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FOREWORD

This formal technical report entitled '"Ground Motion
Predictive Techniques for Porous Geologic Media," is sub-
mitted by Systems, Science and Software (S?®) to the Advanced
Research Projects Agency (ARPA) and to the Defense Nuclear
Agency (DNA). The report presents the results of the third
phase of a continuing effort to develop reliable material
models and computer techniques for predicting the motion of
inliomogeneous and porous geologic media. This work, in
support of the PRIME ARGUS and MILITARY GEOPHYSICS programs,
was accomplished under Contract No. DASA 01-69-C-0159(P00003),
which was funded by ARPA and monitored by DNA. Dr. Stanley
Ruby was the ARPA Program Manager and Mr. Clifton B. McFarland
was the DNA Project Scientist.

Dr. T. David Riney was the S*® Project Manager for the
study. The technical results presented in this report repre-
sent the work of a number of S® staff members in addition to
the authors. It is appropriate to list here the contributors
to technical Sections II through V.

Section II: J. W. Kirsch, A. J. Good, G. D. Anderson
Section III: J. K. Dienes, G. D. Anderson,
K. G. Hamilton
Section 1IV: S. K. Garg, D. H. Brownell,
R. J. Archuleta
Section V: G. A. Frazier, S. K. Garg

Dr. M. H. Rice participated as a consultant on this project.
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ABSTRACT

The work reported consists of three task areas:
(a) development of constitutive models and computer methods
for calculating stress wave effects in geologic media in the
vicinity of a buried energy source, (b) verification of the
computer models and their application to examine the sensi -
tivity of ground motion predictions to the material parameters
assumed in the constitutive models, and (c) development of
methods fer calculating the perturbation of residual tectonic
stress-strain distributions induced by changing the pore
water pressure. A general computer subroutine (TAMEOS) is
described which generates thermodynamic equations of state
of porous wet media for use with a table look-up procedure
in standard ground motion codes. TAMEOS has been applied to
NTS tuff and is used in the SKIPPER code for a series of
spherical calculations in which the crushup strength and
volume fractions of the rock-water-void mixture were varied.
Four constitutive models and associated subroutines have
been incorporated into SKIPPER for improved ground motion cal-
culations for rocks with high shear strength. The cap
model is generalized to treat the full range of pressure and
strain encountered in underground tests. Generalized
Mohr-Coulomb models include one without work hardening, one
with isotropic work hardening, and one with kinematic work
hardening. Model sensitivity calculations for granite are
presented for tne four SKIPPER options. Detailed comparison
of calculations with field measurements arec presented for
the kinematic work hardening and cap models. A thermodynamic
formulation of the Theory of Interacting Continua (TINC)
is presented as well as the numerical procedure used in the
new POROUS code for treating spherical ground motion problems



vi

in the TINC framework. Limited calculations using the new
code are presented for partially saturated tuff. Linearized
TINC equations are developed for describing the interaction
of a pore fluid with a rock matrix as the fluid is driven
through the geologic mass under a hydraulic gradieni. The
2-D finite element computer code (FRI) for treating these
geohydrological processes is described. Test Calculations
for the rock-fluid interactions in the vicinity of a fluid
injection well are presented.



I. INTRODUCTION

Adequate material response models and associated com-
putational techniques are required if ground motion predic-
tions are to be made with confidence. One is concerned with
a signal which has attenuated from stress levels in the
source vicinity, which may be megabars, to stresses at large
distances, which are small compared to strengths of earth
media.

In this transition region between the hydrodynamic
source and the distant elastic region, the material response
models should consider such complex nonlinear physical pro-
cesses as dynamic void compaction, heterogeneity, pore water
pressure and diffusion, yield and fracture phenomena, dilatancy,
water and rock interactions, material phase changes, and
dependence of strength parameters on the thermodynamic state.
This report describes improved techniques for predicting ground
motion that have been developed in the current study. The
general approach followed here, as in earlier work described
in 3SR-267 and 3SR-648,* is to construct material models of
increasing sophistication from available material properties
data and to develop the required numerical methods to evaluate
stress wave phenomena as each additional effect is introduced
into the model.

In addition to the development and acpplication of im-
proved techniques for predicting ground motion, the report
also describes work directed toward understanding earthquake
triggering mechanisms. A computer model is being developed
to calculate the quasi-static perturbation in a residual
tectonic stress-strain distribution as a pressurized fluid
penetrates through a geologic medium under a hydraulic
gradient. The objective is to analyze the effect of siting

—
Here and throughout this document, 3SR-257 and 3SR-648 refer
to the reports [Refs. 1 and 2, respectively] describing earlier
phases of this contract.
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a reservoir or a deep waste disposal well in the vicinity of
a pre-existing fault :zone.

A typical geologic medium consists of a rock or soil
matrix containing cracks or pores that may be partially
filled with water. Even if the matrix material is unchanged,
the porosity and the water content will vary with depth and
with surface distance and the stress propagation characteris-
tics of the medium will vary accordingly. For teleseismic
calculations it is impossible to know the porosities and
degrees of saturation at inaccessible nuclear test sites.
Even when local geological conditions and the water table
location have been established by field logging tests, as
would be possible in evaluating the vulnerability of under-
ground structures, it is economically impractical to perform
laboratory material properties tests on all the porosities
and degrees of saturation that occur. Consequently, it is
desirable to construct the material models in such a fashion
that the response of the medium can be predicted as these
quantities are varied.

From the outset of the present study, therefore, the
geologic medium has been considered to be composite and a
description of its wave propagation characteristics has been
sought in terms of the behavior of the isolated rock matrix
and water components. Reference to the detailed microstruc-
ture of the composite is avoided, however, since the models
are to be used in continuum type computer codes in which the
phenomena of interest are on a much larger geometrical scale.
Consequently, the Theory of Interacting Continua (TINC) was
adopted to provide a framework general enough to allow
explicit treatment of pore pressure effects and relative
motion between the rock and water components. Computer codes
usually employed for ground motion calculations, however,
treat a geologic medium as a single continuum so that eaci
incremental volume of the medium has associated single

2



values of pressure, velocity, etc. Since practical calcula-
tions are currently performed using such codes, material response
models have also been developed to be compatible with applica-
tion in single continuum codes by adding the homogenizing
assumption of no relative motion between the rcck and water.

In 35R-267 and 3SR-648 the modeling effort centered on
a representative tuff at the Nevada Test Site (NTS tuff) to be
specific, but the basic methods are applicable to other porous
geologic media with relatively small shear strengths. For
example, one of the homogenized composite equation of state
models has also been used to predict the behavior of clay
shale media at the MIDDLE GUST test site.[S] In this report
the model development has also specifically treated Cedar
City tonalite, a representative geologic media with a large
shear strength.

Section II describes an homogenized equation of state
for NTS tuff for the pressure range of 1 mbar down to a few
bars. A computer routine has Been developed which calculates
the isotropic thermodynamic states of rock-water-void mixtures,
including a description of irreversible collapse of the air-
filled pores (void volume). These states are tabulated
and may be utilized in cenjunction with a table look-up pro-
cedure as a subroutine in standard ground motion codes.
Primary inputs to the TAMEOS subroutine (for Tabular ..rrays
Of Mixtures Equation Of State) are the homogenized model
to be utilized (e.g., one of the PTEQ, PEQ or P*EQ models
described in 35R-648),* equations of state of the isolated
rock and water components, and initial volume fractions of
rock, water and air-filled pores. For cases in which experi-
mental data are unavailable, a simple crushup model is
employed requiring the crushup pressure, sound speed, and
elastic crush limit, as the only additional inputs to be

*At the time of writing TAMEOS has been used only with tables
generated with the PEQ model, but may be readily used with
other pressure-equilibrium models.



specified. 1i experimental data are available, the crushup
curve can be directly incorporated into the TAMEOS subroutine.

The TAMEOS subroutine has be:n incorporated into the
single continuum SKIPPER code and a series of spherical cal-
culations made using the PEQ model for a representative tuff
with varied degrees of water saturation of the pore space.

An 8-KT nuclear source is simulated by a y = 1.4 gas in 2
cavity of initial radius of 3.72 m in these material property
sensitivity calculation:. (In Appendix B the results of
several spherical calculations for a 1000-1b high explosive
energy source of interest to the NTS underground test pro-
gram are also presented.]

Section IIl describes the basic theory and the asso-
ciated series of subroutines that have been incorporated into
SKIPPER for improved ground motion calculations for high-
shear-strength igneous rocks. ,Constitutive laws more
general than the Mohr-Coulomb model used in much of the earlier
work are introduced. In each case, an associated flow rule
is assumed in developing the flow law and the influence of
finite deformation is properly treated in the kinematic rela-
tions. Major emphasis was on the work to generalize, program
and test the Weidlinger cap model (for Cedar City tonalite[4])
in order to arrive at a constitutive equation that covers
the full range of pressure and strain encountered in nuclear
shots. Generalized Mohr-Coulomb constitutive equations were
also incorporated into SKIPPER as options, including one
without work hardening, one with isotropic work hardening,

and one with kinematic wnrk hardening.

These four modes of the SKIPPER code were exercised in
a series of material model sensitivity calculations for a
spherical configuration . These parameter studies for Cedar
City tonalite are all for the same simulated 8-kT nuclear
source used in the tuff calculations. Effects of the strength



paramneters cn cavity size, stress atteruation and displacement
are examined. Most of the work described in Section III,
however, concerus comparison of the Hardhat and Piledriver
ground motion measurements with SKIPPER calculations using
the generalized cap model and the kinematic work hardening
model. It is shown that the latter model predicts ground
motion in much better agreement with field measurements than
is possible when the cap model is employed.

A modification of the TINC formulation to more
realistically treat the deviatoric stresses in the rock
matrix, and its extension to account for thermodynamic
effects, is presented in Section IV. The 1-D computer code
POROUS for computing stress wave effects has been completely
rewritten to account for the more comprehensive TINC model.
The code now treats spherical as well as pPlanar configurations
whereas the initial version for solving the TINC equations
within the mechanical formulation treated only plane waves
(see 3SR-267 and 3SR-648]. Limited Caiculations using this
new POROUS code for partially saturated NTS tuff are
presented.

The mechanical interaction of a pore fluid with a
saturated rock matrix as the fluid is driven through the
geologic mass surrounding a fluid injection well has been
modeled within the linearized TINC equations. The formulation,
presented in Section V, couples the deformation arnd diffusion
fields of interest to the problem. In order to solve the
associated set of linearized quasi-static equations, re-
taining all of the potentially important interaction terms,

a finite-element method of solution was selected. Available
2-D finite element computer codes for treating the separate
elastic and diffusive Processes were modified and combined
into a single code for treating the coupled processes. This
2-D fluid-rock interaction code (FRI) is described in
Section V along with some test calculations.



In Section VI, the status of the work is summarized
and suggestions are made for the direction of the effort
during the next contract period.

It seems appropriate here to record a number of
technical publications that have appeared in the open litera-
ture descrihing aspects of the work reported in 3SR-267 and
3SR-648. Gurtman, Kirsch and Hastings[s] presented an analy-
tical equation of state for compressed states of water.
Morland[ﬁ] described the initial version of the TINC formula-
tion for fluid saturated materials. Garg[7] presented numeri-
cal results describing wave propagation effects using the
mechanical TINC formulaticn. Garg and Kirsch[s] showed that
the TINC framework is geueral enough to include various
homogenized composite ejuations of state (e.g., PTEQ, PEQ,
and P*EQ) as special cases. Morland[g] presented a finite
deformation plasticity theory with isotropic work hardening.
Additional results of tlie earlier phases of the work have
also been described in a numnber of oval presentations at

technical symposia.



1T. HOMOGENIZED TREATMENT OF POROUS WET TUFF

2.1 INTRODUCTION

One of the most important problem areas in the develop-
ment of ground motion codes is the treatment of hydrodynamic
rock/water mixtures. It has been demonstrated in 3SR-648
that one may derive various mixture equations of state on
the basis of a number of "equilibrium" conditions achieved
behind a shock wave. A unique set of shock states is speci-
fied only when a constraint is prescribed for the (shock)
partitioning of internal energy between the rock and the
water. Such a set of states can be obtained if the pressure
and temperature of the constituents are equal (PTEQ). 1If
there is insufficient time for thermal equilibration, but
the components are homogenized to the point that they are in
pressure equilibrium, other shock state specifications may be
made, such as in the PEQ and P*EQ models discussed in 3SR-648.
The latter formulations are of great importance, since all
laboratory (and mo.t field) experiments designed to measure
ground motion parameters fall w.chin the regime of thermal

nonequilibrium,

Should analytic expressions for the rock and water
components' equations of state be available, it is clear
from the preceding study (3SR-648) that an analytic for-
mulation of the geologic composite does not result for the
mixture models commonly‘'utilized., The situation is further
complicated by the presence of voids in the mixture., Hence,
it should be recognized that the simplification associated
with modeling the effects of partial water saturation by
deriving a single hydrodynamic equation of state of the mix-
ture, will generally require tabular arrays of mixture states
that must be utilized in place of an analytic expression,



In the following section we describe a new computa-
tional tool, called Tabular Arrays of sixture Lquations of
vtate, TAMEOS. This routine calculatces homogenized mixture
states and stores tunem in a tabular array. Tihe table is
stored in the computer and individual states are retrieved
by a rapid table look-up routine. In ite simplest form,
the table consists of a rectangular asray of specific volunes
(V) and specific internal enevygies (L) and tne corresponding
pressure (p). To treat irreversible pore crushup for a
partially saturated rock-water-void mixture a fourth variable
(4) must be introduced to monitor the current stage of the
crushup process. In the work to be described here, the
homogenized treatment of the porous wet mixtures has first
been specialized to the PEQ model under the disconnected
pores postulate (see 3SR-048). All of the air-filled
porosity (void space) is presumed to be distributed within
the rock under this postulate. The porous rock and water
components are then considered to be in pressure equilibrium;
the two components are assumed to shock to the same states
as 1f isolated and to isentropically release without any
heat transfer between them. This formulation was selected
tor first treatment because of its relative simplicity.
(Other pressure equilibrium formulations could be tabulated
in a similar manner. It is planned to treat the P*LQ and
PTEQ models described in 3SR-048.)

For tnis model « 1is defined in terms of tie

rock-water-void volume fractions as follows*

(1) (3)
o = HI]I (2.1)

%
Alternatively, the crushup parameter could be defined in

terms of the distention vatio for the mixture

(1) (2) (3)

n+ n +n

W7 T )

8 n +n




where

(1)
n = rock matrix material volume fraction
(3) _ _
n = void volume fraction (air-filled porosity).
((2) | (1) (2) (3
n represents the water volume fraction, n + n +n = 1

Mixture states must be calculated for each a > 1. Hence,
this irreversible crushup regime requires a three-dimen-
sional table (V, E, and a) to specify p.

As in the case of a porous, single component media,
a suitable expression for a(p,V) is required to utilize the
tabular array of states in the incompletely crushed regime.
In the interest of generality, the crush curve may be speci-
fically prescribed if enough experimental data were available.
However, for calculational purposes, a specific form of
crush curve for the rock component has been developed {for
TAMEOS which incorporates; the key aspects of the physics of
such processes, and requires a minimum of parameter specifi-
cations (crush strength, sound speed in poreless material,
elastic crush regime limit).

The mixture states have been computed for six mix-
tures of tuff and water. The water equation of state in
3SR-648 has been supplemented to iuclude the high pressure
regime (p > 200 kbar’ " new poreless tuff equation of
state has been deve oped cspecially for use at shock pressures
as high as a megabar >AIPPER calculations were made to check
out the TAMEOS routines and, subsequently, a parametric study
was conducted to ascertain the effects of varying water and
void (air-filled) volume content on the ground motion re-
sulting from 8-kT underground nuclear explosions. The volume
fractions of tuff matrix material considered were 0.95 and
0.8. Three degrees of water saturation were considered for

9



cach; all pores empty, half tne pores filled with water
(half saturated), and all pores filled with water (fully
Ssaturated). Quantitative comparisons of tnese computer
Calculations are presented which grapnically illustrate
the effect of water saturation during the first 20 msecs
after the detonation. Major variations were observed in
the stress time histories and peak stress levels. De-
creasing water content (and therefore higher air-filled

void content) leads to dramatically lower stress levels,

delayed wave arrival times, and smaller radial displacements.

10



2.2 PRESSURE-EQUILIBRIUM MIXTURES

2.2.1 Void-Free Mixtures

Equations of state utilized in ground motion codes
usually are written in the form

p = p(V,E) (2.2)

Typically, the condition of pressure equilibrium between the
constituents is assumed, i.e.,

P(vy, E;) = Pi(vy, Ej) (2.3)
where the 1i,j subscripts refer to the ith and jth component.
Under this condition, a hydrodynamic pressure, p = Pi’ can be

assigned to the mixture. Hence, overall characterization of
the mixture is obtained by taking

D= BEAL E Bl By . e (2.4)
where
K
v a }E: M,V (2.5)
i=1
k
E = :E: ME, (2.6)
i=1

and Mi is the mass fraction of the ith constituent,

Obviously, this system of equations, (2.4) through (2.6),
is nov determinate. Given a k component mixture, and a set
of values of V and E, there are k+1 equations for 2k
unknowns (Vi, Ei)' Thus, k-1 additional equations are re-
quired to fully specify the mixture state.

11



In some problems of interest, there may be enough
time for the constituents to thermally equilibrate (seec 3SR-648
for a simplified analysis of this effect). Under this condi-
tion, one can close the algebraic loop by requiring the tem-

perature of each constituent to be equal,

e k= 15 NE (BT

0f course, one .nust also specify the caloric equations of

state of the constituents;
B, = Bl T, ) (2.8)

The pressure-thermal equilibrium blending recipe (PTEQ)
given by Eqs. (2.4) through (2.8) can be solved with iterative
computer routines for the simultanecous sclution of the set
of algebraic equations. Generally, these take considerable
computer time and in hydrodynamic calculations, the PTEQ
formulation can most efficiently be utilized by generating
a tabular array of V, L states. These are used in place

of an equation of state with a rapid table look-up routine,

Thermal non-equilibrium mixtures are, conceptually, more
difficult to model. The PTEQ formulation can be¢ treated as a
homogencous material whose states are uniquely defined. When
constituent materials are allowed to be at different tempcra-
tures within the same control volume, the mixture model no
longer represents a truly homogencous material (in the thermo-

dynamic sense).

The PEQ and P*LEQ models, introduced in 3SR-648 and
3SR-297, are based on hypotheses concerning the material
interactions under shock loading. The mixture Hugoniot 1is
derived on the basis of these assumptions. Subsequent re-

lease states are calculated by taking pressure-equilibrium

12



mixtures of tiie release adiabats associated with the shock

states of each constituent.

In the PEQ formulation, each constituent is assumed to
(shock) compress to a state on the Hugoniot of the pure
material. Similarly, upon release from a shock state, each
mixture component releases along the isentropic path of the
pure material. Hence the shock and release states are com-
puted by using the shock pressure, Py» as a parameter. Each
value of Py implies specific values of Vi, E;. These are
then utilized in Eq. (2.5), (2.6) to calculate V, E of the
PEQ mix. Since these values satisfy the Hugoniot relations,
they imply that certain interactions will occur which result

in these Hugoniot states.

Off-Hugoniot states are obtained by calculating the
components' release isentropes from a given shock pressure
and imposing pressure equilibrium. Thus, the interactions
that occurred under the irreversible shock-loading process
are frozen upon release and each constituent expands isen-
tropically.

One may take a different tack, however, and specify
that interactions occur which result in a mixture Hugoniot
that differs from the PEQ version. One such formulation is
the P*EQ model introduced in 3SR-648. [t is based on the
assumption that the entropy of the water component is
determined by a double-shock process and remains at that
level behind the leading portion of the shock wave. The
double-shock results from the impedance mismatch between
the rock and water.

As noted in 3SR-648, these P*EQ sets of water and
tuff states are different than the individual Hugoniots of
each constituent that are used in the PEQ model. This is

13
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to be expected since the interaction model prescribes lower
values of water entropy at a given particle velocity than

is predicted for pure water. Once these sets of shock states
are known, isentropes of cach component passing through a

given shock pressure may be put into pressure equilibrium

to construct tihe mixture release adiabat (as in the PIEQ model).
It is cvident that the PLEQ and P*EQ models are very similar

in corcept. They differ only in how the shock interactions
are modeled. Consequently, the mechanics of filling a tabular
array of states is exactly the same for either mixture model.
234

-

.2 Mixtures with Voids

Accurate predictions of the response of naturally-
occurring geologic materials can be made only if the effects
of the presence of air-filled voids (pores, cracks, etc.)
are taken into account. In the case of shock wave propagation
in these materials, porosity effects are manifest in twc
regimes: pressure levels high enough so that material is
fully crushed and the lower pressure states wherein the
voids are not completely removed. In both rcgimes, shock
wave propagation is retarded due to the extra energy required
to crush the material. The extra shock heating due to
porosity results in flugoniot curves which arc displaced to
the right of the poreless material llugoniot in the p-V plane
(see Fig. 2.1). In the present analysis, the mass contri-
bution due to the compressed air has been ignored, so the
cxcess shock heating is presumed to be immediately available

to the rock/water mixture.

The fully crushed regime is readily adapted to the
homogencous mixture models discussed in the preceding section,
All that is required is the specification of a different set
of constitutive relations to partition the internal energy

behind the shock wave. In PTEQ, this requirement is still
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Fig. 2.1--"Shifting" of the Hugoniots in the p-V
plane due to the extra shock heating associated
with initial air-filled porosity for two PTEQ NTS
tuff/water mixtures. (The NTS tuff equation of
state is given in 3SR-648.)
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taken care of by the assumption of thermal equilibrium. An
alternative model is the initially porous version of the
PEQ model (PEQP) introduced in 3SK-648. It maintains that
the volume fraction of voids in each of the constituents

is equal to the void volume fraction of the mixtire.
Hugoniots for the completely crushed constituents can be
calculated from their equations of state. From there on,
the mixture equation of state calculational procedure is
identical to that outlined for the PEQ model.*

The energy partition is directly determined by the
percentage of original void volume that is assigned to the
water and tuff matrix components. Consequently, a m:liitude
of PEQP-type mixtures c¢xist, each based on different sharing
of the void volume fraction. The disconnected pores postulate

is utilized as the basic mixture model in this report. It
assumes that all voids (air-filled pores) are contained in
the rock matrix and that the bulk pressure in the distended
tuff is in equilibrium with the effective pressure of the
water. The special advantage of this formulation is that a
minimum of experimental information is required to charac-
terize the incompletely crushed regime.

There is ample evidence that porous geologic materials
do not actually lose all of their porosity until sufficiently
high compressions are achieved [e.g., Refs. 1Q through 12].
the partially saturated rock matrix also may exhibit precursor
effects which do not appear at higher degrees of water

The derivation of mixture equations of state for initially
porous materials can also be approached from different van-
tage points such as that used in developing P*EQ for tuff/
water mixtures. In this instance, the water is presumed to
undergo two major shock waves as the crush wave procpagates
through the material. For example, the leading shock
develops from the initial wave and the secondary shock re-
sults when the voids are closed. In 3SR-648, such a model
(P*EQP) was introduced to account for these multiple shock
interactions.



saturation.[13] Hence, to account for this behavior, the
crushing of the partially saturated rock/water composite
should include an elastic, reversible process at low stress
levels, followed by a regime wherein plastic, irreversible
deformation occurs as the matrix collapses. These are
complex processes which are not well understood.

A useful model has been suggested for metallic foams

[14] that simplifi s discussion of the problem.

by Herrmann
The distension parameter, a, is assumed to be a function of

stress level,

a = o(p) (2.9)

and the hydrodynamic stress is computed from the equation of
state of the matrix material, with the modification that the
effective specific volume, V/a, be utilized in plae® i - ¥V,
L56.. ,

| Ja P(Z— ’ E) (2.10)
0f course,a(p) 1is not generally known. It is only a convenient
functional representation that ignores any internal energy
effects. Herrmann discusses some general forms of a(p) which
have been employed to analyze the incomplete crush regime of
some porous metals. Qualitatively, these are sketched in
Fig. 2.2. The critical parameters in such a model are the
pressure at which all pores are (irreversibly) removed, Peos
the pressure limit to the elastic, reversible regime, Pe>
and the slope of a(p) at p = 0.%

[3

o”(p) at p =0 is related to the ratio of the sound
speed in the porous material to that in the condensed rock
matrix (see Appendix A).
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Fig. 2.2--Schematic of Herrmann's model for the
distension ratio, oa(p). Note that above the
elastic limit, release from a plastic crush
state occurs along a prescribed (reversible)
release path which could result in some void
recovery (o, > o,). Release in the elastic
regime is confined to the loading curve.



A review of the tuff crush-up data then available
was reported in 3SR-648. A "universal" crush curve for
tuffs was derived that could "fit" the available crush data
when adjusted for grain density variations from specimen to
specimen. However, the error band in this universal crush law
law was quite large. Hence, if experimental crush curv=s
are available for a given tuff (or other rock matrix) they
should certainly be utilized.

The S° universal fit to crush data was functionally
represented by a(p) instead of Herrmann's a(p) formu-
lation (where o is the density). The concept of a crush
density was easier to apply to the data, since the crush
pressure varied considerably for the different tuffs. However
the framework created by invoking the disconnected pores
postulate makes it especially convenient to utilize an a(p)
formulation so as to facilitate the derivation of pressure
equilibrium rock/water/void mixtures. Hence, during the past
year a generalized a(p) crush curve formulation has been
developed for the rock matrix which yields similar results to
the universal description and can be "tuned" to fit available

experimental information.

2.2.3 S* Mixture Crush Model (Disconnected Pores)

The basic formulation of the pressure equilibrium mix-
ture with porosity in one component (rock) is redefined in
terms of equaiing the bulk pressure of the porous rock matrix
to the pressure in the water. As pointed out in 3SR-648, the
bulk pressure in an isotropic porous rock component can be
defined as

lo(z k)
P=zP\gt, E (2.11)

where the subscript 1 denotes the poreless rock component.,
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That is, the bulk stress exerted on a gage is predicted to
be less than the effective pressure assumed in Herrmann's
formulation, Eq. (2.10). Carroll and Holt[15] recommend
Eq. (2.11) in preference to (2.10) for the case that the
pores are so small that one may consider the ryck to be
homogeneous. Another argument for this modification can be
made on the grounds that the sound speeds predicted by

Eq. (2.11) are pkysically more meaningful (see discussion
in Appendix A).

The algebraic formulation of the disconnected pores
mixture model is given by

s 0 )
= = ey = r = )
p=zP\st . E PZ(\.Z, EZ) P(V,E) (2.12)
where
V=MV + MV (2:13)
1 1 2 |12
E=ME + MV (2.14)
a = distention ratio of rock, some function (2.15)

of the hydrostatic pressure

and the subscripts 1 and 2 denote the poreless rock and
water cornstituents respectively.

It is evident from Eq. (2.11) that a prescription of
o 1is all that is required to completley formulate the
porous mixture equation of state. This simplification ig-
nores any modifications to a due to variations in moisture
content or porosity. (However, g may be considered as an
input function and any prescription can be used to calculate
the states of a mixture.)



In lieu of experimental data for a particular site, a
simple set of expressions have been developed for the crushing
of the porous rock constituent. The plastic crush.regime
has been modeled by a quadratic expression:

P-Po \?
G = 1 + (Qe’l)(l - —pg_—pe—) (2.16)

where

distension ratio at limit of elastic region

a =

e

e = Pressure at upper limit of elastic region

P. = pressure at which voids are completely removed.

The quadratic is the simplest formulation which has o = 1
and da/dp = 0 4t | = P.. Thus, all that is required is
a specification of the crush pressure and the match points

for the elastic region (see Fig. 2.3).

