
~"—,—■«'••<>■ ^

AD-A007 563

AUTOMATIC PROGRAM VERIFICATION III:
A METHODOLOGY FOR VERIFYING PROGRAMS

Friedrich W. v.Henke, et al

Stanford University

Pre pared for :

Office jf Naval Research
Advanced Research Projects Agency

Dece mbcr 1974

DISTRIBUTED BY:

Knr
National Technical Infornation Servici
U. S. DEPARTMENT OF COMMERCE

-.^.^.■. — — .r. iMniMiMmiMMMiiiia JMiM^aM i . ■ -iMiiMii IMMI -

1 '■ mim

mCLAüüIl IED
SECURITY CLASSIFICATION OF THIS PAGEfHT,», D.I. Enl.r.rfJ

lhe_paper investigates msthods for applying an on-line interactive
vtnlication system derigned to prove properties or PASCAL programs.
The methodology is intended to provide techniques for developing a
debugged and verified version startin,: from a program, that (a) is
possibly unfinished in some respects, (b) may not satisfy the given
specmcations, e.g., may contain bugs, (c) may have incomplete
documentation, (d) may be written in non-standard ways, e.g.. may
depend on user-defined data structures.

The methodology involves (i) interactive application of a verification
condition generator, an algebraic simplifier and a theorem-prcver;
Uij techniques for describing data structures, type constraints,
and properties of programs and subprograms (i.e. lower level procedures);
[Hi the use of (abstract) data types in structuring programs and
proofs.

Within each unit (i.e. segment of a problem), the interactive use is
aimea at reducing verification conditions to manageable proportions
so that the non-trivial factors may be analysed. Analysis of
verification conditions attempts to localize errors in the program
logic, to extend assertions inside the program, to spotlight additional
assumptions on program subfunctions (beyond those already specified
oy the programmer), and to generate appropriate lemmas that allow a
verification to be completed. Methods for structuring correctness
proofs are discussed that are similar to those of "structured programming-,

A detailed case study of a pattern matching algorithm illustrating the
various aspects of the methodology (including the role played by the
user) is given.

ii UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGEfirh»n Oaf« Km.r.dJ

 „

wmm'*^^*'*

Stanford Artificial Intelligence Laboratory
Memo AIM-256

DECEMBER 1974

Computer Science Department
Report No. STAN-CS-74.474

AUTOMATIC PROGRAM VERIFICATION III:

A METHODOLOGY FOR VERIFYING PROGRAMS

F.W. v.HENKE and D.C. LUCKHAM

ABSTRACT

The paper Investigates methods for applying an on-line Interactive verification system designed to
prove properties of PASCAL programs. The methodology is intended to provide techniques for
developing a debugged and verified version starting from a program, that (a) is possibly
unfinished in some respects, (b) may not satisfy the given specifications, e.g.. may contain bugs,
(c) may have incomplete documentation, (d) may be written in non-standard ways. eg., may

depend on user- defined data structures.

The methodology Involves (i) interactive application of a verification condition generator, an
algebraic slmplifier and a theorem-prover; (ii) techniques for describing data structures, type
constraints, and properties of programs and subprograms (i.e. lower level procedure;), (hi) the
use of (abstract) data types in structuring programs and proofs

Within each unit (i e segment of a problem), the Interactive use is aimed zt reducing verification
conditions to manageable proportions so hat the non-trlvlal factors may be analysed. Analysis of
verification conditions attempts to localir1 errors in the program logic, to extend assertions inside
the program, to spotlight additional assumptions on program subfunctions (beyond those already
specified by the progi ammer), and to generate appropriate lemmas that allow a verification to be
completed. Methods for structuring correctness proofs are discussed that are similar to those of
"structured programming"

A detailed case study of a pattern matching algorithm Illustrating the various aspects of the
methodology (including the role played by the user) is given.

This research was supported by the Advanced Research Projects Agency of the Department of
Defense under Contract DAf-.C »JI-CWJ . The views and conclusions contained in this
document are those of the authcr(s) and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of Stanford University. ARPA, or the U S
Government

Reproduced in the V S A. Available from the National Technical Information Service Sprinefield
Virginia 22/5/. #•• • r SJ > t/irg,

ill

^-^mmmmmmmmm* • i

/•

I INTRODUCTION

A METHODOLOCV FOR VERIFYING PROGRAMS

I INTRODUCTION

We are concerned here with the question of whether or not program verification systems that are
curien'ly hemg developerl have any practical usefulness Verifications of simple standard
programs have heen ohtamed with these systems (See for example. [King and Floyd],
[Igarashi.l -ndon and Luckham], [Deutsch], (Good and Ragland], [FKpas, Levitt,and Waldm^er]!
[Suzuki], [Boyei ind Moote]) The^e trsults ptovide encourageni'nt to explore further. But, m
all cases except foi one exampe m [Moialrs] the programs wert Known in advance to be correct
- re provably comistent with their documentation Moieover, ttiCie example test programs are
based on standaid well known functions and data structures (for the most part, either Integer
arithmetic or veiy simple hst piocessmg) Realistically practical verification problems have «rt to
be faced A methodology for using these systems to construct verifications in real life situations ha«
not been developed, and indeed the question of whether the; will help the process of writing and
verifyt'-.g; programs or will merely "get in the way" is entirely open

The goal ot practical u etulness does not imply that !he venfication of a program must be made
independent of creative effort on the part of the programmer. As we shall see later, such a
lequirement is utterly unrealistic What we have to do is to provide a tool (the venhcation
system) and instructions for its use (rhe nethodnlogy) that can sometimes enable a programmer to
gain a degree of certainty about his or other people's programs The tool and methods must be
easy to apply In short, we seek to extend the programmer's repertoire of techniques, not to
replace it

The verification system discussed here has been developed specifically for proc"-jm$ written in
PASCAL [Wirth] and is an extension (see [Suzuki]) of the system described in [ILL] The
puipose of this system is to aid the progiammer m constructing a proof that his program satisfies
its documentation Such a proof (m the logic of programs [Hoare 71, ILL]) Is called a verification
of the program The ciocumenta'' n may incliidp

1 input output spetifuitions,
2 properties of certain ciuual internal states,
3. specificanons and propeities of subprograms,
4 specifications of data structuies

In order to he useful m piactice we must develop a methodology for using the verifier which aids
the usej in situations where

1. the documentation is incomplete de. additional facts about the program must be
discovered before a venfication can be found),

2. the program itself is unfinished 'eg (L./S of it may be unwntten),
3. the program is badly wntten (even though it conforms to structuring principles),
4 the data itructures are non standaid (eg an axiomtrir desciption does not already exist).

What "aid" should one expect fiom a verification system' A verification proof depends upon a set
of assumptions or lemmas about components of the program (sub procedures, dat?. structures,
library routines, etc) Let us call this a BASIS for a verification. Essentially, a verification basis is
a set of consequences of an underlying axiomtization of the data structures and subroutines,
although such an axiomatization may not actually be known Different proofs have different bast:.

— ■ ^^■■■■■M^^MHMM

 > > i «immmmmminm

v HENKE and LUCKHAM

A verification is convincing to a programmer only if he "believes" the basis in the rather
imprecise sense that its statements reem true; a more precise sense (acceptable) is given below. As
we shai! show in examples, a programmer can obtain a verification of his r;rogram using a
verifier, and be faced with an impressively complex basis, (or even worse, with some systems he
might end up without knowing the basis at all) If he does not believe the basis, he must be able
to reduce its eiemrnts to moie believable statements or else search for an alternative basis. Thus
verification methodology must

1. establish that .« basis is adequate, (it. ensure the existence of a corrrectness proof from the

basis),
2. present altnnative bases to the programmer, (i.e. help him discover bases and improve

documental mnX
3. include methods for analyzing a basis and reducing its components to other bases

There is an undn lying motivational assumption here: m dealing with real life problems it may
ofien be unrealistic and impractical to attempt a verification directly from first principles. It is
sufficient to establish a verification basis that is clearly implied by an axiomatic semantics for
those concepts that are used in the piogiam

However, in the case of a "new" program s. h semantics may not have been formulated.
Consequently, we ne-ed a methodology which permits a verification to proceed by developing a
hierarchy of bases in which a basis at one level verifies elements of the basis immediately above it
and depends on bases at the level immediately below The development of this hierarchy can be
viewed as "discovering" the semantics; it will usually be guided by the structure of the program. A
basis for verifying properties of one level of the program will be formulated in terms of concepts
used in writing that level The statements in the lowest level bases should be already established
facts (about nonprimitives) of axioms for the semantics of primitive functions and ^ta structures.
Apart from the practical need to divide complicated verifications into subproofs which may be
attempted individually, this hieraiclilcal idea has other advantages. It allows a verification to
proceed hand-in-hand with the writing of the ptogram A basis is to be viewed as more than just
a set of assumptions for a verification Often it includes additional necessary prope ties of
unwritten MbrautUwi beyond what was in then original specifications Alternatively, the omission
of a specification might indicate that a simpler subtoutii;r will suffice. Thus, a basis for one level
of a program is a sufficient set ot specifications for the next level. Secondly, if an axiomatic
semantics for new concepts is needed, it is probably best developed from a knowledge of adequate
verification bases (consisting of simple statements) for programs using those concepts. Thirdly, the
problem of getting differing programmers to agree upon a "verification" of a program can be
terminated short of a complete reduction of the problem to first principles if they both have
confidence in the acceptability of some intermediate basis

At 'his point we can be a little more precise about some of ;he concepts we have Introduced:
A Ml of statements forms a basis for verifying a property of a program if a proof of that

property can be given within the logic ^f programs [Hoare 71. ILL] which assumes (i.e depends
upon) only those statements. For emphasis, we shall sometimes say that such a basis is
adequate

A basis is acceptable if (1) all of its statements about the primitives (drta structures and
library routines) are true, and (11) programs can be constructed to satisfy all of those statements
that contain names for uncoded subroutines.

 •. ■ ■ ■ ---' ■— - ■—————-- ■— -^ »-

mmm**^*^* •m^mmtri^^Bm mm* rnvww» "wm*

INTRODUCTION

The primary probhw li to find accrpi^hlp venficanon bases There are a number of important
secondary problems. Th^r can all he r.^gorizeci as parts of the "Formallzation problem" First
there is the question of what doainuntation to include with the program for example which
internal states need to br clcscnb-d, which invariant properties of a loop nerd to be stated and
what properties of subroutines are ictunlly necessary Secondly, how should the documentation

be expressed? This involves the choice of representation of concepts (eg should the relation "C"
on the integers be used CM can all the necessary facts be expressed in terms of a derived concept
like 'S ORDEKKD SET"?) Also the programme! must choose whether to express internal
propeMies of the program by purely "static" assemons about the values of its variables or by
defining ex'..a computations and making assertions about new -anables de the technique of
introducing "ghost" variables and "virtual" program [Clint]). Thirdly, how should the program
be written in order to make its verification possible Recent developments in programmine
language design, pretty much resulting from expenence with the debugging problem such as
block structure and lestnctiom on procedure parameters and global variables, all certainly help
However, many other details in a program influence its verification (eg the form of data structure
definitions should indicate clearly the assumptions that can be made about the structures) At the
moment, these secondary problems are areas where the programmer's Ingenuity must be applied
It is to be hoped that verification methodology will eventually develop some relevant cuidelines
for attacking the formalizatlon problem •

Our methodology can be very roughly outlined as follows A program level, which may contain
calls to uncoded lowe, level subtoutmev IS submitted together w,ih some documentation to the
verification system The general methodology divides activity into three phases MoffflM the
code, constricling inductivr assertions, and constructing a basis . At each of these pnases the
s>stem is used to indicate modifications and changes by means of a methodology depending on
aiw.Iysis of verifiration conditions (see Section 2.4) (Eventually we intend to incorporate other
techniques (or analysing programs) Modified problems are resubmitted for further analysis In
the third phase the system provides a test for the adequacy of a proposed basis Finally the basis
must be shown to be acceptably which involves writing the next level of the prooram.

We shall show n Section ? how the Pascal Verifier can be used interactively to verify leve's in a
program as tney ate written r.nd to guide writing subsequent levels We illustrate the
methodology m action in an experiment to write and verify a program lor a fundamental pattern
matching algonthrr (Unification) We have tried to keep our pmentaUm as close to the real life
sequence of cvems as possible without too much repetition Essentially, we present snapshots of
this sequence of -vents, each snapshot illustrating a different situation which the mcthodoloev
must handle The.e are examples of the use of the verifier to find bugs, to augment
documentation, to build up a basis, and to analyze the basis (i e. reduce It to simpler statements)
This last pomt involves choosing a formalism for defining recursive data structures, and here we
have adopted with minor modifications some suggestions of [Hoare T\] Of course our
methodology is far frcm compete, and mnn, of the problems that arise during a verification
(except for the jdequacy of a basis, which i. handled automatically by the system) involve the
user in making choices and decisions It .s already clear how to automate some of this work
However, we must emphasize that the verifier is intended for use m conjunction with other
programming facilities . J

Some parts of the general methodology depend on a knowledge of what the components of the
verifier do. We have, ther fore, included a brief description of the verifier in Section 2 lenthtr
with a simple example of its use -S*1"*«

■ ■ ■ "—■— - - - -^

vm^^mm^m '■• ■ ™^w^^^w^^|

v HENKE and LUCKHAM

T^e principle references upon which this paper depends are [Hoare 71] and (ILL] (for the logic
programs). [Hoare and Wirth) (for axiomatic semantics of Pascal), ano [ILL] and EStttUkt] (for
details of the verifier) We shall use concepts and notation from [Hoare 71, ILL] without dennlcion.

