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PULSE DOPPLER AMBIGUITY RESOLUTION

"The author of this note has been involved with the analysis of

E xisting and future pulse doppler ambiguity resolution methods. The

existing pulse doppler ambiguity resolution technique is supplied by

R.C.A. and a future algorithm is presented by this author.

R.C.A.

The R.C.A. algorithm is a least squares range error minimization.

Given, the state differential model of range and range-rate informa-

tion

, x0(t) -Ax +. Bor + w ,x(O) =xo 1

where (0) de:otes d/dt

x(t) " 1 (t)l ,w(t) " 1W(t)1

X(xt))w (wt)

"xl(t) - range yds

"x2 (t) - range-rate yds/sL-

r(t) - observed range yds

r(t) - observed range-rate yds/sec

"W(t) . range measurement error

w2(t) - range-rate measurement error

where

A- [o 11 B L0J (2)

and 6 - yds/sec/ spectral line conversion factor.
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Let the system observe.tions be given by

y -Cx + w (t) (3)
3

where C * (1 0) (4)

and wv(t) - obs.rvation measurement error.

R.C.A. uses the following criterion for optimality. They choose

to minimize J, where

T [T

J " II r(t) - x1(t)II' dt dt (5)
10 '0

The conditions for optimility are wei2 known and are given by the

maximum, principle of Pontryagin. It is interestiag to note that R.C.A.

chooses to minimize range error only. They do vr.t attempt to minimize

the range-rate error e2(t). Secondly, the normed error Ilist)1l is

impli:itly weightad by L "one". This may not seem critical, but it

means that all erro':s are considered equally independent of system

signal to noise ratios. Heuristically, if the range measurement

errors are stcchasti.ally small, then any difference between r(t) and

its estimate xl(t) is significant. However, if the range measurement

noise is stochastically large, then apparent differences between r(t)

and xl(t) are no longer aignificant. In this case, only long term

error trends shoul.d be considered significant.

In suimmary, the author feels that there are some philosophical

disadvantages associated with R.C.A. methods. They totally iguore

range-rate errors ia their optimality criterion and they do not

weight the apparent error r(t) - x (t) by a measure of system
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signal to noise. These two features make their method especially

sensitive to scintillations. This will be demonstrated in a simula-

tion found at the end of this report.

The computational method used to solve the required necessary

linear differential equations which define the optimal solution is

the method of invariant imbedding. This method is generally used on

bi" norlinear mixed two-point boundary value problems. Needless to say,

using the invariant imbedding method is a tremendous overkill when

applied to their two dimensional mixed two-point boundary value

differential equation.

R.C.A. also uses an unusual technique to measure the accuracy of

their algorithm. They compute the variance of the apparent error

r(t) - xW(t) (This is called traditionally an innovations process).

If the error implies an error of greater than 1/2 spectral line

the estimation of f(t), namely Y 2 (t) is considered to be bogus and

the estimation process is aborted. This is mtaningful under ideal

low noise conditions only. As mentioned before, R.C.A. does not use

information about system measurement noise (signal. to noise).

Therefore, i,: a low noise case the variance of the error r(t) - x i(t)

dIoes indeed represent estimation error based on the R.C.A.'s estima-

tion algorithm. However, if the system measurement noise iU

stochastically large, the estimations of r(t), namely x2 (t), couid be

statistically good but the error variance measure of r(t) - xM(t)

could be large due to system noise and not estimatioa errors. This

phenomenon has caused the system to "fiag," an error in the r(t)

estimation when indeed there was no such error.
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In 1972 the author of this report developed a new algorithm

using invariant imbedding techniques. The objective function

to be minimized was J, where

I iiJ lwlI l.2(

T

J- II r(t)- x 2+t) + tl 2 (t)1 8t ((t)2 dt
10

Wlt)+I WI1)d

Here, both range and range-rate errors are minimized. In addition,

these errors are weighted by Wl(t) and W2 (t), respectively. The

weight WW(t) and W2 (t) are chosen to be the inverse of the assumed

a priori error variances associated with cW(t) and c2 (t). The

advantages of this technique can-be found in a simulation found in

the paper included in appendix A.

A new algorithm has been developed which holds promise as an r

dot extraction system. It has been found to be the most accurate

and versatile algoriti.• tented to date. Its origin is rooted in

the theory of minimal variance filter (Kalman filter).

Briefly, the minimal variance filter is known to be "the"

optimal estimation algorithm for linear systems being corrupted by

white noise with known covariances. The Kalman filter has been

successfully applied to a myriad of linear system problems. The

classic difficulties associated with KalmAn filters will be noted at

the end of this section. The derivation of the algorithm is derived
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as follows:

given equation (1), nasely for x(t): n dimensional3

(x*t) - Ax(t) + B(t)?(t) + w(t) (1)

with x(O) given by

x (o) - r(O)

x2 (O) -0

and equation 3 for y(t) a scalar

Y(t) - Cx(t) + vWO) (3)

Let the a priori noise statistics be given by

I k (w(t)) -

(W (03())

Tcoy (w(t) W (T)) - V(t) 6(t -

coV (x(O)) - Vx(O)

T
coy (w(t) 3 (T)) - 0

Tcoy (w3(t) w3 (T)) Vv6(t- T)

Define the estimation error to be

S (t) - x(t) - •:(t)

There exists a n x n dimensional positive definite symnetric matrix

error covariance matrix, say VR(t), such that

T T
cov (i(t) I (t))- coy ((x(t) - R(t))(x(t) - aT(t) - V (t) (9)
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and

VA (t) AVI(t) + V (t) AT V cT)lv"(t) CVR(t) + Vw(t) (10)

with

V (0) - v1 (O) (11)

With respect to the state ambiguity problem, V (t) becomes, for n - 2

(t) 26VR 1 2 + V 2(t)1 -1
0(~l - -1t12+vlV1 (to1  v~t_

S(t) - V (t) 2 2 6 - V (t) 1 2 V (t)01  V(0

2(t) 22 -Vw2 (t) - VR 2 (t)1 2 Vv-

with V~(O)l1  Vx(O)ll , V((0) 2 2  0)2 V"(0) 1 2 = V1 (0) 1 2 -( (13)

The general estimation of x(t) in the presence of noise w(t) and v(t)

is given by, say 1(t).

R(t) - AP(t) + Br(t) + K(t)[y(t) - C*(t)] (14)

where 1(0) - (x(0)) (15I

where 6 denotes expected value

where K(t) is referred to as the Kalman gain and satisfles

K(t) - VM(t) CT V-1 (t)

For the problem under consideration

V it(t) 11 Vv 1

K(t) ](16)

v (t)12 V-6
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In general, K(t) is precomputed and stored off-line (see appendix F).

The resulting estimation di.ferential equation is

0 0

t W- ax 2 (t) + Kl(t) (r(t) - *l(t)) + r(t) (17)

0A (t) - x2 (t) (r(t) - )

This algorithm has been under teat and has performed extremely well.

The results of this test are compared side-by-side with the existing

R.C.A. algi.rithm. It *lways produced a superior answer to that

obtained using R.C.A.'s method. In many cases the improvement was

drawatic. The results of the simulations can be found in appendix 3.

As previously noted there are soma potential difficultiesK assoc 4ated with Kalman filtering. They ar* in defining (usually

assuming) the Initial covariances V w(t), Vv (t), and Vx (0). These

I quantities are generally assumed to be knomn. However, if the

assumption differs considerably from the actual noise covariances,

poor estimation and even divergence can result. Therefore, it is

important that a reasonably accurate estimate of these noise

covariances be made if satisfactory performance is to be Insured.

The author of this report has several suggestions which, when

implemented, should provide W.S.M.R. with a very powerful and

mophisticated r dot estimation system.

Suggestion 1

The actual error covariance process, say VA(t)
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(r 0 (t) - *l(tc)) (r 0 (t) - *(t))(r~t) -M 2)

vA(t)- E
(r 0(t) - * 2 lr(t) (r 0 a1 t) (rto(t) - *2(tl))

can be computed directly using observe4 data and the estimation vector
t(t). The actual covariance VA(t) can be compared with the theoret-

ical error covariance V 1(t). The resultant error wll then be used

to reprograu the a priori assumption on Vw(t) and Vv(t).

Suggestion 2

The MPS-36 offers a unique feature which can serve to rescale

the a priori covariance matrices. 1hat feature is the system A.G.C.

The output of the A.G.C. Is a measure of system signal-to-noise ration.

This real-time meassame of noise can be used to rescale the covarlincee

data and thereby optimixe the algorithm. Typical A.G.C. noise measure

data is presented and discussed in appendix C. A new algorithm, whica

shall be called an adaptit;e Kalman/A.G.C. algorithm shall now be

developed.

dart ive Filtering

It was assumed throughout this work that over an averaging inter-

val, say 5 seconds, the noise statistics are stationary. A filter

whose a priori statistics are assumed to be constant over an averaging

interval shall be called a constant covarianca filter. The noise

covariances a.sociated with the processes x I and and x 2 , or equiv-

alently the output process y should be scaled proportional to the

api rant A.G.C. sigrel to noise ratio. It ahall be assumed that over

-i
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an averaging interval, the estimation subsystem', noise covariance

possesses the same qualitative time verying properties of the AG.C.

noise meteric. Consider the folloving simulated result which exam-

plifies the properties of tho adaptive Kalman/A.G.C. approach Lo pulse-

doppler parameter ectimation.

Example: Kalman Filter

The developed Kalwan Filter fine line estimation algorithm was

implemented on r PDP-11/45 at The University of Texas at El Paso, A

source listing can be found in appendix D. Several numerical exper-

iments were performed on the algorithm. All tests involve 5 second

averaging intervals, and an initial target rangn, velocity, and

acceleration of 100,000 yds, -1000 yds/sec, and 20 yds/sec2 respectively.

