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I. GENERAL INTRODUCTION 

This work was undertaken Over a periov^ of three years, during which 

tle»e research in nonlinear optics was increasingly concerned with both 

phenomena of higher order than X^ nonlinearities and with applica- 

tions of nonlinear optical cechi Lques to spectroscopic problems. 

This final report discusses progress made in thi growth and applica- 

tion of the chalcopyri-.e crystals CdGeAs2, AgGaSe2 and AgGaSg to the gen- 

eration of tunable infra-ed radiation. The bulk of this report is work 

that comprised R.F. Begley'.- Ph.D. thesis. However, the Appendices include 

work of Mr. M.M. Choy, Dr. D. Chemla, D-. R.L. Herbst and Dr. S. Ciraci. 

The recent tremendous need for tunable infrared radiation reaffirms our 

early expectations that the chalcopyrite crystals will make an important 

contribution as new nonlinear optical materials. 

A. NONLINEAR OPTICAL PROCESSES 

The first part of this report considers the development of high peak 

power, short pulse, tunable infrared sources based on nonlinear optical 

processes in semiconductor materials. The primary laser source considered 

is the atmospheric pressure TEA-C02 laser, whose high efficiency, large 

output powers and relatively small operating cost make it an ideal basis 

for high power, tunable infrared devices. 

The principal nonlinear material considered is CdGeAs , a chalcopyrite 

crystal with k2  m symmetry.  The linear and nonlinear optics properties of 

this material have been examined by several workers.1"^ Due to its large 

-  1 
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birefringence, CdGeASp can be phasematched for second, third, and fourth 

harmonic generation within a large part of its transparency range from 

2.h to 18 um. In addition, this crystal can be phasematched for difference 

frequency mixing of a CO and CO« laser to generate wavelengths between 

H.k  and 16.8 um.  When pumped with 5.3 um, CdGeASp looks promising as a 

parametric oscillator source covering the range from 7 to 18 fim.  Moreover, 

this crystal has the highest figure of merit for second order nonlinear 

interactions of all materials, with the exception of tellurium. Figure 1 

illustrates the transparency ranges and figures of merit of all nonlinear . 

crystals currently in use. Finally, CdGeASp has a large burn density of 

/ 2 k 
33 MW/cm for a 200 nsec long pulse from a TEA-C02 laser.  These last two 

facts point to tVe possibility of doing very efficient nonlinear interactions 

in quite small crystals. We have, for example, measured second harmonic 

conversion efficiencies of 25g and conversion to third harmonic of 10  in a 

2 mm long crystal using a 50 KW, 200 nsec pulse fronTV C0p laser. ^ If we 
o 

extrapolate to a 1 nsec pulse with 10 W peak power and a 1 cm long crystal, 

we predict theoretical conversion efficiencies of 60^ for second harmonic 

and 30^ for third harmonic generation. 

Such large conversion efficiencies indicate that both three and four 

frequency parametric processes can be well above threshold in just a few 

millimeters of material. The three frequency parametric procesa can be 

phasematched, as mentioned above. The four frequency parametric process, 

using two photon * of 10.6 urn as a two frequency pump to generate both a 

longer and a shorter wave, is phasematched only very close to 10.6 jim. 

The calculated parametric gains of several nonlinear materials with 

a length of 1 cm end an input pump intensity of 1 MW/cm are shown in Fig. 2. 

2 - 
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For CdGeAs , a 5^ gain at 1 MW/cm implies a gain of approximately I.5 

o 
at JO MW/cm which is just below the burn density for 200 nsec long 

8   2 
pluses.  For a 1 nsec pulse with 10 W/cm we reach a gain of 5 in a 

o 
1 cm long crystal. Burn densities of 1 GW/cm reported in p-typ^. 

Q 

germanium with a 1.7 nsec pulse raise the exciting possibility that 

burn densities in CdGeAs may be about the same with 1 nsec pulses. 

o 
For a 1 GW/cm input intensity super-radiant gains of nearly 50 in a 1 cm 

CdGeAs oscillator crystal are possible. 

In order to fully evaluate the potentials of this material for effi- 

cient nonlinear optics.- ve have constructed two C0o laser systems.  The 

first device consists of a pin discharge atmospheric pressure laser oscil- 

laLor; which is modelocked with a germanium acousto-optic modulator.  The 

modelocked pulse train, consisting of twenty 1 nsec wide pulses, each 

separated by 10 nsec, is passed through an electro-optic selector arrange- 

ment which picks out a single 1 nsec pulse. That pulse is in turn ampli- 

7        Q 
fied in a three pass CO amplifier to reach a peak pover of 10 - 10 W. 

The second laser device is a high pressure, 1 meter long CO  laser 

oscillator which operate? between 5 and 10 atmospheres. At these pressures 

the individual rotational lines are so pressure broadened that they overlap 

significantly. By making a three mirror cavity, with a diTfraction grating 

as a uuning element, the output of this laser can be continuously tuned 

across the 9 to 11 um range of the CO molecule. 

Four aspects of the work performed at Stanford are covered in this 

report.  First, the crystal growth of CdGeAs , AgGaSe , and AgGaS  are 

described.  Second, the design and operation of the I nsec system is 

discussed in detail. Third, a theoretical treatment is provided, both 

.....-.- ...... .. w....^...-. .■.■...:      .■■■■ -  ^-^.- ■■ ^ ■..■...-■.,-■ ■ ^^^^w^^^<<^^^fli^^|^^ fi 



for higher order nonlinear optical processes  in CdGeAs  ,  and for the 

origins  of  its  large third order nonlinear  susceptib J.lty.^    Finally 

a description of the experimental work performed to date with this source 

is given.     Saturation mechanisms, particularly free carrier absorption, 

are discussed. 

At this point one might ask what applications require both high peak 

powers and  tunability from a  source operating at wavelengths  from 2  to 

20 \m.    We can separate the applications of such sources into three cate- 

gories:     spectroscopy, chemical kinetic  studies,  and optical pumping 

studies. 

Perhaps the most active area of laser spectroscopy at present is the 

study of vibrational rotational spectra of molecules, many of whose lines 

lie in the near infrared.    Such spectra can be used,  for example,  as 

indicators of the composition of the atmosphere by remote air pollution 

9 10 
detection schemes.   '        A  second,  and perhaps much less  explored area  is 

two photon absorption spectroscopy. 

Most optical spectroscopy of solids,11  for example, has been done by 

reflectivity  techniques.     Since the first  experiments on two photon absorp- 

tion near  the   fundamental absorption edge usiug visible and ultraviolet 
12-17 

sources, it has been clear that  this  technique allows one to probe  the 

properties of bulk materials as well as of the surface states.    The principal 

advantage of this technique is  that each photon lies within the transparency 

range of  the material.    Tunable  infrared  sources  then should have consider- 

able application in two photon spectroscopy of semiconductors whose band gap 

energies  lie  in the near infrared.    Moreover, high peak power sources  should 

allow studies  of nonlinear interactions not  accessible by conventional 

spectrometers.     Third order nonlinearities,  as we shall  see  later,  are 

-   D   - 
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sensitive to the shapes of the energy bands, for example. 
13 

19 
Applications of lasers to chemistry have been reviewed by Moore. 

Vibrational and rotational relaxation processes, as well as energy transfer 

mechanisms, can be studied with tunable infrared sources with pulses in the 

nanosecond and picosecond regimes. The question of inducing chemical reactions 

by selectively exciting vibrational levels has received much attention, 

particularly with regard to isotope separation. 

Finally, optical pumping of high pressure gases appears to be an 

important technique for the generation of wavelengths across both the near 

20-27 
and far infrared with pulse widths of 1 nsec and shorter.     With high 

peak power tunable sources one can now consider raultiphoton pumping upper 

vibrational levels of simple molecules, exactly on resonance, to produce 

lasing action at a variety of wavelengths in the infrared. 

An excellent review on infrared tunable sources and current spectro- 

2fl 
scopy research is given by Hinkley, Nill and Blum.   A table summarizing 

their comparison of performance characteristics of various tunable infrared 

sources is shown in Table I. 

Important materials used in nonlinear optics devices are tabulated in 

Table II. Of the approximately forty chalcopyrite crystals only four are 

used for nonlinear optics: ZnGeF2, AgGaS2, CdüeAs2 rnd  AgGaSe2. The 

enormous output powers and high efficiency of C02 lasers, coupled with the 

large nonlinear figure of merit of CdGeAs», make this particular combination 

a very promising source for high power, tunable infrared radiation. 

- 7 - 
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TABLE    I 

TUNABLE INFRARED SOURCES 

Source Wavelength 
Range (^m) 

Highest     _;L 
Resolution (cm ) 

Output 
Power 

Semiconductor 
Diode Laser 

1 - 3U 3 X lO-6 100 W pulsed 

Spin-Flip 
Raman Lasers 

5-16 
9 - Ik 

3 x lo'l 
3 X lo 

1 KW pulsed 

Gas Lasers 
Zeeman Tuned 
High Pressure 

co2 

3 - 9 
9 - 11 

3 x lo'l 
3 x io " 

1 - 10 raw cw 
10-100 MW pulse« 

Nonlinear 
Optics 

0.3 - 30 ^ 0.3 x io~2 1 uw - 1 MW 

- 8 
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TABLE    II 

NONLINEAR OPTICAL DEVICES 

Source Wavelength 
Range (|im) 

Material Pump 

Parametric 
Oscillator 

0.1* - 1+ 

0.4 - 3.6 

1.2 - 8.5 

3^ - 7-9 

9.8 - 10.4 

LirJ3 

LiHbO 

Ag3AsS3 

CdSe 

CdSe 

Ruby 

Nd:Glass/YAG 

Nd:CaW0^ 

Dy:CaF2 

Nd:YAG 

lAfference 
Frequency 
Generation 

3.0 - 4.5 

3.2 - 5.t' 

4.1 - 5.S 

10.1 - 12.7 

4.6 - 12.0 

7.0 - 15.O 

11.4 - 16.8 

LiNbO 

Ag3AsS3 

LiI03 

Ag3AsS3 

*AgGaS2 

*AgGaSe2 

*CdGeAs2 

Ruby/dye 

Ruby/dye 

Ruby/dye 

Ruby/dye 

Ruby/dye 

Nd:YAG 

co/co2 

Two Photon 
Mixing 

9.0 - 11.0 GaAs COp/Klystron 

Four Photon 
Mixing 

2.0 - 21;.0 K vapor Dye/dye 

Chalcopyrites 

- 9 - 
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B .     CRYSTAL GROWTH 

1.     CdGeAs, 

During this program we have evaluated three growth techniques for 

CdGeASg, vertical Bridgeman growth, Czolchralski growth, and growth from 

Bisrauth-Cd solution.  Our results show that CdGeAs self nucleates on the 

container walls and grows rapidly in a nearly dendritic way. These experi- 

ments suggest that serious consideration be g^ven to an oven design with 5 

very steep gradient or to the proper design of a Czolchralski growth furnace 

for CdGeAs^.  During the study program we did obtain a single crystal ap- 

proximately 1 cm X 1 cm x 15 mm in size. When fabricated, this crystal 

yielded an oriented crystal 6 mm long by 8 mm x 8 mm area. We are now 

evaluating this crystal for CO laser second harmonic generation (SHG). 

The enormous nonlinearity of CdGeAs make further growth studies important 

if future advantage is to be taken of this unique material. 

2 , AgGaSe£ and AgGaS0 

In a previous progress report we included a preprint of the paper 

"Growth of AgGaSe? for Infrared Applications" by R. K. Route, R.S. Feigelson, 

29 
and R. J. Raymakers. ^ This paper described the growth of single crystal 

AgGaSe^.  Since then, we have extended our work to include the growth of 

AgGaS2 and have successfully grown single crystals up to 1 cm diameter by 

' cm in length. 

During our previous growth work, we noted the consistent poor optical 

quality of both AgGaSe2 and AgGaS0 due to optical scattering centers. For 

example, the measured optical loss at 1.15 ym  due to scattering was 2 cm 

for both crystals. 

10 
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In an attempt tc improve the optical quality we tried two growth modi- 

fications. The first was to dope AgGaSe with T£ in order to improve 

the growth rate. This procedure proved not to be of value. The second 

was to rapidly quench the crystals from a high temperature (~ 700 C) to 

room temperature. The quenching procedure did improve the optical quality 

by an order of magnitude reducing the loss to near 0.2 cm  — 0.1 cm  at 

1.15 MB1' 

This remarkable improvement in crystal quality has led to a careful 

study of the quenching process. The work is still in progress but the 

main points are clear. Both AgGaSe and AgGaS suffer a phase separation 

upon slew cooling which leads to optical scatter centers. The phase sepa- 

ration occurs near 700OC for AgGaSe . Crystals can be cycled through the 

quenching process and reproduce the desired optical quality improvement. 

And, finally, large single crystals can be quenched without cracking. 

The details of this important crystal quality breakthrough are being 

studied and prepared for publication. 

- 11 
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II.  THE TEA-C0o LASER SYSTEM 

A.   INTRODUCTION 

The literature on CC lasers, both conventional low pressure and 

pulsed atmospheric TEA discharges, is vast.  This report describes the 

high peak power short pulse laser system engineered at Stanford. The 

description of the 1 nsec system is more from a practical construction 

point of view, and ample reference to the existing literature is provided 

to supplement the theoretical aspects of the first system's operation. 

A discussion of a 10 atmosphere CO laser designed at Stanford, and an 

alternative, scheme to laser triggered spark gap switching is given 

elsewhere 
30 

B.   1 naec TEA-CO LASER-AMPLIFIER SYSTEM 

1.  Background 

This laser system was engineered and constructed with two objectives 

in mind:  first, to study higher order nonlinear optical processes which 

become very efficient when high peak power pulses are used. However, since 

o 
all materials will burn at approximately I - h  j/cm input energy density, 

it is necessary to reduce the laser pulse width to limit the total energy. 

Secondly, it was necessary to answer the many questions that needed investi- 

gation, particularly in producing stable, large volume gas discharges at 

high pressures and in producing short pulses at 10.6 |im.  Laser development 

in this field in the past four years has been impressive, with output powers 

now in the gigawatt range and energies of 500J in one nanosecond long pulses. 
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There are several excellent review articles^ -^ that describe the 

development of C02 lasers from the first cw laser of Patel^ to the 

präsent 300 J system in Canada. 

The basic problem of providing uniform electrical discharges in large 

volumes of high pressure (l - 20 atmospheres) gases has been attacked in 

many ways. Electrode structures for tranrverse excitation range from pin 

and resistive discharge geometries,^ ^ three electrode structures^^"^^ 

electrodes,     to more exotic structures, "  including electron beam 

controlled discharges, 7  which are not discussed here. An alternative 

approach to electron beam pumping for producing stable, large volume dis- 

charges is the use of ultraviolet radiation to preionize the laser medium. ^0"^ 

Measurements of the electrical characteristics,  of the spatial and temporal 

behavior of the gain, "  and of the spectral content 5 of TEA-CCL dis- 
2 

charges have been made by several workers. Finally, several authors have 

attempted to fit theoretical models to TEA-CCU las<r characteristics.  ^ 

Two 1 nsec C02 laser systems of comparable design, although with higher output 

powers, have been discussed in the literature.  ' 

2.  Design and Operation 

The overall system design is shown schematically in Fig. 3. 

a. Laser Oscillator 

The pin discharge oscillator is similar in design to one built by 

Robinson.   It consists of 1+00 - 1,000 0    resistors connected in parallel 

for a cathode and an aluminum plate for an anode. We obtained a stable, arc- 

free oscillat-r when the resistors were cut off with equal length tips and 

both electrodes are mounted on a plexiglas frame to keep them parallel. The 

10-meter curvature, high reflecting mirror is internal to the laser tube. 

1? 
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GENERAL LAvOUT OF 1 nsec TEA LASER  SYSTEM 

HodlUcd Rogovikl Profile* 
wKh Sliding Spark Prclonlzcr 

HODS LOCKER- 

OSCILLATOR 

Cold-on-Clau 
Mirror 

L»«er Trtggarcd 
Spark Cap 

C« Lena 

Ga Brawatcr Angla 
Polarlxara 

CdTa Elaccroopttc 
Modulator 

Ga Lcnaaa 

Ga Mirror 
Flat 65< R 

G* Acouttooptlc 
Modulator 

NaCl Brawttar 
Angla 

Pin to Plata 
1 utar 

Electrode« 

Eij. Ga Mirror 
10 ■ 100«. R 

FIGURE 5.    General  layout of 1 nsec TEA  laser system. 
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A sodium chloride window at Brewster's angle provides polarized output 

and an adjustable aperture maintains TEM  mode operation. The output 

mirror is a flat 65^ reflecting germanium mirror located 1^1.61 cm from 

the high reflector. Output pulses from such an oscillator are typically 

200 neec in duration srd 0.5 - 1.0 MW peak power in TEM  mode, at a 

repetition rate of several pulses per second. 

Since the oscillator has beer* used for higher or e'er nonlinear optics 

processes investigations, we wanted as stable an output puxse as possible. 

At low enough gains, namely whe.i the discharge voltage is low or the mirrors 

slightly detuned, no mode beating occurs and this oscillator run*: ax,  approx- 

imately 5^ peak-to-peak stability over sixty minutes of operation. Figure h 

shows the reiults of a measurement of the laser stability. Ve used a 

crystal of CdGeASp to produce THG of the laser output. The third harmonic 

signal was monitored as a function of time and shows 15^ peak-to-peak 

fluctuations. Moreover, by doing SHG in the same crystal and allowing the 

fundamental laser frequency to mix with the SHG signal, we again generate 

a 3 CD signal.  Here, however, the fluctuations should be proportional to 

twice the laser fluctuations rather than three times, as in the THG case. 

The result of these measurements is that the laser operates in TEM  mode 1 00 

at 55? peak-to-peak stability over long periods of time. At higher voltcges, 

and with proper alignment mode beating occurs and the laser output stability 

degrades considerably. Finally, when completely modelocked, the pulse-to- 

pulse stability is again about %  . 

b. Modelocking 

The modelocker consists of a germanium acousto-optic modulator 

block driven by a 36 y-cut LiNKL transducer operating as a Bragg 

75-76 
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half wave voltage of the electro-optic crystal, then discharges across the 

crystal. By picking the length and impedance of the cable correctly (i i 

this case 2 ft of 73 fi cable), one can mpress a square wave of approximately 

1 nsec rise and fall times and 10 rsec base width on the crystal. The 

polarization of a single 1 nsec pulse is then changed by 90°, allowing it 

to pass through the Ge polarizer and out to the C02 amplifier. The 

CdTe electro-optic crystal is k6 mm long and 5 X 5 mm in cross section. 