2. THE VERIFIER

The Pascal verification system is represented in outline in Figure I. The logical theory and
Implementation of the Verification Condition Generator (VCC) is given In [ILL], and details of
the slmpllher ars in [Suzuki] In section 3 we shall describe Interactive use of this system th^t
relies mainly on these two components and, at the moment, only employs the theorem prover when
everything else fails Heie we give a very brief sketch of VCG and the simplifier with the
intention of mentioning inst those details that affect the Methodology of Section 3.

INPUT
PROGRAM

and >|
DCCUflENTATION

I

nOOIFIEL"

I VCG | | SinPUFIER | jTHEOREn |
> | | > | PROVER |

I
v

PROBLEM

 I
lANALYSiS OF OUTP'JT |<---|

Figure I: Main Coiiipoiients of the Verifier

2.1 VERIFICATION CONDITION GENERATOR (VCG) The input to VCG is a verification
problem of the form P(A|<^ where P and O are entry and exit specifications (called assertions) for
a Pascal prOfTMn A The program A may ifelf contain additional documentation Figure 2
shows an input to VCG (Ogfttor wnh some extia rtocumrntation (explained later) To verify that
A satisfies its specifications, we require thai a proof of PjA|<^ within the logic of programs be
found VCG reduces problems of the form P{A10,to problems about shorter programs, using the
rule- of the axiomatic semantics of Pascal For example, P{IF L THEN B ELSE CJQ^could be
reduced to verifying two problems, PALJB}«^ and PA-L(C}<^ the axiomatic semantics for
conditional statements implies that if these latter two preMtlWI are verified then the first problem
is also verified Similar reductions are applied to other kinds of Pascal statements. The final
oui^-tt rom VCG is a set of purely logical statements composed from Pascal Boolean assertions
(see Figure 3) These are called the Verification Conditions (abbreviated to VC's) for the original
problem, PjAjQ.

- t^a^^m

i i mmmm—mm ■ ■««PIIIIIMIA N mnummmT****'**

THE VERIFIER

There are two points to be mentionod here. First of all, VCC has a completeness property with
respect to provability. Assume that a verification of PIAjQ^ is to be found making only
assumptions from some underlying axiomatic semantics, T say. A proof of PfAjC^can always be
constructed assuming the VC's, and conversely if P{A}Qjs provable in the logic of programs
from T, then VCG will generate VC's that are provable in T provided A contains additional
helpful assertions (exactly what extra documentation must be given is a subject of much current
research). This means that the set of VC's is always an adequate Basis for the verification (but it
may not be acceptable) And also, if the user's problem is provable from statements In T, he will
be able to establish that fact with the present verifier by adding enough documentation to the
program. The second point is that VCG reduces problems to purely logical VC's. As we shall see
later, this may not always be the best stra'egy, especially when the VC's involve the names of
procedures that have yet to be written, and it may sometimes be better to stop the reduction
process and generate VC's that contain pieces of code explicitly. It Is doubtful If verification can
be based solely on pure logic, and it may be necessary to use other techniques such as equivalence
preserving transformations on programs

Finally, the present version of VCG contains a number of new features and rules that are not in
the original version in [ILL]. The one most relevant to our discussion is a feature (due to Suzuki)
for handling calls to uncoded functions by means of "DEFFUN" stal.ments. The Intention is to
give the user an easy way to stat? specifications for functions that are not yet coded, although It
can be used for standard functions as well A DEFFUN statement is of the form:

DEFFUN
ENTRY

f(x I type 1,...): type ttxitypei....;: type
R(xl,...); EXIT <Value>:S(f);

where f is the function name. <value> is an expression denoting the value of f, and R(xl,...) tnd
S(xl,...) are entry and exit assertions No function body is required. Whenever a call to f occurs
during the generation of VC's the adaptation rule [Hoare] will be apulied:

P{A)(R(a...) A V(a,,...XS(f(a'....))^f(a'....)))

PjA;x^f(a,...)lQ^x)

A verification of the program will then imply the runtime legality of all calls to f. The use of
DEFFUN'S Is not mandatory, and the user may choose to omit them if he Is sure thar all his
function calls are legal (a normal compile-tlme type check may be sufficient)

2.2 THE SIMPLIFIER Many VC's are (or contain subformulas that are) lengthy and
complicated but turn out to be logically trivial. The first step in the analysis of VC's h to s'mplify
and eliminate the trivial parts so that one can see the •■eal verification proolems. It is
Inappropriate to process these unsimplified VC's with the theorem prover because there are faster,
less general techniques for carrying out logical and algebraic formula reduction. VC's are first
processed by a simplifier. Originally, we had planned the simplifier as a pi-processor to the
theorem prover, but our current methodology nakes repeated interactive use of the simplifier
before using the prover (See Figure I)

■■'■•, pw i p «mn^

vHENKE ,ind LUCKHAH

Let us first state vny burfiy what the simplificr does (Full details In [Suzuki]). The user mar;
submit three kinds of documentation statements which will be used as reduction rules by the
slmplifiei Here are (XMnpfes of each:

AXIOM CAR(CONS(<»\.1»Y))«X,

This means that any term in a VC (hat "matches" the left side (re. Is Identical to the left side
when X and Y are replaced ijy appropriat« strings) will be replaced in the VC by the string for
X It is a left to right reduction rule. A variable preceded by "a" is called a pattern variable.

AXIOM IFISTERMLIST(LML-ZERO)THEN ISTERM(HD(9L))«TRUE

This is a conditional axiom Suppose a VC has the form A-»B. Any expression In B that
matches ISTERM(HD(i»L)) may be reduced by this rule to TRUE If ISTERMLIST(L) and

-■(L-ZERO) (where L is the substitution string for eL m the successful match) occur In A.

GOAL RCONS((.XI,»VI)-RCONS((»X2.9Y2) SUB (XI - X2)A(YI - Y2)

This is a goal statrmont. It is treated as a reduction rule that says "an expvesslon that matches the
GOAL may be replaced hy TRUE if the corresponding instance of the SUBgoal can be reduced
to TRUE

Figure 2 shows a program with documentation that will be used as simplification rules.

Goal statements can be formulated as conditional axioms and vice versa. The difference Is that
axioms are "sticky" (any reduction by an axiom is never reversed) whereas goals are not (goals
have no effect on a VC unless the reduction can be pushed all the way to TRUE), Ideally, the
axioms should consist of those reduction rules having the property that no reduction to TRUE
depends on their order of application.

The simplifier contains a sequence of simplifying "boxes" An incoming VC Is slmpllfitd In
sequence by (I) a logical ptoposition simplifier, (2) processing of arithmetical expressions by choice
of standard forms and by evaluation, (?) reduction by axioms, and (4) reduction by goals.

This is a good place to discuss the role of the simplifier In our verification methodology.
Essentially, we are using the simplifier as a fast theorem prover Our philosophy Is that the user
should be able to submit a problem and receive back the reduced VC's within a few seconds. If
the kinds of redurnnn mles are easily understood, he will probably be able to see further useful
ruks by analyzing the VC's He can then resubmit the pioblem with additional rules Eventually
some of this analysis will he automated (See Section ?) and likely rules suggested to the user.
There is no ac^mpt to male the set of rules logically mdependant at first, the idea being to
develop a first basis quickly It does make sense to choose simple rules(believablllty). and some
kinds of rules (eg rommutativity) have to be excluded because of the way the slmpllfer works. If
all VC's reduce to TRUE, the srt of reduction rules is an adequate verification basis.

The kinds of reduction rules have to be simple also for speed as well as understandabillty.

- - - ■ —— ■ "- - -- -----

"^»■••■■»■■•P^wwwwwwipww^^""^"^^™»^^^ ■ ' ' 11 ■■ i ■ i iii ■■ ■ ■ ■ »

THE VERIFIER

However, experienre suggests that we do need something beyond algebraic manipulation. The
goal statements form a simple theorem prover On the other hand, some complex propositional
transformations are time consuming ;ind often unneeded, and best left to the theorem prover.
Thus the boarderlme between Simplification and Theorem-proving, at the moment, is somewhat
pragmatic.

2.3 AN EXAMPLE Figure 2 shows the procedure SIFTUP used in the algorithm TREESORT3
[Floyd] for sorting linear arrays of integers. The problem is to verify that the output of SIFTUP
is always a permutation of its input The program contains an internal ASSERTION as well as
the entry and exit conditions for this problem

There are three reduction rules stated in terms of tfu. relation PERMUTATION (A.B) meaning
"array A is a permuation of array B", and the functioi, ASET(A,i,j) which applies A[i]«-j to A.
We may have no specific axiomatic theory of permutations in mind. Nevertheless, the first two
AXIOMS are clearly trivial Most people will "believe" the third one after a moments thought.

The unsimplified VC's put out by VCG are in Figure 3. So also are the simplified ones, from
which we conclude that the three rules are an adequate basis for verifying the permutation
property. The reader.mav wonder how we thought of the third rule. What we did was to run the
problem first without it and compare the premiss and conclusion of VCt3 or «4.

AXIOM PERMUTATIONIOI.TOIMRUE;
AXIOM ASET(«ll,«i2,nll(rcl2)Hl;
AXIOM PERMUTATION!ASET(ASET(«8l 1 ,«8l2,Ql 1 [OI3]),OI3,OI4),BII5)»

PERMUTATIONIASETdl ,I2,I4),I5>;

PROCEDURE SIFTUP(IO,N:INTEGER);
ENTRY M«M0;
EXIT PERMUTATIONIM.MO);
VAR COPY:REAL; J, hlNTEGERj
BEGIN

I - 10; COPY - M[l];
10: J - 2 * I;

ASSERT PERMUTATIONIASETCM.I.CGPYKMO);
IF J < N THEN
BEGIN IF J < N THEN

BEGIN IF M[>1] > M[J] THEN J * >l END;
IF M[J) > COPY THEN BEGIN M[l] •- MtJ]; 1 •■ J; GO TO 10 END;
END;
M[l] ♦- COPY»

END;

Figure 2: The procedure SIFTUP used by TREESORT.

 ^ , _.,_ _ ■_..,..

vHENKE and LUCKHAM

• I
M=MO -» PERMUTATIONIASfTiM.IO.MflOD.MO)
• 2

(COPY<M[J. 1])A(M[J]<M[J. I])A(J<N)A(J<N)APERMUTATION(ASET(M,I1COPY).MO)
-♦PERMUTATION(ASET(ASET(M,l(M[J.|]),J.|,COPY),MO)

• 3

(COPV<M[J))A.(M[J]<M[J. I])A(J<N)A(J<N)APERMUTATION|ASET(M.I.CC?Y) MO)
-► PERMUTATION(ASET(ASET(M,lpM[J]).J,COPY),M0)

• 4

(COPY<M[J])A-(J<N)A(J<M)APERMUTATION(ASET(M,IICOPY),MO)
-»PERMUTATION(ASET(ASET(M,l,M[JJ)1J,COPY).M0)

■ 5
MCOPY<M[J» I])A(M[J]<M[> I))A(J<N)A(J<N)Ar ERMUTATIONIASEKM.I.COPY) MO)

-» PERMUTATION(ASET(M(I.COPY) MO)
• 6
-(COPY<M[J))AMMIJ]<M[J.|])A(J<N)A(J<N)ArERMUTATION(.ASET(M.l.COPY)MO)

-» PERMUTATIONIASEKM.I.COPYj.MO)
• 7

MCOPY^M[J])A.|J<N)A(J<N)APERMUT,'; TIONiASET^ .I.COPY) MO)
-• PERMUTATIONIASETCM.I.COP '),MO)

■ 8
•'(J<N)APERMUTATIOi\,(ASFT(u>iicOf /j.MO) -• PERMU1 ATIOWASEKM.I.COPYJ.MÜ)

THE SIMPLIFIED VERIFICATION CONDITIONS ARE:

• 1 TRUE
• 2 TRUE
• 3 TRUE
• 4 TRUE
• 5 TRUE
• 6 TRUE
■ 7 TRUE
• 8 TRIE

TIME: 7 :PU SECS, 31 ^EAL SECS

Figure 3: VERIFICATION CONDITIONS FOR SIFTUP

- ■ ■■
—fc—^^——^ -

f.

THE VERIFIER

24 HINTS ON ANALYSING VC'S. luh VC corresponds to a path through the program
between two assertions (possibly the same assertion) A simple VC has the form P-»Q<y where
Q is the end asset lion, P is a logical combination of the beginning assertion and boolean control
tests, and o^ Is a substitution of terns for program variables If the path contains function or
procedure calls, the form of the VC is more complex The VC expresses a logical condition on
the action of the program along the path It also contains implicitly a description of the path and
what ihe action is

(a) The path of a VC is determined by the values of the boolean control tests occur mg In P.
(b) The cor putatloial changes can be determined from terms substituted for program

variables by «y.