Release from any point in this region occurs with o
fixed to the minimum value achieved during loading. Hence,
to derive the mixture equation of state, the release
states are computed for values of o in the vicinity
of the Hugoniot points in the & > 1 regime (see discussion
in Section 2.3)., It should be noted that a(p) 1is dependent
on the direction of the process, and is not a simple, analytic
function of pressure. This creates the need for a three-
dimensional table in this regime, so that with « specified,
valid mixture states can be located without confusion. The
possible overlap of release states in the p-V plane is
readily taken into account by this method.
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Elastic regimes may not exist for all mixtures and
plastic crushing may begin at p = 0. In this case, Pe ® 0,
iy =l (the initial porosity), and Eq. (2.16) reduces to

2
a =1+ (ao -1)(1 . gz) (2.17)

However, stress wave measurements in porous samples[13]

have indicated the presence of some sort of precursor phenomena.
It is not clear that one can characterize this as an elastic
response or a str-~in rate effect. Recognizing the potential
need for a model of the elastic regime, to be evaluated in
other parametric studies, a formulation has been included in
the TAMEOS routine.

The elastic regime in the S°*® model is limited by a peak
elastic stress level (as shown in Fig. 2.3). Below this value,
loading and unloading takes place along the same a(p) curve.

An exponential expression for a(p) in the elastic
regime was selected because it afforded the widest choice
of parameters to match to sound speed and bulk modulus data
while retaining the feature that (g%)p=0 >(gE)P‘Pe° Tne

distention ratio is given by

(¢ - %) (1 ) en p/pe)

a = aotw (2.18)
1
e" = —— (2.19)
where
_ (@7 %) (P
* T (E; 1) <1 (2.20)
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This expression is smoothly patched (continuous first deri-
vative) to the plastic form for a(p) at p = Pe-

The transcendental relation, Eq. (2.19), determines
the acceptable sets of values for ag and Pe- Should
sound speed and bulk modulus data be available for the porous
rock matrix, an additional constraint is put on the values
of ag and Pe. As shown in Appendix A, the two elastic
crush parameters, o  and Pg» are related to the sound speed

in the matrix at p = 0,
c2
2 & 0
el CEVERp L
l1 - —— K
(12 0
0

where Ko, is the bulk modulus, c is the sound speed of
the poreless material, and (da/dp)0 is the slope of the
crush curve at zero pressure. This slope determines the
degree to which sound waves are slowed in porous materials.
In a stiff matrix, da/dp = 0, c = c The relationship be-
tween the sound speed in the porous matrix, and the elastic
parameters is obtained by differentiating Eq. (2.18) and sub-
stituting into (2.21) to arrive at

c? = . 0 (2.22)




2.3 TABULAR ARRAYS OF MIXTURE EQUATIONS OF STATE

A computer routine has been written to generate
tabular arrays of thermodynamic states of rock-water mixtures.
The flow chart for this numerical process is given in Fig. 2.4.
Briefly, let us consider first how a table is constructed for
a saturated rock-water mixture. For given equations of state
of the two materials, the PEQ mixture states are determined
by the volume fractions of each constituent. Additionally,

a set of pressure points in the range of interest and the
desired mesh fineness for V and E must be specified.

The table generating program then computes the mixture re-
lease isentropes from states on the Hugoniot curve. Based
on these isentropes, the program calculates p-V-E states for
values of V and E which are suitable for the table look-
up routine incorporated in TAMEOS. The resulting set of
pressure points, along with the information on the V and

E meshes, comprises the table for the specified (non-porous)
mixture in the given range of pressures. Other states in
this region are then computed in TAMEOS by interpolation.

If ga.-filled pores are present in a given mixture
(o = @ > 1), then a separate p-V-E table is constructed for
each a at specified mesh intervals in the range [1, a ]
For each o there is a unique pressure point on the porous
rock Hugoniot given by the solution to

- v )](vo-v)
. = | 1 E) 1 P (— E (2.23)
E E° [a-l?(af-’ IR+ 1\a, v 2
where
p = P(V 3 B ) » equation of (2.24)
! d state for

poreless rock
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and

0t=ot(p),p<pc

(2.25)
a‘l,pipc

There is only one isentrope through the Hugoniot at this

point, and to allow room for interpolation in the table, other
isentropes are chcosen by slightly shifting the specific volume

to either side of the Hugoniot point and using the same pressure.
A table of p-V-E states is then obtained for each «. To ob-
tain the pressure at a given state a-V-E, the two tables
corresponding to the bracketing values of o are used to com-
pute a pair of pressures which are then used to interpolate

for p at the given a.

In most situations, the desired pressure range encom-
passes both porous and compacted material states. Separate
tables must then be constructed for the two regions, the
value of o determines which of the tables to use.

Table Look-Up

The pressures which comprise a table correspond to
values of V, E, and o chosen so that no time consuming
search is needed vhen performing an interpolation at a given
state. Briefly, the scheme consists of picking values for
tﬂe independent variables (V, E, and a) of the form
2

integer, and 0 <j o« 2, By varying n one can control the

+ j-Zk/Zn, where k may be any integer, n any non-negative

spacing of the grid; k and j determine not only the values
but also the indexing of the independent variables. Full
advantage is then taken of the binary representation of num-
bers in the computer to expedite the index calculation as well
as the actual interpolation for P . The result is an extremely
fast interpolation with a minimal amount of arithmetic.
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Application of TAMEOS for Porous Mixtures

In calculations employing TAMEOS a simplification has
been introduced for the crush curve, a(p). Experience has

demonstrated that to avoid lengthy, time con§uming iterations

for o in the implicit equation, o =a é. Plzt, E))s

one may reformulate o(p) as a (fitted) funccion of Vmix’

along the Hugoniot, i.e.,

["(*’) ]u = o (P (V) ) = o (Vi) (2.26)

This reformulation actually simplifies the calculation a

great deal; given a state (V ), the value of «

mix’ Emix
can be quickly determined and TAMEOS furnishes the (inter-
Brc. at (a, vmix’ Emix)' Of course,

checks are required to deteriiine whether a cell is being

polated) pressure for

loaded or undergoing a release process so that o may be
cormputed correctly.



2.4 CHTCK OUT CALCULATIONS WITH TAMEOS

A variety of calculations were ronducted to verify the
projected three-place accuracy of the TAMEOS routine and to
gain experience in its application to typical ground motion
calculations, In this regard, the retrieval time for a value
for p, given E and V, was determined to be comparable to
that of typical analytic expressions for equations of state.
It is difficult to quantify this difference but it appears
that TAMEOS can be utilized as quickly as any single component
media equation of state, Of course, storage of the tabular
array is required.

2.4.1 Equations of State of Constituents--Water and Tuff

The water equation of state utilized to derive rock/
water mixtures equations of state is composed of the original,
analytic expressions reported in 3SR-648 and a tabular represen-
tation for states with entropies greater than 3.3x10’ ergs/g °K
(corresponding to shock pressures higher than 200 kbar). The
tabular portion, compiled by Bjork,[16] is valid up t> 10 Mbar
in the vicinity of the Hugoniot and treats expansions into
the gas phase. In the present calculations, the bulk of
the mixture states were of peak pressures below 200 kbar, so
that the water equation of state in 3SR-648 describes most of
the water states involved in this series.

A new equation of state for poreless tuff has been
derived which is based on the Hugoniot curves for saturated
Rainier Mesa tuff reported by Shipman, g}_ﬁl.[l7] Points
on the dry, poreless tuff Hugoniot were obtained from this
data by assuming that the tuff is in pressure equilibrium
with the water and that the water states are the same as
those postulated for the pure water constituent. {(Hence,
these tuff states are those which satisfy the PEQ mixture
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model.) At each pressure,

Yim(P) = My Vigp (0) My Vi (p) (&p7%rd

where VHM(p) is the specific volume of the saturated mixture
at pressure p on the Hugoniot, Vyr(P) and Viw(P) are the
specific volumes of the tuff and water constituents at the same
shock pressure,

It was determined that the NTS tuff representation
used in 3SR-648 wos not adequate #t these higher shock
pressures. A series of shock velocity-particle velocity points
were computed on the basis of new tuff Hugoniot points ex-
tracted from high pressure data. These values <id not lie on
a straight line but could be fit within the experimental
accuracy to the form

U= a2a + bu + du? (2.28)

where U and u are the shock and particle velocities.

This expression implies a pressure-density Hugoniot given
by [18,19]

= e Tk = i N 2
Py(V) = (o n R B (1 - 4ua2/}\2) ] o< 1 (2.29)

1/2
Py (V) n -A',/Z-u')’-l + (1 - 4Ua2/rz)/ ] b > 1 (2,30)

n
—
©
o

where n = (1 - v/v ) and

7= dere (2.31)

(1-b7) % - 2ad52 (2.32)

>
]



The two branches of the Hugoniot curve are discussed fully

in Ref. 18 and 19. The coefficients in Eq. (2.28) for dry
compacted Rainier Mesa tuff are a = 3.50 mm/usec, b = 0.7047,
and c = 0.1005 (mm/usec)”~!. Since in compression bn <1

the Hugoniot for this tuff will always be represented by

Eq. (2.27)

The Hugoniot curves are used as the basis of a p-V-E equa-
tion of state for poreless tuff similar to that adapted by
Butkovich,[zol i.e., a Mie-Gruneisen equation of state with the
Gruneisen ratio proportional to specific volume. This is written

G p
= r ~ 0 0 -
P=GpE+ pylV) [1 L (v° v)] (2.33)

where G p is the product of the Gruneisen ratio and
e o
density at normal conditions. It was determined that

Gop0 = 0,732 g/cm? 2.34)

provided the best fit to release data. The solid, grain
density, P » Was assumed to be 2,22 g/cm?®.

2.4.2 Check-out Calculations--Planar SKIPPER

As a test case, the initial volume fractions were se-

lected to simulate a partially saturated tuff/water mixture;

(1)
n = 0.70, tuff

(2)

n = 0.23, water

(3)

n = 0.07, void.
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The initial distension ratio in the tuff, a, is 1.1 aud crush
pressure was set at p. =5 kbar. It was assumed that the
mixture had no strength and an elastic crush regime was not
included Og = @ ), Py = 0, so that o is given by Eq. (2.17)

Figure 2.5 is a plot of the pressure-volume states
calculated with the planar SKIPPER code for a step-pulse of
Py = 4 kbar followed by a release wave., The curves in Fig. 2.5
represent thecvetical PEQ Hugoniot and release curves. For
the crushup wave, the computed p-V-states are indicated by
the squares, and the release states are represented by
circles. The loading P-V states calculated in SKIPPER are
seen to lie close to the PEQ Hugoniot. Release states
follow an o = constant locus of states as evidenced by
the calculated points for the 4-kbar release wave,

Figure 2.6 shows a similar calculation for a 145-kbar
step pulse (complete crushing). It is evident that the low
pressure (p < pc) crushing occurs very close to the PEQ
Hugoniot p-V trace, while the higher pressure loading p-V
states lie to the right of the Hugoniot as a consequence
of the extra internal energy contributead by the q-term. The
q-term insurcs that loading is along the Rayleigh line in
order that the shock heat at Py 1is correct. The computed
release states are indeed seen to be in excellent agreement
with the theoretical PEQ release adiabat.

2.4.3 Check-out Calculations--Spherical SKIPPER

The parametric study to investigate porosity effects
on wave propagation in tuff was conducted with the spherical
SKIPPER code. These calculations are discussed in detail
in the next section. As a check %?)the arcufﬁgy of TAMEOS,
%3§ab1e for 20% porous dry tuff ( n = 0.8, n = 0.00,

n = 0.20) was generated and utilized in an identical cal-
culation to that made with the analytical equation of state,
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Fig. 2,5--Pressure-volume states taken from a (planar)
SKIPPER code check-out calculation using the TAMEOS
routine in the plastic crush regime. In this example
a tuff/water mixture table was generated and used in
place of an analytic equation of state.
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(planar) SKIPPER code check-out calculation us
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The shock state computed with TAMEOS was accur
to three places in this example.
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(The crushup parameters were also the same.) Figure 2.7 is

a comparison of the stress wave profile computed with the
analytic and tabular equations of state after 500 cycles.
The two results are almost identical and well within the

projected three-place accuracy of the table.
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Fig. 2.7--Comparison of the radial stress profiles calculated
with the analytic tuff equation of state (Eq. 2.33) and the
tabular array of states for a 20% porous tuff media with no
water present in the pores. The time is 3.45 mscc after
simulated detonation of an 8-kT source as computed with the
SKIPPER code.



2.5 PARAMETRIC STUDIES OF TUFF/WATER MIXTURES

A series of spherically symmetric one-dimensional
shock wave propagation problems in tuff/water mixtures were
conducted using the S*® SKIPPER Lagrangian finite difference
code. These calculations were made to evaluate the effects
of partial and full saturation of the tuff matrix on the
ground motion associated with an underground detonation of
8 kT yield. They also demonstrate the utility of the
TAMEOS routine in studies of this kind.

For this series, the spherical SKIPPER grid was
divided into 400 zones with a maximum radius of 497.7 m.
Thickness of the first zone was 50 cm. The calculations
were carried out to times of 24 msec. In this time period,
the peak stress varied from an initial value of 621 kbar

down to less than 1 kbar.

(2) (3))

Two choices for total pore volume fraction i.e., n +n
were evaluated, one with a total porosity of 20 percent and
the other with a total porosity of 5 percent. Water content
was varied so that the air-filled voids accounted for 100%,
50%, and 0% of the total pore volume. The mixture equations
of state were derived from the tuff and water equations of
state described in Section 2.4.1. TAMEOS was utilized to
compute, store, and retrieve the mixture states.

The plastic crush pressure was set at P. = 20 kbar.
Elastic crushing was not considered (ae= o, Ry = 0). The
deviatoric response of the mixtures was modeled by the simple
von Mises condition with a constant shear yield strength of
Yo = 1.0 kbar and a rigidity modulus set at y = 45 kbar:

2 2 2 2 2
52+ 82+ 8% <2y (2.35)

0

where g; = -p + Si expresses the total principal stress in
terms of the pressure and deviatoric <tress.
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2.5.1 Source

The energy source in these tuff/water calculations
consists of a spherical cavity which contains a gas obeying

the ideal gas equation of state

L SVT (2.36)

A value of vy = 1.4, corresponding to diatomic gas, was
utilized.

Initially, the radius of the cavity is 3.72 meters
and the internal energy of the gas is 33.5 x 10!°® ergs/g, an
amount of energy equivalent to the yield of 8 kT of high
explosive. The flow within the cavity is not calculated.
Rather, it is assumed that the pressure within the gas, and
thus the stress acting on the cavity wall, is uniform during
each time step in the calculation. Moreover, the gas is
assumed to undergo an isentropic expansion (or compression)
i.®,,

R )3Y

p(t) = PO(R-(%T (2.37)

where p(t) and R(t) are the cavity pressure and radius,
respectively. The initial value of 3.72 m for RO was
selected because it approximately represents the volume of
rock vaporized by an energy release of 8-kT of explosive.
Initial pressure, P,» was 621 kbar,

2.5.2 Peak Radial Stress

The variation of peak radial stress with distance from
the cavity center is shown plotted for the 5% porous tuff
calculatioas in Fig. 2.8. The 20% porosity cases are given

im Fig. 2.9:
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Fig. 2.8--Peak radial stress decay vs distance
from source (8 kT) for 5% porous tuff, three

degrees of water saturation.
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Fig. 2.9--Peak radial stress decay with distance
from source (8 kT) for 20% porous tuff, three
degrees of water saturation. Also shown are
points for fully saturated 5% porous tuff (from
Fig. 2.8).



At close-in radii, the partially and fully saturated
matrices undergo slightly higher stress levels than the dry
matrices. As the initial wave propagates out to larger radii,
and the stress falls below P. = 20 kbar, the partially saturated
matrix peak stress levels are closer to those of the dry porous
matrix than to those in the saturated material.

Most significant, peak stresses in the fully saturated
mixtures are very close to one another despite the big difference
in porosity. MNote that values from the peak stress curve for
the fully saturated, 5% porous tuff have been plotted in
Fig. 2.9, and are very close to the 20%, fully saturated case.

It is clear from these results that porosity effects
are most pronounced when the degree of water saturation is
reduced. The radial stress wave is more retarded by the
energy absorption associated with the air-filled voids than
with the presence of water. In the 20% porous tuff, this
results in about a 25-kbar reduction in the peak stress for
the dry matrix within 8 meters of the cavity center. At
larger distances, the partially saturated and dry matrices
exhibit stress levels relatively far below the fully saturated
material. (Roughly speaking, the peak stress is reduced by
about 70 percent between 30 and 10 kbar.)

One may conclude, therefore, that the volume fraction
of air-filled pores is the most influential parameter on the
peak stress levels. The half-saturated media responds half-
way between that of the saturated and dry media at high stress
levels, p > but veers closer to that of the dry material
at the lower stress levels.

2.5.3 Cavity Growth

The cavity radius as a function of time in each calcu-
lation is presented in Figs. 2,10 and 2.11. 1In this time period,
the cavities grew monotonically. For each of the two tuff
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porosity values, cavity growth was maximum for the completely
dry matrix and minimum for the saturated tuff. Approximately
5 percent bigger cavity radius was produced in the 5% porous

tuff (Fig. 2.10), while a 10% larger cavity (radii) were ob-
served for the 20% porous tuff matrices (Fig. 2.11). -

These results are to be expected since the higher
percentage of air-filled voids leads tc greater crushing of
the matrix at the high stress levels. One could anticipate
a non-linear relation between relative cavity wall displacement

and porosity due to spherical geometry effects.

Once again it may be observed that the single most
important parameter 1is (ﬁ), the volume fraction of air-filled
voids. The cavity radius for the saturated 5% porous tuff
media is plotted for comparison to the 20% porous result in
Fig. 2.11, There is very little difference between these two
curves and it is insignificant in corparison to the effect

due to increases in the void content oif the media.

2.5.4 Stress Vs Time Profile at R = 40 m

I¢ is at radial distances much greater than the cavity
radius that the largest relative d ' :rences occur in the
stress-tinie histories of the various matrices. Fig. 2.12 is
a plot of radial stress as a function of time at the 40-m
station for the 5% porous tuff matrix. The stress levels
at this location were below the crush pressure of p = 20 kbar,
hence the crush process is incomplete in all cases.

The stress wave in the fully saturated mixture travels
quicker and reaches the 40 m location 0.7 msec prior to the
crush wave associated with the two matrices with voids.
Apparently, the low degree of porosity leads to insignificant

differences in shock arrival time for the lacter two exampies.

44



‘uotrjelnies J19jem JOo sooxdop 901yl ¢yyny snoiod
%S I03 W O0p = Y 3Ie ATTeur3TIO SUOZ UT SITIOISTY OWT]J SSOILS TeTpey--z1°z

(oesw) auwTtp
v il [+ ] El 91 ¥l It L ] P
L

T T T T 1 T T T T T T T T T .__....._‘___c

394 00°0 so'g | —-—— £ \
194 /1 $20°0 sz0°0 | -——— L .,
Aag so°o 0070 183 .—
syazway | (SPIOA PAITF4-21V) | (423cn) | tToquis | *arm) 1
13 ”
(5) (2) / i
A1YA¥) w z/°¢ uj 9d1n0S Ix 8§ \ \
$6°0 = u_‘JInL snoiod t§
(m v

(1eqX) ssoaxis rerpey




Clearly, the effects of increased void content are
evident in the reduced peak stress and slower rise times
of the stress wave.  1terestingly, after the first 4 msec
following wave arri..  in the saturated media, it is diffi-
cult to discern significant differences in the stress levels
of the three different matrices.

In Fig. 2.13 is the analogous stress time history plot
for the higher porosity tuff matrix calculations. The effects
noted for the 5% porous case are more evident for a 20% poro-
sity. The wave is more effectively attenuated by the matrices
with voids, especially the totally dry case. Once again, be -
yond a certain time (19 msec), it is difficult to differentiate

between the three media during the unloading process.

From these results, it appears that radial stress attenua-
tion and rise times to the peak during the loading process are
extremely sensitive to the volume fraction of gas-filled pores.
The shape of the release curve from the peak stress, however,
is quite insensitive. It should also be noted that the fully
saturated media exhibit similar stress-time histories (see
Fig. 2.13). Air-filled porosity accounts for the major
differences in the shape of the stress-time profiles.

2.5.5 Ground Motion of Media at R = 40 m

The at:enuated stress waves associated with less
saturated media lead to much smaller radial displacements.
This is portrayed in the radial displacement curves in
Figs. 2.14 and 2.15. Note that the two saturated materials
exhibit almost identica®’ displacement histories (see Fig.
2.15). This corroborates the main conclusion that differences
in water content do not radically affect ground motion
characteristics when the tuff is fully saturated. Air-filled
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porosity, however, does dramatically alter the stress wave
propagation characteristics of tuff and should be carefully
modeled in ground motion czlculitions. In Appendix B the
effect of air-filled porosity is studied for a high-explosive
energy source buried in tuff. This effect has also been
recently studied by Bjork[21] and Anderson.[22’23]



II1. IMPROVED PREDICTIVE METHODS FOR GRANITE

3.1 iINTRODUCTION

A single constitutive theory that combines the high
pressure equation of state for rock with a flow law wnich
is valid at low pressures and high strains is described in
this section. It nas led to a computational scheme suitable
for calculating spherical explosion phenomena in both the
near and far field. The theoretical background for this de-
velopment, described in detail in a topical report by
Dienes,[24] is summarized in Sections 3.2 and 3.4. Section
3.2 presents a theory of finite strain suitable for describ-
ing large distortions of porous materials. Section 3.3 lists
tne equations of motion. Section 3.4 includes several al-
ternative models for determining the flow stress in rock
masses, and a description of the high pressure equation of
state used. Also included is an approach to estimating strain
rate and temperature effects. The important considerations made
in incorporating the theory into the SKIPPER code are described
in Section 3.5. Available ground motion measurements for
underground shots in granite are reviewed in Section 3.60.
The results of several calculations are presented and then
compared with the underground shot data in Section 3.7. By
adjustment of the flow stress it was found possible to cal-
culate a cavity of the correct size and, for one of the flow
models studied, the resulting displacement histories are in
good agreement with measurements. Specifically, the kinematic
hardening rule, wnich models anisotropic hardening, leads to
a realistic calculation of shot data. The 'cap' model, which
assumes isotropic hardening, results in a computed behavior
which does not exhibit the observed overshoot in displace-
ment, and shows too rapid an attenuation of the shock.

Kinematic hardening results in lower hysteresis and slower
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relief waves than isotropic hardening, and these effects ap-
pear to be sufficient to bring the calculated results into
better agreement with measurements. In Section 3.8 the
results of seven calculations are presented to illustrate
the sensitivity of ground motion to granite material
parameters and plasticity models. Finally, Section 3.9
discusses the state of the research to date and its rela-
tion to other approacnes.
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3.2 FINITE DEFORMATION THEORY

Definitions of strain can be obtained in a variety of
ways. For small deformations, they are generally equivalent,
but there may be substantial differences at large distortions,
and it is important in explcsion work to select a definition
which will lead to credible solutions for arbitrarily large
motions. Such a definition is obtained if rate of strain is
defined as the symmetric part of the velocity gradient, which
in tensor notation is expressed as

where u, denotes the ith component of the velocity vector

and u its spatial derivative with respect to the coor-

1,]
dinate x.. An equivalent definition invoives representing
the velocity gradient as the sum of symmetric and antisymmetric

parts,

Wy ® Do & WMo (3 2)

where Wij is the spin tencur. Its ccmponents have the same
magnitude as those of the vorticity vector. The tensor, D,
whose components are D.. has alsc been termed the rate of
deformation tensor[ZS] ;nd the stretching.[26]

In spherical symmetry, the case of current interest,
the velocity gradient can be written

cu 0 0

D= o0 ‘r-’ 0 (3.3)
v
0 0 -
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where Vv is the radial velocity. To obtain explicit ex-
pressions for the strain, we may adopt the Lagrangian
description of the deformation, thereby following particle
paths. Then the previous equation reduces to

(3.4)

=
n
o
"
=

where r(ro,t) is the radius of a particle initially at T
If the definition of strain for spherically symmetric flow is
taken to be

= or = ic
Exl = &n aro ; € = n = (3+5)
0

it can be readily shown that the relation

eij = Dij (3.6)
between strain rate and the stretching is satisfied. This
equation is not satisfied in alternative treatments of finite

deformationzglasticity. For example, in the approach followed
by Clifton[ ] the principal strains Ei are defined by

where the Ui are the principal values of the stretch tensor.
In view of the kinematic identity

D=z RO U +ut DR (3.7)
given by Truesdell in Ref. 26, the linear definition of strain
given above is not consistent with Eq. (3.7). [In flows with-
out rotation, the rotation matrix R reduces to the identity
matrix. This is, of course, the case for the spherical flows

of interest here.]
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Although in spherical flows materials may undergo large
shears, there is no rotation of the elements. This makes it
possible to separate the deformation into an elastic and a
plastic part in a simple w&y. In view of the symmetry, the
stretch tensor has the simple written form

A 0 0
1
u=1 o A, 0 (3.8)
0 0 A

In Ref. 24 it is shown that
A= ae x=x-§—. (3.9)

As is common in plasticity, it is assumed that the
strain can be represented as the sum of an elastic and a
plastic part

- _ =€ —p .
€5 ey * € . (3.10}

Expressing the elastic and plastic parts of the strain as
logarithms of the corresponding stretches,

—e _ e
ey &n Ai (3+11)
.—p= p
ey in Ay (3.12)
we find
= 1€ ,P
Ai Ai Ai . (3.13)
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It is shown in Ref. 24 that the rate of change of compression,
6, can be expressed in the form

(’)‘-

. -( e éz R éa) : (3.14)

Consequently, the compression can be expressed as the sum of
an elastic and a plastic part, as are the individual strains,

so that
8¢ = - zn(x‘f A‘: A‘:) / (3.15)
6P = - an|aP AP P . (3.16)
1 2 3

The plastic part of the deformation of a compact material does
not normally involve a volume change. llere we will consider the
matrix of a porous material as compact, and as a result the
plastic part of the compression can be interpreted as the change
in void volume. The void fraction is defined as the volume of
voids per urit volume of material, and can be expressed in

terms of the plastic stretches by

f=v‘ve=1-—l_ (3.17)
° Py APARAD '

where o is the initial density of the porous material and
Q
pT is the initial density of the matrix portion of the porous

material.
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3.3 EGQUATIONS OF MOTION

For the case of point symmetry, which is appropriate
for spherical explosions, the equations of motion are well
known. They are given, for example, by Wilkins[28] or in
Ref.24 . The equation of mass conservation discusced in
the previous section is equivalent to the rate form

V(D

given by Wilkins in which
momentum equation is

pv =
and the energy equation is

pE =

which is equivalent to the

vV is the radial velocity.

v v
9% 3r * 2°e T

first law of thormodynamics.

(3.18)

The

(3.19)

(3.20)
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3.4 CONSTITUTIVE EQUATIONS FOR STRAIN HARDENING MATERIALS

In spite of much experience witn geologic materials,
the formulation of a general theory suitable for deter-
mining the response of rock or soil to an arbitrary load
has received intensive study only recently. The problem is
more complex than for metals, in which plastic flow takes
place at nearly constant shear stress. In rocks and soils the
shcar strength varies dramatically with mean stress, and the
presence of voids, cracks, faults and pore water further com-
plicates the material description. The approach taken in
this research was to modify plasticity theory to account for
these complications as they are required. In many respects
the theory is conceptually more elaborate than is customary
in rock mechanics. The reason for this is that finite strain

and high energy effects are accounted for, as well as compaction

and dilatancy. These effects are believed to be of great
importance in calculating the consequences of underground
nuclear explosions.

