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INTRODUCTION

A METHODOLOGY FOR VERIFYING PROGRAMS
I INTRCD JCTION

We are concerned here with the question of whether or not program verification systems that are
currently being developed have any practical usefulness. Verifications of simple standard
programs have been obtained with these systems (See for example, [King and Floyd),
{(lgarashil ~ndon and Luckham), [Deutsch), [Goed and Ragland], [Flspas, Levitt,and Waldinger],
[Suzukil, [Boyer and Moore]) Thece 1esults provide encouragenicnt to explore further. But, in
all cases except for one exampie m [Morales] the programs were xnown 1n advance to be correct
= 1e. provably consistent with their documentation. Moreover, these example test programs are
based on standard well-.known functions and data structures (for the most part, either integer
arithmetic or very simple hst processing). Realistically practical verification problems have yet to
be faced. A methodology for using these systems to construct verifications in real life situations has
not been developed, and indeed the question of whether they will help the process of writing and
verifymg programs or will merely “get in the way” is entirely open.

The goal ot practical u:etulness does not imply that the verification of a program must be made
Independent of creative effort on the part of the programmer. As we shall see later, such a
requirement is utterly unreahstic What we have to do is to pravide a tool (the verification
system) and instructions for its use (the methodology) that can sometimes enable a programmer to
gain a degree of certainty about his or other people's programe. The tool and methods must be
easy to apply In short, we seek to extend the programmer's repertoire of techniques, not to
replace it.

The verification system discussed here has beer developed specifically for progr.ms written in
PASCAL [Wirth]) and is an extension (see {Suzuki)) of the system described in [ILL]. The
purpose of this system 1s to aid the progiammer in constructing a proof that his program satisfies
its documentation. Such a proof (in the logic of programs [Hoare 71, ILL)) is called a verificaticn
of the program The aocumentat’ n may include:

Input-output specifications,

properties of certam cruaal internal states,

specifications and properties of sub-programs,

specifications of data structures.

w1 —
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In order to be useful in practice we must develop a methodology for using the verifier which aids
the use: 1n situations where:

I. the documentation 15 incomplete (1.e. additional facts about the program must be
discovered hefore a verification can be found),
the program itself 15 unfinished (e g p-o's of 1t may be unwiitten),
the program is badly written (even though 1t conforms to structuring principles),
the data structures are non standard (eg an axiomatic description does not already exist).

w0
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What "aid” should one expect fiom a verification system® A verification proof depends upon a set
of assumptions or lemmas about components of the program (sub-procedures, data structures,
hbrary routines, etc). Let us call this a BASIS for a verification. Essentially, a verification basis is
a set of consequences of an underlying axiomatization of the data structures and subroutines,
although such an axiomatization may not actually be known. Different proofs have different base:.
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A venification is convincing to a programmer only if he “believes” the basis in the rather
imprecise sense that its statements seem true, a more precise sense (acceptable) is given below. As
we thall show in examples, a programmer can obtain a verification of his rrogram using a
verifier, and be faced with an impressively complex basis, (or even worse, with some systems he
might end up without knowing the basis at all). If he does not believe the basis, he must be able
to reduce its elements to more believable statements or else search for an alternative basls. Thus
verification methodology must
1. establish that a basis is adequate, (i.e. ensure the existence of a corrrectness proof from the
basis),
2. present alternative bases to the programmer, (1.e. help him discover bases and improve
documentation),
3. include methods for analyzing a basis and reducing its components to other bases.

There is an underlying motivational assumption here: in dealing with real life problems it may
often be unrealistic and impractical to attempt a verification directly from first principles. It is
sufficient to estabhish a verification basis that is clearly implied by an axiomatic semantics for
those concepts that are used in the program.

However, in the case of a "new” program s. h semantics may not have been formulated.
Consequently, we need a methodology which permits a verification to proceed by developing a
hierarchy of bases in which a basis at one level verifies elements of the basis immediately above it
and depends on bases at the level immediately below. The development of this hierarchy can be
viewed as "discovering” the semantics; it will usually be guided by the structure of the program. A
basis for venifying properties of one level of the program will be formulated in terms of concepts
used in writing that level. The statements in the lowest level bases should be already established
facts (about nonprimitives) cr axioms for the semantics of primitive functions and data structures.
Apart from the practical need to divide complicated verifications into subproofs which may be
attempted individually, this hierarchical idea has other advantages. It allows a verification to
proceed hand-in-hand with the writing of the program. A basis is to be viewed as more than just
a set of assumptions for a verificaion. Often it includes additional necessary prope:ties of
unwritten subroutines beyond what was 1n their onigmal specifications. A lternatively, the omission
of a specification might indicate that a simpler subroutnie will suffice. Thus, a basis for one level
of a program is a sufficient set of specifications for the next level. Secondly, if an axiomatic
semantics for new concepts 1s needed, 1t I1s probably best developed from a knowledge of adequate
verification bases (consisting of simple statements) for programs using those concepts. Thirdly, the
problem of getting differing programmers to agree upon a “verification” of a program can be
terminated short of a complete reduction of the problem to first principles if they both have
confidence in the acceptability of some intermediate basis.

At this point we can be a little more precise about some of the contepts we have introduced:

_ A sstof statements forms a basis for venfying a property of a program if a proof of that
property can be given within the logic uf programs {Hoare 71, ILL] which assumes (l.e. depends
upon) only those statements. For emphasis, we shall sometimes say that such a basis is
adequate.

A basis is acceptable if (i) all of its statements about the primitives (data structures and
library routines) are true, and (ii) programs can be constructed to satisfy all of those statements
that contain names for uncoded subroutines.




3 INTRODUCTION

The primary problem is to find acceptable verification bases. There are a number of important
secondary problems. These can all be rateporizec as parts of the "Formalization problem”. Furst,
there is the question of what docunwntation to include with the program; for example which
internal states need to be described, which invariant properties of a loop need to be stated, and
what properties nt subroutines are actually necessary. Secondly, how should the documentation
be expressed? This involves the choice of representation of concepts (eg. should the refation "<”
on the Integers be nsec or can all the necessary facts be expressed in terms of a derived concept
hke ''S ORDERED SET"™). Also the programmer must choose whether to express internal
propeities of the program by purely "stanc” assertions about the values of its variables, or by
defininy ext.a computations and making assertions about new “ariables (ie. the technique of
introducing “ghost™ variables and "virtual” program [Clint)). Thirdly, how should the program
be written in order to make its verification possible. Recent developments in programming
language design, pretty much resutting from expertence with the debugging problem, such as
block structure and restrictions on procedure parameters and global variables, all certainly help
Howeier, many other details in a program influence its verification (e.g. the form of data structure
definitions should indicate clearly the assumptions that can be made about the structures). At the
rmoment, these secondary problems are areas where the programmer’s ingenuity must be applied.
It is to be hoped that verification methodology will eventually develop some relevant guidelines
for attacking the formalization problem.

Our methodology can be very roughly outlined as follows. A program level, which may contain
calls to uncoded lower level subrontines, 1s submitted together with some documentation to the
verification system. The general methodology divides activity into three phases: debugging the
code, constructing inductive assertions, and coustricting a basis . At each of these phases the
system is used to indicate modifications and changes by means of a methodology depending on

anzlysis of verification conditions (see Section 2.4). (Eventually we intend to incorporate other
techniques for analysing programs) Modified problems are resubmutted for further analysis. In
the third phase the system provides a test for the adequacy of a proposed basis. Finally, the basis
must be shown to be acceptablz, which involves writing the next level of the program.

We shall show in Sectior 2 how the Pascal Verifier can be used interactively to verify leve's in a
program as they aie written and to guide writing subsequent levels. We lustrate the
methodology In acticn in an experiment to write and verify a program for a fund amental pattern
matching algorithm (Unification) We have tried to keep our preszntation as close to the real life
sequence of cvents as possible without too much repetition. Essentially, we present snapshots of
this sequence of events, each snapshot illustrating a different situation which the methodology
must handle. Theire are examples of the use of the verifier to find bugs, to augment
documentation, to build up a basis, and to analyze the basis {i.e. reduce It to simpler statements).
This last point involves choosing a formalism for defining recursive data structures, and hers we
have adopted with rminor modifications some suggestions of [Hoare 73). Of course, our
methodolozy is far frcm compicte, and many of the problems that arise during a verification,
(except for the adequacy of a basis, which i, handled automatically by the system) involve the
user in making choices and decisions. It is already clear how to automate some of this work.

However, we must emphasize that the verifer is intended for use in con junction with other
programming facilities .

Some parts of the general methodology depend on a knowledge of what the componerits of the
verifier do. We have, ther:fore, included a brief description of the verifier in Section 2 together
with a simple example of its use.

TR T

-




R T——"

v HENKE and LUCKHAM 4

T* e principle references upon which this paper depends are (Hoare 71] and [ILL] (for the loglc
programs), [Hoare and Wirth] (for axiomatic semantics of Pascal), and (ILL) and [Suiuki] (for
details of the verifier) We shall use concepts and notation from (Hoare 71, ILL] without definition.

2. THE VERIFIER

The Pascal verification system is represented 1n ontline in Figure 1. The logical theory and
implementation of the Venfication Condition Generator (VCG) is given In [ILL). and details of
the simplifier are in [Suzuki) 1n section 3 we shall describe interactive use of this system tiz
relies mainly on these two components and, at the moment, only employs the theorem prover when
everything else fails. Here we give a very brief sketch of VCG and the simplifier with the
intention of mentioning just those details that affect the raethodology of Section 3.

INPUT  ce---e-on mmemmcmemmeeee cemeaoao

PROGRAM | VCG | | SIMPLIFIER | | THEOREMN |

and ------ > | |===> | |]----> | PROVER |

ODCCUMENTATION -----eeee ecccecccccceccs ececcnoo--
A

MODIETED @ seseirresstssssenen
R G- |ANALYS{S OF OUTPYT |<---
WWBAER = bt cccsesesasummes

Figure 1: Main Components of the Verifier

2.1 VERIFICATION CONDITION GENERATOR (VCG) The input to VCG is a verification
problem of the form P{A}Q where P and ) are entry and exit specihcations (called assertions) for
a Pascal program A. The program A may itcelf contain additional documentation. Figure 2
shows an input to VCG together with some extra documentation (explained later). To verify that
A satisfies ats specifications, we require that a proof of P{A}Q within the logic of programs be
found VCG reduces problems of the form P{A]Q to problems about shorter programs, using the
rules of the axiomatic semantics of Pascal For example, P{IF L THEN B ELSE C}Q could be
reduced to verifying two problems, PAL{B}©) and PA-L{C}(); the axiomatic semantics for
conditional statements implies that 1f these latter two problems are verified then the first problem
1s also verified. Similar reductions are apphed tn other kinds of Pascal statements. The final
output :rom VCG is a set of purely logical statements composed from Pascal Boolean assertions
(see Figure 3) Thesec are called the Verificaion Conditions (abbreviated to VC's) for the original
problem, P{A}Q.




5 THE VERIFIER

There are two points to be mentioncd here. First of all, VCG has a completeness property with
respect to provability. Assume that a verification of P{A}JQ is to be found making only
assumptions from some underlying axiomatic semantics, T say. A proof of P{A}Q can always be
constructed assuming the VC's, and conversely if P{A}Q Is provable in the logic of programs
from T, then VCG will generate VC's that are piovable in T provided A contains additional
helpful assertions (exactly what extra documentation must be given is a sub ject of much current
research). This means that the set of VC's 1s always an adequate Basis for the verification (but it
may not be acceptable). And also, if the user's problem is provable from statements in T, he will
be able to establish that fact with the present verifier by adding enough documentation to the
program. The second point is that VCG reduces problems to purely logical VC's. As we shall see
later, this may not always be the best stra’egy, especially when the VC's involve the names of
procedures that have yet to be written, and it may sometimes be better to stop the reduction
process and generate VC's that contain pieces of code explicitly. It is doubtful if verification can
be based colely on pure logic, and it may be necessary to use other techniques such as equivalence
preserving transformations on programs.

Finally, the present version of VCG contains a number of new features and rules that are not in
the original version in (ILL) The one most relevant to our discussion is a feature (due to Suzuki)
for handling calls to uncoded functions by means of "DEFFUN" stai:ments. The intention is to
give the user an easy way to state specifications for functions that are not yet :oded, although it
can be used for standard functions as well. A DEFFUN statement is of the form:

DEFFUN f(x I'typel,..): type
ENTRY R{x1,..); E)_(IT <V alue>:S(f),

where "f" is the function name, <value> is an expression denoting the value of f, and R(x1,..) und
S(x 1,..) are entry and exit assertions. No function body is required. Whenever a call to f occurs
during the generation of VC's the adaptation rule [Hoare) will be apulied:

P{A}(R(a...) A V(a'..XS(f(a’,..))=Qf(a"...)))