The half wave voltage is ^.35 kV, so the transmission line must be charged 

to at least 8.7 kV (twice what appears across the crystal). Light propagates 

in the [110] direction in the crystal, with both electrical pulse and light 

polarization along the [110] direction for maximum interaction.82 The CdTe 

crystal is mounted in a brass plate electrode structure designed to match 

the characteristic 73 Q  impedance of the transmission line.85 

The pulse selector assembly is by far the most unstable part of this 

entire system.  It is quite difficult to trigger the spark gap reliably over 

more than 100 pulses without readjustment of the laser focus. More Importantly, 

however, such a fast spark discharge radiates very high frequency noise 

(1 - 10 GHz) which makes detection of the switched out 1 nsec laser pulse 

very difficult on cny  fast detector. By using a slow but sensitive pyro- 

electric detector as an energy monitor we have observed stable switching of 

pulses from the modelccked pulse train. By replacing the spark gap with a 

completely electronic detection and switching system, it appears possible to 

make a noise free, reliable pulse selector. A suggested design is discussed 

in reference 30. 
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d. Amplifier 

The single 1 nsec pulse then passes through a three pass, modified 
O/- 

Rogowski profile C02 amplifier.   To make the discharge more uniform, 

two arrays of spark sources called "sliding sparks"07'89 line the sides 

of the electrode structure. The spark sources were made in a transmission 

line geometry to allow easy handling. By milling a pattern of rectangular 

tabs on the top of double copper clad circuit board, one creates a trans- 

mission line with gaps, which can be modeled as an array of capacitors 

coupled together by the st-y capacitance of each gap. A pulse propagates 

on this line by arcin, „ross each gap, thus emitting UV radiation into the 

laser plasma. The geometry of the electrodes for both laser oscillator and 

amplifier is shown in Fig. 6. The amplifier has two internal mirrors made 

by depositing gold coatings on flat glass so that the amplifier can be used 

for 1.2, 3 or 5 passes. We have measured the single pass gain to be l«g/cm 

of excited volume. Typical C02 amplifier gains range from 1^/cm to l^/cm, 

depending on gas mixture, electrode structure, preionization techniques, and 

discharge voltage.  In this amplifier we are limited in voltage to 30 kV by 

our power supply and can only operate at 300 torr pressure. The measured 

gain is quite good under these circumstances. It would be necessary to 

modify the high voltage electronics to allow operation at higher voltages 

and pressures to raise the gain. 

m contrast to the resistively ballasted oscillator which operates on 

C02 and He alone, the amplifier requires a 2 : 1 : 3 ratio of C02, N2 and He 

to operate stably.  Since both oscillator and amplifier power supplies are 

the same, it appears that the impedances of each electrode structure are not 

the same. The switching thyratron likes to look into *  50 Cl  load; apparently 

20 - 

,  ■  -I,, ■ vrir,m,alj.^~-^.<.^..-*.., ^ ^...,-^..>..^-J..,^.:.-...^M3^.,...u- ,. ..........I-.^..^..^..^...^-^...^,»..^.., ^..^,,.^^...^.^..^^.„^...^^.^„^. .—■ - 



*J!Pi»«jä!PPwwiw*m»wi»™>mFM-ir™i™«»iiipiflW^^ ■ „».,,~:^~....i,,^.v*^m. 

PLEXIGLAS TUBE 
AND SUPPORTS 

ALUMINUM PLATE 

400 RESISTORS (I kil) 
IN   PARALLEL 

CONNECTING STRAP 

LASER  OSCILLATOR   CROSS SECTION 

PLEXIGLAS TUBE 
AND SUPPORTS 

SLIDING SPARK 

ROGOWSKI PROFILE 
ELECTRODES 

SLIDING SPARK 

AMPLIFIER  CROSS SECTION 

FIGURE 6.    Oscillator and amplifier  electrode  structures 
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by adding nitrogen to the amplifier medium we balance the capacitance of the 

electrode structure to make the amplifier look more like a 50 0  load. 

When properly impedance matched, both devices emit relatively little 

electrical noise by comparison to the laser triggered spark gap. 

e. Electronics 

The circuit diagrams for the system rate generator and master control, 

thyratron trigger circuits, and high voltage electronics are shown in 

Figs. 7 to 9- The modelocking electronics is not shown here. It consists 

of a standard Tektronix 190B signal generator operating at 25.157 MHz, and a 

Heathkit DX-60 transmitter modified to operate in pulse mode at twice the 

oscillator frequency.  Since the effective impedance of the acousto-optic 

modelocker is 2.2 0,  it is necessary to use a pi network to match the 

50 0  output impedance of the Heathkit transmitter. 

Since we require i.? kV on the transmission line for operation of the 

CdTe electro-optic crystal, and we must maintain a rise time of 1-2 nsec, 

it seemed impossible at first to use an avalanche transistor array for the 

pulse selector electronics.  Consequently we had to use a laser triggered 

spark gap as our fast switch. DC voltage is provided by a Variac and DC 

power pack. However, by using a transmission line transformer it now appears 

that an array of approximately 32 avalanche transistors can be used to generate 

k-5  kV across the electro-optic crystal. A block diagram of the proposed 

electronics is shown in reference 30" 
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III.  NONLINEAR OPTICS THEORY 

This section presents a theoretical treatment of higher order non- 

linear optical processes in crystals with h2  ra symmetry.  It begins by 

determining the equations for second (SHG), third (THG) and fourth (FHG) 

harmonic generation in a crystal with absorption at the fundamental fre- 

quency CD and each of its harmonics 2m, ^    and ^ . Also considered 

is the case of nonphasematched mixing to produce higher harmonics, namely 

ow 2a^ Jeu , CD + ^ -* 1^ , and 2a) + 2ü3 -> I«u . AH equations are 

derived in cgs units. 

SECOND, THIRD, AND FOURTH HARMONIC PROCESSES 

l'      Nonlinear Polarization Equations 

Throughout, this discussion follows the works of Midwinter and Warner 

on second order^0 and third order91 processes> keeping in ^ ^ ^ 

are missing a factor of 2 for the case of second order mixing, and factors 

of 5 or 6 for third order mixing.^ 

We can write the general tensor equations for this crystal class for 

second, third and fourth harmonic generation processes as 

P.     =    d. .,   E.  E, 

p,-     =    c. ., „  E.  E,   E i ijki     j    k    I 

P.    =    b . ., „     E.   E,   E    E ijkip     j   Tc     £    r 

(3.1a) 

(3.1b) 

(3.1c) 
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If we restrict ourselves to frequencies in the transparency range of 

the material and assume Kleinman symmetry,-^ the nonzero elements of 

the d, c, and b tensors can be determined and are shown in Fig. 10. 

The reduced subscript notation is explained in Fig. 11 for all three 

processes. In Appendix I a practical discussion is presented for cal- 

culating higher order nonlinepr coefficient tensors from those of lower 

rank. Equations (3.1) are written out in detail as shown in Fig. 12. 

The cases of SHG and THG have been discussed by Kildal^ and are simply 

summarized here. The case of FHG is treated in detail. 

2.  Fourth Harmonic Generation 

a. Effective Coefficients 

With the exception of Se, CdGeAs2 is the only crystal that phase- 

matches for FHG in the infrared. From Fig. 10 we see that there are two 

independent, nonzero components of the FHG tensor for a crystal with k2  m 

symmetry, assuming Kleinman symmetry. For convenience, let us define 

bl(iO = ba  bl(5) = b0 

Then, from Figs. 10 and 12(b) we have 

Px = ba tVz] + b3 [Vy + ^ EyEZ
Ex] 

Py = ba &*A] + b3 ^EzEx + ^ ExEzEy] 

Pz = ba ^ExEy^] + bß[4ExE3 + UEyE3] 

(3-2) 

(3.3) 
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For FHG we  have four possible types of phasematching situations. They 

are given below with the corresponding index matching equations for a 

positive birefringent crystal. 

Type I   e + e + e + e-*o 

Type II  e + e + e + o-*o 

Type III e + e+o + c-» 

Type IV  e + o + o + o-» 

^n (e,a)) = knjkta) 

3ne(e,ü3) + no(£o) = 4no(lku) 

2ne(e,co) + 2no(eD) = knjkoi) 

n
e(e^) + 3n (cu) = hn  (Iku) 

(3.^) 

Here e and o refer to extraordinary and ordinary waves. Only the 

first two types phasematch in CdGcAs . 

We must now calculate the effective nonlinear coefficients for the 

Type I and Type II processes. From Eq. (3.^) for the l^pe I process it 

is evident that 

'sin 0 

POto) = P (Ike) =  I -cos 0 P(IkD) 

'-cos 9 cos 0 

E(ca) = Ee(ü)) =   f -cos 6 sin 0 I  E(CC) 

sin e 

(3-5) 

The geometry is explained in Fig. 13.  Combining Eqs. (3.3) and (3.5) we have 

^ = - ^sin e cos Psin 0 - ^[cos^sin «sin3^ + 3 cos
39sin ecos20 sin 0] 

P 

1 
E 
_y     3 
^ := - 4basin ecos ecos 0 - Lbß[cosWn ecos30 + 3 cosW 9sin^  cos p] 

(5.6) 

32 

--■■ ...-.■ ■  ■■ -..■ ■■ ■•.-...-.•.^.    ■*■"■'-    ^'■■'"L— *^^**i* L,.1..^;^ ^.. .-^n k. ^ ^^^^^r ^ A^^^^L,^^.^.^-.-.- -v.^- -i --a^i.^ ■.^■■■^.^-^. --^ -^ -^^f^t^^ - iiiliilii-Mit  jiriaMattfliiiMiifliiittMIMI 



Since 

Po = 

'sin 0 \ 

cos 0   I    P 

0        / 

P    sin 0 - P   cos 0 

we have 

P   sin 0 

■P cos 0 
_JL L 

[Ub sin^ecos 0  + i+bQcos3esin 6 (sin   0 + 3 cos    0)]  sin    0 1   a p 
(?.7) 

[Ub sin-^ecos 6  + Ub_cos39sin 9(3 sin   0 + cos    0)   ] cos^ 0 
a 

We define the FKG effective coefficient as ?0{k(a)  = beff E (en) and from 

Eq.- (3'T) we determine it to be 

.  2 b ff(I)= 2[b    sin    6  + bft cos' 9]  sin 2 9 cos 2 0 
6 

(3-8) 

for Type I phasematching in crystals with    k2 m    symmetry.     It  should be 

noted that for    kj m    symmetry this expression reduces to    b  -^(43 m)    = 

2b    sin 2 9cos 2 0.     In a similar way we calculate J.he Type II effective a ' 
coefficient to be 

b ^(11)= ^'b    sin    9  + bQ  cos''   fi]  sin 9  sin 2 ft sin-" ocos p] 
eff ■ Cc P 

(3-9) 

The angles 9^ 0, and p are again defined by Fig. 13 and E = E sin p' 

It is easy to show that the expression sin^ c cos p is maximized when 

P = ± -^ + nn , in which case k  sin3 p cos p = ^- . Moreover, cos 2 0 

is maximum for 0 = 0, whereas sin 2 0 is maximum for 0 = ■j- . Therefore 
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FIGURE  13. Geometry of angles 
calculations. 

9,  0,  p    used in harmonic generation 

3U - 

 ^ ; ^^urj**^.^*^^..^-.,.:-—^- lutfir ■ ii in   ir- -"••-" ■•"■ -■•—'    *—■-'■'■ ■—'■- -■ ■   -^■■■■■^ ^■-.■^■^^i.^-.-- -= ..-^.^ ^■•.-i.^... ---^-r-- ■ ^.' --......,_..- -■■ .L,. ■..■. .. . -^■.■— ,..^ -:...^:^^. -frfr. V,. wi -ij ■■,' ^^ ^-^^.--.^.^^i^jAU^iaJ^^rtMariiafcQeMito)^^^^^ 



(3.10) 

the maximized equations in terms of 9 alone are 

2 h 
Type I  P(M = 2[ba + (b^ - ba) cos 0] sin 2 9 E (CD) 

Type II P(M =  ^ [^a 
+ (bß " 

b
a) 

cos2 e] sin 9 E (CD) 

go 
From index of refraction data due to Boyd-^ we calculate a phasematching 

angle for x = 10.6 ^m of 6 = 67.85° in which case 

Type I  P(lkD) = 1.U06 [ba + ^^(b " ba)^ 
E^(^) 

or 

Type I P(lkü) ^ I.U06 b^ E (to) (3.11) 

for x = 10.6 tarn . Two problems arise in looking at this phasematching 

process. There is a good possibility of wave vector walk-off in any crystal 

long enough to give appreciable signal.  One can possibly generate Iko by 

mixing 3üü + tn -* tao since THG is phasematched theoretically at 6k0    for 

\ =  10.6 \m    and the two processes could overlap. From Boyd's index data 

the turning point of the Type II FHG curve occurs at X = 13 urn and 6 = 82c 

In this case 

Type II P(lko) w 1.29 b^ E (CD) (3.12) 

for x = 13 ^m. Even though the Type II process has the advantage of being 

phasematched close to 90° so that walk-off is not a problem, it is nevertheless 

quite difficult at present to consider generating enough radiation at 13 um 

to actually observe the Type II - FHG process. 
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Since the index of refraction measurements for this crystal are not 

yet that accurate, we must consider these FHG calculations as approximate. 

However, the fortunate proximity of phasematched Type II - THG with 

Type I - FHG bears further investigation. In the case of producing 3CD 

7 
by mixing 2ai + m -* 3to , the THG output depended on the 3HG signal. 

Similarly, here it is possible to consider the mixing process 3a) + en -» IkD 

where the FHG output will depend on the THG signal. We have in fact observed 

FHG due to this mixing process. 

b. FHG Power and Conversion Efficiency 

We can calculate the FHG ^ower at phasematching, taking into account 

the properties of a focused beam and the transmission of the crystal faces. 

Since for all crystal sizes of interest here the effective length of the 

focal region is much larger than the crystal length, we can use a plane wave 

analysis. " "^ The electric field in a medium can be written in this 

approximation as 

E((ü) = A(Z,(ü) exp(-i Q^z) exp[i(k1z - üüt)] (3«13) 

for propagation along some direction z. The FHG polarization is given then 

by 
P^M = beff AV) expC^OjZ) expUCU^z - Ikut)] (3.H0 

In the thin slab between z' and z'+ d z', the increment of the FHG signal 

9U-97 
can be obtained from Maxwell's equations and is given ty 

dA(z,ito) =   (—) PNL(UcD)exp(-ik1+z' + i Iko t)dz/    (3.I5) 

where the geometry is shown in Fig. Ik   and n>  is the refractive index 

at CüJ= ^ • This generated signal is somewhat absorbed in the {£ -  z') 
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(x,y) 
• 

[I ^z    + dz 

j 
dz# 

T (z) 

FIGURE lU. Generation of the harmonic wave in a thin slab within a 
sample. 
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distance remaining in the material. Consequently the increment in the 

FHG signal at the end of the crystal, due to that produced in the thin 

slab, is given by 

2«i 
% 

dA(z,lkD) = P^C1^) exp(-ik.z')exp[-ia. (f-z^jdz' exp(iJ4<üt)   (3. 

or 

dA(z,ikü) = 

\    ; 

2rti ü^I 

16) 

  beff A M 
%     c 

where 

expC-ia^i) expC-Aaz') expC^kz')dz'exp(ii+cüt) 

(3.1.7) 

La   = 20^ - fak   and Ak = l^k - k,  . 

Ignoring the time dependence we have 

2ni 
A(/,lkD) = J    dA(lkD) = beff AV)exp(-|cV) 

\    c 
J^* exp(iAk-/\Q!)z/dz/ 

o 
(3-18) 

Integrating,  we get 

2ni 
AHM) = 

\     c 

^ L I      ["expfiA 
—   beff A (co) exp(-|a^)   

J     L (i 

k - ka)i - 1 

(i^k - Aa) 
(3.19) 

Now 

|E(ü,M|     =   |A(i,M|2 = A(i,Ito)A*(i,lkD) 

|E(i,lto)p = 2 
r2ita: 

n, c 
4 

- beff A  (0) exp(-Q:^i)exp(-AaX) 
cosh(Aag) - cos(AkX) 

(Ak)2 + (Aa)2 

(3-20) 
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We can write the power generated at    k<a   as    P(Uai)=A < S >   where    S    is 

gjj;    j £|       and   A =        for a Gaussian beam. the Poynting vector    S =   #•    JEI2    and   A = 

PCko) =   ^   w^  |E(M|2 =   Jz\   |A(Iko)| (3.21) 

where w^ is the beam waist. Since the electric field amplitudes are 

related by transmission factors at the faces we can write 

P(lkü) 
/C     2\/2rt^ \2 f k       \2/l6P(a>)U 

= tewVW  befV V1^/ VTw~y ***'(*°i + Hw 

x 2 
cosh (Act?) - cos(Alce) 

(Ak)2 + (Aa)2 

(3.22) 

as the general expression for the FHG power coming out of a crystal. We 

have used the facts that E(CD) (inside) = ^ E(Cü) (outside) and 

E(lkü) (outside) = — EOka) (inside)98 and that -(Aa + a, ) = -(2a + i a ) 

If we consider the case of phasematching, Ak -* 0 , then we can simplify the 

last term as follows 

cosh(Aki) - cos(/\ki) 

(Ak)2 + (taf 

1 + i(Aai)2 - 1 + |(Aki)2 

(Ak)2 + (Aa)2 

-   I2 

for   Ak -»   0. 
(3.23) 
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Therefore for phasematched FHC we have 

3 / 2> 

P(lko) V \7. 
4 

Ktt* m P (ü)) exp [-i(c^ + to^i]  (3.2U) 

Since a^ = IkD = li (-2j c , we have for the generated FHG power 

3 /S, ^) = iW Q) KJ ^ beff f 
nX )!('Xj P (ü)) exp [-5(0^ + to )ij 

(3.25) 

Where fcl = TTH    and H = FT^ from the Fresnel equations,98 and 

4 ^ w™«„wMJ.„6,     iuc rnu conversion efficiency is given by 

p(lkü) 

■(T)^)M(^W^^-.V-1 

(3-26) 

c. Angiaar Half Width 

.k 
Kildal has given a clear description of the calculation for the 

angular half width of generated SHG and THG signals.  Such a measurement 

is important for several reasons. First it serves as a check on the type 

of process one is actually observing; mixing and harmonic generation, for 

example, have different angular tolerances. Second, it is an indication 

of the practical angular tolerance limits one encounters in turning a 

crystal to phasematch different input frequencies. Third, it serves as one 

ko 
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.neasure of the quality of the crystal. We can briefly summarize Kildal's 

work and extend it to the case of FHG. Let us return to Eq. (3-22) and 

assume that A« = 0 for simplicity. This equation reduces then to 

The half width at half power is given when sine2 ^- = g which occurs 

when 4M = i.U radians or Ak = 2.8/i. Now we must calculate the 

variation of Ak with 9 for each type of phasematching, where 

^ - ^ 

Typ Ä j    e+e+e+e ■-» o   Ak = k^ - ^ = k^^) - ^(^9) 

8« bne(e) 
or   AkT = - —   A9 

1     ^        bo 

Type II   e+e+e+o - o   Ü^ = ^ - ^ = ^(M - 3^,9) " kl(a3) 

Ak 
II 

•6K     bne(e) 

x,   be 
Ae (3-28) 

Now one can write n
e(e) as 

2      . 2 cos 9    sin p 

n2(9) n 

- hi - 

(3-29> 
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98 
and the Poynting vector walk-off angle j\        as 

tan T| 
-e'e) 

n n 

From these two expressions one finds 

sin 2 6 (3.30) 