The first test investigates the algorithms sensitivity to the

choice of input covariances V and V for a given signal/noise ratio.wI w2

The experimental results can be found in figure K 1. It can be uoted

that of the parameteric values tested, all choices tested successfully

in that the error at 5 sec wias considerably less than +.5 spectral

lines. H1owever, qualitatively there were differences. It can be seen

that as the a priori estimate of Vw, and V decreases, the estimation

inpuc noise decreases (ex: V = .001. V - .001), the Kalman filter
•I w2

in very reluctant to change its previous eatimatc since it is assumed

that the estimate was obtained in a good signal/to noise environment.

Wontrapositively, if the input noise covariances are assumed to be

9
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large (ex: V .1, V .1) the Kalman filter will readily change

its previous estimate since it consider the previous estimate Sta-

tistically uncertain due to increased signal/noise ratio. To use

the Kalman filter optimally, the covariance weights should be deter-

mined experimentally or through simulation. A trade off is sought

between fast response ana therefore possible inaccuracies and a slco

response which may present incomplete estimate at the end of an

estimation period.

The second experiment found in figure K 2, considers a parame-

terization of V for the indicated signal to noise ratio. Her,', V

Lis the noise corrupting the range constraint equation xl(t) (see eq. 1).

Due to the advantageous large signal/noise ratio, all parameterizations

were successfull and performed essentially the same. Therefore, it can

be assumed that the algorithm will work well over a wide range of

assumptions in the presence of good range data.

The third experiment, found in figure K 3, considers a parame-

terization of V for the indicated signal/noise ratio. It can bew2

noted that the algorithm is sensitive to the choice of V when Vw-
1, the Kalman filter error gains are large. Therefore, the estimate

reacts rapidly to correct any apparent error. When V - .01, the

Kalran filter error gains are small. This means the algorithm can

not react rapidly to apparent error. This explains the large error

between .2 and .6 seconds. Here it took approximately .8 seconds to

purge the initial estimation error from the estimation processes.

10



Convergence is slow but methodical. The performance for V -. 1 is
V2

found to be a compromise between the two extremes.

The experiments considered use a standard Kalman filter approach

to the fine line tracking problem in the presence of short term

stationary noise. The following experiments consider a radical time

varying of noise behavior. This hypothesis represents simulated

scintillation.

The fourth experiment found in figure K-4 involves such test.

Here a noise burst, over the interval 1 to 2.5 seconds, was numeri-

cally generated to decrease by 10 dB, the nominal range and range-

rate signal to noise ratio (assumed to-be 20dB). As a reference

experiment, V 'l V '2- .01, and V v- 1, for all time was assumed. It

can be noted that during periods of high scintillation, the reference

algorithm behaved radically. The errors generated during this period

remained with the estimation process in the future. Recall a decrease

ILn V wproduces a decrease in the Kalman error gain. Thus, a A. G. C.

noise meteric feedback can be used to reduce the Kalman gain during

periods of high scintillation. This reduced gain will forbid the

system to rapidly track apparent errors which are known to come from

a noisy environment. It can be noted that with the proper scaling of

Vw significant improvements i.n the estimation processes can be obtained.

The fifth experiment found in Figure K 5 involves such a scintil-

lation test. Here a noise burst, over the interval 1 to 2.5 seconds,

was numerically generated to decrease, by J'^'B, the nominal range and

range-rate signal to noise ratio (assumed to be 20dB). As a reference



r *1

experiment, VI V 2 .01 and Vv 1, for all time was assumed. It
w1 W2 V

can be noted that during perioei of high scintillation, the reference

algorithms behaved radically. The error and error rates that were

resident in the algorithm, when the noise figure returned to a

nominal value (ie: at t - 2.5 seconds) wore such that the future error

performance was poor. It shall be shown that the Kalman gains are

inversely proportional to V" (This iA implicitly the same as reducing

the value of V .) Therefore, increasing the value of the observation
w

(output) covariance V in harmony with an A.G.C. noise meteric, tov

say 4 to 10, will selectively reduce the error gains in the r-esence

of noise burst. This has the property of stabilizing the estimate to

be a minor variation in the last estimate generated under good signal/

noise ratio. It can be noted that significant fine line estimation

performance can be expected using an adaptive Kalman/A.G.C. philosophy.

It is of interest to more closely examine the quantitative

properties of the Kalman gains under varied parameteric conditions.

The trajectories of the Kalmen gains K1 (t) and K2 (t) (see eq. 13 and

16) can then be found in figuros K1-1, K.1-2, K2-1, and K.2-2. Consider

first K1-1. It can be noted the Kalman gain Kl(t) is inversely related

the differences between V and Vv.

This property can be witnessed again in figure K1-2. A scin-

tillation buret is assumed to occur from 1 to 2.5 seconds. Here,$

rescaling Vv will cause a decrease in the error feedback gain K 1
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during periods of high scintillation. It is interesting to note that

the trajectory time constants are small compared to the averaging

interval. This feature will be developed in the next section. The

arguments associated with the Kalman K2(t) are identical to the

used with the Kalman gain Kl(t).

Steady-State Kalman Filter

Since it can be noted that the Kalman gain trajectories tend to

their steady-state value rapidly (with respect to the averaging

interval) replacing the time varying Kalman gains with their steady

state value would appear to be justifiable. In additirn, if the

numerical integration of equation 13 can be bypassed. Thus a potential

r problem as numerical divergence of the generating differential equa-

tion when large value of Vw or Vv are used, is avoided.

The steady statQ covariance matrix V (t) positive definite

symmetric error must satisfy

d V (t)
dt - V(t) - 0 

(18)

therefore

0 26V +V V -1

06V•2 -v V~ V 1l (19)
~22 1l2 11l

0-V -vi V2V2 •12 Vv-

13



which simplifies to the following algebraic relationship

V -(Vi v)'
1l2 2 V

V - (vv (2 6Vt + V)) 1 /2  (20)

V -V V V 6
A22  f12 f11

L source listing of a steady state Kalman gain algorithm can be

found in appendix E. There are several distinct advantages associated

with a steady state algorithm. First, it is trivial to implement

since it only requires the algebraic computation of the gains found

in equation (20). These gains are formally substituted into the

I • estimation differential equ'.tion (14). This equation is solved numer-

ically using any method applicable to constant coefficient state

differential systems (see appendixG)o Secondly, a problem common to

all numerical integration methods is that they may diverge (ie:

induce a floating point error) for certain parameteric events. This

is particularly true when dealing with the error covariance differ-

ential equation found in Kalman filtering. The algebraic eqaation

found in equation (20) will produce an approximation error covariance

which cannot become numerically unstable. A numerical experiment

used to demonstrate the effects of an adaptive Kalman/A.G.C. philosophy

is treated using the steady-state algorithm. Again, the a priori

noise covariance shall be chosen to be in harmony with the A.G.C.

error meteric. The result of this experiment can be found in figure KSS-l

-------------------------14-



-2. The qualitative results obtained are similar to those obtained

using an uidaptive Kalman/A.G.C. algorithm. Due to it being purely

algebrai:, cannot diverge if its parameters are finite.

Tc show the utility of such a technique numerical experiments

were performed. The initial target information was identical to

that found in the Kalman filter test. However, the time varying

Kalman gains shall now be replaced by a steady-state approximation.

The first experiment, described in figure KSS-1, shows that the

steady-state algorithm error estimate does converge to an acceptable

error value over a wide range of V . The adaptive A.G.C. philosophy
w

was also integrated in a steady-state Kalman filter configuration.

The results of this experiment can be found in figure KSS-2. A

reference test using a lOdB decrease of a nominal signal to noise

ratio, namely 30dB, was assigned the parameteric value of V - V -

.1 and V - 1. It can be seen that erratic estimation behavior occursv

in the presence of strong scint 4 l.lation. As the a priori output

covariance parameter V is inuieased in harmony with increasing noise,v

the steady-state Kalman error gain decreases. The reduction in gain
results in reduced fluxuations in the fine line estimate during a high

noise condition. The adaptive steady-state Kalman gain algorithm is

an improved estimate.

15



Conclusions

The existing R.C.A. ambiguity resolution method has been tested

and found to perform satisfactorily when the received data is scin-

tillation free. These noise bursts produce extremely large estimation

errors and poor convergence properties, this is duo to their algorithm

minimizing only range error, with a fixed time-invariant weight (name-

ly the number 1).

The new algorithm using Kalman filter produces superior results.

It embodies the simultaneous minimization of both range and range-

rate errors and uses optimal time varying weights, namely covariance

information. It is forcefully felt that using Suggestion 2 as the

modifier, the Kalman filter algorithm would give W.S.M.R. a reliable

and flexible MPS-36 based r dot extraction system. In this config-

uration, system performance would be limited primarily by hardware

limitations intrinsic to the system.
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APPENDIX A

A pulse Doppler system has the ability to track moving
targets in relatively stationary clutter in the presence of
high energy noise. The spectral representation of a pulsePulse Doppler Ambiguit train with a given PRF and pulsewidth r is given by the sin
(X)/X function whose firs, zero crossings occurs at l/r and

Resolution the spacial frequency between adjacent spectral lines is
I/PRF. Thus at band (5650MHz -fa) a AJ = I iiz implies
a resolution of 0.029 yd/s and a PRF - 640 yields a

FRED J. TAYLOR spectral spacing of 18.56 yd/s between lines. If a pulse.
E iPaso, Te x s 9966 width of lps is considered, then there exists over 1500spectral lines in the interval V.fo, + i/r]. Thus a pulse

Doppler system is cursed by an abundance of ambiguous
spectral data about any arbitrary spectral line.

Abstract One ambiguity resolution technique that has been
implemented uses the method of invariant imbedding [ 1].

A daptlead alorilthm uunbu the method of i•ints andriaw The algorithm developed was a direct adaptation of a set of
th dsveled which ghiwutetm a hut £' utnets of nlp md • notes published by Bellman and Kalaba. Herein, the optimal
rmaw from W Dopplr duta. estimate was one that gave the "best" £2 fit to the observed

range data. Since range rate is often considered to be a
more accurate data source than range data, any optimal
estimate should be optimally fitted to range-rate data also.