The approach to deriving a sufficiently general consti-
tutive relation to account for all these effects draws on the
thermodynamic equation of state for the high pressure behavior
and on rock mechanics for the response at low pressure.
Several theories for the hardening behavior of rocks were
studied as alternative approaches. These theories have in
common that they provide an equation for the yield surfare
which depends on the history of the deformation. 1In all
cases the flow law of von Mises was used in connection with
the equation for the yield surface to arrive at a constitutive
relation. This relation is completed by using the constraint
on the stresses that they must lie either on the yield surface

or in its interior.
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3.4.1 Equation of State

In the condensed region it is assumed that ti.e equation
of state has a form similar to that given bv Allen[29] for
geologic materials, which expresses the pressure as

E = F(E,p) = GEp + f(p) (3.21)

where p designates the matrix density, E designates the
specific internal energy and

Gma+ ol n= (3.22)

In Allen's model, which emphasizes the fit to high pressure
data

£(p) = Ay + Bp? , yo= g— -1 (3.23)

]

To match the low pressure behavior, where porosity
introduces a softening effect, Sandler and DiHaggio[SO] use
a variable bulk modulus

B J
A=A |1 -ae?91]), (3.24)
Q Q

This relation can be put into equivalent form specifying the
pressure as a function of compression if we observe that

Jl = -3p and A = g% - Then a straightforward integratior
leads to

i

38 Ay
P=xr fn (ao + 41 - ao)e 0 0 )

: (3.25)
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An equation for t(p) which fits both the low and

high pressure behavior is given by

38 A
filp) = 3%— Rn(ao + (l—ao)e 0 °3 + BOZ . (3.26)

0

Here, 6, the matrix compression, is given by Eq. (3.15), the
superscript being temporarily dropped. The last term, which
is quadratic in 6, should be dropped for underdense states
since it would lead to unrealistic behavior. In this equa-
tion, the logarithmic compression, 6, rather than the linear
compression, M, is now used to allow a treatment compatible
with finite deformation theory.

3.4.2 Hardening Models for Rock Behavior

In the tlicory of plasticity it is assumed that a
definite surface exists in stress space with the property that
the stresses must lie either on the surface itself or in its
interior. For states of stress represented by points inside
the yield surface, the material is described by the theory of
elasticity, or possibly a generalization which involves non-
linear elastic and thermo-elastic effects. For states of stress
on the yield surface, the flow is governed by a flow law which
constrains the stress to lie on the yield surface if tae
elastic theory would take the stress outside. The flow law

of von Mises

DIi)j & 3 agf (3.27)

leads to a unique solution in most cases, with A being an
undetermined multiplier which is specified by the constraint
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that

g(o.:) =0 (3.28)

When the function specifying the constraint is not equivalent
to the function f appearing in the flow rule, the:flow rule
is said to be non-associated, but only the case where f = g

was investigated in the current study.

The increase i shear strength at large strains that
is observed in most materials can be modeled by letting the
strength depend on the plastic work, the second invariant of
plastic strain, or poscibly one of the other parameters charac-
terizing the distortion. If it is assumed that the flow does
not depend on the third stress invariant, the yield surface
has the hydrostat as an axis of symmetry. Models nave been
proposed in which the third invariant plays a role, such as
the one discuss~? by Cherry[31] for rocks and Freudenthal[szl
for metals, but i1n this report the emphasis is on yield
surfaces symmz2tric about a straight axis. Three cases are
treated in the discussions that follow. In the first, iso-
tropic work hardening, the yield surface is a cone which
expands isotropically as a function of the plastic work done.
In the second, the '"cap" model, a portion of the yield surface
is conical, but it is completed by an elliptical cap. The
conical portion is fixed, but the cap is free to move, though
only in such a way that the flow stresses increase in magnitude.
Finally, a kinematic hardening model is described in which the
conical yield surface is free to translate in stress space but
not to deform. These models are conceptually illustrated in

Fig. 3.1.

The stress tensor, o, is given by its component cij’
and it is often convenient to write the governing equations
in terms of the components rather than the stress tensor itself.
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e Kinematic Hardening

Fig. 3.1 Hardening models.
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Defining the deviatoric stress by

si5 % 945 9, 555/3 (3.29)

where

J = o0.. (3.30)

is the first stress invariant, and the deviator strain by

eij = eij - Exk éij/S A (3.31)
Hooke's law for shear deformation is expressed as
$.. = 2 ueS, (3.32)
ij ij

where u 1is the shear modulus of the material.

When the shear stress attains a critical value the
flow becomes inelastic and is then governed by a constitutive
law of the form

Op -
eij a Sij + bcij + cogy okj (5.53)
where a, b, and c are usually taken to be functions of the
stress invariants only. Higher order terms are not necessary,
since they can be expressed in terms of the lower order terms,
according to the' Cayley-Hamilton theorem. The flow lavs 1is

further restricted if we adopt the form

‘P . of

[ = A . (3034)
1) Boij

In the theory of metal plasticity it is assumed that égi =0,

a condition that we shall call isochoric plasticity, but in
an investigation of the stability of soil masses by Drucker
and Prager[33] this constraint was lifted. In their analysis
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the yield surface was given by

W, s el =0 (3.35)

Hh
]

where¢

VI =

i S.. s.. (3.36)

1j 7ij

=

1s the second invariant, and the Mohr-Coulomb flow condition

gli) =Y - aJ (3.37)

1

was adopted, with Y the yield stress in simple shear.
Substitution of the expression given above for f 1leads to
the constitutive equation

S
‘P 5 1 _ -
€5 A(—z-é g 513‘) . (3.38)

With this result, the rate of change of specific volume
is given by
e?. = -3ag-. (3.39)

11

In the case of a fohr-Coulomb material

g° = -a (3.40)
where o 1is a positive constant, and
€3, = 3xa . (3.41)
It can be shown that A is always positive, and, consequently,

the flow always exhibits dilatancy in this case. The-dilatancy
is generally greater than observed in tests, and in reality



flows in which compaction occurs are also observed. This
apparently led Drucker[34] to suggest that the yield sur-
face should be completed by a spherical cap, for in that
case g° can have either sign. At high pressures, the sign
of g” is positive and compaction is indicated. At low
pressurc, g” 1is negative, implying dilatant behavior. This
is the basis for assuming that porous material behavior can
be described by the methods of plasticity theory.

Sandler and DiMaggio examined in detail the behavior
of granite observed by Swanson,[ssl and proposed an analytic
model which is consistent with measurements. The model is
recapitulated here, since it represents one of the more
promising approaches to modeling granite, and it can be
conveniently generalized. The yield surface is represented
in two parts, a fixed '"failure surface" given by

B J
g=Yc+(Yl—YJe‘ . (3.42)

and a variable cap described by an ellipse tangent to the
failure surfacc. These are illustrated in Fig. 3.2, which
shows the yield surface in a "reduced stress space'". In this
space the horizontal axis represents distance along the
hydrostat and the vertical axis represents the radius of

the yield surface. The ellipse tangent to the failure

surface at Jl = JlF is given by

= 2
g2+(J JC) = Q (3.43)
Dl —=—= :

where JC specifies the center of the ellipse, R denotes
the ratio of major to minor axes and YQ 1is the length of
the semi-minor axis. The condition that the cap and failure
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Fixed Yield
Surface,

Iz = 80

g, = 0, Cap

Fig. 3.2--Sketch of yield surface with a movable cap
in a "reduced space space'".



surface be tangent at their intersection determine JC and

Q:

o= d.p < ® gy g (3.44)
Q = gé(l + R? gﬁz) (3.45)
where
BIJIF)
gp = g(JlF) = Yo(l - ae ' (3.46)
and
B J
‘=a = = llF R
°F 35? J F alBlYO = ’ (3.47)
1

and JlF is the value of Jl at the point of tangency. It
was determined by Sandler and DiMaggio that a good fit to the
data can be obtained by defining a hardening parameter, k, bv

¢ = (g-g.) yeBeP, (3.48)

and letting the abscissa of the contact point move according
to the law

J g = W . (3.49)

For the shape parameter they assumed a fit of the form

R=Re? g (3.50)
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The numericai values of Sandier and DiMaggio for
Cedar City Tonalite are tabulated below, (The published
value of Bo is apparently a factor of ten too large due
to an error in transcription.) We have modified the model
for BZK > 0.5, since the cap lies out<ide the failure
surface when « takes on large values and would lead to
negative hardening. More specifically, for BZK > 0.5, the
value of R is held at its maximum value, R ve. 1Ip
Fig. 3.3, the Caps are shown for unmodified valyes of the
Sandler and DiMaggio fit, and in Fig. 3.4 the result of
limiting the maximum value of R as discussed aboye is
shown,

TABLE 3,1
NUMERTCAL VALUES OF CAP MODEL PARAMETERS FOR CEDAR
CITY TONALITE GIVEN BY SANDLER AND DIMAGGIO

[Ref. 30]

Yo 152 ksi
al 0.953
R 4.0

0
W 450
Bo 0.002 ksi-!
8 0.0029 ksji-!
Bz 0.05 ksji-!
U 3300 ksi
A° 7500 ksi
a 0.7
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3.4.3 Flow Law for Materials with Hardening

To put the constitutive equation in a form suitable
for numerical solution, it is necessary to solve for the
stress rates explicitly in terms of the currert stress and
the strain rate, for these are the quantities available in
the computational scheme. This is accomplished by writing
the elastic strain rate as the sum of a deviatoric and an
isotropic part

X T N

The elastic shear strain is given by Hooke's law in rate
form

e — L]
T sij/Zu (3.52)

De

and the matrix volume change by

e _ oh oh ¢

8- = 53: J1 +* =y E (3.53)
where the function 6% = h(Jl,E) represents the equation of
state of the matrix material in a form in which the compression
is given as a function of Jl, and the specific internal

energy, E. The total strain rate

[] " ce cp
Eij eij + €; (3.54)

can then be written

0.

a Osn
. e i ij s 1
ElJ a0 'ZTJ)-"‘ A YEL (TJ1 + )\64’ ghE

tTie

)Gij(S.SS)
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where

T=%‘F+%-g—}}— (3. 56)
1
and
J
Q=g + Eé . (3.57)

To complete the solution it is assumed that ) can be
written in the form

A=A+ A (3.58)

with Al and A not explicitly dependent on the stress rates.
Then the constitutive equation can be expressed

where
A, . = zusé - A ;il +(x g+i2h 13:)5 l (3.60)
ij | 1] 1 2g 1 3 3E ij§ '
and
Zes » Zu‘(T +0Q) 6., - A | (3.61)
i] l ij ~ 2g "ijy

The solution of Eq. (3.59) for the strain rates is
straightforward, following the usual method for linear simul-
taneous equations. For spherical explosions, the solution

is particularly simple, since o, 033: and can be written,
. All - 2R

- 3.62

8, Hrp— ( )
. A22 + R

= L] 3

JRE (3.63)
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where

R=2 A -2 A (3.64)

and

o
"
—
]
[N
[}
)
(]

= -~ (3.65)
To complete the analysis, it is necessary to obtain expressions
for Al and A. This is done by combining the results of

the preceeding analysis with the equation for the yield sur-
face, as shown in the sections that follow.

3.4.4 Calculation of the Multiplier

The flow law given by Eq. (3.34) leaves an undetermined
multiplier, A. In the derivation of the flow law based on
maximizing the rate of plastic work given by Hill[36] and
due to von Mises, this A appeers as the Lagrangian multi-
plier that is inevitably introduced in extremum problems
involving a constraint. The determination of A requires
that the constraint be satisfied, and involves differentiating
the constraint equatior. and comparing witn an appropriate scalar
equation obtained from the flow law. An explicit expression
for X ha ing the form Al + Aj1 wes obtained in each of
the four cases examined. In the first, the constraint is
satisfied in the absence of hardening. The remaining three
cases involve hardening models, and are simple work hardening,
the '"cap' model and kinematic hardening.

3.4.4,1 Multiplier for Materials Without Hardening

To obtain an expression for the multiplier, A, the
relation obtained by differentiuting the yield condition,
f = 0, with respect to time,
jz = 2gg” 31 (3.66)
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is combined with a reduced form of the flow law obtained by
multiplying Eq. (3.55) by Oij’ resulting in the expression

A o= - - (3.67)
g -8 J

which has the form Al ¥ AJ1 previously assumed.

3.4.4.2 Multiplier for Materials with Isotropic
Hardening

If the yield surface is assumed to expand isotropically
as a functica of the work, Wp, done against the plastic stresses,
it is possible to represent the hardening of materials in a
simple fashion. It is appropriate to note here that the un-
loading behavior is not well represented for many materials
with this model, since the Bauschinger effect is not accounted
for. Another limitation is that for materials whose strength
depends significantly on the mean stress, this model exhibits
too much dilatancy, but it has the advantage of being simple
to deal with. The plastic work is determined by

pr = g.. ¢b,

i 5 (3.68)

and the yield surface has the equation
= p
\fT: g(Jl, W ) : (3.69)

Differentiating this relation leads to

2 = B ] 4+ 38_yp 2 70
% af? o W P



and from Eq. (3.38), we can show that

oWP = A(g - %?r Jl). (3.71)
1

The rate of plastic work can be eliminated from these equa-
tions, and after some straightforward algebraic manipulations

a form for A

J J
oh \. oh 9 .
(°*3iﬁ)5*(3*§3—’§§§—1)~’1

(& Sl o)

of the required type is obtained.

(3.72)

3.4.4.3 Multiplier for the Granite Cap Model

The yield surface for granite formulated by Sandler
and DiMaggio involves both a fixed portion and a variable
cap. The latter is represented by a family of ellipses that
varies with the hardening parameter, x, given by Eq. (3.48).
When the stress lies on the fixed portion of the yield sur-
face the analysis for flow without hardening discussed in
Section 3.4.4.1 applies. On the cap, the strerses satisfy
the equation

= 2
J2 i (Jl,x) (B.723)
where - is given by Eq. (3.43). It is easily shown that
the plastic flow law of Eq. (3.27) leads to
1/2

og 2
.p .p Z 1 ( c)

1
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To determine X the flow equation is operated on with Oij’
the time derivative of Eq. (3.73) is taken and k is eliminated

from the reculting equations, leading to the result,

e, (3.75)

3.4.4.4 Multiplier for Kinematic Work Hardening

Prager's original rule[37] for the Jdescription of in-
elastic behavior assumed that the yield surface translates
in stress space without change of shape as plastic deformation
proceeds. This generalizes the bilinear hysteresis model
sometimes assumed in representing plastic deformation when
the state of stress is one-dimensional. 1In the current ver-
sion of the model it is assumed that the translation of the
yield surface is normal to its axis of symmetry. It is con-
ceptually useful to visualize the surface as given by a
vector in the three-dimensional space of principal stresses.
In doing this, we may retain the double subscript notation,
though in principal axes only the diagonal terms are non-zero.
A point on the axis of symmetry of the yield surface is re-

presented by

_ = 1
alJ = alJ + 3- Jl (513 (3.76)
where the term a,. represents the displacement of the axis

1)
and the second term represents the distance along the axis.

The total stress is given by

o5 % 5i5 * Gyt 39, Sy (3.77)
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with gij representing the distance in stress space from
the axis of symmetry of the yield surface to the stvess
point. The yield surface is specified by

£ =JJ’2 - g(J) =0 (3.78)
where
? =l =0 (3.79)
2 2 Cij i3 )
The crucial physical assumption is that Eij is linearly

related to the plastic strain rate by

Zv‘..lj = b éli’j (3.80)
where b 1is a hardening parameter and é?j is the deviatoric
plastic strain rate. Since é?- is a deviator, a;;= 0, im-
plying that the translation of the yield surface takes place
normal to its axis of symmetry. To evaluate A the flow law,
Eq. (3.55), is operated on with gij’ and after straight-

forward manipulations we are lead to the result

J gJ
. . . P p 3 1 p \ . _ _—1- a
°ij €ij T ¥ Eij b(Eij 3 kk ®ij) ©ij . ﬁj

D b p j p
(1Tl + 7 ofs lon; - 0 ehy))

(3.81)

3.4.5 Temperature and Strain Rate Effects

The magnitude of the flow stress depends on both the
state of stress and the history of the motion, as discussed
in the preceding section. In addition it depends on tempera-
ture and strain rate. The justification for treating
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temperature and strain effects together lies in the physical
basis for the strain rate effect, which is simply that when
the energy of a group of atoms exceeds the activation energy,
some slip takes place through a rearrangement of atoms. The
application of this Arrhenius activation energy concept is
discussed by Handin[38] and Serdengecti and Boozer[39] for
rocks and applied in detail to metal deformation by Zhurkov

oy and more recently by Samanta.[41] A com-

and Sanfirova
bPlete justification for the facter on theoretical grounds
for either rocks or metals has), unfortunately, not been es-

tablished, but Samanta discusses formulas of the type

£ 2 ye 'Voﬁi'r—AH' (3.82)

with v the "activation volume" and AH the ""activation
enthalpy" with the parameters depending on the flow. If we
identify the "flow stress,'" o, with the yield stress of the
earlier sections, then an expression for *the yield stress in
terms of temperature, strain rate and two material constants

is obtained
Y/Y0 = 1 + aT 2n E;/v (3.83)

in which E; is the second invariant of the deviatoric strain
rate tensor., The substitution of'JE:- for e generalizes the
one-dimensional approximation to multi-dimensional flows, and
the constants, o, v and Y have to be obtained by experi-
ments, theoretical argumentg, or estimates based on experience
with other materials. Some guidance is obtained from the fact
that v is of the order of magnitu'e of the atomic: vibration
frequency for simple materials, such as aluminum, and o = k/AH
is determined for simple materials by the empirical result that
the activation enthalpy is very nearly the sublimation energy.
This is the case for the materials investigated by Zhurkov and



Sanfirova and by Samanta. The situation is more complex for
geologic materials tian for metals and alloys but an under-
standing of some of the simpler examples is helpful. Strain
rate effects are important in calculating the effects of
underground nuclear explosions for two reasons. First, in

the near field the temperature is high because of shock
heating and lowers the strength. Second, the time scale of
material motion is generally much longer for nuclear blasts
than for laboratory tests. Consequently it seems important

to estimate, at least roughly, the magnitude of strain rate
effects and, in thc absence of specific data for the case

of interest, it is necessary to use an approximate relation-
ship. In the granite calculations a value of o of 0.5 % 10-*
was used. This is probably somewhat high, but it was selected
to minimize the effect of strength near the cavity at a very
early time in the development of our techriques. Experiments
to determine a realistic value of a would be desirable.

To use the correction factor 1 + T Rn.JE:Vv it is
necessary to determine the temperature in the course of the
calculation. To simplify the calculation, the effect of the
deviatoric stresses on heating is ignored, and only the
thermodynamic variables pressure and internal energy are
accounted for. This is a good approximation where the tempera-
ture is high and its influence is significant. Where the in-
fluence of the deviatoric stresses is important the temperatu:e
is low, and it is not essential to make an accurate estimate
of its deviation from normal.

A differential equation for temperature can be obtained
by thermodynamic considerations. For any internal energy
E(V,T)

dL (3.84)

]
)
<
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=
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<
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Combining with the thermodynamic identity

(), - (%), - »

v

it follows that

CdT = dE - (T(g«g) . p) av . (3.86)

W

A convenient expression for dT can be obtained by using the

thermodynamic identity

(%ﬁ)’) ) (%%)v (g"r) (3.87)

Y vV

ard the definition

o |
n

v(%{-) (3.88)

v

of Gruneisen's ratio, resulting in the expression

_ dE _ 97
dT—q+(v V-)dv (3.89)

which is used to update the temperature.

For the form of the equation of state given by Egs.
(3.21) and (3.22) we find

b

I = a+ " (3.90)

E + 1 2
E n?
0

The differentials required in Eq. (3.89) are given in terms
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of calculated quantities and the time step, dt, by
dE = [(o“-q)ell + Z(OZZ-q)ezz] dt/o (3.91)

dv

(o, * 20, )dt/o (3.92)

where q represents a viscous stress (artificial viscosity).
These equations, together with the previous equation for dT,
are continuously used in the computer program to update
temperature.
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3.5 SET-UP OF SPHERICAL EXPLOSION CALCULATIONS IN GRANITE

A number of calculations were carried out to determine
how well the theoretical framework described in the previous
sections predicts the observel motion of granite. A vield of
1 kT was selected for these runs, and in comparing with nuclear
shot data tle yield is scaled down to 1 kT by the standard
"cube-root'" scaling law. The initial cavity radius has been
varied, but in the calculations cited here, it was held at
1.5 meters, which gives a volume that is realistic for medium
yield shots,

The source was represented by a polytropic gas law
with an index <y = 4/3. This value was selected as being
representative since it is exact for pure radiatioen, which
governs for very high yields at early times,and also for a
tri-atomic gas without internal degrees of freedom. Since
the cavity contains large amounts of water and silicon dioxide,
it was felt that the real values might not vary significantly
from 4/3. Studies by Allen and Duff[42] and Wagner and Louie[43]
have indicated that the results are not highly sensitive to the
value of vy, but 2 precise calculation should allow for ioni-
zation and other non-ideal features of (4i¢ cavity gases.

A source calculation may involve either the expansion
of thin spherical shells of gas, or it may assume that the shells
mix as the result of turbulence. If the mixing is thorough,
it is a good approximation to represent the source as a uni-
form sphere expanding adiabatically, an. this is the approxi-
mation adopted in the curr:nt study. In view of the difficulty
of studying mixing in a transient flow theoretically, a desc.ip-
tion of the source pehavior will probably require an experimental
approach. The discussions by Butkovitch[20’44] indicate that
the water content of the rock significantly affects the results,
but the emphasis in these calculations was on the éffect of
rock strength, and water content was not accounted for.

82



The zoning for the 1-kT problems is illustrated in
Fig. 3.5. The computer program was formulated to allow 1000
zones, but only 350 were required for these calculations.
The first zone is 50 cm in thickness, and the thickness was
increased by 1 percent per zone. The total radius accounted
for in the calculational grid is

- P wal
rmax ro + Aro W (3.93)

where a is the thickness ratio, r is the initial radius
of the source region, Ar0 is the width of the first zone,
and N is the number of zones. This radius is 1563 meters

for the indicated zoning.

The SKIPPER program uses the standard, Lagrangian
approach tc the calculation of spherical motions described

28] In addition to the stresses resisting the

by Wilkins.
motion described in the preceding sections, an artificial
viscosity is included in the program which incorpora*es both
linear and quadratic terms. Details are given in the RIP
report by Fisher, Cecil and Lans [43] (the SKIPPER code origi-
nated from the RIP code). It was found in the course of the
current study that an improvement in the behavior at the shock
front can be obtained by eliminating only the quadratic term

in the artificial viscosity

R 2 ) 1. 94°
q (CQ Au CLcAu,p (2.94°

where Au is the velocity change across a zcne, ¢ is the
sound speed and p is an average density, when the material

is expanding. In the usual approacn, both terms are dropped
when material is expanding, but this leads to an excessively
non-uniform treatment. A comparison of the two methods

is illustrated in Fig. 3.6, which shows that a mild instability
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in the calculation that occurs for relatively large values
of artificial viscosity (CQ = 3.2, €, = 1.0) disappears
when the linear term is retained in the expansion region,

even though the viscosity was lowered at the same time.
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3.6 UNDERGROUND SHOT DATA

Before entering into a discussion of the calculated
results, it seems appropriate to discuss some of the data
taken from the Hardhat, Shoal and Piledriver shots, since
these data are the basis for evaluating the validity of the
calculations. This is especially true since there is a long
history of calculations of underground shots with highly
variable degrees of success. In analyzing the shot data it
is observed that the cavity volume per kiloton of yield is
remarkably consistent between shots., The data are summarized
in Table 3.2. The consistency of the volume per unit yield

TABLE 3.2

CRATER RADIUS AND CRATER VOLUME PER TON
FOR THREE GRANITE SHOTS

: Cavity Volume
_ Cavity Per Unit Yield,
Yleld, Radius, Cubic Meters
Shot Kilotons | Meters Reference Per Ton
Hardhat 5.0 19.2 46 5.80
Shoal 12.5 25.6 46 5.69
Piledriver 61. 44.5 47 6.03

far exceeds the credibility of the individual measurements.
Though both yield and cavity volume vary by nearly 20%,
depending on the author and type of measurement, the average
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cavity volume per unit yield is 5.7 cubic meters per ton
with a variation of only 4 percent. For a 1-kT shot, the
radius would be 11.1 meters.

[47]

have pointed

Perret in his discussion of Piledriver and Werth

(48 ]

out that the late-time displacement can be estimated {rom

and Herbst in their discussion of Hardhat

an elementary analysis based on the argument that the mass
of material inside the sphere with radius R before the
shot must equal the mass inside the sphere of radius R+$§
after the shot, where & is the displacement,provided the
the material does not undergo significant compaction or
bulking. It is reasonable for the granite shots cited here
to assume that the initial cavity volume is negligible. The

mass equation then takes the form

4 4 4
T m(R+8) % - T wRé == nR? (3.95)
which reduces, for ¢ << R, to
§ = R(a./SR" (3.96)

where RC is the cavity rad.us. For the Piledriver shot
this leads to a value of 1.04 ft for the permanent displace-
ment at a radius of 1000 ft. The fit by Borg[49] to 26 data
points results in a displacement of 0.86 feet at this radius,
a discrepancy of avbout 20%, consistent with the uacertainty

in displacement, cavity radius and yield. The need for a
reliable yardstick such as this in correlating theory and

shot data is vital, since individual measurements may vary

by a factor of five from the mean value. Many of the measure-
ments of displacement cited by Borg, vary by a factor of ten
from one anothar. Since these authors of granite shot studies
agree on the validity of the above displacement formula, it

seems to provide a good benchmark for testing the validity
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of calculations. In view of the uncertainty in measurements,
it is felt that caution should be exercised in searching for
a correlation of individual measurements and calculations,
such as velocity history at a fixed station.

Displacement history may be one of the more reliable
indicators. Since it is an integrated quantity, it washes
out some spurious details, and the final value can be esti-
mated from the formula given above. This eliminates the
possible effect of slow drift in the traces due to long term
electrical effects.

The dynamic overshoot at displacement is very large.
The peak displacement is compared with the final value in
Table 3.3, and an overshoot of 350% is apparently typical.

TABLE 3.3
DISPLACEMENT OVERSHOOT FOR THREE GRANITE MEASUREMENTS

Piledriver Piledriver
Station 1 Station 2 Hardhat
(658 ft) (1543 ft) (457 m)
Peak Displacement, dmax 65 in. 15.8 in. 3.8 cm
Final Displacement, d_ 13 T 9 in. 1.19 cm
(5=2 iR:)*
Overshoot (100 dmax/dw) 400% 172%
(300%)* 320%

It is of considerable interest to explain this overshoot
quantitatively by theoretical methods, but the constitutive equa-
tions previously used were not able to model the overshoot and
late-time displacement in a straightforward fashion It will be
shown that the kinematic hardening model does succeed in providing
a reasonable theoretical description of the overshoot.

£3

The 9-in. figure given is questionable, and the alternative
value, (5.2 in,) based on Borg's fit, is also tabulated for
comparison.

89



3.7 COMPARISON OF CALCULATIONS AND FILLD DATA

Three calculations are described in this section which
bear on the problem of how best to model granite. Two of these
involve the same material constants, where applicable, and were
designed to compare the ""cap" and the kinematic hardening models.
In these cases the strength (4.0 kbar, reference value) was
chosun so that the "cap" model calculation would result in a
cavity of roughly the right volume. Details of these calcula-
tions are supplied in the three sections that follow. The
reference value for strength, Y , is the strength in the

0v
formula

Y0 = Y“(l + a T lnﬁz/v)

and represents the strength at T = 0 and Jl

-0,

3.7.1 Cap Model Calculation

From previous studies[so] and test runs it was known
that the parameters given in the original Sandler and DiMaggio
fit to Cedar City Tonalite would lead to an unrealistically
small value of cavity radius. With the premise in mind that
the cavity radius should come out near to 11.1 meters for a
one-kiloton shot, as discussed in Section 3.0, the yield
strength was adjusted to give a realistic cavity volume. A
set of parameters that accomplishes this is listed in Table 3.4.

