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from consideration of the turbulent energy profile.

The skin friction velocity, ux, was determined from momentum flux
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Baroclinic currents of considerable magnitude were observed in the
pycnocline region and were related to time changes in the density field.
It is argued that these secondary currents result from convergence along
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ABSTRACT

Measurements of the mean and turbulent flow structure under pack ice

were made during the 1972 AIDJEX Pilot Study with small mechanical current

meter triplets on three separate Tmasts at several depths throughout the

entire rotational boundary layer. In this work the analog between the

ice-ocean boundary layer and the surface-atmospheric boundary layer has

been explored in detail with composite averages of measured Reynolds stress

and mean flow compared“to predictions of recent atmospheric models.

The most significant measurements were made during periods of maximum

steady ice drift during a storm. Density structure, measured with a CID

probe, showed a well-mixed layer of near neutral stability extending to

about 35 m bounded below by a strongly stable pycriocline. This depth

corresponded closely to the depth of frictional influence observed during

the peak wind period, as indicated by turning of the velocity vector, and

from consideration of the turbulent energy profile.

The skin friction velocity, u,, was determined from momentum flux

(Reynolds stress) measurements at 2 m and 4 m from the ice and consideration

of the mean momentum equation.

It was found that the combined effect of

local pressure gradients and advective accelerations due to topographic

variations could not be ignored and an estimate of this effect was included

in the calculation. u, was found to be 1.0 + .1 cm—sec_1 when the ice

velocity relative to the base of the mixed layer was 24 cm—sec-l.

Turbulence measurements, when non-dimensionalized by u,, pu*z, and

u*/f for velocity, stress, and length respectively, fit predictions from
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: recent meutrally buoyant, horizontally homogeneous :PBL. -models quite well,

% as did the mean longitydihalﬂvglgg%ty.Qdmﬁogént, Ihé mean -flow component

é ;perpendicular to:thegsutﬁaéé~§tr¢§$ (theﬁintegféi of which 1s proportional

i 'to-the»totai surface -stress ﬁheé‘éﬁeraggd’ovétja éuitabl@ area) was found

; to depart markédiy frbﬁ~m6&éljprgdiécipﬁsrindigagiﬂg'th;:;fqrgzdrag asso-

g‘ ciated with pgeséure.ridgé;geélg i$faﬁ73ﬁ§o§tahgiparﬁ:pf thé‘tégai,dr§g. (

A quantitative estimate was made of this efféct, afd a total drag coeffi-
cient, ey = ;c/pVR?, wvas found to be 3.4 i;lOm3 whgre~rs ig the total

average stress on the ice and VR‘is<the ice velocity relative to.-the depth

; of the frictional bcundary layer, The ratio :of form drag to skin friction ‘
i was .9, 7

i; Composite spectra for the velocity componénts behaved qualitatively

?;“ “\ like similar-speéﬁra for the atmosphere, exhibiting a -5/3 slope over about )
% a decade along the wave number axis. Peaks in the weighted spectra of

? vertical velocity components wexre used to derive a K (edd, viscosity) dis-

i tribution related to dominant eddy size ‘that agrees well with the PBL models.

g Baroclinic currents of considerable magnitude were observed in the

% pycnocline region and were related ‘to time changes in the density fileld.

é It is argued that these secondary currents result from convergence along

i the top of the pycnecline as a result of Ekman pumping in' the mixed layer.
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& INTRODUCTION

Understanding the complex mechanism by which a turbulent flow exerts
force on a surface bounding it has long been of ceuntral importance to the
study of fluid dynamics., A large body of knowj-dge has been accumulated
about fluid forces that are commziisurate wit' srdinary experience such as
drag on airplanes, wind force .on buildings, head loss in pipes, ete.;
largely because these flows are amenable to direct measurement or simple
si wlarity modeling ;nd practical application of knowledge about them is
readily apparent. In the larger écale boundary. layers of the oceans and
atmosphere the Coriolil: force (the apparent force arisingwfrom the fact
that our reference frame, the earth, is rotating) plays an essential role
in boundary layer dynamics, even tlinugh it is detectable to our senses
only by inference. Thus even a steaQy-state, horizontally homogeneous
idealization presents the formidable problem of describing the three-way
balance between a driving force, the Coriolis force, and the gradient of
turbulent momentum flux.

In recent years, methods of analysis and tools for turbulence measure-
ment have improved to the point that they can greatly increase our knowledge
of turbulent, ratating boundary layers. At the same time, demand for such
knowledge has been spurred by evermore sophisticated weather-prediction
schemes and pollutant-dispersal research. With the advent of large computers
for pzohlem solving and increased interest in general, we seem to be in &
period of rapid progress toward understanding the planetary boundary layers.
However, when we consider the lack of reliable measurements and the fact

that the theory largely ignores time dependence and horizontal topographic
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variation, we can cafely say thali the questions still outnumber the
answers by a wide margin.
In 1970, a large, interdisciplinary project called AIDJEX (an acronym
for Arctic TYce Dynamics Joint Experiment) was instigated with the goal of
elucidating the intricate interaction between sea ice and its environment.
The fact thec ice motion is governed largely by stresses exerted .on it :

from the atmosphere and ocean provided the impetus for a series of field

Y

cxperiments designed to measure wind and water stress. One phase .of the
measurement program, dealing with water stress, was caritied out by an
oceanographic boundary layer research group from the University of Washing-
f o,

This dissertation concerns measurements made by that group at the 1972
AIDIEX Pdi~t Ctudy camp. In it, we have comparad these data to predictions
of recent theoretical work, pointing out similarities where they exist and
arcempting to identify sources of disagreement. The objectives- of this
cutonsive experiment ¢ an probably best be viewed on three levels of increas-
Peopeveralitys First, to satisfy the immediate goals of AILDJEX we needed
io detuermi-e the total stress exerted on the ice by the ocean during times
wwan the wind stress and ice strain were also being mon%tored. One of the
privary objectives of ail JEX ds a predictive model of ice motion and thick-
aces as a function of relatively easily measured, .aige scale variables.
Ve L pOtTane @ of 30 accurate water stress model becomes nlear when we
comgider that olteatimes the relatively small difference between a driving

sl arress and a retarding ocean drag must account for such interesting
featvres us pressure ridges and open leads. This is by no means a simple

