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STANDARD OBSERVER RESPONSE 

In the report that follows we show that the quantitative analysis of the 

performance of the display/observer system based on the display KTF and on the 

observer's sine wave response provides useful and easily applicable measures 

for performance prediction. However, in order to assure the general applica- 

bility of such measures, it is inoperative that a set of "standard observer sine 

wave response curves" be established. A set, rather than a single curve, is 

required in order to take into account the strong dependence on average bright- 

ness of the sine wave response curve. We propose that under the auspices of 

the appropriate government agencies and professional societies an internation- 

al committee be set up to undertake the specification of the standard observer 

sine wave response in a manner similar to that employed to establish the CIE 

standard obsfrver color response. Such a committee would be charged with 

ensuring that proper measurement techniques and experimental precautions are 

employed, as well as the dissemination of the results to the relevant scienti- 

fic, medical, and engineering institutions. 
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SECTION I 

INTRODUCTION 

The ultiaate goal of our image analysis program is to develop a formalism 

that can be employed to optimize the performance of sampled imaging systems, 

subject to constraints that may include both engineering and economic considera- 

tions. To achieve this goal we need to understand image sampling, to develop 

two-dimensional image quality descriptors, to obtain a detailed description of 

the performance of human visual perception, to combine our understanding of 

image sampling and visual perception into a unified theory suitable for per- 

formance prediction, and to test our theoretical predictions through suitable 

simulation experiments. This report contains our findings during the first 

phase of our .'nage analysis program. It contains a number of new results con- 

cerning the statistical properties of natural scenes, a complete, new, statis- 

tical treatment of the one-dimensional image sampling problem, a new descriptor 

suitable for the analysis of the perceived shapness of two-dimensional analog 

(nonsampled) displays having nonisotropic point-spread functions, and data ob- 

tained from a set of psychophyslcal measurements aimed at the quantitative 

understanding of the two-dimensional sine wave response of human visual per- 

ception. 

Our approach has been that of linear systems analysis, using the methodology 

of statistical communications theory. We are fully aware of the limitations of 

linear system analysis when it is used to study highly nonlinear systems such 

as human perception. Nevertheless, we know that all nonlinear physical systems 

can be described in a perturbation sense by linear equations, and thus far we 

found that the most important predictions obtained from our linear analysis 

can be verified experimentally. We treat the image sampling and sampled image 

perception in statistical terms. This is a significant departure from the 

frequently employed standard approach of calculating the wave shape of sampled 

simple test patterns. The standard approach allows one to gain an insight into 

the detailed mechanisms of aliasing, but it does not predict how important 

aliasing is. Our statistical approach predicts the most probable behavior of 

the sampled display system. This way we can easily obtain quantitative per- 

formance criteria for the overall observer-imaging system for any sampling rate. 
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Simple experimental observations cf our environment through sampling masks in- 

dicate that with natural scenes thi perceived image quality does not go through 

any sudden, sharp degradation as the sampling rate is changed from the "over- 

sampled" to the "undersampled" case; ab the sampling rate is continuously re- 

duced, the perceived image quality is continuously degraded. The calculations 

pr .sented in this report allow one to make quantitative estimates of this degra- 

dation as a function of sampling rate. 

The key elements of our statistical approach are (a) the description of 

the Information content of natural scenes in terms of the ensemble average 

power spectral density of brightness fluctuations as a function of spatial 

frequency; (b) the separation of a saapled image into an Information containing 

signal component and an information degrading noise component; and (c) the 

calculation of the perceived image as a noisy random signal filtered by the 

sine wave response function of the human visual system. We found that natural 

scenes are well described by a power spectrum that rolls off as the inverse 

square of the spatial frequency. We defined three basij quality descriptors: 

the visual capacity that is a measure of the perceived sharpness, the perceived 

signal-to-nolse ratio that is a measure of the perceivable number of grey 

levels, and an overall descriptor that combines sharpness and signal-to-nolse 

ratio and is a measure of the total visual information transfer capacity 

of the display-observer system. As a consequence of the measured natural scene 

power spectrum, we proved that the visual capacity is not only a sharpness 

descriptor, but it is also proportional to the mean square perceived gradient 

content (expectation value of the square of brightness gradient); i.e., the 

visual capacity is also a measure of the actual visual information contained 

in a perceived noise-free image. We carried out a number of detailed numerical 

calculations concerning the perceived signal-to-nolse ratio as a function of 

sampling parameters and viewing distance. Whenever applicable, preliminary 

simulation experiments carried out with block quantized images confirmed our 

theoretical predictions. Also, we showed how our formalism can be employed to 

optimize sampled display parameters subject to various constraints. 

In all of our calculations we use a sine wave response curve of the human 

visual system that was obtained from one-dimensional measurements. In order 
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to verify that such one^dinensional response curves can be employed to describe 

the general, tvo-dlaensional visual perception, we carried out measurements 

on a set of general, arbitrarily oriented sinusoidal stimuli that included 

both arbitrarily oriented one-dimensional sinusoidal gratings and two-dimen- 

sional sinusoidal brightness variations. We believe that the data presented 

in this report constitute the first quantitive results on the two-dimensional 

sine wave response of human perception. Our two-dimensional data is in general 

agreement with predictions based on previously obtained one-dimensional data 

and the assumption that linear superposition is applicable. 

The report is organized in the following major parts. Section 11 describes 

the measurements and the results pertinent to the information content of natural 

scenes. Section 111 constitutes the bulk of the report and contains the 

mathematical description of the Jisplay-observer system applicable to sam- 

pled Imaging. A second mathematical section, Section IV, treat» the general 

two-dimensional analog display problem. Here we calculate the perceived 

image sharpness for displays that have anisotropic point-spread functions. 

This is followed by a short section describing a particularly simple method of 

sampled imager simulation using a real-time block quantizer. Section VI con- 

tains a detailed description of the sine wave response measurements. Including 

both one-dimensional and two-dlmensicnal results. 
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SECTION II 

STATISTICAL PROPERTIES OF tiATURAL SCENES 

In the mathematical analysis of communication systems, it is cusfwnary to 

assume that the signal to be transmitted (and the noise that interferes with 

the faithful reception of the signal) can be treated as stationary ergodic 

processes in time [1]. Briefly, stationary in this sense implies that if we 

measure the signal (or noise) voltage, v, at times t. and t., then the sta- 

tistical expectation value of the product of these two voltage readings depends 

only on the time difference T * t. - t«. The statistical expectation value 

can be obtained experimentally by performing actual measurements on a large 

number of identical systems; i.e., on an ensemble of systems. Ergodic in this 

sense implies that the time and the ensemble averages are equal; the average 

voltage value obtained by time-averaging the signal (or noise) in a given system 

is equal to that obtained by averaging the simultaneous voltage readings from 

a large number of identical systems. For signals that describe stationary 

ergodic processes, the Wiener-Khlnchlne theorem [1] shows that the power spec- 

tral density is the Fourier transform of the auto-correlation function of the 

signal. One can show that the power spectral density thus defined is equal 

to that obtained by suitably averaging the Fourier coefficients which can be 

calculated through direct Fourier analysis of the signal waveform [l]. The 

power spectral density is a most convenient and extremely useful quantity when 

analyzing the performance of a given communication channel in terms of random 

signals. 

We assume that the brightness variations of a natural scene , as measured 

by any scanning aperture [2], can be considered as stationary ergodic processes. 

*By "natural scenes" we mean scenes that customarily constitute the normal 
human environment. Our entire investigation is primarily concerned with the 
most probable performance of imaging systems that present a distant natural 
scene to a human viewer. The statistical behavior of specialized imaging 
systems, for example, of a microscope system used to search for flaws in 
periodic arrays of microcircuits will clearly be different. Most of the 
general mathematical formulation presented in the following sections is also 
applicable to the treatment of specialized imaging systems, provided that the 
appropriate ensemble average power spectral density is used. 
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We cannot offer an explicit proof for the validity of this assumption, but we       i 

can offer two justifications for it: (a) it has been useful in connection with 

virtually all signals treated in comnunication theory, and (b) whenever possible, 

we compare the conclusions obtained by using this assumption with experimental 

observations, and unless there is a conflict, we consider it correct. The 

mathematical analysis presented in the following sections is based on this 

assumption. In order to carry out these analyses we need to know the ensemble 

average power spectral density for the brightness variations in natural scenes. 

A convenient method to measure the desired spectral density is to analyze 

experimentally the spectrum of electronically transmitted brightness signals. 

The brightness component of commercial, off-the-air television broadcasts 

provides a suitable signal source for this analysis. We assume that this 

brightness component provides a faithful representation of the brightness 

variations in the original scene; i.e., we neglect the effect of system non- 

linearities on the spectral power density. Even though some data are available 

in the literature on the spectrum of television signals [3], to our knowledge, 

no statistical data on a wide variety of scenes have been ootained previously. 

Our experimental procedure was the following. Off-the-air television 

signals broadcast on VHP channels were analyzed with a commercially available 

spectrum analyzer. The television receiver rf, i.f., and video circuits were 

of sufficiently high quality that we assumed that they did not significantly 

alter the video spectrum. The spectrum of the U. S. standard, baseband video 

signals was slowly scanned at 0.4 and 4 s/MHz. A number of scans were taken 

at various times. In all runs the input signal amplitude was normalized by 

maintaining a constant sync tip to peak white video signal amplitude. 

The results are shown in Fig. 1. The experimental data indicate that the 

ensemble average brightness variations as a function of frequency roll off 

smoothly at the rate of 20 dB/decade; i.e., the ensemble average power spectral 

s 

2 
density $(u)) is well described by *(ü!) * B/u , where at is the frequency variable 

and B is a normalization constant that is determined by the average scene 

brightness. 

The data points shown in Fig. 1 do not extend beyond 2.5 MHz (about 130 

cycles/picture width) and below IS kHz (about 1 cycle/picture width). On the 

high end, the useful range is limited by the presence of the color component 

in television broadcast signals. The lower limit is established by the hori- 

zontal television line scanning rate. 
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Figure 1. Statistical properties of televised scenes. The 
relative spectral power density as a function 
of frequency. 

Several critical questions can be raised concerning our method of measure- 

ment. The most serious question is whether our result is simply the consequence 

of the television signal structure and not a measurement of scene content. The 

television scanning process periodically samples the scene, and the power spectrum 

of a periodic sequence of constant amplitude sampling gates rolls off as the 

Inverse square of the frequency. Indeed, the spectrum of "white field" tele- 

vision signals (i.e., signals that are void of any scene information) do ex- 

hibit this expected power spectrum. 
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To check the effect of the television line structure on the spectrum of 

random signals with well-defined spectral properties, we performed a series of 

experiments in which we used electronically generated band-limited white noise 

with a Gaussian amplitude distribution as the "scene." Figure 2(a) shows the 

noise source output, and Fig. 3(a), the corresponding spectrum. In Figs. 2(a), 

(b), and (c), the vertical scale is signal voltage, and the horizontal scale 

is time with a 20-us-per-major-division scale. In Fig. 3, the vertical scale 

is spectral density in dB, and the horizontal scale is a linear frequency scale, 

with 0 to 5 MHz full scale. The signal to be analyzed was formed by sampling 

the noise source output with composite video blanking and adding composite sync 

and a suitable white level (average brightness). In Fig. 2(b) we show the 

sampled noise signal and in Fig. 3(b), the corresponding spectrum; in Figs. 2(c) 

and 3(c) we show the composite video noise signal and the corresponding spec- 

trum, respectively. The white level was chosen so that, when the signal was ob- 

served on an oscilloscope, the peak-to-peak noise excursions corresponded to 

transitions from full black to full white. The true rms voltage value of the 

noise signal corresponded to approximately 10 to 15Z of the sync tip to full 

white voltage difference of the television signal thus formed. The power spec- 

trum *(ti>) of this noise signal is plotted together with that of off-the-air 

television signals in Fig. 4. From Fig. 4 we concluded that the television 

sampling process does not significantly influence the power spectrum over most 

of the video frequency range. 

A large dc component and a small random component provide another scene 

structure that, when formed into a television signal, could lead to an inverse 

square power spectrum that does not truly represent the scene content. The 

most obvious characteristic of such a scene is low contrast. Qualitatively, 

one can easily establish that natural scenes are not low contrast scenes; one 

need only look at one's surroundings. Quantitative results can be obtained by 

directly measuring local scene brightness with a spot brightness meter or by 

examining typical monochrome television signals in the time domain. Such 

measurements quickly reveal that, within the field-of-vlew of a typical camera 

setup, brightness variations well In excess of 100:1 occur; and, a typical 

television signal is characterized by sudden large amplitude variations rather 

then by small, noise-like variations superimposed on a slowly varying constant 

amplitude level lasting a full television line time. 
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frequency. Curve A: composite video signal formed 
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noise. Curve B: average spectrum of off-the-air 
video signals, obtained from approximately 3 x 10° 
TV scan lines, black to white signal amplitude set 
to be approximately the same as for Curve A. 

A number of additional control experiments were performed including the 

spectral analysis of off-the-air scenes to which test signals with known spec- 

tral properties were added, CCD camera output signals, and white fields with 

small amounts of additive white noise. These control experiments confirmed 

the validity of our main result. We conclude that our measurements using off- 

the-air television broadcast signals for the representation of natural scenes 

provide a reasonable estimate for the spatial frequency spectral content of such 

scenes. 
2 

in connection with the measured 1/u spectral behavior, one can also make 

the following general observations: First, note that the power spectrum of 

random edges (randomly spaced with random amplitudes and step heights) also 
2 

rolls off as 1/u . This is probably more than mere coincidence; it suggests 

very strongly that natural scenes are characterized by edge transitions.  This 

suggestion is well supported by television practice, where good edge response 

is known to be a much more important quality criterion then good high-frequency 

response.  Second, note that all cameras have a finite field-of-view and. 
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therefore, the integrated brightness and the integrated square of the bright- 

ness are finite. Then, it follows that the integral of the power spectral 

density over all frequencies must be finite, no natter how small a scanning 

aperture is used in measuring the brightness fluctuations. The simplest con- 

tinuous high-frequency functional behavior that is integrable in the range 
2 

u < at < h) , with (o ->- oo, is l/d) . Third, that natural scenes cannot have a 
o —  — m      m 

flat power spectrum over any  arbitrarily low spatial frequency regime (0 £ u» <^ a».) 
* ■L 

can be shown through the following simple experimental observation.  Prepare 

a high-resolution, large photograph of a natural scene and place a sampling 

mask (opaque mask with a regular array of very small openings) over it so that 

the photograph is viewed through the mask. When this mask-scene combination is 

viewed from various viewing distances, we find that, no matter how "undersampled" 

the image is, from sufficiently far away the only effect of the mask is a re- 

duction of scene brightness.  If there were a low-frequency regime where the 

scene spectrum was flat, one could always find a sufficiently low sanpling rate 

that would result in sufficient low-frequency beats to render the sampled scene 

unintelligible at all viewing distances. A large number of image sampling 

"experiments" have been performed; for example, the Images reproduced in news- 

papers, by CCD cameras, by digital image processing systems, and by block 

quantizer? [4] (see Section V) are all sampled. No low-frequency sampling rate 

limit associated with ensembles of natural scenes has ever been found. A more 

concise statement of the above suggested experimental observations is that the 

sampling noise in sampled natural scenes can be made arbitrarily small by 

sufficiently increasing the viewing distance.  (See the following sections for 

the mathematical formulation of the above statement.) As a matter of fact, it 

was precisely this experimental observation that motivated us to carry out the 

ensemble average power spectral density measurements.  In our initial attempts 

to develop an analytical formulation of the random scene sampling problem we 

*Rigorously, ui cannot be allowed to approach zero, because In that case 
the spatial frequency bandwidth would go to zero, and, therefore, the scene 
would contain no Information. Our experimental evidence suggests that the 
arguments presented here hold for u^ ^ 10 ü^, where u^  Is approximately equal 
to the Inverse picture width. 
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used a white spectrum and found that our results contridlcted simple observa- 
2 

tlons. With the measured * - B/u distribution, we found that our analytical 

results are in good agreement with experimental observations. 

In the foregoing discussion we stressed the general requirement that the 

ensemble average power spectral density must be integrable. A function of the 
2 

form B/u is not integrable at u ■ 0. Therefore, associated with the measured 

ensemble average power spectral density of brightness fluctuations there exists 

an effective lower scene-content cutoff frequency, u.. Our experimental proce- 

dure of using off-the-air television signals does not allow us to determine the 

precise value of u. experimentally; the low frequency video spectrum is 

dominated by the scan line structure of the video signal and not by the scene 

content. Nevertheless, our data indicate that the low-frequency cutoff is the 

order of the inverse scene width. Unless it is otherwise specified, In all of 

our calculations throughout this report we will use a lower cutoff angular 

spatial frequency IA.  m  2Tr/lmage-width. For example, if the image extends over 

10° of viewing angle at the observer, vs will use a lower cutoff frequency of 

0.1 cycle/degree-of-vision. 
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SECTION III 

THEORY OF ONE-DIMENSIONAL SAMPLED DISPLAYS 

A. ASSUMPTIONS AND LIMITATIONS 

The approach presented here has been made possible by detailed experimental 

studies [5] of the one-dimensional spatial frequency response of the human 

visual system. An important implication of the existence of a modulation trans- 

fer function (MTF) of the visual system is that, given the perceived response 

to one-dimensional sine waves of known luminance modulation depth, one can, 

in principle, compute the perceptual response to a one-dimensional scene which 

consists of arbitrary luminance variations. This follows directly from Fourier's 

theorem, applied to one spatial dimension. Thus, it becomes possible, under 

certain circumstances, to treat the picture-producing device, which we call a 

display, and the human observer as components of an overall linear system which 

can be described by a set of processing parameters, transfer functions, and 

noise sources. In that case, one can bring to bear the mathematical apparatus 

of statistical communication theory to describe quantitatively the performance 

capabilities of the display-observer system. This is, in essence, the spirit 

of our approach. 

The major assumptions we make in deriving the results presented here are 

listed below. 

(1) Linearity,    This means that both the display and observer can be 

treated by linear response theory, implicitly confining us to a 

small-signal analysis. For a linear display, we require only that 

there be sufficient background brightness surrounding the display 

to allow the perception of visual information to be treated as a 

perturbation. The magnitude of the adaptive luminance determines 

the exact form of the MTF of the human visual system. Whereas, the 

detailed calculations presented here were carried out using an MTF 

measured at very high brightness [6], our mathematical results can 

be applied at any level of adaptive luminance provided the proper 

MTF for that level is employed. On the other hand, if the display 

is nonlinear, we also require that the magnitude of the brightness 

variations on the display screen be much less than the average 

brightness. 
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(2) Quasi-statio displays.    Our analysis neglects temporal effects on 

the MIF of the human visual system. Therefore, strictly speaking, 

the results of this report apply only to scenes whose brightness 

variations do not change appreciably over the time required for the 

visual system to assume static behavior. In practice this time is 

on the order of several seconds [7,8], 

(3) Monochrome displays.    The presence of color, hue, and saturation 

variations would bring about the necessity of considering a multi- 

dimensional MIF of the human visual system with three frequency 

variables (for spatial variations of luminance, hue, and saturation) 

required to describe the variation of the perceived response along 

a single direction. Although some threshold response functions have 

been measured [9] for spatial modulation of color, such a multi- 

dimensional MTF has not been determined. Therefore, we confine our- 

selves here to luminance modulation of a monochrome display. 

(4) One-dimensional displays.    Although we shall be dealing here primarily 

with one-dimensional displays, it is possible to generalize the re- 

sults of two-dimensional systems. Our first results along this line 

are presented in Section IV. The question of the extent of the 

difference between the capabilities of one- and two-dimensional 

descriptions is an Important matter for future research. 

In the sections to follow, we develop the general formulation of the one- 

dlmenslonal sampled display system. We then demonstrate how the perceived re- 

sponse to such a display may be separated into signal and noise components, the 

signal containing the visual information and the noise representing a random 

fluctuation about the signal. Next we derive the expressions tor the two im- 

portant descriptors of the sampled display system - the visual capacity and 

the perceived signal-to-noise ratio. The former quantity is the perceptual 

analog of the bandwidth of conmunlcatlon theory and is a measure of perceived 

sharpness. The latter quantity is a measure of the extent to which the dis- 

play noise due to sampling or other sources interferes with the perception of 

the visual information. Examples are given of the application of these descrip- 

tors to real and hypothetical displays. In the last section we combine the 

visual capacity and the perceived signal-to-noise ratio in a unified descriptor 

which we call the total information capacity. We demonstrate the use of this 

descriptor in optimizing display performance. 
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B. GENERAL FORMULATION OF THE ONE-DIMENSIONAL SAMPLING SCENE PROBLEM 

In this section, we derive an expression for the perceived intensity 

pattern resulting fron a particular input scene. This expression will ex- 

plicitly contain the viewing distance as well as the various display parameters. 

It will form the basis of our subsequent quantitative description of the one- 

dimensional sampled display. 

To begin, we assume that a particular one-dimensional signal, the input 

scene, is applied to the display terminals. We denote this signal by I (x), 

where x is the coordinate on the display screen.  We represent the subsequent 

processing of the signal by the following steps: 

(1) The input signal I (x) is first passed through a filter whose 

(complex) transfer function is R(u), where u is the angular 

spatial frequency as measured on the display screen. The function 

R(a)) can have any form, subject to the normalization condition 

R(0) - 1, the condition for unity amplification of a dc signal. 

The filtered signal IF(x) is then given in terms of the Fourier 

integral 

IF(x) -(    — R(a)) lo(u)) exp (ia,x) (1) 

where I (a>) is the Fourier spectrum of the input signal I (x). 

(2) The filtered signal IF(x) Is then electronically sampled within 

N equally spaced sampling gates across the display. For a display 
s 

width w, the sampling frequency u is defined as 

u) = ZnN /w (2) 
s     s 

or, alternatively, in terms of the width x = w/N of each sampling 

gate. 

u - 2Tr/x (3) 
s     o 

*For the sake of simplicity, we assume unity coordinate magnification. 
The extension to other magnifications is trivial. 
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The sampling process consists of takltife the average of IF(x) within 

a fraction s of each sampling gate. That Is, the sampled signal 1 

produced by the n'th sampling gate, whose center Is located at 

x « nx , Is given by 

(8Xo) 
■'/ 

(n + s/2)xc 

dx IF(x) (A) 

(n - 8/2)x 

We shall refer to the parameter s as the "sampling width." In 

principle, s can take on any positive value. The value s = 0 Is 

called "delta-function sampling"; only the value of I_,(x) at the 
r 

center of the sampling gate contributes to 1 . On the other nand, 
n 

values of s greater than unity Imply that. In some regions, l-.Cx) t 
contributes to more than one of the 1 . More elaborate sampling 

schemes can be devised and Included In the formalism, but the simple 

averaging process, Eq. (4), Is considered to be representative. 

(3) Next the sampled signal Is displayed on the screen by multiplying 

each I by a "printing function" P(x - nx ) to give the intensity 

pattern on the screen: 
N 

i(x).E ^^-^ <5> 
n-l 

The function P(x) is a property of the display. As we shall see, 

its particular form will be of great Importance in determining 

display performance. 

(4) The displayed pattern I(x) Is perceived by an observer located a 

distance r from the screen. The observer is described by an MTF 

whose relevant frequency coordinate v is determined at the retina 

and is thus measured either in cycles/radian-of-vision (v = ur/Zv) 

or cycles/degree-of-vision (v » u)r/360). The particular MTF 0(v) 

used in our calculations is shown in Fig. 5.  It combines the 

low-frequency results of Davidson with the high-frequency measure- 

ments of Campbell and Green [6]. It is valid for high brightness 

levels (in excess of 100 ft-L). The MTF 0(v) is approximately 
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Figure 5. Modulation transfer function 0(v) of the human visual system 
as a function of spatial frequency v In cycles/degree-of-vlslon. 
The solid line represents the experimental results of David- 
son [6]. The dashed curve represents the approximation [11], 
0(v) - (3.637 v/v0) [1 + 3.436 (v/v0) - 4.123 (v/v0)

2 + 
2.562 (v/v0)3]-l, with v0 = 8 cycles/degree-of-vlslon. 

linear In frequency for values of v well below the peak at 8 cycles/ 

degree-of-vlslon; at high frequencies, 0(v) varies approximately 

as 1/v . 