EXAMPLE; VC4 (figure ?) corresponds to the path from the ASSERTION satisfying JCN.
-><J<N),and M[j]>COPV back to the ASSERTION The action of oc (determined from the Q
part of VC4) Is M^ASET(M,I.M[J]) (i.e. M[\]-M[}]), and I-J The assignment }*-2-\ cannot be
detected unless ASSERTION contains J

Our methodoloey depends on extracting information from VC's. When a VC does not reduce to
TRUE, IM pmgrammer may try to decide if it is true using his knowledge of the program (i.e. the
path and action) if it is true, he can either expand P (I.e. the beginning assertion) or give
irtditional documentation in order ro prove the VC Additional documentation can be given by
placing iiew MMHiiptiQnS in the basis If the VC appears to be false, he has either to weaken the
specifications vcnangir^ P or Qj or to change the program

Commonly occuimg situations include the following
(I). Paths of VC's coiiespond with cases the program is supposed to recognize. Any kind of

mismatch of cases and paths indicates a change should be made in the program.
Cll). The action of a VC does not express what he program was intended to do in the case

corresponding to the VC path A change in the program is necessary (see 3.1 (bMc)).
(Hi) Part of Qjs logically 1. dependant of P Then usually P should be expanded (see 3.1(a)

and (d))
(Iv), The VC appear.« tne but not provable from the the current Basis. Analysis of the

components of Q ind related parts of P can often yield conditions on functions and
procedures which were overlooked or were omitted because their relevence was questioned.
These may then be added to the Basis (see 3.3 a,b,c)

How much of this analysis and corrective action can be automated ? Most of the current attempts
to automate the construction of assertions (especially in case (in)) assume that the program Is
i Iready correct. If we do not assume correctness, it seems that the choice of action (whether to
change the documentation or the program) depends entirely on the programmer's Intentions and
cannot be automated, however, much can be done to automate the extraction of Information
from VC's. The sysf m helps by displaying the (updated) effe-:» of any changes and allowing
experimentation

■ fciMtii i ii ' ^-- - - - - ' - ■ "— - - — ■--—' - "■■' - - - -- - ■ -- ■ ■ ■- - .^-...L^-^-.-

vHENKE and LUCKHAM
10

3. CASE STUDY: METHODOLOGY IN ACTION

Let us first explain unification informally A umficat.on praynin accepts as input two lists of
terms X.Y and constructs as output a subst.tut.on (of terms for variables) that makes each mmber

^MPOS^BLE" t COrrTndlng mmber 0f Y ,f P0",b,e- or ^ outpu" he TnTw
iSÄ'iU'Ä^^ V-{f,(h(uU(w)P,vl. the pr0g

$
ra

e
m

r

It is possible to write such first-order unification programs In many different ways A «-

We asked an experienced programmer to wnte a un.ftcation proßram in real time r»kil. u,«
looked on) We note the foiiow.ng He stated his intention to^s^thT i^put da 'rictu e "
temporary storage, but no structures were declared. He attempted to codePlp down" nam.n^

changed HU T ^ ^^ bUt ^ ^ What ****** ™PP™* to'do (but'he of"n changed his m.nd). As the program developed, he had d.fficulty documentme the loon and
introduced virtual program to do tfm (without telling us) He eave up on he iri« o .
Iterative code and ended up putt.ng a recurs.ve call insL a WHILE loopP PUrely

It is this program that we start with as VERSION I. We make no claim thar i, » u
un.ficat.on program should be coded. We choose it because .t is the resul a 1 e .tuaUon
and ., a problem of suffic.ent nchness to be a good test of our ideas on methodology

tlrmirsu v'ln^v6 T'^ '' ^ '[? PT0&im ^ '^ " 0UtPu» a *** Z of the input
LVTlrln . ? i 0TUtS a fa,,Ure 0,her Jiandard (and ^Plementary) properties thawM
MTZÜL** " Z " a m0$t genera, Un,fier- and ,hat if J fai,Urc '$ -'put'then X^d^Y

I!? T 'r9'. Pr0gIaT l$ deVe,0ped In three S,ePS: vmion ' (a first A*«»X a debugged version 2

//

II CASE STUDY

Thp subfunctlom
TSUBST(X.Z) •
SLI[sST(\,Z)
ZERO
COMP(Z.\,Y) ■

OCCUR(X.Y)
RCONS(U.X) •
TERMS(X)
FNLT(X)
HD(X). TUX) ■

iispd in the program have the following intended meanings:
the term resulting from applying substitution Z to term X,
the tetmlist muking from applying substitution Z to termlist X,
the empty list,
the substitution resulting from composing substitution Z with the single
substitution that replaces variable X by term Y,
a Boolean test.TRUE whenever term X is a subterm of term V
termlist obtained by adding term X to the end of termlist U,
the termlist consist of the arguments of term X (not a simple variable),
the function letter of complex rfrm X,
the head and tail of list X

3.1 VERSION I: DFHIK.CING AND EXTENDING DOCUMENTATION. Version I is the top
level of the profrSffl that was initially submitted for verification It was written almrv: on-line anH

therefore tontams bugl and even misconceptions of the structure of algorithm and data Roughly
speaking i is a sketch of a progiam with the question "can this be made to work?" It does not
mciude any specifications of the data types (in form of axioms, deffuns etc.) The Invariant of the
mam loop consists just of the mam idea the initial parts of the termlists X and Y are unified by
tlie cori:'ructed substiumon Z. To express Ihll the programmer used two "ghost variables" [Clint]
U and V, which hold the parts already dealt with, and "virtual program", ie., statments that are
not necessary for the actual computation Failure of the algorithm is expressed by the pseudo-
procedure LOSE
Note that the progiam contains several gs:
- the cases structure is mcoirect,
- after the recursive call cf UNIFY the result is not tested for success or failure and the returned

substitution is not assigned to Z,
- at the end of the procedur it is not guaranteed that both XI and YI are ZERO.

. . .-^. —

vHENKE and LUCKHAM 12

PASCAL
PROCEDURE UNIFY|X.Y:TERMLIST;ZI:SUB; VAR 7:SUB);

ENTRY ISTERMLIST(X)AI3TERMLIST(Y);

EXIT (SUBST(X,2).SUBST(Y,Z)) v L0SE(X,Y);

VAR U.V.Xl.YI-.TERMLIST; VAR X2)Y2:TERMi VAR Z2:SUB;
BEGIN

1. Initialization of variables 7.
U:-2ER0; Vr-ZERO; Z:.Zl; XI:.X; Yh-Y;

INVARIANT (SUBST(U,Z)«SUBSTlV,Z)) " L0S£(X,Y)

WHILE (XI/ZERO) A (YI/ZERO) 00
BEGIN
X2:- SUBST(HD(X1),Z);
Y2:- SUBST(H0(YI),Z);
IF ISVAR(X2) THEN BEGIN IF ISVARIY2) THEN Z:«COiv4P(Z,X2,Y2);

IF 0CCUR{X21Y2) THEN LCSE(X,Y)
ELSE Z:.COMP(Z,X2,Y2)

END
ELSE BEGIN IF ISVAR(Y2)

THEN BEGIN IF OCCUR(Y2,X2) THEN L0SE(X,Y;
ELSE Z:.COMP(Z,Y2,X2)

END
ELSE BEGIN IF FNLT{X2)»FNLT(Y2)

THEN UNIFY{TERMS(X2)1TERMS(Y2), Z,Z2)
ELSE L0SE(X,Y)

END
END;

U :»RCONS(U,HD(XI)); V :.RC0NS(V,HD(Y1));
X1:.TL(X1); YI:«TL(YI);
END; 7. End of WHILE body 7.

I

END; 7. Procedure body 7.

Figure 4: Version I

 III««I«II

'*

1? DEBUGGING AND EXTENDING DOCUMENTATION

LOSr. NOT FOUND

• J
(ISTERMLIST(Y) ft ISTERMLIST(X) & L0SE(X,Y) v SUBST(Uill2il).SUBST(Vt|,Zin ft
"YI^I-ZEROä -XIt).ZERO

-♦ LOSE(X,Y) v iUBST(Y,2«l).SUBST(X,2«l))

• 3
(LOSE(X,Y) v SUBST(U,Z)«SUBST(V,Z) ft -YLZERO ft -Xl-ZERO ft
-ISVMR(SUBST(HO{XI),Z))ft
'ISVAR(SUBST(HDM),2)) ft FNLKSUBSTCHOtYD.Z))- rNLT(SUBST(HD(Xl),Z))

-♦ I5TERMUST(TERMS(SUBST(HD(YI),Z))) ft
(LOSE(TERMS(SUBST(HD(XI)1Z)).TERMS(SUBSr(H'j(YI)1Z)))v
SUBST(TERMS(SUBST(HD(YI),Z)).Z2«l).SUBST.fERMS(SUBST(HO(Xl),Z)),Z2«l)

-* LOSEOC.Y) v SUBSTCRCONS^.HDIXDJ.Z^SUriSTCRCONSlV.HC ruu))«
ISTtRMLIST(TERMS(SUBST(HD(X I),Z))))

• 9
(LOSE(X.v) v SUBST(U12).SUBST(V1Z) ft -YLZERO ft 'Xl-ZERO ft
ISVAR'SUBST<HD(X1),Z))»
ISVAR{SUBST(HD(Y1),Z)) ft 0CCUR(SUBST(HD(Xi),Z),SUBST|H0(YI)f2))

-» PRE.LOSE(X,Y) * (RES.LOSEIX.Y)
-♦ LOSE(X,Y) v

SUBST(RrONS(U,HD(XI)),C0MP(Z.<>UBr.T(Ht!'Xl)1Z),SIJBST(H0(YI),Z)))
■SUBST(RCONS(V,HD(Yl)),C0MP(Z,SUBST(HO(XI),Z),SUBST(HD(Yi),Z)))))

Figure 5: Some VC'$ for version I in simplified form

 _ ^

v HENKE and LUCKMAM
H

Ph7nr?rnd,ng t0 ' i' "^ f uny de,:,,,ed ,nfo,mat,on- the »y«em is not able to simplify more fhan the most trivial parts of the grnerated VC's P r

Discussion of the problems involved in version I:

a) Failure Handling: Trying to define pre- and post-conditions for the missing procedure LOSE
as required by the sysrern. the programmer realizes that indication of failure Is a chan« of the
state rather than an act on to be invoked (a direct way to put .cross an error message eg In forn
o a jump to the ,op ;,VP, ., not available in Pascal) Thus, he should use a b^lea^ var aS .
FLAG whose vr.iK will indicate success or failure Accordingly, the r ocedure UNIFY eet$ on«
more variable ptrMMWr. sue; that it returns the value of FLAG together with a new valL nf '
Each call to LOSE is to he replaced by FLAG.0. and t.e .ni.al va'lue of FLAG v HI b' , Th^
LXIT aisertion must be changed to specify the use of FLAG:

EXIT (SUBST(X.Z).SUBST(Y.Z) A FLAG-1) v FLAG-0

An equal nange oust be made in the INVARIANT (If the INVARIANT is not changed the

s^V S^alon 2'oii) "^ "" '" ^ ^ " ** ^ *** ^ the ,00P * ^^1

b) Missing Code: The necessity to update the value of Z after the recursive call to UNIFY can be
detected by analysing VC? The relevant parts are

-ISVAR(SUBST(HD(X l).Z)) fc -ISVAR(SUBST(Hb(VI)Z)) Sc

^N;'J^Br(HD'YI)Z))"FNLT(SUBST(HD(XI>Z))frSUBST(U>Z)-SLBST(VZ)

- SUBSTtRCONS(U.HD(XI)).Z).SUBST(RCONS(V.HD(YI)).Z) u^lWWV

VC.3 as It stands is not provable (there are obvious counterexamples). The first two lines
indicate that it corresponds to the path containing the procedure call UNIFY(,..Z2) The oumose
of this call is to extend Z to a substitution 22 that unifies the pair HD(XI! and HD(YI) as weM I
U and V^ Indeed, the occurences of Z in the last line of VC? should be Z2.I The final value
of Z at the end of the path should t» the value of Z2 returned by UNIFY if the attemo ed
unification succeeds Thus the action on .he path is not what was Intended, and the c^le must be
changed- Section 2 <(..) The correct action can be achieved by adding

IFFLAG-I THEN Z-Z2;

Immediately after the cal

ogrammer notices the
c) Error in the Case Analysis: VC.9 is of the form P^O^R) The
combination of Boolean tests

ISVAR(A)AISVAR(B)AOCCUR(A.B)

in part P. This means that VC.9 eypresses a condition on the action of the program alone the
path corresponding to this combination U cases This action can be deduced from O and Rg he
procedure LOSE is called, and the substitution Z Is updated to COM^Z C D) Thi!

MM mmt _ - MaHaMMMMMHii

ir

IS DEBUGGING AND EXTENDING DOCUMENTATION

combination of actions is clearly wrong, indeed, the programmer's intention in this case is that the
program should do nothing to Z and contmue-another example of Section 24(ii). This error Is

fixed by adding an e-.tra IF statement for the case ISVAR(X2)/VISVAR(Y2)A(X2^Y2) (see figure
6)

d) Expansion of the INVARIANT: To snte the invariant of the loop, the programmer
introduced the variables U and V which are ir."ended to hold the values for the initial parts of
the termhsts X and Y From looking at VC«I he can see that

(1) SUBST(U,Z).SUBST(V,Z)

has to Imply

(2) SUBST(X,Z)-SU3ST(Y.Z)

when control leaves the loop, re when XI-ZERO and Yl-ZERO, and the algorithm is successful.
This is impossible un><$ some relationship between U,V and X.Y respectively is given - an
example of Section 2 4(III) Now, tn<. intended relationship is

(3) APPEND(U,XI)-X A APPEND(V.Vi)-Y

where APPEND is the standard LISP function. The question is, where should th<s be added to
the d-Kumentation' Further analysis of VC«I shows that the only possible place is the invariant
of the loop (the other parts of the VC derive from entry and exit condition and the loop control
test) The obvious properties if APPEND

(4) APPEND(ZERO,L)-L APPEND(L,ZERO)-L

will be assumed as axiom?, ^uarantpping that (?) vill be true when entering and leaving the loop.
Then (I) will imply (2), provided both XI and YI equal ZERO at the end. On the next run with
the (wo axioms on APPEND addrd, the omission of a corresponding test after leaving the loop
«A-'II be visible in the VC, so a statement

IF (XICZEROW (Yl-ZERO) THEN FLAG-O;

is added at the end of the procedme

REMARK The programmer could as well try to figure out what other properties of APPEND
are required to prove invanance of the invariant around the loop, but he leaves that to the
system as he hopes to find what is needed from the VC's of a subsequent run (refer to Section 3 3
b) Note that the function APPEND is used only in the documentation.

e) Use of Ghost Variables and Virtual Program: As a data flow analysis would show, the
variables U and V ate not necessary to compute the final result. They are needed only to express
the invariant of the main loop Therefore they are called "ghost variables" (Clint]. Obviously,
assignments to ghost variables need not be executed at run time nor translated by a compiler
Thus these statement» arc considered "virtual"; their purpose is to ensure the correct current
values of the ghost variables as the computation proceeds.

