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with predictions based upon the infinite boundary solution of a linearized drift theory in the absence of gradient cur-
rent effects and using the constitutive law proposed by Glen for pack ice. The best least squares values of the consti-
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Glen law as special cases. A best fit of this more general calculation with strain measurements indicates, overall, 2
better agreement with viscous behavior than with elastic behavior, with the frequency behavior of the estinated
“viscosities" similar to the Glen law behavior at temporal frequencies less than ~0.01 hr''. (Part 1)

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)




111

PREF ACE

This report was prepared in two parts. Part 1 was prepared by Dr. W.D. Hibler 111,
Research Solid State Physicist, Dr. W.F. Weeks, Glaciologist, A. Kovacs, Research Civil
Engineer, and S.F. Ackley, Research Solid State Physicist. Part 11 was prepared by
Dr. W.D. Hibler 111, Dr. Hibler, Dr. Weeks and S.F. Ackley are members of the Snow and
lee Braneh, Research Division, and A. Koviaes 1s a member of the Foundations and
Materials Research Branch, Experimental Engineering Division, U.S. Army Cold Regions
Research and Engineering Laboratory (USA CRREL).

This study was funded by the National Science Foundation under NSF Grants AG 344
and AG 492 and by the Advanced Research Projects Agency under ARPA Order 1615.

This report was technically reviewed by 8.J. Mock and Dr. G.D. Ashiton of USA
CRREL.

The authors of Part 1 would like to express thanks to Dr. W.J. Campbell for mterest-
ing them in developing a mesoscale strain program and for his valuable assistance during
the field study. Thanks are also due to J. Taylor and G.F.N. Cox for their assistance i
manning the laser array. A. Thorndike kindly provided processed macroscale drift and
deformation data and, together with A. Gill, provided information on the rotation of the base
camp.

Thanks are also expressed to Dr. J. Nye for his comments on a draft version of the re-
port and to A. Jolmson for editing the final version. Finally, appreciation is expressed to
the staft of the Arctie Ice Dynamics Joint Experiment (AIDJEX) project for support which
made this program possible.

Dr. Hibler, the author of Part 11, would like to thank D.A. Rothrock for helpful discus-
sions on linear drift theories and for continuing constructive criticasm of earlier calcula-
tions that motivated this research. Discussions with W.F. Weeks and S.F. Ackley, and
comments by J.F. Nye on constitutive laws, were also of considerable aid. A. Thorndike
and P. Martin kindly provided remote buoy pressure data.




Iy

Part

Parnt

General Introduction

CONTENT3S

I. Spatial and temporal variations in sea ice deformation
Introduction

Approich

Site location and data collection procedures

Data analysis

Strain resalts

Comparison of mesoscale deformation with macroscile deformation
Nature of the 1ce paek rotation

Conclusion

Laterature ¢ited

1. Companison of mesoscale stram measurements with linear drift theory
predictions
Introduction

List of symbols

Lincar dnft equations

Ice drift solutions

Comparison of theory with mesoscale measurements
A more general linear constitutive law

Conclnsions

Literature cited

Appendix. Relative magmtudes of differential dnft forces

Abstract
ILLUSTRATIONS
Part 1
Figure
1. Sehematic diagram of the mesoseile stran array together with aetive
leads and ridging zones
2. Typical results of the interpolation and smoothing process used to
generate eqnispaced values for the strain analysis
3. Least squares diverpence rate and accompanying inhomogeneity error,
and maxiinm shear rate and inhomugeneity error
4. Prineipal axis components of the least squares strain rate tensor and
inhomogeneity errors
5. Comparison of mesoscale divergence rate, north-south strain rate, east-
west strain rate, shear rate, least squares residual fluctuation error,
east-west veloeity of the camp, north-soutir velocity of the camp, and
specd of the camp
6. Cowmparison of net divergences of overluppmg triangles

Comparison of mesoscale and macrescale divergence rates, vorticities,
and maxinmn shear rates

L OO DN

21
21
21
28
23
27
31
33
31
37
39

10

10

12

13

16




Figure Page
8. Power spectra of mesoscale divergence rate, and shear rate, and macro-
scale divergence rate, shear rate and vorticity 17
9, Camp rotation rate and mesoscale vorticity 18
10. Comparison of east-west shear rate and vorticity 18
Part 11
Figure
1. Wave number space response functions for the divergenee rate and vorticity
of the 1ce pack for different values of n and ¢ 26

-

2. Comparison of experimental time series caleulated from AIDJEX 1972 data 28

3. Speetra of atmospherie pressure and mesoscale 1ce divergence rate at the
main AIDJEX 1972 camp 29
4. Coherence spectra and phase angles between a) vortieity and atmospheric
pressore and b) divergence rate and atmospheric pressure 33
' 5. Frequency dependence of the generalized bulk and shear viscosity am-
phitudes 33
TABLES
Part 1
Table
I. Strain line combmations used 1 this paper 9
1. Root-mean-square strain rates, strain rate variation errors and experimental
errors for combined array 11

Iil. Root-mean-square strain rates, residual errors, and central point velocities 14
1V. Meso- and macroscale root-mean-square deformation rates and correiation
coefficients 15

Part 11
Table
1. Correlation coefficient matrix between time series 28
II. Istimates of nand ¢ 30




DIFFERENTIAL SEA (CE DRIFY

GENERAL INTRODUCTION

The development of ar aceurate predictive model for the wotion and deformation of arctie pack
ice is helieved by most engineers and scientists concerned with arctie research and development
to be of prime importance both for practical operational purposes and for climatological considera-
tions. In order to develop such a model, it was realized in the latter part of the 1960’s that simul-
taneous measurements of the drift of several different points on the ice cover, together with ap-
propriate meteorological and oceadnographic measurements, were required (Untersteiner and Hunkins
1969*). The basic reason for this is that accurate drift caleu: .tions depend upon understanding the
maguitude of forces caused by the pack ice interacting with itself. To obtain an understanding of
these forees, it is necessary to measure the way a given area of ice deforms or *‘strains’* in time,
Such defoimation is a result of differences between ice velocities at different lo.

ations and hence
in general cau be referred to as differential drift.

One of the basic experi~ental aspects of AIDJEX (Aretie lce Dynanics Joint Experiment (see,
for example, Maykut et al. 1972t), has been to measnre such differential drift as well as absolute
drift. In the springs of 1971 and 1972, pilot studies were conducted, one purposes of which was
to determine the optimal way of sampling the ice velocity field in orderto measure the differential
drift in an adequate manner for determining a reasonable conti:uum constitutive law describing
puack iee. [ uring these pilot studies CRREL carried out, among other studies, a mesoscale strain
program. In this program the ice veloeity field was sampled in a region approximately 25 km in
diameter. The measurements of the 1971 experinent were sparsely spaced in both time and space
but did yield valuable quantitative information (Hibler et al. 1973**) on mesoscale strain not there-
tofore zvailable. 1nthe 1972 experiment a much more extensive set of measurements — dense 1n
both time and space -~ was obtained which made possible the calculation of various deformation
time series at 3-hour intervals over a period of more than 30 days. The 1esults allowed a detailed
study to be made of the nature of the ice velocity field. Also, using available neteorological data,
the results were compared with theoretical ice drift models with good success.

This report, divided 1nto two parts, deseribes the analysis of the 1972 results. Part 1 examines
the results with a view toward understanding of the nature of the jce velocity field and determining
the minimum scale on which the pack ice may be viewed as a continuum. Part Il represents the
formulation of an analytic solution of u linear drift modelwhich ineludes ocean, air and Coriolys
forces and models the ice as a viseoelastic medium. The predicted results of this calculation
(based on meteorological variables) are compared with observed differential drift measurements with
zood agreement and a4 number of conclusions regarding ice drift c

alculations using a linear model]
are drawn,

“ Untersteiner, N. and K.L. llunkins (1969) Arcue 1ce deformalion joint experiment, Final Report.
of Washington, Office of Naval Research, Contract N000 14-67-A-0103-0004, 39 p.

f Maykut, G.A., A.S. Thorndike and N. Untersteiner (1972) AIDJE
Division of Marine Rusources, AIDJEX Bulletin no. 15, 67 p.

** Ihbler, W.D. 111, W.F, Weeks. S. Ackley, A, Kovacs and W.J. Campbell (1973) Mesosecale strain neasure-
nents on the Beanfort Sea pack 1ce (AIDJEX 1971). Journal of Glaciology, vol. 12, no. 65, p. 187-206.
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PART [. SPATIAL AND TEMPORAL VARIATIONS IN SEA ICE DEFORMATION
by

W.D. Hibler I, W F. Weeks, A, Kovacs and S.F. Ackley

Introduction

One of the primary Zoals of the Aretic lce Dynumies Joint Experiment (AIDJEX) is an improved
understanding of the drift of pack ice. To this end aceurate field observations of the deformation
of different types, of paek ice performed on a variety of time and space scales are urgently needed.
Teo pattially satisfv this need a series of detailed mesoseale strain measurements were made at
approximately 3-hour intervals over a 30-day period in the spring of 1972 in the Beaufort Sea. These
measurements are particularly usefnl, since in eatlier studies of sea iee deformation - as reviewed,
for example, by Hibler et al. (18734) — there were usually large and 1andom time intervals between
cbservations, making the computiation of accurate time series impossible. Also, and perhaps even
more imponant, thes? earlier studies included no detailed investigation of the nonlinear variations
i the ice velocity field that result from inhomogeneous spatial variations or fluctuations in the
deforination of the iee.