We wish to calculate the Intensity pattern on the screen I(x) In terms of 

the Fourier spectrum of the input signal. First, we combine Eqs. (1) and (4) 

to obtain the following expersslon for I 

/du 

. 2' 
sine (su/w ) R(<i))  I  (u) exp  (2TTlnu/ü) ) so s (6) 

where sine  (y)  is the u—<al function 

sine (y)  - sin(ny)/Try (7) 

33 

    - _-^—.   ■   ' ~*~m*tmlmi*mm*M**^.. 



Next, we insert Eq. (6) into Eq. (5) and express P(x - ax ) as a Fourier in- 

tegral to obtain 

+» +00 

I(x) -J  § / ^ ku)  sine (8a)Vu)8) !(«•) io(a>') 

—0»        ~oe 

N 
s 

x exp (l«x) 2^ exP [2irln((«),-«)/u ] (8) 

n-1 

where P(u) is the Fourier transform of the printing function P(x). It the 

number of samples N Is very large, we car evaluate 
s 

Eq. (8) by making use of the mathematical identity 

number of samples N is very large, we car evaluate the summation over n in 
s 

2 ex?  (iny) - 2irö(y + 2irm); m - 0, + 1, + 2,   .   .   . (9) 

where 6(y)  is the Dirac delta-function.    Employing Eq.   (9), we perform the 

integration over u*  in Eq.   (8)  to obtain 

+» +» 

I(x) -       jp     I-r^     x ~    P(ü))sinc[8(ü)-m<») )/UJ ] R((ü-mu) ) 
IQB—00        —00 

x I  (u-iuo )  exp (lux) (10) 

At this point, we Introduce a normalization constraint on P(u). Since we will 

want to compare displays with equal total light output, we insist that, for a 

/. 

2 w 

unit dc input, the integrated intensity  I     dx I(x) ■ w regardless of the 
' 1 
.-2W 

form of P(x). Employing Eq. (10), with I (m) ■ 2ir6(u), we readily obtain the 

condition P(0) - x , again valid for N » 1. Therefore, the factor 
* A O S  A A 

x  P(a)) in Eq. (10) may be replaced by P(a))/P(0). Instead we choose to re- 
O A 

normalize P(u)) such that 

3A 
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HU) - x^1 PC«) - P(ü»)/P(0) <11> 

According to step (4) above, the intensity pattern Eq. (10) is transferred 

to the perceptual level by means of the MTF of i-he human visual system 0(v). 

Since Eq. (10) is in the form of a Fourier integral, the perceived pattern E(x) 

is obtained from this equation by simply multiplying the integrand of Eq. (10) 

by the function 0((Dr/2ir). Thus, using Eq. (11), we have the result for E(x) 

+00 +• 

E(x) - 2   /  27 0(ur/2ir> n(u))sinc[s(ü>-mu8)/ü)g] 

x R((i)-mu) ) I (u-mu ) exp (iux) (12) 
SO      8 

Eq. (12) is the major result of this section. It expresses the perceived 

pattern in terms of the viewing distance, the various filter functions and 

parameters of the display system, and the spectrum of the input scene. 

Equation (12) shows that the perceived intensity can be regarded as the 

sum of various contributions corresponding to a displacement of the spectral 

content of the input scene I ((») by multiples of the sampling frequency. The 

situation is shown schematically in Fig. 6, where the contributions of specific 

m-values to the total spectral content are plotted as a function of frequency. 

Two distinct cases are shown, depending on the relative values of the sampling 

frequency u and the maximum frequency tit.  for which the filter function R(u) 

is non.-zero. 

As shown in Fig. 6(a), If u > 2«^, the contributions to the integrand of 

Eq. (12) from the various m-values do not overlap In frequency. Such a dis- 

play obeys the so-called Nyquist criterion [10], and we call displays of this 

type "oversampled". Suppose now that the MTF of the human visual system coull 

be replaced by unity for all frequencies whose magnitude is less than a value 

tu such that <*>« .1 « .1 («■» - (O. Then, using Eq. (12), it is easy to show 

*We neglect any angular factors that arise from such sources as oblique angle 
viewing and Lambertlan light emission from the display screen. To the extent 
that these effects only alter the total brightness of the display, they can 
be included in the function f (ui). 
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SPECTRAL 
CONTENT 

(ü8>2ftV, 

(a) 

(i)m if   «s   ft   ^s **>*"* 

ws«2wM 

WS-WM 

2WSHÜM 
t 2ws 

Figure 6. Schematic representation of the spectral content of a sampled 
display as a function of spatial frequency: (a) a display that 
obeys the Nyqulst criterion ü)8 > 2UM? (b) a display for which 
(^ < (Lg < 2«^. 

that, if we take s ■ 0 (delta-function sampling), n(u) - 1 (delta-function 

printing function), and R(w) ■ 0 for |u| > UL., the function E(:;) is identical 

to one that is produced by merely sending the input scene through the filter 

function R(u) without undergoing the subsequent samplirg process. This result 

is equivalent to the well-known Shannon theorem [10] for communication systems 

that obey the Siyqulst criterion. Of course, the KTF of the human system cannot 

be represented by such a simple function. Thus, although the display obeys the 

Nyqulst criterion, it is not possible to transfer to the perceptual level an 

exact replica of the original band-limited signal. However, the Nyqulst 
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criterion, per se, is irrelevant for the human observer viewing a sampled 

display with u > UL..    If we accept the concept of an effective cutoff frequency 

v of the human visual system, we can increase the viewing distance until 

v < (u> - (Or/211. At such viewing distances, the viewer would be unable to 

perceive the difference between the sampled display and an analog display with 

an overall band-limited MTF R(u). We are thus led to a theorem appropriate for 

sampled displays: For display systems with w > u^, there exists a range of 

vieuing distances  r > 2ITV /(U - OJ ) such thatt with delta-function sampling 

and printing, the display is indistinguishable from an analog display with 

the same band-limiting oharacteristios, viewed at the same distance,    (In other 

words, we require only one sample per wavelength instead of the customary two 

samples per wavelength, as set by the general sampling theorem [101.) As an 

example, we estimate the required viewing distance for a hypothetical display 

sampled at the Nyqulst rate u ■ 2UL..    Then, taking v * 60 cycles/degree-of- 

vislon ■ 3440 cycles/radian-of-vislon, we have r/w ^ 6900/N . For 700 samples, s 
the theorem says that such a display would be indistinguishable from the equiva- 

lent analog display at viewing distances greater than about 10 picture widths. 

In Fig. 6(b), we indicate the situation for displays that have u < 2uw s   n 
and thus do not obey the Nyqulst criterion. We call displays of this type 

"undersampled". As can be seen from the figure, the contributions to the 

integrand of Eq. (12) from the various m-values overlap in frequency. There- 

fore, according to Shannon [10], it is Impossible to reconstruct the original 

band-limited signal I_(x) no matter what form of sampling or printing function 

Is chosen and no matter what form we take for the MTF of the human visual 

system. However, according to the theorem sta1 id above, as long as u > u^, 

we can devise a sampling and printing technique such that an observer can 

position himself sufficiently far away for him to be unaware of the difference 

between the sampled display and an analog display with an overall MTF R(u). 

On the other hand, if u < üL.. It is always possible to construct a scene such 

that terms in Eq. (12) with m ^ 0 can be perceived no matter what the viewing 

distance. The condition u> < UL. is simply the condition that allows Molrl 

beats to be generated at dc. 

*This value of v corresponds to an acuity of approximately 1 min of angle [13]. 
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C. SEPARATION OF THE PERCEIVED INTENSITY INTO SIGNAL AND NOISE COMPONENTS 

In this section, we employ general arguments regarding the Invarlance and 

statistical properties of E(x) In order to justify the separation of E(x) Into 

slgml and noise components. This separation Is essential to the derivation 

of the descriptors given later In this report. 

As can be seen from Eq. (12), the total perceived response can be written 

as the sum of contributions from the various m-values: 

E(x) - 2 EJX> m 
(13) 

no- 

where 

E
m(
x) m 

(ü)r/2ir) ri(ü))slnc[s(b)-ou )/«) ] 
s  s 

%-">! 

x R(u-mtü ) I (w-mu) ) exp (lux) so    s (14) 

In Eq. (14) we have explicitly Included the Integration limits Imposed by the 

finite passband associated with R(u). We now separate the contributions to 

E(x) Into a signal part Es(x) and a noise part EN(x) according to the following 

prescription: 

E(x) - Es(x) + EN(x) (15) 

where 

^ 

Es(x)  - Eo(x) /£» Cwr/2ir) n(ü))sinc  (su/u ) 

-"M 

x R(a))  I  (w) exp (lux) (16) 
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+«        j«    ****** 

EN<«) " E Em(x) ' E   jt 0(ü,r/2l,) *(&,) 

x sinc[8(u)-mw )/(«) ] RCu-mu ) I (u-mu) ) exp(iü)x) (17) 
S   8 SOS 

Now, the question arises as to what extent the quantities E-Cx) and ^(x) 

truly represent signal and noise contributions, respectively, to the total 

perceived pattern. At the outset, one nay legitimately argue that true noise 

is unpredictable, since it arises from random processes, so that the quantity 

defined in Eq. (17), being completely determined by the Input spectrum and the 

various operations performed by the display, does not represent true noise. 

In fact, the quantity EN represents a kind of distortion in which any input 

frequency u> produces output amplitudes at (u (■ mu ) for all Integer values of 
s 

m. However, in what follows, we show that, in a statistical sense, the noise 

part EN(x) of the total perceived intensity E(x) is uncorrelated with the in- 

put scene I (x), and, thus, EN(x) does possess a fundamental property of noise. 

THEOREM:   If the ensemble of input somes is translationally invarimt 

(i,e., stationary in a statistical sense)  EM(x) and I (x) are uncorrelated. 

To prove the theorem, we will calculate the quantity <E(x)I (x)>, where the 

bar denotes an average over x, and the bracket symbol stands for an average 

over an ensemble of many scenes.. From Eq. (12) for E(x), we have 

^w 

<E(x)l0(x)> - (1/w) j  dx   E  J f J |f 0(ü,r/2ir) 

2 W 

x n(üj)sinc[s(ui-mu )/u> ] R(w-mü; ) SS        s 
A A 

x <I (w-uuj ) I (ü)
,
)> exp[i(u + u^x] QOX O      SO V-1-"/ 

In order to obtain the desired result, we must prove the following lemma. 

LEMMA:   If the ensemble of scenes is translationally invariant, 

<I (u)! (ü)')> is of the form  2Tr♦((*»)6(tü-u'). 
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PROOF: We write the autocorrelation function for the ensemble of input scenes 

in terms of the spectra of these scenes: 

+00 +00 

^      f&ji    f  du» 

•'-00 «(.00 

<IOCK) IO(XH)> . I g    I   ^ <I0(U) lo(u.)> I 

x exp[i(ü) + u*)« + iu'L] 

+00 +00 

r du r du* <I (u) i0*(wl)> 

x expUCw-w')» - iu'L] (19) 

wpere we have used the relation I (u) = I (-u), a consequence of the reality 

of 1 (x). From Eq. (19), it is seen that, for an arbitrary I (u), the only 

way the autocorrelation function can be independent of x is for 

<I (ü)) I *(üJ,)> - 2tr »(üOfiOü'-ü)) (20) 
o   o 

where $(a)) is a  real function, the power spectrum of the ensemble of scenes. 

Thus, the lenma is proved, and Eq. (19) reduces to the Wiener-Khinchin 

theorem [1]; i.e., the autocorrelation function is the Fourier transform of 

the power spectrum. 

Returning now to Eq. (18), use of the lemma gives rise to 

+- w  4«     +» 

<E(x)I (x)> - (1/w) I  dx  > ;    I ~ 0(a>r/2n) iKu) !(x)Io(x)>. (1/w) /* dx  £    f^O 

J 2 QB—00     •'—O» 

2 W 

x sinc[8(u-mu )/(ü ] R(ü)-mu^) ss s 

x ♦(üI-OüJ )  exp(imü) x) (21) 
s s 
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For a very large display, the integration over x gives a contribution only 

from the term m * 0, since all terms with mj'O are pure oscillatory in x and 

average to zero. We thus have the desired result 

<E(x)Io(x)> - <Es(x) Io(x)> 

<EN(x)Io(x)> - 0 (22) 

where E-(x) and £»00 are the signal and noise contributions, respectively, 

as defined in Eqs. (16) and (17). 

The above theorem shows that, on the average, EN(x) does not contribute 

to the correlation function <E(x)I (x)>. This means that we may regard E(x) 

as consisting of a correlated part Ec(x) plus a fluctuating part II,(x), where 

the average value of the fluctuation about Es(x) vanishes. Thus, even though 

EN(x) is not the product of the kind of random process we normally associate 

with noise, it does display the fundamental property oi  noiize of being un- 

correlated with the input. Simply put, this means that if we look at a 

particular place on a display screen on which an arbitrary scene has been 

produced, there is no reason to expect that noise will either add to or sab- 

tract from the perceived signal. The expectation value of the product of the 

Input signal and the perceived noise for an arbitrary input scene should 

vanish. Indeed, Eq. (22) shows that the separation E(x) ■ [Es(x) + E-Xx)], 

where Es(x) and EN(x) are given in Eqs. (16) and (17), satisfies this criterion. 

Furthermore, we can show that Eg(x) and EN(x) have significantly dif- 

ferent invariance properties under an arbitrary translation of the input image. 

Consider a displacement ox of the Input scene. From the form of Es(x) given 

in Eq. (16), it is obvious that Es(x) can be regarded as being generated by an 

effective display MTF R ffCw) such that 

A 

R rr(ü») = IUW) sinc(sü)/ü) ) R((ü) (23) 
er i s 

Thus, if I (x) -► 1 (x + 6x), we must have Ee(x) -»• E0(x + 6x); we obtain the 
0        0 0        0 

same sigral but shifted by the same distance as was the input. However, from 

the form of EN(x) given in Eq. (17), it is easy to show that, for arbitrary 

6x and I (ID), none of the E (x) comprising E.T(x) transforms to E (x + 6x). o m N m 

hi 
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Indeed, we find Chat, under the translation I (x) •*■  I (x+äx), 

E (x) -* E (xf6x)exp(lina) 6x). Thus, EM(x) is, in general, altered in a compli- 
ul ID S W 

cated way by the translation. If EN(x) arose from random processes not 

associated with the scene content itself, we would not expect EN(x) to depend 

on the "phase" of the input signal. Nevertheless, a fundamental, property of 

any communication system is that, for an arbitrary displacement of the input 

stimulus, the output message should also translate uniformly to give the same 

signal but displaced by the same amount as the input. No distortions of the 

signal should be introduced by a decision to send a message earlier or later 

than was originally intended. The quantity E^Cx), defined in Eq. (16), does 

indeed meet this requirement, whereas E^x), deficad in Eq. (17), does not 

display this translational invariance. 

The above properties of E„(x) and EN(x) show that our method of separating 

the perceived intensity into signal and noise components is justified. The 

quantity E-(x) is correlated with the input scene. It has the same translation 

properties as the input scene, and so it can be described by an effective MTF, 

given in Eq. (23). The quantity EN(x) is uncorrelated with the input.  It 

does not respond to translations of the input scene in the same way as E_'x) 

but rather gives rise to a random error that depends on the input scene, its 

phase with respect to the sampling locations, and the parameters of the 

sampling process. 

D. TWO DESCRIPTORS:  THE VISUAL CAPACITY AND THE PERCEIVED 
SIGNAL-TO-NOISE RATIO 

With the formalism developed in the preceding sections, we are in a 

position to calculate two fundamental descriptors for the one-dimensional 

sampled display.  In the spirit of our treatment of the display-observer system 

as a linear communication channel, it is natural to consider quantities that 

are analogous to the well-known quality descriptors for such systems: band- 

width and signal-to-noise ratio. In the discussion below, we develop the ex- 

pressions for the perceptual analog of thete Important quantities. The quantity 

analogous to the bandwidth is the visual capacity, a measure of edge dis- 

crimination ability in the absence of noise. The perceived signal-to-noise 

ratio is a determination of the relative amount of signal transmitted to the 

perceptual level compared with the corresponding noise. 
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1. The Visual Capacity 

In Ref. [11]» two of the authors of this report developed a descriptor 

that Is a direct measure of the number of fully resolvable edge transitions 

that can be perceived across a noiseless, analog display of «rtdth w. This 
T 

descriptor, called the total visual capacity and denoted by C , is computed 

from the perceived width x of an edge transition according to the relation [11] 

CT - w/x (24) 
v    e 

The edge width x , in turn, is computed from the integral of the square of the 

magnitude of the overall MEF of the display-observer system [11] 

l/xe - (l/ir)  j  du 02(a)r/2Tr) |RO(ü))|
2 (25) e 

Here R (u) represents the overall MTF of the display system, Including band 

limitations of the input as well as the limitations of the display device it- 
T 

self. Combining Eqs. (24) and (25), we have, making the dependence of C on 

viewing distance explicit, 

CO 

C^(r) - (W/TT) f du 02(u)r/2Tr) \*oiu)\2 (26) 

0     Analog Displays 

T 
As discussed in Ref. [11], C can be regarded as the information capacity of  a 

noiseless two-level communication channel. It Is also a generalization to the 

perceptual level of the noise equivalent bandwidth that was proposed by 0. H. 

Schade [2] as an image quality descriptor. Schade argued that the specifica- 

tion of the limiting resolution alone is inadequate as a descriptor. Instead, 

the noise equivalent bandwidth, which weights a given frequency according to 

the square of the MTF at that frequency, provides a better overall quantitative 

measure of the effective bandwidth of the system. The authors of Ref. [11] 

showed that, when generalized to the perceptual level, the noise equivalent 

bandwidth is actually a measure of perceived edge sharpness. 
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The usefulness of the visual capacity has been demonstrated [11] in the 

prediction of such quantities as the optimum viewing distance «id the relative 

performance of various display systems at any viewing distance, all within the 

restriction that we confine ourselves to noiseless analog systems. In order 

to extend Eq. (26) to the case of sampled displays, we first recall that, 

according to the discussion of the previous section, the perceived response to 

a scene Imaged on a sampled display may be regarded as the sum of the signal 

and noise contributions. The signal contribution is described by an effective 

MTF R ff(u) for sampled displays, given in Eq. (23), while the noise contribu- 

tion is uncorrelated with the ensemble of Input scenes. Therefore, the visual 

capacity for sampled displays is obtained from Eq. (26) by substituting Reff(ai) 

for the overall MTF R (u) of the analog display o 

CT(r) - (w/ir)     |   du 0Z(üir/2ir)   |n(ü))lZ 8lncZ(8ü)/u) )|R(u))|^      (27) 
v (W/TT) f 

Sampled Displays 

T 
It should be emphasized that Eq. (27) for C is a measure of edge discrimina- 

tion ability, ignoring the effect of the sampling noise EN(x). As such, it 

represents the effective bandwidth of the display-observer communication 

system. In our formulation, the deleterious effect of the noise is not in- 

cluded in this bandwidth but rather is included in the perceived signal-to- 

nolse ratio, to be discussed later. 

a. Properties of the Visual Capacity.  - The general properties of C for 

analog display systems have been discussed in Ref. [11]. We note here that, 
T 

for the case R(ü)) » R (u), a comparison of Eqs. (26) and (27) for the C of 

analog and sampled display systems, respectively, shows that sampling always 

degrades the perceived sharpness of the equivalent analog display.    This ob- 

servatlon follows immediately from the fact that both llUu)] and 8inc(su/u> ) 1 8 
are always less than or equal to unity [12].  It is clear that the visual 

capacity of a sampled display is increased by raising the sampling frequency, 

or, alternatively, by employing a very small sampling width s and a very narrow 

printing function P(x). Indeed in the limit of delta-function sampling s » 0 

and delta-function printing II(u) - 1, we recover the visual capacity of an 

equivalent analog display with a band-limited input characteristic R(a)) and a 
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perfect writing beam. This conclusion may appear to be somewhat surprising 

since it does not contain an explicit statement about the value of N ; the 

only requirement is that s » p » 0. There is, in fact, an implicit require- 

ment that N » 1, because our formalism is based on the assumption that the 
s 

number of samples is sufficiently large to allow the replacement of the summa- 

tion over the finite number of sampling cells by an Infinite sum [see Eqs. 

(8) and (9)]. Furthermore, it Is Important to keep in mind that the sampled 

image can be separated into a signal and a sampling noise component only in 

a statistical sense, and that this separation is essential for the definition 

of R „((*)) and, therefore, for the calculation of C eff '   »        » v 
the essential difference between R eff 

The reader should grasp 

(u) and the MTF of an ordinary analog 

display.  In the case of an analog display, the reproduced contrast ratio tor 

any given sinusoidal input of frequency w is explicitly specified by the modula- 

tion transfer function R(ü)); in the general sampled display case, Reff(
u) by 

Itself does not specify the reproduced contrast because the displayed signal 

Is always accompanied by the sampling noise. However, as shown in Section 

III.C, R ff(w) does Indeed give the average response of the display, so that 
T 

Eq. (27) for C represents the number of perceivable edges after suitable 

averaging cancels the sampling noise. The effect of the noise will be Included 

separately in the calculation of the perceived slgnal-to-nolse ratio. We shall 

see later that, whereas decreasing the sampling width and the width of the 

printing function Improves the visual capacity, such a practice degrades the 

perceived slgnal-to-nolse ratio. The optimum strategy can only be determined 

by considering both visual capacity and perceived slgnal-to-nolse ratio. 
T 

The asymptotic behavior of C at very small and very large viewing dis- 

tances can be obtained by extending the technique employed in Ref. [11]. Each 

of the four functions appearing in the Integrand of Eq. (27) have a charac- 

teristic range In u-space. These ranges are: 

Range of 0{ur/2-n) ^  2irv /r 

M Range of | R(u)) | ^ a). 

Range of sine (sw/u ) ^ w /s 

Range of  |ll(ü))|  "V W /p. 
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Here v is the retinal frequency for which 0(v) has a maximum; from Fig. 5, it 

is seen that v ■ 8 eyeles/degree-of-vision ■ 458 cycles/radian-of-vision. The 

quantity p defines the effective dimensionless width of the printing function 

P(x); i.e., the quantity px is the range of P(x). 

The far-field viewing distance limit of C (r) is obtained for such large 

values of r that the range of 0(u)r/2iT) is much less than those of the other 

three functions appearing in the integrand of Eq. (27). In that case, R(u), 

iKw), and sinc(8ü)/ü) ) may be replaced by unity in Eq. (27) to give 

CT(r) 
v 

w/e^r 
c 

(28) 

where 

i/e. 