,ruflem, since the total stress is a sum of contributions from surface
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3
friction, form drag and possibly wave drag, although the latter is not
considered in this work,

Secondly, it was recognized that the ice could provide a unique plat-
form from which to make measurements in the upper layers of a deep ocean.
The dynamics of- the mixed layer of the ocean, although extremely important
to the interaction between air and sea, are poorly understood, largely
because of a lack of good data. When the ice is moving, it provides an
excellent vehicle from which to suspend probes for measuring such things
as turbulence. ~Clea£1y, in more temperate oceans, waves (which make
measurements So difficult) must play an important role in the mixed layer
and extrapolating directly from an ice-covered ocean is of .doubtful validity.
Nevertheless, it was felt our data could provide a base to which wave-
induced effects could be added.

The broadest aim of the experiment was to shed light on the dynamics
of planetary boundary layers in general. 1In spite of the fact that the
idealized neutral rotating houndary layer is fe}t to be theoretically well
understood, there is a notable lack of real data, particularly turbulence
data, against which to check the theories. We felt that the remarkable
similarity between boundary layers resulting from ice being pushed across
a slow moving ocean and from a large pressure-gradient wind in the atmo-
sphere could be exploited, particularly since scales in the ocean are much
more amenable to instrumentation, Thus it was hoped that our project would
prove to be significant to atmospheric scientists as well as oceanographers.

With the exception of Chapter 10, which deals with baroclinic activity
in the pycnocline and is more cr less independent, this work is intended

to hae a‘continuous development, In Chapter 2 the planetary boundary
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layer is described in general tgrms; Chaptér 3 presents -specific models.
An Chapter 4, the actual experiment is -described and in Chapter 5 the
density structure of the mixed layer is explored both in theory and with
data. Chapters 6, 7, and :8 are devoted ‘to presenting the data in the
framework of the theory and models. In.Chapter 9 spectral analysis of the
data is discussed and used to bolster some of the arguments developed
previcusly. Finally, in Chapter 11 the results are used to synthesize a
method for estimating a regional stress value and drag coefficient for the
ice stress in terms éf ice drift velocity.

An almost overvhelming amount of data was collected -during this
experiment-~ 75 current meter chamnnels :sampling every 50 msec were recorded
almost continuously for three weeks. " Obviously, presenting these data in
some cogent manner requiraed a great deal of distillation, and undoubtedly
evidence of some interesting phenomena was lost during the process. Ho
claim is made that this paper is a complete summary of the data collected
during the project; rather, it represents the author's judgement of what

features ave particularly relevant to modern boundary layer theory.
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2 THE PLANETARY BOUNDARY LAYER"

2.1 Background

A great deal of the success of modern fiuid-dynamical theory can be
traced to Prandtl's idea that a large-Reynolds-number regime can be broken
conceptually into a frictionless flow bounded by a thin layer in which
frictional effects act to bring the fluid to rest at a solid boundary.
Without friction, many flows are amenable to concise and aesthetically
pleasing mathematical descriptions (e.g., see Batchelor, 1967) or at least
to fairly accurate computer modeling, and the fact that such flows are
observed in nature lends credence to Prandtl's conceptual tool.

Boundary layers, particularly turbulent ones, are not nearly so well
understood; yet as our -understanding of the large .scale features of geophysi-
cal flows increases, the importance of understanding how the relatively
small boundary layer affects such flows becomes more and more significant.

There is also a great deal of intrinsic interest in the boundary layer
itself, a fact which should be clear since, for instance, a snall change in
the conditions of the atmospheric boundary layer can significantly alter
our lives (picture Tacoma without the effects of a smeiter). To relate
closer to our specific project, the prediction of water and wind stress on
pack ice is largely a boundary layer problem although the driving forces
are of synoptic scale.

This chapter deals with general features of the planetary boundary
layer (sometimes hereafter abbreviated PBL). Description of specific models

is deferred to Chapter 3.
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2.2 The Equations of Motion

The equations governing flow in a boundary layer measured from a

e Hhal 2N

rotating reference ‘frame with the x, axis oriented vertically can be

TR

3

written down in vector notation with the Einstein summation convention: as

e BRI ey

The Boussinesq momentum equation--

g Oy 2we, gy = - 2 %% R
3 Ik Po %4

o

5 .
£ —— =
°i3 Fox, T, (2.2.1)
0 j ji

©

is the instantaneous velocity vector in a frame fixed
with respect to the earth;
is the earth's rotation vector;

is the instantaneous pressure with the hydrostatic part,

P, = Py = P, B2s removed;

o]

is the deviation of density from the mean state, Pys

.

is the instantaneous deviatior stress tensor, and

and eijk have the commonly accepted properties,

The continuity equation for an incompressible fluid--

1 - )
3-}2—.- = 0 (2.2.2)

The Newtonian constitutive relatilon for an incompressible fluid--

Tij = ) 'é?j—'*'axi) (2.2.3)

A complete specification would also include an equation of state for

density as a function of pressure, temperature and salinity; the energy

equation; a heat conduction equation; a salt diffusion cquation; and an
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4 equation of state for internal energy. These are not written dcim since
they will not be referred to explicitly. *
We can write an arbitrary instantaneous quantity, §, as the sum of

a mean, G, and fluctuating, g, parts:

TRCY R

s 1 T/Z ’
E g = G+g where G = T f g dt (2.2.4)
; -T/2
4 and . .
1 . _ 1 T/2 !
8 = T f gdt = 0
~T/2

Rigorously, the averaging would be done over T as T = =, and terms like

%%-would be meaningless. It is convenient to anticipate that large scale

driving features in many geophysical flows are tuned to a much lower fre-
quency band than the turbulent features and thus we can retain terms like
%% if it is understood that the time scales involved are large compared to
the averaging intervals, Another way of viewing this is to consider the
Reynolds averaging process as a low~pass filter.