öne(e) 
  = - n (6) tan T) 

be     e (3.31) 

Finally, for near normal incidence AS external = nA6 internal. Combining 

this result with Eqs. (3.28) and (3.31) we find 

Aei ext    " 

AP 0 II ext 

\ 

no(lkD) 

ne(£u,9) 

8.98^ tan Tj 

\ 

6.73i tan 7] 

(3.32) 

3.  Summary of Harrronie Generation Results 

At this point we can tabulate the results for SHG, THG, and FHG 

in a crystal with ¥2 m symmetry. The effective nonlinear coefficients 

for the various phfsematching conditions are given in Table 3. The 

expressions for output powers at the harmonic frequencies, in terms of 

the input power at en , are shown in Table h.    Finally the angular half 

widths are given in Table 5. It should be noted that the widths get 

narrower as we go to higher order harmonics. The tuning curves for these 

three processes are shown in Figs. 15 and 16. 
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TABLE III 

EFFECTIVE NONLINEAR COEFFICIENTS FOR HARMONIC GENERATION 

Harmonic Type 

SHG 

THG 

FHG 

I 

II 

II 

III 

II 

d = cLi sin2ecos 2 0 

A     = -d . sin 6 sin 20 sin 2p 

r (c,i " 3 c1ft) cos
3 e sin 4 0 

h ^11 ' J ~1Q 

=    [J (c,, - 3 c-o) cos2 9 sin2 2 0 + clfi 
sin 6 :II =  L2 ^11  J "18 

2 2 
+ c1o cos 6] cos p sin p 

in = ¥ (cii " 3 ciB^ cos e sinkfi sin p cos   p 

b    = 2[bi(M sin2 e + bi(5) cos2 e-  sin2e cos 2 ^ 

2 „-, ,J 
II 

= ^[b  /, vsin    9+ b   ,  s cos    9]  sin 6  sin 2 0 [sin^pcos p] 

where    P (2a}) = d    E  (CD)  ,  etc., 

^5 
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TABLE   IV 

POWER EQUATIONS FOR HARMONICS 

p(aD) ■ (rj^X16 ^frrv fev p2(ffi) exp[- ^+^i'<] 

P(3m) = 
(» 

P(IkD) = 

\3 /„2x a6 r /w 

^JM 

37lCeff r 

*      n \ 
t^tj   P3^) exp[- |(a   + 3^) ü] 

h* beff A' 
n \ / IVJ  p ^) exrt- fK + ^i) -e] 

where w^^ -» w^ are beam waists, ^ -» t^ are electric field trcnsmission 

factors and ^ _» a^ are loss constants for beams with co -» IkD . i is 

the effective interaction length. 

k6 
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SHG 

THG 

FHG 

II 

II 

III 

II 

TABLE   T 

ANGULAR HALF WIDTHS 

Ae, 
xi 

1|.5 i tan r 

LQ 
no(2cu) 

II 
2.25 i tan Tl      n (00,6) 

A0. 
6.75 i tan j\ 

AG 
II 

^1 "0^303) 

k.? £ tan 1)      n  (a),e) 

A9 
n0(3cü) 

III 
2.25 i tan Tl    n  (cü,e) 

ae. 

AB 11 

8.98 ^ tan T| 

^X no(l4<jD) 

6.73 i tan T]      n (03,9) 

where    Ü = crystal length,        ^    = input wavelength        T] =    waUt-off angle 
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B.       MIXING PROCESSES 

1.       t» + 2üJ -» 3CJO 

There are two mixing processes that can generate    3^ an(i ^   which 

should be discussed.    The first process 

CU + 2ü5 -♦ 3<u (3-33) 

is not phasematched and occurs along the direction of phasematched SHG. 

By us'ing two sources one at 10.6 (im and the other at 5.3 |im we can have 

phasematched mixing.  In terms of ordinary and extraordinary polarizations 

the only combination of importance here it. 

Ee(<D) + EO(2CD) -* EO(3Cü) (5.3^) 

Because of positive birefringence, the harmonics must be ordinary waves. 

Moreover, otily the extraordinary wave at CD will generate a mixing signal, 

since Eo(tti) + E0(2a3) cannot give EO(3üJ).  Since this is a second order 

process, we have some effective mixing coefficient d ,  (effective). We 
mix 

can determine its form by writing down the expressions in Figs. 10-12 

for a mixing process 96 

Px(3a0 = 2dlk [EyM EZ(2ü)) + Ey(2co) E^co)] 

Py(3m) = 2dlh rEx(ü5) E2(2ü)) + Ex(2a)) E2(<o)] 

Pz(3ü3)  = 2dlU  [Ex0.o) E  (2a))  + EX(2üD) E  (m)] (3.35) 

Note here P(3a)) = P0(3ü3) so Pz(>) = 0 . Also E(2cu) = E0(2<D) so that 

EZ(2ü3) = 0 . These equations reduce then to 

Po,x(3CD) =2dl^Ee>'e)Eo,y(2ü)) 

■po,y(3tu) = 2*ik Ee,zM ** ^ o,x 
(3.36) 

)48 
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where P (3üJ) = sin 0 V      huhcos  0 Pn v(3ü))and E _(u),e) = sin p sin 6 E(a)). 

Note the degeneracy factor 2 is in agreement with other authors.   Now 

from Table 3 we have 

P (2ü)) = - d^ sin 9 sin 2 0 sin 2 p E (co) 

and we can calculate the magnitude of  A(2üü) to be 
96 

(3-37) 

A(z^ 2ü)) = i 
2« ̂

 

n2c 
dSHG A^ exp[- |(a2 + 2^) z'] z'       (3-38) 

where d,,   = d-, sin 6 sin 2 0 sin 2 p. Now we assume that for the 
SHG ^ 

mixing process we have a coherence length i     ,  where 

Ak = ^ + k2 
-»    6« 

k3 = r 
n1 + 2n2 

- n. 

X 

'e = 

« 

Lk 
6 
^ + 2n2 

• n„ 
L      3 

3j 

(3.39) 

and that the magnitude of E(2ü)) is constant and given by its value at 

U - 2 ^c),  namely 

2n ov, 
AU - § üc, 20))    =    i     dSHG A2(cU)   [^ - I ^cl exp [- |(a2 + 2^) £] 

(3^0) 

n2c 

U9 
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Following the same procedure as for the FHG case, we calculate the power 

at (3a)) due to mixing to be 

P(3cu) ■(TKIX-1 ?urt % KxJisHG £^ _ | £c) 
n 2 

n2n x 

exp [- |(a2 + 30^) £] 

(3.^1) 

where    dg      r= - cL.     sin e  sin 2 0 sin 2 p 

Sax = " 2diu   sin esin p 

2. co + 3m -» Ikn 

The case of non-phasematched mixing of a THG signal with the funda- 

mental to produce a signal at 'KO can be analyzed similarly. By analogy 

to Eq. (3.3^) we have 

Ee(üü) + E0(3ü)) -♦ EO(U<D) 

The coherence length for this process is given by 

(3.^2) 

Ak   k, + k 
3   ^ 8 

n -i + 3 n - e.l  J ot? 

V 
(3.^3) 

Here we are concerned with mixing against a signal at 3<JD generated in 
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a type II-TKG process.    The calculated output power at    Uca    is given by 

P(lku) = ■(r)'® (16«2) _ ^"^ y -1 'c) 
n„n^\ 

(tjtu)2  ^(CD) 

x exp [- |(a3 + toj^) i] 

where    d^ = - 2«^ sin 6 sin P 

CTHG = 2[(cll-3cl8)sin2 ^ COs29+ C16 Sin2(5+ C18 COs2e] Sin2 P C0S P 

At this point it should be noted that the process 2ca + £& •* ha>   does not 

work because all three waves are ordinary waves when we consider mixing of a 

SHG signal with itself to give FHG. On the other hand, if we have an external 

source for the 2(x>    signals we can polarize the input waves to make this 

mixing process possible as well. 

3.  Angular Half Widths 

We calculate the angular half widths for these two mixing processes 

by the same procedure used in Eqs. (3-28) to (3-32) 

Ü3 + 2ü5 -♦ 3^ 

A9 
II ext 

\1 no(3cD) 

2.25 i tan p    n (fl,ü)) 
(3^5) 

and 
(u + 3ü3 -* IkD 

(3>6) 
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IV.  EXPERIMENTAL AND THEORETICAL WORK ON HIGHER ORDER NONLINEAR 

PROCESSES IN CdGeAs 

A.   INTRODUCTION 

Since CdGeAs2 has the largest figure of merit for second order 

nonlinear optics processes, and since, as shown in Section III, it can 

be phasematched for third and fourth harmonic generation processes, we 

undertook an experimental and theoretical investigation of these two 

interactions. The results on THG experiments in CdGeAs2, and the theoretical 

models used to calculate contributions to the third order susceptibility 

from bound electrons and free carriers are discussed in Appendix II. 

This section gives a summary of the application of the Bond Charge Model^"101 

to the calculation of fourth harmonic tensor coefficients. The results of 

the third harmonic investigation of CdGeAs2 are discussed and the potential 

power outputs at the third and fourth harmonics of 10.6 |im are examined. 

B.   THIRD HARMONIC EXFERBEIITS AND THEORY 

!•  Separation of Components by Symmetry Arguments 

One of the principal points made in Appendix II is that nonlinear 

aisceptibilities of various orders arise from different mechanisms in a 

semiconductor material.  In particular, we note that isotropic materials 

have non-vanishing odd order susceptibility tensors while even order sus- 

ceptibilities equal zero from symmetry considerations. In particular, for 

semiconductor materials odd order susceptibilities arise from two sources: 

electrons localized in crystal bonds, which reflect the symmetry properties 
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of the crystal lattice, and the free carrier cloud, which has isotropic 

symmetry. For crystals with h2  m symmetry, like CdGeAs , we can compare 

nonzero third order tensor elements with those of systems with other 

symmetries.  Such a comparison is shown in Fig. 1? where the nonzero third 

order tensor elements for uniaxiel h2  m symmetry are obtained :?rom Fig. 10. 

The fact that the c.^. element is common to the case of h2  m and isotropic 

symmetry suggest that this tensor component arises from a component of the 

crystal with isotropic symmetry, such as the free carrier cloud. The 

element C
TI " 3CIQ^ however, appears to arise solely from a component 

reflecting the symmetry properties of the particular crystal class, i.e. 

the electrons localized in the bonds. From Table 3, moreover, it is 

apparent that one can separate these tensor components, and hence the bond 

electron and free carrier effects, by doing different phasematched THG 

experiments. These points are summarized in Fig. 18. As discussed in 

Appendix II, we have performed phasematched Type I ard Type II THG to 

measure the third order tensor coefficients. Until now the only measurements 

of third order susceptibilities in semiconductors have been carried out by 

mixing experiments (2m, -ou = CJü„) in a nonphasematched configuration. 

Consequently it was not possible to measure the tensor coefficients independ- 

ently, as we have done in CdGeAs^ . 

2.  Free Carrier Effects for Third Harmonic Generation 

In Section III of Appendix II contributions to the third order suscept- 

lO^-lQQ 
ibility from free carriers are discussed.  '  " Since we were doing harmonic 

generation rather than mixing experiments (where frequency differences can 

get close to inverse relaxation times), the only contribution to the nonlinear 
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THIRD    ORDER    TENSOR    ELEMENTS 

ISOTROPIC 
SYMMETRY 

0 

0 

AXIAL 

SYMMETRY 

16 " c18 

CUBIC 
SYMMETRY 

cir3c18 

UNIAXIAL 

SYMMETRY 

cll ' 3c18 

16 - c 18 

16 

c16 ' c18 

:11" 3c18 

N0N-7ER0 FOR ALL MATERIALS 

=» LIKE  AVERAGE REFRACTIVE  INDEX 

INDICATES DIFFERENT BEHAVIOR  BETWEEN 
z DIRECTION AND xy PLANE 

=^ LIKE BIREFRINGENCE 

INDICATES DEPARTURE FROM  ISOTROPY 

=» PURELY DEPENDENT ON CRYSTAL 
SYMMETRY 

FIGURE 17. Analysis of THG tensor components by synunetry arguments. 
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SEPARATION OF BOND ELECTRON AND FREE CARRIER EFFECTS 
BY PHASE MATCHED THG 

im 

BE 
im 

FC 
im 

cf^ (BOND ELECTRONS) + cj^ (FREE CARRIERS) 

SYMMETRY OF CRYSTAL CLASS 42m 

SYMMETRY OF ISOTROPIC ELECTRON CLOUD 

TYPE   I      THG 

eft (cll - 3c18) 
BE 

TYPE   II     THG 

eff oc    {cu - 3c18) BE 

+   (c16 " cn) BE + FC 

+<c16) 
BE + FC 

FIGURE 18. Bond electron and free carrier contributions to third order 
susceptibilities. 
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susceptibility comes from the nonparabolicity of the energy bands. 

We have extended the work of Kane110 and Kildal^ to the calculation 

of third order nonlinear susceptibilities in ternary chalcopyrites. The 

Kane model has been used successfully to describe the third order properties 

of elementary and binary compounds.108"1^ Details of the calculation of 

the energy band shapes by our extension of Kane's model are given in Appendix 

II.  It has been demonstrated by several authors that the third order 

susceptibility due to nonparabolic energy bands is given by107"109 

Ci.jki(üV¥V =± 
bhE 

2^h Vo^Qgü) (üXJ+ o^+tü 

C-LL -  E f (E  ) 
(a)1+a^4tUo)  u  0 c,V flk ök bk Ok 

i J k i 

ik.l) 
where fo(E) if the Fermi-Dirac distribution function. Here we pick the 

+ sign and Ec for n-type material, and the - sign and Ev for p-type 

material. A comparison of the energy band diagrams for chalcopyrite. and 

sphalerite materials is shown in Fig. 19. The parameters used in this model 

for CdGeAS2 are also listed. As discussed in Appendix II, the results of 

this free carrier model for p-type CdGeAs are 

C16 = 

16 * 

-2.5 X 10"27 N ,(p) 
"18 

mW  f 

1.5 x 10 ^' N c(n) 
18 

C(P) C16 

cl6 

- 2 X lo"27 N 

6.3 X io~28 N 

(^•2) 

where N is the free carrier density. We use the fact that for 

an Isotropie medium, in this case the free carrier cloud, c  = 3c . 
11   18 

We derive the following values for e   n   anA „        *       ^    ~ 6  xues 1 or o^,  cl6, and c^ from the free carrier 

model using a carrier concentration of N = 1.2k x lo16 holes/cm3.  (Note: 
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SPHALERITE COMPOUND        CHALCOPYRITE COMPOUND 

E|sE2=0 

Ec=E,+ E6 

FOR   Cd6eAs2      E6 =0.5367.      A«a38eV.     8 = -0.25eV 

E, =0.20eV,    E3=-0.32eV 

FIGURE 19. Band structure of sphalerite and chalcopyrite compounds, 

- 57 

 _* - . . ■--  ■ — --■ -*-^- 

 — --■   ^. — ■J--  -  --^   .^-X.^-^.-.  ^^^ ^J..-^-..  ^ ^^ ^^^^t^^-^ 



the value N = 5 X 10   holes/car given in Appendix II is incorrect). 

c  = -1.U9 X lO-11 esu 

c^ = -0.5 X 10*  esu 

Cl6 = ■3'1 x i0"11 esu 

Free carriers 

(N = 1.2^ X 10 16 
■a 

holes/cnr) 

These should be compared with the results of the Bond Charge Model 

c  = 1.8 x lo'11 esu 

Cl8 = ^-^ x Id"  esu Bond Electrons 

cl6 = l.li x lo"
11 esu 

3«  Comparison of Theory and Experiment for Third Harmonic Generation 

We can compare the values for the effective c's for Type I and 

Type II THG by using the expressions in Table 5^ keeping in mind that we 

must use the free carrier and bond electron values in accordance with 

Fig. 20. 

Type I : CT = - £ (c  - 3c1ß)
BE cos3e 

'I " k  vcll  -^18' 

Type II : cTT = sin p cos p 1^-30    f*  cos 6 -II [h vBE   2, 
'11 J 18' II 

. 2f + (cl6 sin"eii+ ci8 cos
2e,. sBE + FCI 11} J 

(M) 

In our experiments the phasematching angles are 9 = 50°, 6  _ 60° and 
II 

cos p = 
/T 
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The crystals used were cut for maximized 0 angle in each case. 

Therefore, 

c  = -0.1k X IO"11 esu 

CJJ = -0.53 x IO"11 esu 

Calculated 

(h.k) 

By using the experimental setup shown in Fig. 20, we observe both Type I 

and Type II THG signals in CdGeASp. As described in Appendix II we observe 

a signal at 3ü) by nonphasematched mixing of the second harmonic signal with 

the fundamental 2Cü + en = Jca .    Since the value for d ,  of CdGeAs? is 

known to be 8.U X 10 ' esu, by measuring direct Type II THG in the same 

crystal, we obtain a value for the ratio c /d-, . Finally, by observinpr 

Type II THG in one crystal and Type I THG in a second crystal with the 

same experimental setup, one can get the ratio c /c . A phasematching 

curve for Type II THG and its P^(Cü) power dependence are shown in Fig. 21. 

From these experiments we have determined c  and cTT to be 

jc-j  < 0.6 x io"11 esu 

c^l  = 12.5 X 10"11 esu 

Measured 

(M) 

Since our signal to noise ratio was only 2 : 1 in the cT measurement 

we must put an error range of + 505g on this measurement. It does, nevertheless, 

compare favorably with the value given in Eq. {k.k)  from the Bond Charge Model 

calculation. However, our measured and calculated c   differ by more than 

one order of magnitude. There are several reasons to explain this discrepancy, 

all of which bear further investigation. 
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TYPE It THG TUNING CURVE 

Extenal angular half widths 

■   1( 

12° 

^meas.  "   lo0 * l0 

50° external rotation 

■•fe-) 
1000 

40 20 10 

ÖURN INTENSITY 

100 

10 

THIRD HARMONIC POWER 

SO 20 10 5 2 1 

P, IkVI) 

FIGURE 21.    THG  tuning  curve and power dependence, 
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Since the c   coefficient contains a contribution from free 

carriers which have been calculated from a modified Kane's model, we 

might question the accuracy of the carrier concentration measurement. 

The carrier concentration was measured by the Van de Pauw technique, 

which for bulk sa-nples with  possible microcracks and grain boundaries does 

not have as much accuracy as we would like. It is not unreasonable that our 

carrier concentration measurement could be wrong by a factor of 2.  Since 

c,/' and c.Q in Eq. (U.17) are proportional to N from the form of the 

equation a factor of 2 error in N gives a factor of 3 error in c . 

One car »asily attribute part of the error to the experimental measurement 

process since our crystal must have three angles 9 , 0 and p  aligned 

correctly.  Moreover, even though we tried to perform this measurement with 

the laser unmodelocked (and with no mode beating), fluctuations in the laser 

appear at least three times as large in the third harmonic fluctuations. 

The d...  coefficient of CdGeAs0, as discussed in Appendix II, is accurate 

to only ± UO^ . The ratio c /d1,  is accurate to ± 255g . 