P{Ax«f(a,..)}Qfx)

A verification of the program will then imply the runtime legality of all calls to f. The use of
DEFFUN'S is not mandatory, and the user may choose to omit them if he is sure that all his
function calls are legal (3 normal compile-time type check may be sufficient).

2.2 THE SIMPLIFIER Many VC's are (or contain subformulas that are) lergthy and
complicated but turn out to be logically trivial. The first step in the analysis of VC's is to simplify
and eliminate the trivial parts so that one can see the real verification proolems. It is
inappropriate to process these unsimplified VC's with the theorem prover because there are faster,
less general techniques for carrying out logical and algebraic formula reduction. VC's are first
processed by a simplifier. Originally, we had planned the simplifier as a pi:processor to the
theorem prover, but our current methodology raakes repeated interactive use of the simplifier
before using the prover (See Figure 1).
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Lec us first state very briefly what the simphfier does (Full details in [Suzuki)). The user may
submit three kinds of documentation statements which will be used as reduction rules by the
simplifier. Here are examples of each:

AXIOM CAR(CONS(eX.aY))=X,;

This means that any term in a VC that "matches” the left side (ie. is identical to the left side
when X and Y are replaced vy appropiiate strings) will be replaced in the VC by the string for
X. 1Itis a left to right reduction rule. A variable preceded by "a" is called a pattern variable.

AXIOM IF ISTERMLIST(L)ASL=ZERO) THEN ISTERM(HD(eL)}»TRUE

This is a conditional axiom. Suppose a VC has the form A+B. Any expression in B that
matches ISTERM(HD(eL)) may be reduced by this rule to TRUE if ISTERMLIST(L) and
~(L=ZERQ) (where L is the substitution string for eL in the successful match) occur in A.

GOAL RCONS(eX1,0Y1)=RCONS(@eX2.eY2) SUB (X1 = X2)A(Y! = Y2)

This is a goal statement. 1t is treated as a reduction rule that says "an expression that matches the
GOAL may be replaced by TRUE if the corresponding instance of the SUBgoal can be reduced
to TRUE.

Figure 2 shows a program with documentation that will be used as simplification rules.

Goal statements can be fcrmulated as conditional axioms and vice versa. The difference is that
axioms are “sticky” (any reduction by an axiom is never reversed) whereas goals are not (goals
have no effect on a VC unless the reduction can be pushed all the way to TRUE). Ideally, the
axioms should consist of those reduction rules having the property that no reduction to TRUE
depends on their order of application.

The simplifier contains a sequence of simplifying “boxes™ An incoming VC is simplified in
sequence by (1) a logical proposition simplifier, (2) processing of arithmetical expressions by choice
of standard forms and by evaluation, (3) reduction by axioms, and (4) reduction by goals.

This is a good place to discuss the role of the simplifier in our verification methodology.
Essentially, we are using the simphfier as a fast theorem prover. Our philosophy is that the user
should be able to submit a problem and receive back the reduced VC's within a few seconds. If
the kinds of reduction rules are eacily understood, he will probably be able to see further useful
rules by analyzing the VC's. He can then resubmit the problem with additional rules. Eventually
some of this analysis will be automated (See Section %) and likely rules suggested to the user.
There is no atiempt to make the set of rules logically independant at first, the idea being to
develop a first basis quickly. It does make sense to choose simple rules(believability), and some
kinds of rules (e.g. commutativity) have to be excluded because of the way the simplifer works. If
all VC's reduce to TRUE, the set of reduction rules 1s an adequate verification basis.

The kinds of reduction rules have to be simple also for speed as well as understandability.
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However, experience suggests that we do need something beyond algebraic manipulation. The
goal statements form a simple theorem prover. On the other hand, some complex propositional
transformations are time consuming and often unneeded, and best left to the theorem prover.
Thus the boarderline between Simplification and Theorem-proving, at the moment, is somewhat
pragmatic.

2.3 AN EXAMPLE Figure 2 shows the procedure SIFTUP used in the algorithm TREESORT3
[Floyd) for sorting linear arrays of integers. The problem is to verify that the output of SIFTUP
is always a permutation of its inpuc. The program contains an internal ASSERTION as well as
the entry and exit conditiont for this problem.

There are three reduction rules stated in terms of the relation PEKMUTATION (A ,B) meaning
"array A is a permuation of array B, and the function ASET(A.i,j) which applies Alil-j to A.
We may have no specific axiomatic theory of permutations in mind. Nevertheless, the first two
AXIOMS are clearly trivial. Most people will "believe” the third one after a moments thought.

The unsimplified VC's put out by VCG are in Figure 3. So also are the simplified ones, from
which we conclude that the three rules are an adequate basis for verifying the permutation
property. The reader may wonder how we thought of the third rule. What we did was to run the
problem first without it and compare the premiss and conclusion of VCe3 or 4.

AXIOM PERMUTATION(®I,m1)» TRUE;

AXIOM ASET(a@l1,mi2,Rl1[RIZ))=I1;

AXIOM PERMUTATION(ASET(ASET(all ,@I2,al1 [@i3)),a13,al4),615)"
PERMUTATION(ASET(11,12,14),15);

PROCEDURE SIFTUP(I0,N:INTEGER);
ENTRY M=MO;
EXIT PERMUTATION(M,MO);
VAR COPY:REAL; J, :INTEGER;
BEGIN
I = 10; COPY « M[l};
10: J+= 2 x1;
ASSERT PERMUTATION(ASET(M,,COPY),MO0);
IF J < N THEN
BEGIN IF J ¢ N THEN
BEGIN IF M[J+1] > M[J] THEN J « J¢] END;
IF M[J] > COPY THEN BEGIN M[I] « M[J}; | = J; GO TO 10 END;
END;
M[1] « COPY;
END;

Figuse 2: The procedure SIFTUP used by TREESORT.
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.

M=MO —~ PERMUTATION(ASET(M,I0,M[10]),M0)

.2

(COPY<M[J*1 DAIMLIIMIJ*11)A (JCNIALICNIAPERMUTATION(ASET (M,1,COPY),MO)
=» PERMUTATION(ASET(ASET(M,|,M[J¢]),J¢1,COPY),M0)

«3

(COPY<MLINASMIIJCMJ+ 1 1A (JCNIACISN)APERMUTATION(ASET(M,,CGPY),MO)
= PERMUTATION(ASET(ASET(M,,M[J]),J,COPY),MO)

.4

(COPY<MIJ])A=(JCN)A(JSN)APERMUTATION(ASET(M,],COPY),M0)
= PERMUTATION(ASET(ASET (M,I,M[J]),J,COPY).10)

*5

~(COPY<M[J¢1 ))AIMLIICM[ J+ 1 1DA(IN)A(JSN)AF ERMUTATION(ASET(M,|,COPY),M0)
= PERMUTATION(ASET(M,|,COPY).M0)

*6

~(COPY MLJ))A~MJ)CMLJ+ 1 ))A(JCN)A(JSNIAIERMUTATION(ASET (M,1,COPY),MO)
= PERMUTATION(ASET(M,!,COPY),M0)

.7

~(COPY M[INA~(JCN)A(JSN)APERMUT ATION{ASET(M-,|,COPY),MO)
= PERMUTATION(ASET (M,|,COF '),M0)

.8

~(JSN)APERMUTATION(AS FTIM | STF \*),M0) = PERMUY ATION(ASET (M,|,COPY) M0

THE SIMPLIFIED VERIFICATION CONDITIONS ARE:

s | TRUE
& 2 TRUE
&3 TRUE
& 4 TRUE
# 5 TRUE
e 6 TRUE
s 7 TRUE
® 8 TRUE

TIME: 7 ZPU SECS, 31 <EAL SECS

Figure 3: VERIFICATION CONDITIONS FOR SIFTUP
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2.4 HINTS ON ANALYSING VC'S. Each VC corresponds te a path through the program
between two assertions (possibly the same assertion). A simple VC has the form P-+Q« where
Q is the end assertion, P is a lopical combination of the beginning assertion and boolean control
tests, and o¢ iIs a substitution of terms for program variables. If the path contains function or
procedure calls, the form of the VC is more complex. The VC expresses a logical condition on
the action of the program along the path. It also contains implicitly a description of the path and
what ¢he action 1s.

(a) T'he path of a VC is determined by the values of the boolean control tests occuring in P.

(b) The coriputational changes can be determined from terms substituted for program

variables by o.

EXAMPLE: VC4 (figure 3) corresponds to the path from the ASSERTION satisfying J<N,
~(J<N)and M([])>COPY back to the ASSERTION. The action of o¢ (determined from the Q-
part of VC4) is: McASET(M,LM{])) (e. M(1)-M(])), and I«]. The assignment J~2:1 cannot be
detected unless ASSERTION contains J.

Our methodology depends on extracting information from VC's. When a VC does not reduce to
TRUE, the nrogrammer may try to decide if it is true using his knowledge of the program (i.e. the
patk. and action). If it is true, he can either expand P (ie. the beginning assertion) or give
aciditional documentation in order to prove the VC. Additional documentation can be given by
placing fiew asswopiions in the basis. If the VC appears to be false, he has either to weaken the
specifications (changirg P or Q) or to change the program .

Commonly occuiing situations include the following:

(i%. Paths of VC's correspond with cases the program is supposed to recognize. Any kind of
mismatch of cases and paths indicates a change should be made in the program.

{!!). The action of a VC does not express what the program was intended to do in the case
corresponding to the VC path. A change i the program is necessary (see 3.1 (b)(c)).

(11).Part of Q is logically independant of P. Then usually P should be expanded (see 3.1(a)
and (d)).

(iv). The VC appears true but not provable from the the current Basis. Analysis of the
components of Q and related parts of P can often yield conditions on functions and
procedures which were oveilooked or were omitted because their relevence was questioned.
These may then be added to the Basis (see 3.3 a,bc).

How much of this analysis and corrective action can be autoniated ? Most of the current attempts
to automate the construction of assertions (especially in case (iit)) assume that the program is
i Iready correct. If we do not assume correctness, it seems that the choice of action ( whether to
change the documentation or the program) depends entirely on the programmer’s intentions and
cannot be automated. Fowever, much can be done to automate the extraction of information
from VC's. The sys' - m helps by displaying the (updated) effe-is of any changes and allowing
experimentation.
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3. CASE STUDY: METHODOLOGY IN ACTION

Let us first explain unification informally. A unification progrem accepts as input two lists of
terms X,Y and constructs as output a substitution (of terms fc- variables) that makes each member
of X equal to the corresponding member of Y if possible, or elss outputs the answer
"IMPOSSIBLE". For example, given the input X«{xg(h(y)z),v}, Y={f.g(h(u)k(w)),v}, the program
should put out the u'ifier Ze{<xef>, <ye-u>, <ze-k(w)s}.

It is possible to write such first-order unification programs in many different ways. A popular
method is to use the input list structures as temporary storage, which permits an encoding as an
fterative loop without recursive caiis. If this is done in the example above, a first pass through
the loop will result in the vaiues X'={g(h(y)2).v}, Y'={glh{u k(w)),v}, Z'={<x«f>} a second pass will
yleld X"a{v,h(y)z}, Y"={v,h(u)k(w)}, Z"={<x«f>}, and 50 on.

We asked an experienced Programmer to write a unification program in reai time (while we
looked on). We note the foilowing. He stated his intention to use the input data structures as
temporary storage, but no structures were deciared. He attempted to code “top down", namin

subfunctions without coding them, but merely stating what they were supposed to do (but he often
changed his mind). As the program developed, he had difficulty documenting the loop and
introduced virtual program to do this (without telling us). He gave up on the idea of pureiy
Itzrative code and ended up putting a recursive cail inside a WHILE loop.

It Is this program that we start with as VERSION 1. We make no claim that it is how a
unification program should be coded. We choose it because it is the result of a real life situation
and is a problem of sufficient richness to be a good test of our ideas on methodology.

The property to be verified is that if the program stops, either it outputs a unifier Z of the input
termlists X and Y or it outputs a failure. Other :iandard (and complementary) properties that will
be verified later are that Z is a most general unifier, and that if a failure is output then X and Y
are not unifiable.

