AD-A007 738

MORPHOMETRY OF LANDFORMS; QUANTIFICATION OF SLOPE GRADIENTS IN GLACIATED TERRAIN

John A. Millett, et al

Army Engineer Topographic Laboratories Fort Belvoir, Virginia

August 1972

Sec. 15

ماديندها الديني المهدمانيات

and the state in the state of the state of the sure and

STATE OF STATE

artista (a disection and article) and a subscription decourter of

Ì

DISTRIBUTED BY:

Destroy this report when no longer needed. Do not return it to the originator.

USAETL hesearch Notes are published to record and disseminate significant results of research tasks or portions of overall programs during the course of the work.

••

5 **1**

. .

				/
400235158 M				
ng	Walte Section	ť		
111	Ball Section			
BA				
2.2.1.3A110#		•••••		
		· · ·		
ST LISTRICTION	AVARIANTIST SE	<i>2</i> 3.		
f Bist. A	AIL ARE M DU	<u></u>		
A				
Law			1	

ib

			A ØØ7 738
(Security classification of title, body of obst	MENT CONTROL D	TA - R & D	a averall month is standillade
ORIGINATING ACTIVITY (Corporate author)		Se. REPORT	SECURITY CLASSIFICATION
U.S. Army Engineer Topographic Labo	ratories	Unclas	sified
Fort Belvoir, Virginia 22060		28. ERQUP	
REPORT TITLE			
MORPHOMETRY OF LANDFORMS:	QUANTIFICATION	OF SLOPE G RAI	DIENTS IN GLACIATED
TERRAIN			
DESCRIPTIVE NOTES (Type of report and inclusive a	lotes)		······································
Research Note AUTHOR(S) (Pirot name, middle initial, last name)			
John A. Millett			
H. Frank Barnett, Jr.			
REPORT DATE			
August 1972	74. 101	AL NO. OF PAGES	75. NO. OF REFS
CONTRACT OR GRANT NO.	M. ORI	BINATON'S REPORT NU	1 (MBER(\$)
10000104100		DN 70 0	
N PROJECT NO. 1T062112A129	ETL	RN-72-3	
•	80. OTH	ER REPORT NOIS (Any	other numbers that may be assigned
		report)	
L			
Approved for public release; distribution	on unlimited.		
- SUPPLEMENTARY NOTES	12. 500	NEORING MILITARY AC	TIVITY
	U. S.	Army Engineer To	pographic Laboratories
	1	Belvoir, Virginia 22	
ABSTRACT			
This research note documents a co			
individual representative landforms each By identifying landforms along a hypoth			
By identifying landforms along a hypoti			
hy field measurements of similar landin	i ni types ni anotnei	area, me totarrang	se and frequency of the sto
 by field measurements of similar landfo that would be encountered are predicted 			
by field measurements of similar landfo that would be encountered are predicted			
	d.	ral Massachusetts)	are intended only to imple-
that would be encountered are predicted The data of this report (from glacia ment presentation of the concept; they	d. ated features in cen give no more than	initial ranges of slop	pegradient values for the
that would be encountered are predicted The data of this report (from glacia ment presentation of the concept; they seven features considered. Additional fi	d. ated features in cen give no more than feld measurements y	initial ranges of slop yould extend and re	pegradient values for the
that would be encountered are predicted The data of this report (from glacia ment presentation of the concept; they	d. ated features in cen give no more than feld measurements y	initial ranges of slop yould extend and re	pegradient values for the
that would be encountered are predicted The data of this report (from glacia ment presentation of the concept; they seven features considered. Additional fi	d. ated features in cen give no more than feld measurements y	initial ranges of slop yould extend and re	pegradient values for the
that would be encountered are predicted The data of this report (from glacia ment presentation of the concept; they seven features considered. Additional fi	d. ated features in cen give no more than feld measurements y	initial ranges of slop yould extend and re	pegradient values for the
that would be encountered are predicted The data of this report (from glacia ment presentation of the concept; they seven features considered. Additional fi	d. ated features in cen give no more than feld measurements y	initial ranges of slop yould extend and re	pegradient values for the
that would be encountered are predicted The data of this report (from glacia ment presentation of the concept; they seven features considered. Additional fi consider other features and other terrain	d. ated features in cen give no more than ield measurements v 1 factors of worldwi	initial ranges of slop yould extend and re	pegradient values for the
that would be encountered are predicted The data of this report (from glacia ment presentation of the concept; they seven features considered. Additional fi consider other features and other terrain	d. ated features in cen- give no more than feld measurements v i factors of worldwi	initial ranges of slop yould extend and ro de environments.	pegradient values for the
that would be encountered are predicted The data of this report (from glacia ment presentation of the concept; they seven features considered. Additional fi consider other features and other terrain Rep NA	d. ated features in cen- give no more than ield measurements v i factors of worldwi i factors of worldwi factors of worldwi formation ser	initial ranges of slo yould extend and ro de environments.	pe-gradient values for the fine these ranges and could
that would be encountered are predicted The data of this report (from glacia ment presentation of the concept; they seven features considered. Additional fi consider other features and other terrain Rep NA	d. ated features in cen- give no more than ield measurements v i factors of worldwi i factors of worldwi AtionAL TECHN	initial ranges of slo yould extend and ro de environments.	pegradient values for the
that would be encountered are predicted The data of this report (from glacia ment presentation of the concept; they seven features considered. Additional fi consider other features and other terrain NA	d. ated features in cent give no more than ield measurements v i factors of worldwi i factors of worldwi i factors of worldwi i factors of worldwi i factors of comment of Comment of Comment US Department of Comme	initial ranges of slo yould extend and re de environments. ICAL VICE PRICES	pe-gradient values for the fine these ranges and could