OS 

/ 
dv cr(v) (29) 

Is the perceived angular width of a single edge transition, as reproduced by 

a perfect display. As discussed in Ref. [11], we have adopted a scale for 0(v) 

that gives a maxlmuia value of the total visual capacity equal to the number of 

TV lines N—. * t^w/fr that can be produced by an analog display with a flat re- 

sponse R(ü)) = 1 below the maximum frequency UL.. This procedure establishes 

the value [11] 

9 »1.84 min of angle 
e 

(30) 

for the perceived angular width of a perfect edge. This value lies within the 

range found in early measurements of visual acuity on line patterns [13'. How- 
GO 

ever, the numerical value of 6 given here has no fundamental perceptual slgnif- 
e T 

icance; it is used only to establish a convenient absolute scale for C that 

allows easy appreciation of any visual capacity value in terms of a corresponding 

ideal TV system. Combining Eqs. (29) and (30) gives the following simple law 

for the visual capacity at very large viewing distances: 

C (r) - 1870 w/r; for r/2Trv » l/ui.,, p/u , s/u 
V o      M    s    s 

(31) 
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In the limit of very small viewing distances such that the range of the 

Integrand of Eq.   (27) is not affected by the high-frequency rolloff of 0(ur/2ir), 

the function 0(o)r/2ir) can be replaced by its low-frequency, linear 

asymptote [11] 

Lim 0(v) 
v -► 0 

3.637 \>/\) 
('J2) 

We have then 

OD 

CT(r) - 4.21 w(r/2irv )2     /    du u)2  \Uu)\2 8lnc2(8ü)/a» )1R((O)|2;  (33) 
v 0       J 

0 

for r/2iTv    « Largest of l/wu, p/u , s/u 
O M     S     S 

T 
From Eq. (33) it is seen that, in near-field viewing, C (r) Increases as the 

square of the viewing distance, with the magnitude determined by the second 

moment of the effective display MTF. The occurrence of the second moment 

emphasizes the high-frequency response of the display system. This result 

can be understood by considering that, when we view an Image from such small 

distances that all spatial frequencies produced by the display lie below the 

peak in the response of the human visual system, we would be quite capable of 

perceiving detail that is, in fact, not being produced by the display. In this 

case, visual capacity is increased either by increasing the high-frequency 

response of the display or by moving further away so as to bring the peak of 

the response of the human visual system within the effective passband of the 

display. 
T 2 

Since C (r) rises as r for small viewing distances and falls off as 1/r 
V T 

at large viewing distances, C (r) must achieve a maximum value at some inter- 
V T 

mediate viewing distance. One anticipates that the maximum value of C (r) is 

achieved at the viewing distance for which the peak of the MTF of the human 

visual system corresponds approximately to the rolloff frequency of thp. effec- 

tive display MTF R rr(w). Thus, we expect that the peak value of the visual 

capacity should occur at a viewing distance r such that 

r /2iiv ^ Largest of 1/u.., p/w , sA' 
p   o n   s    d 

(34) 
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T 
Eq. (34) simply says that the viewing distance for maximum C (r) is determined 

by matching the peak of the eye's sensitivity curve to the effective bandwidth 

of the display. 

b. Caloulated Examples. - An example of the degradation of the visual capacity 

due to sampling is shown in Fig. 7. The curves shown in the figure were calcu- 

lated from Eq. (27) for hypothetical sampled displays with the indicated values 

of the number of samples N and with a flat pre-sampling filter function 
s 

R(ü>) « 1 up to the maximum (cutoff) frequency Uj.. The value of <iJM was chosen 

to give a limiting resolution of NTV * ü^W/TT - 500 lines. We have taken full- 

width sampling s » 1 and a printing function that corresponds to constant 

illumination of each sampling aperture. Thus, we have P(x) » 1 for |x| ^■~ x 
1 A ^ o 

and P(x) ■ 0 for |x| > -r x , giving II(üJ) = sine (u/u ). The curve labeled 
*  O 8 _ 

"N s oo" corresponds to the 500-line analog system, so that C (r) has a maximum 
s vT 

value of 500 transitions, as it should. As N is decreased, C (r) decreases at 

all viewing distances, and r is shifted to higher values from its value of 
P 

about 2.7 picture widths for the analog limit. The calculated drop of the 

visual capacity Is gradual at first but becomes severe for N ^ 1000. We 
s 

notice that, since 

NTV/Ns - V^s (35) 

when N has been reduced to 500 samples, the display is being sampled at pre- 
s 

clsely the Nyqulst rate at ■ 21*1.. At this point, the peak visual capacity is 

equivalent to only a 280-line analog display, and r has been shifted to about 

3.7 picture widths. Further reductions of N would cause an even greater 
T S 

degradation of C (r). 
V T 

In Fig. 8, we have used Eqs. (26) and (27) to compare C (r) for the 

horizontal and vertical directions of a real television display device consist- 

ing of a wlde-angla, small-screen color kinescope. This is of particular in- 

terest because this display is a hybrid system; the image-forming capability in 

the horizontal direction is that of an analog scanning display, whereas the • 

image-forming method In the vertical direction is that of a sampled display. 

In the calculations, we used a measured kinescope MTF for a single electron 

*E. M. Herold, private communication. 
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2 3 4 
VIEWING  DISTANCE 

5 

Figure 7. Visual capacity C?L as a function of viewing distance 
in picture widths for a display system with a flat 
passband giving a limiting resolution N-j^ - 500 lines, 
The number of samples Ns for each of the curves is 
indicated in the figure. 
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T 
Figure 8. Visual capacity C^ as a function of viewing distance In picture 

heights for a real television display device. The C^ for both 
vertical and horizontal directions are shown. An Ns = 640-llne 
format has been employed for the vertical direction in order to 
compensate for the 4:3 aspect ratio of the display screen. 

gun in order to obtain the effective MTF's for the horizontal aiid vertical 

directions. The beam current level in the kinescope at which the MTF's were 

determined corresponds to approximately 100-ft-L brightness. The contribution 

to R (a)) of the video response function limiting the range of frequencies 
0 * 

available for the horizontal signals was taken from typical measured circuit 

characteristics. For the vertical direction, we assumed extreme undersampllng 

and, therefore, took o^ = <», In addition, we used the value s - 1, corresponding 

to full-width sampling.  In order to effect a direct comparison of the horl- 
T 

zontal and vertical C (r), we compensated for the 4:3 aspect ratio of the 
V     T 

display screen by computing C (r) for the vertical direction using a 640-sample 

format rather than the actual number, 480 samples, contained in one picture 

height. However, the viewing distance coordinate is measured in picture 

*J. R. van Raalte and W. G. Gibson, private communication. 
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heights h, as is customary in the television industry. In performing the cal- 

culations, we assumed an Isotropie 0(\i), a reasonably good approximation, as 

shown elsewhere in this report. It is seen from Fig. 8 that the sharpness 

capability of the horizontal and vertical directions are only fairly well 

matched in this case. The peak visual capacity for the horizontal direction 

is about 18Z less than that for the vertical direction, and this peak occurs 

at a considerably larger viewing distance, about 7h compared with 4.7h for the 

vertical direction. The major cause of the calculated anisotropy is the in- 

complete utilization of the bandwidth available for the transmission of 

luminance signals for horizontal display. 

In Fig. 9, we illustrate the effect of varying the width of the printing 
T 

function on the C (r) for the vertical (sampled) direction of the television 

display described above. Here we use a 480-sample format to compute the actual 

visual capacity for the display of height h. The parameter p represents the 

effective width r' the printing function. In this case, P(x) was approximately 

Gaussian, and we have defined p as the distance, in units of x , at which the 

printing function falls to 1/e of its maximum value. The particular value 

p ■ 0.642 was the value observed experimentally, ?nd the other values of p for 

which curves are shown represent successive incremental changes of about 20% 

from the experimental value. It is seen that, by increasing p, we degrade the 

visual capacity and increase r , whereas the visual capacity is enhanced and 

r moves to smaller values as p is decreased from the experimental value. 

This behavior is an example of the general observation that narrow width 
T 

printing and sampling functions always enhance C (r).  In the limit p -»• 0, 
T     V 

we calculate that the maximum value of C (r) - 375 transitions at a viewing 

distance r /h = 2.7. This result shows that an s = 1 sampled display system 

with N samples operating in the extreme undersampled limit has a maximum 

edge discrimination ability equivalent to an analog display with a flat pass- 

band and limiting resolution given by NTV - (375/480) Ns = 0.78Ns. 

a.    The Perceived Gradient Content and its Relation to the Visual Capacity. - 

Before proceeding to a discussion of the perceived signal-to-noise ratio, we 

present an important theorem relating the visual capacity to a statistical 

quantity that is representative of the information content of actual observed 

scenes. We define the quantity G according to the formula. 
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Figure 9. Visual capacity (£ as a function of viewing distance in picture 
heights for the vertical direction (N8 « 480) of a television 
display. The values of the parameter p, which represents the 
effective width of the Gaussian printing function, are given 
in the figure. The particular value obtained fron measurements 
of a commercially available kinescope is indicated. 

<(dEs(x)/dx)S 

<I*(x)> 

(36) 

Thus, G is the square of the gradient of the perceived signal response, averaged 

over the ensemble of scenes and normalized with respect to brightness. We call 

G the perceived gradient content  of the ensemble of scenes. Its physical 

meaning can be grasped by considering the fact that visual information is con- 

tained only in regions where the perceived brightness varies with distance on 

the display screen (e.g., edges, boundaries, etc.). We can view G as the 

average inverse square of the distance required for a perceived transition. 

Thus, the gradient content may be regarded as a measure of the Information 

density of the displayed scenes. The theorem we wish to prove is that, for 
2 

the observed power spectrum of the ensemble of scenes 4(u) « l/u , 
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G - (2u)T /w) C 
Li V 

(37) 

where w. is an effective lower cutoff frequency of $(w). Equation (37) states 

that, at any viewing distance, the edge discrimination ability of the observer 

is proportional to the statistical average of a quantity that is representative 

of the perceived information content of the observed scenes. The importance 
T 

of this result is that it relates C , which describes the system aapability, 

to an actual response G that describes the average perceived content  of the 

displayed scenes. 
2 

To prove Eq. (37), we first write the expression for <(dE (x)/dx) >, 

using Eq. (16) for EgU) and Eq. (23) for R -Aui) 

■%    ■% 

<(dEs(x)/dx)
2> - I   |f j   ff' (Kur/lTT) 0{iü't/2t) 

"M M 

x Reff(u)) Rgff^') 
<I0(w) I0(a)') > (io)) (la)') 

x exp [i((ü + ü)')X) (38) 

Next we employ Eq. (20) to relate the quantity within the bracket to the power 
* 

spectrum *(u)). This permits a trivial integration over or. We have then 

<(dEs(x)/dx)S - (1/ TT)  j  do) 02(ü)r/2TT) |Ra<:<:(ü))|
2 ü)

2
*^) 

ett (39) 

In Section II we reported that the power spectrum of random scenes has the 

form 

•Km) • B/ID ;     |wl^ ü)L (40) 

*We make use of the identity Reff(ü»)«Reff(-u), a consequence of the reality of 
E(x), to change the integral over all u to one over only positive frequencies. 
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Here UL, the effective lower cutoff frequency, corresponds to a spatial wave- 

length of roughly one picture width, so that cu = 2ii/w. The exact value of u 

must be determined from the extreme low-frequency behavior of $(ü)), as dis- 

cussed in Section II.  If üL is much smaller than the frequency range of the 

integrand of Eq. (39) , we can safely ignore the contribution to the integral 

from the frequency interval |a>| < üL. Combining Eqs. (39) and (40), and employ- 

ing Eq. (27) for C , we have 

<(dEc(x)/dx)
2> - (B/w) CT (41) 

a v 

We can express the power amplitude factor B in terms of the ensemble average 
2 

input power <I (x)>. The same procedure that was used above to calculate 
2 2 

<(dEc(x)/dx) > can be employed to express <I (x)> in terms of *(u)). We 

obtain 

00 

<I*(x)> - (l/tr) | du) *(a)) (42a) 

0 

» (B/2a)L) (42b) 

where, in proceeding from Eq. (42a) to Eq. (42b), we have employed a simple 
2  2 -1 

Lorentzian, $(u))»B[u) -HLL ]  , to describe the low-frequency behavior of ♦((*)). 

Equations (40) and (42) may be regarded as constituting a precise definition 

of a).. Combining Eqs. (41) and (42b) immediately gives us the desired result, 

Eq. (37), with the gradient content G defined in Eq. (36). 

Finally, we note that, since (u. "  2TT/W, Eq. (37) can be carried one step 

further to give the approximate result 

w2 G = 4n CT (43) 
v 

*Wlth respect to R-ff(w), this condition is automatically satisfied for 
N >> 1 and NTV » 1. This condition, when applied to 0(u)r/2n), implies that 
biir/2i  « v0, or r/w << 500. Thus, we must confine ourselves to sufficiently 
small viewing distances for the peak of the eye's sensitivity curve to lie 
well above a frequency corresponding to one cycle/picture width.  In practice 
this is the only interesting case. 
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The quantity on the left-hand side of Eq. (43) represents the mean square 

number of transitions perceived across the display by an observer at a particu- 

lar viewing distance. This follows from the view of the quantity G as the 

average inverse square length required for a perceived transition. The quantity 

on the right-hand side represents, aside from the factor An, the number of 

perceivable edge transitions that the display-observer system is capable of 

producing. We emphasize the statistical relationship contained in Eq. (43) by 

rewriting the left-hand side in terms of N  , the statistically meaningful 
rms 

root mean square number of perceived edges associated with an arbitrary set 

of random natural scenes. From tue above discussion, we have 

N   - w G1/2 (44) 
rms 

in which case Eq. (43) becomes 

N   = 2 (IT CT)1/2 (45) 
rms       v 

The square root relationship between the root mean square number of perceived 

transitions and the maximum number that can be perceived Is a direct consequence 
2 

of the measured l/w power spectrum. 

2. The Perceived Slgnal-to-Noise Ratio 

In Section III.C, we showed how the perceived response E(x) can be separated 

into the signal contribution Es(x), given by Eq. (16), and a sampling noise 

contribution ET.(x), given by Eq. (17). It was proved that, after averaging over 

the ensemble of scenes and over position on the display screen, the product 

EN(x) I (x) vanishes, thereby showing that EN(x) is uncorrelated with the 

ensemble of input scenes. We can obtain a measure of the deleterious effect 

of the sampling noise by computing the slgnal-to-nolse ratio at the perceptual 

level S/N. To do so we shall compute the mean square perceived signal "power" 
2 2 

S and the mean square perceived noise "power" N . Here, the term "power" 

refers to the square of the brightness; in this formulation, brightness is the 

analog of the current or the voltage of electrical communication theory. 
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We begin by writing the expression for the total perceived structural 

content <Ez(x)>. Using Eq. (13) to express <E2(x)> in terms of the contribu- 

tions from the E (x), defined in Eq. (14), we have 

<E2(x)> - 2  2  <Em(x)En(x)> (46) 

jgm—m     tV~a 

By making use of the technique employed in proving the theorem of Section III.C, 

it is a simple matter to show that only the terms m * n contribute to the 

summations in Eq. (46). We readily find 

<E2(x)> - S2 + N2 (47) 

* 
where 

S2=<E2(x)>.  I   ^ 02(u)r/2ir) |n(a))!2 

x sine2 (sa)/u ) \Uu)\2  *(<*>) (*8) 

+»     - 8 
miii.+ü^ 

N2-<EN
2(x)>- S   /    27 O2^*'2^   lfi(ü))|2 

IBJ*0   mw -ü)„ 
S  M 

x sine [s(u) - mtj )/u) ] |R(ü) - mu )  *(u) - mw )      (49) 
SS 8 S 

We find It convenient to rewrite Eqs. (48) and (49), using Eq. (23) for the 
2     2 

effective display MTF R £f(<«>). Making the dependence of S and N on viewing 

distance explicit, we have 

*The equations for S and N do not contain factors arising from angular 
dispersion of the light emitted from the display screen. We assume that 
such factors are identical for both S? and N , so that they do not appear 
in the ratio S/N. 
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S2(r) -   f  j%   02iuT/2v)   lE^WT #(«) (50) ^eff* 

N2(r) - f     || 02(ü.r/2iT) |Ro4:4:(a))!
2 MC«) (51) 

Here N(u)) is the effective noise power spectrum, given by 

+00 2 i 12 
_^     sine     [s(a) - mai )/ID  ]   |R(ü) - mu ) | 

NCOJ) - 2]  2 § S 2 ?  «(a) - ma) )    (52) 
sine  (sa)/a) ) |R(a))| S 

nfl«0 s" 
Sampling Noise 

Equations (50) and (51) are quite general.  If, instead of sampling noise, we 

consider a noise power spectrum arising from other random noise sources as- 

sociated with the transmission of the video signal, Eq. (51) still applies, if 

we use the proper form for N(a)). A physically interesting case is that of 

white noise [constant N(u))], for which we write 

I 
! N2 

N(ü)) = — ; White Noise (53) 

/ 
IflW"'!2 

2 
Here N  is the mean square noise fluctuation, as measured on the display 

screen (obtained from Eq. (51) by setting 0(a)r/2Tr) = 1), and the quantity in 

the denominator is the noise equivalent bandwidth. 

a. Properties of the Perceived Signal-to-Noise Ratio.  -  Equations (50) to (52) 

constitute the results for the signal-to-noise ratio for the one dimensional 

sampled display problem. To calculate the perceived signal-to-noise ratio, 

the integrals of Eqs. (50) and (51) must be evaluated and the ratio S/N formed. 

We note first that S/N is, in general, an explicit function of viewing dis- 

tance. This arises from the fact that the noise power spectrum and the signal 

power spectrum are different functions of a), so that the human visual system 

acts on these spectra differently at different viewing distances.  Indeed, the 
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2 2 
the measured *(u) s B/u implies that, if N(u) falls off more slowly than l/u 

at low frequencies, S(r)/N(r) diverges at very large viewing distances. Al- 

though it is possible to conceive of pathological noise spectra that would give 

unusual behavior as r increases from zero, we find that S(r)/N(r) normally in- 

creases monotonically with r. This is in agreement with common experience; 

when confronted with a noisy picture, we Improve the perceived signal-to-nolse 

ratio by moving away from the picture. By moving away, we use the MTF of the 

visual system to filter out the high-frequency noise components. This action 

is effective because, whereas the high-frequency part of the signal spectrum 
2 

rolls off as l/u , the noise spectrum normally rolls off more slowly or even 

increases with frequency. 

An example of the behavior of S(r)/N(r) as a function of viewing distance 

is shown in Fig. 10 where the perceived signal-to-noise vatio is plotted for 

the vertical samples of the real television display described above in the 
T 

discussion of the visual capacity and for which C (r) is graphed in Fig, 8. 

It is seen from the figure that S(r)/N(r) increases monotonically from a value 

near unity at r = 0. The sharper rise after the knee in the curve near r/h = 1 

is due to the retinal frequency ui r/2Tr passing through the peak of the eye's 
s 

sensitivity curve at v . Since much of the noise spectrum is concentrated near 

u = mu [see Eq. (52)], the perceived noise power falls off drastically for 

a) r/2Tr>v , and S(r)/N(r) increases rapidly. We find that, for large viewing 
2 

distances, r/h > 8, S(r)/N(r) rises approximately as (r/h) . At the viewing 

distance r /h = 4.7 for which the visual capacity of the display has a maximum 

value (see Fig. 8), the value of S/N is approximately 21. We have used Eq. 

(33) for the power spectrum of white electronic noise to obtain an estimate 

of the perceived signal-to-noise ratio for the horizontal (analog) direction 

of the television display. This analysis Indicates that, for high-quality 

(43 dB), commercial television pictures viewed at r/h = 5, S/N for the hori- 

zontal direction Is also approximately 20. 

From these results, it appears that the horizontal and vertical directions 

of the television display are well matched in terms of perceived signal-to- 

noise ratio; the sampling noise and analog picture noise are approximately 
f\j 

equal. We also conclude that the value S/N = 20 is representative of what 

observers consider to be high-quality picture rendition. This value is con- 

sistent with the Weber-Fechner law, which indicates that intensity variations 
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Figure 10. Perceived signai-to-noise ratio S/N as a function of viewing 
distance in picture heights for the vertical (sampled) di- 
rection of a real television display device. The C^ for 
this display is given in Fig. 8. 

of approximately [14] 1% to 14% are perceivable, depending on the experimental 

conditions. 

h.    Asymptotic Expressions for S(r)/H(r),  - Using Eqs. (50) to (52), we are able 

to obtain approximate analytic expressions for the asymptotic behavior of 

S(r)/N(r) at very large and very small viewing distances.  Such expressions are 

very valuable because they help us to identify how S(r)/N(r) depends on the 

various display parameters as well as the viewing distance.  In the following 

development, we illustrate the technique employed to calculate asymptotic 

expressions for S(r)/N(r) by considering a special case corresponding to a 

constant printing function that extends over the entire sampling location; 

that is, 

P(x) - 1; for |xl l\* 

0; for |x| > 2 xo 

n(u)) « sine (w/u ) (54) 
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We shall then present, without derivation, the results for Gaussian printing 

functions. The case lUu) » sine (u/w ) is of special interest because It 
s 

represents the simplest printing function for the optical block processor 

described elsewhere in this report. It has also been used extensively in 

the computer generation [4] of sampled images. 

In calculating the asymptotic behavior of S(r)/N(r), we consider viewing 
T 

distances much larger than the distance r for maximum C , given approximately 

by Eq. (34). However, we shall restrict ourselves to sufficiently small 

viewing distances in order for the peak of the eye's sensitivity curve at v = v 

to lie well above the retinal frequency uTr/2n ■ r/w. Under these conditions, 

in Eq. (50) for S (r) we can replace R ff(">) by unity and substitute for ♦((*)) 

the measured signal power spectrum B/a)^. After transforming the Integration 

variable to the retinal frequency coordinate v = mr/2-n,  Eq. (50) becomes 

00 

S2(r) - (Br/2TT2) j     dv v"2 02(v); 

0 
■-» 

for *((*)) * B/i/', r << r << v w (55) 

The integral is finite since 0(v) = v as v -► 0 [see Fig. 5 and Eq. (32)]. 

Equation (55) is remarkable in Itself, for it shows that, aside from factors 

arising from angular dispersion of the light emitted from the display screen, 

the perceived signal power becomes larger as we increase the viewing distance. 

This result is a simple consequence of the concentration of the signal power 

of natural scenes at low frequencies. As r Increases, the peak of the MTF of 

the visual system at v = v corresponds to lower and lower frequencies as 

measured on the display screen, thereby permitting more efficient overall trans- 

mission of the signal power. We note that if the power spectrum of natural 

scenes were white, Eq. (50) would give us 

r1! oo s2(r) " c/0erJ for *(ü,) " C (56) 

Here 6°° is the perceived angular width of an edge transition, given by Eq. (29). 

In this case, the perceived signal decreases with r. 
2 

Turning now to Eqs. (51) and (52) for the noise power N (r), substitution 
2 A 

of Kw) = B/ü) and using Eq. (54) for n(u) and Eq. (23) for Rpf£('*') gives us 
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„ sine (u/u) ) / s N2(r) - B Y,       f        ||02(a.r/21r)|R(u)-ma)s)l 2 
^Q  y    " (u) - ma. ) 

s M 
2 

* sine [s(u - nui) )/u 1 (57) s  s 

In Eq. (57), it was not necessary to employ the lower cutoff frequency u of 
2 2 2 the l/u power spectrum. This is because the quantity [sine (w/u )]/(ü)-inü) ) 

S 8 

is finite at u ■ mo) ; no singularity problem arises from the extension of the s 
argument of 4(a)) to zero. This procedure gives negligible error, since u is 

much less than the range of the various functions in the integrand of Eq. (57). 

However, this procedure is possible only fo; the particular functions 
A 

II(u) m  sinc(nu)/a) ) with n «= integer, since they are the only functions [10] s 
that (1) are the Fourier transforms of real positive functions and (2) have 

zeroes at u = mu . For all other functions II(u), the lower cutoff frequency 

must be explicitly employed to prevent singular behavior at w = mu . The 

physical basis for this result lies in the fact that the printing functions 
A 

corresponding to n(a)) = sine (nu/u ) completely and uniformly illuminate n 

sampling locations. This confines the perceived noise to the vicinity of the 
2 

edge transitions that give rise to the l/u power spectrum. The average noise 

Is then independent of the display width and, therefore, also Independent of 

u . All other printing functions produce "ripple" fluctuations across the 

display screen, so that the perceived noise power arising from these fluctua- 

tions depends explicitly on üL . 

We can simplify Eq. (57) by changing the sum over all integers m to one 

over only positive Integers. This is readily accomplished by using the fact 

that each of the functions appearing in the integrand are even with respect to 

a sign change of their arguments. Next, for the sake of simplicity, we use 

R(u) = 1. Then, Eq. (57) becomes 

mu +uw oo    s M 2 
V-»  /*       ,       sine (u/u )    . 

rr(r) = (B/TT) Z-« I    du 0 (ur/2TT)  ^-2- sine [s(u-mu )/u ]  (58) 
m=l J (u-mu ) 

mu -u„ s 

s M 
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In general, Eq. (58) must be evaluated numerically. However, for displays 

operating in the extreme oversampled or in the undersampled limit, we can 
2 

obtain approximate expressions for N (r). 