Since the Type II THG tuning curve shosm in Fig. 21 compares well with 

theoretical predictions for the halfwidth, it appears that we were not thermally 

heating the sample. The angular difference of 12 (internal angle) between 

Type II SHG and Type II THG, measured in the same material, is in good 

agreement with the predicted angle difference in Figs. 3.6 & 3.7 • Consequently 

it does not appear that we were producing additonal free carriers to break 

phasematching. To change the birefringence by 0.0021; we only need to inject 

1^ ^ 
an additional N - 5 X 10 ^    carriers/cm-^, which would not affect the value 

of c   as much as "ndicated in our measurements. 

m^i^a-M^aua—^^ 
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By far the most important point to consider is that our modified 

Kane model is too simplified a picture.  Several workers already observed 

that Kane's model leads to predicted values of effective masses and third 

order susceptibilities 2 or 3 times smaller than actually observed. As 

noted in Appendix II, Cardona   in reflectivity and Faraday rotation 

119 
measurements, and Wynne "  in third order susceptibility mixing experiments, 

both observed such deviations of Kane's model's predictions from experiments. 

120 
In addition, Aspnes   has shown that contributions to the second order 

susceptibility from several points in the Briliouin zone must be considered. 

He discussed the enhancement of the second order susceptibility from small 

gap regions throughout the Briliouin zone,  rather than only at the direct 

gap. Much more work on the band structure of CdGeAs2 needs to be dene before 

these points can be clarified. 

^'  Efficient Harmonic Generation in CdGeAs 

At present all measurements in CdGeAs2 have been made with 200 nsec 

pulses from TEA-C02 lasers. Our 1 nsec system described in Chapter II was 

not operating well enough to use for measurements. From Table 3 we can 

derive expressions for the conversion efficiency into the nth harmonic by 

taking the ratio l(ncü)/l(ü3). 

*(2a>) = f(f )(16.2)^^-J(t2 tj2 I(cn) exP[- |(a2 + 2^),] 

*(3co) - (f)^f )2:i6/)^I_!j(t3 t/l^Oexpr- f^ + 3^] 

*(M = (f)^f )^l6/)fl^J(4 t/^exp^ h% + ka^t] 
(^.6) 
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Here tffCno)) is the power conversion efficiency into the nth harmonic 

and l(niD) is the intensity of the nth harmonic. In our experiments, 

for exemple, we have measured conversion efficiencies of 2^ for SHG and 

10 %  for THG in a 2 mm long non-AR coated, p-type crystal with input 

2      5 
intensities of 20 MW/cm . Klldal^ has measured a 7^ SHG conversion efficiency 

2 
for a similar 9 ran; long p-type crystal and ^o MW/cm input intensity. 

Research on CdGeAs,, crystal growth at the Center for Materials Research 

at Stanford indicates that this material can be made to grow n-type by 

doping with indium or vanadium. Moreover, crystal growers at both Stanford 

and Lincoln Laboratories have produced 1 cm long pieces of CdGeASp. Seeded 

vertical Bridgeraan growth using [111] oriented seeds looks promising as a 

technique for growing large single crystals. Also, by using 1 nsec pulses 

and focusing to intensities of 100 MW/cm'1, it is possible to reach 60%    SHG 

and 30^ THG conversion efficiencies in 1 cm long crystals. As mentioned in 

Chapter I, burn densities in p,-type Ge for a 1.7 nsec pulse have been 

. 2 
measured at 1 GW/cm . From the conversion efficiencies quoted above, if 

2 
the burn density of CdGeAs is close to 1 GW/cm one would expect 50 - 80$ 

conversion to second and third harmonic in a 1 cm long crystal with tight 

focusing. However, Kildal has shown that there is saturation of the SHG 

signal at high power densities with 200 nsec pulses. The origin of 

saturation appears to depend on some nonlinear absorption mechanism involving 

the SHG signal. No free carriers produced by multiphoton absorption were 

121-122 detected; this is the primary saturation mechanism in Te,      which has 

a smaller bandgap than CdGeAs0. Further work on the nature of the saturation 

mechanism in CdGeASp is essential, particularly with 1 nsec pulses, in order 

to fully evaluate its usefulness for high power infrared optics. We have 

6k - 
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examined phasematched THG in liquids and gases as an alternative to THG 

123 
in CdGeASp, "but no experiments have been performed to date. 

C.       FOURTH HABMONIC THEORETICAL PREDICTIONS 

In Section II of Appendix IV the basic approach of the Bond Charge 

102 
Model is outlined.    Starting from Penn's model        for the dielectric constant 

1 Q-3 IQlj. 
of a semiconductor and Phillip's    -' and Van Vechten's        theory for the 

dielectric properties of semiconductors,  Levine        developed the Bond Charge 

Model to calculate second order nonlinear susceptibilities of binary semi- 

105 
conductors.    Chemla later extended this model to ternary compounds,        and 

the paper given in Appendix II is a generalization to third order suscept- 

ibilities. 

In this  section we apply  the Bond Charge Model  to calculate  the 

fourth harmonic tensor coefficients in CdGeAs^   We begin by writing the 

polarizability of a bond in the language of Phillip's mean energy gap    E 
S 

2 
D E 

a=   i (aM   +23,) = (2aJ3—| (U.7) 

g 
3 HI    'T = -°'   E 2 

2  2 -9 h        2 
where ao = h /me = 5.3 X 10  cm , E = me /2 h =13.6 ev.  D is a 

correction factor near unity to account for effects of core electrons and 

E  is given by 
g 

E2 = H2 + C2 {k.8) 
g 

The honopolar and heteropolar energy gaps H and C are given in Phillip's 

- 6? 
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theory by 

CAB = 1-5 e 
A   B 

A   B 

exp h "s^A^B5 ] 

X a (rA - rCA)5 + ^B " rCB)5 

AB 

(^.9) 

where z^ } r^  , rCA are the valence number, covalent radius106 and the 

core radius of the A atom in the AB bond, and k  is a Thomas-Fermi 
s 

screening constant. Higher order susceptibilities arise from nonlinear 

variations of the mean bond polarizability a with respect to electric 

field. We can write the dipole of a bond in terms of a Taylor series 

expansion of a : 

Pi = au W Ei 

Pi = (aiPlE = 0 
+ 

0«, li 

ö E 
j 

E - 0 EJ + E. 
(^•ic) 

The derivative terms give the nonlinear susceptibility components for each 

bond. For the case of FHG we have 

'ijkip 3'- 

ö Of 
i£. 

ÖE. ÖEk t>E£ 

ih.ll) 
E = 0 

As discussed in Appendix II, we assume that we can talk about these higher 

order polarizabilities in terms of a bond charge101 q , located at distances 

rA and rB from each atom in the bond' We calculate the variations in a 
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with electric field by examining the variations in rA and rB with 

electric field.  It is shown in Appendix II that 

4rA = 

4rA" 

-4rB. 
a, .E, 

g 

4*1 
2rAq 

2  ; trB- 

2 „2 
aJ. El 

2rBq2 

E parallel to bond axis; 

E perpendicular to bond axis. 

(^.12) 

Since the variations in rA and rB are second order in E^ , we 

retain only even powers of E, . Consequently the odd order derivatives of 

a., with respect to E,  vanish: 

\ÖEi/ 

2p + 1 

a..  = o 
id 

(^.13) 

All order derivatives in E, ,  are retained. By using Eq. {h.lj)  and 

Kleinmen symmetry one can show that the elements of the fourth order 

susceptibility of a bond are given by 

6     = 6 zzzzz 
1 & al! 
Z    * E3 

/ 0 

1 & «1 
6      =    6 .   =    y     — =  0 
xxxxx    j   b _ „2 

ö E I + all permutations 

_ 6   = 1   b "xz 
xxzzz '  I j I   6 

= 0 
5Ex öEz öE2 

(^.l^) 
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By combining expressions Eq. (h.'j)  through (U.l^) as discussed for 

the case of THG in Appendix II, we obtain an expansion for g. .(AB) for 

the fourth order polarizability of the bond between atoms A and B 

given by the following: 

6,,(AB) = 
•3er 

AE 
U(2fh -  Dh^H + 1^(2^ -  Dg^C + 1^(6^ -  l)h1g^H 

A(6fR -  l)hJg1C - SChjgg + h^)^ 

"Er2(Ufh " 1)hlhP + 2(Ufi ■ l)glg2 " 2(h3H + g3C)] 

0*.15) 

where 

A =  (2 a   )3 D E2      f,= —        f.   = 1 - f. 
o o        i    _2 h i 

E 
g 

■be h 3 
2 2 

LA B. 

exp[- i Ks(rA + rB)]      h1 =   ^ 8 

% = 
be' 

2 

g3 = 

-be2 

q3 

-   A        B. 

-J   exp[-iks(rA + rB)] -20 
h2=- 

rA -  rB ^ 

1 

H 

(rA + rB) 

H 

exp [- | ks(rA + rB)]      ^ = 
■103.2 rA-rB 

(rA + *J 
H 

Here    q    is the bond charge given by 

2 
«1 = 3 ["-2    + 0.m -  f.)!, (4.16) 
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where n is the index of refraction, f.  the ionicity ^ and the factor 

3 arises from the fact that ve have a tensor derivation.  In CdGeAsp we 

must derive the value of the polarizability for the CdAs bond and the 

GeAs bond, denoted by öj, and 67, respectively. 

Finally we must sum over the contributions of all bonds in the unit 

cell of volume V.From Fig.3-1 we have two nonzero components of the macro- 

scopic FHG tensor. In terms of the parameters T and a , which are a measure 

of the distortion of the unit cell, we can express b,/, v and b,, v as 
1(4)      1(5) 

the geometrical sum over the bond polarizabilities 

(4.17) 

c       Ux 
where T = — -i, a = — - 1 , and a and c are the lattice constants. By 

substituting the expressions Eq. (4.15) for 5^ and 6" into Eq. (4.17) 

(using values of the parameters for CdAs and GeAs bonds found by interpolation 

101.103-106. of values for other bonds," ')we derive the values 

IVMI = 2.80 x 10""^ esu 

|bl(5)| = 0.72 X 10"18 esu Units cm 
/ 

9/2 / erg3/2 

(^.18) 
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This is the central result of this section.    The only experimental results 

-21 
on phasematched FGH in any material give a value of b -„ pa 10   esu for 

12h 
lithium formate. 

in the three orders of magnitude difference between the two susceptibilities. 

The large nonlinear response of CdGeAs is apparent 

Finally we can estimate the conversion efficiencies to be expected for 
O      p 

FHG in CdGeAs2 with 10 W/cm input intensity in a 1 nsec pulse. We assume a 

1 cm long, AR coated crystal. From Eq. (^.6) we calculate a conversion 

,.-8 -1 efficiency of 10   <* for a typical p-type crystal  (a    =0.5 cm"    , 

a^ = 7.0 cm"1). 

For a high resistivity sample  (a. w 0.01 cm'    , a,**h.6 cm"1),  and an 

input intensity of lGW/cm    the conversion efficiency should be about lo"^ 

for FHG.     It appears that FHG in CdGeASp will never be a practical source 

of infrared radiation,  but coupled with SHG and TKG results,  it may provide 

additional insight into the theoretical models for nonlinear susceptibilities. 
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APPEirorx i 

CALCULATION OF NONZERO ELEMENTS OF n  RANK SUSCEPTIBILITY TENSORS 

In this appendiy. we examine a very straightforward procedure for 

determining the nonzero elements of a nonlinear optics susceptibility 

tensor to any order from one of lower rank.  Since most work in the past 

has required consideration of only 'X.   , X    and sometimes y   tensors^ 

the direct inspection method c has been most often used to simplify the 

forms of tensors. However, one can easily see that this method can become 

quite cumbersome for higher rank tensors. The total number of elements in 

a tensor rank n is 3 , corresponding to a susceptibility of order 

(n-l), namely > 'n-1) For fourth harmonic generation for example, n = 5 

and 3 s 2^3 elements. For a possible fifth order process n = 6 and 

3 = 792 elements. Nevertheless, the direct inspection method has been 

applied to fifth and sixth order tensors. 

From another point of view, one can apply the methods of group theory 

to the task of expressing a tensor of rank n in terms of its irreducible 

loo 1 " * 
components of lower ranks,  ' ^^    This technique has been used successfully 

in nonlinear optics by Jerphagncn. ^      The use of such techniques, particularly 

the realization that one can very closely associate the properties of higher 

rank cartesian tensors with higher order spherical harmonics, leads to a 

very elegant, but also very practical formulation of higher order tensors 

for many physical problems. ■'0     This method moreover, provides the only simple 

way for finding the exact rel?tionships between the nonzero elements of a 

tensor of rank n . 
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In this appendix we simply borrow some points from these more 

general treatments and consider the case of nonlinear optical susceptibility 

tensors. There are three classes of symmetry conditions we must consider: 

the symmetry of the particular crystal class in question; overall permutation 

symmetry;15 and Kleinmen symmetry. ^ For a tensor of rank n and a 

harmonic gen-ration process, n - 1 of the frequencies involved are the 

same. Overall permutation symmetry allows one to permute n - 1 of the 

tensor element subscripts without changing the value of the coefficient. 

For SHG for example 

d..,  = d.. . (1.1) 

If ell of the frequencies in question are within the transparency range 

of the material, one often can neglect dispersion in the nonlinear 

susceptibility.  In that case Kleinman symmetry holds, and one can permute 

all n subscripts. Again for SHG we have 

d   *« d   <=»< d, .. 
ijk    jik   ^cji 

(1.2) 

For a tensor of rank n , the application of Kleinman symmetry makes the 

tensor fully symmetric. The total number of independent elements is given 

by 
129 

( 

n + 2)   (n + 1) (nj; 2) 
n / =       2 

For overall permutation symmetry the tensor is symmetric in only n - 1 
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indices. The total number of independent elements is given by 
127 

iVA) 3n(n *  1) 
2 

Finally, from above, for the case of no special symmetries there are 3 

independent elements. The factor 3 , of course, comes from dealing with 

a space with three dimensions x, y, z.  Table 1.1 summarizes the number 

of independent elements for different symmetry conditions, before the 

application of the properties of the crystal class.■ KLeinman symmetry is 

a very powerful condition for reducing the number of independent tensor 

elements and it should always be applied first before the symmetry properties 

of the crystal are considered. 

Next, we can write a tensor of rank n in two ways:1^ first it is 

the tensor product of n vectors 

i.lkl p    i   w  .1  ^ 
® t (1) (1.3) 

Secondly, it can be written as the tensor product of a vector with a 

tensor of rank (n - l) 

ijkl. 
- t(l) Q c^-1) 
" ti  W  Cjkl... il.h) 

In particular, one can write each higher order nonlinear optics tensor as 

the tensor product of a vector and the previous lower order tensor. 

x
(?) =   t, ®    X (1) 

(3)    _   t      {?)    x(2) 
xiökl - ti   ^  xjkl (I.?) 
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The prescription of 'his fftnUM,  therefore, is to first spply 

Eq. (l.U) to gentrete the appropriate nonzero elenent? of the n r^nk 

tensor, but usine the JUeinT-'n syrmetry reduced fom of the (n-1) r^nX 

tensor. Then, the properties of the particular crystal symmetry can be 

applied to the already ruch reduced tensor. Aa a practical example, we 

can generate the independent elements of yj^ and y^.  . We first 

note that the linear susceptibility JÜ    has six independent elements 

(11 U 33 3? i3 If) „ M) Ä<1 
Jk v*- >/ 

where 1,2,3 ore short notati'  A» x, y, z.  To generate yj^ w. 

«•ite 

•Si - >il) • ^ 
■  (12 3) x  (11 22    33 32 13 12) 

(1.7) 

If we write down all the possible combinations in the product and keep 

only the independent ones we have 

(111 112 113 122 12. 133 222 223 233 333) - X^        (1.8) 

Note, there are ten independent coefficients as predicted in Table I.1 

for Kleinman symmetry. Using Eq. (1.8) we can determine the coefficierts 

Of y^) 
ijki • 

v(3)    t(l)  ^ y(2) 
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TABLE    1.1 

INDEPENDEOT FLEMEIITS OF A TENSOR OF RANK    n 

Tensor 
Rank (n) 

Susceptibility 
Order    (n-1) 

No Symnetry 

(3°) 

Overall Permutation KleiaT.an 
Symnetry 

1   («)) 9 - 6 

2   (2a)) 27 18 10 

3 (3a)) 81 30 15 

U  (Iki)) 2U3 U5 21 

5 (5a)) 729 63 28 
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Wiling  out the product and keeping the independent elements gives 

Am 1112 1112 1222 2222 2223 1333 2333 3333\ 

\    1133 1233 1122 1322 1123 2233        /  , 

"* vljk/ 

(1.10) 

Here there are fifti-en iLlependent coefficients, again in agreement ^-ith 

Table 1.1.  At this point we could apply the crystal class syrr.-netry 

properties, i.e. Ü2 m symmetry Mr CdGeAs2 and obtain the final expressions 

for vijk and vijki " We would obtain the tensors shcvm in Fig. 10. 

The procedure outlined here wee used to calculate the FHG tensor for CdGeAs 

also shown in Fig. 10.  The alternative appropch of starting with the 22*3 

element general tensor and using the direct inspection method firsv, proved 

too awesome to this author. Finally, this technique was used to calculate the 

nonzero independent elements of the fifth harmonic tensor, although it is .>,ot 

shown in this manuscript. 
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APPENDIX  II 

EXreRIKEIJTAL AND THEORETICAL STUDIES C? THIRD HAH^ONIC GEJERATION Hl 

THE CHALCOEfPITE CdGeA« 

Tb« extraordinarily large third order auaceptlbility measured for 

CdGeABg in THG experiments provoked a detailed investigation of the origins 

of higher order nonlinear susceptibilities in semiconductor crystals. The 

paper provided in this appendix summarizes the essential features, both 

experimental and theoretical, of the large third order response in CdGeAs . 

The three principal results of this paper are thp following: 

1.  All noniintar optical susceptibilities are due to anharmonic 

response of electrons.  However, by symmetry arguments one can conclud» 

that even order susceptibilities should reflect properties dep« nding on 

crystal symmetry alone.  Consequently they should only involve electrons 

localized in the crystal bonds. Odd order susceptibilitif.s, on the other 

hand, are still present in Isotropie media.  Consequently, the isotropic 

free carrier cloud should exhibit odd order response, whereas its contrib- 

ution to even order susceptibilities should be zero. This suggests the 

interesti..«? possibility of providing direct control over the magnitude of 

higher order susceptibilities by controlling carrier concentration.  For 

even order susceptibilities m  wish to have a high resistivity material 

to eliminate as many absorption mechenisms as possible. For odd order 

susceptibilities the situation is not so obvious.  Large.- free carrier 

concentrations lead not only to larger nonlinear coefficients, but usually 

to larf-r absorption losses es well.  At seme concentration there is an 

optimum nonlineor response. 
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2. CdGeAs^ h*s enouirh birefringence to allov* both Type I .-.rd Type II 

TfC. A careful examination of nonzero elesentc of third harr.cni; tenccrs 

for various sy-.-.etry nateri^ls revesls, »■« discussed in Section IV, that 

one can separate bond electron fror, free carrier effects by ph^sematchinc 

experiments »Icne. 