In the table is also included a value for the dilata-

tional wave speed,

Cq = VK + 4u/3)/0 , K = ,\0(1-:10) . (3.97)

The value of a_ was adjusted so that this wave speed would
be consistent with the 4.8 km/sec value for Hardhat granite
at zero pressure published by Werth and Herbst.[48]
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TABLE 3.4
PARAMETERS FOR CAp MODEL CALCULATION

Value Given
in Ref, [30],

Value Given
in Ref. [307,

Value Used
in Current

Parameter English Units Metric Units Calculation

o, == ol 2.68 g/cc

a =% = 0.5

b -- -- x g%

Ea - .5 16 x 1012ergsy/g
Ao 7500 517 kbar 517 kbar

A (1-a ) 0.255 x 10° psi | 155 kbar 316 kbar

B il e 180 kbar

a 0.7 0.7 0.389

B 0.002 ksi-!? 0.029 kbar~! | 0,029 kbar-!

Y0 152 ksi 10.45 kbar 4.00 kbar

al 0.953 0.953 0.948

8l 0.0029 ksi-! 0.042 kbar-! 0.042 kbar-!

R0 4.0 4.0 4.0

W 450 450 450

8 0.05 0.724 kbar-! | 0,724 kbar-®

u 3300 ksi 0.228 mbar 0.228 mbar

Cq 12,600 ft/sec 4.131 km/sec | 4,80 km/sec

a -- -- 0.5 x 107* deg™!
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For the choice of parameters listed, the calculated
crater radius is 10.5 meters. This is close enough to the
11.1-meter figure of Section 3.6, which was based on shot
data, to justify a detailed comparison of other measurements
with calculations. The main observation resulting from the
comparison was that the cap model results in a displacement
history which exhibits virtually no overshoot, whereas the
test data indicates values of overshoot exceeding 300%. The
detailed results of the calculations are deferred to Section
3.7.3 in which a comparison with both the data and the
kinematic hardening model is discussed.

3.7.2 Kinematic Hardening

The kinematic hardening model discussed in Section
3.4.4.4 was used as the basis for a one-kiioton ~alculation
with the same mechanical parameters as those used in the pre-
ceding discussion, except that the cap behavior was not
accounted for. Hardening due to cap motion was replaced by
translating the axis of symmetry of the yield surface according
to Eq. (3.76) with displacement given by

= = p
aij beij (3.98)

the value for b was 100 kilobars. A slope of 100 kbar

is shown in Fig. 3.7; which is taken from Ref.35 to illustrate
granite behavior. The cavity radius and displacement showed
substantial overshoot in the calculation, and the final cavity
radius was smaller than with the cap model of hardening.

It was estimated that a reduction in the reference strength
from 4 to 1.68 kbar would increase the cavity radius to

11.1 m. The result of these calculations are included in
Figs. 3.8 through 3.13.
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A. Cytled to 1/4 maximum load
B. Cycled to 1/2 maximum load
C. Cycled to 3/4 maximum load
D. Cycled to 1/4 maximum load
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Fig. 3.7--I1lustration of a stress-strain relation
taken from Ref.35, showing the Bauschinger effect
in Cedar City tonalite, and the theoretical model
for pure shear.

93



"9zTS £3TABD P3aAIISQO YIIM SUOTIBINITED 901yl Jo uostiedwo)d--g-¢ -8ty

{spuodas) "duUT]
2z 0Z°0 8T°0 91°0 v1°0 ZU°0 0T°0 80°0 90°0 ¥0°0 zZo0°0

T I ¥ 1 4 1 I i I ! 1 ¥

QX oy = XoUy
‘Butuspaey
JTIBWIUTY

(1aatzpagtryg
‘Teoys ‘ieypaey)
A311AB] paAsiasqp

Qi 89°1 = *®y
*Sutuapiey
JTIBWaUTY

0T

it

bt

91

[s1d38w) snipey A3tAe)

94



*Ly 33 3O eiep uo paseq ‘pIatf [X-T O3 paleds

‘ISATIPAII4 JO T uUOIlElS 1B W 6°1S 3B sjusawdderdsig--6°s 814
(spuooas) aur]
91°0 $1°0 ZT°0 0T1°0 80°0 90°0 ¥0°0 20°0
T T T T T T T ]
QY 0"y = X%y /
‘Butuapiey /
810g JtiBwauty /
s anTEp TEUTH /
q1 n.ﬂlkdﬂh s\ —
1=poy de)
A — N — \
I_I_I-I__-I.l_ll.lll.l._n\..
-
PaAlasqD

qy 89°T = X°0

0T

0z

(139

oy

0s

(wd) ‘Juswsderdsiq

95



Lt "394 3O ®EBlEp
uc poseq ¢JOATIPI[TIJ UT Z UOTIEBIS 1B JUSWOINSBAW YITM

uostiedwod pue 1Y T JO PISTIL e I03F w gZ1 3e judwaderdstg--01°s °31d

(ossu) aury
b d (1]u )4 0BT osT o#T ©- 0IT cot CR on or

L]

1 T

q1 0y = XV

elR ISATIPATLd i
1 4 &

01 1194 f10q
‘anyTy TEULY I\ﬂ.l

QY g9-T = X¥Wg
uoriernoTr) Butuapiey drieWIUTY

LY 39y ‘3191133 wox3y pajieds
1UdWUOINSBIy IIATIPATTJ

=

(]

L]

1

r

(w2) 3juswadedsiq

96

"



uo paseq ¢ (YAS JUSWSINSEIW JO UOTIBDO]

uw /¢p 03 MQHNUMV 921INn0S [Y-1 & woxy w /97 13e uﬁwEQUNHQMH.QuuﬂH.M

~ (oasu) ‘sumry

oot nog 0Ze 08z ort 00¢

et *J9Y JO eiep
--32IN0SsS jeypIe}l WOXjy

oet DIt 08 - 0F

‘814

BlBQ IXIDATIPATId
Jo 314 Brog _ _

‘anyep TEUTY A

®1EQ IBYPIEH —— o=
1SQI3H pUER YIlam |\\I

‘anrep 1euty

Q% 89°1 = XYW3 *rapow Suruspiey Sriewaury

1sQIaH pue yilay 'luswainseal IEYpIEH

a3
0
12poj de)

(wd) jusuwosetdstq

97



|

50

50
- A Piledriver
8 Hardhat
10 - 410
&
’E =
=
o Kinema;ic
G = Hardening
E =
o Ymax 4.0 kbar
]
(]
.
%]
a | Generalized
= Cap Model
- Ymax = 4,0 kbar
)
P
& 1
g 1 — Borg Fit to
= Piledriver Data
E p—
(1
-9
% 3, -
RO/SR
0.1 L 0.1
10 100 1000
Radius (meters)
Fig. 3.12--Comparison of theoretical displacements
with field results for a 1-kT explosion in granite.
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5.7.3 Comparisons of Calculations

The cap model can be adjusted to give a realistic
value of crater size by lowering the value of flow stress from
the laboratory value of 10.56 kbar to 2.6 kbar at normal
strain rates. The maximum, or reference, flow stress is 4.0
kbar, but the 2.6 kbar value is cited for comparison, since
this is the value of Y that would be obtained at noimal
conditions using the stﬁain-rate relation of Bg. (Se83)w (A
justification for this ls that large masses of rock can be ex-
pected t- include large cracks and hence a lower mean strength,
than laboratory samples. 1In addition, the presence of water
in situ can be expected to lower the strength significantly.)
The time history of crater radius using the cap model, with
adjusted strength is shown in Fig. 3.8. The final value of
crater radius is 10.5 m, whereas the best estimate based on
averaging Piledriver, Hardhat and Shoal data is 11.1 m. In
view of the many uncertainties, it did not seem appropriate
to improve this agreement by adjusting parameters. In the
same figure the history of cavity radius is shown for kinematic
hardening. The strength is unchanged from the cap model value,
but the radius is somewhat lowered, and a significant amount
of overshcot takes place. To get a computed cavity radius that
agrees with the shot data, the reference strength for the
Kinematic hardening calculation was lowered to 1.68 kbar. It
can be seen in the figure that the amount of overshoot was
significantly increased as a result of this change. Unfor-
tunately, as a result of the way the problem was set up (the
number of zones was limited to 350), it was not possible to
continue the calculation until the oscillation died out. 1t
seems probable, however, that the f{inal value of cavity radius

would be near the observed size.

Comparisons with measured displacements are shown in
Figs. 3.9, 3.10, and 3.11. The first two correspond to the
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668- and 1543-foot stations for Piledriver. Th. displace-
ment histories given by Perret were scaled to 1 kT, assuming
a yield of 61 kT and the cube root scaling law to get

the traces ca'led "observed". The third comparison with a
measured displacement history is based on the displacement
trace reported by Werth and Herbst. 1n the first comparison,
at a scaled radius of 51.9 m, the '"cap" model curve approaches
the value based on the Borg fit, 16 cm, with very little over-
shoot, the peak amplitude being 18 cm. The observed peak dis-
placement, scaled, is 41.5 cm. Inspection of the figure shows
that the kinematic hardening model results in a more realistic
behavior. The peak overshoot is 50 cm, for Yo = 1.68 kbar,
and the timing is generally like that observed. At a radius
of 120 m the conclusions are similar. The cap model results
in a peak displacement of 1.90 cm where the measured peak is
10.1 cm, and it occurs considerably later. The kinematic
hardening model gives a peak of 8.3 cm and the timing is also
roughly similar to that observed. In interpreting these re-
sults, it should be borne in mind that there is considerable
variation in measurement between different instruments at the
same station. The difference between the kinematic hardening
calculation and the observed displacement is not greater than
the difference between records from a velocity pick-up and

an accelerometer at thi:z station.

The displacement reported by Werfh and Herbst, scaled
to 1 kT, has a peak value of 2.18 cm where the cap model gives
a peak value of 0.82 cm, and the peak occurs somewhat early.
The kinematic hardening model gives a peak value of 1.8 cm
which occurs only slightly earlier than the observed peak

value.

The permanent displacement data is summarized in
Fig. 3.12, with the experimental points being reduced to
1 kT by cube root scaling, as before. The values for Hardhat
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and Piledriver displacement are taken from Perret's report,
except for the last Hardhat point, which is taken from Werth
and Herbst. The experimental data points generally correlate
well with Borg's fit and with the theoretical value, R:/SRZ,
except for one Piledriver point which is questionable. The
"cap" model predicts more attenuation than is observed,
whereas the kinematic hardening model gives very nearly the
correct slope. Orly the kinematic hardening calculation for
the reference strength of 4.0 kbar is plotted, since the dis-
placement had not reached a steady state in the second k.ne-
matic hardening calculation.

Peak velocity data are compared in Fig. 3.13, which is
taken from Perret's report and compares data from Piledriver,
Hardhat and Shoal, scaled to 1 kiloton. Superimposed on the
data are the results of a cap model and a kinematic hardening
model calculation, both for the 4.0 kbar reference strength,
The cap model calculation lies consistently below the measure-
ments, whereas the kinematic hardening model is ijn general
agreement with the measurements. The s:ope of the kinematic
hardening calculation seems to be a little lower than the
indicated slope of the measured peak velocities. Unfortunately,
peak values of velocity for the kinematic hardening model with
reference strength of 1.68 kbar are not available because the
printing frequency in setting up the calculation was too
low.
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3.8 PARAMETRIC STUDIES OF GRANITE

A series of spherically symmetric one-dimensional
shock wave propagation problems in granite was run using
the SKIPPER finite difference code. The purpose of these
calculations was to evaluate the effects on ground motion
of varying certain material properties. To run problems
in which all parameters occurring in the constitutive rela-
tions are vavied in a controlled manner so that the effect of
each on wave propagation could be evaluated would be a very
lengthy task. Inasmuch as the greatest uncertainty in
material response models for media affected by an explosion
in the ground is for stresses in the region below ten kilo-
bars, variations of strength parameters were investigated.
Thermodynamic parameters, which would be more important in
the very Wigh pressure regime, were held constant. Ideally,
it would have been desirable to carry the problems to the
point at which the peak stress levels had attenuated to the
level of seismic signals and motion had essentially ceased.
This was done in the calculations for comparison with field
data (Section 3.7), but was not feasible for the parameter
studies. The problems were run to times of about 20 msec
and stresses had attenuated to the order of one kilobar.
These calculations were sufficient to show the effect of
varying certain strength parameters on peak stress attenuation
cavity growth, pulse shape and particle displacement. The
strength parameters were chosen in a range that is represen-
tative of what one might expect to find in granite.

The source in all but one of the calculations reported
in this section is the same as used for the material para-
meter study for tuff reported in Section II. It consists of
a spherical cavity in the material which contains a gas
obeying a pressure-volume-energy (p,V,E) equation of state
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given by

. oV
E = .
LT (3.99)

The value y = 1.4 was used. Initially the radius of the
cavity is 3.72 meters and the internal energy of the gas is
33.5 x 10'* ergs, an amount of energy equivilent to the

yield of 8 KT of high explosive. The flow within the cavity
gas is not calculated. The pressure within the gas, and thus
the stress acting on the cavity wall, is taken to be uniform
during each time step in the calculation and is given by

R )SY

p(t) = p»(R : p = 621 kbar (3.100)

’
0

wvhere p(t) and R(t) are the cavity pressure and radius
respecitvely at time t. The initial value of 3.72 m for
the cavity was chosen on the basis that it approximately re-
presents the volume of rock vaporized by an energy reclease of
8 KT of explosive. In one problem the cavity radius was in-
creased to 8 m to give an order of magnitude increase in the
volume in which the 8 KT was deposited.

The p-V-E equation of state used for the rock material
was the blend between the high pressure and low pressure forms
described in Section 3.4.1. The required material constants
used are those listed below:

p = 2.68 g/cc

a= 0.5

b =1.3

E =1.6 x 10! erpgs/g
A = 518 kbar
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B = 180 kbar
a = 0.409

0

B, = 0.029 kbar-!
E. = 1.8 x 10'° ergs/g

Except for a small chenge in a and Ao these are the
same values used for granite in Section 3.7 (Table 3.4).

A principal stress component o4 is given by

o, = "p+ Si (3.101)
where Si is the associated principal deviatoric stress.

In the calculations reported in this section, three models

were used to limit the deviatoric terms and treat the strength
of the rock material. These three models are:

(a) Simple von Mises

2 2 2 2 v ( _E )
Sl + sz + s3 _<_ X Yo 1 EI; (3.102)
where Y0 is a constant yield strength.

(b) Mohr-Coulomb

524’52"‘82
1 V3 8

v (1 - {5.;) (3.103)

where Y(p) 1is a yield strength which is dependent upon the
hydrostatic pressure. In the present work the form of Y(p)
is taken to be the exponential form

_381p

tg) =y A =¥ Je (3.104)

where Yo, Yl, and B1 are constants.
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For all cases the rigidity modulus was held constant at
u = 228 kbars. The factor (1 - E/Em) multiplying the Y's rep-
resents a thermal softening term. When the internal energy L
reaches the melt energy, Em’ the strength vanishes and the
material can no longer support any deviatoric stresses.

(c) Capped Yield Surface

The yield surface has the exponential form given by
Eq. (3.104). However, it is capped by an ellipse which is
tangent to the exponential yield surface at their point of
intersection. The elliptical cap moves in the Y-p plane*
according to the amount of plastic work hardening that occurs.
The point of intersection of the yield surface and the cap,
the ratio of the major and minor axes of the elliptical cap,
and the center of the ellipse are functions of a work hardening
parameter. The computation of the work hardening parameter,
k, 1s described in Section 3.4.2. The yield surface and cap

are shown in Fig. 3.4.
x
Some confusion can arise between the p-Y plane and the
J, vs sz plane where J, is the first stress total in-
variant and J, 1is the second deviatoric stress invariant.
Here the following definitions are used:

1
R = = 3- (01 + 02 + 03)
2¥2 2 g2 4+ §2 4 g2
3 1 2 3
J =z o +c¢c +g
1 1 2 3
J =7 (s2+ 52+ 52)
2 2- 1 2 3
. Y
Thus y J = - 3p and “J ) = ﬁ

106



After several short test runs to assure that the con-
stitutive relations described above were functioning satis-
factorily in the SKIPPER code, a total of seven production runs,
calculations on granite were carried out to times in excess of
20 milliseconds. A description of the plasticity models for
these runs is sumwarized in Table 3.5 and the calculational
results are presented in Figs. 3.14 through 3.25,

The asymptotic value approached by the shear yield
strength in the Mohr-Coulomb model in Run G1 is the same as
the constant shear strength in the von Mises model in Run G2.
The Mohr-Coulomb model produces a larger cavity (Fig. 3.14),
more rapid attenuation of the peak stress for R > 60 m
(Figs. 3.16, 3.18, 3.20) and greater radial displacement
(Figs. 3.22, 3.24). For the von Mises model, tensile hoop
stresses and tensile radial stresses occur (Fig. 3.20).

Runs Gl and G4 both employ the Mohr-Coulomb model, but
the asymptotic shear strength in Run G4 is only half that in
Run Gl. The smaller shear strength produces a larger cavity
(Fig. 3.15), less rapid attenuation for R > 50 m (Figs. 3.17,
3.19, 3.21) and greater radial displacement (Figs. 3.25; 3.28)-

The effect of introducing a material fracture by setting
tensile stresses to zero that occur in the von Mises model
is illustrated by comparing Runs G2 and G3. This failure
criterion causes a larger cavity (Fig. 3.14), more rapid attenua-
tion of the peak stress once the unloading wave from the frac-
tured region at the tail of the pulse catches up with the
wave front (Figs. 3.16, 3.18, 3.20), and, apparently, a
larger final radial displacement (Figs. 3.22, 3.24). The
displacement histories also have different shapes since the
imposition of the failure criterion inhibits rebound (Fig.
3.24).
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Fig. 3.16--Peak radial stress vs distance from source for
Run G1 (Mohr-Coulomb, high strength), Run G2
(von Mises, without failure) and Run G3 (von Mises,
with failure).
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Fig. 3.17--peak radial stress vys distance from source for
Run G1 (Mohr-Coulomb, higi Strength), Run G4
(Mohr-Coulomb, low strength), Run G5 (capped
surface, low Strength), Run Go (Mohr-Coulomb,
large cavity) and Run @7 (Mohr-Coulomb, high
bulk modulus),
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Fig. 3.16--Peak radial stress vs distance from source for
Run G1 (Mohr-Coulomb, high strength), Run G2
(von Mises, without failure) and Run G3 (von Mises,
with failure).
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Fig. 3.17--Peak radial stress vs distance from source for
Run Gl (Mohr-Coulomb, high strength), Run G4
(Mohr-Coulomb, low strength), Run G5 (capped
surface, low strength), Run G6 (Mohr-Coulomb,
large cavity) and Run G7 (Mohr-Coulomb, high
bulk modulus).

112




*(danitey Y31M ‘sasIp
D) uny ‘ (yafuoays Y3ty ‘qu wwmwuw”mmuww Mwwmww MMMW

5 13-SSs3a3s HNM@N“II”H.M -M._...nm

(EpucoasyTIIE] dmTl
B LT 8T ST Pz 5T 22 1z or &1 81 L1 L AT It 11 UL - i L 9 5

§7) UMy e ———

Ppuny ——=—— st

10 uny & —

(3eqy) ss211§ Terpey

113



Ll

ATNg Y31y ‘qUoTnod-IyoR) /9 uny pue ¢ (L3TAe>d a31e| .@EoHsou-g:oz%mw%swmm
ﬁ:umwmuum MOT ‘odeyuans padded) g9 uny ‘(yi8usaais mog ‘quorno)-ayop)

+9 csa ‘(y3duerls ysry ‘QUOTNO)-IyoK) 19 uny 10 92INOS JO 193UdD WOl
W TT 0t LTTeTITUT OoTD13aed joO SOTI031STY dUT]-SS9IIS [BIDPBY--GT°S .me

(spuodastriyw) sury

67 8z Lz 9z b T4 LEA ¥ [ 44 1z oz BI st

i T 1 T i T T T T T T L

= ’ “II_IIILII.F lll-l-l..ﬂl.'.ll-ll_
- e a 8 o = T——
;9 uny e
99 uny o
SO UNY = = ——
$9 UNY == == ———
10 uny

81

(1vqy) ssa115 teypey

114



‘(danyze IIM ‘so I
1 &3 :.mcuwaumwu mev mosmsm vmm ‘(sxnytey inoyiim ‘SOSTI{ uoA) 7o uny
= . { Iy "quoTno)-Iyol) [9H uny I0J 913IN0S FO 193uUd> woxy
¥S°08 AT1T1eI3TUT O7>dT3xed jo SOTIOISTY SUTJ-SSdIIS [BIPBRY--QZ°S ‘313

(spuodastyrTw) awry

115

8z

144 1z

02

61

€1

£2 uny

t f

— — —

19 way

———

1

(1eqy) ssa135 1elpey



o “(sninpou YInq y3t1y ‘qUOTnoj-1yol) ;9 uny pue
({31aeDd 98xe] ‘qWOINO)-1Yyol) 99 uny ¢ (yiSusils mMOT ‘9d3e3ans
padded) <9 uny ¢ (yiSuails mog ‘quorno)-uayop) +9 uny ‘ (yifusaiis
MO ‘quWOIno)-aYyol) [ unmy I0J 31IN0S JO 133UID WoIj W $S°08
L1r1et3tur o1do131ed JO SOTIOISTY SWTI-SS3I3S [eIpey--17°¢ 814

(spuooasTEITW) Swrl

6¢ 82 Lz a7 5¢ ¥ £l [ 44 | &4 0z 61 81 L1 91 St 4] £1
T T T T S pp— r—, |

rllnl.ll.._ll.l._..ll.

L9 uUny e

99 uny ©

G8) WY = oo
po umy —=—— — —
19 umy

(&}

(1eQy) ssallg [erpey

116



.mmwsﬁﬁmm Yitm ‘S3SIN uoA) ¢9 uny puk ¢ (SINTTIRJ INOYITIM ‘SasST| uoA) 79 uny
(yiBusaails Y31y ‘quorno)-iyol) 19 uny I0J 92INO0S JO I93U3dD WOl W [[°'QOf
Arreratutr arorized jo satiolsty SUT3-3JUudwade[dSTp [eIpPBY--7Z°¢ °814

[spuodasyrTy) awrl
8T L2 9T ST ¥ fI 1t 17 a2 61 g1 L1 91 S1 | G % 4 11 ot

]
Ll ! I 1 T LI T T 1 1 ! L] L] I 1 I I L} LIS T L]

Ll

oz

i

or

0%

os

gL

[H ]

(us) juowmadedstg (=ypry

117



*(snTnpou na yst worno

-IYoj) .9 uny pue ‘(£3tABD B31ET .nEoH:ou-ucmzv w% ::M mﬂawmcwuuw

. MOT ‘9deJFIns paddes) g¢o uny ‘(Yy3Zuaals moy .@EOH:ou-u:o:V 9 uny
(Ya8usiis mog ‘quoIno)y-i1yop) 19 uny Ioj 9d3inos jo iajusd woxy w 11°0¢
ATTBTITUT aY1dT31ed 3O satio3ls1y Swi3-jusuwaderdsip TeTpey--¢z . -f1q

ﬂnﬂ=uuan_ﬂﬂ4lu.unah

62 BT iz L ST L £ I 1z oz 6T Bl il 91 ST L £ [ 4§ 01 & 8 L 9 S
T

T T T )

- 7
||.|-M_|I-_v|-|_nllll. — I...........'.._... - .
o -] '.ll.‘i - 3
e —— @ o -

= 3 ot i 4

s % A -
. " - -

- — -
- -4
-
- - .
-
e - (D uny = -
- 99 uny o .
- §9 uny e 4
- — i — —
- $D uny
S Ny ——— -
- - 19 Y ]
-

01
0z
cg
o
0s
09
0L
08
06
001
o1y
0z1
o€l

ort
Cst
091
0Lt
081

(w>) 3uawaserdstg rerpey

118



*(8INTTBY Y1TM “SISTI|y UOA)
‘(y3Busxis y81y “quoino

€D uny pue
JD-IYoK) TI9H uny I03J 81IN0S Jo I

‘(danytey InOYylTM SOST uoA) 7y uny

33U8D WOIF W $S° (g

AT1eT3TUT 91d>T3:md JOo SaTI03STIY SUT]-3USBWSIBTdSTP TBIPBY--47°§ 814

(spuodastyiTn) BuT}

6¢ L4 LI 9 -1 vz €2 Fa 4 17 0z 61 g1 ! A o1 ST
| T L I T T T L T I T ] 1
e
e
~
~N
~
!J s
o — VI.I! 7
——
—
ﬂ.—-.l- -Huxlinlnl
79 UMY — — ———
[4 umny

ot

St

jusawaderdstq teipey

(wd)

119



o

-IYo[) (9 uny pue ‘(L31AED 98xe1 ‘quot

MOT ‘adejuns padded) c9 uny ¢ (y38uoauy
‘(yi8uaxis mog ‘quorno)-ayol) 19 uny I0F 9o
L11eT3TUT OToT3yaed JO SOTIOISTY oUTI-IUd

(spuooastirTu) Puwry

" (snynpou jyng Y31y ‘quoynoy
noj-Iyo) 99 uny ° (yiduaigs
S MOT ‘quornoj-aycy) $9 uny
INOS JO I53UdD> WOXJ W S g

wadeTdsTp TeIpPRY--S7°s -F1g

62 8z LT 9z Sz 4 £z Iz [ &4 0z 61 BT LT 91 ST LAY 1 4 FA 4

T T T T T T T T T J | —— Te &1 0

o A — . Sp——. o [
.\._.._.....-.-ll.l. ﬂﬂ.\“\\. ° -3 1
a ™ ~1-Z
—€

.

3¢
. TS
-9
17
-— m
46
4ot
- 11
=121
-1€1
e R A
- ST
- 91
qLT

LD Uny o
99 uny o i
& y - ~4 61

uny S —

- -4 02

o uny T T
D uny —————

-

(wd) judwaserdsrq rerpey

120



T T — e et bt

The effect of putting a cap on the Mohr-Coulomb
elliptical yield surface and introducing an associated
flow rule is demonstrated by comparing Runs G4 with Run G5,
The cap model in Run 5 produces a slightly larger cavity
size (Fig. 3.15), much faster wave attenuation fioF R > 50w

-~

(Figs. 3.17, 239 B

1o

L) ; amd apparently, smaller radial
displacements (Rigy, 5.28, 3-2%5). Tue great difference in
attenuation arises from the treatment of void collapse inherent
in the cap plasticity model, but not in the Mohr-Coulomb

model as treated in Run G4, The porosity effect could be
introduced in the pP-V-E equation of state within the Mohr-
Coulomb model (or the von Mises mcdel) and a result closer

to that obtained by the cap model would be obtained.

Run Go uses the identical Mohr-Coulomb model used by
Run G4, but the cavity in which the 8-kT energy 1s initially
deposited is increased by an order of magnitude so that the
initial pressure in the gas is reduced from 1.54 mbar to
00 kbars. All ground motion quantities are drastically
reduced, at least for R <« 100 m. The gas pressure is too
near the value of the shear strength of the granite for the

results to be insensitive to the choice of the cavity radius.