Applying the Reynolds decomposition (2.2.4) to the momentum equatien,
(2.2.1), invoking the constitutive relation (2.2,3) where the kinematic

viscosity, v, has replaced p, along with the incompressibilit§ condition

(2.2.2), and averaging we have the mean momentum equation:

[y

2
U 37U
-—i+U.-2-U.+2we.. n,U = 12 +V——-—i-— -2 u,u, (2.2.5)
ot joox, i ijm i m p _3xX, 9X,0X, 9k, 1]
3 o1 i3 3
vhere .
PRl P
a%, 13 Joxy

as a result of the incompressibility condition,

t;w o
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If we subtract the mean equation from the instantaneous equation,

multiply the result by ., average, then interchange indices and sum, we

arrive a¢ the turbulence covariance equations for a rotating reference frame

(Wyngaard et al., 1973; see also Mellor and Herring, 1973):

2 3 i 3
3t Yi% t 5—1 U * ukuj 5—_'+ ax, ti'kY
= =i 31- 3y . E_ —— .
o, (u . + u uy o, ) (Q llk i3 + p uy 6k3) (2.2.6)
—_— u, 8uy
- Zm(eijmnjumuk + ekponpultq) 2v 5; 3;

where the diffusive viscous dissipation term has been dropped from
consideration of scaling arguments (J. Wyngaard, personal communication).

We can obtain the turbulent energy budget by contracting (2.2.6) on

A g

the index i and carrying out the implied sum:

...q

e 4 AT —
3 (2 Y + UJ ax ( ) + u.u uJ 3% + 3'5§:(uiuiuj)
R (2.2.7)
% _ & g gy %y
T U Ty Yy Syt B
1 0 3 3

—

—
where ¢~ = uiui.

The mean momentum equation, (2.2.5) can be greatly simplified by

poting that W = 0, that derivatives in the vertical are much larger than

those in the horizontal, and that the Reynolds stress term, ujuj, is much

larger than the viscous stress term for geophysical flows. With these

constraints,
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9 To ‘this point, we have considered velocity vectors in a frame fixed L
2 with respect to the earth, Since olr measurements were made from an ice

9 platform being pushed across the sea surface by the wind; it is convenlent

3 to put the equations in a reference frame fixed to the ice,

k . : e Jee motion

- awl

L'am'\

g

w— an e e e o e e b e o

) 2
~»

}
3 \ * !
;? N if ﬁ% is the velocity vector in a frame fixed with respect to the earth,

U 1is the velocity messured with respect to the moving ice, andkﬁR is a

reference velerity, that is, the wean velocity at some level where fric-

s

tional effects vanish and the mean geostrophic flow of the ocean, i,

e g

accaunts for any absolute velocity. If Eé ig identified with a large

o

TR

4 gbéstrophic"pressure gradient in the ocean, then using the vector equivalence,
ﬁm_ﬁh = ﬁf—ﬁg, allows us to subtract the geostrophie pr?ssura gradient from
the momentum equation leaving only pressure gradients due to local topogra-
8 phic or possibly baroclinic effects, The reference level was chosen t¢ be
;i 32 m since that was the deepest- triplet still in the mixed layer (sce

. Chapter 3). Comparison with smoothed acoustic bottom refevence (ABR) data
) during steady times showed that the mean medsured velocity at 32 m tracked

the apparent bottom velocity quite closely, implying that the geostrophic

3 flow was small compared to ice motion. (For a brief description of the ABR,




10
see Martin and Thorndike, 1972). A reference level above the pycnocline
was chosen to avoid the effects of internal waves and other baroclinic
features often observed in a steep density gradient,
With these changes, and the Coriolis .parameter, £, defined by
f = 2Qcos$, where Q is the earth's rotation rate and ¢ is the latitude,

the mean steady-~stace component equations are

1 Plocal  av

-4 (aw) - - = I g =

5, (W) = £(V - Vp) F = % Uge oo
(2.2.9)

3 = 1 anlocal oV

3z (VW)‘*f(U"UR) = l‘y = -'5'0-5}- —U-a—)-(--i-...

where the dots represent other horizontally inhomogeneous terms not cor-
sidered as important as those written explicitly, .

If conditions are horizontally homogencous, so that the right-hand
sides of Equations.(2.2.9) vanish, the equafions are just analogous to the
defect law in the atmospheric boundary layer, where the velocity profile
must go from zero at the ground to a geostronhic value aloft driven by a
nearly constant large-scale pressure gradient. Thus it turns out that ir
the idealized ecase, the current measured under a wind-driven ice floec is
just the mirror imaée of the actual wind, if each is scaled properly. This
similarily provides a basis for comparing measurements.ﬁade in the ocean
to recent models of atmospheric boundary layers. In fact, due to the rigid
surface imposed by the ice, one might expect the ice-ocean boundary layer

to be more similar to the atmosphere than to the boundary layer under an

unfrozen air-sea interface.

PP
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2.3 Scales and General VFeatures of the PBL

If we simplify the problem of flow near the ice to-one that is bori-
zontally homogencous and steady with a constant surface roughness characler—
ized by a length, 20 in a neutrally bouyant fluid;, the flow can be specifi.d
by four external parameters; for instance, the surxface friction velocity,

u, = Wa;ﬂ; , where T is the surface stress; the Coriolis parameter, £; th-
surface roughness, 23 and the distance from the boundary, z. Thus any
other flow parameter, say the true lateral velocity, 'V - VR, when non-
dimensionalized by proper scaling, can be cxpressed as a universal function
of two other non~dimensional groups formed I,om the uxternal pacameters.

For the example cited, we could write

V—VP U--UR
N = G(fz/u*,z/zo) ™ = J(fz/u*,z/zo) (2.3.1)

That u, and u*/f are the proper velocity and length scales for the
neutral outer layer is well establigked in the literature, ‘'lackadar and
Tennekes (1968) argue that if h is the boundary layer thickm: ., u,, emerges
as a scale from an analysis of the turbulent energy budget as ‘a/z0 »> o
although it is not clear that this is more fundamental ghan eliminating the
other possible scales, f o and fz, on the grounds that the forner is
typically far too small aid the latter increases with distance from the
boundary while the true velocity approaches a geostrophic valuve tiat is
coften small compaved to idce drift,

If we form a r1atio of the dimensionless groups z/z0 and fz/u* . e nhave

uﬁlfzo = Ro,, for which the term "surface-friction Rossby number" k& been

coined by Blackadar and Tenncles (1968).