3- The measurement of several higher order nonlinesr cptictl 

susceptibilities in the STC material provides a new technique for studying 

some properties of electron charge cloudä pnd bend structure in semi- 

oonductors. All order susceptibilities have contributions from bond 

electrons, trtiich are proportional to higher order multipole moments. 

Such an investigption co-old provide further insight to the modeis cuTiently 

used to describe nonlinear opticpl response, such es the Bond Charge Mo^'.i 

or the Bond Orbitel Model. Free carriers, en the other hand, are responsive 

to nonparebolic energy bnnds r-rA  provide a MMi of testin? Kane's Model 

for energy band shpp^s. for txrapl*. These points hive been discussed 

further in Section IV and are alluded to in the following paper. 
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Experimental and Theoretical Studies of 
Third-Harmonic Generation in 

the Chalcopyrite CdGeAsa 
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Ahumtt-ttfitimm^ ud (hMrttkal umUtt * mi4*mrmmmk 
■Mtralion (THC) tu Ihr ckalco^tnlt «rmicoiulurtor C4G«At, trt 
pn%tMt4. Tkt phaw mitchini conAfi ittton* for 1HC arr aaal>it4 fro* 
A* iiKducibk tmftmm pot* of»i"». A th«*» of Ih* hound rlrnro« and 
frw-rarrirr (onlribulioa lo Ihr third- 'der .-• »oi Jilm » pir^rmrd Tkt 
rxpf nmrnlal rr^ulu arr |i>rn 1 nr rffrrii.r nonlmrar o*n«cirnl for l»pr-lI 
THG n mainl» dur j ihr frrr-carriri roninbunon. and for a hoi« roocao- 
rranon of S - I«" cm' H H mrawrrd M kt (IJ - t)l« - LSL. Tht prac- 
tical applicalion« of THC hi CtfGaA», arr divmaH. 

I. INTRODUCTION 

SINCE the first derronstration of phase-matched 
second-harmonic gercration (SHG) in AgGaS, (I] 

the second-order optical effects of the ternary compounds 
with chalcopyrite structure have been widely studied 
(2I-(6|. Their large nonlinear susceptibilities together with 
their natural birefringence make them very attractive for 
nonlinear optical devices. Nonlinear optical mixirg has 
been recently achieved in ZnGeP, [7). AgGaS, (8). [<)\. and 
AgGaSe, (I0J. High efficiency stcond- ?nd third-harmonic 

Manutcnpi received Aufusl 2. I?"»}: revised September 26. *7) Thu 
»ork »ai «upponed b* the ^dvanced Research Protects Ajenc. throuth 
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I ihoralunes of ^vsics. Stanlord L'nuersiiv. Sianlord. Calif 04'0* He 
is on leave of ihsence irom ihe Centre Saiion.il d bludes des T.-'ecom- 
municalions. Bagneus. F rjnee 

R   I   Be;le\ and R   L   BNT are «ilh tSe Microwave Lahoralors. W 
W   Hansen Laboraiones. Stanford t'niversity. Stanford. Calif W.105 

generation (THG) has been demonstrated in CdGeAs, 
(111.(12). 

In addition to its large second-order nonlinearity 
CdGeAs, has a correspondingly large third-order suscep- 
tibility In this p?per we report both theoretical and ex- 
perimental studies of the third-order susceptibility of the 
ll-IV-V, chalcopyrite compound CdGeAs,. 

The third-order susceptibility is a tensor of rank 4 
(I3)-(I5) In the case of THG this tensor r.^a, is symmetric 
in the three last indices [16] and a contracted notation can 
be used Thusr.y,, — rim where m runs from 0 to 9 [16] and 
the nonlinear polarization can be w aten at 

P.*" - f,,.,(3«.w. w.«)£-,*£/f(" - c.C. (I) 

The Einstein summation convention is assumed and S,. is a 
ten-element row matrix defined in Appendix I. 

In a crystal, far from the electronic and vibrational ab- 
sorption regions, the susceptibilities exhibit a very small 
frequency dependence. Therefore, the Kleinman (17) con- 
jecture is valid and r,,», is independent of the index per- 
mutation so that only 15 of the 81 components are in- 
dependent. 

The intrinsic symmetry of a tensor is better understood 
when use is made of its deco-.position into a sum of 
irreducible componcrti (IS) The decomposition of the 
symmetric fourth-rank censor <•„„ involves (19) a scalar 
(weight 0. one component) a deviator (weight 2. five com- 
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pooenii). and * nonor (»eifhi 4. nine coniponenu) The 
scalar t* ■ j;., c,llt is non/cro for all media and descches 
the geometrical average of the Cartesian cumponcnt» The 
deviatoi r,,» ■ Z» c,*, - IV •!,, is non/cro for the 
umaxial and biaxial crystals and desenbes a difference of 
behavior between the crsstal axes, analogous to the 
birefringence The nonor ..„* - f.^ - 1/7 j;,!,/^, 
Crm) * l/35(l.^w ♦ i,J,, ♦ MUHCM C"~) describes ihe 
dep»rture from iso»rop> In the expression of r,^,* r^ 
denotes the summation ever the distinct permutations of 
the four indices The three irreducible components obey 
difTerent transformation laws and therefore have diPr'erj 
contributions to the effective third-order susceptibility un- 
der phase-matching conditions 

Because the point group of CdGeAs, is ilm. the third- 
order susceptibility tensor can be written in the contracted 
notation [20] 

fn e„c,9 ■ 

■fn'Ci« ' • • • €,»• 

L- • CM-CI.TI«  • ■ ■ 

(2) 

According to the Midwinter and Warner classification (20] 
there can be three types of phase-matched third-harmonic 
generation (PM-THG) in a crystal belonging to the class 
42I»I. The corresponding effective nonlinear coefficients for 
a positive birefringence crystal are (20) 

Ct - -\{e„ - Jr,,) cos* t sin 44.       < + e + t -> o 

(3a) 

c» - rtCcn - Jf,.) cos' # sin' 2* 

+ (en — Ci«) cos* • + f i«J sin' a cos a. 

* + e + o —» o       »3b) 

«in ■ rtCcn - 3f„) cos * fin 4*] sin a cos' a. 

c + o + o-*o       (3:) 

where the angles B and * define the direction of propaga- 
tion for phase matching m the ki vstalograpmc axes X YZ. 
and a is the angle between the fundamenta! field and the 
XY plane. 

The combination (c,, - 3fI,) is a component of the no- 
nor. It characterizes the departure from isotropv in (he Jt> 
plane. The combination (c„ - r,,) describes the difference 
between the direction Y and Z and appears in the deviator. 

It is well »mown from the theoretical (13). (2I|-(261 and 
experimental (27)-(30| studies of third-order nonlinear 
processes in elementary and binarv compounds thjt in 
semiconductors the third-order susceptibility arises from 
two distinct contributions: 

c. **•.-• (4) 

Mil MM •%«■ (M Qi «NTl X H 11 I »ONK V l«M. ••« l«'4 

»here r,.'r is the contnhulion from the free earners jnd 
r,«*' is the contnbut-on from (he bound clec(rons 

In the crwial (he bound elec(rons have (he svmme(rv 
42m and coninhuie to all (he effective nonlinear 
coefficients However, (he Iree-carner gas has a higher 
symmetry. For example, (he free-carrier contribution (o 
the second-order susccptibilKy vanishes in (he dipole ap- 
proximation even in a noncenmc semiconduc(or In a 
crystal with point group 42m (he tree carriers are expected 
(oheiso(ropicin(he.l > planeanddiereforer,," « ?<,/r.ln 
(ype I and (ype III PM-THG only the bound electrons con- 
tribute to the effective nonlinear coefficients, uhcrcasi.nvpe 
II PM-THG both the bound electrons and the free carriers 
contribute It snould be noted (ha( (his result is quite general 
because in (he maionty of crsstal point groups the free- 
carrier gas is isotropic or nearly iso(ropic in (he If >' plane 
The requirement of invanance under axial symmetrs on a 
tensor of rank n is equivalent (o the invanance under a ro(a- 
tion2r'mwithm >n ln(hecaseofTHG(herelevan((cnsor 
is of rank 4 Thepossiblephase-rratchmg configurations for 
the fret-earner gas are (he same as for say. an hexagonal 
crystal. From (20. Table I j it can b. seen (ha( in (hiscaseupe 
I and type III PM-THG are impossible. In the majority of 
semiconductorsthe free<arriercontribution o PM-THG is 
of type II. 

In all the previously reported determination of the 
third-order iusceptibilities of semiconductors only mixing 
experiments (w, + w, - w, - <* with wt > w,) had a sub- 
stantial coherence length Thus selective phase matching 
could not be used to separate the two contribunons to c,m. 
The two effects wer? separated b> varying the earner con- 
centration In Cd'ieAs, both type ijß ■*■ e + e — o) and 
type II (e -i e + o - o) PM-THG are a'.owed Nt that free 
carrier and bound electron contribution to cim can be 
separated experimentally for the first time b^ choice of 
crystal onenUdon 

Ano(her aspect of this ssmme(ry analysis is that it 
provides a useful guide to evaluate the relative magnitude 
of some irreducible components of unknow, high-rank 
tensors like c,m. The i",edu':ible components '-«wer 
weight of the tensor c,m are a scalar and a deviatu The 
bound election conmbution is related to the pohn/amlitv 
(22] of the bonds and the irec-carner contribution i« 
related to the derivatives of the energy vu(h respect if (he 
wavevec(or (13). From (he linear opdeal and (ransp. 
properdes of (he crystal it is eas> (o form a scalar and a 
devia(or. rebpectiveK. related to the bond polan/abilitv 
and the derivative of the energy Therefore, an evaluation 
of the ratio (c,. - f,t)'r,t can be fiven for the two sss(erm 
of charges wuhin (he crys(al Fd (he bound electron'. v.e 
expect the ratio to be of the order of magnitude of (x - 
Xil' X«« ^hce x and Xi are the linear susceptibility com- 
ponents For (he free earners (his rado should be of (he 
same order of magnKudc r.(w -/»O >i,. where w and 
m, are the cITeciive masses of th- earners For a p-tspe 
CdGeAs, the ratio is of the order of unity, for an n-tvpe 
material it is of the order of 0 5 according to the effective 
masses given m (31) 
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The contribution of the hound ekurons is examined in 
Section II In that section we penerjli/e the 'bond charge 
model" (32| to a tensor form which enables us to calculate 
all the components of the third-order polaruabihty of a 
tctrahcdral boti^ with axial symmetry 

In Section III we calculate ihe contribution of the free 
carriers. This is performed by using Kildal's (3I| 
generalization of Kane's model |33| to crystals with 
chalcopynte structure 

In Section IV the experimental work is presented. The 
effective nonlinear coefficients corresponding to typc-l and 
type-ll PH-THG have been compared. c„ has been 
measured relative to rf,.' by comparing PH-THG to the 
mixing of the laser light with type-ll PM-SHG in the same 
crystal but at different orientation <#«,,MC - t,,™0 - IT 
± |#) and to </,4 by comparing PM-THG to PM-SHG 

Finally, the comparison of experimental and theoretical 
results are discussed The major practical consequence of 
our work is to point out the possibility of high conversion- 
efficiency type-ll PM-THG in heavil> doped chalcopyrite 
semiconductors. 

II  THEORY OF THE THIRD-ORDER StscErmiLmr or 
THE BOUND ELECTRONS IN A TETRAHEDRAL CRYSTAL 

The most successful recent theory of the dielectric 
properties of elementary and binars tetrahedral solids is 
due to Phillips (34| and Van Vechten (35). Their theory 
has successfully been extended to multihond tetrahedral 
solids |36j and is the basis of several models describing the 
second-order nonhrear susceptibilities of various crystals 
(32). (37|-(401. We present in this section a generalization 
of the bond-charge model (32) to calculate all the com- 
ponenis of the nunlmenr optical suscepnbihn.s of diffe'ent 
orders, and we consider in moredctati ihe case of the third- 
order susceptibility. 

To give a good description of all the components of the 
susceptibilities we have to keep track of the tensor form of 
the different quantities involved in the theory The bond in- 
terpretation of the Phillips and Van Vechten theory (361 
shows that a mean bond polanzability can oe 
macro'copically defined in a way * hich includes the local 
field effects l>y 

\(a. + 2aL) " {2aSDj\ (5) 

In (5) a and a. are the parallel and transverse com- 
ponents of the axially symmetric bond polanzability ten- 
sor. ri is the Phillips mean energy pap (34). (3?) 

£.• - f,» + O (6) 

O is a correction factor clos^ to unitv which describes the 
core electron contributions [^51. and ii„ ■ /P wr' is the 
Bohr radius and t,. - '»;«'* ?JI' r the Hvdroccn lom/ation 
energy In (.'•) the Penn correction factor has been 
neglect«.1 

Av 

Cl   »0  T-t 

*. ' T 

• ■ 

m to rm anw*M 

o 
fm 

^8©   ".•&     -.^ 
VanaiKM of iiw b(Md<iurfc poMKM under an appCied Md 

Following Levine |32| we assume that the nonlinear 
susceptibilities arise from the variations of the linear 
suscep:ibility due to the applied field t. The microscopic 
dipole of the bond p, * a,,{*)*, can be written by expand- 
ing the linear polanzability (41) 

ß. m ß,     + ß.     + ß.     +   • • 

• («••■>-+SfL* 

This equation «ives the relation between the different com- 
ponents of the bond higher order polarizabilities and [Kc 
derivatives of the linear polarizability components witli 
respect to the applied field 

'•■• - fe,l.-- l(fe)...    -' 
It is important to note that the derivatives are evaluated at 
vanishing field so that the model is dispersionless. 
Therefore. Kicmm.in symmetry (17) holds, i.e.. /}„.. 
y, . /»i,- ■ arcinvariantunderpermutationsortheinndices. 

It is now nercssarv to calculate the field dependence of 
the a,,. In the bond charge scheme (32) the motion of the 
weakly bound a id well-localized bond charge (42). (43) q 
is responsible for the bond polarizabilities. The 
homopo!ar part £, and :!ic heteropolar part C of the mean 
energy gap Et of the biatomic bond AB are functions of 
the covalert radii (44) of the atoms rA. fa. 

If we interpret rA and rt as the distances between the 
bond charges and the two atoms, then the vanations of a 
can be calculated through .he variations of/-* and rB. Two 
configurations have to be considrred. as shown in Fig. I. 
depending on the direciior. of the field *ith respect to the 
bond axis. First the applied field is parallel to the bond 
axis, then ±rA - - lrt » (a. t ./q) are first order in the 
field. In the secoiid case the field is perpendicular to the 
bond axis and J^, = {a^'t^/^r^q3) and SrB • 
fn.V 2^^,) arc second order in the field Therei'ore. in 
the expansion of the linear polanzabiliu in powers .>f the 
applied field only the csen powers of t. can appear 
Whatever is the dependence of the o,, in the field, their 
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r>",'j 

odd-order derivatives m .. vanish 

(fcT- 
TABU  I 

LA» «SO HlTIRlMVH*« P«»T '..  THI  Mt*S ttovu I vim,» 
CJAP KM * HIAII>\ii<   Ho^o 4g 

whereas the odd- ar<d even-order derivatives in <   can be 
nonzero. 

This remark together with the Kleinman symmetry (IT] 
conuitions allows the calmJanom of all the componenti of 
the bond hyptrpotanzahihnr* from .he knowledge of she 
mem linear polanzahiliiv alone 

I-et us consider in detail the case of the second- an« 
third-order bond polanzabilities The nonzero corr- 
ponents of the polar zabilüies of the axially symmetric 
bond are 

110 the bond am 

*, - -^^ - *i  -   —1 

« perpendicular to the bond am 

% - ß... 

Ti " VHM        TI ■ 7»... 

Uting (8) and the Kleinman symmetry to rearrange the in- 
dices 

•- - Qt).. - (fcL ■ •    - 

^-?))-(-*.H*) 
•i " w      ^ r ;—5—n 

configurations  considered   Then  expanding the  mean 
linear polarizability by using (5) and (II) gives 

From the Phillips and V.n Vechten theory we know a » 
(«,, + 2aJ/3 and therefore using (5). (8). ind (9) 

(9b)   «KO - « - gjTOI (*.^ + f.Oa'« 

I 
(2ii.)'£. rril«.. - 1)*.' + (4/. - Df.' 

•■-'(S)...  "-iÖL   "-Idi?)...    +•<'■'•'"•'.•.-"»^+ '."'*•••■ + (12) 

(10) 

The ab initio-calculations of Rytzanis and Ducuing [45) 
have shown that BJß « I. In the bond-charge model 
this quantity goes to zero It should be noted that in the 
previous derivations of the bond second-order 
polarizabilities (32) the factor 3 arising from the tensor 
form of a(/ and <Siy» has been omitted The fact that the 
linear polarizability is nearly spherically symmetric is mis- 
leading: even if a > a ^ a, their derivatives are com- 
pletely different In the following we will use the relation a 
* a,, * «i. but carefully evaluate their derivatives ac- 
cording to (9) and (10). 

Let us write the expansion ol the homopolar and the 
heteropolar part of the mean energy gap in the following 
way. 

£.(«) -  £. + (a«», + (a.)'*, + (Ha) 

C(«) - C + («Of, ♦ (o.)'», +    •• . (lib) 

The quantities h, and g, are given in Table I for tne two 

where/, is the ionici.y and/» - I - /. In deriving (12) we 
have used Levine's (32] d.fimtion off», and a is evaluated 
according to (IS). 

The relevant components of the bom polarizabi ■( 
are easily calculateu from (12). (10). and 'able I. Equa' -«i 
(12) has been written in a way which makes directly ap- 
parent the ionic, the covalcnt. and the mixed contributions 
to the hyperpolanzabilities 

Since the microscopic analogs of the Miller $ delta (46] 
(i.e.. fTo* ana x/o4) >«"« very simple functions of 
macro-.copic.ill\ defined quantities like/, and rA and r, the 
local field effects (47) are automatically taken into account 
in our calculations Lcvme (32). (38) gives an expression of 
the bond charge magnitude uhich g ves the best fit with 
the observed second-order suscep'-hilities of binarv com- 
pounds He uses a scalar moHcl »here the different com- 
ponents o and a. are not oistmguished. For simplicity. 
we use his result modified to include the factor 3 arising 
from our tensor treatment 

To calculate the nonlinear susceptibility of the crystal 
we have to add the contributions of the different bonds 
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OMW* rt .</   iHMD-iuattoxir (.iNicrtoN ■> IM* f H«I c or»» ri coc* •», 

B.     cotfi,    -y.,.i (13) 

where ihe mdex is) coven the difTerent bond', tn the unit 
cell who»e volume is Y The capital indices'/. J. K. L) refer 
lo the cr)sta! MMS <X YZ). whereas the mncr mdice-. d.y. k. 
/)' tefer to the bond a«is If. u^ing the asial s>ir.netry of 
the bond, it A always possible to choose the mcroscopic 
axis i • in the XY pljne. thtn the anele-. ar>pearinr m (13) 
are simple functions of the polar angle |tf'. «' | of the 
bond axis r '. a« shown in Fig 2 The practical calculation 
of (H) is then simplified by usme the operation> of the 
point group of the crystal which gives the directions ol 
equivalent bonds in the unit cell 

The orientations of the two types of bonds of a 
chalcopynte compound ABC, are simply related to the 
geometrical factors (36|. (41) r » 2 - c a and e ^ 4x - ]. 
If we * the notation + for AC and - for BC to dis- 
tinguish between the two types of bonds, then the relevant 
comhinutions of components of c,m arc 

fu  -    V,. -   -Ä |(|  - 4(r + ») 3h - 

•+   H  ♦ 2(r + •) 9h/   + (|   -  4(r - •)  Jh. 