Run G7 uses the same Mohr-Coulomb model as Run G4
except the bulk modulus is kept constant at the value
derived from shock wave data rather than permitted to vary
continously with pressure according to Eq. (3.24). The
ceffectively higher bulk modulus produces almost an identical
cavity size (Fig. 3.15), but causcs decreased wave attenuation
and higher wave speed at large distances (RLgs ., $u7 3.19, 3.21).
At R = 40.11 n, it produces a smaller radial displacement
(Fig. 3.23), but apparently a larger radijal displacement at

distance R = 80.54 m from the source.
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3.9 DISCUSSION OF RESULTS

In formulating the constitutive ecquations, particular
attention was given to the definition of strain and strain
rate. The current definitions lead to constitutive cquations
consistent with those used by Wilkins and in common nse in a
variety of spherical, Lagrangian codes. This is accomplished
by defining the principal strains as the logarithms of the
principle stretches, and cquating the strain rate tensor
with the symmetric part of the velocity gradient. Other
approaches considered lead to mathematical and physical

difficulties,

In particular, Morland[Sl] expresses the constitutive

cquation through an equation of the form

UF = 4l + ba + ks (3.105)
where UP is the plastic part of the right stretch tensor.
If the principal strain is defined as the logarithm of the
principal stretch, a constitutive cquation of this form is
awkward since it contains the stretch explicit'y, Further-

more, the condition of incompressibility

).\l ).\2 ).\3
)\—*' A—+ )\—= 0 (3.106)
1 2 3

becomes difficult to enforce in a calculational scheme. By

comparison, a constitutive cequation of the form
DP = al + bo (3.107)
which involves the stretching, D, where

D=2L1R (ﬁ Ut o+ ! 0) RT (3.108)

~



is very convenient, since the separation of strain rates

D = pP + p® (3.109)

follows trivially from the condition for separation of
Furthermore, the condition of

strains, €.. = €. + ¢P |
ij ij ij
incompressibility of plastic strains
T 3P 3P
PP =Ly 2, 2.9 3.110
NV I : )
1 2 3
can be enforced by putting
a=-b tr(c) , (3.111)

which makes the plastic strain rate proportional to the de-

viatoric stress,
In the approach taken by Clifton the principal elastic

strains are defined by
e = 2% .1 (S~lic)
i i
and the plastic strain by
P . ,D _
€S Ay 1 (3.113)

and the plastic and elastic stretches are related by

c Al A not summed on i (3.114)
. i ’ . L4

it is not a simple matter

As in Morland's approach,
to enforce plastic incompressibility on the equations formu-

lated in this manner, and the ccnstitutive equations that
123



would result are quite complicated in their dependence on

stretch i#nd strain.

To recapitulate, it was found that a considerable
simplification to the constitutive equations for finite
deformation plasticity could be obtained by defining the
principal strains as the logarithms of the principle
stretches., The strain rate tensor becomes identical with
the velocity gradient, a result not always obtained with
previously suggested formulations.

The constitutive equation 1s obtained by setting the
strain rate tensor proportional to the gradient of the plas-
tic potential., The right stretch tensor is written us the

product of an elastic and a plastic part.
u = U® uP (3.115)

and no restriction is placed upon the plastic volume. Conse-
quently, there is a plastic change in volume, and it is iden-
tified with thne change in pore volume. The change ir. volume
can be either an increase or a decrease, depending on the
constitutive equation and the history of the deformation,
Thus, the kinematics allows for either oulking or compaction.

The computer program and the analysis were formulated
in such a way as to .llow a choice of either no hardening,
isotropic hardening as expansion of the yield surface,
hardening by displacement ol an elliptical cap, or x.nematic
hardening. Recent studies by Allen, et gl.[sol at S and by
Maxwell, et —l.[SZ] at Physics International have indicated
that the overshoot using the cap model is less than observed
and this conclusion is consistent with the current results.

A study by McKay and Godfrey[ss] indicates that in the "tomb-
stone'" studies the attenuaticn of the calculated pulse is more
rapid than observed. Both of these deficiencies in the
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theoretical results can be explained by the absence of a Baus-
chinger effect in the isotropic hardening models. By account-
ing for the Bauschinger cffect, the velocity of rarefaction
waves 1s reduced and the unloading takes place more slowly,
The velocity pulse at a fixed station is also stretched out
over a longer time. This is generally what is required

to bring the reported calculations into better agreement

with measurements.

Although a parameter study using various plasticity
models was conducted, Section 3.8, our major emphasis has
been on trying to establish whether the currently use! theories
dre consistent with measurements. In view of the disappointing
correlation reported in the references of the preceding para-
graphs, it scemed worthwhile to make an overall examination
of the existing data and the material model. It was con-
cluded that permanent displacement seems to be the most
reliuble measurement, and good correlations were generally
found between measurements and the simple formula, § = R2/3R2.
One Piledriver displacement is a notable exception, This
displacement lies a factor of three above the "best fit" by
Borg. [Its reliability is, however, questionable simply in
view of the substantial difference between the velocity and
integrated acceleration measurements at the 1543-ft station,
reported by Perret. (Though the two measurements agree quite
well at early times, they diverge after 0.3 sec real time,
or 76 msec in the scaled plot of Fig. 3.10. The accelerometer
trace would lead to final values of displacement well below
the best estimates given by Borg, and, in fact, would ulti-
mately have the wrong sign since the duration of the negative

velocity phase is indefinitely long.)

The peak velocity and final displacement predicted by
the "cap'" model are too low. This can be interpreted as a

consequence of the excessively high rate of unloading when
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the Bauschinger effect is not accounted for. A more realis-
tic attenuation is predicted with the kinem.tic hardening

model.

There remain a number of specific investigations which
should be carried through to explain the existing discrepancies
between calculation and measurement. Of particular concern
is the reduction in flow stress by a factor of six that is
required to bring calculations into agreement with shot data.
The existence of large cracks and pore water are probably
responsible for this discrepancy. It would be desirable to
get quantitative information on this question, and on the

relative importance of pore water and size effect on strength,

The effect of material dilatancy has not been examined
in enough detail. Dilatancy was considered at one time to be
one of the main effects causing discrepancy between calculation
and shot data. The effect may be important, but as a result
of the current study, it is believed that dilatancy should
be considered in conjunction with a model that accounts

for the Bauschinger effect,

The lithostatic pressure in the far-field causes the
cavity to rebeund. In addition, it significantly influences
the strength., We have not accounted for either of these
depth effects in the current calculation.

Finally, we note that a recasonable model for gross
fracture due to excessive strain or tensile’ stress should be
added to the simulation. The treatment of fracture should
reflect the finite time required for cracks to propagate, and
for the material to lose its competence. Such a model has
not yet been incorporated into the computer programs commonly
used to calculate underground nuclear explosions, but it is
felt that the delay in fracturing and the residual strength
would significantly influence the late behavior. Without a
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gradual failure model, the material would tend to form iso-
lated shells in the calculation, whereas in practice some
competence is retained almost everywhere.
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IV, THEORY OF INTERACTING CONTINUA

4.1 INTRODUCTION

Shock wave propagation in composite materials (e.g.,
fiber reinforced composites, water saturated rocks) is of
interest to many areas of science and engineering. Composite
materials display certain effects (e.g., geometric wave dis-
persion, internal dissipation) which cannot be adequately
modeled within the usual restrictions of a homogeneous, iso-
tropic media. The material properties of the various consti-
tuents, geometrical arrangement and the porosity (or void
content) all affect the thermo-mechanical response of the
composite. Thus, it is necessary to develop an analytical
model, based on the microstructure of the composite which
will enable one to evaiuate the thermo-mechanical behavior of
the material under various static and dynamic loading condi-
tions. [llowever, the variability in material properties and
the difficulty of characterizing interfaces make a purely
microscopic approach somewhat unattractive. A practical
ana.: *ical model should provide an average description of
the constituents rather than a detailed thermo-mechanical
description at each material interface at each instant of
time. The theory of interacting continua (TINC) provides
a means for proceeding directly to the desired macroscopic

level.

tn 35R-267L1 1 and 3sr-648,02 1, this theory was
introduced to provide a framework for describing the behavior
of a geologic (dry and partially saturated tuff) material in
terms of the isolated behavior of the constituents. The major
emphasis therein was placed on developing a mechanical theory
appropriate for planar stress wave propagation. This model
was incorporated into the planar POROUS code. Additionally,

Hugoniot relations were derived for a binary mixture in
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3SR-648. During the past year, the prime objective has

been to develop a thermodynamical theory suitable for wave
propagation studies in planar or spherical geometry. After
outlining the conservation relations in Section 4.2, we dis-
cuss the various interaction terms in Section 4.3. The con-
stitutive relations are given in Section 4.4. The incorporation
of the thermodynamical theory into a completely new version of
POROUS treating both 1-D planar and spherical configurations
is discussed in Section 4.5. Finally, in Section 4.6, we
discuss some material parameter calculations using this code.
Only limited calculations have been made since the new POROUS
code is still in its final development stage at the time this

report is being written.

130



4.2 GENERAL CONSERVATION LAWS

In TINC, it is assumed that ¢very small volume of the
composite body is occupied by barticles of each constituent
(g (a0 = 1, €4 mbhs 5 . Furthermore, each constituent
has a velocity field % (x,t) through the composite where
X denotes the bosition vector in space (with reference to a
fixed Newtonian frame) and ¢ denotes time. The mass of
constituent g PEr unit volume of composite is called its
partial density P (x,t) and the total mass per unit
volume of composite p(x,t) is given by:

5 (a)
o = :E: p (4.1)

a=1

Similarly, the total stress tensor 9 associated with a unit
?rﬁa of the composite can be decomposed into partial Stresses
a . ] a
o assocrated with each component 5

r
(o)
s & g

General rel.tions expressing conservatjop of mass,
momentum and ¢nergy may be written for each ? (3SR-2067
and 3SR-648). we will now assume that: (1) eéxternal bedy
forces are absent, (2) there is no heat transfer to the
external world, (3) no mass transfer occurs between the
constituents due(g? chemical jnteractions, and (4) partijal
Stress tensors 9i;j 4are symmetric, With these assumptions,

1]
the conservation relations become:
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Continuity:

(a) (o) (a) (a)
_/['EITD—* o div l]dv

t
v
(o) (o) (a)
=[aa§ dv+/23jnjds=0 (4.3)
Vv S
Momentum:
() (o)
() D v,
f o —pr— &V
V
(a) (o) (a) (a) (o)
:-f%t_(p vi)vaf’/S‘pvivjnde
A4
(o)
S Vv
Energy:

(a)
(@) *p [(G) p (@) (a)] dv
/"WE*’Z"J‘"J'
Y

(o) { (@) (o) (@)
%? [ o ( E + % vj vj)]dv

(5

(a) 7 (a)
+‘/- (g)[(%) ) %_ (3; 33] 31 o, 48
S
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where

(a)

(a)
(a)
ij
(a)
(a)

E

(a)
Py

=

(a)

~/” (a) () 5 (a)
% oijvian-L ande

(@) (@)  (a))
+ (o B v +p vy ’dV (4.5)

V

(a) (a)
D /Dt = 3/3t + v * grad

(a)

velocity of material s

partial density of (g)

(a)

partial stress tensor for 4

a .
momentum supply to (4) per unit mass
of composite due to interaction forces

Q
specific internal energy of 4
(a) .
energy supply to A per unit mass of

composite due to interaction with the remaining
a-1 constituents

normal to the surface §

heat flux vector into 4 from the remaining
a-1 constituents
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The requirements that the total momentum and energy
contributions of the internal material interaction forces be

zero may be written as

=~ o)
D o8 =0 (4.6)
a=1

4 r(( @ (@)

ZL( w)-dlv q | =0 (4.7)

(o)

The balance equation for internal energy, E , may be ob-
tained by combining Eqs. (4.3), (4.4), and (4.5).

(o)
() (o) (a) (a) (alitaie)
/" '%T(E)d"=/ %-f(o E)dV*/p E v, n; dS
’

vV S
(a) (a) (a)
=/ %55 Vi, dV - / a; My ds
Vv S
(o)
+ ‘/ﬁ o v dV . (4.8)
v

In writing down the above conservation relations in the
{E?C framework, no ref?r?nce is made to Eh actual mean area,

m , and mean volume, n , occupied by 7 per unit cross-
sectional area and volume of the composite. If the inter-
action terms and constitutive relations for the composite are
to be expressed in terms of the behavior of the isolated consti-
tuents, reference must be made t? the actual constituents. In
3SR-267, effectlve densities, p ~, and effective stress
tensors, g €, were defined in terms of partial densities
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and partial stress tensors by the scaled relations:

(a)  (a)(a),
b= n p (4.9a)
(o)  (a)(a)
g h g e (4.9b)
where
N () N (@)
E n = m =1 (4.9¢c)
a=1 a=1

If the composite is isotropic so that each plane through the
a
medium intersects the same area fraction of A ’ }he area
"o
and the volume fractions are the same for each A

(a) (a)
m = n (4.10)

In this case a single scaling function occurs in the relations
(4.9).

In the following discussion a =1, 2, 3 will be used
to designate rock (poreless), water and voids, respectively.
The interaction “erms in the next section are deivived for the

LAl

case when n 0, i.e., a {fully saturated porous solid.
The applicability of these terms to the unsaturated case is

discussed in Section 4.4.
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4.3 INTERACTION TERMS

For sake of convenience, we will restrict the discussion
in this section to plane wave propagation in the x-direction.
The interaction terms derived herein are, however, also appli-
cable to spherical wave propagation. For planar wave propa-
gation, the conservation relations (4.3), (4.4) and (4.8) may
be written in the differential form as:

(a) (a) 8(0) (a) (o)

3 Vv

aai v 52 T B . (4.11)
(a)

ST

0 =t ¥ ¥ =p R + e (4.12)

() ( (o)
(m)(a D (@), g))_ @, (w0 o

PR Y et wR oY

In writing Eq. (4.13), we assumed no heat transfer between con-
stituents,

(a)

q =0 (4.14)

Our primary interest is in mixtures in which the second
component is a fluid.
(2) (2)

Oij -p Gij (4.15a)

2) (@),
P n p (4.15b)

Rewriting Eq. (4.6), we obtain

(1) (2)
o8 = -p B8 = B (4.16)
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The interaction term, pB, contains both dilatational and
diffusive parts

PB = pBy * PN (4.17)

To derive an expression for pB, we consider the ordinary
momentum equation for fluid flow with friction through a variable
area tube,

(2) (2) (2)
(2)(2) (2) (a) e
m o] e (25%_ + Vv iy)‘(i_)z - pon + m a—g;L (4.18)

where PN denotes the drag experienced by the fluid as it
flows through the rock. Combining Eqs. (4.9), (4.10), (4.12),
(4.10), (4.17) and (4.18), we obtain:

£y 5
R = =p ¢ 232— % PN (4.19)

Note that Eq. (4.19) holds only as long as (4.10) is true.

We will now assume that the diffusive force p,0 depends
on the two velocity fields in the following manner:

(2) (1))
(4.20)

pn=nopd ( v -V
0 0

where d has the dimension of the reciprocal of time. Note
that d 1is relaced to Darcy's law (3SR-648)

(2)2
« DM
Qod S (4.21)
where u and k denote the kinematic viscosity of the fluid
and the permeability of the rock, respectively. For water, u

is equal to 0.01002 g/sec-cm. For wuff, k is in the range
50-10,000 pdarcies (1 darcy = 0.987 10°° cm?).
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It appears worthwhile to note here that (1/d) is a
measure of the momentum relaxation time, i.e., the time re-
quired to exchange momentum between the two materials. In
numerical computations, this fact can be very important in
deciding the allowable time steps. Ideally, the time step
should be an order of magnitude less than the momentum relaxa-
tion time, 1i/d.

(a)

4.3.1 Interaction Energy Term: p v

(a) Provided there is no heat flow between the constituents
X
( q
the interaction forces be zero may be written as

$ O), the requirement that the energy contributions of

(1) (2) (1) (2)
pB( vV - v )+ p( Yo+ Y ) =0 (4.22)
)
The invernal energy balance relation for (A) can be
rewritten as:
2
@ 3 @ @ ,B (o
P pt— E =P 5 toev (4.23)

2)
T?E)interaction energy %ﬁrm, p(w » contains both dilatational,

0 Vg and diffusive, p ws, contributions

(2) (2) (2)

PY =p Y, +p U (4.24)
(1 S

Also, we have
(2), (2)
E E B (4.25)

To derive an expression for o Y , we consider the usual internal
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balaiice equation for fluid flow with friction

i, B @ e, WD, D
n p Tt E = -n p div v + p ws (4.26)

2
where p(wi denotes the diffusive energy contribution to the

fluid as it passes through the rock.

Now, we have from mass conservation:

(2)(2)
divves=2D ¢ e /(g)e
e

(2) (2 (2) (2
) D)( ) (2) . . n)

o
T~/ P * Ty O
n

(2) (2) (2)
Ll T b e i
Z) Dt
n

(2) (2) (2)
-5 O e (4.27)
n

Substituting from Eq. (4.27) into Eq. (4.26) and utilizing
Eqs. (4.22) and (4.24), we obtain

(2) (2)
(2) (2) (2)
SR B @

The requirement that the energy contribution of the
internal interaction forces be zero yields

" (2) (2)
(2) (1) (1)
el mm V] W@

1) (2) (2)
) +p Ul = 0 (4.29)
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(1)

The internal $gergy cont{ibution p Y can be split up into

two parts, p wé and o U

(1) (1) (1)
pl= oo by e Y (4.30)

We have thus twq_ equations 4.29) and (4.30), with four un-
DI E) R eV Raade s . ’

knowns, o wd’ o wd’ P ey P ws. It will now be assumed that

the dilatation and diffusive contributions must be separately

equal to zero, i.e.,

L (@), [3(§) (1) a(ﬁ)]

Pt P TIE Y Y T (4.31)
(1) (2) (2) (1)
Pvg * P Yy =0 n( vV - v ) (4.32)
. L . (1) _ (2) _ -
This assumption is exact for inviscid (p ws 0 ws = pon =0

and incompressible materials ( n)E constant). However, in the
general case, it has to "¢ regarded as a constitutive assumption.

We still requifi)another gonstitutive assumption to
separately evaluate Ve and Yo - Since diffusion is a
dissipative process, the following inequalities follow:

(1) (2)
0 \,bs >0 b Ve 2 0 (4.33)

1
We now assume that p(wl is zero. Then

o ws = vV -V (4.34)

(2) (2) (1)
P n( ) >0
The last assumption states that the fluid receives all the
diffusive energy contribution, and is justified by the fact
that the thermal conductivity of the rock is usually much less
than that of the fluid [see also Ref. 54].
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A more general procedure for evaluating the various
interaction terms is outlined in the Appendix.

4.3.2 Relation to Earl® . Work

In previous work (3SR-648), it was assumed that

(a) (a)
PY = -pB v (4.35)

(a)

If one now assumes that the present splitting of p y into
dilatation and diffusive components is valid, then it follows
from Eq. (4.35)

(1) (1)

0 ws = -oon v (4.36)
(2] (2)

o ws * Ny (4.37)

It is easily seem that Eqs. (4.36) and (4.37) cannot possibly
satisfy inequalities (4.33). Hence, it is concluded that
Eqs. (4.36) and (4.37) are invalid. It may also be V?rified
that for the steady case, present expressions for o bq and 1
0 id reduce to the Eq. (4.35). The present expressions for p 28
??9 o(gf are identical w%{? Eqs. (4.36) and (4.37) for

v E v’ p,n = 0 and v £ 0. Thus, we observe that the
Hugoniot ana%gﬁis of 3SR-648 remains valid except in the case
when vi # v and PN # 0. The results of 35SR-648 may be
modified in a straightforward manner to include this case as
well. We will not, however, pursue this question any further

here.

The derivation of interaction terms for spherical flecw
is similar to the Planar casz2. In fact, Eqs. (4.19), (4.28)
and (4.34) are directly applicable to the spherical case with
X replaced by the spherical space vasiable r.
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4.4 CONSTITUTIVE RELATIONS

In 3SR-648 mechanical constitutive relations were
presented for a partially saturated rock under the assumption
of disconnected voids (voids contained in rock matrix and
separated from saturated pores). The major effort this last
year has been directed towards (1) improving the deviatoric
stress-strain relations for the rock, (2) including thermal
effects into constitutive laws, and (3) developing a suitable
thermal crushup model. This work is discussed more fully in

the following subsections.

4.4.1 Improved Formulation for Deviatoric Stresses

In the previous TINC work, the following %??stitutive
relations were employed for the rock component s in the
elastic regime:

1y @ (@1

Oi = -p + 5 (4.383)

w @ (D)

p = n P1 ary A (4.38Db)

n
0
- 1/3
(L W W ‘ b |
;- S5 =2n ul] ar (2 - g (4.38c)
n

(1) (1) (1)

Here ai» P and S3 denote, respectively, the partial
stress, the partial pressure and the partial deviatoric
stresses. Ai's are the partial prin%%gal stretches; X 1is

the partial_Jacobian of deformation; 'n is the volume frac-
tion of 4" . Functional Pl determines the pressure response
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of the poreless rock; M is the shear modulus of the pore-

less rock.

For a dry rock, partial quantities correspond to the
quantities actuallylmeasured in a laboratory. Thus, for
example, A and \; are related to the bulk volumetric
strain, 6, and the bulk principal strains ci's through
the relations:

A =1+ 6
Ai =1 + Ci (4.39)
6 = cl + cz & 83

We now assume that for the dry rock in the regime of small
deformations, n depends only upon the volumetric strain,

(1) (1)
n= n (1 + a0+ a 06?+ ...) (4.40)
0 1 2
where a,a, ... are constants. Substituting from Eqs. (4.39)

and (4.40) into Eq. (4.38) and neglecting terms of 0(6?), there
follows:

(1) (1)
p =-nK (1 +a) = -K®6 (4.41)
0 S 1

TP .3 2 i

i j = no Ul(si'sj) = ”p(ei_ej) (4.42)
where

Ks = bulk modulus of poreless rock
K = bulk modulus uf porous rock

Mp = shear modulus of porous rock
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Equations (4.41) and (4.42) imply that:

(1)
= no KS (1 + al) (4.43)
(1)
up =R w (4.44)

[55] that relationship (4.43) is

It is shown elsewhere
consistent with the linear theory of elasticity. However, we
note here that Eq. (4.44) represents a physically unrealistic
result. Most porous rocks exhibit a very small shear modulus
at low confining pressures.[56] Furthermore, the measured values

of the shear modulus have been found to be path-dependent.[57’58]

The relationship (4.44) is a consequence of the as%uTed
a
relationship between the effective deformation gradient F *
and partial deformation gradient %
A€
: 3
1/
. 1
(a) 8 (nj (a)
s %, “\ay ;
n
0
A€
3
n 3
[¢9] 1
n
i
(1) 1/3
n :
= 4.45
) i
n
i
2 A
(1) 3
144 n




and

(1) (1)
e e ,e ¢ n n
= = A h - O
A oo AT ¢ i st
nlﬂ nl:l

Equation (4.46) is identically true.
There is little reason to expect
AL
i

The justification for Eq.
(4.45) is not so clear.
that Af's should be related to

relation of the form of Eq. (4.45).
consider a bar with a spherical cavity subjected to uniaxial

's thkrough an isotropic

As an example, let us
loading. The spherical cavity would deform into an ellip-
However, for Eq. (4.45) to apply the spherical
cavity must retain its shape. We remark here that Eq. (4.45)

soidal cavity.
is approximately correct fuor water saturated low strength
rocks like tuff.
pore pressure is nearly equal (in confined tests) to the

In low strength, high porosity rocks the

confining pressure and helps to retain the original pore

shape. However, for dry rocks and high strength saturated
rocks, Eq. (4.45) can lead to gross error 5 Instead(w§ intro-
a a
duce the following relationship between F € and F
L€
1
(;)e e
~ 2
A€
3
SO R
. )
(¢3] 2
n £
i (1) \:
- n
= 3] AZ (4.47)
n
1\
L A
[nU ? 145




where

§ #* & * & W] (4.48)

The restriction, Eq. (4.48), on the exponents £. is required

i
to satisfy Eq. (4.46). With the decomposition relation in
Eq. (4.47), the deviatoric stress strain relationship, replacing

Eq. (4.38), becomes:

(1) (1) (1) 3~ Y Ej I
n n

J 1l 5 5 ‘
0 0

where the repeated subscripts i and j do not imply
summation.

Substituting from Eqs. (4.39) and (4.40) into Eqs. (4.49),

we are led to the following relationship between M and up:

(1)
T TLT RSCRC R 4.50
Hp = E;TE;_ lei Ej a (ei Cj)‘ (4.50)

Equation (4.50) implies a path-dependent relationship between
b and up. Thus, for example, for uniaxial strain and tri-
axial tests we have:

Uniaxial Strain:

g, =&, = (1-¢£)/2

SO |
no “1(1 + al(-l/Z + 351/2)‘

=
|
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Triaxial Loading:

e # 0, e =¢ # 0, B8 = ¢ + 2¢

e mE, = (1))
GO e+ 2e, !
Up = no UI']. +al E—_:-_f»:—-_z- (-1/2 + 351/2)‘

1 2

The factors Ei will in general depend upon the deformation
path and may be evaluated if appropriate data are available.
This could be quite a cumbersome process.

Fortunately, for geologic composites, only the rock
matrix can sustain shear stresses, and the partial shear
stresses for the rock equal the composite shear stresses.
It is, therefore, unnecessary to calculatc effective shear
stresses. Instead, one can directly postulate a shear law
of the form:

(1) (1)
S5 T 2w Oy - ) (4.51)

! J J
As was remarked earlier, up will in general depend upon the
deformation path and pore pressure. We shall presume here
that such a functional dependence is known from the experi-
mental data. Thus, the mechanical TINC constitutive relations
become Eqs. (4.38a), (4.38b), and (4.51). The new formulation
retains the major advantage of the previous work, viz. the
treatment of porosity as an independent variable. This is
quite important in studying the effect of pore pressure.
The constitutive law for shear stresses, Eq. (4.51), sidesteps
the difficulties inherent in relating the components of the
partial deformation gradient to those of the effective defor-
mation gradient. It is also to be noted that Eq. (4.51) uti-
lizes the information which can be readily obtained in the

laboratory.
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4.4.2 Thermodynamic Constitutive Laws

For a thermodynamic theory, we hage to develop consti-
tutive laws2 or rock partial stresses, 0l and fluid partial
pressure, p . As nof d earlier, o; may Le decomgosed into

an isotropic part, - p°, and a deviatoric stress, Si» Eq. (4.38).

We will assume that Eq. (4.51) for shear holds for *he thermal

case as well. If nec?ifary, th%zshear modulus, “p’ can be

made to depend upon E and 'E as well. For plastic flow,

we will assume von-Mises' law
1 W (1)?
S

+ § + S <«
1 2 g =

(,.‘N
<

(4.52)

where Yp denotes the yield stress of the porous rock in

simple tension or compression. The yield Etress, Y , may

depend upon the two pressures, (%) and p , and tﬁe inter-
nal energies, and ="+ We will not, however, attempt
here to specify any particular functional relationships for
H and Y_, but will assume these to be known from the

P
experimental data.

a
The pressure, Py» for (A constituent in isolation
is a function of density and internal erergy.
Py = Pylps o E) (4.53)
Alternately, p, may be regarded as a function of p, P, and
T (temperature). . Specific functional forms for NTS tuff and

water are discussed elsewhere in this report.

Wlthln, the mixture, the isotropic part of the stress
tensor, - p » is, therefore, given by

) ( ( (a)
s G, (1005 7008 i)

(a) ((a) (@) (a) (o) (a)
nP\pe/m, 00/ n E
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This completes our discussion of the thermodynamics except
insofar as we still need to outline a procedure for determining

Q : 3 - . .
(n). This is considered in the next section.

4.4.3 Crushup Model

In 35R-648, mechanical crushup relations were presented
for dry and partially saturated tuff. During the present
contract period, simpler crushup relations have been developed.
These are discussed in detail in Section 2.2.3 of this report.
However, for the sake of completeness, we will outline the
model here in TINC notation.

