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FOREWORD 

This formal technical report entitled "Ground Motion 

Predictive Techniques for Porous Geologic Media," is sub- 

mitted by Systems, Science and Software (S3) to the Advanced 

Research Projects Agency (ARPA) and to the Defense Nuclear 

Agency (DNA).  The report presents the results of the third 

phase of a cont nuing effort to develop reliable material 

models and computer techniques for predicting the motion of 

inhomogeneous and porous geologic media. This work, in 

support of the PRIME ARGUS and MILITARY GEOPHYSICS programs, 

was accomplished under Contract No. DASA 01-69-C-0159(P00003), 

which was funded by ARPA and monitored by DNA.  Dr. Stanley 

Ruby was the ARPA Program Manager and Mr. Clifton B. McFarland 

was the DNA Project Scientist. 

Dr. T. David Riney was the S3 Project Manager for the 

study. The technical results presented in this report repre- 

sent the work of a number of S3 staff members in addition to 

the authors.  It is appropriate to list here the contributors 

to technical Sections II through V. 

Section II:  J. W. Kirsch, A. J. Good, G. D. Anderson 

Section III: J. K. Dienes, G. D. Anderson, 
K. G. Hamilton 

Section IV:  S. K. Garg, D. H. Brownell, 
R. J. Archuleta 

Section V:   G. A. Frazier, S. K. Garg 

Dr. Mi H. Rice participated as a consultant on this  project. 
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ABSTRACT 

The work reported consists of three task areas: 

(a) development of constitutive models and computer methods 

for calculating stress wave effects in geologic media in the 

vicinity of a buried energy source, (b) verification of the 

computer models and their application to examine the sensi- 

tivity of ground motion predictions to the material parameters 

assumed in the constitutive models, and (c) development of 

methods for calculating the perturbation of residual tectonic 

stress-strain distributions induced by changing the pore 

witer pressure.  A general computer subroutine (TAMEOS) is 

described which generates thermodynamic equations of state 

of porous wet media for use with a table look-up procedure 

in standard ground motion codes.  TAMEOS has been applied to 

iNTS tuff and is used in the SKIPPER code for a series of 

spherical calculations in which the crushup strength and 

volume fractions of the rock-water-void mixture were varied. 

Four constitutive models and associated subroutines have 

been incorporated into SKIPPER for improved ground motion cal- 

culations for rocks with high shear strength.  The cap 

model is generalized to treat the full range of pressure and 

strain encountered in underground tests.  Generalized 

Mohr-Coulomb models include one without work hardening, one 

with Isotropie work hardening, and one with kinematic work 

hardening.  Model sensitivity calculations for granite are 

presented for tne four SKIPPER options.  Detailed comparison 

of calculations with field measurements are presented for 

the kinematic work hardening and cap models.  A thermodynamic 

formulation of the Theory of Interacting Continua (TINC) 

is presented as well as the numerical procedure used in the 

new POROUS code for treating spherical ground motion problems 



in the TINC framework.  Limited calculations using the new 

code are presented for partially saturated tuff.  Linearized 

TINC equations aie developed for describing the interaction 

of a poiB fluid with a rock matrix as the fluid is driven 

through the geologic mass under a hydraulic gradient.  The 

2-1) finite element computer code fFRI} for treating these 

geohydrological processes is described.  Test calculations 

for the rock-fluid interactions in the vicinity of a fluid 

injection well are presented. 

VI 



I.  INTRODUCTION 

Adequate material response models and associated com- 

putational techniques are required if ground motion predic- 

tions are to be made vr..th. confidence.  One is concerned with 

a signal which has attenuated from stress levels in the 

source vicinity, which may be megabars, to stresses at large 

distances, which are small compared to strengths of earth 

media. 

In this transition region between the hydrodynamic 

source and the distant elastic region, the material response 

models should consider such complex nonlinear physical pro- 

cesses as dynamic void compaction, heterogeneity, pore water 

pressure and diffusion, yield and fracture phenomena, dilatancy, 

water and rock interactions, material phase changes, and 

dependence of strength parameters on the thermodynamic state. 

This report describes improved techniques for predicting ground 

motion that have been developed in the current study.  The 

general approach followed here, as in earlier work described 

in 3SR-267 and 3SR-648,* is to construct material models of 

increasing sophistication from available material properties 

data and to develop the required numerical methods to evaluate 

stress wave phenomena as each additional effect is introduced 

into the model. 

In addition to the development and application of im- 

proved techniques for predicting ground motion, the report 

also describes work directed toward understanding earthquake 

triggering mechanisms.  A computer model is being developed 

to calculate the quasi-static perturbation in a residual 

tectonic stress-strain distribution as a pressurized fluid 

penetrates  through a geologic medium under a hydraulic 

gradient.  The objective is to analyze the effect of siting 

Here and throughout this document, 3SR-267 and 3SR-648 refer 
to the reports [Refs. 1 and 2, respectively] describing earlier 
phases of this contract. 
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a reservoir or a deep waste disposal well in the vicinity of 

a pre-existing fault zone. 

A typical geologic medium consists of a rock or soil 

matrix containing cracks or pores that may be partially 

filled with water.  Even if the matrix material is unchanged, 

the porosity and the water content will vary with depth and 

with surface distance and the stress propagation characteris- 

tics of the medium will vary accordingly.  For teleseismic 

calculations it is impossible to know the porosities and 

degrees of saturation at inaccessible nuclear test sites, 

liven when local geological conditions and the water table 

location have been established by field logging tests, as 

would be possible in evaluating the vulnerability of under- 

ground structures, it is economically impractical to perform 

laboratory material properties tests on all the porosities 

and degrees of saturation that occur.  Consequently, it is 

desirable to construct the material models in such a fashion 

that the response of the medium can be predicted as these 

quantities are varied. 

From the outset of the present study, therefore, the 

geologic medium has Been considered to be composite and a 

description of its wave propagation characteristics has been 

sought in terms of the behavior of the isolated rock matrix 

and water components.  Reference to the detailed microstruc- 

ture of the composite is avoided, however, since the models 

are to be used in continuum type computer codes in which the 

phenomena of interest are on a much larger geometrical scale. 

Consequently, the Theory of Interacting Continua (TINC) was 

adopted to provide a framework general enough to allow 

explicit treatment of pore pressure effects and relative 

motion between the rock and water components.  Computer codes 

usually employed for ground motion calculations, however, 

treat a geologic medium as a single continuum so that each 

incremental volume of the medium has associated single 



values of pressure, velocity, etc.  Since practical calcula- 

tions are currently performed using such codes, material response 

models have also besn developed to be compatible with applica- 

tion in single continuum codes by adding the homogenizing 

assumption of no relative motion between the reck and water. 

In 3SR-267 and 3SK-648 the modeling effort centered on 

a representative tuff at the Nevada Test Site CATS" tuff) to be 

specific, but the basic methods are applicable to other porous 

geologic media with relatively smtU shear strengths.  For 

example, one of the homogenized composite equation of state 

models has also been used to predict the behavior of clay 

shale media at. the MIDDLE GUST test site. [3]  In this report 

the model development has also specifically treated Cedar 

City tonalite, a representative geologic media with a large 
shear strength. 

Section IT describes an homogenized equation of state 

for NT? tuff for the pressure range of 1 mbar down to a few 

bars.  A computer routine has Been developed which calculates 

the isotropic thermodynamic states of rock-water-void mixtu-es, 

including a description of irreversible collapse of the air- 

filled pores (Void volume]. These states are tabulated 

and may be utilized in conjunction with a table look-up pro- 

cedure as a subroutine in standard ground motion codes. 

Primary inputs to the TAMEOS subroutine (for Tabular ^rrays 

Of Mixtures Equation Of State) are the homogenized model 

to be utilized (e.g., one of the PTEQ, PEQ or P*EQ models 

described in 3SR-648),* equations of state of the isolated 

rock and water components, and initial volume fractions of 

rock, water and air-filled pores.  For cases in which experi- 

mental data are unavailable, a simple crushup model is 

employed requiring the crushup pressure, sound speed, and 

elastic crush limit, as the only additional inputs to be 

At the time of writing TAMEOS has been used only with tables 
generated with the PEQ model, but may be readily used with 
other pressure-equilibrium models. 



specified.  Ii experimental data are available, the crushup 

curve can be directly incorporated into the TAMEOS subroutine. 

The TAMHOS subroutine has bem incorporated into the 

single continuum SKIPPER code and a series of spherical cal- 

culations made using the PEQ model for a representative tuff 

with varied degrees of water saturation of the pore space. 

An 8-kT nuclear source is simulated by a y = i-4 gas in a 

cavity of initial radius of 3.72 m in these material property 

sensitivity calculation..  On Appendix B the results of 

several spherical calculations for a 1000-lb high explosive 

energy source of interest to the NTS underground test pro- 

gram are also presented.] 

Section III describes the basic theory and the asso- 

ciated series of subroutines that have been incorporated into 

SKIPPHR for improved ground motion calculations for high- 

shear-strength igneous rocks. .Constitutive laws more 

general than the Mohr-Coulomb model used in much of the earlier 

work are introduced.  In each case, an associated flow rule 

is assumed in developing the flow law and the influence of 

finite deformation is properly treated in the kinematic rela- 

tions. Major emphasis was on the work to generalize, program 

and test the Weidlinger cap model (for Cedar City tonalite1 J) 

in order to arrive at a constitutive equation that covers 

the full range of pressure and strain encountered in nuclear 

shots.  Generalized Mohr-Coulomb constitutive equations were 

also incorporated into SKIPPER as optionr, including one 

without work hardening, one with Isotropie work hardening, 

and one with kinematic work hardening. 

These four modes of the SKIPPER code were exercised in 

a series of material model sensitivity calculations for a 

spherical configuration . These parameter studies for Cedar 

City tonalite are all for the same simulated 8-kT nuclear 

source used in the tuff calculations.  Effects of the strength 



parameters on cavity size, stress at.ter.u.Uon and displacement 

are examined.  Most of the work described in Section III, 

however, concerns comparison of the Hardhat and Piledriver 

ground motion measurements with SKIPPER calculations using 

the generalized cap mode] and the kinematic work hardening 

model,  it is shown that the latter model predicts ground 

motion in much better agreement with field measurements than 

is possible when the cap model is employed. 

A modification of the TINC formulation to more 

realistically treat the devlatoric stresses in the rock 

matrix, and its extension to account for thermodynamic 

effects, is presented in Section IV. The 1-D computer code 

POROUS for computing stress wave effects has been completely 

rewritten to account for the more comprehensive TINC model 

The code now treats spherical as well as planar configurations 

whereas the initial version for solving the TINC equations 

within the mechanical formulation treated only plane waves 

Csee 3SR-267 and 3SR-.648].  Limited calculations using this 

new POROUS code for partially saturated NTS tuff are 
presented. 

The mechanical interaction of a pore fluid with a 

saturated rock matrix as the fluid is driven through the 

geologic mass surrounding a fluid injection well has been 

modeled within the linearized TINC equations. The formulation 

presented in Section V, couples the deformation and diffusion ' 

fields of interest to the problem.  In order to tolva the 

associated set of linearized quasi-static equations, re- 

taining all of the potentially important interaction terms 

a finite-element method of solution was selected.  Available 

2-D finite element computer codes for treating the separate 

elastic and diffusive processes were modified and combined 

into a single code for treating the coupled processes.  This 

2-D fluid-rock interaction code (FRI) is described in 

Section V along with some test calculations. 



In Section VI, the status of the work is summarized 

and suggestions are made for the direction of the effort 

during the next contract period. 

It seems appropriate here to record a number of 

technical publications that have appeared in the open litera- 

ture describing aspects of the work reported in 3SR-267 and 

3SR-648.  Gurtman, Kirsch and Hastings^ *   presented an analy- 

tical equation of state for compressed states of water. 

Morland^ ■■ described the initial version 01 the TING formula- 
ry] 

tion for fluid saturated materials.  Gargl i   presented numeri 

cal results describing wave propagation effects using the 

mechanical TING formulation.  Garg and Kirsch1 J showed that 

the TING framework is general enough to include various 

homogenized composite e-iuations of state Ce'g-» PTEQ, PEO, 
[91 and P*EQ) as special cases.  Horland J presented a finite 

deformation plasticity theory with isotropic work hardening. 

Additional results of the earlier phases of the work have 

also been described in a number of oral presentations at 

technical symposia. 

6 



II.  HOMOGENIZED TREATMENT OF POROUS WET TUFF 

2.1  INTRODUCTION 

One of the most important problem areas in the develop- 

ment of ground motion codes is the treatment of hydrodynamic 

rock/water mixtures.  It has been demonstrated in 3SR-648 

that one may derive various mixture equations of state on 

the basis of a number of "equilibrium" conditions achieved 

behind a snock wave.  A unique set of shock states is speci- 

fied only when a constraint is prescribed for the (shock) 

partitioning of internal energy between the rock and the 

water.  Such a set of states can be obtained if the pressure 

and temperature of the constituents are equal (PTEQ).  If 

there is insufficient time for thermal equilibration, but 

the components are homogenized to the point that they are in 

pressure equilibrium, other shock state specifications may be 

made, such as in the PEQ and P*EQ models discussed in 5SR-648. 

The latter formulations are of great importance, since all 

laboratory (and mo. t field) experiments designed to measure 

ground motion parameters fall w chin the regime of thermal 

nonequilibrium. 

Should analytic expressions for the rock and water 

components' equations of state be available, it is clear 

from the preceding study (3SR-648) that an analytic for- 

mulation of the geologic composite does not result for the 

mixture models commonly utilized.  The situation is further 

complicated by the presence of voids in the mixture.  Hence, 

it should be recognized that the simplification associated 

with modeling the effects of partial water saturation by 

deriving a single hydrodynamic equation of state of the mix- 

ture, will generally require tabular arrays of mixture states 

that must be utilized in place of an analytic expression. 



In the following section we describe a new computa- 

tional tool, called Tabular Arrays of Mixture Equation! of 

i-tate, TAMLÜS.  This routine calculatej homogenized mixture 

states and stores tnem in a tabular array.  The tabJc is 

stored in the computer and individual states are retrieved 

by a rapid table look-up routine.  In ii- simplest form, 

tiie table consists of a rectangular avray of specific volumes 

(VJ and specific internal energies (LJ and the corresponding 

pressure (pj .  To treat irreversible pore crushup for a 

partially saturated rock-water-void mixture a fourth variable 

(a) must be introduced to monitor the current stage of the 

crushup process.  In the work to be described here, the 

homogenized treatment of the porous wet mixtures has first 

been specialized to the PEQ model under the disconnected 

pores postulate fsee SSR-648).  All of the air-filled 

porosity (void space) is presumed to be distributed within 

the rock under this postulate.  The porous rock and water 

components are then considered to be in pressure equilibrium; 

the two components ire assumed to shock to the same states 

as if isolated and to isentropically release witnout any 

heat transfer between them.  This formulation was selected 

for first treatment because of its relative simplicity. 

(Other pressure equilibrium formulations could be tabulated 

in a similar manner.  It is planned to treat the P*B(J and 

PTEQ models described in 5SR-048.J 

l;or tnis model  a  is defined in terms of the 

rock-water-void volume fractions as follows* 

UJ (5) 
n + n 
(1) 
n 

C2.13 

Alternatively, the crushup parameter could be defined in 
terms of the distention ratio for the mixture 

(1) (2) (5J 
n + n + n 

UM    (U (2) 
I n + n 



where 

(1) 
n  » rock matrix material volume fraction 

(3) 
a  = void volume fraction (air-filled porosity). 

( ^ (1) (2) (3)    \ 
\ n  represents the water volume fraction,  n+n+n =   l) 

Mixture states must be calculated for each a > 1.  Hence, 

this irreversible crushup regime requires a three-dimen- 

sional table (V, E, and  a) to specify  p. 

As in the case of a porous, single component media, 

a suitable expression for  aCp.V) is required to utilize the 

tabular array of states in the incompletely crushed regime. 

In the interest of generality, the crush curve may be speci- 

fically prescribed if enough experimental data were available. 

However, for calculational purposes, a specific form of 

crush curve for the rock component has been developed for 

TAMEOS which incorporate; the key aspects of the physics of 

such processes, and requires a minimum of parameter specifi- 

cations (crush strength, sound speed in poreless material, 

elastic crush regime limit). 

The mixture states have been computed for six mix- 

tures of tuff and water.  The water equation of state in 

3SR-648 has been supplemented to include the high pressure 

regime (p > 200 kbar'    new poreless tuff equation of 

state has been deve »ped  specially for use at shock pressures 

as high as a megabar.  .\1PPER calculations were madi to check 

out the TAMEOS routines and, subsequently, a parametric study 

was conducted to ascertain the effects of varying water and 

void (air-filled) volume content on the ground motion re- 

sulting from 8-kT underground nuclear explosions.  The volume 

fractions of tuff matrix material considered were 0.95 and 

0.8.  Three degrees of water saturation were considered for 

9 



each; all pores empty, hair tue pores filled with water 

(half saturated), and ail pores filled with water (fully 

saturated).  Quantitative comparisons of tnese computer 

calculations are presented which graphically illustrate 

the effect of water saturation during the first 20 msecs 

after the detonation.  Major variations were observed in 

the stress time histories and peak stress levels.  De- 

creasing water content (and therefore higher air-filled 

void content) leads to dramatically lower stress levels, 

delayed wave arrival times, and smaller radial displacements 

10 



2.2  PRESSURE-EQUILIBRIUM MIXTURES 

2.2.1  Void-Free Mixtures 

Equations of state utilized in ground motion codes 

usually are written in the form 

P ■ P(V,E) (2.2) 

Typically, the condition of pressure equilibrium between the 

constituents is assumed, i.e., 

pi(vi> Ei) • Pjlv Ej) (2^ 

where the  i,j  subscripts refer to the ith and jth component. 

Under this condition, a hydrodynamic pressure, p = P., can be 

assigned to the mixture.  Hence, overall characterization of 

the mixture is obtained by taking 

P ■ P(V,E) = Pi(vil Ej = ... (2.4) 

where 

k 

EMiVi (2.5) 
i=l 

k 

' £ M.E. 
i = l 

(2.6) 

and M^^  is the mass fraction of the ith constituent. 

Obviously, this system of equations, (2.4) through (2.6), 

is not determinate.  Given a k component mixture, and a set 

of values of V and E, there are  k+1  equations for  2k 

unknowns (Vi, Ei).  Thus, k-1  additional equations are re- 

quired to fully specify the mixture state. 

11 



In some problems of interest, there may be enough 

time for the constituents to thermally equilibrate (see SSK-648 

for a simplified analysis of this effect).  Under this condi- 

tion, one can close the algebraic loop by requiring the tem- 

perature of each constituent to be equal, 

T . = T . = . . . (2 . 7 J 
i    j 

Of  course,   one  must  also  specify   the   caloric   equations   ol 

state  of  the  constituents; 

■i  =  >^Vi'   Ti) C2.8] 

The pros sure-thermal equilibrium blending recipe (FTHQ) 

given by bqs. (-.4) through (2.S) can be solved with iterative 

computer routines for the simultaneous solution of the set 

of algebraic equations.  Generally, these take considerable 

computer time and in hydrodynamic calculations, the PTEQ 

formulation can most efficiently be utilized by generating 

a tabular array of V, 1. states.  These are used in place 

of an equation of state with a rapid table look-up routine. 

Thermal non-equilibrium mixtures are, conceptually, more 

difficult to model.  The PTEQ formulation can he treated as a 

homogeneous material whose states are uniquely defined.  When 

constituent materials are allowed to be at different tempera- 

tures within the same control volume, the mixture model no 

longer represents a truly homogeneous material (in the thermo- 

dynamic sense) . 

The PEQ and P*i:n models, introduced in 3SR-648 and 

3SR-297, are based on hypotheses concerning the material 

interactions under shock loading.  The mixture Ilugoniot is 

derived on the basis of these assumptions.  Subsequent re- 

lease states are calculated by taking pressure-equilibrium 

12 



mixtures of tii«? release adiabats associated with the shock 

states of each constituent. 

In the PEQ formulation, each constituent is assumed to 

(shock) compress to a state on the Hugoniot of the pure 

material.  Similarly, upon release from a shock state, each 

mixture component releases along the isentropic path of the 

pure material.  Hence the shock and release states are com- 

puted by using the shock pressure, p.,, as a parameter.  Each 

value of p.,  implies specific values of V., E..  These are 

then utilized in Eq. (2.5), (2.6) to calculate V, E of the 

PEQ mix.  Since these values satisfy the Hugoniot relations, 

they imply that certain interactions will occur which result 

in these Hugoniot states. 

Off-Hugoniot states are obtained by calculating the 

components' release isentropes from a given shock pressure 

and imposing pressure equilibrium. Thus, the interactions 

that occurred under the irreversible shock-loading process 

are frozen upon release and each constituent expands isen- 

tropically. 

One may take a different tack, however, and specify 

that interactions occur which result in a mixture Hugoniot 

that differs from the PEQ version.  One such formulation is 

the P*EQ model introduced in 3SR-648.  It is based on the 

assumption that the entropy of the water component is 

determined by a double-shock process and remains at that 

level behind the leading portion of the shock wave.  The 

double-shock results from the impedance mismatch between 

the rock and water. 

As noted in 3SR-648, these P*EQ sets of water and 

tuff states are different than the individual Hugoniots of 

each constituent that are used in the PEQ model. This is 

13 



to bo expected since the interaction model prescribes lower 

values ot" water entropy at a given particle velocity than 

is predicted for pure water.  Once these sets of shock states 

arc known, isentropes of each component passing through a 

given shock pressure may be put into pressure equilibrium 

to construct the mixture release adiabat (as in the PEQ model), 

It is evident that the PEQ and P*EQ models arc very similar 

in concept.  They differ only in how the shock interactions 

are modeled.  Consequently, the mechanics of filling a tabular 

array of states is exactly the same for either mixture model. 

2.2,2  Mixtures with Voids 

Accurate predictions of the response of naturally- 

occurring geologic materials can be made only if the effects 

of the presence of air-filled voids (pores, cracks, etc.) 

are taken into account.  In the case of shock wave propagation 

in these materials, porosity effects are manifest in two 

regimes; pressure levels high enough so that material is 

fully crushed and the lower pressure states wherein the 

voids are not completely removed.  In both regines, shock 

wave propagation is retarded due to the extra energy required 

to crush the material.  The extra »hock heating due to 

porosity results in liugoniot curves which are displaced to 

the right of the poreless material liugoniot in the p-V plane 

(see Fig. 2.1).  In the present analysis, the mass contri- 

bution due to the compressed air has been ignored, so the 

excess shock heating is presumed to be immediately available 

to the rock/water mixture. 

The fully crushed regime is readily adapted to the 

homogeneous mixture models discussed in the preceding section. 

All that is required is the specification of a different set 

of constitutive relations to partition the internal energy 

behind the shock wave.  In PTIiQ, this requirement is still 
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state is given in 3SR-648.) 
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taken care of by the assumption of thermal equilibrium. An 

alternative model is the initially porous version of the 

PBQ model (PEQP) introduced in 3SK-648.  It maintains that 

the volume fraction of voids in each of the constituents 

is equal to the void volume fraction of the mixtire. 

Hugoniots for the completely crushed constituents can be 

calculated from their equations of state.  From there on, 

the mixture equation of state calculational procedure is 

identical to that outlined for the PEQ model.* 

The energy partition is directly determined by the 

percentage of original void volume that is assigned to the 

water and tuff matrix components.  Consequently, a snltitude 

of PhQP type mixtures exist, each based on different sharing 

of the void volume fraction.  The disconnected pores postulate 

is utilized as the basic mixture model in this report.  It 

assumes that all voids (air-filled pores) are contained in 

the rock matrix and that the bulk pressure in the distended 

tuff is in equilibrium with the effective pressure of the 

water.  The special advantage of this formulation is that a 

minimum of experimental information is required to charac- 

terize the incompletely crushed regime. 

There is ample evidence that porous geologic materials 

do not actually lose all of their porosity until sufficiently 

high compressions are achieved [e.g., Refs. IQ through 12]. 

the partially saturated rock matrix also may exhibit precursor 

effects which do not appear at higher degrees of water 
* ■  

The derivation of mixture equations of state for initially 
porous materials can also be approached from different van- 
tage points such as that used in developing P*EQ for tuff/ 
water mixtures.  In this instance, the water is presumed to 
undergo two major shock waves as the crush wave propagates 
through the material.  For example, the leading shock 
develops from the initial wave and the secondary shock re- 
sults when the voids pre closed.  In 3SR-648, such a model 
(P*EQP) was introduced to account for these multiple shock 
interactions. 
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saturation. ^•'J  Hence, to account for this behavior, the 

crushing of the partially saturated rock/water composite 

should include an elastic, reversible process at low stress 

levels, followed by a regime wherein plastic, irreversible 

deformation occurs as the matrix collapses.  These are 

complex processes which are not well understood. 

A useful model has been suggested for metallic foams 

by Herrmannfl4J that simplifi s discussion of the problom. 

The distension parameter, a, is assumed to be a function of 

stress level, 

a ■ a(p) (2.9) 

and the hydrodynamic stress is computed from the equation of 

state of the matrix material, with the modification that the 

effective specific volume, V/a, be utilized in place of V, 
i.e.. 

■^.0 (2.10) 

Of course,a(p)  is not generally known.  It is only a convenient 

functional representation that ignores any internal energy 

effects.  Herrmann discusses some general forms of a(p)  which 

have been employed to analyze the incomplete crush regime of 

some porous metals.  Qualitatively, these are sketched in 

Fig. 2.2.  The critical parameters in such a model are the 

pressure at which all pores are (irreversibly) removed, p , 

the pressure limit to the elastic, reversible regime, p , 

and the slope of a(p)  at  p = 0.* 

ir 
a (p)  at p = 0  is related to the ratio of the sound 
speed in the porous material to that in the condensed rock 
matrix (see Appendix A). 
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Fig. 2.2--Schematic of Herrmann's model for the 
distension ratio, aCp3. Note that above the 
elastic limit, release from a plastic crush 
state occurs along a prescribed (reversible) 
release path which could result in some void 
recovery Co^ >  aJ'  Release in the elastic 
regime is confined to the loading curve. 
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A review of the tuff crush-up data then available 

was reported in 3SR-648.  A "universal" crush curve for 

tuffs was derived that could "fit" the available crush data 

when adjusted for grain density variations from specimen to 

specimen.  However, the error band in this universal crush law 

law was quite large.  Hence, if experimental crush curves 

are available for a given tuff Or other rock matrix) thty 

should certainly be utilized. 

The S3 universal fit to crush data was functionally 

represented by aCp)  instead of Herrmann's  a(p)  formu- 

lation (where p is the density).  The concept of a crush 

density was easier to apply to the data, since the crush 

pressure varied considerably for the different tuffs.  However 

the framework created by invoking the disconnected pores 

postulate makes it especially convenient to utilize an aCp) 

formulation so as to facilitate the derivation of pressure 

equilibrium rock/water/void mixtures.  Hence, during the past 

year a generalized a(p)  crush curve formulation has been 

developed for the rock matrix which yields similar results to 

the universal description and can be "tuned" to fit available 

experimental information. 

2.2.3  S3 Mixture Crush Model (Disconnected Pores) 

The basic formulation of the pressure equilibrium mix- 

ture with porosity in one component (rock) is redefined in 

terms of equaling the bulk pressure of the porous rock matrix 

to the pressure in the water.  As pointed out in 3SR-648, the 

bulk pressure in an isotropic porous rock component can be 

defined as 

P-Mfl^V C2.11) 

where the subscript  1  denotes the poreless rock component. 
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That is, the bulk stress exerted on a gage is predicted to 

be less than the effective pressure assumed in Herrmann's 

formulation, Eq. (2.10).  Carroll andHolt[l^ recommend 

Eq-, (2.11) in preference to (2.10) for the case that the 

pores are so small that one may consider the rack to be 

homogeneous.  Another argument for this modification can be 

made on the grounds that the sound speeds predicted by 

Eq. (2.11) are physically more meaningful (see discussion 
in Appendix A). 

The algebraic formulation of the disconnected pores 
mixture model is given by 

p = K^ • 0« p
2(v E

2)
= p^ (2.12) 

where 

V =  }\\   + M
2
V

2 C2.13) 

E=ME    +MV (2,14) 

a  = distention ratio of rock, some function   (2.151 
of the hydrostatic pressure 

and the subscripts 1 and 2 denote the poreless rock and 

water com-'tuents respectively. 

It is evident from Eq. (2.11) that a prescription of 

a is all that is required to completley formulate the 

porous mixture equation of state.  This simplification ig- 

nores any modifications to a due to variations in moisture 

content or porosity.  (However, a may be considered as an 

input function and any prescription can be used to calculate 

the states of  a mixture.) 
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In lieu of experimental data for a particular site, a 

simple set of expressions have been developed for the crushing 

of the porous rock constituent.  The plastic crushvregime 

has been modeled by a quadratic expression: 

K-i|(: ' = ' * K-'ll' "  pj^ ) (2.16) 

where 

a 

ae = distension ratio at limit of elastic region 

te 
= pressure at upper limit of elastic region 

Pc = pressure at which voids arc completely removed. 

