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I. INTRODUCTION

Aluminum alloy matrix-graphite fiber composite materials are
presently being developed for various applications that require high specific
strength for temperatures up to 900°F (750K).

One of the most promising techniques for producing metal matrix-
graphite fiber composites is by liquid-metal infiltration of a multifilament
fiber bundle. By this process, composite wire is produced that has a diameter
that depends upon the number of fibers in the initial bundle, For instance,
Thornel 50, which is a rayon-based, 8-strand yarn that consists of 11,520
filaments, has a final wire diameter of 0.06 in. (approximately 1.5 mm).
These wires can be consolidated into structural shapes by various processes,
including diffusion bonding, liquid-phase hot pressing, sintering, and brazing.
The technology of consolidation has been advanced to a point where the fabri-
cation of relatively large structural shapes cai: be achieved. Examples of
fabricated shapes are shown in Figs. 1 through 4, {icluding a 0.25-in.

(~ 6.4 mm) plate (Fig. 1), a 0.75-in. (19-mm) thick bar (Fig. 2), 10-in,
(254 mm) square panels (Fig. 3), and angles (Fig. 4).

The mechanical properties of the composite wire have been obtained
consistently in the range predicted by the rule of mixtures (ROM). However,
the attainment of rule-of-mixtures properties for consolidated wire has
been less frequent. The properties of consolidated composites depend upon
the fabrication parameters of both the infiltration and consolidation processes.
For example, increasing the rate at which the fiber is drawn through the mol-
ten aluminum bath (draw rate) can increase the strength of the final consoli-

dated composite by 25 percent,

The most successful consolidation technique developed thus far is
liquid-phase hot pressing in which wires arc bonded under pressure at

temperaturcs above the solidus in the two-phase, solid-liquid state. Extensive

dm wumaet i n—i, o e

w5 v S Kbk




- Ly PO e e - Qs w e s e

El RA it .
e e iR AT Sttt oo x

i 3 et st o bk

ol e v aeris B L

Lo s s

Sy

EXE N
UE
VAT

Aluminum Graphite Plate 0, 25-in. (6.4 mm) Thick

o
156
,

o
PR3

%

AT
SN
kit

ok
&t

w
Fig. 1.

R

SEAEA Y 2 T Ay O RASFSER AT Gttt
X RN G

57

gl

3 e

: e A SRS W et s e e R e s e el . - . oy
“Winidnp i enR i & S Sl S R i i e e s e s R R e R B et

R A
N ekl e




TR XL > g Lanaly gt m@
; sl gal s s = vl LY e # R i Ny ey s gty
5 S ¥ 3 Sk LTI e ] u}.w,g,#‘ Hareanl £ 2 R N AR A . zg;., . f X
s @% m;;.»% w&M”’ﬂ psie S S ;m‘,,-,:;,%;' L S ‘””ﬁ'wx AT 0N B 2

S HIRSEAL b PN K A
RN

[P

g e T

b B o™ S Lt

Lo b

-"',‘,f".:f. i

ot
=y

a3 ;
g .
K3y

S A BT g

g

s

SRR

it

. Fig. 2. Aluminum Graphite Bar 0, 75-in. (19 mm) Square

12,
2

S

P
RARY e

pazTtes

o

ST

ey
»N

Zrc sk S

e

T,

7

5
K

e




k¥
%
.

PN YR
'?“fs‘ 2P

MR
s

oerat

L

3
74
ith

(e

RRrATS

w—
Szl

L2

§
H

e—

YT e

AN FAEIR Tt & A5 e BAvEy R T &

NS

R L T R
T
PR
A

e

B2 Vb TIP3 e

e




i
'

Fig.

4.

AT MR AT P A TR R T o a i, T T T e A7 RGN U ATATE 0 o Gk Gt i 40 B (8 s AR A el e P e >

Cross-Ply Reinforced 90-deg Angle of
Aluminum Graphite

-7-

JERvPR————

o e saame




s meionhitarid A SO s o
R i T
SRS L e e

studies have been conducted at The Acrospace Corporation1 and elsewhere

to optimize the temperature, pressure, and time parameters for this consoli-
dation technique. Increasing the temperature of the pressing results in
increased amounts of liquid phase and, hence, less mechanical damage to

the fibers. Lowering the pressing temperature decreases the extent of fiber-
matrix interaction and, hence, decreases chemical damage to the fibers.
Moreover, with higher pressing temperatures, greater amounts of metal are
expelled from between the fibers, thereby increasing the volume fraction of |

fibers in the composite.

