] - ?
+ (2—‘.)5'5—.3 [(4,, — i, + (4, 1)g;

+ 8(/4) g, — 2AME, + £,ON X a'd + - (12)

where f, is the ionicily and £, = | — /. In deriving (12) we
have used Levine's {32] d:finition of E,, and a is evaluated
according to (195).

The relcvant components of the bond polarizabi' =3
are easily caiculated from (12). (10), and Table I. Equar...n
(12) has been written in a way which niakes directlv ap-
parcnt the ionic, the covalent. and the mixed co~tributions
to the hyperpolanizabilities.

Since the microscopic analogs of the Miller's delta {46!}
(i.e.. 8'a’ ana x/a®) are very simple functions of
macroscopically defined quantities like f; and r, and r, the
local field efTects [47] are automatically taken into account
in our calculations. Levine [22], [38] gives an expression of
the bond charge magnitude which g:ves the best fit witk:
the observed second-order suscep*ibilities of binary com-
pounds. He uses a scalar modcl where the different com-
ponents @ and a; are not aistinguished. For simplicity,
we use his result modified to include the factor 3 arising
from our tensor treatment.

Te caicalate the nonhnear suscepribility of the crystal
we have to add the contributions of the different bonds

N -




CHEMLA ¢f 4l TINAD-NARMONIC GFNERATION 1N THE CHALTOPYR TE CDG" AS,

136]. [41)

i y ™
e = Y cos 0. coso,,”
.

o8 Ona'"" cos 60,y 0" 13

where the index (s) covers the different bonds in the umt
celi whose volume is V. The capital indices (7, /. K, L) refer
1o the crystal axis ( ¥ Y Z), whereas the miner indices (i, /. k.
Iy* 1efer 10 the bond axis. If, using the axial sym.netry of
the bond. it is always possible to choose the microscopic
axis v *"in the XY plane. then the angles anpearing in (13)
are simple functions of the polar angle {8°. «*) of the
bond axis = *, as shown in Fig. 2. The practical calculation
of (13) is then simphfied by using the operations of the
point group of the crystal which gives the directions of
equivalent bonds in the unit cell.

The oriemations of the two tvpes of bonds of a
chalcopyrite compound 48C, are simply related 10 the
gcometrical factors [36). [41)r = 2 — c aand g = 4x — |.
If we . the notation + for 4C and - for BC 10 dis-
tinguish between the two types of bonds. then the relevant
combinations of components of c,., are

= e = "'63%, ”l =~ 4r 4+ 0)3y "’

+ 0424+ 0) M, + (1 - &r = o) 31y,

+ [} 2r - @)Wy, | (14a)

Cioa — Ciy = ;—% [(r+ e, +(r=on."} @(4b)

ciw = g3 i = (r+a)/3h" + 2y

+=(r=0e)l3h 4+ 2v,7]. (140)

Since the chalcopyrits structure is 3 superstructure of
diamond and sphalerite structures. (14) can also be used
for clementary and binary compounds with these struc-
tures by putting r = ¢ = 0,

The expression of the deviator [36) component (c,y —
€w) is 1o be compared to another deviator [36) (x - x.)
i, the difference between the paraliel and transverse
component of the first-order susceptibility. As expected.
the two deviators exhibit exacily the same gecmetrical
dependence. Since r and ¢ are smal! (10°7 1o 10 ') the
combinatior (¢, — ¢,,) is one or twe orders of magnitude
smaller than the individua! components whatever the
valuesof 3 “ and y - are.

In Table 11 the calculated third-order susceptibilities
duc to the bound clectrons are compired to the ex-
perimental determinations for some semicondactors i
which this contribution has been 1seiated 28], {30}, and
the agreement is good. In the case of CdGeAs, the modcl

7$

Fig. 2 Orieniation of the bond anis in the crystallographic axis.

TABLE Nl
Covparison 0fF Tt Exrtuevsvtal THnn-OrDtR SUSCEPTIBILITIES
Due 10 THE Bound FLiiianss on Some TFTRacgDRAL SEnn-
CONDUCTOR'; TO T1tf THEORI TICAL VALUES CALCULATED FROM
Our Moot

Compound €.« Experimenial

Gc’"’{""““*’)m “ESU ¢, =4X10™" ESU
=63 107" ESU  ¢,,=3X10"" ESU
Sim.{r..-(n 6£0.3) 10" ESU ¢, =0.9X10™" ESU
€0=(0.3£0.1510"" ESU ¢,,=0.65X10"" ESU
G.As.,..{c,.-(osuo.z) 107" ESUc,, =0.95X10"" ESU
€10=(0.5£0.15) 10" ESU¢,,=0.7X10""" ESU

predictsc,, = 1.8 X 10-" ESU: ¢,y = 1.5 X 10-% TSU: and
e = 1.4 X 10-" ESU.

Our analysis also pryvides important information about
the physical origins of the nonlinear effects in semiconduc-
tors. An alteraative of the bond-charge model [32] is the
charge-transfer model [40]). where the variation of the
lincar susceptibility is attributed to a transfer of eleciric
charge from onic atom to another under the applied field.
The two mcdels describe the second-order suscepiibility
with comparable accuracy. But several difficulties arise in
the description of the third-order susceptibility when use is
made of the charge transfer model.

First, there is no transier of electric charges when the
field is perpendicular to the bond axis and y_ vanishes. As
a consequence ¢, = ¢, for all the sphalerite compounds in
disagreemen: with the experimental results [28). [30).

Furthermore. as only the heteropolar part of the mean
encrgy gap C s charge dependent. there is no covalent or
mixed conizibutionstothe nonlinear susceptibility . A ccord-
ing to (12) y is proportional to (41, — 1) leading to very
small nonlinear susceptibilities for cryvstal with an ionicity
Ji = 0.25. For example. in the case of gallium arsenide f, =
0.27, the megel-predicts ¢,y = ¢ 10 W ESU.

The discrzpancy shoui ! not be atinibuted to the charge.
transfer model iiselt since 12 s well known that deforma-
tion of the eiectronic distribution due 1o a field perpen-
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dicular to the hond axis exists But unf rtunately. the
formalism of Phillips theors is unable te describe those
effects as well as the contribution’s second nrder in o
and Z, when the field 1s parallel 1o the bond ais.