The top level program is developed in three steps: version 1 (a first ske'ch), a debugged version 2,
and the final verified version. Ideally, debugging and verification happen simultaneousiy; for
demonstration purposes, we largely separated these two steps. As it is not our aim to discuss
syntactic analysis, ail programs are given in a syntactic correct form which will be accepted by the
VCG-system (or a compiler).

—— — R T———

1
}
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" CASE STUDY

The subfunctions used in the program have the following intended meanings:

TSUBST(X,Z) - the term resulting from applying substitution Z to term X,

SUBST(X.Z) - the termlist resulting from applying substitution Z to termlist X,

ZERO - the empty hst,

COMP(ZX\Y} - the substitution resulting from composing substitution Z with the single
substitution that replaces variable X by term Y,

QCCUR(X.Y) - a Boolean test, TRUE whenever term X is a subterm of term VY,

RCONS(UX) - termlist obtained by adding term X to the end of termlist U,

TERMS(X) - the termlist consist of the arguments of term X (not a simple variable),

FNLT(X) - the function letter of complex term X,

HD(X), TL(X) - the head and tail of list X.

3.1 VERSION 1: DERUGGING AND EXTENDING DOCUMENTATION. Version | is the top
level of the program that was initially subnutted for verification. It was written almos. on-line anA
thereiore contains bugs and even nisconceptions of the structure of algorithm and data. Roughly
speaking i:is a sketch of a program with the question "can this be made to work?" It does not
inciude any specifications of the data rypes (in form of axioms, deffuns etc.). The invariant of the
main loop consists just of the main idea: the initial parts of the termlists X and Y are unified by
the con:tructed substitution Z. To express this the programmer used two “ghost variabies” [Clint)
U and V, which hold the parts alieady dealt with, and "virtual program”, i.e, statments that are
not necessary for the actual computation. Failure of the algorithm is expressed by the pseudo-
procedure LOSE.
Note tha: the program contains several . gs:
- the cases structure is tncorrect;

after the recurstve call ¢f UNIFY the result is not tested for success or failure and the returned

substitution is not assigned to Z,

at the end of the procedur< it is not guaranteed that both X1 and Y1 are ZERO.
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PASCAL

PROCEDURE UNIFY(X,Y:TERMLIST;Z1:5UB; VAR 7:SUB);
ENTRY ISTERMLIST(X)~ISTERMLIST(Y);
EXIT (SUBST(X,2)=SUBST(Y,Z)) v LOSE(X,Y);

VAR U,V,Y.1,Y1:TERMLIST; VAR X2,Y2:TERM; VAR 72:5UB;
BEGIN

7. Initialization of variables 7.
U:«ZERO; V:=ZERQ; 2:221; X1:=X; Yl:=Y;

INVARIANT (SUBST(U,2)=SUBST(V,2)) '+ LOSE(X,Y)

WHILE (X14ZERO) A (YIAZERQ) DO
BEGIN
X2:= SUBST(HD(X1),2);
Y2:= SUBST(HD(YI),2);
IF ISVAR(X2) THEN  BEGIN IF ISVAR(Y2) THEN Z::COMP(Z,X2,Y2);
IF OCCUR(X2,Y2) THEN LCSE(X,Y)
ELSE 2::COMP(Z,X2,Y2)
END
ELSE BEGIN IF ISVAR(Y2)
THEN BEGIN IF OCCUR(Y2,X2) THEN LOSE(X,Y,
ELSE Z:=COMP(Z,Y2,X2)
END
ELSE BEGIN IF FNLT(X2)FNLT(Y2)
THEN UNIFY(TERMS!X2),TERMS(Y2), Z,272)
ELSE LOSE(X,Y)
END
END;
U :*RCONS(U,HD(X1)); V :=RCONS(V,HO(Y));
X1:oTL(X1); Y1:=TL(Y]);
END; 7 End of WHILE body 7.

END; 7 Procedure body 7

Figure 4: Version |

i e, o = i P T T
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LOSE. NOT FOUND

LD

(ISTERMLIST(Y) & ISTERMLIST(X) & LOSE(X,Y) v SUBST(Us1,201 )eSUBST(Val,201) &
~~Y18]1sZERO A ~X10122ERQ

- LOSE(X,Y) v 3UBST(Y,Z01)sSUBST(X,281})

s3

(LOSE(X,Y) v SUBST(U,2)=SUBST(V,2) & ~Y1=ZERO & -X1=2ERO &
~ISVAR(SUBST(HD(X1),2)) &

~ISVAR(SUBST(HD(¥'1),2}) & FNLT(SUBST(HD(Y1),2)) FNLT(SUBST(HD(X1),2))

-+ ISTERMLIST(TERMS(SUBST(HD(Y1),2))) &
(LOSE(TERMS(SUBST(HD(X1),2)),TERMS(SUBS T(HJ(Y1),2))) v
SUBST(TERMS(SUBST(HD(Y1),Z)),2281)SUBS T, (ERMS(SUBST(HN(X1),2)),2281)

= LOSE(X,Y) v SUBST(RCONS(U,HD(X1)),Z)sSUNST(RCONS(V,HC .¥1)),2)) &
ISTERMLIST(TERMS (SUBST(HD(X1),2)))

9

(LOSE(X,¥) v SUBST(U,2):SUBST(V,2) & ~Y1s2ERQO & ~X122ERO &

ISVAR/SUBST(HD(X1),2)) &

ISVAR(SUBST(HD(Y1),2)) & OCCUR(SUBST(HD(X1),2),SUBST(HD(Y1),2))

= PRE_LOSE(X,Y) & (RES_LOSE(X,Y)

- LOSE(X,Y) v
SUBST(RCONS(U,HD(X1)),COMP(2,SUBST(HG’£1),2),SUBST(HD(Y1),2)))
=SUBST(RCONS(V,HD(Y1)),COMP(Z,SUBST(HO(X1),2),SUBST(HD(Y1),2)))))

Figure 5: Some VC's for version | in simplified form

e ke
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Corresponding to the lack of any detailed information, the system is not able to simplify more
*than the most trivial parts of the generated VC's.

Discussion of the preblems involved in version I:

a) Failure Handling: Trying to define pre- and post-conditions for the missing procedure LOSE
as required by the sysiem, the programmer reahzes that indication of failure is a change of the
state rather than an act on to be invoked (a direct way to put across an error message, eg. In form
of a jump to the top ievel 15 not available in Pascal). Thus, he should use a boolean variah's
FLAG whose v2iur will indicate success or failure. Accordingly, the | acedure UNIFY gets one
more vaiable parameter, suci: that it returns the value of FLAG together with a new value of 2.
Each call to LOSE 1s to he replaced by FLAG:«0, and tie ini.ial value of FLAG willbe 1. The
EXIT assertion must be changed to specify the use of FLAG:

EXIT ( SUBST(X.2)=SUBST(Y.Z) A FLAG=1) v FLAG.0

An equal (nange must be made in the INVARIANT (If the INVARIANT s not changed, the
neessity of the change will be seen in later runs in the path leading from the loop to the EXIT )-
see S.ction 2.4(ilt).

b) Missing Code: The necessity to update the value of Z after the recursive call to UNIFY can be
detected by analysing VCa3. The relevant parts are

~ISVAR(SUBST(HD(X 1)2)) & ~ISVAR(SUBST(HD(Y1)Z)) &
FMLT(SUBST(HD(Y 1)2))-FNLT(SUBST(HD(X 1)Z) & SUBST(U.Z)=SU BST(V.Z)

= SUBST(TERMS(SUBST(HI(Y 1)2))2201)=SUBST(TERMS(SUBS T(HD(X 1).2)) Z2e )
+ SUBST(RCONS(UHD(X 1),2)=SUBST(RCONS(V.HD(Y 1)2)

VCe3 as It stands is not provable (there are obvious counterexamples). The first two lines
indicate that it corresponds to the path contaiming the procedure call UNIFY(.,22). The purpose
of this call is to extend Z to a substitution Z2 that unifies the pair HD(X 1) and HD(Y 1) as well as
U and V. Indeed, the occurences of Z in the last line of VCs3 should be Z21. The final value
of Z at the end of the path should be the value of Z2 returned by UNIFY if the attempted
unification succeeds. Thus the action on ihe Path is not what was intended, and the code must be
changed— Section 2.4(n). The correct action can be achieved by adding

IF FLAG=1 THEN Z:222,
immediately after the call.

¢) Error in the Case Amalysis: VCi9 is of the form P3(Q>R). The p-ogrammer notices the
combination of Boolean tests

ISVAR(A)AISVAR(B)AOCCUR(A,B)

in part P. This means that VCe9 evpresses a condition on the action of the program along the
path corresponding to this combination ¢ cases. This action can be deduced from Q and R: the
“procedure” LCSE is called, and the substitution Z |s updated to COMP(Z,C,D). This
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combination of actions is cleatly wrong; indeed, the programmer's intention in this case is that the
program should do nothing to Z and continue—another example of Section 2.4(it). This error is
fixed by adding an e.tra IF statement for the case ISVAR(X2AISVAR(Y2)A(X27Y2) (see figure
6).

d) Expansion of the INVARIANT: To siate the invariant of the loop, the programmer
introduced the variables U and V which are in’ended to hold the values for the initial parts of
the termlists X and Y From looking at VCe| he can see that

(n SUBST(U,Z)=SUBST(V.Z)
has to imply
(2) SUBST(X.2)=SU3ST(Y.Z)

when control leaves the locp, 1e. when X 1=ZERO and Y 1=ZERO, and the algorithm is successful.
This 1s impossible unless some relationship between U,V and X,Y respectively is given — an
example of Section 2.4(in). Now, the intended relationship is

(3 APPEND(UX1)=X A APPEND(V.Y 1))=Y

where APPEND 1s the standard LISP function. The question is, where should this be added to
the documentation? Further analysis of VCel shows that the only possible place is the invariant
of the locp (the other parts of the VC derive from entry and exit condition and the loop control
test). The obvious properties >f APPEND

(4) APPEND(ZEROL)-L APPEND(L.ZERO)=L

will be assumed as axioms, guaranteeing that (3) vill be true when entering and leaving the loop.
Then. (1) will imply (2), provided both X1 and Y1 equal ZERO at the end. On the next run with
the two axioms on APPEND added, the omission of a corresponding test after leaving the loop
will be visible in the VC, so a statement

IF (XI#ZERO) v (YI#ZERO) THEN FLAG:=0;
1s added at the end of the procedure
REMARK The programmer could as well try to figure out what other properties of APPEND
are required to prove invariance of the invariant around the loop, but he leaves that to the

system as he hopes to find what 1s needed from the VC's of a subsequent run (refer to Section 3.3
b). Note that the function APPEND is used only in the documentation.

e) Use of Ghost Variables and Virtnal Program: As a data flow analysis would show, the
variables U and V are not necessary to compute the final result. They are needed only to express
the invariant of the main loop. Therefore they are called "ghost variabies™ (Clint). Obviously,
assignments to ghost variables need not be executed at run time nor translated by a compiler.
Thus these statements are considered “virtual”; their purpose is to ensure the correct current
values of the ghost variables as the computation proceeds.
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The technique of using ghost variables and pieces of virtual program for documeniation purposes
is very useful and quite comman. Although they cften could be climinated as part of the program
text - especially in the context of arithmetical problems where most operat ans are invertible - they
represent a powerful tool. Whethr. a programmer chooses virtual program or not depends on his
preferences and the problem domain. In our example, U and V could be replaced in the
invariant by expressions ike EXCLUDE(X 1,X} meaning the remaining initial list after chopping
off X1 from the right end ci X. In this way, EXCLUDE becomes sort of an inverse function of
APPEND. However, we preter .he virtual program approach since it expresses clearer the
building-up of the values of U and V simultaneously with the other compulauon; beside that, the
axioms and goals involving the equalities SUBST(U,.)=SUBST(V,.) are complicated ever
without the d:fficulties added by the use of EXCLUDE, as will be seen later.

3.2 DATA TYPES AND TYPE CHECKING. For program verification, data type definitions
represent sets of axioms defining the semantics of the types. They are primitive statements in the
verification basis. This is usually called the "abstract” defimtion of a data type. A handy formalism
is needed that permits the programmer to define his types without having to write down all the
axioms explicitly. The unification program here uses recursive types. We adopt the following
formalism for defining recursive data types. It 1s closely related to suggestions of [McCarthy 1963)
and [Hoare 1973), and is an extension of and a departure from what is possible in the present
version of Pascal.

