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ABSTRACT

Measurements of the mean and turbulent flow structure under pack ice

were made during the 1972 AIDJEX Pilot Study with small mechanical current

meter triplets on three separate-imasts at several depths throughout the

entire rotational boundary layer. In this work the analog between the

ice-ocean boundary layer and 'the surface-atmospheric boundary layer has

been explored in detail with composite averages of measured Reynolds stress

and mean flow compared to predictions of recent atmospheric models.

The most significant measurements were made during periods of maximum

steady ice drift during a storm. Density structure, measured with a CTD

probe, showed a well-mixed layer of near neutral stability extending to

about 35 m bounded below by a strongly stable pycnocline. This depth

corresponded closely to the depth of frictional influence observed during

the peak wind period, as indicated by turning of the velocity vector, and

from consideration of the turbulent energy profile.

The skin friction velocity, u,, was determined-krom momentum flux

(Reynolds stress) measurements at 2 m and 4 m from the ice and consideration

of the mean momentum equation. It was found that the combined effect of

local pressure gradients and advective accelerations due to topographic

variations could not be ignored and an estimate of this effect was included

-l
in the calculation. u, was found to be 1.0 + .1 cm-sec when the ice

-l
velocity relative to the base of the mixed layer was 24 cm-sec .

2
Turbulence measurements, when non-dimensionalized by u*, pu2 , and

u*/f for velocity, stress, and length respectively, fit predictions from



recent neuteally buoyAnt, horitontaly homogeneous PBT .models quite well,

as did the mean longitudinal -velocity ccmponent, The mean flow component

:perpendicular to ithe surfeý- streis (theý integral of which is pr6portional

-to thetotal surface streqs wihen averaged over a Suitable area.), was fourfd

to depart markedly fr6m model predlit ionidicating that forrm- drag asso-

elated with pressure ridge,-keels is-ifi -an pottant -part -of the, total drag.

A quantitative estimatewas maAe f-this eff&t-, _AM' a total drag coeffi-

cient, cD = s/ was found be 3.4 i0-1 where-s ie the total

average stress on the ice and VR is the ice velocity relative toothe depth

of the frictional boundary layer. The ratio of form drag to skin friction

was .9.

Composite spectra for the-velocilty components behaved qualitatively

"N ~ -~ like similar spectra for the-atmosphere, exhibiting a -5/3 slope over about

a decade along the wave-number axis. Peaks in the weighted spectra of

vertical velocity components were used to derive a K (eddy viscosity) dis-

tribution related to d6minant eddy size-that agrees well with the PBL models.

Baroclinic currents of considerable magnitude were observed in the

pycnocline region and were related -to time changes in the density field.

It is argued that these secondary currents result from convergence along

the top of the pycnocline as a result of Ekman pumping in the mixed layer.
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I INTRODUCTION

Understanding the complex mechanism by which a turbulenf flow exerts

force on a surface bounding it has long been of ceiLtral importance to the

study of fluid dynamics. A large body of know'-idge has been accumulated

about fluid forces that. are comniý_isurate wits )rdinary experience such as

drag on airplanes, wind forceon buildings, 'ead loss in pipes, etc.;

largely because these flows are amenable to direct measurement or simple

si-,arity modeling and practical application of knowledge about them is

readily apparent. In the larger scale boundary, iayers of the oceans and

atmosp'here the Coriolil force (the apparent force arising from the fact

that our reference frame, the earth, is rotating) plays an essential role

in boundary layer dynamics, even though it is detectable to our §enqes

qnly by inference. Thus even a steady-state, horizontally homogeneous

idealization presents the formidable problem of describing the three-way

balance betweeni a driving force, the Coriolis force, and- the gradient of

turbulent momentum flux.

In recent years, methods of analysis and tools for turbulence measure-

ment have improved to the point that they can greatly increase our knowledge

of turbulent, ro)tating boundary layeis. At the same time, demand for such

knowledge has been spurred by evermore sophisticated weather-prediction

schemes and pollutant-dispersal research. With the advent of large computers

for pLcI"lem solving and increased interest in general, we seem to be in a

period of rapid progress toward understanding the planetary boundary layers.

However, when we consider the lack of reliable measuremcnts and the fact

that the theory largely ignores time dependence and horizontal topographic
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variation, we can _afely say tlat, the questions still outnumber the

answers by a wide margin.

In 1.970, a large, interdisciplinary project called AIDJEX (an acronym

for Arctic Ice Dynamics Joint Experiment) was instigated with the goal of

elucidating the intricate interaction between sea ice and its environment.

The fact thoc ice motion is governed largely by stresses exerted -on it

from the atnmospher e and ocean provided the impetus for a series of field

e.':periments designed to measure wind and water stress. One phase •of the

measurement program, dealing with water stress, was carried opt by an

oceanographic boundary layer research group from the University of Washing-

This dissertation concerns measurements made by that group at the 1.972

AII).I ,X 'J tk-t S'tudy camp. In it, we have compared these data to predictions

of recent theoretical work, pointing out similarities where they exist and

at-tempting to identify sources of disagreement. The objectives- of this

-t't.asive ex-periment i-in probably best be viewed on three levels of increas.-

I �, n-• •i ty,. First, to satisfy the immediate goals of AIDJEX we needed

io deLt. rmi-> the total stress exerted on the ice by the ocean during times

.!en the wind stress and ice strain were also being monitored. One of the

pril',,ry ,bjectivej Uf i-"F IX is a predictive mode.l of ice motion and thick-

a fmmuntiot, of relatively easily measured, •aigo scale variables.

, LEho LC, of io accurate water stress model becume., nlear when we

crmnsidei thait ottenttmes the relatively small difference betwet.-1 a driving

,•', ,:rrc.;s arid a rel,..irding ocean drag must account for such interesting

ik,a•,rs,,; is pressure ridges and open leads. This is by no means a simple

,•lem, since the total stress is a sum of contributions from surface
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friction, form drag and p6ýsibly wave drag, although the latter is not

considered in this work.

Secondly, it was recognized that the ice could'provide a unique plat-

form from which to make measurements in the upper layers of a deep ocean.

The dynamics of the mixed layer of the ocean, although extremely important

to the interaction between air and sea, are poorly understood, largely

because of a lack of good data. When the ice is moving, it provides an

excellent vehicle from which to suspend probes for measuring such things

as turbulence. -Clearly, in more temperate- oceans, waves (which make

measurements so difficult) must play an important role in the mixed layer

and ext-fapolating directly from an ice-covered ocean is of.doubtful validity.

Nevertheless, it was felt our data could provide a base to which wave-

induced effects could be added.

The broadest aim of the experiment was to shqd light on the dynamics

of planetary boundary layers in general. In spite of the fact that the

idealized ,neutral rotating boundary layer is felt to be theoretically well

understood, there is a notable lack of real data, particularly turbulence

data, against which to check the theories. We felt that the remarkable

similarity between boundary layers resulting from ice being pushed across

a slow moving ocean and from a large pressure-gradient wind in the atmo-

sphere could be exploited, particularly since scales in the oceaq are much

more amenable to instrumentation. Thus it was hoped that our project would

prove to be significant to atmospheric scientists as well as oceanographers.

With the exception of Chapter 10, which deals with baroclinic activity

in the pycnocline and is more cr less independent, this work is intended

to ha',e a continuous development. In Chapter 2 the planetary boundary



layer is described in general terms; Chapter 3-presents spectfic models.

In Chapter 4, the actuail experiment is described and in Chapter 5 the

density'structure of the mixed layer is explored both in theory and with

data. Chapters 6, 7, ands8 are devoted-to presenting the data in the

framework of the theory and models. In-,Chapter 9 spectral analysis of the

data is discussed and used to bolster some of the arguments developed

previously. Finally, in Chapter 11 the results are used to synthesize a

method for estimating a regional stress value and drag coefficient for the

ice stress in terms of ice drift velocity.

An almost overwhelming amount of data was collected during this

experiment-- 75 current meter channels-sampling every 50 msec were recorded

almost continuously for three weeks. Obviously, presenting these data in

some cogent manner required a great deal of distillation, and undoubtedly

evidence of some interesting phenomena was lost during the process. No

claim is made that this paper is a complete summary of the data collected

during the project; rather, it represents the author's Judgement of what

features are particularly relevant to modern boundary layer theory.
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2 THE PLANETARY BOUNDARY LAYER'

2.1 Background

A great deal of the success of modern fluid-dynamical theory can be

traced to Pratidtl's idea: that a large-Reynolds-number regime can be broken

conceptually into a frictionless flow bounded by a thin layer in which

frictional effects act to bring the fluid to rest at a solid boundary.

Without friction, many flows are amenable to concise and aesthetically

pleasing mathematical descriptions (e.g., see Batchelor, 1967) or at least

to fairly accurate computer modeling, and the fact that such flows are

observed in nature lends credence to Prandtl's conceptual tool.

Boundary layers, particularly turbulent ones, are not nearly so well

understood; yet as our-understanding of the large 3cale features of geophysi-

cal flows increases, the importance of understanding how the relatively

small boundary layer affects such flows becomes more and more significant.

There is also a great deal of intrinsic interest in the boundary layer

itself, a fact which should be clear since, for instance, a snall change in

the conditions of the atmospheric boundary layer can significantly alter

our lives (picture Tacoma without the effects of a smelter). To relate

closer to our specific project, the prediction of water and wind stress on

pack ice is largely a boundary layer problem although the driving forces

are of synoptic scale.

This chapter deals with general features of the planetary boundary

layer (sometimes hereafter abbreviated PBL). Description of specific models

is deferred to Chapter 3.
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2.2 The Equations of Motion

The equations governing flow in a boundary layer measured from a

rotating reference frame with the x3 axis oriented vertically can be

written down, in vector notation with the Einstein summation convention. as

follows:

The Boussinesq momentum equation--

a Vjaijkj a + awx. gi3 9 + T (2.2.1)
j k 0 a ji

where a. is the instantaneous velocity vector in a frame fixed

with respect to the earth;

in. is the earth's rotation vector;J

V p is the instantaneous pressure with the hydrostatic part,

Po = Ps - Pogz' removed;

P' is the deviation of density from the mean state, po;

t.. .is the instantaneous deviatior stress tensor, and

6.. and c..k have the commonly accepted properties.

The continuity equation for an incompressible fluid--

au.
0- = (2.2.2)ax.

1

The Newtonian constitutive relation for an incompressible fluid--

aa. act.
___ + (2.2.3)Tij J(ax. ax.

iii

A complete specification would also include an equation of state for

density as a function of pressure, temperature and salinity; the energy

equation; a heat conduction equation; a salt diffusion equation; and an
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equation of state for internal energy. These are not w'ittcn down since

they will not be referred to explicitly.

We can write an arbitrary instantaneous quantity, •, as 'the sum of

a mean, G, and fluctuating, g, parts:

T/2
G•+ g where C T J dt (2.2.4)

-T/2

and
T/2

g T f g dt = 0-T/2

Rigorously, the averaging would be done over T as T ÷ •, and terms like

DG would be meaningless. It is convenient to anticipate that large scale
at

driving features in many geophysical flows are tuned to a much lower fre-

quency band than the turbulent features and thus we can retain terms like

-G if it is understood that the 'time scales involved are large compared to

the averaging intervals. Another way of viewing this is to consider the

Reynolds averaging process as a low-pass filter.

Applying the Reynolds decomposition (2.2.4) to the momentum equation,

(2.2.1), invoking the constitutive relation (2.2.3) where the kinematic

viscosity, v, has replaced i,< along with the incompressibility condition

(2.2.2), and averaging we have the mean momentum equation:

au u +_ --
+ U . + 2wcjmnjUm +l •. .- j u (2.2.5)
at ax. i iji ax inax.ax. a3 o 1 3

where
a u ui
_ uaiu

as a result of the incompressibility condition.
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If we subtract the mean equation from the instantaneous equation,

multiply the result by Uk, average, then interchange indices and sum, we

arrive ac the turbulence covariance equations for a rotating reference frame

(Wyngaard et al., 1973; see also Mellor and llerring, 1973):

+ + au~
uu Ujaxjuiauk- + 1. Ujuuikj

1 o(u l + u. -Xk - (Puk6 i3 + Pi 6k3 (-2.2.6)

- au. aui
-2w (e.n U u + C n u u) 2v ----

ijmnj mUk kpqnpiUq ax i ax.

where the diffusive viscous dissipation term has been dropped from

consideration of scaling arguments (J. Wyngaard, personal communication).

We can obtain the turbulent energy budget by contracting (2.2.6) on

the index i and carrying out the implied sum:

a 1 aa
S(--)+ tU. -- (25!) + u'.u.u + (u.u.u.)

ýt a x. 2 i j ax . 2 aTx. 1'uijS3 - 1 (2.2.7)
aau iau

= u g 63--- - 2V -iax. P0o i 3 ax ax.1 j

2 - -

where q 2  uu.

The mean momentum equation, (2.2.5) carl be greatly simplified by

noting that W = 0, that derivatives in the vertical are much larger than

those in the horizontal, and that the Reynolds stress term, u.uj, is much

larger than the viscous stress term for geophysical flows. With these

constraints,

++ U a - a-+ uiw (2.2.8)
5t ~i ax. i + 2 icnj~k i P ax~ a Z u iw
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Tb this point, we have considered velocity vectors in a fram-e fi~ked

with re.pect to Theearth. Since our measuremeilt,, weir-e- made from an ice

platfornv-being pushed across the sea surface by the-windi it is donvenient

to ;put the equations in a kefeirence, frame fixed to the-ice.

tit

If T ist ohe velocity vector in a frame fixed with respect to the earth,

wis the velocity measured with respect to the mdving ice, andu is a
m R

reference velc"'Ity, that is, the imean velocity at solne level where fric-

tional effects vanish and the mean geostrophic flow of the ocean,u

accounts for any absolute velocity. If ie is identified with a largeg

g'eostrophic pressure gradient in the ocean, then using the vector equivalence,

UmUR U allows us to subtract the geostrophic pressure gradient from

the momeqtum equation leaving only pressure gradients due to local topogra-

phic or possibly baroclinic effects, The reference level was chosen to be

32 m since that was the deepest- triplet still in the mixed layer (see

Chapter 5). Comparison with smoothed acoustic bottom reference (ABR) data

during steady times showed that the mean measured velocity at 32 m trfcked

the apparent bottom velocity quite closely, implying that the geostrophic

flow was small compared to ice motion. (For a brief description of the ABR,
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see Martin and Thorndike, 1972). A reference level above the pycnocline

was chosen to avoid the effects of internal waves and other baroclinic

features often observed in a steep density gradient.

With these changes, and the Coriolis parameter, f, defined by

f = 2.2cos4, where S is the earth's rotation rate and ý is the latitude,

the mean steady-stace component equations are

-(w) - f(V - VR) = F i _Plocal- U
Sf=(2.2.9)

a - _ 1 *' local all(vw) + f(U - U ) F - - P'oa U T +az R y pOy a "

where the dots represent other horizontally inhomogeneous terms not con-

sidered as important as those written explicitly.

If conditions are horizontally homogeneous, so that the right-hand

sides of Equations (2.2.9) vanish, the equations are just analogous to the

defect law in the atmospheric boundary layer, .where the. velocity profile

must go from zero at the ground to a geostrophic value aloft driven by a

nearly constant large-scale pressure gradient. Thus it turns out that ir

the idealized case, the current measured under a wind-driven ice floe is

just the mirror image of the actual wind, if each is scaleA, properly. This

similarity provides a basis for comparing measurementsu made in the ocean

to recent models of atmospheric boundary layers. In fact, due to the rigid

surface imposed by the ice, one might expect the ice-ocean boundary layer

to be more similar to the atmosphere than to the boundary layer under an

unfrozen air-sea interface.
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If we simplify the problem of flow near the ice to- one that is bori-

zontally homogeneous and steady WiLh a constant surface roughness charact.er-

ized by a lengthzo, in a neutrally bouyant fluid, the flow can ba specif.i2i

by four external parameters; for instance, the surface friction velcity,

S= ,ts7 , where T is the surface stress; the Coriolis parameter, f; tyo

surface roughness, z ; and the distance from the boundary, z. Thus any

other flow parameter, say the true lateral velocity, V - VR, when non-

dimensionalized by proper scaling, can be cxpressed as a universal functior,

of two other non-dimensional groups formed Li om the external pacameters.

For the example cited, we could write

VRV R U-UR
u- = G'(fz/u,,z 0) -* J(fz/u*,Z/z) (2.3.1)

That u, and u,/f are the proper velocity and length scales for the

neutral outer layer is well established in the literature. 'ALackadar and

Tennekes (1968) argue that if h is the boundary layer thickn,' , ,u,, emerges

as a scale from an analysis of the turbulent energy budget as h/z0 ** X,

although it is not clear that this is more fundamental than eliminating the
other possible scales, f and fz, on the grounds that the forn~r is

typically far too small and the latter increases with distance fro.nm the

boundary while the true velocity approaches a geostrophic value toat is

often small compared to ice drift.

If we form a iatio of the dimensionless groups z/z and fz/u, e have

u.j/fz = Ro,, for which the term "surface-friction Rossby number" 1. been

coined by Blackadar and Tenneoles (1968). For geophysical flows t 1 is ratio
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is large; thus we infer that these two parameters must affect thc flow at

quite different scales. This le.ads directly to the concepts of an inner

or surface layer vis-a-vis an outer or Ekman layer.