I1. Tueory ofF THE THIRD-ORDER SUSCEPTIBILITY
OF THE FREE CARRIERS IN A CHALCOPYRITE CRYSTAL

The other system of charges that has béen recognized 1o
make a large contribution to the third-order susceptibility
of semiconductors is the free-carrier gas There are two
distinct mechanisms which are responsible for their non-
linear susceptibility: the nonparabolicity of the energy
bands [13]. [21). [22] (i.e.. an energy-dependent effective
mass). and an energv-dependent relaxation ime [23]-[28).
The two mechanisms have a verv different frequency
dependence. The second is only important when thi= inverse
of the relaxation ime is not negh:gible comp:red to the fre-
quencies of the:nteracting fields. Thiscanoccurinthecaseof
mixing experiments [27)-[29] where w, = w, + w, — w, and
the difference of frequencies w, ~ w, 15 very small (10"« "),
When only addition of frequencies is considered as in THG
(3w = w + w + w) the effects of carrier scattering become
negligible [26] and onlv the contribution of the non-
parabolieity of the energy bands nzed be considered

For elementary and binary compounds. the Kane model
(31] gives a good description of the energy bands and has
been sucessfully used to explain the third-order suscep-
tibility of some semiconductors [12]. [21]-[26). Kildal hias
recently extended the Kane model to ternarv eompounds
with chalcopyrite structure [31). The principal feature of
K.ildal's extension 1s that in addition to the spin-orbit sphit-
ting & one h:s to eonsider the crystal-field sehitting & due
to the tetragonal compression of chalcopyritc compounds.
As a result of the two perturbations. the band structure of
the ehalcopyrite 11-1V-V, crystal (ie.. containing no noble
metal) consists of one conduction band (s-like) and three
split-valence bands (p-like). The four bands ean be
described by four functions E.°(A) = Enck) + (A 2mk’,
where the E.(k) are the solutions of the fourth-order
equation

E(E — E, — E¢XE ~ EXE — E) — W,'E(E + 13)

= W;’[(E - EXXE - E) - ;3(5 + s)] = (. s

Here W ' = Pk W = PML + AN P = — iA/m) <
S1p.Z > [29). [30), and E, and E, are solutions of E! +
@+ A)E + (238’ = 0.

In the limit § = 0,(15) reduces to the K ane equation. The
band structures of a chalcopvrite eompound and of its
sphalerite analog are shown in Fig. 3. Fig_ 3 also lists the
values of the parameters deduced by Kildal [31] to
describe the band structure of CdGeA:

When the frequencies - f the interacti  field are small
compared to the frequercies associated wiih the electronic
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Fig 3 Schematic of the hand siructure of 3 chalcopyrite compound and
ns sphaleriie analog

transitions. the third-order susceptibility due to the non-

parabolicity of the energy band is given by [13). [21). |22
e c‘r e — e ot
:hZC A bowwlw, + w; + W)
'k, .

Z ME ) ok ook, (16)

‘r'“(un w,, U’l) =

where 7,{E) is the Fermi-Dirac distribution function.

Far an n-type matenial the positive sign and E, are used.
whereas for a p-tvpe compound the negative sign and £,
are used.

For the elemen ary and binary compounds when the
energy gap £- is small enough so that the deep valence
band E., is unperturbed. a closed form can be deduced
from Kane's model [33] which gives a good description of
E, and £, This close form has been wide's used for com-
pounds with very small band gap like InSb. For crystals
with a larger band gap the closed form is not valid. and 2
better description >f the band shapes i¢ given by expand-
ing the energy as a funcion of the wave vector [43). In
the same line we assun:e the foliowing form for the energy
bands of a chalcopyrite compound.

Esky=Eq + AW Y+ B W2+ C W ‘+ D, W,*
+ G WrTWrs .. (an

In this equation the index m runs over the four energy
bands. The coefficients of the expansion are found by in-
serting (17) into (15). The results are given in Table 111,

It should he noted that while the limits of the A . for é =
0 are correct. this is not the case of the 8... To calculate the
B.. onchastodivide by E,£, = (2 3)A3. and this process is
not vahid for & or A going to zero. Therefore. we will
assume that in thc limit 5 = 0, 4, = B..

The expressions for the coetficients are simple. and due to
the fact that (15115 of the sccond orderin B and W', the
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TABLE 111
Coereicients o Tie Fxrassion o Tin EsinGy Basw as A Funscvion

Of THt ‘“'avt ViCTOR
o E + 1A p = Etitla
' (Ey - EXE, - E) ' 2E, — ENE, -~ E)
Ay =0 s 3
3 2 25‘
A E, + A p o Extitis
Y U(E, — EXE, - E) ' NE — ENXE - E)
E. +1a A
A (E, — E.XE, — E,) B. 2E,
4 Etit]a

2E, — EXE, - E,)

AS(AL) D. = B.S(B.)
Ga = AS(3) + B.S(AL)

Ca =
where

5(A) = Y Z—':'E—

- ra L]

S8 = 3 E—B_"?

Note £.m-£ + AWD + BW,D + CaW, + DW,* +
G W,

cocfficients atisfy the interesting relation

Au’Da 4+ B'Ca=AB.Ga. (18)

Since we have only retained the terms in £, up to the
fourth power of the wave vector the fourth derivatives
appearing in (16) are constants and the nonlinear suscep-
tibililies are proportional tothe number ol thefreecarrier ¥

The relevant combinations of coetficients appearing in
the effective nonlinear suscept:bility are

AP

tn‘:tr",(l ).G.v € — =0
e'NP!
= — ——t—. = P
Cie Cie Ill(' )u (G. 20, v) a9

whe:e u is the energv of the laser photons.
For CdGeAs, one finds by using Table 111 ard the
encrgies of Fig. 3 and P* = (W/2m) x 20 eV

e = =25 X 10N €’ —c” =2 X 107N
"= —=1.5X 10N ¢, * = 6.3 X 107N,
(20)

= Crs

The particular sample we have used for tvpe-11 PM-THG
1S a p-type crystal with v = § X [0' holes;cm? so that

Ca==125x10""ESU 10> 10-"ESU.

Cig=Cue ™=

TABLE IV
Prsct-MalcHING ANGLES FOR THG anp SHG
Phase- Malchmg
Configuration SHG | SHG 11 THG1 THG Il
0. (calkculated) 35° 4+ 7 S5°4+7° 0°+ 7 67 27"
0. (measured) R2°x1° 92 1° (0% 60O°xI°
SV TENAROR TEA<CQ, LASER
1 p— o€am SPLITTER ‘
ot I N7 A==
OETECTON POLARIZER
"‘"" o- COATED 4+——
Ge LENSES —=> MIRRORS
t’] PYROELECTRIC
SCOPE JETECTOR
AL IC
-
— mgeen PO
80x (‘.ﬂ'
INTEGRATOR  PECORDER

Fig. 4. Schematic of the experimental sctup.

The nonlinearities due to the free carriers are about one
order of magnitude larg:r than the neonlinearities due to
theboundelectrons.

IV. EXPERIMENTS AND DISCUSSION

In this section we present experimental work on the
measurement of the third-order nonlinear susceptibility.
CdGeAs, has a birefringence large enough [11]. (31] to
allow type-1 and tvpe-11 PM-THG for a fundamental wave
length of 10.6 u. The phase-matching angles calculated
(31} from the measured refractive indices [31] are listed in
Table 1V for both THG and SHG. The difference
0."(THG) —0."(SHG) = 12° is small so that both PM.
SHG and PM-THG can be observed in the same sample.
Thus the ratio of the third-order and second-order non-
linear coefficients ¢,,/d,, can be measured with the same
crystal sample. Furthermore, at high power densities a
substantial nonphase-matched mixing of the laser radia-
tion with its PM-SHG can be observed. The comparison
of the two signals at 3w gives a simple way to eliminate the
detector wavelength response and gives an accurate
measurement of the ratio ¢/ d,. )

We have examined two samples §, and §,,. S, was cut
for type-1 THG and Sy, for type 11. The CdGeAs, crystals
were grown at the Center for Materials Research at Stan-
ford Uneversity [49). The experimental setup is shown in
Fig. 4. The electrode structure of the TLA-CO, laser is
very similar to that described in [50]. The laser operates at
a peak power of S0 kW with a pulsewidth of 200 ns in the
TEM,, mode. at a repetition rate between 5 and 25 pulses
per second (pps). The laser peak output power is stable to
better than 10 percent over periods of abcut 1 h. An inter-
nal Brewster window can be rotated 10 adjust the polariza-
tion. During the mcasurements, the orientation of the
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laser polarization and the rencrated hurmonics was
carefully checked with an infrared reflection polaniser

In the first set of experiments S, wus examined The
measured phase-matching angles for tvpe-ll THG und
SHG are given in Table 1V In hght of the accuracy ol the
refractive indices the agreement with the predicted values
is satisfactory. It should be noted that there is a better
agreement on the difference 0..'(THG) - 6..'"(SHG).