Therefore, the analysis described here was undertaken with three primiry goals in miad: first,
to provide a detalled time series of the least squares strain rate tensor and vorticity (coniplete
with “error bars’’ due to the nonlinearity of the ice veloeity field) over the 25-day period, Julian
day 88-113 (28 Mar-22 Apr), 1972, second, to study the magnitude and nature of the nonlmear ve-
loeity fluctuations; and third, to compare deformation measures from different scales to determine
eoherent modes of deformation in different sized arrays as well as sealing effects. These results
can then be eompared with predictions from theoretical drift calculations and with data collected
on the remote sensing overflights. Besides providing insight into the nature of paek ice dynamics,
such eomparisons and information on inhomogeneities in the ice velocity field are helpful in de-
signing future strain arrays.

Approach

As a framework in which to view our analysis, it 1s useful to think of the paek as a large nun-
ber of irreguler ice floes packed elosely together, with the eompaetness varying with season, In
the summer, when the compactness is low, the individual iee floes can readily be identified and the
pack looks like a two-dimensional granular medium, In the winter, when the compaetness is near one,
the individnal floes can no longer be clearly identified and the ice is erisscrossed by a number of
wrepular leads. A typieal example of the pack ice structure in winter is given in Figure I, whieh
shows a sehematic diagram of aetive leads and ridging zones in the mesoseale stiain array for one
instant of time.

Using such a couceptual model of pack iece, the velocity of any point in the paek eanbe viewed
as consisting of a continuum veloeity eomponent (varying over lengths commensurate with the scale
of meteorologieal variations) plus a fluctuation eomponent due to the discrete small-scale nature of
the paek ice. Sueh a partition of the velocity field is similar to that which ean be made for a fluid
where the motion of each molecule has a eontinuum component plus a fluctuation component. In the
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Figure 1. Schematic diagram of the mesoscale strain array together with active leads and ridging
zones. Leads and ridges were obtained from a 1500-m erial photo mosaic taken on 6 April 1972.

case of the pack ice, however, the fluctuations are probably nc due so much to random motion of
floes (although this is undoubtedly a factor) as to the fact that the floe sizes are large relative to
our measurement scale and thus spatial velocity profiles are of a stepwise nature. This is illus-
trated by Figure 1, which shows that the distance between leads, where relative motion oceurs, is
generally 4 to 6 km. Also, for pack ice, the fluctuations are expected to be highly variable in time,
since they are primarily driven by the transfer of energy into the pack by meteorological forces.
This is opposed to a fluid in a laboratory in which fluctuations are well described by the tempera-
ture,

As we examine spatial variations in the velocity field over larger and larger areas, the con-
tributions of fluctuations to average velocity differences (i.e. strain rates) would be expeeted to be-
come less pronounced. Stated differently, the contribution of fluctuations to the sea ice strain rate
would be expected to become small when the area eovered by the strain array hecomes large relative
to floe size and/or distances between leads.

In order to sort out the fluetuations from the continuum motion, we analyzed the position data
of the mesoscale targets by fitting a least squares planar surface to the spatial veloeity field
sampled by the array, with the slope angles of the plane representing the strain rate and vorticity.
Sach a procedure is eommensurate with the discussion of sea ice strain by Nye (1973), who notes

T .
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that for a precise measure of the strain rate the veloeity Neld needs first to be smoothed before
d'mvanives are taken. Since the area covered by the mesoscale array is relatively small (20 km
m dhametet) compared with meteorological systems, we would expect the continuum velocity tobe
relatively hinear over this region and hence the planar approximation should be pood. Residnal
deviations from tins planar surface are identified as fluctuations. These residual deviations also
taunse some uncertainty in the strain rates, an uneertainty whieh can be estimated by dimensional
analvsis for different sized arrays on the assumption that the fluctuation amplitude is reasonably
simlar over the region. As part of this procedwe to delincate the ¢ifference between eontinunm
motion and fluctuations, we ilso estimated a contimuum length, defiied as the length over which,
on the average, the continnum velocity differences equal the fluetuation amplitude. This length,
whiehs about 10 km, gives a tough measure of the scale above which sea ice may be viewed as
a continuim and below which the diserete nature of the pack begins to donunate the motion,

Fially, in addition to sueh a least squares analvsis for determimng scalmg eftects, we also
1) compated strams obtinmed from triangles of diftetent sizes (5 km to = 20 km) and 2) compated
the mesoseale stram rtesults over the 20-kw region with the macrescale strain results obtamed fiom
a 100-km triangle, one cormer of which was the center of the mesoseuale array. These comparisons
genetally mdicated that all arrays were measwring similar eontinuum motions of the pack, with the
fluctuations yietding a knge contribution to, hut not wasking, the continuum motion on a seale of
abont 20 kni,

Site Location and Data Collection Procedures

The measwenents used for this study were made m the vicnity of the mam 1972 AIDJEX canp,
located at roughly 75 00'N, 118 30'W. The camp, as well as the different researeh programs con-
ducted fromat, are desenbed in AIDJEX Bulletin no. 14 (Thorndike et al, 1972). The strain mray
wits established by erecting a series of targets which consisted of eomer cubes monnted on the tops
of alumnum poles. The distances to, and angles between, the targets were measured using a con-
tinnous wave Liser rangefinder. The height of the targets varied from 3 to 10 m above the ice swi-
face depending on the distance and the obstructions between the targets and the main camp. A
dragram of the straw atay, tocether with an overlay ol active leads and ridging zones, is shown
Figwe 1. The angles between the targets were measured with an average aecwracy of hetter than
* 1 mie and were refereneed to a Hixed stake on the multiyear floe on whieh the niun camp was
sited, The lme between the Taser and the stake was then tied mto the tine north determmations
(sun shots) made by Thorndike and Gill (Thorndike et al. 1972). Distanees were measured to the
neatest 0.03 m (0.1 1) beeanse the lnge strains that were expenenced obviated the need for any
gleater preeision,

This strain measurenient system was found to he vastly superior to manned tellwometer sites
(thbler et al. 1973a). With this systeun, a large number of stramn lmes could be determined easily
without manmng the remote stations. It was also relatively quick and easy to mstall, and placed a
nunmial reliance upon “black boxes.”” llowever, visibility problems (wind-blown snow, sea smoke
fiom leads) made acquisition of contmuous, equally spaced tine series dithicult (laser measurenments
were impossible approximately 10% of the timie, and once high winds caused a gap of almost two
days m the strain line time series). h addition, the system reqmired manpowet 24 hours a day.

P— .
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Figure 2. Typical resalts of the interpolation and smoothing process used to generate equispaced
values for the strain analysis. Curve a wus obtained with a smoothing filter transition band from
8.0 to 6.15 hours, and curve b with a transition band from 20 to 11.4 hours.

Data Analysis

Extrapolation and smoothing of strain data

Data taken in the field cousisted of distances and angles of targets relative 1o a fixed reference
stake. As a first step in the data 1eduction, these angles were converted to angles relative to time
north as measured on Julian day 81 (21 March). Rotztions of the array were not taken into account
for strain calculations, so that the coordinate system nsed for this study is slightly different from
the true north coordinate sv.tem (the maximum difference is, however, less than 5°). Rotations of
the array were included in the vorticity calcutations. The time scale was converted to GMT by
using four GMT calibration times obtained in the field to find a least sguares rate for the clock used
in the measwrements. The data point times were recomputed with this rate and then all data (both
angles and distances) were linearly interpolated and resampled every honr. Using this new data
set at L-hour intervals, the time series was smoothed with a lo. pass filter having a transition band
width with periods from 8.0 to 6.15 howrs. The smoothed time series was then resampled every
third hour. If there was reason to expeet that the data coutained a large number of time intervals
greater than 3 honrs, a low pass filter having a transition band from 20 to 11.4 hours was nsed be-
fore resampling. Both filters had less than 0.6% side lobe errors and consisted of 81 symmetric
weights designed according to the procedure disenssed by Hibler (1972).

This process of interpolation, followed hy smoothing, maybe viewed as a consistent way of
constructing a4 smeoth curve (with no high frequency components past a reasonable entoff dictated
by the average sampling rate) through the randomly spaeed data points. Alternatively the enrve
may be considered an accurate representation of the low frequency portion of the linearly interpolated
ceurve,

Examples of the smooth curves generated by this process are shown in Fignre 2. Curve a, which
results from the filter with the higher frequency cutoft, follows the data quite closely. This indicates
that there is little variance associated with periods shorter than 6 hours,
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Experimental error estimation

The vrimary source of error in the measurements was the uncertainty of target angles. Since
angular measurements were generally accurate to + 0.0003 radians (+ 1 min) and distanee errors
were small, we estimated the x and y position errors of each measurement of a target at distance
r and angle 6 to be

Ax  0.0003 r sinf
(1
Ay 0.0003r cosf.

Since measurements 3 hours apart were subtracted to obtain velocities v, we estimated x and
y velocity errors to be

‘\vx 0.0006 r sin /At
(2)
’\vv 0 006 r cos /At

with At - 3 hours. This is a slight overestimation of errors for the difference between two numbers
with uncorrelated errors. However, since there may have been some errors — due to interpolation
between nonequally spaced points — that were not removed by smoothing, we have made a con-
servative error estimation. The experimental errors givenby eq 2 were then used as input to obtain
the experimental error on the strain rate tensor, as discussed in the next section.

Least squares computational technique

To understand conceptually the least squares strain and vorticity calculations, it is useful to
visualize a eontour plot of the x (or y) velocity component of the ice. In essenee, the computer
program used to ealeulate the deformation rate fits a planar surface through the eorcour plot with
the slope angles of the planes yielding the strain rates and vorticities. Since the aetual velocity
components deviate from a perfect plane, there is some uneertainty in the slope angles of the plaue.
We refer to the average deviation of the velocity eomponents from the plane as the residual fluctua-
tion error and the uncertainty in the slope angles of the plane as the inhomogeneity variation. 1n
addition, once the least squares equation for the plane as a function of, say N, velocity measure-
nents is determined, the estimated experimental errors may be used as input to obtain estimates of
slope uneertainties dne only to experimental errors. The remainder of the slope uneertainty niay
then be identified with nonlinearities in the iee velocity field.