In the surface layer we expect z small, so that fz/u* -÷ 0 and the

flow at this scale loses its explicit dependence on the large scale mea-

sures. If we let C = z/z0, then:

V - VR U - UR
R G (O) , =J (S) (2.3.2)

u• s u•

From (3.2.9), where F = F = 0 and
x y

T/x %.y -=w/u,2

we have

* G s() -Ro* T
(2.3.3)

J (•) = -Ro T

Clearly, in the limit Ro,
;T T

-T -- Y 0 (2.3.4)

If the x-axis is chosen to coincide with the direction of surface stress

we see that TX and T = 0 for the surface layer. Rt, is finite, however.

so that the usefulness of the surface layer concept depends directly on the

magnitude of Ro* (Tennekes, 1973).

In the outer layer, C-- and we conclude that the profiles must depend

on • = fz/u,. We have:

V-VR -aTxU-
, G(c) = -D = o = D (2.3.5)

U* 0 U*ow
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Equations (2.3.4) and (2.3.5) demonstrate the paradox O-ct arises

if we attempt to describe the large-Rossby-number boundary layer by one

length scale. According to (2.3.5) the stress gradient should reach a

maximum as the flow approaches the surface. But in the surface layer pro-

per, the stress gradient is zero by (2.3.4), and we are forced to concluda

that each scale has its own region of influence as we postulated to bf.gin

with. In the following sections we will investigate come of the properties

of the inner and outer layers of the PBL.
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2.4 The Logarithmic Profile in the Surface Layer

A concept that has proved sucdessful in describing the nean o-eatufet

of some turbulent flows is that of an edd~y. iscosity, or momentu.' diffusiVý

ity, which provides a constitutive r6:1lation between the Reynolds :,rzess and'

the rate of strain of the mean flow. We can write for example,

uw=-KU
Dz

where K vZ, v and A being characteristic velocity and length scales of

the turbulent flow, by analogy to the treatment of molecular viscosity in

the kinetic theory of gases. The scale k is associated with the size of

the large eddies that account for turbulent mixing. As Tennekes and Lumley

(1972, Chapter 1) point out, this if conceptually dangerous in that it

ascribes to the fluid a property of the flow. But it makes the mathematics

simpler, and as long as its limitations are recognized, can often provide

very useful results.

Near the surface, the size of turbulent eddies is limited by the dis-

tance from the boundary, z, and it seems reasonable that k -)z. Also, since

the stress, uw, is relatively constant near the boundary u, = appears

as a natural velocity scale and we have

K - u*z

The relationship is made concrete with the introduction of von Karman's

constant, k, and considering the dimensionless stress equation in the limit

Ro, + c, we have

kz/uT, LZ 1

This can be integrated to give
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.) u,

U T -n z/z° (2.4.1)

In the y-direction the solution is trivial, V = 0.

As Tennekes (1973) has pointed out, the surface layer is a useful

abstraction, but caution must be used in its application; e.g., von Karman's

"constant" is only constant in the limit as Ro, -÷ 0. Indeed, Tennekes claims

that k varies from an asymptotic value of .33 to the long-accepted .4 and

even higher, with decreasing Ro,. Businger et a!,. (1971) report a value of

.35 after extensive measureirmnts over level, smooth ground in Kansas. At

present this seems to be the best value fof large Rossby--number flows and

will be used where applicable in the remainder of this work.

4:

k
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2.5' Comparison of Oceanic and Atmospheric Scales

For the purposes of this investigation it is useful to compare the

sizes-of the respective scales in the atmosphere and under the ice. Th('

following table suiimarizes typical approximate values for the neutral

boundary layers.

Atmosphere Ocean (ice-covered)

u 30 cm-sec•I 1 cm-sec-I

Surface layer 30 m 1 m

PBL Depth 1000 m 35 m

Table 2.1 Scale Comparisons

From this it is clear that our measurements (from 2 to 54 m) were in

the outer layer and that most micrometeorogical measurements are made in the

surface layer. The large height of the atmospheric Ekman layer accounts

for a dearth of measurements in its outer regions, while the difficulty of

making stationary measurements from shipboard or from a fixed mooring

explains the lack of oceanographic data.

To our knowledge, the data gathered from the ice platform during the

AIDJEX series of experiments represent the first measurements of mean velo-

city and Reynolds stress taken simultaneously throughout an entire planetary

boundary layer.

Another point can be made from the scale comparison in lable (2.1).

We can see by referring to the topographic map, Figure (4-1), that condi-

tions are not horizontally homogeneous, with relief extending through as

much as a tenth of the PBL. On the other hand, the analogous atmospheric
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terrain is not mountainous, but rather corresponds to low hills wiith gentle

slopes.

2.6 Asymptotic MIatching adthe Geoscrophic Drag La,

Blackadar and Tennekes (1968) showed that tinder the assumptions impli-

cit in expressing the wind profile in the surface layer as a function only

Of z/z 0and in the outer layer as a function of fz/u*, universal relation-

ships amongst the turning angle, ct, the geostrophic wind components, the

surface-friction Rossby number, Ro .., and the friction velocity, U*, could

be derived. With slight modification their arguments can be applied to

the ice-ocean boundary.

We postulate that some, region exists in which the shear can be expressed

as a function of either z/z or F, = fz/u.. as each goes to an asymptotic
0

limit. That is, we postulate a region in which both the inner layer equa-

tion (2.3.2) and the outer layer equation (2.3.5) are valid. Then we :an

express the shear as derivatives of the inner and outer lJayer functilons:

3z TZ z a

But since u*Ifzo = R~o * /

J 'c)= 0 (C =constant (2.6.1)

since each side is a function of one argument and each argument is going

asymptotically to a limit.
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We can integrate (2.6.1) to get logarithmic profiles in each argument

and establish the constants for the surface-layer integration by comparing

it to the law of the wall, Equation (2.3.4). We get

1 in) - u = (E) = I(inE + A) (2.6.2)

Solving for u R/u we get

U R 11
= -i(ln 4/ý - A) = !(ln Ro, - A) (2.6.3)

For the lateral component, the shear in the iiiatching region is zero and

V RVR = -B/k (2.6.4)

The turning angle (the angle the ice drift makes with the applied stress)

is given bySt a - I VR -1

tan - = tan [-B/(ln Ro, - A] (2.6.5)
uR

Attempts have been made tc extend this type of analysis to non-neutral

boundary layers (e.g., Csanady, 1972), but with little success because of

the complexities introduced by another variable. Indeed, there is little

agreement on the values of the neutral similarity constants A and B in the

literature (Shir, 1973, presents a good summary).

For pack ice, Rossby-number similarity may provide a viable way of

estimating drag, but its use must be approached with caution. First, the

roughness scale, z0 , is not known. In general, it seems as if z0 might

be of the same order as the top surface in which case the surface-friction

Rossby number would be considerably smaller than typical atmospheric values,

a significant factor since the whole theory depends on the asymptotic
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behavior of Ro,. Also, even relatively smooth ice probably cannot be treated

as horizontally homogeneous. On the other hand, the stability structure

appears to be nearly neutral and constant under pack ice in contrast to the

diabatic atmospheric boundary layers studied in mid-latitudes.
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3 MODELING THE OUTER LAYER

3.1 Introduction

Equations (2.2.5) and (2.2.6) demonstrace the closure problem of tur-

bulence. The statistical averaging technique leaves residual terms that

are covariances arising from the non-linear terms in the mean equations.

It is possible to write dynamical equations for these terms also, such as

(2.2.6), but then triple products and other new covariances are introduced,

for which new equations must be written, ad infinitum. in order to solve

A equations such as (2.2.5), we must make assumptions about the covariances

that allow the set of equations to be closed.

During this century, a great deal of work has been devoted to searching

for a satisfying theoretical approach to closing the turbulence equations

at first order, i.e., expressing the Reynolds stresses as functions of the

other mean flow parameters. The advent of large computers and sophisticated

numerical techniques has paved the way for alternative solution methods.

For example, it is now possible to integrate the time-dependent, three-

dimensional equations directly. This requires a "closure" of sorts in that

approximations for motions smaller than the grid-scale size must be made.

A third technique is to carry the covariances explicitly in the mean equa-

tions, closing the second-order equations and solving the complete set

simultaneously.

This chapter will describe some specific models in order to lay a theo-

retical framework in which to present actual measurements.
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3.2 K-theory and the Ekman Solution

The simplest closure scheme for the simplified mean boundary layer

equations, (2.2.9), comes from postulating a constant eddy viscosity.

Ekman discovered a solution to this problem for the ocean in 1905 which

predicted a spiraling current hodograph and net transport normal to the

surface wind.

If the horizontal velocity components are expressed in complex nota-

tion

(U-UR) + i(V-VR)

and the Reynolds stresses are written

-- •U -- V

uw = -K Ti vw = -K 3-

with K constant, then for horizontally homogeneous conditions, equations

(2.2.9) can be combined to yield

W" + m•q = 0 (3.2.1)
2

where the primes denote differentiation with respect to z and m = if/IZ.

Under the constraints that V -)- 0 as z -• -• and

\W(O) = 1WR = -(UR + iVR)

the solution of (2.2.1) is
mz

94(z) = C

m = rf•7K/K eir/4 = 2 (l+i)

If the x-axis is chosen to coincide with the velocity at the surface, we

can write

(U-UR) = UReY cosyz

V = -U ReYzsinyz

Y = ifl2K
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The stress is given by

H(z) = Tx + iTy K

from which
Self/4

R (0) = 1R fKKK e

From this the well-known result that the surface stress is 45 degrees

to the left of the surface velocity in the Ekman spiral is apparent.

That a true Ekman spiral has never been observed in natural flows is

not too surprising in light of the arguments regarding the proper mixing

length for the surface layer cited in Section (2.4): in the surface layer,

we expect stress and velocity to be in the same direction. However, if

the outer layer is characterized by a constant mixing length then presum-

ably a level does exist just beyond the surface layer in which the stress

is nearly the same as the surface value while the angle between stress and

velocity at that level is the proper 45 degrees. This then marks the upper

boundary for an Ekman spiral. The relationship between the surface current

and the current at this level depends on new parameters such as the surface

roughness, z0 , which complicate the problem.

Hunkins (1966), using averaged drogue measurements taken from Arctic

Drift Station Alpha during the summer of 1958, and assuming that the sur-

face layer was of negligible depth, fit a constant-eddy-viscosity hodograph

to his measurements fairly well. He found that D = /K-72/f (the Ekman depth)

corresponded closely to the depth of the mixed layer which was 18-20 m.
2 -i

From this, the eddy viscosity was calculated to be 23.8 cm -sec 1

Various two-layer K distribution schemes have been proposed in which

an inner-layer mixing length proportional to z is reconciled with an outer

layer mixing-length distribution. Evaluation of such models suffers from
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a lack of measured data. An excellent summary of several such models

is given by Brown (1973).

K

3

I
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3.3 Three-dimensional Numerical Integration

Numerical integrations of the complete equations of motion for the

boundary layer provide the most detailed models. Deardorff (1972) has

presented such a model for neutral. and unstable (upward heat flux) condi-

tions in the atmosphere.

Briefly, Deardorff uses a grid 20 by 40 horizontal by 20 vertical to

integrate Equations (2.2.1) to a statistically steady state, replacing the

stress term by a sub-grid-scale (SGS) Reynolds stress term and using poten-

tial temperature fluctuations for the density term. The SGS Reynolds

stresses are related to the gradients of grid-scale velocities by an eddy

viscosity which is in turn related to products of velocity gradients times

the grid volume.

For the neutral calculations, a rigid lid is imposed at fz/u* = .45,

which Deardorff criticizes as giving unrealistic re ults near the top of the

boundary layer. As we will show later however, this height corresponds

quite closely to the "lid" imposed by the pycuocline in the natural system

we observed.

The lower boundary conditions are assumed governed by surface layer

conditions taken from Businger et al. (1971), for which Ro* = u.../fz

71.5 x 10

Mean profiles (some of whic~i will be shown later along with collected

data) are the result of averaging over the horizontal grid points and over

an ensemble of ten realizations spaced in time.

General features of the model include the following:

(1) Even slight instability drastically reduces the lateral com-

ponent in the mean wind profile.



(2) Geostrophic drag- (u*/G) increases significantly with increas-

ing instability.

(3) Slight instability increases the longitudinal component of

momentum flux, -uw, and decreases the lateral momentum flux,

-vw, aloft.

(4) Under unstable conditions, the -uZw profile appears to fall

off linearly to the inversion height in contrast to the

neutral case in which it decreases to zero by about fz/u*

.3, and takes small negative values at greater heights.

Simulations like Deardorff's require huge computer memories and are

expensive to run. They also suffer from having a "black-box" character

(Brown, 1973), niaking it difficult to isolate cause and effect. A third

drawback is that at small scales they are quite sensitive to the assumptions

made for SGS motions; this is particularly important in simulations of

stable conditions where presumably vertical motions are inhibited. For

Deardorff's neutral case, this effect is reportedly confined to the bottom

two grid volumes.
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3.4 Second-Order Closure Models

Recently, models that carry the mean flow equations in full and make

closure assumptions for terms in the turbulence covariance equations have

been published. Shir (1973) has modeled the neutral outer boundary layer

and Wyngaard et al. (1.973) have provided models for the neutral and several

unstable cases. The success of each model is gauged against Deardorff's

(1972) three-dimensional model, apparently for lack of sufficient outer-

layer atmospheric measurements.

Second-order models are much less expensive and easier to incerpret

than 3.-D simulations, yet at the same time provide more information about

the PBL than do first-order solutions: for example, turbulent energy and

fluxes of momentum and contaminants are predicted explicitly in both of

the models mentioned above.

The closure philosophy for the Wyngaard et al. (1973) model involves

writing a dynamic equation for the turbulent energy dissipation rate, c,

and modeling the unknown terms like the pressure-velocity covariances in

the covariance equations, (3.2.6), as expansions about the value the term

would have in an isotropic field as suggested by Lumley and Khajeh-Nouri

(1973). This becomes a very complex procedure and still requires many

ad hoc aFsumptions about the importance of various constants and terms;

e.g., turbulent transport is modeled as gradient diffusion by using a

length scale related to the "turn-over" time. Most of the unknown constants

in the model are calculated from atmospheric surface-layer data.

Shir (1973) writes a dynamic equation for Z from the equation C =

Coq 2 /, where q2 is twice the specific turbulent energy. Ile then models
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this equation and equates k to the gradient diffusion length scale. He

assumes gradient diffusion for the turbulent and pressure transport terms

and writes a complicated equation for the pressure-strain correlation.

Constants are estimated approximately and then adjusted to give realistic

results. Boundary conditions are specified at the first grid point to

match the law of the wall, leaving the surface-friction Rossby number a

variable parameter.

Both models agree reasonably well with Deardorff's (1972) model and

thus support the general conclusions reached by it. For the neutral layer,

it is found that the turbulent structure depends only weakly on the Coriolis

force so that the latitude and wind direction are not important except in

the limiting equatorial case.
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3.5 Modeling the Stable Boundary Laver

Although a successful second-order model for the sta'.e PBL has yet

to be published, Businger and Arya (1974) have racently provided a K model

incorporating a stability parameter that appears to give realistic stress

and wind profiles for positive values of •, (see Section 5.5).

Using the non-dimensional parameters introduced in Section 2.3, the

non-dimensional stresses can be written
aJ

Tx = ac, O

aGT ~K -

y0Ty = K, -

K Kmf/u,
2

where K is the dimensional eddy viscosity. The dimensionless wind shear,m

4m can be written

4 _ kz MU _ kT (3.5.a)wm u, •z =K, x

Businger and Arya point out that surface layer similarity predictions, con-

firmed by experiment, imply

4r = 1 + a z/L (3.5.2)

where ý is a constant. They also note That for small ý, the first of

Equations (2.3.5) can be written
VR VR

T - ý + . - exp(- j**k} (3.5.3)

which exhibits a fairly realistic curvature of the stress profile. They

reason that if the log-linear profile, (3.5.2), extends to some distance

beyond the surface layer as observations indicate, then at least in this

region, (3.5.3) and (3.5.2) can be substituted into (3.5.1) to yield



29

SK, ký exp{-I ,i I/(+aý11,),

U*

p = u*/fL.

They then use this K, distribution and the derivatives of Equations (2.3.5)

to solve iteratively for the mean profiles of velocity and stress.

The results of this model for the limiting neutral case (I, 0)

agree well with the neutral model from Wyngaard et al. (1973), lending

credence to this method. The effect of increasing stability, as predicted

by the mod'l, is to lower geostrophic drag, to increase the angle between

surface stress and ,eostrophic wind, to increase stress profile curvature,

and to dccrease the penetration distance of 4rictional effects.
$

-----------------------------

- - - - - - - - - - - - - - - -
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4 DESCRIPTION OF THE EXPERIMENT

4.1 Site

The site of the experiment discussed in this dissertation was the 1972

AIDJEX Pilot Study main camp, first established on FRbruary 25, 1972, at

approximately 75°N, 148°W, roughly 400 km NNE of Barrow, Alaska. A good

summary of the 1972 camp configuration with preliminary reports from most

of the scientific projects including ours is given in AIDJEX Bulletin, 14,

(July, 1972). More extensive reports on various projects can .be found in

subsequent issues of the AIDJEX Bulletin.