The signal at 3w from the direct THG and from the sum
generation have a very different behavior. The angular
phase-matching tolerance is verv acute on the THG. and
the half-width of the phase-m wtching peak 8 = 10° ¢ |°
(outside the crystal) is in good agreement with the
predicted value A8 = 12° + 2° for the 1.75-mm crystal. As
the crystal is rotated the signal at Jw goes to zero then in-
creases and has a verv broad maximum around
0..""(SHG). which can be maximized by translating the
slightly wedged sample. Bv selective use of a sapphire and
fused-silica filter we measure the SH and TH signal with a
liquid-nitrogen-zooled InSb detector.

The laser is focused with a germanium lens such that the
aperture length (S1]/, = 17 mm and the length of the focus
(52] {, = 22 mm are much larger than the sample
thickness / = 1.7 mm. The plane-wave analysis s
therefore valid [$3), and the harmonic power at phase
matching can be calculated according to [$4]. To calculate
the intensity at Jw due to sum generation we zssumed that
the field at 2w is constant over the last coherence leneth /.
and has the value E,.[) = (1/2).]. and we assumed that the
field at 3w is mostly radiated in 4 thin slab of material with
a thickness /. at the output surface of the crystal. The
powers at 2w and 3w anJd 2w + w are then given by

: 6x’ ‘(s |.' D\ o
B - '_"16__".1__ (_'_l.'-'-‘j.') Pie ' " (2ta)
¢ ", A "
~and
; 256x' 16w," (3wl 1, 1.6,
’-YM(.-____-_‘_.. (--.._'.‘.ﬂ A ~lrtr@gs g -
: - B e ) P c (21b)
256x" 16w’
PN o 25T 2
¢ w,

9\
.(24,‘ .IL“_.K‘L_ZL.) dyd, .'L":.') pl‘( S b Al (2l¢)

where w, and a, are the beam waists and the absorption
coefficients at the frequency nw. 1, 15 the transmission fac-
tor for the laser field at the input surfac: of the crvatal. 1,
and ¢, the transmission factors for the harmonic ficlds
the output surfuce. and ¢),. d,,. and dy arc the eflective
nonhinear coetficients for THG. SHG. and mixnge The
angular dependence of the transmasion fectors has to be
taken 1nto account since the incidence angle tor PMASHG
1s quite large (>43°). The absorption coethicicnis
measured for the sample with 4 CO, luser. its SH. 2id with

PERE BEH MSA) O QUASTIE M ELFC TRONKIC Y, JaNL ARy 973

an He-Ne luser at 3 W g arcar, =05cm '.a, = 1.3cin -
ay = ST cm "

The measurement of THG to the sum generation leads
o leyl = (170 & 254, To compare the THG 10 the
SHG we huve to consider the frequencs dependence of the
sensitivity of the InSh detector We estimate o particular
detector to be twice as sensitive it §.3 0 as at 3.8 u. This
gives a meusured value of eyl = (1.6 + 0.8)10 *d,,) by
companson of PM-TRG to PM-SHG. If we use the value
85 % 10 " ESU for th= d,, (see Appendix 11 for dis-
cussion). the two measuremen.: are in pood agreement
and give, respectively. Ie,,| =122 x 10 " ESU and I ¢,
= 136 x 10 " ESU. In hght of the accuracy of the
measurement and of the value of d,, we obtain !¢l = (13
+ 6)10°" ESU.

In the second set of experiments we compared PH-THG
in §, and S,,. The expenin ents were difficult 10 perform
cde to the much smaller macnitude of the tspe-l PM-THG
signal. Also mining of the laser with the nan-PM-SHG
produces a faint signal at 3.5 4 which could be observed at
all angles of incidence. Furthermore, the phase matching
for type-1 THG and for ty pe-11 SHG uare vers close. and a
permanent use of the IR polanizer was necessary. The
recorded signal at 3w showed a broad maximum around 8
= 50°, but the signal-to-roise raio was too poor to surelv
assign our obscryation o type-1 THG alone. However., an
upper limit 1o the type-l THG coefficient was deter-
mined to be ey < 5 « 10 21, = 06 ¥ 10 " ESU

Using the theorzsticul results of Sections 11 and 111 and
(3) for the expression of the effective nonlineur coefficients
gives, for the theoret :ul values. ¢, = =0.18 x 10! ESU
andc;, = =4 X 10 - ESU. The tspe-11 effective nonhinear
cocfficient which 1< mainly due 10 the free-carrier contribu-
tion is between two and four times larger than predicted
from the K.ine model. Such a diference was alreadv noted
for n-type GaA< by Cardora [48!1n measurements of the
reflectivity and :he Faradav otatior as a function of tke
number of carniers. and by Winne [29] in measurements
of the third-order susceptibiity 1n mivng experiments
These authors also fouad that the nonnarabolicits
described by the coetf_ients of 4* in the expasivion of the
encrgy was larger than predicted by the Kane model. (1w o
times for the results of Cardona and three times for those
of Wynne). 1t should be noted that since the effective
masses of the holes on £, arequite large [} ] m = 0 031 m
and m = 0.77 m. the Ferm- energy in our sarple 1s small,
E, = 2 meV. compared to the sphtting, £,, - Ey, = 200
meV. Therefure. no additional contributions from the
lower valence bands £, and £,, can expluin the
observed ifference.

Reversing the above argument. we can sav that the
measured value of oy, s consstent with ronparabolicits
of the conduction bai:d three times larger than predicied
from the Kane maodel A for o, the theorereal value s
also smaller than the measired one The sipral that w-
observed should theretore he stinbuted o sam genera-
ton. The sample used was very thin (1 mumd and when
larger crvstals are availabie 1> 4 mmdat should be possib
to obserse nvpe-1 PM-THG
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Finally, we would like to discuss briefls the practical use
of CdGeAs; as an IR harmonic gencrator. Due to the
large value of the coefficient ¢, and the smull value of the
difference 0.'"(THG) - 0.'"(SHG). high conversion
efficiency can be obtained for both SHG and THG in the
same sample. For example. using a mode-locked CO,-
TCA laser of 0.1 J/pulse. a pulse duration of 1 ns.and a |-
cm-long crystal it is possible to reach 30-percent-THG and
60-percent-SHG conversion efficiency.