Consider then the following problem in terms of the
following state variables:

xi(t) -actual range
x2 (r) =number of spectral lines (real number)
x 0 I(t) = observed range.

Observation dynamics:

range x, °() = x, () - e, (t),

eC (t) = measurement error (1)
range rate i 0 0(t) = -.i (t) - x3 (t)6 - ,

C20)= measurement error (2)

whre 6 = 18.56 if PRF = 640.

If an estimate x2 (number of spectral lines in error from
;i coarse trAck spectral line) is assumed to be constant over
at; obervation interval, then require

1 2 = 0. (3)

If a time-varying estimate of x2 (t) is desired, then x2 Q)

may be approximated by a power series in t whose
coefficients are chosen optimally. However, the additional
dimensionality requirements imposed on the solution proc-
ess makes this aprroach unattractive in general.

Defining
A , xA A 'estimation vector) (4)

A A eA T (estimated error vector), (3)

Manuscript received February 28, 1972. then

A+
This work was suppored in part under U.R.I. Grant 083-50-790-04. ýI = X10 + C (range estimate) (6)

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. AF-4. NO. I SEPTEMIER 1972 $91
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W.,- *,,,;1 MWm GT DATA UTIVAYD

N•t

AI] n( t Me) VA (,1)

i hl

[00 x10 +x2 - 2  (rane-rateestimate) zx ),W(,- 1 )~ 2  P,~+ 2

(spctrl ero esimae) -A P= W1, Wi - X1 0) =Pa, WI:, z(0),,•,(0) arbitrary

'7' (1 2)
Let it be required that an objective function J be and

P1,=2.P2 1 6+P, 1
2 W,-lI/w2  1 , P2-, P2, P

K L ~2, ~ 1'arbitrary. (3

minimized: Equation (13J) is solved off-line and stored to facilitate a
real-time estimation x (see Fig. 1). Since all the initial

/"= dr W 0,dgoa.conditions are arbitrary it is assumed that they would be
J 2"J I,llw / 0 ignl determined experimentally under actual mission conditions.

0 ~Finally, it is known from linear estimation theory that the
The necessary conditions for producing an optimal estimate optimal choice of W is the inverse of the measurement error
xQ~) are given by the Maximum Principle [2J, and they covariance matrix which should be used, when available, to
define the following two-point boundary value problem. admit a minimal variance estimate of x.

State equations:r.,"+X, ->/t Experimental Results

/• •, =•(8) Given are the following obs.ervations:

Costate equation: (9)t =x t -• t

On ehn eusdt(oleto-on budr vaue whr6--18.56, PRF=640, te[O, 5],andT=Sseconds.

One echiqu usd t sove wo-oin bonday vlue The noise sources e,(t) and e2(t) are assumed to be
p•'bles i te mtho o inarint mbddig [].The independent and normally distributed, N,(0, or2) and

imbedin eqatin iskon t beN 2 (0, 02 2), respectively. An initial spectral velocity error

p + 0(10)of 5 lines is assumed (i.e.,x 2 (0) = 5 --*92.8 yd/s error). The
•)r(, T..+•r(, 7" g~(CT),) =fr(C T)C) 10) actual velocity i,(t) is to be 5000 ydfs for all time, and

the actual range is described by x, (t)0 x1 (0) +- .i (t0t A
where A(7) =C (arbitrary class of functions) and r has the 10 000 + 5000t yards. The measuremeit noise err•r Vari-
assumed form r(C, p")=9(fl-T) P()C; P =pr. Substituting ances are to be (0, O) (no noise case), (102 , i 02 ), and (I 4,

into (1 0) yields the fixed-point boundary value problem 104), respectively. Thus the ideal estimation veer, r.i, if all
(thus bypassing the difficult two-point boundary value measulerent error could be suppressed, would be x1 (;)=

29
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Fig. 4. Optimal pin P2 2.

1`22(t) for ?(O)-

SI.IO

6.6.0 -12.I

time'
0 1 2 3 4 .

A
x1 °(t) and X2 (r) 0. The choice of W will determine the estimate requires minimizing both errors with respect to the
relative importance associated with minimizing el (range measurement covariance matrix, or in this embodiment, it
error) and e2 (range-rate error) which are W, and W2  will be assumed that W, = W2 , since a, 2 =_ , is optimal.
dependent, respectively. Thus a range-dependent estimate It can be noted from Figs. 2, 3, and 4 that the optimal

Swould imply W, *" WI, whereas the proposed ortimal filter matrix P(t) is sensitive to the choice of W. This

-•- TAYLOR: PULSE DOPPLER AMNIGUITY RESOLUTION M3
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Wa•nd noise sources N, aind N2, INI (0, 0) of Wanrd noise sources N1 and N, IN, (0, W and noise sources N1 aind N2 IN110,aind N0 (0, 011. 102) end N2(0o 2n. 100I) and N2(. 100020

sensitivity is reflected in the estimator's unstable behavior estimate P improves as X'2ý(0)'+0. In all cases, when
as W,' becomes much greater than W1s. As indicated in Figs. Wt -- W2 = 1, the spectral error indicator x2 possessed very

5, 6, and 7. the estimation tends towards the ideal estimate acceptable values and was superior to those found whenz(t) 2iSe, ýr) - x°(t)] , 0 and P2 " 0 as the noise is W = 12.8 and W2 = 0008 Similarly, the best range errortim

reduced and as Wel ted 1 It was also noted that the performance occurred when W& O W0 , which al Fees with
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the original hyputleses that an estimate based on both Rafrnera
range and range-iate data weighted jy an inverse convari-

ance relationship, will be superior to a welighted range III Palye, "An application of invariant imbedding smoothin .to
real time pulse Doppler ambiguity resollitton." RCA Rept.,

estimate only. A highly accurate range-rate estimate, in Moorestown, N.J.
terms of resolving pulse Doppler ambiguous data, results. 121 Alhans and 1Valb, Optimis Controa. New York: McGraw-Hit,

1966.
The achieved rtnge estimate may be used to augment more t31 Sal. Cptsmums Systems Contra Englewood Cliffs, N.J.:
classical pulse delay ranging methods. rrentic-ahll, 1968.

S, Fred J. Taylor was born in Wisconsin Rapids, Wisc., on April 28, 1940. He received the

B.S.E.E. degree from the Milwaukee School of Engineering, Milwaukee, Wisc., in 1965,
and the M.S.E.E. and Ph.D. degrees from the University of Colorado, in 1966 and 1969,tl esp~ectively.

lie was a member of the technical statf of Texas Instruments Inc. from 1969 to 1970,
and was awarded several patents during this time. lie was a Visiting Industrial Professor at
Southern Methodist University in 1970. Since 1970 he has been with the University of

1Texas at El Paso.
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F ~ 1 OENLP:"I Foiý ULILMU AS FILE 1
10 DIM G(4s3),X(10l)#Z(l01) APPEN~DIX D
25 DIM Q(41 50).S(4)
-.-0 LET A=0: LETr B=O: LET C-0O
40 LET 7110:LET D=18.56:LET TmO:LET Hin.05
so PRINT"MISSION TIME"; SOURCE:KAIMAN FILTER
55 PRINT 01,"MISSION TIME";
60 INPUIT NO
65 PRINT #1,NO
100 PRINT"EtIRST TIMES AND SCALE FACTOR";
105 PRINT 01, 'BURST TIMES AND SCALE FACTOR";
110 INPUT TO; T1;S
115 PRINT 4t1 1T0;T1;S
150 PRINT"INITIAL RANGE.. RANGE RATE... ACCELERfTION"i
155 PRINT #1, "INITIAL RANGE .RATE RATE .ACCELERATION"s

160 INFUTSO;S1;S2
165 PRINT 41,,SO; S1;S2
200 LET X=1:LET 1=0
220 LET RO=SO: LET R10O
250 PRINT"SIGNAL TO NOISE.. RANGE.. RANGE RATE";)
255 PRINT 01, "SIGNAL TO NOISE RATIO .RANGE .RANGE RATE"
260 INPUT V1;V2
265 PRINT #1 Vi; V2
280 LET N5=0: LET N6=O: LET N7=0: LET N8O: LET N9-0O
300 LET V1=10-^(V1/10):LET Y2=10,"(V2/1O)

F310 FOR S5=1 TO 3
320 LET Z=SO:GO TO 1000
330 PRINT Olt 'RESCALE ECHO"; S/(V1#"2); 1/(VV*2)j "1: Ili S/(V2#"2). 1/(V21,12)
350 PRINT"VW1.. .. VW2. .. . VOBS"
355 PRINT #1, "VW1 . VW2 .VOBS";

360 INPUT WSW9.W7
365 PRINT #1,W8;W9;W7

400 PRINT"RESCALE';
405 PRINT #1, "RESCALE";

420 INPUT S 9, S7 i

425 PRINT 111.58, 59,S7
500 PRINT'******"
600 PRINT fti:F'RINT #1:PRINT #1
700 PRINT P-1, "TIME RANGE ERROR LINE ERROR GAIN K1 GAIN K2"
720 PRINT 0~1
800 FOR I=1 TO NO!. 05
900 REM TARGET NOMINAL
.910 LET RO=SO+T*$1+T*T*S2/2
920 LET R1=S1+T*S2
1000 -REM TARG3ET
1020 LET N10: LET N2=0
1040 FOR P-K=1 TO 12
1060 LET N1=NI+RND(I):LET N2=N2+RND(I)

1080 NEXT NK IE E

1200 LET PJI=N1-6: LET N2=N2-6
1210 LET N'-$N.5+1:LET N6=N6+N1:LET N7=N7+N2: LET NSmN8+NlA2: LET N9nN9+N2A'2
1220 LET W=1:LET Wl.W7: LET W2=WS: LET W3=W9
1240 IF T<TO THEN 1300
1260 IF T->T1 THEN 1300
1270 LET R2=R0
1280. LET WS: LET W1=S7*W7:LET W2-S8*WS:LET W3-S9*W9

* 1:3,00 LET RO=RO*(1+W*N1/(V1,'2))
1320 LET R1=RI*(1+W*N2/(V2A2))