For th s rock, we have only one unknown
(2) ?S?rf pOf?T roc w ave only e 5

1
( )( b n ). It is useful to define a new
varlable, (p) such that
(1) i
a\ p = m (4.55)
n

(‘)):

A quadratic relationship is assumed for a( P

a((;)) =1 + (a°-~1)(1 -(;)/pc )2

for p < P. and gsg— >0
(1) (1)
a( p ) =1 for P > p, (4.56)

On unloading, a 1is held constant. Here a denotes the
initial value of a(= 1/ no) and P is the crushup pressure.
Thus, the only required inputs for this model are o and P.-

149



150

volume fractions, n and =m = h In 3SR-648, two
postulates concerning pore crushup were introduced. The pores
may be considered to be connected such that the water can move

For the parti?lly S?ET(?S?d ro?¥} ?B?)has two unknown

freely betwecen the pores. For shock wave studied, however, the
more appropriate postulate is that of disconnected pores that

are ecither completely water saturated or gas filled with no
water. In this model the partially saturated rock may be con-
sidered to be a composite in which the components are water and

distended rock.

The disconnected-pores hypothesis will be used here to
develop the crushup relations (see also 3SR-648). We now de-

fine a to be:

(1) (3) (2)

o = “(I)“ - l(i)“ (4.57)
n n

The crushup relation (4.56) is modified as follows:

o *® ] o* (ao-l) (1-p/p.)* (4.58)
where
(1) (2)
(1) (1) . ¢
p = 1 p € = p/(1 n) (4.59)
1= W

We need an additional relation to complete the algebraic loop.
This is obtained by equating the effective pressures in the
water and the distended tuff components, 1.,

(1) 1y (2)

n

. - p€ = p (4.60)
i-n

This completes the description of the crushup model.



It is now readily seen that for the disconnected
pores postulate, the interaction terms derived in Section
4.3 for the completely saturated rock are directly appli-
cable to the partially saturated case.
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4.5 THERMODYNAMIC POROUS CODE

A description of the mechanical POROUS code finite
difference scheme has been given in 3SR-648; this formu-
lation did not include thermodynamics, i.e., the effects of
internal energy on the equations of state of the constituents.
The finite difference scheme used in the non-thermodynamic
POROUS code was based on the Lax-Wendroff technique, and
furthermore was not written in conservation-law foirm. The
thermodvnamic version of POROUS incorporates the effect of
internal energy on pressure in the two constituents, uses a
finite difference scheme based on the so-called "leap-frog"
technique and is written in conservation-law form, so that
the masses of the constituents and total energy are exactly
conserved (except for roundoff error), and, in planar geometry,
momentum is also conserved. It is well known that the Lax-
Wendroff scheme often results in ''overshoots" of dependent
variables, such as pressure and density, at a shock front; the
use of the "leap-frog" scheme tends to elimirate these over-
shoots, which can be particularly troublesome in problems
involving shocks at low stress levels (several kbar or below).

4.5.1 Conservation Law Equations in Moving Coordinates

In the POROUS treatment of water-tuff{ mixtures, only
the tuff has material strength; hence, it is convenient to
employ the conservation laws for mass, momentum and energy in a
coordinate system which moves with the tuff, i.e., coordinates
which are Lagrangian with respect to the tuff. In general,
there will be transport of water from cell to cell, but the
mass of tuff in a cell remains constant. In this coordinate
system, the conservation laws of Section 4.2 appear as follows:
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Continuity;

d (1)
- ooV &0 (4.61a)

(2)((2) (1)
P

T Vs . dS 4.6
Vit V5 Py (4.61b)

(oW
A
<\
P
© o
p—
o,
<
]
1
m’\;

) (1) (1)
i ./ 74 My 48+ f" R (4.62a)

S \s
d (2)(2)
It Py dv
v
/‘(2) /‘ (2)
= O35 Dy dS + p B; dv
S v
(2)(2) ((2) (1)
/ o Wy W™ Ve Ry 98 (4.62b)
S
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i O @)
It / o E + Vi Vj vj dv
/‘(1) (1) (1)
A n ds - “/” q; n., dS
J 3
S
(1) (1) (1)
+ f (p Bj vj + p Y )dV (4.63a)
%
@@ 1 (2) (2)
vj vj dv
V
) /(2) (2) f(z)
= Vi nj ds - qj nj ds
S S
f( (2) (2) (2))
+ 3 + p Y dv
v

/(2)((2) 1 (2(2) )((2) (1)
- #* J vj viT Vi) n; ds (4.63b)
S

The ordinary time derlvatlve, I is used in the above equations

oy~

because one is evaluating the time rate of change of mass, momen-
tum and energy in a cell of nonzero width; the hydrodynamic
derivative, Vi is appropriate to locally defined dependent
variatles, i.e., variables defined at a point,
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4.5.2 Finite Difference Equations

In this subsection, the numerical scheme for computing
and updating the dependent variables defined in the previous
sections is described. The convention used here defines all
quantities at integral time steps, ts this obscures the
centering of some equations, but has the advantage of identi-
fying time t, with cycle number n. However, the equations
are not entirely time -centered; such centering would greatly
increase the length and difficulty of numerical procedures,
especially the pressure iteration. Since there is only one
independent component of the deviatoric stress tensor in plane
and spherical geometry (using the appropriate principal axis
coordinate system) ,but two in cylindrical geometry, and since
cylindrical geometry is a case of little interest, the ejua-
tions have been written for only plane (d=1) and spherical
(d=3) geometry.

The fojiiowing is a description of the current scheme
used for setting up the computational grid, and advancing the
grid through onc computational cycle. No attempt is made to
justify the centering or the calling sequence of the equations,
Due to the complexity of the phenomena treated, the only adequate
test of the numerical method is comparison of computations with
known solutions. Variables will be defined as they are encoun-
tered. The space centering convention used is: cell boundaries
and the tuff and water velocities are defined at integral spacc
points Xj; all other quantities are defined at cell centers,
i+1/2. Note that subscripts in this subsection refer to spatial
positions, not vector and tensor components as in the previous

subsection.

In the SETUP routine, the grid boundary %rfay Xj 1is set,
Z
together with tuff mass mi+1/2, water mass (?}+1/2, crushup
parameter ®i41/20 and water volume fraction ni+1/2. The

values of Al i+1/2 and AZ i+1/2 are initialized to unity.
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The updating of all variables in a computational cycle
is currently done in the following sequence, which employs a
velocity boundary condition; a scheme for incorporating a
stress boundary condition is under development.

: ; 1 P
First, the time step de" 1s computed {rom the

criterion

n n
aen*l o o) $is1ye dxi,1/2 {1

lmn e)m 1 (), O, (O -1 ( ¢

Cie172 Cisny2 * 7| Yiel® Vi C Vie1l Vi

where (4.64)
dxn = xn - xn
i+l/2 i+l i?

(1) (2)

. +
N2+1 is the Courant number (Ng 1. 1) , and C and C
are the tuff and water sound speeds. The time step is
the minimum value of the indicated quantities over

all cells in the active grid (i.e., all cells containing

nonzero stresses).

Next, a test is made to determine whether

G
Pr.1/2

(1)
> fa X max ; pifl/Z} (4.65)

where I 1is the active grid counter and fa is an accuracy
factor (v~ 10°%); if this condition is satisfied, I is advanced

by one.

The left-hand boundary of the grid is defined to be
point 1=0.  Using a v:locity boundary condition, one specifies

(1) (2)
gl 3 L g £t 41 (4.66)

where f(t) 1is some function of time. The left-hand grid
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boundary is then updated:
n+l n

(1)
= 5 n¥l n+1

X9 = Xq Vo dt
It is assumed that this updating correspcnds to a physical
process 1in W?lch wor% }s done, so the tuff and water total
and

energies, W , of the first cell are updated

according to the prescription

(4.67)

(1) (1) d-1 (1) (1) 1, W,
W n+l _ . f xn+1 v n+1l dtn+1 q -3 ,
1/2 1/2 Al*o 0 1/2 1/2 1/2
(2)pey o 2y ne1\4°1 (Wpyy n+1((2)n (2),
¥i/2 Wiz fA("o ) vp =~ dt Pis2 * 912
(4.68)
where the area factor is given by
fA =1 for d=1,
(4.69)
fA =4r for d =3 ,
(1) (2) o
and q and q are the tuff and water artificial vis-
cosities, defined by
(@), @y @, @y (@), )
UG+1/2 P i+1/2 i+1/2 \'q® Vi+1/2 L vi+1/2
(o)

4.70
for d V1+1/2 <0 ’ ( )
(o) (a) (@), (o) (o)

n - n n n
933172 = Pis1/2 4 Viesz £y Civiyp  For A vily,p 20
(1)

S is the principal deviatoric stress in the tuff,.
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Here, fq (~ 1.6) and fg(w 0.25) are the quadratic and
linear artificial viscosity coefficients, and
(o) (a) (o)
n = o, J. 4,71
d Vie1/2 Vil Vit ( )
Thus, linear and quadratic artificial viscosity terms are
used when a cell is crushing up, But only the linear term
is retained when a cell is unloading.

fter the velocity boundary condition is applied,
the pressure equilibration conditfons are applied:

(2)n+1

(1)n+1 (2)n+1 n+1 (2)n+1 (1)n+1 ind C
i+1/2

: 4.72
Pis1/20 Pis1720 %j+1/20 Ni+1720 Cise1/2 ( )

are computed according to the procedures described in the
previous subsections. Also, in the pressure equilibration
routine, the tuff and water energies are updated by setting

(e 1), .
0 4.73
Niv172 = Wiv1g2 * MWy, (4-73)
(2) (2)
W = w0 - aW?
i+1/2 i+1/2 i+1/2

where
A - 1 ((2)n+1 £ (z)n )((i)n+l ) (i)n )
ik ST \Pisr/2 Y %44172)\ Ma1g2 i+1/2
Ni+1/2
(2) .1 \2{(1) (1)
+ @™t 3 ( “121}2) ( Viep * Vin) (4.74)
(2) (1) (2) (1)
1 . ,
* I( Vit C vier * v - Vin) ‘?+1/2
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where

Vivisz fv[(x?+1)d ; (x?'fl] (4.75)

and the volume factor is defined by

fV =1 for d =1,

(4.76)
£

41/3 for d

(]
[ 2]

\f

Next, intermediate values of the artifi%&?l viscosities
: . ool !
are ca%c lated as in the formgla above, with Li+1/2 replaced

. %)n+1 *
with Ci+1/2' Values of »p Bi are calculated by
2
(1) & (peq - (g g ) ((2)n (1)n)
BI6y * IE‘( Mi+1/2 7 Pi-1y2 Yi, * Y

((2)n+1 (205 (2p,; (2D )

) 2 Pi-1/2 * 9i-1/2 * Piv1/2 * 94341/
no_n Claar @00
X1+1 X1—1 ni—1/2 + ni+1/2

x {(Fner @p ) 77
( Miv172 7 Mia1/2 ke,

The tuff velocities are calculated by

(1)n+1 (l)n 2 dtn+1
i T Vit m ¢3)
Mi-172 % Mie172
f 451009 @5 (1), (1),
* 'fA(x?) [91-1/2 Yo%-172 7 Sic172 T Pie1y:
(1) 4 . (%)n y D & ((é)n +(é)n ) x?+1 ) x?—l
9G+1/2 Si+1/2 * 7 %4 i-172% Si+1/2 2l
1
r d d (1)*l
"z fv[(x?+1) - (x?-l) ] PRy (4.78)
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where

d
(4.79)
Gd =1 for d =3
The Fulerian coordinates (cell bdoundaries) are updated
according to
(1)
x?+1 = x? + vin+1 deh (4.80)

swe (B) :
The water velocity v 1s updated in three steps, a
procedure necessary for momentum conservation. The first

step is
(85 . (2 2d¢"*1 n\d-1((2) (2)4
Vi vyt 27 7 IfA(xi) ( Pi-172 % 94-172

Mi-172 % Mia1/2

(2) (20 ) . d d] ),]
) p131/2 T o disry2)7 7 fv[(x2+1) ‘(x?-1) ]p By |

(4.81)

The second step sweeps over interfaces between "momentum cells"
and uses the so-called "donor cell" method, which is known to
vield stable results in hydrodynamic calculations involving
advectior, i.e., transport of matter between cells. At each
interface between momentum cells, corresponding to xi+1/2,

the difference between water and tuff velocities at time t,

is calculated:

oo 1((2)n ®, @,

(i
Vie1/2 = 7 RS

v. i 4,82
Vi+1 v 1 v1+1 i ) ( )
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Ef dvril“/2 > 0, momentum cell i is called the donor cell;
if dv?+1/2 < 0, the donor cell is momentum cell 1i+l. Then,
at each interface xi+1/2,

Bhew (D , (cZ)(Z) *
Viel T Viel T TIYT o Sk ¥ )i+1/2'
Mir172 % Mie3/2 (4.83)
(Dax (2)a = ((2)(2))*
Wiy * Yy F (M ¢ m vV /i+1/2

Misl/2 *© Pedly2

where

(2))* n+l 1 d-1
- * n n
S v Jregys = T T [2‘(*1 * xi+1ﬂ

ndn
Viel/2 (4.84)

where D =1 or 1i+1, depending on whether momentum cell
i or i+l 1is the donor cell, and

(2) (2)
1
( mnr-ll/z ¥ mn?l/z)

pg - _ & < - (4.85)
£ {1 K, N ) i l(xn » xn) I
viLz\n * % Z\*n-1 * *n | |
The water mass in each cell is updated using the
donor cell method:
Bpay 2 ((2))*
Mise1/2 = Mierz2 ¥ OAM 5
(4.86)
(2)h41 (2), ((2))*
RosifZ = Weogpg T o4 )

161



where

((2))* n+1 n+1)d‘1 n n (4 87)
S\mJy o= AT f kg op dvy '
(2 (1 \
vl = vi“ - v:“ ; (4.8%)
@),
D, g D (4.89)

0]
’ fv[(x?wl/Z)d ) ("%-1/2)](T

Here D = i-1/2 if dvi >0, and D =i + 1/2 if

n
dvi <0,

A final momentum-conserving correction to the water
velocity is made using th~ updated water masses:

@ (n)
Dner | @ew M/ + Myuyy
i i (2) (4.90)
m.n+1 PG |
i~y 2 i+1/2
New intermediate values of tlie artificial viscosities
() %% ) . ?“jn
dj41/20 are cglculated using the above formula with the vy
replaced by v-n+1 Next, the cell total energies are

updated by sweeping tiirough cell interfaces X,

W

W Wy Sy

Weor ) = Weo ot
i+1/2 i+1/2 i (4.91)

(1)** (1’)* (1) % %

Wiciy2 © Wia/: ( | )i
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where

6((&));* .

(1)

n+l n+1 n+l

i dt 5

<1 ((1)n+1 (1) ua (l)n (1)n+1
T \Piayz* 9.3/, Si-1/2 Pi+1/2

(4.92)

For the water encrgies,

where

5((§))f* 2

1

(2) un (%)* (2)5 ¥
Yie1/2 = Wis1/2 * 6( )i ’

(4.93)

(2) wn (2) 4 (2))**
Wic12 = Wiy - 5( i

(2) na

2) (2)
n+1 n+1‘( n+l 1 n+1
AL Jdt I V. ( qi-l/Z

i i Pi-172 *

(2)p4q (2) 4a (2); 1.0l
Pisr/a * qi+1/2) * oWy dvg /Vpf

(2) (1)
dv?+1 =y n+1 V.

5 i (4.94)
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VS = fv[(xg+1/2)d - (X;-l/z )d ]. (4.95)

Here D = i-1/2 if dv2+1 >0, D= i+1/2 if dv2+1 < Q

—

Next in the computational sequence, the Ai are

updated and new deviatoric stresses (§) Ccalculated.
ek
An+1 a P
1 i+1/2 ° T (D P
n p.n
0 i+1/2
n+1 - ,
Y2 ie1y2 71 /
Wy Wy
yntl = \0 1 + q¢htl i+l i
i 3=*1/2 1 i+1/2 RS ST | 4
i+l i >
3 =
(13 1/2 (d=3)
AN+l - :
2 i+1/2 (&) (1)n+1 \n+1 (4.97)
o Pi+1/2 M1 i+ ]1/2
(1) s (1) fuy (one1 n n+1 n
5141/2% Sis1/2 *-sL'(*l i+1/2 © M ie1/2 22 Ge172 g i+1/2)
(4.98)
(Wpy ), | e
i+1/2 i+172 1 it1/2) 231 »
(4.99)
(1) (1) (1) 4 (1) & '
n+1 _ 2 : 2
i01/2 = ¥ Y Siai/0/| Sieryg| if *peiyz| > § Y
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Finally, corrections are made to the water and tuff energies

due to interaction terms:

(1) (1),
. n+l * n+1
Vit172 = Wiagp ¢ 805,

(4.100)
ey (D

- r = 13 n+1
i+1/72 % Wiv172 - 4Ny,

where

d d
sanitl oo gent fv[(xgzi) - {2%1) ]

' (2) (2) .
1 1 +1
ABne1 | D 7 (”ifg/z i ”1?1/2)
Pivis2 Yer/2)T7 3T —5e1
T (xi+2 xi-l)

(1) (1) )
1 n+1 n+l
E ( Vi Y Vie
7)
n+l
Ni+1/2

(4.101)
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4,6 STRESS PULSE PROPAGATION

The thermodynamic POROUS code has been exercised 1n
the planar option. Initially, a calculation was run for the

following input parameters:

(1
7, Ty = 5 x 10" cm/sec

jo)
n

o 2.22 g/ec

. 0.9982 g/-c

p =
20
dx = 0,02 cm
D=u/k = 0,25 x 10%/sec
p_ = 50 kba
p r
Yp = 5 kbar
P, = 15 kbar
(1)
n = 0,8
0
(2)
n = 0.1
0
(3)
n = 0.1

0

The results of this calculation arc shown in Figs. 4.1 through
4,3, Figurc 4.1 shows the particle velocities at t = 3 usec.
There is roughly a 10% overshoot in water velocity at the
shock front. This result is qualitatively similar to the
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Fig. 4.1--Particle velocity profiles in the
tuff and water components at t = 3 usec.
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mechanical POROUS codc(g*lculat%g?s reported in 3SR-648.

The volume fractions, n and n arc plotted in Fig. 4.2.
The tuff volume fraction experiences an increase from 0.8

to approximately 0.908 through the shock front. The water
volune fraction changes from 0,1 to 0.092. An interesting
phenomenon occurs at the left boundary. Here the water
volume fr.ction drops from 0.092 to roughly 0.083. This
rosults from the advection of water. At high enough stress
levels, this can become a serious problem as the water
volume fraction in the boundary ~ells may approach zero. We
are still in the process of making the POROUS code general
cenough to handle this problem as well. In Fig. 4.3, we show
the axial stress profile, o at t = 3 puscc. In contra-
distinction to the mechanical POROUS code, no overshoots or
oscillations are observed at the shock front. This 1is, of
course, the result of using a leap-frog type finite difference
scheme instcad of the Lax-Wendroff scheme employed in the

mechanical PO2OUS code.

To evaluate the effect of porosity and water content,
two additional calculations were run using the following
initial volume f{ractions (all otuer parameters werc kept the

same as in the above calculation):

(1)
(1) n = 0.9
0
(2)
n = 0.0
0
(3)
n = 0.1
0
3
(2) n = 0.9
"
)
n = 0,1
0
(3)
n = 0.0
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The stress profiles for all three cases at t = 3 pysec are
plotted in Fig. 4.4, The dry case (1) results in somewhat
hlgher(i§1css anJ(gfvc vc]ogtg than the partially scturated
case m, = 0.8, n.o= Ol no = 0,1 The completely
dtU)dtOd case (2) 1cads to stiil hlghcr stress and wave
velocity, These calculations demonstrate that the major
cffect of void porosity is to lower the stress and wave

velocity amplituiles,

These calculations are of a preliminary nature, The
code is presently being modified to include a pressure boundary
condition. Also, an attempt is underway to generalize the
boundary treatment to handle high stress levels., During the
near future, the new POROUS code will be exercised in spheri-
cal geometry as well, and results will be compared with those

obtained from homogenized models.
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V. ELASTIC FLUID-ROCK INTERACTION AS A MECHANI SM
FOR TRIGGERING VARTHQUAKLES

5.1 THE POTENTIAL FoR TRIGGERT NG EARTHQUAKES BY
ALTERING THE GROUND WATED CONDITIONS

The crust of the earth is laden with tectonic stresscs
that heave masses of earth to tform mountain ranges and drive
continents to move one with réspect to another. Larthquakes
tend to occur in those regions where the magnitudes of the
principal stresses become widely different (high levels of
shear stress). This very intense state of stress is generally
associated with the carthquake belt which marks the boundary
between the crustal plates; however, as evidenced by the oc-
currence of past earthquakes throughout the world, critically

high levels of shear are generated over a much wider region.

In many regions of the United States, tectonic stresses
are approaching an unstable condition, This condition exists
today just as it has {or centuries. In the recent several
years, however, the possibility of triggering an earthquake
by artificial means has become a problem. For example,
earthquake activity has, in some cases, increased in the
vicinity of a newly constructed reservoir. Following the
construction of Koyna Dam of South India and the subsequent
filling of the reservoir, a sequence of small earthquakes were
recorded over a period of several years. Then, on December L1 5
1967, a magnitude 6.5 earthquake occurred, which resulted in
considerablc loss of life ard a major economic loss.[sg]

The region was not noted for earthquakes prior to the con-
struction of the reservoir; consequently, it appears likely
that the presence of the reservoir somehow served to trigger
the catastrophic release of stored strain energy.

The process of injecting fluids into a tectonically
stressed region is another means by which earthquake ruptures
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can be artificially initiated. !lost investigators have cnn-
cluded that the swarm of hundreds of small earthquakes neadr
Denver, Colorado in the period following 1962 were triggered

by the pumping of waste fluids into a 3671-meter disposal well
by the Rocky !lountain Arsenal. A conceptual model was pre-
sented in 1968 by I[ealy, Ruby, Griggs, and Rayleigh[ﬁo] which
accounts for the triggering mechanism of the injected fluid.
lore recently, the controlled injection of water in the Rangley

[61,62]

'ield, Western Colorado, by USGS researcheis clearly de-

menstrated tne potential of tnis process for triggering earth-
quakes. In this experimental program water was injected into
the western portion of the Rangely Field along a previously
mapped fault zone. As the water was driven intc the faulted
region, the fluid pressure mounted, and small earthquakes be-
gan to occur. When the fluid injection was stopped, the
occurrence of earthquakes persisted for a period, tien, as

the fluid pressure began to diminish, the earthquake activity

also diminished.

Actually, this description of the earthquake activity
associated with the fluid injection process is partially basad
on conjecture, since the fluid pressure interspersed in the rock
was not actually measured at the point ¢f rupture. The sequence
of observed activity is consistent with the analytic expressions
developed near the end of this section for a simplified spheri-
cally symmetric fluid injection system. The theory indicates
that there is little possibility of triggering an earthquake
at the time that the pumping is first begun; it takes some
time for the fluid pressures to spread over the subsurface
region of incipient rupture. On the other hand, when the
pumping is stopped, the fluid pressures continue to grow for
some time before leveling olf and diminishing to the background
level. lience, based on our theoretical model, we would expect
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the eartiquake activity to continue for some time after the
fluid injection is stopped. The time lag, of course, depends
on the subsurface porosity and the regional extent of the

fault zone.

Archambeau and his co-workers at the California Insti-
tute of Technology are just beginning a program to monitor
earthquake activity associated with the injection of fluid
into the Santa Fe Springs Field, Los Angeles. We anticipate
a continuous exchange of data with this group in order that
we might test our theoretical description of the mechanical
interactions between the pore fluid and the rock as it

relates to the field experiment.
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5.2 ALTERNATE THEORETICAL FORMULATIONS

Various theorctical models have been developed to
describe the mechanical interactions bevween the solid and
the (luid constituents of a saturated porous solid material
such as soil or rock. Much of this work has been motivated
bv engineers concerned with the gradual settlement of satura-
ted soils. A simple mechanism to explain this consolidution

(03]

process was first proposed by Terzagni.

The next major extension to the theory of consolidation
was made by Biot[04] in which the linear consolidation pro-
cess was modeled in three spatial dimensions. Unfortunately,
Biot's formulation does not explicitly show how the various
volumetric strains enter the analysis. IHe states expiicitly
that the pore water is considered to be incompressible. e
assume {rcm this that the small grains of solid material would
also be considered to be incompressible. On the other hand,
Biot's theory has proven satisfactory for explaining experi-
mental results for the consolidation of a solid sphere of
saturated clay,[65’66] and for the consolidation of a two-

storied aquifer.[67]

In Biot's formulation, and in essentially all subsequent
formulations, we find two physical constants that serve to account
for interactions between the two constituents. These constants
are operationally defined through explicit laboratory tests.
Although it is intuitively obvious that these terms arise from
changing dimensions of the fluid-filled pores, no effort is
made, at least in Biot's formulation, to develop the paysical
processes that give rise to the two terms. Dctails of this
type are needed for isolating the rock stress (as opposed to

[55]

the composite stress) upon which to base fracture criteria.



5.3 QUASISTATIC LINEAR TINC ASSUMPTIONS

In subsurface geologic foimations, where stresses are

nigh, the compressibility of the ground water and the rock

grains is likely to have a significant effect on the mechanical

interactions. For this reason, we use the TINC framework to

develop equations for descriling the mechanical interactions

between porous elastic rock and ground {luid that is permeating

through the pores of the rock. The formulation is linear,

and as such, it applies to saturated soils or rock where:

| 9

The strains are small compared to unity.

The stresses and strains, in the consti-
tuents ave linearly related by isotropic

elastic constants.

The velocities are slowly varying so that
inertial forces can be neglected.

The drag forces between the pore fluid
and the rock matrix are linearly related
to the relat:ve velocity between the pore
fluid and the rock grains (Darcy's law).

The rock is satursted. For the case where
small gas bubbles are present in the pore
liquid, we assume that the jas mocves with
the liquid influencing only the btu’k

modulus and density of the g=s-liquid mixture.
For the case where the rock contains small
voids that are not cunnected {isolated from
the permeating fluid), we use the term pore
to refer to the connected pores and conzider
the isolated voids tc be homogenized into
the rock grains thereby influencing only the
bulk modulus and density of the graius.
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o4 CONSERVATION EQUATIONS

The general TINC formulation has been presented in
SSR-J07 and 3SR-048, as well as in Section IV of this report.,
dowever, in this section we restrict our attention to lincar
behavior, and as such, much of the rednction of the hasic
conservation cquations to their final form for computer pro-
cessing 1s unique to this section. Consequentl:r, we have
decided to briefly redevelop the basic TINC cquations in
their desired form.

The mechuanical interactions between porous gcologic
roch and interspersed ground fluid are governed by the con-

sérvation equations:

tonservation of 'lass
Ji g ((x)(x)
5t 73X, Vi) E 0 (5.1)
1
Conservation of !lomentum
a e T s % D@
(2) 5 v. 1 J g1 3 O.. U X
1 2 1 3
g QP f . = s ) R, R
: ( = X Vi ) -7;;;1 * o £+ o0 8y (3+2)

‘ons>rvation of thermal energy can be disregarded in this
development; also, mass transfer due to chemical interactions
and phase changes are not being considered. The notation

adapted in previous TINC developments is being used with:

1 for the solid constituent

(4)

2 for the fluid constituent (gas-liquid mixture)
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(a)

&}

(a)

()

(o)

= volume of constituent (a) excluding the volume

occupied by the complementary constituent

(1), (2
W v)e

e
(a).
V (,/v
volume fraction, hence
(1) (2)
n+n =]

partial density, i.e., the mass of consti-
tuent (a) per unit volume of composite

composite density

(1) (2)

Pt o

velocity of a point in constituent (a)

(a)

9 ui
"t

displacement of a point in constituent
(a) from its starting position X, .

partial stress, i.e., the tarce component

(§.3)

(5.4)

(5 57

(5.6)

(5.7)

in constituent (a) per unit area of composite

composite stress

(1) (2)
g..+ 0..
1) 1)
body force per unit of composite mass due
to gravitational forces.

body force per unit of composite mass that
results from drag forces on the complemen-
tary constituent.