Our group, consisting of nine people under the leadership of Associate

Professor J. Dungan Smith, occupied five buildings including two instrument

huts, two living huts and a diving hut, all situated in the northwest corner

of the main camp.

We had originally planned to deploy 3 or 4 separate frames, each carry-

ing current-meter triplets at several different levels, across a large

pressure ridge with a fairly uniform cross-section along its axis in order

to gauge the effect of form drag over such a feature. It turned out, how-

ever, that the necessity of the camp being near a smooth runway for large

aircraft governed its placement, and we were constrained to choose the only

region of obvious surface relief within range of the camp's generators.

This proved to be a small multi-year ridge with a maximum keel depth of

only 5.3 m, situated at the eastern edge of the frozen lead that served as

the camp's runway.

Figure (4-1) from Welch et al. (1973) shows the configuration in which

the four frames were actually deployed. Contour lines indicate tae relief
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of the underside of the ice, obtained by divers taking pressure measurements

at the bottom ice surface along a carefully laid out grid system. Contour

intervals are .5 m. As the map clearly shows, the ridge trends northeast-

southwest for some distance, but slopes abruptly into the smooth ice of

the runway which lies roughly northwest-southeast just off the bottom of

the map. The diving '.iole marks the eastern edge of the ridge, both above

the surface and below.

Frames 3. and 2 were hung approximately 2 m apart through a large hole

in the ice beneath the instrument hut in a region of fairly uniform topogra-

phy. Frame 1 extended 26 m below the ice and Frame 2 continued from that

level to 54 m. Taken together they were considered to measure one profile

with triplets at eleven levels and are usually hereafter referred to jointly

as the "main frame'. Frame 3 was located beneath the apex of the ridge

h-. •\• and Frame 4 was situated beyond the ridge at the edge of the runway. Frames

3 and 4, called the "outer" frames, each had triplets at six levels down to

26 m from the lower ice surface. The outer frames were assembled at the

diving hole and positioned by the divers using an ingenious beer-keg floata-

tion device. They were suspended from hangers frozen into holes drilled

from above so that the orientation was accurately known.

Figure (4-2) is a section drawn in the plane of the current-meter

masts showing the relative relief and indicating the levels at which trip-

lets were moupted on the frames. The wavy line indicates approximately the

bottom of the mixed layer through which density was nearly uniform. The

arrows attached to the North pointer indicates the directions of typical

currents measured relative to the ice during the period April 10 through

Apr-il 13. The surface current was measured at 2 m on the main frame and

the deep current at 32 m, near the base of the mixed layer.
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4.2 General Description of the Measurements

Although current measurements were begun on Mar. 29 during a period of

comparatively high winds, an unforeseen problem in the data collection

system resulted in our logging data of questionable value during the first

storm. After a couple of days of intensive effort, the problem was found

and corrected, but not before the winds had subsided and relative currents

had fallen off to below instrument threshold. Thereafter, except for minor

alterations to individual channels and occasional power losses, the data

logging system performed very well. Considering thac the system had to be

assembled hurriedly because of. the short time imposed by Pilot Study funding

and hardware delivery delays, the fact that it worked so well in the field

without thorough prior testing is a credit to everyone involved with its

development.

After the storm during the last few days in March we were becalmed

until the winds picked up again early on Apr. 10. The period from the morn-

ing of Apr. 10 through the morning of Apr. 14 was characterized by quite

steady westward drift resulting in substantial currents relative to the ice.

After Apr. 14, the currents dropped off in the upper 35 m, although in the

pycnocline flow persisted for a couple more days. On Apr. 16, the last of

the current-meter frames was dismantled and the current measuring phase of

the experiment was concluded. The measurements referred to in this work

were all taken during the period Apr. 10 through Apr. 15.

The direction of tile surface current shown in Figure (4-1) indicates

that the relative flow for nearly the whole measurement period was more

parallel to the ridge than across it. Thus, in terms of the original
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objectives of the experiment, it was as if Nature were adding irony to

insult by directing the flow along, inptead of across, a ridge that was

none too large to begin with. Obviously, under these circumstances the

effect of the ridge was difficult to ascertain. Adding to the uncertainty

about topographic effects was the fact that the flow came from a very smooth

region of first-year ice (the runway) onto the rougher multi-year floe on

which the camp was located.

The unfavorable drift direction also resulted in another problem at

least as serious, if not so obvious, as the one mentioned above. Frames 1

and 2 were suspended in an ice-free hole from inside the instrument hut

allowing us to adjust or "tune" the frame orientation so that all three

meters of the orthogonal triplets (described in the next section) would

experience strong enough current components in each direction to keep them

vs \turning, i.e., above threshold velocity. Unfortunately, the outer frames

were frozen into a fixed orientation such that under the prevailing drift

one meter of each triplet did not turn. During the one period when a rea-

sonably strong and steady current from another direction did exist, a

different component in each triplet was below threshold. In retrospect, it

would have been possible to rig the outer frames with swivel-like devices

so that the divers could have adjusted them. But as it happened, Reynolds

stresses were measured at the main frame location only, since meaningful

momentum flux measurements required all three components, given the triplet

configuration. Mean currents at the outer frames were determined with

reasonable accuracy from two components, so that considerable information

was gained from them, in spite of the threshold problem.
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4.3 Current Meters and Data Collection

The current meters used during the 1972 AIDJEX Pilot Study had to be

small enough and sensitive enough to measure very slow currents and had to

respond rapidly enough to current fluctuations to adequately measure Reynolds

stresses. They also had to be durable and inexpensive enough to deploy in

large numbers in the field. A small, partially ducted, mechanical current

meter developed for an ongoing series of turbulence experiments directed

by Dr. Smith met these requirements. A brief description of the meters is

presented here, but for a more complete specification including the manner

in which they were mounted to frames see Smtih (1973).

The meter consists of a near-neutrally buoyant rotor 1.7 cm long by

3.5 cm in diameter encased in a truncated duct 1.3 cm long by 4.1 cm in dia-

meter. The shaft of the rotor is attached to a heavy wire frame via water-

lubricated jeweled bearings. The duct is supported on a sealed stainless-

steel rod 1 cm in diameter (see Figure 4-3).

Triplets were made by mounting the current meters in a rigid mounting

block with the configuration indicated by the following sketch looking down

on the triplet:

Ak

This resulted in an othogonal measurement frame of reference idealized as

tihe f ollowing :
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The so-called w component was not vertical for the obv:ious reason thatm

vertical currents would rarely exceed the threshold level of the current

meter. The requirement of othogonality then forced the u component tom

be inclined downward at an angle chosen arbitrarily to be about 30 degrees

from the horizontal. In actual practice, the angle of dip was not assumed

to be 30 degrees since the masts were not exactly plumb, but rather was

calculated assuming the flow to be horizontal over a suitable averaging

period (see Appendix B).

The curren.-meter rotor has four impellers. On the end of each a

mirror is mounted that reflects light from a small lamp in the center of the

supporting rod back to two photo-diodes embedded or. each side of the lamp.

As the rotor revolves, each photo-diode is activated in turn as the light

beam is reflected from a passing blade. Electronics housed in the mounting

tube discriminate between the pulses from each diode by assigning them

opposite polarity and combine the two pulses into a bipolar pulse (dipulse)

output. The direction in which the rotor is turning is thus indicated by

the polarity of the leading hilf of the dipulse.

The pulse train generated by each current meter is transmitted through

a specially designed cable to the surface where it can either be recorded
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in analog form on an FM (frequency modulating) tape recorder or be fed

through a device that converts it to digital information to be processed

and recorded by a small digital computer. The latter approach was used

for the first time during the 1.972 AIDJEX project and made it possible to

log data from 75 current meters simultaneously.

The computer used for data acquisition was a Data General Nova 1200

with approximately 8,000 (8K) sixteen-bit words of core memory and a 1300

nanosecond basic cycle time. Options and peripherals at the time of the

field project included a hardware multiply/divide unit, a real-time clock,

a special current-meter interface, two Ampex magnetic tape drives and con-

trols, and a teletype with paper-tape reader and punch. Since that time the

system has expended to include another 8K of core, a hardware floating-point

processor, a high-speed paper-tape reader and punch, a CRT display with

plotting capability and hard copy, an analog-to-digital interface, and a

digital interface. The present system is thus quite versatile and was used

to process all the current-meter data from the 1972 project. Programming,

done in the Nova Assembly language, has been simplified by a specially

designed Tape Operating System. The software (programming) for data collec-

tion and processing was desigrpd by the author.

The special current-meter interface (CMIF) consists of a very stable,

20-Kllz crystal oscillator and counter, a master memory-address buffer, and

a buffer for each current-meter channel. When a dipulse is sensed on a

given channel the clock counter is read, the polarity determined and the

16-bit word is sent via fast data channel to a specific location in the

computer's memory, The CMIF also generates computer interrupts at a rate

determined by the program (12.8, 25.6, 51.2 or 102.4 msec) that direct the
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computer software to scan for information sent since the last interrupt

and to process and store it.

The CMIF can handle up to 128 channels and is designed so that even

if all channels have simultaneous dipulses, the processing delay is less

than .05 msec ensuring accuracy to within 1% for currents up to 100 cm-

sec 1 (Smith, 1972b).

The function of the data-collection software is to convert the infor-

mation sent from the CMIF, consisting of a polarity indicator and the count

of the continuously cycling clock, into meaningful periods between succes-

sive pulses and to store these data on magnetic tape for later processing.

When the program senses an interrupt from the CMIF it changes the master

, .memory address and restarts the CMIF so that it can be filling a new input

buffer (i.e,, a table in the computer's memory to which the CMIF transfers

data) while the previous data are processed. For each channel the program

determines if a pulse has occurred since the last interrupt; if it has,

the significant part qf the clock counter is added to a temporary accumula-

tion of counts since the last pulse, the resulting period is stored in an

output buffer, and a new temporary accumulation is started. If a pulse has

not occurred, the total number of counts between interrupts is added to the

temporary accumulationi and the period from the previous cycle is stored

in the current output buffer. After eight such interrupts the output buffer

is written on magnetic tape. The system will handle currents up to about
-1

160 cm-sec but can also be made to record efficiently (i.e., with little

redundancy) at currents as low as 15 cm-sec- by adjustments to the clock

rate.

The resulting data stored on magnetic tape are integers representing
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periods between pulses in units of .05 msec. Conversion to velocities

comes later during further processing. However, the data collection program

has the capability of taking particular samples from each channel, perform-

ing the conversions and outputting the results to the teletype so that the

system can be monitored while data collection is in progress.

Figure (4-4) is a schematic diagram showing the steps described above.

-N- -
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4.4 Data Processing

Figure (4-5) shows schematically the flow of data from the original
recordings to final output form. The circles symbolize information stored

on magnetic tape while boxes imply tabular or graphical material. The huge

amount of data -- filling well over a hundred 2400-foot reels of magnetic

tape -- made it necessary to break the processing into several intermediate

steps.

Upon first looking at the recorded data we discovered that having

mirrors on each of the four rotor blades presented difficulties: the re-

flective properties of the mirrors were enough different to cause appreciable

departure from the assumed 90 degree angle between impellers. Thus, in the

period of one complete revolution in a steady flow, four distinct velocities

"appeared corresponding to each quadrant of the rotor. The variations were

at least of the same order as the real turbulent fluctuations, so that there

was no choice but to sacrifice some frequency resolution for an accurate

period measurement over one complete revolution. This was accomplished by

treating every fourth pulse as significant and using the other three to

determine the period, between each significant event. The end result was

the same as if only one impeller were reflectorized.

Various other problems were discovered with the original data. Some,

such as wrong signs and very short periods caused by spikes in the pulse

train, were anticipated and easily corrected. Another problem observed on

some channels was the failure of one or more impellers to trigger dipulses.

This phenomenon interacted with processing out the four-mirror problem to

create a curious wave-like feature in the current record; the problem was

easily corrected once its source was found.
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A particularly vexing problem occurred on a channel that was part of

the triplet at 4 m on the main frame. Apparently, an extraneous signal

would intermittently trigger the system with pulses of the wrong sign.

Although the ensuing short period was thrown out by logic in the editing

przcram, the sign of the following period was changed and this was not

detected. This resulted in anomalously high, but believable, Reynolds

stresses at intermittent intervals 4 m below the ice and these were referred

to in at least one preliminary abstract (McPhee and Smith, 1972). It was

taken as a cautionary lesson in the pitfalls awaiting those who hand].e large

amounts of data.

Period-to-velocity conversion is described in Appendix A. The data

from original tapes were corrected for the four-mirror problem, edited and

converted to velocities, then output on new tapes. These tapes, containing

velocity samples accurate to 9 binary places for each of 72 current meters

sampled approximately every .2 see, then became the basic data set for the

remainder of the processing, which will be described in greater detail in

later sections.
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5 DENSITY STRUCTURE IN TIHE BOUNDARY LAYER

5.1 Introduction

To this point in our discussion of the planetary boundary layer we

have assumed that the layer is neutrally bouyant, i.e., density differences

do not play a role in the dynamics of the layer. That density is a function

of depth and that acting through gravity this dependence can potentially

have an appreciable effect on the-turbulent structure cf the boundary layer

is the subject of this chapter.
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5.2 Measurements

Density measurements were made during the project with a Guildline

Conductivity-Temperature-Depth (CTD) sensor from a location about 10 m

west of the main-frame hut. Profiles sampled at approximately one-meter

intervals down to 65 m were made at periods ranging from a few minutes to

several hours. Deep casts were made daily to a depth of about 1000 m

(Morse and Smith, 1972).

Density is almost exclusively a function of salinity in the Arctic

during the winter and spring months, since the water column is very near

its freezing point to considerable depth. A typical deep profile of density

vs. depth is shown in Figure (5-1). Here density is expressed in a units
-3

where at = (p-1)xlOOO, and p has units gm-cm

A few features are immediately obvious. A well-mixed layer extends

some 30-35 m. Beneath this a strong pycnocline extends to nearly 300 m,

below which the water column is nearly neutral. Thus, dynamically, the

upper part of the ocean is very stable except for a thin layer near the

surface.

Since our current measurements were restricted to the upper 54 m of

the ocean we were interested mainly in the density structure of the mixed

layer. Changes in the structure of the upper pycnocline will be discussed

in greater detail later in the treatment of transient currents there.
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5.3 The Effect of Buoyancy on Turbulence

The water column can be classified as stable, unstable or. neutral

according to ,whether its density gradient is negative (i.e., density increas-

ing with incruasing depth), positive or zero. It is clear that in a stable

environment work is done against gravity at the expense of turbulent energy

while in the unstable case buoyant accelerations enhance turbulence.

A quantitative parameter for describing the interaction between shear

turbulence and buoyancy can be derived with the aid of the turbulent kinetic

energy budget, Equation (2.2.7). Under the constraints of steady-state,

horizontally homogeneous mean flow in the x-direction, it becomes

-au g =-r- 1 au. au.
-- p da' (uiuiw + wp) + o (5.3.1)

-w 0 2 3z iax. ax.J J

The first term on the left of Equation (5.3.1) represents the ;roduc-

tion of turbulent kinetic energy by mean flow shear. It appears with

opposite sign in the equation of kinetic energy for the mean flow and thus

represents a sink for mean-flow kinetic energy (Tennekes and Lumley, 1972).

The second term is the buoyant energy term. It can be either a source

or sink depending on the sign of p'w , the density flux. For instance, p'w

negaLive implies a downward transport of more dense material and thus would

add to the turbulent energy at the expense of potential energy of the fluid.

The terms on the right represent flux divergence- pressure transport

and viscous dissipation respectively. Viscous dissipation is the sink in

which turbulent kinetic energy is converted to internal energy of the fluid.

The flux Richardson number is defined as minus the ratio of the buoyant

energy term to the shear production term.
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A critical flux Richardson number above which turbulence cannot be

maintained against the restoring force of gravity has been experimentally

determined to be about .2 to .25.

A second Richardson number, the gradient Richardson number, is defined

as Ri = --- & BP / aU)2

The relationship between Rf and Ri can be demonstrated by relating the

turbulent fluxes, wp' and uw, to their respective mean gradients via eddy

coefficients of diffusion and viscosity.

wP = -Kp z = -K a_

Thus\" K

R = K _ Ri

If K and K are about the same, as for example, they are in the atmo-P

sphere where potential temperature is the dynamically important property,

the two Richardson numbers are sometimes considered interchangeable.

In the Artic Ocean, where density is primarily a function of salinity,

the relationship is not so clear. Direct salinity flux measurements are

quite difficult and thus the eddy exchange coefficient, Ks, is usually

inferred from dynamical considerations and estimates of its value vary by

an order of magnitude. Taylor (see Neumann and Pierson, 1966, p. 400)

suggests that the ratio K s/K is from 1/5 to 1/50. Thus a gradient Richard-

son number as large as 10 might still permit turbulence.

It should be emphasized that the flux Richardson number, since its
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definition stems directly from the turbulent energy budget, is the more

universal in the sense that a turbulent flow will behave in a certain way

given a specific Richardson number.