In this investigation, the mechanical properties of composite materials
processed by two techniques have been examined. Technique A is a shorter
time, high-r temperature, lower pressure process, while Technique D is a
longer time, lower temperature, and higher pressure process. In addition
to the effects of time, temperature, and pressure, the impact of aluminum
alloy foils (fillers) utilized in the consolidation methods must be considered.
The foils are inserted between planes of wire to provide a uniform load

istribution among the wires during pressing, thereby minimizing mechanical

damage to the fibers,

1W. C. Harrigan, Jr., Fabrication of Aluminum-Graphite Composite,
TR-0074(9250-03)-2, The Aerospace Corporation, El Segundo, <Calif.
(to be published).

2R. T. Pepper, R. A. Penty, and S. J. Allen, "Fabrication of Aluminum-
Graphite Composites,'" J. Composite Mater., 8, 29-37 (1974).
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II. MATERIALS

Various wrought and cast aluminum alloys have been used to make
aluminum-graphite composites including the 2000, 5000, 6000, and 7000
series of wrought alloys. In this work, one wrought composition (6061) and
two cast compositions (201 and 202) were selected for property determination
since a considerable number of consolidation studies have been performed
with these alloys, Filler foil materials used in the present work include the
6061, 2024, 5056, and 356 alloys. The nominal compositions of these alloys
are listed in Table 1. The graphite fiber in all the composites studied was
Union Carbide Corporation's grade Thornel 50 8-strand yarn. Parameters of
the liquid-phase, hot-pressing consolidation Techniques A and D are listed

in Table 2, Technique A was performed in-house, and Technique D was !

periormed by DWA Composite Specialties, Inc.

The composite materials used in this program are listed in Table 3

along with the pertinent matrix alloy, filler alloy (if any), volume fraction

of fiber, consolidation method, wire lay up, and form and size of the final
product, A variety of composites was studied that contained fiber
fractions ranging from 22 to 34 percent and had two cross-ply wire, lay-up
geometries. The final forms of the consolidated composite were 0. 25-in.

: (6.4 mm) thick square bars and 0.25-in, (6.4 mm) thick plates. The

precursor wire properties of these composites are given in Table 4.
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Table 2. Consolidation Techniques Used to Produce
Aluminum-Graphite Composite Structures
Techni ue® T I:rfes:ai?ugre Pressure, Time,
echniq ¢ org(.K) ! psi (MPa) min
605-615 (878-888) 400 (2,75) 15
560-580 (833-853) 4000 (27.5) 40

FRE N

3Method D was developed by DWA Composite Specialties, Inc.,
Los Angeles, California

bAc1:ua1 temperature of pressing is determined by composition of

matrix,
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HI. TEST METHODS

Tensile tests were performed on 4-in. (100 mm) long specimens

; machined to the configuration shown in Fig. 5. Aluminum alloy tabs were
3 . adhesively bonded to the grip ends to prevent damage to the fibers from the
é loading grips. Testing was performed on an Instron tensile machine with
0.02 in./min (0.5 mm/min) cross-head speed. A 0.5-in. (12.7 mm) gauge
length strain exteasometer was used to measure strain in the specimen.
Compression tests were performed on specimens machined into the
_: form of a right cylinder 0.853 in. (21.7 mm) long and 0.207 in. (5.26 mm)

LR

in diameter. Prior to placing it in the compression fixture, the ends of the

-

specimen werce lubricated with graphite powder. The cross-head speed was

between 0.01 and 0.05 in, /min (0.25 and 1.27 mm/min).

The dynamic modulus was measured on samples ranging in size from
0.6 to 4 in. (15 to 102 mm). Straight-beam, quartz-crystal transducers

with a characteristic frequency of 3 MHz were used in the tests. A drop of

NS o L S 2 7Y o 7 g
o ey A G R e

mineral oil was used on the transmitting and receiving transducer crystals to

a

' make intimate contact with the sample that was placed between them on a

L spring-loaded optical bench stand. A 50.V output pulse of a pulse generator
was applied to the transmitting crystal as well as to the sweep trigger input

: of an oscilloscope. The time of arrival of the first pulse wus used to measure
* the velocity of the wave through the specimen and, from this measurement,

the dynamic Young's modulus was determired.