The quadratic is the simplest formulation which has u = 1 

nd da/dp = 0 at p = pc. Thus, all that is required is 

a specification of the crush pressure and the match points 

for the elastic region (see Fig. 2.3). 

Release from any point in this region occurs with  ö 

fixed to the minimum value achieved during loading.  Hence 

to derive the mixture equation of state, the release 

states are computed for values of  a  in the vicinity 

of the Hugoniot points in the  a > 1  regime (see discussion 

in Section 2.3).  It should be noted that  a(p)  is dependent 

on the direction of the process, and is not a simple, analytic 

function of pressure.  This creates the need for a three- 

dimensional table in this regime, so that with a      specified, 

valid mixture states can be located without confusion.  The 

possible overlap of release states in the p-V plane is 

readily taken into account by this method. 
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Elastic regimes may not exist for all mixtures and 

plastic crushing may begin at p » 0.  In this case, p = 0, 

ae = u   (the initial porosity), and Eq. (2.16) reduces to 

a 
o i* K-MI

1-g-r        t2-i7) 

However, stress wave measurements in porous samples^-^ 

have indicated the presence of some sort of precursor phenomena. 

It is not clear that one can characterize this as an elastic 

response or a strain rate effect.  Recognizing the potential 

need for a model of the elastic regime, to be evaluated in 

other parametric studies, a formulation has been included in 

the TAMEOS routine. 

The elastic regime in the S3 model is limited by a peak 

elastic stress level (as shown in Fig. 2.3).  Below this value, 

loading and unloading takes place along the same  u(p)  curve. 

An exponential expression for  u(p)  in the elastic 

regime was selected because it afforded the widest choice 

of parameters to match to sound speed and bulk modulus data 

while retaining the feature that  |-T^|  ,k >IT—|    .  Tne 6 ydp;p=u  \dp;p-pe 

distention ratio is given by 

a - a )  ,     n p/p^ 

n-l)   ^ / a = a° ^ (%* ^ ' "    'j (Z-18) 

^ - T-^ (2-19) 

where 

o - a e  / Fc   \ 
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This expression is smoothly patched (continuous first deri- 

vative) to the plastic form for u(pj  at p = p , 

The transcendental relation, Eq. (2.19), determines 

the acceptable sets of values for a  and p .  Should r e     re 
sound speed and bulk modulus data be available for the porous 

rock matrix, an additional constraint is put on the values 

of a  and p .  As shown in Appendix A, the two elastic 

crush parameters,  a  and p , are related to the sound speed 

in the matrix at p = 0, 

. 2  _ 

Ccla/dp3n        J 

1 • U     K 

- a2                  0J 
0 

(2.21) 

where K ,  is the bulk modulus, c  is the sound speed of 

the poreless material, and  (da/dpj is the slope of the 

crush curve at zero pressure.  This slope determines the 

degree to which sound waves are slowed in porous materials. 

In a stiff matrix, du/dp = U, c = c .   The relationship be- 

tween the sound speed in the porous matrix, and the elastic 

parameters is obtained by differentiating Eq. (2.18) and sub- 

stituting into (2.21) to arrive at 

c2 

0 

Pc-Pe 
2 »      __ 

en 

a 
(2.22) 
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2.3  TABULAR ARRAYS OF MIXTURE EQUATIONS OF STATE 

A computer routine has been written to generate 

tabular arrays of thermodynamic states of rock-water mixtures. 

The flow chart for this numerical process is given in Fig. 2.4. 

Briefly, let us consider first how a table is constructed for 

a saturated rock-water mixture.  For given equations of state 

of the two materials, the PEQ mixture states are determined 

by the volume fractions of each constituent.  Additionally, 

a set of pressure points in the range of interest and the 

desired mesh fineness for V and B must be specified. 

The table generati'ig program then computes the mixture re- 

lease isentropes from states on the Hugoniot curve.  Based 

on these isentropes, the program calculates p-V-E states for 

values of V and E which are suitable for the table look- 

up routine incorporated in TAMEOS.  The resulting set of 

pressure points, along with the information on the V and 

E meshes, comprises the table for the specified (non-porous) 

mixture in the given range of pressures.  Other states in 

this region are then computed in TAMEOS by interpolation. 

If ga--filled pores are present in a given mixture 

(a = afl > 1), then a separate p-V-E table is constructed for 

each a at specified mesh intervals in the range [1, a ] 

For each a there is a unique pressure point on the porous 

rock Hugoniot given by the solution to 

E-E.-N^,E')^ P.(^-E..)I!V)  (2-") 

where 

p - P(V , E   , equation of (2.24) 
1   *'   state for 

poreless rock 
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and 

a ■ a(p) t  p < 

l| P i Pc 

P 

(2.25) 

There is only one isentrope through the Hugoniot at this 

point, and to allow room for interpolation in the table, other 

isentropes are chosen by slightly shifting the specific volume 

to either side of the Hugoniot point and usirg the same pressure. 

A table of p-V-E states is then obtained for each a.  To ob- 

tain the pressure at a given state a-V-E, the two tables 

corresponding to the bracketing values of a are used to com- 

pute a pair of pressures which are then used to interpolate 

for p  at the given  a. 

In most situations, the desired pressure range encom- 

passes both porous and compacted material states.  Separate 

tables must then be constructed for the two regions, the 

value of  a determines which of the tables to use. 

Table Look-Up 

The pressures which comprise a table correspond to 

values of V, E, and  a chosen so that no time consuming 

search is needed vhen performing an interpolation at a given 

state.   Briefly, the scheme consists of picking values for 

the independent variables (V, E, and a)     of the form 
k      Ic  n 

2 + j«2 /2 , where k may be any integer, n any non-negative 

integer, and 0 ^ j < 2n.  By varying n one can control the 

spacing of the grid;  k and  j  determine not only the values 

but also the indexing of the independent variables.  Full 

advantage is then taken of the binary representation of num- 

bers in the computer to expedite the index calculation as well 

as the actual interpolation for p . The result is an extremely 

fast interpolation with a minimal amount of arithmetic. 
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Application of TAMEOS for Porous Mixtures 

In calculations employing TAMEOS a simplification has 

been introduced for the crush curve, a(p).  Experience has 

demonstrated that to avoid lengthy, time consuming iterations 

for a in the implicit equation,  o ■ai— P (— » E ))» 

one mav reformulate ufp)  as a (fitted) function of V  , y-^J v ' mix* 
along  the Hugoniot,   i.e.. 

[octpj ] II (MVH>)5oR(V«ix) (2-26j 

This reformulation actually simplifies the calculation a 

great deal; given a state (V . , fi • ), the value of a 6        ' 6 v mix' mixJ * 
can be quickly determined and TAMEOS furnishes the (inter- 

polated) pressure for pmix at  (Uj V^, E^^) .  Of course, 

checks are required to deteuuine whether a cell is being 

loaded or undergoing a release process so that a may be 

computed correctly. 
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2-4  CHECK OUT CALCULATIONS WIHI TAMEOS 

A variety of calculations were ronducted to verify the 

projected three-place accuracy of the TAMEOS routine and to 

gain experience in its application to typical ground motion 

calculations.  In this regard, the retrieval time for a value 

for p, given E and V, was determined to be comparable to 

that of typical analytic expressions for equations of state. 

It is difficult to quantify this difference but it appears 

that TAMEOS can be utilized as quickly as any single component 

media equation of state.  Of course, storage of the tabular 
array is required. 

2• 4•!  Equations of State of Constituents — Water and Tuff 

The water equation of state utilized to derive rock/ 

water mixtures equations of state is composed of the original, 

analytic expressions reported in 3SR-648 and a tabular represen 

tation for states with entropies greater than 3.3xl07 ergs/g 0K 

(corresponding to shock pressures higher than 200 kbar).  The 

tabular portion, compiled by Bjork,[l6] is valid up t^ 10 Mbar 

in the vicinity of the llugoniot and treats expansions into 

the gas phase.  In the present calculations, the bulk of 

the mixture states were of peak pressures below 20C kbar, so 

that the water equation of state in 3SR-648 describes most of 

the water states involved in this series. 

A new equation of state for poreless tuff has been 

derived which is based on the Hugoniot curves for saturated 

Rainier Mesa tuff reported by Shipman, et al.^17^  Points 

on the dry, poreless tuff Hugoniot were obtained from this 

data by assuming that the tuff is in pressure equilibrium 

with the water and that the water states are the same as 

those postulated for the pure water constituent.  (Hence, 

these tuff states are those which satisfy the PEQ mixture 
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model,)     At  each pressure, 

I VmW   =  MT VHT(^   +  MW VHWCP3 (2-27) 

30 

where Vj^Cp) is the specific volume of the saturated mixture 

at pressure p on the Hugoniot.  VHT(p)  and V^Cp) are the 

specific volumes of the tuff and water constituents at the same 
shock pressure. 

It was determined that the WTS  tuff representation 

used in 3SR-648 was not adequate ft these higher shock 

pressures.  A series of shock velocity-particle velocity points 

were computed on the basis of new tuff Hugoniot points ex- 

tracted from high pressure data.  These values riid not lie on 

a straight line but could be fit within the experimental 
accuracy to the form 

U = a + bu + du: 
(2.28) 

where    U    and    u    are  the  shock and particle velocities. 
Thri0

e^rSSi0n  imPlies  a Pressure-density Hugoniot  given ^y i io, iyj 

PH(V)   =   (pon  ^2Ü)[l   -   (l   -  4üa2/r2)1     1    nb  < 1     (2.29) 

PH(V)   =   (pon   X/2u)\l   +  (l   -   4ira2/p)1/2]    ^   >   1     (2, 

where     ~ =   (i   -   v'/V   j    and 

30) 

IT = d^n k 
(2.31) 

A  =   (1-bn)2 - 2adn2 (2.32) 



The two branches of the Hugoniot curve are discussed fully 

in Ref. 18 and 19.  The coefficients in Eq. C2.28) for dr> 

compacted Rainier Mesa tuff are a = 3.50 mm/ysec, b = 0.7047, 

and c = 0.1005 (mm/usec)"'.  Since in compression bn < 1 

the Hugoniot for this tuff will always be represented by 

Eq. C2.27) 

The Hugoniot curves are used as the basis of a p-V-E equa 

tion of state for poreless tuff similar to that adapted by 

Butkovich,L   i.e., a Mie-Gruneisen equation of state with the 

Gruneisen ratio proportional to specific volume. This is written 

P - GoPoE ♦ pH(V) [l - ^ (Vo - v)] C2.33) 

where G p  is the pioduct of the Gruneisen ratio and o a 
density at normal conditions.  It was determined that 

GoPo = 0.732 g/cm3 (2.34) 

provided the best fit to release data.  The solid, grain 

density, p , was assumed to be 2.22 g/cm3. 

2A.2    Check-out Calculations--Planar SKIPPER 

As a test case, the initial volume fractions were se- 

lected to simulate a partially saturated tuff/water mixture; 

CD 
n = 0.70, tuff 

o 

(2) 
n = 0.23, water 

o 

(3) 
n = 0.07, void. 
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The initial distension ratio in the tuff, a, is 1.1 and crush 

pressure was set at Pc = 5 kbar.  It was assumed that the 

mixture had no strength and an elastic crush regime was not 

included a
e = ^, pe = 0, so that a is given by Eq. (2.17) 

Figure 2.5 is a plot of the pressure-volume states 

calculated with the planar SKIPPliR code for a step-pulse of 

PH = 4 kbar followed by a release wave.  The curves in Fig. 2.5 

represent theoretical PEQ Hugoniot and release curves.  For 

the crushup wave, the computed p-V-states are indicated by 

the squares, and the release states are represented by 

circles.  The loading p-V states calculated in SKIPPER are 

seen to lie close to the PEQ Hugoniot.  Release states 

follow an a = constant locus of states as evidenced by 

the calculated points for the 4-kbar release wave. 

Figure 2.6 shows a similar calculation for a 145-kbar 

step pulse (complete crushing).  It is evident that the low 

pressure  (p < pc)  crushing occurs very close to the PEQ 

Hugoniot p-V trace, while the higher pressure loading p-V 

states lie to the right of the Hugoniot as a consequence 

of the extra internal energy contributed by the q-term.  The 

q-term insures that loading is along the Rayleigh line in 

order that the shock heat at pH is correct.  The computed 

release states are indeed seen to be in excellent agreement 

with the theoretical PEQ release adiabat. 

2.4.3 Check-out Calculations--Spherical SKIPPER 

The parametric study to investigate porosity effects 

on wave propagation in tuff was conducted with the spherical 

SKIPPER code.  These calculations are discussed in detail 

in the next section.  As a check on the accuracy of TAMEOS, 

a table for 201 porous dry tuff ( n = 0.80{ n = 0.00, 

n = 0.20) was generated and utilized in an identical cal- 

culation to that made with the analytical equation of state. 
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Fig. 2.5--Pressure-volume states taken from a (planar) 
SKIPPER code check-out calculation using the TAMEOS 
routine in the plastic crush regime.  In this example 
a tuff/water mixture table was generated and used in 
place of an analytic equation of state. 

33 



ISOr 

130 

110 - 

n-V States 

o Crushup Wave 

o Release Wave 

,,—PEQ Release Adiabat      Voids 
\ b  (« " 1» PJI " 145 kbar) 

(1) 
Tuff   n0 = 0,70 

(2) 
Water '110= 0.2 3 

(3) 
Air-Filled  n0 ■ 0.07 

.32  .34  ,36  .38  ,40 .42  ,44  ,46  .48  .50  .52 

Volume (cc/8) 

,54  .56  .58 

Fig. 2.6--Pressure-volume states taken from a 
(planar) SKIPPER code check-out calculation using 
TAMEOS in the completely crushed region (p > p ). 
The shock state computed with TAMEOS was accurate 
to three places in this example. 
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(The crushup parameters were also the same.)  Figure 2.7 is 

a comparison of the stress wave profile computed with the 

analytic and tabular equations of state after 500 cycles. 

The two results are almost identical and well within the 

projected three-place accuracy of the table. 
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Fig.   2.7--Comparison of the  radial   stress  profiles  calculated 
with  the  analytic tuff equation of  state   (Eq.,   2.3?1   and  the 
tabular  array of states  for  a  201  porous  tuff  media with no 
water  present  in the pores.     The  time   is  3.45 msec after 
simulated detonation of an 8-kT  source as  computed with the 
SKIPPER code. 
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2.5  PARAMETRIC STUDIES OF TUFF/WATER MIXTURES 

A series of spherically symmetric one-dimensional 

shock wave propagation problems in tuff/water mixtures were 

conducted using the S3 SKIPPER Lagrangian finite difference 

code.  These calculations were made to evaluate the effects 

of partial and full saturation of the tuff matrix on the 

ground motion associated with an underground detonation of 

8 kT yield.  They also demonstrate the utility of the 

TAMEOS routine in studies of this kind. 

For this series, the spherical SKIPPER grid was 

divided into 400 zones with a maximum radius of 497.7 m. 

Thickness of the first zone was 50 cm.  The calculations 

were carried out to times of 24 msec.  In this time period, 

the peak stress varied from an initial value of 621 kbar 

down to less than 1 kbar. 

Two choices for total pore volume fraction h.e., n + n ) 

were evaluated, one with a total porosity of 20 percent and 

the other with a total porosity of 5 percent.  Water content 

was varied so that the air-filled voids accounted for 1001, 

50°o, and 0%   of the total pore volume.  The mixture equations 

of state were derived from the tuff and water equations of 

state described in Section 2.4.1.  TAMEOS was utilized to 

compute, store, and retrieve the mixture states. 

The plastic crush pressure was set at p =20 kbar. 

Elastic crushing was not considered (a = a ,  p  =0).  The 

deviatoric response of the mixtures was modeled by the simple 

von Mises condition with a constant shear yield strength of 

YQ * 1.0 kbar and a rigidity modulus set at u = 45 kbar: 

s; *s; ♦s; <|YO' C2.35) 

where ai = -p + Si expresses the total principal stress in 

terms of the pressure and deviatoric stress. 
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2.5.1  Source 

The energy source in these tuff/water calculations 

consists of a spherical cavity which contains a gas obeying 

the ideal gas equation of state 

E = fpT (2.36) 

A value of  y = 1.4, corresponding to diatomic gas, was 

utilized. 

Initially, the radius of the cavity is 3.72 meters 

and the internal energy of the gas is 33.5 * lO1' ergs/g, an 

amount of energy equivalent to the yield of 8 kT of high 

explosive.  The flow within the cavity is not calculated. 

Rather, it is assumed that the pressure within the gas. and 

thus the stress acting on the cavity wall, is uniform during 

each time step in the calculation.  Moreover, the gas is 

assumed to undergo an isentropic expansion (or compression) 

i.e. , 

1,(0 ■ ».(srh-) C2.37) 

where  p(t)  and  R(t)  are the cavity pressure and radius, 

respectively.  The initial value of 3.72 m for  R  was 

selected because it approximately represents the volume of 

rock vaporized by an energy release of 8-kT of explosive. 

Initial pressure, p , was 621 kbar. 
o 

2.5.2  Peak Radial Stress 

The variation of peak radial stress with distance from 

the cavity center is shown plotted for the 51 porous tuff 

calculations in Fig. 2.8.  The 201 porosity cases are given 

in Fig. 2.9. 
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At close-in radii, the partially and fully saturated 

matrices undergo slightly higher stress levels than the dry 

matrices.  As the initial wave propagates out to larger radii, 

and the stress falls below pc = 20 kbar, the partially saturated 

matrix peak stress levels are closer to those of the dry porous 

matrix than to those in the saturated material. 

Most significant, peak stresses in the fully saturated 

mixtures are very close to one another despite the big difference 

in porosity.  Note that values from the peak stress curve for 

the fully saturated, 5% porous tuff have been plotted in 

Fig. 2.9, and are very close to the 20%, fully saturated case. 

It is clear from these results that porosity effects 

are most pronounced when the degree of water saturation is 

reduced.  The radial stress wave is more retarded by the 

energy absorption associated with the air-filled voids than 

with the presence of water.  In the 20% porous tuff, this 

results in about a 25-kbar reduction in the peak stress for 

the dry matrix within 8 meters of the cavity center.  At 

larger distances, the partially saturated and dry matrices 

exhibit stress levels relatively far below the fully saturated 

material.  (Roughly speaking, the peak stress is reduced by 

about 70 percent between 30 and 10 kbar.) 

One may conclude, therefore, that the volume fraction 

of air-filled pores is the most influential parameter on the 

peak stress levels. The half-saturated media responds half- 

way between that of the saturated and dry media at high stress 

levels, p > pc, but veers closer to that of the dry material 

at the lower stress levels. 

2.5.3  Cavity Growth 

The cavity radius as a function of time in each calcu- 

lation is presented in Figs. 2.10 and 2.11.  In this time period, 

the cavities grew monotonically.  For each of the two tuff 
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porosity values, cavity growth was maximum for the completely 

dry matrix and minimum for the saturated tuff.  Approximately 

5 percent bigger cavity radius was produced in the S%   porous 

tuff  (Fig. 2.10), while a 101 larger cavity fradii) were ob- 

served for the 20%  porous tuff matrices (Fig. 2.11). 

These results arc to be expected since Mie higher 

percentage of air-filled voids leads to greater crushing of 

the matrix at the high stress levels.  One could anticipate 

a non-linear relation between relative cavity wall displacement 

and porosity due to spherical geometry effects. 

Once again it may be observed that the single most 

important parameter is  h , the volume fraction of air-filled 

voids.  The cavity radius for the saturated St porous tuff 

media is plotted for comparison to the 20" porous result in 

Fig. 2.11.  There is very little difference between these two 

curves and it is insignificant in COIRparlSOn to the effect 

due to increases in the void content ui   the media. 

2.5.4  Stress vs Time Profile at R 40 m 

li is at radial distances much greater than the cavity 

radius that the largest relative d   ;rences occur in the 

stress'tin.e histories of the vario'u.; matrices.  Fig. 2.12 is 

a plot of radial stress as a function of time at the 40-m 

station for the SI porous tuff matrix.  The stress levels 

at this location were below the crush pressure of p = 20 kbar, 

hence the crush process is incomplete in all cases. 

The stress wave in the fully saturated mixture travels 

quicker and reaches the 40 m location 0.7 msec prior to the 

crush wave associated with the two matrices with voids. 

Apparently, the low degree of porosity leads to insignificant 

differences in shock arrival time for the laLter two examples. 
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Clearly, the effects of increased void content are 

evident in the reduced peak stress and slower rise times 

of the stress wave.  ^terestingly, after the first 4 msec 

following wave arri   in the saturated media, it is diffi- 

cult to discern significant differences in the stress levels 

of the three different matrices. 

In Fig. 2.13 is the analogous stress time history plot 

for the higher porosity tuff matrix calculations.  The effects 

noted for the 5% porous case are more evident for a 20% poro- 

sity. The wave is more effectively attenuated by the matrices 

with voids, especially the totally dry case.  Once again, be- 

yond a certain time (19 msec), it is difficult to differentiate 

between the three media during the unloading process. 

From these results, it appears that radial stress attenua- 

tion and rise times to the peak during the loading process are 

extremely sensitive to the volume fraction of gas-filled pores. 

The shape of the release curve from the peak stress, however, 

is quite insensitive.  It should also be noted that the fully 

saturated media exhibit similar stress-time histories (see 

Fig. 2.13).  Air-filled porosity accounts for the major 

differences in the shape of the stress-time profiles. 

2.5.5 Ground Motion of Media at R = 40 m 

The attenuated stress waves associated with less 

saturated media lead to much smaller radial displacements. 

This is portrayed in the radial displacement curves in 

Figs. 2.14 and 2.15. Note that the two saturated materials 

exhibit almost identica1 displacement histories (see Fig. 

2.15). This corroborates the main conclusion that differences 

in water content do not radically affect ground motion 

characteristics when the tuff is fully saturated.  Air-filled 
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porosity, however, does dramatically alter the stress wave 

propagation characteristics of tuff and should be carefully 

modeled in ground motion cclculitions.  In Appendix B the 

effect of air-filled porosity is studied for a high-explosive 

energy source buried in tuff.  This effect has also been 

recently studied by BjorlJ21^ and Anderson. f22 »2 3 ] 
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III.     IMPROVLD PREDICTIVE  MbTHODS   FOR GRANITK 

3.1 iNTRODUCTION 

A single constitutive theory that combines the high 

pressure equation of state for rock with a flow law which 

is valid at low pressures and high strains is described in 

this section.  It nas led to a computational scheme suitable 

for calculating spherical explosion phenomena in both the 

near and far r.ield.  The theoretical background for this de- 

velopment, described in detail in a topical report by 

Dienes,^  ^ is summarized in Sections 5.2 and 3.4.  Section 

3.2 presents a theory of finite strain suitable for describ- 

ing large distortions of porous materials.  Section 5.3 lists 

tne equations of motion.  Section 5.4 includes several al- 

ternative models for determining the flow stress in rock 

masses, and a description of the high pressure equation of 

state used.  Also included is an approacn to estimating strain 

rate and temperature effects.  The important considerations made 

in incorporating the theory into the SKIPPER code are described 

in Section 5.5.  Available ground motion measurements for 

underground shots in granite are reviewed in Section 5.0. 

The resilts of several calculations are presented and then 

compared with the underground shot data in Section 5.7.  By 

adjustment of the flow stress it was found possible to cal- 

culate a cavity of the correct size and, for one of the flow 

models studied, the resulting displacement histories are in 

good agreement with measurements.  Specifically, the kinematic 

hardening rule, which models anisotropic hardening, leads to 

a realistic calculation of shot data.  The "cap" model, which 

assumes isotropic hardening, results in a computed behavior 

which does not exhibit the observed overshoot in displace- 

ment, and shows too rapid an attenuation of the shock. 

Kinematic hardening results in lower hysteresis and slower 
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relief waves than Isotropie hardening, and these effects ap 

pear to be sufficient to bring the calculated results into 

better agreement with measurements.  In Section 3.8 the 

results of seven calculations are presented to illustrate 

the sensitivity of ground motion to granite material 

parameters and plasticity models.  Finally, Section 3.9 

discusses the state of the research to date and its rela- 

tion to other approacaes. 
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3.2  FINITE DEFORMATION THEORY 

Definitions of strain can be obtained in a variety of 

ways.  For small deformations, they are generally equivalent, 

but there may be substantial differences at large distortions, 

and it is important in explosion work to select a definition 

which will lead to credible solutions for arbitrarily large 

motions.  Such a definition is obtained if rate of strain is 

defined as the symmetric part of the velocity gradient, which 

in tensor notation is expressed as 

I). 
*J 

= i (u. . + u. . ) (3.1) 

where 

and u- 

u,  denotes the ith component of the velocity vector 

i.J 
its spatial derivative with respect to the coor 

dinate x..  An equivalent definition involves representing 

the velocity gradient as the sum of symmetric and antisymmetric 

parts, 

u. . - D. . + W. . (3.2) 

where W..  is the spin ten'or.  Its ccmponents have the same 

magnitude as those of the vorticity vector.  The tensor, D, 

whose components are  D. has also been termed the rate of 
[26] [251 1^ 

deformation tensor1  J and the stretching. 

In spherical symmetry, the case of current interest, 

the velocity gradient can be written 

D ■ 

9v 0 0 

0 V 

r 0 

0 0 V 

r 

(3.3) 

o J 



where v  is the radial velocity.  To obtain explicit ex- 

pressions for the strain, we may adopt the Lagrangian 

description of the deformation, thereby following particle 

paths.  Then the previous equation reduces to 

Ü   = -^r 57 ' D 
2 2 

(3.4) 

where  rfr .t)  is the radius of a particle initially at r . 
o o 

If the definition of strain for spherically symmetric flow is 

taken to be 

e  =  in  *|- , C   =   In — 
2 2     r 

(3.5) 

it can be readily shown that the relation 

£. . = D. • (3.6) 

between strain rate and the stretching is satisfied.  This 

equation is not satisfied in alternative treatments of finite 

deformation plasticity.  For example, in the approach followed 

by Clifton^  ' the principal strains e-     are defined by 

U. 

whore the U.  are the principal values of the stretch tensor. 

In view of the kinematic identity 

D = l R(U IT1 + U"1 u)RT (3.7) 

given by Truesdell in Ref. 26, the linear definition of strain 

given above is not consistent with Eq. (3.7).  [In flows with- 

out rotation, the rotation matrix R reduces to the identity 

matrix.  This is, of course, the case for the spherical flows 

of interest here.] 
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Although in spherical flows materials may undergo large 

shears, there is no rotation of the elements.  This makes it 

possible to separate the deformation into an elastic and a 

plastic part in a simple way.  In view of the symmetry, the 

stretch tensor has the simple written form 

• 

0 

II = | U      X2     Ü  I (3.8) 

In Ref. 24 it is shown that 

0 0 

As is common in plasticity, it is assumed that the 

strain can be represented as the sum of an elastic and a 

plastic part 

«1 " «I ♦ «J • (3.10) 

Expressing the elastic and plastic parts of the strain as 

logarithms of the corresponding stretches, 

1^ = An A? (3.11) 

ij = In  X? (3.12) 

we find 

X. = X? X? . (3.13) 
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It is shown in Ref. 24 that the rate of change of compression, 

ö, can be expressed in the form 

6 - p/p = iK + E  + e 
2      3 

(3.14) 

Consequently, the compression can be expressed as the sum of 

an elastic anJ a plastic part, as are the individual strains, 
so that 

ofc - 

»p = 

- In 
(*: 

Ac A e\ 

- I -( xP AP AP 
1   2   3 

(3.15) 

(3.16) 

The plastic part of the deformation of a compact material does 

not normally involve a volume change.  Here we will consider the 

matrix of a porous material as compact, and as a result the 

plastic part of the compression can be interpreted as the change 

in void volume.  The void fraction is defined as th-j volume of 

voids per urit volume of material, and can be expressed in 

terms of the plastic stretches by 

f = V-V* = 1 
pm  APAPAP 

(3.17) 

where  Pu  is the initial density of the porous material and 

P™ is the initial density of the matrix portion of the porous 
material. 
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3.3  EQUATIONS OF MOTION 

For the case of point symmetry, which is appropriate 

for spherical explosions, the equations of motion are well 

known.  They are given, for example, by Wilkins^28^ or in 

Ref.24 .  The equation of mass conservation discussed in 

the previous section is equivalent to tne rate form 

p _ 2_v + jiv 
p   r  3r (3.18) 

given by Wilkins in which v  is the radial velocity.  The 

momentum equation is 

pv.-.a!^ (3.19) 

and the energy equation is 

3v 
'r TF + ^F (3.20) 

which is equivalent to the   first  law of tkcrmodynamics. 
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3.4  CONSTITUTIVE EQUATIONS FOR STRAIN HARDENING MATERIALS 

In spite of much experience witn geologic materials, 

the formulation of a general theory suitable for deter- 

mining the response of rock or soil to an arbitrary load 

has received intensive study only recently.  The problem is 

more complex than for metals, in which plastic flow takes 

place at nearly constant shear stress.  In rocks and soils the 

shoar strength varies dramatically with mean stress, and the 

presence of voids, cracks, faults and pore witer further com- 

plicates the material description.  The approach taken In 

this research was to modify plasticity theory to account for 

these complications as they are required.  In many respects 

the theory is conceptually more elaborate than is customary 

in rock mechanics.  The reason for this is that finite strain 

and high energy effects are accounted for, as well as compaction 

and dllatancy.  These effects are believed to be of great 

importance in calculating the consequences of underground 
nuclear explosions. 