IV. ConcLuston

We have analyzed the possible THG configuraiions in
chalcopyrite crystal from the point of view of the irreduci-
Uie components. The bound-electron contribution and the
free-carrier contribution to the third-order susceptibility
can be expei mentally separated by the appropriate THG
experimenis. We have generalized the bond-charge model
to calculate the nonlinear susceptibility of the bound clec-
trons. The results are in good agrecement with the ex-
perimental determinations. We have used Kildal's exten-
sion of the Kane model to chalcopyrite ccmnounds to
calculate the frec-carrier contribution. ™ »r measurement
on CdGeAs,; shows that the nonparabolicity of the first
conduction band is aliout three times larger than
predicted. The third-order nonlinear coefficient of
CdGeAs, has a large vilue ¢, = 12.5 > 10-" ESU s2 that
very high conversio cfficiency for both SHG and THG
c2n be achieved i this crystal.

APPENDIX |
CONTRACTED NoTaTiON FOR THG

Throughout this article. we used the notation of
Midwinter and Warner [20). The contracted notation is
defined by

w 1 2 3 4 S 6 7 8 9

(]

]
TI1 222 333 233 223 133 €13 122 112 123,

The nonlinear polarization at the TH frequency is given by

|
!-’l r"u Cip € Gy € Cya
W 1
|PI ™€ €y Ch €y €y Cpa
'
l_’xf Lfn Cip €01 Cop €4 Cpa
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APPENDIX (]
SECOND-ORDER NONLINEAR COEFFICIENT OF CoGeAs,

7 he second-order nonlinear coeffizient of CdGeAs, has
been measured relative to d,, (GaAs).

According to Byer et al. [3). d,(CdGeAs,)/d,(GaAs) =
34 %+ 25 percent. From Boyd et al. [4).
d,(CdGeAs.)/d, (GaAs) = 2.6 + 1S percent. We use the
value d,(CdGeAs,) = 3d,(GaAs)

The d,, coefficient of GaAs has been measured com-
paratively to Ag,SbS, and CdSe whose coefficients have
been measured absolutely.

d\(GaAs) = (7.5 + 0.3) J.(Ag,SbS,) [55]
d\(CdSe) = (0.2 + 0.02) d,,(GaAs) (2]
and
d (Ag,SbS,) = 0.43 10" ESU + 30 percent [36)
di(CdSe) = 0.53 10" ESU + 1S percent [S7). s

These sets of values fit well with d,,(GaAs) = 2.8 x 10-?
ESU £ 40 percent, and therefore gived,(CdGeAs,) = 8.5
X 10-" ESU.
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Second harmonic generation and infrared mixing in AgGaSe,
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We have continuously tuned between 7 and 1S pm by mixiag the output of a LiNbD, parametric
oscillator in the chalcopynte AgGaSe,. We have doubled a CO, laser with 2.7% efficiency which
agrees very well with the expected cfficiency and verifies the high optical quality of the 1.93-cm-long
AgGaSe, crysial. The measured transparency range, indices of refraction, and nonlinear coeflicient of
dy, = (37 £06) X 10 " m/V show that AgGaSe, is a useful infrared nonlinear material phase

matchable over the entire 3-18-um infrared region.

Since the first demonstration of phase -matched with a meiting \oint - : approximateiy 860 °‘C is then
second harmonic generation (SHG) in AgGaS;, ' the non- transferred to a uartz crucible coated with pyroii‘ic
iinear properties of the ternary semiconductors with carbon for a pregrowth run at 2 mm/h rate through 2
chaicopyrite structure have been wideiy studied.?~* 40 "C/cm temperature gradient. The tup and v tto:a of
Their iarge nonlinear susc/:ptibilities together with ade- the resuiting bouie are then removed prior to the actual
quate hirefringence to actieve phase matching make growth run in the same vertical furnace at a siow growth
them attractive for nonlinear onticai devices. Nonlinear rate of 0.2 mm/h. After growth the cruciblc is cooied
mixing has been demonstrated in ZnGeP,, 7 AgGasS,, ** to room temperature at 25 °C/h. The resuiting 14-mm -

CdGeAs,, '*" and recentiy AgGaSe,.'"2

diam single crystals typically show a galiium-rich re-
gion near the seed end foiiowed by an approximateiy 2-

AgGaSe, singie crystals are grown by the vertical cm useful AgGaSe, singie-crystal region and a siiver-
Bridgeman method after the starting materiais are ruch top section. Eariy crystals showed a precipitate
presynthesized in a carbon boat contair2d in a seaied which resuited in a 2-cm"' scatter loss. In recent crys-

quartz crucibie. The presynthesized stoichiometric mix ta!ly the scatter ioss has been significantiy reduced to
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FIG. 1. The 7—15-um mixing output (A in angle phase-
matched AxGaSe, pumped by a 1. 318-um Nd: YAG laser mix-
ing with the output of s 0. 039-ym pumped LiNbOy parametric
oscillator (A, ).

near 0.02 cm™ at 10.6 um. All crystals have high
resistivity and good optical transparency from the band
#ap at 0.71 um to the two-phonon absorption edge at 18
u#m. A particularly attractive feature of AgGaSe; is the
ease with which single crystals can be grown.

We have measured the nonlinear coefficient of
AgGaSe, relative to GaAs at 10. 6 4m using the wedge
technique. ¥='* The wedge method is suited for small-
birefringence large-index materials. For the wedge
method the coherence length is given by

l.=2/4(uy, - n,) = LAy tana, (1)

where Ay is the wedge translation distance between
SHG extrema, a is the wedge angle, and the beam is
incident normal to the input face of the wedge. For our
crystal samples the coherence lengths are expected to
be near 100 um for GaAs and 200 um for AgGaSe, at
10.6 um.

We used a (001)-oriented AgGaSe, wedge for the non-
linear susceptibility measurement relative to two GaAs
reference samples. One (001)-oriented wedge was cut
from GaAs material supplied by Coherent Radiation
Laboratories and a second (111)-oriented wedge was cut
from Monsanto material; both GaAs samples were
chromium compensatad to a high resistivity of about
10’ Qcm. With the laser polarization parallel tc the

Appl. Phys. Lett., Vol. 24,N:. 2,15 Jancary 1974

« Wit =

(110) direction, E,=E,= E/VZ and P=P, = eglyoE3, 80
the d,q, for the (001)-cut GaAs and AgGaSe; samples
are dyg and dyy = d,, respectively. For the (111)-cut
GaAs, with the laser polarization along thz (111) direc-
Uon, E,=E,=E,=E,/VSand P,=P,=P,=P/V3, so
P=2/V3d,,E} and the d,, In this case is 2/Y5 d\,. The
coherence length of GaAs is measured to be 10722 um
and 100+ 3 um for the (001)- and (111)-cut samples.
This is in excellent agreement with published values In
Refs. 17 and 18 of 10725 um and 1072 1 #m. The mea-
sured coherence length of AgGaSe; 1s 2371 15 um which
compares favorably with a calculated value of 255+ 50
km based on the index data of Boyd ef al.*

The AgGaSe; nonlinear coefficient measured relative
to GaAs is

R, = dyy(AgGaSe,) /d,,(GaAs)001 = 0. 33 + 253,
Ry =dyy(AgGaSe,) /d,(GaAs)111=0.32+ 18%,.