A type definition is made by hsting alternatives. An alternative is either a simple type (e.g., one
that is a type predefined in the language, or a constant) or a composed type. In a more formal
BNF-like notation:

<type definition> « <type name> "= <type> { | <type> }»

<type> ~ <simple type> | <composed type>

<composed type> « <constructor> ' <selector I>:<type_l>, .. <selector n>:<type n> ')
{'IF <constraint>}

<simple type> « <constant> | <type name>

<constraint> + <boolean expression of selector names>

with the restriction that the names of all constructors in a type definition and all selectors in one
composcd type have to be distinct. The formal type definition syntax permits simple kinds of
constraiits ¢ be placed on a construltor. The meining of the constraint is that in order to
constuct an element of the type, the constuctor mu:t be applied to arguments that satisfy the
constraining condition. (an example is the type SINGLESU Bstitution below).

In this notation, the data types to be used in our program may be defined by the following (only
the upper-case letter part of the names 1s used in the programs).

TEPM « VAR | MKTERM(FNLT:CONST, TERMS:TERMLIST)
TERMLIST .« ZERO | CONS(HD:TERM, TL.TERMLIST)
SINGLESUBstitution :« PAIR(VAR:VAR,TERM:TERM) IF ~ OCCUR(VAR,TERM)
SUBstitution » ZERO | MKSUB(REST:SUB, LAST:SINGLESUB)
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VARiables and CONSTants are assumed as primitive types. TERMLIST is jusi a linear lisi of
TERMs. The constraint on SINGLESUB means “Z=FAIR(V,T) is a SINGLESUBstitution only if
V does not occur in T.

Notation: IS<typename> denotes the type predicate (1.e. characteristic function) for <typenarne>.

The type definition determines the logical type of ail the functions occuring in it (constructors and
selectors). For example, HD maps TERMLIST into TERM, and MKTERM s a fuaciion from
CONST TERMLIST into TERM (== direct product). 1t 1s assurned that a selector functior is
defined only for ob jects belonging to the corresponding constructed subtype.

At present the verifier does not yet accept type definitions but aeeds to be given the type axioms.
The definition of, eg, SUBstitution denotes a set of axioms including standard relationships
between constructc:: and selectors:

ISSUB(ZERO)

IF ISSUB(A)AISSINGLESUB(B) THEN ISSUB(MKSUB(A,B))
REST(MKSUB(# ,B))eA

LAST(MKSUB(A,B))=B

and the induction rule

F(ZERO) F(A) | IMKSUB(A,B))
UIsSUBG)EFS)
for my formula F.

The functions defining a type (constructors and selectors) are submitted to the system as
DEFFUN's. If there are constraints on a type (as for SINGLESUB), type checking also involves a
check if those conditions hold whenever a new cbject of the type is constructed; thus, the
canstraints become part of the ENTRY assertion of the DEFFUN for the respective constructors.
When the program 1s augmented by DEFFUN's for all subfuncticit, the system will generate
complete argument type checks as part of the VC's. However, for reduction of the Y'C's the
assertions have to include a type predicate for each variable that is passed as a parameter to a
function or procedure. In this way, the verifier will do type checking automatically.

While formulating the type declarations for the sub.unctions it was noticed that in the use of
SUBST in the iNV ~RIANT the first argument 1s a termlist whe,*as in its function calls in the
assignment statements the first arzoment is a term. In order to avoid 'his type conflict a separate
function TSUBST is introduced for apphcation to v :7irs.
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3.3 VERSION 2 CONSTRUCTING ' BASIS.  Versicn 2 of the procedure UNIFY (see figure
6 ¢ 1 the next paye) 18 a conrect propiy nn the sense that tive code does satisfy the ENTRY/EXIT
assertions. The acsertions, (including the nvarrant) have been expanded to a point where they
onght to be suticiently detaled  Tlhas version contains those axioms and goals that are naturally
anticiated by the programmer. Among those are avioms that express intended properties of the
data types and subfunctions In oider to speed up the simplifer, only *hose data type axioms that
werc really needed have been added The DEFFUN's for the basic data tyse functlons have also
been included, they consist of just the obvious input and output specifications (eseantlally type
mformation)

What still temains to br done 1s to establish an adequate basis for verifying the top level, i.e.,
completion >f the documen:auon. Below we demonstrate techniques for constructing the basls by
extracting from the reduced VC's additional specificatrons (or “"lemmas”) on the subfurictions
which are behievable and which permit the system to completely reduce the VC'’s to TRUE.

GOALFILE

7 Axioms detining the data types and basic tunclions 7

AXIOM ISTERMLIST(ZERD) » TRUE;

AXIOM ISSUB(ZERD)->TRUE;

7. Axioms describing proporties of subfunctions 7

AXIOM APFEND(ZERD,RS)wS;

AXIOM APPEND(®S,ZERQ)»S;

AXIOM SUBST(eX,ZERQ)=X;

AXIOM SUBST(ZERO,@S)»ZERO; 3

PASCAL

DEFFUN HD(L:TERMLIST):TERM;  ENTRY ISTERMLIST(L)A-~(Ls2ERQ); EXIT ISTERM(HD);
DEFFUN TL(L:TERMLIST):TERMLIST; ENTRY ISTERMLIST(L)A~(LsZERO); ExiT ISTERMLIST(TL);

DEFFUN RCONS(L:TERMLIST; X:TERM):TERMLIST;
ENTRY ISTERMLIST(L)AISTERM(X); EXIT ISTERMLIST(RCONS);

DEFFUN TERMS (X:TERM):TERMLIST; ENTRY ISTERM(X)A-ISVAR(X);  EXIT ISTERMLIST(TERMS);
DEFFUN FNLT(X:TERM):CONST;  ENTRY ISTERM(X)A-ISVAR(X);  EXIT ISCONST(FNLT);
DEFFUN TSUBST(X:TERM;S:SUB):TERM; ENTRY ISTERM(X)AISSUB(S); EXIT ISTERM(TSUBST);

DEFFUN SUBST(X:TERMLIST; S:SUB):TERMLIST;
ENTRY ISTERMLIST(X)AISSUB(S); EXIT ISTERMLIST(SUBST);

DEFFUN COMP(S:SUB; X:VAR; Y:TERM):SUB;
ENTRY ISSUB(S)AISVAR(X)AISTERM(Y)A~OCCUR(X,Y); EXIT ISSUB(COMP);

Fignre 6 Version 2 (continued)
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PROCEDURE UNIFY(X,Y:TERMLIST: 21:5U'B; VAR 2:5UB; VAR FLAS.SONLEAN),
ENTRY ISTERMLIST(X)AISTERMLIST(Y)--ISSUB(ZI);
exT (ISSUB(Z)A(SUBST"X.Z)=SUBST(Y.Z))A(FLAG:l)) v (FLAG = 0);

VAR U,V,X1,Y1:TERMLIST; VAR X2,Y2:TERM; VAR 22:5U8;
BEGIN

7 Initialization of variables 7
U:2ZERO; V.2ZERQ; 2:021; X1:X; Y]y, FLAG:s];

INVARIANT (ISSUB(Z)AISTERMLIST(U)AISTERMLIST(V)AISTERMLI

ST(XIJAISTERMLIST(Y] )
A(SUBST(U.Z)=SUBST(V.Z))A(APPEND(U.XI )=X)A(APPEN

D(V,Y1)=Y)A(FLAG=1) ) v (FLAG=0)
WHILE (X1 #ZERO} A (YI42ERO) - (FLAG=1) DO

BEGIN

A2:3 TSUBST(HD(X1),2);

Y2:= TSUBST(HD(Y1),2);

IF ISVAR(X2) THEN BEGIN IF ISVAR(Y2)

THEN BEGIN IF (X24Y2)

THEN Z::COMP(2, x2.Y2 )
END
ELSE BEGIN IF OCCUR (X2,Y2) THEN FLAG:=0

ELSE Z:-COMP(Z, X2,v2 )

END
END

ELSE BEGIN IF ISVAR(Y2)

THEN BEGIN IF OCCUR(Y2,X2) THEN FLAG:=0

ELSE Z:=COMP(Z,v2,X2)
END

ELSE BEGIN IF FNLT(X2)=FNLT(Y2)

THEN BEGIN UNIFY(TERMS (X 2).TERMS(Y2).Z,22,FLAG);
IF FLAG=] THEN 2::22
END
ELSE FLAG:=0
END
END;

U :=RCONS(U,KD(X] oV :=RCONS(V,HD(YI));
X1:=TL(X1); Yi:2TL(YI);
END; 7 End of WHILE body 7

IF (X14ZERO) v (Y1/ZERO) THEN FLAG:=0
END; 7 Procedure body 7.

Figure 6: Version 2 (intermediate version)
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VC's 1 356 8 are reducad to TRUE

"2

(ISTERMLIST(X) & ISTERMLIST(Y) & ISSUB(Zu I )AISTERMLIST(Un1)AISTERMLIST(Ve])
ASUBST(Us],i#1)-SUBST(Val, Znl)aUsl XrVaj:Y~FLAGn|=IvFLAG31:=0 & ISSUB(Z])
— ISSUB(Ze1)ASUBST(Y,Z81)=SUBST(X,i%1 )AFLAG®|=| vFLAGH]=0)

®4
(ISTERMLIST(RCONS (V,HD(Y1))) & 'STERMLIST(RCONS (U, HD(X1))) & ISTERMLIST(TL(Y])) &
ISTERMLIST(TL(X1)) & 1SSUB(Z2%2) &
SUBST(TERMS(TSUBST(HD(Y1),2)),22#2)-SUBST/TERMS(TSUBST(HD(X1),2)),22%2) &
ISCONST(FNLT(TSUBST(HD(Y1),2))) & ISTERMLIST(TERMS(TSUBST(HD(Y!),2))) &
ISTERMLIST(TERMS(TSUBST(HD(X1),2))) &
FNLT(TSUBST(HD(Y1),2))=FNLT(TSUBST(HD(X1),2)) & ~ISVAR(TSUBST(HD(X1),2)) &
SISVAR(TSUBST(HD(Y1),2)) & SUBST(U,Z7):SUBST(V,2) &
ISSUB(Z) & iISTERMLIST(U) & ISTERMLIST(V) & ISTERMLIST(X1) & ISTERMLIST(Y]) &
~Y1=22ERQ & ~X1=ZERQ & ISTERM(TSUBST(HD(Y1),2)) & ISTERM(HD(Y1)) &
ISTERM(TSUBST(HD(X1),2)) & ISTERM(HD(X1))
- APPINDI!V,Y|)=APPEND(RCONS(V,HD(YI)),TL(YI)) &
APPED(U, X1 )=APPENDIRCONS (UHD(XI)),TL(XI)) &
SUBST(RCONS(U,HD(X1)),22%2)=SUBST(RCONS(V,HD(Y1)),22%2))

.10
(+X1=ZERO & SUBST(U,2)=SUBST(V,Z) & ISTERMLIST(YI) & ISTERMLIST(X1) &
ISTERMLIST(V) & ISTERMLIST(UY & ISTERMUIST(RCONS (UHD(X 1)) &

ISSUB(Z) & ~YI=25R0O & ISTERM(HD(X1)) & ISTERMLIST(RCONS(V,HD(Y 1)) &
ISTERMLIST(TL{Y 1)) & (STERMLIST(IL(XI)} & ISVAR(TSUBST(HD(Y1),2)) &
TSUBST(HD(Y1),2)=-TSUBST(HD(X{),2) & ISTERM(TSUBST(HD(Y1),2)) & ISTERM(HC{ 1))
- SUBST(RCONS (U,HD(X1)),7)=SUBST(RCONS(V,HD(Y1)),2) &

APPEND(U,X1 ): APPEND(RCONS (U,HD(X 1)), TL(X1)) &

APPEND(V,Y 1 )=APPEND(RCONS(V,HD(¥ 1)),TL(Y1)))