The approach to deriving a sufficiently general consti- 

tutive relation to account for all these effects draws on the 

thermodynamic equation of state for the high pressure behavior 

and on rock mechanics for the response at low pressure. 

Several theories for the hardening behavior of rocks were 

studied as alternative approaches.  These theories have in 

common that they provide an equation for the yield surface 

which depends on the history of the deformation.  In all 

cases the flow law of von Mises was used in connection with 

the equation for the yield surface to arrive at a constitutive 

relation.  This relation is completed by using the constraint 

on the stresses that they must lie either on the yield surface 
or in its interior. 
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3-4.1 Equation of State 

In the condensed region it is assumed that tU« equation 
of state has a form similar to that given bv Allen[29^ for 

geologic materials, which expresses the pressure as 

p = F(E,p) = GEp + f(p) (3.21) 

where p designates the matrix density, E designates the 
specific internal energy and 

G = a + 

E n2 a 

+ 1 
n = i?- (3.22) 

In Allen's model, which emphasizes the fit to hi 
data 

gh pressure 

f(p) ■ AM  + Bp2 , „.*.-! (3.23) 

To match the low pressure behavior, where porosity 

introduces a softening effect, Sandier and Dinaggio[30] u 
a variable bulk modulus 

se 

( 

3 J \ A = A | i - aoe 
0 l j . (3.24) 

This relation can be put into equivalent form specifying the 

pressure as a function of compression if we observe that 

Ji ^ - 3p and A • |fc .  Then a straightforward integrator 
leads to 

P ■ in a + 
Q 

1 - a |c 
o 

3ß A y 
)e  • •  . (3.25) 
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An equation for  tCP)  which fits both the low and 

high pressure behavior is given by 

f(p) = _1_ inL     ♦ ( l-aje  0 0J + Be2 .       (3.26) 
o 

Here, 6, the matrix compression, is given by Eq. (3.15), the 

superscript being temporarily dropped.  The last term, which 

is quadratic in 9, should be dropped for underdense states 

since it would lead to unrealistic behavior.  In this equa- 

tion, the logarithmic compression, 6, rather than the linear 

compression, P, is now used to allow a treatment compatible 

with finite deformation theory. 

3.4.2 Hardening Models for Roclc Behavior 

In the theory of plasticity it is assumed that a 

definite surface exists in stress space with the property that 

the stresses must lie either on the surface itself or in its 

interior.  For states of stress represented by points inside 

the yield surface, the material is described by the theory of 

elasticity, or possibly a generalization which involves non- 

linear elastic and thermo-elastic effects.  For states of stress 

on the yield surface, the flow is governed by a flow law which 

constrains the stress to lie on the yield surface if tae 

elastic theory would take the stress outside.  The flow law 

of von Mises 

leads to a unique solution in most cases, with A  being an 

undetermined multiplier which is specified by the constraint 
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that 

gCö^) ■ 0 (3.28) 

When the function specifying the constraint is not equivalent 

to the function f appearing in the flow rule, the flow rule 

is said to be non-associated, but only the case where  f = g 

was investigated in the current study. 

The increase ii. shear strength at large strains that 

is observed in most materials can be modeled by letting the 

strength depend on the plastic work, the second invariant of 

plastic strain, or possibly one of the other parameters charac- 

terizing the distortion.  If it is assumed that the flow does 

not depend on the third stress invariant, the yield surface 

has the hydrostat as an axis of symmetry. Models have been 

proposed in which the third invariant plays a role, such as 

the one discuss^1 by Cherry^  ' for rocks and FreudenthalL 

for metals, but in this report the emphasis is on yield 

surfaces symmat.iic about a straight axis.  Three cases are 

treated in the discussions that follow.  In the first, Iso- 

tropie work hardening, the yield surface is a cone which 

expands isotropically as a function of the plastic work done. 

In the secondk the "cap" model, a portion of the yield surface 

is conical, but it is completed by an elliptical cap.  The 

conical portion is fixed, but the cap is free to move, though 

only in such a way that the flow stresses increase in magnitude. 

Finally, a kinematic hardening model is described in which the 

conical yield surface is free to translate in stress space but 

not to deform.  These models are conceptually illustrated in 

Fig. 3.1. 

The stress tensor, a, is given by its component  o^., 

and it is often convenient to write the governing equations 

in terms of the components rather than the stress tensor itself. 
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•  Isotropie Strain Hardening 

-o Movable Cap 

• Yield Surface with Movable Cap 

• Kinematic Hardening 

"0, 

Fig. 3.1  Hardening models. 
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Defining the deviatoric stress by 

•u ■ ^ -J. V3 (3-29) 

where 

J, -"u 
(3.30) 

is the first stress invariant, and the deviator strain by 

e-. = c - c,. 6../3 , C3.31) 

Hooke's law for shear deformation is expressed as 

where  u  is the shear modulus of the material. 

When the shear stress attains a critical value the 

flow becomes inelastic and is then governed by a constitutive 

law of the form 

l?.   -   a6ir  bHj   *   caikakj (3.33) 

where  a, b, and c are usually taken to be functions of the 

stress invariants only.  Higher order terms are not necessary, 

since they can be expressed in terms of the lower order terms, 

according to the Cayley-Hamilton theorem.  The flow lay is 

further restricted if we adopt the form 

In the theory of metal plasticity it is assumed that  e^ - 0. 

a condition that we shall call isochoric plasticity, but in 

an investigation of the stability of soil masses by Drucker 

and Prager[33] this constraint was lifted.  In their analysis 
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the yield surface was given by 

£ =yf^ -   iUJ   = 0 (3.35) 

where 

,   1 
I ' I Sij sij (3.36) 

is the second invariant, and the Mohr-Coulomb flow condition 

8:J
'I
)
 

= Y ' aJ1 (3.37) 

was adopted, with Y the yield stress in simple shear. 

Substitution of the expression given above for f leads to 
the constitutive equation 

e?. - A 
(~Zg ' g'6ij)  ' C3.38) 

With this result, the rate of change of specific volume 
is given by 

• p 
cii = ■3Ag'- (3.39) 

In the case of a Mohr-Coulomb material 

g' ■ "a (3.40) 

where a is a positive constant, and 

eii " 6Xa   • (3.41) 

It can be shown that A  is always positive, and. consequently 
the flow always exhibits dilatancy in täis case.  The'dilatancy 

is generally greater than observed in tests, and in reality 
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flows in which compaction occurs are also observed.  This 

apparently led nruckerf341  to suggest thac the yield sur- 

face should be completed by a spherical cap, for in that 

case g'    can have either sign.  At high pressures, the sign 

of g'  is positive and compaction is indicated.  At low 

pressure, g'  is negative, implying dilatant behavior.  This 

is the basis for assuming that porous material behavior can 

be described by the methods of plasticity theory. 

Sandier and DiMaggio examined in detail the behavior 

of granite observed by Swanson,f35] and proposed an analytic 

model which is consistent with measurements.  The model is 

recapitulated here, since it represents one of the more 

promising approaches to modeling granite, and it can be 

conveniently generalized.  The yield surface is represented 

in two parts, a fixed "failure surface" given by 

g = Y  + 
c 

i i3 J 

(Y  - Y )e ' 1 
(3.42) 

and a variable cap described by an ellipse tangent to the 

failure surface.  These are illustrated in Fig. 3.2, which 

shows the yield surface in a "reduced stress space".  In this 

space the horizontal axis represents distance along the 

hydrostat and the vertical axis represents the radius of 

the yield surface.  The ellipse tangent to the failure 

surface at J  = J _  is given by 

g2 + 
fac (V4- (3.43) 

where Jc specifies the center of the ellipse, R denotes 

the ratio of major to minor axes and /^ is the length of 

the semi-minor axis.  The condition that the cap and failure 
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ypT 

Compaction 
Fixed Yield 
Surface, 

VJ7= KJJ) 

gc = 0, Cap 

- J. 

Fig. 3.2--Sketch of yield surface with a movable cap 
in a "reduced space space". 
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surface be tangent at their intersection det 

Q: 
ermine J  and 

where 

and 

^c " JlP - R2 gF gp 

Q * l{(l *  R2 gp2) 

gF ' iKp)" ^i1 -a/1^) . 

C3.44) 

(3.45) 

(3.46) 

«F-U- 
6 J c 

= -a 3 Y e ' lh 

T 110 
JiF 

(3.47) 

and JiF is the value of ^  at the point of tangency.  It 

was determined by Sandier and DiMaggio that a good fit to the 

data can be obtained by defining a hardening parameter, <t  bv 

''•(v,c)Jv[tf} (3.48) 

and letting the abscissa of the contact point move accordi 
to the law 

ng 

J r = -WK . 
i r (3.49) 

For the shape parameter they assumed a fit of the fo rm 

B W< 
R = R e 2 

o (3.50) 
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The numerical  valuer  nf  c     J-, 

ceaa. city T0„aute ar;::b
s
u t r ::;nd

fTT,a8s
h

10 ^ 
value of 8  is ,„«.,...,.,..  !  DeIOW-  (The published 

'ITT1'  a faCt0r 0f te" -o lar   ue to an error in transrrin,-  , to0 lar8s *>• 

.«rfci when   '     'h,1"
P lieS »«'^ «"• ^mre 

negatiVe H.^^ ^^ ^ -" '- t. 
-ue of    is ,, M lti'J^.J« ^^ > 0.5. the 

^^l^TV01 unmodi"ed — - *» Ias610  tit,  and in Flo     i  J   *u 
limiting  the Mirl....       , 8" the  result  of "s   I.«B  maximum value  nf     D     „     J • 
sho^n. R    as  dlscuSsed  above  is 

TABLE  3.1 

NUMBRTC« VALUHS OP «P mm. PAmmERS rm CEDAR 

CITV TONALITP  CiVP.V  BY SA.NDLPR AND DDttOGtO 

fRef.   30J 

Y 
0 152 ksi 

- 

a 
i 0.953 

Ro         4.0 

IV 450 

6 
0 0.002 ksi'1 

B 
i 0.0029 ksi'1 

ß
2         0.05 ksi-

1 

U          3300 ksi 

A 
0 7500 ksi 

a 0.7 
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3•4•3 Flow Law for Materials with Hardening 

To put the constitutive equation in a form suitable 
for numerical solution, it is necessary to solve for the 

stress rates explicitly in terms of the currert stress and 

the strain rate, for these are the quantities available in 

the computational scheme.  This is accomplished by writing 

the elastic strain rate as the sum of a deviatoric and an 
Isotropie part 

* e   • e   • e eij = eij " ö V3 • C3.S1) 

The elastic  shear  strain  is  given by Hooke's   law  in  rate 
form 

3ij   =   sij/2lJ (3.52) 

and  the matrix volume  change by 

j-e  ...   3h    * 3h A 
0     " I7~ J

1   + ^T E (3.53) 
i 

where the function  ee = hCJ^E)  represents the equation of 

state of the matrix material in a form in which the compression 

is given as a function of J^,  and the specific internal 
energy, E.  The total strain rate 

' 'S «D 
SIJ   =   eij   +   eij (3.54) 

can then be written 

lij   -ö^-+   X^-   K   +   ^+  ThE  ^^(3. 55) 
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where 

T 1  + 1 3h 
(3.56) 

and 

g 5g • (3.57) 

To complete the solution it is assumed that  A can be 
written in the form 

A = A  + AJ 
i     i 

(3.58) 

with Ai  and A not explicitly dependent on the stress rates 

Then the constitutive equation can be expressed 

aij " Z akk = Aij (3.59) 

where 

and 

^i'+j -\^-M'^H)äii (3.60) 

hj   -   ^|CT* AQ) Sij   -A- a.. (3.61) 

The solution of Eq. (3.59) for the strain rates is 

straightforward, following the usual method for linear simul- 

taneous equations.  For spheri-al explosions, the solution 

is particularly simple, since a  = a  ,' and can be written. 
2 2      3 3 ' 

1 1 

a 
72 

2 2 

A   - 2R 
i i  

 D— 

A   + R 
2 2  

D 

(3.62) 

(3.63) 



where 

R = Z  A   - Z   A (3.64) 
2 2    11       11   2 2 

and 

n = 1 - Z  -22   . (3.65) 
11        22 

To complete the analysis, it is necessary to obtain expressions 

for  A  and A.  This is done by combining the results of 

the preceeding analysis with the equation for the yield sur- 

face, as shown in the sections that follow. 

3.4.4  Calculation of the Multiplier 

The flow law given by Eq. (3.34) leaves an undetermined 

multiplier, A.  In the derivation of the flow law based on 

maximizing the rate of plastic work given by Hill'-3"-' and 

due to von Mises, this  A  appeals as the Lagrangian multi- 

plier that is inevitably introduced in extremum problems 

involving a constraint.  The determination of A  requires 

that the constraint be satisfied, and involves differentiating 

the constraint equation, and comparing witn an appropriate scalar 

equation obtained from the flow law.  An explicit expression 

for  A ha ins the form A  + AJ viu*  obtained in each of 
i     i 

the four cases examined.  In the first, the constraint is 

satisfied in the absence of hardening.  The remaining three 

cases involve hardening models, and are simple work hardening, 

the "cap" model and kinematic hardening. 

3.4.4.1 Multiplier for Materials Without Hardening 

To obtain an expression for the multiplier. A, the 

relation obtained by differentiating the yiela condition, 

f = 0, with respect to time, 

Jl ■ 2gg' J, (3.66) 
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is combined with a reduced form of the flow ]aw obtained by 

multiplying Eq. (3.55) by  oi. , resulting in the expression 

.(^aHgMiHi, 
(3.67) 

which has the form A  + AJ  previously assumed. 

3.4.4.2 Multiplier for Materials with Isotropie 
Hardening  

If the yield surface is assumed to expand isotropically 

as a function of the work, Wp, done against the plastic stresses, 

it is possible to represent the hardening of materials in a 

simple fashion.  It is appropriate to note here that the un- 

loading behavior is not well represented for many materials 

with this model, since the Bauschinger effect is not accounted 

for.  Another limitation is that for materials whose strength 

depends significantly on the mean stress, this model exhibits 

too much dilatancy, but it has the advantage of being simple 

to deal with.  The plastic work is determined by 

pWP "P a-  e^ 

and the yield surface has the equation 

(3.68) 

yT.- «(V wP) • (3.69) 

Differentiating this relation leads to 

^    ^   »    aw? 
C7 70) 
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and from iiq. (3.38), we can show that 

pWP ■ x(g - |f- j\. C3.71) 
i 

The rate of plastic work can be eliminated from these equa- 

tions, and after some straightforward algebraic manipulations 

a form for  A 

(3.72) 

of the required type is obtained. 

3.4.4.3 Multiplier for the Granite Cap Model 

The yield surface for granite formulated by Sandier 

and DiMaggio involves both a fixed portion and a variable 

cap.  The latter is represented by a family of ellipses that 

varies with the hardening parameter, ic, given by Eq. (3.48). 

When the stress lies on the fixed portion of the yield sur- 

face the analysis for flow without hardening discussed in 

Section 3.4.4.1 applies.  On the cap, the strerses satisfy 

the equation 

J  ■ g* CJ ,<) C3.73) 
2      C     1 

where  g  is given by Eq. (3.43).  It is easily shown that 

the plastic flow law of Eq. (3.27) leads to 

2\1/2 
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To determine A the flow equation is operated on with a^. , 

the time derivative of Eq. (3.73) is taken and  tc  is eliminated 

from the reculting equations, leading to the result, 

\  ■ 

/n   +  
Ji    3hW      / J

1    3h gc   9g 

air  gTsg, 
Cg-gc) "/i + T*c?' 

(3.75) 

3.4.4.4 Multiplier for Kinematic Work Hardening 

[371 Prager's original rule1  J for the description of in- 

elastic behavior assumed that the yield surface translates 

in stress space without change of shape as plastic deformation 

proceeds.  This generalizes the bilinear hysteresis model 

sometimes assumed in representing plastic deformation when 

the state of stress is one-dimenjional.  In the current ver- 

sion of the model it is assumed that the translation of the 

yield surface is normal to its axis of symmetry.  It is con- 

ceptually useful to visualize the surface as given by a 

vector in the three-dimensional space of principal stresses. 

In doing this, we may retain the double subscript notation, 

though in principal axes only the diagonal terms are non-zero. 

A point on the axis of symmetry of the yield surface is re- 

presented by 

a- . a. . + t J  6. 
ij   3  i  i.j 

aij 

(3.76) 

represents the displacement of the axis wh>2re  the  term 
and the second term represents the distance along the axis. 

The total stress is given by 

j- 
iJ 

=s.  +a. +  T J     5.. 
ij   ij  I i Ij 

(3.77) 
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with sT. •  representing the distance in stress space from 

the axis of symmetry of the yield surface to the stress 

point.  The yield surface is specified by 

•ft gCJj) ■ 0 C3.78) 

where 

J = 4 s.. s.. = 0 (3.79) 
2 

The crucial physical assumption is that a..  is linearly 

related to the plastic strain rate by 

«^ ■ b e^ (3.80) 

where b  is a hardening parameter and e?.  is the deviatoric 
• n        1J     - 

plastic strain rate.  Since eq-  is a deviator, a-•= 0, im- 

plying that the translation of the yield surface takes place 

normal to its axis of symmetry.  To evaluate X  the flow law, 

Eq. (3.55), is operated on with s"., , and after straight- 

forward manipulations we are lead to the result 

J   .        /n      In       \  .       SJ, 

X   = 

o.  e • * J? 1     P     *     \    * gJi   3g 
3- eii  '  H'ij   '  I 'kk öij/   £ij   * iTth 

(^^^^(a^-bey) L 

(3.81) 

3.4.5 Temperature and Strain Rate Effects 

The magnitude of the flow stress depends on both the 

state of stress and the history of the motion, as discussed 

in the preceding section.  In addition it depends on tempera- 

ture and strain rate.  The justification for treating 
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temperature and strain effects together Ues in the physical 

basis for the strain rate effect, which is simply that when 

the energy of a group of atoms exceeds the activation energy 

some slip takes place through a rearrangement of atoms.  The' 

application of this Arrhenius activation energy concept is 

discussed by Handint38J and Serdengecti and Boozerf39] for 

rocks and applied in detail to metal deformation by Zhurkov 

and Sanfiroval  J and more recently by Samanta.t41^  A com- 

plete justification for the factor on theoretical ground- 

for either rocks or mcta]. has. unfortunately, not been es- 

tablished, but Samanta discusses formulas of the type 

i .  ve «^AH (3.82) 

with v  the "activation volume" and  AH  the "aciivation 

enthalpy" with the parameters depending on the flow.  If we 

identify the "flow stress." a. with the yield stress of the 

earlier sections, then an expression for the yield stress in 

terms of temperature, strain rate and two material constants 
is obtained 

Y/Y  = 1 + cxT An B'/i (3.83) 

in which E; is the second invariant of the deviatoric strain 

rate tensor.  The substitution of VF for e generalizes the 

one-dimensional approximation to multi-dimensional flows  and 

tie constants, a, v and Yo  have to be obtained by experi- 

ments, theoretical arguments, or estimates based on experience 

with other materials.  Some guidance is obtained from the fact 

that  v  is of the order of magnitude of the atomic vibration 

frequency for simple materials, such as aluminum, and a ■ k/AH 

il determined for simple materials by the empirical result that 

the activation enthalpy is very nearly the sublimation energy 

This is the case for the materials investigated by Zhurkov and 
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Sanfirova and by Samanta.  The situation is more complex for 

geologic materials tl an for metals and alloys hut an under- 

standing of some of the simpler examples is helpful.  Strain 

rate effects are important in calculating the effects of 

underground nuclear explosions for two reasons.  First, in 

the near field the temperature is high because of shock 

heating and lowers the strength.  Second, the time scale of 

material motion is generally much longer for nuclear blasts 

than for laboratory tests.  Consequently it seems important 

to estimate, at least roughly, the magnitude of strain rate 

effects and, in the absence of specific data for the ca:,e 

of interest, it is necessary to use an approximate relation- 

ship.  In the granite calculations a value of a of 0.5 x lO-1* 

was used.  This is probably somewhat high, but it was selected 

to irinimize the effect of strength near the cavity at a very 

early time in the development of our techniques.  Experiments 

to determine a realistic value of a would be desirable. 

To use the correction factor  1 + ^T In JE^/V     it is 

necessary to determine the temperature in the course of the 

calculation.  To simplify the calculation, the effect of the 

deviatoric stresses on heating is ignored, and only the 

thermodynamic variables pressure and internal energy are 

accounted for.  This is a good approximation where the tempera- 

ture is high and its influence is significant.  Where the in- 

fluence of the deviatoric stresses is important the temperature 

is low, and it is not essential to make an accurate estimate 

of its deviation from normal. 

A differential equation for temperature can be obtained 

by thermodynamic considerations.  For any internal energy 
nCv,T) 

dE ■ CvdT ♦ (|^) dV . f3.84) 
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Combining with  the   thermodynamic   identity 

(w)T  '  
T(lf)v  "   P ('-SS) 

it   follows  that 

CydT  =  dE   -  (T(|||    ■  pi dV . (3.86) 

A convenient expression for dT can be obtained by using the 

thermodynamic identity 

\mY 
= (lf)v (TT^ (3.87) 

and the definition 

r=v(|f)v (3.88) 

of Gruneisen's ratio, resulting in the expression 

which is used to update the temperature. 

For the form of the equation of state given by Eqs. 

(3.2]) and (3.22) we find 

r = a +  m    b   . (3.90) 

The differentials required in Eq. (3.89) are given in terms 
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of calculated quantities and the time step, dt, by 

dH = [Kr^Si + 2foa2"q)s2]
dt/p C3-91) 

dV = (a  + 2o  )dt/p 
x  11      2 2' 

(3.92) 

where q represents a viscous stress (artificial viscosity). 

These equations, together with the previous equation for dT, 

are continuously used in the computer program to update 

temperature. 
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3.5 SI-T-UP OF SPHERICAL EXPLOSION CALCULATIONS IM GRANITE 

A number of calculations were carried out to determine 

how well the theoretical framework described in the previous 

sections predicts the observe.! motion of granite.  A yield of 

1 kT was selected for these runs, and in comparing with nuclear 

shot data the yield is scaled down to 1 kT by the standard 

"cube-root" scaling law.  The initial cavity radius has been 

varied, but in the calculations cited here, it was held at 

1.5 meters, which gives a volume that is realistic for medium 
yield shots. 

The source was represented by a polytropic gas law 

with an index  > = 4/5.  This value was selected as being 

representative since it is exact for pure radiation, which 

governs for very high yields at early times,and also for a  v 

tri-atomic gas without internal degrees of freedom.  Since 

the cavity contains large amounts of water and silicon dioxide, 

it was felc that the real values night not vary significantly 

from 4/3.  Studies by Allen and I)uff[42l and Ivagner and Louie[4^ 

have indicated that the results are not highly sensitive to the 

value of  Y, but a precise ralculation should allow for ioni- 

zation and other non-ideal features of the cavity gases. 

A source calculation may involve either the expansion 

of thin spherical shells of gas, or it may assume that the shells 

mix as the result of turbulence.  If the mixing is thorough, 

it is a good approximation to represent the source as a uni- 

form sphere expanding adiabatrcally, an. this is the approxi- 

mation adopted in the current study.  In /iew of the difficulty 

of studying mixing in a transient flow theoretically, a descrip- 

tion of the source oehavior will probably require an experimental 

approach.  The discussions by Butkovitch[20'44^ indicate that 

the water content of the rock significantly affects the results, 

but the emphasis in these calculations was on the effect of 

rock strength, and water content was not accounted for. 
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The zoning for the 1-kT problems is illustrated in 

Fig. 3.5.  The computer program was formulated to allow 1000 

zones, but only 350 were required for these calculations. 

The first zone is 50 cm in thickness, and the thickness was 

increased by 1 percent per zone.  The total radius accounted 

for in the calculational prid is 

aN - 1 rm_Y = r + Ar ±- i (3.93) max   o    a  a - l v   -^ 

where a  is the thickness ratio, r  is the initial radius 
o 

of the source regio.i,  Ar  is the width of the first zone, 
o 

and N  is the number of zones. Thi5 radius is 1563 meters 

for the indicated zoning. 

The SKIPPED program uses the standard, Lagrangian 

approach to the calculation of spherical motions described 
rz 81 

by Wilkins.1  J  In addition to the stresses resisting the 

motion described in the preceding sections, an artificial 

viscosity is included in the program which incorporates both 

linear and quadratic terms.  Details are given in the RIP 

report by Fisher, Cecil and Lan^4^ (the SKIPPER code origi- 

nated from the RIP code).  It was found in the course of the 

current study that an improvement in the behavior at the shock 

froa: can be obtained by eliminating only the quadratic term 

in the artificial viscosity 

q = |CQ Au
2 - CLcAujp (3.94: 

where Au  is the velocity change across a zcae, c  is thr 

sound speed and p  is an average density, when the material 

is expanding.  In the usual approa.;n, both terms are dropped 

when material is expanding, buc this leads to an excessively 

non-uniform treatment.  A comparison of the two methods 

is illustrated in Fig. 3.6, which shows that a mild instability 
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in the calculation that occurs lor relatively large values 

of artificial viscosity (C, = 3.2, C, - 1.0) disappears 

when the linear term is retained in the expansion region, 

even though the viscosity was Lowered at the sam«3 time. 
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3.6  UNDERGROUND SHOT DATA 

Before entering into a discussion of the calculated 

results, it seems appropriate to discuss some of the data 

taken from the Hardhat, Shoal and Piledriver shots, since 

these data are the basis for evaluating the validity of the 

calculations.  This is especially true since there is a long 

history of calculations of underground shots with highly 

variable degrees of success.  In analyzing the shot data it 

is observed that the cavity volume per kiloton of yield is 

remarkably consistent between shots.  The data are summarized 

in Table 3.2.  The consistency of the volume per unit yield 

TABLE 3.2 

CRATER RADIUS AND CRATER VOLUME PER TON 
FOR THREE GRANITE SHOTS 

Shot 
Yield, 

Kilotons 

Cavity 
Radius, 
Meters Reference 

Cavity Volume 
Per Unit Yield, 
Cubic Meters 

Per Ton 

Hardhat 

Shoal 

Piledriver 

5.0 

12.5 

61. 

19.2 

25.6 

44.5 

46 

46 

47 

5.80 

5.69 

6.03 

far exceeds the credibility of the individual measurements. 

Though both yield and cavity volume vary by nearly 20%, 

depending on the author and type of measurement, the average 
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cavity volume per unit yield is 5,7 cubic meters per ton 

with a variation of only 4 percent.  For a 1-kT shot, the 

radius would be 11.1 meters. 

[4 7 1 Perret in his discussion of Pilcdriver1 s   and U'erth 
r i o "I 

and Herbst in their discussion of HardhatL  ' have pointed 

out that the late-time displacement can be estimated fiom 

an elementary analysis based on the argument that the mass 

of material inside the sphere with radius  R before the 

shot must equal the mass inside the sphere of radius  R+6 

after the shot, where  5  is the displacement,provided the 

the material does not undergo significant compaction or 

bulking.  It is reasonable for the granite shots cited here 

to assume that the initial cavity volume is negligible.  Th( 

mass equation then takes the form 

i  TI(R+(S)3    -   |     wR^   -=   J  - i 
i TTCR+S)'   -  j    wR;   ■   i TTR

3 (3.95) 

which   reduces,   for     6   <<   R,   to 

6   =   R»/3Ra (3.96) 

where  R-  is the cavity radius.  For the Piledriver shot 

this leads to a value of 1.04 ft for the permanent displace- 

ment at a radius of 1000 ft.  The fit by Borg^49^ to 2b data 

points results in a displacement of Ü.86 feet at this radius, 

a discrepancy of about 201, consistent with the uncertainty 

in displacement, cavity radius and yield.  The need for a 

reliable yardstick such as this in correlating theory and 

shot data is vital, since individual measurements may vary 

by a factor of five from the mean value.  Many of the measure- 

ments of displacement cited by Borg, vary by a factor of ten 

from one another.  Since these authors of granite siiot studies 

agree on the validity of the above displacement formula, it 

seems to provide a good benchmark for testing the validity 
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of calculations.  In view of the uncertainty in measurements, 

it is felt that caution should be exercised in searching for 

a correlation of individual measurements and calculations, 

such as velocity history at a fixed station. 