C,.
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5.4 Measured Average Density Structure

Figure (5-2) shows a typical cast made to approximately 60 m with the

CTD described above. Figures (5-3) and (5-4) show averages of casts made

on Apr. 12 and Apr. 13, made by classifying samples by depth and averaging

over about a dozen different casts on each date. The bars represent the

sample standard deviation measured each way from the mean value at each

depth. Figure (5-5) shows the different averages for four days during the

storm drawn on one graph.

The source of the large variance of measurements in the top 10 to 15

nm remains a mystery. If it were due to instrumental sampling error, we

would expect it to carry throughout the cast. However, the variance toward

the bottom of the mixed layer becomes quite small. Also, measurements in

other areas with the same probe have never shown a similar phenomenon (J.

Smith, personal communication).

If water of different salinity were being carried by the mean (relative)

flow as a contaminant (either active or passive), we might expect such

behavior since a plot of velocity variance with depth shows many of the same

features: i.e., a great deal of variance near the surface falling off to

a minimum at the base of the mixed layer, then picking up again in the pyc-

nocline. If turbulent transport were the mechanism, however, the density

variance would be expected to fall off as the turbulent intensity decreased.

Casts taken on days when there was virtually no water movement relative to

the ice showed as much or more variation in the upper layers. This reason-

ing seems to argue against the idea that the probe was advected through

plumes of more dense water resulting from active lead convection.
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Another suggestion that has been offered is that draining brine

pockets in the ice could be responsible for the large variance without the

necessity of mean velocity shear (an analog would be thermal plumes on a

hot day). But if this were the case, near the surface we would expect only

positive excursions from the salinity of the rest of the water column in

the mixed layer. Instead, excursions on the fresh side are as common as

the more saline ones, as Figure (5-2) demonstrates.

The fact that the phenomenon was observed on upward casts seems to

rule out flushing problems.

This aspect of the measurements was unsatisfying, since we could not

see a clear explanation, either natural or instrumental, for the large varia-

tion from cast to cast. It was found that averaging over several casts

provided a fairly smooth profile and this was the approach used. Straight

lines were fit to the data in the top 35 m of the water column (excluding

the uppermost meter, which was in the instrument hole) in a least-squares

sense. For the average profile of Apr. 12 (Figure 5-3), the slope of this

line was L-= -8.8xi0-9 gm-cm ; for Apr. 13 (Figure 5-4), ý- -2.2x]0 9

-4gm-cm .

•' , • • •. ,, • • • ';•••'" '• • . .. • ... . .. ' '•...C *... .' -- 4 . ..
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5.5 The Obukhov Length Scale

In atmospheric studies, conditions are usually determined in the sur-

face layer and extrapolated to the outer layer. For instance, it is not

uncommon to classify a boundary layer as unstable because of an upward heat

flux at the surface while the outer layer is characterized by a neutral or

even slightly stable mean potential-temperature profile up to the inversion

(J. Businger, class notes). The dynamical properties of the surface layer

seem to govern the properties of the whole boundary layer-- not too surpris-

ing since most of the dynamical action takes place there.

Straight lines fit to the average profiles for Apr. 12 and Apr. 13 in

a least-squares sense show slightly stable slopes. The point of the dis-

cussion above is that this does not necessarily preclude the possibility

of an unstable boundary layer; in fact, a good analog exists between the

upward heat flux in the atmosphere due to solar heating of the surface and

the downward salt flux due to freezing at the ice-sea interface.

In order to investigate quantitatively the effect of freezing it is

convenient to introduce the Obukhov length scale, L. Since (5.3.1) is an

equation for the time rate of change of energy divided by density, it can

be non-dimensionalized by multiplying each term by an appropriate time scale

divided by the square of a velocity scale. For the surface layer these

scales are £/u* and u* respectively. If Z, kz, the non-dimensional form

of (5.3.1) is

-kz uw _ gjk ,--- (55
3 z 3 pwz 3 D Cu* PoU*

where D is the non-dimensional flux divergence-pressure transport term and

C is the dimensionless dissipation.
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From the second term in (5.5.1) a length scale may be defined by

L = p u* 3 /g k p't (5.5.2)

-- 2
In the surface layer uw u and we can define the dimensionless wind

shear as -kz MU

m U~ az

Equation (5.5.1) then becomes

4m L 4D + c

The significance of the length scale L is now clear. L varies in-

versely as the density flux and is negative if the flow is unstable and

positive if stable. Also, at least: for small departures from neutrality

(where 4m =), we see that as Izj approaches IL, the contribution from

buoyant forces to the turbulent energy becomes as important as the shear

production.

A great deal of micrometeorological evidence supports the Monin-

Obukhov similarity hypothesis: i.e., that when velocities are scaled with

u, and lengths with L, there are universal descriptions for the dimension-

less wind shear and lapse rate in the surface layer (Businger, et al., 1971).

By again suggesting that the surface layer scales are appropriate to

the outer layer because they govern most of the dynamics, we can form a

dimensionless stability parameter for the outer layer by dividing its char-

acteristic length by the Obukhov length (which is determined in the surface

layer). Thus we have i, = -z L if zi is the depth of the mixed layer (inver-

sion) in the unstable case or V, = u,*/fL if the layer is neutral or stable.

We can make a rough estimate of the freezing rate required at the ice

surface to maintain p* -1.0, corresponding to a slightly unstable layer

7 ~~Az
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(for comparison, the value of the dimensionless height, z/L, about halfway

through the surface layer would be -1/100).

If the salinity of sea-water is taken as 30 parts per thousand and it

-3is supposed that it freezes fresh with a density of .9 gm-cm , then a
-i

growth rate of 1 cm-sec is associated with the release of .027 gm of salt

2 -i
per cm . Thus r = 36s where r is the growth rate in cm-sec and s is the

-1 -2
mass flux in gm-sec -cm . For a steady state the turbulent density flux,

wp-, must equal the mass flux at the surface.
-1

Using typical values for the observed boundary layer-- u*. 1 cm-sec

zi = L = -3.5 x 103 cm, k = .35 -- we can solve Equation (5.5.2) to get

p'w = -8.3 x 10- in cgs units. This requires a growth rate of 3.2 x 10-
-1

cm-sec or 2.8 cm per day. Divers observing ice growth around cables at

the base of the ice estimated average growth rates on the order of .1 cm

per day during the period of the experiment (Welch, et al., 1973), thus we

can infer that under thick ice during the spring, the freezing mechanism is

not strong enough to cause appreciable iistability.

As mentioned earlier, if a least-squares straight line is fit to the

average density profiles on Apr. 12 and 13, the lines have negative (stable)

slopes with magnitudes 8.8 x 10- and 2.1 x 10 gm-cm respectively. If

we assume that a constant slope persists to the surface we can estimate the

mean density gradient required to maintain ,= +1.0 by using an eddy diffus-

ivity constant.

3Z K

We estimate Ks K/5 (to give a minimum ap/az) and use K, the eddy viscosity,

2 - 7
as 70 cm -sec (see Section 9.7). For p, = 1.0, pw = 8.3 x 10 , we get

-8 -4p/hz = -6 x 10- gm-cm- which is still considerably steeper than the slopes

observed.
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5.6 Conclusions

The calculations carried out in the preceding section are not intended

to give definitive values for the buoyancy parameters, but rather to pro-

vide some guidelines. Without measurements within the surface layer, it is

questionable whether it is possible to categorize the stability of the

boundary layer directly. The arguments of this chapter imply that gradient

Richardson numbers are of little valua in describing the turbulent structure

of the outer layer. The rough calculations indicate that the layer is

nearly neutral, possibly only slightly stable. As will be shown presently,

the density structure inferred from the dynamical measurements will support

this assessment.

Although calculations indicate that freezing cannot induce appreciable

instability under thick ice, the situation under a fresh lead or polynya,

where rapid freezing, evaporation and heat flux are occurring simultaneously,

Scould be quite different. Since an unstable boundary layer is considerably

more efficient at transferring stress, such regions of open water might be

much more important to the overall stress balance than their ielative area

might indicate. Offsetting this effect to some degree is the fact that

these areas are presumably much smoother than surrounding ice and thus do

not have the form drag associated with older ice.

I;
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.
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6 RESULTS OF CURRENT MEASUREMENTS

P 6.1 Procedure

In light of the models discussed in Chapter 3, it was decided that the

mean current and stress data would be presented; in a manner making compar-

ison between our measurements and the models as easy as possible. For this

reason, a fixed (with respect to the earth) referc.... frame was rejected

in favor of one attached to the ice. The x-axis was chosen to lie along

the direction of surface stress which was approximated by using the mean

current direction @ 2 m depth. The assumption of negligible turning in the

upper 2 m appears to be borne out by the measurements. A right-handed co-

ordinate system with the vertical axis positive upward was chosen to conform

with the development of the equations in Chapter 2.

From Uii f1 = UiU + uiuj, the Reynolds stresses are calculated by aver-

aging the instantaneous component products over a specified time interval,

then subtracting from each such average the product of the corresponding

mean components, i.e.,

Sij = (5ii-Ui) (01 -U1 )

~1 NE i(k)aj(k) - E (k) • E ýi.(k)}

k=1 k k J

where N is the number of samples in the averaging time.

In practice the average velocity vector and the Reynolds stress tensor

were calculated in the experimental reference frame described in Section

(4.3) over the specified averaging time, then rotated into final form with

a rotation matrix determined from the mean components. Details of the rota-

tion are given in Appendix B.
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6.2 Averaging Intervals

In most theoretical treatments of turbulence, an ensemble average is

assumed. If a flow is stationary in time, and certain other conditions

are met (Tennekes and Lumley, 1972), the ensemble average is replaced by a

time average, taken over T as T ÷ • as discussed in Section (2.2). Clearly,

this is an idealization that cannot be met in measurements of natural phe-

nomena. Any success of a statistical treatment of turbulence data rests

on the assumption of a spectral gap between what we consider turbulence

(a difficult thing to define) and other phenomena such as long gravity

waves, tides, synoptic-scale systems, or possibly in our case, independent

ice motions.

Monin (1972, Chapter 1) has broken the entire spectrum of meteorolog-

*- ical events into nine intervals and has shown evidence that between the

first, which he calls micrometeorological oscillations, and the second,

mesometeorological oscill;;tions, there is a broad minimum in the area-

preserving spectrum, fS(f), of wind velocity. From Reynolds number simi-

larity we expect the ocean to behave much the same. In order to measure

turbulence, we would like to cut off our averaging interval somewhere in

this minimum.

Besides this constraint, which is really just saying that we do not

want deviations from the mean resulting from long-term trends to mask

turbulent variances, we also were limited by the physical length of our

data files, which were generally from 20 minutes to an hour long.

It cannot be clearly established from the data that a gap in the true

energy spectrum exists. The problem is compounded by the fact that the
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spectrum of, say, the downstream velocity component fluctuations is not

easily related to the true turbulent spectrum at low wave nrimbers. This is

discussed in greater detail in Chapter 9.

Table (6-1) shows the effects of different averaging times on the

computed average momentum fluxes for a one-hour segment of data. To clarify

further, if one minute is the averaging interval, then -uw is calculated

for each minute of data and the average of 60 such calculations is shown.

Similarly, if 20 minutes is the interval, the average value for three

stress calculations is shown.

It is apparent that the major contribution to the stress comes from

disturbances with time scales of 5 minutes or less, From tests like that

shown in Table (6-1) and because it was convenient in terms of recorded file

lengths, an averaging interval of 20 minutes was chosen for all Reynolds

stress calculations.
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6.3 Composite Averages

Although evidence such as Table (6-1) indicates the presence of a

spectral gap, it does not imply that one realization of the turbulent flow

field over a period longer than 5 minutes will provide~a stable estimate of

the actual stress. Atmospheric surface-layer measurements indicate that

averaging times of at least an hour under unstable buoyancy conditions were

required to estimate stress and that even then these data showed large

scatter (Wyngaard, 1973).

According to Lumley and Panofsky (1964, p. 36) if an acceptable level

3 of error is a, the averaging time required for a quantity to be estimated

within a is given by the following formula:

T 2-f" a2
f2 a

where f- is the ensemble variance of f about its mean, 7 is the integral

time scale

7 Jf p(t)dt
0

and p(t) is the autocorrelation (normalized autocovariance) of f(t).

Clearly, we need some prior knowledge of f in order to estimate its

averaging time. Figure (6-1) is an autocorrelation function calculated

for the u-component of the 2-m triplet during the storm on Apr. 12. It

is an average of several 28 minute samples. By approximating the area

under the curve, we can estimate its integral time scale as somewhere in

the neighborhood of 35 sec. Using twenty-minute averages, a typical value

for u /U is found to be .01. Thus to ensure 5% accuracy in estimating

the true mean speed we must average for something like 280 sec or roughly
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5 minutes. The averaging time varies as the inverse square of accuracy, so

that to increase the accuracy by 5 times would.require averaging for about

two hours in a steady flow. If the results that hold for the atmosphere are

any indication, we might expect considerable scatter in stress estimates

for averaging periods up to an hour and even longer. This was confirmed by

comparing individual twenty-minute averages.

It was felt that this problem would be minimized if a composite average

were made of many twenty-minute averages representative of fairly steady con-

ditions. To this end the current record was searched for such conditions

and composite averages formed.

Figure (6-2) shows measured speeds and bearings for Apr. 12 at two

levels: 32 m and 54 m. The dots epresent smoothed data from the ABR system

showing apparent bottom speed and bearing with respect to an observer on the

ice. In the current traces, each solid segment represents a file of data;

gaps between are times when data were not recorded.

The triplet at 54 m is situated well into the pycnocline and the current

there was plotted to demonstrate the increase in activity compared to the

32 m level which is near the bottom of the mixed layer.

The time segment in Figure (6-2) labeled "Composite Average" starting

at about 1230 denotes the time considered best for current measurements in

terms of steadiness and maximum speed. Mean flow and stress data for each

complete twenty-minute interval during this period were calculated and then

all these calculations were averaged to arrive at composite profiles. This

formed the basic data set for the project and is summarized in Table (6-2).

It represents 15 twenty-minute averages or 5 hours of data. Similar cal-

culations were carried opt for 8 hours of composite data collected on Apr.

11 and are summarized in Table (6-3).
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1 minute 5 minutes 10 minutes 20 minutes
Depth ...

(m) -uw -vw -uw -vw -uw -vw -uw -vw

2 -. 32 +.16 -. 55 +.20 -. 58 +.20 -. 61 +.19

4 -. 05 +.11 -. 18 +.13 -. 18 +.14 -. 19 +.14

8 0 +.16 -. 03 +.24 -. 04 +.25 -. 04 +.25

12 +.03 +.12 +.02 +.18 +.04 +.18 +.04 +.19

16 +.08 +.16 +.10 +.22 +.12 +.24 +.11 +.26

20 0 +.06 +.03 +.11 +.04 +.12 +.04 +.13

26 +.0l 0 +.02 0 4.02 -. 01 -. 01 0

32 0 0 +.01 -. 02 +.02 -. 06 -. 05 -. 03

Table 6.1

Effect of different Reynolds stress averaging time for

the same ope-hour segment of data

S%
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7 CALCULATION OF SURFACE STRESS

7.1 Introduction

Without means of directly measuring the stress on the onderside of the

ice, we must infer its value from current measurements. In this chapter

some standard methods for estimating the surface stress will be discussed,

and it will be shown that such methods give ambiguous results when applicd

to our data. Then it will be shown that horizontal homogeneity, upon which

most methods depend, cannot be assumed in our case, and u, will be calcu-

lated from a combination of measurements.
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7.2 Surface Layer Methods

If conditions are steady enough to get suitable time averages, we can

make direct measurement of the Reynolds stress, -puw, at a level close

enough to the surface to be considered within the surface layer as discussed
2

in Section (2.2) and equate it directly to the surface stress, pu, (for

simplicity, hereafter p will be considered to have the value 1.0 and surface

friction stress and u, will be considered identical). Recalling that in

the surface layer the latctral stress is zero, it is obvious from Table (6-2)

that at 2 m there is already considerable turning of the stress "vector."
2 -2

However, the modulus of the stress at 2 m, .67 cm -sec , sets a lower bound

on any surface stress calculation and we can say immediately that u,(min)

V. 7 = .8 cm-sec-1

A consequence of Rossby-number similarity discussed in Section (2.6)

is that the logarithmic profile is not confined to the surface layer proper

but extends into the lower outer layer in order to satisfy the matching

requirements. Tennekes (1973) suggests that in the neutral boundary layer,

the log profile may be expected in roughly the lower tenth of the total

boundary layer thickness, which he defines as F = fz/u* = .3.

We can assume a log profile and use measured values of U at 2 and 4 m

to solve for u,, i.e., we integrate the dimensionless wind shear equation

kz •U
•m =u, •z = 1

between the limits z = -4 and z = -2, to get

u, = k(U 4 - U2 )/in2
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Using mean values from Table (6.2) and k= .35 we get

-1
u, .1 cm-sec

The use of k = .35 requires some explanation. It is the value reported

by Businger, et al. (1971) for conditions on the Kansas prairie with Ro, -

u*/fz 0 - 10 7 We can anticipate by solving the law of the wall, Equation

-1 5
(2.4.1), with u, = 1 cm-sec that z .1 cm and Ro 10 From the argu

ments giien by Tennekes (1973) and discussed in Section (3.4), we might

expect k to be larger than .35. For k = .4, u, = 1.3 cm-sec. Thus even if

the log profile is valid to 4 m, which we have not demon-ttrated, there is

still considerable uncertainty in the value in u, due to the uncertainty in

k.