In the extreme oversampled limit u » UL.,  it is seen from Eq. (58) that 

the noise spectrum consists of the sum of narrow-band noise contributions, 

each of width 2^, centered about multiples of the sampling frequency mu . In 

that case, the integrand of Eq. (58) may be replaced by its value at oi > mu . 
s 

The Integration is then trivial» and we are left with 

00 

N2(r) - (28^/TTu) 2) YJ  02(mu)sr/2Tr)/m
2; for (^ « Mg      (59) 

m-l 

Next, for large viewing distances such that r/2Trv » 1/w , we can replace the 

MTF of the human visual system by its high-frequency, inverse-square rolloff 

characteristic [11] 

2 
0(v) = 1.42 (v /v) ; for v » v (60) 

o o 

Employing Eq. (60) in Eq. (59), and making use of the mathematical Identity [15] 
QD 

/       (1/m )  = IT /945, we obtain our result for the perceived noise power at 
m = 1 

large viewing distances for the oversampled limit 

N2(r) = 1.31 B  (a)M/ü) 2)   (2iTVrt/aior)4; 
Ms OS 

2 
for *(a))  ■ B/u  , u    « w ,  r    « r « vow (61) 

2       2 
Using Eqs. (55) and (61) for S (r) and N (r), respectively, we obtain, for the 

perceived signal-to-noise ratio. 

S(r)/N(r) = 3.38 x lO-7 (Ns
3/NTJ

/2) (r/w)5/2; 

2 
for *(ü)) » B/u , Nm,T « N . r « v w (62) 

TV    s  p    o 
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To obtain Eq. (62), we have employed the value calculated from the measured 

0(v) (Fig. 5), 

CD 

/ 

-2 2 
dv v  0 (v) 4.73/v, (63) 

and have used Eqs. (2) and (35) to express w and UL.  in terms of the number of 

samples N and number of TV lines N , respectively. 

In the undersampled limit u < u^, the lower limits of the integrals of 

Eq. (58) extend down to dc provided m <_ Mod (üLVü) ), where Mod(x) stands for 

the "greatest integer in x". Then, for sufficiently large viewing distances 

such that the Inequality r/2irv » l/u is satisfied, the major contribution 
A OS 

to N (r) arises from m-values up to and including m • ModO^/u ). The contribu- 

tions for m > Mod(iüM/u ) are assumed to lie sufficiently far above the peak of 

the eye's sensitivity curve at v = v for them to be neglected. Of course, the 

discontinuity in allowed m-values when %/u ■ integer is not strictly correct. 

In practice a continuous transition occurs due to the fact that the viewing 

distance is not formally infinite. The situation for the undersampled display 

Is to be compared with that for the oversampled display, where the only noise 

contitbutions were centered in narrow bands around u s mu , and, therefore, are 
s 

perceived with far less subjective Intensity at large viewing distances. In 

the undersampled case, the ability of the display to fold high frequencies down 

to dc generates, on the average, perceivable noise well within the effective 

passband of the human visual system even at large viewing distances. With 
2 

these considerations, we approximate Eq. (58) for N (r) as follows: 

N2(r) '  (B/™,2)  |   do) 02((i)r/2Tr) Y^u,  ^/Ug); 

for ü)„ > a) , r « r << v w 
M   s  p        o 

(64) 
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where 

Mod(üi„/u) ) 
n s 

2   ^T^     4 
F (u.o^/a» ) - (w/u )     /^   1/m ; for s - integer     (65a) 

ro-1 

ModCu^/u ) 

V   [sine2(ms)1/m2; for s 4  integer    (65b) 

In arriving at Eqs. (64) and (65) from Eq. (58), we have:  (1) replaced the 
2       2 

term (u-mu ) by (mu> ) , (2) kept only the first non-vanishing term in the ex- 
s       s 

pansion of sine [s(ai-ma) )/ü) ] about i» - 0, (3) replaced sine (u/w ) by unity, 
s  s * s 

and (4) extended the integration limits to + °°. All these approximations are 

valid for r >> r . 
P 

We first treat the case s = integer. The sum F (ui, i\,/u ) in Eq. (65a) 

depends only weakly on WV-ZüJ > varying by 8% over the range u < üL< <». There- 

fore, we shall use the üJJ./U = co limit [15] 

4 2    2 
F (u,00) = (TT ü) /90ü) ) ; for s = integer (66) 
s s 

2 
in the calculation of N (r). Inserting Eq. (66) into Eq. (64) and transforming 

the frequency variable of integration to the retinal frequency coordinate 

v » a)r/2n, we obtain 

00 

N2(r) = (Tr3B/45ü)s) (2it/a)sr)
3 t  dv v2 02(v); 

0 
2 

s' P 
for *(ü)) = B/ü) ,u)^ > u^, rm « r « v^w, s = integer  (67) 

*By so doing, we implicitly exclude the particular case (u = la , for which we 
should integrate over only positive frequencies. 
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Now, using Eq.  (55) for S (r), we have 

-2 „2, 

S2(r)/N2(r) -^| [Ng(r/w)] 

f  dv v      0 (v) 

4    0 

2 Ä2, f   dv v    0 (v) 

0 
9 

for »(a)) - B/ü) , N_, > 2N  , r    « r « v w, s - integer (68) 
TV     8   p O 

Here we have again employed Eqs. (2) and (35) to express u and w In terms of 
S      M 

N and N_., respectively. Utilizing the numerical result, 
S        XV 

00 

/ 
dv v2 02(v) - 4.53 vo

3 (69) 

obtained from the measured 0(v) (Fig. 5) along with Eq. (63) for the quantity 

/-2 2 
dv v  0 (v), Eq. (68) reduces to 

S(r)/N(r) - 3.31 x 10'6 [N (r/w)]2; 

for *(ü)) - B/ü , H—, > 2N , r « r « v w, s - integer (70) TV 8   P 

For the case s 4  Integer, we again find that the sum F (u, O^/UJ ), defined 

in Eq. (65b), varies relatively slowly with "U® •    For s = 0, F (üJ, üL-ZU ) 

rises monotonically from unity to it /6 over the range u < u^ < ». Similarly, 

for values of s near unity, we find that the ratio F ((^«O/F (u,l) has the 
2 8      8 

value IT /6. At intermediate values of s, the relative variation of F^U.ULJü) ) 

with Uu/u is somewhat smaller. For purposes of illustration, we will take 

the limit [16], 

F (u),») - IT
2
(1 - s)2/6; for s < 1 

s 
(71) 

with r.he realization that we are ignoring a weak variation with <«»«/<»' that, in 

the worst case, will give an error of less than 30% in S(r)/N(r).  Substituting 
2 

Eq. (71) into Eq. (64) for N (r) readily gives the result 
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N2(r) - ir2B(.l - 8)2/3ü)8
2
 G^r; 

for ♦(<»)) - B/u)2, N-y > 2 N , r « r « v w, s < 1  (72) 

The perceived signal-to-nolse ratio in the case at hand is obtained from Eq. 

(72) along with Eq. (5! 

from Eq. (30), we find 

(72) along with Eq. (55) for S2(r). Utilizing Eq. (63) and the value of e" 
e 

S(r)/N(r) - 1.83 x 10'3 Ng(r/w)/(l - s); 

for *(ü)) - B/u2, N  > 2 N . r « r « v w, s < 1  (73) 
xv     s  p        o 

Equations (62^, (70), and (73) constitute the essential results of the 

perceived signal-to-noise problem at large viewing distances for 
A 

n(u) ■ sine (u/u ). In discussing these results, we notice first that all the 
s 

expressions for S(r)/N(r) diverge at large viewing distances. This is true 

even tor the undersampled displays which contribute noise power at the lowest 

frequencies. Although this result may have been expected on intuitive grounds, 

it is indeed nontrivial, since it is a direct consequence of the measured 
2 

l/u power spectrum of natural scenes. To emphasize this point in a dramatic 

way, we shall calculate S(r)/N(r) for undersampled displays using a white signal 

power spectrum and show that a catastrophe results.  The calculation is easily 
2 

performed by going back to Eq. (58) for the general N (r) with R(u) ■ 1 and 
2 

n(cü) ■ sine (u/u ). We replace the quantity B/(u - mu ) , representing the 
S 8 

power spectrum, by a constant C. Let us consider the special case s = 0 and 

take delta-function printing. These statements require that we replace the 

two sine functions in Eq. (58) by unity. With these modifications, the formula 
2 

for N (r) becomes 

ma» +(o„ 

NZ(r) - (C/TT) J] /   da) 02(a)r/27r); 

m-1 J 
ma) -ü)U S  M 

for *(a)) » C, s = p = 0 (74) 
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Now, for an undersampled display u < «^ and for r >> r , we can cut off the 

sum at D z Mod (t«V./w ) and extend the limits of integration to + <», as was 

done for the case of the 1/ai power spectrum. In that case, Eq. (74) reduces to 

r1! „ N2(r) " (^C/G^r) Mod i^hj', 

for *(a)) - C, N^ > 2 lls, s - p = 0 (75) 

2 
Combining the above result with Eq. (56) for S (r) for a white power spectrum, 

we have 

r1! » S(r)/N(r) - [2 Mod (y^)]"172 

for *(ü)) - C, NTV > 2Ns, s = p = 0       (76) 

Equation (76) predicts that the limiting perceived signal-to-noise ratio for an 

undersampled display with s = p = 0 is less than unity. Indeed, in the extreme 

undersampled limit, there is essentially "infinite Moirg power," and the asymptotic 

value of S(r)/N(r) vanishes! This result is model-Independent since it makes no 

statement about the observer except that he has an acuity limit. If the result 

were true, the simple act of placing a screen with extremely small holes over 

a natural scene would produce zero perceived signal-to-noise ratio no matter 

how far away from the screen the observer positioned himself. Yet. we know this 

will not happen, and the reason, simply put, is that the statistical property 
2 

of natural scenes, as represented by the actual 1/u power spectrum, prevents 

it. 

Returning now to a discussion of the results for S(r)/N(r), Eqs. (62), 

(70), and (73), we can make sever.  observations. First, all the S(r)/N(r) 

diverge at large viewing distances as a power of r/w; the value of the exponent 

depends on whether the display is oversampled or undersampled and on the value 

*Tht holes are presumed to be sufficiently large for diffraction effects to 
be negligible. 
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of the sampling width s. The perceived signal-to-noise ratio diverges most 
5/2 

quickly [as (r/w)  ] for oversampled displays and leasr. quickly [as (r/w) ] 

for undersampled displays with s < 1.  Second, the dependence of S(r)/N(r) 
3 

on the number of samples is also a power law, ranging from N  for oversampled 

displays to N for undersampled displays with s < 1. Third, at large viewing 
s 

distances S(r)/N(r) is independent of s for extremely oversampled displays but 

varies as (1-s)  for undersampled displays with s < 1. As s -> 1, Eq. (73) no 

longer applies, and Eq. (70) must be employed. Thus, S(r)/N(r) is sensitive to 

s only for the case of undersampled displays, where large or integer values of 

s are preferred. This behavior is to be compared with the visual capacity which 

stresses small values of s for Increased edge appreciation ability. 

Table 1 summarizes our results for S(r)/N(r) in the large viewing dis- 

tance limit for the constant printing function of Eq. (54) and for a Gaussian 

printing function 

2 
P(x) = exp [- (x/pxo) ] 

n(ü)) = exp [- (irpu)/^) ] (77) 

Here p, the effective printing width, is the distance in units of x required 

for P(x) to fall to the value 1/e. The expressions for S(r)/N(r) for the 

Gaussian printing function were obtained using the technique employed in the 

derivations of the results for the constant printing function Eq. (54). The 
2  2-1 

value a). = 2TT/W was employed throughout, and a Lorentzian $(ü)) = B[ü) +ü) ] 

was used to describe the low-frequency behavior of the power spectrum. It is 

seen from Table 1 that, for oversampled displays, S(r)/N(r) again diverges as 
5/2 

(r/w)  , as in the case of the constant printing function. Also, S(r)/N(r) is 

again independent of s. However, the dependence on p is very rapid, increasing 
2 2 

as exp(TT p ). Thus, large values of the printing width are preferred here. 

Notice that, for a given value of N and N , there exists a critical value of 

p above which the Gaussian printing function gives a superior S(r)/N(r) over 

the constant printing function Eq. (54). Denoting this critical value by p , 

we have from Table 1 

7  2 1 /? 
^pc = In (1.76 fyN^); for Ns » NTV (78) 
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Table 1. Limiting Behavior of S(r)/N(r) for r >> r 

Oversampled:  any value sine (ui/w )       3.38 x 10  (N /N—. ) (r/w)" 

Display Type     s n(u))   S(r)/N(r)  

^7 ,„  3,„1/2N ,_,..,5/2 

2 -7    2 2 2 5/2 
(u    » id ) any value    exp  [-  (irpw/u )   ]     1.92 x 10    N      [exp  (up)]  (r/w) s n s s 

-6 2 
Undersampled:    integer        sine (u/u ) 3.31 x 10       [N (r/w)] s s 

(a)    < uj s <  1 sin-,  (üJ/O) ) 1.83 x 10"3 N (r/w)/(l-s) s        M s s 
2 c ?** 

integer        exp  [- (upui/ü) )  ]     3.31 x 10      [N (r/w)] 
s s 

s < 1 exp  [-  Orpiü/üj )2]     1.83 x lO-3 N (r/w)/(l-s) + 

s s 

*For non-Gaussian printing ftmctions, replace the quantity exp[iT^p2] by 
[nOüg)]"1 provided fi (u) falls off sufficiently rapidly for the inequality 
n2(2(i)s)/16 << fi2((üs) to be obeyed. 

**For r/w » 300 exp 1-2TI
2
P
2
]; otherwise use S(r)/N(r) = 1.92 x 10"7 N 2 

[exp (TT
2
P
2
)] (r/w)5'2.  (Note: for 2Tr2p2 << 1, r/w >> 300 is not allowed, 

since it violates the condition r/w << v0 = A58 assumed during the calcu- 
lation.) 

tFor r/w » 450 (Ns(l-s) exp (TT
2
?
2
)]~2/3; otherwise use S(r)/N(r) = 1.92 x lO'7 

N 2 [exp (Tr2p2)] (r/w)5/2. 

As an example, we take N = 4N_. = 1000, in which case Eq. (78) gives p =0.69. 
S      X V c 

For values of p above p the Gaussian printing function is sufficiently broad 

for the "ripple" fluctuations across the display screen produced by the Gaussian 

to be reduced to the point where the overall perceived noise power is smaller 

than that for the constant printing function. For the case of undersampled dis- 

plays, close examination of Table 1 shows that, for s = integer, as p is in- 

creased, S(r)/N(r) first follows the same law as for oversampled displays but 

eventually saturates at a value given by the S(r)/N(r) for undersampled dis- 

plays with a constant printing function. Undersampled displays with s < 1 are 

likely to follow the same law as for the constant printing function (independent 

of p), depending on the specific values of N , s, and r/w. The reason for the 

seemingly complicated behavior for undersampled displays lies in the competi- 

tion between the noise spectra centered around multiples of the sampling fre- 

quency and the noise spectra concentrated at lower frequencies u < 2Tt v /r << ui . 
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The former noise source has a much larger power spectrum N(u), but the latter 

is transmitted to the perceptual level more efficiently because it lies well 

within the effective passband of the human visual system. As p is increased, 

we essentially filter out the high-frequency (mu ) noise by decreasing the 
A S 

range of n(a)). Eventually, the low-frequency noise dominates, giving us the 

same results as for the case n(u) ■ sine (ui/u ). 
s 

The behavior of S(r)/N(r) in the limit r -► 0 is of little practical in- 

terest. Furthermore, in actual fact, the calculation breaks down as r -► 0 

because the MTF of the human visual system degrades as a result of the eye's 

inability to focus. Nevertheless, trends exhibited by S(r)/N(r) as a function 

of the display parameters are important, so that we have employed Eqs. (50) to 

(52) to compute S(0)/N(0). The results are presented without derivation in 

Table 2 for the cases of constant [Eq. (54)] and Gaussian [Eq. (77)] printing 

functions. We note first the apparently paradoxical inverse relationship 

between S(0)/N(0) and N for the case of the Gaussian printing function with 
2 2s 

exp (2w p ) >> 1. This result requires special comment. It does not violate 

the requirement that S(r)/N(r) -»■ » as N -»• «> since the entries in the table 
s 

were calculated in the limit UJ r/2ir = N r/w ■* 0. Taking H   ■*■ <*> before specify- 
s      s s 

ing r always gives S(r)/N(r) -*■ ". The inverse dependence of S(0)/N(0) on N 
s 

arises from the fact that, for u r/2Tr •*■ 0, the frequency ID corresponds to a 
s s 

retinal frequency m r/lv  that lies on the rising part of the MTF of the human 
s 

visual system (see Fig. 5). Since much of the noise spectrum for the Gaussian 

printing function is concentrated near u , the perceived noise power increases 
2        S 

with the sampling rate as w  because of the linear low-frequency behavior of 

0(v) [Eq. (32)]. On the other hand, the effective passband of the perceived 

signal power is independent of u for the oversampled case and is proportional 

to w to only the first power in the undersampled case. Thus, the linear low- 
s 

frequency behavior of 0(v) is responsible for the inverse dependence of S(0)/N(0) 

on N . 
s 
Further examination of Table 2 shows:  (1) for delta-function printing 

p = 0, SCr)/N(r) -♦• 0 as r -> 0, the exact dependence on r depending on the de- 

tails of the sampling process, (2) for full-width printing lUw) = sine (u/w ), 
wo s 

S(r)/N(r) > 0 as r ' , (3) S(0)/N(0) increases rapidly with the printing width 

p, and (A) S(0)/N(0) is sensitive to s only in the case of undersampled dis- 

plays with large p, where large or integer values are preferred. 
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Table 2. Limiting Behavior of S(r)/N(r) for r -•• 0 

Display Type 

Oversaupled: 

IM. $(r)/N(r) 

any value sine (u/u ) 
s 

(u >> uL.)    any value exp [-(npu/oi ) ] 

Undersampled: any value sine (ui/u ) 

S(r)/N(r) -► 0 as r1/2 

[exp (n2p2)]  (NTV/21rSs
2)1/2 for 

exp (2Tr2p2) » 1 

S(r)/N(r) ■* 0 as r3/2 for p - 0 

S(r)N(r) -^ 0 as r1/2 

(u    « UL.)          s - 0           exp  [-(irpu/u )   ] S(r)N(r) ■> 0 as r for p « 0 

s > 0            exp   [-(irpoj/td )2] S(r)N(r) -> 0 as r '     for p « 0 

any value    exp  [-(irpm/u) )  ] exp (ir p )/[(2Tr)        (N p)       ] 
S 8 

For 1 « exp (2it2p2) « 3800 p N8 for s • integer or 200p
3 Ns/(l-s)

2 for s <1; 
if the last part of the inequality is not satisfied, use S(0)/N(0) = 2(3)^-Z2 

p/(l-s) for s < 1 or S(0)/N(0) » 4(15)1/2p2 for s = integer. 

a.    Disauaeion Swmary. - To summarize briefly the results of our analysis of 

the perceived signal-to-noise ratio S(r)/N(r), we have found that S(r)/N(r) 

increases monotonically with viewing distance. We have also found that S(r)/N(r) 

increases rapidly with the number of samples at ordinary viewing distances. Wide 

printing functions are definitely preferred, as are large or integer values of 

the sampling width s. However, the parameter s is important in determining 

S(r)/N(r) only in the case of undersampled displays. The dependence of 

S(r)/N(r) on s and p is opposite to that of the visual capacity, where small 

values of s and p are desired. Thus, we have the general rule: Narrow width 

sampling and printing enhances the appreciation of sharpness through the in- 
T crease of C (r). However,  it does so at the expense of the perceived signal- 

tr~noise ratio  S(r)/N(r). 

d.    Calculated Examples.  - Some of the important properties of the perceived 

signal-to-noise ratio are illustrated in Figs. 11 through 14, where we have 

employed Eqs. (50) to (52) to calculate S/N numerically for various display 

systems. The curves in Fig. 11 are the calculated S(r)/N(r) vs viewing dis- 

tance in units of picture height h for a hypothetical television display.  In 
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740 SAMPLES 

3.5 MHz CUT-OFF 

L 

IDEAL TV= 
480 SCAN LINES 

SCANNING BEAM 
WIDTH »2 SCAN LINES 

2 4 6 8 
VIEWING     DISTANCE:  r/ h 

10 12 

Figure 11. Perceived slgnal-to-noise ratio S/N as a function of viewing 
distance in picture heights for a hypothetical television 
display. The dashed curves represent the S/N for the vertical 
direction (Ns » 480) with two different printing functions 
(see text). The solid curves represent the S/N for the 
horizontal direction (Ns =■ 740) with two types of bandwidth 
limitation (see text). The values of the sampling width s 
are given in the figure. 
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Figure 12. 

■ ■ ■ I 1 L ' ' ' ' L 
4 6 8 10 

VIEWING DISTANCE     r / h 
12 

Perceived slgnal-to-nolse ratio S/N as a function of viewing 
distance in picture heights for the vertical direction 
(N » 480) of a television display. The values of the parameter 
p, which represents the effective width of the Gaussian print- 
ing function, are given in the figure. The particular valua 
obtained from measurements of a commercially available kine- 
scope is indicated. 
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450 

VIEWING DISTANCE   3h 

US. MONOCHROME  STANDARDS 

400- 

Flgure 13. 

500 600 700 800 900 

NO.    OF SAMPLES: N8 

1000 

Visual capacity C^ and perceived signal-to-noise ratio S/N as 
a function of the number of samples for the horizontal direction 
of a hypothetical television display. The viewing distance is 
3 picture heights, and the bandwidth limitation has been set 
by the U.S. Monochrome Standards (Nfy = 471). Curves are 
shown for s " 0 and s = 1. 
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Figure 14. 
rn 

Visual capacity Cv and perceived slgnal-to-noise ratio S/N 
as a function of the nuaber of samples for the horizontal 
direction of a hypothetical television display. The viewing 
distance Is 4 picture heights, and the bandwidth limitation 
has been set by the U.S. Monochrome Standards (N-j-y = 471). 
Curves are shown for s = 0 and s = 1. 

75 

IM1MHaMH^Maani 



the vertical direction there are the customary 480 samples with practically no 

band limitation on the input signal, so that we have taken üL» », correspond- 

ing to the extreme undersampled limit. We use the value s = 1, i.e., full- 

width sampling. In the horizontal direction, instead of the usual analog 

scanning system, we have taken N = 740 samples with the band-limiting input 
s 

characteristic R(ui) corresponding to either the full U.S. monochrome bandwidth 

of 4.5 MHz (NTV " 471) or a 3.5-MHz (N— - 366) cutoff, in accordance with 

current U.S. practice. Thus, the picture-producing capability in the hori- 

zontal direction is that of an oversampled display, sampled at 1.6 or 2.0 

times the Nyquist rate N s NTV, depending on the particular bandwidth chosen. s     IV A 
We employed a constant printing function, corresponding to II(u) =  sine (pu/u ), 

s 
where p = 1 for complete uniform illumination of one sampling location 

[Eq. (54)]. We used the value p = 1 in all cases except for the curve labeled 

"Scanning Beam Width = 2 Scan Lines" for which we took p = 2. It is seen from 

the figure that the two dashed curves for the 480 samples follow the expected 
2 

behavior with viewing distance, eventually achieving the r dependence pre- 

dicted by Eq. (70). The case p = 2 gives superior signal-to-noise performance, 

particularly at the smaller viewing distances, in agreement with our observa- 

tion that wide printing functions increase S(r)/N(r). By examining Eqs. (50) 
A 

to (52) for S(r)/N(r), one can readily show that, for n(ü)) ■ sine (pw/w ) and 
s 

for p and s both integers, the parameters s and p can be interchanged leaving 

S(r)/N(r) unchanged. Therefore, the upper dashed curve in Fig. 11 also rep- 

resents the S(r)/N(r) for p = 1 and s = 2. Recalling that the lower dashed 

curve is calculated for s = p = 1, we see that this result illustrates the 

beneficial effects of large sampling widths in undersampled displays. The 

three solid curves for 740 samples lie well above the curves for 480 samples. 

Most of the difference between the two sets of curves arises from the fact 

that the horizontal direction of our hypothetical display is oversampled 

whereas the vertical direction is undersampled. Very little difference arises 

from the larger number of samples per se,  since the 4:3 aspect ratio of the 

television screen brings the number of samples per unit length for the hori- 

zontal and vertical directions to within about 15% of each other. It can be 

verified that the S(r)/N(r) for the solid curves approaches the characteristic 
5/2 

r   law, as predicted by Eq. (62). Furthermore, note that raising the samplit 

width from s a 0 to s = 1 produces very little change of S(r)/N(r), also in 
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agreement with Eq. (62) and our general observation that s is an important 

parameter only in undersampled displays. Finally, note that the utilization 

of the full 4.5-MHz (N, TV 471) U.S. monochrome standard bandwidth gives a 

somewhat lower S(r)/N(r) than the 3.5-MHz (N-.. = 366) system, also in general 

accord with Eq. (62). 