- —

v HENKE and LUCKHAM 16

The tpchniqu» of using ghost variables and pieces of virtual program fot documemation purposes
is very '.iseful And quite common Although they often could be eliminated as part of the program
text - especially in the context cf arithmetical problems where most operat ons are invertible - they
represent a powerful tool Whethf a programmer chooses virtual program or not depends on his
preferences and the problem domain In our example, U and V could be replaced In the
Invariant by expressions like EXCLUDE(X l,X) meaning the remaining lnit<al list after chopping
off X I from the right end of X In this way, EXCLUDE becomes sort of an inverse function of
APPEND However, we preki .he virtual program approach since it MprttMS clearer the
building-up of the values of U ^ncl V simultaneously with the other compi .iion, beside that, the
axioms and goals involving the equalities S'JE,;T(U,...)-SUBST(V....) are compllcaied ever
without the d'fficulties added by the use of EXCLUDE, as will be seen later.

3.2 DATA TYPES AND TVPE CHECKING For program verificailon, data type definitions
represent sets of axioms defining the semantics of the types They are primitive statements in the
verification basis This i« usually called the "abstract" definition of a data type. A handy formalism
is needed that permits the programmer to define his types without having to write down all the
axioms explicitly. The unification program here uses recursive types, we adopt the following
formalism for defining recursive data types. It is closely related to suggestions of [McCarthy 1963]
and [Hoare 1973], and is an extension of and a deparfire from what is possible in the present
version of Pascal

A type definition is made by listing alternatives. An alternative is either a simple type (e.g., one
that is a type predefined in the language, or a constant) or a composed type. In a more formal
BNF-hke notation:

<type definition>
<type>
<composed type>

<$imple type>
<constraint>

♦- <type name> ':■ <type> { | <type>)■:•
<- ssimple type> | <composed typo
•- <conitructor> '(<selector l>:<typeJ>,.. ^selector n>:<type n> ')

('IF <constraint>}
♦- <constant> | <type namc>
»- «boolean expression of selector names>

with th? restriction that the names of all constructors in a type definition and all selectors in one
composrd type have to be distinct. The formal type definition syntax permits simple kinds of
constrains tc be placed on a construcor. The mc;ning of the constraint Is that In order to
constuct an element of the type, the constuctor mu.'t be applied to arguments thi<t satisfy the
constraining condition (an example is the type SINGLESUBstitutlon below).

In this notation, the data types to be used In our program may be defined by the following (only
the upper-case letter part of the names is used in the piograms):

TFPM
TERMLIST
SINGLESUBstitutlon
SUBstltutlon

!- VAR | MKTERM(FNLTCONST,TERMS:TERMLIST)
- ZERO | CONS(HD:TERM, TLTERMLIST)
:- PAIR(VAR:VAR,TERMT£RM) IF ■« OCCUR(VAR.TERM)
tm ZERO | MKSUB(RESTSUB, LASTSINGLESUB)

mmm* „__

17.

17 DATA TYPES AND TYPE CHECKING

VARiabl« and CONSTants are assumed as primitive types. TERM LIST a jusi a linear Usi of
TERMs The constraint on SINGLESUB means "Z-FAIR(V.T) is a SINCLESUBstitutlon only If
V does not occur in T."

Notation: !S<typename> denotes the type predicate (i e. characteriiilc function) for <typenarne>.

The type definition determines the logic,il type of all the functions occunng in It (constructors and
selectors) For example, HD map!; TF.RMLIST into TERM, and MKTERM is a fuflv ion from
CONST TERM LIST into TERM (direct product) It is assumed that a selector function Is
defined only for objects belonging to the corresponding constructed subtype

At present the verifier does not yet accept type definitions bu' needs to be given the type axioms.
The definition of, eg, SUBstitution denotes a set of axioms including standard relationships
between constructc: "ind selectors:

ISSUB(ZERO)
IF ISSUB(A)AlSSINGLESUtt(B)THEN ISSUB(MKSUB(A.B))
REST(MKSUB(/ ,B))-A
LAST(MKSUB(A,B))-B

And the induction rule

F(ZERO) F(A)| F(MKSUB(A.B))

ISSUB(S) |- F(S)
for my formula F

The functions defining a type (constructors and selectors) are submitted to the system as
DEFFUN's If there are constraints on a type (as for SINGLESUB), type checking also involves a
check if those conditions hold whenever a new object of the typ? is constructed; thus, the
constiainti become part of the ENTRY assertion of the DEFFUN for the respective constructors.
When the program is augmented by DEFFUN's for all tubfUKUOtU the system will generate
complete argument type checks as part of the VC's However, for reduction of the vC's the
assertions have to include a type predicate for each variable that 's passed as a parameter to a
function or procedure In this way, the venfier will do type checking automatically.

While formula ing the type declarations for the sub.unctions it was noticed that in the use of
SUBST in the iNV RIANT th» first argument is a termlist whe.«a$ In its function calls in the
assignment statements the first argument is a term. In order to avoid .his type conflict a separate
function TSUBST is introduced for application to i rrrns.

v HENKE and LUCKHAM 18

3.3 VERSION t rONSTRlirriMG ,' BASIS. Version 2 of the procedure UNIFY (see figure
6 « « the next paf?) ll ^ cuirect inop; < ,i m the unse that tie code does satisfy the ENTRY/EXIT
assetMnns The MSMIlom, (incliiding the invariant) have been expanded to a point where they
oiif;ht to I)»" siil'inrntly drtailrd This version contains those axioms and goals that are naturally
anticiMtrd by 'he piupjiinmei Among those are ,ivioms that express intended properties of the
data types and sulifiinctions In older to speed up the simplifer. only 'iiose data type axioms that
were ir.'My needed have hren added The DCFFUN'l for the basic data type functions have also
been included, they consist of just the obvious input jnd output specifications (tjientjally type
information)

What still emams to he done is to establish an ad?qiiate basis for verifying the top le^'el, I.e..
completion Df the documen'ation Below we demonstrate techniques for constructing the basis by
extracting from the reduced VC's additional specifications (or "lemmas") on the subfui.ctioni
which are believabl? and which permit the system to completely reduce the VC's to TRUE.

GOALFILE
7. Axioms d«finm|> the data types and basic functions 7.
AXIOM ISTERMLIST(ZERO) « TRUE;
AXIOM ISSUB(ZEROMRUE;

t Axiom? describing properties of subfunctions 7.
AXIOM APFFND(ZERü.nS)"S;
AXIOM APPFND(©S.ZERO)«S;
AXIOM SUBST(«BX.ZERO)«X;
AXIOM SUBST(ZERO.oS)«ZERO;.;

PASCAL

DEFFUN HD(L:TERMLIST):TErM; ENTRY 1STERML1ST(L)A.(L.2ER0); EXIT ISTERM(HD);

DEFFUN TL(L:TERMLIST):TERMLIST; ENTRY ISIERMLISTOJA^ZERQ); EXIT ISTERMLIST(TL);

DEFFUN RCONS(L:TERMLIST; X:TERM):TERMLIST;
ENTRY ISTERMLIST(L)AISTERM(X); EXIT ISTERMLIST(RCONS);

DEFFUN TERMS(X:TERM):TERML1ST! ENTRY ISTERM(X)A'ISVAR(X)j EXIT ISTERMLIST(TERMS)j

DEFFUN FNLV(X:TERM):CONST; ENTRY ISTERM(X)A-ISVAR(X); EXIT ISCONSTfFNLT);

DEFFUN TSUBST(X:TERM;S:SUB):TERM; ENTRY ISTERM(X)AISSUB(S); EXIT ISTERM(TSUBST);

DEFFUN SUBST(X:TERMLIST; S:SUB):TERMLIST;
ENTRY ISTERMLISTIX)AISSUB(S); EXIT ISTERMLIST(SUBST);

DEFFUN COMPCSrSUB; X:VAR; Y:TERM):SUB;
ENTRY ISSUB(S)AISVAR(X)AISTERM(Y)A-OCCUR(X,Y); EXIT ISSUB(COMP);

Figure 6 Version 2 (continued)

\

I

J

It
CONSTRUCTING A BASIS

ENTRY ISTERMLIST(X).lSTERMLISTiYMSSUB'zI ^ACoOn-EAN);
EX.T (ISSUB(Z)A(SUB3T'X.2)SSUBST(Y,Z))A(FLAGÖ)) v (FLAG . 0);

VAR U.V.XI.YhTERMLIST; VAR X2.Y2:T£RM, VAR Z2:SUB;

7. Initialization of variabl<»s 7.
w':.ZER0; V..ZER0; Z:.ZI; Xh-X; Yh.Y; FLAG:-];

WHILE (XMZERO; A (Yi/ZERO)/ (FLAG=1)D0
BEGIN
A2:- TSUBSnHOUD.Z);
V2:- TSUBSTCHDCYD.Z);
IF ISVAR(X2) THEN BEGIN IF ISVAR(Y2)

THEN BEGIN W (X2^Y2)
THEN Z:rCOMP{Z, X2.Y2)

ELSE BEGIN IF OCCUR (X2.Y2) THEN FLAG-.O
TMO ELSE t-WWl. X2,Y2) END

END
ELSE BEGIN IF ISVAR(Y2)

THEN BEGIN IF 0CCUR(Y21X2) TKEN FLAG-^O
ELSE Z:rC0MP(Z,Y21X2)

END
ELSE BEGIN IF FNLT(X2)rFNLT(Y2)

END
ELSE FLAG:=0

END
END;

U :=RC0NS(U,KD(X1)); V ^RCONSCV.HDCYl))-
Xi:=TL(XI); YI:.TL(YI);
END; 7. End jf WHILE body 7.

IF (XMZERO) v (YI/ZERO) THEN FLAGM)
ti<D; 7. Procadur« body 7.

Fiijurp 6: Vmioii 2 (intrrmrdiale vmion)

v HENKE »nd LUCKMAM 20

VC's 1 3 5 6 8 ar« reduced to TRUE

• 2
(ISTERMLI5T(X) & ISTERMI IST(Y) & ISSUB(Z«I)AtSTERMUST(U«l)AISTERMLIST(V«1)
ASUESKU'l.itD^SUBSTIViil.Z-DAü«! X^V«^Y.rFLAG«lMvFLAG3l=0 & ISSUB(Zl)

-. ISSUB(Ztl)ASUBST(Y,Z«l)^SUBST(X1^l)/NFLAG«l = lvFLAG«l=0)

• 4
flc.TE9vll.lST(RC0NS(V.HD(Yl))) * i';jTERMLIST(RCONS(U1HD(Xl))) & ISTERMLIST(TL(Y1)) &
ISTERMLIST(TL(XI)) & I^UUiZ?".?) i
SUBST(TERM$(T$UBST(HO(Vn,Z)),Z2i2hSUB$TrrEltMS(T$UBST(HO(XI)lZ))lZ2«2) &
ISC0NST(FNLT(TSUBST(HD(Y1),Z)))& ISTERMLIST(TERMS(TSUBST(HD(V I),2))) &
ISTERM1 IST(TERMS(TSUOST'HD(XI l.Z))) &
FNLTiTSUB$T(HD<YI),Z))*FNlTaSUBST(HO(XI),Z))li -ISVARdSUBSTCHDtXD.Z)) &
-ISVAR(TSUBST(HD(Y1),Z)) & SUÜSTIU.Zl^SUBSTIV.Z) &
ISSUBfZ) & iSTERMLIST(U) & ISTCRMLISTtV) & ISTERMLIST(Xl) & ISTERMLIST(Y1) 4
-YlzZE.70 & 'XI=ZER0 * lSTERM(TSUBST(HD{Yn,Z)) & ISTERM(HD(YI)) &
ISTERM(TSI)BST(HD(X1),Z)) • I3TERM(HD(X1))

-» APP::NU'V1Y1)^APPEND(RC0N">(V,HD(Y1))1TL(Y1)) &
APPEiJD(U,Xl)rAPPtNn(RCONS(U,HD(XI)),TL(XI))*
SUBST(RCONS(U,HD(XI))lZ2«2)=SUBST(RCONS(V1HD(Yl)),Z2«i))

'

• 10
('X1=ZER0 & SUBST(U,Z)>UeT(V,Z) & I5TERMLIST(YI) & ISTERMLI'jTiXl) &
ISTERMLIST(V) & ISTEPMLi:-T(U) 6 ISTERMLIST(RCONS(U,HD(X I))) &
ISSUB(Z) & «VI>ZER0 & 1?TERM(HP(X1))& ISTERMLIST(PCONS(V,HD(. !;)) &
ISTERMLISTCLJYl)) K 15TEPMLI3T(1L(XI)) & ISVAR(TSUBST(HD(Y1),Z)) &
TSUBST(HD(YI)lZhT5UBST(HD(X I),Z) Ä ISTEKM(T3üBST(H0(Yl),Z)) & ISTERM(HC;*. I))