To formulate this eoneeptual model mathematically, we proceed as follows. Using tensor noti-

tion for the strain rate, the strain rate tensor iij and vorticity w are defined by

; 1 mr: ""}
U "sN3T N
) 2 rilJ !*Il
1 0"2 {?Vl

w -] — = ——
2\ dx; ax,,

where v, is the ith velocity eomponent of the ice pack (considered a5 a continuunt) and i, j 1P
since we are only concerned with the horizontal motion of the sea ice. Considering N targets whose
positions are being measured, we denote by v{) the measured jth velocity component of the ith tar-
get, and by 61 and r the polar coordinates of the ith target relative to an arbitrary origin,

e e T
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As a model io explain the velocities of the N targets, we consider the ice veiocity field (on
the scale of about 20 km) to consist of a eontinuum velocity component, which varies in a uniformly
linear manner (specified by ¢ and w), and 4 random fluctuation component. Mathematically our
model is expressed by the equation

u. X ¢ + 2 (3)

where
Y, i 1toN

vg 'N), i Ni1to2N

[r, cos O, r sinb, 0 0 1 0}, i-1tN
X,

[ 0 0 rycos 1 sinf 0 1], | N.1to2N
ty; > ?“

L

f120W

ton

Al

AZ

and 4, A, are constants representing the continuum ve’aeity components at the origin. Ineq 3,
Z, is the fluctuation component plus any meuasurement error and E(u.l) Xii € is the ‘‘expected”’
value of u;, since E(z)) 0. The least squares estimates of ¢, denoted by c’: are obtained by
minimizing X zf.

i-2N

s (u; - 4 x”.)2 with respect to ¢, which yields the matrix equa-
i=1

tion for the least squares estimates of ¢, (Jenkins and Watts 1969, p. 131):

To do this, we differentiate

oMt

i<

‘U (4)

where M - X' Z and prime denotes transposes.

When using these least squares equations, note that adding a constant rotation to all angles
only changes the \(orticity w. This can be demonstrated by noting tha' in eq 3 changing w to w +
f changes u, tou; where

u, - (sin ()‘)()rl i=1toN

u +(cos0)0r i-Ni1lto2N,
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This, however, is equivalent to adding a constant rotation to all angles. In a similar manner, add-
ing a constant velocity to all points changes only Ay and A,.

Since we have only a finite number of random velocity measurements (each with some random
fluctuation ‘‘error’’) to calculate ?I, there is some uncertainty or error in f; To estimate this vari-
ation or uncertainty, it is necessary to calculate the covariance matrix of t': which i1s easily shown
to be given by (Jenkins and Watts 1969, p. 134)

C -M'XvXwmly (5)

where ClJ : cov(( , ‘j) and Vij cov(z;, zj). In our case z, consists of two parts

where ziM is the measurement error (which we estimate to be given by e¢q 2) and zf is the fluctuation
component of the ice motion, since the actual ice velocity field is nonlinear. If we assume that

and Z' are uncorre].ned then the varmnon m r due only to measurement errors, call it C , may
l)e esnmdted using eq 5 with V : (*ov(z B 4 ) Usm;, eq 2 we estimate V*: to bhe

(sin 6,)° r* (AO/A1)°, i 1toN
vﬁ , Al )
(cos 0,)° I (AG/ A1), i N .1to2N.
\
To find the variation of some linear combination of the r due to the total “‘error’ z , we make
the usual assunmption that z, are uncorreldted with tho sane medn and variance so that (ov(z Z )
6 a where the point esnmator of o” (denoted by st \ is given by the residual error

2N (u ;,‘)2

P 1 1
s~ N (7
I )

=1

N A~
where u; - le(J,

In this case eq 5 reduces to

e o8
Cij = M), 0%, (8)

N
Given a linear combination of’r‘l, b then the deviation of h from E(b) is such that

ll'

/t; - [',‘(’b\)/s‘/ula'i (M")”. (9)

has the t distribution with 2N-6 degrees of freedom, assuming that the errors are normally distributed
(Bennett and Franklin 1954, p. 250). Consequently, confidence limits for the estimated strain may
be obtained using a t distribution table,

In additioi. to the estimated strain, we are also concerned withthe velocity fiuctuation compo-
nent zf, which is strictly speaking not an error, but represents the variation from linearity of the
velocity field over the region sampled. In the cases we have studied, the estimated residual error
z; obtained from eq 7 was generally found to be larger than the average estiriated value of experi-
mental error ziM from eq 2. Consequently, as a matter of convenience, we will often refer to the
residual error obtained from eq 7 as the residual fluctuation error.

e e I s o bl _M_MMWM“MMA__‘-J
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Also, as a matter of notation, we will refer to the uneertainty in ?l (\’(eov(’«‘lﬂ as the inhomo-
geneity error, It should be remembered that the inhomogeneity error is an estimate of the un-
certamnty in the least squares estimated strain and consequently depends somewhat on the number
of sumples used. The residual fluctuation error, on the other hand, should be relatively indepen-
dent of the number of sample pomnts used,

Strain Results

For comparison, strain rate and vorticity time series have been calculated using sevoral dif-
ferent combinations of targets; Table 1 describes all combinations of targets used in the calcula-
tions. The origin was also considered a position measurement in some arrays, with distance and
angle being zero for all time.

Over the time interval studied in this paper, there was only one major gap in the time series,
and this portion is blanked ont in the plots. llowever, for spectral studies, root-mean-square (rms)
error estimation, and correlation studies, the whole curve was used (data points every 3 lhours),
ineluding linearly extrapolated data through the gap, with the huear extrapolation being done on
each target position as discussed previously.

Table 1. Straln line combinations used in this paper.

Approximate diameter

Array of regron sampled
“name '’ Targets {km)
Combined array . 23,8, 9 4 7. 11, 20
13, 5, 10, ongm
Outer array 1,2, 3, 8,9, ongin 20
16-km tnangle 2,509 16
8-km tnangle 11, 13, 4 3
H-km inangte 11, 7, ongin 5

Strain tensor time series

Since the outer array targets were measured more often than other targets, the outer array
provides a more detailed time series tor analvsis. Results of least squares calculations using the
outer array are shown in Figures 3 and 4, which present the two invariants (Nye 1957) (denoted by
s'l and ig) of the strain rate tensor both separately and in the form of the divergence rate i” (sum
of the principal axis components) and the maxinnm shear rate (¢, 52)/2 (ditference between the
principal axis components divided by 2). For the strain rates, the angles of the strain lines at the
beginning of each 3-hour interval were used in the least squares caleulations. The continuous
errors in Figures 3 aud 4, the A values shown helow each curve, represent the inhomogeneity error
(calenlated using eq 7 and 8), which is due primarily to velocity fluctuations. The small error bar
on the divergence rate curve represents the maximum expenmental error, which was calcutated by
first ealculating the experimental error for each point in the time series according to eq H and 6
and then finding the maximmm error over the time series. For a more compact summary of the rela-
tive magnitude of the strain rates and strain rate variation errors, we list the root-mean-square
(rms) values for the various time series in Table II.




10

DIFFERENTIAL SEAICE DRIFT

{Moximum e-penmenvol ercor

. 000N
eIl
-
(hrs) ofl |
| L"r*
]
0 00t
0.001}
Aen .WWMJ\ \_,j\_ka\
(hs ) A . h_
88 9? 96 100 104
Time, doOysS
a. Divergence Rate ond Errar
o OOOI M’ﬂm ,L
(nhrs™) - -.__.
5 P o.om}
A(€-€))
- }J\\WM
A edoas vt
88 92 96 100 104 108 12
Time, doys

b Maximum Sheor Rate ond Error

rigure 3. Least squares divergence rate and accom-

panying inhomogeneity error, and maximum shear rate

and inhomogeneity error. The small error bar in a

represents the maximum uncertainty due to measure-
ment error.

=
3 0002
w
i
g 0001
[+
£
o
o o
"
=
aq
5 -000
a
o
<
&

-I}UDial-. .—_g.z_-.._,.é..e_ ) S8 ey
Tima, doys
o Strain Ratee

0.00!
A€
]
hes') 0 Mwm l\\.\_.._/\_Ml‘
000! ’
A€,
e d W Wha '\.\_J'\_MJ\
100~ 104 108
Tine, doOys
b Errore

Figure 4. Principal axis components of the least
squares strain rate tensor and inhomogeneity errors.




SPATIAL AND TEMPORAL V ARIATIONS IN SEA ICE DEFORMATION 11

Table Il. Root-mean-square strain rates, strain rate variation
emrors and experimental exrors for combined array.
(Units 10 4 e 1),

\¢ \i, i Ai Aiy, (exper) (g - i Al i

1 ‘o 2 1 i

4.03 1.92 3.66 1.94 3.28 2.78 0.85 3.48 1.36

From Figures 3 and 4 and Table II, we see that in general stiain rates are of greater magni-
tude than their respective strain rate inhomogeneity errors. The figures also indicate that the
inhomogeneity errors generally increase with increasing strain rate. It is important to reniember
that the inhomogeneity errors shown are for 6 targets and would be smaller for a larger number of
targets. This is analogous to the error on the slope of a simple least squares line which becomes
less as more peints are added even though the standard error of the estimate may remain the same.
In particular, for the same residual error for each velocity, an equilateral strain triangle would have
a divergence rate error - 1.7 times as large as that shown in Figures 3 and 1.

One striking aspect of the deformation, best illustrated in Figure 4, is that in the principal
axis coordinate system most of the expansion or contraction is taking place along one axis. More-
over, there is usually contraction along one axis and extension along another. Another salient
characteristic of the ice deformation is that the ice motion appears to consist of deformational
events which occur every several days and usually consist of dilation followed by convergence.