Flexure properties of composite materials were determined on three-
and four-point bend specimens 2.75 in. (69.9 mm) long (overall) and 0.5 in.
: (12.7 mm) wide. Beam depths of either 0.09 in. (2.3 mm) or 0.06 in. (1.5
: mm) were used. The support span was 1.5 in. (38.1 mm), and the load span

for the four-point tests was 0.5 in. (12.7 mm). Both the specimens and the

T T wiapn 3 .
Sl N st

B SH

et 2 Tk
SANT

test procedures were in conformance with Test Specification ASTM D709-71

AR

for flexural properties of plastics. The specimens were tested at the re-

commended cross-head speed of 0.05 in, /min (1.27 mm/min).
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in. mm

WIDTH 0.125 3.175
THICKNESS 0. 200 5.10
OVERALL LENGTH 3.50-4.0 90-100
LENGTH OF REDUCED SECTION  0.75 19
RADIUS OF FILLET 0.375 10
GRIP SECTION (tab length) 1.50 38
WIDTH OF GRIP SECTION 0.25 6
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k. | Fig. 5, Composite Tensile Specimen
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hourglass cross-szction specimens illustrated in Fig. 6, The grip ends of
the specimens have a rectangular cross section to permit compression grip-
ping. With the use of contact cement, the relatively short grip sections were
coated with silicon carbide powders to enhance the gripping. Testing was

performed on a closed-loop, ciectroh,draulic fatigue machine under load

control and with a sinusoidal waveform at 10 Hz.

specimen was the criterion for fatigue life.

KRS \[f

Fatigue behavior was measured at room ternperature on the smooth

Total separation of the

c ¥+ ~~—=_FIBER DIRECTION <

T | ! |
~{ E | =B L A o

in. mm

A LENGTH OF REDUCED SECTION 148 376

B GRIP SECTION LENGTH 1.0 25.4

C WIDTH OF GRIP SECTION 0.2 5.1

D  MINIMUM CROSS SECTION DIAMETER  0.148 3.8

E THICKNESS OF GRIP SECTION 0.240 6.1

R RADIUS 6.0 1524

Fig. 6. Composite Fatigue Specimen
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IV. RESULTS AND DiSCUSSION

A, TENSILE AND MODULUS BEHAVIOR

The tensile strength and Young's modulus of various aluminum-graphite
composite materials are shown in Table 5. The materials identified by
number are those identified similarly in Table 3. The two processing methods
compared in Table 5 are the higher temperature Technique A and the lower
temperature Technique D described in Table 2. Although the higher fiber-
fraction 201 and 202 matrix composites produced by the higher temperature
technique (A) were assumed to result in higher strength products on the basis
of the rule-of-mixtures predicted strength (compare Materials No. 1 and 3,
and 5 and 7), the lower volume fiber-fraction material and the cross-ply
material show the opposite to be true (Materials No. 2 and 4, and 6 and 8,
respectively). The efficiency of consolidation, as measurecd by the strength
as a percentage of the precursor wire strength, also appears to be greater
for the higher temperature method in the 6061 as well as 201 and 202 matrix,
higher fiber-fraction composites, but similar efficiencies are indicated for
the lower fiber-fraction and cross-ply composites. It can be tentatively con-
cluded, therefore, that both methods are potentially efficient for consolidating
wires. These observations must be tempered by the fact that some of these
comparisons were made between materials with different fiber fractions and
different filler alloys or between materials with and without filler foils.

The characterization of these effects has not been completed, but information

available at the present time does not confirm any strong trend of consolida-
tion efficiency with fiber fraction.

The effect of filler foil on consolidation efficiency is also not yet clear,
A comparison of Materials No. 2 and 4 indicates a similar consolidation ef-
ficiency for composites with and without filler foils, while a comparison of
Materials No. 9 and 10 shows that a greater consolidation efficiency was

experienced with the material that was without the fil'er foil. Both cross-ply

Preceding page blank
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composites (Materials No. 6 and 8) had a significantly lower consolidation

efficiency than the unidirectional composites.

The relationship between the tensile properties of the composite wire
and those of the hot-pressed, consolidated composite is shown in Fig. 7 for
the matrix aluminum alloy 201. Two ranges of initjal fiber-fraction wire are
represented. The higher fiber-fraction wire consisted of 28- to 30-percent
fiber, and the tensile properties ranged from 90 ksi (620 MPa) to 115 ksi
(795 MPa). The lower fiber-fraction wire was between 22- and 26-percent
fiber, and the strength ranged from 80 ksi (550 MPa) to 95 ksi (655 MPa).
Both groups of fibers appear to possess strengths at least as high as were
predicted by the rule of mixtures. The individual data points in Fig. 7 are
for a variety of processing conditions. These d.ita points are represented
by open circles for bars or sheet consolidated from lower fiber-fraction
wire and solid circles for bars and sheet consolidated from higher fiber-
fraction wire. It is significant that the strengths of the consolidated wire
fall consistently below those of the precursor wire, although most processes
result in strengths close to the lower bound of the range predicted Lty the
rule of mixtures. Increasing the volume fraction during consolidation
results in a decrease in the strength as predicted by the rule of mixtures,

although not necessarily a decrease in the absolute strength.