UN LASSIFIED

KEY WORDS		+ 1M			K B	LIN	
<u></u>	<u> </u>	POLE	T.	ROLZ	78	ROLE	• 7
Landforms			1				
Morphometry							
Stope Gradients							
Quantification							
					ł		ļ
				ł			
			ļ	1	Į.		
			}		ł		
			ļ			ļ	
				1			
							!
			.				
				1	l .		I
				ļ			
			Į				1
			ļ .		1		
							[
	-				Í		
		(
					,		
							ł
	1						
· · · · · · · · · · · · · · · · · · ·	ia _		UNCLA	SSIFT	.D0		
	12			and the second se			
	اه _		Becurity	Circuit	cetien		
	۱ <i>۵</i> _	<u> </u>	Becarity	2-2-4		131 F1 8	le'r mir

۰. ****

•

.

U. S. ARMY ENGINEER TOPOGRAPHIC LABORATORIES FORT BELVOIR, VIRGINIA

Report ETL-RN-72-3

Mar Sec

and Links

A SHERE

MORPHOMETRY OF LANDFORMS: QUANTIFICATION OF SLOPE GRADIENTS IN GLACIATED TERRAIN

Project 1T062112A129

August 1972

Distributed by

The Commanding Officer U. S. Army Engineer Topographic Laboratories

Prepared by

John A. Millett H. Frank Barnett, Jr. Earth Sciences Division Geographic Sciences Laboratory

Approved for public release: distribution unlimited.

SUMMARY

This research note documents a concept for describing a terrain by considering it to be a composite of individual representative landforms each of which has a unique distribution of slope-gradient frequencies. By identifying landforms along a hypothetical line of movement and assigning to them slope values derived by field measurements of similar landform types in another area, the total range and frequency of the slopes that would be encountered are predicted.

The data of this research note (from glaciated features in central Massachusetts) are intended only to implement presentation of the concept; they give no more than initial ranges of slope-gradient values for the seven features considered. Additional field measurements would extend and refine these ranges and could consider other features and other terrain factors of worldwide environments.

FOREWORD

For more than a decade, the Earth Sciences Division has been concerned with the quantitative description and analysis of topographic features. The investigation summarized in this research note is a continuation of this effort applied to glaciated terrain in a mid-latitude area. It was begun while the Earth Sciences Division was an element of the U.S. Army Natick Laboratories at Natick, Massachusetts, and was completed after transfer of the Division to the U.S. Army Engineer Topographic Laboratories, Fort Belvoir, Virginia.