The strain rate time series generally shows rather rapid variations in strain which are probably
due to the random bumping and yielding of floes as well as the random opening of leads. Under
our idealized model, consisting of ice fluctuations superimposed upon a continuum, these high
frequency motions should primarily represent fluctuations. With respect to maximum strain rates,
the maximum observed divergence rate is 0.16% * 0.09% per hour with a maximum convergence rate
of 0.15% *+ 0.09% per hour. The largest maximum shear rte 1s 0.16% * 0.05% per hour.

Nonlineas velocity fluctuations

The least squares calculation, besides yielding the average strain rates, also gives a mea-
sure of the nonlinearity in the velocity field through the residual fluctuation error. This residual
error can be viewed as a fluctuation in the velocity field from the ideal continuum value. The
magnitude of these fluctuations is important in determining the size of a measurement wray neces-
sary to measure accurately the average strain rate. In terms of our continuum model, the fluctua-
tion contribution, together with the average strain rate, yields a characteristic length above which
the pack ice may be considered a continuum and under which the ice motions of individual floes
and leads become dominant. Such a characteristic length is estimated by determining the length
over which the fluctuation on the average is almost the same as the continuum velocity variations.

For a best estimation of the fluctuation error, we utilized the combined array consisting of 11
targets plus the origin. Since some targets in the combined array were not measured as frequently
as those in the outer array, the linearly extrapolated data were smoothed with a filter having a
transition band froim 20.0 to 11.4 hours, as discussed in the previous section on data analysis
(p- 5).

The resulting residual errors from the combined array, and strain tensor components in a

(north, west) coordinate system are shown in Figure 5. In order to put the residual error and de-
formation rates in perspective with the overall motion of the pack ice, plots of ihe velocity
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of the order of 10 km. A second characteristic length of some interest is the length over which the
velocity difference according to the strain rate equals the average drift velocity. This length is
of the order of 1000 km, roughly similar to the size of the Pacific Gyre. Consequently, the residual

! -/\ g
_E Ii L
, AA
ol i ——p
! Tirme, days
Migure ¢, Comparison of net divergences (areas) of overlapping triangles.
a) 16-km triangle, b) 8-km triangle, ¢) 5-km triangle.
components of the central point of the array are also shown in Figure 5. These velocity plots
were obtained using drift data obtained by Thorndike (1973) from satellite navigation fixes. The
velocity data were smoothed with the same filter used in the strain calculation. In the processing
of the data carried out by Thorndike, some smoothing was also done, but this smoothing affected
only the higher frr~uencies past the transition band of our filter. For a more concise compar.ison
of the data, rms values of the various curves are given in Table I11.
As can be seen from Table 111, the characteristic length (residual error/strain rate) over which
the velocity change due to strain rate is of the same magnitude as the residual fluctuation error is
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Table [Il. Root-mean-square strain rates, residual emors,
and central point velocities (from Fig. 5).

Residual  East-west  North-south

Div rate i error vel vel . Speed
'Y e ey ™) maeh) @ mhrl)y  (mah
236010 26000 zs7a0Y  2az07h 2,27 292.3 107.9 312.9

error is rather insignificant in terms of the absolute velocity for a point, but becomes more critical
in terms of the velocity gradient or deformation rate. In terms of a continuum model, the results
suggest that on a scale larger than about 10 km the pack ice begins to behave like a continuum,
whereas on a smaller scale the individual particle behavior begins to dominate the observed motion.

The magnitude of the residual error also allows an estimate to be made of the effect of fluctua-
tions on strain rates from arrays of different sizes. For example, we can view the strain measured
by a simple area, say a triangle, to consist of two components: 1) the continuum strain rate and
2) the fluctuation component. Assuming that the residual error is approximately constant. inde-
pendent of the size of the triangle, then the fluctuation contribution to the strain rate is of greater
relative magnitude for small triangles. In addition, since the fluctuation component would be ex-
pected to consist of rather rapid bumping motions, strain rates would behave in a more erratic
manner as the measuring triangle becomes smaller. This effect is apparent in plots of individual
triangles. Figure 6, for example, illustrates the net divergences (essentially the areas) of three
nested triangles as a function of time. The more rapid, large-magnitude motion of the small tri-
angles is apparent. The curves do, however, illustrate 3 zeneral correlation of strain events con-
sisting of dilation followed by convergence. Generally these results suggest that, although the
smaller triangies are averaging over very few leads and/or floes, over a period of several days the
ice on a small scale would be expected to diverge if the pack is generally diverging and converge
if the pack is converging.

Comparison of Mesoscale Deformation with Macroscale Deformation

In addition to a satellite navigation system at the main 1972 AIDJEX camp (the center point
of the mesoscale array), the 1972 pilot study included satellite position measurements of two other
camps approximately 100 km west and northwest, respectively, of the main camp. Strain data from
this larger triangle, referred to as macroscale deformation, provide a valuable measwre of the de-
formation averaged over a larger region than that covered by the mesoscale wray.

In a comparison of the macroscale and mesoscale deformation rates, arguments for both simi-
larities and differences can be made. First, since weather svstems typically vary over several
hundred kilometers, we would intuitively expect some similarity between the macro- and mesoscale
deformation rates, at least to the extent that both systems are measuring the continuum motion of
the ice pack. However, there are several reasons why the correlation should not be extremely good.
Foremost is the fact that the mesoscale array is only slightly larger than the estimated <ontinuum
length of 10 km and thus fluctuations of the velocity field yield a strong component in the least
squares mesoscale deformation time series, a much stronger component than would be expected to
be present in the macroscale data. Also, even if the pack ice could be considered a homogeneous
continuum at very small scales . the nature of the continuum constitutive law might couple with
variations in the weather systems to give rapid variations in the deformation. This is especially
true since the mesoscale array is not at the center of the macroscale array, but at one corner of it.
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In order to examine ifferences and smmilarities between the maeroscale and mesoscale de-
formiation, and thus test some of the above hypotheses, a comparison of the various deformation
t e series and their spectra was made. The macroscale deformation data were supplied by Thorn-
dige and are essentia’ly the same data as presented by him (Thorndike 1973). In the processing of
the macroscale data, Thorndike employed a Kalman filtering procedure to obtain this nosition and
velocity of each of the three satellite sites. The filter eutoffs varied somewhat but generally all
freguencies up to about 18-hour wavelengths were passed. The strain rates and vorticities were
uniyuely determined since there were only three stations.

Time series comparison

.

In order to smooth hoth time series in the same manner, all defurmation rates were smoothed
with a tow-pass filter with a transition band from 21 to 84 hours. This smoothing also allowed u
mesoscale vorticity time series to be construeted by including the camp rotation, a step that was
difficult without extensive smoothing beeause azinmthal measurements were typically made only
once a day. To obtain the camp rotation for the mesoscale caleulation, a time series R (sin )
longitude ~ azimuth [with longitude increasing in an easterly direction, see Nye (1974)] with & the
latitude was constructed by linearly extrapolating the satel'ite position and azimuth measurements
reported by Thorndike et al. (1972). This time series was smoothed by using the same filter that
was applied to the deformation data and differentiated to obtain a rotation rate. This rotation rate
was added to the vorticity caleulation in the camp coordinate system to obtain the true vorticity
as discussed 1n a previous section. For mesoscale data in the camp coordinate system, the outer
array least squares results were used. 1n addition, several days of earlier data (taken before the
array was complete), consisting of only 4 targets (1, 2, 3, 8) and the center point, were used to
extend the time series,

Figure 7 gives a companson of mesoscal and macroscale divergence rates, vorticities and
maximum shear rates. Because of a malfunetion of one of the satellite navigation units, there is
a4 several-day gap in the macroscale data which was bridged by Thorndike (1973) using a Kalinan
filter. This gap 15 denoted by vertical lines enclosing interpolated macro data in Figure 7. For
4 quantitative comparison of the curves, we give in Table IV correlation coeffieients and root-mean-
square (rms) values for the various curves up to the gap in the macroscale data. The standard
error for the correlation coefficients is based upon a number of degrees of freedom equal to the num-
her of points correlated times the fraction of the spectrum passed by the filter.

Figure 7 and Table 1V indicate that there are significant correlations between the deformation
time series measured at different seales. Visual examination of the curves suggests that the
correlation is due to the presence of similar strain events over several-day periods. However,
since these events are often of different amplitudes and occur at slightly different times, the eofre-
lation is not complete, especially at higher temporal frequencies. The results also show that the
deformation rates have comparable amplitudes with the mesoscale amplitude generally being slight-
ly larger. The comparison generally indicates that both meso- and macroscale arrays are measuring
similar continuum motions of the ice pack.

Table IV. Meso- and macroscale root-mean-square deformation
rates and correlation coefficients (from Fig. 7).

Divergence rate Vorticity Maximum shear
Meso Macro Meso Macro Meso Macro
Root-mea?-ﬂquare 2.84 2,28 4.37 2.45 3.73 2.37
(10 ne )
Corretation 0.47:0.20 0.47%020 0.71+020 0.71:0.20 0.38*+0.20 0.38¢0.20
coefficient
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Spectral densities

Some of the important differences hetween the nature of the mesoscale deformations and that
of the macroscale deformations are illustrated by the spectral densities which we calculated using
the lag product method as discussed, for example, by Rayner (1971, p. 94). Figure 8a shows the
spectra of the mesoseale divergence rate and shear rate (not maximum shear), and Figure 8b shows
the spectra of the macroscale divergence rate, shear rate and vorticity. Because of the inade-
equacy of the camp rotation time series at higher frequencies, it is not possible to construct a
mesoscale vortieity speetrum,  Also, hecause of the Kalman filter smoothing of the macroscale data,
the macroscale spectra are valid only up to sbout 15-hour wavelengths. Since there were differing
data gaps, the spectra did not come from the same time periods, but were caleulated from Julian day
8% to 113 for the mesoscale data, and from Julian day 81 to 101 for the macroscale data.