We can investigate the effects of slight stability on u, by integrating

the log-linear profile, Equation (3.5.2), and using p, = 1.0 and L, 35 m,

i.e., the same hypothetical case discussed ýz Section (5.5). Using the

value 8 = 4.7 reported by Businger, et al. (1971), we get

= k(U4 - U)/(n2 + 4.7(2))
U* '(4 -2(n23+ý6_

which yields

u, = .8 cm-sec

for the same data. Clearly, even slight stability has a large effect on the

calculation of surface stress.

Using the neutral value for u,, we can evaluate the depth z .03 u,/f

which marks an outer limit on the validity of the log profile according to

Si3of0-4,STennekes (1973). For u,. = 1.1, f = 1.4 x 10,this is about 2.4 m, so that
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the value of U at 4 m in a log profile calculation is possibly not justified.

From the examples and arguments given, it is fairly clear that surface

layer profile methods will not give a clear estimate of the surface stress

from our data.

4.
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7.3 Momentum Integral Methods

We can define functions M (z) and M (z) such thaty x
-, z

(z) = f [V(z') - V dz'
y R (7.2.1)

-NI x(Z) = f [U(z') - UR] dz'
0

If we multiply each by -p, they can be identified with the total mass trans-

port above the level z in the y- and x-directions respectively.

By integrating the mean component equations, (2.2.9), from the surface

to some level z we have

z 2
-fM (z) = f F dz - uw(z) + u2

" z (7.2.2)

fMx (z) = Fydz -vw-(z)

where we have lumped local pressure gradients, advective accelerations,

etc., into the force vector F.

Before Equations (7.2.2) can be applied to the data set of Table (6-2)

we need to estimate the importance of the local rate of change of the mean

true velocity. If we take the change in the mean downstream '.omponents for

the first and last data files of the composite average and divide by the

time between them we have for the triplet at 2 m

a_ f ý. 3 x 1 -6- 2
(U-UR)END - (U-UR)START/At - x 10-6 cm-sec

By comparison, -f(V-V R) at 2 m is - 12 x 10- 4 cm-sec2 so that apparently

the time derivative term can be ignored for currents as steady as those

chosen for the composite average.
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Hunkins (1974b) made integrated mass-transport calculations using one-

hour mean currents measured independently at the 1972 AIDJEX site and found

the mean time dependent term to be an order of magnitude less than the

Coriolis term. His measurements included relatively unsteady currents.

If we assume the flow to be steady and horizontally homogeneous then
S~2

-u T (z) + fM (z) (7.2.3)
x y

T x(z) = -uw(z)

Thus, if a level at which stress vanishes can be identified, the surface

stress can be calculated from the mean V profile alone.

Table (7-1) shows a numerical integration of M (z) for the data inS~y

Table (6-2). It is obvious that if we ignore measured stresses and assume

that the stress vanishes near the reference level, 32 m, then

2 2 -2u, = 3.0 cm -sec

However, if we utilize the stress measurement at 2 m and apply Equation

(7.2.3) we get
2 2 -2

u 8cm -sec

2 -2
For 4'm we get .7 cm -sec , etc.

Thus, if we retain the condition that horizontal homcgencity holds,

i.e., that fFx dz = 0, then we must conclude that either our stress measure-

ments or direction measurements are wrong or that the method fails. Rather

than admit any of these, we shall investigate the effect of including a

topographic term.
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7.4 A Non-Homogeneous Estimate

In order to estimate the magnitude of the topographic force, F, we

can find the difference of its integrated effect at two levels by consider-

ing directly measured quantities.

Let
z

•x(z) = F (z') dz'x ~0

z
7(z) = JF (z') dz'

Y0

We can write the first of Equations (7.2.2) as

-7x(z) + u, 2  = -[fM (Z) + Tx (z)]
y

Again using a finite difference approach we can determine (z) betweenx

Jlevel.s from A1(z) 6F z. These calculations are summarized in Tableýx x
S(7-2).

This technique does not divulge information about the function Fx in

the upper 2 m. The origin of the force field is not clear but we assume

that it is set up by some large-scale inhomogeneity and that in the surface

layer it does not vary wildly. If we decide to treat F as constant inx

the upper 4 m, we can estimate the surface stress from
N'4 2

2u -[fM (z) + T (z)] - Fz @ 2 m

y 2 -2
= .97 cm -sec

It might seem more logical to extend F to the surface with the slope given
x

by our estimate at 3 and 6 m. If that is done

V 1.1 cm -sec
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However, it might seem just as plausible to say that F decreases to zero
x

at the surface; this yields

2 2 -

u 2 cm2-sec

2 -2
2 "2 . -2

Thus we chose u,= 1.0 + .1 cm -sec as the estimate utilizing the maxi-%

mum amount of information available.

To summarize, the method for estimating stress involves:

(1) Taking long enough averages to get stable estimates of the

momentum flux at 2 and 4 m.

(2) Using mean velocity profiles to estimate the function M (z)
y

at 2 and 4 m.ý
(3) Calculating 5"(z) as the difference of the sums of T+ M

X x y

at 2 and 4 m.

2
(4) Adding - (T + M ) +<7> to get u,

In Chapter 8 the composite profiles are non-dimensionalized by u, and

u,/f where u, is calculated by this method. Comparison with theoretical

treatments tends to confirm the validity of this procedure, although cer-

tainly not to better accuracy than given above.
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7.5 Reflections on the Momentum Inteiral Method

2
So far we have tacitly assumed that the surface stress, u, is skin

friction, i.e. tangential stress due to viscosity and the no-slip condition

at the surface. Although it is not a priori obvious, we assume that the

turbulent structure responds besically to this type of stress since the

surface layer is small compared to the horizontal distance between the

larger features. However, in detarmining the total stress the ice exerts

upon the water, form drag, i.e. the normal stress (pressure) exerted against

bluff irregularities in the ice surface (Batchelor, 1967, Chapter 5), must

be considered. Clearly, forces such as F discussed in the previous section

will manifest themselves as form drag.

We can conceptually break the downstream Coriolis force, f(V-V ) into

two parts: one that balances the turbulent stress gradient and one that

balances the local pressure-gradient, advective-acceleration term, F . Thus
X

•Tx

-fvE = 7

-fv = F

The values for v and v1 are tabulated in the rightmost two columns of

Table (7-2).

The origin of vL is not clear, but seems to indicate that non-linear

terms other than the vertical Reynolds stress gradient are important. It

is obvious that vL, whatever its cause, is important in stress calculations

involving mean profiles in the entire boundary layer. Figure (7-1) shows

velocity profiles for the three frames for the period 1230 to 1930 (AST) on

Apr. 12. The zero reference level is the under-ice elevation at the main
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frame. Integration of the outer frame profiles will yield an even higher

estimate of surface stress than the main frame. Figure (7-2) contains the

same information for Frames 1 and 3 (main and ridge) in the form of hodo-

graphs. The under-ice topography map, Figure (4-1), shows that topographic

changes in the vicinity of the outer frames are more abrupt, possibly

explaining the curious shapes of the current profiles there.

Figure (7-3) demonstrates the effect of a different "fetch" on the main-'

frame profile. During most of the storm from Apr. 10 through Apr. 13, the

ice motion was almost due west, but for a few hours on Apr. 14 the current

direction changed. The profiles marked by diamonds were taken from a

twenty-minute average early in the storm on Apr. 11 and the circles repre-

sent a twenty-minute average taken on the afternoon of Apr. 14. In terms

of speed, conditions during the latter case were not steady, but the direc-

tion and shape of the profile are representative of several hours of data,

implying that the flow direction has an appreciable effect on the shape of

the velocity profile. Unfortunately, threshold problems with the independent

current-meter component, Vm, on the outer (fixed) frames made determination

of mean profiles there impossible during the latter time.

Figure (7-4) shows a comparison of measurements made by the Lamont

group (Hunkins, 1974b) to ours for the period 1200-2400 (AST) on Apr. 12.

The Lamont current-meter array was situated approximately 110 m southeast

(roughly downstream) of our main mast in what appeared from the upper sur-

face to be smoother ice. The ice velocity was determined for the 12 hour

period from satellite navigation data as reported by Ifunkins (1974b). The

X ABR was non-functional during part of this time and thus did not provide

an independent ice motion measurement.
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The solid vectors emanating from the points labeled "Ice" are stress

vectors (acting on the ice) calculated using the momentum integral (mass

cransport) technique as described by Hlunkins (1974b). For the Lamont

measurements the reference level was 25 m, while for ours it was 32 m.

From these we see the somewhat startling result that flow profiles mea-

sured at two points quite close to each other, each apparently exhibiting

similar surface layer behavior and about the same amount of total turning,

give estimates of stress that vary by a factor of nearly 2 1/2. It can

be argued that if we were to integrate to 25 m, our stress estimate would

be somewhat lower, but the main point is that the major contribution to

the momentum integral in our profile comes because there is no appreciable

turning above 16 m in contrast to liunkins' profile in which turning starts

at about 8 m. Reference to Figure (7-2) is helpful in visualizing the area

of the momentum integral, f J(V-VR)dz.

*Hunkins (1974b) has demonstrated that the momentum integral will give

a measure of the total stress on the ice including form drag if it is

averaged over a suitable horizontal area. The evidence presented in this

section implies that determining a suitable horizontal average may require

very extensive measurements. We shall ret:urn to this in the last chapter.

4 A
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a -b -C.Depth V-V V-VR (V-VR))Az fM (z) -uw-i.R. 2 -2 2 -2

m cm-sec (xlO 2) cm -sec cm -sec

0 +9.47 0
9.47 -18.9

2 +9.47 -. 26 -. 58
9.14 -18.3

4 +8.81 -. 52 -. 19
8.87 -35.4

8 +8.93 -1.02 +.08
8.91 -35.6

12 +8.89 -1.52 +.02
8.61 -34.4

16 +8.33 -2.00 +.06
7.58 -30.4

20 +6.84 -2,43 +.02
5.03 -30.2

26 +3.22 -2.85 +.13
+1.61 -7.2

32 0 -2.95 +.07

No turning in upper 2 m assumed

a VR is reference lateral velocity at 32 m

b

My(Z) f [V(z') - VR dz'
0

c Measured momentum flux values from T•#le (6.2)

Table 7.1

Mass transport calculations for the crofts-stream component



84

Depth Az (Z) + Ay v vE

(x 104)

0
-200

2 +.84 -. 13 +6.5
-200 -. 3 9.1

4 +.72 +.23 -5.8
-400 +7.1 1.8

8 +.94 +.36 -14.0
-400 +8.5 0.4

12 +1.50 +.44 -11.0
-400 +8.4 0

16 +1.94 +.50 -12.5
-400 +6.3 0.5

20 +2.41 +.31 -5.2
-600 +2.8 0.4

26 +2.72 +,15 -2.5
-600

32 +2.87

Table 7.2
The force field and velocity decomposition

discussed in Sections (7-4) and (7-5)
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8 COMPARISON OF MEASUREMENTS AND THEORY

8.l Turbulence Theories

With the friction velocity calculated for the composite data set,

Table (6-2), we can calculate a scale length for the outer layer:

u,/f = .01/1.4 x 10-4 = 70 m

With this length scale:and u, we can non-dimensionalize the mean profiles

of velocity and velocity covariances. Figures (8-1) through (8-4) show

theoretical predictions from several models plotted as curves with solid

markers showing measured (-on-dimeiisionalized) values. These graphs prob-

ably represent the most important results of this project.

A word of explanation is in order regarding the choice of theoretical

curves in these figures. In most cases there was so little difference among

the models for the neutral PBL that results from Businger and Arya's first-

order model are shown for convenience since we wanted to show the effect

of positive stability. The stable case shown is the one closest to neutral

treated in their model. Clearly, a K-model will not explicitly predict

turbulent variances and the non-horizontal shear stress, uv, however, and

for these, the values from Wyngaard, et al., (1973) and Deardorff (1972)

are shown. Incidentally, the pycnocline at 35'm in effect imposes a "lid"

on the PBL at about • = .5.

Figure (8-1) depicts the mean dimensionless downstream current. Al-

though not shown, because of the scale of the plot, its value at the "'.rface

(UR/u*) is 22. For the Wyngaard et al. model the surface value ie ,

32. This discrepancy is reconciled by noting that in the surface layer U
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7'is a f.iirly strong function, of Ro,, which 10: 0for the standard conditions

of the model. For •Ro,= 105, Shir-'s, (-0.973); nodel predicts the corresponding

value of UIui to be 24.

Figure- (-2)demonstrates the V ýrkfile's departure from ideal already

discussed in Section (7,Q4) and attributed t0topographic. effects. Th; open

circlesý;represent vE/u* caldulated as' described in-vSection (374). Figure

- 2(873) shows the shear stresses. The curve for uv/u, is taken from Wyngaard

et al. Considered together, Firugres (8"1)-, (8-2) and (8-3) demonstrate well

the coupling between •the :stress gradient, the Coriolis force and the form

drag, force, F. Clearly the uw-stress gradient alone is not sufficient to

balance 'the doinstream, Coriolis force associated with the V component. On

the other h'ind, the v stress and 'the U compeient fit their respective

horiz6nfally homogeneous models quite nicely, indicating that the lateral

componeit 'of F is not important in that balai).e. Thus we conclude that F

must be iii. the direction of ice motion and it is natural to consider it a

manifestation of -form drag.

Figure (8-4) shows dimensionless variances, the sum of which is twice

the turbulent energy. Curves -from- Deardorff's model seem to show more of

the structure demonstiated by Our" measurements than the simpler second-order

model. The fact that measured levels of turbulent kinetic energy deep in

the layer are higher than model predictions might be because the mixed layer

is bounded by an active py'nocline rather than by a rigid lid as in Dear-

dorff's model or by nothing as in the Wyngaard et al. model.

At first glance, -it seems that the turbulent field is not much affected

by the form drag field that makes itself so noticeable in the mean V com-

ponent, and we are tempted to classify the layer as slightly stable, mainly
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because 6f the behavior of the dowmstream stress, uw. There are-several

objections to this, however. First, the measured vw stress fits a neutral

model very well. Secondly, the turbulent energy does not behave as if

there were a vertical force affecting it, particularly the w2 component,-

-which fits Deardorff's neutral model very closely. Thirdly., thd arguments

of Section (4.5) indicate that a much steeper slope to the density profile

would be required for p, = 10, say, than was observed.,

Lituitively, the suppression of uw with-depth.might be explained by

again referring to the local pressure-gradient force,-P. We can picture it

as a standing field being advected along with the ice with just the right

magnitude to bring Equation (2.-2.9) into-balance. In the region deeper

than 2 m this ford is negative, so that we can visualize a blob of fluid

with excess momentum being traiisported downward by a turbulent eddy but

feeling a restraining force in the x-direction. The net effect then will

be to inhibit momentum exchange in a manner somewhat analogous to the action

of a stably stratified environment except that it occurs in the x-direction.

Since we chose the x-axis-to coincide with the ice motion, the cross-stream

momentum exchange is not affected so much.

Some insight may possibly be gained by writing down a pair of the co-

variance equations. For simplicity, but with no rigorous justification, we

assume that the effects of non-homogeneity are not significant except in

the pressure-velocity covariance terms. Then for steady-state conditions

we can write the u and v covariance equations (from Equation (2.2.6)) as

7,w 4 ~ u u---2o(-uw cos4ý -uv siný) +(2.1

1= - - 2c 7v sin +(8
w + -v-w ay 3

az 2'!
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In general, it is dangerous to try to infer much from cursory looks at

complicated equations, but we can see from,'(8.1.1) that uw is closely

coupled to tr-x and we expect this term to bt strongly affected by a local

pressure gradient such as we have discassed. On the other hand, vw in

Equation (8.1.2) is coupled to events in the x-direction (at least in this

simplified version) only through the- rotation term.

We thus conclude, although- the evidence is somewhat ambiguous, that

the boundary layer was essentially neutral and that the flattening of the

uw stress-profile was the result of topographic effects, rather than stable

,stratification.

Figure (8-5) and (8-6) compare the non-dimensionalized profiles for

the two composite averages summarized in Tables (6-2) and (6-3). For the

"latter case, Apr. 11, the average reference speed was 16.32 cm-sec and
•2 m2  .- 2

Su• 2 7 cm-sec . Current direction was almost the same in each case.

Of particular significance is the behavior of the cross-stream velocity

near the bottom of the boundary layer. In Case A (reference speed = 16.3

cm-sec 1 ), the reference level, 32 m, has dimensionless depth • = .55. In

the second case, with u, larger, the 32 m level falls at • = .45. The depth

of the mixed layer remained constant at abotit 35 m, so ue conclude that the

depth of influence of the topographic force, •, responds to u*/f scaling

rather than to the depth of the mixed layer. The importance of this will

be discussed in Section (11.1).