-» SUBST(RCONS(U,HD(XI))lZ)=5UBST(RCONS(V,HD(Yl)),2)&
APPENDIU.XDrAPPENDIRCONStU.HDfXDIJLIXl)) &
APPEND^.Yl)=APPEND(RC0N5(V,HD(VI ll.TKYl)))

■ 1 I
(SUBST(U.ZhSUBST(V,Z) & ISTERMLI5T(Y1) 4 ISTERMUST(Xl) 4 ISTERMLIC.T(V) 4 ISTERMLIST(U) &
ISSUB(Z) 4 4 -Xl=ZEPO -Y1=ZEP0& ISVAR(TSUBST(HD{Y11,2)) 4 1CTE^M(HD(Y1;.) 4
ISTERM(TSUBST(HD(XI),Z)) 4
ISTERM(HD(X1))4 ISVAR(TSUBST(HD(X1),Z)) 4 ISTERM(TSürJST(HD(Yl),Z)) 4
-TSUBST(HD(Y1),Z)=TSU0ST(HD(XI),Z)

-♦ -0CCUR(TSUBST(HD(X1),Z),TSUBST(HD(YI)1Z))4
(ISTERMLIST(TL(X1)) 4 ISSUB(C0MP(Z)TSUDST(HD(X1 j.Zj.TSUBSTiHDIYI),Z))) 4
ISTERMLIST(RCONS(V,Hn(YI))) 4 ISTERMU5T(RC0NS(U,HD(X1))) 4 i:iERMLIST(TL(YI))

-» APFCNO(V,VI)*APPENO(RCONS(V^O(YI)),TL(V1)) 4
APPENDdJ.XDrAPPENDlPCONSdl.HDIXin.TUXl)) 4
SUBST(RCONS(U,HD(Xl))lCOMP{Z,TSUBST(HD(Xl)12),TSUBST(HD(Yl)Z)))=SUBST(RCON3(V,HD(Yl)),
COMP(Z,TSUB3T{HD(X 1 UUSUBSTIHDm),Z)))))

Figure 7: Sonic VC's for version 2 in siinplifird form

The numbering corropondl to the order in which the VC's are generated.

21 CONSTRUCTING A BASIS

The analysis of the VC's not ym irdnced to TRUE shows thiee areas where the documentation
(the basis) has to be extmdrd Fach area is mdrpcndcnt from the others, thus they can be dealt
with sepaiately We appioach the pioblem of proving a VC by first attempting to prove each
conjunct in the conclusion repai,itely.

a) OCCUR (VC.II) Thr conchmon of VC«II contains -OCCUR(A.B). The path of VC«II is
deteimmed by the control tests I.SVAR(A). iSVAR(D) and A^B in its premise By analysing the
path, -'OCCUR(A,B) is found to br an rntry lequurmrnt of a call on COMP which was intended
under these condition; So this conjunct of VC«II is judged correct, and will be satisfied if the
user apr^ < to ado ihe following specification on OCCUR to the basis:

IF ISVAR(X)AISVAR(Y)A(YI'X)THEN -OCCUR(X1Y)-TRUE

b) APPEND (VC's 4.7,9,10,11) As was mentioned before additional properties of APPEND are
needed. It turns out that exactly one fact crops up in all the VC's:

APPEND(RC.ONS(S,HD(T)),TL(T)) • APPEND(S.T)

The programmer mi(;ht have addrd a lot of irrelevant properties at ?.I d) if he had started to
write down things about APPEND he thought might be helpful As seen here, it can be more
efficient to write down only very simple axicms and delay anything further until it is seen from
the VC's what is needed If atomic properties of APPEND and RCONS had been added instead,
the above fact would have to be deduced from them each time it was required (here: 10 times). It
is much more efficient to add the fact to the basis at this puint and justify it once during the
analysis of the basis (see section ? 4). Moreover, the user can dela/ completely specuying PCONS.

c) Equalities involving SUBST and RCONS (VC's 4.7,9.10,11): As they are the "heart" of the
problem the equalities involving SUBST turn out to be the hardet to get reduced. We could
simply assume the properties of SUBST and RCONS that apparently would allow complete
reduction to TRUE of all remaining VC's But, beside the fac. that those properties may be too
complex to be believable even r.t the top level, a certain regularity can be observed in the VC's,
due to the structure of the program The equality in the conclusion is generally of the form

(1) SUBST (RCONS(A ;,BI),S) - SUBST(RCONS(A2,B2),S)

whereas the promts' includes a corresponding equality

(2) SUBST(A l,S') - SUBST(A2,S')

Thus, it is sensible to hope that lemmas derived from one problem «ill be general enough to
reduce other problems as well.

Recall that applying a substitution to a list means < oolymg it to each list element separately. So
the obvious way to simplify an equality (I) is by reducing it to equality (2) via a statement
expressing a kind of commutatlvity

(3) SUBST(RCONS(A,B),S) - RCONS(SUBST(A,S),TSUBST(B.S))

(fhe change from SUBST to TSUBST is ecessary because of the different type) together with

- - ■*.. ■ ■ ■"- - - ■■ ■ -■■'■■

 "■• ■■ - - ' ■■>

vHENKE and LUCKHAM 22

(4) IF (XI-X2)Ar'l-Y2)THEN RCONS(\ l,YI)=.RCONS(X2.Y2)

as a goal statemmt For example, look at th« relevant parts of VCtlO.

SUBST(U.Z)-SUBST(V,Z) A TSUBST(HD(YI).Z)-TSUBST(HD(XI),Z)
^SUBST(RCONS(U,HD(XI)),Z)-SUBST(RCONS(V,HD(YI))Z)

Using the statements (3) and (4) the simplificr will generate from the conclusion the subgoal

RCONS(SUBST(UZ),TSUBST(HD(XI).Z))-RCONS(SUBST(V1Z).TSUBST(HD(YI)>Z))

and from that

SUBST(UZ)-SUBST(VZ)ATSUBST(HD(X1)7)-TSUBST(HD(Y1),Z)

which is just the premise

Although (?) and (4) will amplify the other VC's further, they are not sufficient to reduce them
completely. The rquality in VC«4

SUBST(RCONS(U1HD(XI)),Z2.2)-SUBST(RCONS(V,HD(YI)).Z2«2))

will be reduced to

(5) SUBST(U,Z2.2)-SUBST(V,Z2«2) A TSUBST(HD(X1),Z2.2)-TSUBST(HD'YI).Z2.2)

Now, the first conjunct obviously has to be proved from the equality

(6) SUBST(U,Z)-SUBST(V,Z)

in the premise. This raises the question, how Z and Z2«2, the actual value of Zl, are related to
each other. Looking at the program text we find that Z2 is the substitution returned by the call to
UNIFY In case of success; thus, Z2 is an extension of Z by one or more applications of COMP.
To express this relationship we introduce the predicate ISSUBSUB(SI:SUBi S2:SUB) meaning
"SI ;s a sub-substitution of S2" or more precisely: SI is an initial part of S2 (from which It follows
that by composing SI with appropriate smglesub's we can get S2). We can now formulate a
lemma sufficient to reduce the first equality in (5) to (6):

IF ISSUBSUB(Z,Z2) A SUBST(U.Z)-SUBST(V.Z) THEN SUBST(U,Z2)=SUBST(V.Z2)

provided the predicate ISSUBSUB(ZIZI) is added to the exit condition of UNIFY and therefore
also to the invariant of the WHILE loop.

In order to prove the second conjunct of (b) we have to look for "similar" equalities in the premise
of.VC«4. Obviously, the relevant parts are

(7) SUBST-rERMS(TSUBST(HD(YI),Z)),Z2.2)-SUBST(TERMS(TSUBST(HD(XI).Z)).Z2«2)
AFNLT(TSUBST(HD(YI),Z))-FNLT(TSUBST(HD(XI),Z))

mmmma^r^mm -"-

•A3'

23
CONSTRUCTING A BASIS

which exactly mean that TSUBST(HD(X l).Z) and TSUBST(HD(YI).Z) are unified by Z2.2 If
we add as a new axiom (no.22 in figuie 8 (appendix)) the cundition stating when two functional
terms are unified, then (7) will be replaced by: B 'unctional

(8) TSUBST(TSUBST(HD(YI).Z).Z2.2)-TSUBST(TSUBST(HD(XI).Z)1Z2.2)

l*!raa! n0W ,S t.0/
pr0Ve the 5CCOnd C0nJunct of (5) from ^ Th,s * ■ Plausible implication and is added as a goal (no. 16 in figure 8) r

Similarly, other lemmas are derived to reduce the remaining VC's to TRUE.

The third version of the top level program is shown in appendix (figure 8) U^ine the axioms
and goals listed m figine 8 the system .s lOk to reduce all the venfication conditions to TRUE
except VC«2; this involves more complex propositional structure and is pro^d easily by the
theorem prover Thus, figure 8 contains an adequate documentation of 'he top level.

3.4 ANALYSIS OF Tilt VERIFICATION BASIS. The basis u given in figure 8 is adequate
to reduce the top level VC/s co.npletely. but by no means does the vmfkat.on of the program end
at this point. Beside axioms about data structure primitives the basis contains spcifications on
non-primitive functions and lemmas relating these functions.

Analysis of the verification basis is intended to show that the basis is acceptable that is we can
wr.te programs for the second level functions that satisfy the DEFFUN's and the lemmas A fairlv
sensible order of doing this is the following: 'emmas. A fairly

I) Axioms from user-defined data structures and standard properties of primitives are accepted
2 AII basis statements Involving only primitives must be derived from the standard properties'
3) The number of remaining statements involving second level functions is reduced bv'findintr

dependannes between them. 7 ""U,,IB

4) Code for the second level functions is written to satisfy the DEFFUN's and the remaining
basis specifications ■cmaiMing

b) If a lemma cannot be ratisfied. it must be changed. This in turn requires establishing the
adequacy of the altered bam for verifying the top level. g

Following this scheme, (refenng to figure 8 (appendix)) we find that axioms .1 and .2 are Dirt of
the rtata type definitions (Note that no use was made of other data type axioms so far however
£ey will be required to verify lower level funct.ons.) We take the functions APPEND and
OCCUR as primitives (standard library functions); axioms nos.3.4.6 are standard properties of

Obviously, axiom «11 follows immediately from axiom .10 and goal «12.

All the remaining basis statemmts involve second level functions. They obviously cannot be
justified using only the given DEFFUN's. but provide further specifications of the subfm.X s
They must be regarded as neccs^y conditions that the programmer's code must satisfy In ^
way they may serve as guide lines" for the writing of second level programs; some of them ee
nos. 9.10.13 - can be translated directly into code as part of the case analysis g"

!■■■ i {.■•.■win ■iiin>w<i^n

v.HENKL and LUCKHAM 24

|
For some of the functions the progiams are staightforward. Axioms «5 and «7 specify RCONS: If
we define RCONS by

RCONS(X.Y):- APPEND(X.L1ST(Y))

then «5 follows easily from well-known properties of APPEND and LIST. Taking COMP as the
abbreviation

COMP(S,V,T) - 4K:UB(S.PAIR(V.T))

the lemmas nos 8,9,10. and i2 give the obvious peciftcation of ISSUBSUB in terms of MKSUB.

In appendix figure 10 programs for the tecord level functions are given which correspond to the
DEFFUN's used at the top level The verification that these programs satisfy the DEFFUN's can
be done relative to a basi« consisting of the data type definitions (re. axioms and DEFFUNS for
the constructors and sclertors) This is straightforward since the programs directly reflect the
recursive nature of the types

Remark it should be noted that verification basis for the top level does not necessarily
completely predetermine the way second level functions have to be implemented In our example,
application of substitutions can still be either simultaneous or sequential; this solely depends on
the representation of the function COMP (or MKSUB). (Although the type definition for SUB
implies sequential application, we did not make any use of those axioms.) The implementation in
figure 10 assumes sequential application of substitutions.

Now we must show that the programs satisfy the rest of the lemmas. Usually, proving that a
lower level function meets a specification (satisfies a lemma in the basis) means setting up a new
verification problem by adding the lemma to uc justified to the ENTRY and/or EXIT assertions
for the body of the function. In complex cases, especially where the proof .equlres induction over
a data structure. It is necessary to reduce the problem by hand firt (Data structure induction
rules are not Implemented yet.)

AS an example, we show the justification of the goal «15. usng the programs from figure ID.
First, goal «15 was reduced using the induction rule for the data type SUB to the induction step
problem (the base case problem is trivial) This problem in turn was fuither simplified by hand to
(15') using properties of ISSUBSUB and the assumption of the induction step.

(15') ISSUB(SI) A ISSINGLESIJB(S2)
a TSUBST(L, MKSUB(SI, S2)) - SINGLETSUBST(TSUBST(L. SI), S?)

If (15') can be venfted, then we can use induction to pnve goal «15. Figure II (appendix) shows
the verification of (15').

Perhaps the reader may be convinced that the proofs of ai! the remaining lemmas in figure 8 (see
Appendix) are as straightforward as »lb. Hence figure 8 presents an adequate and acceptable
basis (I.e. the lower level functions can indeed be coded to satisfy the lemmas). The top level
then Is verified.

This Is not so.

l^^^^w ■ ' "

Ä^.