(1)  (2)

Br & R =10

(5.8)

(5.9)
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2.5 CONSTITUTIVE EQUATIONS

In order to complete the description of the fluid-rock

composite, we introduce constitutive equations:
(1) (2;
. The drag lorces ni = - #; are related to the
veloc%§§ ?i{ferenco between the fluid and the

roch VitV through an extended version of

NDarcy's law

(1) (2) ((3) (1)
p B; ™ <p 8. = pd Vi T V.) (5.10)

1 1 1

in which

d = “__.1\_ (5.11)

where u is the fluid viscosity and k is the

permeability of the rock.

2. Changes in porosity are related to volumetric
strains in the constituents by a power series
expansion. Retaining only the linear terms

for the rock constituent we write

(1) (1) (1) (2)
n / n_ = 1 + bl £+ b2 £ (5.12)
() ‘
in which 3 1s the volumetric component of
partial strain defined by
() () e o
G ] 9 u. o u.
. =1 i J
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(2)

The volume fraction n for the fluid constituent
is obtained from Eqs. (5.5) and (5.12).

In the final constitutive equation we relate
stress and strain. First, let us consider the
special case when there is no pressure in the
pore fluid. Partial stresses in the rock matrix
are related to the partial strains in the rock
matrix by the conventional isotropic Hooke's

law of linear elasticity

(1) (1) (1) (1) (1)
Oij =2 u Eij £ 5ij € (5.14)

(1) (1)
where u and A arec Lame's constants. An
alternative expression is obtained by(f?composing

the partial %Efess into hydrostatic o and

deviatoric Sij components
(1) (1) (1)
Oij = 0 Gij % Sij (5.15)
such that
n (1)
c ==x Gij Oij (5.16)
(1) (1)
= KX € (5.17)
and
(1) (1) (1)
Sij = Oij - Gij o (5.18)
(1) ((1) (1)
=2y ( eij . % Gij € ) (2.19)
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(1) (1) (1)
: X 2

in which the bulk modulus K = + T H o

Nlow we consider the case in which the pore water is
acting under pressure. We will assume that introduction g
pore pressurc does not affect the deviatoric stress-strain
relationship for the saturated specimen, Eq. (5.1%). In
order to develop suitable constitutive equations for the
hydrostatic components, we introduce the concept of effec-
tive stress—the actual stress in the solid rock grains
averaged over several grains. This same concept of average
nicroscopic stresses also applies to the fluid phase so that

the effective hydrostatic stress is simply defined

(a), 1 ()
o] = m o]

n

(5.20)

The corresponding effective volumetric strain-—the microscopic
volumetric strain in a single constituent averaged over
several pore dimensions—is kinematically related to the par-

tial volumetric strain

(3)"/\/0 . (1 + (g)) = (1 + (Z‘)e) (5.21)

0

conscquently

e

(a)e 4 (g) (1 . (0‘)) ol (5.22)

Linear hydrostatic stress-strain behavior for the
constituents ig governed by the bulk modulus of the isolated
constituent K e.

(e (9,

(g)e (5.23)
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or by applying Eqs. (5.20) and (5.22), we relate the hydro-
static components of partial stress and partial strain using
a variable volume ratio

n
€

(@) (o) () | ' ( (a))
g = n K m s =

(5.24)

(1)
Substituting n from Eq. (5.12) and retaining only the

linear terms, we get

(1) (1A, (1) (2)
c = n K [(l #b )e *b g ] (5:.25)
0 1 2
and similarly from Eq. (5.5), we get
(2) (), | (1 (1) (1) (1) (2)
o = K - n0 bl e + (1 -no- nobz) € (5.26)

We invert (5.25) and (5.26) to obtain expressions for the
hydrostatic components of partial strain

(1 (2)

(1) g g

(L m— 3 o (5.27)
K

and

R ¢ S ¢
€ SENS T + - (5.28)
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where
(1)
(1) (A, [1 0, < DML b?)]
= nu K - e9) ]
1 - n 1%Db)
0 2 2
Ll (1)
H = [1 B - m, 1 =BH =+ b )]
b 1 0 1 2
(ll()e (1)
l’ll=‘-—b—l—[1+bl'no(l+bl+b2)]
(2) ()
R = — b.+ b - n (1 +b +b )} (5.29)
1 + b 1 0 1 2
1
We have fquQidcd in relating the bulk modulus of the
rock matr § h ( = O) , with the bulk modulus of the rock
e

grains, h , by introducing a mechanism to permit variations
in the volume fraction, Eq. (5.12). Also, we have arrived at

expressions for Biot's[64] interaction constants W, Hl, and R.

In this linear development we require that the final
state be independent of loading path. Therefore, the strain

znergy density

e -, ()
U= F 6 @ ¥ E @ (5.39)
can be obtained by applying the load in two stages:

)
1. The rock matrix 1s loaded with By P 0, and then

(1)

2. the pore pressure is applied with B F 0.
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The combined strain energy density tiien becomes

p (1) (1) (1) (1) p (2) (2)

U = € o + ¢ o] + & o]
2- 1 1 2 1 -2- 2 2

or, if we reverse the order of the loads, we get

g TR e IR R
£ 7- Cl 7l * 2- E‘2 O2 ¥ Cl O2

where the subscripts denote the load stage.

We equate the two expressions for strain energy density
to obtain a particularized version of Bette's reciprocal theorem

(1) (1) (2) (2)

£ o), =N Vs o (5.31)
2 1 1 2
or
(2) (1)
- o (1) o (2)
2 = 1
T e - el W

using Eqs. (5.27) and (5.28), respectively. TFrom this we

conclude
I{1 = H (5. 52)
and consequently
b1 ])2
= - - 5.32
s 5 (5.32)

Actually b is negative and b is positive
1 2
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Thus we find the complete stress-strain relationships,
effective and partial quantities, i§v?lye a total of five

T?ependent physical constan%q v, K (or alternatively
h i by Baqs. (§:293),"K e, n o and b‘ (or alternatively
b by Eq. (5.33)). The first four constants are non-interactive

in nature, i.e., the stresses and strains in the rock are inde-
pendent of those in the fluid and conversely the stresses and
strains in the fluid are independent of those in the rock for

the special case when b‘ = 0 (consequently b2 xS

Equations (5.25) through (5.28) suggest a number of
alternative tests for obtaining the single interactive term
h . lor example, we can usc Eq. (5.26) to deduce b‘ 2{rom
the volume of water &’ that flows from a drained (o = 0)

triaxial compression test

(1)) (D)
(1 - nn / nl:I >
B £ gy o 24200

£ K

o,
E K

This expression leads to some interesting bounds for b . At
one extreme the freely dldlnCL specinen is compressed but no

fluid seeps out ((_)= = L) At the other extreme the

volume of fluid that seeps in is equa% 50 the vg}ume that
the specimen is compressed so that ( B, = Ey 2 &= fLe
From these extreme modes of behavior we arrive at the bounds

() oGl @i 0
-(1 - n )/ n e (1 - ng)/ nQ
P [
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PPN —

i

and by use of Lq. (5.33), we get

m) ) (1)\ (1)
0 / 1 (l ] 110)/ nu (5 36)
L) 2 R &P 4] '
- l\‘/ al SRR

In general we might expect the b (b ) for saturated clay
soils to lie ncar to the lower (upper) bound.

A critical test of the suitability of the non-diflusive
constitutive equations Jeveloped above has been provided
through a series of experimental measurements recently re-

[68] They derived an "effective

ported by Nur and Byerlece,.
stress" law for eliminating the influence of pore pressures

from their test data of the form

| (1) (D)D) c
<oij>NB = Oij * Rl = K/ K o} sij o WO
using TINC notation where <Oij>VB is their effective stress

term intended to correspond to the equivalent stress in a dry
specimen. They presented experimental evidence that their
effective stress law accounts for the influence of the
pressurized pore fluid considerably better than the conven-
tional effective stress law which simply su?tracts the fluid
pressure directly, i.e., Eq. (5.37) with K © = «. The same
data was processed using the TINC framework in which the
effective stress in the rock is taken to be the microscopic

stress in the rock grains averaged over several grains. The

rather small bias in the wet data that remained after the attempt

to remove the influence of the pore fluid by Eq. (5.37) was
essentially eliminated using the TINC concept of effective

stress. This rather impressive demonstration of the use of
the TINC model to fit stress-strain data is presented in de-

tail in Appendix D.
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5.0 FLUID SELEPAGE

We now have the basic equations with which to describe

the elastic behavior of the fluid-rock composite. Using the
constitutive laws developed above, we shall proceed tc ex-
press the conservation equations, Eqs. (5.1) and (5.2), in

terms of the fluid pressure

) P (2)
p = - 0 = A g (S-
- %)
: 1
| (1) Gis B!
and components of displacement u; (and € = §§—l) for
tihe Toek, -

First we will investigate the conservation of mass
equations. From the kinematics of the deforming composite,
we equate the ratio of density to initial density with the
inverse ratio of volume to initial volume and write

(a) (a)y-1
T%T = (1 + € ) (5
pO
Consequently
3 a(fx) a(oc)
o _ . €
() ot ot (5.
e
0
and
a(oc) a(a)
% €
—— = - r— (So
(o) axi E)x.1
e
0
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when we disregard components cf strain compared to unity after
performing the indicated derivatives. These expressions are
substitutived into Eq. (5.1) to give the alternative form for
the conservation equation

() () E)(2&) (o) . (@)

_ i x e . A
R e 1 o - 1043
OO
a sl Il
since ax? = aai - Clearly the first two terms cancel to

first ordet accuracy( from which we are led to conclude that

th%afhird term 31 3 g)/axi is higher order than the ternm
o & /8% , [The fact tha. the mass conservation equations

are automatically satisfied is a consequence of the manner

in which we related partial density to partial strain in

Eq. (5.39))

!lomentum is consérved qQuasistatically, i.e., we
eliminate the inertial forces from Eq. (5.2) to obtain the
equilibrium expression for the fluid phase (a = 2).

(2)
(2) (2) (1)
3 ?( + p f. - p d( V. = V.)

; i i/ =0 (5.43)
The expression, in the absence of inertial forces, remains

time varying because of the drag forces between the fluid

and the rock, which have been related to the relative velocities
between the two constituents by Eq. (5.10). Equation (5.43)

is reduced to a single nonsubscripted equation by differentiating
with respect to x. and summing on i

1
(2) (1)
(2) (2)
V25 o+ ¥ . (p : ) & pod(aa§ : aaz ) (5.44)
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(2) (2)

}?T strain component ¢ (%§ expressed in terms of g and
£ by Eq. (5.26), and o
pressure by Lq. (5.38).

is in term related to the fluid

(1) In carrying out these(zubstitutions we reason that
P & 0 /at 1s of order p 3, /3t by LEq. (5.12), and
p(\(g)fSt) is of orde; (p/ K e)(ap/at) by Eqs. (5.26)
and (5.38), and (p/ R e) (2 p/at) is of order g (ap/at)
by Ejs. (5.206) and (5.38); consequently, the product
differentiation

s (D). D s o2

L R R i e

to first order, reduces to the form

T ((r})p) ) 2. (5.45)
Similarly we reduce
3_21_ ((rll)p) . %5; . iflllri
to the form
= ((;)p) n (i)%%z (5.46)

Following these substitutions, Eq. (5.44) becomes

7 = i . C) + + £
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where

(12<)e [1 - (rllz (1 + bz)]

Q:

The elastic compliance of the rock m?ffix influences
this ''seepage' equation through the term 5 ¢ /3t , which
originates not only fiom volumetric fluxuations in the poro-
sity (ncazero b and b ) but also from the fact that the
drag forces depeﬁd on thezrelative velocity between the rock
and the fluid rather than the fluid velocity alone, Eq. (5.10).
It was discovered through actual C%Tguter applications that
presence of the interactive term 3¢’ /3t strongly influences
the seepage process to the point where rather severe stability
problems arise in some cases. This troublesome phenomenon can
be eliminated if we rearrange Eq. (5.47) to_obtain a modified
interaction term as some combination of 3 ¢ /3t and 2dp/ist.
The modified interaction term should have little influence on
the seepage process for optimum comguter processing. The
total hydrostatic stress o = % +(o) has the desired
character. As ground water is driven through the subsurface
rock formations, increases in the pore fluid pressure re-
duce compressive loads on the rock matrix so that the total
hydrostatic stress tends to remain invariant. In fact, we
find that the total hydrostatic stress remains totally in-
variant when fluid is injected into a spherically symmetric
environment, Section 5.9,

(1) Subﬁ%}tuting from Eqs. (5.27), and (5.38) with
o 4

= 0 o°, we get
(1) (W1, L 5.48
e=-(‘:.P-+(1-no)(T]1(')' H)p (5.48)
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(1)

wiatch we use to eliminate 3 ¢ /3t from Eq. (5.47)

arrive at

(1- ')

2 e . 1 1)20
K
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5.7 ELASTIC DEFORMATIONS IN THE ROCK MATRIX

tions for the fluid and the rock, Iy. (5.2) with o = 1 and
a = 2, thereby eliminating the drag forces, Eq. (5.10). e
again disregard inertial forces and write

. i
i
1j 9.6 g
s i 3 i pfi RS (5.52)
j i
(1) (2)
s whdleh, £:= (f.-» f. . We use Egs. 3.1 5.l 9 d
;? 27) to reduce J(g) 1into zom :ts éF %i] ( and)’(g51
L ij POy d ij :

The partial stress in the fluid, o » is then expressed as
pore pressuie using Eq. (5.38), and the equilibrium equation
for the composite becomes

- (V) [@ 2 9)0].

; 1) axi
(1)
(1) K
e - »,) x; [(1 * T)P} o)
or by Eq. (5.13)
(1) (1) (1)
3 (1)[5 u. ) u.) 3 ((1) 5 (1)) ) uil
i R AT Y oaxs K-z u o7, |t oefy
i i j
(1)
(1)
= (1 . no) 53—1 [(1 . -g—)p:l (5.54)



For the special case of homogeneous material, Eq.
assumes the foi.

SRR

2
oS g

>
+
o =
=
e
<
—
<7
~
e~
N
~
+
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-

or alternatively

((&) . % (t))v(v .(é)) ) (111) - (Vx(;)) v o

- ) £)s
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5.8 FRI CobE

——— s d——

The mechanical interaction between garound fluids and
porous subsurface formations have been mathematically modeled
using a linearized version of TINC. The penetration of
elastically compressible fluid through the pores of a sub-
surface geclogic mass is modeled by Eq. (5.47) or, in a form
more suited for computer processing, by Eq. (5.49). The
elastic compliance of the porous material to the pressure of
interspersed fluid is represented by the presence of an in-
teractive term related to the volumetric strain rate in the
rock matrix. The interactive seepage equation has the form
of a diffusion equation, which can be treated by one of several
existing numerical codes. A 2-D finite element code, ori-

[69] was selected to treat the

ginally programmed hy Wilson,
seepage process withi the term that contains the elastic com-

pliance of rock matrix appearing as a source term.

The elastic deformations in the rock matrix, expressed
by Eq. (5.54), were glso treated by a 2-D finite element code
in which the pore pressure enters as a body force. The two
finite element codes were merged into a single 2-D code (FRI).
Figure 5.1 illustrates the sequence of operations that are per-
formed to simulate the interactive seepage process. The
diffusion equation is solved to give the fluid pressure field
at an advanced time step with the interactive term extrapo-
lated from the previous time step. The updated fluid pressure
field then feeds into the elasticity portion of the FRI code
to generate an updated displacement field from which rock
dilatation and total hydrostatic stress are computed. The
solution to the diffusion equation is repeated to give a
corrected pressure field at the advanced time step base on
an updated interactive term. The complete cycle is repeated
two to five times for a single time step in order to avoid
any lag in the interactions between the fluid and the rock.
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%% (tn i é%) 4 p(t")

|

Fluid Diffusion
Eq. (5.49)

p(t, + At)

|

LElasticity of the.lRock
Eq. (5.54)

(1) (1) (1)
ui(tn+At), cij(tn+At), oij(tn+At)

llas
sufficient

N
refinement been 4

Yes

achieved at
tl'l. + At?

n = n+l

Compute Interaction Term

i (tn + A;) , Eq. (5.48)

Fig. 5.1--Computational sequence for FRI.
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The newly formed FRI code was first tested on non-
interactive systems. The rock elasticity mode was suppressed
to produce purely Jdiffusive seepage which was compared with
analytic solutions. The converse situation, in which the
diffusion mode was suppressed, was also run to test elastic
deformations in the rock matrix against closed form results,

The “irst interactive test was performed on a 2-j)
simulation of a 1-) compaction process. A closed ferm solu-
tion was obtained for the resporse of a single laver of
fluid saturated material to a uniform surface load, kg, 5.3
Llastic deformations in both the rock and the fluid are
treated using the linear version of TINC to yield the series

solution
ip o Lyl =Ty 2 _2
p(y) = =2 %Ti‘z‘r)‘ e (21*1)% nv/a . [(21+1) — y] (5.57)
i=0 0

S 2 (1 T
e yo[r'ﬂ\' ’ (I-n)(k+2u7]
(dimensiconless time)

d = fluid diffusion coefficient
(large d makes seepage slow)

p = mass density of the saturated composite

N = porosity of the solid material (the ratio of
the pore volume tu the total volume)

Ayu = Lame's constants for the solid material

K = bulk modulus of the fluid
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Fig. 5.2--Comparison of FRI code solution with exact
solution for a test fluid/rock interaction problem.
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.
B, (T-n) (A +2u)
1

n +

% uniform surface load density

As seen in Fig, 5.2, the numerical finite element solution
“ollows the exact series solution well even up to late times
when much of the seepage has taken place. A variable time
step was used to achieve the finite element results with

At = J.J9025 initially and At gradually increasing to

4t = 0.05 for the late time calculation 1 > 0.10.

The elastic compliance of the solid material as the
fluid seeps to the surface follows the equation

(1 @ \
€ = hm+ TI—T-%—’-—” .A+5.U (5.58)
where
@)
e = dilatation of the elastic rock matrix,
(1)

-W

fo T T n) 3+ 20)

(final dilatation state when p = 0)

The finite element calculations follow this relationship pre-
cisely for the initial >roblem,
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5.9 INJECTION WELL

‘lore recently the I'RI code has been exercised to examine
the interactive seepage process associated with an injection
well., Simultaneously an effort has bheen made to obtain a
closed form solution for the injection of fluid into a homo-
geneous formation with which to compare computer generated
results. Obviously an analytic expression describing this
process would have far reaching implications for providing
guidance in future injection projects. This effort has met

with considerable success.

We consider the problem of a cased well (which we will
lgnore in our analysis) pumping fluid into a spherical cavity
of radius r which is located in a homogeneous saturated
region, Fig. 5.3. For simplicity we assume no initial stress
in the rock and no initial pressure in the fluid. The injec-
tion process is then accomplished by stepping the pressure
in the cavity instantly from zero to P, where it remains
throughout the injection process. Pressures develop in the
region outside the cavity at the instant the cavity pressure
is applied (t = 0). These stresses can be calculated from
“qs. (5.47) and (5.54) with d = « to prevent seepage at
this initial loading. From Eq. (5.47) we get

(1) (1)
op _ K 3
%~ - @) (1 i T) 13
1 - n,J
or
(1) (1)
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Fig. 5.3--Spherically symmetric fluid injection
system. The pressure p is introduced in the
cavity at the initial time and then held at this
level with the pore fluid in the rock formation
assigned zero initial pressure.
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(1)

where IN and H are defined by Eq. (5.29) and Q is

givan following Eq. (5.47),

We substitute this expression for the initial pressure
p into the elasticity equation, Eq. (5.50) to get

[(1 (1) 1
L\l\') iy srde ot s a e (5.60)
S Y

using the fact that

(1) (1)
7-9:5
and
(1)
Vx uo =0 (5.6])

for the homogeneous spherically symmetric injection environ-
ment where only radiai displacements occur. The benavior of
the rock is constrained to satisfy the boundary condition at

the well injection cawmity

~ = . = 2
Sk p0 at r r0 (5.62)
i.a.,
(1) (1) i
e IS o nap0 at r = r (5.03)

and the condition of no displacement at large distances from
the well. The solution to Eg. (5.60) that satisfies these

conditions is found to be

)
(1) n r \3
W i(x; & = 0) a Py =L R (5.64)
Y 4515 T i
u

o
<
[ §9)



which leads to

(1)
(1) np ¥ aB 3xix.
Yd, e x @) = - ‘T“l(?l) (—;;l - 51;’) (365)

Someivhat surprisingly, we find that the initial pressure in
the cavity generates no hydrostatic stress in the surrounding
rock formation, i e.,

(1)
ij %y - 0 (5.66)
and consequently there is no pressure generated in the pore
fluid outside the cavity at the initiation of the injection
process.

The results presented above apply in the initial
injection process, before fluid seepage begins. Throughout
the lif?)of t?s)injection well, the composite stress
cij = cij + cij must satisfy the equilibrium equation

90 . .

i
_32? = (5.67)

outside of the injection well and Eq. (5.62) at the cavity
boundary which yields

p Ty f Bu.x. )
i - okl Sk el -
9 20 (r ) (__?_l $ij (368
r
and consequentl:-
1
o 7 Gij cij 0 (5.69)
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for all time. This simply indicates that the hydrostatic
stress in the combined fluid-rock composite permits us to
decouple the seepage equation; Lq. (5.49), from the elasti-
city equations for the rock, since %% = 0 for all time.

Thus, our "interactive'" seepage process is described by

N gl -3
i Vs i) =t (5.70)
where
_ 1 ‘
C = - (5.71)
SR )
K
, (1)
The constitutive terms R, K , and Il are given by Eq. (5.29).

At the initial time there is no fluid pressurec outside the
injection cavity as deduced above. At the cavity boundary
the pressure is held at P, From these conditions we are
able to uniquely express the complete fluid pressure time

nistory
- (ro) [ (r/ro) - 1)]
p(r,7) =\ p |1 -erf _T (5.72)

where the dimensionless time 1 1is given by

!
(a4

T = (5.73)

o]
o N

We substitute this result back into the elasticity equations
for the rock to determine the stresses and deformations that

are occurring there, and we find



(1) p /1 \3[3x.x. )
0;5,1) = - 52 (‘l) ("i‘l < Sy

r 2
B T €0/ E ) ==
(1 - no)(?l) P, [} - erf ( 2;? )]le (5.74)
(1) (1) r \3 3xix. )
€5 Bpm) 2= Po(?l) (‘j:?l" %1
(1)
A R CARLE
+ 1 - = @F i
((K) 0 (3)) Wea ij
J
and
(1) (1)
(1) np <r° 2 (1 - nOC)
ur(r0) =t () v, —g ey
4 u 1'2( K + = H )1‘0
r
x ‘/ﬂ £2p(e,1) d & (5.76)
3G
0
(1) (1)
u6 = u¢ =50 .

We have not carried out the indicated integration to deter-
mine the radial displacement field; however, we have obtained
the early and the late time limiting values

(1)
(i)(r,r) v i (:1)2 r for (Eziill-;—i-) > 2 (§.77)
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(1) (1)
(1) . n po (ro)Z 1 - nu) c p0 r0
Ul Ty AT ) Y ((1,) 4 (D)
# A A )
RER/Ary =0
for (—-—/-9_-——- « Ol (5.78)
&v'T

It appears that there is much to be learned from
examining the results developed above about the potential for
triggering an earthquake by pumping fluid into the eart-. We
note, for example, that shear stresses are due entirely to
the presence of pressure in the cavity; there are no shear
stresses generated bv fluid seeping through the rock. The
greatest potential for triggering an earthquake, therefore,
iles in the tensile stresses (relative to the pre-injection
state) that are generated in the rock matrix as pore fluid is
pressurized at points away from the cavity. Figure 5.4
illustrates the spread of the fluid pressure through the
pores of the rock. Both the time rate of loading in the rock
matrix and the pore fluid are depicted.

The spherically symmetric injection system was also
trcated wusing thc numerical FRI code. Fluid pressure, rock
stress, and rock deformation are generated with the FRI code
operating in the compietely interactive mode, i.e., with no
assumptions as to the nature of the interactions. The numeri-
cal simulation results in hydrostatic stresses in the fluid-
rock composite which are two orders of magnitude less than
the radial and hoop stresses in the rock matrix. Ideally the
hivdrostatic composite stress should be zero for the spherically
symmetric environment, Eq. (5.69). The fluid pressures from
the numerical simulation are presented in Fig. 5.4. We see very
good agreement with the analytic solutiocn even at early times
where the pressure front is quite steep.
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we will now investigate what happens when the injec-
tion process is terminated. At time t1 (dimensionless
time Tl), the pressure in the injection cavity is dropped
from P, to zero. This can be accomplished analytically by
simply introducing an additional injection solution with a
negative cavity pressure "R at the retarded time T

Then, after pumping is stopped, we get

jij = (5. 73]
1 T
(la) T 1 - 1
T Ri— i 5.80
p(r,T) ) P, |erf T er ) ( )
T T
LR | e = 4
(1) (1 (1) ( rn) T £ ey
Jij(F,T) = - nﬂ ol Pﬁerf :ETT “erf 3 T dij( 281 )
1
(1)) 7
Y (1- 0 ¢ P, (ro) ?: -1
1 ol [T, D) ol g =
K + -3- u 1
r
o 1
- erf\—— J|5; . (5.82)
2VT 1)

from Eqs. (5.68), (5.72), (5.74), and (5.75), respectively.

we {ind from Eq. (5.89) that the fluid pressure will continue
to increase away from the injection cavity for some time

after the injection pressure has dropped to zero. Hence the
potential for triggering an earthquake is not eliminated when
the pumpi %)is stopped. Actually the most critical conditions
(maximum oij) will generally occur after the pumping has

stopped.
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5.10 SUMMARY AND CONCLUSIONS

The processes by which alterations in the ground water
state can trigger a major rupture in the earth should be care-
fully examined in order to guard against the possibility of
accidently initiating a Catastrophic earthquake. The possi-
bility of controlling the natural process should also be con-
sidered. It might be that earthquakes can he produced for
the purpose of relieving stress in the earth that might
otherwise accumulate and result in major damage.

The theoretical formulation of the mechanical inter-
actions between the fluid and the rock i1s somewhat involved.
Actually, the resulting equations are quite similar to those
developed previously by Biot.[64] The major points where the
linearized TINC formulation differs from Biot's, and essen-
tially all subsequent, formulations are noted below.

1. A mechanism for fluid-rock interaction is
provided in the linearized TINC formulation
by dealing with variable pore dimensions.
Using this approach the interaction terms
take on a new meaning.

2. The linearized TINC formulation includes the
elastic deformations in the rock particles and
in the pore fluid.

3. The rock velocity as well as the fluid velocity
is considered when expressing the drag forces
between the fluid and the rock (Darcy's law).

A finite element code (FRI) has been developed to
treat the TINC seepage equations in two spatial dimensions
(plane strain or axisymmetric). While the FRI code is
suited for complex geologic formations, we have concentrated
on elementary cases in order to examine the accuracy of the
numerical simulation. We find that the FRI code is well
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suited for interaction calculations, at least for the

cases that were run. Good accuracy is obtained even one
time step into the calculations, Fig. 5.4, The FRI code
nas not been critically tested for simulating late time

solutions.