Displacement history may be one of the more reliable 

indicators.  Since it is an integrated quantity, it washes 

out some spurious details, and the final value can be esti- 

mated from the formula given above.  This eliminates the 

possible effect of slow drift in the traces due to long term 

electrical effects. 

The dynamic overshoot at displacement is very large. 

The peak displacement is compared with the final value in 

Table 3.3, and an overshoot of 350% is apparently typical. 

TABLE 3.3 

DISPLACEMENT OVERSHOOT FOR THREE GRANITE MEASUREMENTS 

Piledriver 
Station 1 
(668 ft) 

Piledriver 
Station 2 
(1543 ft) 

Hardhat 
(457 m) 

Peak Displacement, d 

Final Displacement, d^ 

Overshoot (100 dmax/dj 

65 in. 

13 in. 

4001 

15.5 in. 

9 in. 
(5.2 in.)* 

1721 
(3001)* 

3.8 cm 

1.19 cm 

320% 

It is of considerable interest to explain this overshoot 

quantitatively by theoretical methods, but the constitutive equa- 

tions previously used were not able to model the overshoot and 

late-time displacement in a straightforward fashion  It will be 

shown that, the kinematic hardening model does succeed in providing 

a reasonable theoretical description of the overshoot. 

The 9-in. figure given is questionable, and the alternative 
value, (5.2 in.) based on Borg's fit, is also tabulated for 
comparison. 
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3. 7  COMPARISON OF CALCULATIONS AND I-IHU) DATA 

Three calculations are described In this section winch 

bear on the problem of  how best to model granite.  Two of these 

involve the same material constants, where applicable, and were 

designed to compare the •■cap" and the kinematic hardening models 
In these cases the strength (4.0 kbar, reference valuej was 

ChO! n so that the "cap" model calculation would result in a 

cavity of roughly the right volume.  Details of these calcula- 

tions are supplied in the three sections that follow.  The 

reference value for strength,  Y  , is the strength in the 
formula 

Y  -- Y (l + a T lnJTr/'A 

and represents the strength at T = 0 and J - oo 

3.7.1  Cap Model Calculation 
r rn I 

From previous studies1' J and test runs it was known 

that the parameters given in the original Sandier and DiMaggio 

fit to Cedar City Tonalite would lead to an unreal istically 

small value of cavity radius.  With the premise in mind that 

the cavity radius should come out near to 11.1 meters for a 

one-kiloton shot, as discussed in Section 3.0, the yield 

strength was adjusted to give a realistic cavity volume.  A 

set of parameters that accomplishes this is listed in Table 5.4 

In the table is also included a value for the dilata- 
tional wave speed, 

■ V(K + 4u/3)/p ,  K = A (1-a ) . (3.97) 

The value of a^     was adjusted so that this wave speed would 

be consistent with the 4.8 km/sec value for Hardhat granite 

at zero pressure published by Worth and Herbst.'48^ 
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Parameter 

a 

b 

E 

A tl-a ) 
0      0 

B 

a 

R 
I 

IV 

ß 
2 

u 

TABLE 3.4 

PARAMETERS FOR CAP MODEL CALCULATION 

Value Given 
in Ref. [30], 
English Units 

7500 

0.255 x   IO« pSi 

0.7 

0.002  ksi-1 

152   ksi 

0.953 

0.0029  ksi'1 

4.0 

450 

0.Ü5 

3300  ksi 

12,600   ft/sec 

Value  Civen 
in  Ref.   [3Q] t 

Metric  Units 

Value Used 
in Current 
t'alculation 

517 kbar 

155  kbar 

— — 

0.7 

0.029 kbar"1 

10.45 kbar 

0.953 

0.042 kbar'1 

4.0 

450 

0.724 kbar"1 

0.228 mbar 

4.131 km/sec 

2.68 g/cc 

0.5 

1.3 

•1« * 1012ergs/g 

517 kbar 

316 kbar 

180 kbar 

0.389 

0.029 kbar"1 

4.00 kbar 

0.948 

0.042 kbar"1 

4.0 

450 

0.724 kbar 

0.228 mbar 

4.80 km/sec 

0.5 x 10-^ jeg-1 

- 1 
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For the choice of parameters listed, the calculated 

crater radius is 10.5 meters.  This is close enough to the 

11.1-meter figure of Section 5.6, which was based on shot 

data, to justify a detailed comparison of other measurements 

with calculations.  The main observation resulting from the 

comparison was that the cap model results in a displacement 

history which exhibits virtually no overshoot, whereas the 

test data indicates values of overshoot exceeding 3001.  The 

detailed results of the calculations are deferred to Section 

3.7.3 in which a comparison with both the data and the 

kinematic hardening model is discussed. 

3.7.2  Kinematic Hardening 

The kinematic hardening model discussed in Section 

3.4.4.4 was used as the basis for a one-kiloton calculation 

with the same mechanical parameters as those used in the pre- 

ceding discussion, except that the cap behavior was not 

accounted for.  Hardening due to cap motion was replaced by 

translating the axis of symmetry of ehe yield surface according 

to iiq. (3.76) with displacement given by 

u.. = be1?. (3.98) 

the value for  b  was 100 kilobars.  A slope of 100 kbar 

is shown in Fig. 3.7; which is taken from Ref.35 to illustrate 

granite behavior.  The cavity radius and displacement showed 

substantial overshoot in the calculation, and the final cavity 

radius was smaller than with the cap model of hardening. 

It was estimated that a reduccion in the reference strength 

from 4 to 1.68 kbar would increase the cavity radius to 

11.1 m.  The result of these calculations are included in 

Figs. 3.8 through 3.13. 
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A. Cycled to 1/4 maximum load 
B. Cycled to 1/2 maximum load 
C. Cycled to 3/4 maximum load 
D. Cycled to 1/4 maximum load 
E. Loaded to failure 

•0.020     -0.010 

Kinematic 
Hardening^ V    / 

> -20-    / 

^     -30 

■40 

Isotropie 
Hardening 

/ 
/ 

0.030     0.040 

Shear Strain (e -e ) 
i  i 

/ 

/ 

—  Swansea's Data 

_ Unloading Model 

/ 

Fig. 3.7--Illustration of a stress-strain relation 
taken from Ref.35, showing the Bauschinger effect 
in Cedar City tonalite, and the theoretical model 

for pure shear. 
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Fig. 3.13--Comparison of observed and calculated 
peak velocities for a 1-kT explosion in granite. 
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5.7.5  Conr^ari? ons of Calculations 

The cap mode] can be adjusted to give a realistic 

value of crater size by lowering the value of flow stress from 

the laboratory value of 10.56 kbar to 2.6 kbar at normal 

strain rates.  The maximum, or reference, flow stress is 4.0 

kbar, but the 2.0 kbar value is cited for comparison, since 

this is the value of  V   that would be obtained at normal 

conditions using the strain-rate relation of Eq. (3.85).  (A 

justification for this Is that large masses of rock can be ex- 

pected    Include large cracks and hence a lower mean strength, 

than laboratory samples.  In addition, the presence of water 

in situ can be expected to lower the strength significantly.) 

The time history of crater radius using the cap model, with 

adjusted strength is shown in Fig. 5.8.  The final value of 

crater radius is 10.5 m, whereas the best estimate based on 

averaging Piledriver, ilardhat and Shoal data is 11.1 m.  In 

view of the many uncertain:ies, it did not seem appropriate 

to improve this agreement by adjusting parameters.  In the 

same figure the history of cavity radius is shown for kinematic 

hardening.  The strength is unchanged from the cap model value, 

but the radius is somewhat lowered, and a significant amount 

of overshoot takes place.  To get a computed cavity radius that 

I agrees with the shot data, the reference strength for the 

kinematic hardening calculation was lowered to 1.68 kbar.  It 

can be seen in the figure that the amount of overshoot was 

Significantly increased as a result of this change.  Unfor- 

tunately, as a result of the way the problem was set up (the 

number of zones was limited to 350), it was not possible to 

continue the calculation until the oscillation died out.  It 

seems probable, however, that the final value of cavity radius 

would be near the observed size. 

Comparisons with measured displacements are shown in 

Figs. 5.9, 3.10, and 3.11.  The first tvvo correspond to the 
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ö68- and 1543-foot stations for Piledriver.  TV. displace- 

ment histories given by Perret were scaled to 1 kT, assuming 

a yield of 61 kT and the cube root scaling law to get 

the traces ca1led "observed".  The third comparison with a 

measured displacement history is based on the displacement 

trace reported by Worth and Herbst.  In the first comparison, 

at a scaled radius of 51.9 m, the "cap" model curve approaches 

the value based on the Borg fit, 16 cm, with very little over- 

shoot, the peak amplitude being 18 cm.  The observed peak dis- 

placement, scaled, is 41.5 cm.  Inspection of the figure shows 

that the kinematic hardening model results in a more realistic 

behavior.  The peak overshoot is 50 cm, for Y = 1.68 kbar, 

and the timing is generally like that observed.  At a radius 

of 120 m the conclusions are similar.  The cap model results 

in a peak displacement of 1.90 cm where the measured peak is 

10.1 cm, and it occurs considerably later.  The kinematic 

hardening model gives a peak of 8.3 cm and the timing is also 

roughly similar to that observed.  In interpreting these re- 

sults, it should be borne in mind that there is considerable 

variation in measurement between different instruments at the 

same station.  The difference between the kinematic hardening 

calculation and the observed displacement is not greater than 

ehe difference between records from a velocity pick-up and 

an accelerometer at this station. 

The displacement reported by Worth and Herbst, scaled 

to 1 kT, has a peak value of 2.18 cm where the cap model gives 

a peak value of 0.82 cm, and the peak occurs somewhat early. 

The kinematic hardening model gives a peak value of 1.8 cm 

which occurs only slightly earlier than the observed peak 

value. 

The permanent displacement data is summarized in 

Fig. 3.12, with the experimental points being reduced to 

1 kT by cube root scaling, as before.  The values for Hardhat 
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and Piledriver displacement are taken from Perrefs report 

except for the last Hardhat point, which is taken from Worth 

and Herbst.  The experimental data points generally correlate 

well with Borg's fit and with the theoretical value, R3/3R2, 

except for one Piledriver point which is questionable." The' 

"cap" model predicts more attenuation than is observed, 

whereas the kinematic hardening model gives very nearly the 

correct slope.  Orly the kinematic hardening calculation for 

the reference strength of 4.0 kbar is plotted, since the dis- 

placement had not reached a steady state in the second kine- 

matic hardening calculation. 

Peak velocity data are compared in Fig. 3.13, which is 

taken from Perrefs report and compares data from Piledriver 

Hardhat and Shoal, scaled to 1 kiloton.  Superimposed on the' 

data are the results of a cap model and a kinematic hardening 

model calculation, both for the 4.0 kbar reference strength. 

The cap model calculation lies consistently below the measure- 

ments, whereas the kinematic hardening model is in general 

agreement with the measurements.  The s:oPe of the kinematic 

hardening calculation seems to be a little lower than the 

indicated slope of the measured peak velocities.  Unfortunately 

peak values of velocity for the kinematic hardening model with ' 

reference strength of 1.68 kbar are not available because the 

printing frequency in setting up the calculation was too 
low. 
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3.8  PARAMETRIC STUDIHS OF GRANITE 

A series of spherically symmetric one-dimensional 

shock wave propagation problems in granite was run using 

the SKIPPER finite difference code.  The purpose of these 

calculations was to evaluate the effects on ground motion 

of varying certain material properties.  To run problems 

in which all parameters occurring in the constitutive rela- 

tions are vavied in a controlled manner so that the effect of 

each on wave propagation could be evaluated would be a very 

lengthy task.  Inasmuch as the greatest uncertainty in 

material response models for media affected by an explosion 

in the ground is for stresses in the region below ten kilo- 

bars, variations of strength parameters were investigated. 

Thermodynamic parameters, which would be more important in 

the very Wigh pressure regime, were held constant.  Ideally, 

it would have been desirable to carry the problems to the 

point at which the peak stress levels had attenuated to the 

level of seismic signals and motion had essentially ceased. 

This was done in the calculations for comparison with field 

data (Section 3.7), but was not feasible for the parameter 

studies.  The problems were run tn times of about 20 msec 

and stresses had attenuated to thj order of one kilobar. 

These calculations were sufficient to show the effect of 

varying certain strength parameters on peak stress attenuation 

cavity growth, pulse shape and particle displacement.  The 

strength parameters were chosen in a range that is represen- 

tative of what one might expect to find in granite. 

The source in all but one of the calculations reported 

in this section is the same as used for the material para- 

meter study for tuff reported in Section II.  It consists of 

a spheiical cavity in the material which contains a gas 

obeying a pressure-volume-energy (p,V,E) equation of state 
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given by 

E = DV (3.99) 

The value y  =   1.4  was used.  Initially the radius of the 

cavity is 3.72 meters and the internal energy of the gas is 

33.5 « 10^ ergs, an amount of energy equivalent to the 

yield of 8 kT of high explosive.  The flow wiihin the cavity 

gas is not calculated.  The pressure within the gas, and thus 

the stress acting on the cavity wall, is taken to be uniform 

during each time step in the calculation and is given by 

P(t) 
/ R \ 3Y 

=621 kbaj (3.100) 

where  p(t)  and  R(t) are the cavity pressure and radius 

rerpecitvely at time  t.  The initial value of  3.72 m for 

the cavity was chosen on the basis that it approximately re- 

presents the volume of rock vaporized by an energy release of 

8 kT of explosive.  In one problem the cavity radius was in- 

creased to 8 m to give an order of magnitude increase in the 

volume in which the 8 kT was deposited. 

The p-V-E equation of state used for the rock material 

was the blend between the high pressure and low pressure forms 

described in Section 3.4.1.  The required material constants 

used are those listed below: 

a 

a 

b - 

2.68 g/cc 

0.5 

1.3 

1.6 x lo1' ergs/g 

518 kbar 
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B = 180 kbar 

a = 0.409 
0 

3 ■ 0.029 kbar"1 
o 

Ba = 1.8 x IQ»" ergs/g 

Except for a small chrnge in a  and A  these are the 
0. 0 

same values used for granite in Section 3.7 (Table 3.4). 

A principal stress component  a.  is given by 

oi = -p + Si (3.101) 

where S.  is the associated principal deviatoric stress. 

In the calculations reported in this section, three models 

were used to limit the deviatoric terms and treat the strength 

of the rock material.  These three models are: 

(a)  Simple von Mises 

S2 + S2 + S2 < i Y2 (l - |- ) (3.102) 
i     2    j - 3  o \    Em / 

where Y  is a constant yield strength. 
o 

(b)  Mobr-Coulomb 

s2 ♦ s2 + s- 
-m 

| Y2(p) (l - {M (3.103) 

where Y(p)  is a yield strength which is dependent upon the 

hydrostatic pressure.  In the present work the form of Y(p) 

is taken to be the exponential form 

Y(p) = Y  -  Y  - Y e   1 (3.104) 
0       0      1 ' 

where Y , Y , and ß are constants. 
o   i        i 
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For all cases the rigidity modulus was held constant at 

U  = 228 kbars.  The factor (1 - E/E ) multiplying the Y's rep- 

resents a thermal softening term.  When the internal energy  E 

reaches the melt energy, E^, the Strength vanishes and the 

material can no longer support any dcviatoric stresses. 

(c)  Capped Yield Surface 

The yield surface has the exponential form given by 

Eq. (3.104).  However, it is capped by an ellipse which is 

tangent to the exponential yield surface at their point of 

intersection.  The elliptical cap moves in the Y-p plane* 

according to the amount of plastic work hardening that occurs. 

The point of intersection of the yield surface and the cap, 

the ratio of the major and minor axes of the elliptical cap, 

and the center of the ellipse are functions of a work hardening 

parameter.  The computation of the work hardening parameter, 

K, is described in Section 3.4.2.  The yield surface and cap 

are shown in Fig. 3.4. 
■*  

Some confusion can arise between the p-Y plane and the 
J. vs V^T Plane where Jj  is the first stress total in- 
variant and J2  is the second deviatoric stress invariant. 
Here the following definitions are used: 

* -ki o     +  o     + a 
1      2       3 

I  Y2 E S2 + S2 + S2 

J  -   0      + c  + 

i (s2 + s2 + s2 

Thus,  J 3p  and \fj~    = — 
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'I" ■ ■—... 

After several short test runs to assure that the con- 

stitutive relations described above were functioning satis- 

factorily in the SKIPPER code, a total of seven production runs, 

calculations on granite were carried out to times in excess of 

20 milliseconds.  A description of the plasticity models for 

these runs is summarized in Table 3.5 and the calculational 

results arc presented in Figs. 3.14 through 3.25. 

The asymptotic value approached by the shear yield 

strength in the Mohr-Coulomb model in Run Gl is the same as 

the constant shear strength in the von Mises model in Run G2. 

The Mohr-Coulomb model produces a larger cavity (Fig. 3.14) 

more rapid attenuation of the peak stress for R > 60 m 

(Figs. 3.16, 3.18, 3.20) and greater radial displacement 

(Figs. 3.22, 3.24).  For the von Mises model, tensile hoop 

stresses and tensile radial stresses occur (Fig. 3.20). 

Runs Gl and G4 both employ the Mohr-Coulomb model, but 

the asymptotic shear strength in Run G4 is only half that in 

Run Gl.  The smaller shear strength produces a larger cavity 

(Fig. 3.15), less rapid attenuation for R > 50 m (Figs. 3.17, 

3.19, 3.21) and greater radial displacement (Figs. 3.23, 3.25). 

The effect of introducing a material fracture by setting 

tensile stresses to zero that occur in the von Mises model 

is illustrated by comparing Runs G2 and G3.  This failure 

criterion causes a larger cavity (Fig. 3.14), more rapid attenua- 

tion of the peak stress once the unloading wave from the frac- 

tured region at the tail of the pulse catches up with the 

wave front (Figs. 3.16, 3.18, 3.20), and, apparently, a 

larger final radial displacement (Figs. 3.22, 3.24).  The 

displacement histories also have different shapes since the 

imposition of the failure criterion inhibits rebound (Fig. 
3.24). 
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Fig. 3.16--Peak radial stress vs distance from source for 
Run Gl (Mohr-Coulomb, high strength), Run G2 
(von Mises, without failure) and Run 03 (von Mises, 
with failure). 
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Fig. 3.17--Peak radial stress vs distance from source for 
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(Mohr-Coulomb, low strength), Run G5 (capped 
surface, low strength), Run G6 (Mohr-Coulomb, 
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rhe effect of putting a cap on the Mohr Coulomb 

elliptical yield surface and tntroducing an associated 

'l0K rUle is ^onstrated by comparing Runs r;4 with Run GS 
rhe cap mode] In Run G5 produces a slightly larger cavity 
SiM CFig. 3.IS) , much faster wave 
(l;igs . 3.1". 3. tg .•>. 2 a ni 
displacements (Figs. 3.23 3. 

c attenuation for R - 30 n 

I apparently, smaller radial 

25).  The great difference in 

^;iUatl0n;iri^ -'■—'- tr"tment of void collapse inherent 
n
I
t,U, C;lp Plasticity model, but not in the "oh r-Coulomb 

»Odel as treated in Run G4.  The porosity effect could be 

introduced u. the p-V-b equation Oi state within the dohr- 

COUlomb model .or the von Mises model) and a result closer 

to that obtained by the cap „.odei uouid be obtained. 

Run G6 uses the identical Mohr-Coulomb model used by 

Run G4. but the cavity tn winch the S-kT energy I, initially 

deposited is increased by an order of magnitude so that the 

initial pressure In the gas is reduced from 1.54 mbar to 

60 kbars.  All ground notion quantities are drastically 

reduced, at least for R < 100 m. The gas pressure i. too 
near the value of the shear strength of the granite for the 

results to be insensitive to the choice of the cavity radius. 

Run G7 uses the same Mohr-Coulomb model as Run (;4 
except the hulk modulus is kept constant at the value 

derived from shock wave data rather than permitted to vary 

COntinously with pressure according to Bq. (3.24)   The 

effectively higher bulk modulus produces almost an identical 

C.Vity sr:e (Fig. 3.15), but causes decreased wave attenuaUon 
and higher wave speed at larce distanrp« rci    « T  , , 1     b ^aigc ui stances [Fias. 3.7. 3 IQ \   T\^ 

■' . R ~ 4(,•11 m' tt P^duces a smaller radial displacement 
(Fig. 3.23). but apparently a larger r,dial d t s;)lacement ^ 
distance R = 80.54 m from the source. 
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3•9    DISCUSSION OF RESULTS 

In rormulating the constitutive equations, particular 

attention was given to the definition of strain and strain 

rate.  The current definitions lead to constitutive equations 

consistent with those used by Uilkins and in common use in a 

variety of spherical, Lagrangian codes.  This is accomplished 

by defining the principal strains as the logarithms of the 

principle stretches, and equating the strain rate tensor 

with the symmetric part of the velocity gradient.  Other 

approaches considered lead to mathematical and physical 

difficulties. 

In particular, Morlandr51] expresses the constitutive 

equation through an equation of the form 

U1 = al + ba + co (3.105) 

where U?     is the plastic part of the right stretch tensor. 

If the principal strain is defined as the logarithm of the 

principal stretch, a constitutive equation of this form is 

awkward since it contains the stretch explicit1)-.  Further- 

more, the condition of incomprcssibility 

l       2       3 

becomes difficult to enforce in a calculational scheme 

comparison, a constitutive equation of the form 

if  = al + bo 

which involves the stretching, D, where 

D = i R (u ir1 ♦ u-1 ü) RT 

(3.106) 

By 

(3.107) 

(3.108) 
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is very convenient, since the separation of strain rates 

D = Dp + Dc (3.109) 

follows trivially from the condition for separation of 

strains, e.^ = G.^. + c^.   .     Furthermore, the condition of 

incompressibility of plastic strains 

JP   IP 

AP 

i 

•P 

2      3 

-— + -4=0 (3.1101 

can be enforced by putting 

a = -b tr(c) , (3.1111 

which makes the plastic strain rate proportional to the de- 

viator'c stress. 

In the approach taken by Clifton the principal elastic 
strains are defined by 

ei   Ai 
(3.112) 

and the plastic strain bv 

.? ■ *f - i (3.113) 

and the plastic and elastic stretches are related by 

e iP 
^i ^i ~ ^i ' not   summed on  i . (3.114) 

As in Morland's approach, it is not a simple matter 

to enforce plastic incompressibility on the equations formu- 

lated in this manne-, and the constitutive equations that 
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would result arc quite complicated in their dependence on 

stretch ,"nd strain. 

To recapitulate, it was found that a considerable 

simplification to the constitutive equations for finite 

deformation plasticity could be obtained by defining the 

principal strains as the logarithms of the principle 

stretches.  The strain rate tensor becomes identical with 

the velocity gradient, a result not always obtained with 

previously suggested formulations. 

The constitutive equation is obtained by setting the 

strain rate tensor proportional to the gradient of the plas- 

tic potential.  The right stretch tensor is written as   the 

product of an elastic and a plastic part. 

U = Ue Up (3.115) 

and no restriction is placed upon the plastic volume.  Conse- 

quently, there is a plastic change in volume, and it is iden- 

tified with tue chinge in pore volume.  The change ir. volume 

can be either an increase or a decrease, depending on the 

constitutive equation and the history of the deformation. 

Thus, the kinematics allows for either oulking 01 compaction. 

The computer program and the analysis were formulated 

in such a way as to .How a choice of either no hardening, 

Isotropie hardening as expansion of the yield surface, 

hardening by displacement ol an elliptical cap, or Ai.nematic 

hardening.  Recent studies by Allen, et al.^  ' at S3 and by 
[521   

Maxwell, £t_ al^. l  J at Physics International have indicated 

that the overshoot using the cap model is less than observed 

and this conclusion is consistent with the current results. 

A study by McKay and Godfrey^ *   indicates that in the "tomb- 

stone" studies the attenuaticn of the calculated pulse is more 

rapid than observed.  Both of these deficiencies in the 
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theoretical results can he explained by the absence of a Baus- 

Chinger effect in the Isotropie hardening models.  By account- 

ing for the Bauschinger effect, the velocity of rarefaction 

waves is reduced and the unloading takes place more slowly. 

The velocity pulse at a fixed station is also stretched out 

over a longer time.  This is generally what is required 

to bring the reported calculations into better agreement 
with measurements. 

Although a parameter study using various plasticity 

models was conducted, Section 3.8. our major emphasis has 

been on trying to establish whether the currently use! theories 

are consistent with measurements.  In view of the disappointing 

correlation reported in the references of the preceding para- 

graphs, it seemed worthwhile to make an overall examination 

of the existing data and the material model.  It was con- 

cluded that permanent displacement seems to be the most 

reliable measurement, and good correlations were generally 

found between measurements and the simple formula, 6   =   R3/3R2. 

One Piledriver displacement is a notable exception.  This 

displacement lies a factor of three above the "best fit" by 

Borg.  Its reliability is. however, questionable simply in 

view of the substantial difference between the velocity and 

integrated acceleration measurements at the 1543-ft station, 

reported by Perret.  (Though the two measurements agree quite 

well at early times, they diverge after 0.3 sec real time, 

or 76 msec in the scaled plot of Fig. 3.10.  The accelerometer 

trace would lead to final values of displacement well below 

the best estimates given by Borg, and, in fact, would ulti- 

mately have the wrong sign since the duration of the negative 

velocity phase is indefinitely long.) 

The peak velocity and final displacement predicted by 

the "cap" model are too low.  This can be interpreted as a 

consequence of the excessively high rate of unloading when 
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the Bauschinger effect is not accounted for.  A more realis- 

tic attenuation is predicted with the kinem.tic hardening 

model. 

There remnin a number of specific investigations which 

should be carried through to explain the existing discrepancies 

between calculation and measurement.  Of particular concern 

is the reduction in flow stress by a factor of six that is 

lequired to bring calculations into agreement with shot data. 

The existence of large cracks and pore water are probably 

responsible for this discrepancy.  It would be desirable to 

get quantitative information on this question, and on the 

relative importance of pore water and size effect on strength. 

The effect of material dilatancy has not been examined 

in enough detail.  Dilatancy was considered at one time to be 

one of the main effects causing discrepancy between calculation 

and shot data.  The effect may be important, but as a result 

of the current study, it is believed that dilatancy should 

be considered in conjunction with a model that accounts 

for the Bauschinger effect. 

The lithostatic pressure in the far-field causes the 

cavity to rebound.  In addition, it significantly influences 

the strength.  We have not accounted for either of these 

depth effects in the current calculation. 

Finally, we note that a reasonable model for gross 

fracture due to excessive strain or tensile'stress should be 

added to the simulation.  The treatment of fracture should 

reflect the finite time required for cracks to propagate, and 

for the material to lose its competence.  Such a model has 

not yet been incorporated into the computer programs commonly 

used to calculate underground nuclear explosions, but it is 

felt that the delay in fracturing and the lesidual strength 

would significantly influence the late behavior.  Without a 
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gradual failure model, the naterial would tend to form iso- 

lated shells in the calculation, whereas in practice some 

competence is retained almost everywhere. 
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IV.  THEORY OF INTERACTING CONTINUA 

4.1  INTRODUCTION 

Shock wave propagation in composite materials (e.g., 

fiber reinforced composites, water saturated rocks) is of 

interest to many areas of science and engineering.  Composite 

materials display certain effects (e.g., geometric wave dis- 

persion, internal dissipation) which cannot be adequately 

modeled within the usual restrictions of a homogeneous, Iso- 

tropie media.  The material properties of the various consti- 

tuents, geometrical arrangement and the porosity (or void 

content) all affect the thermo-mechanical response of the 

composite.  Thus, it is necessary to develop an analytical 

model , based on the microstructure of the composite which 

will enable one to evaluate the thermo-mechanical behavior of 

the material under various static and dynamic loading condi- 

tions.  However, the variability in material properties and 

the difficulty of characterizing interfaces make a purely 

microscopic approach somewhat unattractive.  A practical 

ana.1 *"ical model should provide an average description of 

the constituents rather than a detailed thermo-mechanical 

description at each material interface at each instant of 

time.  The theory of interacting continua (TINC) provides 

a means for proceeding directly to the desired macroscopic 

level. 

In SSR-267^1 ^ and 3SR-648,f2 ', this theory was 

introduced to provide a framework for describing the behavior 

of a geologic (dry and partially  saturated tuff) mateiial in 

terms of the isolated behavior of the constituents.  The major 

emphasis therein was placed on developing a mechanical theory 

appropriate for planar stress wave piopagation.  This model 

was incorporated into the planar POROUS code.  Additionally, 

Hugoniot relations were derived for a binary mixture in 
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3SR-648.  During the past year, the prime objective has 

been to develop a thermodynamical theory suitable for wave 

propagation studies in planar or spherical geometry.  After 

outlining the conservation relations in Section 4.2, we dis- 

cuss the various interaction terms in Section 4.3.  The con- 

stitutive relations are given in Section 4.4.  The incorporation 

of the thermodynamical theory into a completely new version of 

POROUS treating both 1-D planar and spherical configurations 

is discussed in Section 4.5.  Finally, in Section 4.6, we 

discuss some material parameter calculations using this code. 