Figure 12 Illustrates the effect of varying the width of the printing 

function on the S(r)/N(r) for the vertical (sampled) direction of television 

displays. The values of p, the width parameter for the Gaussian printing func- 

tion Eq. (77), given in the figure are the same as those employed to calculate 
T 

the corresponding C (r) shown in Fig. 9. The particular value p « 0.642 was 

the value measured for the real kinescope described in the discussion of the 

visual capacity. Thus, the curve for p » 0.642 is actually the same as in 

Fig. 10. It can be verified from the figure that S/N varies approximately as 
2 2 

exp(n p ) at very small viewing distances, whereas S/N is only weakly dependent 
2 

on p and approaches the expected r dependence at large viewing distances. All 

this is in accord with the behavior predicted by the analytic approximations, 

as summarized in Tables 1 and 2. Comparison of Figs. 9 and 12 shows a striking 

example of the rule that narrow-width printing functions favor the visual 

capacity but only at the expense of decreased perceived signal-to-noise ratio. 

The optimum tradeoff between visual capacity and perceived signal-to-noise ratio 

will be discussed in the next section. 

As an example of the importance of the sampling rate in determining 

picture quality, in Figs. 13 and 14 the visual capacity and perceived signal- 

to-noise ratio, calculated from Eqs. (23), (27), and (50) to (52), are simul- 

taneously plotted against the number of samples at two viewing distances for a 

display operating with a band-limited input characteristic corresponding to the 

full U.S. monochrome bandwidth (N „ = 471). The printing function is taken to 

be that of Eq. (54), i.e., uniform illumination of  a single sampling location 

(p = 1). Curves are shown for both s = 0 and s = 1. We have again taken the 

television format of a 4:3 aspect ratio, so the viewing distances r - 3h and 

4h correspond to 2.25 and 3 picture widths, respectively. At each viewing 
T 

distance, C tises with the number of samples, eventually saturating in the 

analog limlc at a value determined by the band-limited characteristics of the 

display and by the limitations of the visual system. For the U.S. monochrome 
T 

standards, the maximum value of C in the analog limit, as calculated from 
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Eq. (26), is approximately 450 and is achieved at r - 4.03h. On the other 
P 

hand, S/N increases without limit, rising rapidly from its low value near the 

Nyquist sampling rate N = N_, «= 471. Examination of Figs. 13 and 14 shows 
s   TV 

that very little gain in S/N is achieved by employing full-width sampling 

s = 1 rather than delta-function sampling s = 0. This is another example of 

the analytically derived result that S/N is not sensitive to the value of s in 
T 

oversampled displays. On the other hand, by using s = 0, C is strongly en- 

hanced in the range of N under consideration. This result follows from 
T       S 

Eq. (27) for C . Therefore, our results strongly indicate that narrow-width 
v * 

sampling is preferred on an overall basis in oversampled displays. 

From the s = 0 curves in Figs. 13 and 14, one sees that, at a viewing 

distance of 3h, nearly 700 samples are required to give S/N = 30, a satlsfac- 
T 

tory value. At this point, C is about 340, and a gain of less than 10% in 
T v 

C is obtained by a 50% increase of the number of samples to 1050. At a 

viewing distance of 4h, only about 570 samples are required to achieve S/N - 30. 
T 'v 

For 570 samples and s = 0, C = 360, and a 17% increase is achieved by going 

to 1050 samples.  Thus, almost identical performance In terms of sharpness 

and perceived signal-to-noise ratio is obtained with 570 samples at a viewing 

distance of 4h as is found with nearly 700 samples at a viewing distance of 

3h. This simple example serves to Illustrate the kind of tradeoffs that one 

can consider when the human observer is explicitly Included in the calculation 

of performance criteria. 

e. The Correlation Quality and the Mean Square Perceived Error.  - In closing 

this section, we derive an important relation between the perceived signal and 

noise powers and two new quantities which have interesting and useful proper- 

ties. The first of these new quantities is the correlation quality  [17] Q 

defined by 

<E(x)E (x)> 
Q =    0 (79) 

<E 2(x)> 
o 

*Thls result does not take into consideration possible beneficial effects of 
large values of s in integrating out electronic noise that may be present 
along with the video signal before the sampling process. 
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where E (x) is the perceived intensity pattern reproduced by a perfect display, 

i.e.. 

■H» 

Eo(x) 

/ 

^  0(a)r/27r) I (u) exp (laix) 
zu o 

(80) 

The quantity Q is proportional to the cross correlation function between the 

perceived scene as actually reproduced by the display and the scene produced 

by a perfect reproduction device.  It is, therefore, a measure of the degree 

to which the perceived picture resembles a perfect reproduction of the original 

scene. Making use of the theorem of Section III.C [Eq. (22)], Eq. (79) becomes 

<E_(x) S (x)> 
s    o 

<E (x)> 
o 

(81) 

The second quantity is the mean square perceived error  [17] e, defined by 

<(E(x) - Eo(x)) > 

<Eo'(x)> 

(82) 

From this definition, it is evident that e is the mean square deviation of the 
2     2 

perceived picture from the perfect reproduction, normalized to S  = <E (x)>, 

the perceived signal power for the perfect display. To obtain the desired 

relationship, we expand Eq. (82) and obtain 

1 - 2Q + <E2(x)>/<E 2(x)> (83) 

where we have used Eq. (79) for Q. Next, we note that S ^ can be obtained 

from Eq. (50) by setting R ff(ü)) = 1. Then, using Eq. (47) to express <E2(x)> 
2 2 

in terms of the signal power S and the noise power N , Eq. (83) becomes 

e - 1 + 2Q + (S2 + N2)/S 2 
o 

(84) 
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where 

■H» 

So
2(r) - /   f~ 02(u)r/2iT) «(co) (85) 

Eq. (84) is a relation between the correlation quality, the mean square per- 

ceived error, the average perceived signal powers for the actual and perfect 

displays, and the average perceived noise power. 

We can write Eq. (84) in explicit form using the following expression 

for Q(r): 

+00 

J  |^02(a)r/2ir) Re R^oO-Hü)) 

Q(r) = ^  (86) 

J  |^ 02(a)r/2ir) *(a,) 

Equation (86) is easily proved using the technique of Section III.C. Taking 

the expectation value of Es(x) E (x) naturally introduces the factor R ff(oj), 

the effective MTF that generates the signal part Eq(x) of the total perceived 

response E(x). Then, because of the reality of £c(x), the integration over o 
all u) projects out only the real part of R ff(ü)).  Substituting Eqs. (85) and 

2     2 
(86) into Eq. (84) and making use of Eqs. (50) and (51) for S and N , respec- 

tively, gives the expression for e(r), 

f    go2(u)r/2TT) [1-Reff(w)][l-R*ff(a))] *(a») + |Reff (ai) | 2N(U)| 

j*  |^ 02(ur/21T) *(a)) 

e(r) _ =  (87) 

2 
From Eqs. (86) and (87) with $((*)) = B/w , it is a simple matter to show: 

(1) Llm Q(r) = 1 (an imperfect picture cannot be distinguished from a perfect 
r-H» 

one at very large viewing distances), (2) Lim Q(r) = 0 (there is no correlation 
r-K) 

between the perceived ; icture and a perfect picture at very small viewing dis- 

tances, a consequence of the band limitation of all displays), (3) Lim e(r) = 0 
r >ao 
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(there is no perceived error at large viewing distances, a result consistent 
2     2 

with (1) above), and (4) Lim e(r) = 1 + N (r)/S (r) (the normalized mean square 
r*0 o 

error is equal to unity plus a term proportional to the noise power). Figure 15 

illustrates this behavior for the case of noiseless analog television displays 
1/2 

operating with a 3.5-MHz band-limited input characteristic. Curves of e   and 

Q are shown as a function of viewing distance for an ideal kinescope R (u) = 1 

and for the actual measured MEF of a color kinescope . The vertical arrows 

in the figure indicate the calculated viewing distance r for maximum visual 
P 

capacity.  It is interesting to note that, at the viewing distance for maximum 

edge appreciation, the correlation quality Is greater than 0.9 and the rms 

perceived error is in the range 0.16 to 0.18. 

E.  THE TOTAL INFORMATION CAPACITY - A COMBINED PERCEIVABLE 
INFORMATION DESCRIPTOR 

In Section III.D, we described how one can characterize a sampled display 

in terms of visual capacity (its "sharpness" or edge discrimination ability in 

the absence of noise) and the perceived signal-to-noise ratio (a measure of 

the amount of disturbing noise, relative to the perceived signal content). We 

presented evidence that values of the perceived signal-to-noise ratio in the 

neighborhood of 20 are representative of high-quality television displays, 

viewed at normal distances. We indicated how one can quantify the effect of 

varying such parameters of the display process as bandwidth, number of 

samples, sampling width, and printing width.  It was indicated that questions 

regarding the optimization of the parameters of the sampling process involve 

the tradeoff between edge discrimination ability and perceived slgnal-to-noise 

ratio. An example where such a tradeoff must be considered is the case of the 

effective printing width p; small values of p favor visual capacity but at 

the expense of the perceived signal-to-noise ratio, and vice versa. Therefore, 

a single descriptor that combines both visual capacity and perceived sigual-to- 

nolse ratio would be of obvious utility. For example, suppose we are faced 

with the question of what is the optimum printing width at a particular view- 

ing distance, given the constraints that total luminance (brightness times 

area) and all other properties of the sampling process are held constant. 

*E. W. Herold, private communication. 
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2       4 
VIEWING DISTANCE 

Figure 15. Correlation quality Q and the perceived root mean square error 
£^'2 as a function of viewing distance in picture heights for 
an ideal noiseless kinescope and for a commercially available 
kinescope (assumed to be noiseless) at the indicated value 
of the beam current. A band-limited input characteristic with 
a cutoff of 3.5 MHz (N-jy = 366) was employed in the calcu- 
lations. The vertical arrows indicate the calculated viewing 
distances r- for maximum visual capacity. 
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We might guess that at very small viewing distances, it would be beneficial to 

employ large values of p in order to avoid as much as possible the large amounts 

of disturbing noise introduced by narrow printing functions (see, for example, 

Fig. 12). On the other hand, at very large viewing distances, the eye would 

be unable to perceive this noise, and a continuous picture would be observed. 

In that case, it might be beneficial to use the smallest practical active area 

(again keeping the total number of photons constant) in order to gain a sensa- 

tion of sharpness from the finer printing (see, for example. Fig. 9).  If this 

line of reasoning is correct, there exists an optimum value of p which depends 

explicitly on viewing distance and the other parameters of the sampling pro- 

cess. A unified descriptor should be capable of predicting this optimum 

value. 
T 

A unified descriptor must weigh C and S/N in a manner that parallels, 

as closely as possible, the way in which the human observer weighs the 

relative virtues of sharpness and freedom from disturbing noise. We have no 

a ppiori  knowledge and little a posteriori  knowledge in this area, so that 

any approach must be, to a certain degree, ad hoc.    However, we can heuris- 

tically continua our approach based on statistical communication theory and 

consider the total information capacity of the display-observer system. 

It is well-known [10, 18, 19] that the limiting rate of information 

transfer of a communication system is determined by the system's bandwidth 

and its overall signal-to-noise ratio. The bandwidth determines the maximum 

rate of transmission p of the information-carrying pulses, and the signal- 

to-noise ratio fixes the number of levels q which each pulse can assume. For 

a communication channel that can handle q pulse levels and whose maximum 

transmission rate is u pulses/second, the system can assume S = q  discrete 

states during a message duration time T. The information capacity of the 

channel is H = log.S = yTlog^q and is measured in bit-s. 

In real communication systems, tht maximum number of permissible levels 

is determined by the available signal-to-noise ratio, the acceptable trans- 

mission error rate, and the details of the encoding and decoding methods 

employed. However, Shannon [10] has shown that the maximum information that 

can be transmitted in time T without error is given by 

H = OT lo?2 [1 + (S/N)^] (88) 
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2 
where (S/N)  is the total system signal-to-noise ratio for power, and ii  is 

the bandwidth of the system. We may regard Eq. (88) as arising from the re- 

placement of the pulse transmission rate [18, 19] by twice the bandwidth and 
2 1/2 

the number of pulse levels q by the quantity [18, 19] [1 + (S/N) ] 

A measure of the total information capacity of the communication channel 

consisting of display and observer can be obtained by defining H as the maximum 

amount of visual information that a human observer can perceive across a 
T 

display of width w. Recalling that the visual capacity C is defined as the 

number of fully resolvable edge transitions that can be perceived across a 

display, it is natural to identify the bandwidth 12 in Eq. (88) as one-half 

the visual capacity. Thus, we have 

n = ^ CT (89) 
2 v 

Next, we consider the total system signal-to-noise ratio (S/N)T.  In our 

display-observer communication system, noise arises from both the display 
2 

and the observer. The display noise power N represents noise as it is 

produced by the picture reproduction device and filtered by the MTF of the 
2 

human visual system. The observer noise N is a characteristic of the human 
v 

visual system. As these noise powers are uncorrelated, it is reasonable to 

assume that they are additive 

N2 = N2 + N2 (90) 
T       v 

Next, we make the simplifying assumption, consistent with experimental 
2 

observation, that the noise N of the human visual system is set by the 

signal level; the noise rides with the signal so as to maintain a constant 

effective signal-to-noise ratio of the human visual system (S/N). , regard- 

less of the signal level.* This means that we may write 

N2 = S2 (S/N)"2 (91) 
v        h 

*This assumption is consistent with the Weber-Fechner law, which states that 
the minimum observable brightness difference is proportional to the brightness 
[14]. 
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whereupon Eqs. (90) and (91) give the following formula for the total system 

signal-to-noise ratio 

j(S/N)'2 + (S/N)H (92) 2  "     "       -1-1 
(S/N)2 

2 
Here (S/N) is the perceived signal-to-noise ratio, given by Eqs. (50) and 

(51). As a function of S/N, the total system signal-to-noise ratio is equal 

to S/N for (S/N)2 « (S/N)2 but eventually saturates at the value (S/N), 
n h 

as S/N is increased indefinitely. This behavior is in qualitative agreement 

with our experience in examining noisy pictures. We know that beyond a certain 

point, there is no advantage to be gained in increasing the display signal-to- 

noise ratio. The improvements are simply not perceived. On the basis of (1) 

our observation in Section III.D that a high-quality telsvisiou display Is 

characterized by values of S/N in the neighborhood of 20, and (2) the Weber- 

Fechner law, we expect (S/N). to be on the order of 10. This value of (S/N), 
n h 

implies that the maximum number of perceivable levels q for the human visual 

system in the absence of display noise is approximately 10. However, we 

know that far more grey-scale levels are perceivable in a typical display 

with, say, a maximum contrast ratio of 100:1. The reason for this discrepancy 

lies in our treatment of the human visual system as a linear system, whereas 

the Weber-Fechner law establishes the position of perceivable gray-scale 

levels exponentially. The assignment of a single number to the effective 

signal-to-noise ratio of the human visual syetem is undoubtedly an over- 

simplification, since it may change with viewing distance and other display 

and environra&ntal variables, but in our simple heuristic approach, we shall 

take (S/N)  to be a single parameter. Numerical calculations have indicated 

that, within the expected range of values of (S/N) , conclusions derived froir 

the calculations are insensitive to the precise value of this parameter. 

having determined the quantities corresponding to the bandwidth and the 

total system signal-to-ncise ratio for the case of a display-observer system, 

we can substitute Eqs. (89) and (92) for these quantities into Eq. (88) for 

the total information capacity H. Making the dependence on viewing distance 

explicit, we have 

H(r) = | cj(r) log2 1 + [(S(r)/N(r))"2 + (S/N)^2]'1       (93) 
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Even though the basic assumptions used in deriving Eqs. (92) and (93) are 

consistent with experimental observations, they cannot be directly verified 

through state-of-the-art psychophysical measurements. Nevertheless, Eqs. (92) 

and (93) can be arrived at through purely formajistic arguments. The physical 

significance of the signal-to-noise ratio is that it determines the number of 

distinguishable levels q. We know from experimental observations (the Weber- 

Fechner law) that there exists in the human visual perception process some 

mechanism that sets the minimum discemable contrast difference even in the 

absence of image noise.  (We assume that the image is sufficiently bright that 

quantal fluctuations [14] are not dominant) We can describe this Internal 

mechanism by an effective signal-to-noise ratio (S/N). such that for noise- 
2 1/2 

free images, the number of discemable levels is q = [1 + (S/N). ]  . If 

the perceived image signal-to-noise ratio S(r)/N(r) is much poorer than 

(S/N) , then the number of levels is determined by the image noise, so that 
2 1/2 

q = [1 + (S(r)/N(r)) ]  . The above two expressions for q describe the ob- 

server-display system's behavior in the asymptotic regimes of S(r)/N(r) -> °° 

and S(r)/N(r)-> 0, respectively.  In the range where S(r)/N(r) = (S/N) , we 

expect that the number of discemable levels is smaller than that predicted 

by either one of the above asymptotic formulas. In the absence of additional 

information, we now wish to combine mathematically the effects of the internal 

mechanism and of the image noise in such a way that the above expectation and 

the asymptotic behaviors are properly described. The simplest mathematical 

expression that satisfies t-hese requirements is obtained by defining a total 

effective signal-to-noise ratio (S/N)  through Eq. (92).  Substituting 

Eqs. (89) and (92) into Eq. (88), we arrive at the expression for H(r) given 

in Eq. (93). 

Equation (93), along with Eq. (26) or (27) for C (r) and Eqs. (50) and 
2       2 V 

(51) for S (r) and N (r), constitutes our proposal for a unified descriptor. 

It should apply to sampling noise, for which the noise power spectrum is given 

in Eq. (52), and other forms of noise for which the noise power spectrum is 

specified. The quantity H represents the total information capacity of the 

display-observer system, including the effects of both edge discrimination 

ability and noise perception. By analogy with ordinary communication channels, 

H is to be measured in bits. It should be emphasized that H in no way repre- 

sents the actual information transfer from the original scene to the perceptual 

level. 
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a.    Properties of the Total Information Capacity.  - The properties of H(r) 
T 

are easily derived from those of C*(r) and S(r)/N(r).  In the noiseless dis- 

play limit [S(r)/N(r)] » (S/N) , the perceived slgnai-to-nolse ratio does 

not affect the total information capacity, so the H(r) is equal to a con- 

stant times CT(r): 
v 

H(r) - \ J(r) log2 ,1 + (S/N)J ; for [S(r)/N(r)]2 » (S/N)2 (94) 

As S(r)/N(r) is decreased, the perceived noise decreases H(r) from the noise- 

less display limit Eq. (94).  Indeed in the limit [S(r)/N(r)]2 << (S/N)?, the 
h 

total system signal-to-noise ratio is determined by the display noise, and 

H(r) is reduced in a logarithmic manner from the noiseless display limit: 

H(r) - \ C*(r) log2 1 + (S(r)/N(r))2 ; 

for [S(r)/N(r)]2 « (S/N)2 <95) 
h 

In Section III.D, we showed that, for sampled displays, S(r)/N(r) is a 

monotonically increasing function of r, rising from a finite or zero value at 
T 

r = 0 and diverging as r -*■ ^ (see Tables 1 and 2). On the other hand, C (r) 

exhibits a peak at a viewing distance r and approaches zero at both r = 0 and 

r -»• oo.  From these results, it is clear that H(r) will also always exhibit a 

peak at a particular viewing distance which is ^ r . We call the viewing cis- 

tance for maximum H(r) the optimum viewing distance and denote it by r  . We 

do so on the grounds that r   represents the viewing distance which maximizes 
opt 

the total information capacity of the display-observer system, including the 

effects of both edge discrimination ability and perceived noise. 

h.    Sharpness-Limited and Noice-Limited Displays.  - We find it convenient and 

natural to divide displays into two categories: 

(1) Sharpness-limited displays:  those displays for which S(r)/N(r) has 

ri:ien to a value greater than (S/N), at the viewing distance r for 
T h p 

maximum C (r). An observer located at r = r does not find noise 
v p 

objectionable. 

(2) Noise-limited displays:  those displays for which S(r)/N(r) is 

considerably less than (S/N). at r . Noise is very apparent to an 

observer located at r . 
P 
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For sharpness-limited displays, perceived noise dees not appreciably 

affect the value of H(r) for r K, r  .    Thus, Eq. (94) holds in this viewing 

distance range, and r   « r . An example of a sharpness-limited display 

is the vertical (sampled) direction of the television display whose C (r) 

and S(r)/N(r) are graphed in Figs. 8 and 10, respectively. The calculated 

S(r )/N(r ) = 21 at the viewing distance r = 4.7h puts this display in 
P       P r rr 

the sharpness-limited class. Using the calculated C (r) and S(r)/N(r), we 

obtain from Eq. (93), with (S/N) = 10, the graph of H(r) indicated by the 

dashed curve in Fig. 16. For comparison, we also show the calculated H(r) 
T 

for the horizontal analog scanning direction of this display, using the C (r) 

from Fig. 8 and assuming noiseless picture reproduction [S(r)/N(r) = "J. 

Comparing Fig. 16 with Fig. 8, it is seen that the effect of the sampling noise 

on the total information capacity is minor for r ^, 3h. The optimum viewing 

distance is r   = 5.1h Instead of the value r = 4.7h for maximum visual 
opt p 

capacity. The decrease of the peak value of H(r) due to sampling noise is 

only about 4% of the value T CT(r )log [1 + (S/N)n = 929 bits that would have 

been achieved in the absence of sampling noise. For r < 3h, the H(r) for the 

vertical direction drops much more abruptly than that for the horizontal 

direction, actually falling below the latter curve for r <_ 1.3h. This effect 

is due to the rapidly decreasing S(r)/N(r), as shown in Fig. 10, which drastic- 

ally reduces H(r) at small viewing distances. 

In the case of noise-limited displays, the effect of the noise is to 

reduce H(r) appreciably in the neighborhood of r . It then becomes advanta- 

geous to increase the viewing distance in order to raise the perceived signal- 

to-noise ratio. The distance r   is then determined by a tradeoff between 
T opt 

the decrease of C (r) at large viewing distances, as given by Eq. (28), and the 

natural increase of S(r)/N(r). As an illustrative and significant example, 

we consider the case of an analog display with a flat overall MTF R (u) = 1 

for |L)|<ü) . We assume a white noise power spectrum NCo) = N(0) so that the 
2 

noise power N , as measured on the display screen, is given by Eq. (53): 
s 

N^ = (yu) N(0) (96) 
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Total information capacity H as a function of viewing distance 
in picture heights for a real television display device. The 
H for both vertical and horizontal directions are shown. The 
value of the parameter (S/N)h was taken to be 10. An Ns = 640- 
line format has been employed in order to compensate for the 
4:3 aspect ratio of the display screen. The C^ and S/N for 
this display are given in Figs. 8 and 10, respectively. 

i 

The perceived noise power N (r) for constant N(OJ) is obtained from Eq. (51). 

Setting R ff(ü)) = 1 for |(i)| £ w , we have 

+W. 

N2(r) s ■„> / !vo — 0 (wr/ZTT) (97) 

-W M 

We are interested in the viewing distance regime r >> r , where, according 

to Eq. (34), r is approximately 2vv  /w .  In that case, the limits on the 

integration in Eq. (97) may be extended to i00, giving us the following 
2 

expression for N (r): 

N (r) = (Tt/ü^e^r)  N  ;  for r » 2Trv /üJM (98) 
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Here we have employed Eq. (29) Co express the integral In terms of 6 , the 

perceived angular width of a single edge transition. Turning to the perceived 
2 

signal power, for the measured signal power spectrum <t>(ai) <• B/u , we can 
2 

make use of Eqs. (55) and (63) for S (r) in the large viewing distance limit. 