"1l
(SUBST(U,2)=SURST(V,2) & ISTERMLIST(Y]) & ISTERMLIST(X1) & ISTERMLIST(V) & ISTERMLIST(U) &
ISSUB(Z) & & ~X1=7ERD ~Y1=2ERO & ISVAR(TSUBST(HD(Y1),2)) & ISTERM(HD(Y1}) &
ISTERM(TSUBST(HD(X1),2)) &
ISTERM(HD(X 1)) & ISVAR(TSUBST(HD(X1),2)) & ISTERM(TSUBST(HD(Y1),2)) &
~TSUBST(HD{Y1),2)=TSUBST(HD(X1),2)
— ~OCCUR(TSUBST(HD(X1),2),TSUBST(HD(Y1),2)) &
(ISTERMLIST(TL(X1)) & 1SSUB(COMP(Z,TSUBST(HD(X1),2),TSUBST(HD(Y1),2))) &
ISTERMLIST(RCONS(V,HD(Y 1))) & ISTERMLIST(RCONS(U,HD(X1))) & I15TERMLIST(TL(Y 1))
— APPEND(V,Y1)=APPEND(RCCNS(V,HD(YI)),T'.(Y1)) &
APPEND(U,X 1 )=APPEND(RCONS (U, HD(X:)),TL(X1)) &
SUBST(RCONS(U,HD(X 1)),COMP(Z,TSUBST(HD(X1),2),TSUBST(HD(Y1) 2)})=SUBST(RCONS(V,HD(Y 1)),
COMP(Z,TSUBST(HD(X1),2),TSUBST{HD(Y1),2)))))

Figure 7: Some VC's for version 2 in simplified form
The numbering cortesponds to the order in which the VC's are generated.

i p i
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The analysis of the VC's not yet 1educed to TRUE shows thiee areas where the documentation
(the basis) has to be extended. Fach area is independent from the others, thus they can be dealt
with separately. We approach the problem of proving a VC by first attempting to prove each
con junct 1n the conclusion sepai ately.

a) OCCUR (VCell) The conclusion of VCell contains ~OCCUR(A,B). The path of VCall is
deteimined by the contiol tests ISVAR(A), ISVAR(B) and A#B n its premise. By analysing the
path, ~OCCUR(A B) 1s found to be an entry requirement of a call on COMP which was intended
under these conditions. 5o this conjunct of VCell is judged correct, and will be satisfied iIf the
user agre:< tr adu che following specification on OCCUR to the basis:

IF ISVAR(X)AISVAR(Y)A(Y#AX) THEN ~OCCUR(X,Y)sTRUE

b) APPEND (VC’s 4,7.8,10,11): As was mentioned before additional properties of APPEND are
needed. It turns out that exactly one fact crops up n all the VC's:

APPEND(RCONS(SHD(T).TL(T)) = APPEND(S,T)

The programmer might have added a lot of irrelevant properties at 3.1 d) if he had started to
write down things about APPEND he thought nught be helpful. As seen here, it can be more
efficient to write down only very simple axicms and delay anything further until it is seen from
the VC's what 1s needed. If atomic properties of APPEND and RCONS had been added instead,
the above fact would have to be deduced from them each time it vias required (here: 10 times). It
is much more efficient to add the fact to the basis at this puint and justify it once during the
analysis of the basis (see section 2.4). Moreuver, the user can delay completely speciiying PCONS.

¢) Equalities involving SUBST and RCONS (VC's 4,7,9,10,11): As they are the "heart” of the
problem the equalities mvolving SUBST turn out to be the harde:t to get reduced. We could
simply assume the properties of SUBST and RCONS that apparently would allow complete
reduction to TRUE of all remaiming VC's. But, beside the fac. that those properties may be too
complex to be believable even st the top level, a certan regularity can be observed in the VC’s,
due to the structure of the program: The equality in the conciuston is generally of the form

(1) SUBST(RCONS(A[,BI).S) = SUBST(RCONS(A2,B2).S)
whereas the prenus» includes a corresponding equality
(2) SUBST(ALS’) =« SUBST{A2S).

Thus, it is sensible to hope that lemmas derived from one problem will be general enough to
reduce other problems as well.

Recall that applying a substitution to a list means 2pplying it to each list element separately. So
the obvious way to simplify an equality (1) 1s by reducing it to equality (2) via a statement
expressing a kind of commutativity:

(3) SUBST(RCONS(A,B)S) = RCONS(SUBST(A S)TSUBST(B.S))

(the change from SUBST to TSUBST is ' ecessary because of the different type) together with
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(4) IF (X1=X2A("1=Y2) THEN RCONS(X 1Y 1)=RCONS(X2,Y2)
as a goal statement. For example, look at the relevant parts of VCal0:

SUBST(U,2)=SUBST(V.Z) A TSUBST(HD(Y 1),2)=TSUBST(HD(X 1),Z)
-+ SUBST(RCONS(UHD(X 1)),2)-SUBST(RCONS(V HD(Y1)),Z)

Using the statements (3) and (4) the simplifier will generate from tke conclusion the subgoal
RCONS(SUBST(U,Z), TSUBST(HD(X 1).2))=RCONS(SUBST(V,Z), TSUBST(HD(Y 1),Z))
and from that
SUBST(U,Z)-SUBST(V.Z) A TSUBST(HD(X1).Z)=TSUBST(HD(Y 1),Z)
which 1s just the premise.

Although (3) and (4) will imphify the other VC's further, they are not sufficient to reduce them
completely. The equality in VCed

SUBST(RCONS(U,HD(X 1)),22s2)=SUBST(RCONS(V, HD(Y 1)),Z2#2))
will be reduced to
(5) SUBST(U,Z262)=SUBST(V,Z262) A TSUBST(HD(X1),2262)=TSUBST(HD(Y 1),22¢2)
Now, the first con junct obviously has to be proved from the equality
(6) SUBST(U,Z) = SUBST(V.Z)

in the premise. This raises the question, how Z and Z2s2, the actual value of Z1, are related to
each other. Looking at the program text we find that Z2 1s the substitution returned by the call to
UNIFY in case of success; thus, Z2 is an extension of Z by one or more applications of COMP.
To express this relationship we introdice the predicate ISSUBSUB(S1:SUB; S2:5UB) meaning
"S1 is a sub-substitution of $2" or more precisely: S| is an initial part of S2 (from which it follows
that by composing S| with appropriate singlesub’s we can get S2). We can now formulate a
lemma sufficient to reduce the first equahty in (5) to (6):

IF ISSUBSUB(Z,22) A SUBST(U,2)=SUBST(V,Z) THEN SUBST(U,Z2)=SUBST(V,Z22)

provided the predicate ISSUBSUB(Z,21) is added to the exit condition of UNIFY and therefore
also to the invariant of the WHILE loop.

In order to prove the second con junct of (5) we have to look for "similar” equalities in the premise
of _VCe4. Obviously, the relevant parts are

(7 SUBST TERMS(TSUBST(HD(Y 1).2)).2242)=SUBST(TERMS(TSUBST(HD(X 1).2)).Z242)
A FNLT{TSUBST(HD(Y 1).Z))=FNLT(TSUBST(HD(X 1).Z))

T ———
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which exactly mean that TSUBST(HD(X1)Z) and TSUBST(HD(Y1)Z) are unified by Z2e2. If
we add as & new axiom (n022 in figure 8 (appendix)) the condition Stating when two functional
terms are unified, then (7) will be replaced by:

(8)  TSUBST(TSUBST(HD(Y1),2),Z2+2)«TSUBST(TSU BST(HD(X 1),2),Z242)

[he proble.n now is to prove the second conjunct of (5) from (8). This is a plausible implication
and is added as a goal (no.16 in figure 8).

Similarly, other lemmas are derived to reduce the remaining VC's to TRUE.

The third version of the top level program is shown in appendix (figure 8) Using the axioms
and goals listed in figuie 8 the system 1s abie to reduce all the verification conditions to TRUE
except VCe2; this involves more complex propositional structure and is proved easily by the
theorem prover. Thus, figure 8 contains an adequate documentation of *he top level.

3.4 ANALYSIS OF THE VERIFICATION BASIS. The basis as given in figure 8 is adequate
to reduce the top level VC's coinpletely, but by no means does the verification of the program end
at this point. Beside axioms about data structure primitives the basis contains spcifications on
non-primitive functions and lemmas relating these functions.

Analysis of the verification basis is intended to show that the basis is acceptable, that is, we can

write programs for the second level functions that satisfy the DEFFUN's and the lemmas. A fairly

sensible order of doing this is the following:

1) Axioms from user-defined data structures and standard properties of primitives are accepted.

2) All basis statements involving only primitives must be derived from the standard properties.

3) The number of remaining statements involving second level functions is reduced by finding
dependancies between them.

4) Code for the second level functions is written to satisfy the DEFFUN's and the remaining
basis specifications.

5 1f a lemma cannot be :atised, it must be changed. This in turn requires establishing the
adequacy of the altered ba:is for verifying the top level.

Following this scheme, (refering to figure 8 (appendix)) we find that axioms «1 and «2 are part of
the data type definitions. (Note that no use was made of other data type axioms so far, however,
they will be required to verify lower level functions) We take the functions APPEND and
OCCUR as primitives (standard hbrary functions), axioms nos.346 are standard properties of
them.

Obviously, axiom «11 follows immediately from axiom 10 and goal «12.

All the remaining basis statements involve second level functions. They obviously cannot be
Justified using only the given DEFFUN's, but provide further specifications of the subfurictions,
They must be regarded as necessary conditions that the programmer’s code must satisfy. In this
way, they may serve as "guide lines” for the writing of second level programs; some of them - eg.,
nos. 9,10,13 - can be translated directly into code as part of the case analysis,
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For some of the functions the programs are staightforward. Axioms e5 and 7 specify RCONS: If
we define RCONS by

RCONS(X.Y) := APPEND(X,LIST(Y))

then o5 follows easily from well-known properties of APPEND and LIST. Taking COMP as the
abbreviation

COMP(S,V.T) = MKZUB(S,PAIR(V.T))
the lemmas nos. 8,9,10, and 12 give the obvious :pecification of ISSUBSUB in terms of MKSUB.

In appendix figure 10 programs for the secord ievel functions are given which correspond to the
DEFFUN's used at the top ievel. The verification that these programs satisfy the DEFFUN's can
be done relative to a bass consisting of the data type definitions (i.e. axioms and DEFFUNS for
the constructors and selectors) Tius is straightforward since the programs directly reflect the
recursive nature of the types.

Remark It should be noted that verification basis for the top level does not necessarily
completely predetermine the way second levei functions have to be implemented. In our example,
application of substitutions can still be either simultaneous or sequential, this solely depends on
the representation of the function COMP (or MKSUB). (Although the type definition for SUB
implies sequential application, we did not make any use of those axioms) The implementation in
figure 10 assumes sequentiai application of substitutions.

Now we must show that the programs satisfy the rest of the lemmas. Usually, proving that a
lower level function meets a specification (satisfies a lemma in the basis) means setting up a new
verification problem by adding the iemma to oc justified to the ENTRY and/or EXIT assertions
for the body of the function. In complex cases, especially where the proof tequires induttion over
a data structure, it is necessary to reduce the problem by hand firet. (Data structure induction
rules are not implemented yet)

At an example, we show the justification of the goal s15, using the programs from figure 10.
First, goal «15 was reduced using the induction rule for the data type SUB to the induction step
problem (the base case problem s trivial). This problem in turn was fuither simplified by hand to
(15') using properties of 1SSUBSUB and the assumption of the induction step.

(15)  1SSUB(S1) A ISSINGLESUB(S2)
5> TSUBST(L, MKSUB(SI, $2)) = SINGLETSUBST(TSUBSTI(L, S1), S?)

If (15') can be verified, then we can use induction to piove goal #15. Figure 11 (appendix) shows
the verification of (15).

Perhaps the reader may be convinced that the proofs of al' the remaining lemmas in figure 8 (see
Appendix) are as straightforward as 15 Hence figure 8 presents an adequate and acceptable
basis (i.e. the lower level functions can indeed be coded to satisfy the lemmas). The top level
then is verified.

This is not so.

!
;
;
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Goal «16, although simple enough, hides (i.e. depends upoi1) an extra property of the top level
that has not yet come to light. It is not true of substitutions in general, thus it is not acceptable in
this form. It is true of the substtutions .onstructed by the program (which is why it was
"believable”) because they have a special property. Namely, whenever a variable occurs as the left
hand side of a pair, it will not occur in any later pair. This property holds for these substitutions
because whenever 4 substitution for a variable is added to Z, that particular variable is eliminated
from all expressions remaining in X1 and Y| (by then applying Z). The property is equivaleni to
idempotency of the substitution which we express by the new predicate "IDEM(S)":

IDEM(S) — SUBST(X.S) = SU BST(SUBST(X,S)S) for all X.

We must change goal 16 to goal «ISNEW by adding IDEM(Z) to it as a premiss and then start
verification of the top level agam (see step 5, beginming Section 3 4). Reasoning along the lines
develcped in earlier sections (and analysis of the new VC's) shows that we have to expand all
assertions in the program by appropriate instances of IDEM (see figure 12). Analysis of the VC's
shows that one additional lemma 1s required:

IDEM(S1) > IDEM(COMP(S1, TSUBST(X.S ), TSU BST(Y.S1))

We add this to the basis (goal «16A) and obtain Again a complete reduction of the top level VC's.