Only limited calculations have been made since the new POROUS 

code is still in its final development stage at the time this 

report is being written. 
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4-2 ^ISi^^^ 

>J (a - I. 2     .,   ,, 11  Partlclcs "f end constituent 

X denotes the Do.ltJo." 0Ug  th0 c"Po=ite where 

"«.<. ^„iV L n«T r rsi>acc fwith r—«- a rrvl     CUIM-^   Jna     t     denotes   fimn       TU 
constituent       iJ     M«       • nic'     The  mass  of 

Partia,  densite     ^ fx t    "Tl '' "^^ '*  "^  "' 

volume of co^osite    3;    ,M        C  t0tal "" |,Cr m" P e     p^,tJ   is  given  by: 

CoO 
p 

Similarly,   the   total   stress   tensor    a 

?aT  of  the   compo5ite  can  he   ZlLlJlT^  ^  *  ^ 

^     associate.  with each  ^^t     ^     " Parti"   ^ ses 

>  o 

a=l C4.2) 

(For a physical explanation of the varion. . 
*— reference is made to a p.^ 

-ntj-^::;-:;;:-;;-^^ 
and 3SR-648).  Kewill„„   ltten f" each  ,  (3SR-267 

forces are hse      Z ^  ^:   (1) '«««•> body 

external «nd  m n l!" " "" 
heat tr"»*' to the UI-lu. (,-ij no mass transfer r>^^   . 

constituents dueto chemical In erct " " T™  lh' 
stress tensors %     are symm   f    ' ^ '^ Partial 

the conservation relations hecor»o- assu.ptions, 
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Continuity 

ffW™        Ca) (a)l 
dV 

r   (a) /• J- dV +    /     p    v.   n.   dS  =  0 

V s 

Momentum 

/ 

(a)     D     v 
p    -In idV 

(4.3) 

Co) (a) (a) 
r/k      P     Vi)dV+   /       P     Vi  Vj   nj 

/(a) /*  (a) 
o^ n. dS + / p ßi dV 

dS 

(4.4) 

Energy: 

/ 
p IK 

(a)   1 (a) (a) dV 

>. .  r(a)/ (a)   , (a") (a)\ 

/• (a)r(a)   , (a) (a) "I (a) 
J      P [ E  + I vj vj J Vi ni dS 
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cr, . yi  n.   äS   - J      q.   n. dS 

/ 

I Caj (a)    (a) I 
iO ß • v ♦ p i|) |dV (4.5) 

where 

(a) 
v 

(a) (a) 
D /l)t = 3/3t +  v • grad 

Ca) v = velocity of material  4 

(a) 
P 

(a) 

(a) 
P B 

(a) 
E 

(a) 
P ^ 

partial density of  V4 
(a) 

(a) 
partial stress tensor for  4 

momentum supply to  T  per unit mass 

of composite due to interaction forces 

fa) 
specific internal energy of  i 

(a) 
energy supply to  4  per unit mass of 

composite due to interaction with the remaining 
a-1 constituents 

normal co the surface S 

(a) 
heat flux vector into  «  from the 

a-1 constituents 
remaining 
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The requirements that the total momentum and energy 

contributions of the internal material interaction forces be 

zero may be written as 

a = 1 

(a) 
p   (?     =   0 (4.6) 

^   (-/(a)   Co)        Co)\ Ca)l 
/     I \ i • v    +    $ ) ' dlv   c^  i = 
a=l 

Ca) 

(4.7) 

The  balance equation  for  intrrnal  energy,     E   , may be  ob 
tained by combining  Eqs.   C4.3},   C4.4),  and   (4,5). 

Aa) ^   /(o)v    r   j /Co)(a)\ j  rCo)(a)(o) 
y p ^_ (E )dv= / ^1 P n )dv + y p E v^ds 

/ 

(a) («) 

"ij Vi.j '■ 
V - 
/ 

(a) 
qj nj dS 

/ 

(a) 
p ♦ dv (4.8) 

In writing down the above conservation relations in the 

TIN'C framework, no reference is made to the actual mean area, 

m , and mean volume,  n , occupied by  6       per unit cross- 

sectional area and volume of the composite.  If the inter- 

action terms and constitutive relations for the composite are 

to be expressed in terms of the behavior of the isolated consti- 

tuents, reference must be made to the actual constituents.  In 
(oue 3SR-267, effective densities,  p  , and effective stress 

fa) 
tensors,  o e, were defined in terms of partial densities 
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and partial stress tensors by the scaled relations: 

p  = n p e (4.9a) 

C«)  Ca)Co) (4>9b) 
o  =  m a 

where 

EC«)  v^» ^a^ 
n  = 2^  m = 1 (4.9c) 

a=l      a=l 

If the composite is isotropic so that each plrme through the 
(a) 

medium intersects the same area fraction of  4 . the area 
\.a) 

and the volume fractions are the same for each "i   . 

Coc)   (a) 
m  =  n (4.10) 

In this case a single scaling function occurs in the relations 

(4.9). 

In the following discussion a ■ 1, 2,   3 will be used 

to designate rock (poreless) , water and voids, respectively. 

The interaction ;erms in the next section are derived for the 
(3) 

case when  n  ^0, i.e., a fully saturated porous solid. 

The applicability of these terms to the unsaturated case is 

discussed in Section 4.4. 
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4 . 3  INTERACTION TF.RMS 

For sake of convenience, we will restrict the discussion 

In this section to plane wave propagation in the x-direction. 

The interaction terms derived herein are, however, also appli- 

cable to spherical wave propagation.  For planar wave propa- 

gation, the conservation relations C4.3), (4.4) and (4.8) may 

be written in the differential form as: 

(a) 
8 P 
Jt 

(a) 
v 

(a) 
3 P 
5x 

(a) 
P 

(a) 
9 v 
9x 

= 0 (4.11) 

(a) 
(a)   3 av 

P 3 + dx 
(4.12) 

Mh^ C<0 ^\        C«) 3^ +  Ca) p l-^+ v -^rr ax -^r+ p ^ (4.13) 

In writing Eq. (4.13), we assumed no heat transfer between con- 

st ituents, 
(a) 
q  : 0 (4.14) 

Our primary interest is in mixtures in which the second 

component is a fluid. 

(2)    (2) 

n 
■p  6. . (4.15a) 

(2)   (2)(2)( 
p  =  n p (4.15b) 

Rewriting Eq. (4.6), we obtain 

(1) 
P ß 

(2) 
p 8 = Pß (4.16) 
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The interaction term, p3, contains both dilatational and 

diffusive parts 

pß - pßd ♦ p^n (4.17) 

To derive an expression for pß, we consider the ordinary 

momentum equation for fluid flow with friction through a variable 

area tube, 

wm.i*™    C2)  Wv (a)  (2) 
1-71- + v -5^-)c - Pon 

+ ■ \|-    (4.18) m p 
' o 

where  -p n denotes the drag experienced by the fluid as it 

flows through the rock.  Combining Eqs. (4.9), (4.10), (4.12), 

(4.1Ö), (4.17) and (4.18), we obtain: 

(2)   C2) 

pß = -P e ijjL. *  p^n (4.19) 

Note that Eq. (4.19) holds only as long as (4.10) is true. 

We will now assume that the diffusive force  p n depends 
, o 

on the two velocity fields in the following manner: 

(2) (1) 
Pon ■ p d \ V - v | (4.20) 

where d has the dimension of the reciprocal of time.  Note 

that d  is rela.ed to Darcy's law (3SR-648) 

(2) 2 

where  y and k denote the kinematic viscosity of the fluid 

and the permeability of the rock, respectively.  For water, y 

is equal to 0.01002 g/sec-cm.  For tuff, k is in the range 

50-10,000 ydarcies (1 darcy = 0.987 lO-8 cm2). 
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1 

It appears worthwhile to note here that (1/d) is a 

measure of the momentum relaxation time, i.e., the time re- 

quired to exchange momentum between the two materials.  In 

numerical computations, this fact can be very important in 

deciding the allowable time steps.  Ideally, the time step 

should be an order of magnitude less than the momentum relaxa- 

tion time, i/d. 

Co) 
♦ .3.1  Interaction Energy Term: p jL 

Provided there is no heat flow between the constituents 
1 q - 0), the requirement that the energy contributions of 

the interaction forces be zero may be written as 

(1) (2) /[!) C2h   ,(1) (2), 
pß\v-v)+p(^+^|=o (4.22) 

(2) 
The internal energy balance relation for  i  can be 

rewritten as: 

n C2) (2) V  (2)   (2) ,\V    (2) (2) 
p W 

D   '--' . ^ 9 v 
3x P * (4.23) 

(2) 
TI^ interaction energy term, p i>   , contains both dilatational, 

D Ij, and diffusive, p to, contributions 

(2)    (2)    (2) 
p ^i  = p '^ , + p i|) (4.24) 

Also, we have 

(2)e   (2) 
F.   5  E (4.25) 

(2) 
To derive an expression for p ^ , we consider the usual internal 
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balance equation for fluid flow with friction 

C2J (2)C2)e ^  (2)   C2)C2)    il) (2) 
a p ~nt n p ' div v  + p ^ (4.26) 

(2) 
where  p ij;s denotes the diffusive energy contribution to the 

fluid as it passes through the rock. 

Now, we have from mass conservation: 

(2)     ^2)e  C2) 

divVe . ' B ng      /pe 

(2)C2) m (2) (2) 
- - D  P  / o  +  

1   n n 

fn~ '   0 XT)     ~lJt~ 
n 

CD 
div v + 

C2)C2) 
n i 

n 

C2)      (2) (2) 
a v    1  D n 
9x   TTf "TTt (1.27) 

Substituting from Eq. (4.27) into Eq. (4.26) and utilizing 

Eqs. (4.22) and (4.24), we obtain 

(2) (2) ^    C2)e U^ ^ (2) 3^| 
P ♦ " P I 9t +  V 77 n (4.28) 

The requirement that the energy contribution of the 

internal interaction forces be zero yields 

(2), 
- P 

(2) 
3 n 
"Tt 

(2) m 9 n  '■ * j 

v 
(1) 

P ♦ 
(1) (2) (2) 

p n( V - V I ♦ p ^ ■ 0 ^4.29) 
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Ci) 
The internal energy contribution p it      can be split up into 
two parts, p $j  and p ^  . 

(1) CD CD 
■■  = D ^d + p ^s 

(4.30) 

We have thus two equations, £4.29) and (4.30), with four un- 
ri)   (2)M  [1}  '(^) 

knowns, p iK , p ^,, p ^ , p ij-1 .  It will now be assumed that 

the dilatation and diffusive contributions must be separately 

equal to zero, i.e.. 

CD   C2) 
P ^. = P 

(2) 
3 n 
St V 

(2) 
5 n 
9x (4.31) 

/(2) (l)v 
;- 'l>c   + p ^, « p nl v - V 1 
CD 
^s 

C2) 
's (4.32) 

/ Cl)    (2) \ 
This assumption is exact for inviscid I p ij; = p ^ = p n = 01 

and incompressible materials ( n 5 constant).  However, in the 

general case, it has to be regarded as a constitutive assumption. 

We still require another constitutive assumption to 
11) (2) 

separately evaluate  4^  and  ip. and  ii     .       Since diffusion is a s        s 
dissipative process, the following inequalities follow: 

(1) 
P ^s i 0 

CD 

(2) 
P i>s 1 0 (4.33) 

We now assume that p iJ;  is zero.  Then rs 

(2) 
P *. 

(2) CD 
= pon( v - v ) > 0 C4.34) 

The last assumption states that the fluid receives all the 

diffusive energy contribution, and is justified by the fact 

that the thermal conductivity of the rock is usually much less 

than that of the fluid [see also Ref. ^4]. 
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A more general procedure for evaluating the various 

interaction terms is outlined in the Appendix. 

4.3.2  Relation to Earl'   Vork 

In previous work C3SR-648) , it was assumed that 

Ccx) 
P * ■P0 V (4.35) 

If one now assumes that the present splitting of p^  lato 
dilatation and diffusive components is valid, then it follows 
from Eq. (4.35) 

CD 
p *- 

C2} 
P ^ 

CD 
P n v 

o 

(2) 
•p n v 

Q 

(4.36) 

(4.37) 

It is easily seem that Eqs. (4.36) and (4.37) cannot possibly 

satisfy inequalities (4.33).  Hence, it is concluded that 

Eqs. (4.36) and (4.37) are invalid.  It may also be verified 

that for the steady case, present expressions for pC^  and 
h   ^reduce to the Eq. (4.351.  ThP nr^cor^ ~ .„_ *._  CD ^ _,_ _„ M.w UH. ^^.JDj, ine present expressions for 

flj P^j are identical wit^ Eqs. (4.36) and (4.37) for 

v = v . pon E 0 and v = 0. Thus, we observe that the 
Hugomot^ana^sis of 3SR-648 remains valid except in the case 

when v ^ v and p^ ^ 0. The results of 3SR-648 may be 

modified in a straightforward manner to include this case as 

well. We will not. however, pursue this question any further 
here. 

The derivation of interaction terms for spherical flow 

is similar to the planar case.  In fact. Eqs. (4.19). (4.28) 

and (4.34) are directly applicable to the spherical case with 

x replaced by the spherical space vaiiable r. 
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4.4  CONSTITUTIVE RELATIONS 

In 3SR-648 mechanical constitutive relations were 

presented for a partially saturated rock under the assumption 

of disconnected voids (voids contained in rock matrix and 

separated from saturated pores).  The major effort this last 

year has been directed towards (1) improving the deviatoric 

stress-strain relations for the rock, (2) including thermal 

effects into constitutive laws, and (3) developing a suitable 

thermal crushup model.  This work is discussed more fully in 

the following subsections. 

4.4.1  Improved Formulation for Deviatoric Stresses 

In the previous TINC work, the following constitutive 

relations were employed for the rock component  4   in the 

elastic regime: 

(1) (1)     (1) 
p + s. (4.38a) 

(1) 
P (4.38b) 

(1) 
Si 

(1)    (1) 
S. =   2  n  \i - > 

, 
(4.38c) 

Here 
(1) (1) 

P 
(1) [,  and  VS'  denote, respectively, the partial 

stress, the partial pressure and the partial deviatoric 

stresses.   A-'s are the partial principal stretches; X     is 

the partial Jacobian of deformation;  n  is the volume frac- 
(1) 

tion of 6   ,     Functional  P  determines the pressure response 
i 
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of the poreless rock; g  is the   shear modulus of the pore- 

less rock. 

For a dry rock, partial quantities correspond to the 

quantities actually measured in a laboratory.  Thus, for 
'(1) 

example,  X  and  X-  are related to the bulk volumetric 

strain, 0, and the bulk principal strains  ^j'5  through 

the relations: 

X = 1 + 0 

X. = 1 + ci (4.39) 

9 ■ c > ♦ e + c 
1      2      3 

We now assume that for the dry rock in the regime of small 

deformations, n  depends only upon the volumetric strain, 

CD CD / ,    \ 
n=  n   l+a0+ae2+... (4.40) 

0  \        1        2 f 

where  a , a , ...  are constants.  Substituting from Eqs. (4.39) 

and (4.4 

follows: 

1     2 
and (4.40) into Eq. (4.38) and neglecting terms of 0(ez), there 

where 

(1)    (1) 
p  ■ - n K  (l+a)  =-Ke (4.41) 

o S        i 

(1)    (1)    (1) 
Si -  Sj = 2 no uU^e.)   - 2^^-^) (4.42) 

K  = bulk modulus of poreless rock 
s ■ 

K = bulk modulus of porous rock 

u  = shear modulus of porous rock 
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liquations (4.41) and (4.42) imply that 

(1) 
n K  (1 + a ) 

o  -s       1 

(1) 
n u 

o  i 

(4.43) 

(4.44) 

It is shown elsewheref55J that relationship (4.43) is 

consistent with the linear theory of elasticity.  However, we 

note here that Eq. (4.44) represents a physically unrealistic 

result.  Most porous rocks exhibit a very small shear modulus 

at low confining pressures.1 b*     Furthermore, the measured values 

of the shear modulus have been found to be path-dependent.^57'58' 

The relationship (4.44) is a consequence of the assumed 

relationship between the effective deformation gradient  p * 

and partial deformation gradient   F . 

(a) 
F ' 
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and 

= A' A  X 
2   3 

(4.46) 

Kquation (4.46) is identically true.  The justification for Eq 

(4.45) is not so clear.  There is little reason to expect 

that  A^s  should be related to  A.'s  through an Isotropie 

relation of the form of Eq. (4.45).  As an example, let us 

consider a bar with a spherical cavity subjected to uniaxial 

loading.  The spherical cavity would deform into an ellip- 

soidal cavity.  However, for Eq. (4.45) to apply the spherical 

cavity must retain its shape. We remark here that Eq. (4.45) 

i". approximately correct for water saturated low strength 

rocks like tuff.  In low strength, high porosity rocks the 

pore pressure is nearly equal fin confined tests) to the 

confining pressure and helps to regain the original pore 

shape.  However, for dry rocks and high strength saturated 

rocks, Eq. (4.45) can lead to gross errors.  Instead we intro- 

duce the following relationship between  F e and  F : 

(a) 

(4.47) 
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where 

5, * €a * C, • 1 (4.48) 

The restriction, Eq. (4.48), on the exponents  £•  is required 

to satisfy Eq. (4.46).  Kith the decomposition relation in 

Eq. (4.47), the deviatoric stress strain relationship, replacing 

Eq . (4.38) , becomes : 

( si   -   lJ!.2li'„{lTfTl  ^l-lTfrl'M      («.«3 
I 

where the repeated subscripts  i  and j  do not imply 

summation. 

Substituting from Eqs. (4.39) and (4.40) into Eqs. (4.49), 

we are led to the following relationship between p  and p : 

(1) 

wp= &f K " £J + tie(ei"ci)i (4-50) 

Equation (4.50) implies a path-dependent relationship between 

M and u . Thus, for example, for uniaxial strain and tri- 

axial tests we have: 

Uniaxial Strain: 

c^O,        e=c=0,        9   =   c, 
12 3 1 

C2   =  C3  =   (1   -   ZJ/2 

CD      I | 
MP =   no M1 + a^-l/2 + 3^/2)) 
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Triaxial   Loading: 

1 2 3 12 

I     =   T     ■   (1   '   r   )/2 
2 3 1 

(1)        j C     ♦   2c, | 
un  =    n     M.{l*a    /   .   F   "   (-1/2  ♦   5C/2) 

r ' 1 2 ' 

The factors ^- will in general depend upon the deformation 

path and may be evaluated if appropriate data are available. 

This could be quite a cumbersome process. 

Fortunately, for geologic composites, only the rock 

matrix can sustain shear stresses, and the partial shear 

stresses for the rock equal the composite shear stresses. 

It is, therefore, unnecessary to calculate- effective shear 

stresses.  Instead, one can directly post'.late a shear law 

of the form: 

(1)   (1) 
Si -  Sj = 2w (Xj - \.) (4.51) 

As was remarked earlier,  u  will in general depend upon the 

deformation path and pore pressure.  We shall presume here 

that such a functional dependence is known from the experi- 

mental data.  Thus, the mechanical TINC constitutive relations 

become Eqs. (4.38a), (4.38b), and (4.51).  The new formulation 

retains the major advantage of the previous work, viz. the 

treatment of porosity as an independent variable.  This is 

quite important in studying the effect of pore pressure. 

The constitutive law for shear stresses, Eq. (4.51), sidesteps 

the difficulties inherent in relating the components of the 

partial deformation gradient to those of the effective defor- 

mation gradient.  It is also to be noted that Eq. (4.51) uti- 

lizes the information which can be readily obtained in the 

laboratory. 
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4.4.2 Thermodynamic Constitutive Laws 

For a thermodynamic theory, we have to develop consti- 
fl) 

tutive laws for rock partial stresses, o^, and fluid partial 

pressure,  p . As noted earlier,  ai may Le decomposed into 

an Isotropie part, - p , and a deviatoric stress, s-» Eq. (4.38) 

We will assume that Eq. (4.SI) for shear holds for the thermal 

case as well.  If necessary, the shear modulus, p , can be 

made to depend upon  E  and  E  as well. For plastic flow, 
we will assume von-Mises' law 

CD2 
S 

i 

(1) CD 
(4.52) 

where Y  denotes the yield stress of the porous rock in 

simple tension or compression.  The yield stress. Y . may 
(1)      (2)      P 

depend upon the two pressures, p  and  p , and the inter- 

nal energies,  E  and  E . We will not, however, attempt 

here to specif/ any particular functional relationships for 
MP and YP' but Wil1 assuiT,'e these t0 be known from the 
experimental data. 

(a) 
The pressure, pa, for  4  constituent in isolation 

is a function of density and internal energy. 

P = P (p, p , E) (4.53) 

Alternately, p  may be regarded as a function of p, p  and 
o 

T (temperature). . Specific functional forms for NTS tuff and 

water are discussed elsewhere in this report. 

Within, the mixture, the isotropic part of the stress 
(a) 

tensor, - p , is, therefore, given by 
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P  = 

aj   /UJ   (a)   (a) \ 
nPa( p e.  p/,  E ) 

(a)  /(a) (a)  (a) (a)  (a)\ 
= n P \ p / n , p / n ,  E 
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This completes our discussion of the thermodynamics except 

insofar as we still need to outline a procedure for determining 

n .  This is considered in the next section. 

4.4.3 Crushup Model 

In 3SR-648, mechanical crushup relations were presented 

for dry and partially saturated tuff.  During the present 

contract period, simpler crushup relations have been developed. 

These are discussed in detail iji Section 2.2.3 of this report. 

However, for the sake of completeness, we will outline the 
model here in TINC notation. 

(l)/(2)For th?3fry pof?ys rock. we have only one unknown, 
n \ n  = 0»nP = 1- n )•  It is useful to define a new 

variable,   p  such that 

al P I  m JJJ (4.55) 
n 

A quadratic relationship is assumed for  cx( p ) : 

/(1)\ /  CD  \2 
a(p ) • 1 ♦ (ao-l)(l - P /PC j 

(1) Cl) 
for  P 1 Pc and SJL-  > o 

/an (i) 
a\ P ) = !    for  p  > pc (4.56) 

On unloading, a is held constant.  Here a      denotes the 

initial value of cx(= 1/ n 1 and pc  is the crushup pressure. 

Thus, the only required inputs for this model are  a  and o . 
o      Fc 
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For the parj^lly s^yr^d roc^ ^5^ has two unknown 

volume fractions,  n  and  n ( n   1- n - n ).  In 3SR-648, two 

postulates concerning pore crushup were introduced.  The pores 

may be considered to be connected such that the water can move 

freely between the pores.  For shock wave studied, however, the 

more appropriate postulate is that of disconnected  pores that 

arc cither completely water saturated or gas filled with no 

water.  In this model the partially saturated rock may be con- 

sidered to be a composite in which the components are water and 

distended rock. 

The disconnected-pores hypothesis will be used here to 

develop the crushup relations (see also 3SR-648). We now de- 

fine x     to be: 

(1) (3)      (2) 
n + n   1 - n a —07— = TTT

- f4-5^ 
n      n 

The crushup relation (4.56) is modified as follows: 

a • 1 ♦ (ao-l) (l-p/pc)
z (4.58) 

where 

(1)    til      m /    (2)\ n 
I 

1- n 

We need an additional relation to complete the algebraic loop 

This is obtained by equating the effective pressures in the 

water and the distended tuff components, i.e., 

(4.60) z ^ - cp)e 
(2)     p 

I -  n 
P 

This completes the description of the crushup model. 
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It is now readily seen that for the disconnected 

pores postulate, the interaction terms derived in Section 

4.3 for the completely saturated rock are directly appli- 

cable to the partially saturated case. 
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4.5 THERMODYNAMIC POROUS CODI- 

A description of the mechanical POROUS code finite 

difference scheme has heen given in 3SR-648; this formu- 

lation did not include thermodynamics, i.e., the effects of 

internal energy on the equations of state of the constituents. 

The finite difference scheme used in the non-thermodynamic 

POROUS code was based on the Lax-Wendroff technique, and 

furthermore was not written in conservation-la\v foim.  The 

thcrmodynamic version of POROUS incorporates the effect of 

internal energy on pressure in the two constituents, uses a 

finite difference scheme based on the so-called "leap-frog" 

technique and is written in conservation-law form, so that 

the masses of the constituents and total energy are exactly 

conserved (except for roundoff error), and, in planar geometry, 

momentum is also conserved.  It is well known that the Lax- 

Wendroff scheme often results in "overshoots" of dependent 

variables, such as pressure and density, at a shock front; the 

use of the "leap-frog" scheme tends to eliminate these over- 

shoots, which can be particularly troublesome in problems 

involving shocks at low stress levels Cseveral kbar or below). 

4.5.1  Conservation Law Equations in Moving Coordinates 

In the POROUS treatment of water-tuff mixtures, only 

the tuff has material strength; hence, it is convenient to 

employ the conservation laws for mass, momentum and energy in a 

coordinate system which moves with the tuff, i.e., coordinates 

which are Lagrangian with respect to the tuff.  In general, 

there will be transport of water from cell to cell, but the 

mass of tuff in a cell remains constant.  In this coordinate 

system, the conservation laws of Section 4.2 appear as follows: 
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Continuity\ 

—        /        p   dV  =   Ü r/i   Ai   ^ dt       •/ (4.61a) 
y 

d        /• f2) /•    C2)/C2)   (1)\ 
JT   y     P dV =   - y       P   ^ v^.-  v. jn.   dS (4.61b) 

V c 

Momentum 

d     fW   CD 
3t y   p    vi dv 

V 

/•CD /• (i) 
y     CTjj   n.   dS  ♦   I   p  ß.   dV 

d      /,C2)(2) 
3T y     P    vi dV 

V 

/•C2) /•    (2) 
y on njds + y p 8i dV 

J. 

V 

/•(2H2)    /(2)    (1)\ 
./     p     vi   I v

j-   v.)  n.   dS 

(4.62a) 

(4.62b) 
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Energy j 

C13/C1)     j Cl)(l] 
/':>( TF   |     M  ,;     +   T    vj   Vj/dV 

y ^j -i ^ as - y qj n. :     dS 

f ( CD CD     an 
y  (p ßj  Vj + p i^ idv 

d y p (E + 
1      C2)(2U 
7      vj   Vj/dV 

(4.63a) 

f (2)      (2) /•(£) 
y     -ij     -i  njäS   -   J    ^   n. dS 

fl   (2)    (2) (2)\ 
y \P ßj   v. + p ^ j dV 

/*(2)/C2) C2H2)W(2)   (l)v 

./ ME +
T 

vj V
JAV 

vi)ni dS (4.63b) 

momen- 

The ordinary time derivative ^—  i <; ncoH 4r> ^-i,^  u /      »«xvakxve, jp, is used m the above equations 

because one is evaluating the time rate of change of mass, 

turn and energy in a cell of nonzero width; the hydrodynamic 

derivative, m,   is appropriate to locally defined dependent 

variables, i.e., variables defined at a point. 
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4.5.2  Finite Difference Hquations 

In this subsection, the numerical scheme for computing 
and updating the dependent variables defined in the previous 

sections is described.  The convention used here defines all 

quantities at integral time steps, tn; this obscures the 

centering of some equations, but has the advantage of identi- 

fying time  tn with cycle number n.  However, the equations 

are not entirely time-centered; such centering would greatly 

increase the length and difficulty of numerical procedures 

especially the pressure iteration.  Since there is only one 

independent component of the Jeviatoric stress tensor in plane 

and spherical geometry (using the appropriate principal axis 

coordinate system),but two in cylindrical geometry, and since 

cylindrical geometry is a case of little interest, the equa- 

tions have been written for only plane (d=l) and spherical 
(d=3) geometry. 

The following is a description of the current scheme 

used for setting up the computational grid, and advancing the 

grid through one computational cycle.  No attempt is made to 

justify the centering or the calling sequence of the equations 

Due to the complexity of the phenomena treated, the only adequate 

test of the numerical method is comparison of computations with 

known solutions.  Variables will be defined as they are encoun- 

tered.  The space centering convention used is:  cell boundaries 

and the tuff and water velocities are defined at integral space- 

points  x- all other quantities are defined at cell centers 

Ul/2.  Note that subscripts in this subsection refer to spatial 

positions, not vector and tensor components as in the previous 
subsection . 