* 1340 IF 1>0 THEN 2000
1360 G0 TO 330
2().'0 REM PK-ALMAN GAINS
2020 LET (1=0: LET K2=0: LET K3-0
2040 GOSUD 8000 -38-



2100 LEG(2,1)=F1:LET O(2,2)mF2:LET 0(2#3)=F3

2140 LET Ki =H*F1 /2: LET.K2-H*F2/2: LET K3-H*F3/2K2160 GOSUB 8000
21S0 LET G(3*1)=F1:LET G(3,2)-F2:LET 0(3,3)-nF3
2200 LET KI=H*F1:LET' K2=H*F2: LET K3-H*F3
2220 GOSUS 8000
2240 LET rG,14,1)=F1:LET 0(4#2)wF2:LET 0(4#3)=F3 I
2260 LET A=A4-H*(G(1.1)+2*G(2,1)+2*0(3.1)+0(4,1))/6
2280) LET B=D+H*(i3(1,2)+2*G(2,2)+2*G(3,2)+G(4,2))/6
2300 LET C=C+H*(G(1,3),2*G(2o3)+2*G(3,3)+0(4,3))/6
2560 IF ABS(A)>1E20 OR ASS(B)>1E20 OR ABS(C)>1E20 THEN.7000
3000 REM STATE ESTIMATIONS
3020 LET K10: LET K2=0
3040 GOSUB 6000
3060 LET 0(1,1)=Fl:-T GCI,2)xF2
3080 LET K-i =H*F1/2: LET K2=H*F2/2
3100 GCISIB 6000
31270 LET 0(2,1)-F1:LET G%2#2)=F2
3140 LET K1=H*FI/2: LET K2=H*F2/2
3460 GOSUB 6000
3480 LET 0(3,1)=F1:LET 0(3,2)-F2
3500 LET K1=H*Fl:LET K2=H*F2
3520 GOSLIB 6000
3540 LET G(4,1)=F1:LET 0(4,2)=F2
4000 LET Z=Z+H*(G(1.1)+G(2D1)*2+G(3,1)*2+G(4,1))/6
40.20 LET X=X+H*(G(1,2)+GC2,2)*2+O(3,2)*2+G(4,2))/6
4040 IF AI3S(Z)>1E20 OR ABS(X)>1E20 THEN 7000
4500 LET T-T+. 05
4600 LET T5=I-INT(I/4)*4
4620 IF T5<>0 THEN 4800
4700 PRINT X,A/W11 B/Wi
4710 PRINT #1,I*H #Z-R2 ox A/W1 *BiWl
4715 LET S4=INT(I/4)

r4720 LET Q(S5,S4)=X
4800 NEXT I

430LET T=0: LET AO: LET BmO: LET C-f-:LET XinO: LET Z-SO
4:E:10T X1l :LET 1=0F4830LNEXT S5
A8:40 LET S56=0
41--5 () FCi:R S1=l TO) 3
4860 FOR S2=1 TO 25
4870 IF S6>=ABS(Q(S1.52)) THEN 4890
4880 L-tr S6=ABS(Q(S1 S2))
4890 NEXT S2
4900 NEXT Sl
49101 FOR S1=1 TO 3
4920 FOR S2=1 TO 25
4930 LET Q(S1.S2)=Q(SI.S2)/S6 !NORMALIZED SOECTRAL LINES
4940 NEXT S2
4950 NEXT S1
4970 S.TOP
49'80 PRINT ltI:LET N6=N6/N5: LET N7=N7/N5: LET NS=NS/N5-N6: LET N9=N9/N5-N7
4990 P'RINT 01#1MEAN AND VARIANCE... RANGElliN6jN8i "RANGE RATEllsN7iN9
5015 PRINT ftI.:PRINT 4#1
5020 PRkINT 41,,"1 SPECTRAL LINES IN ERROR"8

5025 FPRI NT fIt ,TAB (30)"0"
5 0 l,0 FOR S1l TO 25
5040 MAtT S=ZER
5050 LET 1=-2
5060 FOR M=1 TO 3
5080 FOR J1 TO03
5090 IF J=S(1) THEN 5200
5100 IF J=S(2) THEN 5200 39
5120 IF O(JS)<-I THEN 5200



5210 LET S(M)=IO: LET Im-2
5 2-20 NEXT M
5400 FOR J~l TO 3 I
53410 LET S(J)-3O*Q(S(J),S),3O
5420 NfEX-T J
5 t 00 R[INT it1,5*. 2; TA!3C(3)); *'TAB(S(2))j "W's TAB(S(l))l *
S60)0 NEXT S
5;700 00 TO 100
6-000 REM STATE FUNCTIONS
60210 LET F1=RI+A*(RO-(Z+K1))/W1,D*(X+K2)
6040 LET F2=E:*(RO-(Z.IK1))/Wl
6100 RETURN
7000 PRINT"ERRi1R DETECTED"
7 )0 -9- PRINT 01, "ERROR DETECrED"
7020 PRINTI; ZiX; A;BiC; W2 W3i Wl
7025 PRINT Ole Z; X; A;8; CiW2; W3j W
7040 00 TO 30
8000 REM KALMAN FUNCTIONS
8010 LET F1-2*(B.K2)*D-CcA-Kl)'02u/W1+W2
80210 LET F2=(C+K3)*D-(A+Kl)*(B+K2),Wl
8030 LET F3=W3-C((DK2)^2)/Wl
80)40 RETURN
9900 CLOSE I

9999 END

40



APPENDIX E

B~URST TIMES AND SCALE F"-CTOR1 OPoN"IB:I" FOR OTU SFL

30 ETA=0: LET B0: LET C=O
40 LET Il=0:LET D=18.56:LET TinO:LET Hin.05
50 PRINT"MISSION TIME";
55 PRINT 4$1,"MISSI0N TIME";j SOURCE: STEADY STATE
60 INPUT NO KALMAN FILTER
65 PRINT -"1,NO
100 PRINT"ELURST TIMES AND SCALE FACTOR";j
105 PRINT 0t1, "BURST TIMES AND SCALE FACTOR";j
110 INPUT TO;TI;S
115 PRINT gI, TO, TI;S
150 PR INT"I N IT IAL RANGE. .RANGE RATE. .ACCELERAT ION j
155 PRINT #1D "INITIAL RANGE .RATE RATE .ACCELERATION"i

160 INPUTS0;S1;S2
165 PRINT #1,S0;S1;S2
200 LET X=1:LET I=0
220 LET RO=SO: LET R1=0
250 PRINT"SIGNAL TO NOISE.. RANGE.. RANGE RATE";j

r255 PRINT #1, "SIGNAL TO NOISE RATIO . RANGE . RANGE RATE"
260 INPUT V1;V2
265 PRINT #1,V1;Y2
270 LET N5=0: LET N6=0: LET N7iO: LET N8-0: LET N9inO
300 LET V1=10N(V1/10):LET V2in10^(V2/1O)'

30FOR S5=1 TO 3
30LET Z-SO:GO TrO 1000

3`3 0 PRINT 4*1, "RE3CALE ECHO"; S/(V1^2); 1/(V1^2)s"1: IliS/(V2,'2)i 1/(VV12)
350 PRINT"VW1. ... VW2. ... VOBS"

o 420 INPUT W9, W9 7
425 PRINT #*1,W8.S9.S7
4 00 PRINTESAL's

o 600 PRINT etl:PRINT 1$1:PRINT #1
700 PRILNT #~1, "TIME RANGE ERROR LINE ERROR GAIN-KI P ' K2"
720 PRINT 0~1

0 800 FOR I=1 TO NO/. 05
900 REM TARGET NOMINAL
910 LET RO=!E0(+T*S1+T*T*S2/2
920 LET R1=Sl+T'*S2
1000 REM TARGET
1020 LET N10: LET N20O
1040 FOR K=1 TO 12
1060 LET N1=NI+RND(I):LET N2=N2+RND(I)
108::;0 NEXT I-,
1 100 REM NOISE GEN
1200 LET N~t.Jl-6: LET N2=N2-6
1210 LET N5=tq5+1:LET N6=N6+N1:LET N7=N7+N2: LET N8=NS+N1^2: LET N9-N94N2A2

410 1220 LET W=1:LET W1=W7:LET W2-WS:LET W3=W9
1240 Ii77 T<(TO. THEN 1300
1260 IF T>T1 THEN 1300
1270 LET R2=RO
1280 LET W='S: LET W1=S7*W7:LET W2-SS*WS:LET W3-S9*W9
1300 LET RO=RO*(1+W*N1/(V1AN2))
1320 LET R1=R1*(1+W*N2/(V2A*2)) 4

134 IF1>0 THFN 2000



2000C~ REM KALMAN GAINS
2020 LET B=SQR(WI*W3)
2040 LET A=SQR(WI*(2*D*8+W2))
2060 LET C:=A*B/(D*W1)
2560 IF AE:S(A)>IE20 OR ABS(B)>1E20 OR ABS(C)M>E20 THEN 7000
3000 REM STATE ESTIMATIONS
3. 3020 LET K1=0: LET K2=0
-r:040 Cr,'SLUB 6000
3060 LET 0(1,1)=FI:LET G(1,2)=F2
_3080 LET KI=H*FI/2:LET K2=H*F2/2
3100 GOSUB 6000
3120 LET G(2,1)=FI:LET G(2,2)=F2
3140 LET .I=H*F1/2:LET K2=H*F2/2
3460 GOSUB 6000
-4S0 LET 0(3,1)=FI:LET 0(3#2)=F2
3500 LET KI=H*F1:LEr K2=H*F2
3520 GOSUB 6000
3540 LET 3(4#1)=FI:LET 0(4#2)-F2
4000 LET Z=Z+H*(G(1, 1)+0(2,1)*2+G(3,1)*2+G(4, 1))/6
4020 LET X=X+H*(G(1,2)+G(2,2)*2+O(3,2)*2+G(4,2))/6
4040 IF ABS(Z)>IE20 OR ABS(X)>IE20 THEN 7000
4500 LET T=T+. 05
4600 LET f5=I-INT(I/4)*4
4620 IF T5<>O THEN 4800
4700 PRINT I*H;ZjXiAiB;C;W2iW3iW1
4710 PRINT#l,I*H ,Z-R2 oX ,A*W1 vB*W1
4720 LET S4=INT(I/4):LET Q(S5,S4)=X
4800 NEXT I