+ |1   »   2(r - «) «>hA"l (14a) 

rM -<■>•" ^p If» + •)>/ + (T - »h."!    (I4b) 

»ii 
9»   ' (I - (r-|-#)/3h/ + >>x' 

+ [I  - (r - •) 3h      + 2>/ (Mc) 

Since the chalcopynt; structure is :. superstructure of 
diamond jnd sphalcntr structures. (14) can also be used 
for elementary and binary compounds with these struc- 
tures by putting r = u  * 0. 

The expression of the deviator (36] component (<■„ - 
(„) is to be compared to another deviator (36) (x - X-). 
i.e., the difference between the parallel and transverse 
component of the first-order sustcptibihts As expected, 
the two dcviators exhibit exactly the same geometrical 
dependence Since r and a are small (10 ' to 10 ') the 
combination (r„ - <•„) is one or two orders of magnitude 
sm.iller than the individual components whatever the 
values of -,   • and >     are 

In Table M the calculated third-order susceptibilities 
due to the bound electrons are compared to the ex- 
pcrimen» «I dctcrnnnjiions for some senüv.'nd.iciois « 
which this contnhuii.m has been isoiatcd \2i\, (H1;. and 
the agreement is good  In the case ol CdCie^s, the model 

F«   2    OnentalKM of ihc bond ant in the crytultofraptiic int 

TABLE II 
Cosir««iv>N CM  TN»   I «>>MIMINI*I   THiiirv()«n»i» SusctrnMLrras 

DWI   TO   TM»    MM/NO   iMtMm   IN   SOS«    TFTa*->tMM.   SiMI- 
CONOOTTO«-. TO TM»  THIIMITITAL V Al I l\ CAK ILATf O F«OM 

Ol »  MotML 

Compomtd r.. ExpcfimcMal r,m Theortiical 

Ge 'ESU 

ESU 

|r,,-(IOdb5)IO   " 

lc,-(6±3) 10 " 

Si(r..f<-|.-('»6±0 3) 10 " ESUrM-O^XIO" I 

k.-WJiO 15)10 "ESU c.,-0 65X10 " 

GaAj.M.ffM-(0 97±0 2)l0"" ESUc-O^J 

lf..-(05±0 15) 10 " ESUr„-0.7 

en-oXIO" ESU 

f„-3XI0 " ESU 

ESU 

ESU 

-095X10 "ESU 

' ESU 

predicts f,, - 1.8 x 10"" ESU: <• „ - I.., x W,; ESU; and 
fM - 14 x 10-" ESU 

Our analysis also pr ivides important information about 
the physical origins of the nonlinear effects in semiconduc- 
tors An alteriative of the bond-charge model (32) is the 
charge-transfer model (40). where the variation of the 
linear suscep'ibilitv is attributed to a transfer of elec;ric 
charge from oisc atom to another under the applied field. 
The two mcdels describe the second-order suscepiibility 
with comparable accuracy But several difficulties arise in 
the description of the third-order susceptibility when use is 
made of the charge transfrr model 

First, there is no transfer of electric charges when the 
field is perpendicular to the bond axi» and y. vanishes. A$ 
a consequence c„ * r„ for all the sphalerite compounds in 
disagreement with the experimental results (28). (30) 

Furthermore, as only the heteropolar part of the mean 
energy gap C is charge dependent, there is no covalent or 
mixed coni'ibutions to the nonlinear susceptibility Accord- 
ing to (12) > is proportional to (4/ - 1) leading to very 
small nonlinear susceptibilities for crystal with an lonicity 
/, * 0 25 For examrlc m the case of gallium arsenide/, ■ 
0 27. the model-predict« »„ »  ■   10 "ESU 

Th.- discrrpjno sh.'ji! r.v<t be .itt'thuted to the charge- 
iranter model i;>ell since •: :s well known tnat deforma- 
tion of the electronic distribution due to a field perpen- 
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dicular to th« bond axi* exist* Bui unf rlunaiclv. the 
formahun of Phillips ihcorv w unable ic drvcnhc those 
effect» as well at the contribution > second order in /. 
and 7, when the field is parallel to the bond a«is 

III.  THCOIY Of THf THIRD-ORDF« SlM-EPTIMUTY 
C# TMf FREf CARKIEtS IN A CHALCOnrilTf CRYSTAL 

Tlie other system of charges thai has been recognized to 
make a large confnbution to ihe third-order susceptibility 
of semiconductors is the free-carrier gas There are two 
distinct mechanisms which are responsible for their non- 
linear susceptibility the nonparabohcitv of the energy 
bands (I3|. (2l|. (22) (i r . an energy-dependent effectiye 
mass), and an energy-dependent relaxation time (23)-(2»| 
The two mechanisms have a very different rrequency 
dependence The second is only important >» hen tl.r inverse 
of the relaxation time is not negligible corvp.-rrd to the fre- 
quenciesofthe:nteracting fields Thiscan occur in thecaseof 
mixing experiments (27|-|29| where»*, « u, - M, - w, and 
the difference of frequencies w, - w, is very smalldO"» ') 
When only addition of frequencies is considered as m THG 
(3w ■ •» + « -f «) the effects of carrier scattering become 
negligible (261 «"d only the contribution of thir non- 
parabolicity of the energy bands need be considered 

For elementary and binary compounds, the Kane model 
(31) gives a good description of the energy bands and has 
been sucessfully used to explain the third-order suscep- 
tibility of some semiconductors (13). (2l]-[26) Kiid.il has 
recently extended the Kane model to ternarv compounds 
with chalcopvntc structure (31) The principal feature of 
Kiidais extension is that in addition to the spm-orbit split- 
ting A one h. s to consider the crystal-held snlitimg 6 due 
to the tetragonal compression of chalcopyntc compounds 
As a result of the two perturbations, the band structure of 
the chalcopynte ll-IV-V, crystal (i e.. containing no noble 
metal) consists of one conduction band ü-like) and three 
split-valence bands (^-likeV The four bands can be 
described by four functions £„ (A) » Emik) * ^ 2mW^,. 
where the £„(*) are the solutions of the fourth-order 
equation 

£(£ - £. - £,X£ - £,X£ - £.) -  ir,,£(£ + \S) 

-  •»'i,[(£ - £.K£ -£,)-*{£+ *)] - 0        (15) 

Here I«" - Pk,'. ^.» - nik.» * A»»). F- - Ht'm) < 
S\p.\Z > (29). (30). and £, and £, are gluttons of £,» + 
(I + A)£, *(2A« 3) -0 

In the limit j « 0.(15) reduces to the Kane equation The 
band structures of a chalcopynte compound and of its 
sphalerite analog are shown in Fig 3 Fit 3 also lists the 
values of the parameters deduced by Kildal [31 j to 
describe the band structure of CdGeA» 

When the frequencies ' f the mteracti field are small 
compared to the frequencies associated wuh the electronic 

wit WH.«N«I i* o« «"»< * n fritostrs. utm »•» ••** 

s»w4ii»irc CO«»OJ*:       :m^car**H COMTOUMO 

I,-I,.O 

J, 
i< •«,'», 

. ,„., 

■K. 
I, •0»»v     1,' -OVtv 

Fif |    ScHcmatKof the l>-in<i>iruclurc of jchakopt rut compound and 
M» iphalcriic analof 

transitions, the third-order susceptibility due to the non- 
parabolicitv of the energy band is given b> (13). (21). |22) 

t    ,ti(bl,. ul.. Ml,) 
"24** J'w,«!».«,((•»,  -f ui.. -f Li,) 

EMC.rlsi 
Ak.M.AkJk,        (I*) 

where/U£) is the Fermi-Dirac distribution function 
Fir an n-type material the positive sign and £r arc used, 

whereas for a p-type compound the negative ign and £., 
are used 

For the elemen ary and binar, compounds when the 
energy gap £, iy small enough so that the deep valence 
band £i, is unperturbed, a closed form can be deduced 
from Kane's model (331 «hich gives a good de>cription of 
£r and £i. This close f.vm has been wide'v used for com- 
pounds »ith very small band gap like InSb For crystals 
with a larger band pap the closed form is not valid, and a 
better description if the band shapes n given by expand- 
ing the enrrgv as a funcion of the wave vector (43). In 
the same Urn ue ass».n:e the following form for the energy 
bands of a chalcopynte compound 

(H) 

In this equation (he index m runs over the four energy 
band« The coefficien»-. of the expansion are found bv in- 
serting (17) into (15)  The results are given in Table III. 

It should be noted that w hile the limits of the /t „ for 4 * 
0 are correct, this is not the case rf the fl... To calculate the 
Bm one has to div ide by £,£, = (2 3)Aä. and this process is 
not valid for * or A c.»ing to zero Therefore, we will 
assume that in the limit < « 0. 4, » B„ 

The expressions f.-r the coefficients are simple, and due to 
the fact tl.at (15» is of the second order in M    .md II. the 
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nttMt w» w   rmao HAIMCNK otsiIATIOS i« TIM CMA^C orvnii rocio. 

TAKLE III 
( l»l».< IINU <«   U«|   F «PASMUKi'»   (HI   I sim.»   HANU 4» * FUMInM 

O»    IHI    '      *V|    Vll   l.* 

/«, - 0 
*•-* 

£.-f JA 
(£. - £,X£. - £,) 

*. - 

A. 
(£. - £.M£, - £.)       '      2£. 

 £. + < + U 
2(£. - UM - f.) 

I 

.     k±i±Ü 
2(£1 - £.)(£, - £.) 

C. -   A.SIA.) Dm - ».S(*,) 

S(/«.) 
J-:. £- - - i(fl, 

A. 

AW c.(*) - £, + ^.irs« + «.r^ + r.av ♦ o,^»'l, ♦ 

TABI I   IV 
PMA.5 M»K MIN», ANOIU IO« THG «NO SHG 

(£, - £.)(£. - £.)       '      2(£. - £.M£,      £.) 

tu>c Matching 
Conhfurai.un SHG I       SHG II       THG I      THG M 

•-(measured) J2* * I«   49' * I*       (W)       W ± I* 

cimu«. 
aTTCMMTO) 

MTK10MI 

L»« 

T£* COj LAU* 

 \     y        mm  *m,9rm \ \ S 
ri«.Te«V    '0,■*•,^CI 

6«   LfHSCS- C« COATED 
MiMMons 

TWOCLCCTIIIC 
XTECIO» 

. / 

o JS!SS£S_ 
rowto 

Mi r«» 
KCCOftOCft MTfQMToa 

Fig 4     Schemmc of the experimental letup 

The nonlmcarities due to the free carriers are about one 
order of magnitude largvi- than the ncnlineanties due 'o 
the bosind electrons. 

coefficients satisfy the interesting relation 

Am*Dm*Bm*<:m-AmBmC* (ID 

Since we have only retained the terms in £„ up to the 
fourth power of the wave vector the fourth derivatives 
appearing in (16) are constants and the nonlinear suscep- 
tibilities are propomonal to the numberol the free carrier \ 

The relevant combinations of coefficients appearm.; in 
the effective nonlinear suscept'bility are 

d. - ± 
fnt 

i« nw c• di - 3c„ - 0 

*•-'-- ^itTTO«"-2«"» (19) 

whe.-r /w is ihe energv of ihe laser photons. 
For CdGeAs, one finds b> usir.g Table III ard the 

energies of Fig  3 and /* » (hP/2m) x 20 e> 

Ci/ -  -2 5 X KT'-N 

twS ■   -I 5 X 10 ,:N 

e.»   - fi« 

• - 
Ci.    - fn 

2 X 10'*^ 

6.3 X 10 "N. 

(20) 

The particular sample we have used for tvpe-ll PM-THG 
is a p-type crystal with V « 5 X lO'» holes/cm* so that 

fM--l2 5xlO "ESU 10 x 10 "ESL 

IV. EXPERIMENTS AND DISCUSSION 

In this section we present experimental work on the 
meastrement of the third-order nonlinear susceptibility. 
CdGeAs, has a birefringence large enough (11). (31] to 
allow type-l and type-ll PM-THG for a fundamtntal wave 
length of 10.6 M The phase-matching angles calculated 
(31) from the measured refractive indices [31] are listed in 
Table IV for both THG and SHG The diflcrenre 
•«"(THG) -».."(SHG) - i:* is small so that both PM- 
SHG and PM-THG c«n be observed in the same sample. 
Thus the ratio of the third-order and second-order non- 
linear coefficients r,, </,, can be measured with the same 
crystal sample Furthermore, at high power densities a 
substantial nonphasc-matched mixing of the laser radia- 
tion with its PM-SHG can be observed. The comparison 
of the two signa's at 3ui gives a simple way to eliminate the 
dnector wavelength response and gives an accurate 
measurement of the ratio Cwldx*. 

We have examined two samples 5i and Sn. S\ was cut 
for lype-l THG and SH for type II. The CdGeAs, crystals 
were grown at tnc Center for Materials Research at Stan- 
ford University (49) The experimental setup is shown in 
Fig. 4 The electrode structure of the Tt.A-COj laser is 
very similar to that described in 150] The laser operates at 
a peak po^er of 50 kW with a pulse*idth of 200 ns m the 
TEM«, mode, it a repetition rate between 5 and 25 pulses 
per second (pps) The laser peak output power is stable to 
better than 40 percent over periods of about I h An inter- 
nal Brewstcr window can be rotated to adjust the polanza 
lion.  During the measurements, the orientation of the 
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Ia*er   polan/alion   jnd   the   pcncriicd   hjrmnnit«.   »as 
carefullv .hecked with jn mrrjrcd reflection poljn/er 

In the hr$t »el of expenmcnis Stl vkjs examined The 
measured phase-malchme aneles for t\pe-ll TUG and 
SHG are given in Table IV In light of the accuracx of the 
refractive indices the agreement with the predicted values 
is satisfactory It should be noted that there is a better 
agreement on the difference »„"(THG) - »„"(SHG) 

The signal at 3« from the direct THG and from the sum 
generation have a very different behavior The angular 
phase-matching tolerance is very acute on the THG* and 
the half-width of the phase-m itching peak ^* « lO0 t !• 
(outside the crystal) is in good agreement with the 
predicted value A» - 12* ± 2» for the I 75-mm crsstal As 
the crystal is rotated the signal at 3w goes to zero then in- 
creases and has a very broad maximum around 
tm (SHG). which can be maximized b1» translating the 
slightly wedged sample By selective use of a sapphire and 
fused-silica filter we measure the SH and TH signal vuth a 
liquid-nitrogen-:ooled InSb detector 

The laser is focused *ith a germanium lens such that the 
aperture length (51)/, = 17 mm and the length ol the focus 
(52) /, = 220 mm are much larger than the sample 
thickness / ■ |.75 mm The plane-uave analvsis is 
therefore valid (53). and the harmonic power at phase 
matching can be calculated according to (^4) To calculate 
the intensity at 3w due to sum generation we assumed that 
the field at 2u is constant over the last coherence leneth /, 
and has the %alue f „(.' - (I '2M ]. and we assumed that the 
field at 3« is mostly radiated in a thin slab of material with 
a thickness le at the output surface of the crystal The 
powers at 2w and 3« anJ 2w ♦ w are then given by 

and 

16»' 16*/ /2r/»,•/./, A"'     . 
i:ia) 

.   MM „ 256»' l6»,'/3r/r, r.o.V     . 
'r"^r\'\~n~)p'c 

*   an      236»' 16»,' 
r,.        - —-j j- 

l   :   • . ■  t,   ,( 

Clb) 

/.,./,(/- I  2/.)^   .    f.'/.V»' ^24r -j «/v«/,, -,  j />, <• Ml   m   • ••     .' 
(2lc) 

where K, and n, are the beam waists and the absorption 
coefficients at the frequencs nw. f, is the transmisMon fac- 
tor for the laser field at the input surfa«.: of the crystal, f, 
and /, the transmission factors for the harmonic field* ai 
the output surface, and t„. </,,. and </w arc the effective 
nonlinear coefficients for THG. SHG. and nminc The 
angular dependence of the tran>;r.,sMon f.vi.tr> has t(> be 
taken into account 'ince the incidence Mffc lor PM-SIIG 
is quite large (-43°). The absorption coetlicunis 
measured for the sample with a CO, laser, its SH. ...id vuth 

KM »oi ■S4i <II yi «sn «tift ra.tsK s. JAM «at IV4 

-n He-Nc laser at < »9M arc«, = 0 5cm  '.a, »l.3c.n   '. 
n» * < 7 cm  ' 

The measurement of THG to the sum generation leads 
to If,,! ■ IHi i :5w/,.! To compare the THG «o the 
SHG we have to consider the fiequencv dependence of the 
sensitivitv of the InSb detector We estimate o'/r particular 
detector to he twice as sensitive at 5 3 * as ai 3 < ^ This 
gives a measured sal ic of lr„| « (16 ± 0 8)10 V..! b\ 
comparison of PM-ThG to PM-SHG If we use the value 
8 5 x |() ' ESU for th- </„ (see Appendix II for dis- 
cussion), the two measuremen.   «r* n good agreement 
and give, respectively. » i; < 10 " fSUandif,,! 
- 13 6 x 10 " ESU In light of the accuracy of the 
measurement and of the salue of «/„ we obtain I/„I = (|3 
± 6)10 " ESU 

In the second set of experiments we compared PH-THG 
in S, and S,, The expenn ents were difficult to perform 
caetothe much smaller magnitude of the typc-l PM-THG 
signal Also mixm? of the laser with the non-PM-SHG 
produces a faint signal at 3 5<J which could he observed at 
all angles of incidence Kunhermore. the phase matching 
for typel THG and for t>pe-!l SHG are \cr. close. <nd a 
permanent u'x of the IK polarizer was necessary. The 
recorded signal at 3*- showed a broad maximum around 9 
■*■ 50°, but the signal-to-r,oise rauo was too poor to surelv 
assign our obscrsatioi ;o tspc-I THG alone However. M 
upper limit to the tspe-I THG coefficient was deter- 
mined to be lr,i   < 5 •   10 ' ^,,1  = 06 *  10 " ESI 

Using the theoretical results of Sections II and III and 
(3) for the expression of the effective nonlinear coefficients 
gives, for the theoret .al values. t\ ■ -0 15 x 10 * ESL 
andr,, - - 4 x 10 KSU. The t\pe-ll effective nonlinear 
coefficient which 1« mainls due to the free-earner contribu- 
tion is between two and four times larger than predicted 
from the Kane model Such a difference was alreadv noted 
for n-t\pe Ga As b\ Cardona \V<\ m measurements of the 
reflectivitv and :he I arada^ 'otapor. as a function of the 
number of carriers, and hv Wvnne 129) in measurements 
of the third-order suscep;ihi!ii\ in mixing experiments 
These autho-s also fou.id that the nonnarabolicii* 
described h-. the eortf .«flti of K' in the expansion ot ^e 
energy was larger than predicted h\ the Kane model, (two 
times for the results ofCardCNU and three times for thi -c 
jf Wynne) It should be noted that since the effectue 
massesof the holeson A.. areqjiicl.irce'3l) n\ ^ 0 031 n 
and w - 0 7", m. the F«r^»< enercv in our s.inple is Nma'!. 
£"„ = 2 me\'. compared to the splmmg. C»i - £tt ■ 2^1 
meV Therefore, no additional contributions from the 
lower valence bands /... and Cn can expfam the 
observed difference 

Resersmi! the above a.eument. we can sav that the 
measured value of.,, is consistent with a r.onp.irabolicits 
of the conduction bard three times larger than predicted 
from the Kane model \s tor ., ihe theoreiv.il \alue is 
also smaller thin the HKJMtrcJ one The sicral that ■ • 
obsenc.l «honld therclorc he .ittnhuted to s.im genera- 
tion The sample used w.i- ven thin (I mini .rid when 
larger crs^als arc 4«i»üMc( "• 4 mini it should be possih .■ 
to observe tvp«- I PM-THG 

ini 
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FinalK. *e «ould like to discuss hndU the prjctical use 
of CdGeAs, j« jn IR harmonic pencr.nor Due 'o the 
large value of the coefficient»,, jnd the small value of the 
difference l,"(THG) - #W"(SHG). high conversion 
efficiency can be obtained for both SHG and THG in the 
same sample For example, using a mode-locked CO,- 
TCA laser of 0 1 J'pulse, a pulse duration of I ns. and a I- 
cm-long crystal it is possible to reach W-percent-THG and 
60-percent-SHG conversion efficiency. 