Figure 8 shows that the macroscale spectra generally contain less vanance at higher frequencies

than the mesoscale spectra. Such a result 1s commensurate with viewing the deformation as a con-
tisuum signal and a fluctuation component with the fluctuation magnitude dropping off inversely with
the size of the arrav. This follows beeause the fluctuation signal, being of a random nature, would
be expected to have a greater high-frequency variance than the continuum signal.

An interesting aspect of the mesoscale spectra (especially the divergence rate) is the presence
of a sigmficant speetral peak at about 12-hour wavelengths. Whether such a peak 1s contained in
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the macroscale data cannot be ascertained becanse the smoothing employed by Thorndike (1973)
effectively filtered out any such oscillation. A possible explanation for this peak is a variation in
water currents due to inertial oscillations (Hunkins 1967). Measurements of ocean currents by
Newton and Coachman (1973) during previous AIDJEX pilot studies indicated 12-hour cycles in the
currents, with the oscillation displaying coherence over distances up to 20 km. Different drag
coefficients for different ice floes counld couple with these currents to create a differential ice motion.
There is also evidence of an = 24-hour cycle in the macroscale divergence rate spectrum (which may
possibly be present in the mesoscale data). The source of this peak is not at present understood.

The general fall-off of the spectra in Figure 8 is also relevant for sampling considerations.
The shape of the speetra generally suggests that sampling intervals up to 10 hours (with accurate
measurements) would yield low frequency information without intolerable aliasing. A more direct
test of this can be made by sampling the data at larger intervals before smoothing and comparing the
results to data smoothed before resampling. Such comparisons have been made for the mesoscale
data (Hibler et al. 1973b) and support the conclusion that accurate samples every 8 hours are ade-
quate for resolving the low frequency components of the time series required for comparison with
synoptic meteorological variations which generally occur over a time scale of several days (Monin
1972).

Nature of the Ice Pack Rotation

Examination of the mesoscale vorticity indicates that it is similar to the camp rotation. This
can be seen from Figure 9, which shows the camp rotation rate and the mesoscale vorticity. This
similarity means that to a large degree the whole mesoscale region is rotating as an entity. Investi-
gation of the macroscale deformation data indicates that such a “‘solid’’ rotation is also partially
occurring for the larger macroscale region, at least at low temporal frequencies. This may be seen
from Figure 10 in which the east-west shear rate dv,/dx and vorticity are plotted together. As can
be seen, both curves are similar, indicating that ov ;/ﬁy and (Wy/'ﬁx are close to being equal in
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magnitude and opposite 1n sign, a condition which holds identically for solid rotation. Another
indication of this behavior on the macroscale is the relative smallness at low frequencies of the
macroscale shear rate spectral density in the x-y coordinate system compared with the macroscale

vorticity spectral density as shown in Figure 8b.

These observations suggest that the most pronounced mode of differential deformation of the
1ce pack is a relatively cohesive rotation, at least at low frequencies, of the pack. The direction
of the rotation is, from the curves in Figure 4, generally clockwise in agreement with the motion
of the Pacific Gyre. Other deformation rates at low frequencies appear to be somewhat smaller
than the rotation rate. Such a cohesive rotation is also borne out by shear zone deformation studies
(Crowder et al. 1974, Hibler et al. 1974), suggesting that the pack is rotating as a relatively tightly
bound continuum with slippage at the boundaries.
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A final poiut of interest is g negative correlation between the vortieity and the divergeuce rate
(see Fig. 7). The correlation coefficient for the mesoscale data (omitting the earlier data taken

before the mesoseale array was eomplete) is 0,35 + 0,17, mdicating that a convergence 1s 4ssoci-
ated with a clockwise rotation. This eorrelation is diseussed in greater detail m rel

ation to lmear
drift theories and atmospheric pressure variations in Part 11 of this report.

Conclusions

We believe that this study has showu that strains measured on a seale of 10 km or greater can
serve as a valid measure of the continnum niotion of sea ice,

. When strains are measured on a
sinaller seale, the continmun motion is obscured by the random bunmping and yielding of floes and
by the finite size of the teraeting floes relative to the size of the strain array., These small-
seile motions are, however, interesting in their own right.  Ow results also indicate that meaning-
ful vortieity values can he obtained from even smaller arrays. indeed from the measwred rotation of

individual stations.

These results suggest that it should he possible to earry oat Inghly useful expermments on the
macroscale (continuum) behavior of pack ice by utilizing one munned doifting station ot ship with
radar transponders located at the remote strain points. Striin arrayvs with effective driameters of
up to 50 kin should easily he possible using currently available techniques,

Finally, it should be emphasized that owr results were obtamed from a pack ice field with a
compactness of near one aud g specific, but unknown, 1ee thickness distribution. W

hether similar
resul*~ would be obtained for other ice conditions, is presently a moot point,

Literature Cited

Bemnett, C.A. and N.L. Franklin (1954) Statistical analysis in chemistry and the chemical
industry, New York: J. Wiley and Sons,

Crowder, W.K,, 11.L. McKim, S.F. Ackley, W.D. Iliblr¢ Il and D.M. Anderson (1947) Meso-
scale deformation of sea 1ce from salellite imagery, Proceedings of the Interdisciplinary
Symposium on Advanced Concepts and Techniques in the Study of Snow and Ice Resources
(Monterey, California), Nation] Research Council,

Ihibler, W.D. 111 (1972) Design of small error low pass filters with arbitrarily sharp fiequency

cut-offs. U.S. Army Cold Regions Researcti and Engine ering Laboratory (USA CRREL)
Research Report 304. AD 750116,

Ihbler, W.D. 111 (1974) Differential sea ice drift, 11 Compinison of mesoscale strarn mes sure-
ments with linear drift theory predictions. Journal of Glaciology, vol. 13, no. 68, p. 457.471,

Hitler, W.D. 111, W.F. Weeks, S. Ackley, A. Kovaecs and W.J. Campbell (19734) Mesoscale

Stran measurements of (e Beanfor Sea pack ice (AIDJEX 1971), Journal of Glaciology,
vol. 12, no. 65, p. 187-206.

litbler, W.D. 111, W.F. Weeks, A. Kovies and S. Ackley (19730) Differential sea 1ce dnfi,

1: Spatial and temporal vananons in mesoscale strain in sea 1ce. AIDJIEX Bulletin,
no. 21, p. 79-113,

Ilibler, W.D. 11t, S.F. Acklev, W.K. Crowder, I.L. McKum and D.L. Anderson (1974) Analysis
of shear zone ice delotnmtion the Beanfort Sea nsing satellhe magery.  Symposium on

- eaqufort Sea Coastal and Shetf Researeh, Wastington, D.C., Arcne Institute of North
Anmenca.

Hunkins, K.L. (1967) lnernat oseilliinons in Fletcher's Ice Island (T-3). Journal of Geo-
physical Research, vol., T2 no00 p. 1165-1174,

-




20

DIFFERENTIAL SEA ICE DRIFT
Jeukins, G.M. and D.G. Watts (1969) Spectral analysis and its applications. San Francisco:
llolden Day.
Monin, A.S. (1972) Weather forecasting as a problem in physics. Cambridge: MIT Press.

Newton, J.L. and L.K. Coachman (1973) Observations of ice motion and interior flow field
during 1971 AIDJEX pilot swdy. AIDJEX Bulletin, no. 18, p. 5-30.

Nye, J.F. (1957) Physical properties of crystals. Oxford: Oxford University Press.

Nye, J.F. (1973) The meaning of two-dimensional strain-rate in a floating ice cover.
AIDJEX Bulletin, no. 21, p. 9-17,

Nye, J.F. (1974) The definition of rotation of a drifting ice floe. AIDJEX Bulletin, no. 23,
p. 40-44,

Rayner, J.N. (1971) An introduction to spectral analysis. New York: Pjon Limited.

Thorndike, A.S. (1973) Analysis of position measurements, AIDJEX 1972. Transactions,
American Geophysical Union, vol. 53, no. 11.

Thorndike, A.S., D. Bell, I. Vivsuieks and A. Gill (1972) Station positions, azimuths, weather;
1972 AIDJEX pilot study; Preliminary data. AIDJEX Bulletin, no. 14, p. 63-71,

;
|
|
i




21

PART II. COMPARISON OF MESOSCALE STRAIN MEASUREMENTS
WITH LINEAR DRIFT THEORY PREDICTIONS

by

W.D. Hibler 111

Introduction

One of the miore important uses of mesoscale strain measurements is the eomparison of the
differential drift, i.e., strain results, with sea iee drift theories, both to test the theories and to
determine eertain unknown parameters. These comparisons provide a more critical measure of
certain eonstitutive law parameters than do eomparisons involving the drift of only a single point,
To make such a comparison in this repert, & linearized drift theory similar to that used by Egorov
(1970, 1971), Rothroek (1972), and Witting (1972) will be used. Such theories, although not as
exact as other ealeulations (Campbell 1965, Campbell and Rasmussen 1973), do suffice for obtain-
ing quantitative estimates of the dominant drift effects.

Recent calculations using line: r drift theories have generally been of two types. In the first,
as earried out by Rothrock (1972) and Witting (1972) independently, the average yearly circulation
of the aretic iee eover has been calculated assuming that the iee is incompressible. Such ealcula-
tions, although of considerable interest, are not directly eomparable to mesoscale strain measure-
ments. In the seeond, as carried out by Egorov, an approximate infinite boundary solution is ob-
tained to a linear drift theory that uses a shear viseosity to explain the rheological behavior of the
iee and neglects gradient eurrent effects, i.e., neglects geostrophic ocean flow below the surface

houndary layer. The second approach yields results more direetly comparable to strain measure-
ments,

For the eomparison made here, a linear drift equation similar to that used by Egorov will be
used. The rheological behavior of the iee will be taken into aceouat by using the constitutive law
proposed by Glen (1970), whieh includes a bulk viseosity as well as a shear viscosity. In
addition, ealculations will be made using 4 more general linear viseoelastie constitutive law that
allows for memory effects and ineludes a generalized Hooke's law as well as the Glen law as
special cases. As in Egorov’'s work, gradient current effects will be neglected.