「「「「」」

CONTENTS

Section	Title	Page
	SUMMAR Y	ü
	FOREWORD	iü
	ILLUSTRATIONS	v
I	INTRODUCTION	1
Ш	OBJECTIVE	2
111	APPROACH	2
IV	METHODS	3
V	APPLICATION	11
VI	CONCLUSIONS	12

ILLUSTR ATIONS

>

**

State of the second second

Figure	Title	Page
1	Part of the Surficial Geology Map of the Hudson and Maynard Quadrangles, Massachusetts, Showing the Field Sample Area	4
2	DRUMLIN: Frequency of Slope Gradients	5
3	ESKER: Frequency of Slope Gradients	5
4	KAME: Frequency of Slope Gradients	6
5	KAME TERRACE: Frequency of Slope Gradients	6
6	KETTLE: Frequency of Slope Gradients	7
7	GROUND MORAINE: Frequency of Slope Gradients	7
8	Frequency Distribution of Slope Gradients in the Larger Sample Area	10
9	Slope Gradients to be Expected Along Hypothetical "Axis of Advance" in Glaciated Terrain	10

1, K. H

- *1*4

indiana tai

MORPHOMETRY OF LANDFORMS: QUANTIFICATION OF SLOPE GRADIENTS IN GLACIATED TERRAIN

I. INTRODUCTION

Landform shapes are being measured and mapped as part of continuing Earth Sciences Division research in quantitative terrain description toward the following objectives: ¹⁻⁵

a. To provide immediate information for design, test, and use of terraindependent, military systems

b. To provide guidance and control for remote-imagery calibration and evaluation

c. To eventually apply the data to regional classifications of worldwide military environments.

In an antecedent study,⁶ distinctive hills of glacial deposition--drumlins-were the development ground for techniques of field measurement and computerized data compilation and analysis. In this study, these measurements and techniques were extended to the individual landforms that, with drumlins, constitute the glacial terrain which characterizes the area of Massachusetts studied. Resultant data have been extrapolated to establish an initial range of characteristic values of slope gradients for a complex of landforms in glaciated terrain.

¹W. F. Wood and J. B. Snell, "Predictive Methods in Topographic Analysis, I: Relief, Slope, and Dissection on Inchto-the-Mile Maps in the United States," Technical Report EP-112, Environmental Protection Research Division (EPRD), U. S. Aimy Quartermaster Research and Development Center, Natick, Massachusetts (1959a).

²_____, "Predictive Methods in Topographic Analysis, II: Estimating Relief from World Aeronautical Charts," Technical Report EP-114, EPRD, U. S. Army Quartermaster Research and Development Center, Natick, Massachusetts (1959b).

³R. L. Anstey, "Physical Characteristics of Alluvial Fans," Technical Report ES-20, Earth Sciences Laboratory, U. S. Army Natick Laboratories, Natick, Massachusetts (1965).

³J. A. Millett and H. F. Barnett, "Surface Materials and Terrain Features of Yuma Proving Ground (Laguna, Ariz-Calif Quadrangle)," Technical Report ES-59, Earth Sciences Laboratory, U. S. Army Natick Laboratories, Natick, Massachusetts (1970).

⁵_____, "Surface Materials and Terrain Features of Yuma Proving Ground (Red Hill, Red Bluff Mtn, and Roll Quadrangles, Ariz)," Technical Report ES-67, Earth Sciences Laboratory, U.S. Army Natick Laboratories, Natick, Massachusetts (1971).

⁰H, F, Barnett and P. G. Finke, "Morphometry of Landforms: Drumlins," Technical Report ES-63, Earth Sciences Laboratory, U. S. Army Natick Laboratories, Natick, Massachusetts (1971).

Although this study is concerned with one terrain parameter-slope gradient-the concept of data analysis and synthesis is applicable to many terrain parameters that might affect tactical or materiel problems.

II. OBJECTIVE

The objective of this study is to develop and demonstrate a method for estimating slope-gradient values and frequencies for a given terrain by considering them to comprise weighted values and frequencies from component individual landforms.

III. APPROACH

The approach is as follows:

a. To delineate the landforms which make up the regional terrain. In this study, a glaciated terrain in Massachusetts was chosen for which landforms were delineated on a published geologic map.⁷

b. To measure the component landforms in a field sample area to establish slopegradient frequencies for each.

c. To establish slope-gradient frequency distributions for the regional terrain by weighting areal occurrences of component landforms by the slope frequencies measured on each landform in the field sample area.

For this pilot study, the approach assumes that each distinctive glaciated landform (a drumlin, for example) has a distinctive frequency distribution of slope gradients wherever the feature is found. The data collected in the field for this study appear to bear out that assumption and constitute initial ranges of values which should be refined by additional field measurements. The data are representative of a terrain type recognizable in glaciated regions by the presence of drumlins which are features indicating a unique combination of pressure, rate of movement, and kinds of rock materials of moving glacial ice.