25
ANALYSIS OF THE BASIS

Coal .16, although Mmple enough, h.des (i.e. depends upon) an extra property of the too level
hat has not yet come ro light, It I, not true of subst.tut.ons Hi general, thus .t .s not cceÄ e in

th, form It IS true of the subst.tut.om instructed by the program (wh.ch is why -t Us
believable because .hey have a .pec.al property. Namely, whenever a var.able occurs « the teft

hand side of a pair, «will not occur In any later pair. Th.s property holds for these ubstuuUn

because whenever , subst.tut.on for a var.able .s added to Z. that part.cular VlrtllS^SSS
rom al expressmns rema.n.ng .n XI and YI (by then applying 2). The property is equ ITler'^

Idempotency of the substitut.on wh.ch we express by the new predicate "IDEM(sr q l t0

IDEM{S) - SUBST(\.S).SUBST(SUBST(X.S).S) for all X.

We must change goal .16 to pal .16NEW by add.ng IDEM(Z) to it as a premiss and then start
venfkat.on of the top level again (see .tep 5. banning Sect.on M). Reason.ng a ong the In"
developed m earl.er scct.ons (and anaiys.s of .he new VCs) shows that we have to e^ and al
assert.ons In the program by appropriate .nstances of IDEM (see figure 12). Analys.s of the Vc's
shows that one add.t.onal lemma is requ.red: «na.ysis ot the VCs

iDEM(SI) 3 IDEM(COMP(Sl.TSUBST(X.SI).TSUBST(Y.SI)))

We add this to the basis (goal .I6A) and obta.n aga.n a complete reduction of the top level VCV

.

ENTRY ISTERMLIST(X)AISTERMLIST(Y)AISSUB(Z1)AIDEM(ZI)•
EX,T vS(?LAGZl J)I

SUBST(XlZ,,SUBST(Y-Z» A ™^mi\,l) A IDEM(2) A (FLAG»!))

INVARIANT (..A(APPEN0(V,YI).Y)AISSUBSUB(Z11Z) A IDEM(Z) A (FLACl)) v (FLAG-O)

t ! 5NEW t GOAL TSUBST(BX(BZ).TSUBST(OY1«Z)
SUB ISSUBSUB(«S,Z) A I0EM(«S)

ACTSUBSTCTSUBSTIX.BSUKSUBST^SUBSTCY.BSU»;

t 16A 7. GOAL IDEM(C0MP(»SI.TSUBST(BX1«SI)ITSUBST(BY,«S1))) SUl) IDEM(Sl);

Figure 12: Expanded documentation for idempotency

The additional lemma .16A can be justified by show.ng that it is derivable from standard
properties of substitution composite and appl.cat.on. (This proof is given in ^oo^Z)
This means that it will be satisfied by correct code for COMP and TSUBST. aPPe™ix.)

■ - >— . - --

" ■■ ■» W^i ^■" mm

vHENKE and LUCKHAM
26

3.5 VERIFICATION OF FURTIIF.R PROPERTIES OF UNIFY. When the user has
developed an adequate clocummtation for h.s propiams with respect to one propertv he ran
attempt to explo.t II for the vrr.f.cat.on of fu.ther propert.es In this section we demonsuate how
additional verification problems can be solved by mod.fymg the established basis and assertions.

The basis developed at the end of section M (figures 8 and 12) is adequate for venfyme a rather
weak property of our unification program. However, even this task has brought to light the
unusual and useful idempotency property of the substitutions constructed by this proeram Now
when we come to verify more stringent requirements we find Turther code changes to be necessarv'
and these are justifiabe by idempotrncy 5 necessary.

Our goal is to verify that

fli MWlJv ee
f
npl■1,"l

a
Ä7-y,p'al;',n,fter- if the term"stJ P«*^ " «rgumwtl are umfiable

(b) UNIFY returns FLAC-0. re failure, only if the termlists are not umfiable

In order to prove (a) we mtioduce i predicate

MCU(X.Y,Z) - "S is a most genet alunifier (or mgu. for short) of X and Y le S is a
subst.tution that unifies X and Y. and if S' is another unifier for X and Y
then S is a sub substitution of S'"

First of all. assertions m the program art strengthened by replacing all occu rences of eouations
of the form SUBST(X,S)=SUFVST(Y.S) by MGU(X.Y.S) We cannot make a 11^.17^
minded strengthening of the bnsis since some goal statements are not true if all of the
substitutions are .estr.cted to being mguV We must find out what properties of MGU need to be
added to the existing basis We therefore return to the verifier and try to derive the necessarv
axiomatization for MGU from the VC's necessary

The first problem arises from a VC corresponding to the path from ENTRY to INVARIANT
which is of the form ojvini^i,

ISTERMLIST(X)AISTERMLIST(Y) A ISSUB(ZI) - MGU(ZERO. ZERO. Zl)

This can only be true if ZI-ZF.RO (tee case (til) in section 2.4). Now. Zl is a value parameter
So we must ask if Z1 can be eliminated from the body of the procedure. -'»«er.

This leads us to consider the path containing the recursive call to UNIFY, and here we find in
general th-.i ZHZERO The rrcursive call is oi the form

I NIFY(TERMS(X2). TERMS(Y2). Z. Z2. FLAG)

where X2.TI UBST(HD(X I). Z) and YVrsUBST(HD(Yl), Z). and the current value T Z
replaces the formal parameter Zl Notice that X2 and Y2 are values resulting from applicat. nt
of Z to X I and Yl. If we trace the computation of this call, we find that the only use made of Z
(the value of Zl) is n apply it agam to X2 and Y2. By idempotency. this second appli aUon ls

redundant- Thus, if we omit the parameter Zl altogether and initialize Z to ZERO we'ee eiactIv
the same result by appropriately composing the substitution returned by the recursive call with the
old Z. To do this, we introduce a general composition function.

L -- MM

'•■ -«■••" P" *-

5 7.

27
FURTHER PROPERTIES OF UNIFY

SCOMP(ZI.Z2) - the composition of two substitutions, Zl Md Z2.

It turns out that the verification can now be completed bv addm» rm. r,,.,.,i
describes how to build up mgu's ^mpietea oy adding one crucial new axiom which

(■)

MGU(\I.YI.SI)A MCU(TSUBST(X2.SI).TSUBST(Y2SI) S2)
MCIKRCONSOC l,X2), RCONS{YI.Y2). SCOMP(Sl1S2))

(goal .26 in figure I?) If we teplace the old rOMP^7Vv\ v

for «^„b,!,,,. w, g,ve . „„..„„.n o, .h. „„, ,„,m„i,A obv.ou, ^^Tr.h«^^,«'

Remark: Having made thp^e changrj (iiistifird on the baut nf iri-«, . \
having to verify fdempotency in the old c^ disappears and rh ^P01™^' the ^»on for

._ -■■

^p»w^—-•■ -

vHENKE and LUCKHAM

7. Goals for MGU t
1. 26 t GOAL MGUlRCONS^XI.^l.RCONSteYl.aYZ). SCOMP(fflSI «52»

SUB MGU(X11YI,S1)AMGU(TSUBST(X21S1)1TSUBST(Y2,SI),S2)-
7. 27 % GOAL MGU(RCONS(lPXI.nX2),RCONS(RYl,«9Y2)1 M<SUB(oSI BS2))

SUB MGU(X i .Yl .SI)AMGU(TSUBST(X2,SI)1TSUBST(Y2,SI) S2)-
7. 28 7. GOAL MGU(RCONS((K)XI.«X2),RCONS(QYl,wY2),(aSI)

SUB MGU(X I .Yl ,SI)A{TSUBST(X21SI).TSUBST(Y2,S1));
7. 29A 7. GOAL MGU(«X.oY,PAIR(«3X,^Y» SUB ISVAR(X)AISTERM(Y)A^OCCUR(X Y)-
7. 29B 7. GOAL MGU(«XlraY,PAIR(QY1oX)) SUB ISVAR(Y)AISTERM(X)A<OCCUR{Y'X)'

7. 30 7. GOAL MGU^X.wY.nS) SUB (FNLTiXj.FNLKYjJAMGUdERMSIXl.TERMSCY) S)-
X 31 7. AXIOM MGUIZERO.ZERO.ZEROWRLT; «^ITMH

DEFFUN MKSUB(S:SUB; SI :SINGLESUB): SUB;
ENTRY ISSUB(S)AlSSINGLESUB(SI); EXIT ISSU l(MKSUB);

DEFFUN PAIR(X:VAR; Y.-TERM): SINGlESUB;
ENTRY ISVAR(X)AISTERM;Y)A.OCCUR(X1Y); EXIT ;SSINGLESUB(PAIR);

3EFFUN SC0MP(S11S2:SUB):SUB; ENTRY ISSUB(S1)AISSUB{S2); EXIT ISSUB(SCOMP);

PROCEDURE UNIFY(X.Y:TERMLIST; VAR Z:SUB; VAR FLAG:INTEGER).
ENTRY . .
EXIT (ISSUB(Z) A MGUIX.Y.Z) A (FLAG«!)) v (FLAG.O);

BEGIN
t Initialization of variables 7.

. . Z:.ZERO; . . .

INVARIANT (ISSUB(Z)AISTERMLIST(U)AISTERMLIST(V)AISTERMUST(X1)

A ISTERMLIST(YI)AMGU(U1V(Z)A(X.A1''PEND(U,X1))AIY.APPEN0(V,YI))A(FLAC.|))

WHILE DO
BEGIN
IF ISVAR(X2) THEN BEGIN IF ISVAR(Y2)

THEN BEGIN IF (X2^Y2) THEN r:.MKSUB(Z,PAIR(X2.Y2))
END

ELSE
END

ELSE BEGIN IF ISVAR(Y2) THEN . .
ELSE BEGIN IF rNLT(X2)=FNLT(V2)

THEN BEGIN UNIFY(TERMS(X2)ITERMS(Y2),Z2,FLAC)'
IF FLAG«I THEN Z:.SC0MP(Z,Z2)
ELSE FLAC:>0

END
ELSE

Figure 13: Additional documeiilation and program changes for MCU

28

^^ „

———————

tf

29
FURTHER PROPERTIES OF UNIFY

Problem (b) .$ to show that If UNIFY returns FLAC-0 then there Is no unifier for X and Y.

We express this property by the predicate.

NOTUNlF(X,Y) - "X and Y are not unifiable"

and set up the nrw verification problem

| UNIFY(X,Y,Z.FI.Ar,) | (... AFLAC»!) V (FLAG-0 A NOTUNIF(X.Y))

Note that the postconcl.t.on impl.rs " FLACI <-> NOTUNIF(X,Y) " The adequate
ax.omat.za.mn of NOTUNIF ll ak.KM s.ra.ghtforward. However. ... goals .33 and .M (see figure
14) the premiss MÜU() is cmciai for acceptability.

The final program and documentation for the full verification of UNIFY is given in figure 14.

ArKNOWLEDGEMFNTS We wish to acknowledge the efforts of M. Slntioff in helping to set up
th.s exper.ment at the brg.nnmg N. Suzuki has cooperated at all stages in mod.fymg the

s.mpl.ficat.on system to handle our problems.

- i

 "

vHENKFand LUCKHAM 30

REFERENCES

[Boyer and Moore] R.S. Boyer and J S. Moore, "Pre ;ng Theorems about LISP Problems',
Third IJCAI Proceedings. 1973

[Clint] M Clint. "Program Proving Coroutines". Acta Informatica 2 (1973), 52-63,

[Deutsch] LP Deutsch. "An Interactive Provram Verifier", PhD. thesis, University of
California. Berkc ey. 197?

[ELW] B Elsps, K. Levitt, and R Waldmger. "An Interactive System for the Verification of
Computer Programs". SRI Project 1891, Stanford Research Institute, 1973.

[Floyd] R. W. Floyd. "Algorithms 245. TREESORT3", Comm ACM 7 (1964).

[Good and Ragland] D. Good and L. Ragland, "NUCLEUS - A Language of Provable
Programs", in Program Test Methods, W.Hetzel (ed.). Prentice Hall, 1973.

[Hoare 71] C.A R Hoare. "Procedures and parameters; An axiomatic approach", in Symposium
on Semantics of Algorithmic Languages, Engeler, E. (ed.), Springer-Verlag, 1971, pp. 102-
116

[Hoare 1973] C.A R Hoare, "Recursive data type'>". Memo AIM-223, Stanford Artificial
Intelligence Project. Stanford University. 1973.

[Hoare and Wirth] CAR. Hoare and N. Wuth, "An Axiomatic Definition of the
Programming Language PASCAL". Acta Informatica 2 (1973), 331.-355.

[ILL] S. Igarashi, R L. London, and DC Luckham, 'Automatic Program Verification I: Logical
Basis and Its Implemmtation", AIM-200, Sttitford Artificial Intelligence Project, Stanford
University, 1972.

[King and Floyd] J.C. King and R.W. Floyd, " An Interpretation Oriented Theorem Prover
over the Integers", Journal of Comp. and SysSa , vol6, no.4, Aug. 1972 pp.305-323.

[McCarthy] J. McCarthy. "A basis for a mathematical theory of computation", in Computer
Programming and Formal Systems, (ed. Braftort and Hirschberg), North Holland, 1963.

[Morales] J. Morales, "Verification of Sorting Algorithms", unpublished report. Sept i973.

[Suiuki] N Suzuki, "Verification of Programs by Algebraic and Log.cal Reduction", forJicoming
Memo, Stanford Artificial Intelligence Project, Stanford University.

[Wirth] N. Wirth, "The programming language Pascal". Acta Liformatica I.I (1971), 35-63.