H 4810 LET T=O":LET A=O:LET BmO:LET C-O:LFT X"O:LET Z-SO
4820LET X=1 :LET 1=0
48130 NEXT S5,
"4:340 LET S6=0

i 4850 FOR S1=1 TO 3
4 4610 FOfR S2=1 TO 25
4070 iF S6>=ABS(Q(SI,S2)) THEN 4890
4E,-:::( LET S6=ABS(Q(S1,S2))
4 _0NF S2
4'900) h*E... SI
491o FOR S1=1 TO 3
4920 FOR S2=1 TO 25
4930 LET Q(S1,S2)=Q(S1,S2)/S6 !NORMALIZED SOECTRAL LINES
4940 NEXT S2
4950 NEXT SI
4970 STOP
49:3:0 PRINT 4tl: LET N6=N6/N5: LET N7=N7/NS: LET N8=N8/i5-Ns: LET N9SN9/N5-N7
4990 PFRINT it, "MEAN * VARIANCE.. RANGE"i N6j N8; RANGE RATE.. "1N7; N9
500') PRINT #1
5010' "!-. , C

5025 PRINT 4~1pTAB(30); 1011

5030 FOR S=1 TU 25
5040 MAT S=ZER
5050 LET I=-2
5060 FOR M=I

o 50$':0 FOR .J= 1 "iJ 3
50'90 IF J=S(1) THEN 5200
5100 IF J=:(2) THEN 5200

S'5110 IF J=S(3) THEN 5200
512C IF Q(.,)<=I THEN 5200
5140 LET I=)(J#,S): LET IO=J
5200 NEXT J
5210 LET S(M)=IO:LET I1-2
5220 NEXT M

?- 5400 FOR J=1 TO 3 42
",*', --•r : I )--.:',,eh•~(..• J), S)+30 4



50500 PRINT #1IS*, 21TABE(S(3))i 'W'I TAB($.(2))1**";TAB..S(l.
7,600 NEXT S
570k GO TO 100
< 6000 REM STATE FUNCTIONS
6020 LET FI=RI+A*(RO-(Z+K1))/WI+D*(X+K2)
6040 LET F2=B*(RO-(Z+K1))/W1
6100 RETURN
7000 PRINT"ERROR DETECTED"
7005 PRINT #1, "ERROR DETECTED"
7020 PRINTI;Z;X;A;B;•CW2;W3;W1 III
7025 PRINT #1, Zs X;A;B;C;W2;W3iWI
7040 GO TO 30
9900 CLOSE I
9999 END
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* Con". a mtet. 0l. Vol. 2. pp. 1054-IS. Pqapamo Prn, 1975. Printed in Omut Britain.

ON THE COMPUTATION OF KALMAN GAINS

FRED J. TAYLOR ,

Department of Electrical Engineering, University of Texas at El Paso, El Paso, Texas 79963,
U.S.A.

(Received 13 May 1974)

Abstract- -Modem filtering methods often require high order matrix differential equations to be
solved. Standard numerical methods are traditionally slow and prone to be unstable. A numerical
approach to the problem of computing the Kalman gain matrix is developed which is both numeric-
ally efficient and stable. If a piecewise approximation of the Kalman gain matrix is desired,
efficiencies of many orders of magnitude can be realized.

INTRODUCTION

Contemporary systems literature is rich in the study of minimal variance filtering theory
as applied to linear constant coefficient differentia! dynamic system corrupted by stationary
white noise[I-3].

The high level of activity in this area has produced numerous papers on the utility, as well
as the dangers, of filtering. However, in the embodiment of literatere, little attenticon has
been given to the numerical problems associated with computirng ••c tttquired tikx,.- va.ying

I:L• matrix gains (Kalman gains). Such problems are usually trea ed through neo-A.assic
Runge-Kutta, Milne, Adams, etc. methods. They are often slow. lht, can sometimnes be
forgiven if a non-real-time filtering is sought. Besides being slow, they are inherently
unstable. This cannot be tolerated in most applications. Therefore, a computationally fast
and stable algorithm shall be sought.

Problem

Let a n dimensional message model be given by

*(t) Fx(t) + Gw(t) (1)

with r observations given by

z(i) = Hx(z) + v(t). (2)

!.et the white noise processes be defined as usual.

SE(x(O)) = x0; E(w(t)) = E(v(t)) = 0

var(x(O)) =- V.(0); cov(x(O)w(t)) = 0

cov(w(t)wT (¢)) = V,.6(t-?) (3)

cov(v(t)vT (T)) = T)(• -

cov(w(t)vr(r)) = cov(v(t)w,(T)) 0.
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100S FRED J. TAYLOR

"he minimal variance estimate of x(t) say i(t), is known to satisfy [3]
x(t) - Fe(t) + K(t)[z(t) - H.•()J (4)

K(t) - VA(t)Hr V- 1 5

where R(t) is the extimation error (i.e. 9(t) . x(t) - i(t)) and V(t) is the error covariance

matrix satisfying
.t(t) = FV*(t) + Yk(t)F T - V•(t)H T - 1 HV~t) + GVG T  (6)

V(o) = VAo).

The heart of the filter is quantifying the error covariance matrix Vadt) for t > 0. This is

in general a non-trivial numerical problem. However, a recent work of Davison and
Maki[4], with improvements by Taylor[5], can be adapted to provide a rapid stable
solution of equation (6). It utilizes an approach suggested by Sage[3] (but also discouraged
by that author) which interprets equation (6) as a 2n x 2n first linear differential system.

Consider, for N = 2n, a N dimensional vector 4(t) satisfying
F[ - T IJ TVH x ý(t) A-gt(t)4(t). (7)

- GJVWGT F J
N x N

This solution of equation (7) is characterized by the matrix exponential

exp(Mt) = __ 2 (t). (8)
NxN

It can also be shown that

V1 ) =[ i2 1 (t, to) + 0 2 2 0(, to)Vt(O)][41 1 (t, to) + 01 2 (t, t0 )V1(0)]-. (9)

Therefore, computing Vv has been converted into a problem of computing the n x n
matrices 01,.(t, i = i.2,j = 1,2. The following algorithm can be used to efficiently produce
those desired matrices.

Numerical solution

The modified Crank-Nicholson matrix approximation is given by [4,5]

exp(Mh) = C + 0(W.)

where

C = [I .- hM/2 + h /12]-'[1 4- h.f/2 + h 2 =/12] (10)

L.
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where h is a scalar (step size) and O(hs) denotes a fifth order of error accuracy, (Runge--Kutta
RK4 methods provide only fourth order accuracy). The commutative property of the
fundamental state transition matrix exp (9t) admits the generation of 0 ,jft - 1,2,
Sj 1,2, sequentially since

exp(ah).-- C

exp(02h) - C2

:' (11)

,-xp(.T) = CN.

For some prespecificd step size h, suppose T - 21h. A binary coded scheme to produce
the requirc. powcer of C, namely

C2 =C. C1

C3 = C2. C1

C 4 = C1. C,

etc.

would require 2'N' multiplicative operations. If 21 >> N2, it is shown in (5) that from the
application of Bocher's formula, this can be redured to only 2WN2 multiplicative operations.

Bocher's formula yields the following results :t

(i) Let C1, C2,... CN- be computed.

(ii) Define

i (N - 1,0) - T,
m(Nv - Z, 0) = (ac(N - 1, 0) T, + T2)/2

N- I •
ax(0,0) - ( t (i, 0) T j + TI)/N a_

where T, = trace (C i 1,..., N - 1. .

t Bocher's formula is erroneously transcribed in Ref. (6J. It is derived in Appendix A.

ft,
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(iii) Deflne for m > 0

aIN - I,m) - at(N - 2, m - I) - a(N - 1,O)a(N - 1, m - I)

a(N - 2,m) = a(N - 3,m - 1) - o(N - 2,O)a(N - 1. m - 1)

000, M) =0 - 0(0, 0)(X(N - 1, m - 1)

(iv) Then
)-I I

CI++N Y a(i,m)C',00 m • 2k - N. ':
i-0

Once (i) and (ii) have been precomputed, all successive powers of C can be generated recur- *

sively. Besides realizing a speed improvement, the entire program could be effectively
embedded into the naw available microprogrammable minicomputers. Thc oposed
algorithm would require N` + N2 memory word locations to support the recursive opera-
tion. It is interesting to note that the developed algorithm does not require production of
the eigenvalues of C. Therefore, one of the main objections to fundamental solution bMsed
techniques, namely solving the characteristic polynomial det (A! - C) 0 0, is not an issue.
The solution technique proposed is outlined in Fig. 1.

[ v'°)'r"'"'%'•• ! KALM4AN GAINS

REAL TIME

t-h C

E UTE IN I I PAlI. T ETERS (S2 Si ~~~~~~~(Ckl |÷€ =1v(ni)atO,- ... • I' - I

S... I N.

UDT PA .. 'ITr SIIS7)
S~COMPIVTE C'

Ph 4 I I• €I.l(.j~ "i"
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Fig. I.
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Heuristic extension

Kalman gains are usually most active near t = 0. As t - oo, K(t) tends exponentially to
some steady-state value provided the plant-observer pair are stable. Therefore, it would
seem reasonable that a variable step-size algorithm could be developed which would
accelerate the solution process. The variable step-size elgorithm should give a dens'! time
domain cover where K(t) is most active (i.e. t : 0) and be sparse where K(t) is inactiv,
(K(t) - ao). Consider then the construction of an algorithm which will produce a piecewise
constant approximation to K(t) Let this suboptimal gain matrix satisfy the following
criterion:

Criteria (piecewise continuous approximation)

Let KV(t) be a piecewise continuous approximation of K(t) over t, :9 t - t5 +1 , where

IIK*(t,) - K(t)1I < 5 (12)

S> 0. Here & serves as a prespecified admissible error bound on the approximation process.
A small (large) c would result in a finely (coarsely) refined approximation of K(t). This thesis
can be effectively accomplished by means of the binary coding scheme previously mentioned.
Consider the following "variable interval-E meteoric" Kalman gain algorithm.