ENTRY ISTERMLIST(X)AISTERMLIST(Y)AISSUB(ZI JAIDEM(Z1);
EXIT (ISSUB(Z) A (SUBST(X,Z)*SUBST(Y,Z” A ISSUBSUB(21,2) A IDEM(Z) A {FLAG:=] n
v (FLAG = 0);
INVARIANT (..A(APPEND(V,Y| }aY)AISSUBSUB(Z1,2) A IDEM(Z) A (FLAGs1)) v (FLAG=0)
7 VSNEW 7 GOAL TSUBST(GX.QZ)*TSUBST(QY,OZ)
SUB ISSUBSUB(®S,2) A IDEM(aS)
A (TSUBST(TSUBST(X,QS).Z)!TSUBST(TSUBST(Y..S).Z));
A ‘IGA 7. GOAL IDEM(COMP(@S1,TSUBST(aX @S| )TSUBST(aY,aS1))) sub IBEM(S1);

Figure 12: Expanded documentation for idempotency

The additional lemma «I6A can be justified by showing that it is derivable from standard
properties of substitution composition and applhication. (This proof s given in the appendix.)
This means that it will be satisfied by correct code for COMP and TSUBST.,

BTy T pp—
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3.5 VERIFICATION OF FURTIIER PROPERTIES OF UNIFY, When the user has
developed an adequate documentation for his programs with respect to one property, he can
attempt to exploit it for the verification of fuither properties In this section we demonstrate how
additional verification problems can be solved by modifying the established basis and assertions.

The basis developed at the end of section 3.4 (hgures 8 and 12) is adequate for verifying a rather
weak property of our unification progiam. However, even this task has brought to light the
unusual and useful idempotency property of the substitutions constructed by this program. Now,
when we come to verify more stringent requirements we find jurther code changes to be necessary,
and these are justifiabe by idempotency

Our goal is to verify thai
(a) UNIFY generates a most.-general-unifier, if the termlists pasced as arguments are unifiable;
{b) UNIFY returns FLAG-0, 1.e. failure, ouly if the termlists are not unifable.

In order to prove (a) we intioduce a predicate
MGU(X.Y.Z) - "S 15 a most-general-umifier (or mgu, for short) of X and Y.ie. S is a

substitution that unifies X and Y, and if ' 15 another unifier for X and Y
then S 15 a sub-substitution of $'."

First of all, assertions in the progiam are strengthened by replacing all occu rences of equations
of the form SUBST(X.S)=SUBST(Y.S) by MGU(X.Y.S). We cannot make a similar simple-

minded “strengthening™ of the basis since some goal statements are not true if all of the
substitutions are restricted to being mgu's. We must find out what properties of MGU need to be
added to the existing basis. We therefore return to the verifier and try to derive the necessary
axiomatization for MGU from the VC's.

The first problem arises from a VC corresponding to the path from ENTRY to INVARIANT,
which is of the form

ISTERMLIST(X)AISTERMLIST(Y) A ISSUB(Z1) » MGU(ZERO, ZERO, Z1) . . . .

This can only be true if Z1=ZERO (see case (in) in section 2.4). Now, Z1 is a vaiue parameter.
So we must ask if Z1 can be ehiminated from the body of the procedure.

This leads us 10 consider the path containing the recursive call to UNIFY, and here we find in
general thuc ZIFZERO. The recursive call is of the form

UNIFY(TERMS(X2), TERMS(Y?), Z, Z2, FLAG)

where X2«TUUBST(HD(XI).Z) and Y2=TSUBST(HD(Y1), Z), and the current value f 2
replaces the formal parameter ZI. Notice that X2 and Y2 are vaiues resulting from applicati ns
of Zto X1 and YI. If we trace the computation of this call, we find that the only use made of Z
(the value of Z1) 1s t> apply it again to X2 and Y?2. By idempotency, this second application is
redundant! Thus, if we omit the parameter Z| altogether and initialize Z to ZEROQ, we get exactly
the same result by appropriately composing the substitution returned by the recursive call with the
old Z. To do this, we intioduce a general composition function,




a7.

FURTHER PROPERTIES OF UNIFY

SCOMP(Z1.2Z2) - the compasition of two substitutions, Z1 and 22.

It turns out that the verification can now be completed by adding one crucial new axiom which
describes how to build up mgu's.

MGU(X1LY1S1) A MGU(TSUBST(X2S1), TSUBST(Y251), $2)
2 MGU(RCONS(X 1,X2), RCONS(Y 1.Y2), SCOMP(S1,52))

1Y) If we ieplace the old COMP(ZX.Y) by the equivalent

MKSUB(Z,PAIR(X.Y)) a special case of (:) (goal «27) will reduce the remaining VC's that
involve an updating of Z.

Figure 13 shows the hecessary changes to the program and basis for the new problem (compare
with figure 8). The remaming new goals are obvious consequences of the definttion of MGU. As
for acceptability, we give a justificatton of the not immed ately obvious lemma (+) in the appendix.

Having made these changes (justified on the basis of idempotency), the reason for
having to verify idempotency in the old code disappears, and the required specifications of the
new code can be verified without 1t (see figure 13). Similarly, we no longer need to verify the sub.

substitution property.
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7 Goals for MGU 7.
7 26 7 GOAL MGU(RCONS(@X | ,@X2),RCONS(RY],aY2), SCOMP(aS|1,@52))
SUB MGU(X1,Y1,51)AMGU(TSUBST(X2,SI ), TSUBST(Y2,51),52);
7. 27 7 GOAL MGU(RCONS (X |,mX2),RCONS(RY,@Y2), MKSUB(@S!,@52))

SUB MGU(Xi,YI,S1)AMGU(TSUBST(X2,SI ), TSUBST(Y2,51),52);
7. 28 7. GOAL MGU(RCONS(®X 1 #PX2),RCONS(aY],mY2),051)

SUB MGU(X1,Y1,51)A(TSUBST(X2,5! }TSUBST(Y2,51)):
7 29A 7 GOAL MGU(®X.aY,PAIR(RX,RY)) SUB ISVAR(X)AISTERM(Y)A~OCCUR(X,Y);
7. 298 7. GOAL MGU(®X,mY,PAIR(®Y,aX)) SUB ISVAR(Y)AISTERM(X)A-OCCUR(Y.X);
7. 30 7. GOAL MGU(mX,aY,nS) SUB (FNLT(X)=FNLT(Y))AMGU(TERMS(X),TERMS(Y),S);
% 31 7 AXIOM MGU(ZEROQ,ZERQ,ZERC)TRLF;

DEFFUN MKSUB(S:SUB; S1:SINGLESUB): SUB;
ENTRY ISSUB(S)AISSINGLESUB(SI); EXIT ISSUX(MKSUB);

DEFFUN PAIR(X:VAR; Y:TERM): SINGLESUB;
ENTRY ISVAR(X)AISTERM!Y)A-OCCUR(X,Y); EXIT tSSINGLESUB(PAIR);

CEFFUN SCOMP(S1,52:5UB):SUB;  ENTRY ISSUB(S| JAISSUB(S2);  EXIT ISSUB(SCOMP);

PROCEDURE UNIFY(X,Y:TERMLIST; VAR Z:SUB; VAR FLAG:INTEGER);
ENTRY ..
EXIT (ISSUB(Z) A MGU(X,Y,Z) A (FLAG=1)) v (FLAG=0);

BEGIN
7 Initialization of variables 7,
.. L:s7EROQ; . . .

INVARIANT (ISSUB(Z)AISTERMLIST(U)AISTERMLIST(V)AISTERMLIST(X 1)

A ISTERMLIST(Y 1 )AMGU(U,V,2)A(XsAPPEND(UX | DALYSAPPEND(Y,Y1))A (FLAG=]))
v (FLAG=0)

WHILE . .. DO
BEGIN
IF ISVAR(X2) THEN  BEGIN IF ISVAR(Y2)
THEN BEGIN IF (X24Y2) THEN 1:sMKSUB(Z,PAIR(X2,Y2))
END
ELSE . . ..
END
ELSF BEGIN IF ISVAR(Y2) THEN .
ELSE BEGIN  IF FNLT(X2)zFNLT(Y2)
THEN BEGIN UNIFY(TERMS(XZ).TERMS(YZ),ZZ,FLAG);
IF FLAG=1 THEN Z:2SCOMP(Z,22)
ELSE FLAG:=0
END
ELSE . ...

Figure 13: Additional documentation and program changes for MGU
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Problem (b) 15 to show that if UNIEY returns FLAG=0 then there {s no unifier for X and Y.
We express this propeitj by the predicate:

NOTUNIF(X.Y) - "X and Y are not unifiable”
and set up the new verification jrroblem
C  {UNIFY(XYZFLAG) (. .. AFLAG=1) v (FLAG=0 A NOTUNIF(X.Y))
Note that the post-condition mplies “FLAG=1 <=> NOTUNIF(XY)." The adequate
axtomatization of NOTUNIF 15 aunost straightforward. However, iin goals ¢33 and 34 (see figure

14) the premiss MGU( .. ) 1s crucial for acceptability.

T he final program and documentation for the full verification of UNIFY is given in figure 14.
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APPENDIX

Proofs of lemmas

Figure 8: Third version of top level + corresponding goalfile
Figure 8: Sample VC's for third version

Figure 10: Second level fu nctions + goalfile

Figure [I: Lemma about goal 15

Figure 14: The complete p:ogram and documentation for UNIFY

Proofs of Lemmas

Notation: We use the following short-hand notation:

"X.o" for substitution applhication (TSUBST/SUBST)
"oef3" for substitution composition (MKSUB/SCOMP)
xry" for list concatenation (APP/RCONS

ex,y>" for PAIR(X.Y)
We make use of certain facts about substitutions:
(1) assoctativity of " of (et 20c¢3) = (ot [@c¢ )3
(1) akind of associativity of ™" (x.o¢ [).o¢2 = x.(o¢ I®c¢2)
(it1) a kind of distributivity of "% (xny).e¢ = (x.o¢)y.ct)
1. Goal 16A: IDEM(e¢) = IDEM(cc@¢x.ot, y.00))
This is equivalent to proving

(ot ® <X.ot, y.ot>) ® (X ® <X.ot, Y.ol>) = oL ® <XoX, Yol >

from the assumptions
(al) otect=ct, (a2) isvar(x.oc¢), (a3) isterm(y.c), (at) = occur(x o¢,y.o)

(a2)-(a4) are from the ENTRY assertion for COMP; they imply that the single
substitution is idempotent, namely

(b)  <x.o¢, yot> & <X.ot, yoL> = <X, Yol>

Now
(¢ ® <x.0t, y.ot>) ® (ot ® <x.0¢, y.ot>)
= (o @ <Xot, yot>) ® o) ® <x.ot, yot> by (1)
* [(o¢ @ ot) ® <x.0¢, y(ct®ct>)] @ <x.ot, yot> using standard properties
of "." and "¢" and (al)
= ot ® <x.ot, yot>] @ <x.e¢, yot> by (a)
- ol ® <X, Y.ol> by (b), (1)
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2. LEMMA () for MGU (Section 3.5)

() MGU(X1LYlocl) A MGU(N2!, Y21, «2) > MGU(X 19X2, Y11Y2, o« lo?2)

We prove (1) from the assumptions

(n MGU(X 1LY L 1)
and
(2) MGU(X2:21, Y21, ¢?)
Suppose (NEXD) A = (V1Y)
Then by (1) f = ~lef] for suitable A1,
50 (X1:X2)(c 1081) = (Y1:Y2) (< 16/31)
which implies X1 DUAN2DLAB1 = (VLo DAY 2.0 1))/81 by (i), (iit)
From this we infer (N2 1).81 = (Y2.¢1) 81
Thus, by (2) Bl = 202
or 3 = (¢ 1ot 2)e/32

for suitable 82, which proves ().
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GOALFILE
7 Axioms defining the dala lypos and basic funclions 7

% 1 7 AXIOM ISTERMLIST(ZERO) « TRUE;
7 2 7 AXIOM ISSUB(ZERO)»TRUE;

7. Axioms describing properlies of subfunclions 7

N

. 3 7 AXIOM APPEND(ZERQ,RS)«S;
4 7 AXIOM APPEND(RS,ZERQ)wS;

N

75 7. AXIOM APPEND(RCONS (&S, HD(@T)),TL(@T))»APPEND(S,T);