We have then 

S2(r) - (4.73 Br/2Tr2v );  for r » 2irv /UL. (99) o on 

Next, we go back to Eq. (42b) in order to express the power amplitude 
2 

coefficient B in terms of the ensemble average input power <I (x)>. For 
2 0 

a) >> w , the average signal power S , as measured on the display screen. Mi-- s 
is identical to the average scene power within the field-of-view of the imag- 

2 2 
ing system, <I (x)>. This is because the l/m power spectrum concentrates 

2 
most of the signal power at low frequencies, thereby rendering S independent 

of a)... With the&e considerations, Eq. (99) becomes 
M 

S2(r) = (4.73 u)Tr/iT2v )  S2-  for r » 2™ /wM (100) L     OS On 

Combining Eqs. (98) and (100), we obtain the asymptotic behavior of S(r)/N(r) 

for whits noise at large viewing distances: 

S(r)/N(r) - 1.88 x 10~3 NTJ
/2(r/w) (S^); 

for r/w » 900/NTV (101) 

GO 

In arriving at Eq, (101), «e have used the value of 9 given in Eq. (30), 

employed the expression N  = w w/u to write the maximum frequency in terms 

of the maximum number of TV lines, and once again set u_ = 2ir/w and v = 458 
L o 

cycles/radian-of-vision.  From Eq. (101), it is seen that S(r)/N(r) is propor- 

tional toS /N , the signal-to-noise i-atio as measured on the display screen, 
S S 1/2 

and also varies linearly with viewing distance. The factor N '  arises be- 

cause the assumed white noise spectrum gives an rms noise fluctuation N that 

is proportional to the square root of the bandwidth [see Eq. (96)].  It is 
1/2 

convenient to chink of the quantity N /N   in Eq. (101) as representing 
,1/2 S 

[W(0)]  , the square root of the noise spectral density. 
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Given Eq. (101) for S(r)/N(ry and Eq. (28) for C (r) in the large 

viewing distance limit, we differentiate Eq. (93) for H(r) in order to calcu- 

late the optimum viewing distance. The operation is straightforward and gives 

us the following condition for r  : 

(S/N)' 
{l +  (S/N)^} in [1 + (S/N);i 

(S/N)! 
(102) 

opt 

where (S/N)  is the total system signal-to-noise ratio, given in Eq. (92). 

Equations (92) and (102) can be solved numerically for the required value of 

S(r J/N(r J. We find that S(r J/N(r )  is essentially independent 
opt   opt opt    opt 

of the value of (S/N). , varying from the value 1.90 for (S/N). = 10 to 
n n 

1.98 for (S/N). We take the former value, thereby giving us the 

result that, for extremely noisy displays, the viewing distance for maximum 

H must be increased from r until the condition 
P 

opt   opt 
(103) 

is met.    From Eq.   (101), it is seen that Eq.   (103)  is satisfied when 

ropt/w.l010/[^2(S8/N8)] (104) 

Since we demand that r   » r , Eq. (104) can be used to establish a con- 
opt    p' 

dition on the value S /N . From the inequality in Eq. (101), we have 
s s 

S8/Ns « N^
2 (105) 

The maximum value of H(r), corresponding to the viewing distance given in 

Eq. (104), is easily obtained from Eq. (93) with C (r) - w/e^r. Taking 

(S/N), ■ 10, we compute 

H(r J - 2.0 Hi/,2 (S /N ) 
opt       TV   s a' 

(106) 
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It is instructive to cast this result in terms of the maximum visual capacity 

of a noiseless analog display with the same value of H(r  ). In order to 

accomplish this, we use the fact that a display with a flat overall MTF 

R (u) ■ 1 for |(D| <. irN^/w has a maximum visual capacity [11] C (r ) - N!!?. 
o iv v P    TV 

Then from Eqs. (94), (105), and (106) with (S/N)h = 10, we see that an 

extremely noisy display with a white noise spectrum has the same maximum total 

information capacity as a noiseless display with a limiting resolution given 

by 

45 = 0.60 K^2  (Ss/Ns); for N^ « NTV (107) 

Equation (107) is remarkable, for it says that an extremely noisy display 

is equivalent in total information capacity to a noiseless analog display whose 

resolution is proportional to the signal-to-noise ratio, as measured on the 

screen cf the noisy display. This is true despite the fact that H(r) depends 

logarithmically on the total system signal-to-noise ratio. Furthermore, using 
1/2 

Eqs. (42) and (96), it is possible to eliminate the factor N   on the right- 
eq 

hand side of Eq. (107) and express N_^ entirely in terms of the ratio of the 

signal power amplitude coefficient B to the noise power spectrum N(0). Thus, 

the total information capacity of an extreme noise-limited display is inde- 

pendent of its resolution. The display is so noisy that its optimum perform- 

ance depends only on the input signal power and the noise power spectrum. This 

situation is analogous to the case of an ordinary noisy communication channel. 

Suppose, for example, that we are receiving information from a distant source 

such as a space probe. As the source recedes, the intrinsic signal power 

decreases, while the intrinsic noise power remains constant.  If we want to 

keep thfe error rate constant, we must increase the signal integration time 

proportionately in order to maintain the required overall signal-to-noise 

ratio. However, this means that the bandwidth, and hence the information 

transmission rate, is decreased by the same factor as the signal power. In 

effect, the information transmission rate is proportional to the ratio of the 

signal power to the noise power. For the case of the display-observer commun- 

ication channel, increasing the viewing distance is analogous to increasing 

the integration time. As the ratio of signal power to noise pover decreases, 

the observer must increase his viewing distance in order to maintain the value 
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of the perceived signal-to-noise ratio given by Eq. (103). As the viewing 

distance increases, the "bandwidth" or visual capacity decreases proportionately 

[Eq. (28)]. The net effect is that the maximum information capacity is pro- 

portional to the ratio of signal power to noise power. 

c.    The Equivalenae Faator and its Relation to the Kell Factor. - The concept 

of an equivalence factor that can be employed to convert the overall picture 

reproduction ability of a sampled display with N samples into an effective 

number of TV lines for an analog display has had historical appeal. The early 

work of Kell [20] and coworkers showed empirically that, for television 

displays, the picture reproduction ability of K samples is equivalent to an 
s 

analog scanning display system with a limiting resolution corresponding to 

Nm. = K N , where K is the so-called Kell factor. Values of K in the range 
TV    s' 

0.53 to 0.85 were observed [21]. 

The formalism pr»sented in this report allows one to calculate the required 

number of TV lines NTU for a noiseless analog display to produce the same 

maximum total Information capacity as a sampled display with N samples. We s 

define the equivalence factor g according to 

W Kiropt) H(r J 
TV opt' 'N 

(108) 

where it is understood that N  and N give the same value of H(r) at their 

respective optimum viewing distances.  It is clear that £ will depend on the 

various parameters of the sampled display (sampling width, printing width, 

bandwidth) and the characteristics assumed for the analog display [the form of 

the overall MTF R (ui)]. As an example, we consider the vertical (sampled) 

direction of the television display whose H(r) is indicated by the dashed curve 

in Fig. 16. From the figure, we see that H(r  ) = 890 bits. According to 

Eq. (94) for H(r) in the absence of display noise, this value of H(r  ) is 

also obtained for a noiseless analog display with a maximum visual capacity 

CT(r ) = 2 x 890/logo[l + (S/N)J] = 267 transitions. This value of CT(r ) can 
V  p z n V  p 

be achieved by an infinite number of analog displays, depending on the specific 

form of the overall MTF R (u).  If & is to have any practical meaning, we 

should confine ourselves to the R (CJ) for the horizontal scanning direction 

of the same television display device. We see from Fig. 8 that, with the 

contribution of the video circuit response function to R (u) used in the 
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T T 
calculation of C (r) for the horizontal direction, the maximum C is only 

v ' v     ' 
about 235 transitions.  In order to increase this value to 267 transitions, 

we find that it would be necessary to extend the cutoff frequency for hori- 

zontal signals from W     -  366 to about N  = 400 lines. Thus, in this case, 

the equivalence factor &  is approximately 400/640 - 0.63. 

d.    Approximate Determination of fS/Nh. - We have argued that the value of the 

parameter (S/N). is expected to be on the order of 10. An attractive means of 

experimentally determining the value of (S/N) that is operationally effective 

within the context of the present formalism is to assume that the calculated 

value of r   for sampled displays or noisy analog displays corresponds to the 

preferred viewing distance of human observers. Then, the experimental value 

of (S/N) is obtained by varying the value of this parameter until the calcu- 

lated r   agrees with the most frequently occurring experimental value. Self- 

consistency is to be achieved if the same value of (S/N), is obtained, within 

experimental error, from experiments with different sampling parameters and 

with different scene contents. 

For a preliminary experiment, we selected the sampled and unfiltered 

picture of Lincoln reproduced [4] on the cover of Saience,  June 15, 1973. 

This picture is characterized by N = 14 horizontal samples across 2.25 in, 
s 

extreme undersampling (JüM = 
00, full-width sampling s = 1, and a constant 

printing function illuminating one entire sampling location [Eq. (54)]. 

The picture and its immediate surround were illuminated with tungsten lamps to 

an average brightness of 150 ft-L. The viewing area was approximately 100 ft 

long and free of obstructions or other known possible bias influences. It was 

Illuminated with natural light to a brightness of over 300 ft-L. The high 

brightness levels were chosen so as to nearly reproduce the conditions under 

which the MTF 0(v), employed in the calculations, was measured [6]. Thirty- 

six subjects were chosen from the Laboratories population. These Included tech- 

nical and nontechnical, male and female personnel. All subjects with visual 

defects used corrective lenses. Each subject was asked to choose the distance 

at which picture looked best to him. The subjects were encouraged to range 

over as large an excursion of viewing distances as possible before making a 

decision. No description or commentary was given. The result of the experi- 

ment is summarized by the histogram: in Fig. 17, which fhows that, with a 3-ft 
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20        30 
VIEWING DISTANCE (FT) 

Figure 17. Summary of experimental results and analysis of the sampled 
"Lincoln" picture [4]. The histogram indicates the number 
of observations recorded as a function of preferred viewing 
distance (see text for experimental details). The solid 
curve represents the total information capacity H for the 
horizontal direction (Ns = 14) as a function of viewing 
distance, using the value (S/N)- = 10. The vertical arrows 
represent the" viewing distance for maximum H and for 90% 
maximum H. 

distance bin, the most frequently occurring value of the preferred viewing dis- 

tance fell in the range 27 to 30 ft. As can be seen from the figure, a con- 

siderable spread was observed; the lowest preferred viewing distance was 22 ft 

and the largest was 44 ft. 

The calculated H(r) for this display, using Eq. (93) with (S/N)h =10, is 

also shown in Fig. 17.  It is seen that the peak of H(r) at r   = 29.3 ft cor- 
opt 

responds to the most frequently observed preferred viewing distance. Further- 

more, the general shape of the histogram, i.e., skewed to the right, is con- 

sistent with the curve of H(r), which rises rapidly at small viewing distances 

and fal  off more gradually at large viewing distances. Note that nearly all 

observers had a preferred viewing distance that corresponded to more than 90% 

of the calculated maximum value of H(r). 
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Although the value (S/N). « 10 gives an accurate representation of the 

subjects' preferences, statistical uncertainties in the data and uncertainties 

in the measured [6] 0(v) permit a fairly large range of acceptable values of 

(S/N). . Taking (S/N),. - 15 would shift r , to about 32 ft; this value is 
h h opt 

nearly as valid as that for (S/N), » 10 because of statistical uncertainties 

arising out of the relatively small population of subjects. A far ix>re sensi- 

tive determination of (S/N), could be made from more noise-limited displays, 
n 

such as one employing delta-function sampling (s » 0) and delta-function print- 

ing (p s 0). Such experiments should be performed. 

In spite of these uncertainties, we feel that the results of the experi- 

ment and the calculation offer preliminary evidence that the subjects chose 

the preferred viewing distance on the basis of a compromise between edge dis- 

crimination ability and perceived signal-to-noise ratio, in accordance with 

Eq. (93). The value (S/N), * 10, derived from the experiment, lies well within 

the range of values expected on the basis of the Weber-Fechner law and on the 

basis of the calculated S/N of other noisy displays (see Section III.D).  It 

is not likely that visual capacity alone was operative, since in this case 
T 

C (r) has a calculated max<mum value at r =23 ft. Thirty-five of thirty- 

six subjects preferred a larger viewing distance. Nor can perceived signal- 

to-noise ratio alone have been responsible for the observed preferred viewing 

distances, since such a strategy would favor an infinite viewing distance. 

e.    The 1?-Element Display.  - Figares 18 through 22 give the results of calcu- 

lations appropriate for a 17-element optical block processor of the type de- 

scribed in Section V. In particular, for an extremely undersampled 17-element 
T 

display, the signal-to-noise ratio S/N(r), the visual capacity C (r), and H 
* v 

were calculated for the two extreme cases of delta-function sampling and 

delta-function printing, and full-width sampling and full-width printing. The 

properties of these two cases are distinctive and illustrate well our method 

of analysis. 

Figure 18 shows the perceived frequency spectra for the signal and the 

sampling noise components of the total perceived intensity distribution at a 

*For Ns ■ 17, the requirement (os >> a>^ " 2TI/W, assumed in all the derivations 
is not extremely well satisfied. Nevertheless, Eqs. (27) and (50) to (52) can 
be employed to calculate approximately the desired performance characteristics. 
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Figure 18. Perceived signal and noise spectra as a function of retinal 
frequency for a display with N8 ■ 17 samples at a viewing 
distance of 75 picture widths. The ordlnate represents the 
Integrand of Eqs. (50) and (51) for S2 and N2, respectively. 
The values of s and p are given In the figure. 
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Figure 19. Perceived signal-to-noise ratio S/N as a function of viewing 
distance in picture widths for displays with Ns » 17 samples. 
The values of s and p are given In the figure. 
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VIEWING   DISTANCE: r/w 

300 

Figure 20. Visual capacity C^ as a function of viewing distance In 
picture widths for displays with N8 - 17 samples. The 
values of s and p are given In the figure. 
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Figure 21. Total information capacity H as a function of viewing distance 

in picture widths for displays with N8 » 17 samples. The 
values of s and p are given in the figure, 
parameter (S/N)h was taken to be 15. 

The value of the 
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Figure 22. The fractional difference AH/H between the total Information 
capacities of the displays of Fig. 21 as a function of viewing 
distance in picture widths. 
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viewing distance of 75 picture widths. The ordinate represents the integrands 
2 

of Eqs. (50) and (51) for the perceived signal power S and the perceived noise 
2 

power N , respectively. The frequency coordinate is in units of cycles/degree- 
2   2-1 

of-vision. A Lorentzian power specturm ♦(u) " B [u + üL]  was employed 

m all the calculations. The display sampling parameters used, s - p » 0, mean 

that we are considering delta-function sampling and printing, i.e., the input 

signal is sampled and printed over an infinitely narrow range within the sam- 

pling location. This is the arrangement that produces the maximum samplirg 

noise. One sees from the figure that the signal part of the total spectrum is 

concentrated at the lowest retinal frequencies, rolling off rapidly above about 

10 cycles/degree-of-vision. On the other hand, the noise power is concentrated 

in peaks centered around the sampling frequency (corresponding, at this viewing 

distance, to 22 cycles/degree-of-vision) and its harmonics and In a low-fre- 

quency peak near the value v corresponding to the maximum sensitivity of the 

human visual system - 8 cycles/degree-of-vision. 

To compute the perceived signal-to-noise ratio, according to Eqs. (50) and 

(51) we calculate the area under the perceived signal and noise power spectrum 

vs frequency curves, divide the signal area by the noise area, and take the 

square root. In Fig. 19 are plotted the perceived signal-to-noise ratios 

S(r)/N(r) so obtained as a function of viewing distance for the 17-element 

display with s •= 0, p = 0 and for a display with s = 1 and a constant print- 

ing function (denoted by p = 1 in the figure) over one entire sampling location. 

The S(r)/N(r) for the display with s » 1, p = 1 rises rapidly with viewing 
2 

distance, eventually approaching the predicted (r/w)  law, as predicted by Eq. 

(70). The S(r)/N(r) for the display with s = 0, p = 0 rises more slowly for 

large viewing distances, ultimately reaching a linear dependence on (r/w), 

as expected from the entry in Table 1 for undersampled displays with s = 0 and 

p = 0. The s - 1, p s 1 display has superior S/N at all viewing distances, the 

difference between the performance of the displays ranging between 6 and 10 dB 

over the range of r shown in Fig. 19. This behavior is consistent with our 

view that large sampling and printing widths favor signal-to-noise performance. 

The visual capacity as a function of viewing distance is shown in Fig. 20 

for the same two displays whose values of S/N are plotted In Fig. 19. The 

curve for the display with s = 0, p = 0 follows the simple 1/r dependence Eq. 
* T 

(28), siiice we have set lUu) - R(ü)) = sine (su/u) ) = 1 in Eq. (27) for C (r). 
s v 
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Recalllig that the visual capacity represmts perceived sharpness in the absence 

of noise, the results shown in Fig. 20 indicate that the display with s » 0, 

p • 0 should provide a greater impression of sharpness than the s - 1, p « 1 

display. This is to be contracted with the results of the S/N calculation, 

which indicated superior nclse performance for the s ■ 1, p * 1 display. 

In Fig. 21 is plotted the total information capacity H(r), obtained from 
T 

the calculated C (r) and S(r)/N(r) from Eq. (93). Here we have employed the 

value (S/N). - 15 for the effective signal-to-noise ratio of the human visual 

system. As can be seen from Fig. 21, H(r) for both displays has the same gen- 

eral form: a peak at i viewing distance of approximately 130 picture widths, 

a rapid fall-off at small viewing distances, and a more gradual drop at large 

viewing distances. At very large viewing distances, the curves will approach 

each other as the human visual system, not the display, becomes the limiting 

factor in the determination of the overall capacity of the display-observer 

channel. The curves cf Fig. 21 indicate that the s ■ 1, p ■ 1 display provides, 

with the human observer, a higher overall Information capacity at all viewing 

distances. This is better illustrated in Fig. 22, where the fractional differ- 

ence AH/H between the s > 1, p - 1 and s = 0, p » 0 displays is shown as a 

function of viewing distance. Note ♦■he rapid rise of AH/H at small viewing 

distances. Figure 22 indicates that a simultaneous pair comparison of an s = 1, 

p " 1 display and an s » 0, p > 0 display would yield a threshold viewing dis- 

tance, below which the s » 0, p - 0 display would appear far inferior to the 

s ■ 1, p ■ 1 display. This threshold viewing distance is calculated to be about 

70 picture heights for illumination greater than about 100 ft-L. At lower bright- 

nesses, the threshold will decrease markedly due to the shift of the peak of 

the MTF of the hums i visual system to smaller frequencies. For viewing distances 

between about 70 and 300 picture widths, AH/H is relatively slowly varying, 

averaging about 0.23. If we employ the value (S/N) ■ 10, instead of 15, AH/H 

in this range of viewing distances is reduced to an average of about 0.12. 

f.    Optimization of Diaplaye.  - Our method of analysis for one-dimensional 

sampled displays can be employed to optimize the performance of a display by 

seeking the maximum value of the total Information capacity H as a function 

of the various sampling parameters (e.g., number of samples, sampling width, 
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printing function), the electronic bandwidth, and the viewing distance. Ex- 

ternal constraints, such as limitations on the viewing distance, number of 

samples, etc can also be accommodated. 

In Fig. 23, we show the effect of varying the width of the printing func- 

tion on the H(r) for the vertical (sampled) direction of television displays. 

The values of p, the width parameter for the Gaussian printing function Eq. 

(77), given in the figure, are the same as those employed to calculate the 
T 

corresponding C (r), shown in Fig. 9,  and the S(r)/N(r), shown in Fig. 12. 

The value p - 0.642 was that measured for the real kinescope described in the 

discussion of the visual capacity in Section III.D. Comparison of Figs. 9, 

12, and 23 shows that, whereas small values of p result in enhanced visual 

capacity, and large values of p favor signal-to-noise performance, the behavior 

of H(r) with p is substantially more complicated. The value of p for optimum 

H(r) clearly depends on viewing distance. At small viewing distances r/h %  3, 

H(r) is enhanced by increasing the printing width p from its observed value, 

indicating that H(r) is dominated by signal-to-noise considerations. On the 

other hand, at larger viewing distances, H(r) is enhanced by employing smaller 

values of p, showing that the value of S(r)/N(r) is sufficiently large to be 

able to support some degradation in exchange for increased sharpness. The ab- 

solute maximum value of H(r  ) is achieved for a value of p approximately 

20% smaller than the observed value. Decreasing p beyond this point reduces 

H(r  ) but gives some advantage at very large viewing distances. The value 

of r   itself achieves a minimum v<.lue of approximately 5 picture heights. 

Values of p that are too small or too large act to increase the optimum view- 

ing distance. As a general comment, we call attention to the shape of the 

curves; the curve of H(r) with the largest value of p, having the best noise 

performance but the worst "sharpness," has a soft, gradual rise at small r and 

a comparatively broad peak, whereas the curve with the smallest value of p, 

having the worst noise performance but the best "sharpness," has an abrupt rise 

and a sharper peak. The abrupt increase occurs after the value of S(r)/N(r) 

passes through the value unity [see Fig. 12]. 

At any particular viewing distance, we can compute the optimum value of 

the printing width, subject to the constraint that all other display parameters 

are held constant. An example of such an optimization technique is shown in 
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Figure 23. Total Information capacity H as a tunction of viewing distance 
in picture heights for the vertical direction (Ns - 480) of a 
television display. The values of the parameter p, which 
represents the effective width of the Gaussian printing 
function, are given in the figure. The particular value 
obtained from measurements of a commercially available kine- 
scope is also Indicated. The parameter (S/N)h was taken 
to be 10. 

Fig. 24. Consider a hypothetical 500-sample display with no band limitation 

applied to the input signal. Let us assume that technical reasons have forced 

us to consider only delta-function sampling (s ■ 0) and printing functions 

whose intensity profile is constant over a fractional width p of each sampling 

aperture on the display screen and is zero everywhere else [n(ü)) - sine (poj/oig)], 

We wish to know the optimum value of p for various viewing distances. Figure 

24 plots the calculated H as a function of s (taking (S/N)h - 15) for several 

viewing distances. From the figure, it is seen that, as the viewing distance 

increases from 2 to 14 picture widths, the optimum value of p decreases from 

unity to the value 0.56. Furthermore, as the viewing distance increases, the 

sensitivity of H to the specific value of p decreases. For example, if p is 

decreased from its optimum value by 0 1, the cost would be a 46Z drop in H at 

a viewing distance of 2 picture widths, but only 2X at 5 picture widths. This 
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Figure 24. Total information capacity H as a function of effective print- 
ing width p for a hypothetical 500-sample display with s = 0 
and UJ^ - <». Here p is the fractional width of each sampling 
location that is activated with a constant intensity. The 
values of the viewing distance, expressed in picture widths, 
are given in the figure. The vertical arrows Indicate the 
values of p for maximum H. The parameter (S/N)^ was taken 
to be 15, 

behavior can be understood as follows. At small viewing distances, the display- 

observer system is optimized by full-width printing because of its superior 

signal-to-noise characteristics. As the viewing distance Increases, the per- 

ceived signal-to-noise ratio for p ■ 1 becomes large enough so that sampling 

noise is far less influential in limiting total information capacity. It then 

pays to decrease p in order to gain the larger perceived sharpness that is 
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characteristic of small values of p. However, as the viewing distance contin- 

ues to increase, the human visual system becomes the limiting factor in deter- 

mining H; it then makes less and less difference just how the display is de- 

signed (for a given number of samples). Thus, curves of H vs p become pro- 

gressively flatter. 

If we relax the constraint s ■ 0 and allow s to take on any value, we 

have a maximization problem in two dimensions; at any viewing distance, H must 

be maximized with respect to both p and s. For our hypothetical 500-eleincnc 

display, at a viewing distance of 2 picture widths, it turns out that p " 1 

gives a relative maximum value of H regardless of the value of s. Thus, Fig. 

25, which graphs H against s for p » 1, respresents the locus of relative max- 

imum values of H as the sampling width is varied. The absolute maximum val^e 

of H is achieved for the combination of parameter s - 0.A3, p - 1. This value 

of H is HZ larger than the value for s - 0, p » 1, which is the maximum achiev- 

able H subject to the constraint s ■ 0.  In a similar manner, one can perform 

the two-dimensional maximization calculation at other viewing distances. For 

example, we calculate that,, in increasing the viewing distance from 2 to 3 pic- 

ture widths, the optimum pair of s, p parameters shifts from s * 0.43, p * 1 

to s - 0.99, p - 0.99. 