In the SETUP routine  the grid boundary array x.  is set 
together with tuff mass  m. , ,,  water mn^  ^J 

1 + 1/2' *%a'-er mass J*i+l/7t crushup 
parameter  ai + 1/2, and water volume fraction  

CnJ + 1' ".  The 
values of  Xj i + 1/2 ftnd  ^ ^^  are initiali^d ^ unity< 
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The updating of all variables in a computational cycle 

is currently done in the following sequence, which employs a 

velocity boundary condition; a scheme for incorporating a 

stress boundary condition is under development. 

First, the time step  dt 

criterion 

n + 1 
is computed from the 

dt n + 1 min 

where 

{      1*1/2 

dxi+l/2 

dxi+l/2 

ci+i/2 + J    
vi+i

+ vi - vi+r 
vi  ) 

n 
xi + l 

n 
xi • 

N   is the Courant number ( Nn  < 1 
(1)     (2) 

, and  C  and  C 

arc the tuff and water sound speeds.  The time step is 

the minimum value of the indicated quantities over 

all cells in the active grid (i.e., all cells containing 

nonzero stresses) . 

Next, a test is made to determine whether 

(Nn+1 

(4.64) 

(1) v ^n 
Pl-1/2 ^fa x ^x I Pin/2j (4.6S) 

where  I  is the active grid counter and f  is an accuracy 

factor (^ 10'6); if this condition is satisfied, I is advanced 

by one. 

The left-hand boundary of the grid is defined to be 

point l"0.   Using a velocity boundary condition, one specifies 

(^+1 ■ (ll^ - ^W (4.66) 

where  f(t)  is some function of time.  The left-hand grid 
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boundary is then updated: 

n+1   n  ' ^n+1 j^n+1 
x0  = x0 + v0   dt    . (4.67) 

It is assumed that this updating corresponds to a physical 

process in which work is done, so the tuff and water total 

energies, W  and  w , of the first cell are updated 

according to the prescription 

(J.W . Cl)n / n+n*-1 Cl)n+1       +1/Ci)(i)n  (i)n \ 
Wl/2     =     Wl/2   +   fA(X0      ) v0 dt        I Pl/2+  ^I/Z-Sl/Z/   ' 

Wl/2 S/2   +   fAlX0     ) V0 dt        I Pl/2  +     ^1/2/ 

(4.68) 

where  the  area   factor  is   given by 

fA =  1       for      d •  1   , 

(4.69) 
f.   =  4TT     for       d  =   3   , 

(1) (2) 
and      q       and       q      are  the  tuff and water artificial  vis- 

cosities,   defined by 

(oOn Ca)n Ca)n 1        Ccx)n (oOn        \ 
^i + l/2  =     p   1*1/2  d Vi + l/2   (fqd vi + l/2   ■   fi  L,i+l/2/ 

for      dC?|!J1/2   <   0   , (4.70) 

Ca)n Ca)n Ca)n (a) (a) 
*i*l/2  -   -pi?l/2  d  VA/2   tl  Ci + l/2        f0r d VA/2  1 0   • 

(1) 
S       is  the  principal  deviatoric  stress   in  the  tuff. 
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Here,  fq C^ 1.6)  and  f^ 0.25)  are the quadratic and 

linear artificial viscosity coefficients, and 

(a) 
d v. n 

(a) 

1*1/ 
n 

'i + 1 
v. 

n 
(4.71) 

Thus, lineai and quadratic artificial viscosity terms are 

used when a cell is crushing up, hut only the linear term 

is retained when a cell is unloading. 

After the velocity houndary condition is applied, 

the pressure equilibration conditions are applied: 

CiVl   ^n + l   xn+l   ^n+l   tyn*l &**! Pi + l/2'  Pi + l/2' 
xi + l/2'  

ni + l/2'  ClJl/2  and   Cin/i (4.72) 

are computed according to the procedures described in the 

previous subsections.  Also, in the pressure equilibration 

routine, the tuff and water energies are updated by setting 

CD» 
Wi+l/2 ^1/2 + <+l/2 (4.73) 

(2) 
W. 

(2) 

i + 1/2 W. n 
1*1/2 Al 1 + 1/2 

where 

AW ,n 
i + 1/2 

n. 

1    (^n+l + ^n       \/^n + l   C2)n  \ 
^T \Pi + l/2 +  11.1/2/1 ni + l/2 "  ^1/2^ 
+ 1/2 

dtn+l u (C2)n+1 \2/(l)n   (l)n 
dt   l\ ni + l/2/ lvi + l +  ^i" 

l/^^n 
T\ vi+i 

(1) 

^l * 

(2) 
v. 

i 

n (1) 
v 
:•) 

,,n 
i + 1/2 

(4.74) 
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where 

and the volume factor is defined by 

fy = 1   for  d = 1 , 

fv = 4TT/3 for  d = 3 . 

(4.75) 

(4.76) 

Next, intermediate values of the artificial viscositi es 
are calculated as in the formula above, with  C n 

with  Ci+1/2.  Values of p gj  are calculated by 

D 3i  ' fe\ ni + l/2 +  ni-l/2)  I vi  -  V^j 

/2  replaced 

Yn     n 
i*l ' xi-l 

(C2)n+1    (2),     (2)n     (2),   i 

\ pi-i/2 ^ qi-i/2; Pi.i/2; ^.1/2 

w^i : ^^n+i  
ni-l/2 +  ni+l/2 

\   ni+l/2   "     ni-l/2/ 

The  tuff velocities   are  calculated by 

(1Vi    ci)! vi + w 
2 dt n+1 

TTT 
mi-l/2 + mi+l/2 

■I' Mxi)    [pi-i/ 
CD* 

/2   +     ^-1/2 
CD s. n 

i-1/2 

(4.77) 

f^n+l 
Pi+l/2 

a:)* (1^n X /Cl) (1) \   Xn -   x" 

1 

• HW - W4] PCJH (4.7bJ 
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where 

= 0  for  d ■ 1 , 

«d - 1  for  d - 3 . 
(4.79) 

The Fulerian coordinates [cell boundaries) are updated 

according to 

x^1 - x^ ♦ Ci^l dtn (4.80) 

[2] 
The water velocity v  is updated in three steps, a 

procedure necessary for momentum conservation.  The first 

step is 

C2), 
(v!- 

Mt n+1 

mi"l/2   + 
n ~cn 

m n - kkn^ /2 
(2)Ä 

^-1/2 
i + 1/2 

(2) 
^  n 
Pi+l/2 

(2) 

1*1/2/    I fV (xi + l)     -(xi-l) p ßi 

(4.81) 
The second step sweeps over interfaces between "momentum cells" 

and uses the so-called "donor cell" method, which is known to 

yield stable results in hydrodynamic calculations involving 

advection, i.e., transport of matter between cells. At each 

interface between momentum cells, corresponding to x. 
1+1/2* 

the difference between water and tuff velocities at time t. 

is calculated: 
'n 

"'"♦1/2 I   \        1+1       1       Vi+1     
Vi / (4.82) 
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n 
B5 dvifl/2 - 0' momentum Ctll  i  is called the donor cell; 

if dvll + i/2  <  0» tfie donor cell   is momentum cell  i + 1.  Then, 
at each interface  xi+i/T» 

(2) ** 
Vi + 1 

C2)* 
vi + l + TTT 

(2)(2) 

—m  
r       ■'n 
1^1/2    1+3/2 

(2)**   (2) ** 
v i v- 

i T^  m— 
mi-l/2 +  mi+l/2 

ölm v )i + l/2' 

/(2)(2)\* 
6\ m v /i+l/2 

(4.83) 

where 

(2) 
\m v )i+i /2 dt^1 f, [H*i**u\ 

d-i 

(2) 
X   pD VD  dvi+l/2 (4.84) 

where D = i or  i+1, depending on whether momentum cell 

i or  i+1  is the donor cell, and 

n 
PD - 

1   i^n Wn       \ 
7 \ mn-i/2 +   mn+i/2/ 

fv| [7(xn + d)]    " [7(xn-i + xn)j I 

(4.85) 

The water mass in each cell is updated using the 

donor cell method: 

C2)n* 
m. n*l i + l/2 

(2) 
mi+l/2 + 6 

(2) 

^n+l W m =  m. n i-1/2   mi-l/2 

w;. 
(2) r-: 

(4.86) 
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where 

W)[ ■ ^ t^rf'1 n   ,  ii on dvi   , (4.87) 

dv 
c^ - ci!-. (4. 88) 

^ m^ 

fv[(xn+i/2)   ' (xn-i/:) 

Mere 

dv" < o. 

(4.89) 

D ■ i-1/2  if  dvj > Q,  and  n = i + 1/2  if 

A final momentum-conserving correction to the water 
velocity is made using th^ updated water masses: 

(2) 
vi 

n+1 C2) 
v • 

i 

** 

(2) 
mi-l/2 + 

(n) 
m 

mi-l/2 + 
ITT 

i*i/; 
(4.90) 

m. i + 1/2 

Mew intermediate values of the artificial viscosities,, 
C] ^ . i  /-. .    are   Cal rill ntorl    n<;incT    tVi.->    aK^Aro    f/>>.mi.i o    ,.,,• «-u    <.u„        ^..•'n i+l/2» 

are calculated using the above formula with t 

replaced by v^*1 . Next, the cell total energies a 

updated by sweeping ti.rough cell interfaces  x.: 

he 

re 

vi 

Wi+l/2 

CD** 
1-1/2 

(D* 
Wi+l/2 

+ ä 
(1) 

fl) 
IV. i-1/2 

AMv ** 
(W )i ' 

(W)i 

(4.91) 
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where 

(1) 
(* )r - A-1 ^ yri 

I   \Pi-l/2   +    ^-1/2   * bi-l/2   +    Pi+i/2 

CD 
qi+l/2   •     sl*l/2 /    , (4.92) 

»r1 ■ ^(»r1) 
For  tne water   energies, 

d-1 

(2) ,.  ** C2)g| /C2)v** 
Win/2   "     Wi + i/2   +   M W )i      ' 

(2J 
W 

** (2) 
1-1/2 Wi-l/2   "   5(  *    i 

where 

11 (  vi 7\   pi-l/2   +    ^i-i 

+   Wn*i (2)^     ^       (2)A , ) 
Pi + l/2   +     qi + l/2)*    V^/Vg       • 

/2 

(4.93) 

dv n+l        (2)n+i       CD 
i       =     v,- -    v. (4.94) 
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K+i/z' ■ (xn-i/2 ) J- (4.95) 

!crc  n = 1.1/2  if  j .n + 1 
-.  ^ n, n = 1*1/2    if d V; n+1 0 . 

Next in the computational sequence, the  A.  are 

updated and new deviatoric stresses (V     calculated. 

CD, 
n + 1 
1 i+1/2" ni (i)n+1 

"o     pi>l/2 

A2   1*1/2  -   1 

Cd-1)    ; (4.96) 

Al 1*1/2 = Al 1*1/2 * '   f lU n+1 
vi-^l    vi   j 

xn+i   •  xn+1   /' xi+l  xi     / 

n+1 
0   8 

o 
1/2 

2 1+1/2   irrrm—  
n
J   '/n + l  n+l 
o  0i+l/2 *1 £♦ 1/2 

(cl = 3)    . 

(4.97) 

CD« (1) 4u     /   n + 1 

^m'hnn^ i'ilm -Aii+i/2*^i n ' A2 1+1/2) 

(4.98) 

^-1  - (\U „ 
1+1/2 "  Si+l/2  lf 

CD* 
Si+l/2 iiY . 

f^n+l 
äi+l/2 

CD* 
Si+l/2/ 

CD* 
Si+l/2 if 

(4.99) 

CD* 
Si+l/2 

2 
> * Y 
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Finally, corrections are made to the water and tuff energies 
due to interaction terms: 

where 

i*l/2 

i + 1/2 

CD 
IV. 

;** n+1 
i*i/2 * *wT*i/2 

(2) 
IV. 

** ,-,n + l 
1*1/2   *   6Wi + l/2 

(4.100) 

n*l 
*wr*in - -jtn+1 fv[(4:i) - (^r1)' 

\  Pi*l/2 

1  /^n + l 
qi+i/2)nbrrr 

(2) 
(2) 

HXi*2 

4. V 1 

Jn + l\ 
i + 1   / 

n . n*l 
i*l/. 

^T) 
ni-l/2J 

(4.101) 
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4.6  STRLSS PULSE PROPAGATION 

The thermodynamic POROUS code has been exercised in 

the planar option.  Initially, a calculation was run for the 

following input parameters: 

CD  (2) 
v  =  v  = 5 x 10  cm/sec 

1 c 
2.22 g/cc 

p^  = 0.9982 g/rc 
2 0 

dx = 0.02 cm o 

D = M/k = 0.25 x lOVsec 

y  = 50 kbar 
P 

Y  = 5 kbar 

n  = 15 kbar 

CD 
n = 0.8 

(2) 
n = 0.1 

(3) 
n = 0.1 

The results of this calculation arc shown in Figs. 4.1 through 

4.3.  Figure 4.1 shows the particle velocities at t = 3 ysec. 

There is roughly a 109o overshoot in water velocity at the 

shock front.  This result is qualitatively similar to the 
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Fig.   4.1--Particle velocity profiles  in  the 
tuff and water components  at  t  =   3  ysac. 
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and water components at t = 3 psec. 

168 



30 

20 

10 

•Mt 

o L 
o 0., 0.4 0.6 0.8 1.0 

Distance (en) 

Fig. 4.3--Axia] stress profile in the tuff it 
t = 3 psec. 

109 



UK chanical POROUS code calculations reported in 3SR-648. (1)     U,      . , , 
The volume fractions,  n  and  n  are plotted in Fig. 4.2. 

The tuff volume fraction experiences an increase from 0.8 

to approximately (1.908 through the shock front.  The water 

volime fraction changes from 0.1 to 0.092.  An interesting 

phenomenon occurs at the left boundary.  Here the water 

volume fraction drops from 0.092 to roughly 0.083.  This 

results from the advection of water.  At high enough stress 

levels, this can become a serious problem as the water 

volume fraction in the boundary ".ells may approach zero.  We 

are still in the process of making the POROUS code general 

em ugh to handle this problem as well.  In Fig. 4.3, we show 

the axial stress profile, o , at  t = 3 usec.  In contra- 

distinction to the mechanical POROUS code, no overshoots or 

oscillations are observed at the shock front.  This is, of 

course, the result of using a leap-frog type finite difference 

scheme instead of the Lax-Kendroff scheme employed in the 

mechanical POROUS code. 

To evaluate the effect of porosity and water content, 

two additional calculations were run using the following 

initial volume fractions (all otner parameters were kept the 

same as in the above calculation): 

(1) 
(1) 
n 0.9 

(2) 
n 0.0 

(2) 

(3) 
n 

G 

(i: 
n 

0.1 

= 0.9 

(2) 
n = 0.1 

(3) 
n 0.0 

170 



cd 

The stress profiles for all three cases at t = 3 pscc  arc 

plotted in Fig. 4.4.  The dry case (1) results In somewhat 

higher jpesa and(jjve velocUy than the partially sp.turat 

case ( no = 0.8,  n^ - 0.1,  ^ - O.l).  The completely 

saturated case (2) leads to still higher stress and wave 

velocity.  These calculations demonstrate that the major 

effect of void porosity is to lower the stress and wave 

velocity amplitu ies. 

These calculations are of a preliminary nature.  The 

code is presently being modified to include a pressure boundary 

condition.  Also, an attempt is underway to generalize the 

boundary treatment to handle high stress levels.  During the 

near future, the new POROUS code will be exercised in spheri- 

cal geometry as well, and results will be compared with those 

obtained from homogenized models. 
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Fig. 4.4--Comparison of stress profiles at 
t ■ 3 usec for a porous tuff matrix whose 
pore volume is half-saturated, saturated, 
and void of water. 
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V.  ELASTIC FLUID-ROCK INTERACTION AS A MECHANISM 

FOR TRIHGERING EARTHQUAKES 

5.1 THE POTENTIAL FG^ TRIGG1 
ALTERING THE GROUND WAT1 

RING EARTHQUAKES BY 
R CONDITION'S 

rhe crust of the earth is laden with tectonic stresses 

that heave masses of earth to form mountain ranges and drive 

continents to move one with respect to another.  Earthquakes 

tend to occur In those regions where the magnitudes of the 

Principal stresses become widely different (high levels of 

Shear stress).  This very .ntense state of stress is generally 

associated with the earthquake belt which marks the boundary 

between the crustal plates; however, as evidenced by the oc- 

currence of past earthquakes throughout the world, critically 

high levels of shear are generated over a much wider region. 

In many regions of the United States, tectonic stresses 

are approaching an unstable condition.  This condition exists 

today just as it has for centuries.  m the recent several 

years, however, the possibility of triggering an earthquake 

by artificial means has become a problem.  For example 

earthquake activity has. In some cases, increased in the 

vicinity of a newly constructed reservoir.  Following the 

construction of Koyna Dam of South India and the subsequent 

filling of the reservoir, a sequence of small earthquakes were 

recorded over a period of several years.  Then, on December 11 

1967, a magnitude 6.5 earthquake occurred, which resulted in 

considerable loss of life and a major economic lossj^ 

The region was not noted for earthquakes prior to the con- 

struction of the reservoir; consequently, it appears likely 

that the presence of the reservoir somehow served to trigger 

the catastrophic release of stored strain energy. 

The process of injecting fluids into a tectonicailv 

stressed region is another means by which earthquake ruptures 
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can be artificially initiated.  .'lost investigators have con- 

cluded that the swarm of hundreds of small earthquakes near 

Denver, Colorado in the period following 1962 were triggered 

by the pumping of waste fluids into a 3671-meter disposal well 

by the Rocky Mountain Arsenal.  A conceptual model was pre- 

sented in 1968 by Mealy, Ruby, GriggS, and Rayleigh'60^ which 

accounts for the triggering mechanism of the injected fluid. 

More recently, the controlled injection of water.in the Rangley 

Field, Western Colorado, by ÜSGS researcheis'      clearly de- 

monstrated tnc potential ot tola process for triggering earth- 

quakes .  In this experimental program water was injected into 

the western portion of the Rangely Field along a previously 

mapped fault zone.  As the water was driven into the faulted 

region, the fluid pressure mounted, and small earthquakes be- 

gan to occur.  When the fluid injection was stopped, the 

occurrence of earthquakes persisted for a period, tien, as 

the fluid pressure began to diminish, the earthquake activity 

also diminished. 

Actually, this description of the earthquake activity 

associated with the fluid injection process is partially based 

on conjecture, since the fluid pressure interspersed in the rock 

was not actually measured at the point L
C
  rupture.  The sequence 

of observed activity is consistent with the analytic expressions 

developed near the end of this section for a simplified spheri- 

cally symmetric fluid injection system.  The theory indicates 

that there is little possibility of triggering an earthquake 

at the time that the pumping is first begun; it takes some 

rime for the fluid pressures to spread over the subsurface 

region of incipient rupture.  On the other hand, when the 

pumping is stopped, the fluid pressures continue to grow for 

some time before leveling off and diminishing to the background 

level.  Mence, based on our theoretical model, we would expect 

174 



the earthquake activity to continue for some time after the 

fluid injection is stopped.  The time lag, of course, depends 

on the subsurface porosity and the regional extent of the 

fault zone. 

Archambeau and his co-workers at the California Insti- 

tute of Technology are just beginning a program to monitor 

earthquake activity associated with the injection of fluid 

into the Santa Fe Springs Field, Los Angeles.  We anticipate 

a continuous exchange of data with this group in order that 

we might test our theoretical description of the mechanical 

interactions between the pore fluid and the rock as it 

relates to the field experiment. 
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9 . _ UTERNATI: THEORETICAL hÜRMULATIQNS 

Various theoretical models have been developed to 

describe the mechanical Interactions between the solid and 

the fluid constituents of a saturated porous solid material 

such as soil or rock.  Much of this work has been motivated 

by engineers concerned with the gradual settlement of satura- 

ted -oils.  A simple mechanism to explain this consolidation 
11  -    •  [63] 

process was first proposed by lerzi^m. 

The next major extension to the theory of consolidation 

was made by Biot[b4] in which the linear consolidation pro- 

cess was modeled in three spatial dimensions.  Unfortunately, 

Blot's formulation does not explicitly show how the various 

volumetric strains enter the analysis.  He states explicitly 

that the pore water is considered to be incompressible.  We 

assume from this that the small grains of solid material would 

also be considered to be incompressible.  On the other hand. 

Blot's theory has proven satisfactory for explaining experi- 

mental results for the consolidation of a solid sphere of 
165,66] and for the conSolidation of a two- saturated clay, 
[67] storied aquifer 

In Blot's formulation, and in essentially all subsequent 

formulations, we find two physical constants that serve to account 

for interactions between the two constituents.  These constants 

are operationally defined through explicit laboratory tests. 

Although it is intuitively obvious that these terms arise from 

changing dimensions of the fluid-filled pores, no effort is 

made, at least in Blot's formulation, to develop the physical 

processes that give rise to the two terms.  Details of this 

typo are needed for isolating the rock stress (as opposed to 

the composite stress) upon which to base fracture criteria. 
[55] 
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5 . 3  QUASI STATIC UNHAR TINC ASSUMPTIONS 

In subsurface geologic formations, where stresses are 

Kigh, the compressibility of the ground water and the rock 

grains is likely to have a significant effect on the mechanical 

interactions.  lor this reason, we use the TINC framework to 

develop equations for describing the mechanical interactions 

between porous elastic rock and ground lluid that is permeating 

through the pores of the rock.  The formulation is linear, 

and as such, it applies to saturated soils or rock where: 

1. The strains are small compared to unity. 

2. The stresses and strain;* in the consti- 

tuents are linearly related by Isotropie 

elastic constants. 

3. The velocities are slowly varying so that 

Lnertial forces can be neglected. 

4. The drag forces between the pore fluid 

and the rock matrix are linearly related 

to the relat.ve velocity between the pore 

fluid and the rock grains fDarcy's law). 

5. The rock is satui 'ted.  For the case where 

small gas bubbles are present in the pore 

liquid, we assume that the gas moves with 

the liquid influencing only the bU'« 

modulus and density of the gis-liquid mixture. 

For the case where the roCJC contains small 

voids that are not ennected [isolated from 

the permeating fluid), we use the term pore 

to refer to th_5 connected pores and consider 

the isolated voids to be homogenized into 

the rock grains thereby influencing only the 

bulk modulus and density of the graii.s. 
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5.1  CONSERVATION EQUATIONS 

Hie general TINC formulation has been presented In 

SSR-Jö? and 3SR-648, as well as Ln Section tV of this report 

However, Ln this section we restrict our attention to linear 

behavior, and as such, much of the reduction of the basic 

conservation equations to their final form Tor computer pro- 

cessing is unique to this section.  consequent!;■, we have 

decided to briefly redevelop the basic TINC equations in 

thei r des i red form. 

fhe mechanical interactions between porous ucoloyic 

rock and interspersed ground fluid are governed by the con- 

so rvati on cquat ions: 

Conservation of lass 

(a) 

JX 

/( 0( 0 \ 
=  u (5.1) 

Conservation of Momentum 

0/ ■ v.       ( ,) (O \ 
\^r-+   vj TT: 

vi)m 

(o 
a • 
-JJ. * 
IX ■ 

J 

CcO fa) 
(5.2) 

Conservation of thermal energy can be disregarded in this 

development; also, mass transfer due to chemical interactions 

and phase changes are not being considered.  The notation 

adapted in previous TINT developments is being used with: 

(a) ■ 1 for the solid constituent 

= 2   for the fluid constituent (gas-liquid mixture) 
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(a) 
if 6 
V  - volume of constituent (a) excluding the volume 

occupied by  the complementary constituent 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

U)e        (2)e 
V  =     V e •<     V e 

(ex) (a) 
n     =     V'/V 

=   volume  fraction,   hence 

(U   (2) 
n  +  n     =   J 

(cc) 

P  = partial density, i.e., the mass of consti- 

tuent  (u) per unit volume of composite 

p = composite density 

(1) (2) 
p + o 

(a) 
vi = velocity of a point in constituent (a) 

U) 
3 u. 

= TT (5.7) 

(a) 
ui s  displacement of a point in constituent 

(a) from its starting position x.. 
(a) 

aij   " partial stress, i.e., the force component 

in constituent (a) per unit area of composite 

o^. = composite stress 

(1)  (2) 
=  üij+ 0ij (5.8) 

(a) 
fi = body force per unit of composite mass due 

to gravitational forces, 

(a) 
ßi = body force per unit of composite mass that 

results from drag ^orces on the complemen- 

tary constituent. 

(1)   (2) 

h +   ^i = 0 
(5.3) 
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5 . S  CONST ITUTlVi: EQUATIONS 

in order to complete the description of the fluid-rock 

Composite, we introduce constitutive equations: 
(n      (2) 

1.  Ihe drag forces  3. = - 3.  are related to the 

velocity difference between the fluid and the 

rock  v.- v-   through an extended version of 

Darcy's law 

(1) 
U  .' 

n~)      in \ 
■ P d  v. -  v. 

0 V 1    1 / 

(1) 
v CS.10) 

in which 

C2)2 
n 

[5.11) 

where u     is   the fluid viscosity and  k  is the 

permeability of the  rock. 

Changes   in  porosity   are   related   to   volumetric 

strains   in  the   constituents   by   a  power  series 

expansion.     detaining  only  the   linear  terms 

for  the   rock   constituent  we  write 

CD   (U (1) C) 
n   /  n     ■   1  ♦ b     L     ♦ b     e 

0 1 2 

CoO 
in  which       E       is   the  volumetric  component   ol 

partial  strain  defined  by 

(5.12) 

(a) 
c 

(a) CoO 
ci   U. 0   U.    I 

(5.13) 
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C2] 
The volume fraction n for the fluid constituent 

is obtained from Eqs. (5.5) and (5.12). 

3.  In the final constitutive equation we relate 

stress and strain.  First, let us consider the 

special case when there is no pressure in the 

pore fluid.  Partial stresses in the rock matrix 

are related to the partial strains in the rock 

matrix by the conventional Isotropie Hooke's 

law of linear elasticity 

CD    CDd)    (1)   (1) 
öij = 2 y eij + A 5ij e (5-14) 

CD     CD 
where  y  and  A  arc Lame's constants.  An 

alternative expression is obtained by decomposing 

the partial stress into hydrostatic  o  and 

deviatoric  S,•  components 

(1)   CD     CD 
0ij "  a «ij +  Sij (5.15) 

such that 

(1)   1    H) 
o    = T 6^  o^ (5.16) 

(1) (1) 
■ K  e (5.17) 

and 

CD   (1)      CD 
S..=  o.-6.a fSlS") 

CD (CD   ,   CD\ 
= 2 y \ e.. - .j 6.. t  } (5.19) 
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in which the hulk modulus  K 
CD  CD (i) 

Now we consider the case in which the pore water is 

acting under pressure.  U'e will assume that introduction of 

pore pressure does not affect the deviatoric stress-strain 

relationship for the saturated specimen, liq. (5.19),  In 

order to develop suitable constitutive equations for the 

hydrostatic components, we introduce the concept of effec- 

tive stress—the actual stress in the solid rock grains 

averaged over several grains.  This same concept of average 

microscopic stresses also applies to the fluid phase so that 

the effective hydrostatic stress is simply defined 

(a) 1 (a) 

n 
,5.20) 

The  corresponding effective  volumetric strain—the microscopic 
volumetric  strain  in  a single  constituent  averaged over 
several  pore  dimensions^is  kinematically  related  to  the  par- 
tial   volumetric  strain 

U)e 
V /v 

(a) 
n (^'i .(no; (>♦?.) (5.21) 

consequently 

Ca). Ca) 
n 

n 
0 

1 + c) 
- 1 (5.22) 

Linear hydrostatic stress-strain behavior for the 

constituents is governed by the bulk modulus of the isolated 

constituent  K e. 
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or by applying Eqs. (5.20) and (5.22), we relate the hydro- 

static components of partial stress and partial strain using 

a variable volume ratio 

(a) 
a 

(a)(a) 
n K 

la) 
n  ( aT \ 

L n 

(a) 
l + e )- (5.24) 

CD 
Substituting       n       from I:q.   (5.12)   and  retaining  only  the 
linear terms,  we  get 

(1)       (Dd) 
a n    K e     (1  +  b   ) 

o L i 

CD (2) 
E     +   b     e 

2 
(5.25) 

and  similarly   from Eq.   (5.5),  we  get 

(2)        (2) 
a     =     K 

CD        CD 
-  n    b     e     + 

o      i 

/       U)   CD     \ 
ll   -  n  -  n b 
\ 0 0     2/ 

(2) 
e (5.26) 

We  invert   (5.25)   and  (5.26)   to  obtain expressions   for the 
hydrostatic  components  of partial  strain 

(1) 
€ 

CD 
a m 
K 

(2) 
a 

(5.27) 

and 

(2) CD 
a 

C2) 
a 

C5.28) 
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whc re 

(1) 
K 

(Dd) 
n  K 

Q 

(1) 
I + b  -  n  (1 + b ♦ b ) 

1        0 12, 

r      rrr i 
[i .   «   u ♦ b )J 

(2), 
i ♦ b 

(i) 1J 1 
n (1 + b ♦ b ) 

o        t    2 J 

II K e 1 + b 
CD 
n  (1 + b  ♦ b ) 

R = 

(2) 

1 ♦ b 

(1) 
1+b  -  n  (1+b  +b) 

U       1        0 12' 
(5.29) 

U'e have succeeded in relating the bulk modulus of the 

rock matrix,  K  (a = 3 ) , with the bulk modulus of the rock 

grains,  K e, by introducing a mechanism to permit variations 

in the volume fraction, Eq. (5.12).  Also, we have arrived at 

expressions for Blot's fö ' interaction constants H, H , and R. 