IV. CONCLUSION 

We have analyzed the possible THG configurations in 
ch.ilcopyrite cr>stal from the poii:l of viev^ of the irreduci- 
ule components. The bound-electron contribution and the 
free-carrier contribution to the third-order susceptibility 
can be f.pci ".entally separated b> the appropriate THG 
experiments We have generalized the bond-charge model 
to calculate the nonlinear susccptihihts of the bound elec- 
trons The results are in good agreement »ith the ex- 
perimental determinations We have used Kildals exten- 
sion of the Kane model to chalcopyrtte comnounds to 
calculate the free-carrier contribution 0 -r measurement 
on CdGeAs, shows thai the nonparabohcitv of the first 
conduction band is ahout three times larger than 
predicted. The third-order nonlinear coefficient of 
CdGeAs, has a large vjlue c„ - 12.5 x 10"" ESU si that 
very high conversio i efficiency for both SHG and THG 
c^n K. achieved i i this crystal 

APPENDIX I 

CONTRACTED NOTATION FOR THG 

Throughout this article, we used the notation of 
Midwinter and Warner (20). The contracted notation is 
defined by 

'"       •      2      3      4      5      6      7      8      9       10 

i/K    III 222 3JJ 233 223 133 113  122  112 123. 

The nonlinear polarization at the TH frequency is given by 

APPENDIX II 

SECOND-ORDER NCMJNEAR COEFHCIENT OF CDGEAS, 

1 he second-order nonlinear coeffcient of CdGeAs, has 
been measured relative to </,, (GaAs) 

According to Byer ei al (3J. JjCdGeAs.W^GaAs) - 
3-4 ± 25 percent. Prom Boyd el ol (4), 
^.«(CdGeAs.)/«/jGaAs) «=261 15 percent. We use the 
value «/„(CdGeAs,! = «„(GaAs) 

The dt, coefficient of GaAs has been measured com- 
paratively to AgjSbS, and CdSe whose coefficients have 
been measured absolutely. 

•/..(GaAs^ - (7 5 ± 0 3) «/.(Ag.SbS.)    (551 

«/„(CdSe) ■ (0 2 ± 0 02)</,.(C«As)    (2J 

and 

<l (Ag.ShS,) = 0 43 10 : ESU ± 30 percent    (!.6] 

^.(CdSel = 0 53 10 : ESU ± 15 percent    (57] 

These sets of values fit well with J„(GaAs) - 2.8 X «0 ' 
ESU ± 40 percent, and therefore give </„(CdGeAs,) «85 
x 10-' ESU 
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Second harmonic generation and infrared mixing in AgGaSe, 
R. L  Byer. M. M. Choy, R. L   Herbst. D. S. Chemla». »nö R. S. Feigelson 

Utcrotmit Laboratory, W W Hansrm Laburaionts of PbysKi. Stanford Vmtnuy. Stanford. California 94i03 
(Received 17 September 147}. in   iiul form 29 October 197)) 

We have continuously (uned between 7 and 15 inn by mm ig the output of • UNbO, partmetnc 
OKillalor in the chaicopynte AgGaSe^  We have doubted a CO, laier with 2 7% efficiency which 
afrcc* very well with the expected efficiency and venfiet the high optical quality of the 1 'i-cm-lun* 
AgGaSe, cryual The measured transparency range, indices of refraction, and nonlineai coefficient of 
d ..     (17 j 0 6) >  10  " m/V show that AfOaSe. is a useful infrared nonlinear material phase 
matchable over the entirr MR fim infrared region 

Since the first demonat ration of phase-matched 
second harmonic generation (SHG) in AgGaSg, ' the non- 
linear properties of the ternary semiconductors with 
chaicopynte structure have been widely studied.*-* 
Their large nonlinear suscptibilities together with ade- 
quate birefringence to achieve phase matching make 
them attractive (or nonlinear optical devices. Nonlinear 
mixing has been demonstrated in ZnGeP,,' AgGaS* *'* 
CdGeAs. and recently AgGaSe^. 

AgGaSe, single crystals are grown by the vertical 
Bridgeman method after the starting materials are 
presynthesized in a carbon boat contair.?d in a sealed 
quartz crucible. The presynthesized stoichiometric mix 

Appt Ftiyt Lttt.. Vol. 24. No. 2. 15 January 1974 

with a melting point   i approximately 860 C is then 
transferred to a quartz crucible coated with pyroli'ic 
carbon (or a pre^rowth run at 2 mm h rat» through ? 
40 C cm temperature gradient. The top and ^tto-A of 
the resulting boule are then removed prior to the actual 
growth run in the same vertical furnace at a slow growth 
rate o( 0.2 mm h   After growth the crucible is cooled 
to room temperature at 25 C/h. The resulting 14-mm- 
diam single crystals typically show a gallium-rich re- 
gion near the seed end followed by an approximately 2- 
cm usehii AgGaSe 2 single-crystal region and a silver 
ruch top section. Early crystals showed a precipitate 
which resulted in a 2-cm"1 scatter loss. In recent crys- 
tal the scatter loss has been significantly reduced to 

1 
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FK3. 1.  TYte 1-li-nm mixing output U,,,' In w^le phaae- 
matched AjGaS«, pumped by a 1. 318-Mm Nd   YAG laaer mix- 
ing »1th the output o( a 0. <,59-„m pumped LINbO, parametric 
<>arlllator(X,>t;. ^ 

near 0.02 cm'1 at 10.6 Mm. All crystal« have high 
resistivity and good optical transparency frjm the band 
!»•» at 0.71 um to the two-phonon absorption edge at 18 
um. A particularly attracUve feature of AgGaSe, is the 
ease with which single crystals can be grown. 

We have measured the nonlinear coefficient of 
AgGaSe, relative to GaAs at 10.0 um using the wedge 
technique. »-»• The wedge method is suited for snuil- 
birefringence large-index materials. For the wedge 
method the coherence length is given by 

'.   A/^M*. - «J = i Ay tano, (1) 

where Av is the wedge translatioi. distance between 
SHG extrema. a is the wedge angle, and the beam is 
incident normal to the input face oi the wedge. For our 
c rystal samples the coherence lengths are expected to 
be near 100 urn for GaAs and 200 urn for AgGaSe. at 
10.6 wm. * 

We used a (001)-oriented AgGaSe, wedge for the non- 
linear susceptibility measurement relative to two GaAs 
reference samples. One (001)-orient«! wedge was cut 
from GaAs material supplied by Coherent Radiation 
Laboratories and a second (111)-oriented wedge was cut 
from Monsanto material; both GaAs samples were 
chromium compensated to a high resistivity of about 
10  Ocm. With the laser polarization parallel to the 

(110) direction,  £,-£,-V^««i ^-/»^ f^^Ej, so 
the <*«, for the (001)-cut GaAs and AgGaSe, samples 
arerfMandrfM- rflfc  respectively   For the (P.i)-cut 
GaAs, with the laser polarization along th   (111) dlrec- 
ü00'. /V E'7 E' B V^and P. = /», = /., = p/vs; «o 
/»- 2/v'3rfw£» and the rf,,, In this case is l/Jfdu. The 
coherence length of GaAs is measured to be 10712 Mm 
»nd 10«* 3 Mm for the (001)- aud (lll)-cut samples. 
This is In excellent agreement with published values In 
Befs. 17 and 18 of 107* 5 Mm and 107* 1 Mm. The mea- 
sured coherence length of AgGaSe, Is 237* 15 Mm which 
compares favorably with a calculated value of 255* 50 
Mm based on the index data of Boyd ef at. * 

The AgGaSe, nonlinear coefficjaut measured relative 
to GaAs Is 

Äi ■ <'ia(AgGaSe,)/rfu(GaAs)001 = 0. 33 * 29%, 

^»^»•(AgCaSe^/rf^GaAsmi - 0. 32* 18%. 
These values are in good agreement with the relative 
measurement by Boyd ^ of.« of «/„(AgGaSe^/rf.JGaAs) 
= 0 37*10%. Taking rfu(GaAs)= (11.7*40%)«lO"" m/ 
V,    weobUlnrfH(AgGaSe,)=(3 8*1.7)*10rum/V. 

We have also performed phase-matched SHG of 10 6 
um using a 80°-cut AgC-^, crystal. The measured 
phsse-matching angle of 57. 5,, * 0. 5'' Is in good agree- 
ment with the calculated value of 55° * 4°. The expected 
phase- matched SHG conversion efficiency is 

PUP.=rV = Mtf^ftt^pju* o.   (2) 
where the powers are defined inside the crystal «*„, 
-rfsin^, f is the crystal length, * = 2»i«,A, and 
*(B, 0 is the Boyd and Kleinman" focusing factor which 
reduce« to //ft = //»«» in the loose focusing limit. For a 
low-loss AgGaSe, crystal | cm In length In the loose 
focusing limit (//ft< 1) the calculated SHG conversion 
efficiency Is rV = 0.79% at 1 MW/cm*   Using a TEA 
CO, laser operating in a TEH,, mode as a «ource, we 
mear ired the absolute SHG efficiency generated in a 
high-quality 1. M-cm-long AgGaSe, crystal. The aver- 
age input and output powers measured with an Eppley 
thermopile were 2.82 mW and 76 MW, which corre- 
cponds to 1.6 kW of peak power at the fundamental for 
a 200-nsec pulse width. The experimentally observed 
conversion efficiency for the incident intensity of 1 68 
MW/cm4 is 2.63%.  Using <*„= 38x10-" m/V, /=1 54 
en, and *(fl, O = 0. 925 //ft, which corresponds to the 
focal «pot «ize of 250 Mm, the expected conversion ef- 
ficiency 1« 2.78%   Thl« measurement can be considered 
«s a separate absolute determination of the nonlinear 
coefficient of AgGaSe,. The nonlinear coefficient i« 
found to be 

rf|,M3 74*0.6)>.10■,, m/V, 

which agree« very well with the previous measurement 
made relative tj GaAs and with the recent absc!<ite 
measurement of Kildal and Mikkelsen11 of </„= i3 M 
*0 SOIxio-" m/v. 

AgCiCt, piuse matches for SHG for fundamental 
wavelength« between 3 and 13 Mm. * The SHG efficiency 
of AgGaSe, i« «igmficantly better than prousUte, for 
example, due to both a factor-of-three increase in the 
nonlinear coefficient and the «mall birefringence which 
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FIG. 2. Phaae-mate bed mlxlnc peak generated in a fixed 
AgGaSSf cyratal pumped with a tunable aource. 

allows increased interaction lengths without aperture 
length limitations 

AgCaSc, has adequate birefringence to phase match 
over an extended infrared spectral range for tunable 
wavelength generation by mixing. For mixing, a con- 
venient tunable pump source is a L.iNbO, parametric 
oscillator11 mixing with a fixed-frequency Nd   YAG 
larer.  For our experiment we used a collinear geome- 
try. The acoustic y-switched NdYAG laser tuned to 
1. 32 um is internally doubled with a LiIO, crystal to 
generate 0.659 um which pumps the temperature-tuned 
LlNbOj oscillator. The oscillator output in the 1. S— 
1.7-um range mixes in the AgGaSe, crystal with the re- 
iiialiung collinear 1.32-um beam which passes through 
the parametric oscillator. The AgGaSet is angle phase 
matched by rotation on a geared stage. 

The mixing efficiency is given by 

PJP~ - (w•,/'»'».)^lf, sinc^AH/a). (3) 

where r1/*- (2<»'irw„/J},/,''iyi,„»i1(.r'c0)/, and /, is the 
pump intensity. For a 1-cm AgGaSe, crystal and a pump 
intensity of 1 MW/cm1 at 1.32 um, the conversion ef- 
ficiency is Pu'Pmt- 1 2^(u>,r/wMt). 

Figure 1 shows the generated mixed output from 7 to 
15 unr.   Beyond 15 um our HgCdTe detector is response 
limited.  Figure 2 shows the phase matching peak 
generated by mixing in a fixed AgGaSe, crystal pumped 
by a tunable LiNbO, parametric oscillator. The charac- 
teristic sinc2(Al?//2) phasr-i.iatcKing peak width agrees 
with that calculated from the dispersion of AgGaSe, 
The 24 6-cm'1 width is the acceptance bandwidth of the 
mixing crystal which is much greater than the output 
bandwidth of 2 cm*1 determined by the 2-cm'1 gain line 
wirth of the parametric oscillator. 

A plot of the phase-matching rngle versus LiNbO, 
oven temperature showed a nearly linear relation over 
a wide 7 —12-um spectral range. We therefore used a 

1 
stepping motor and synchronously rotated the AgGaSe, 
crystal to phase match with a 1  C/min temperature 
scanned LiNbO, parametric oscillator. In this wav the 
spectrum between 7 and 12 um was continuously tuned 
8 min. 

Figure 3 shows a spectrum of polystyrene as an ex- 
ample of the continuous scanning capability of this 
source. The spectrum * is taken using a dual channel 
differential boxcar with .«o HgCdTe detectois. Th« 
mixed ( Jtput is detected with better thin a 30-dB SI^IKI- 
to-noise ratio with a peaJc-to-peak va lation of less than 
10^ at a repetition rate between tO and 25 pps. 

When mixing against 1. 32 um, AgGaSe, does not have 
adequate birefringence to phase match at wavelengths 
shorter than 7 um. Baued on phase-mate hing calcula- 
tiots using the index of refraction data of Boyd <■/ <tf., * 
mixing against * velengths 1. 5 um and longer allows 
cor.iplete coverage of the infrared. As am example, a 
1.06-um pumped LiNbO, parametric oscillator with 
degeneracy near 2.12 urn angle tunes over a 1.5—3.7- 
u:n range. AgGaSe, phase matches for mixing the signal 
and idler waves to generate 3-18 um for phase match- 
ing angles between 80   and 50 . u This example shows 
the unique phase-matching properties of AgGaSe, for 
extended infrared generation by mixing. 

In conclusion, we have measured the nonlinear coef- 
ficient of \gGaSe, and demonstrated phase-matched 
SHG of a CO, laser as a verification of crystal quality 
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FIG. :i. Spectrum of polystyrene taken with (a) the AgGaSe, 
mixer i resolution 2 cm**) and (bl Perkin Elmer 
»I >er t rophotomete r. 
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and potential use as a second hkrmonic generator. Ua- 
Ing a UHrO, parametric oscillator as source, we hare 
generated continuously tunab'e output between 7 and 15 
MRi by mixing in AgGaSe,. 
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M.M. Choy, i. Ciracl and R,L. Byer 
Applied Physics Department 
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ABSTRACT 

The Bond Orbital Model for tetrahedral compounds is used self- 

consistently to calculate the second order susceptibility. No adjustable 

paraoeters «re used and agreement with experiment is good. The origin of 

the nonllnearity arises ^rom a charge transfer as a result of the asym- 

metric polar energy between the anion and the cation. The model cor- 

rectly predicts an optimum polarity to maximize second order susceptl- 

uilities. 

On leave of absence from The Middle East Technical University Ankara 
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IBTRODUCTICN 

The understanding of the origin of the nonlinear optical susceptibilities 

hMB been the «nbject of zany investigations.    This understanding is Important 

In material assesaen: and prediction of new material characteristics in non- 

linear optical devices such as harmonic generators, mixers end parametric 

1 2 oscillators.   '      In a more formal approach,  quantum mechanical expressions 

•re derived from perturbation expansion involving complex sums of matrix 

^ U 5 
elements and energy denominators.   '   '      These fundamental expressions,  even 

vher simplified through the use of octupole moment of the ground state charge 

6 7 distribution,    or by employing ground state wave functions,    are  still formidable 

to use in quantitative predictions.    Exact wave functions in solids are often 

not known to high accuracy and the complete band structure is also required. 

Other complications frcm contributions to the nonlinearity from different 

8 9 points in the BriUouin zone can also arise.   '      Another approach is to use 

simple phencmenological models such as the enharmonic oscillator model      and 

Miller's rule. Included in this ca^gory are the universal semiccniuctor 

12 1*? 1U 15 model,     •  ' the bond charge model,       and the charge transfer model,  ' and the 

16 molecular orbital model.        The latter three models all draw heavily frcm 

the results of Phillip's dielectric theory.    * 

19 2C In this paper we use an approach based on Harrison's 3cnd Orbital Model.   *' 

This is a more predictive model and only appeals to essentially two input factors, 

the dielectric constant and the    E^.CX,-X.)    transition cner-ty to cnlculate the 
cA     4     i 

model parameters. The model predicts useful properties related to valence 

21 
electrons such as cohesive energy, band structure, ' etc. Using BCM 

parameters, we calculate the second order susceptibility in the 

III - 



optical transparency region of a crystal.    Thy analysis clearly displays the 

ptysical  origin of the nonlinearity.    Perhaps, more inporlantly, by expressing 

the nonlinearity in terms of the fundamental material carameters of polarity and 

the bond length,  salient characteristics desirable for high optical non- 

linearities are distinctly revealed. 