However, unlike Egorov, we will formulate the infinite boundary solution without approxima-
tion in terms of a linear response function. The resulting real spaee solution eonsists of 4
straightforward integral operator which may be applied to the pressure field to obtain expeeted
differential ice drift. This response function form of the solution is useful beeause it clearly
illustrates the differences of ice drift behavior expected in winter as opposed to that expeeted in
summer. In addition, the solution allows a rapid determination of the scales of variation in the
atmospherie pressure field that are important for given bulk and shear viscosity values. Further-
niore, the comparison of strain measurements with pressure data allows the bulk and shear viseosity
parameters tobe estimated.

List of Symbols

w ice vorticity sec

A iee divergence rate see
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mn ice mass per unit area

u ice velocity

v wind velocity

! Corielis veetor

f Coriolis parameter equal to nagnitude of the Coriolis vector tines

the sine of the latirnde

A mf

F force due to internal ice stress

I wiater stress on ice

Zy a1 stress on ice

b ERknLa angle in air

0 Ekman angle i water

B wind stress constant p(!l\’u.’2)'"

water stress eonstant — p (1K )

p air density

o water density

Cy eddy viscosity of air

1\'w eddy viscosity of water

Ug X component of geostrophic wind

¢ Y ¢omponent of geostrophic wind
2 atmospherie pressure
P spatial average of the atmospherie pressure
n shear viseosity of ice
¢ bulk viscosity of ice
H divergence rate response fimetion
G vortieity response function

Linear Drift Equations

Following Egorov's (1970, 1971) example, we cousider a steady state equilibrium drift equa-
gradient ewrrent term varies so slowly in space and time that it may be

tion for the case where the

"D
~

kg m

m sec”!

m see !

sec™!

sece !

kg sec™! m~*
Nm~

2

Nm~

0
Nm~
dimensionless

dimensionless

2
kg see D ?

)
kg sec P n?

kg m?
kg m 4
m= see !

1)
m* sec” !

m sec”!

n sec !

mh

nb

. -1
kg sec
kg sec” I
dimensionless

dimensionless

neglected. By neglecting this tern, the sea ice is effectively considered to be moving across a
stagnant ocean [see, for example, Rothrock (1972)). 1n this cuase the equilibrium equation takes

the form

—m[xu+rw*ra+li 0

where u 1s the 1ce velocity, f tne Coriolis veetor, m the iee mass per unit area, F the force
internal ice stress, and Tw and 7, the water and air stresses on ice, respeetively. The eomponents

of water and air stresses are given by a simple Ekman layer theory:

(1)

due to

———
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~

3 + 4 < 3
rax B (cos ¢ Ug sind Vg)
(2)
. w2

r“y B (+ coso Vg sindh UK)
' rwx D (- cos 0 4, + sin ) u)_) ’
] (3)

r“'y - D (sin® i v cost u_\_)

where & and € are the Ekman angles in the air and water, respectively, The paraneters B and D

are proportionility constants related to the turbulence coefficients for the atmosphere and the
ocean.  For the elassical Ekman laver solution (Sutton 1953, p. 71), B and D are given by py (K 2)
where p and K are the air density and eddy viseosity respectively of either ar or water, U

and
e
Vg are the geostrophic wind components given by
1 aP
B == (4a)
k pf dy
P
T (4h)
k pf ox

where pis the an density, P 1s the atmeospheric pressure and f is the magnitude of the Coriolis

i vector. In eq 2 it 15 wmplicitly assnmed that the jee veloeity is small compared with the wind
velocity and may be neglected. For F, the force due to mternal iee stress, the constitutive law

. - .

L proposed by Glen (1970) is nsed:

Ii F g+ ¢R(v- ) (5)

]

where ¢ and n are bulk and shear viseosity constants that ean vary with ice compactness and there-
fore season. Calculations nsing a somewhat more general constitutive law are discussed later,

Ice Drift Solutions

In this case the interest is primarily in the soivtions of the linear drift equutions for the ice
divergence rate A[A (du,/dx) « (du /dy)l and ice vorticity wiw 1/2[(r9uv/r9x) - (du /dy)li. By
taking the divergence and curl of eq f’ two lineur equations for A and w are obtained:

[t + )0 - D cosOIA + (A + D sindiow B sx{ngﬁ oo P (6)
P

Bcos¢ o
==V
ol

~(A 1 Dsin®A 1 (pp” - D cos 2w P (7)

where A mf. These equations represent a linear system with the input being the pressure ficld P
and the ontput being A and w. Such systems (Jenkins and Watts 1968) may be deseribed by response
functions in wave number space H 1), H,(k), so that A (k) H (k) P(k) and w(k) H (k) P(k) where

we denote wave number space functions with a tilda and k 'k|. The response functions nay be

obtained straightforwardly by Fourier tranusforming eq 6 and 7, yielding wive number space equa-
tions
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L
: B P(k)
. Alk)m — —- .
TR 1 - HK)] (8)
wi) - B P8 3 g : (9)
pl 2y
where
2 2‘ . R pd RN 4 i
i T k° [(gk* + D cos ) sing - cos ¢ (A D sinl(n+ ) (10)

[A? + D® 2D sinOA 4 (3 + {) k4 + D cosf(2q+ 2k®)

k2l + K+ D costlcosd + sing (A + D sinMiny (a1

1 Glk) 2
(A2 . D* + 2D sin A « (n+ () 7]k4 + D cos 0 2y ()kzl

By the convolution theorem these equations yield simple integral equations in real space. For
example, for \(x)

A B _pwy Pl (12)

plly + )

where (using polar coordinates)

~ 2n
P(x) of M(r-—r‘)f P(r', 0) r'dodr (13)
0 0
and
1 ~
H(r) z_n{ H(k)kJ o (ko) dk. (14)

and J; is the zero'th order Bessel funetion. It should be noted that these equations only apply
exactly to an ice cover and pressure field of infinite extent and, in fact, represent solutions using
boundary conditions P(x), A(x), w(x) finite at x, y »* . However, in practice they may be applied
to a finite case with the necessary extent of the ice cover and pressure field determined by the
spatial extent of a fimte filter H(r) that approximates the wave number response H(k) in eq 10.

The wave number space form of the response functions I (k) and G(k) contains considerable
information. In the case of the divergence rate for 7, ¢ large, 1 - H(k) is generally positive for
iarge k and negative or zero for small k. Thus, the divergence rate is essentially the result of a
high pass filiering operation on the pressure field with the high wave numbers contributing posi-
tively to the divergence rate and the low wave numbers negatively with a smaller amplitude. For
the vorticity, the response function is also a high pass filter, but there is no change in the sign
of the contribution from different wave number components of the pressure field. The wave number
of the filter cutoff decreases as n and ¢ increase. Thus, different types of behavior are expected
for 1, { small as compared with 7, ¢ large. These different types of behavior may be characterized
by examining the two limiting cases 7, {+0andn, § » .
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Limiting cases
For the first case, noting that [1 - HU)1/(n + £k and [1 - G(K))/nk? are finite as n, ¢ - 0,
we have

Lim -B [D(cos 0 sin¢é - sinO cos @) - A cos &)

- o A@ - = ¢ Px) (15)
mé =0 ot A2 . D® . 2DA sin6
,LGto w0 +B o2 Px) [Dtcos 0 co.s¢> ¢‘sxn0 sind) + A sing| : (16)
s 2ot A% . D® + 2DA sin6

Thus, we see the well known result that for equal Ekman angies and small », ¢ the ice would be
expected to diverge in a low (V2P > 0) and converge in a high, whereas the vorticity would be
expected to be positive (counterclockwise) in a low and vice versa in a high.

For the second limiting case, we note that, for 7, ¢ very large, H(k) and G(k) pass only the
very long spatial wavelengths with the pass band frequency cutoff scaling as 1/n and/or 1/¢.
Consequently, the real space response functions H(x) and G(x) approach constants (with integrated
areas of unity) for very large n, ¢. Therefore, [H(x - x')P(x') dx' and [G(x - x') P(x') dx' approach
the average pressure for large n and ¢ as a result the large 5, ¢ limiting equations are

Lim B =
. Alx) [P(x) - P|sind 17
L i | sind a17)
Lé'" wix) - ilP(x) _Plcosd (18)
NGome 2npt

where P is the mean atmospheric pressure over the infinite x, y space which would be approximately
constant in time. For 5, { large but finite, P would be replaced by the very low wave number
components of the pressure field which would be expected to be reasonably constant in time if the
cutoff wavelength were longer than the synoptic variation scale of the pressure field.

As can be seen from eq 17 and 18, in the large 7, ¢ limiting case the divergence rate and
vorticity are proportional to the local pressure deviation from the overall mean pressure with a
low pressure indicating a convergence and a positive vorticity. Note that there is no dependence
on the water stress in this limiting case. In fact the large n,  case is equivalent to neglecting
all stresses except the internal ice stress and wind stress. An alternative derivation, for example,
would be to delete the water stress and Coriolis terms from eq 6 and 7 and solve a boundary value
problem with (A - P) and (w + P) finite at x, y - * ~. It is also important to note that the large
7. ¢ solution includes lateral transfer of stress through the pack up to infinite distances via the P
term. However, this term becomes only a constant because the lateral stress averages out and
thus A and w follow the local pressure.