Define the matrix norm of a N x N square matrix A to be

1{AI = max {lAh} .. .

i 1, 2,..., N (13)

1, 2, .... , N.

Procedure

No. I Choose h sufficiently small so that 0(hs) error is tolerable

No. 2 Compute C' exp (Mh)
No. 3 Compute C2 '' - C21. C21 ; I = 1,2,3,...

No. 4 Test: If 110C2 " C2
,11 < C

(i) if true

let C21 • exp (st)
for 21h t < 21" "h

(ii) if not true

reduce search interval to some I such that 2'h _! I < 2"* 'h - 6 where

0 < 6 < 2'h.

Return to No. 4.

Some obvious interval reducing methods would be an equal interval, dichotomous, or
Fibonacci search methods. However, from a computational efficiency viewpoint, the
following approach has proven most effective.

"a. . H
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TIME AXIS SEGMENTATION

"-U---- -
K

1 1+11+1 1+1 1+1 2 2Ah sec

4 3 2 1 0 INDEX r

Fig. 2.

Suppose C" has been computed and accepted at time t - 2'h. Suppose further that the
last S computed matrices, namely C2t, C 2

(1- 1 . OfC2 "), are stored in memory. Compute
C2(+ "•as in No. 3. If it fails test No. 4. Reduce the search interval by testing C-" sequentially
against

Czf+21-r) = C21. C2(-' )r = {1, 2 ... S}. (14)

Here C21 + 2'-r) can easily be generated by direct binary operation from matrices found in
memory. The reduced interval is a monotonically decreasing sequence over the index set r.
It is characterized in Fig. 2. In practice, the number of previously computed and stored
matrices, indexed by 5, is to be determined experimentally. Since memory requirements
are generally considered to be a secondary goal when compared to computational speed,
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"cne can usually be optimistic in one's choice of S. If it should turn out that the choice of S
was insufficient to support the piecewise constant approximation process, the required

powers of C can be synthesized directly from binary operations on C. Therefore, a solution
is always recoverable. The suggested approximation -:ocess is depicted in Fig. 3.

Steady-state Kalman gains

Steady-state Kalman gains can now easily be computed. Using a a test, the Kalman gain
at some time t, - 2Ah can be rapidly computed using base-2 algorithm. The Kalman gains
are assumed to have non-oscillatory behavior, for t1 sufficiently large; then the steady value
of K(t) may be assigned the value K(t,+ 1) if,

IIK(t1+ 1) - K(t)II < a, 4 = 21h, a > 0. (15)
If the heuristic algorithm is used, which maintains a history of the last S "power of C"
operations, namely

tChl, C2it- woul. Cbl-e o 

,!

then it would be reasonable to assume that the last S Kalman gains are also stored in
memory. Let the following n x n gain matrices be found in memory

{K (t,), K (tj- 1, ...... K (tl-s)). 0 )'

Consider the Kalman gain matrix to have obtained a steady-state value if

11 EI K(tj_j)ll < a/(S + 1) (17)
i=O

and let the steady-state value of K(t) be assigned the value K(tj).

KALMAN FILTER GAIN CONTINUOUS AND PIECEWISE CONTINUOUSGRAPH I CONTINUOUS ALGORITHM RUN TIME 29N MSEC
GRAPH 2 EPSILON 0O RUN TIME 72 MSECGRAPH 3 EPSILON :,1 RUN T IIME 12 WC
GRAPH 4 BASE 2 ALGORITHM RUN TINE 6 NSEC

I2
E p

TIME IN 10-3 SECONMS (Xi I

Fig. 4.
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Example I (scalar example)

Find the Kalman gain associated with the system

x -- -0.5x + w u !t5 2.048

Z=X-+V

cov(w(t), w(r)) = 26(t - T)

cov(v(t), v(r)) = 1/46(t - T)

cov(xO), x(O)) = 0.

The solution to the above problem can be found in Sage (p. 244), and is
ti

K(t)= V( V[1 
=-1/2+ V/2I3it tanh(J I M + tanh- )

The solution obtained using the new proposed algorithm, over u <5 t < 2.048, in steps of
0.001 sec, is denoted in graph I of Fig. 4. It was always accurate to within 8 decimal places.
It required 294 msec to complete the solution. Using the heuristic technique cited in the
paper, an epsilon of c = 0.01 and e = 0.1 were tested (see equation 12). They are graphs 2
and 3 of Fig. 4 respectively. The test associated with e = 0.01 produced an excellent piece-
wise constant approximation to K(t) in only 72 msec. Using the fastest algorithm possible,
namely the base 2 algorithm, an approximation of K(t) as t - oo and produced in only 6
msec. This result appears as graph 4 of Fig. 4.

Example 2

Given

k(t) 0 + W(t)

z(1) = (100)x(t) + v(t)

where

V, Ii1',o, =1!

The Kalman gain matrix K(t), over 0 < t < 1, was computed using conventional RK-4 as
well as the proposed algorithm, using a step size h of 0.01 sec (the solution obtained using
the new algorithm can be found in Appendix B).* Using a RK-4 approach, a solution was
obtained in 38,320 msec. Using the new algorithm, a solution was obtained in only 16,312
msec.t Furthermore, any reduction in step size h caused the RK-4 method to diverge.

However, the proposed algorithm was found to be stable and independent of the choice of h.

* Appendix B available from author on request.
t 15,455 msec where needed to compute CL, L - 3, 4..1. 100; 857 msec where needed to initialize the problem.

I.
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If the order of a system is increased frorrn n, to n2, there would be a resulting increase in
time expended on the computation of K(). Suppose it took K, sec to compute Vj(t) for a
n, x n, system. Then computing Vt(t) through R-K methods would require approximately

-n8(

more multiplications to generate the right-hand side of

= FV(t) + V.(t)FT  t(V()H T  Il,)+G G.

Since there are

(n2

more integrals to solve, it would take approximately (modulo housekeeping programming)

9!ý + (n)2)2

seconds to compute V1Q) for the n2 x n2 system. The proposed algorithm would require
p ~' 3

2n, (Iý

more multiplications to construct

C- ICI = •: l(:

and approximately

•n,-1

more to compute

(t) = 021 + 2 2 VA(0)][1,,1 + 0, 2V11(0))'

If it took K2 sec to compute the solution of a n, x n, system, it would take approximately

K2[4( '3) + (-)3]

seconds to solve the n2 x n2 problem. Therefore, there would be a general speed improve-
ment of(for n2/n, > I)

KFýn2ý4
Kt 8 4+..

nn I 2K , "

+, (ý3]

in favor of the proposed method. In terms of 3rd order benchmark problem, this speed

" A..E.. Vol. 2. No. I --H
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improvement factor equates to approx. 4. This can be a meaningful savings when the
computation times become long.

However, the heuristic algorithm, previously discussed and tested in example 1, has
been shown to be a great saver of computer time. Several orders of magnitude may be
saved if a piecewise continuous approximation of K(t) is acceptable.

CONCLUSIONS

The theory, methodology, and supporting examples of a new Kalman gain matrix
algorithm have been presented. The results to date are most satisfactory in terms of accuracy
and speed. The heuristic algorithms discussed have prove, to be a very worthwhile trade
off between accuracy and speed. Finally, an effective approach to the problem of estimating ,
steady-state gains was discussed and supported with an example.

The developed algorithm and sample output is available from the author. It is coded in
Fortran IV and appears in three parts. The first part is a program dedicated to the generation
of the required powers of C. The second part interprets the powers of C as a Kalman gain
matrix. The third part is a general matrix package. The program currently will handle a
10th order system but can easily be expanded upward.
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APPENDIX A

Bocher's.formula

From the Cayle!-Hamilton Theorem, a n x matrix A satisfies

A"= oo,ol + aj~oA + . . . + - 2,0 A"- 2 
+ al-I.oA"-1

then

An+t-- A".A - (oa0,0A + j.oA. + + -t,A - I)A
= (Ao.oA + (xc0 oA + ... ) + .- _t.oA"

- (to.0 A + 1 o0A 2 + + at. o(o.ol + at1.0A + ... + a,- .oA"- 1 ).

Il
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Collecting terms, and defining A"m to be

-A' " 0o + arl,,A + + A

one obtains

0i.t 1 O.+- 1,0 010,O

0,Il + a,-O,O +" -,O

Continuing in this manner, the following inductively follows

1-0

where

CXO.m',- o I,. - L1O,0

".M lot.0

in - a , rn - ,.-- I + m- Iw-• I inN- 1,0.

• I,

pt i' .I



APPENDIX G

TRA1NSIENT RESPONSE ANALYSIS ON MINI COMPUTERS

INTRODUCTION

Controls engineers have through the years, found the

computer to be , valuable, if not indispensable tool. He

has found ways to harness the power of both analog and

Aigital devices. Hundreds of thousands of hours have been

devoted to thl study of control systems by computer methods.

Simulation has become the rule rather than the exception.

Many numerical integration techniques have been d~veloped

to accomplish the required simulation. In a recent work

of J. Reitman, he noted [1].
"Historically, the control system engineers developed the

•:.,•simulation methodology as an adjunct to the development ofanalog computers. Now extensive use is made of digital and

hybrid digital-analog computer systems. To make the transition
from analog to digital computers easier, a number of digital
computer simulation languages have evolved: Mimic [2], [3],
Midas [4], Pactolus [5], CSMP [6], [7], and CSSL [8]-[10]"

These simulations are performed on large to medium size

computers. The recent availability of mini computers

however has had very little impact in simulating the re-

sponse of large dynamical systems. This is unfortunate

when one considers the wealth of interactive 1-0 devices

which would make simulation a highly animated experience.