⁷W. R. Hansen, "Geology and Mineral Resources of the Hudson and Maynard Quadrangles, Massachusetts," U. S. Geological Survey Bulletin 1038 (1956).

IV. METHODS

Slopes on representative landforms of glacial origin in a sample area of Massachusetts were measured in the field with a hand-held Abney level accurate to 1 degree and a hand-held Dietzgen optical rangefinder accurate to 2 percent. Traverses were taken parallel with or normal to apparent directions of movement of the depositional agent (glacial ice) on each of seven landforms: drumlins, eskers, kames, kame terraces, kettles, ground moraine, and outwash plain. An eighth landform, composed of marshes and low river terraces whose slopes are all less than 2 degrees, was not traversed. Figure 1 is a portion of the surficial geology map of the combined Hudson and Maynard quadrangles, Massachusetts, with the sample area outlined at the bottom center.

Slope-measurement data, consisting of gradients in degrees and distances in feet, were compiled to establish distributions of slope-gradient values and frequencies for each landform. From these compilations, histograms showing slope frequency (by 3-degree class intervals) as percent of the total traverse distance were constructed for each landfrom (Figs. 2 through 7), excluding the marshes and low river terraces unit and the outwash plains unit. (All slopes on these two units are less than 2 degrees and histograms would consist of only one bar.)

Table I shows the distances traversed in each unit and the number of landforms measured (if applicable).

Landform	Map Symbol	Traverse Length (ft)	% of Total Length	Number of Landforms Measured
Drumlin	Qd	4,119	26.3	2
Esker	Qe	2!7	1.4	1
Kame	Qk	527	3.4	2
Kame Terrace	Qkt	1,161	7.4	
Kettle	-	501	3.2	1
Ground Moraine	Qgm	8,710	55.8	
Outwash Plain	Qop	397	2.5	
Total Length		15,632		

Table I. Traverses in Sample Area by Landforms (see Fig. 1)

Fig. 1. Part of the surficial geology map of the Hudson and Maynard Quadrangles. Massachusetts, showing the field sample area. (Note: $Qd \in drumlin$: Qe = esker; Qk = kame: $Qkt \in kame terrace$: $Qgm \in ground moraine$: Qop = outwash plain.)

:

Fig. 2. DRUMLIN (Qd): Frequency of slope gradients (by 3-degree classes, as percent of total traverse distance) (5-72).

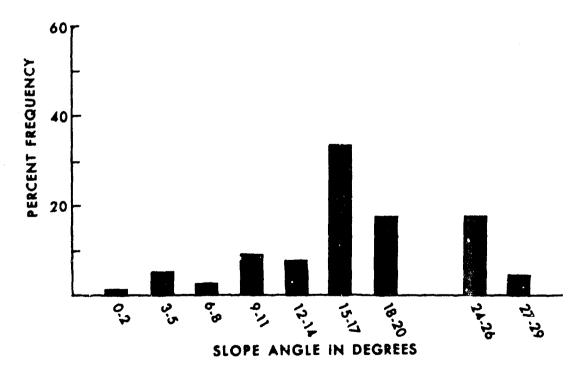
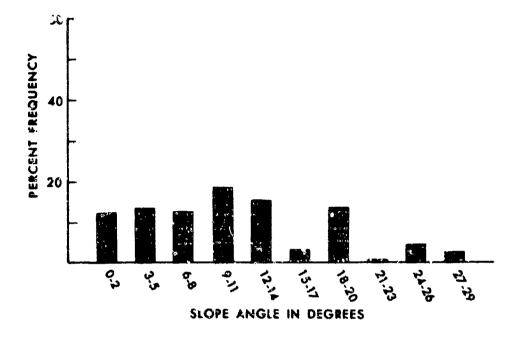



Fig. 3. ESKER (Qe): Frequency of slope gradients (by 3-degree classes, as percent of total traverse distance) (5-72).

1. Sala

Fig. 4. KAME (Qk): Frequency of slope gradients (by 3-degree classes, as percent of total traverse distance) (5-72).