These values are in good agreement with the relative
measurement by Boyd ef al.* of dyy(AgGaSe,)/d, ,(GaAs)
=0.37+10%. Taking d,,(GaAs)=(11.72 40%) <10 m/
V, ' we obtain d(AgGaSe,) = (3.8+ 1. Nx107" m/v.

We have also perforined phase-matched SHG of 10.6
“m using a 80° -cut AgC~'.¢, crystal. The measured
phase -matching angle of 57.5°:0.5° is in good agree-
ment with the calculated value of 55° + 4° . The expected
phase -matched SHG conversion efficiency is

Py /Py=T" = (203, /min,, ec?)P Ik A (B, t), (2

where the powers are defined inside the crystal d,,,

=d siné,,, 1is the crystal length, k= 2w, /A, and

h(B, £) is the Boyd and Kleinman?®® focusing factor which
reduces to 1/b = 1/wik In the loose focusing limit. For a
low-loss AgGaSe; crystal ! cm in length In the loose
focusing limit (1/b< 1) the calculated SHG conversion
elliciency is I*1%=0.75% at 1 MW/cm3. Using a TEA
CO, laser operating in a TEMgy, mode as a source, we
mearired the absolute SHG efficiency generated in a
high-quality 1. 54-cm-long AgGaSe,; crystal. The aver-
age input and output powers measured with an Eppley
thermopile were 2.82 mW and 76 #W, which corre-
cponds to 1.8 kW of peak power at the fundamental for
a 200-nsec pulse width. The experimentally observed
conversion efficiency for the incident intensity of 1. 68
MW/cm* is 2.63%. Using dyy=38x10°% m/V, 1=1, 54
cn, and A(B, §)=0.9251/b, which corresponds to the
focal spot size of 250 um, the expected conversion ef-
ficiency is 2.76%. This measurement can be considered
48 a separate absolute determination of the nonlinear

coefficient of AgGaSe,. The nonlinear coefficient is
found to be

Ay =(3.7410.6) 10" m/y,

which agrees very well with the previous measurement
made relative to GaAs and with the recent abscinte
measurement of Kildal and Mikkelsen'® of dy, = (3. 24
10.50)x10°"! m/v,

AgGzSe, pizse matches for SHG for fundamental
waveiengths between 3 and 13 um.*® The SHG efficiency
of AgGaSe, is significantly better than proustite, for
example, due to both a factor-of-three increase in the
nonlinear coefficient and the small birefringence which
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FIG. 2. Phase-matched mixing peak generated in a fixed
AgGaSe, cyrstal pumped with a tunabie source.

allows increased interaction lengths without aperture
length limitations.

AgGaSe; has acequale birefringence to phase match
over an extended infrared spectrai range for tunabie
wavelength generation by mixing. For mixing, a con-
venient tunabie pump source is a [.INbO, pararmetric
oscillator*’ mixing with a fixed-frequency Nd: YAG
iaser. For our experiment we used a collinear geome-
try. The acoustic Q-switched Nd: YAG laser tuned to
1.32 um is internaiiy doubied with a Li10, crystal to
generate 0.658 um which pumps the temperature -tuned
LiNbO, osciliator. The osciiiator output in the 1.5
1.7-um range mixes in the AgGaSe, crystal with the re-
raining collinear 1.32-um beam which passes through
the parametric osciilator. The AgGaSe; is angle phase
matched by rotation on a geared stage.

The mixing efficiency is given by
P/ Poge= (yo/Wee ) T 5incd(AR1 /2), (3)

where P = (20,,w 3 12 /Mot €)M, and 1, is the
pump intensity. For a 1-cm AgGaSe,; crystal and a pump
intensity of 1 MW/cm? at 1.32 um, the conversion ef-
ficiency i8 Py, /Py = 1. 2% (wy,/we,e)-

Figure 1 shows the generated mixed output from 7 to
15 pm.. Beyond 15 um our HgCdTe detector is response
limited. Figure 2 shows the phase matching peak
generated by mixing in a fixed, AgGaSe,; crystal pumped
by a tunabie LiNbO, parametnc osciilator. The charac-
teristic sinc(akl/2) phase-watching peak width agrees
with that caiculated from the dispersion of AgGaSe,.
The 24.6-cm”! width is the acceptance bandwidth of the
mixing crystai which is much greater than the output
bandwidth of 2 cm™! determined by the 2-cm™! gain line-
width of the parametric osciliator.

A piot of the phase-matching 7ngle versus LiNbQO,
oven temperature showed a neariy linear reiation over
a wide 7=12-um spectral range. We therefore used a
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stepping motor and synchronously rotated the AgGaSe,
crystal to phase match with a 1 °C/min temperature
scanned LiNbO, parametric osciiiator. In this wax the
spectrum between 7 and 12 pum was continuously tuned
8 min.

Figure 3 shows a spectrum of polystyrene as an ex-
ample of the continuous scanning capability of this
scurce. The spectrum v as taken using a dual channel
differentiai boxcar with .w0 HgCdTe detectors. The
mixed c atput is detected with better ttan a 30-dB siynzl-
to-noise ratio with a peak-to-peak va -iation of less than
10% at a repetition rate between i0 and 25 pps.

When mixing against 1.32 um, AgGaSe, does not have
adequate birefringence to phase match at wavelengths
shorter than 7 um. Based on phase-matching caicuia-
tioas using the index of refraction data of Boyd e/ al., '
mixing against w' velengths 1.5 um and ionger allows
coraplete coverage of the infrared. As an example, a
1.06-um pumped LiNbO, parametric osciliator with
degeneracy near 2.12 um angie tunes over a 1.5-3.7-
u:n range. AgGaSe, phase matches for mixing the signal
and idier waves to generate 3—18 um for phase match-
ing angles between 80° and 50°.' This exampie shows
the unique phase-matching properties of AgGaSe, for
extended infrared generation by mixing.

In conclusion, we have measured the nonlinear coef-
ficient of AgGaSe, and demonstrated phase-matched
SHG of a CO; laser as a verification of crystal quality
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and potential use as a second hurmonic generator. Us-
lug a LiNtQy parametric osclllator as source, we have
generated continuously tunable output between 7 and 15
4m by mixing in AgGaSe,.
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‘ ABSTRACT

’ The Bond Orbital Model for tetrahedral compounds is used gelf-
consistently to calculate the second order susceptibility. No adjustable
parameters are used and agreement with experiment is good. The origin of
the nonlinearity arises from a charge transfer as a result of the asym-

metric polar energy between the anion and the cation. The model cor-

rectly predicts an cptimum polarity to maximize second order suscepti-

vilities.
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t IRTRODUCTICI
The understanding of the origin of the nonlinear optical susceptibilities
%28 been the subject of zany investigations. ‘This understanding is important
* 4n meterial assesmen: and prediction of new material characteristics in non-
linear optical devices such as harzcnic gencrators, mixers end parametric