There are several reasons vhy the mini has fallen short

as a simulation tool. Many of them are based on economics.

However, from a'technical point .,f view it can be noted

from those who have attempted to do system simulation on

a mini, become aware that a 16 bit word is often too small
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to avoid the "curse" of numerical instability. Here a dou-

ble precision 32 bit word Cfloating point) often numerically

truncates the answer at each iteration of a numerical inte-

gration scheme so as to cause the answer to diverge or be-

come a poor representation of the true solution. Of course,

high level languages can be written to work with a 4 word

(64 bit) floating point format. However, for the purpose of

simulation the resultant routine is prohibitively slow. To

overcome this problem a numerically stable and/or speed, an

algorithm is presented which will overcome this cited numer-

ical problem of conventional integration methods and thereby

make it suitable for mini computer use. It is. especially

designed to efficiently compute the response of a linear

constant coefficient control system to the common test inputs

of (1) as step (2) a ramp, and (3) a constant acceleration

input.

STATE VARIABLE MODEL

Let it be assumed that the control system under consi-

deration satisfies the following state varir.ble equations:

plant p(t) w A x(t) + bu(t) : x(0) - 0()

with observations

y(t) - Cx(t) (2)

where "o" means d/dt and x(t) and y(t) are n and m vectors

respectively. The control u(t) is to be considered to be

one of the following conventional test inputs.
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0- y(t) =unforced response
(impulse response)

u 1 )= C y(t) - step responseonse)

Ct = y(t) -ramp response

Ct 2 - y(t) = acceleration response-F-

The proposed system is diagrammed in Figure 1.

u
T n integrators

Consider for the moment the following special cases

a) u(t) - 0

then the system equations become

R(t) - A x(t), y(t) - C x(t) '4)

b) u(t) - c

defining Xn+l (t) - u(t) = c, and noting

0 o (t) o , ~ (0) - cXn+1 -- 0, xn+1

the state equations can be written as

( t) xt b X(0)4

X~~) 0 0n+l(t n+(0
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and y (t) * [C 0] x (t) 1
Xn4l (t)J (6)

c) u~t) *ct

def ining x nl-(t) *u~t) -ct

Xn+ 2 (t) R- 1n1(t) *c, xn+1 (O) n0

and noting

xn+2(t) *0, xn+2 (0) -c

the state equations becomes
I e

~()b 1 0 x(t) x(0)

~n*1 t) - 0 0O1 1 x 1 (t) x 1 ( 0 (7)

0 0 0 x x 0) -

Inn+2(t) n, 2 (t) n+2(O)

and y(t) - [C 0 0] x(t)1

[ X t 1  
( 8 )

d) u~t) - ct2 /2

defining x n+i(t) - u~t) =ct /2

Xn+2 Ct) = n+lit) -Ct, Xn+1(O) -0

Xn+3 t) 0 Rn+2(t) " c P xn+2(0) -.0A

and noting

Rn+3(t) w 0, xn*+3(O) c

the state equation becomes

__~~~I~~=~.48
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0(tW AIbl 0 x (t) x(0) 0I
S4 - -4-t- - - -

xnit 0 90 1 i vo x ~t (0iC) 0

x 0 o 1e'1 x~(t M ) x,1 (0) 01
n+3 2 n+ n 2

and

y(t) -C 0 0 0o x(t)IXn+ 1 Ct)
Xn+lCt) 

(10)

Xn+3(t)

The equations found in (a) thru (d) are called the "aug-

mented state equations" and can be generalized in terms

of an

(i) augmented state vector, say X

(ii) augmented plant matrix, say A

(ii) augmented observation matrix, say C

such that 4 o
X(t) = A X (t) (11)

y(t) = C X (t) (12)

Equations of the form of this can be solved through

direct application of the "statp transition matrix" or,

as it is often called, the "matrix exponential",

[11], [12]. This matrix is denoted

exp (At) (13)

defines the solution of (11) to be
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"X~t) - exp (At) X (0) (14)

Several methods have been proposed which allow the user

to compute the required matrix exponential. They are:

1. Liou method [13]

-12. (sI-A) method [14]

3. matrix inversion Lemma method [15]

4. Davison method [16]

50I
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It is the Davison method, due to its numerical

stability, which is particularly attractive. It generates

the following closed form representation of exp (At) over

some given step size h, namely.

exp (Ah) • (I -hA + h2A2 1 CI + hA + h 2AJ (15)
2- -rT- T- -IT-

The ability to define the matrix exponential over

some small interval h is not a handicap in that it is

well-known that

exp (A2h) - exp (Ah) *exp (Ah) .(16)

exp (AWh) = exp (A2h) *exp (Ah)

and so on. In general, X(kh) can be computed recursive-

ly as follows

X(th) - exp (Ath)X (0)
(X7)p(

= exp (A - 1)h) exp (Ah) X (0)

recursive

An efficient technique using Bochers formula has

been published by Taylor [17].

However, those performing simulation on a dedicated

mini are usually interested in resolving the trajection

compactly in time during the transient period and

allowing the resolution along the time axis "slip" as

the solution approaches steady state. Of course, it is
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assumed that the amplitude accuracy will be preserved

independent of the time axis resolution. The algorithm

proposed is extremely useful for such applications in

that it can accelerate along the time axis at a very

rapid rate. That is, suppose the current solution is

x(zh), where

x(th) - exp (Ath) x (0)

and y(th) - C X (th)

If exp (Ath) is stored, then the solution as 2th can be

obtained by simply forming

exp (A2Lh) - exp (Alh) *exp (AWh) (18)

and jenerating

X(ZUh) = exp (A2Mh) X (0)

In general, after M operati.ns, starting at x(0),

X(2M'lh) can be obtained, Thus the time axis can be

scanned in base 2.Asa byproduct, it can be noted that for

M small, the solution is highly refined near t - 0. As

M increases, (suppose the trajections are asymptomatically

stable) the time axis in the steady-state region is

coarsely refined. For example, consiad-r the Fimple

process R(t) - -x(t), which for h chooses to be .1

seconds, has the response x(th) = exp(-th)xo (see Fig. 2)
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Base 2 algorithm

Suppose that further amplitude resolution is desired.

This could be achieved as follows (see Fig. 2). Suppose

the solution currently resides at i = 8 (t = .8) which

was the result of operating on the previously computed

exp (4x) with itself. Suppose exp (2x) remained in

memory, this would allcw the user to compute exp (6•)2

exp (4y) = exp (21) and so on. The algorithm present in

this work allocates additional storage (called the

"push - down" stack) to allow the user to create a more

dense solution space than available with the direct

base 2 algorithm.

One last feature of the proposed algorithm shall be
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dCVeloped. From the theory of infinite matricis, it can

be shown that the steady state step response of the

original system (equation 1 and 2) is given by

y(Steady-State) - C[I - exp (Ah)]] bh [ ]. (19)

Therefore, if one is simulating a step response,

he may also choose to resolve his answer in terms of a

percent of the steady state response. That is, suppose

R(t) - -x(t) + 1(t) , x(0) - 0

yMt) = x(t)

Therefore y(t) = 1 - exp(-t) or y(steady state) = 1.

Also, if h = .01 then the steady state approximating

equation yields an answer of 1.-005008333 1 1. If the

user desires the amplitude resolved to at least 10% of

the steady state value then he would require that no two

adjacent amplitudes, say y(th) and y(mh), where m is the
successor of k, differ by no more than 10% of 1, or .1.

Suppose exp (A0), exp (A(L-l)), through exp (A(i-r)) are

stored in core. One would test a base 2 "Jump" to

y(2U). If ly(2t) - y(t)l>.l then generate y(t4t-l) =

exp (At) *exp (A(Z-I)) x(0). If Jy(÷t+-l) = y(x)l > .I,

test y(t) against y(X+t+2) and so on and see figure 3.
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Example

The following simple example shall be used to demonstrate the

salient features of the developed algorithm. A second order under-

damped system is considered and is given by

i) d2z(t) + 1.5 dz(t) + Z(t) - l(t)
dt 2  dt

z(O) = 0 , dz(O)/dt = 0

ii) y(t) = x(t)

The solution is known to be given by
2 i v'r3t

y(t) 12- sin + 60')

The state representation of the above .system is

*()- o(t) - t) 15~ 1t Ax + bu(t)

x(t) =[z (t) x(O) - [0]
[dz~t/dt]

y(t) - [1 0] x(t) = Cx(t)

The augmented state variable representation which simulates a step

response is (see equation (5))

00 1 0 0

X(o - X(t) -1 -1.5 11X(t) X(o) -
00 0

y(t) = CX(t) - [100] X(t)

The developed algorithm requires the user specify matrices A, C,
and the vector X(o). If a modulo 2 simulation is desired, the user

must supply
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a) step size Dt

b) terminal time

c) set the size of the push-down stack to one "1".

If a modified modulo 2 simulation is desired, the user must supply

a) step sizeAt

b) terminal time

c) choose desired size of push-down stack

d) choose desired percent resolution

e) members of x(t) to be resolved.

It should be noted that the resolution test on state x i(t) is based

on a given percent of the steady state value of that state.

Therefore, only those states which result in a finite steady state

value should be considered as candidates to be resolved beyond the

modulo 2 resolution.

The problem under study shall be approached two ways. A

modulo-2 and modified modulo-2 solution shall be presented. For

the example under consideration, the steady state value of xW(t)

Sand x 2(W (using equation (19)) was found to be .999928 a 1 and

8.40455 x 10 -3 a 0 respectively. The state x (t) shall be chosen

to be resolved with 15% of its steady state value. That is, no

two successive values of the modified modulo-2 simulation will

differ by at most .15. The results of these two simulations are
summarized in figure 4. It should be noted that modulo-2 algorithm
is an accurate, but coarse, representation of y(t); whereas the

modified modulo-2 algorithm is a vastly superior representation of

the actual y(t). A more highly refined algorithm is required by
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increasing the size of the push-down stack and decreasing the per-

cent resolution value. If the "knee" about the point of maximum

overshoot is to be further resolved, a special routine could be

written. This routine would giVe xl(t) additional refinement

whenever the slope of x (t) changes signs. That is, a local minima

or maxima is known to occur of points where the slope of that once

pasaes through zero. With respect to the example problem, the

region between sign changes of x2 (t) (note x2 (t) k.dxl(t)/dt),

namely 2.4 6 t < 4.8 would be further resolved.