 ■

-"— m i

31 •

31 APPENDIX

APPENDIX

Proofs of lemmas
Figure 8: Third version of top level ♦ corresponding goalfile
Figure 9: Sample VC'i for third version
Figure 10
Figure 11
Figure 14

Second level fi nctions ♦ goalfile
Lemma about ^oal 15
The complete p.ogram and documentation for UNIFY

Proofs of Lemmas

Notation: We use the following shorthand notation:
'x.oi" for substitution application (TSUBST/SUBST)
'«*/!" for substitution composition (MKSUB/SCOMP)
"xiiy" for list concatenation (APP/RCONSy
"<x.y>M forPAlR(\.Y)

We make use of »ertam facts about substitutions;

(I) associativity of V: ot l»(a:2«c<3) - (oiUo<2)»«3
(li) a k-nd of associativity of "." (x.oi\)oc2 - x.(oCl»e^2)
(ill) a kind of dutnbutivity of "." {xoy).oi - {x.oc)<iy.oc)

1. Coal 16A: IDEM(o<) -» WEMUw.oC, y.oi>)

This is equivalent to proving

(<* • <x.c<, yoc>) • U* • <x.oi, y.oi>) - u • <x.u, yoC>

from the assumptions

(al) ofu-u, (a2) isvar(xo<). (a3) isteim(y.o^), (a4) ■> occuKx^.y.oi)

(a2)-(a4) are from the ENTRY assertion for COMP; they imply that the single
substitution Is idempotent. namely

(b) <X.e(.,y.oC> • <x.u,yoC> - <X.oC,y.ei>

Now
(e* • <x.oC, yoC>) m(c< • <x.oi, y.oC>)

- lid • <x.o^ y.u>) » oi) • <x.oi, yoi>
• ((<^ •u)» <x.oC, y.(e*•«:>)] • <x.e^1 y.oc>

- [oc • <x.e^, y.u>] • <X.oi, y.oc>
• of <x.oi, yoc>

byO)
using standard properties
of "." and V and (aI)
by (a)
by (b). (I)

 -

3^" _;V

v HENKE and LUCK HAM

2. LEMMA (*) for MCU (Section 3.5)

() MCU(XI.YI.^I)A MCU(\2c/:.Y2.c<l,c<2) a MCU(X |.;.X2. YI^Y?. o^ l*c<2)

We prove () from the •Itumptioni
(I)

and
(2)

MGU(\I.YI,c<l)

MGU(\2r/|, Y2c/.l,r<2)

(N|.\2)/^ -(Yl Y2)/3
ß ' *Ml
(XI X2)(^|r./3|).(Yl:Y2)(o<l^l)
[(XI.«IHX2.«<l)J4l -[(Yl.e^l).(Y2o<l)]./3l

From this we infer i\2^\)ß\ - (Y2.o<l)/3l
Thus, by (2) /i\ - oc2^2
or /5 - (c<l<?>o<:2)*./52
for suitable /32. which ptoves ()

Suppose
Then by (I)
so
which implies

for suitable/31,

by (II). (ill)

- -■■

rm

33*

55
APPENDIX

GOALFI'.E

7. Axioms dcdning tha data typos and ba:ic functions 7.

t I 7. AXIOM ISTERMUST(ZERO) « TRUE;
«2 7. AXIOM ISSUB(ZEROMRUE;

7. Axioms describing properties of subfunctiont 7.

7. 3 7. AXIOM APPENDIZERO.nS^S;
7. 4 7. AXIOM APPENDtoS.ZERO^S;

7. 5 7. AXIOM APPEND(RCONS(«5.HD(fflT)),TL(BT))HAPPENO(S,T);

7. 6 7. AXIOM IF ISVAR(X)AISVAR(Y)A(Y/X) THEN '0CCUR(OXPOY)HTRUE;

7. 7 7. GOAL RCONS(OX11OX2)=RCONS(OY1,OY2) SUB (X|.Y1)A(X2-Y2);

7. 8 7. AXIOM IF ISSUB(Z) THEN ISSUBSUB(ZERO.ffZ)«TRUE;

7. 9 7. AXIOM ISSUBSUBCIBZ.BZMRUE;

7. 10 7. AXIOM ISSUBSUB(nZ,COMP(aZ1®X,sY))..TRUE;

7. 1 I 7. AXIOM IF ISSUDSUQtY.Z) THEN ISSUBSUBt^Y.COMPIoZ.fflV.oWj^TRUEj

7. 12 7 GOAL ISSUBSUB(«9Z,QZ1) SUB ISSUQSUB(ssZ21Zl)AlSSUBSUB(ZlaZ2),
ISSUBSUBiZ.oZZlAlSSUBSUBloZZ.Zl);

7. 13 7. AXIOM TSUBSTIsX.ZEROM;

7. 14 7. AXIOM IF MSVAR(X) THEN -ISVAR(TSUBST(oX1aiS))«TRUEi

7. 15 7. GOAL TSUBST(«X,«Z)3TSUBST(«Y,<jZ) SUB ISSUBSUB(oZl,Z)A(TSUBST(X,aZI).TSUBST(Y,«Zl));

7, 16 7. GOAL TSUBST(»X,wZ)=TSUBST(«Y1«5Z)

SUB ISSUBSUB(nS.Z)A(TSUDST(TSUBST(X1oS),Z)=TSUBST(TSUBST(Y1«S),Z));

7. 17 7. GOAL TSUBST(®X1COMP(QZ.'oX1»BY))=TSUBST((i»YlCOMP|BZ,BX,«Y))
SUB ISSUB(COMP{Z,X1Y))1 ISSUBiCOMPtZ.Y.X));

7. 18 7. GOAL TSUBSTIwX.COMPdsZ.QU.oVlHSUBSTdJY.COMPIoZ.BU.ÄV))
SUB (U.TSUBSTlX.ZjJAlVrTSUBSTlY.Z^AlSSUBiCOMPCZ.U.V)),

(U.TSUBST(Y1Z))A(V-TSUOST(X.Z))AISSUB(COMP|Z,U,V));

Figure 8 (rontlmifd)

J

—*

v HENKE and LUCKHAM M

t 19 7. AXIOM SUPSTlaX.ZERO-X;

1. 20 7. AXiOM SUBST(ZER0.«9SMERO;

7. 21 1. AXIOM SUBSKRCGNSdBX.fiiYKwZ^RCONSISUBSTIX.Z^TSUBSTIY.Z));

?! 22 7. AXIOM IF FNLT(X)=FNLT(Y) THEN (SUBSKTERMStnXUZhSUBSTCTERMSiBYUZ))««
(TSUBSKX.Zj.TSUBSKY.Z));

7. 23 7, GOAL SUBST(»»X1C0MP(«71fi>A,cT>B))=SUBST(»Y,:0MP(«Z1«»A)eB))
SUB (SUBSTCX.Z^SUQSKY.ZJlAlSSUQICOMPCZ.A.B));

7. 24 7. GOAL SUBST(0X,oZ)'SUBST(<8Y,QZ) SUB ISSUBSUB(aZI,Z)A(SUBST{X,aZI)>SUBST(Y,«ZI));.;

PASCAL

DEFFUN HD(L:TERMLIST):TERM; ENTRY ISTERMLIST(L)A^L»ZERO); EXIT ISTERM(HD);

DEFFUN TL(L:TERMLIST):TERMLIST; ENTRY ISTERMLIST(L)A^L.ZERO); EXIT ISTERMLIST(TL);

DEFFUN RCONS(L:TERMLIST; X:TERM):TERMLIST;
ENTRY ISTERMLIST(L)AISTERM(X); EXIT ISTERMLIST(RCONS);

DEFFUN TERMS(X:TtRM):TERMLIST; ENTRY ISTERM(X)A-ISVAR(X); EXIT ISTERMLIST(TERMS);

DEFFUN FNLT(X:TERM):CONST; ENTRY ISTERM(X)A^ISVAR(X); EXIT ISCONST(FNLT);

DEFFUN TSUBST(X:TERM:S:SUB):TERM; ENTRY ISTERM(X)AISSUB(S); EXIT ISTERM(TSUBST);

DEFFUN SUBST(X:TERMLIST; S:SUO):TCRMLIST;
ENTRY ISTERMLiST(X)AlSSUB(S); EXIT ISTERMUSTISUBST);

DEFFUN COMP(S:SUB; X:VAR; Y:TERM):SUB;
ENTRY ISSUB(S)AISV \R(X)AISTERM(Y)A^OCCUR(X,Y); EXIT ISSüB(COMP);

DEFFUN OCCUR(X:VAR; Y:TERM):BOOLEAN; ENTRY ISVAR|X)AISTERM|Y); EXIT ISBOOLEAN{OCCUR);

Figure 8 (continued)

;--- - - --— --■- ■■j— ■ —-- '-■i ■- ■ ■ " - - ::- -■■■ -- ■"■''■

'•«^VW

J^

35 APPENDIX

PROCEDURE UNIFY(X,y:TERMLIST; 2l:SUB; VAR Z:SUB; VAR FLAG:B00LEAN):
ENTRY ISTERMLIST(X)AISTERMLIST(Y)AI5SUB(ZI);
EXIT (ISSUB(Z)A(SUBST|X12).SUBST(Y.Z))AISSUBSUB(ZI,Z)A(FLAG.|)) v ;,-> AC • 0);

VAR U,V,X1 v|:TERMLIST; VAR X2,V2:TERM; VAR Z2:SUBi

BEGIN

7. Initialization of variables 1.
U:-ZER0; V:.ZER0; Z:«ZI; XhrX; Yli^Y; FLAG:-!;

INVARIANT (ISSUB(Z)AISTERMLIST(U)AISTERMLIST(V)AISTERMLIST(XI)AISTERMLIST(Y1)A

(SUBST(U1Z)-SUBST(V1Z))A(APPEND(U,X1)SX)A(APPEN0(V,Y1).Y)AISSUBSUB(ZI,Z)A(FLAG.1))
v (FLAG:0)

WHILE (XI /ZERO) A (Yl /ZERO) A (FLAG= 1) DO
BEGIN
X2:- TSUBSTUWXD.Z);
Y2:= TSUBST(HD(Y1),Z);
IF ISVAR(X2) THEN BEGIN IF ISVAR(Y2)

THEN BEGIN IF (X2/Y2)
THEN Z:.COMP(Z>X2,Y2)

END
ELSE BEGIN IF OCCUR(X21Y2) THEN FLAC:.0

ELSE Z:.COMP|Z,X2,Y2)
END

END
ELSE BEGIN IF ISVAR(Y2)

THEN BEGIN IF OCCUR(Y21X2) THEN FLAG !«0
ELSE Z:=COMP(Z,Y21X2)

END
ELSE BEGIN IF FNLT(X2)«FNLT(Y2)

THEr' BEGIN UNIFY(TERMS|X2),TERMS(Y2),Z,Z2,FLAG);
IF FLACl THEN Z:.22

END
ELSE FLAG:=0

END
END;

U ^RCONSdJ.HDiXI)); V :=RCONS(V,HD(Yl));
X1:=TL(X]); YI:rTL(YI);

END; 7. End of WHILE body 1.

IF (X J/ZERO) v (YI/ZERO) THEN FLAG:=0
END; 7. Proctdure body 7.

Figure 8: Third version with documentation

v HENKE and LUCKHAM

FOR UNIFY THERE ARE I 1 VERIFICATION CONDITIONS. HER!7 IS ONE OF THEM:

« 4
(-XI »ZERO & -YI=ZERO & FLAG* I &

ISSUB(Z)AlSTERMLIST(U)AlSTERMLIST(V)AlSTEPMLIST(Xl)AlSTERMLISfvYl)ASUBS*
T(U,Z)=SUBST(V1Z)AAPPEND(U,XI)^XAAPPEND(V1Y1)=YAISSUBSUB(ZI 2)AF.AG«IVFLAG«0

-» ISTERMLIST(XI) & -XhZERO & (ISTERM(HD(XI))
-» ISTERM(HD(XI))& ISSUnm & (ISTERM(TSUDST(HD(X1),Z))
-♦ ISTERMLIST(YI) A -YhZERO A (I5TFPM(HD(Y1))
-» ISTERM(HD(YI))& ISSUO(Z) A (IGT:RM(TSUBST(HD(Y1),Z))
-» (-ISVAR(TSUn5T(HD(YI))Z)) « -ISVAR(TSUBST(HD(X 1 l.Z))
-♦ ISTERM(TSUOST(Mü(Yi),Z))Ä <ISVAR(TSUBST(HO<Yl),!))«

(ISCONST(FNLT(TSU,rlST(HD(Y |),Z)))

-» ISTERM(TSU13ST(H1MXI).Z))Ä 'ISVAR(TSUBST(HD(X1),Z)) i
(ISCONST(FNLT{TSUL3ST(HD(X 1),2)))

1 (FNLT(TSUB«;T(HD(XI),Z))^FNLT(TSUDST(HD(Y1).Z))

-» ISTERM(TSUÜST(HD(Y1),Z)) Ä 'ISVAR(TSUBST(HD(YI),Z)) i
(ISTFRMLISTiTERMSITSUDSTdlDiYD.Z)))

-» ISTERM(T5UBST(HD(X1),Z))& 'ISVAR(TSUBST(HD(X1 j.Z)) »
(ISTERMLI3T(TEPMS(TSUD5T(HD(X1),Z)))

-• ISTERMLIST(TERMS(TSUBST(HD(X1)1Z))) & ISTERMLIST(TERMS{TSUBST(HD(YI j.Z))).
ISSUB(Z) & (FLAG^I &

ISSUB(Z2"P)ASUOST(TERMS(TSUBST(HD(Xi),Z)))Z2«2)SSUBST{TERMS(«'
TSUBST(HD(y|)1Z))1Z2«2)AlSSUBSUB(Z,Z2«2)AFLAG=lvFLAG»0

-» ISTERMLISTIXl)«, -XUZERO& (ISTERM(HD(X1))
-» ISTERMLIST(U) & ISTERM(HD(XI)) & (ISTERMLIST(RCONS(U,HD(XI)))
-» ISTERMLIST(Y1)& ^\-7ZRO& (ISTERM(HD(Y1))
-» ISTERMLIST(V) & ISTERM(HD(YI)) & (ISTERMLISTIRCONS^.HDCYl)))
-» ISTERMLIST{X1)& 'X]=ZER0 4 (ISTERMLIST(TL(XI))
-» ISTER^LIST(YI)& -YI=ZERO& (ISTERMLIST(TL(YI))

-► ISSUB(Z2"2)AISTERMLIST(RC0NS(U,HD(X1)))AISTERMLIST(RC0NS(V,HD(Y1)))A
ISTERMLIST(TL(X I))AISTERMLIST(TL(YI))A

SUBST(RCQnS(U.Hn(XI)),Z2«2)=SUBST(RCONS(V,HD(Yl)),Z2«2)A
APPEND(KCONS(U,HD(Xl)),TL(Xi))=XA
APF'ENDiRCONSIV.HDtYl »JKYl))=YA

ISSIIBSUB(ZI1Z2«2)AFLAG=1VFLAG=0)))))))))»))))))?