For geophysical flows this ratio

L usARL Yhees 'S .:mm/\‘,‘

XN
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is large; thus we infer that these two paremeters must affect the flow at
quite different scales, This l2ads directly to the concepts of an inner

or surface layer vis-a~vis an outer or Ekman layer.

In the surface layer we expect z small, so that fz/u* + 0 and the
flow at this scale loses its explicit dependence on the large scale mea-
sures. If we let T =‘z/zo, then:

V- VR U - UR

. = GS(C) ’ u, = JS(C) (21302)

u

From (3.2.9), where Fx = Fy = 0 and

—_— 2 ) —
T, = - uw/u,, , Zy = ~vw/u,
we have
6. (t) = -Ro, <2T
s * 9¢ °X
(2.303)
= -Ro. -2
I8 = Ro, o0 Ty
Clearly, in the limit Ro, =+ «
aTx ?EY
— = - = &
T3 T 0 (2.3.4%)

1f the x-axis is chosen to coincide with the direction of surface stress
we see that Tx =1 and Ty = 0 for the surface layer. ke, is finite, however,
so that the usefulness of the surface la&er concept depends directly on the
magnitude of Ro, (Tennekes, 1973).

In the outer layer, r -+« and we conclude that the profiles must depend

on § = fz/u,. Ve have:

V—VR --BTx U-UR EEZ
N O T v B N OB T (2.3.5)
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Rt

Equations (2.3.4) and (2.3.5) demonstrate the paradox thot arises

if we attempt to describe the large~Rossby~number boundary layer by one

e ANt TRt T w88

length scale.

Aeal vl e ste atesote Aaftild

According to (2.3.5) the stress gradient should reach a

TR

maximum as the flow approaches ‘the surface. But in the surface layer pro-

per, the stress gradient is zero by (2.3.4), and we are forced to conclude

p that each scale has its own region of influence as we postulated to bryin

p

; with. In the following sections we will investigate come of the properties
; of the inner and outer layers of the PBL,

A
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2.4 The Logarithmic Profile in the Surface Layer

A concept that has proved sucéessful in describing the uean featurey
of some turbulent flows is that of an eddy viscosity, or momentv.: diffusiv= :
ity, which provides a constitutive relation between the Reynolds sr:rass and
the rate of strain of the mean flow. We can write for example,

o = -x3U
uw K 5z

where K = v, v and & being characteristic velocity and length scales of
the turbulent flow, by analogy to the treatment of molecular viscosity in
the kinetic theory of gases. The scale & is associated with the size of
the large eddies that account for turbulent mixing. As Tennekes and Lumley
(1972, Chapter 1) point out, this 1: conceptually dangerous in that it
ascribes to the fluld a property of the flow. But it makes the mathematics
simpler, and as long as its limitations are recognized, can often provide
very useful resul*s,

Near the surface, the size of turbulent eddies is limited by the dis-
tance from the boundary, z, and it seems reasonable that £ - °'z. Also, since
the stress, E;, is relatively constant near the boundary u, = /?;75'appears

as a natural velocity scale and we have
K ~u.z

The relationship is made concrete with the introduction of von Karman's
constant, k, and considering the dimensionless stress equation in the limit

Ro, + «, we have

3V .

kz/u, v

This can be integrated to give

N
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U = T In z/zo (2.4.1D)

In the y-direction the solution is trivial, V = 0,

As Tennekes (1973) has pointed out, the surface layer is a useful
abstraction, but caution must be used in its application; e.g., von Karman's

"constant" is only constant in the limit as Ro, + ». Indeed, Tennekes claims

that k varies from an asymptotic value of .33 to the long-accepted .4 and
even higher, with decreasing Ro,. Businger et al. (1971) report a value of
.35 after extensive measuremcnts over level, smooth ground in Kansas. At
present this seems to be the best value for large Rossby-number flows and

will be used where applicable in the remainder of this work.
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2.5 Comparison of Oceanic and Atmospheric Scales

For the purposes of this investigation it is useful to compare the
sizes-of the respective scales in the atmosphere and under the ice. The
following table swimarizes typical approximate values for the neutral

boundary layers.

Atmosghefe Ocean (ice-covered)
u, = /?;ﬁ; 30 cm--sec'\'1 1 cm—sec-1
Surface layer 30 m Inmnm
PBL Depth 1000 m 35 m

Table 2.1 Scale Comparisons

From this it is clear that our measurements (from 2 to 54 m) were in
the outer layer and that most micrometeorogical measurements are made in the
surface layer. The large height of the atmospheric Fkman layer accounts
for a dearth of measurements in its outer regions, while the difficulty of
making stationary measurements from shipboard or from a fixed mooring
explains the lack of oceanographic data,

l To our knowledge, the data gathered from the ice platform during the
AIDJEX series of experiments represent the first measuréments of mean velo-
city and Reynolds stress taken simultaneously throughout an entire planetary
boundary layer.

Another point can be made from the scale comparison in Iable (2.1).

We can see by referring to the topographic map, Figure (4-1), that condi-
tions are not horizontally homogeneous, with relief extending through as

much as a tenth of the PBL, On the other hand, the analogous atmospheric
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terrain is not mountainous, but rather corresponds to low hills with gentle

slopes,

2.6 Asymptotic Matching and the Geostrophic Drag Law

Blackadar and Tennekes (1968) showed that under the assumptions impli-
cit in expressing the wind profile in the surface layer as a function only
of z/zo and in the outer layer as a function of fz/u*, universal relation-
ships amongst the turning angle, ¢, the geostrophic wind components, the
surface-friction Rossby number, Ro,, and the friction velocity, u,, could
be derived. With slight modification their arguments can be applied to
the ice-ocean boundary.