Tn this linear development we require that the final 

state be independent of loading path.  Therefore, the strain 

jnergy density 

l  CDU)  i C2)(2) 
c  a  + c  a (5.30) 

can be obtained by applying the load in two stages: 
(2) 

1.  The rock matrix is loaded with 0  =0, and then 

2.  the pore pressure is applied with 
(1) 

0. 
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The combined strain energy density tiien becomes 

j (1) fl)    (1) (1)    I (2) (2) 

i   i 

or,   if we   reverse  the  order   of  the   loads,  we  get 

,    TU    fl) j    12)   (2) (2)    (2) 
v    e       i      +

TC      o      ♦    E      a 
Z 1 ) ^ 2 i 12 

where  the  subscripts   denote   the   load  stage. 

We  equate  the  two expressions   for strain energy  density 

to  obtain  a  particularized  version  of  Bette's   reciprocal   theorem 

(1)   (1)        (2)   (2) 
e       o 

2 i 
E 0 

1 2 
(5.31) 

or 

(2) 
-   0 (1) 

(1) 
a (2) 

2 
H a 

i 

1 

'     II 
i 

a 
2 

using liqs.   (5.27)   and   (5.28),   respectively, 

conclude 

From  this we 

H     ■  H 
i 

(5.32) 

and   consequently 

nrr = " nr; 
K K 

(5.32) 

Actually  b   is negative anö  b   is positiv 
1 2 
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Thus we find the complete stress-strain relationships, 

effective and partial quantities, involve a total of five 

independent physical constants:   u , K   (or alternatively 

K L  by liqs. (5.29)), K e,  n , and  b   (or alternatively 

b  by Lq. (5.53)).  Tue first four constants are non- interactive 

in nature, i.e., the stresses and strains in the rock are inde- 

pendent of those in the fluid and conversely the stresses and 

strains in the fluid are independent of those in the rock for 

the special case when  b  = 0 (consequently h  = 0). 
1 2 

liquations (5.25) through (5.28) suggest a number of 

alternative tests for obtaining the single interactive term 

b .  for example, we can use liq. (5.26) to deduce  b   from 
1 (?) 1/(2}    i 

the volume of water  c  that flows from a drained (a  = 0) 

triaxial compression test 

b  = (5.54) 

This expression leads to some interesting bounds for b .  At 

one extreme the freely drained specinen is compressed but no 

fluid seeps out  ( c ■ e ■ e).  At the other extreme the 
volume of fluid that seeps in is equal !to the yq|ume that 

1) 
the  specimen is compressed so that  \ c  = t ,  E  = -1; ) 

From these extreme modes of behavior we arrive at the bounds 

- 1 - n  / n 
V B I a 

1 + K e/ K e 

(1)\ CD 
(l_n)/ n 

a 

K e/Ve 
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and  by  use  ol   Eq.   (5,33),  wc  get 

y1   -  n   1/ " 11 - n  }/ n 

K e/  K € L  +     K  
e/Ke 

In general we might expect the  b  (b )  for saturated clay 

soils to lie near to tue lower (upper) bound. 

A critical test of the suitability of the HÖH-diffusive 

constitutive equations developed above has been provided 

through a series of experimental measurements recently re- 

ported by Mut and Bycrlee.^68^  They derived an "effective 

stress" law for eliminating the influence of pore pressures 

from their test data of the form 

<0ij>NB =  öij + I1 -  K / K e) o %.      CS.S7) 

using TING notation where  <0ij
>
NB  Is their effective stress 

term intended to correspond to the equivalent stress in a dry 

specimen.  They presented experimental evidence that their 

effective stress law accounts for the influence of the 

pressurized pore fluid considerably better than fie conven- 

tional effective stress law which simply subtracts the fluid 

pressure directly, i.e., Hq. (5.37) with  K e = ».  The same 

data was processed using the Tl.MC framework in which the 

effective stress in the rock is taken to be the microscopic 

stress in the rock grains averaged over several grains.  The 

rather small bias in the wet data that remained after the attempt 

to remove the influence of the pore fluid by Eq. (5.37) was 

essentially eliminated using the TINC concept of effective 

stress.  This rather impressive demonstration of the use of 

the TINC model to fit stress-strain data is presented in de- 

tail in Appendix 1). 
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5 .6 FLUID SEEPAGE 

We now have the basic equations with which to describe 

the elastic behavior of the fluid-rock composite.  Using the 

constitutive laws developed above, we shall proceed to ex- 

press the conservation equations, Hqs. (5.1) and (5.2), in 

terms of the fluid pressure 

'".      -i f2) 

IT-7?) 
a c = -1JJ)    0 (5.38) 

(1)  ,     (1) (1) 
and components of displacement  u.   and   e  = * L) for 

tiie rock. 1 

I-'irst we will investigate the conservation of mass 

equations.  From the kinematics of the deiorming composite, 

we equate the ratio of density to initial density with the 

inverse ratio of volume to initial volume and write 

(-Ci-)       (a)\-l 

T^r= I1 +  e ) ^-^ 
p. 

Consequently 

CoO    (a) 
1  3 P  _   3 c 
0  3t 
P 

«r- (5.40) 

and 

(a)     (a) 
1  3 p  ,.   3 c 

(a)    i 
P 

w- t5-41) 
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when we disregard components rf strain compared to unity after 

performing the indicated derivatives.  These expressions are 

substitutived into Fiq. (5.1) to give the alternative form for 
the conservation equation 

(«)   (a)  (a)       (a) 

^t- + RTIt- " vi -TTT = 0       (5.42) 

3 Vi   S? Since TTT =  "Tt—•  dearly the first two terms cancel to 
first ordef accuracy  from which we are led to conclude that 

tl^Jhitd  term v^ 3 c /iXj ) is higher order than the term 

> C /8t .  [The fact thai the mass conservation equations 

are automatically satisfied is a consequence of the manner 

in which we related partial density to partial strain in 
Eq. (5.39)] 

Momentum is conserved quasistatically, i.e., we 

eliminate the inertial forces from Eq. (5.2) to obtain the 

equilibrium expression for the fluid phase (a = 2). 

aCa2) +  CJ)      1(2)        Cl)\ 
-STT + P ^i - P0d\  vi -  vj = 0        (5.43) 

The expression, in the absence of inertial forces, remains 

time varying because of the drag forces between the fluid 

and the rock, which have been related to the relative velocities 

between the two constituents by Eq. (5.10).  Equation (5.43) 

is reduced to a single nousubscripted equation by differentiating 
with respect to xi  and summing on i 

(2)      / (2)v     / (2)    (1) 
V2 o 

/ C2H    M^   ^n 
(5.44) 
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•I.    .  •             (Z) w Lje strain component  E   IS expressed in terms of  o  and 

e   by Eq. (5.2ti), and  a is in term related to the flui 

pressure by liq. (5 . 38) . 

In carrying out these substitutions we reason that 

P :'(
n

i/
}t   is of order p 3 r  /3t  by Eq, (5.12), and 

p(- E /3t) is of order  (p/ K e) (3p/3t ) b 
.,.,1       ft       -Z 0-\             .._  J            I  ..    I   ^ " )         \          im. , r. .    \ 

y   liqs.    (5.26) 

and   (5.38),   and     (p/vJ^e)    {?  p/3t)   is   of  order       c   (3p/dt 

by  Eqs,   (5.2ü)   and   (5.38);   consequently,   the  product 
Ji fferentiation 

r(np)   =    n    |f*P^, 

to   first   order,   reduces   to  the   form 

(1) 
(5.45) 

Similarly we reduce 

(1) 
(^P) 

(1) (1) 
a &- ♦ p ^5 

3xi 3x. 

to the form 

3 1(1)    i        (l)3p 
I n p | =  n 3xi (5.46) 

ollouing these substitutions, Eq. (5.44) becomes 

3 e 

0 0 X 3t 

(1) 
(>•*.) 

+   TJ   3t (5.47) 
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wiiere 

K e I 1 -  n  (1 + b ) 
0 2  J 

The elastic compliance of the rock matrix influences 

this "seepage" equation through the term  3 t   /9t , which 

originates not only from volumetric fluxuations in the poro- 

sity (ncnzero b  and b ) but also from the fact that the 
1 2 

drag forces depend on the relative velocity between the rock 

and the fluid rather than the fluid velocity alone, I£q. (5.10). 

It was discovered through actual computer applications that 

presence of the interactive term 9 e /9t strongly  influences 

the seepage process to the point where rather severe stability 

problems arise in some cases.  This troublesome phenomenon can 

be eliminated if we rearrange Bq. (5.47) to obtain a modified 
(1) 

interaction term a.s some combination of  3 e /9t  and  9p/ät. 

The modified interaction term should have little influence on 

the seepage process for optimum computer processing.  The 

total hydrostatic stress  a = a + a  has the desired 

character.  As ground water is driven through the subsurface 

rock formations, increases in the pore fluid pressure re- 

duce compressive loads on the rock matrix so that the total 

hydrostatic stress tends to remain invariant.  In fact, we 

find that the total hydrostatic stress remains totally in- 

variant when fluid is injected into a spherically symmetric 

environment. Section 5.9. 

fl) Substituting from Eqs. (5.27), and (5.38) with 
'a  = a - o , we get 

(1) ^-^(rWjp 
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(1) 
which ue use to eliminate  3 c   /\)t     1 rom liq. (5.47) and 

arrive at 

19. 

(1) 
(- - 
- -r  V  p = -i-y p d P (.1 

o 0 
cu ' (TIT * it)!! 

l1 -  Mir rTT + IT)^ 
K 

(5.41)) 



5.7 ELASTIC DEPQTIMATIONS IN THE Rpgc MATRTV 

Equilibrium 
conditions m the elastic rock matrix are 

expressed most conveniently by combininP *h. 
tions fnr fh« #1 ^   ,       combining the momentum equa- 
tion  for the fluid and the rock. rq. (5.2) with a . 1 \ 

« - 2. thereoy eliminating the drag forces  Ec, (S  l^ 
again disregard inertial forces and write ^  ^ 

3 a. .    C2J 

dXJ    3xi 
+ Pfi = 0 

C5.52) 

(1J   (2) 

C^.2 7) to reduce 

in which 

(5. 

The partial stress 

i pressure usin 

for the composite becomes 

dKl) 

qs-   (5.15V    (5.19)     and 
^ij     mto  comp^nts  of     \ .„A     {:J 

in  the  fluid,     a   .   is  then ex, 
and  a 

pore pressure using Eq  fs 381  ^d .1     '■"  JXpreSSed as 0 H'   ^-Joj, and the equilibrii tum equation 

or  by  Eq.    (5.13) 

'/^  u.        8   u. \ 

(5.53) 

3 
3x 

J   L 

,   Ci)        (l)   "1 
Cl)/3  u^        3  u 

U 
\     dX 

J 
- '(^ 2 ci)) 3(J;] 
i L^ - T ^ -a^r P^i 

-i1- ".)^-i(^^)p (5.54) 
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For the special case of homogeneous material, liq. (5.54) 

assumes the foi . 

CD  CD Id)      1 (i) (i) 
u   v2 u   + \ K   ♦ i   ^ )v \v * y ,' + p{ 

Vp 

or alternatively 

/(I)   4 (1)\ /   (1)\   CD    /  (1)\ 
\ K  + ^  p |V\V • u ) -  M  Vx \Vx ^ | + p| 

(5.55) 

(5.56) 
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5.8  FRI CODE 

The mechanical interaction between ground fluids and 

porous subsurface formations have been mathematically modeled 

using a linearized version of TINC.   The penetration of 

elastically compressible fluid through the pores of a sub- 

surface geologic mass is modeled by Eq. (5.47) or, in a form 

more suited for computer processing, by Eq. (5.49).  The 

elastic compliance of the porous material to the pressure of 

interspersed fluid is represented by the presence of an in- 

teractive term related to the volumetric strain rate in the 

rock matrix.  The interactive seepage equation lias the form 

of a diffusion equation, which can be treated by one of several 

existing numerical codes.  A 2-0 finite element code, ori- 

ginally programmed by ;;ilson,[69] was selected to treat the 

seepage process with the term that contains the elastic com- 

pliance of rock matrix appearing as a source term. 

The elastic deformations in the rock matrix, expressed 

by Hq. (5.54), were elso  treated by a 2-D finite element code 

in which the pore pressure enters as a body force.  The two 

finite element codes were merged into a single 2-D code (FRI). 

Figure 5.1 illustrates the sequence of operations that are per- 

formed to simulate the interactive seepage pre cess.  The 

diffusion equation is solved to give the fluid pressure field 

at an advanced time step with the interactive term extrapo- 

lated from the previous time step.  The updated fluid pressure 

field then feeds into the elasticity portion of the FRI code 

to generate an updated displacement field from which rock 

dilatation and total hydrostatic stress are computed.  The 

solution to the diffusion equation is repeated to give a 

corrected pressure field at the advanced time step base on 

an updated interactive term.  The complete cycle is repeated 

two to five times for a single time step in order to avoid 

any lag in the interactir-s between the fluid and the rock. 
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r 
I (>„ • H) • ■"•,.' 

m / 

l;lui(J   Diffusion 
Eq.    C5.49J 

P(tn   ♦   At) 

Elasticity of the.Rock 
Eq. C5.54) 

(1)       (1)        CD 
UiCVAt). tl$itn*&%),   a^ct^at) 

Yes No 

n ■ n+1 

Commute Interaction Term 
3a 
"St 

Fig. 5.l--Computational sequence for FRI. 
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Ihe newly formed PR] code was first tested on non- 

nueractwe systems.  The rock elasticity mode was suppressed 

to produce purely dxffusive seepage which was compared with 

analytic solutions.  The converse situation, in which the 

diffusion mode was suppressed, was also run to test elastic 

d.fomationa in the rock wtri, ig.i„,t closed form results. 

The '.irst interactive test was performed on a Z-D 

simulation of a 1-i) compaction process.  A closed form solu- 

tion .as obtained for the resporse of a single laver of 

fluid saturated material to a uniform surface load. Fig  5 2 

Elastic deformations in both tho rock and the fluid are 

treated using the linear version of TINC to yield the series 
solution 

4p 
p(y) = __i ^2     ktirt e-(2i + 1)2 ^A! 

i = n 
(Trrry sin C2i+1) (5.57) 

pd yo[Hi: + Tr-inTr^:J 

(dimensir/nless time) 

d = fluid diffusion coefficient 

(large d makes seepage slow) 

P ■ mass density of the saturated composite 

n ■ porosity of the solid material (the ratio of 

the pore volume to the total volume) 

>,u = Lame's constants for the solid material 

K = bulk modulus of the fluid 
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o 
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Fig.   5.2--Comparison  of  FRI   code  solution with exact 
solution   for  a test   fluid/rock   interaction problem. 
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P8 
= n : (l-n)(\+2u) n K  

M = uniform surface load density 

As seen in Fig. 5.2, the numerical finite element solution 

'"ollows the exact scries solution well oven up to late times 

when much of the seepage has taken place.  A variahle time 

step was used to achieve the finite element results with 

AT = 0*002S initially and  AT  gradually increasing to 

.1: = 0.05 for the late time calculation  i > 0*10. 

The elastic compliance of the solid material as the 

fluid seeps to the surface follows the equation 

where 

fl) 
e  = dilatation of the elastic rock matrix, 

^ " fl-n)(\+2u) 

(final dilatation stcte when  p = 0) 

The finite element calculations follow this relationship pre- 

cisely for the initial  est iroblem. 
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5.9  INJECTION WELL 

More recently the I'RI code has heen exercised to examine 

the interactive seepage process associated with an injection 

well,  Simultaneously an effort has heen made to obtain a 

closed form solution for the injection of fluid into a homo- 

geneous formation with which to compare computer generated 

results.  Obviously an analytic expression describing this 

process '..ould have far reaching implications for providing 

guidance in future injection projects.  This effort has met 

with considerable success. 

Ue consider the problem of a cased well (which we will 

ignore in our analysis) pumping fluid into a spherical cavity 

ol radius  r  which is located in a homogeneous saturated 

region, Fig. 5.3.  for simplicity we assume no initial stress 

in the rock and no initial pressure in the fluid.  The injec- 

tion process is then accomplished by stepping the pressure 

in the cavity instantly from zero to  p  where it remains 

throughout the injection process.  Pressures develop in the 

region outside the cavity at the instant the cavity pressure 

is applied (t = 0).  These stresses can be calculated from 

liqs. (5.47) and (5.54) with  d = <» to prevent seepage at 

tiiis initial loading.  from I-q. (5.47) we get 

at 
i - 

Try 
n 

/   U)\ (1) 

or 

P ■ u-ty- 
n 

(5.59) 

2UJ 



^   U3 

Cased  Well 

■;i; Porous  Rock 
ftlk iMaterial 

(i) 
x7>  u. 

Figt 5 . 3--Spiierically symmetric fluid injection 
system.  The pressure  p(,  is introduced in the 
cavity at the initial time and then held at this 
level with the pore fluid in the rock formation 
assigned zero Initial pressure. 
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(1) 
where   K   ami  II  are defined by Kq. (5.29)   and  Q  is 

given following v.q.   (ri.4'7). 

U'e substitute this expression for the initial pressure 

p  into the elasticity equation, l.q. (5.5(i) to ^et 

(U 
(v • liJ) C5.60) 

using   the   fact   that 

and 

CD     m 

(i) 
X   u ( 5 . (> 1 ) 

for the homogeneous spherically symmetric injection environ- 

nent where only radial displacements occur. The benavior of 

the rock is constrained to satisfy the boundary condition at 

the well iniection cavitv 

= - p  at 
rr   r o (S.62) 

1  A 

(1) 
rr 

(1) 
n p  at  r (5.05) 

and the condition of no displacement at large distances from 

the well.  The solution to Hq. (5.60) that satisfies these 

conditions is found to be 

ui fx, t = 0) 

(1) 
n p / i" v3 

trflT1)    xi (5.64) 

:u2 



which leads to 

U  , noP / r \3 /3x.x.     v 
V?' t = 0) = -^^(F1

)  (-^J-- »ij    (S.65) 

Somewhat surprisingly, we find that the initial pre.s ;ure in 

the cavity generate, no hydrostatic stress in the surrounding 
rock formation, j e. , 

U3  ,   (i) 
0  = T 'ij  0ij " 0 (5.66) 

and consequently there is no pressure generated in the pore 

fluid outside the cavity at the initiation of the injection 
process. 

The results presented above apply in the initial 

injection process, before fluid seepage begins.  Throughout 

the ü^of th)^ injection well, the composite stress 
cij = aij +  aij  must satisfy the equilibrium equation 

9a. . 

~l¥r '   0 (5.67) 

outside  of the   injection well  and  Eq.   (5.62)   at   the  cavity 
boundary which yields 

IT1)    (77^  ■   6ij) (5.68) 
P    / r   ^3 / 3x.x 

. .   =   -   -2- ij      r 

and  consequentl; 

0  =  T 6ij   0ij   =  0 (5.69) 
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for all time.  This simply indicates that the h>drostatic 

stress in the combined fluid-rock composite permits us to 

decouple the seepage equation; hq. (5.41)), from the elasti- 

citv equations for the rock, since «r •- 0  for all time. 
'       jt 

Thus, our "interactive" seepage process is described by 

c v» p • || (5.70) 

where 

C = 
pod (TTTTTTT) 

K 

(5.71) 

(1) 
iiic constitutive terms  R,  K , and !I  are given by Hq. (5.29). 

At the initial time there is no fluid pressure outside the 

injection cavity as deduced above.  At the cavity boundary 

the pressure is held at  p .  F:rom these conditions we arc 

able to uniquely express the complete fluid pressure time 

ills tory 

p( r.t) .(»P,[l -arf^V •') (5.72) 

where the dimensionless time  t  is given by 

T = 
ct 
r' 

(5.73) 

!\'e substitute this result back into the elasticity equations 

for the rock to determine the stresses and deformations that 

are occurring there, and we find 
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(1) 
a . . (X.T) 1 J   - 

i r   \3/3x.x . \ 

WHr'-'J 
(.. T.KW .,[..„, (i^i)' 

(1) (l)    / r \3 / 3x,x. 
ti i(X,T)   =   -   U  p 

, r   \J  / JX. 

IT
1
! (TT

1
-' J 

5i.        (5.74) 

/ C1)\ 1   -     n      Cp     .t  v 
\    0   / 0     /       0   \ m—rnrrrr ill) Clj\ 

( K     + ^    u   ) 

1  -   erf 
(r/r  )   -   1 
 o  

2/T 
6. . (5.75) 

and 

(1) 
ur(r,T) 

(1) 
n p    / r  v2 

4   M 

CD 
(' ■ lv) 
m—r-TO 

(K ' 1 0^ 

/*    52PCC.T)   d  C 
^r 

(5.76) 

(1)        CD 
ue =    u$ = 0  • 

We  have  not  carried out   the   indicated  integration  to deter- 
mine  the  radial   displacement   field;  however,  we  have  obtained 
the  early  and the   late  time   limiting  values 

(1) 
ri) 

1J n p    /r   w 

4 u (^) 

(r/r ) 
r    for ( L 

« 2/? 
>   2 (5.77) 
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(U /   (l) 
(1)       n p /r \2     1 - n 
-r^^ ^-rrfi^) \  -(1J  ;(1) 

c p  r 
0    0 

ur 
/(r/r ) - 1 \ 
I 2  I < 0.01 . (5.78) 
\  2/T     f 

It appears tiiat there is much to be learned from 

examining the results developed above about the potential for 

triggering an earthquake by pumping fluid into the eart ■.  IVe 

note, for example, that shear stresses are due entirely to 

the presence of pressure in the cavity; there are no shear 

stresses generated by fluid seeping through the rock.  The 

greatest potential for triggering an earthquake, therefore, 

lies in the tensile stresses (relative to the pre-injection 

state) that are generated in the rock matrix as pore fluid is 

pressurized at points away from the cavity.  Figure 5.4 

illustrates the spread of the Ouid pressure through the 

pores of the rock.  Both the cime rate of loading in the rock 

matrix and the pore fluid are depicted. 

The spherically symmetric injection system was also 

treated using the numerical FRI code.  Fluid pressure, rock 

stress, and rock deformation are generated with the FRI code 

operating in the compietely interactive mode, i.e., with no 

assumptions as to the nature of the interactions.  The numeri- 

cal simulation results in hydrostatic stresses in the fluid- 

rock composite which are two orders of magnitude less than 

the radial and hoop stresses in the rock matrix.  Ideally the 

hvdrostatic composite stress should be zero for the spherically 

symmetric environment, Eq. (5.69).  The fluid pressures from 

the numerical simulation are presented in Fig. 5.4.  We see very 

good agrepment with the analytic solution even at early times 

where the pressure front is quite steep. 
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We will now investigate what happens when the injec- 

tion process is terminated.  At time  t  (dimensionless 
i 

time  T ), the pressure in the injection cavity is dropped 

rrom p  to zero.  This can be accomplished analytically by 
o 

simply introducing an additional injection solution with a 

negative cavity pressure  -p   at the retarded time  T . 
0 1 

Then,   after pumping   is   stopped,  we  get 

ij 
=  0 (5.79) 

P(r,i)   = 

(1) 
o..(r ,T) 

(5.80) 

6..(5.81) 

CD 
t. .(r ,T) 

(D 
(l-  njcp 

Tip   4   UJ I Tyr \r ' erf 

- 1 

2/ T-T 

-   erf 
2/? 

6. . 
Ij 

(5,82) 

from  Eqs.   (5.68),   (5.72),   (J.74),   and   (5.75),   respectively. 

Iv'e   find   from  Eq.   (5.80)   that   the   fluid pressure  will   continue 

to  increase  away  from the  injection  cavity   for some  time 

after  the   injection pressure  has  dropped  to  zero.     Hence  the 

potential   for  triggering  an   earthquake  is  not  eliminated  when 

the  pumping  is  stopped.     Actually the most  critical   conditions 

(maximum    o..)   will  generally  occur  aft^r  the pumping  has 

stopped. 
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5-10  SUMMARY AND CONCLUSIONS 

The processes by which alterations in the ground water 

state can trigger a major rupture in the earth should be care 

fully examined in order to guard against the possibility of 

acddently initiating a catastrophic earthquake.  The possi- 

bility of controlling the natural process should also be con- 

sidered.  It might be that earthquakes can be produced for 

the purpose of relieving stress in the earth that might 

otherwise accumulate and result in major damage. 

The theoretical formulation of  the mechanical inter- 

actions between the fluid and the rock is somewhat involved. 

Actually, the resulting equations are quite similar to those 

developed previously by Biot.f64] The major points where the 

linearized TINC formulation differs from Biofs. and essen- 

tially all subsequent, formulations are noted below. 

1. A mechanism for fluid-rock interaction is 

provided in the linearized TINC formulation 

by dealing with variable pore dimensions. 

Using this approach the interaction terms 

take on a new meaning. 

2. The linearized TINC formulation includes the 

elastic deformations in the rock particles and 
in the pore fluid. 

3. The rock velocity as well as the fluid velocity 

is considered when expressing the drag forces 

between the fluid and the rock (Darcy's law). 

A finite element code (FRI) has been developed to 

treat the TINC seepage equations in two spatial dimensions 

(plane strain or axisymmetric).  While the FRI code is 

suited for complex geologic formations, we have concentrated 

on elementary cases in order to examine the accuracy of the 

numerical simulation.  We find that the FRI code is well 
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-suited for interaction calculations, at least for the 

cases that were run.  Good accuracy is obtained even one 

time step into the calculations, Pig, S.4.  The FRI code 

has not been critically tested for simulating late time 

solutions. 

Analytic solutions were obtained for an injection well 

in a spherically symmetric environment.  The injection well 

analysis points out the potential for triggering an earth- 

quake by pumping fluid into the ground.  Whereas the stresses 

that result from an artificially applied load (e.g., a 

surface load or a pressurized cavity) diminish as 1/r3 

away from the point of application, the stresses that are 

generated in the rock matrix by fluid injection diminish as 

1/r at late times (steady state).  Furthermore, the rock 

stresses generated by fluid injection are not relieved by 

stopping the pumping, in fact, the stresses continue to 

mount for a period of time after the pumping has stopped 

before the fluid pressure begins to diminish.  This phenomena 

should be carefully considered in order to avoid triggering 

a major earthquake unintentionally. 
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VI.  DISCUSSION 

The successiul implementation of the TAMEOS equation of 

state for homogenized rock-water-void mixes as a subroutine 

in the SKIPPER code is an important milestone.  This subroutine 

can be readily incorporated into other standard ground motion 

finite difference codes, whether ID, 2D, or 3D.  The table 

look-up routine used with the PEQ model can also be used in 

conjunction with tables generated with the P*EQ and PTbQ models. 

This capability is currently being added to TAMEOS. 

At present the PEQ, P*nQ and PTHQ modelb arc limited to 

hydrodynamic pressures less than 1 robar, with primary emphasis 

on pressures less than £00 kbars.  Additional work is needed 

to extend the range of the tables to be used in TAMEOS up to 

tens of megabars.  Shock metamorphisms^70'71^ in the rock 

component (e.g., poreless tuff or granite) should be consi- 

dered to determine adequate treatments of these phase changes. 

Previous work in rock-water mixes by Butkovich^44^ treated 

only the high pressure states for saturated rock under the 

PEQ model.  Cracering calculations are believed to be very 

sensitive to the model used for energy partition between the 

components upon release after shock processing. 

The irreversible pore collapse model used in TAMEOS 

is based on the disconnected pores postulate.  Because of 

the sensitivity of the stress wave propagation calculations 

to the crushup constitutive model at these low pressures, a 

study should be made to determine the conditions under which 

the postulate is appropriate.  The connected pore model and 

such phenomena ar partial void recovery upon release should 

be considered in conjunction with the available experimental 

data. 
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The inclusion of four generalized plasticity models 

into SKIPPER provide the code with options that possess both 

sophistication and considerable flexibility to match available 

laboratory test data.  The cap model and three "lohr-Coulomb 

models are ir.duded, one without work hardening, one with 

Isotropie work hardening and one with kinematic work hardening. 

Comparison of calculations with field measurements in gr?nite 

show the .'lohr-Coulomb model with kinematic work hardening to 

giv« better agreement than is possible with the cap model. 