The fact that the turbulent energy is larger on Apr. 12 may be related

to the fact that we observed more activity in the pycnocline on that day (see

Section 10.5) although this is not clearly established.
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8.2 Similarity Constants

If we assume that the log profile is valid to 2 m and use the values

for u, calculated by the method outlined in Section (7.3) we can solve for

z from

ln z= In 200 - kU(2)/u,

For k = .35 and U(2)/u* = 20

z = 0.18 cm0

With the surface roughness scale establisbed we can solve Equation (3.6.3)

and (3.6.4) for the similarity constants A and B'

kRSA 1ri, Ro, - --

~From tihe data for the two composite cases studied we can solve to get:

Date u, Ro, A B

44/11 .7 2.8xi0 2.9 3.3

4/12 1.0 4.OxO04 3.0 3.6

Although these values are within ranges reported for the atmosphere in

the literature, our results show that topography can distort the profiles

significantly and we expect the coefficients A and B to vary with position.

In particular, we do not expect the non-dimensioual cross-stream component

VR/u* to be constant. It may be that B can be related to the gross roughness

features of the ice and that A is not particularly sensitive to topography.

If this is the case, the similarity approach may provide a viable means of

predicting stress from ice motion or vice versa.
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9 TURBULENCE SPECTRA IN THE OUTER SLAYER

9.1 Introduction

There are two rather distinct' reasons for investigating the spectral

structure of turbulence measurements: first, that the spectrum can provide

the best -direct evidence as to whether or not the data collected have in

fact measured the turbulent velocity field, and secondly, for the intrinsic

interest in the comparison of measurements to turbulent spectral theory.

Extensive measurements of -turbulent velocity spectra have been made in

the surface layer of the atmosphcre, and in the lower part of the outer PBL

with the aid of toýers and aivplanes. However, the data collected during

the 1972 AIDJEX project arc probably the first for which simultaneous spec-

tra have been calculated throughout the entire outer layer under more or

less steady conditions of mean current and stability.

In this chapter, a cursory review of turbulent spectral theory is pre-

sented with emphasis placed on lending some justification to the methods of

analysis used. Results are presented and used to derive an eddy viscosity

profile from a mixing-length argument.
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9.2, Spectral Theory

9.2.1 Definition of the Turbulent Energy Spectrum

Briefly, the turbulent energy spectrum is defined as the integral over

spherical shells of radius K = YKi Ki in wave-number space of one-half the

sum of the diagonal components of the spectrum tensor ¢i(K), which is the

three-dimensional Fourier transform of the correlation tensor, Rj (r).

Ri(r) = ui(xt)u (x + r,t)

where the overbar represents an ensemble average and the tilde denotes a

vector.

ij27) fff Rij(r) exp {-iK.r) dr
¾\ (2wT)3-o~" ~

EK)= f 4(K) da

2
Kii

- (Tennekes and Lumley, 1972, Chapter 8)

One-dimensional spectra can be defined by co,,siderii.g the correlation

tensor along a spatial line, e.g.,

00

R CIj(,,) =fff ¢i(K) exp {iK C) dKI d,2 dK3

= f Fij (K)1  exp {iUK 1 dKI1

where
(Lu(mIK an d aj'D(K) d12 d6

(Lumley and Panofsky, 10.64)
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In general, the relationships between the energy spectrum and the

various one-dimensional spectra are complicated, but under the assumptions

of homogeneity and isotropy in space, stationarity in time and incompres-

sibility, there exist simple relations between the one-dimensional spectra

and the energy spectrum.



103

9.-2.2 Isotropic, Hlomoaeneous Turbulence

An isotropic, second-order tensor that depends on a single vector

argument must have the form

•ij (K) = A(K) iKK + B(K) 6ij

(Batchelor, 1953).
Du.1

For an incompressible fluid, *-1 = 0, and if the fluid is homogeneous
1

-•gr. -•~r.[i~ )

S[Rij (r)] =[R. (r)J 0
ar. ii - ar. iJ 1

and

Kjj (K)= 0

since the functions are a Fourier-transform pair. Thus

2 + B(C) 6ij K . = 0 B(K) - 2AA(K)KJ.K A

The total energy in wave-number space between spheres of radius K and K + dK

for an isotropic field is given by

I ý ii(K) 49K2 dK = E(K) dK2 1

Using these relations the spectrum tensor can be written in terms of the

energy spectrum as

S(K) = E(K) 2 iij 4T(K 4 ~ i K Kj)

Thus

FII(K) = -ý 41 (K)dK2 di 3

=4 E1K) 1 2 2

-f (K)K - K 12) dK dK3
-00 47iK41 2 3
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By considering a transformation to polar co-ordinates in the K 2 ,K 3

plane, the integral can be expressed as

FI 1K E(K) 2F11(K 1  •j j 4 P p dp

p=0 K
where

S2 2 2 2 2
P p = K +K 3 KI

Transforming to K space by noting that in the K2 ,K 3 plane, p dp =KdK, we

have

* 1 l E() 2 2
F 1 (K) = () (K - K1 ) dK (9.2.1)

K1 K

A function of K alone, when differentiated by KI, will be an exact

differential Inside the integral, and since E(K) is bounded

3FII(KI)O

aF1i (K1 ) ( K) 7K
a DF 1 E(K 1 (9.2.2)

ý3 .(T1 K1

•, or finaJlly
E(K) K 3 1 1 

(9.2.3)

TK (K 3K

(Batchelor, 1953)

Similarly, it can be shown

F2 1 1 1 • 1IIFI 2 F22 = I (FII - K a F (9.2.4)
11 22 'i ( 1 1  K F11 )(924

A few comments on the development so far are in order:

(1) The correlation tensor from which the energy spectrum is

calculated is a function of three space variables and is

consequently difficult to measure.
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(2) The one-dimensional correlation tensor is easier to measure

but is still a function of space at a given instant in time.

(3) While the -energy spectrum Vanishes at zero wave -number, the

one-dimensional spectra do n6t, since, integrating over a

plane of wave-number space destroys directional information

and treats, for instance, a disturbance of high wave number

impinging on the surface obliquely the same as a disturbance

of lower wave number propagating parallel to the surface.

'(Tennekes and Lumley. 1972, refer to this as aliasing, al-

though- it should not be confused with instrumental aliasing.)

(4) No simple relationship between the energy spectrum and a

one-dimensional spectrum exists except under the rather re-

strictive assumption of isotropy. There is little reason to

assume that the turbulent field is isotropic at low wave-

numbers.

Tc carry our treatment further then, we have to make assumptions about

the shape of the spectrum, particularly at higher wave numbers, and also re-

late our time-series measurements to spatial correlations.
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9.2.3 Universal Equilibrium ai•d the Inertial Subrange

A large body of experimental evidence suggests that the basic mechanism

of turbulence, i.e., the transfer of kinetic energy of the mean flow to in-

ternal energy of the fluid, depends orly. on two processes: the production

of energy via non-linear inertial transfer at large scales and the viscous

dissipation 6'E energy at small scales. As the Reynolds number of a paf:icu-

0 -;V,

"lat flow increases, the disparity in scales increases and if the Reynolds

number is high enough the energy dissipation is found to be proportional

3to u I• where u and . are velocity and length scales characterizing the

large features of the flow (Tennekes and Lumley, 1972). In other words, at

sufficiently high Reynolds number, changing the viscosity, v, will not alter

the gross features of a turbulent flow. This, of course, is implicit in

neglecting the viscous stress term compared to the Reynolds stress term in

the equations of motion.

The wide separation of energy input and dissipation scales has another

important consequence best expressed in the wave-number domain: as wave-

number increases the degrees of freedom of the dynamical system increase

and order imposed at large scales is decreased. Thus at high enough Rey-

nolds number the range of the spectrum in which dissipation occurs is locally

Isotropic and depends only on the viscosity, v, and the energy dissipation

rate), c (Kolmogorof, 1941; see Batchelor, 1953). Length and velocity scales,

called Kolmogoroff microscales, can be defined from v and c such that

3/4 -1/4 1/4v = / C is a length scale and v = (yi) is a velocity scale. By

2
dimensional arguments, the dimensionless parameter E(K)/v n is a universal

function, Ee, of another dimensionless group rK:
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B ~2
E(K) 2V n E-(Kn) (9.2.5)

e

Thus the spectrum of a turbulent flow in the equilibrium range has a-uni-

versal description when scaled by the Kolmogoroff microscales, n and v.

As the gross Reynolds number of a particular flow increases, the dissi-

pation range shifts toward higher wave-numbers. The possibility then exists

of a region in which universal equilibrium is achieved-but inwhich the

effects of viscosity are not significant. Such a region is called the

inertial subrange, where energy is "cascaded" from lower to higher wave-

numbers with very little interaction between the turbulent flow and the mean-

flow forces (production) on the one hand, or between the turbulent flow and

molecular forces (dissipation) on the other.

In the inertial subrange the energy spectrum has a simple expression

Ssince WE/av = 0. Let = Kn, differentiate (9.2.5), and rearrange,

aE

e
,•E = a ý -5 1 3

e
EKt =a,2/3 K-5/3 (9.2.6)

(Batchelor, 1953)

The corresponding longitudinal one-dimensional spectrum can be found

by integrating Equation (9.2.1)

1~lK 2/3 -5/3
F1 1  = (I K (9.2.7)

Similarly, the vertical and lateral one-dimensional spectra are tound from

Equation (9.2.4) to be

F33 (K) = F22 (K) =3 F 1 I(K) (9.2.8)
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The concept of local homogeneity can 6e introduced in a manner analogous

to that of local isotropy. Thus, given a high enough Reynolds number, any

turbulent flow can be considered homogeneous aid isotropic at small scales.

Furthermore, if an inertial subrange exists in the flow, it.+-can be identi-

fied from simple criteria: namely, the minus-five-thirds power law and the

four-thirds ratio of cross-stream to longitudinal spectral amplitudes (Busch,

et al., 1968).

N
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9.2.4 Taylor's HypothesJ!

It was postulated by G. I. Taylor that if the mean stream veloc4.ty in

a stationary, homogeneous flow is large compared to the downstream root-

mean-square turbulent velocity, the spatial structure of the turbulent field-

can be considered frozen and advected past a fixed observer at the mean

stream speed.

The hypothesis can be extended by making the transformatii~n x = Ut and

treating the time autocorrelations as one-dimensional space actocorrelations

(Lumley and Panofsky, 1964).

Taylor's hypothesis furnishes a basis for the as.u3nption that we can

regard our triplets as probes being dragged through a turbulent flow field

measuring that field as a function of space.

Lumley and Panofsky (1964) suggest that near the ground Taylor's hypo-

thesis is valid for u2 ÷ 2 - 1/9 provided, lag distances in the stmosphere

are less than 90 m. At 2 m from the ice, we found typical ratios of u2/U2

1/100 indicating that the hypothesis is justified, particularly for wave

numbers characterizing the inertiel subrange.
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9.3 Instrumental Aliasing

Suppose that for a given -instant in time along a, pa? tig,'iar sp•±tial

direction there exists a continuous function of positionv, e.g.,, the

autocovariance of the downstream velocity component. Supp66e -further that

this function is sampled at length intervals L., The measured uInction,

fs(x) is the product of the actual function and the so-called Dirat. ,>omb,

f (x) = f(x) E 6(x -JL)

or

fx (x) E f(jL)6 (X - jL)

The function 6 (x) = 6 6(x - jL) is periodic and can easily be shown to

have the Fourier transform

Co

S{6i(x)) = ko6k (k) = k 0 Z S(k - nk)
0 n=-•

(Hsu, 1967, Chapter 5) where k = 1/L. Multiplication in the- spatial

domain corresponds to convolution in the wave-number domain, so

Fs(k) '4 {fsX) 1 F, F(k) * 6(k-nko)
s s' L 0

that is, F (k), the transform of the measured function, is made up of thes

kth component of the true transform plus components at k+k0 , K+2ko, etc.

It is apparent that if there are no components of F(k), the true transform,

for Jkl > k0 /2, then the measured transform will be the scaled true trans-

form. Conversely, if components at IIk > ko/2 exist, these components will

be folded back on the measured transform, which is then said to have been

aliased. The wave number kN = 1/2L is called the Nyquist wave number (or



Nyquist frequency in the frequency domain).

The problem of aliasing in geophysical measurements is inescapable,

but if it can be shown that the measurements are made to scales small enough

that from our knowledge of the physical processes involved we know higher

wave-number compoenets are small, the measured transform will very nearly

reproduce the actual transform.

As related to our measurements, if we can show that we have measured

at small enough scales so that turbulent energy in higher wave numbers can-

not much affect the energy spectrum when aliased to lower wave numbers, then

we can say we have measured the turbulent flow field. In other words, we

need to show that we have measured well into the equilibrium range of the

energy spectrum so that disturbances of smaller scale cannot appreciably

alter the Reynolds stress tensor.

From the calibrations for head-on currents, the distance a current meter

travels for one complete revolution in still water is given by the formula

d = 7.4 + 1.1 t in cm where t is the period for one revolution. In the

range of velocities encountered, the distance between samples is enproxi-

mately 8 cm. This implies that if Taylor's hypothesis is valid, then turbu-

lent eddies with scales smaller than 8 cm will not be detected even by a

meter aligned into the flow. For a meter with its axis at some angle from

the streamline, the minimum sampling distance will be increased by the

factor sec ( & ), where G is the angle of attack. For a triplet aligned

in some arbitrary way with the average streamline, the minimum sampling

length is determined by the slowest-turning meter.

In the time series used to calculate spectra, the average of the slowest

component divided by the mean speed was about 1/3 to 1/4 corresponding to a
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sampling length of 24 to 32 cm, or a Nyquist wave number of 1.6 to 2.1

-1m . This argument would hold rigorously were the time series actually

discretely sampled. As J. Smith (personal communication) has pointed out,

the mechanical nature of the current meter used acts as an effective filter

for frequencies higher than its turning frequency. For this reason we do

not expect aliasing in the usual sense to be a problem; however, the argu-

ment is still effective for determining that part of the spectrum to which

we can measure, and the criteria outlined above are still valid.-
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9.4 Calculations

In practice, discrete Fourier transforms were calculated using a slight-

ly modified version of the Data General Users Group fast Fourier transform

routine supplied by Ron Stuttheit of Scripp's Institute of Oceanography.

It transforms a maximum size array of 1024 points in about 1 sec. The fast

Fourier transform is a high-speed algorithm for computing discrete trans-

forms and its use has no effect on the properties of the discrete Fourier

transform described in Appendix C.

Calculating spectra from discretely-sampled, finite length time series

is an endeavor fraught with hazard. One of the more obvious proluems is

the fact that a -finite realization of a time series assumed stochastic is

actually the product of the infinite series with a rectangular data window,

a function whose value is one for all measured times and zero for others.

Since multiplication in the time domain implies convolution in frequency

space, we see that our estimate of the spectrum is the true spectrum con-

volved with the transform of the rectangular window. If the true spectrum

is characterized by sharp peaks, this convolution will result in serious

"leakage" of energy to other frequency components.

It is also true that although increasing the length of the time series

being analyzed allows greater frequency resolution, it does not increase

the quality of the spectral estimate (Jenkins and Watts, 1968).

Numerous methods exist for alleviating these problems and improving

the spectral estimates. For instance, various tapered data windows have

been suggested that have bettef frequency domain characteristics, i.e.,

they reduce leakage compared to the rectangular data window. It should be
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pointed out however, that from the nature of turbulence, a very random sort

of phenomenon, we do not expect sharp peaks in its spectrum and do not

anticipate leakage to be a major problem; but, for the same reason, there

is apt to be a great deal of variance in the spectral estimates from one

realization to the next (a good example of this is given for white noise

in Chapter 6 of Jenkins and Watts, 1968).

In their classic paper on the subject, Blackman and Tukey (1958) sug-

gest calculating the autocovariance function from a time series for lags

up to some fraction of the total number of samples, weighting this function

by an empirical data window, then transforming to get the power spectral

density estimate. It should be emphasized that this technique pre-dated

the advent of fast algorithms for discrete transformation. Also, the

number of lags calculated in the autocorrelation series is usually 1/10 to

1/9 of the total number of samples, so that frequency resolution is decreased

considerably.

The fast Fourier transform algorithm has made the transformation of

many long time series feasible and allows greater flexibij.,y in reducing

the variance in spectral e•tirn-tes. Kanasewich (1973) suggests that, for

a long data set, dividing the series into I subsets and then calculating

the average energy density for each frequency is an excellent way to proceed.

The asymptotic variance (the expected variance of spectral estimates if the

spectrum were uniform or "white") should decrease as i/I.

After several tests comparing the latter technique to the Blackman and

Tukey approach showed little significant difference, the direct transfor-

mation and multiplication approach was chosen for its relative simplicity.
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The actual computation of spectra presented in the next sections was

done following the steps outlined below:

(1) A time series of N points for each component is formed by

block averaging the velocity data, usually in groups of 8

corresponding to a time step of 1.62 sec. N was usually

1024 although it could be divided by multiples of two.

(2) An average streamline reference frame is determined by

rotating out the average V and W comp3nents. Each point

vector in the series is rotated into this frame and the

mean speed, U, is reroved from the resulting u component,

leaving three series of fluctuating components: downstream,

u; lateral, v; vertical, w, all with zero mean.