7. 6 7 AXIOM IF ISVAR(X)AISVAR(Y)A(Y#X) THEN ~OCCUR(@X,@Y)wTRUE;

7 7 7 GOAL RCONS(@X1,mX2):RCONS(aYi,aY2) SUB (X1sY1)A(X2:Y2);

7 8 7 AXIOM IF ISSUB(Z) THEN ISSUBSUB(ZERD,@2)~TRUE;

% 9 7 AXIOM ISSUBSUB(®Z,mZ)«TRUE;

7 10 7 AXIOM ISSUBSUB(m2,COMP(@Z,@X,aY))wTRUE;

7 11 7 AXIOM IF ISSUBSUB(Y,2) TIIEN ISSUBSUB(RY,COMP(RZ,aV,aW)}w TRUE;

% 12 7 GOAL ISSUBSUB(mZ,mZ1) SUB ISSUBSUB(@122,21)AISSUBSUB(2,@22),
ISSUBSUB(Z,m22)AISSUBSUB(@22,21);

% 13 7. AXIOM TSUBST(®X,ZERQ)nX;
7. 14 7 AXIOM IF -ISVAR(X) THEN -ISVAR(TSUBST(@X,a5))»TRUE;
7. 15 7 GOAL TSUBST(@X,@Z)=TSUBST(aY,aZ) SUB ISSUBSUB(QZI,Z)A(TSUBST(X.QZI)-TSUBST(Y..ZI N

% 16 7. GOAL TSUBST(mX,m2)=TSUBST(mY,a2)
sus ISSUBSUB(RS.Z)A(TSUBST(TSUBST(X.QS).Z)=TSUBST(TSUBST(Y.QS),Z));

7 17 7. GOAL TSUBST(eX,COMP(a1,nX,nY))=TSUBST(aY,COMP(aZ,0X,aY))
SUB ISSUB(COMP(Z,X,Y)), ISSUB(COMP(Z,Y X));

% 18 7 GOAL TSUBST(aX,COMP(®2,mU,nV)):TSUBST(RY,COMP(aZ,aU,av))
SUB (UsTSUBST(X,2))A(V=TSUBST(Y,2))AISSUB(COMP(Z,U,V)),
(UsTSUBST(Y,2))A(V=TSUBST(X,2))AISSUB(COMP(Z,U,V));

Figure 8 (continued)
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7 19 7 AXIOM SUBRST(@X,ZERO)«X;
7. 20 7. AXIOM SUBST(ZERQ,RS)~ZERO;
7 21 7 AXIOM SUBST(RCONS(aX,@Y),@Z)«RCONS(SUBST(X,2),TSUBST(Y,Z));

7. 22 7. AXIOM IF ENLT(X)=FNLT(Y) THEN (SUBST(TERMS(aX),@2):SUBST(TERMS(@Y),@2))»
(TSUBST(X,Z)sTSUBST(Y,2));

7 23 7. GOAL SUBST(mRX,COMP(nZ,mA ~B)):SUBST(5Y,COMP(@Z,&A,a8B))
SUB (SUBST(X,2)=SUBST(Y,Z))AISSUB(COMP(Z,A,B));

7 24 7. GOAL SUBST(aX,@2):5UBST(a@Y,m@Z) SUB ISSUBSUB(8ZI,2)A(SUBST(X,@Z1)=SUBST(Y,@Z1));.;

PASCAL
DEFFUN HD(L:TERMLIST):TERM;  ENTRY ISTERMLIST(L)A~(L=ZERQ); EXIT (STERM(HD);
DEFFUN TL(L:TERMLIST):TERMLIST; ENTRY ISTERMLIST(L)A~(L*»ZERO); EXIT ISTERMLIST(TL);

DEFFUN RCONS(L:TERMLIST; X:TERM):TERMLIST;
ENTRY ISTERMLIST(L)AISTERM(X); EXIT ISTERMLIST(RCONS);

DEFFUN TERMS (X:TERM):TERMLIST; ENTRY ISTERM(X)A-ISVAR(X);  EXIT ISTERMLIST(TERMS):
DEFFUN FNLT(X:TERM):CONST; ENTRY ISTERM(X)A-ISVAR(X)Y,  EXIT ISCONST(FNLT);
DEFFUN TSUBST(X:TERM:S:SUB):TERM; ENTRY ISTERM(X)AISSUB(S);  EXIT ISTERM(TSUBST);

DEFFUN SUBST(X:TERMLIST; S:SUB):TERMLIST;
ENTRY ISTERMLIST(X)AISSUB(S); EXIT ISTERMLIST(SUBST);

DEFFUN COMP(S:SUB; X:VAR; Y:TERM):SUB;
ENTRY I1SSUB(S)AISVAR(X)AISTERM(Y)A~OCCUR(X,Y); EXIT ISSUB(COMP);
DEFFUN OCCUR(X:VAR; Y:TERM):BOOLEAN; ENTRY ISVAR(X)AISTERM(Y); EXIT ISBOOLEAN(OCCUR);

Figure 8 (continued)
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APPENDIX

PROCEDURE UNIFY(X,Y:TERMLIST; 21:5UB; VAR Z:5UB; VAR FLAG:BOOLEAN);
ENTRY ISTERMLIST(X)AISTERMLIST(Y)AISSUB(ZI):
EXIT (ISSUB(Z)A(SUBST(X,2)sSUBST(Y,Z))AISSUBSUB(Z1,2)A(FLAGs1)) v TLAG = 0);

VAR U,V X1,Y1:TERMLIST; VAR X2,Y2:TERM; VAR 22:5UB;
BEGIN

7 Initialization of variables 7,
U:xZERQ; V:=2ZERO; Z:=Z1; Xl:eX; Yl:=Y; FLAG:l;

INVARIANT (ISSUB(Z)AISTERMLIST(U)AISTERMLIST(V)AISTERMLIST (X1 JAISTERMLIST(Y | )A

(SUBST(U,2)-SUBST(V,Z))A(APPEND(U,X 1 )=X)A(APPEND(V,Y1 JaY)AISSUBSUB (21 WZA(FLAGs]))
v (FLAG=0)

WHILE (X14ZERO) A (Y1/ZERO) A (FLAG=1) DO
BEGIN
X2:= TSUBST(HD(X1),2);
Y2:= TSUBST(HD(Y1),2);
IF ISVAR(X2) THEN BEGIN IF ISVAR(Y2)
THEN BEGIN IF (X24Y2)
THEN Z::COMP(Z,X2,Y2)
END
ELSE BEGIN IF OCCUR(X2,Y2) THEN FLAG:#0
ELSE Z::COMP(Z,X2,Y2)
END
END
ELSE BEGIN IF ISVAR(Y2)
THEN BEGIN IF OCCUR(Y2,X2) THEN FLAG :20
ELSE Z:=COMP(2,Y2,X2)
END
ELSE BEGIN IF FNLT(X2)=FNLT(Y2)
THEMN BEGIN UNIFY(TERMS(X2),TERMS(Y2),2,22,FLAG);
IF FLAG»1 THEN 2:222

END
ELSE FLAG:=0 4
END i
END;
U :=RCONS(U,HD(X1)); V :=RCONS(V,HD(Y 1));
X1:=TL(X1); Y1:=TL{YL);

END; 7 End of WHILE body 7

IF (X|AZERO) v (Y1$ZERQ) THEN FLAG:=0 1
END; 7 Procedure body 7.

Fignre 8: Third version with documentatlon

— T D e——— R - e e




v HENKE and LUCKI{AM

FOR UNIFY THERE ARE 1| VERIFICATION CONDITIONS. HER™ IS ONE OF THEM:

“4
(~X1=2ERO & ~Y1=2ERQ & FLAG:=l &
1SSUB(Z)AISTERMLIST{U)AISTERMLIST(V)AISTERMLIST(X 1 )JAISTERMLIS (Y 1)ASUBS~
T(U,2)=SUBST(V,Z)AAPPEND(U,X I )= XAAPPEND(V,Y1):=YAISSUBSUB(Z1 Z)AFLAG=] VFLAG=0
=+ ISTERMLIST(X1) & ~X1=7ERO & (ISTERM(HD(X 1))
= ISTERM(HD(X 1)) & ISSUB(Z) & (ISTERM(TSUBST(HD(X1),2))
= ISTERMLIST(Y1) & ~Y1=ZERO & (ISTERM(HD(Y!))
= ISTERM(HD(Y 1)) & 1S5UB(2) & (ISTCRM(TSUBST(HD(Y1),2))
= (~ISVAR(TSUBST(HD(Y1),2)) & ~ISVAR(TSUBST(HD(X1),2))
-+ ISTERM(TSUBST(HD(Y1),2)) & ~ISVAR(TSUBST(HD(Y1),2)) &
(ISCONST(FNLT(TSURST(HD(Y!),2)))
= ISTERM(TSUBST(HD(X1),2)) & ~ISVAR(TSUBST(HD(X1),2)) &
(ISCONST(FNLT(TSUBST(HD(X1),2))
= (FNLT(TSUBST(HD(X),2))=FNLT(TSUBST(HD(Y1),2))
= ISTERM(TSUBST(HD(Y1),2)) & ~ISYAR(TSUBST(HD(Y1),2)) &
(ISTERMLIST(TERMS(TSUBST(HID(Y1),2))
= ISTERM(TSUBST(HD(X1),2)) & ~ISVAR(TSUBST(HD(X1),2)) &
(ISTERMLIST(TERMS(TSUBST(HD(X1),2)))
= ISTERMLIST(TERMS(TSUBST(HD(X1),2))) & ISTERMLIST(TERMS(TSUBST(HD(Y1),2))) &
ISSUB(Z) & (FLAG=1 &
ISSUB(Z2%2)ASUBST(TERMS(TSUBST(HD(X1),2)),2292)=SUBST(TERMS (~
TSUBST(HD(Y1),2)),2282)AISSUBSUB(Z2,2242)AFLAG=1 VFLAG=0
= ISTERMLIST(X1) & ~X1=ZERO & (ISTERM(HD(X1))
= ISTERMLIST(U) & ISTERM(HD(X1)) & (ISTERMLIST(RCONS(U,HD(¥1)))
= ISTERMLIST(Y1) & ~Y!-2ERO & (ISTERM(HD(Y 1))
= ISTERMLIST(V} & ISTERM(HD(Y1)) & (ISTERMLIST(RCONS(V,HD(Y1)))
= ISTERMLIST(X1) & ~X1=ZERO & (ISTERMLIST(TL(X1))
= ISTERVMLIST(Y1) & ~Y1=2ERD & (ISTERMLIST(TL(Y1))
= ISSUB(72#2)AISTERMLIST(RCONS(U,HD(X 1 )))AISTERMLIST(RCONS (V,HD(Y1)))A
ISTERMLIST(TL(X 1))AISTERMLIST(TL(Y1 ))A
SUBST(RCONS(U,HD(X1)),2292)=SUBST(RCONS(V,HD(Y1)),22%#2)A
APPEND(RCONS (U, HD(X 1)), TL(X 1))=XA
APPEND(RCONS(V,HD(Y 1)), TL(Y1))=YA
ISSUBSUB(ZI,2282)AFLAG=1VFLAG=0))))NNNINN

Fignre 9: One of the unsimplified VC's for the third version
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GOALFILE
AXIOM ISTERMLIST(ZrRO) » TRUE;
AXIOM ISSUB(ZERQ) » TRUE;

AXIOM ISSINGLESUB(ZERD) » TRUE;

GOAL ISSINGLESUB{@S) SUB (S=PAIR(2X,@Y})AISVAR(@X)AISTERM(@Y)A~OCCUR(aX,aY);.;

PASCAL

DEFFUN MKTERM(X:CONST;Y:TERMLIST):TERM;

ENTRY ISCONST(X) A ISTERMLIST(Y); EXIT ISTERM(MKTERM);

DEFFUN FNLT(X:TERM):CONST;
ENTRY ISTERM(X) A ~ISVAR(X);  EXIT ISCONST(FNLT);

DEFFUN TERMS(X:TERM):TERMLIST 5
ENTRY ISTERM(X) A ~ISVAR(X);  EXIT ISTERMLIST(TERMS});

DEFFUN CONS(X:TERM; L:TERMLIST):TERMLIST;
ENTRY ISTERM(X)AISTERMLIST(L); EXIT ISTERMLIST(CONS);

DEFFUN HD(L:TERMLIST):TERM;
ENTRY ISTERMLIST(L)A~(L=ZERO); EXIT ISTERM(HD);