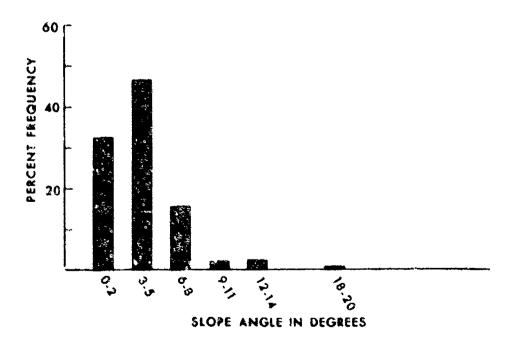


Fig. 5. KAME TERRACE (Qkt): Frequency of slope gradients (by 3-degree classes, as percent of total traverse distance) (5-72).

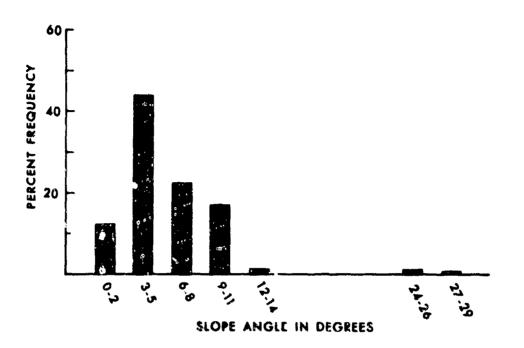
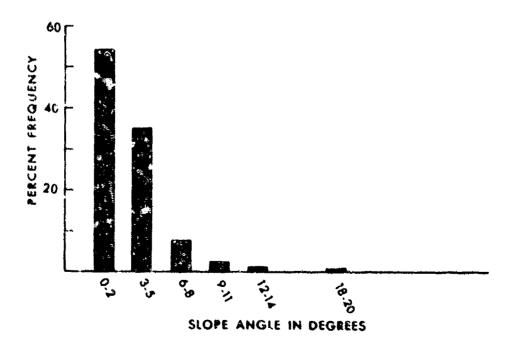



Fig. 6. KETTLE: Frequency of slope gradients (by 3-degree classes, as percent of total traverse distance) (5.72).

1 . L . .

the fit was an

and a start of the start of the

Fig. 7. GROUND MORAINE (Qgm): Frequency of slope gradients (by 3-degree classes, as percent of total traverse distance) (5-72).

Table II. Slope-Gradient Fiequencies from Field Measurements in a Sample Area o (br. 3-degree classes, as percent of total traverse distance on each land

ale a ser a se

I arid from											
	Symbol	0-2	3-5	6-8	9-11	II 12-14 15-17 18-20	15-17	18-20	21-23	24-26	27-29
Drumtin	РÒ	22.7	42.9	13.9	25.5	3.5	3.3	0.9	1.2	l	
Esker	Q. Q.	1.3	5.2	2.6	9.2	7.8	33.9	17.6		17.0	4 5
Kanic	Ŏř	12.4	13.4	12.8	18.7	15.4	3.3	13.7	0.7	4.5	V 6
Kame									5		† i
Terrace	Qkt	52.5	46.3	15.9	2.1	2.4	I	0.8	I	1	ĺ
Kettle	ł	12.4	44.1	22.6	17.1	1.6	1		1	19	01
Ground										!	
Moraine	0	54.2	35.1	7.8	2.5	1.3	ł	0.0	1	I	
Outwash						P 1				i	1
Plain	იის	100.0	1	1	ł	1	I	ł	i	i	
Marshes and Low River										I	l
Terraces	1	100.0	i	1	I	ł	I	i	1		

ţ

È

This table can be used to predict the frequencies of slope gradients along any chosen traverse by applying the above frequencies weighted by the frequency of occurrence of the landforms along the traverse.

.1

Table II shows slope-gradient frequencies for the landforms measured in the Massachusetts field sample area.

Because the field sample area was small (1.86 sq mi), a larger nearby area (36.8 sq mi) of the same Hudson-Maynard quadrangles (including the small area) was chosen as representing more adequately the areal distribution of landforms in the glaciated terrain. Areas of individual landforms were measured with a planimeter (Table III).