Besides being numerically stable, the algorithm was found to

be considerably faster than conventional numerical integration

formulas. The speed increase is due to the algorithm's ability to

"leap frog" along the time axis. In the case of the modified

base-2 algorithm, the "leap frogging" moves in ever-increasing step

sizes provided the percent resolution test is not violated. In the

considered example for a basic step size of .01 seconds, to com-

plete a solution over 0 < t < 10, it takes

1) 1000 solution steps by Runge-Kutta methods

ii) 18 solution steps by modified base-2 methods

iii) 9 solution steps by base-2 methods.

It should be now self-evident why the algorithm is fast, therefore,

an economic design tool.
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DESCRIPTION OF SOFTWARE

The following program is written in Extended Basic and was

implemented on a Hewlett-Packard 2100-S minicomputer. Its use was

described in the previous section. Briefly, the generation oo

(matrix exponential approximation)is generated between statement 400

and 530. If needed, the steady state value of x(t) is generated

between statement 645 and 685. From statement 890 to 930, the

state y(t) - C exp (Aeh) X(o) is produced. If an error tolerance

is requested, it will be tested from statement 940 to 990. If the

error tolerance is violated, it is sent to statement 2000 for

resolvement. Statements 1110 to 1610 are dedicated to restacking

the push down stack. The program will loop back to 900 until the

terminal time is achieved. Once achieved, the program will process

statement 1665 to 1780 to complete the solution. The initial

parameters set consisting of A, C, and X(0) are centered as data

statements located at and beyond statement 300.
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LIST
10 REM THE FOLLOWING ')IMENSION MUST BE CONSISTENT WITH THE PROBLEM
20 DIM X[3],Y[3],ZC2],VC2),O(2]3lI(2g]E(2,21FC2,23,B(2,2)5[2p,2I
30 DIM AC3,3],C[3,3p, H[2,5,]RC353|SC3,3]pW[3p,3
40 REM DUMMY ARRARYS
50 DIM T(IOo, 1O],Q[2'5O0,U[IOt]250,L[1B),DCIBI
55 PRINT "DIMENSION OF STATE SeACE"
60 INPUT N6
65 PRINT "DIMENSION OF AUGMENTED STATE SPACE"
70 INPUT N
60 PRINT "DIMENSIOW OF MESSAGE SPACE?"
90 INPUT N5

- 100 PRINT -STEP SIE IN SECONDS?"
110 INPUT D
120 PdINT "TERMINAL TIME IN SECONDS?"
1.50 INPUT F
140 PkINT "IF PLANT IS STABLE****RESPOND I (ONE)"
150 INPUT T9
160 IF T1#I TIIEN 190
171 PaINT "PERCENT RESOLUTION DESIRED?"
180 INPUT E
181 FOR I: TO N5
182 PRINT "RES6LVE Y(1I1;t)? IF SO RESPONDw;I;"'B OTHERWISE"
183 INPUT D(I3
184 NEXT I
190 PRINT "DE:'dRED SIZE OF PUSH DOWN STACK?"

ii 195 INPUT NI
"200 MAT READ X
205 MAT REA' A
210 MAT READ H
230 .'iINT "INITIAL AUGMENTED STATE VECTOR"
240 t-T PRINT X
2',0 ?t-,INT "AUGMENTED PLANT MATRIX"
240 MAT PRINT A
270 PRINT "OBSERVATION MATRIX"
280 MAT PRINT H
290 REM LABLES 300 TO 390 ARE RESERVED FOR DATA STATEMENTS
"_)0 DATA ,v0pl
710 DATA 0,1,0
320 DATA "I,'t-I
330 DATA 0,0,0
340 DATA 1,0,0
350 DATA O,1,O
400 REM COMPUTE C
410 N'iAT R:A*A
420 Misr Rz (D*D/12)*R
43ý6 MAT S:(D/2)*A
44, MAT C:R+S
450 MAT S:R-S
460 MAT R:IDN(NIN3
470 MAT S:S+R
480 MAT C:C+R
490 MA&AT W:INV(R)
500 MAT RzW*C
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5 0Q MAT R=W*C
510 MAT C:R
520 PRINT "MATRIX EXPONENTIAL APPROXIMATION"
"521 GOTO 540
530 MAT PRINT C
540 REM PERCENT RESOLUTION TEST
550 IF T911 THEN 700
600 FOR K:. TO NG
605 Fu, J=l TO NG
610 LCT EIKJ):CEK#J)
615 NEXT J
620 NEXT K
625 MAT F:-IDN[ NNGNG
63U MAT G=F-E
635 PRiINT "IF MATRIX IS SIGNULAR ERROR CODE WILL FOLLOWw
640 PRINT " REPEAT PROBLEM WITHOUT ERROR TOLLERANCE*
645 MAT E:INV(G)
650 FOR X=: TO N5
655 LET S:0
660 FOR J:-l TO NG
665 LET S:H(XsKJ,*EJONC]S
670 NEXT J
675 LET VEK]=S*D*.5
680 P'?NT "APPROX STEADY STATE VALUE OF Y(C;Kto):";VCKI
685 NEXT K
700 MAT T:ZER
710 MAT Z=ZER
720 MAT LZZER
750 MAT R=C
755 MAT I=H*X
760 FOI? X:= TO N5
779 LET U[(X!]=I(KI
780 NEXT K
790 LET Q[1]-D
800 LET LEI)=D
810 EII MI IS THE COMPLETED SAMPLE COUNTER
820 Rn. (N2 IS AN EXHAUSTIVE STACK COUNTER
830 ,dE,-i N3 IS A MODULO 10 COUNTER
840 FOk KX: TO N
850 FOR L=! TO N
860 LET TKs,L.:OzCCL)
870 NEXT L
880 NXlT, K
390 LET Ml=N2=1
900 LET J3::0
910 MAT SM*R
920 i'hT Y=S*X
930 MAT I= H*Y
94( IF T9#1 THEN 1100
950 6AT O=Z-I
9G0 FOil K:) TO N5
965 IF ,JD(K] THEN 990
970 L;-T S1:ABS(O(K[*l00/V(Xl)
980 IF SI 2= E THEN 2000
9DU NEXT K

1100 LET TI=LCII+LCN÷3+1
£110 REM RESTACG DATA
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1120 FOR K=I TO NI-I
1130 LET L[NI+l-KJ:L(NI-KI
1140 NEXT K
1150 FOR K:! TO NI-I
1160 LET KI'(NI.-K)*I0+I,,@901E-94
117T LET KI:INT(K0)
1180 FOR X3:1 TO N
1190 FOP K4=1 TO N
I. ZN' LET T(KI+KX3K4 zTIX.IK-e÷K3,K4I
i2aJ NEXT X4
1220 NEXT X3
1230 NEXT K
1500 FOR K:I TO N
1510 FOR L:1 TO N
1520 LET T([pKLI:S[KpL)
1530 NEXT L
1540 NEXT K
1550 LET MI:MI+l
1560 MAT I:H*Y
1570 FOR K:! TO N5
1580 LET UlKvMA:I[Cj
1590 NE2XT K
1600 LET QMI]:TA
1610 LET L[I=TI
1650 MAT R1:S
1660 IF T1fF*2 THEN 900
[G65 LET Q111:0
16 "0 FOR I:2 TO MI
'675 LET QCIl=Q(I]I/2• 6o.• NEXT I

1700 PRINT "IN TUBULAR FORM THE OUTPUT STATES (MESSAGE) ARE"1710 FOR L=1 TO MI
1720 PRINT "TIME";QCLI
1733 FOR X:1 TO N5
174u PRINT U(KgL]
1750 NEXT K
1760 NEXT L
1770 PRINT "FINIS"
1780 STOP
2000 IF Mil 3: NI THEN 2040
2010 REM SET ALLOWABLE STACKC PARAMETERS
2020 IF M1-N3 4: 9 THEN 3001
2040 IF N3 v-: NI-I THEN 40,0
2050 FOR K:1 TO N
2k)60 FOR L:1 TO N
2070 LET W:INT(10*N3+10,I00)
2075 LET S:O
2080 FOR J:l TO N
2085 LET S:T(W+KJ1*T(JLI+S
2090 NEXT J
2095 LET RCKLI:S
2100 NEXT L
2105 NEXT X
2200 MAT S:R
2219 LET N3:N3÷+
ZaZ GOO 920
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3000 PAINT "STACK DEPLETED AT STEP;&VMI
"3010 PRINT "LAST ERROR MAGNITUTE WAS"NSI NOC
3020 PRINT "DO YOU WISH TO CONTINUE WITH NEW ERROR TOLLERANC-"
3030 PRINT " IF SO RESPOND I(ONE)"
"3040 INPUT Fe
3050 IF F8:1 THEN 3100
3060 STOP
"3109 PitINT " ENTER NEW PRECENT ERROR "
3110 INPUT E
3120 GOTO 900
400)• eItlNT "STACKDEPLED AT STEP",MI
4011) PaINT "THE LAST ERROR MAGNITUDE WAS",Sl
49120 PdtINT "NEW STACK SIZE*****PREVIOUS SIZE";NI
4A30 PaiINT "OR MAXIMAL STACK SIZE**,*IF SO RESPON I(ONE)"
4040 Ir4PUT FS
4050 IF FS:j THEN 4109
4069 STOP
410• PRINT "NEW ERROR TOLERANCE"
4110 INPUT E
4120 PAINT "NEW STACK SIZE***.'.**PREVIOUS SIZE",NI
4130 INPUT NI
4140 GOTO 909
5000 END

STOP
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