DEFFUN TL(L:TERMLIST):TERMLIST;
ENTRY ISTERMLIST(L)A~(L=ZERO); EXIT ISTERMLIST(TL);

DEFFUN MKSUB(S:5UB; S1:SINGLESUB):SUB;
ENTRY ISSUB(S)AISSINGLESUB(S I ); EXIT ISSUB(MKSUB);

DEFFUN LAST(S:5UB):SINGLESUB;
ENTRY ISSUB(S); EXIT ISSINGLESUB(LAST);

DEFFUN REST{S:5UB):SUB;
ENTRY 1SSUB(S); EXIT ISSUB(RES 1 );

DEFFUN VAR(S:SINGLESUB):VAR;
ENTRY ISSINGLESUB(S); EXIT ISVAR(VAR);

DEFFUN TERM(S:SINGLESUB):TERM;
ENTRY ISSINGLESUB(S); EXIT ISTCRM(TERMY);

DEFFUN PAIR(X:VAR; Y:TERM):PAIR;
ENTRY ISVAR(X)AISTERM(Y); EXIT ISPAIR(PAIR);

Figure 10 (continued)
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FUNCTION SUBST(L:TERMLIST; S:SUB):TERMLIST;
ENTRY ISTERMLIST(L) A ISSUB(S);
EXIT ISTERMLIST(SUBST);

BEGIN

IF (S=ZERQ) THEN SUBST:=L

ELSE SUBST:=SINGLESUBST(SUBST(L,REST(5)),LAST(S));
END;

FUNCTION TSUBST(X:TERM; S:SUB):TERM;
ENTRY ISTERM(X) A ISSUB(S);
EXIT ISTERM(TSUBST);

BEGIN

IF (S=2ERQ) THEN TSUBST:=X

ELSE TSUBST:=SINGLETSUBST(TSUBST(X,REST(S)),LAST(S));
END;

FUNCTION SINGLESUBST(L:TERMLIST: S:SINGLESUB):TERMLIST;
ENTRY ISTERMLIST(L) A ISSINGLESUB(S);
EXIT ISTERMLIST(SINGLESUBST);

BEGIN

IF (L=ZERQ) THEN SINGLESUBS:=ZERQ

ELSE SINGLESUBST:=CONS(SINGLETSUBST(HD(L),$), SINGLESUBST(TL(L),S))
END;

FUNCTION SINGLETSUBST(T:TERM; 5:SINC LESUB):TERM;
ENTRY ISTERM(T) A ISSINGLESUB(S);
EXIT ISTERM(SINGLETSUBST);

BEGIN
IF ISVAR(T) THEN BEGIN IF (T=VAR(S))
THEN SINGLETSUBST := TERM(S)
ELSE SINGLETSUBST o T
END
ELSE SINGLETSUBST := MKTERM(FNLT(T), SINGLESUBST(TERMS(T), S))
END;

FUNCTION COMP(S:5UB; X:VAR; Y:TERM):SUB;
ENTRY iSSUB(S)AISVAR(X)AISTERM(Y)A-OCCUR(X,Y);
EXIT 1SSUB(COMP);

BEGIN COMP:=MKSUB(S,PAIR(X,Y)); END;

Figure 10: second level functions and goalfile
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7. Program for veritying
ISSUB(SI )AISSINGLESUB(S2)AISTERMLIST(L)
> [TSUBST(L,MKSUB(SI 152))=SINGLETSUBST(TSUBST(L,S | 15:Y3)|

Program body of TSUBST with new entry/exil conditions 7

PASCAL

ENTRY 1SSUB(S)A(S=MKSUB(S| S2NAISTERM(X);
EXIT (TSUBST=SINGLETSUBST(TSUBST(X,S | 1S2));

AXIOM LAST(MKSUB(®S,nS1))wS1;
AXIOM REST(MKSUB(nS,851))wS;
AXIOM (ZEROsMKSUB(mS | AS2))«FALSE;
BEGIN

IF (S=ZERQ) THEN TSUBST:=X ELSE TSUBST:!SINGLETSUBST(TSUBST(X,REST(S)).LAST(S))3
END;

FOR THE MAIN FAOGRAM THERE ARE 2 VERIFICATION CONDITIONS

(S«ZERO & 1SSUB(S) & S=MKSUB(S1,52) & ISTERM(X)
= X=SINGLETSUBST(TSUBST(X,S1),52})

SO T S TSR S — N W TRy e—
PRI« | DI e L M LT TR FTIIEN

.2
(~S=ZERO & ISSUB(S) & SMKSUB(S1,52) & ISTERM(X)
- SINGLETSUBST(TSUBST(X,REST(S)).LAST(S))lSINGLETSUBST(TSUBST(X,Sl),52))

AFTER SOME SIMPLIFICATION, YOU CAN GET

# | TRUE
8 2 TRUE

—————

Figure 1): lemma about goal 15
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GOALFILE

Axioms defining the data lypes and basic functions 7,
1 7 AXIOM ISTERMLIST(ZERQ) « TRUE;
2 7 AXIOM ISSUB(ZERD)»TRUE;

N NN

Axioms describing properties of subfunctions 7

. 3 7 AXIOM APPEND(2ERD,mS)mS;

4 7. AXIOM APPENC(®S,ZERQ)=S:

5 7 AXIOM APPEND(RCONS (@S, HD(aT)),TL/QT))»APPEND(S,T);

6 7. AXIOM IF ISVAR(X)AISVAR(Y)A(Y/X) THEN -OCCUR(@X,@" j»TRUE;
13 7. AXIOM TSUBST(m@X,ZERQ)eX;

14 7. AXIOM IF ~'3VAR(X) THEN ~ISVAR(TSUBST(®X,2S$))»TRUE;

NN

N NN

~N

Goals for MGU 7.

7. 26 7. GOAL MGU(RCONS(nX |,@X2),RCONS(RY1,AY2), SCOMP(nS],@52))
SUB MGU(X1,Y1,S1)AMGU(TSUBST(X2,51),TSUBST(Y2,51),52);

7. 27 7. GOAL MGU(RCONS(aX1,2X2),RCONS(RY1,@Y2), MKSU3(&S!,@52))
SUB MGU(X1,Y1,S1)AMGU(TSUBST(X2,51),TSUBST(Y2,51),52);

7. 28 7. GOAL MGU(RCONS(mX1,2X2),RCONS(mY] ,AY2),a51)
SUB MGU(X1,Y1,S1)A(TSUBST(X2,51)aTSUBST(Y2,51));

~N

29A 7. GOAL MGU(mX,mY,PAIR(7X,AY)) SUB ISVAR(X)AISTERM(Y)A-OCCUR(X,Y);
298 7. GOAL MGU(aX,nY,PAIR(RY,RX)) SUB ISVAR(Y)AISTERM(X)A=QOCCUR(Y X);

N

7. 30 7. GOAL MGU(aX,aY,aS) SUB (FNLT(X)=FNLT(Y))AMGU(TERMS(X).TERMS(Y).S);
7 31 7. AXIOM MGU(ZERO,ZERQ,ZERO)~TRUE;
7. Goals for NOTUNIF 7

7. 32 7 GOAL NOTUNIF (aX,aY)
SUB ISVAR(X)AISTERM(Y)A~ISVAR(Y)AOCCUR(X,Y),
ISTERM(X)AISTERM(Y)A~ISVAR(X)A-ISVAR(Y)A ~(FNLT(X)sFNLT(Y)),
(FNLT(X)=FNLT(Y))ANOTUNIF (TERMS (X), TERMS (Y));

7% 33 7. GOAL NOTUNIF(RCONS(mX1,7X2),RCONS(nY],2Y2))
SUB MGUI(X1,Y1,25) A NOTUNIF(TSUBST(X2,@S),TSUBST(Y2,@S)),
MGU(X1,Y1,mS) A NOTUNIF(TSUBST(Y2,S),TSUBST(X2,aS}),
NOTUNIF(X2,Y2);

7. 34 7. GOAL NOTUNIF(APPEND(=X 1,7X2),APPEND(QY],aY2))
SUB (X22ZERO)A~(Y2=ZERO)AMGU(X1,Y1,AS),
(Y22ZERO)A~(X2:ZERQO)AMGU(X],Y1,@5),
NOTUNIF(X1,Y1);

Figure 14 (continued)
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PASCAL
DEFFUN HD(L:TERMLIST):TERM, ENTRY ISTERMLIST(L)A~(L=ZERD); EXIT ISTERM(HD);
DEFFUN TL(L:TERMLIST):TERMLIST; ENTRY ISTERMLIST(L)A-(L=ZERO); EXIT ISTERMLIST(TL);

DEFFUN RCONS(L:TERMLIST; X:TERKS):TERMHAST:
ENTRY ISTERMLIST(L)AISTERM(X); EXIT ISTERMLIST(RCONS);

DEFFUN TERMS(X:TERM):TERMLIST; CNTRY ISTERM(X)A-ISVAR(X); EXIT ISTERMLIST(TERMS);
DEFFUN FNLT(X:TERM):CONST; ENTRY ISTERM(X)A~ISVAR(X); EXIT ISCONST(FNLT);
DEFFUN TSUBST(X:TERM:S:SUB):TERM:  ENTRY ISTERM(X)AISSUB(S); EXIT ISTERM(TSUBST);

DEFFUN MKSUB(S:SUB; S1:SINGLESUB):SUB;
ENTRY ISSUB(S)AISSINGLESUB(SH); EXIT ISSUB(MKSUB);

DEFFUN PAIR(X:VAR; Y:TERM):SINGLESUB;
ENTRY ISVAR(X)AISTERMIY)A-OCCUR(X,Y); EXIT ISSINGLESUB(PAIR);

DEFFUN SCOMP(S1,52:5UB):€JB;  ENTRY ISSUB(S1)AISSUB(S2); EXIT ISSUB(SCOMP;

DEFFUN OCCUR(X:VAR; Y:TERM):BOOLEAN;  ENTRY ISVAR(X)AISTERM(Y); EXIT ISBOOLEAN(OCCUR);

Figure 14 (continucd)
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PROCEDURE UNIFY(X,Y:TERMLIST; VAR Z:5UB; VAR FLAG:INTEGER);
ENTRY ISTERMLIST (X)AISTERMLIST(Y) 5
EXIT (1ISSUB(Z) A MGU(X,Y,Z) A (FLAG=1)) v ((FLAG=0) A NOTUNIF(X,Y));

BEGIN

7. Initialization of variables 7
U:zZERO; V:=2ERO; 2:=7ERO; Xl:=X; VYl:i¥: FLAG:=1;

INVARIANT (ISSUB(Z)AISTERMLIST(U)AISTERMLIST(V)AISTERMLIST(X1)
AISTERMLIST(Y | JAMGU(U,V,Z)A(X=APPEND(U,X1))A(Y=APPEND(V,Y1))A (FLAG=1))
v ((FLAG=0)ANOTUNIF (U,V)A(X=APPEND(U,X 1 ))A(Y=APPEND(V,Y1)))

WHILE (Xi#ZERO) A (Y1 #ZERO) A (FLAG=1) DO
BEGIN
X2:= TSUBST(HD(X1),2);
Y2:= TSUBST(HD(Y1),2):
IF ISVAR(X2) THEN BEGIN IF ISVAR(Y2)
THEN BEGIN IF (X29Y2)
THEN 2::MKSUB(Z,PAIR(X2,Y2))
END
ELSE BEGIN IF OCCUR(X2,Y2) THEN FLAG:=0
ELSE Z:=MKSUB(Z,PAIR(X2,Y2))
END
END
ELSE BEGIN IF ISVAR(Y2)
THEN BEGIN IF OCCUR(Y2,X2) THEN FLAG:=0
ELSE Z2::MKSUB(Z,PAIR(Y2,X2))
END
ELSE BEGIN IF FNLT(X2)=FNLT(Y2)
THEN BEGIN UNIFY(TERMS(X:),TERMS(Y2),22,FLAG);
IF FLAG=] THEN Z::SCOMP(2,22)
ELSE FLAG:=0
END
ELSE FLAG:=0
END
END;
U :=RCONS (U,HD(X 1));
V :=RCONS(V,HD(Y1));
X1:=TL(XE):
Y1:=TL(YI);
END; 7 End of WHK.LE body 7.

IF (X1#ZERO) v (Y1 $#ZERO) THEN FLAG:=0
END; 7. Procedure body 7.

THE VERIFICATION TAKES 286 CPU SEC.

Figure 14: The complete program and documentation for UNIFY
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