To the extent that 7, ¢ may be considered very large in the winter and small in the summer, the
two limiting cases suggest that sea ice (far from coastai boundaries) would be expected to converge
in a low in winter and diverge in a low in summer with vorticity always positive in a low. Such
predicted behavior agrees with earlier mesoscale strain measurements (Hibler et al. 1973), with the
more extensive results reported in this report, and with Russian observations (Volkov et al. 1971).
It is also what one would expect intuitively; namely, that in winter the ice is tightly held and can-
not move rapidly, so that the water and Coriolis forces would be expected to be smaller than in
the summer.
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Figure 1. Wave number space response functions for the divergence rate and vorticity of the ice
pack for different values of nand ¢. The response functions operate on the atmospheric pressure
field.

Finally, we note that if we used a series solution for the drift as given by Egorov (1970) it
would be impossible to draw the above conclusions, because the series diverges for frequencies
higher than the high pass cutoff frequency in 1 ~ H(k).

General case — wavelength dependence

Clearly, it 1s cnitical what the “‘cutoff wavelengths' for 1~ H(k) and 1 - G(k) are. To illus-
trate typical forms of H(k) and G(k), we use the following numerical values:

[ 1.46. 104 sec!

m 3.0-10% kg ?

0,6 30’

p 13kgm 3

K 1.5- 10! n® sec !

K 2010 ° m® sec!

B 43.10°% kg sec Ym# 1

[

D - 1.18 kg sec ' m 2

The results for different values of n an.. ¢ are illustrated in Figure 1. For the H(k) curve the key 1
wavelength is the transition from positive to negative response. The results generally indicate |




MESOSCALE STRAIN MEASUREMENTS AND LINEAR DRIFT THEORY PREDICTIONS 27

that for 7, ¢ 1012 kg sec“‘. the “"high wave number’’ pressure variations are those with wave-
lengths shorter than - 3000 km, Since the synoptie scale for the Arctic 18 of the order of 500 km
(Egorov 1971), the large 7, ¢ himiting case is expected to be reasonably valid for 7. ¢ 10¢ kg
sec” ! For 7, ¢ 10° kg sec '1, on the other hand, the high wave mimber cutoff is such that one
might expect the small 7, ¢ case to be more applicable, This wavelength dependence explains
why most calculations by Campbell (1965) and Campbell and Rasmussen (1973) have indicated
diverging ice in a low press ve region. This is especially true of the yeorly average drift where
the mean yearly pressure ficid contains few high wave number spatial variations.

Figire 1 also illustrates the importance of the scale over which the pressnre field is consiwder-
ed. For example, consider y and ¢ values such that the positive to negative transition in H(k) 1s
at about 1000 km. Then, considering a high pressure systeni varying slowly in space with few high
frequency eomponents with wave numbers greater than 1000 km~ ! the ice would he expected to
converge, On the other hand, for 4 high pressure system varying very rapidly in space with signifi-
cant variance at wave numbers greater than 1000 knr ! the ice would b» expected to diverge where
the pressure was high. Clearly, it is very important to define the spinal scale used when speaking
of diverging or converging ice.

Comparison of Theory with Mesoscale Measurements

To determine how well the liniiting forms of the prehieted A and w values for large n and ¢ and
infinite boundaries compare with mesoscale observations reported in Hibler et al. (1974), the local
pressure at the main AIDJEX 1972 Camp (located at roughly 75°N 148°W), the neasured ice
divergence rate, and the measured ice vorticity were conpared. The resulting time series are
illustrated in Figure 2 with the dashed portions of the deformation rates representing data taken
while the mesoscale array was only partially deployed. Calculation of the strain rate and vorticity
time series is described in some detail in Part 1 of this report. In addition to these three time series,
Figure 2 shows the calculated divergence of the wind velocity field and the fluctuations of the
local atmospheric pressure from the average pressure over an approximately 600-km-diameter region.
The average pressure P was estimated by taking the average of the camp pressure, four remote data
buoy pressures located around the camp about 300 km away, and the Point Barrow pressure. For
calculation of divergence of the wind veloeity field, local wind speed and direction measurements
at each of the three mammed stations were used. The distances and relative angles between the sta-
tions were taken as constant and estimated from position data for 19 March as reported by Thorn-
dike et al. (1972). The basic computational equations are similar to those use” in the strain cal-
culations in Part 1 of this report. All of the time series shown in Figure 2 were smoothed with the
same low pass filter having a transition band from 0-3/80 cycles hr ! (Hibler 1972).

Correlation coefficients were caleulated between all five of the tinie series (excluding the
dashed portions of the divergence rate and vorticity) with the results listed in matrix form in Table
1. The standard error is hased upon a number of degrees of freedom equal to the number of points
correlated times the fraction of the spectrum passed by the filter.

As can be seen from Figure 2 and from the table of correlation eoefficients, there is a positive
correlation between the local pressure and the divergence rate and a negative eorrelation betwecn
pressure and vorticity as predicted by the large viscosity limiting case of the linear drift theory.
The results also indicate that the spatial pressure fluctuation time series is quite similar to the
camp pressure time series and has a similar correl4tion to the divergence rate and vorticity. This
generally indicates that the pressure field has cotsiderable variance at wavelengths shorter than
600 km and justifies to a limited extent the nse of the infinite boundary solution for comparison.
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Figure 2. Comparison of experimental time series calculated from AIDJEX 1972 data. All curves
were smoothed with a low pass lilter having a transition band from 0 to 3/80 cycles hr~",

Table 1. Correlation coefficient matrix between time series.
u - ice velocity, v - wind velocity (standard error - 0.22).

V-u @ xu/2 P-P P Vv
v-u 1 -0.44 0.41 0.34 0.38
O« u/2 -0.44 1 -0.54 -0.46 -0.53
P-P 0.41 -0.54 1 0.75 0.39
P 0.34 -0.46 0.75 1 0.21
Qv 0.38 -0.53 0.39 0.21 1
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Figure 3. Spectra of atmospheric pressure and mesao-
scale ice divergence rate at the main AIDJEX 1972
camp.

The correlation between the vorticity and the divergence rate shows the expected negative
value, with the magnitude of the vorticity being generally larger than that of the divergence rate.
In particular, the ratio of the vorticity variance to the divergence rate variance is 3.8. The
correlaticns between the wind divergence and the local pressure and pressure fluctuations are
also positive, indicating the expected wind convergence in a low pressure region and vice versa
in a high pressure region.

With respect to correlation at higher temporal frequencies, there are indications that there is
little linear correlation between the pressure and the divergence rate at periods shorter than 24
hours. This is reasonable, since the atmospheric pressure variation is very nearly band himited.
This is illustrated by the spectra of the pressure divergence rate (¢,;) me series given in Figure 3.
Clearly the pressure time series has compatatively little variance at periods shorter than 24 hours,
which agrees with typical expected synoptic variation scales (Monin 1972, p. 9). The divergence
rate spectrum, on the other hand, is relatively flat, although it does fall off by & factor of about 2 at
24-hour periods. These curves indicate that, although the meteorological driving forces on the ice
are relatively smooth, the response of the ice is more complex and erratic in time probably due to
random bumping of flows and opening and closing of leads.

Estimates of coastitutive law parameters n and

Assuming that the large viscosity limiting case of the linear drift theory is applicable to out
observed mesoscale deformation, we may estimate the viscosity parameters 5 and ¢. To do this we
utilized the slopes of the regression lines of A and w upon P (using the curves in Figure 2), and
also, for comparison, the regression lines of A and w upon P - P. Equating these regression line
slopes to the predicted slopes in eq 17 and 18 and inserting numerical values for B, & and f (as
previously listed), we obtained the results s%own in Table II.



30 DIFFERENTIAL SEA ICE DRIFT

Table Il. Estimates of n and {.

Regression line used n n+¢
A and w upon P (1.70 £ 0.73) - 10’2 kg sec™ (5.3 ¢ 3.34) - 1012 kg sec!
Aadwupon P -F  (0.66 +0.23) - 10" kg sec™!  (1.94 + 0.95) - 10'2 kp sec!

According to the estimates in Table II, » and ¢ are of the order of 102 kg sec ! with Z, the
bulk viscosity, being somewhat larger than », the shear viscosity. This result agrees with intuitive
expectations, since one would expect the ice to offer greater resistance to pure compression than
to pure shear.

Table II also shows that the estimates of 5 and £ from different regression lines are quite
similar. This illustrates that much of the observed correlation between the pressure field and the
differential ice motion is due to higher wave number (spatial) variations in the pressure field. Such
behavior suggests an explanation for why the infinite boundary solution works reasonably well
since high wave number variations may be extracted by a real space response function that is well
limited in space. Response functions to extract lower wave number variations, on the other hand,
extend much further spatially and boundary effects would consequently be expected to be more
critical at lower wave numbers.

Note also that reducing B, the wind stress constant, would reduce n and ¢, and cause the
response function to be more limited in space. Keeping this factor in mind, it is likely that our
estimates of n and { are only approximate and, in general, our deformation results could be com-
mensurate with n and £ values varying anywhere from 1011 to 1012 kg sec-!.

Regarding the validity of the large viscosity limiting case, by referring back to Figure 1 we
see that for values of 5, ¢ - 10'2 10 1013 kg sec™! the wave number cutoff of the response functions
lies in the range 1000 to 3000 km. These wavelengths are commensurate with or larger than ex-
pected synoptic variations in the pressure field, so that the use of the large 7, ¢ limiting case
appears to be justified for the data analyzed in this paper. However, for the smaller wavelengths in
this range, the expected correlation would be primarily between the high wave number pressure com-
ponents such as those estimated using P — P. The large 7, ¢ limiting case may also be justified
for other boundary conditions (see App.).

It is interesting to note that compressive stresses predicted by our estimated values of 7 and
¢ are reasonable in terms of stresses predicted by Parmerter and Coon (1972). For example, maxi-
mum values of A are of the order of 0.0004 hr~!, which yields for ¢ - 1012 g sec™! a compressive
stress of 1.1 - 10° N m™! where we have used the Glen constitutive law. This is close to the 0.1
t0 0.4 - 10° N m! needed to cause ridging in 2-m ice by the bending-failure Parmerter and Coon
ridge model. It is also similar to the maximum pressure difference of 2 - 10% N m™?! obtained by
Rothrock (1972) assuming the ice is incompressible.