Ficjurc 0: One of ihr unsiinplificd VC's for the third version

 --...-.■ - - M^MJ_ ffa^—^L^^^^^^.. ^.^i^t^^^^Mt—^^^. *..^.^^^^u ^ ^.J,..^^_: ■_.. . -- ——llj I ^

w

37 APPENDIX

GOALFILE

AXIOM ISTERMLIST(Zr90) » TRUE;

AXIOM ISSUB(ZERO; - TRUE;

AXIOM ISSNGLESUB(ZERü) - TRUE;

GOAL ISSINGLESUB(«S) SUB (S^PAIRisX.asYllAlSVARIfflXlAlSTERMIaYJA-OCCUR^X.BY);.;

PASCAL

DEFFUN MKTERM(X:CONST;Y:TERMLIST):TERM;
ENTRY ISCONST(X) A ISTERMLIST(Y); EXIT ISTERM(MKTERM);

DEFFUN FNLT(X:TERM):CONST;
ENTRY ISTERM(X) A ^ISVAR(X); EXIT ISCONST(FNLT);

DEFFUN TERMS(X:TERM):TERMLIS"1;
ENTRY ISTERM(X) A -ISVAR(X); EXIT ISTERMLIST(TERMS);

DEFFUN CONS(X:TERM; L:TL"RMLIST):TERMLIST;
ENTRY ISTERM(X)AISTERMLI5T(L); EXIT ISTERMLIST(CONS);

DEFFUN HD(L:TERMLIST):TERM;
ENTRY ISTERMLIST(L)AML=ZERO); EXIT ISTERM(HD);

DEFFUN TL(L:TERMLIST):TERMLIST;
ENTRY ISTERMLIST(L)A^(L=ZERO); EXIT ISTERMLIST(TL);

DEFFUN MKSUB(S:SUB; SI :SINGLESUB):SUB;
ENTRY ISSUDIS)AISSINGLESUD(SI); EXIT ISSUG(MKSUB);

DEFFUN LAST(S:SUB):SINGLESUB;
ENTRY ISSUB(S);

DEFFUN REST{S:SUB):SUB;
ENTRY ISSUB(S);

DEFFUN VAR(S:SINr,LESUB):VAR;
ENTRY ISSINGLESUB(S);

EXIT ISSINGLE, UB(LAST);

EXIT ISSUB(RES.);

EXIT ISVAR(VAR);

DEFFUN TERM(S:SINGLESUB):TERM;
ENTRY ISSINGLESUD(5); EXIT ISTCRM(TERW);

DEFFUN PAIR(X:VAR; Y:TERM):PAIR;
ENTRY ISVAR(X)AISTERM(Y); EXIT ISPAIR(PAIR);

Figure 10 (continued)

 J --.--^l ^^^yyy^^^y^^gg.
■ - - ■■■ - - - — ii id ii^Mia-iimüMtiiiäl i ii ■

v HENKE and LUCKHAM

FUNCTION SUBST(L:TERMLIST; S:SUB);TERMLIST;
ENTRY ISTERMLIST(L) A ISSUO(S);
EXIT ISTERMLIST(SUBST);

BEGIN
IF (S-2ERO) THEN SUBST:=L
ELSE SUBST:.SINGLESUBST{SUBST(L1REST(3)),LAST(S));

END;

FUNCTION TSUBST(X:TERM; S:SUB):TERM;
ENTRY ISTERM(X) A ISSUB(S);
EXIT ISTERM(TSUBST);

BEGIN
IF (S = ZERO) THEN TSUBST-X
ELSE TSUBST:=SINGLETSU3ST(TSUDST(X,REST(S))ILAST(S));

END;

38

FUNCTION SINGLESUBST(L:TERMLISTr S:SINGL£SUB):TERMLIST;
ENTRY ISTERMLIST(L) A ISSINGLESUDiS);
EXIT ISTERMLIST(SiNGLESUDST);

BEGIN
IF (L=ZERO) THEN SINGLESUBSf^ZERO
ELSE SINGLESUBST:=CONS(SINGLET5UBST(HD(L)1S)lSINGLESUBST(TL(L),S))

END;

FUNCTION SINGLETSUBST(T:TERM; 3:SINf .ESUB):TERM;
ENTRY ISTERM(T) A ISSINGLESUB(S);
EXIT ISTERM(SINGLETSUOST);

BEGIN
IF ISVAR(T) THEN BEGIN IF (T=VAR(S))

THEN SINGLETSUBST :- TERM(S)
ELSE SINGLETSUBST :• T

END
ELSE SINGLETSUBST :» MKTERMIFNLTIT), SINGLESUBST(TERMS(T), S))
END;

FUNCTION COMP(S:SUB; XtVAR; YsTERMJtSUB;
ENTRY iSSUB(S)AlSVAR(X)AlSTERM(Y)A-OCCüR(X1Y);
EXIT ISSUB(COMP);

BEGIN COMPr-MKSUBCS.PAIRIX.Y)); END;

Figure 10: scconH level functions and goalfile

— ^-—.—^
-■ ■-—■--

3?.

39
APPENDIX

t Program lor vorifyinß

ISSUB(S1)AISSINGLESUB(S2)AISTERMUST{L)

=>[TSUBST(L.MKSUD(SI.S2))=SINGLETSUBST(TSUBST(LSI)S2n
Program body of TSUBST w.lh new onlry/ox.t conditions 7.

PASCAL

ENTRY ISSUa(S)A(S=MKSUB(SI,S2))AlSTEPM(X)-
EXIT (TSUBST8SINGLETSUBST(TSUBST(X,SI),S2));

AXIOM LAST(MKSUB(««S)oSI))«Sl:
AXIOM RESTIMKSUBIraS.oSD^S;
AXIOM {ZER0.MKSUB{«SI.«S2))«FALSE;

BEGIN

IF^ZERO) THEN TSUBST:EX ELSE TSUBST:.SINGLETSUBST(TSUBST(X.REST(S)).LAST{S)),

FOR THE MAIN PROGRAM THERE ARE 2 VERIFICATION CONOITiONS

• 1
(S-ZERO & ISSUB(S) 6, S=MKSUB(S11S2) * ISTERM|X)
-» XrSINGLETSUBSTCTSUOSTCX.Sl)1S2!)

• 2

('S«ZERO & ISSUB(S) * S-MKSUB(SI1S2) & ISTERM(X)

-»SINGLETSUBST(TSUBST(X,REST(S))1LAST(S)).SINGLETSUBST(TSUBST(X,SI),S2))

AFTER SOME SIMPLIFICATiQN, YOU CAN GET

• 1 TRUE
• 2 TRUE

Figure II: lemma abet goal 15

■— ■■— ^-„^--^_-JM»^^„_M-J„M—^„^»^—„^.^—. .— ..^—, .—.. ___M—-.«^M

v HENKE and LUCKHAM 40

GOALFILE

7. Axioms dodnmf» the data typer. and brfsic (unctions 7,
7 1 7. AXIOM ISTERMLIST(ZERO) « TRUE;
7. 2 7 AXIOM ISSUB(ZERO)..TRUE;

7. Axiom', de'.cnbmi; proportioi o('.ubtunctions 7.
7. 3 7. AXIOM APPEND(ZERO,"S)"S;
7 4 7. AXIOM APPEND(nS,ZERO)-S;
7. 5 7. AXIOM APPEND(RCONS(roS,HD(oT)),TL(«T))«APPEND(S,T)i
7 6 7 AXIOM IF ISVAR(X)AISVAR(Y)A(Y/X) THEN -0CCUR(oX,«\/HTRUE;
7. 13 7 AXIOM TSUBST(niX,ZERO)-X;
7. 14 7 AXIOM IF -'IVARIX) THEN ■'ISVAR(TSUBST(«IX,«9S))HTRUE;

7. Goals (or MGU 7.

7. 26 7. GOAL Mr.U(RCONS(T5X 1 ,*)X2).RC0NS(*9Y1 ,^2), SC0MP(oSl,aS2))
SUB MGU(XI,YI,SI)AMGU(TSUÜST(X2)SI)1TSUBST(Y2,S1)1S2);

7. 27 7. GOAL MGU(RCONS(rcXi ,.T)X2),RC0NS(.T)YI.3Y2), MKSU3(«»Sl,aS2))
SUB MGU(X 1 .''l .Sl)AMGU(TSUüST(X2,S1),TSUBST(Y21SI),S2);

7. 28 7. GOAL MGU(RCONS(oXI .^X2),RCONS(«YI)nY2),raSl)
SUB MGU(XI1YI1S1)A(TSUBST(X21S1).TSUBST(Y2)SI));

7 29A 7. GOAL MGU(nX,fDY,PAIR(^X,roY)) SUB ISVAR{X)AISTERM(Y)A-OCCUR(X,Y);

7 29B 7 GOAL MGUtoX.nY.PAIRtraY.QX)) SUB ISVAR(Y)AlSTERM|X)A-OCCUR(y,X);

7. 30 7 GOAL MGUCuX.aY.^S) SUD (FNLT(X)aFNLT(Y))AMGU(TERMS(X)1TERMS(Y)lS);

7. 31 7. AXIOM MGU(ZERO,ZERO,ZERO)-TRUE;

7. Goals (or NOTUNIF 7

7. 32 7 GOAL NOTUNIF(TOX,WY)

SUB ISVAR(X)AISTERM(V)A-ISVAR(Y)AOCCUR(X.Y),

ISTERM(X)AI<;TFRM(Y)A-ISVAR(X)A^ISVAR(Y)A -(FNLTiXj.FNLKY)),
(FNLr(X).FNLT(Y))ANOTUNir{TERMS(X),TERMS(Y));

7. 33 7. GOAL NOTUN!F(PCONS{r3X I ,-iX2),RC0NS(nYI ,r3Y2))
SUB MGU(X1,YI,*)S) A NOTUrjir(TSUG5T(X2,'!3S),TSllBST(Y?,»S))l

MGUOti.VI.MS) A NOTUNIF(TSUBST(Y21(raS),TSUBST(X21oS5)
NOTUNIF(X2.Y2);

7. 34 7. GOAL N0TUNIF{APPEND(^X1, oX2)1A?PEND(«Yl(oY2))
SUB (X2=ZERO)A-(Y2=ZERO)AMGü(X1,Y1)QS),

(Y2rZER0)A.(X2=ZER0)AMCU(Xl,YI,«S),
N0TUNIF(XI,Y1);

Figure 14 (continued)

■

41'

41 APPENDIX

PASCAL

DEFFUN HD(L:TFPMLI5T):TEPM; FNTRY ISTERMLIST(L)A^L'ZERO); EXIT ISTERM(HD);

DEFFUN TL(L:TERMLIST):TEPMLI5T; ENTRY I5TERMLIST(L)A-.(L=2ERO); EXIT ISTERMLIST(TL);

DEFFUN RCONS(L;TEPMLI?T: X:TERM):TER>-<HST;
ENTRY ISTERMLI5T(L)AISTERM(X); EXIT ISTERMLIST(RCONS);

DEFFUN TERMS(X:TERM):TERMLIST; ENTRY ISTERM(X)AHSVAR(X); EXIT ISTERMLIST(TERMS);

DEFFUN FNLT(X:TERM):CONST; ENTRY ISTERM(X)A^SVAR(X); EXIT ISCONST(FNLT);

DEFFUN TSUBST(X:TERM:S:SUD):TERM; ENTRY I5TERM(X)AISSUB(S); EXIT ISTERM(TSUBST);

DEFFUN MKSUB(S:SUB; SltSINGlESU8hSUB|
ENTRY !SSUB(S)AISSINGLESüU(S1); EXIT ISSUBIWKSUB);

DEFFUN PAIR(X:VAR; Y:TEPM):SINGLESüB;
ENTRY ISVAR(X)AISTERM'V)A-OCCUR(X,Y); EXIT ISSINGLESUB(PAIR);

DEFFUN SCOMP(Sl1S2:SÜO):f JB; EMTHV ISSUB(S1)AlSSUB(S2)i EXIT ISSUB(SCOWP);

DEFFUN OCCUR(X:VAR; Y:TERM):BCJLEAN; ENTRY ISVAR(X)AISTERMIY); EXIT ISBOOLEAN(OCCUR);

FifHn 14 (continued)

 - - - - ■ ■MMMÜMtfriMiMiM^MMMM^ ■ I I -^ J