L : 1,2

oscillators. In a more formel approach, quantum mechanical expressions

are derived frcm per'arbation expansion involving complex suzs of matrix
.. 34,5

elements and energy denczinators. These fundazental expressions, even

vher simplified through the use of octuﬁole rozent of -the ground state charge

dintribution,6 or by emplcying ground state wave functions,7 are still forzidable

to use in quantitative predicticns. Exact wa;e functicns in solids are ofter
not xnown to high accuracy and the complete band structurelis also requ;red.
Other complications frca contributicns to tle nonlinearity frem different
points in the Brillouin zone can also arise.8’9 Anccher zppreach 1s to use

simple phencxzerological zmocdels such as the enharzonic oscillator mcdello and

..Hiiler's rule.ll Included in this cateagory are the universal seaiccniuctcer
lode1,12’13 the bond charge model,lh and tke charge transfer model,15 and the
molecular orbital :odel.16 The latter three =ocels all draw heavily from

the results of Fhillip's dielectric thcory.l7’18

In this paper we use an aprroach based.on Harrison's 2ond Orbital l-iodel.lg’gC

This is a more predictive model and only appeals to essentially two inrut factors,

the dieleciric censtant and the EZA(Xh-Xl) transition energy to calculate the

model paraceters. The mocdel predicts useful properties related to valence

electrons such as cohesive ecnergy, band structurc,el etc. Using 3CM

parameters, we calculate the sccond order susceptibilily in the

B P g . P —




optical transparency region of & crystal. The analysis cleerly displays the
physicel. origin of the nonlincarity. Ptrhap%.morc impor.antly, by exprcssfng
the vonlinearity in teras of the fundamental materisl carameters of polarity and
the bond length, salient characteristics desirable for high optical non-

linearities are distinctly revealed.

II. BOND ORBITAL MODEL

In this section, we outline the BCM so that vwe can discuss_its
extension to the calculation of tke second order susceptibility. For a
more complete discussion of the model and éhe implications of the approxizmaticns
involved refer to tﬁc original papers.19’2°

The model is based on a tight-binding approximation of spa hybrid

orbifiels for tetrzhedral compounds. Denoting a sp3 hybrid orbit;l on en anion
(cation) by |h. >-(|h%>) , 8 bonding crbital is constructed from e lineer
combination of nearest neigbbor hybrids on the anion and its adjacent cation

directed slorg the same bond,

b> = u [p®>+ = %> () -

The mininization of the expectation value of “he hamiltonian by a standard
variation on the u, and u, results in a (2 X 2) secular equation. The

solution of the equations gives the eigenvalue and the eigenvectoss. They

are

N

‘ ~,e .8 2
cb’..V2<h|h>j¥ Vo *+V, (2)
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l+a l-a
u -\J 1 and u -\/-—2 (3)
=) 2 c 2

where the polarity is defined by F.arrisonlg'zo &8

V.
aQa = - ——'—1, (h‘)
P (s 7

Here V., and V, are the energy parameters defined as:

p Wy
< 2°p 0" >

2
1—|< b° 0" >|

'2 w e (5)

for the covalent energy where <« hc| J“h. > corresponds to hopping between

en enion hybrid snd a cation hybrid slong the same bond, >

(< B°jH|nS> - < bf|ynt >)
Z
3 2(1 - |< b |a>| )

(6)

for the polar energy where < h°|y |hc > and < h'],,q lb. > denote the
coulomb integrals at the cation site 2nd the anion site respectively. 1In
eddition, there is one more energy psrazeter V;’ () , which is defined as

e metrix elemert of hamiltonian between adjaéent anion (cation) hybrids. This

1a relsted physically to the stomic s-p splitting and does not come into play
in most optical properties. |

The dielectric constant, which is the paresmeter of interest in optical
properties, is calculated by considering sn isolated bond dipole with en

epplied electric field.
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The field perturbetion is trested by edding to the poler energy Vé the

potentisl enerxy of the vond dipole in the electric field. Then in the
ground state wave function approximation, calculation of the induced
polerizetion by & change of poleriily ap through s chenge of the poler

energy Vé gives the dielectric conctant

lk72(ed)2 Vg '
€, = l + 3_(V§+_V§)375 (7)

vhere N = density of electrons, d = bond length and 7 is s psremeter
defined in the BCM formulstion releting microscopic dipcle moments to
macroscupic linesr susceptibilities end is taken to be constent slong = row

of the periodic tedble except for correction for cerbon row stoanx.

To Jdetermine the energy psrameters Harrison snd Cirac12° sppevl to

experinentsl perazeters. The piincipal opticel sbsorption pesk E is

QA
identified with *‘he bonding and anti-bonding gep

€G- §=2 Vg - V§

This identificetion hes been shown to be consistent with e:periments.

First, the E2A gap of the graup IV elezeantel ccapounds gives Vé

directly for each row of the periodic table, since Vé = O in elexental

compnounds. The geometric mean is teken for cozpounds involving two rows.

Then using Eq. (7) the dielectric constant gives » for each row. A valus

for y of 1.08 is found for diszond 2nd 1.2 for silicon. When row three




is resched, there are contributions fro= the polerizable d core electrons

o8 poted by Phillips.17 This is taken into account by introducing a correction

factor 6 in eddition to y . y 4is taken et the silicon velue sni a value of

@ = 1.18 is obtained for germanium end @ o 1.kl for the tin row. With these

values of Vé and vy , Vé for any binary corzpound is derived from its
dielectric constant using 2q. (7). This compietes the suzmary of the Bond

Orbitel Model as originslly stated by Harri:on.19

TII. CALCULATION OF x(2)
The second order susceptibility is defined by expanding the macroscopic

polerization in a power series in the field
'g(s) - x(l) E + : z(z) :EE+ ... (8)

where x(l) and x(z) are the field independent susceptibilities. 1In the
[ &)

independent bond forzulation these macroscopic suscept‘bilities are related

to their corresrondirg microscopic bond polarizabilities through geometrical

factors a521’22

vV o815 %1 %5y %y

xﬁ’- 1 Z a(8) 4(5) )

@) _ 1 Zamag),g)e

Xk *" Vv s,1,3 I 13k (20)

where aIi eare the direction cosines between *he macroscopic crystal axis I
end the bond axis frame 1 . The index s identifies the different bonds in
the periodic lattice structural unit whose voluse is V. Tc apply the BCN,

confine ourselves to sp3-bonded tetrehedral ceapounds with the zinc blende

and wurtzite structures. In the former case with crystal class point group'i3 m,
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Eqs. (9) and (10) reduce to

Q) - 2B g (142K n
X, - 3 czll + aTL) 3 all( + 2K) ) (11)
(2) _ _sn_ a 12
a .
vhere K = - 4 and a” end al ere the perallel and perpendicular

%

components of the bond polarizebility.

Here n = 3,/3/16 a3 is the nuzber of tetrahedral unit cells per

unit volume. 1In this case x(l) is 2 scaler, and xl(.f) is the only non- .

vanishing tensor coaponent in Voigts notation. I‘H is along the bond
exis (111) end with axially symretric C-v bonds, the independent non-

a

venishing ccapcnents are o = Q= and 8 =8
I 1l = "w’ I

a
|” T2z 33z’

b.l. = szx = Byzy - For thecase of wurtzite structure the two inequivalent
tetrahedra can be obtained from standard zinc blende oricntation by simple

rotational matrices, the result 1523

2
S SN ¢ )N ¢ ) I 3
1 15 33 \/3 14
It can be shown from an abinitio calculation that B.|.<< 5“.21‘ In a bond

2
charge approach, Sl = O to 1lst order. > Accordingly, we neglect BL relative

to B“ in our forzulation.