	<u>х</u> — г			
	Мар	Distribution		
Landform	Symbol	small sample arca (1.86 sq mi)	iarger sample area (36.8 sq mi)	
Drumlin	Qd	5.9	10.7	
Esker	Qe	0.3	1.1	
Kame	Qk	0.3	5.0	
Kame Terrace (and Kame Plain)	Qkt	18.3	19.6	
Ground Moraine	Qgm	55.8	27.6	
Kettle		_	_	
Outwash Plain (and Outwash Terrace)	Qop	7.0	13.8	
Marshes and Low Rive r Terraces	***	12.4	18.9	
Ponds and Rivers			3.3	

Table III. Distribution of Landforms in Sample Areas (as percents of total areas)

The areal distribution of landforms for the larger sample area (corrected to remove the 3.3 percent of water areas) was used with the slope-gradient frequencies in Table II to compile a histogram characterizing the frequency distribution of gradients in the glaciated terrain (Fig. 8).

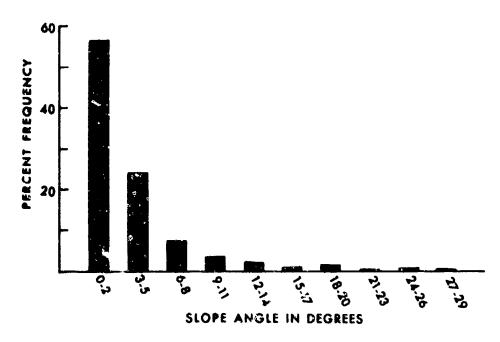


Fig. 8. Frequency distribution of slope gradients in the larger sample area excluding water areas.

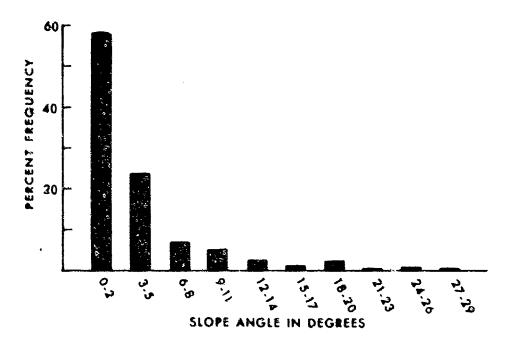


Fig. 9. Slope gradients to be expected along hypothetical "axis of advance" in glaciated terrain (5-72).

V. APPLICATION

The technique suggested in this study could be applied to a variety of military problems for many terrain parameters. An example of possible application is the prediction of slopes along a line such as a tactician's "axis of advance." To illustrate this application, a 3-mile-long traverse was chosen on the Hudson-Maynard, Massachusetts, surficial geology map. Table IV shows the occurrence of the landform mapping units along the traverse and the percent of total traverse distance each represents.

Landform	Map Symbol	Distance Along Traverse (mi)	Percent of Total Traverse Length
Druralin	Qd	0.24	8.0
Esker	Qe	0.06	2.0
Kame	Qk	0.24	8.0
Kame Terrace	Qkt	0.25	8.2
Ground Moraine	Qgm	1.31	43.8
Marshes and Low River Terraces	-	0.90	30.0
Total Trave	erse Length	3.00	

 Table IV. Occurrence of Landforms Along a Hypothetical "Axis of Advance" in Glaciated Terrain (as percent of total traverse distance)

Using these percentages and the slope-gradient frequencies in Table II, a histogram (Fig. 9) has been constructed to indicate the magnitudes and frequencies of slope gradients to be expected along the hypothetical axis of advance.

VI. CONCLUSIONS

The approach outlined in this report is useful for predicting slope-gradient frequencies in a glaciated terrain composed of recognizable, individual landforms. It should be equally useful in any other terrain for which representative frequencies of landform slopes are available. Because each landform (or association of related surface characteristics) is treated as an independent module of terrain data, it is not necessary for a region to be classified in any detail beyond that which is helpful in recognizing landforms.

This study was begun with the assumption that each distinctive, glaciated landform has a distinctive, slope-gradient distribution. The histograms presented here, as well as the tabular frequency data, are visibly different for each distinctive landform suggesting that the assumption was valid. If, however, the slope distributions on some landforms were similar, the approach would still be useful (and, in fact, would require fewer calculations for a given region) in that predictions are derived only from known representative slope occurrences that are unrelated in this usage to geomorphic designations or implications. If, for example, slopes on a kame are similar to those on a small cinder core, the data also are similar and the name or origin of the feature is immaterial.

The technique for calculating slope occurrences takes few measurements and little time and can be used with maps and airphotos. The usefulness of the results depends upon correct identification of landforms and upon the number of available representative ground measurements of similar landforms.