B. COMPRESSIVE AND TRANSVERSE TENSILE PROPERTIES

The compressive properties of 201, 202, and 6061 aluminum matrix-
graphite fiber composite materials are presented in Table 6. Except for the
6061 matrix composite, the compressive strengths of these materials are
within 10 percent of the tensile strengths. Results of experiments on other
alum num-graphite composites indicate that very high compressive strengths
can be obtained if extencive carbide formation is permitted. Compressive
strengths as high as 185 ksi (1276 MPa) have been produced by such methods,
kut x considerabie sacrifice of tensile properties was entailed. The high
compressive strength of the 202 alloy composite {(Material No. 5) was accom-

panied by one of the lowest carbide contents (185 ppm) found among these

21~
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; Table 6. Compressive Propertics of Various Aluminum-
Graphite Composite Materials

i

‘ Compressive Compressive

" Material Matrix Failure Stress, Young's Modulus,
No. Alloy ksi (MPa) Msi (GPa)

i

) ]
o 1 201 78-89 (538-614) 25.27 (172-186)
132 '

i 2 201 60-66 (414-455) 19.1-22.3 (132-154)
4 3 201 76.5 (527) 19.1 (122)

5 201 81.0 (559) 21.8 (150)

& 9 6061 58.61 (400-421) 19-23 (131-159)
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composites and, hence, some degree of matrix-fiber bonding rather than ,

carbide formation is the apparent reason for such encouraging results. High

e compressive strength is not necessarily accompanied by high compressive
1 modulus. The tensile modulus of Material No. 5 is 25 Msi (172 GPa), while
:z the compressive modulus is only 19 Msi (132 GPa). The 201 matrix-alloy
5 composite (Material No, 1), conversely, had a slightly higher compressive 1
3 { modulus than tensile modulus.

P .
' Ve 5
PN FURK 00

Transverse tensile properties were determined on two matrix-alloy

composites, and the results are summarized in Table 7. For unidirectional .

‘E fiber orientations, transverse tensile strengths for both the 201 and 202 |
g matrix-alloy composites are 4.5 ksi (31 MPa). These values are approxi- j
mately one-fourth of the expected values and indicate that, although some i
: degree of fiber-matrix adhesion has been achieved, this property is not yet :
,} optimized for these composites., Even the cross-ply composites result in

’é less than optimum transverse tensile strength. Further improvements in

" fiber-matrix adhesion are required before optimum compressive and trans- .
“ verse tensile properties are achieved in these composites. g
: C. FATIGUE BEHAVIOR i
i The fatigue .ehavior of two aluminum-graphite composite materials

-? was determined over a range of cycle life from 101 to 108 to establish the

{ stress-life behavior (S/N) curve and the mechanism of fatigue. The materials

i“ i studied were No. 7 and 9, which represented the 201 and 6061 matrix-alloy
composites, respectively. A summary of the fatigue results is given in :
* Table 8. Fatigue ratios examined ranged from 0.5 to 0.85 for the 6061 matrix (
r; i material and from 0.5 to 0.90 for the 202 matrix material. Fatigue strength ’
(stress for 107 cycle life) is above 50 percent of the fracture strength for ;
x both composites. The S/N behavior of these materials is compared in Fig. 8 ‘
with other composite fatigue data repcrted in the literature, including

&
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Table 7. Transverse Properties of Various Alumirum-
Graphite Composite Materials

B

g Transverse Transverse
P Material | Matrix Failure Stress, Modulus,
‘ No. Alloy ksi (MPa) Msi (GPa)
{ 3 201 4.5 (31)

i 4 201 4.5 (31)

v ’

b 6 2022 33.2 (229) 11.2 (77)
k7

7 202 4.4 (30)

BN b

ke 8 202 17.0 (117) 8.8 (61)

e g
Ty R
LA g

3%2 lay up 0-90-0-90 deg
le lay up 0-90-0 deg
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i

e

e l (® —o— 6061 A1 30 voIX B (HANCOCK)