Also of some interest is the numerical comparison of the calculated wind divergence rate with
that estimated from the curvature of the pressure field. To do this we take as an estimate of the
Lapacian - (4/5) [(P - P)/a®) where a - 300 km. Using the regression line of ¥- v upon P - P,
we find an observed relation which yields an Ekman angle of 44°. Certainly these comparisons are
only approximate, but they do indicate that the wind divergence estimated from the pressure field,
using the geostrophic approximation and a constant Ekman angle, is the same order of magnitude as
the calculated wind divergence rate,
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A More General Linear Constitutive Law

The previous sections generally indicate that most of the dominant aspects of the observed
mesoscale drift behavior may be explained using a simple viscous iee rheology. It is useful to
see if better azreement can be obtained using a linear viscoelastic law ineluding nemory effects,
To do this we will carry out calculations using 4 more general eonstitutive law which allows the
“viscosities"" (bulk and shear) to vary with frequeney and whieh can inelude both elastic and
viscous hehavior. One such law that is computationally similar to the Glen law is given by

t t
F(1) fqﬂ%ﬁﬁuWMv‘fCﬂ-NVW'Wmm' (19)

-

where t denotes tine.

Taking the temporal Fourier transform of this equation, we obtain (for convenience we simply
replace { by « to denote temporal transforms)

Flw) = ()% ulw) + ) O1T- o lw)] (20)

where m{w) and ¢{w) ae analyvtie in the upper half plane to guarantee causality, Two particular
limiting cases of this law are

1) Glen viscous law

) pole)

(21)
Cy - ¢80
or, in frequency space
nlw) - n
(22)
w) - ¢
where 1 and ¢ are constant viscosities.
2) Generalized Hooke's law
n(t)  56()
(23)
¢l - (o
where
1¢20 1
0T (24)

or, in frequency space

K
L
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i
w + i6

Mw) 1
(25)
i -

() - (4

W + i

with & infinitesimal.

Note that, for the Hooke's law case, 7{(w) and {(w) both decrease with decreasing frequency and
have a phase shift. The phase shift is the key indicator of elastic behavior.

Drift calculations using generalized law

It is clear that by using temporal transforms of all quantities the same formalism used for the
simple viscous calculation may be used for the more generalized calculations. In particular, eq 6-
11 may be formally extended to include the generalized constitutive law by replacing all quantities
with temporal Fourier transforms; for example, A(x) » A(x, w); A(k) + A(k, ). The arguments
about limiting cases also are similar except that the magnitudes ot 7(w) and {(w) are now the
determining factors. [n particular, for the large {7(w)|, |{(w)| limiting case, we have by analogy
to eq 17 and 18 the results:

Lim A (x, ©) BIP(x, ) - P) sin¢

: 26

Hw)l, €] + =~ Trey + Clpl s

Lim w(x, «) -BIP(x, w) - 5] cos ¢ 27
(nlw)], 1{(@) »~ 2n(w)pf

Comparison of geneial calculations with obsesvations

To test eq 26 and 27, we need to determine the coherence (and phase lag) at different fre-
quencies between the ice deformation time series and the atmospheric pressure time series. In
particular, we would like to estimate n{w) and {(w). To carry out such an estimation, we note that
for a linear system the frequency response function may be estimated by a cross spectral analysis
(Jenkins and Watts 1968, p. 352). Using the unfiltered time series A(t), w(t) and P(t) (the camp
atmospheric pressure), a cross spectral analysis was carried out using the lagged product method.
Figure 4 shows the resulting coherence spectra and phase angles. The phase angle convention is
such that a positive phase angle indicates a deformation signal lagging behind the at mospheric
pressure. Using eq 26 and 27 as models, a negative phase angle of 90° would occur for a perfect
Hooke's law behavior. Figure 5 illustrates the resulting amplitudes of 7(w) and ¢ () obtained from
estimates of the amplitude of the response functions of A and « upon P.

Figure 5 shows that both the bulk and shear ‘‘viscosities'’ {(w) and 7(w) exhibit a general
decrease 1n amplitude with increasing frequency. Referring to Figure 4, the phase angle behavior
does show some negative tendency indicative of elasticity, especially in the vort icity-pressure
phase at higher frequencies. However, the overall behavior would generally seem to be more
suggestive of a viscous behavior (0° phase angle) rather than an elastic (-90° phase angle) be-
havior.

The decrease in the ““viscosity’’ amplitudes with increasing frequency is plausible on physical
grounds; for example, let us imagine forcing a simultaneous sinusoidal oscillation in the divergence
rate and shear rate of a given region of pack ice. The displacements of the oscillations will scale
as 1/w. Consequently, at very low frequencies the average compressive stress magnitude over one
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Figure 4. Coherence spectra and Figure 5. Frequency dependence of the
phase angles between a) vorticity and generalized bulk and shear viscosity am-
atmospheric pressure and b) divergence plitudes. The amplitudes were obtained
rate and atmospheric pressure. The using the estimated response function of
95% conftidence limits for the phase A and w upon P.

angles vary from + 20° to + 25°,

cycle should be larger than that at higher frequencies because the larger compressive displace-
ments might cause more thick ice to be erushed. Similarly, the shear stress should be larger for
highly compressed ice; and since it is observed that shear and dilatation deformations generally
occur simultaneously (Ilibler et al. 1974), the average shear stress magnitude for a cycle might be
expected to increase with the increasing displacement amplitude of the lower frequency cycles.

Referring back to Figure 3, we see that most of the atmospheric pressure variance is at wave-
lengths longer than 100 hours (90% of the pressure variance in Fig. 3 is at wavelengths greater
than 120 hours). The fact that {(w), and especially n{w), are relatively flat over these wavelengths
(factor of ~ 3 variation), coupled with the small phase shifts at low frequency, indicates that at low
frequencies the Glen law limiting case li.e., 4() 2ud ¢ (w) constant] is a good first approximation
to the generalized constitutive law. Since a linear law ot any kind is probably only a crude approxi-
mation of the true ice rheology, the above results suggest that for predictive purposes there is
little advantage in using a more generalized linear law as opposed to the Glen law.

Conclusions

The most obvious inadequacies of the comparison made here are the neglect of finite boundaries
In the drift predictions and the use of a simplified ice rheology. However, the calculations and
comparisons in this paper do provide some helpful insight into expected differential sea ice drift for
different ice conditions. Specifically, this study indicates several conclusions relative to AIDJEX.
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1. The general agreement between the infinite boundary linear drift theory predictions and
observations indicates that the dominant aspeets of the mesoscale differential drift behavior
observed iu the 1971 and 1972 AIDJEX pilot programs may be explained nsing simple bonndary
couditions and straightforward linear constitutive laws. Certainly more complete calenlations are
needed to explain detailed drift behavior.

2. The solution of the linear drift caleulation indicates the sensitive nature of differential

comparisons in that smaller values of the constitutive law parameters n and ¢ do not only change
the magnitude of the divergence rate bnt completely change its sign.

3. With respect to spatial seales, the infiuite boundary linear drift solution indicates that
for long wavelength variations in ice deformation the internal ice stress is nnimportant, whereas
for short wavelength variations the internal ice stress becomes critical. Consequencly, 10 Jdrift
calenlations nsing the sume viscous parameters may be guite differeut for pressure fields varying
slowly in spice as opposed to those varying rapidly. For example, given appropriate i and ¢
values, 1t is possible to have the ice converge in a high nressure system covering most of the
Arctic Basin and to diverge in a high pressure system covering only a portion of the Aretic Basin,

Such spatial scaling effects may also have a bearing on comparisons of different time scales,
since the temporal mean of the pressure field over, say a month, may vary more slowly in space
than the mean daily pressure.

4. The cross spectral study of the atmospliere pressure and ice deformation in light of a
generalized linear constitntive law indicates that our observed strain results may be better ex-
plained by a viscoelastic law inelnding memory effects than by a simple viscous linear law. How-
ever, at low temporal fregnencies (< 0.01 hr l) the generalized Hooke's law is similar to the Glen
viscous law; this suggests that for general predictive purposes such a generalized linear law will
probably yield only slight improvement over the Glen law.

5. Finally, the fact that differential drift follows the local pressure field reasonably well
indicates that the ice velocity field may be quite nonlinear. Consequently, differential drift esti-
mation using long stran lines (- 100 km) may not adegnately resolve high wave number variations
in the ice velocity field.
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APPENDI X. RELATIVE MAGNITUDES OF DIFFERENTIAL DRIFT FORCES

A substitution of measured drift parameters into eq 6 and 7 of Part 1l of this report) allows a
1 direct assessment to be made of the relative magnitudes of the wind, water and Coriolis stress
terms independent of the value and functional form of the internal ice stress and independent of
houndary conditions. Figure 2 shows that typical values for A, w and © -V wind are given by
A-0.0002m-1, w 0.0006 het, V. .v 0.14 hr-1 . Using eq 6 and values of B, D, 0, & and f
as mentioned earlier, we find that the wind stress term is about 10 to 20 times as large as the

] water and Coriolis stress terms. This indicates that for differential drift the negleect of water
strain and Coriolis terms for compact eonditions 18 reasonable, and thus justifies the use of the
large 1,¢ drift solution.

It is useful to contrast the differentiul drift results in this paper with regular drift results,
For regular (nondifferential) drift, the wind to ice velocity ratio is typically of the order of 50 or
less (Reed and Campbell 1962, Skiles 1968). Thus, sinee D/B 50, for regular drift, water and
Coriolis stress terms may not be neglected. For differential drift results in this paper, on the
other hand, the ratio of wind divergence to ice divergence or vorticity is 300, so that water and
Coriolis stress are relatively small.
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