To calculate SII @e need to deter;-xine the varistion of the linear polar-
izability. a with an electric field. Fhysically, we expect a redistribution of
charge density in the presence of the field. This manifests itself as
en induced dirpole as A result of =n edditionsl charge transfer. 1In the

context of the BOM there is » chenge in the bond polrrity, ap , through
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8 change in the bond-polar energy, V3 . Herrison defines en effective

charge on esn anion (in units of -e) as

2" . M - 82 (13)

vhere A4Z 1is half of the nominal valence difference. TLen the additional

charge incurred by the applied field on a per-bond basis is

» v

* 2
Az & Py AV, = AvY
dVy > (\f§ + \§)3/ Sk

(14)

vhere the msin contribution is from the change in polaf energy, V3 . The

covalent energy, Vé :

undistorted. This is velid in the opticel trensparency region ebove the phoncn

is constant since the bond length remains feirly

lattice resonsnce frequencies, where the lettice and the bonds stay relatively
stetionery compared to the motion of the electronic charge cloud. Here we
bheve to stay below the interband electrcnic sbsorption, as the sssumption of

@ bonding state of the hybrid orbitals implies that we are dealing with valence
electrons only. In the trensparency region the ortical resronse is fairly

insensitive to freguency end hence cur dispersionless apprcach should be edeqiate.

In the for;ulaticn of the BCH, when “he maciroscopic dielectric ccnstant
is used to calculate the microscopic bcnd raraceters, the effects of charge
distribution scelirg and the bond enisotropy are autcmatically included in
the parameter y . If we let »* be the charge distridution scaling and
K= all/a be the enisotrory, then as in the derivation in BCM, the inclusicn

L .

of the dipole potential energy in en electric field as a change in the polear
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energy gives in teras of »*

P (=d)2 Vz

Q, = " (15)
3/2
ll 2(V§ + v;) '
Putting this into Eq. (11) end compering the result with Eq. (7)
we find that 72 = 7*2 (L + 2«)vhere ¢ =1 + 4 ¢ x(l) has been

employed. There is no easy enmlytical cslculation for the bond anisotropy
By simple extrarclation on velues obteined from Kerr constants ca diatomic
lolecules,26 we estimate XK ~ 0.5. Essentislly the same estizate was
employed previcusly.l6 With this value for the anistropy factor and the

BOM velue of 1.2 for y , »” is found to be 0-85.

To introduce the explicit field dependence we nmote that thz induced bozd
dipole is

&p = y%ed 4Z* . a”E” ' (16)

As explained earlier 2n electric field induces an sdditional charge

trensfer resulting in a chenge in the coler energy V., . The second order

3
1 pdlarizabiliﬁy can be relsted to its lineer counterpart by all(Ell) =

a;l + BllEll ®oeie all+ Aall % e Now Aall =B E can be celculated
[

from Eq. (15) through a change in jolar energy AVj . Eliminetion of AVé
through Eq. (14) end Eq. (16) in terms of Ell gives .

3a
B,, = 2 d'fl (7) .
[l ed (1 - dpzz ‘

To convert to experimental macroscopi. quantities, Eq. (11) and 1
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maximum at @ m 0.4, corresponding to an ionicity f

Z3. (12) give

2
@) b d ap
L5 T

(1),2 (18)
e (2x + 1)° (1-d§) I

vhere the tetrahedrzl cell dersity (n = 3\/5716.d3) has been used. Since
05 can be celculated from the lipear dielectric constant in BOM theory,
Eq. (18) shows that 7(2) can be esticated essentislly from just the knowledge
of the linear susceptibility alone. This is an important point. The indepecdent
bond forzulation is only approximete in the sense that correlation effects
between neightoring bonds do give rise to locel field corrections which are
not subject to easy deductive analysis. By appealing to the macroscopic
linear susceptibility as sn input perazeter, most of these local field effects
are sccounted for in the BOM model. ]

To demonstrate the dependence of Y(?) on polsrity and to display
some underlying rhysics, we transfcrm Eq. (18) by cesting y(l) in ternms of

polerity with the khelp of Eq. (7). Using tte relation <0 v, @ l/d2 we obtain

y{ﬁ) = Constant ap(l - cxf))2 dl‘ (19)

vhere the constant contains y , and is constant for one row in the periodic

table.

- 2 " .
The dependence of Y( ) on polarity is shown in Fig. 1, where

'1(2)/11h is plotted =zgainst ap . The upper boundary corresponds to the fifth

rov, and the lower one, the third row. Because of differences in gecmetric

fectors, we have only included the case of zinc blende. Note the interesting

4 = 0-28 1o Phillip's

1 .
model [f1 =1-(1 - a§)3/2] . Tangl5 and Levine'h have predicted an optirua
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value of f1- 0.17. However, o;ailable experiment;l data seems to show a
peak at around a, = 0.45 (ri'Z 0.3) 11 better agrcement with our results.
The physics of this maxizum warrants scc: coé:ent. In the ccaplete polarity
limit of ab =1, f.e. full ic:icity, all excess valence electrons from the
cation are transferred to the anicn. The anion in turn binds these electrons
fairly tightly ia its locslity, resulting in a big forbidden energy gap
cheracteristic of ell ionic compounds. Actuelly, it can be shown that the
energy gap of tetrahedral binary compounds scales linearly with Az(lab).

Thas there is no more charge cransfer (Azf « V;3) to respond to any applied
field and hence the vanishing of 1(2) . In the ccvalent limit of ap =0,

we approach the transition of zinc blende into the elemental diamond structure
snd the center of inversion Eymmetry coapletely cancels all even order of non-
linearities. In a sense, the system overcompensates itself becsuse the gain

in the covalent 'bond charge' is completely cancelled by the perfectly symmetric
lattice environment. A minor word of cauticn seeas to be appropriate here since
we pust remezber that in actual prectice, we hav: to stay within f1'< 0.78 for
tetrahedral coordinatica. Any higher ionicity results in rocksalt structure,

8 hexa-coordination typical of mcst ionic cozpounds. -

To further test the accuracy of our snalysis we cnoose materials of

t (2) 107]

roughly equal polarity, i.e. 4Z = constant, and plot 10310 xexpt

against loglo [d].in Fig. 2. Lines of slope 4 are drawm and.agreeaent is
good with =q. (18).

Thus for large seéond order nonlinearities, it is desirable to have a
covalency high enough (ap around O.4L) to give considersble polarizability
from cherge transfer but low encugh such that inversion syrmcmetry is not a
detriment. We also want long bond lengths, which, froa empirical evidence, means

8 bhigh atomic nusber. As high covelency means proxizity to Group IV, the above

tvo criteria could be summarized in the context of the periodic table by saying
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that for high wﬁ) we want materials with satll AZ and high stomic nusber.

These criteria are well borne out by expericental evidence. The III-V
coapounds are in general zcre nonlinear than the II-V and among the III-V
themselves, the more metallic elezents, InSb and InAs, which are from the
Lifth rows and fifth end fourth rows respectively, are more nonlinear than
GIA’ and GaP being ccmpounds from fourth rows and fourth and third rows. In
Fig. 3 we plotted xﬁ) against the sverage quantum number, n » introduced
first by Mooser end Pearsonz7, verifying the sbove arguments.