(@ ~o— 6061 Al 25 vol% B (TOTH)

(3) —w— Al 33 TO 38 GRAPHITE (COURTAULDS HMT)(BAKER, BRADDICK, AND JACKSON}
@) ==t 6061 Al 30 vol% GRAPHITE (THORNEL 50)

(5) =—e— 201 Al 30 volX GRAPHITE (THORNEL 50}
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Fig. 8. Fatigue Behavior of Aluminum-Graphite
Composites Compared with Aluminum-
Boron Composites
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} Table 8. Summary of Fatigue Properties of Two

;j Aluminum-Graphite Composite Materials

e Fatigue Fatigue
r’ Material Matzrix Stress, Ratio ‘
* No. Alloy ksi (MPa) c/ou Life Cycles !
£

i

7 202 37 (254) 0.45 9.9% 10

7 202 44 (305) 0.54 4.2% 10

_ 7 202 48 (330) 0.59 3.1% 10°

1 7 202 52 (356) 0. 63 2.9 % 10°

b 7 202 55 (381) 0.67 2.2 % 10°

7 202 57 (393) 0. 70 4.1% 10%

4 7 202 57 {393) 0.70 5.9 % 10° ;
i 7 202 59 (406) 0.72 6.0% 103 :
7 202 59 (407) 0.72 3.0% 10° !
3 7 202 63 (432) 0.77 1.1% 103 :
L 7 202 63 (432) 0.77 3.7% 10%

i 7 202 66 (457) 0. 80 6.0% 10! |
L 7 202 66 (457) 0. 80 8.7x 10% :
H N
- !
9 6061 44 (300) 0.51 1.4% 107 %
ho §
9 6061 51 (352) 0.60 1.7% 10° :
b 9 6061 58 (400) 0.68 4.6 % 10° g
9 6061 64 (440) 0.75 1.3% 10° g
é 9 6061 67 (460) 0.79 4.8% 10° |
E 9 6061 68 (470) 0.8 1.5% 10° }
4 9 606 1 70 (480) 0.82 8.5% 10° ;
3 9 6061 73 (500) 0.85 9.3% 102
p
T»i
2
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6061 aluminum-30 vol% boron, 3 6061 aluminum-25 vol% boron, 4 and
aluminum-graphite5 composites prepared by chemical vapor deposition (CVD).
The S/N curves for all aluminum composites compared are more or less

parallel in the range from 105 to 10.7 cycles. Fatigue strength of the 6061

matrix composite is {3 percent greater than the 201 matrix composite and

50 percent greater than the CVD composite, but 20 percent below the

30 vol% boron fiber composite.

The range of scatter in the 6061 matrix composite is considerable in
the high cycle area. In this range, a number of 6061 specimens failed at
stresses comparable to those withstood by the aluminum-boron composites.
This scatter can be attributed partially to the fact that the minimum cross
section cf the specimen helped to confine the fracture to a more restricted
section of the specimen length. However, since all fractures were not con-
fined to the minimum cross section, a large variation in fatigue strength
seems to have existed along the reduced area of the specimen., It appears,
from scanning electron microscopy on the failed specimen, that the fatigued
portion of the specimen is more prevalent in areas consisting primarily of
matrix material, while the tensile overload region consists of both fiber and
matrix regions. In specimens where the fatiguc area appears to be in a
region of fibers, the fatigued surface is usually near a void in the matrix,

D. FLEXURE PROPERTIES

Several plates of 201 matrix-alloy composite that measured 4 X 4 X 0.5

in, (102 * 102 X 6 mm) were fabricated by Technique D with lower

fiber-fraction wires. These plates would be similar to Material No. 4 of

3J. R. Hancock, Fatigue of Boron-Aluminum Composites, AFML-TR-72-113,
Air Force Materials Laboratory (November 1972).

41. J Toth and K. D. Shimmin, ""Fatigue and Fracture of Metal-Matrix
Composites,' Proceedings of Air Force Conference on Fatigue and
Eracture of Aircraft Structure and Materials, AFFDL-TR-70-144, Air
Force Flight Dynamics Laboratory, (1970), pp. 343-376.

5A. A. Baker, D. M. Braddick, and P. W. Jackson, ""Fatigue of Boron-
Aluminum and Carbon-Aluminum Fibre Composites,' J. Mater. Sci.