We postulate that some region exists in which the shear can be expressed
as a function of either [ = z/zo or £ = fz/u* as each goes to an asymptotic
limit, That is, we postulate a region in which both the inner layer equa-

tion (2.3.2) and the outer layer equation (2.3.5) are valid., Then we can

express the shear as derivatives of the inner and outer sayer functions:

_3_11 = u .8_{5.(5).@_(1. = ..u_*.\]'()
2z * 3¢ 0z Z_ 8 ¢
LU _3.\.].2(&).35 = £J'()
9z * 3 9z "o
But since u*/fzo = Ro, = t/E
Js'(c) = Jo'(g) = constant (2.6.1)

since each side is a function of one argument and each argument is going

asymptotically to a limit.
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We can integrate (2.6.1) to get logarithmic profiles in each argument
and establish the constants for the surface-layer integratior by comparing

it to the law of the wall, Equation (2.3.4). We get

J (&) = -llglnc -upfu, = J(E) = -112(1ng+A) (2.6.2)

Solving for UR/U* we get

YR

S =1
5, T RAnUE-m) = gUn o, - ) (2.6.3)

For the lateral component, the shear in the matching region is zero and

<t

R mk (2.6.4)

%

The turning angle (the angle the ice drift makes with the applied stress)

is given by
1

Gl<
= |

a = tan ' 2 = tan"l[-B/(In Ro, - A] (2.6.5)

Attempts have been made tc extend this type of analysis to non-neutral
boundary layers (e.g., Csanady, 1972), but with little success because of
the complexities introduced by another variable. Indeed, there is little
agreement on the values of the neutral similarity constants A and B in the
literature (Shir, 1973, presents a good summary).

For pack lce, Rossby-number similarity may provide a viable way of
estimating drag, but its use must be appr&ached with caution. First, the
roughness scale, 2o is not known. In general, it seems as if z, might
be of the same oxder as the top surface in which case the surface-friction
Rossby number would be considerably smaller than typical atmospheric values,

a significant factox since the whole theory depends on the asymptotic
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behavior of Ro,. Also, even relatively smooth ice prubably cannot be treated
as horizontally homogeneous. On the other hand, the stability structure
appears to be nearly neutral and constant ;nder pack ice in contrast to the

diabatic atmospheric boundary layers studied in mid-latitudes.

o
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3 MODELING THE OUTER LAYER

3.1 Introduction

Equations (2.2.5) and (2.2.6) demonstrate the closure problem of tur-
bulence. The statistical averaging technique leaves residual terms that
are covariances arising from the non-linear terms in the mean equations.

It is possible to write dynamical equations for these terms also, such as
(2.2.6), but then triple products and other new covariances are introduced,
for which new equations must be written, ad infinitum, In order to solve
equations such as (2.2.5), we must make assumptiong about the covariances
that allow the set of equations to be closed.

During this century, a great deal of work has been Gevoted to searching
for a satisfying theoretical approach to closing the turbulence equations
at first order, i.e., expressing the Reynolds stresses as functions of the
other mean flow parameters. The advent of large computers and sophisticated
numerical techniques has paved the way for alternative solution methods,

For example, it is now possible to integrate the time-dependent, three-
dimensional equations directly. This requires a 'closure' of sorts in that
approximations for motions smaller than the grid-scale ;ize must be made.
A third technique is to carry the covariances explicitly in the mean equa-
tions, closing the second-order equations and solving the complete set
simultaneously,

This chapter will describe some specific models in order to lay a theo-

retical framework in which to present actual measurements,
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E 3.2 K-theory and the Ekman Solution

5

¢

?’f

? The simplest closure scheme for the simplified mean boundary layer
)

x

% equations, (2.2.9), comes from postulating a constant eddy viscosity.

£ Ekman discovered a solution to this problem for the ocean in 1905 which

T

predicted a spiraling current hodograph and net transport normal to the

TATIVE

oy

surface wind.

pDEe

y

If the horizontal velocity components are expressed in complex nota-

0%

tion
W= (U-Up) + A(V-V)
; and the Reynolds stresses are written
K 3u 3V
p uw = _K‘?z-' , vw = "KET;Z ,

#

o

2

with K constant, then for horizontally homogeneous conditions, equations

P VE RN A
$4

(2.2.9) can be combined to yield
W'+ W o= 0 (3.2.1)

. . - . 2 .
where the primes denote differentiation with respect to z and m™ = if/K,

Under the constraints that W »> 0 as z » -« and
the solution of (2.2.1) is

mnz
W(z) = W',

m = VE/K A4 L VIl2K (1#i)

If the x-axis is chosen to coincide with the velocity at the surface, we

can write
(U-UR) = —UReYzcosyz
vV = -URestinYz
y = YK
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The stress is given by
I(z) = 1x+ ity = K-?%
from which
o) = w /K e/

From this the well-known result that the surface stress is 45 degrees
to the left of the surface velocity in the Ekman spiral is apparent.

That a true Ekman spiral has never been observed in natural flows is
not too surprising in light of the arguments regarding the proper mixing
length for the surface layer cited in Section (2.4): in the surface layer,
we expect stress and velocity to be in the same direction. However, if
the outer layer is characterized by a constant mixing length then presum-
ably a level does exist just beyond the surface layer in which the stress
is nearly the same as the surface value while the a2ngle between stress and
velocity at that level is the proper 45 degrees. This then marks the upper
boundary for an Ekman spiral. The relationship between the surface current
and the current at this level depends on new parameters such as the surface
roughness, Zg which complicate the problem.

Hunkins (1966), using averaged drogue measurements taken from Arctic
Drift Station Alpha during the summer of 1958, and assuming that the sun-
face layer was of negligible depth, fit a constant-eddy-viscosity hodograph
to his measurements fairly well. He found that D = nv/2K/f (the Ekman depth)
corresponded closely to the depth of the mixed layer which was 18-20 m,
From this, the eddy viscosity was calculated to be 23,8 cmz—sec-l.

Various two-layer K distribution schemes have been proposed in which
an inner-layer mixing length p;oportional to z is reconciled with an outer

layer mixing-length distribution. Evaluation of such models suffers from




a lack of measured data.

is given by Brown (1973).