U.       BOND ORBITAL MODEL 

In this section,  ve outline the    BCM    so that we can discuss its 

extension to the calculation of the second order susceptibility.    For a 

■ore complete discussion of the model and the Implications of the anproximatiens 

involved refer to the original papers.  "' 0 

The model is based on a tight-binding approximation of   sp^    hybrid 

orbitals for tetrcbcdral compounds.    Denoting a    sp'    hybrid orbital on an anion 

(cation) by    jh   > (|h>) , a bonding orbital is constructed from a linear 

combination of nearest neighbor hybrids on the anion and its adjacent cation 

directed along the same bond, 

|1>>   -   ut|ha>* t^jhS (1) 

The minimization of the expectation value d 'he hamiltonlan by a standard 

variation on the u^ and uc results in a (2X2) secular equation. The 

solution of the equations gives the eigenvalue and the eigenvectors. They 

are 

S,a"   V2<hV>   f}ß + V, (2) 
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•nd 

1 ♦ a 

••• 
and 

-.-^ 
(3) 

19.20 
the polarity Is defined by K»rrlioa ^      ft« 

'*' ^9* (*) 

Here   V_ end V      are the energy parameters defined as: 

▼2 •' 

< h'jH l h" > 

1—|<hc ih'^2 
(5) 

for the covalent energy where   < hC| ^[h   >   corresponds to hopping between 

an anlon hybrid and a cation hybrid along the same bond, 

[<hcMhc>- <h*ia|h'>i 

2(l.,<hCh'>l")' 
(6) 

for the polar energy where   < hc|Jf |hC >    and   < h'jj^ |h' >   denote the 

coulomb integrals at the cation site end the anlon site respectively.     In 

a  (c) 
addition,  there is one more energy parameter    V *v      , which is defined as 

■ matrix element of hamiltcnian between adjacent anlon (cation) hybrids. This 

la related physically to the atomic s-p splitting and does not come into play 

in most optical properties. 

The dielectric constant,  which is the par?meter of interest  In optical 

properties,  is calculated by considering an isolated bond dipole with pn 

applied electric field. 
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Tb« field perturbation is treated by adding to the polar energy V  the 

potential energy of the bond dipole in the electric field. Then in the 

(round state v^ve function «pproxia?t.lcin, calculation of the induced 

polar!7ftion by r change of polarity u     through a change of the polar 

energy V  gives the dielectric constant 

'"7 
2 (ed)" V? 

««- 1 ♦ —5 5-^70 (7) o 3(v5*v!)3/ 

vbere N - density of electrons, d ■ bond length and 7 is a parameter 

defined in the BCM formulation relating microscopic dipcle moments to 

ascrcicopic linear susceptibilities and is taken to bt constant along • row 

of the periodic table except for correction for carbon row atoau». 

20 To determine the energy parameters Harrison and Ciraci  appeol to 

experiae.ntal parameters. The principal optical absorption peak E-. is 

identified with 'he bonding and anti-bonding gap 

. - 2 ^/v? * V? 
• S • 2 V'i * ^ 

This identification has been shown to be consistent with e.-perinents. 

First, the Eg. gap of the group IV elem.»nt8l ccapounds gives Vj, 

directly for each row of the periodic table, since V » 0 In elemental 

compounds. The geometric me/m is taken for compounds involving two rows. 

Then using Eq. (7) *he dielectric constant gives y    for each row. A value 

for 7 of I.08 is found for di?iond and 1.2 for silicon. When row three 
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la reached, there are contributions frort the polarizsble d core electron! 

17 
•■ noted by Phillips.   This is taken into account by introducing a correction 

factor 6 in addition to 7 . 7 la taken at the silicon value and a value of 

9-1.18 ia obtained for gernaniua and 9 « 1.1*1 for the tin row. With these 

Talues of Vg and 7 , V  for any binary coipound is derived from Its 

dielectric constant using Eq. (7). This completes the summary of the Bond 

Orbital Model as originally strted by Harrison.1' 

U  CALCULATICN OF x^2' 

The second order susceptibility is defined by expanding the macroscopic 

polarization in a power series in the field 

P(E) x«   ^ .(*) . • £ C ▼ • • • (8) 

vhere x    «ad x    •" the field independent susceptibilities.  In the 
M 

Independent bond for-ulation these macroscopic susceptibilities are related 

to their corresponding microscopic bond polarizabilities through geometrical 

21 22 
factors as * 

?. •(8)«(
T;
)^. ■fXaJ li  JJ  ij 

Y(l) 1 
v (9) 

fit) 1 
V 

S  M M a(»)9 
s,i,J aIi 8Ji aKk Bijk (10) 

where a^^ are the direction cosines bitween *he  macroscopic crystal axis I 

and the bond axis frame i . The index s identifies the different bonds in 

the periodic lattice structural unit whose volume is V . Tc apply the BCM 

confine ourselves to sp-'-bonded tetrfhedral ccapounds with the zinc blende 

and wurtzite structures.   In the fonr.er case with crystal CIPSS point group U3 m# 
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Eqa.   (9) and (10) reduce to 

"u*- 1* (a|| ^2a^- T V1*2*0 (11) 

(2)        _un 
^    "    Uf   (01|   " 381) (12) 

where If   -   -»- «nd   a .    and   a     are the parallel and perpendicular 

components of the bond polarizability. 

Here    n    .    3 Jj/16 d3    ia the number of tetrahedral unit cells per 

unit volume.     In this case   x(1)    i. . scalar, end   xg*    is the only non-  ' 

ranishing tensor component in Voigts notation. t      1 a along the bond 

axia (111) and with axially symmetric    C^   bonds, the independent non- 

ranlshing ccapcnents are     Of   - a ^ , a.   - a     - a      . and   3      . S 

PX " ßxzx ' 6yzy  *     For the ca8e of wurtzite   structure the two inequivalent 

tetrahedra can be obtained from standard   zinc bU.de orientation by simple 

rotational matrices,  the result is23 

iV - - yV   -   x(2>   .   —   ,(W 33 yj   »tt ^1 «13 

It can be shown from an abinitio calculation that ß, << 9 ,■* m , bond 

charge approach, ^ . 0 to 1st order.2^ .ccordinsly, we neglect 9  „Ltlve 

to ß.  In our formulation. 
II 
To calculate 9(( ve need to determine the variation of the linear polar- 

izability a with M electric field.  Fhysiwlly, we expect a redistribution of 

charge density in the presence of the field. This manifests itself as 

an induced dipole «s a result of «n fddition^l charge transfer.  In the 

context of the BOM there is J» change in the bond polrrity, a  , through 
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• change in the bond-polar energy, V . Harrison defines en effective 

charge on an anion (in units of -e) as 

Z* - to - AZ (13) 

where AZ is half of the nominal valence difference. TLen the additional 

charge incurred by the applied field on a pcr-bond basis is 

tz ba. 

ÖV. 
AV 

v2 
V2 AV, 

3' (v!: v?)3/2 ü/3 
Oh) 

where the main contribution is from the change in polar energy, V. . The 

covalent energy, V« , is constant since the bond length remains fairly 

undistorted. This is valid in the optical transparency region above the phonon 

lattice resonance frequencies, where the lattice and the bonds stay relatively 

stationery compared to the motion of the electronic charge cloud.  Here we 

have to stay below the interband electronic absorption, as the assumption of 

a bonding state of the hybrid orbitals implies that we are dealing with valence 

•lectrons only.  In the trans^rency region the optical response is fairly 

Insensitive to frequency end hence cur dispersionless approach should be adequate. 

In the formulation of the ECM, when the macioscopic dielectric constant 

la used to calculate the microscopic bond parameters, the effects of charge 

distribution scaling and the bond anisotropy are automatically included in 

the parameter 7 .  If we let 7* be the charge distribution scaling and 

K m Ot-./a  be the anisotropy, then as in the derivation In BCM, the inclusion 

of the dipole potential energy in an electric field as a change in the polar 
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«nergy gives In teras of 7» 

a,,  m 

♦? . .2 
(ed) V? 

11   2(V^^)3/2 
(15) 

Fitting this into Eq.   (11) snd comparing the result with Eq.   (?) 

ire find that 7
2 . 7»2 (1 « 2ic)»rhere    c - 1 ♦ U « X(1)    has been 

emplo^td.    There  is no easy analytical calculation for the bond anisotropy 

By simple extraroiation on values obtained from Kerr constants CQ diatomic 

■olecules,   * ve estimate   if - 0.5.    EssentiaUy the same estimate was 

employed previously.        With this value for the anistropy factor and the 

BOM value of    1-2 for 7 ,  f* Is found to be 0*85 

To introduce the explicit field dependence we note that tha Induced bond 

dlpole is 

Ap   -    7#ed LZ*    -   Ot.   E.. (16) 

As explained earlier an electric field induces an additional charge 

transfer resulting in a change in the polar energy V . The second order 

polarlzabili*y can be related to its linear counterpart by cr . (E ) . 

a|l '3||E|I + **' "^r^jl "*"'**  NOW Aa|| 'e||E||  can be C|,lculated 
from Eq. (15) through a change in iolar energy AV_ . Elimination of AV 

3 3 
through Eq. (lU) and Eq. (16) in terms of E.. gives 

3 a 

•ll ed    (1 - a ) 
P 
.  «fl (17) 

To convert to experimental ancroscopi. quantities, Eq.   (11) and 
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Eq. (12)  giv« 

,(2) * a2   a , so 
 r-JL-T- lx(1)I2 
e/(2if* l)2 (1 - cT) 

(Iß) 

•here the tetr^hedrsl ceU density (n ■ 3'/3/l6 d3) has been used.  Since 

O  can be ctlculated froo the linear dielectric constant in BCM theory, 

Bq. (iß) shows that y^        can be estioated essentially from Just the knowledge 

of the linear susceptibility alone. This is an important point. The Indepeu-lent 

bond formulation is only approximate in the sense that correlation effects 

between neighboring bonds do give rise to local field corrections which are 

Dot subject to easy deductive analysis.  By appealing to the macroscopic 

linear susceptibility as an input parameter, most of these local field effects 

•re «ccounted for in the BOM model. 

To demonstrace the dependence of y*   '    jn polarity and to display 

some underlying physics, we transform Eq. (18) by casting y^1'    in terms of 

polarity with the help of Eq. (?). Using the relation"20 Vg a l/d2 we obtain 

„(2) - Constant a (1 - or)  d (19) 

«here the constant contains y  , and is constant for one row in the periodic 

table. 

(2) 
The dependence of *w on polarity is shown in Fig. 1," where 

»  /d  is plotted against a . The upper boundary corresponds to the fifth 

row, and the lower one, the third row. Because of differences in geometric 

factors, we have only Included the case of zinc blende. Note the interesting 

»aximum at or *• O.kk,  corresponding to an ionicity f > 0.28 in Phillip's 

■odel [f- a 1-(1 - or r' ] . Tang ' and Levine" have predicted an optimum 
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vmlue of f m, 0.17. However, available experimental data seems to sbov a 

y«sk at around a . 0. U5 (f ~ 0.3) 1" better agreement with our results. 

The physics of this maxixum warrants sozs cotcxent. In the ccnplete polarity 

limit of a * 1, i.e. full ic -city, all excess valence electrons from the 

cation are transferred to the anicn. The anion in turn binds these electron.« 

fairly tightly la its locality, resulting in a big forbidden energy gap 

characteristic of ell ionic compounds. Actually, it can be shown that the 

energy gap of tetrahedral binary compounds scales linearly with Az*  '. 

This there is no more charge transfer (AZ «c V J) to respond to any applied 

«ml 
field and hence the vanishing of x   •  In the ccvalent limit of a ■ 0 , 

P 

we approach the transition of zinc blende into the elemental diamond structure 

and the center of inversion symmetry completely cancels all even order of non- 

llnearitiea.  In a sense, the system overcompensates itself because the gain 

in the covalent 'bond charge* is completely cancelled by the perfectly symmetric 

lattice environment. A minor word of cauticn seems to be appropriate here since 

we must remember that in actual practice, we havj to stay within f. < O.78 for 

tetrahedral coordination. Any higher ionicity results in rocksalt structure, 

a bexa-coordlnation typical of most ionic compounds. 

To further test the accuracy of our analysis we moose materials of 

roughly equal polarity, i.e. AZ ■ constant, and plot log.- C* \ 10 ] 

against log10 ^d] in Fig. 2. Lines of slope k  are drawn and agreement is 

good with Eq. (18). 

Thua for large second order ncnlinearities, it is desirable to have a 

covalency high enough (a around O.hk)    to give considersble polarizability 

from charge transfer but low enough such that inversion syrr.etry is not a 

detriment. We also want long bond lengths, which, from empirical evidence, means 

a high atomic number.  As high covalency means proximity to Group IV, the above 

two criteria could be susr.marized in the context of the periodic table by saying 
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Another par8=eter which hai proven to be very useful as ■ scale for 

Boollnearlty is the Miller's delta A^ , which is defined by 

2a> 

2 

A    v2"  v"3 ir® Aijk 'ii xjJ 'kk 

In the context of our model Miller's delta can be obtained by transforming 

|q. (Iß) through use of it'1' expressed in polarity a  and bond length d . 

Ve find that A   a a   d/(l - a )^2    . Thus we see that for materials of 
i j*    P       " 

the same average qusntum nunber n , where the bond length is essentially 

constant and for materials of the same vertical family i.e. of constant polarity, 

the Miller's delta should be constant. Essentially a similar conclusion is 

reached by Tang and Flytzanis,15 though they employed slightly different para- 

meters, namely the normalized valence difference and the atomic radii difference. 

In Miller's formulation, which is essentially an anharmonic oscillator model. 

Miller's delta is found to be a function of the asymmetric potential. Because 

polarity (ch-rge transfer) is a direct result of the asymmetry between the 

cation and anicn, and tond length also affects the potential, the dependence 

of Miller's delta on the above KM parcmeteri. is not surprising. 

The main results and paraseters .sed are sumasrized in Tables la and lb. 

Ve have chosen the most recent data or that wl'ch we believe to be the most 

reliable.  Correlation with experimental values is in gener-l very good.  It 

should be observed thst there are two general classes of compounds rfhere the 

relative discrep?ncy warrants soT.e discussion. They are the narrow band gap 

■aterials for exa=ple InSb, InAs and GaSb and the copper compounds. 
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PO 
A« pointed out in the original forrxLation of BCM,  the use of the 

L. peak for the bonding and anti bonding gap works especially well for 

the large band gap materials. For narrow br>nd gap mpteri*la. the ainiT.ua optical 

gap could be alxost an order of magnitude saaller than the Eg. gap. For 

example in InAs E0 » 0.33 «V «nd ^A " 3*9 eV m  0ne might exS*ct  the T 

point In the Brlllouin zone to modify the 30!! energy parameters. Aa a result, 

the application of the BCM to these compounds is not as successful. 

For the copper compounds, it is known that the d-bands art« strongly 

hybridited with the valence s and p bands. These delocalized d electrons 

•t these noble-metal cations have been found experimentally to give an 

anomalous contribution to the second order nonlinearity.  '2^ This effect 

1« discussed by Levine  in his bond charge model and by Tang  in terms of 

an charge redistribution and a reversal of the direction of the bond dipole. 
■ 

Since the BCM deals with the sp-' electrons, the d-electrons are accounted 

for phenocenologically and the formulation overestimates the nonlinearity of 

these compounds.  If we itay away from these noble i.etal compounds aid consider 

compounds where there is no appreciable hybridization of the d-bands, then 

the BOM predictions agree well with experiment. 

• 

IV.     SWMARY AND (pUOM 

using a more predictive theory, the BCM, we have calculated the second 

order susceptibility for tetrahedi-al cczpounds. Agreement with experisent 

is good, especially in light of the simplicivy of the model. 
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The approach Is self-consistent as the linear susceptibility Is used to 

calculate the second order susceptibility. Coapared to other phenoaenological 

models, our approach is aore self-contained, as no adjustable paraaeter is used 

and all parazeters are defined in the BOM. 

The physical origin of the nonlinearity is seen to arise frca the 

charge transfer as a result of the asyx=ietric ^  lar energy between the 

anlcn and the cation. Cheaical trend considerations reveals an optimum 

▼alue of polarity for a aaximua second order nonlinearity in zinc blende and 

wurtzite structures. This, together with the bond length dependence gives 

• rule of thusib estimate on the choice of eleaents in the periodic table 

which will result in tetrahedral coapounds of high second order nonlinesrity. 

It is found that for these tetrahedral structures, it is desirable to have 

high covalency and a high metallicity consistent with transparency region of 

interest. This means that one should stay close to Group IV elements and 

high atonic numbers. We include the parametric gain parameter in our discussion 

showing that the band gap is afc-in important through the short wavelength 

fx-equency cut-off ia the transparency range. The bond orbital model is also 

quantitatively and qualitatively related to the Miller's rule through the 

concept of polarity. 

'fllTI II irTTTT 
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tABZZ    I« 

CCMPARISCN BET^ZZN TPZORETICAL    v^    (CALC.) AKD EXPERIMErTAL    Jfl  (EXPl.) 

TOGETHER WITH THE RELEVATrT ECM PARAI-ETFPS 'JI Z7HC BLENDE STRUCTURES 

Compound Bond length 

d [ X ] 

a 
P • 

«« 

10-T esu 

X^^expt) 

10-7 esu 

GaP 2.36 O.52 0.65 k.l 5.2 • 

GaAs 2.kk O.50 0.79 6.1 6.U b 

GaSb 2.65 O.kk 1.07 10.8 20.0 c 

InP 2.5U Ö.58 C.68 6.5 8.0 d 

InAB 2.61 0.53 0.90 10. J 17.k   c 

InSb 2.80 0.51 1.17 18.3 24.8 e 

ZnTe 2.6U 0.72 O.50 6.k 7-3 • 

ZnSe 2.U5 0.72 O.39 M 3-7 f 

CdTe 2.80 0.76 0.U9 8.U 8.0 • 

CuCl 2.3U 0.75 0.22 1.1 0.2 g 

CuBr 2.U9 0.79 0.27 2.3k O.U g 

Cul 2.62 0.70 O.36 k.k O.k    g 
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TABLE    lb 

(2) (2) COMPARISON BETWEZZI THZCRETICAL    y^Z'    (cALC. ) ARD EXPERDEHTAL    X^  '  (EXPT. ) 

TOGETHER WITH RZLEVAT.T BCM PARAI^ETERS IN   WÜRTZITE STRUCTURES 

Compound Bond length 

i (1] 
a 
P 

,« 4;W) 
lOrT esu 10-7 e«u 

SIC 1.88 0.39 0.U5 0.93 O.78 h 

ZnO 1.98 O.70 0.2U 0.88 0.33 i 

Zns 2.3k 0.73 0.33 2.61» 1.8  f 

CdS 2.53 0.77 0.33 3.1k 2.1  f 

CdSe 2.(53 0.77 O.38 5.35 3.8  j 
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FIGURE CAPTIONS 

1. The «callng of   Xif /d     ,'ith   a   # tlie polmrity.    The upper boundary 

corresponds to naterials fron the fifth row and the lover one frca the 

third row 

-   • 

2. Tue dependence of x    L.    on bond length d for naterials of roughly 
expc 

conatant polarity. 

3*  A plot of x\   versus n , the average quantum number, shoving 

tbe dependence within a vertical faoilly in the periodic table. 
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