7, 747 (1972).
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Table 3, but with variations in foil composition and pressing pressures.
Materials No. 12 and 14 contained 6061 and 5056 filler foil, respertively,
rather th:n the 2024 alloy, and Material No. 15 was pressed at 2500 psi (17.2
MPa) rather than the standard 4000 psi (27.6 MPa). The results of an average
of two to four individual flexure tests are shown in Table 9. Neither the

filler alloy nor the carbide content appears to result in any unusual variation
in flexure strength. The plate fabricated with 6061 filler alloy did, however,
Lave about a 10-ksi (69 MPa) lower tensile strength. The flexure strengths

of these plates are about 1. 3 times the tensile strengths, and the flexure
modulus is about 0.8 times the tensile modulus. Interlamellar shear might

be responsible for the low flexure modulus properties of these plates.

E. DYNAMIC MODULUS

Young's modulus of composites, as determined by tensile testing, is
subject to uncertainties arising from internal stresses intrcduced during
fabrication. In the case of aluminum-graphite composites fabricated by
liquid metal infiltration, the large difference in thermal expansion coefficients
between the aluminum matrix and the graphite fiber presents a potential
residual stress situation. The appearance of two distinct slopes during the
initial elastic loading of some of these composites suggests that such residual
stresses might indeed be present. The dual modulus attendant to certain

composite materials scems to disappear after the initial elastic loading.

In order to eliminate any uncertainties in Young's modulus for these
composities, dynamic modulus measurements have been made on a number
of composite materials and compared with the static Young's modulus values
determined by tensile testing. The results of this comparisoa are shown in
Table 10 for both unidirectional and cross-ply composites. he modulus
determined by both methods appears to be similar for the cross-ply, foil-
modified Material No., 8 and the unidirectional Material No, 12. A 22-per-

cent lower dynamic modulus than static modulus was measured in tests of the

cross-ply unmodified Material No. 8. This discrepancy has not been explained.
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V. CONCLUSIONS

The conclusions derived from this investigation are as follows:

1.

Liquid-phase hot pressing can result in the consolidation of
composite wires into structural shapes with tensile strengths as

high as 90 percent of the original wire strength.

With the present consolidation techniques, there appear to be
limits to the amount of increased strengthening that can be achieved
by increasing the volume fraction of fibers by liquid expulsion

during pressing.
Without sacrificing tensile properties, compressive strengths

within 10 percent of tensile strengths can be achieved for
aluminum-graphite composites consolidated by liquid-phase hot

pressing.

At present, transverse tensile properties of aluminum-graphite
composites are one-fourth as high as the expected values.

The fatigue strength of aluminum-graphite composites is above
50 percent of the tensile strength and within 20 percent of that

for aluminum-.boron composites.

Preceding page blank
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting
experimental and theoretical investigations necessary for the evaluation and
application of scientific advances to new military concepts and systems, Ver-
satility and flexibility have been developed to a high degree by the laboratory
personnel in dealing with the many problems encountered in the nation's rapidly
developing space and missile systems, Expertise in the latest scientific devel-
opments is vital to the accomplishment of tasks related to these problems, The
laboratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry acrodynamics, heat trans-
fer, reentry physics, chemical kinetics, structural mechanics, fligh. dynamics,
atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Atmospheric reactions and atmos-
pheric optics, chemical reactions in polluted atmospheres, chemical reactions
of excited species in rocket plumes, chemical thermodynamics, plasma and
laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena, photo-

sensitive materials and sensors, high precision laser ranging, and the appli-
catio. of physics and chemistry to problems of law enforcement and biomedicine,

Electronics Research Laboratory: Electromagnetic theory, devices, and
propagation phenomena, including plasma electromagnetics; guantum electronics,
lasers, and eiectro-optics; communication sciences, applied electronics, semi-
conducting, superconducting, and crystal device physics, optical and acoustical
imaging; atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal
matrix composites and new forms of carbon; test and evaluation of graphite
and ceramics in reentry: spacecraft materials and electronic components in
nuclear weapons environment; application of fracture mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals.

Space Physics Laboratory: Atmospheric and ionospheric physics, radia-
tion from the atmosphere, density ard composition of the atmosphere, aurorae
and zirglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma wav 's in the magnetosphere; solar physics, studies of solar magnetic
fields; space ~atronomy, x-ray astronomv; the effects of nuclear e:plosions,
magnetic storms, and solar activity on the earth's atmosphere, ionosphere, and
magnetosphere; the effects of optical, electromagnetic, and particulate radia-
tions in space on space systems,

THE AEROSFACE CORPORATION
El Segundo, California
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