However, for any device applications employing the second order mon-
linearity, the paraceter of interest is the parametric gain coefficient2
defined by " @).2
rz . 9.10 Wy |x | I

8 ¢’ n,8,0,
wvhere 13 is the pump intensity and n, are the refractive indices at @ -

From the device stardpoint, besides the magnitude of 1(2) ; there are

3

#lso additional trensparency facters in the frequency dependence of the gsin
coefficient. As one goes towards higher atcmic numbers one loses ground inA
the trensparancy range as determined by the bend gap cut-off freguency.
Experizentally, a material is chosen with the smallest band g2p consistent
with transparency in the wavelength regicn of interest , as pointed out by
!cvine.lh If half the banizap frequency is taken for both @ and @, to
avoid two photcn absorption,it turns out that in scme cases of high atcaic

pumbers, e.g. InAb and InAs, the increase in x(z) is largely offset by

frequency factors in the gain expression due to the narrow band gap.
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Another paremeter which has proven to be very useful as & scele for

ponlineerity is the Miller's delte Aijk , which is defined by

20
"1Jk - & 20 xa) [o+]

x
2 13x ¥11 %55 Yk
In the context of our model Miller's delta cen be obtained by trensforming
2q. (18) through use of x(l) expressed in polarity ap end bond length 4 .

We find that & a °p a/(1 - ap)5/ 2 | Thus we see thet for msterials of

iJk
the same aversge quentum number 2 , ¥here the bond length is essentially
constent and for msterisls of the ssame vertical feaily i.e. of constent polerity,
the Miller's delta should be constant. Essentieslly a similer conclusion is
reeched by Tang and Flytzanis,l5 though they employed slightly different pare-
meters, namely the normalized valence difference and the atomic radii difference.
In Miller's for:ulntioa; which is essentislly an snheraonic oscillator model,
Miller's delta is found to be 2 function of the asyametric potentisl. Because
polerity (cherze trensfer) is a direct result of the asymmetry between the
cation and snicn, and tond lensth also effects the potentiel, the dependence
of Miller's delts on the above BCM pasrzmeters is not surprising.

The main results and parszeters .sed are suzmerized in Tebles Ia and Ib.
We have chosen the —ost recent data or that wk'ch we believe to be the most
relisble. Correlation with experizental values is in genersl very good. It
should be observed that there ere two general classes of compounds where the
relative discrepancy warrants some discussion. They are the narrow bend gap

paterials for exs=ple InSb, InAs snd GaSb end the copper compounds.
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As pointed out in the original forzulation of BCM,2° the use of the .

!ZA peak for the bonding and anti bonding gan works especially well for

the large bend gap —aterials. For nerrow bend gap meteriels, the minimum opticel
gep could be alrost an order of zagnitude smaller than the E2A gep. For
example in 1InAs Eo = 0.33 eV and EZA = 3.9 eV s0 one aight expect the
point in the Brillouin zone to modify the BCM energy perameters. As a resuit,
the application of the BOM to these cczpounds i# not as successful.

For the copper compounds, it is known that the d-bands are strongly
hybridized with the valence s and p bends. These delocalized d electrons
et these noble-zetal cations have been found experizentally to give an
anomalous contribution to the second order nonlinearity.28'29 This effect
i1s discussed by Levinelh in his bond cherge model and by Tangls in terms of
8n charge redistritution and a reversal of the direction of the bond dipole.
8ince the BCM deals wi?h the sp3 electrons, the d-electrons are accounted
for phenocenologically and the formulation overestimates the nonlinearity of
these compounds. If we stay away from these noble etal cczpounds aad consider
compounds where there is no appreciable hyoridization of the d-bands, tken

fhe BOM predictions sgree well with experizent.

IV. SUMMARY AND COMENTS
Using a more predictive theory, the 20, we have calculated the second
order susceptibility for tetrahedral cczpounds. Agreexent with experizent

1s good, especially in light of the siarlicity of the model.

- 123 -




The approach is self-consistent as the linear susceptibility is used to
calculate the second order susceptibility. Compared to other phenomenoclogical
models, our approach is more self-contained, as no adjustable parameter is used
and all pararzeters are defined ia the BOM.

The physical crigin of the nonlinearity is seen to arise from the
charge transfer as a result of the asyrzetric polar energy between the
enlon and the caticn. Chemical trend considerations reveals an optimum
value of polarity for a maximum second order nonlinearity in zinc blende and:
wurtzite structures. This, together with the bond length dependence gives
8 rule of thuzb astimate on the choice of elezents in the periodic table
vhich will result in tetrahedral coapounds of high se;ond order nonlinesrity.
It 1s found that for these tetrahedral structures, it is desirable to have
high covalency and a high metallicity censistent with transperency region of
interest. This means that one should stay close to Group IV elements and
high atomic nuzbers. We irclude the parazetric gain paremeter in our discussion
showing that the band gap is ag~in inportant through the short wavelength
. frequency cut-off ia the transparency range. The bond orbital model is also

Quantitatively and qualitatively related to the Miller's rule through the

concept of polarity.
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CGMPARISCN BETwZ=N TEZORETICAL x{f) (CALC. ) AND EXFERIMELTAL x](f) (Expr. )
TOGETHER WITH TEE RELEVANT BCM PARAMETERS TN ZJINC BLENDE STRUCTURES

Cc;pmmd Bond length a x(l) x(z)(cal) x(a)(expt)
d [(R) . 10T esu | 107 emu
GaP 2.36 0.52 0.65 k.1 5.2 a
GeAs 2.4k 0.50 0.79 6.1 6.4 b
GaSb 2.65 0.k4 1.07 10.8 20.0 ¢
InP 2.54 ' 0.58 - c.58 6.5 8.0 d
" InAs 2.61 0.53 0.90 10.) 17.4 ¢
_ | ms 2.80 0.51 1.17 18.3 4.8 ¢
ZnTe 2.64 0.72 0.50 6.4 7.3 e
ZnSe 2.45 0.72 0.39 3.4 1 37
CdTe 2.80 0.76 0.49 8.4 8.0 e
CuCl 2.34 0.75 0.22 . % | 0.2 g
CuRr 2.49 0.79 0.27 - 2.34 0.4 g
Cul 2.62 0.75 0.6 b4 0.4 g
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COMPARISON BETWE=I THZCRETICAL 7(2) (CALC.) AND EXPERIMENTAL Y.

TABLE Ib

33
TOGETHER WITH RELEVANT BCM PARAMETERS IN WURTZITE STRUCTURES

(2)
33 (EXPT. )

Compound Bond length a x(l) x(a)(cnl) x(,a,)(expt)
o b 33 33
a [A]) 107 esu | 1077 esu
|
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CdsSe 2.83 0.77 0.38 5.35 3.8
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1.

FIGURE CAPTIONS

The scaling of Xg)/dk with ap , the polerity. The upper boundary
eorresponds to materials frca the fifth row and the lower one froa the

third row.

The dependence of xg;t on bond length d for materials of roughly

constant polarity. £

A plot of x](i) versus n s the aversge quantum number, showing

the dependence within a vertical family in the periodic table.
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