23

An excellent summary of several such models

.
[P «.H.a.‘sﬁ
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3.3 Three-dimensional Numerical Integration

Numerical integrations of the complete equations of motion for the
boundary layer provide the most detailed models, Deardorff (1972) has
presented such a model for neutral and unstable (upward heat f£lux) condi-
tions in the atmospherec.

Briefly, Deardorff uses a grid 20 by 40 horizontal by 20 vertical to
integrate lquations (2.2,1) to a statistically steady state, replacing the
stress term by a sub-grid-scale (SGS) Reynolds stress term and using poten-
tial temperature fluctuations for the density term. The SGS Reynolds
stresses arc related to the gradients of grid-scale velocitics by an eddy
viscosity which is in turn related to products of velocity gradients times
the grid volume,

For the neutral calculations, a rigid lid is imposed at fz/u* = ,45,
which Deaidoxff criticizes as giving unrealistic re;ults near the top of the
boundary layer. As we will show later however, this height corresponds
quite closely to the "1id" imposed by the pycnocline in the natural system
we observed.

The lower boundary conditions are assumed governed by surface layer
conditions taken from Businger et al. (1971), for which Ro, = u*/fzo =
1.5 x 107.

Mean profiles (some of whicii will be shown later along with collected
data) are the result of averaging over the horizontal grid points and over
an ensemble of ten realizations spaced in time.

General features of the model include the following:

(1) Even slight instability drastically reduces the lateral com-

ponent in the mean wind profile.

P




(2) Geostrophic drag'(u*/G) increases significantly with increas-
ing instability,

(3) Slight instability increases the longitudinal component of
momentum flux, -uw, and decreases the lateral momentum flux,
4;;, aloft,

(4) Under unstable conditions, the —uw profile appears to fall
off linearly to the inversion height in contrast to the
neutral case in which it decreases to zero by about fz/u, =
.3, and takes small negative values at greater heights.

Simulations like Deardorff's require huge computer memories and are
expensive to run, They also suffer from having a 'black-box" character
(Brown, 1973), niaking it difficult to isolate cause and effect. A third
drawback is that at small scales they are quite sensitive to the assumptions
made for SGS motions; this is particularly important in simulations of
stable conditions where presumably vertical motions are inhibited. For
Deardorff's neutral case, this effect is reportedly confined to the bottom

two grid volumes.
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3.4 Second-Order Closure Models

Recently, models that carry the mean élow equations in full and make
closure assumptions for terms in the turbulence covariance equations have
been published. Shir (1973) has modeled the neutral outer boundary layer
and Wyngaard gg_gl,(l?73) have provided models for the neutral and several
unstable cases. The success of each model is gauged against Deardorff's
(1972) three-~dimensional model, apparently for lack of sufficient outer-
layer atmospheric measurements.

Second-order models are much less expensive and easier to incerpret
than 3-D simulations, yet at the same time provide more informaticn about
the PBL than do firs%-order solutions: for example, turbulent energy and
fluxes of momentum and contaminants are predicted explicitly in both of
the models mentioned above.

The closure philosophy for the Wyngaard et al. (1973) model involves
writing a dynamic equation for the turbulent energy dissipation rate, €,
and modeling the unknown terms like the pressure-velocity covariances in
the covariance equations, (3,2.6), as expansions about the value the term
would have in an isotropic field as suggested by Lumley and Khajeh-Nouri
(1973). 'This becomes a very complex procedure and still requires many
ad hoc assumptions about the importance of various constants and terms;
e.g., turbulent transport is modeled as gradient diffusion by using a
length scale related to the '"turn-over" time. Most of the unknown constants
in the model are calculated from atmospheric surface-layer data.

Shir (1973) writes a dynamic cquation for £ from the equation € =

coqz/z, where q2 is twice the specific turbulent energy. He then models
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this equatioa and equates £ to the gradient diffusion length scale. He
assumes gradient diffusion for the turbulent and pressure transport terms
and writes a complicated equation for the pressure~strain correlation.
Constants are estimated approximately and then adjusted to give realistic
results. Boundary conditions are specified at the first grid point to
match the law of the wall, leaving the surface-~friction Rossby number a
variable parameter.

Both models agree reasonably well with Deardorff's (1972) model and
thus support the general conclusions reached by it. For the neutral layer,
it is found that the turbulent structure depends only weakly on the Coriolis
force so that the latitude and wind direction are not important except in

the limiting equatorial case.

.
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3.5 Modgling the Stable Boundary Laver

Although a successful second-order model for the staule PBL has yet

%
%
i
4

to be published, Businger and Arya (1974) have racently provided a K model
incorporating a stability parameter -that appears to give realistic stress
and wind profiles for positive values of n, (see Section 5.5).

Using the non~dimensional parameters introduced in Section 2.3, the

non-dimensional stresses can be written

BJO

T = Rw

BGO

y T hew

K = K f/u,?

% m
where Km is the dimensional eddy viscosity. Thé dimensionless wind shear,

¢, can be written

¢m - u, 9z - K, Tx (3.5.1)

Businger and Arya point out that surface layer similarity predictions, con-

firmed by experiment, imply

o, = 1+ 8 2/L (3.5.2)

where B 1is a constant. They also note _hat for small &, the first of

Equations (2.3.5) can be written

o= 1o |-lg+. s {-IXEI } (3.5.3
x u, 4. .t =exp u, ¢ +3.3)

which exhibits a fairly realistic curvature of the stress profile. They
reason that if the log-linear profile, (3.5.2), extends to some distance
beyond the surface layer as observations indicate, then at least in this

region, (3.5.3) anq (3.5.2) can be substituted into (3.5.1) to yield
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~
1]

'
. = ki exp{-IE;IE;}/ (L+8Ew,),

]

Py u, /L,

They then use this K, distribution and the derivatives of Equations (2.3.5)
to solve iteratively for the mean profiles of velocity and stress.