The above example by no means exhausts the variables of the optimization 

problem. We may introduce an  electronic filter function of finite passband 

before the sampling process is performed. The width of the passband then be- 

comes a third variable which must be optimized simultaneously with s and p. 

In addition, we may, of course, allow other forms of printing functions in ad- 

dition to the simple constant P(x) of fractional width p. 

The results of any optimization calculation, once performed at a partic- 

ular viewing distance for a given number of samples, cannot be assumed to be 

valid if the number of samples is changed.  Figure 26 shows curves of H as a 

function of the number of samples for 3 different sampling widths with the 

viewing distance held constant at 5 picture widths and with a constant printing 

function width p - 1. All the curves have the same general form, rising rapid- 

ly at first but eventually saturating at a value determined by the limitations 

of human visual system.  It is noteworthy that, whereas full-width sampling 

s » 1 is favored for greater than about 300 samples, half-width sampling s ■ 1/2 

gives a larger value of H when the number of samples is less than 300.  Indeed, 
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Figure 25. Total information capacity H as a function of sampling width s 
for a hypothetical 500-sample display with p = 1 and Ufl ■ «. 
The viewing distance is 2 picture widths. The curve represents 
the locus of relative maximum values of H in the two-dimensional 
space of s, p values. The absolute maximum of H is indicated 
in the figure. The parameter (S/N)h was taken to be 15. 

when the number of samples is less than approximately 225, even s - 0 sampling 

gives a larger value of H than does the case s - 1. This example serves to 

emphasize that the number of display samples must be explicitly included in any 

optimization calculation. 
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ISOOr 

400    600    800 
NUMBER OF SAMPLES: N8 

Figure 26. Total information capacity H as a function of the number of 
samples Ns for hypothetical displays with p = 1 and w^ = <». 
The viewing distance is 5 picture widths. The values of s 
are given in the figure. The parameter (S/N)^ was taken to 
be 15. 
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SECTION IV 

TWO-DIMENSIONAL ANALOG DISPLAYS - THE VISUAL CAPACITY 

A. MATHEMATICAL FORMULATION 

The visual capacity [11] for one-dimensional analog displays has been de- 

fined in terms of the perceived visual response to sharp edge inputs. The cal- 

culated edge width x , as perceived by the observer, then determines the maximum 

number of resolvable edge transitions across a display of width w through th*» 
T 

simple formula C ■ w/x . As discussed in ref. [11] and Section III.D of this 
T    v    e 

report, C represents the Information capacity of a noiseless two-level com- 

munication system. For noisy multilevel displays, the total information capa- 
T 

city H is proportional to C [Eq. (93)]. In the one-dimensional case, the analogy 

between visual capacity and the maximum pulse transmission rate y of a communi- 

cation channel Is straightforward. For the case of two-dimensional displays, no 

direct analogy exists for the simple reason that there is only one time dimension. 

Nevertheless, if we continue to define Information capacity as the base-two loga- 

rithm of the total number of discrete states the system can assume, it is clear 

that the information capacity of a two-dimensional display will be proportional 

to the number of discrete locations that can be perceived within a display of 
T 

area A. Accordingly, we define the two-dimensional visual capacity C 0 as the 

number of perceivable spots  within the area A: 

C 0 - A/a v2     e 
(109) 

Here a is the perceived area of a single spot - the response of the display- 

observer system to a delta-function point input. 

We shall calculate an expression for a in a manner analogous to the cal- 

culation of the quantity x for the one-dimensional case. Let distance on the 

display screen be described by the polar coordinates p and a, where a is the 

polar angle, as measured from the horizontal, and p is the radial distance from 

a point on the screen to the origin of the coordinate system. The location of 

the origin is arbitrary. We define the psychophyslcal response function E,(p,o) 

as the perceived response to a unit delta-function input signal. The meaning of 

the unit delta-function is as follows. The brightness units are defined such 

that the integral over the display screen of the response of the display to a 
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delta-function Input of strength D is unity. Denoting the intensity pattern on 

the screen by I.(pta) and taking the delta-function input at the origin, we 

oust ha/e 
2Tr 

I'*! da I6(p,o) - 1 (110) 

0 

2Tr 

h (P,a) -D I *Mr  I  d* R ((ü,*) exptiup cos (*-a)l     (111) 
J    to2      ] 

E6 (P,a) -  I -^r   I     d* 0(ur/2ir,(|i) R (w,((i) exp[l(i)p cos ((t>-o)] (113) 

i     ^    ] 
*This is an Important assumption that must be justified by experiment. See 
Section VI for initial experimental results that Indicate that such an as- 
sumption is valid for complex two-dimensional gratings. 

Ill 

where 

Here R (u,^) is the overall two-dimensional MTF of the display system as a 

function of the magnitude u and direction 4» (with respect to the horizontal) of 

the two-dimensional spatial frequency vector. The response I.(p,a) is assumed 

to be sufficiently localized for the integration over p in Eq. (110) to be ex- 
's 

tended to infinity. Substituting Eq. (Ill) into Eq. (110) and performing the 

spatial integration, it is a straightforward exercise in Fourier analysis to 

show that our definition of a unit delta-function implies simply that its strength 

is unity: , 

D - 1 (112)      i 
t 

1 

To obtain Eq. (112), we have employed the Identity R(0,cji) - 1, the condition 

that there be no amplification or attenuation of a dc input. 

In the spirit of linear systems analysis, as employed for the case of the 

one-dimensional visual capacity, we shall compute the perceived response E.(p,a) 

using a two-dimensional MTF 0(v,(j>) to describe the processing performed by the 

human visual system. Here 0(v,(j)) describes the perceived contrast for a sinu- 

soidal grating of retinal frequency v » ur/2n, oriented at an angle <j) from the 

horizontal.* Then, just as In the one-dimensional case, the perceived response 

E,(p,a) is obtained from Eq. (Ill) by simply multiplying the integrand of this 

equation by the function 0(u)r/2ir,(|)). Setting D * 1, we have 

«      2n 



1 
We note that, with the normalization condition Eq. (110), both I.(p,a) and 

Ef(p,a) have the dimensions of inverse area. In fact, the magnitude of E., say 

near p » 0, is on the order of I/o , where a    can be thought of as the inverse 
e       e 

square of an effective cutoff frequency for the combined display-observer system. 

(For example, a "perfect" system would have unity response at all frequencies, so 

that a - 0. Then E diverges, as it should for a perfectly reproduced delta- 

function.) The effective display area covered by E is on the order of o . This 

can be understood by noticing that the range of p in the integral of Eq. (113) 

is determined by the fact that contributions for large arguments of the exponen- 

tial in Eq. (113) tend to oscillate rapidly. These oscillations drastically 

reduce contributions to the integral if jup cos (^-a)|^ir, i.e., if the value of 
1/2 

p, averaged over all angles, is much greater than ae , the inverse effective 

cutoff frequency for the display-observer system. Thus, a simple, mathematically 

convenient definition of the perceived area c 

the integral, „„       2Tr 

convenient definition of the perceived area of a single spot o is in terms of 

/ ,*/ l/0e - /  p dp /   da E^(p,a) (114) 

Equation (114) defines the perceived spot area o as the area integral of the 

square of the effective overall point spread function for a unit delta-function 

input. It is directly analogous to the geometrical definition of the perceived 

width of a single edge, employed in ref. [11] in the derivation of the one- 

dimensional visual capacity. 

Equation (114) for o can be expressed in terms of the display and 

observer MTF's by substituting Eq. (113) for E (p,o) into Eq. (114). Perform- 

ing the spatial integration gives rise to a two-dimensional delta-function in 

frequency, which allows one of the two-dimensional frequency integrations to 

be performed trivially. We are left with 

oo 2TT 

/ü)d(i)   f 

4*2  J i/^e "  I —T-      I       d* 0(ü)r/2Tr,(J.) 0(u)r/2TT, * + ir) 

x R (a),*) R (w,* + IT) (115) 
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Next, from Eq. (113), it is easy to show that the reality of E (p.a) requires 6 
that 

R„(u,* + ir) - R    iuA) o o 

0(u,* + n) - 0 (u,*)  ■ 0(ü),^) 

(116a) 

(116b) 

Using the results Eqs.   (115) and (116), Eq.   (109) gives us the expression 

for the visual capacity. 

Cv2^ - A 

« 2IT 

/tiMJül      | 

4.2  J 
d(fr   0Z(u)r/2ir,(|.)   I^U.^j' (117) 

Comparing Eq. (117) with Eq. (26) for the one-dimensional visual capacity, 

we see that both expressions involve the integral of the square of the 

magnitude of the combined MTF of the display and the human visual system. 

Equation (117) explicitly includes the effect of any anisotropy of the display 
T 

or observer response. It should be emphasized that C . represents the number 
T 

of perceivable spots within a display cf area A, whereas C represents the 

number of perceivable edges*  across a display of width w. Accordingly, we 
T T 

expect that C 9 is a much largertiumber than C .  Indeed, one might expect 

that, for nearly Isotropie displays, C _ ■ (C ) .  In the following, we 

shall see to what extent this expectation is valid. 

*The one-dimensional visual capacity was defined in terms of x , the effective 
edge transition width. However, it can be shown rigorously that xe also 
represents the effective width of the response of the display-observer system 
to a delta-function input. Therefore, (£ also represents the number of 
perceivable line segments across a one-dimensional display of width w. 
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B.    PROPERTIES OF C ,(r) v2 

1.    Far-Field Viewing 

In this section, we consider sufficiently large viewing distances such 

that the following inequality is satisfied: 

r/2iiv    »    1/Min [ULX»] (118) 

where Mintw (t)] represents the minimum value of the cutoff frequency of 

the display MTF R (ü),(j>). In that case, R (w,*) in the integrand of Eq. (11/) 

may be replaced by unity, so that C -(r) is given by 

T 
Cv2<r> 

- A 

«       2ir 
i   (jdü)   r 

} 4.
2 J 

d* 0 (ü)r/2Tr,(t.) (119) 

We now approximate 0 (ü)r/2Ti,(j») by the Isotropie MTF 0(v). This approximation 

is supported by the experimental results presented elsewhere in this report 

(see Section VI). In that case Eq. (119) becomes, after transforming to the 

retinal frequency coordinate v « u)r/2n. 

v2 

00 

(r) - (2TrA/r2)  I dv v 02(v) (120) 

From the measured 0(v) (Fig. 5), we compute numerically 

00 

/ 
dv v 02(v) - 2.57 v 2 = O.154/(000)2 

o e 
(121) 

where we have employed the value 6 ■ 1.84 min of angle [Eq. (30)] for the 
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perceived angular width of a single perfectly reproduced edge.  From 
T 

Eqs. (12U) and (121), the expression for C .(r) at large viewing distances is 
! 

C*2 - 0.970 A/(0j)
2 (122) 

i 

valid when the inequality £q. (118) is met. The physical meaning of Eq. (122) 

is that, at large viewing distances, the two-dimensional visual capacity is 
2 o" 2 

simply the solid angle A/r subtended by the display divided by 1.031(0 ) 

the perceived solid angle subtended by a single perfectly reproduced delta- 
T 

function spot. Comparing Eq. (122) with chs expression [Eq. (28)] C (r) - 
aa 

w/e r for the one-diaensional visual capacity at large viewing distances» we 
e rp 1 

see that, for a rectangular display, C - is nearly exactly equal to the pro- 

duct of the one-dimensional visual capacities for the horizontal and vertical 

directions. The small numerical difference is geometrical in origin and 

arises from the definitions of x and a  . 
e     e 

2. Near-Field Viewing 

We now consider sufficiently small viewing distances such that the 

display cutoff frequency u>u(4i) always corresponds to retinal frequencies 

much smaller than v : 
o 

r/2iTv    «  1/Max [t^U}] (123) o n 

Thus, we can replace 0(v,({i)  in Eq.   (117) by the low-frequency linear 

asymptote Eq.   (32).     Equation  (117)  becomes 

2* « 

cj2(r) - 0.335 A (r/2TTvo)2    f   d*    f du J  |RO(ü),(»|2 (124) 

0 0 

T 
From Eq. (124), it is seen that, in Piar-fleld viewing, C 2(r) increases as 

the square of the viewing distance, as does the one-dimensional visual 
T 

capacity [Eq. (33)]. Thus, even for Isotropie displays, C At)  is not pro- 
T   2 

portional to [C (r)] at small viewing distances. This result is profound and 

requires special comment.  It arises from our representation of the two- 

dimensional response of the human visual system by a function 0(v,<|>), defined 
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In terms of the perceived response to a one-dimensional sine-wave grating 

with retinal frequency of magnitude v, oriented at an angle 41 from the 

horizontal. This statement, along with the use of the low-frequency linear 

asynptote derived from one-dimensional sine-wave measurements [6] at i|/ « TT/2, 

T    T 2 
leads directly to the result that both C and C . are proportional to r at 

small viewing d."stance.  It is possible to construct a model in which this is 

not the case. Suppose, for example, the visual system operated with indepen- 

dent, highly orientation-specific frequency sensors, sensitive to the compon- 

ent of the vector v along two mutually perpendicular directions, say (ji « 0 

and ij» = 7i/2.  In that case, we might expect 0(a)r/2iT,(|)) in Eq. (117) to be a 

separable function of the components of v along (j) » 0 and $  = Tr/2, I.e., 

0(u)r cos it>/2iT) 0(a>r sin <J>/2TI}, where 0(v) represents the measured [6] one- 

dimensional ffTF. Then, Eq. (117) would Indeed yield cj2(r) ^ tC^(r)]
2 for 

Isotropie displays at small viewing distances. However, experimental 

evidence, presented in Section VI, supports the existence of a nearly Iso- 

tropie 0(v,(j)). 
T 

As an example of the effect of display anlsotropy on C „(r) at small 

viewing distances, we consider a hypothetical anisotropic display with 

elliptical symmetry. The passband Is flat [R (m,$) -  1] with a maximum 

frequency w^ in the horizontal direction and u  in the vertical direction. 

The principal axes of the elllptically shaped two-dimensional passband are 

assumed to coincide with the horizontal and vertical directions. We define 

u)., as the geometric mean of u)v„ and w„ : 
Mo      0 Mh    Mv 

^0 ■ <-», v)l/2 (125) 

The dimensionless anlsotropy factor a is defined according to 

a - ^ ^- (126) 
^Mv+V 

The range of a is -1 .1 a ^ + 1, with a = 0 corresponding to vhe circular 

passband of an Isotropie display. With the definitions Eqs. (125) and 

(126), the cutoff frequency u ((tO for elliptical symnetry is given by 
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I" x-.2  1 
I 1 + 2a cos 2(|) + a2 

1/2 
(127) 

Then Eq. (124) for C .(r) In the near-field viewing limit becomes 

ir/2 

C^2(r) - 0.335 A (r/2iTVo)
2 f      d* a)*($) (128) 

The Integration over angle can be performed analytically, giving us the result. 

C^2(r) - 0.526 A ^ (r/lnvj2  [(1 + a2)/(I - a2)]: 

for r/2Tvo « ^ [(1 - |a|)/(l +|a|)] (129) 

For a constant passband area ^^.i the effect of the anisotropy is 
2      2 T 

entirely contained in the factor (1 + a )/(! - a ). We see that C „(r) is 

enhanced by display anisotropy at small viewing distances. This is a direct 
2 

result of the quadratic Increase of 0 (v) at low retinal frequencies, making 

It profitable to trade off increased bandwidth over a certain range of angles 

against decreased bandwidth at other angles. 

3. Maximum Visual Capacity 

T 
Just as in the case of the one-dimensional visual capacity, C „(r) 

exhibits a maximum at a viewing distance r , which depends on the band-limiting 

characteristics of the display system. As a simple example, we once agal. 

take the case of a flat passband with elliptical sysnetry R(u,4i) - 1 for 

uK (i^U), with Uj-U) given by Eq, (127). Differentiating Eq. (117) for 

C . with respect to r, the condition for maximum visual capacity is 

2. W2* 
r d« f 2 d 

dv vm •=- 02(v) 
dv 

(130) 
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After a partial Integration of Eq. (130), the maximum visual capacity can be 

written In the form 

2v 

Cv2(rp) " (A/8,T2)
  f d* "M^) 02[(oM((j.)rp/2ir] (131) 

For an Isotropie display a = 0, Eq. (130; can be easily solved 

numerically, using the measured [6] 0(v), to ^ive 

r    - 1.32  (2irvn/u)M ) p o    no 

- 3.80 x lO3/^ (132) 

From Eq.   (131),  the maximum visual capacity Is 

Cv2(V = f (A ^2) o2(1-32   V 
- 1.00  (A w^/it2) (133) 

where we have used the value 0(1.32 v ) = 1.13 (Fig. 5). From Eqs. (132) 

and (133), we can make two interesting observations. First, comparing the 

viewing distance r , given In Eq. (132), with the result [11] for the 
T 

equivalent one-dimensional display shows that r is about 11% smaller for C „ 

than for C . This difference is not considered significant. Second, since 
v    22 

the quantity Au /IT represents the product of the number of TV lines for 
Mo _ 

the horizontal and vertical directions of a rectangular display, C _ (r ) 

Is numerically equal to the product of the maxiim.ni values of the one-dimen- 

sional visual capacities for the horizontal and vertical directions. 

For the case of anisotropic displays |a| > 0, Eqs. (130) and (131) 

must be solved using a computer. However, we can determine the manner in 
T 

which anisotropy affects r and C (r ) by performing a perturbation calcu- 

lation.  If |a| << 1, we can expand the integral in Eq. (130) in a Taylor 

series in a.      The procedure is straightforward but somewhat lengthy. 

Equation (127) for w («J») is expanded in a Taylor series, keeping terms on 
2 

the order of a . The result is inserted Into Eq. (130), and the first two 

derivatives of the integral with respect to a  are calculated. We permit r 
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to vary from its a ■ 0 value in order to ensure that the Integral vanishes. 

We find that the first non-vanishing contribution to the change ör in the 
T 2 p 

viewing distance for maximum C _ is on the order of a : 

6r IT 
P P i'2{- d In (d cr(v)/dv) 

d In v (134) 

1.32 v 

From the measured 0(v), we estimate the quantity in the square brackets to 

be 1.3. Thus, Eq. (134) becomes 

6r IT   - -0.57 a ; for |a| « 1 
P P 

(135) 

In a similar manner, we find numerically. 

6Cv2(rp)/Cv2(V " "0*75 a2; for W ^ 1 (136) 

T T 
where 6C _(r ) is the change in the maximum value of C „ due to anlsotropy. 

From Eqs. (135) and (136), it is seen that the effect of anlsotropy is 

to lower the maximum two-dimensional visual capacity and shift the position 
2 

of the peak to smaller viewing distances. Because of the a dependence, the 

effects are actually quite small for reasonable values of a. From Eq. (136), 

we see that the value |a| ^ 0.37 is needed to lower C 2^0 by 10* froin it8 

a « 0 value. This corresponds to an aspect ratio "»A./"^ "2.2 [see Eq. 

(126)]. Even larger aspect ratios are required to reduce r by 10%. These 

results are consistent with early experimental work [22] which found that, 

for spot aspect ratios less than about 2:1, the resolution limit of a cpot 

is determined only by its area. 

C. A CALCULATED EXAMPLE 

As an illustrative example of the above results, we have calculated 
T 

C -(r) for a hypothetical anisotropic display. We assume that the display 

is characterized by a two-dimensional MTF with elliptical symmetry and that 

the passband is flat, with the bandwidth w U) determined by Eq. (128). In 
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2 
the calculation, the area of the passband tuti       was held constant as a was 

varied In order to Isolate the effect of anisotropy. We assumed a square 
2 

display of width w, so that A - w . The results are shown In Fig. 27, where 
T 
C _ is plotted as a function of viewing distance for a particular value of 

the area of the passband corresponding to a N__. ■ (i)„ w/tr » 366.6 line display 
iv   no 

for a = 0. Curves are shown for a - 0, 1/3, 2/3, 5/6, and 0,98, corresponding 

to values of the frequency ratio "j^/",-. " 1. 2, 5, 11, and 99, respectively. 

From the figure we note the following Important conclusions: 

(1) Large anisotropies are required in order to produce an appreciable 
T 

effect; for a - 1/3, the drop in the peak of C 2 from its 

a = 0 value is only about 8% [in agreement with Eq. (136)]; 
T 

(2) As the anisotropy is increased, the peak of C , is depressed 

and moves to smaller viewing distances [in agreement with Eq. (135)]; 
T 

(3) For large anisotropies, C . is enhanced at very small viewing 

distances [in agreement with Eq. (129)], whereas it is strongly 

depressed at Intermediate viewing distances. 

D.  SUMMARY 

Our results indicate that for noiseless, analog displays, the one- 
T 

dimensional visual capacity C is adequate for treating two-dimensional dis- 

plays whose anisotropy factor |a| is less than about 1/3 (frequency ratios 
T 

^ 2). This conclusion is based on the small effect of anisotropy on C . for 

|a| Z  1/3 and on our derived results showing that C . is numerically 

almost exactly equal to the product of the one-dimensional visual capacities 

for the horizontal and vertical directions at their respective maxima and at 

very large viewing distances. This is a gratifying result, for it shows that 

the simpler one-dimensional descriptor can be applied to most practical 

situations. For highly anisotropic displays, the two-dimensional visual 

capacity gives results that cannot be simply obtained from the one-dimen- 
T 

slonal counterpart.  In these cases Eq. (117) for C _ can be employed to 

calculate the effect of anisotropy on the number of perceivable spots at any 

viewing distance. 
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VIEWING   DISTANCE  :   r / w 

10 

Figure 27. Two-dimensional visual capacity Cv2 as a function of viewing 
distance in picture widths for a hypothetical anisotropic 
analog display. The display is characterized by a flat two- 
dimensional MTF with elliptical & nmetry. The area of the 
passband corresponds to tnat for n Isotropie display with 
N-j-y - 366.6. The values of the anisotropy factor a are 
given in the figure. 
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SECTION V 

OPTICAL BLOCK PROCESSOR 

To provide experimental Input to the analytic?' studies described in 

this report, a real-time optical block processor was constructed that has 

the capability of producing sampled pictures with a wide variety of sampling 

and printing functions, liie basic technique utilized an array of plexi- 

glass "light pipes" to subdivide and average the luminance of an image into 

a finite number of picture elements. The processor has the capability of 

handling, in a simple and direct way, both color and black and white Images, 

without the expense and complication of digital processing technlcques. 

A sketch of the apparatus is shown in Fig. 28, and a photograph of 

the actual device constructed is shown in Fig. 29. The apparatus consists 

of 1050 uniform size plexiglass blocks (0.3 in. x 0.3 in. x 2 in. each) 

glued together to form a 35 x 30 sampling array. The sides of the plexi- 

glass blocks were coated with aluminum paint to increase the side reflec- 

tivity of the channels, and the front and back surfaces of the assembled 

array were polished. Ground glass was placed over the front (or sampling 

function side) to act as an image diffuser and over the back (or printing 

function side) to act as an image plane.  Various printing and sampling 

functions were produced by superimposing the desired aperture functions over 

the appropriate side of the display. Simple apertures were made by machining 

thin aluminum sheet stock to the required geometry; more complicated apertures 

can be made on glass plates u^lng photographic techniques. 

The processor is operated by projecting an unsampled (analog) image 

onto the sampling function side of the display. The resultant image pro- 

duced on the printing side of the display can be either viewed directly or 

photographed. The technique has the virtue of being able to produce sampled 

images in a large format, at high brightness, and in real time. 

Figure 30 shows an original image that was used to produce the pro- 

cessed pictures shown in Figs. 31 and 32. Figure 31 is an example of a 

picture produced with full-width (s = 1) block sampling and full-width (p * 1) 

block printing. Figure 32 is the same image with the same number of elements, 

but with full-width (s = 1) block sampling and circular-aperture printing with 
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GROUND GLASS 

IMAGE 

ARRAY  OF INDIVIDUAL 
PLEXIGLAS  BLOCKS 

_VIEWING 
DIRECTION 

SAMPLING FUNCTION SIDE 
(ANALOG   PICTURE INPUT) 

PRINTING FUNCTION SIDE 
(QUANTIZED PICTURE OUTPUT) 

Figure 28.     Side view of the optical block processor. 