(3) Each series is transformed and the spectral estimate, S(n),

is calculated by taking the absolute square.

(4) Each spectral estimate is multiplied by its index, n, and

classified according to the log of its dimensionless wave

number, Kz = nz/N At U.

(5) Several runs are accumulated, averaged and plotted

log[nS (n)/ 2] vs. log KZ, a = u,v,w.

By using the weighted spectral estimate nS(n) rather than S(n) the

function loses its dependence on the particular units chosen for the fre-

quency or wave-number axis. Also, it is a, fairly standard representation

for atmospheric turbulent spectra with which comparison to spectra measured

above the surface layer can be made (e.g., Panofsky and Mazzola, 1971).
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9.5 Results

In order to calculate averaged spectra the current record was searched

for reasonably steady periods and from these, time series approximately 28

minutes long were chosen more or less at random. In all, thirty such series

taken over the period Apr. 11 through Apr. 13 were analyzed and combined

in the manner described in the preceding section. Figures (9-1) through

(9-3) show the results of this procedure. For small wave numbers the number

of samples was comparatively small resulting in fairly large variance; a

smooth line was drawn by eye to estimate the spectrum. This was usually

limited to wave-number ranges below the peak in the w-spectrum. An example

of an untouched computer plot for the u-spectrum corresponding to Figure

(9-1) is shown in Figure (9-4). Because the spectrum in Figure (9-4) has

been scaled by the variance, the vertical axis is offset from that in

Figure (9-1) although the shape of the curve remains the same (this was one

reason for using a log plot for the weighted spectrum rather than the "area-

preserving" plot).

We can use the spectra in Figure (9-1) to investigate the effect of

instrumental filtering. In Section (9.3) we set a lower limit on the

Nyquist wave number at about 1.6 m-I At 2 m, this corresponds to a dimen-

sionless wave number of 3.2 which places us somewhere near the right edge

of the graphs (the reason for this is that we block-averaged eight samples),

When we consider that the weighted spectrum, nS(n), falls off much slower

than the true spectrum, the fact that the weighted u-spectrum has fallen

off by a decade and a half confirms that aliasing of energy in wave numbers

higher than the Nyquist wave number is negligible. From Figures (9-2) and
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(9-3) it is clear that the dimensionless Nyquist wave number moves right-

ward with increasing depth faster than the spectra do. and we conclude that

the triplet at 2 m is the critical case. Thus the first question posed

for spectral analysis is answered: the response of our data-collection

system is sufficiently fast to measure the turbulent flow field.

Some other observations can be made about the spectra in Figure (9-1).

They are qualitatively similar to atmospheric surface-layer spectra com-

piled by Busch and Panofsky (1968), particularly with respect to the peak

in the w-spectrum. However, as has been demonstrated elsewhere, 2 m is out

of the surface-layer and surface-layer scaling is not necessarily correct.

Also, the Reynolds number for flow beneath the ice is smaller than in the

atmosphere by probably a couple of orders of magnitude and we expect vis-

cosity to affcct the spectrum at lower wave numbers.

For the triplet at 2 m there appears to be evidence for an inertial

subrange, i.e., there exists a short region in which all three spectra fall

off with a -2/3 slope and the ratio S w(n)/S u(n) - log- (.l) = 1.3. At 4 mw um

and 8 m regions of -2/3 slope appear in all the spectra but the v- and w-

spectra have generally the same magnitude as the u-spectrum.

We can calculate the dissipation rate, c, from Equation (9.2.7):

S~~[F(K) K'31/

= 1 1 3/2

Busch and Panofsky (1968) suggest a value for the constant, a1 = .15 and

using the values kz = 1, kS(k) = .1

=2710- 3  2 -3

c = 2.7 x cm -sec

We can estimate the shear production of turbulent energy as

- D - kz
Uwz kz
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with average values from Apr. 11 and Apr. 12. This is approximately

3 2 -3
6x10-3 cm -sec

This is a crude calculation that depends on the log profile to estimate

the slope and uses an estimate of stress conditions for the time that spec-

tra are actually calculated, but nevertheless the results seem to indicate

that prodoction is significantly larger than dissipation. This may not be

too surprising in light of the flattening of the uw stress profile discussed

in Section (8.1). We would expect the same mechanism to act as a sink for

turbulent energy, in much the same way as a stably stratified medium extracts

energy from a turbulent flow.
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9.6 Vertical Spectra

Figure (9-5) shows average normalized vertical spectra obtained by

averaging spectra from 30 different time series and smoothing the resulting

average by eye in the lower wave numbers. The abscissa is the non-dimen-

sional wave number, kz, where k is the wave number determined from the mean

velocity using Taylor's hypothesis. The most notable feature is the right-

ward shift of the spectra with increasing depth. The spectrum of vertical

velocity at 32 m appears to be different from the others; this may be due

to diffusion of effects taking place in the pycnocline such as internal

waves.

Measurement of vertical spectra are fairly common for the surface layer

of the atmosphere and are usually presented in a form similar to that shown.

The peak of the spectrum is taken to be the characteristic wave number

k = l/Xm where X is the length scale of eddies that transfer energy from

the mean flow to the turbulence. If an inertial subrange exists, then in

it the spectrum should fall off as k-5/3 or with a -2/3 slope in the repre-

sentation shown.

Surface-layer similarity theory predicts that the peak in the w-spectrum

should scale with the distance from the boundary and thus the spectrum should

depend only on the non-dimensional wave number and the stability parameter,

z/L (Busch, et al., 1968). Busch and Panofsky (1968) found that in the at-

mospheric surface layer under neutral or unstable conditions, the vertical

spectra from different levels at three sites coincided with a peak at non-

dimensional wave number kz - .4. Under stable conditions the spectrum

retains its shape but is shifted toward higher wave number since gravity
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tends to limit the size of energy-carrying eddies in the vertical.

Away from the surface layer, the effect of the boundary on eddy sizes

should become less and less important. Presumably a maximum scale size

is reached at some distance from the boundary beyond which we would expect

spectral peaks to shift toward higher dimen!Aonless wave number. This is

confirmed by our observations and also from observations in the atmosphere

from towers and airplanes (e.g., Panofsky and Mazzola, 1971).
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9.7 Inferred Mixing Length and K Distributions

The concept of eddy viscosity dr qws heavily from the idea of a char-

acteristic length scale for turbulent momentum transfer that allows the
- aU

turbulent stress to be related to the mean velocity shear. Thus -uw = K 3z"

where K, the eddy viscosity, has dimensions .2 T and is proportional to a

characteristic velocity times a characteristic length by analogy to the

molecular viscosity of an ideal gas.

In the neutral atmospheric surface layer the dimensionless wind shear

4=z LU is equal to 1.0 provided von Karman's constant is .35 (Businger,

et al., 1971). Thus K is identified as proportional to the friction velo-

city times the distance from the surface. But since the ratio z/X is also

constant, K is proportional to u, times X, an even more fundamental rtola-

tionship in terms of mixing-length theory.

For the outer boundary layer, K-theory is on shakier footing. As

described earlier, various K models have been proposed that can yield cred-

ible results, but without placing such emphasis on the physical meaning of

a mixing length. Deardorff's (1972) results indicate that for the unstable

case, K passes through + - and becomes negative: taxing to the imagination

if thought of in terms of a mixing length.

It would be interesting, however, to investigate the relationship

between K and the vertical spectral peaks in the neutral or slightly stable

outer layer, since wavelengths associated with the peaks suggest a scale

length for the outer region. We postulate that K = c AU• m , and use surface

layer arguments to evaluate c*I from measurements at 2 m, since we expect

the log profile to be valid there (Tennekes, 1973).
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-kz
K = -uw-

-uw kz

*m

in the log profile region only.

From the spectra in Figure (9-5) it is evident that in some cases a

"peak" is hard to identify. In most of the curves, though, a region where

the spectrum falls off with a -2/3 slope can be found, so it is reasoned

that choosing the point where the spectrum first matches a straight chord

with -2/3 slope would provide a consistent estimate of the characteristic

wave number for the energy-producing eddies. Obviously,ý this entails some

subjectivity on the part of the observer and should be considered as an

order-of-magnitude estimate only.

The calculations described were carried out and are summarized in the

following table. Typical measurements at 2 m were used to evaluate cI = .1.

Depth log z/m xm(m) fz/u, Kf/u, 2

m m ____

2 -. 30. 4.0 .03 5.9 x 10-3

4 -. 07 4.7 .06 6.9 x 10-3

8 -. 03 8.6 .11 12.6 x 10-3

12 +.18 7.9 .17 11.6 x 103

16 +.33 7.5 .22 11.0 x 10-

20 +.30 10.0 .28 14.7 x 10-3

26 +.83 3.9 .37 5.7 x 10-3

32 +1.52 1.0 .45 1.5 x 10-3

Table 9-1

K-distribution Calculations
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These values are plotted in Figure (9-6) along with curves from Dear-

dorff (1972) and Businger and Arya (1974) for two stability classes, neutral

and slightly stable.

For comparison, an eddy viscosity can be calculated from simple Ekman

theory by equating the Ekman depth with the depth of the mixed layer (llun-

kins, 1966). Solving for K when z = 32 m = v /2K/1f we get K = 70 cm 2-sec-1

We can non-dimensionalize this to get fK/u* = .01, which fits in fairly

well with the values shown.

It should be reiterated that the result shown in Figure (9-7) is not

derived from the mean current profile, but rather from vertical velocity

spectra. As we have indicated previously, the lateral velocity profile

cannot be described as a balance between the Reynolds stress gradient and

the Coriollis force. Clearly, under these conditions the Reynolds stress

cannot be related simply to the mean profile gradient becasue a large por-

tion of the V component balances the form-drag force, F . An interestingx

feature of this exercise is that although the measured uw profile behaves

as if it were in a stable environment, (see Fig. 8-3), the eddy viscosity

associaLC~i with peaks in the w-spectra is clover to what we would expect in

a neutrally stable column. Thus the arguments of Section (8.1) wherein we

argued that the flattening of the uw profile was due to the form-drag force,

Fx, are bolstered by the results of this section.
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Fig. 9-2 Averaged and smoothed weighted spectra for Triplet 2,
4 m below ice
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Fig. 9-3 Averaged and smoothed weighted spectra for Triplet 3,
8 m below ice
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10 SUB-MIXED-LAYER BAROCLINIC CURRENTS

10.1 Background

It has been mentioned previously that the triplets located within the

pycnocline showed the existence of many more transient current phenomena

than those located toward the base of the mixed layer.

Probably to a large extent these could be attributed to internal waves

propagating along the steep density gradient. It was recognized that our

data could provide some information about the nature of these waves, but

that a rigorous investigation of them was beyond the scope of this parti-

cular project.

On the other hand, it became apparent that other, larger-scale pheno-

mena were also present that could account for considerable mass transport.

In fact, toward the latter part of the storm on Apr. 14, as currents were

falling off to threshold in the mixed layer, we observed currents in the

pycnocline that persisted for more than a day and that were nearly compar-

ably to the maximum ice-drift velocity.
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10.2 Time Development of the Density Structure

Figure (10-1) is a plot of isopycnals (lines of constant density)

vs. time for the period Apr. 6 to Apr. 15, and below that a plot of the

average density of the water column above 60 m expressed in at units. In

each case, the graphs were made from daily average at plots of which

Figures (4-2) and (4-3) are examples.

If the isopycnals and isobars (lines of constant pressure) in a flow

are parallel the flow is said to be barotropic, while if they intersect

the flow is termed baroclinic. Since depth and pressure surfaces closely

coincide in the ocean, the structure of the pycnocline is baroclinic over

the time scale of the storm.

In general, as winds and ice motion increased from Apr. 10 through

Apr. 12, the mixed layer deepened and became slightly denser while at a

given level in the upper pycnocline the density decreased significantly.

On Apr. 13 the trend began to roverse and on Apr. 14 a sharp change occurred

with large increases in density in the upper pycnocline and freshening of

the mixed layer.

The average density above 60 m is plotted to show that while at a

particular level in the pycnocline that the density might change by as much

as .15 units over the development of the storm, the density of the whole

column above that evel was roughly conserved, at least until Apr. 14.

Figure (10-2) from flunkins (1974a) STI) measurements at the AIDJEX site

provides a better overall view. Here isohalines are drawn instead of iso-

pycnals but the density structure follows salinity quite closely. Also,

times are shown in Greenwich Mean Time which leads Alaska Std. Time by ten
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hours, so that, for instance, 1200 GMT is 0200 AST on the same date. The

plot has been modified to include barometric pressure.

Figure (10-3) shows in greater detail the density structure over a

nine-hour period beginning at about 0900 on Apr. 14 (AST). The isopycnals

in the upper pycnocline slope quite sharply and steadily upward, while

below 45-50 m the slope is opposite. Figure (10-4) shows two casts, one

toward the start of the period, one toward the end.

I

4- '4
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10.3 Baroclinicity and Geostrophic Shear

Baroclinic conditions require geostrophic shear, a fact that can be

demonstrated by differentiating the geostrophic balance equation, i.e.

f 1 = -
g p ax

f_ • =3p + 2R a (
az p Tz ax ax 3 p (

p ax 2 1 3 (10.3.1)

p

where we have used the hydrostatic relation

=-pgaz P

That the last term in Equation (10.3.1) is small can be seen by considering

a case in which 3p/Dx = 0. Then

S= -v V p
ýz p g Dz

or

AV

and we see that to create a change in geostrophic current of the same

order as the original would require an enormous density gradient so we can

say

av
az TT Tx (10.3.2)
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10.4 Calculations and Measurements

In order to estimate the geostrophic shear (called thermal wind -.

the atmosphere) associated with the horizontal dersity gradients depicted

in Figures (10-3) and (10-4) we can try as a first guess a length scale

associated with our westward ice drift and calculate the expected north-

south currents. In other words, we determine Ap from the density casts

and an advective length scale for the distance between casts, and use these

values for a finite-difference integration of the thermal wind equation,

(10.3.2). These calculations are summarized in Table (10-i).

Figure (10-5) shows the actual north-south currents observed using the

mean current at 32 m as the subtracted reference. In these plots the velo-

cities have been fitltred with a twenty-minute running average to remove

internal waves of shorter period. Considering the crudeness of our treat-

ment in arriving at the velocity values in Table (10-1), the correspondence

with measurements is remarkable.

Although it is not.clear from the plots, prior to about 0900 the iso-

pycnals were relatively flat, so that the time development of the currents

in Figure (10-6) is illustrative of the response time for this sort of

forcing. It apparently takes on the order of three hours for currents as
-i

high as 14 cm-sec to respond geostrophically to their forcing mechanisms

at this latitude.

At other times sub-mixed-layer currents were observed although none

were as striking as those occuring on Apr. 14 and Apr. 15. A vector plot

of the velocities at the four iowest triplets during the morning of Apr. 13

(Figure (10-7)) shows an extremely complicated structure to the velocity
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field and presumably the density field. For instance, at 0330 a relatively

strong south-west flow at 44 m has turned more than 90 degrees to southeast

at 54 m.

N2
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10.5 Discussions and Conclusions

East-west currents during the period shown in Figure (10-6) were

small. This, combined with the fact that we could use the advective length

scale to calculate geostrophic velocities, suggests that the east-west

motion of this disturbance was small and that it could be considered a

front aligned predominantly in the north-south orientation. The origin of

this front is not well understood, but the following heuristic explanation,

which borrows heavily from Holton's treatment of synoptic-scale spin-down

and associated secondary circulations in the atmosphere (Hlolton, 1972,

Chapter 6), is offered as a possibility.

The idealized Ekman equations for an ocean with no barotropic pressure

gradients can be written

1 en (10.5.1)

where z is the vertical unit vector andn = x + T e is the "stress
z rn = zxx zy y

vector."

If we define D as the depth at which stress vanishes (the depth ofe

the Ekman layer) we can rearrange and integrate Equation (10.5.1)

0ez x To (10.5.2)

-D ze

where V is the surface stress.

"If we take the horizontal divergence of Equation (10.5.2) and apply

some vector manipulation, we have

0 1 ( 0 =-f Vh-PdVh" -e ez.V x T
-D V.

e
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From continuity

SLz -Vh' U

and if the surface vertical velocity is zero, this becomes

w - --e .x0
0 f z 0

(C.B. Leovy, class notes)

Thus we have the result that the curl of the ice-stress field, which

can be ":elated to the vorticity of the ice-velocity field, is balanced by

a vertical velocity at the base of the mixed layer.

In cyclonic motion about a low pressure area in the Northern hemisphere,

the curl of the wind stress will be positive and can be estimated by AW/AL

where AL is the advective length scale. For the period Apr. 10 to Apr. 12,

"AT/AL - 7 x 10-7 giving w0 - 5 x 10-3 am-sec upward.

Another way 3f viewing this is to recognize that there must exist a

small upward flow at the base of the boundary layer to compensate for Ekman

divergence in the boundary layer proper. Note that the "mirror image"

analogy breaks down here. In the atmosphere, the Ekman transport is toward

lower pressure, ie. toward the center of the cyclone, while in the ocean

it is directed away from the center.

If the fluid were neutrally buoyant, this upward flow would be balanced

by a very small inward flow throughout the whole interior of the fluid.