The results of this model for the limiting neutral case (u* = 0)
agree well with the neutral model from Wyngaard et al. (1973), lending
credence to this method, The effect of increasing stability, as predicted
by the model, is to lower geostrophic drag, to increase the angle between
surface stress and _eostrophic wind, to increase stress profile curvature,

and to dccrease the penetration distance of “rictional effects.

i}f
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4 DESCRIPTION OF THE EXPERIMENT

4.1 Site

The site of the experiment discussed in this dissertation was the 1972
AIDJEX Pilot Study main camp, first established on Fe¢bruary 25, 1972, at
approximately 75°N, 148°W, roughly 400 km NNE of Barrow, Alaska. A good
summary of the 1972 camp configuration with preiiminary reports from most

of the scientific projects including ours is given in AIDJEX Bulletin, 14,

(July, 1972). More extensive reports on various projects can be found in

subsequent issues of the AIDJEX Bulletin.

Gur group, consisting of nine people under the leadership of Associate
Professor J. Dungan Smith, occupied five buildings including two instrument

huts, two living huts and a diving hut, all situated in the northwest corner
of the main camp. .

We had originally planned to deploy 3 or 4 separate frames, each carry-
ing current-meter triplets at several different levels, across a large
pressure ridge with a fairly uniform cross-section along its axis in order
to gauge the effect of form drag over such a feature, It turned out, how-
ever, that the necessity of the camp being near a smoot£ runway for large
aircraft governed its placement, and we were constrained to choose the only
region of obvious surface relief within range of the camp's generators.

This proved to be a small multi-year ridge with a maximum keel depth of
only 5.3 m, situated at the eastern edge of the frozen lead that served as
the camp's runway,

Figure (4-1) from Welch et al. (1973) shows the configuration in which

the four frames were actually deployed. Contour lines indicate tae relief
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of the underside of the ice, obtained by divers taking pressure measurements
at the bottom ice surface along a carefylly laid out grid system. Contour
intervals are .5 m. As the map clearly shows, the ridge trends northeast-
southwest for some distance, but slopes abruptly into the smooth ice of
the runway which lies roughly northwest-southeast just off the bottom of
the map. The diving hole marks thie eastern edge of the ridge, both above
the surface and helow.,

Frames 1 and 2 were hung approximately 2 m apart through a large hole
in the ice beneath the instrument hut in a region of fairly uniform topogra-
phy. Prame 1 extended 26 m below the ice and Frame 2 continued from that
level to 54 m. Taken together they were considered to measure one profile
with triplets at eleven levels and arc usually hereafter referred to jointly
as the "main frame™. Frame 3 was located beneath the apex of the ridge
and Frame 4 was situated beyond the ridge at the edge of the runway. Frames
3 and 4, called the "outer" frames, each had triplets at six levels down to
26 m from the lower ice surface. The outer frames were assembled at the
diving hole and positioned by the divers using an ingenious beer-keg floata-
tion device. They were suspended from hangers frozen into holes drilled
from above so that the orientation was accurately known.

Figure (4-2) 1s a section drawn in the plane of thé current-metey
masts showing the relative relief and indicating the levels at which trip-
lets were moupted on the frames. The wavy line indicates approximately the
bottom of the mixed layer through which density was nearly uniform. The
arrows attached to the North pointer indicates the directions of typical
currents measured relative to the ice during the period April 10 through
April 13, The surface current was measured at 2 m on the main frame and

the deep current at 32 m, near the base of the mixed layer.
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4.2 General Description of the Measurements

Although current measurements were begun on Mar, 29 during a period of
comparatively high winds, an unforeseen problem in the data collection
system resulted in our logging data of questionable value during the first
storm. After a couple of days of intensive effort, the problem was found
and corrected, but not before the winds had subsided and relative currents
had fallen off to below instrument threshold. Thereafter, except for minor
alterations to individual channels and occasional power losses, the data
logging system performed very well, Considering thac the system had to be
assembled hurriedly because of the short time imposed by Pilot Study funding
and hardware delivery delays, the fact that it worked so well in the field
without thorough prior testing is a credit to everyone involved with its
development.

After the storm during the last few days in March we were becalmed
until the winds picked up again early on Apr. 10. The period from the morn-
ing of Apr. 10 through the morning of Apr. 14 was cﬁaracterized by quite
steady westward drift resulting in substantial currents relative to the ice.
After Apr. 14, the currents dropped off in the upper 35 m, although in the
pycnocline flow persisted for a couple more days. On Apr. 16, the last of
the current-meter frames was dismantled and the current measuring phase of
the experiment was concluded. The measurements referred to in this work
were all taken during the period Apr. 10 through Apr, 15.

The direction of the surface current shown in Figure (4-1) indicates
that the relative flow for nearly the whole measurement period was more

parallel to the ridge than across it. Thus, in terms of the original

2 e
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objectives of the experiment, it was as if Nature were adding irony to
insult by directing the flow along, instead of across, a ridge that was
none too large to begin with. Obviously, uﬁder these circumstances the
effect of the ridge was difficult to ascertain, Adding to the uncertainty
t
about topographic effects was the fact that the flow came from a very smooth
region of first-year ice (the runway) onto the rougher multi-year floe on
which the camp was located.
The unfavorable drift direction also restlted in another problem at

least as serious, if not so obvious, as the one mentioned above. Frames 1
and 2 were suspended in an ice~free hole from inside the instrument hut
allowing us to adjust or '"tune" the frame orientation so that all threce
meters of the orthogonal triplets (aescribed in the next section) would
experience strong enough current components in each direction to keep them
turning, i.e., above threshold velocity. Unfortunately, the outer frames
were frozen into a fixed orientation such that under the prevailing drift
one meter of each triplet did not turn. During the one period when a Eea-
sonably strong and steady current from another direction did exist, a
different component in each triplet was below threshold. In retrospect, it
would have been possible to rig the outer frames with swivel-like devices
so that the divers could have adjusted them. But as it'happened, Reynolds
stresses were measured at the main frame location only, since meaningful
momentum flux measurements required all three components, given the triplet
configuration., Mean currents at the outer frames were determined with
reasonable accuracy from two components, so that considerable information

was gained from them, in spite of the threshold problem.
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4.3 Current Meters and Data Collection

The current meters used during the 1972 AIDJEX Pilot Study had to be
small enough and sensitive enough to measure very slow currents and had to
respond rapidly enough to current fluctuations to adequately measure Reynolds
stresses. Thay also had to be durable and inexpensive enough to deploy in
large numbers in the field, A small, partially ducted, mechanical current
meter developed for an ongoing series of turbulence experiments directed
by Dr. Smith met these requirements. A brief description of the meters is
presented here, but for a more complete specification including the manner
in which they were mounted to frames see Smtih (1973).