Figure  29.    Photograph of the lOSO-clement analog block processor.    The 
sampling and printing apertures and the ground glass image 
planes have been  removed  for   the photograph. 
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Figure 30. Photograph of the analog input used to 
produce the optically processed images 
shown in Figs. 31 and 32. 

Figure 31.  Sampled image produced from the image shown in Fig. 30 
using ehe analog optical block processor with full-width 
biocK sampling and full-width block printing. 

12/ 
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Figure 32. Sampled Image produced from the image shown in Fig. 30 
using the analog optical block processor with full-width 
block sampling and circular-aperture printing. 

a ratio of active area to total block area of approximately 0,5 (p = 0.7). 

Although these pictures have been badly distorted by the photographic process 

used to produce this report, the general properties of C , S/N, H, and r 

can be clearly demonstrated. Most observers judged Fig. 32 sharper but nois- 

ier than Fig. 31. Most observers also stated that they could obtain more 

information from pictures similar to Fig. 31 than from those similar to 

Fig. 32, and most found that the optimum viewing distance for Fig. 31 is 

somewhat smaller than that for Fig. 32. These results are in qualitative 

agreement with the analytic predictions of Sections III.D and E. 

Note that the conventional approach to sampling noise in images 

suggests that the optimum viewing distance occurs where the eye acuity limit 

coincides with the sample spacing.  In Figs. 31 and 32, the sample spacings 

are identical; only the printing functions are different. Yet viewer 

response to the two pictures in terms of perceived sharpness and noise was 

entirely different and in accord with the general observations arising out 

of our analysis. 
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Sampled pictures covering a wide range of sampling and printing func- 

tions can be produced to test the general validity of the image descriptors 

described In this report. Whereas our preliminary experimental results are in 

good agreement with the results of Section III, further tests are required 

to quantify the experimental observations and to Include a large selection 

of observers responding to a statistically significant distribution of images. 

: 
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SECTION VI 

VISUAL PROCESSING OF COMPLEX TWO-DIMENSIONAL GRATINGS 

A. BACKGROUND 

The image descriptors developed In Sections III and IV of this report de- 

pend on the applicability of linear systems analysis to the human visual sys- 

tem. It is known, however, that under most conditions, the human visual re- 

sponse is highly nonlinear. For example, the luminance response is roughly 

logarithmic and contains both thresholds and saturation points [23]. A useful 

question to ask in connection with any real system is whether, over the oper- 

ating range of interest, the assumption of linearity is valid. Some experi- 

mental success along these lines has been achieved by Blakemore and Campbell 

[24] and by Campbell and Robson [25] with square wave gratings. However, it has 

been reported that the application of linear analysis to visual problems seems 

to fall at low spatial frequencies [26]. (This conclusion is inconsistent 

with the results of the experiments presented here.) 

Since the first measurement of the human visual MTF's by Schade [27], a 

number of other observers have performed similar experiments using simple 

gratings at different orientations (i.e., with the gratings running vertically, 

horizontally, at 45°, etc). Surprisingly, the measurement of complex two- 

dimensional gratings (to be defined) has not been attempted, nor have the ram- 

ifications of these measurements for two-dimensional linear processing been 

evaluated. In order to have a degree of confidence that two-dimensional image 

quality descriptors, such as that proposed in Section IV, can be applied suc- 

cessfully, it is necessary to determine the applicability of the concept of 

two-dimensional linear processing by the human visual system. In this section 

we summarize the results of experiments that were aimed at obtaining Informa- 

tion along these lines. 

The visual MTF is the nexus between the human observer and the applica- 

tion of linear systems analysis to visual problems. Because of its Importance, 

several caveats should be mentioned about its properties. First, the spatial 

frequency response of an observer can be conveniently obtained by deteimining 

the value of contrast necessary for visibility at threshold for a series of 
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sine wave gratings at different spatial frequencies. If the threshold con- 

trast sensitivities are inverted and plotted as in Fig. 33, a graph results 

which is very similar to an optical MTF. The analogy is not rigorously cor- 

rect, however, because in the case of a lens one would maintain a constant in- 

put while monitoring the resultant output. When the MTF of the eye is mea- 

sured using threshold techniques. Just the opposite is attempted. The input 

contrast is varied, and It is assumed that the system is linear and that the 

output is constant. It should be pointed out, however, that the results of 

threshold measurements are similar in form to those of brightness-matching and 

contrast-m&cching experiments [5] performed well above threshold. Second, 

among other factors, the visual MTF is a function of the average luminance and 

the temporal properties of the image. The results given in this report are 

for a single value of average brightness and for a single set of temporal con- 

ditions. Therefore, in the future, it Is obligatory that these studies be ex- 

tended throughout the space-time-brightness matrix of the visual MTF. 

0.1 r- 

TROLANDS 

0.1 I 10 100 
SPATIAL FREQUENCY IN CYCLES PER DEGREE 

Figure 33. Modulation sensitivity threshold of the human eye 
in monochromatic light (X • 5250 A) with a 2-inm 
pupil as a function of retinal Illumination 
(from ref. [28]). 
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B. STATEMENT OF THE PROBLEM 

The experiment reported here consisted of two parts. First, the threshold 

sensitivity of the observer was measured as a function of retinal frequency v 

for one-dimensional spatial frequency gratings oriented at various angles $ 

with respect to the horizontal as shown in Fig. 34. That is, for the one-di- 

mentional brightness stimulus. 

I(x) - Lo[l + b cos (ZirvxVr)] (137) 

it Is possible to measure the value of b necessary for threshold perception at 

*arh value of v and $. From this measured b one can calculate the contrast 

sensitivity as shown in Fig. 35 by defining the contrast at any modulation 

level as 

(138) CONTRAST = L»«'L»i° 
L   + L . 
max   min 

We obtain the visual modulation transfer function 0(v,(t>) by inverting the 

threshold contrast given in Eq. (138). In practice, 0(v,(j>) can be determined 

by making relatively few measurements at different $ because, as we shall see, 

0(v,4i) is nearly Isotropie. The second part of the experiment required the 

measurement of the contrast sensitivity functions for the comolex gratings 

I(x,y) ■ L0 [1 + b cos (2TTVxx/r) cos (2™ y/r)] 

- L0 [l + "I bjcos[2Tr(vxx+vyy)/r] + cos 

[2ir(vxx-vyy)/r]|l 

(139a) 

(139b) 

This intensity pattern simultaneously contains terms in all four quadrants of 

the two-dimensional spatial frequency space. After applying the contrast sen- 

sitivity function, obtained in the first part of our measurement program, to 

the Fourier transform of I(x,y) and transforming the results back to real space, 

it can be shown that, if 0(v,(ti) ■ 0(v,tT-(ji), the perceived intensity component 

proportional to b is equal to 

E(x,y) « L0b 0(veff ,4>o)cos(2Trvxx/r)cos(2Trv y/r) (140) 
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Figure 34. Definition of the polar coordinate $ 
for simple gratings oriented along the 
x'-axis. 
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CONTRAST = .***   . 
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Figure 35.    Definition of the contrast function. 

where 

'eff [i+ ^1 
1/2 

(141a) 

130 

HMtaawfaM  ' i    nriiMriii ÜÜIIII 



and 

(j) ■ tan' (v /v ) 
o      \ y x/ 

(141b) 

Thus, the expected contrast sensitivity function measured for the stimulus de- 

scribed in Eq. (139a) is exactly the same as for a simple one-dimensional grat- 

ing of frequency v ., oriented at an angle $    from the horizontal. For the 

cases experimentally reported here, v = v , so that Eq. (140) predicts that 
x   y 

the contrast sensitivity function measured wich the complex grating would be 

shifted toward the low spatial frequencies by a factor of v^, when compared 

with one-dimensional gratings at 45°. 

Figures 36 and 37 are photographs of horizontal and vertical cosine grat- 

ings which were multlplicatively combined to produce the complex grating, given 

in Eq. (139a) and shown in Fig. 38. Although these photographs were taken at 

high contrast, the general properties of the frequency shift and the angular 

rotation, as outlined above, are visible. 

Figure 36. Horizontal cosine wave grating, 
I(x) - L [1 + b cos (2Trvxx/r)]. 
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Figure 37. Vertical cosine wave grating, 
I(y) = L [1 + b cos (2irvyy/r)]. 

Figure 38.    Complex cosine wave grating, 
I(x,y)  =  L [1+ b cos  (2Trvxx/r)  cos 
(27rvyy/r)]? 
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r  EXPERIMENTAL APPROACH 

The contrast sensitivity functions 0(v,(j)) were measured by determining 

the threshold contrast required for pattern perception. The difficulty in 

utilizing the results of threshold experiments arises in extrapolating the re- 

sults obtained to suprathreahold levels. This remains an unsettled question 

in psychophysics, although it is known that under certain conditions the thres- 

hold effects are quantitatively different from th« suprathreshold results [29]. 

It is possible to obtain visual MTF's by other techniques [51, but these tech- 

niques were not easily applicable to these studies. However, our measurements 

were self-consistent; that is, the visual MTF's obtained by threshold techni- 

ques were used to predict the threshold response to complex gratings. 

A set of preliminary experiments were performed to determine some of the 

general properties of the visual MTF and to determine the level of experimental 

sophistication necessary to perform the experiments with sufficient accuracy to 

resolve the phenomena of interest. Although the details of these experiments 

were given elsewhere [30], we list here the following conclusions: 

(1) Any attempt to measure a single visual MTF with adequate precision 

requires a large number of data points (typically greater than 10J 

binary decisions). Therefore, measurements of the contrast sensi- 

tivity function of several observers at the required values of (j) 

with both simple and complex gratings requires approximately 10^ date 

points. If the experiments are performed manually, this requires 

data acquisition times and data manlp' latlons that are prohibitive. 

The situation becomes even more prohibitive when parametric studies 

are performed to determine both the background brightness dependence 

and the temporal properties of the visual MTF. 

(2) The most suitable experimental approach is a forced-choice procedure 

[31]. This procedure is readily automated, and it has been found to 

yield highly reproducible results. 

(3) The only practical approach to these experiments is to develop an 

all-electronic system with Interactive computer control. 
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D. EXPERIMENTAL STUDIES DESK» 

Our objective was to develop an experimental facility that was flexible 

and totally automated; I.e., to develop a system that would allow the data to 

be acquired quickly and without the need for manual data manipulation. The 

block diagram of the system developed Is shown In Fig. 30. 

TEXTRON IX 
631 
TV 

| MONITOR   { 

OBSERVER 
YES-NO 

CONTROL 
BOX       | 

1    GRATING 
i GENERATING 
1 ELECTRONICS 

SERDEX HAZELTINE 
COMPUTER 
TERMINAL 

rH 
RCA 

COMPUTER 
FACILITY 

uumru 
INTERF 

i en 
ACE 

Figure 39. Block diagram of the experimental 
apparatus. 

A high-quality Tektronix 631 monitor was utilized as the display device. 

Even high-quality monitors do not represent a perfect display device; they 

have a raster line structure which is slightly visible at typical viewing dis- 

tances, they exhibit some 30-cycle flicker at high brightness levels, their 

output is slightly noisy, the uniformity of their edge-to-edge brightness is 

not perfect (see Fig. 40), and the total effective aperture size is only mar- 

ginally sufficient (typically around 7° of vision for experiments of this 

type). The advantages of using a monitor are that (1) it allows the generation of 

a wide variety of gratings; (2) the display is bright; (3) it is easily cali- 

brated; (4) it has a large dynamic range; and (5) it is an all-electronic sys- 

tem that allows easy automation. 
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Figure 40. Edge-to-edge brightness profile of the monitor along the 
horizontal direction (along the raster lines) in the 
center of the vertical plane. 
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Figure 41.    Detailed block diagram of the  two-dimensional 
sine wave generating apparatus. 
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A detailed block diagram of the system Is shown In Fig. 41. Because the 

display produces a sampled output In the vertical direction, It was necessary 

to generate the vertical gratings In a manner that minimized sampling errors 

and Holr£ effects. Sampling errors become a particularly serious problem for 

high-frequency gratings because the number of samples per cycle Is small. A 

convenient way to generate stable gratings with the proper phase relationships 

was to count down from the master clock oscillator of the sync generator which 

Is used to produce the horizontal and vertical sync pulses to operate the moni- 

tor. The master oscillator output Is first divided» then the divided output 

drives a counter. The counter produces a 7-bit binary output which cycles be- 

tween 0 and 34. This output is used to drive a 35-word by 8-blt programmable 

read-only memory (PROM). This element simply converts the input count into 

the proper binary output for a sine wave. The output from the PROM is con- 

verted to analog form by a suitable D/A. By dividing down properly from the 

master oscillator, any vertical frequency up to the sampling limits of the 

monitor can be produced. We found that it is possible to produce a very ac- 

ceptable sine wave by using only two samples per cycle, that is, by having one 

horizontal line on, and one horizontal line off. This is possible because the 

beam profile on the monitor is approximately Gaussian, and the higher harmonics 

which are missing in such a poorly sampled grating fall outside the range of vis- 

ual perception.  In practice, however, this frequency cannot be utilized because 

of the interlace used to produce the picture on a monitor.  Since every other 

line is scanned per half frame, this means that at the highest spatial frequency 

(which is produced by having successive bright and dark horizontal lines), the 

grating is formed by scanning all the high brightness lines prior to the darker 

lines. This results in an objectionable amount of 30-cycle flicker. We found 

that at least five samples per cycle were necessary to vitiate the observable 

flicker in the vertical direction.  Since the digitally derived sine wave was 

only 35 words long, very low spatial frequencies exhibited some contouring at 

high contrast settings. However, at threshold the contouring was never visible 

(see, for example, Fig. 37). Following the 0 to 34 counter, a latch was used 

to maintain the sampled value of a given vertical sine wave over one complete 

horizontal scan line. The output from the latch was then fed to an aperture 

switch which was used to control the number of cycles displayed on the monitor 

at a given spatial frequency.  (In these studies the maximum aperture of the 

monitor was used at all times.) 
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In the horizontal direction, the monitor is strictly an analog device, 

and it was not required to digitally derive the gratings. The voltage-con- 

trolled oscillator input of a Wavetek Model 162 function generator was accessed 

through a 12-bit D/A from the computer interface to produce sine waves from 

50 kHz to 5 MHz. Each horizontal line was triggered using the horizontal 

sync pulses from the sync generator to obtain the proper phasing. 

Control over the output amplitude was provided by using Motorola MC1596 

(horizontally running gratings) and MC.1.595 (vertically running gratings) multipli- 

ers as linear gain controls. These devices were controlled through 8-bit D/A 

converters from the computer interface. Additional passive attenuators were 

used following the linear gain controls to obtain the required dynamic range 

while maintaining a minimum peak-to-peak brightness modulation signal-to-rms- 

electronic-nolse-ratio of 20 at the lowest contrast settings. When generating 

complex gratings, an additional MC1596 was used to perform the multiplication 

cos (2Trvxx/r) times cos (2TTVyy/r). Finally, the signal was amplified and 

buffered, the appropriate blanking added, and then sent through a keyer to the 

monitor. The keyer was controlled by the computer and allowed individual 

gratings to be displayed for a predetermined length of time. Regardless of 

the state of the keyer, the average brightness on the monitor was held con- 

stant. 

The computer Interface was constructed from modules made by Analog 

Devices, Inc. with expander boards and latches for the reception of a total 

of 16 ASCII words (4-bits per word) and the transmission of 8 ASCII words. 

The computer interface was, in turn. Interfaced with the RCA Laboratories Time 

Sharing System through a Hazeltlne terminal which was located in the labora- 

tory where the experiments were performed. Although time sharing systems do 

net usually allow for instantaneous response, the turn-around time was kept 

to less than 1 second by operating during low-demand periods. 

The software was developed to run an experiment without manual control 

and to store the data acquired in the appropriate computer files. The com- 

puter program selected a spatial frequency, the type of grating to be dis- 

played, and its contrast. The computer sent the appropriate ASCII characters 

back to the computer interface logic which, in turn, set the appropriate D/A's, 

relays, etc., to generate the required pattern. The pattern was displayed for 

a selected time Interval and the observer Indicated whether the grating was 
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above threshold or below It. He conveyed his answer by depressing a button 

marked "yes" or "no" on a snail box which he held in his nand. Two aural 

indicators were used to orient the observer to the presence of a grating. One- 

half of a second before a grating was flashed on the display, a brief "bleep" 

was sounded to indicate that a grating was about to be presented. Then, while 

the grating was on the screen, a faint 1-kHz tone was sounded to indicate the 

presence of the grating. After the tone stopped, the observer indicated 

whether he saw the grating or not, and his answer was immediately transmitted 

back to the computer.  (Without the aural indicators, the observer was easily 

confused and frustrated by the experimental situation because he did not know 

when a grating would appear.) A complete sequence for each grating, including 

the computer selection display presentation and observer response, took 

approximately 3 seconds. After receiving the observer's answer, the computer 

program selected another frequencyi, mode, and contrast setting, and the pro- 

cedure was repeated. The frequencies and modes were selected at random using 

a card shuffling routine, and the intensities were selected using a simple 

"up-down" algorithm that was controlled by the observer's previous answers. 

The monitor was mounted as shown in Fig. 42. A circular surround was 

mounted over the monitor which gave a total angular field for the display of 

6.5° at a viewing distance of 190 cm. The area forward of the observer, 

around the display, was covered and painted with flat white paint. The experi- 

mental area was lightly illuminated, with the brightness of the surround mea- 

suring 3.5 ft-L. Partitions were placed on either side of the observer so that 

his visual field could be controlled. The actual experimental environment is 

shown in Fig. 43 with an observer holding the "yes-no" box. 

The monitor-electronics display system presented three different types 

(or modes) of gratings at a single value of 4), as shown in Figs. 36, 37, and 

38; that is, in this case, gratings running along the horizontal, 90° to the 

horizontal, and the product of these two. For other angular orientations, 

the monitor was physically rotated. A single experiment consisted of determin- 

ing all of the contrast sensitivity threshold values for all three modes and at 

all frequencies for a given rotation of the monitor. 
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Figure 42. Schematic diagram of  the experimental situation.    The 
viewing distance is defined as  the distance between the 
monitor screen and  the observer s eyes. 

Figure 43.    Experimental environment showing an 
observer holding the "yes-no'1 box. 
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E. CALIBRATION 

The monitor and associated electronics were calibrated using a Spectra 

Pritchard Photometer Model 1980. A special rectangular aperture was used with 

the photometer that allowed the highest spatial frequencies displayed on the 

monitor to be resolved while averaging over several vertical raster lines. The 

monitor was calibrated both vertically and horizontally using the photopic 

response curve of the photometer with a reproduciblllty of better than SZ. It 

was found that the monitor's output was linear with respect to the input 

voltage for contrasts up to 50Z at an average luminance of 33 ft-L. No measure- 

ments were made at contrasts above this contrast setting. 

F. EXPERIMENTAL PROCEDURE 

For each rotation of the monitor, three modes [simple gratings at a given 

tj), simple gratings at (4) + 90°), and complex gratings composed from these two 

simple gratings] and 31 different spatial frequencies were displayed during a 

typical experiment. The spatial frequencies chosen were distributed logarith- 

mically and covered a range of approximately 100 to 1 at a given observer loca- 

tion. One hundred individual intensity steps were provided at 7% intervals 

which covered contrasts from 0.06% to 50%.  [The results of these measurements 

indicated that smaller intervals (VJ to 4%) would be more appropriate.] Four 

rotations of the monitor were utilized at 0°, 30°, 60°, and 90° from the hori- 

zontal. The display was circular with an average luminance of 33 ft-L. The 

surround was held at a constant 3. ft-l>,  and the display time for a grating 

was 1.0 second. The display time wos alternated with approximately 2 seconds 

of blank field at the same average luminance as that during the grating presen- 

tation. Because the entire set of data took many hours to collect, runs were 

broken into 15-minute sessions with rest intervals between sessions. 

Artificial pupils and monocular vision were not used in these experiments 

because an attempt was made to replicate normal viewing conditions. All the 

experimental runs were begun below threshold at each frequency and mode and 

progressively moved into the threshold regime. A fixation point was not used. 

A single observer (R.I.) was tested in these experiments. He was 38 years 

old and was without any known vision abnormalities. He had recently consulted 
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an ophthalmologist and had a new prescription to correct for a slight case of 

near-sightedness. He was well trained in the use of the apparatus and had 

been tested for about 10 hours before the results reported here were obtained. 

G.  RESULTS AND DISCUSSION 

The contrast sensitivity functions for simple one-dimensional sine wave 

gratings are shown in Figs. 44 through 49. This information is replotted in 

Figs. 50, 51, and 52 to show more clearly the effects of grating orientation 

on the contrast sensitivity functions. All of these curves exhibit the char- 

acteristic shape of the visual contrast sensitivity function [28]. At low 

spatial frequencies the threshold required for perception rolls off approxi- 

mately linearly with decreasing spatial frequency; at high spatial frequencies 

it rolls off approximately as the square of the spatial frequency. The spatial 

frequency for maximum contrast sensitivity in all cases is between 3 and 4 

cycles/degree-of-vision, and the minimum contrast sensitivity is approximately 

0.25%. 
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Figure 44. Threshold contrast sensitivity vs spatial 
frequency for simple gratings oriented at 
d) = 0°. 
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Figure 45. Threshold contrast sensitivity vs spatial 
frequency for simple gratings oriented at 
♦ - 30°. 
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Figure 46. Threshold contrast sensitivity vs spatial 
frequency for simple gratings oriented at 
* - 60°. 
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Figure 47. Threshold contrast sensitivity vs spatial 
frequency for simple gratings oriented at 
♦ - 90°. 
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Figure 48. Threshold contrast sensitivity vs spatial 
frequency for simple gratings oriented at 
4 - 120°. 
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Figure 49. Threshold contrast sensitivity vs spatial 
frequency for simple gratings oriented at 
$ - 150°. 
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Figure 51. Threshold contrast sensitivity vs spatial 
frequency for simple gratings oriented at 
*  - 0°, 30°, and 60°. 
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Figure 50 Indicates that, for this subject, the difference between his 

vertical and horizontal response to simple gratings Is negligible. Figures 

51 and 52 show a decrease In sensitivity for gratings oriented at an oblique 

angle to the horizontal, with minimum sensitivities at (ji - 150° and <J) - 60°, 

suggesting that this subject's MTF is rotated slightly counterclockwise. 

The results for the threshold sensitivity measurements using complex 

gratings are shown in Figs. 53, 54, and 55 (for all three cases, v - v ), The 
x   y 

results of these figures have been replotted in Fig. 56. These curves are 

actually quite similar, with the discrepancies about the same as the spread in 

the data. It is somewhat surprising that the gratings at 45° should 

have the greatest sensitivity. On the basis of linear analysis one would pre- 

dict that these gratings would have had the worst sensitivity. Perhaps more 

significantly, however, the peak sensitivity for all three curves is shifted 

below 3 cycles/degree-of-vlslon, whereas the peak sensitivity for the simple 

gratings occurred above 3 cycles/degree-of-vlslon. 
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SPATIAL FREQUENCY IN CYCLES PER DEGREE OF VISION 

Figure 56. Threshold contrast sensitivity vs spatial 
frequency for complex gratings oriented at 
♦0 - 45°, 75°, and 105°. 

Figures 57, 58, and 59 are a series of graphs of the contrast sensitivity 

versus spatial frequency for complex gratings with the predicted polar rota- 

tions* of, respectively, 45°, 75°, and 105°, and for simple gratings at the same 

rotations. The contrast sensitivity curves for the simple gratings at these 

orientations were approximated from Fig. 51. This is a rather remarkable set 

of curves when each set is normalized to the same peak sensitivity, because in 

each case the contrast sensitivity curve for the complex gratings is shifted 

toward the lower frequencies. This result is consistent with linear analysis. 

Indeed, the shift in the peak sensitivity for each of these curves is impres- 

sively close to Jit  although the actual magnitude of the shift varies con- 

siderably at other spatial frequencies. 

*E.g., a polar rotation of 45° implies that the complex grating was formed by 

multiplying together a vertical and a horizontal grating. [See Eqs. (141a) and 

(141b).] 
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