In the actual case, vertical motions are inhibited in the strongly

stable pycnocline and the return flow is confined to a relatively thin sec-

tion near the base of the mixed layer.

If we visualize a cyclonic system suddenly imposed on a quiet ocean

we might expect the following development. Ekman divergence beings inme-
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diately-, resulting in vertical transport of more dense material into the

mixed layer. As the spin-up continues, the net influx of water typical of

the top layers u'f the pycnocline toward the center of the system sets up

horizontal density gradients. These gradients in turn cause secondary

circulations that just balance vorticity at the base of the Ekman layer and

bring the upward transport to a halt.

This was roughly the course of events observed during the storm. Early

on there was a marked increase in mixed-layer density, but not much current

activity in the pycnocline. As the storm matured the density build-up

slowed and more cur':ents were observed at depth. Finally, as winds and sur-

face stress fell off and pressure reached a minimum on Apr. 14 (see Figure

(10.;2)) we were advected into a region characterized by an excess of water

typical of the upper pycnocline and observed a strong baroclinic circula-

tion. Clearly, the actual system is m~uch more complicated than the simple

picture presented here, but if the secondary circulations are a result of

the vorticity balance mechanism, their energetics should be considered in

modeling ice drag.

If we formulate a simple mixing problem it is possible to estimate the

average density of water influxed by vortex pumping required to force the

observed density change in the mixed layer. We assume that mixing is rapid

46nd solve the resulting first-order differential equation to get

P1AP t/h +o

(l-e )

where PO is the original density,

LAp is the observed change,

p1 is the average density of introduced water,

h is the depth of the mixed layer.
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For the period Apr. 10 to Apr. 12, Ap .03, wt/h .3

.03
S.036+ 24.05 = 24.17

This is typical of water at 35-40 m. Presumably the water that is trans-

ported vertically is replaced by fresher water flowing in along the base

of the mixed layer to account for the decrease in density observed in the

top layers of the pycnocline.

It is interesting to note that Hunkins observed a strong "eddy" with

large vertical shears centered at around 100 m depth on Apr. 18 (I1unkins,

1974a). He argues that because the size scale corresponds to the Rossby

radius of deformation and is much smaller than the synoptic scale of the

storm, such eddies are spawned by baroclinic instability some dis!-ance off

and are not directly related to the storm.

However, looking at Figure (10-2) and considering the arguments put

forth above, it seems possible that the distortion near the top of the

pycnocline observed on Apr. 14 through Apr. 17 might create such an instabil-

ity. In fact, at a cursory glance, the presence of deep currents seems to

be associated with calms following the passage of storms. As lHunkins points

out', the kinetic energy associated with such phenomena is considerable and

they should be the subject of more study.
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11 CONCLUSIONS AND FINAL COMMENTS

11.1 The Total Str('s on the ice

In Section (7.5) we alluded to the contribution of form drag to the

total ice stress and deferred discussion until further results were pre-

sented. It has become apparent that the question of form drag and how to

treat it is one of the crucial problems in estimating both wind and water

stress on sea ice. Obviously, an ice model requires some sort of reliable

estimate for each. To this end, extensive measurements under varied con-

ditions are planned for the 1975 AIDJEX experiment hopefully to provide

drag coefficients that are functions of easily measured parameters.

F. A. Lee (1973, unpublished manuscript) has shown by modeling turbu-

lent flow without separation over a sinusoidal boundary under conditions

similar to flow under ice, that form drag determined by integrating the

surface pressure is comparable to skin friction. These results have been

substantiated by G. Spooner (personal communication) for arbitrary shapes

decomposed into Fourier components.

Arya (1973) has calculated the ratios of form drag per unit area to

surface friction for the upper ice surface, using observed values for

ridging intensity and a drag coefficient from laboratory flows over obsta-

cles similar to pressure ridges. He findsthat in regions of fairly

intensive ridging, and particularly under stable stratification, form drag

can be quite significant even in the atmosphere, and suggests that in the

ocean form drag may completely dominate skin friction.

Hunkins (1974b) calculated average air stress at the AIDJEX site for

A4
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the afternoon of Apr. 12 and reports a magnitude of approximately 1.9

dynes-cm . Clearly our skin friction estimate (~1 dyne-cm ) is a sizable

portion of this. On closer investigation, however, Arya's method appears

to give reasonable estimates. For instance, if we use his values for the

drag coefficient (C .4) and the dimensionless ridging intensity (R =

.025), then for neutral conditions with an average underside ridge depth -

3 m and z0  .2 cm we get F D/TD - 1 to 2 (see Arya, 1973, Figure 3). This

might seem surprising but it should be noted that Ro* for flow under the

ice is considerably smaller than in the atmosphere and thus the roughness

scale, z0 , is much larger in the ocean, other things being equal.

Unfortunately, we come up against a formidable problem in trying to

describe a turbulent flow over varied topography, and at present we seem

to be able to say only that the form drag is of the same order of magnitude

as the skin fri'tion. We can estimate the total stress by integrating the

mean equations to get mass transport (this is discussed in detail in Hun-

kins, 1974b, Appendix; see also Faller and Mooney, 1971), but this requires

that profiles be averaged over a representative surface area. We showed

in Section (7.5) that the mean profile in any one location seems to be very

sensitive to the particular topographic features of that point and ques-

tioned whether a suitable average is possible without sampling steady

currents from every direction.

There is one feature in this, however, that shouldnot be overlooked:

the ice represents a rigid lid over a fairly large area compared to the

depth of the boundary layer ane thus the ice velocity is a representative

average.

The significance of this becomes clearer if we consider the lateral

(V) profile. First consider the following sketch depicting the lateral
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from a neutral, horizontally homogeneous model (e.g., Wyngaard, et al.,

1973):

V/u*

-10 -5 o

/

0

4ZA5

/

We can estimate the area under the curve by considering the triangle

with legs 0 = .45 and V/u. = 5. This illustration overestimates the stress,

T s/u* 2 , by about 10%, but demonstrates that a linear approximation for the

V profile is not too bad.

Next we superimpose curves from 11unkins' measurements and our own

sketched from hodographs in Figure (7-5).

C:M
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The upper value of the V curve at any location is clearly representa-

tive of the average throughput the region because of the rigidity of the

ice. We then postulate the following:

(1) The point at which the V profile goes to zero is

governed by the turbulent structure and is taken to

be = .45, since the mixed layer is neutrally buoyant.

In other words, the lower limit is set by the friction

velocity, u,. Although this cannot be proved, Figures

(8-5) and (7-2) are strong supporting evidence. We

assume that u does not vary greatly over the averaging

region.

(2) Although V profiles may differ radically from point to

point, the average over a large enough horizontal area

can be crudely approximated by a straight line.

(3) The total non-dimensional stress can be related to the

non-dimensional lateral velocity by a shape factor, Y,

2
i.e., T b/u* V VR /u*



151

The shape factor for the simple triangle with 0= .45 is

.22. By noting that in the horizontally homogeneous case,

2
T b /u =1, we can round this to .2. Thus

TbIu *2= .2 VR/U*

It should be stressed that this shape factor is based more on intui-

tion than evidence. We presume that on the average the V profile comes

fairly close to a straight line from the surface to the depth of frictional

influence, as it does in the horizontally homogeneous case. Our approxima-

tions may be crude, but they should be viewed in the context that even if

our calculated stresses are wrong by 25% we would consider this a large

improvemeut on other means available.

For reasonably steady conditions observed on Apr. 11 and Apr. 12, the

total non-dimensional stress is approximately 1.9.

If G is the modulus of the reference velocity (equal to the absolute

ice speed if no geostrophic flow is present) we can define a drag coeffi-

cient:

From our measurements

Ce) 3.4 x 10- 3

If we accept this method of estimating drag as valid, an interesting

implication is that stress can be estimated from relatively simple measure-

ments. For instance, suppose the ocean is assumed still, i.e., geostrophic

currents are small compared to the ice-drift velocity. Then the ice speed,

G, and direction can be measured by navigation; u, and the direction of

water stress can be estimated from the mean measurements made in an area



152

of reasonably smooth ice at two locations in the log profile region, e.g.,

1 and 2 m. From these a can be determined and the stress calculated from

(11.1.1) with VR Gsina.

Un.

S • VP

Alternatively, if a can be measured and u, and z estimated as above, UR

can be calculated from the geostrophic drag law and the lateral velocity

given by VR = URtana. This method would require more extensive confirma-

tion of the downstream geostrophic drag law

UR/u*. = 1in Ro, - A)

since clearly we do not expect its homogeneous lateral counterpart

V R BSm ~=B
5u* k

to hold. If this approach could be shown to work and the lateral coeffi-

cient, B, could be expressed empirically as, say, a function of the ridging

intensity, R, introduced by Arya (1974); then a geostrophic drag law might

be of considerable value. If, however, it is found that the density struc-

ture is not neutral except in isolated cases, obviously the problem is

more complicated and becomes analogous to the atmospheric case where both

diabatic effects and surface topography need to be considered.

The approach to estimating the overall stress outlined in this section

is offered as a practical. alternative to the methods discussed in Chapter 7.

The assumptions on which it rests surely require more testing and hopefully

the 1975-76 AIDJEX experiment will provide such data.

3-
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11.2 Summary

The main features of this dissertation can be summarized as the follow-

ing:

(1) The so-called mixed layer was found to coincide closely with the

frictional boundary layer observed during maximum wind speeds and was very

nearly dynamically neutral. This was confirmed by direct measurements and

inferred from the dynamical properties of mean currents, Reynolds stresses

and current spectra.

(2) The best estimate of the friction velocity, u,, was determined

from momentum flux measurements and consideration of the mean momentum equa-

tions. It agrees reasonably well with the value calculated by assuming a

logarithmic mean profile to 4 m, even though the assumption is probably not

justified in terms of surface layer theory. Stress estimated using a

momentum-integral technique for the whole boundary layer gave a significantlyV higher value.

(3) With the important exception of lateral velocity, the profiles of

mean current and Reynolds stresses, when non-dimensionalized by u, and u,/f,

agreed quite well with recent atmospheric PBL models.

(4) The surface roughness, z0 , was found to be .18 cm from u, and the

mean velocity at 2 m (with k = .35). This implies a friction-velocity

constant of .05; i.e., u, = .05 U(2).

(5) Spectral analysis showed some evidence of an inertial subrange,

although the Reynolds number of the flow was considerably smaller than in

the atmosphere. Length scales associated with peaks in the weighted w-

spectra were used to derive a K (eddy viscosity) distribution from the
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relationship, K~ u*Z, that agrees reasonably well with Deardorff's (l172)

distribution. Contrary to common assumption however, there was no simple

relationship between K and 3V/az and vw. Again this was attributed to

inviscid topographic effects.

(6) Secondary currents at various levels in the pycnocline were

observed and related to baroclinicity there. These were described heuris-

tically by a spin-up argument and it was shown that such an argumnent could

account for the increased salinity of the mixed layer observed as the storm

developed.

(7) Finally, by assuming neutrally buoyant conditions and that the

depth of the boundary layer was determined by the turbLlent structure, the

departure of the lateral velocity profile from what would be expected in

the ideal horizontally homogeneous case was used to estimate the contribu-

tion of form drag to total drag. Form drag was found to be approximately

the same (90%) as the skin friction drag and thus led to a total drag

coefficient of 3.4 x 10-3
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APPENDIX A

Velocity Conversion

Extensive calibrations of the meters used during the 1972 projects

were done at Harris Hydraulics Lab, University of Washington, in Feb.-

Mar., 1971. Those calibrations were best fit by straight-line segments

described by the following equation:

1.82f + 1.3 .8 < f < 5

1.86f + 1.1 5 < f < 30

2.05f = 4.7 f > 30

where f equals 4 divided by the rotation period of a meter headon to the

flow.
\,,

Response of the meters to angle of attack (i.e., the angle the meter

makes with the streamline) can be described by the following:

f = f G(cos 0)m

where f is the frequency to be used in the calibration equation, f is them

measured frequency and 0 is the angle of attack (Smith, 1973).

1 coso > .94

G(cos 0) 1.29(cos 0) - .21 .84 < cos 0 < .91

.91 cos 0< .87

Given a triplet oriented arbitrarily to the flow, correction for angle

of attack involves an iteration scheme wherein first an uncorrected stream-

line is established, angles from the streamline are calculated for each

component, the components are corrected for angle of attack, a new stream-

line is established and the process repeated until the desired accuracy is
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achieved. This procedure is quite time consuming, however, and should be

simplified wherever knowledge of the flow allows it to be.

In our case we knew that the urn and w components were at approximately

30° and 600 respectively to horizontal and that the strealine would always

be nearly horizontal. Moreover, when turbulence measurements were made the

masts were oriented so the u and v were nearly equal. Thus it could bem m

said with reasonable certainty that the angles of attack of u and wm were

always greater than 30*. In the simplified scheme actually used for velo-

city conversion, the following procedure was used:

u /v = (fu/cos 3 0 °)Ifv

Let 8 = (f )m/(fv)m, 8 •UHcos 300 /v
urn vrn H

f (f v)m 8 < .31 = tan 200 cos 30*

i(f) 8> .49 = tan 300 cos 30°

In between f varies linearly with 8, i.e., fv = (1.27 -. .56 0) fvm Al-
vv vm

though this is a compromise between computing time and accuracy it is con-

sidered to be at least as accurate as the more basic supposition of current

meter response to angle of attack.

The final step in velocity conversion was to smooth the step-functions

resulting from redundant data on the slower-turning meters linearly. It

was supposed that this would more cbosely approximate the true velocity

field and might affect the calculated turbulent stresses. In practice it

was found to have little effect except at very low velocities, for which

Reynolds stress calculations were questionable anyway.
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APPENDIX B

Vector and Tensor Rotation

In order to rotate the meah flow vector and Reynolds stress tensor

into the co-ordinate system used in Chapter 8 from the experimental frame

of reference described in Chapter 2, a cosine matrix is calculated from

the conditions that the mean vertical velocity at each triplet is zero

over the averaging time and that the surface stress is aligned with the

mean flow at 2 m. Thus we can break the complete rotation into two steps.

First we rotate the measurement reference frame about the horizontal

(ym axis so that ui' = aij' u, j 0

/ 0 = tan (w/u)

for each triplet.

Next we rotate the primed system about its vertical (z') axis so that

the average v- component at 2 m is zero:

V, =' VVflat 1  v M(2)a = tan-(v2)

_ '(2)

These two operations can be combined into one rotation matrix so that

any instantaneous vector is given by

m
ui aijuj
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and

cosa cosO sina cosa sinG

A -sinac cosO cosa -sinc sinO

u-sinG 0 cos

If R ij(m) is the Reynolds stress component in the measurement frame

of reference,

R =j a ika J1R (in
Rij = ikajlkf

or in matrix notation:

[R] = [A][Rm][A]T
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APPENDIX C

Calculation of Spectra

The Fourier transform of a continuous function of time, Xi(t), is

usually defined by

A(f) = f xi(t.) e-2niftdt

If XC(t) is sampled at discrete intervals of time, AL, for N samples,

then X(J) = Xi(.At), j = 0, 1, ... , N-i; and the discrete Fourier transform

(DFT) is
N-i -2vknAfj At

A(nAf) = At E X(j) e
J=O

If the basic frequency interval is chosen Af = 1/NAt = 1, the DFT is given

by

1~n N-i -27rinj/IN
An) = N- X(j)e

j=0

Adopting the notation of Cooley, et al. (1969), the DFT pair is

N-I )-nJ
A(n) = E X(j)W

N-i (C-i)
SX(j) = Y. A(n)~~n

Sj=0

• 2l•i/NW =e
SWN

From the properties of WN it follows that A(n) and X(j) are cyclically

redundant, i.e., A(n) = A(n+kN) = A(-n), X(j) = X(j+kN) = X(-j). Under

these conditions the DFT has many easily proved properties analogous to

those for continuous Fourier transform pairs. A few of these properties

are listed here without proof; for straightforward derivations see Cooley,
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et al. (1969).

Let X(J) ++ A(n) be a DFT pair (the synbol -+represents the trans-

form operations (C-1)). Also let X(j) be real. Then A(-n) = A (n) where

A (n) is the complex conjugate of A(n) and

N-i
N X(k)X(k+j) *-+ A(-n)A(n) = IA(n) 12 (C-2)Nk-0

The left-hand side of (C-2) can be identified as the discrete counter-

part of the autocovariance function for the series X c(t). Thus the DFT of

the autocovariance function is the absolute square of the DFT of the origi-

nal series, allowing us to estimate the spectrum by taking the absolute

square of the transform of the velocity series, rather than calculating

and transforming the autocovariance function.

Parseval's Theorem follows directly from (C-2) by setting j = 0:

N-i N-1
Z IX(k) 12  IA(=)

k=0 
n=O

If X(k) is a turbulent velocity component, the mean square of the velocity

fluctuations is equal to the sum of the spectral components. Clearly this

is twice the turbulent kinetic energy in that component divided by the

density.

Finally, if X(j) is even (and real), then A(n) is real and even.

Since the autocovariance function is real and even, we can represent its

transform on the positive wave-number axis as the one-sided power spectrum

A(n) 2A(n).