Analytic solutions were ohtained for an injection well
in a spherically symmetric environment. The injection well
analysis points out the potential for triggering an earth-
quake by pumping fluid into the ground, Whereas the stresses
that result from an artificialiy applied load (e.g., a
surface load or a pressurized cavity) diminish as 1/r°
awvay from the point of application, the stresses that are
generated in the rock matrix by fluid injection diminish as
1/r at late times (steady state). Furthermore, the rock
stresses generated by fluid injection are not relieved by
stopping the pumping, in fact, the stresses continue to
mount for a period of time after the pumping has stopped
before the fluid pressure begins to diminish. This phenomena
should be carefully considered in order to avoid triggering

a major earthquake unintentionally.
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VI. DISCUSSION

The successful implementation of the TAMEOS equation of
state for homogenized rock-water-void mixes as a subroutine
in the SKIPPER code is an important milestone. This subroutine
can be readily incorporated into other standard ground motion
finite difference codes, whether 1D, 2D, or 3D, The table
look-up routine used with the PEQ model can also be used in
conjunction with tables generated with the P*EQ and PTEQ models.
This capability is currently being added to TAMEOS.

At present the PEQ, P*EQ and PTEQ models are limited to
hydrodynamic pressures less than 1 mbar, with primary emphasis
on pressures less than 200 kbars. Additional work is needed
to extend the range of the tables to be used in TA'IENS up to
tens of megabars. Shock metamorphisms[70’71] in the rock
component (e.g., poreless tuff or granite) should be consi-
dered to determine adequate treatments of these phase changes.
Previous wérk in rock-water mixes by Butkovich[44] treated
only the high pressure states for saturated rock under the
PEQ model. <Cratering calculations are believed to be very
sensitive to the model used for energy partition between the
components upon release after shock processing.

The irreversible pore collapse model used in TAMEOS
is based on the disconnected pores postulate. Because of
the sensitivity of the stress wave propagation calculations
to the crushup constitutive model at these low pressures, a
study should be made to determine the conditions under which
the postulate is appropriate. The connected pore model and
such phenomena as partial void recovery upon release should
be considered in conjunction with the available experimental
data.
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The inclusion of four generalized plasticity models
into SKIPPER provide the code with options that possess both
sopinistication and considerable flexibility to match available
laboratory test data. The cap model and three ‘lohr-Coulomb
models are included, one without work hardening, one with
isotropic work hardening and one with kinematic work hardening.
Comparison of calculations with field measurements in granite
show the !lohr-Coulomb model with kinematic work hardening to
give better agreement than is possible with the cap model.

It appears at this time that the four models in the SKIPPER
code are a sufficient base for treatments in which the medium
is considered as a single material. !lodifications are re-
quired, however, to adequately account for pore pressure
effects and relative motion between blocks of jointed rock
masses. These phenomena are believed to be the basic reason
for the reduction in the laboratory flow stress value (by a
factor of six) that is required tec bring calculations for
granite into agreement with field data. Such discrepancies
do not apgpear to be severe for competent sedimentary

materials.

In formulating the generalized plasticity models for
the SKIPPER code a logrithmic definition of strain was employed.
This is a preferred definition for one-dimensional codes but
its interpretation in 2D codes is not apparent. lork is needed
to permit these plasticity models to be also used in other codes,
e.g., CRAM.

The TINC model for treating relative motion between the
rock and water components in ground shock calculations has been
significantly advanced with the development of the new POROUS
code. The ground motion predictions for a partially saturated
wet tuff using this new thermodynamic version of the code should
be modified to treat a spherical high explosive charge as energy
source so that the comparison can be made with an instrumented
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high explosive field test. Consideration should also be
given to modifying the TINC plasticity treatment in POROUS
to include a generalized cap model for the rock component,

The 2D quasistatic FRI code represents a new tool
for evaluating the interaction between a pore fluid and a
stressed rock matrix as the fluid is driven through the
rock mass. The code should be applied in a serjus of cal-
culations for a region around an injection well in an effort
to explain the mechanisms associated with hydrofracture.
The intent would be to perform the quasistatic analysis at
varicus stages of rupture in an effort to follow the redis-
tribution of tectonic stresses and alterations in the per-
meability as the rock is fractured. Calculations should be
devised for comparison with field data on the Rangley field,
Colorado, and/or the Santa Fe Springs field, Los Angeles.

Consideration should be given to the development of
a 2-D dynamic FRI computer code with a mechanism for spon-
taneous rupture. Such a code would provide a more adequate
treatment than currently exists for evaluating the possibility
of triggering earthquakes at NTS by the passage of a shock
wave over a pre-existing fault zone.
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APPENDIX A
SOUND SPLED 1IN A POROUS MATERIAL

The model of a pnrous material introduced in 3SR-648

specifies that the bulk hydrodynamic pressure in the porous
material is given by

BS (A.1)

where

V = bulk specific volume

ez}
]

specific internal energy

distension ratio

Q
]

S )
- n + n
n

volume fraction of solid

(V)
n volume fraction of voids

B(Ve, E) is the hydrodynamic equation of state of the solid
material where V€ is the effective specific volume of the
poreless solid, i.e.,

Ve =

o)<

(A.2)

In the present formulation, we recognize that the bulk pressure
is averaged over the total surface area, so that the effective
stress is reduced by a factor of 1/a. This differs from

Herrmann's[14] model wherein bulk pressure is set to
« mly ~ e
(p)Herrmann = E(E ) E) = V", B (A.3)
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15] have discussed these twe “ormulations

Carroll and llolt[
and recommended that Eg. (A.1) be adopted for strengthless
porous matrices., They did not rederive the expression for the
sound speed of the bulk material in their analysis. This
relationship is presented below and compared to the original

expression proposed by llerrmann.,

Let us retain llerrmann's form for the distension ratio,

= ulp) (A,

lhe sound speed, ¢, may be obtained as 1o'lows;

< - (3), o
e L a']
Differentiating liq. (A.1) leads to
1 <5£>
(1\2) ) S (A.6)
L 1 + \,C —\ + p Qo (E)
av® = al
and
1 f 58
a \ ok \e
(712) - = (A.7)
B <Ve — + P> e B)
e = o
i\ a“
Since tne sound speed in the solid material is defined by
_ oP oP
Cé e _(Ve)z = + V% p = (A.8)

- .z ¥
ave ¢ 3L
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il

2
gt = oS
oP p
12 [ = e P o’ (p) (A.9)
av® = a?

In the limit of P » 0, this reduces to

Y]

(A.10)

=

| el
ok 0
1-(4191,;)
:l2 1]
i)

where

=
h

= normal bulk modulus

oP
lim e —
P+0 ('V ave)

cs0 sound speed in solid material at zero pressure

Hlerrmann's expression is

2l
a Cg
o Sy

(cz)“errmann iz ( a‘(O)Ko)

o
0

(A.11)

It is apparent that both results indicate that major reduc-
tions in the sound speed of porous materials can be achieved
only if the matrix deforms under infinitesimal compressions
(«”(0) < 0). The major difference between the two models is
the factor of 4 which appears in the numerator of Herrmann's
expression. Thig term is troublesome from a physical view-
point since it implies that in the limit of a perfectly rigid
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matrice structure (a”(0) - 0), the sound speed is increased
by adding to the void volume fraction. 1In the present for-
mulation, the o factor no longer appears. Hence in the
same limit we are left with sound speeds that are identical
to those in the matrix material. Although not cited by
Carroll and Hlolt, this last result lends more weight to the
arguments in favor of utilization of the effective stress
modal (Eq. (A.1)).
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APPENDIX B
H.E. TEST PARAMETER CALCULATIONS

In response to a request by the contract monitor,
C. B. McFarland of Hdq., DNA, calculations were made to
investigate the relevance of material properties to the
ground motion and stress pulse generated by high explosive
tests in NTS tuff. The material models employed were based
on fits to laboratory data on tuff samples obtained from
specific locations at the Nevada Underground Test site.
The calculations also examined the sensitivity of the results
to the representation of the high explosive energy source in
the calculations.

Tuff properties from two locations near the (Ul2e-12)
underground nuclear test site were considered in the calcu-
lations. Samples of the tuff at distances from the working
point of 30 ft (Slifer Hole #1) and 1330 ft (Drill Back 7)
were selected from those tested under quasi-static loading

by Green, et al.[72]

These two locations represent the ex-
tremes in the measured gas-filled porosities measured at the
site. At the Drill Back 7 (DB-7) location the tuff is
almost completely saturated with only 1.6 percent of the
volume gas-filled. At Slifer Hole #1 (SH-1) fully 7.6 per-
cent of the volume is gas-filled, representing 22% of the
total pore volume in the tuff. The solid-water-void volume
fractions for the two tuffs are listed in Table B.1.

A fit to the quasi-static data from the DB-7 location
was used by Bjork[21]
1000-1b nitromethane sphere detonated at that site. The

ground motion measurements subsequently made in thetest were

in a predictive calculation for a
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TABLE B.1

DESCRIPTION OF TEST SPECI.ENS

Sli-1 DB-7
In-Situ Density (g/cc) 1.80 + 0.03 1.88 + 0.02
Tuff Grain Density (g/cc) D S5 2.37 +
(1)
firain Volume Fraction, n 0.055 0.634
0
Sl (D)
wvater Volume Fraction, n0 0.2069 0.350
' (3)
Air Volume Fraction, n0 0.076 0.010
(3) ,(2) (3)
no/( n + no) 224 4.49

in good agreement with the calculations. It was decided to
use the same tuff model in the parameter calculations re-
ported here except a trcatment of the irreversible crushup
states was added in order to permit the calculations to
follow the stress pulse propagation to greater distances
from the source while using the SKIPPER code.

The constitutive relations for tuff used in the com-
putations thercfore consisted of three parts. First, the
cnergy-pressure-volume equation of state for the completely

crushed material is specified by the equation

p = GoE + Au + Bu?, -1 (B.1)

'ol‘o
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where the reference density Py here refers to the completely
crushed tuff/water mix (only water filled pores remaining)

at ambient conditions. Second, the partially crushed material
is characterized by a porosity parameter a(p) = ps(p)/pp(p).
llere o and o are the densities of the completely crushed
and partially crushed materials respectively at the same
pressure. A simple form for «a(p) was used since the limited

data available did not justify a more eclaborate fit,
2 = 1+ (o -1)(1-p/p.)° (B.2)

llere « is the value of o at ambient conditions and Pe

0
is the pressure at which all gas-filled pores are crushed out
of the tuff. The p value was estimated from uniaxial

strain test data.[72

Third, the deviatoric stress was ccn-
puted with an elastic-perfectly plastic model, using a con-
stant rigidity modulus G and a simple von !ises yield

condition,
2 2
~¢. + 2 2 < 2 ;."
Sl S2 G S3 ix | Sl (B.3)

where the Si are the principal deviatoric stresses.

The values of the constants used in the constitutive
relations for the twc partially saturated wet tuffs are
listed in Table B.2. The higher volume of gas-filled poro-
sity at the Sll-1 location may be expected to enhance the
displacement at given pressure, but its higher shear strength
should counteract this to some extent. It was of interest
to evaluate these competing effects, to assist in the selec-
tion of the site for a planned h.gh explosive test in the
Ul6a tunnel complex at the Nevada Test Site.
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TABLE B.Z2

CONSTITUTIVE HMODEL CONSTANTS FOR
TWO LOCATIONS

SH-1 DB-7
A (kbar) 83.3 83.3
B (kbar) 83.3 83.3
G 1.8 1.8
o (g/cc) S00L2 ko911
£ 1.082 1.0165
Pe (kbar) .10 0.5
u (kbar) 10.5 10.5
Y (kbar) 0.55 0.346

The source was taken to be a 1000-1b sphere of
Composition B high explosive with a density of b, = I.7 gfeE
prior to detonation. The initial radius of the charge is
therefore R = 39.5 cm. Four tuff comparison calculations
were made fo; two representations of the source. Two cal-
culations treated the burning process and employed a pressure-
volume-energy equation of state to compute the detailed be-
havior of the detonation products. Two additional calculations
were made in which the source was approximated by a y-law

gas in the expanding spherical cavity of initial radius Ro.

In the calculations which included the burning pro-
cess in the source representation, the empirical Jones-
Wilkins-Lee equation of state[73] was used to describe the
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Composition B detonation products. This equation is pre-
scribed by the pVE relation

o R .
p = /\(1 = CE-Y’)C L i B(l s C_-V v- (B.d)

1

The constants for Composition B are listed in Table B3. In

the computations the detonation front propagates from the
center of the sphere at wave speed ])CJ = 7.98 x 10° cm/sec and
the chemical energy released on detonation is Eo = 4,95 2 1P
ergs/g. The corresponding Chapman-Jouguet pressure and
density are Pey = 295 kbar and Peg = 2.35 g/cc, respectively.

In the two calculations in which the source was
approximated by a cavity containing a y-law gas, the pressure
in the expanding cavity was computed from

& P i
p = DCJ(_"CJ) (B.5)

where the value y = 2.77 and the associated parameters
listed in Table B.3 were estimated from work by Coleburn
and Liddiard.[74] The density and pressure are assumed to
be uniform within the cavity at any time. The initial
cavity pressure in the computatic s is given by

iL..7

By - 283(2733)2.77

= 116 kbar (B.6)

In Fig. B.1 the profound effect of air-filled poro-
sity on shock wave attenuation is illustrated. The less
saturated SlI-1 material requires only about half the
distance to attenuate the shock to a given pressure as
does the DB-7 material. The y-law gas approximation is
seen to produce results very close to those obtained using
the detailed treatment of the burning process in the source
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TABLE B.3

EQUATION OF STATE PARAMETERS FOR
COMPOSITION B HIGH EXPLOSIVE

JWL Y~Law
A (dynes/cm?) S.24 = 02 -
B (dynes/cm?) 7.678 x 1010 .
(3l (g/cc) 7.21 -
€ (g/cc) 1.89 -
W 0.34 .
p, (g/cc) BTl 7 Le7
L (ergs/g) 4.95 x 10'° -
Pc; (dynes/cm?) 2.95 x 10! 2.83 = 10!
Py (8/cc) 2.35 $.35
Doy (em/sec) 7.98 x 10° 7.95 x 10°

representation. At early times the vy-law approximation
overestimates the driving pressure and at late times it
underestimates it. This is illustrated by the results shown

in Fig. B.2.

The stress-time history at radial distances from the
source of R0 = 123.7 cm and 203.6 cm, respectively, are
shown in Figs. B.3 and B.4. The hump in the profiles for the
calculations which treated the detonation processes result
from a wave which is reflected at the center of the cavity
¢nd eventually catches up with the shock front.

In Fig. B.5 the radial displacement-time history is
shown at a distance of R0 = 203.6 cm from the source
(R0 = 207 cm for SH-1). Although the calculations have not
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been carried to late enough times to determine final displace-
ments, it is clear that much greater displacements occur in
the more saturated DB-~ tuff., At this distance it experiences
a peak stress of 5 whereas the SII-1 tuff is subjected

to a peak stress of oniy v 1 kbar. Finally, the time of
arrival of the shock front at a given radial distance 1is

shown in Fig. B.6 for each of the two tuffs.
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APPENDIX ¢
INTERACTION TLRMS

() In the Theory of Int%r?cting Continua (TINC), each
b a

5 has a velocity field v (x,t), stress field gij (x5t
and a density field 8 (x,t). Associated with these mixture
?S?Qtities, we pogtglate the existence of g e (B it 4
ij (x,t) and o (x,t) in the physical configuration.

It is to be noted that neither of the two sets of quantities

g

corresponds to the actual distribution in_the body. The quan-
(a)e (n)e (a)e)

W - Oij’

represent the averages of the actual variables taken over

tities in the physical configuration

several grains. Thus, purely local effects (e.g., stress
concentrations along a pore boundar{) are ignored. The re-
5 ]

(a) (o a (a)e

lationships between Oij and oij’ and o and
Yeye given in Section IV. The velocity distributions
X a)e

v (x,t) and v (x,t) will not be in general identical.
In the following discussion, it will be, however, presumed
that

(0 (a),
D . D
D © “pE
where
LA oy (@)
DT T 5Tt L cerad; -t gyt v Cegrad (C.1)

This follows from the fact that one is trying to follow the
same particle in both the mixture and the physical configuration.

The following discussion will be restricted to a two-
component mixture. Su?gyscripts (1) and (2) are used to de-
note 4 (rock) and 47 (fluid), respectively. The rock
is regarded to be an elastic-plastic solid. The fluid is
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taken to be inviscid, but due account is taken of the viscous
effects by postulating the existence of a diffusive force,

P 0. It represents the drag force experienced by the fluid
as it passes through the porous rock.

(2)

The mass conservation relations for 5 are:
Mixture:

(%)(:) (o) (a)

———D—t-—" + %) div Y_ = 0
a =1, 2 AR
Physical Configuration:
(ﬁ)e(:)e (3)0 : (Q)e
_Tt—— + o] div X =0
e (€. 5
Combining Eqs. (1) through (3) and noting the
(a) (@) (o), :
p = n o (C.4)
there follows:
(o), o (0) 1 a(;) () (@)
div v = div v + T LS + ¥ ¢ grad n
n
a &1, 2, (G- 5)
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(a)

The momentum balance relation for 5 in the mixture
is given by:

(a) (a) (a)
D

(a) V. I (0] Ane (a)
i = ij
4 Dt X, ° By
J
&€ 4, 2 (C.0)

(1) (2)
pPEB = o8 = g Ee Yy
2 (a)
For (6), the stress tensor (g?. (or 0 8 ) 1s isotropic,
1) 1)
1.eq,
2 @ (22 (2)(2), ‘
Oij “ ik p iJ- = N p ‘Sij e n Oij ((;-b)

Noting that the fluid is subjected a drag force PN as it
passes through the rock, the momentum balance relation for the
fluid in the physical configuration may be written as:

PeBe
L - ) w
— = _3§;— o Ny (C.9)
We now require that
(2),(2) (2)(2)
D® v, *® W
e i .o
= - - ol 1))

Relation (C.10) follows from the fact that the change of momen-
tum in the physical configuration must equal to the change in
the mixture configuration. Therefore, combining Eqs. (C.0)
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through (10), we obtain

(), (2
pg = - P grad n + P, & [(Ced})

Thus the momentum i?ggra:tion term, pfl, consists of two parts,
i.e., dilatation (- P € grad n ) and shear (pog) contributions.

Let us now(i§aminc the momentum balance relations foEv)
the rock matrix, & . In contradistinction to the fluid ('3 Il
the relationship between the mixture and the physical configura-
tions is not readily obvious. The interaction force, p2, may
induce a complex state of stress in the solid. As an example,
let us consider the mixture to be in a state of uni-a§%?l
strain. In this equation, the momentum balance for 5 in
the mixture 1s
(1) (1) (1)
(1y D % 3 (1)

o
i 1 '
o Bt wxl +p Rl (S L2

In the physical configuration, the momentum balance

relation (using (C.10)) is:

(1 M, W, Ul
\Y% o O g © 3 O

(l)e ) 1 S| 2 i3 -

P vt 5 TOX i " % (G )
1 2 3
1) 1

The stress components (7 ¢ and (Ve will in general be

12 13
non--ero. Although the mixture is undergoing uni-axial motion,

the individual constituents may be }n a more ¢ mplex stress
(e (Le

state. In this particular case, 0 and °, are the result

of the interactive force, n Fl. Combining equations (C.12) and

(¢.13) and noting that

(o) (a) (o), ‘
£ M o.lj 5 (C.14)

O
1)



there follows:

(1) (1)
(1) (1), 3(}1) 20! s ®
o 81 = pB1 aln el —axl + sz + 3X3 (C.15)

From Eqs. (C.11) and (C.15), we have also:

(2) (1)
3 = _(Z)e an_, . _(l)e o n
A p gl IR A 3x1

1
(1) (1)
T 3 0 €
" LE 13 (C. %6)

aX X
2 3

Thus, in trying to relate th%1 ixture configuration to the
physical configuration for 4 , it is necessary t?zieparate
out the stresses induced by the interaction with 4 . Such
an identification may be impossible except in very simple

cases such as uni-axial motion.

o
The internal energy balance relation for (A) in the

mixture 1is

(o) (@) (a)
@ D E () 3v, (a)
B =i Gij -t eV (CrlL7)
J
& = gl

We will now assert that:
o5 @ &Ly (C.18)

In other words, the internal energy i is the same in both
the mixture and the physical configurations.
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For th%7§1uid, wc(g}ll assume that ¢ ; consists of

two parts, p :d and o ws ,

(2) (@ (@
oW =gt e U (€.19)

(2} - g ) (23
where » “d denotes the dilatation contribution and ¢ ¢g,
the diftfusive contribution.

We now consider the energy balance equation for the

fluid in the physical configuration

2y (D) ; 2
Bg B i 5 P | PR ¢
b T =wg== & = divy = + 0o ug LG
Gombindmg Bes. (C.4); (C.58); (C:.8) amd (C.L7) Ehysug. (G.80)
we oLtain:
2 L U 2
2y Mg (e (2)
o Uy = - P s etad sgrad n (&2 k)
Thus
2 2 2 7 (2) 2 7
(@) Gh - &) @Y 5 (2) (2
o 2% vew &9 S pogl & FERIRG (C.22)

(1)

For the solid, & , the enevgy balance considerations
are much more complex. Fven for the uni-axial case considered
in connection with the momentum balance, the situat%on is

: Sl ; = : (1)e
?¥ te difficult. In the physical conriguration, v, and

e q
need not be zero and indeed may depend upon all the

(-
3
three space dimensions. One, therefore, needs to introduce

some additional assumptions for the solid energy balance.

The requirement that the cnergy contribution of the

internal material interaction forces be zero may be written
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(ay (2) (1) (2)
og-(x-x)'fow ey =0 (C.23)

Substituting from Eqs. (C.11), (C.19) and (C&2) inmte Eq. (C.23),
there follows:

(2 00 @yl g (2)
P gradn +ponlev vy - p =t - 0,0 v%
(2)
= o ws = 0
or
2, 553 - iy @ m] @ (1) (2)
-pe_3,2_+pe.gradnq! + o U +poﬂ-(\_r-l)
(2)
=P ws =% (C.24)
The internal energy con%{}bution o(é) can be split up into
two parts, p wd and o ws :
(1) (1) (1)
oV = oug t oy (C.25)
This yields
TR ST PR L T L TSP L
P e g+ P gradn v |+, Vg * 0 g *+ 0y
(1) (2)
+ poﬂ . ( V = v ) =0 (C.26)



(1 @) (@)
11.

we have thus one equation for three unknowns, ¥4, b .
at the dilatation and shear contributions

We will now assume th
must be separately equal to zero, 1:8.,

&y ;I (2) (1) |
P i'd X T i grad M & AVE ((,.273)

(1 (2) (2) (1))
Ve =\ (C,27h)

Bl e p By T0 TS (

(1) (2) :
This procedure is exact for i?g§scid (p by T 0 U, AL U)
n lHowever, in

or incompressible materials ( e = constant).

it has to he regarded as a constitutive

the general case,

assumption.
at arises 1is as to how we should

The next question th
Since diffusion is a

split the diffusive contribution.
it is reasonable to require that

dissipative process,

(1)

1 >
p Vg Z

(2) ,
b > D0 (C.28)

P ey X
One further assumption is now necessary regarding the par-

tition of the diffusive cn?rgy contribution. The simplest
to be zero. This yields:

hypothesis is to assume o Ve

(2) (2) (1) _
p Vg = P S M v )* (s 29
o= ul — -
The last assumption merely states that the fluid receives
411 the diffusive energy contribution.
In our previous work (3SR-648), it was assumed that
(1) (1)
o b, = -on* L
(2) (2) )
R LR N v (C.30)
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It is now seen that such an assumption cannot possibly satis-
fy Eqs. (C.28), and hence is erroneous. This last conclusion
of course does not apply if P.n is regarded as a shear
(non-dissipative) force. It may also be verified thatzfor
the steady case, present expressions for P ¥y and o vy
reduce to those derived in 3SR-648.
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APPENDIX D
EFFECTIVE STRESS LAWS

The effect of fluid pressure on the deformation and
strength of saturated rocks has been studied by a number of
investigators. This role of fluid pressure is usually con-
sidered by defining an "effective stress" <°ij>

<oij> = Oij - app 6ij (Ds 1)

where
Oij = applied stress on the rock/fluid composite
o = constant
pp = pore pressure

The "effective stress law" simply implies that the stress-
strain (and strength) response of the saturated rock is
identical with that of the dry rock if one utilizes the
effective stress <Oij> instead of the composite stress
Oij'

There is considerable disagreement as to the value
of the parameter o, Terzaghi[63] argued that o should
equal the porosity, 1-n, so that the effect of pore pressure
is eliminated when the porosity is zero. Hubbert and

Rubey 751761

attempted to prove theoretically that o should
be 1. Although the validity of their proof is somewhat
controversial,[GS] experimental measurements on strength
have generally revealed a fair agreement with Eq. (D.1)

with o= 1,77-80) g exception to this good agreement
appears to be in the area of strength measurements on low

porosity rocks.[78] However, Brace and Hartin[SO] present
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quite plausible arguments to the effect that this apparent
disagreement is due to fluid pressure in not being fully
ctfective. Prior tc gross fracture, the rocks begin to dilate
under compressive stresses. Above a certain critical strain
rate, fluid pressure inside the pores is considerably less

than the applied pore pressure.

Lven though o = 1 gives good agreement with strength
tests, its application to stress-stiain measurements is

[81-83,68] [82]

questionable, Skemp ton and Geerismal81] have

suggested that

= 1 - K/Kg (0.2)

wihere K -+ bulk modulus of porous rock

KS = bulk modulus of rock grain.

%kulje[SS] proposed the form

2 Lem G (0. 3)

wliere n denotes the volume fraction of the rock matrix.
Because of lack of good theoretical basis or sufficient data,
expressions like (D.2) and (D.3) have not been generally

[68] have derived Lgq.

employed. Recently, Nur and Byerlee
(D.2) from certain linear elasticity considerations and tried
to correlate it with stress-strain data.

[68,84] have tested Weber sandstone

Jur and Byerlee
under hydrostatic pressure both with no pore fluid and when
the pores are saturated. Choice of Weber sandstone mini-
mizes weakening of the rock matrix by chemico-physical
interaction with the pore fluid. They measured the con-
fining pressure P.» pore pressur? pp, and the partial
volumetric strain for the rock, '8°. In Fig. D.1 we show
the stress-strain points obtained by using the conventional
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Fig. D.1--Conventional ¢ffect:ve stress law.
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effective stress law. It is seen that all the saturated

data lies on one side of the dry data. Had the conven-

tional effective stress law been applicable, all the saturated
data should have fallen on the dry curve. The conventional
effective stress law overcorrects for the pore pressure cffect
and is evidently inadequate, In Fig. D.2 we plot the stress-
strain data obtained from the Nur-Byerlee effective stress

law. The dry stress-strain data was numerically differentiated
(linear) to yield K as a discrete function of P Least
square technique was then employed to express K as a second

degree polynomial in Pee Following Nur and B_verlee[68 ],

KS was taken to be 0.36 mbar. For the wet case, K was
evaluated from the polynomial function by replacing B by
Be = pp. Comparing Figs. D.1 and D.2, it is readily seen

that use of the Nur-Byerlee effective strcss law considerably
reduces the data scatter. However, even in this case all the
wet data lie on one side of the dry data. Clearly, the Nur-
Byerlee effective stress law undercorrects for the pore

pressure effect.
, (1)
In Fig. D.3, we plot_the TINC effective stress B

e - . ) )
and n. The interaction function

versus effective strain 8
n  was then expressed as a second degree polynomial function
5 P.- For the wet rock, n was evaluated from this func-
s gl A ) c “(d3gt P
iffective pressure p and effective strain 6 were
then determined from Eqs. (8) and (23). 1In this case, tne

scatter of wet data around the dry data is considerably re-

tional relationship w%th P. replaced by p

duced. Also, the wet data lies evenly on both sides of the
dry data. Thus the TINC model provides a good model for
data fitting. This, however, does not constitute a proof
of the model. To provide a proof of the model, one would
also need to measure the porosity (1-n) during the test and
compare it with theoretically calculated values. It L8,
however, comforting to observe that the dependence of n

wet

on p and pp is in accord with the physical intuition.
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