It appears at this time that the four models in the SKIPPER 

code are a sufficient base for treatments in which the medium 

is considered as a single material.  Modifications are re- 

quired, however, to adequately account for pore pressure 

effects and relative motion between blocks of jointed rock 

masses.  These phenomena are believed to be the basic reason 

for the reduction in the laboratory flow stress value (by a 

factor of six) that is required to bring calculations for 

granite into agreement with field data.  Such discrepancies 

do not appear to be severe for competent sedimentary 

materials. 

In formulating the generalized plasticity models for 

the SKIPPER code a logrithmic definition of strain was employed. 

Thii is a preferred definition for one-dimensional codes but 

its interpretation in 2D codes is not apparent.  V.'ork is needed 

to permit these plasticity models to be also used in other codes, 

e.g., CRAM. 

The TI.N'C model for treating relative motion between the 

rock and water components in ground shock calculations has been 

significantly advanced with the development of the new POROUS 

code.  The ground motion predictions for a partially saturated 

wet tuff using this new thermodynamic version of the code should 

be modified to treat a spherical high explosive charge as energy 

source so that the comparison can be made with an instrumenteu 
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high explosive field test.  Consideration should also be 

given to modifying the TINC plasticity treatment in POROUS 

to include a generalized cap model for the rock component. 

The 21) quasistatic FRI code represents a new tool 

for evaluating the interaction between a pore fluid and a 

stressed rock matrix as the fluid is driven through the 

rock mass.  The code should be applied in a series of cal- 

culations for a region around an injection well in an effort 

to explain the mechanisms associated with hydrofracture. 

The intent would Is to perform the quasistatic analysis at 

various stages of rupture in an effort to follow the redis- 

tribution of tectonic stresses and alterations in the per- 

meability as the rock is fractured.  Calculations should be 

devised for comparison with field data on the Rangley field, 

Colorado, and/or the Santa Fe Springs field, Los Angeles. 

Consideration should be given to the development of 

a 2-1) dynamic FRI computer code with a mechanism for spon- 

taneous rupture.  Such a code would provide a more adequate 

treatment than currently exists for evaluating the possibility 

of triggering earthquakes at NTS by the passage of a shock 

wave over a pre-existing fault zone. 
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APPliNDIX A 

SOUND SPEED IN A POROUS MATERIAL 

The model of a porous material introduced in 3SR-648 

specifies that the bulk hydrodynamic pressure in the porous 
material is given by 

. il ■ g) 
(A.l) 

where 

V = bulk specific volume 

E = specific internal energy 

a  = distension ratio 

(S)   (V) 
_  n  •*■  n    ^   J 

*   Tsl  '  n = voiume fraction of solid 
n 

(V) 
n = volume fraction of voids 

P(V , E)  is the hydrodynamic equation of state of the solid 

material where Ve  is the effective specific volume of the 
poreless solid, i.e., 

ve  V 
  a (A.2) 

In the present formulation, we recognize that the bulk pressure 

is averaged over the total surface area, so that the effective 

stress is reduced by a factor of 1/a.  This differs from 

Herrmann's1   model wherein bulk pressure is set to 

(p)Herrmann = l[l  '   E) = W6, E) (A. 3) 
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Carrol] and Holt'   have discussed these two ''ormulations 

and recommended that Eq. (A.l) be adopted for strengthless 

porous matrices. They did not rederive the expression for the 

sound speed of the hulk material in their analysis.  Tliis 

relationship is presented below and compared to the original 

expression proposed by Herrmann. 

Let us retain Herrmann's form for the distension ratio, 

I.e. , 

a ■ afp) CA.4) 

The sound speed, c, may be obtained as lo'iows; 

S= -(H • KiDv CA.S) 

Differentiating Eq.   (A.l)   leads  to 

(M 
1_ 

.r« 

1   ♦  f Ve^^ ♦ l£i 
(A.6) 

and 

mx 
ITT V 
P 

♦     \ 

(A. 7) 

Since tue sound speed in the solid material is defined by 

dP        ^P 

dV 

(A. 8} 
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we arrive at the following expression for bulk sound speed 

c2 

c2 = -       s 

(ve ^+ p\aZ(£i 
\   9Ve  -/  a

2 
! ^ , v  — ^ r , —^_ (A>9) 

In the limit of P ♦ 0, this reduces to 

(A.10) 

wliere 

K^ ^ normal bulk modulus 

9P 
= lim (  e  \ 

P-0 \-V     3Ve/ 

cSo = sound sPeed in solid material at zero pressure 

Herrmann's expression is 

a ex 
Cc 1        =    o  ^o 

MIerrmann  7    ~,        \ (A. 11) 

It is apparent that both results indicate that major reduc- 

tions in the sound speed of porous materials can be achieved 

only if the  matrix deforms under infinitesimal compressions 

(cx-(0) < 0).  Vne major difference between the two models is 

the factor of ^ which appears in the numerator of Herrmann's 

expression.  This term is troublesome from a physical view- 

point since it implies that in the limit of a perfectly rigid 
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"f 

matrice structure (a'CO) -<■ 0] , the sound speed is increased 

by adding to the void volume fraction. In the present for- 

mulation, the  (i  factor no longer appears.  Hence in the 
o 

same limit we are left with sound speeds that are identical 

to those in the matrix material.  Although not cited by 

Carroll and licit, this list result lends more weight to the 

arguments in favor of utilization of the effective stress 

model (Hq. (A.l)). 
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APPENDIX B 

II.ii. TEST PARAMETER CALCULATIONS 

In response to a request by the contract monitor, 

C. H. McFarland of Udq. , DNA, calculations were made to 

investigate the relevance of material properties to the 

ground motion and stress pulse generated by high explosive 

tests in NTS tuff.  The material models employed were based 

on [ita   to laboratory data on tuff samples obtained from 

specific locations at the Nevada Underground Test site. 

The calculations also examined the sensitivity of the results 

to the representation of the high explosive energy source in 

the calculations. 

Tuff properties from two locations near the CU12e-12) 

underground nuclear test site were considered in the calcu- 

lations.  Samples of the tuff at distances from the working 

point of 30 ft (Slifer Hole #1) and 1530 ft (Drill Back 7) 

were selected from those tested under quasi-static loadinti 
[721 

by Green, et al. l  J  These two locations represent the ex- 

tremes in the measured gas-filled porosities measured at the 

site.  At the Drill BacK 7 (DB-7) location the tuff is 

almost completely saturated with only 1.6 percent of the 

volume gas-filled.  At Slifer Hole #1 (SH-1) fully 7.6 per- 

cent of the volume is gas-filled, representing 22^ of the 

total pore volume in the tuff.  The solid-water-void volume 

fractions for the two tuffs are listed in Table B.l. 

A fit to the quasi-static data from the DB-7 location 
[211 

was used by Bjork1  J in a predictive calculation for a 

1000-lb nitromethane sphere detonated at that site.  The 

ground motion measurements subsequently made in thetest were 
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TABLE B.l 

DESCRIPTION OF TEST SPECIi-IENS 

In-Situ Density ig/cc) 

Tuff Grain Density ig/cc) 

CD 
MM in  \olume   I'raction,   n 

o 

A at er Volume Fraction, n 
o 

(5) 
Air \olune I'raction,  n 

(3) /(2) C5)\ 
n /  n + n 

o     \       o of 

Sll-l 

1.86 + o.o; 

1 SS  ♦ 

Q 055 

0 269 

0. 070 

DB-7 

1.88 ♦ 0.02 

2.37 + 

0.634 

0.3 5 Ü 

0.01 () 

4.4"u 

in good agreement with the calculations.  It was decided to 

use the same tuff model in the parameter calculations re- 

ported here except a treatment of the irreversible crushup 

states was added in order to permit the calculations to 

follow the stress pulse propagation to greater distances 

from the source while using the SKIPPER code. 

The constitutive relations for tuff used in the com 

putations the»-, fore consisted of three parts.  First, the 

cnergy-pressure-volume equation of state for the completely 

crushed material is specified by the equation 

p = GpE + Au + By 
P 

- 1 (B.l) 
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where the reference density  p  here refers to ^he completely 
o 

crushed tuff/water mix (only water filled pores remaining) 

at ambient conditions.  Second, the partially crushed material 

is characterized by a porosity parameter  t(p) ■ PS (p)/P (p) • 

Here  p.  and  p  are the densities of the completely crushed 

and partially crushed materials respectively at the same 

pressure.  A simple form for  u(p)  was used since the limited 

data available did not justify a more elaborate fit, 

a = 1 + Ca -1)(1-P/PJ2 CB.2) a C 

Here  a   is the value of  i  at ambient conditions and  p 

is the pressure at which all jjas-filled pores are crushed out 

of the tuff.  The  p  value was estimated from uniaxial 
r72T strain test data.'"-1  Third, the deviatonc stress was ccm- 

puted with an elastic-perfectly plastic model, using a con- 

stant rigidity modulus  G  and a simple von Mises yield 

condi t ion, 

S2 ♦ S2 ♦ Sz < * Y* , (B.5) 

where the S.  are the principal deviatoric stresses. 

The values of the constants used in the constitutive 

relations for the two partially saturated wet tuffs are 

listed in Table R.2.  The higher volume of gas-filled poro- 

sity at the Sll-1 location may be expected to enhance the 

displacement at given pressure, but its higher shear strength 

should counteract this to some extent.  It wao of interest 

to evaluate these competing effects, to assist in the selec- 

tion of the site for a planned h.gh explosive test in the 

U16a tunnel complex at the Nevada Test Site. 
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TA8LB B.2 

CONSTITUTIVE MODEL CONSTANTS FOR 

TWO LOCATIONS 

A   (kbar) 

B  [kbar) 

(", 

P    Cg/cc) 
0 

ex 
0 

pc   (kbar) 

\i   (kbar) 

Y   (kbar) 

SII-1 1)15-7 

8 3.3 

8 3.3 

1.8 

2.012 

1.082 

1.Ü 

10.5 

0.55 

83.3 

83.3 

1.8 

1.911 

1.0165 

0.5 

10.5 

0.346 

The source was taken to be a 1000-lb sphere of 

Composition B high explosive with a density of  p   =1.7 g/cc 

prior to detonation.  The initial radius of the charge is 

therefore  R  = 39.5 cm.  I-'our tuff comparison calculations 
o 

were made for two representations of the source.  Two cal- 

culations treated the burning process and employed a pressure- 

volume-energy equation of state to compute the detailed be- 

havior of the detonation products.  Two additional calculations 

were made in which the source was approximated by a y-lavi 

gas in the expanding spherical cavity of initial radius  R . 

In the calculations which included the burning pro- 

cess in the source representation, the empirical Jones- 
[731 

V.ilkins-Lee equation of state1  J was used to describe the 
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Composition B detonation products.  This equation is pre- 

scribed by the pVE relation 

P - A(l - f^y0^   ♦ ß(l - ^)e   'C«V * Ji       (H.4) 

The constants for Composition B are listed in Table B3.  In 

the computations the detonation front propagates from the 

center of the sphere at wave speed  !)„, = 7.98 * 10* cm/sec and 

the chemical energy released on detonation is  li  ■ 4.95 « 1010 
o 

ergs/g.  The corresponding Chapman-Jouguet pressure and 

density are  pCJ ■ 295 kbar and  p^ = 2.35 g/cc, respectively. 

In the two calculations in which the source was 

approximated by a cavity containing a y-law gas, the pressure 

in the expanding cavity was computed from 

"■M^f lB-5) 

where the value y = 2.77  and the associated parameters 

listed in Table B.3 were estimated from work by Coleburn 
f 74] 

and Liddiard.1    The density and pressure are assumed to 

be uniform within the cavity at any time.  The initial 

cavity pressure in the computatir s is given by 

2 77 

P0 = 283(77^)    = 1^6 kbar      (B.6) 

In Fig. B.l the profound effect of air-filled poro- 

sity on shock wave attenuation is illustrated.  The less 

saturated SI1-1 material requires only about half the 

distance to attenuate the shock to a given pressure as 

does the DB-7 material.  The  y-law gas approximation is 

seen to produce results very close to those obtained using 

the detailed treatment of the burning process in the source 
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TABLE B.3 

EQUATION OF STATE PARAfffiTBRS FOR 

COMPOSITION B HIGH EXPLOSIVE 

A (.dynes/cm2) 

B (dynes/cm2) 

C. (g/cc) 

C2 (g/cc) 

u 

o  (g/cc) 
o 

H
Q (ergs/g) 

PC1   (dynes/cm2) 

PCJ ^/'cc^ 

;)CJ (cm/sec) 

JWL 

5.2 4 - 1Ü12 

7.678 x lola 

7.21 

1.89 

0.34 

1.717 

4.95 - 10 ' ° 

2.95 « 101 ' 

2.35 

7.9 8 x 105 

Y - Law 

1.7 

2.83 ' 1Ü1 ' 

7. .35 

7.95 x io> 

representation.  At early times the  y-law approximation 

overestimates the driving pressure and at late times it 

underestimates it.  This is illustrated by the results shown 

in Fig. B.2. 

The stress-time history at radial distances from the 

source of  R^ = 123.7 cm and 203.6 cm, respectively, are 

shown in Figs. B.3 and B.4.  The hump in the profiles for the 

calculations which treated the detona- ion processes result 

from a wave which is reflected at the center of the cavity 

ind  eventually catches up with the shock front. 

In Fig. 3.5 the radial displacement-time history is 

shown at a distance of R = 203.6 cm from the source 

(Ro = 207 cm for Sll-l).  Although the calculations have not 
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been carried to late enough times to determine final displace- 

ments, it is clear that much greater displacements occur in 

the more saturated DB-" tuff.  At this distance it experiences 

a [icak stress of  S     whereas the SII-1 tuff is subjected 

to a peak stress of only • 1 kbar.  finally, the time of 

arrival of the shock front at a given radial distance is 

shown in Fig. B.6 for each of the two tuffs. 
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APPENDIX C 

INTERACTION TERMS 

fIC), pach (a)    In the Theory of Interacting Continua (THI. 
»   has a velocity field  ^ (x.t), stress field 

and a density field  Vcx,t),  Associated with these^ixulre 
quantities, we postulate the existence of  Ve (x.t), 

^ij (x,t) and  p e Cx,t} in the physical configuration 

It U to be noted that neither of the two sets of quantities 

corresponds to the actual distribution in the body.  The quan- 

tities in the physical configuration ((v)e, (a^e, (p0e) 

represent the averages of the actual variables taken over 

several 6rains.  Thus, purely local effects (e.g.. stress 

concentrations along a pore boundary) are ignored.  The re- 

lationships between   W.  and  W«r, and  ^  and  (p0e 

yeje given in Section IV.   The velocity distributions 

V  Cx.t)  and  v ( Cx.t) will not be in general identical 

In the following discussion, it will be, however, presumed 
that 

(a)   (a) 
I)  _  D e 

t   -TTT 

whore 

(a)       f«1       Cd) 
ITF - ÖT +  v -grad; ^^ = 1_ +  ve.grad    u;>1) 

This follows from the fact that one is trying to follow the 

same particle in both the mixture and the physical configuration. 

Thf following discussion will be restricted to a two- 

component mixture.  Superscripts (1) and (2) are used to de- 

note   -.  (rock) and   4J ffluid) , respectively.  The rock 

is regarded to be an elastic-plastic solid.  The fluid is 

Preceding page blank 241 
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taken  to  he   inviscid,   but  due  account   is   taken  of  the   viscous 
effects  by  postulating  the  existence  of  a  diffusive   force, 

•p  r|.      It   represents   the  drag   force  experienced by   the   fluid 

as   it   passes   through  the  porous   rock. 
(a) 

The mass conservation relations for   i  are: 

Mixture■ 

CS)C^     coo      (o 
"ht'-   ♦    p    div    v    = o 

a - 1,  2 CC.2) 

Physical   Configuration: 

S^e^^e        (a)c (a)i 
- +     p  e  div     v e   =   U 

Dt 

a - 1,  2 CCS] 

Combining Eqs. (1) through (3) and noting the 

(a)  Ca)(oO 
o  = n p e CC.4) 

there folljws 

Co) coo     , rb
(^    Ca) Co)i 

iv v c = div v + -j^y I -JT  +  -  * 8rad n I 
n 

a = 1, 2. (C.5) 
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The momentum balance relation for  ^  m the mixture 
is given by: 

(a) (a)    (a) 
(a)  D vi   3 a Ca) 
p ~lTt— = "air1 + D ^ 

a = 1, 2 

For a two-component mixture, we have 

CD C2) 
P £    =   -P   ß     =   pß 

C.6J 

CC.7J 
(2) '-       . o), 

^j /   ii  Isotropie, For     V,   the   stress   tensor     ^.     (or       a  el 
i.e., ^     [ ij  ' 

C2) (2) C2)C2) 
aij   =   -  P    ^ij   =   -  n    p  e   6. 

C2)(21 
ij   "     u    0ij ((.'.8 1 

•Voting that the fluid is subjected a drag force  -p n  as it 

passes through the rock, the momentum balance relation for the 

fluid m the physical configuration may be written as: 

(2)e^e     m 

W    ■ -&— - ^^i CC.9) 

IVe  now  require   that 

C2)e(2) (2)(2) 
D       v.e D     v. 

i     _ i 
fit~ '        TTt (i;. Kij 

Relation (CIO) follows from the fact that the change of „cen- 
tum m the physical configuration must equal to the change in 

the mixture configuration.  Therefore, combining fqs. (C.oj 
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through (10) , we obtain 

T (2) 
pi = - p c orad  n  + p  " l( -i1' o 

ThU, the momentum interaction term. ?£. consist« of two parts, 

i.e., dilatation («T* ^ad lnJ)  and shear CP^) contributions. 

Let us now examine the momentum balance relations for 

the rock matrix. V.  In contradistinction to the fluid   4 !. 

the relationship between the mixture and the phvsical configura- 

tions IS not readily obvious.  The interaction force, .f  «"* 

induce a complex state of stress in the solid.  As an example, 

let us consider the mixture to be in a state of uni-a.|ial 

strain.  In this equation, the momentum balance for   »   m 

the mixture is 

CDd]        CD 
u)    Ü   ^ - llu.+ pCJ] CC.12} 

P    —TH '•xi       
f    i 

In  the  physical   configuration,   the  momentum  balance 

relation   fusing   CC.10)]   is: 

(Dd) CD- CD. CD 
n      »r ■,   n ''0 ^   O 

e 
». D.      D     v '   011      .     '   0 i:   .    '      -3 (C.13J 'e  i   -  Li. 

"TU •xi 9x2 ■'x3 

.*.  (-i-)e  and  (1)c  will in general be The stress components  (J^  ana    ^ 

non-zero 
Although the mixture is undergoing uni-axial motion, 

'the individual constituents may be in a more ^mplex stress 
(.)c     onrl  a   are the result 

In this particular case, a^     and  5^ 

interactive force, pC| ,  Combining equations CC.12) and 
state . 

Of the 

[C.i 3} and not ing that 

Co)    Co] Ca)e CC.14) 
nj =  n  0ij ' 
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there   follows 

CD     <i>.    .(i'. Cl) (i)e ,^   _ » <r '      »o 
Dp     SDP     =-a       —K— +  —*—I*  +   —r;  r r   i e 1 

1 2 3 

I'rom Liqs. (C.ll) and (C.15), we have also: 

(2)   ^ (1)   Cl] K*,9   3 n  .        llJe a n - a P3 = - p  -««-■ + P n 1 dX      oi ii  »X 

/!>•   Cl)e 9 a     3 a 
LI + -^ Li CC.16) 

3x      9x 
2 3 

Thus, in trying to relate the mixture configuration to the 

physical configuration for 6   , it is necessary to separate 

out the stresses induced by the interaction with  i .  Such 

an identification may he impossible except in very simple 

cases such as uni-axial motion. 

O) The internal energy balance relation for  i   in the 

mixture is 

(a)[a}        (a) 
0 
ij 

a = 1, 2 

(a)  DE    (a)  9 vi    (a) 

We will now assert that: 

E=E   a=l,2 C C.18) 

(a) 
In other words, the internal energy  E  is the same in both 

the mixture and the physical configurations. 
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For the fluid, uc will assume that p 

two parts, p : i  and  p i|>  , 

l|i  consists ol 

C2}    (2)    (2) 
p *  - P «fd 

+ P ^ 

[21 (2) 
where    .,  denotes the dilatation contribution and  P ^s, 

the diffusive contribution. 

he now consider the energy balance equation for the 

fluid in the nhvsical confi^uratinn 

19) 

f 2 "1  ^ 2) (2 ]    , 2 •) 

o c  TV  = " P  dlv - 
(2)     f21 e  '1  !      .   o    ,../.. e C.2I 

Combining Lqs. (C.4), CCS), (C.sj and CC.17) throug«) CC.20 

we obtain: 

C2)   (2), 
P v. 

(2)   (2) (21 

at 
+  v •grad n (C 2 1 ) 

Tli us 

(2) (2) 
3 • v 

(2) (2), 
(21 

1   u 
(21 

v     + 

H 
(21 

dl 

cc 

For the solid,  i , the energy balance considerations 

are nuch nore complex.  P.vcn for the uni-axial case considered 

in connection with the momentum balance, the situation is 

quite difficult.  In the physical conriguration ,  v^   and 

v e  need not be zero and indeed may depend upon all the 

three space dimensions.  One, therefore, needs to introduce 

sone additional assumptions for the solid energy balance. 

The requirement that the energy contribution of the 

internal material interaction forces be zero may be written 
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as 

CD  C2) v       (i)        C2) 
)3   •   I   v   -   v +   P^     +P^     =0 

Substituting   from  I-qs .   (C.il).   CC.19)   and   (C.22J   .„to  EQ 

there   follows: 

CC.23) 

(C.25), 

(2)e C2) 
p      grid n    +  p  n 

o — 
(1) (1)        C2) 

• v    +  p  i/;     -    p 

(2) 
e   3  n (2) 

Jt P n   • v o — 

C2) 
+  P  ^s  =   0 

or 

(2) (2) 
e   3  n (2), 

ft 
+     P 

C2]   Cl) 
P        •   grad n   •  y 

(2) 
+   P   ^s   -   0 (C.24J 

The   internal  energy  cont^hution p^     can be  split up  into 
two parts,   p  JJ     and    pV   . 

CD CD (1) 
p   ^     " P ♦A ♦ P  << 

This  yields 

(C.25J 

V\   Sn (Ve (2)   CD CD CD        (2) 

CD   C2) 
(C.26) 
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(1)  (1)  (2) 

ho have thus one equation for three unknowns,  tt, ,  V  V 

We will now as.une that the dilatation and shear contributions 

ust be separately equal to zero, i.e., n 

(1)        (2), n (2]    dl 
♦  crad n   •  V 

(C.27a) 

(1) 
vs p   '!'„   +   P 

(2) 
P   n 

0 — 

/(2}    (1J \ 
•   I   V   '  V    I 

(11 
is  exact   for   inxjscid  ( p   >s 

constant 

(2) 
P   ^ p a    6) 

This  procedure   is  exuci   LVI    "^    • 

or   incompressible materials    \  n 
the   general   case,   it   has   to be   regarded   as   a  constitutive 

as sumpt ion. 

The next question that arises is M to how we should 

»plit the diffusive contribution.  Since diffusion is a 

dissipative process, it is reasonable to require that 

's - 0 
(2) 

p V s - 

one further assumption is now necessary regarding the par- 

tition of the diffusive energy contribution. The simplest 

hypothesis is to assume o(< to be zero.  This yields: 

(2)        ((2) dl. 
P *. ■ P.D. * \ X. ' M- 

(C.27b) 

CC.28J 

CC.29) 

The last assumption merely states that the fluid receives 

all the diffusive energy contribution. 

..„vi rxc:R-ri481  it was assumed that In our previous work (..iM< o^nj ,  L 

(11 (1) 
V 

(2) 
P i's ■  non   • 

(2) 
V 

{C.5Ü 
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It is now seen that such an assumption cannot possibly satis- 

fy Hqs. (C.28), and hence is erroneous.  This last conclusion 

of course does not apply if p^n is regarded as a shear 

Cnon-dissipative) force.  It may also be verified that for 

the steady case, present expressions for p J^ and p^ 

reduce to those derived in 3SR-648. 
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APPENDIX Ü 

EFFECTIVE STRESS LAWS 

The effect of fluid pressure on the deformation and 

strength of saturated rocks has been studied by a number of 

investigators.  This role of fluid pressure is usually con- 

sidered by defining an "effective stress"  <a . . > 

<0ij> = öij " aPp 6ij n-U 

where 

(Jj. ■ applied stress on the rock/fluid composite 

a = constant 

p ■ pore pressure 

The "effective stress law" simply implies that the stress- 

strain (and strength) response of the saturated rock is 

identical with that of the dry rock if one utilizes the 

effective stress  <o..>  instead of the composite stress 
* J 

There is considerable disagreement as to the value 

of the parameter  ot.  Terzaghi ^  ' argued that  a  should 

equal the porosity,  1-n, so that the effect of pore pressure 

is eliminated when the porosity is zero.  Hubbert and 

Rubey1' •   attempted to prove theoretically that  a should 

be  1.  Although the validity of their proof is somewhat 

controversial,1'^ experimental measurements on strength 

have generally revealed a fair agreement with Hq. (D.l) 
T 7 7 D n 1 

with i = I.1 One exception to this good agreement 

appears to be in the area of strength measurements on low 

porosity rocks. [78J  However, Brace and Martin^80' present 
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quite  plausible   arguments   to   the  effect   that   this   apparent 

disagreement   is   due   to   fluid  pressure   in  not  being   fully 

effective.     Prior  to  gross   fracture,   the   rocks   begin   to dilate 

under   compressive  stresses.     Above  a  certain  critical   strain 

rate,   fluid  pressure   inside   the  pores   is   considerably   less 

than   the   applied  pore   pressure. 

Even  though     a  ■   I     gives   good  agreement  with  strength 

tests,   its   application  to   stress-stiain  measurements   is 

questionable.f81"85'68]     Skempton[82]   and  neer,sma[81]   have 

suggested  that 

a ■   1  •   lv/Ks (I). 2) 

where  K : bulk modulus of porous rock 

K  = bulk modulus of rock grain. 

Skulje18-^ proposed the form 

a = 1 - n K/Ks , (p. 3) 

where  n  denotes the volume fraction of the rock matrix. 

Because of lack of good theoretical basis or sufficient data, 

expressions like (0.2) and (i).3) have not been generally 

employed.  Recently, Nur and Byerlee^68' have derived liq. 

CD.2) from certain linear elasticity considerations and tried 

to correlate it with stress-strain data. 

'Aur  and Byerleef68 ,84 ^ have tested Iveber sandstone 

under hydrostatic pressure both with no pore fluid and when 

the pores are saturated.  Choice of Weber sandstone mini- 

mises weakening of the rock matrix by chemico-physical 

interaction with the pore fluid.  They measured the con- 

fining pressure  pc, pore pressure  p , and the partial 

volumetric strain for the rock,  9 .  In fig. 1). 1 we show 

the stress-strain points obtained by using the conventional 
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effective stress law.  It is seen that all the saturated 

data lies on one side of the dry data.  Had the conven- 

tional effective stress law been applicable, all the saturated 

data should have fallen on the dry curve.  The conventional 

effective stress law overcorrecta for the pore pressure effect 

and is evidently inadequate.   In Fig, D.2 we plot the stress- 

strain data obtained from the Nur-Byerlee effective stress 

law.  The dry stress-strain data was numerically differentiated 

(linear) to yield  K  as a discrete function of  p .  Least 
, . rc 

square technique was then employod to express  K  as a second 

degree polynomial in  pc.  following \'ur and Ryerlee[68], 

Ks was taken to be 0,36 mhar.  For the wet case, K  was 

evaluated from the polynomial function by replacing  p   by 

Pc - pp.  Comparing figs. D.1 and D.2, it is readily seen 

that use of the Xur-Byerlee effective stress law considerably 

reduces the data scatter.  However, even in this case all the 

wet data lie on one side of the dry data.  Clearly, the Nur- 

Byerlee effective stress law undercorrects for die pore 

pressure effect. 

in Fig. I). 3, we plot the TINC effective stress  p e 

versus effective strain   e e  and  n.  The interaction function 

n  was then expressed as a second degree polynomial function 

In pc.  For the wet rock, n was evaluated from this func- 

tional relationship with  p   replaced by  p  - 1.31 p . 
(1JP> C  fli    P 

Effective pressure  p   and effective strain Ve  were 

then determined from Hqs. (8) and (23).  In this case, tne 

scatter of wet data around the dry data is considerably re- 

duced.  Also, the wet data lies evenly on both sides of the 

dry data.  Thus the TINC model provides a good model for 

data fitting.  This, however, does not constitute a proof 

of the model.  To provide a proof of the model, one would 

also need to measure the porosity (1-nj during the test and 

compare it with theoretically calculated values.  It is, 

however, comforting to observe that the dependence of n 
wet 

on  pc  and  p  is in accord with the physical intuition. 
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