The meter consists of a near-neutrally buoyant rotor 1.7 cm long by
3.5 cm in diameter encased in a truncated duct 1.3 cm long by 4.1 cm in dia-
meter. The shaft of the rotor is attached to a heavy wire frame via water-
lubricated jeweled bearings. The duct is supported on a cealed stainless-
steel rod 1 cm in diameter (see Figure 4-3).

Triplets were made by mounting the current meters in a rigid mounting
block with the configuration indicated by the following sketch looking down

ou the triplet:
VW\

1
W”V‘l
— S
- i

This resulted in an othogonal measurement frame of reference idealized as

the following;
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The so-called v component was not vertical for the obvious reason that
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vertical currents would rarely exceed the threshold level of the current

meter. The requirement of othogonality then forced the u componént to

be inclined downward at an angle chosen arbitrarily to be about 30 degieces
from the horizontal. In actual practice, the angle of dip was not assumed
to be 30 degrees since the masts were not exactly plumb, but rather was
calculated assuming the flow to be horizontal over a suitable averaging
period (see Appendix B).

The curren‘~meter rotor has four impellers. On the end of each a

mirror is mounted that reflects light from a small lamp in the center of the

supporting rad back to two photo-diodes embedded orn each side of the lamp.
As the rotor revolves, cach photo-diode is activated in’turn as the light
beam is reflected from a passing blade. Electronics housed in the mounting
tube discriminate between the pulses from ecach diode by assigning them
opposite polarity and combine the two pulses into a bipolar pulse (dipulse)
output. The direction in which the rotor is turning is thus indicated by
the polarity of the leading half of the dipulse,

The pulse train generated by each current meter is transmitted through

a specially designed cable to the surface where it can either be recorded
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in analog form on an FM (frequency modulating) tape recorder or be fed

through a device that converts it to digital information to be processed

P NTTTEL ST R

and recorded by a small digital computer. The latter approach was used
for the first time during the 1972 AIDJEX project and made it possible to
log data from 75 current meters simultaneously.

'The computer used for data acquisition was a Data General Nova 1200

with approximately 8,000 (8K) sixteen-bit words of core memory and a 1300

nanosccon:d basic cycle time. Options and peripherals at the time of the
field project included a hardware multiply/divide unit, a real-time clock,
a special current-meter interface, two Ampex magnetic tape drives and con-
trols, and a telctype with paper~tape reader and punch.‘ Since that time the
system has expended to include another 8K of core, a hardware floating-point
processor, a high-speed paper-tape reader and punch, a CRT display with
plotting capability and hard copy, an analog-to-digital intexface, and a
digital interface. The present system is thus quite versatile and was used
to process all the current-meter data from the 1972 project. Frogramming,
done in the Nova Assembly language, has been simplified by a specially
designed Tape Operating System, The software (programming) for data collec-
tion and processing was desigr.d by the author,

The special current-meter Interface (CMIF) consists of a very stable,
20-KHz crystal oscillator and counter, a master memory-address buffer, and
a buffer for each current-meter channel. When a dipulse is sensed on a
gilven channel the clock counter is read, the polarity determined and the
16~bit word is sent via fast data channel to a specific location in the
computer's memory, The CMIF also generates computer interrupts at a rate

determined by the program (12.8, 25.6, 51.2 or 102.4 msec) that direct the
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computer software to scan for information sent since the last interrupt
and to process and store ift,

The CMIF can handle up to 128 channels and is designed so that even
if all channels have simultaneous dipulses, the processing delay is less
than .05 msec ensuring accuracy to within 1% for currents up to 100 cm-
sec™) (Smith, 1972b).

The function of the data-collection software is to convert the infor-
mation sent from the CMIF, consisting of a polarity indicator and the count
of the continuously cycling clock, into meaningful periods between succes-
sive pulses and to store these data on magnetic tape for later processing.
When the program senses an interrupt from the CMIF it changes the master
memory address and restarts the CMIF so that it can be filling a new input
buffer (i.e,, a teble in the computer's memory to which the CMIF transfers
data) while the previous data are processed. For each channel the program
determines if a pulse has occurred since the last interrupt; if it has,
the significant part Qf the clock counter is added to a temporary accumula-
tion of counts since the last pulse, the resulting period is stered in an
output buffer, and a new temporary accumulation is started. If a pulse has
not occurred, the total number of counts between interrupts is added to the
temporary accumulation; and the period from the previou; cycle is stored
in the current output buffer. After eight such interrupts the output buffer
is written on magnetic tape. The system will handle currents up to about
160 cm-—sec_1 but can a%so be made to record efficiently (i.e., with little
redundancy) at currents as low as 15 cm—sec—'1 by adjustments to the clock

ratec -

The resulting data stored on magnetic tape are integers representing
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periods between pulses in units of ,05 msec. Conversion to velocities
comes later during further processing. However, the data collection program
has the capability of taking particular samples from each channel, perform-
ing the conversions and outputting the results to the teletype so that the

system can be monitored while data collection is in progress.

Figure (4-4) is a schematic diagram showing the steps described above.

N Crrer,

ki R
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4.4 Data Processing

Figure (4-5) shows schematically the flow of data from the original

recordings to final output form. The circles symbolize information stored

on magnetic tape while boxes imply tabular or graphical material,

The huge
amount of data -- filling well over a hundred 2400-foot reels of magnetic
tape -~ made it necessary to break the processing into several intermediate

steps.,

Upon first looking at the recorded data we discovered that having

mirrors on each of the four rotor hlades presented difficulties: the re-

flective properties of the mirrors were enough different to cause appreciable

departure from the assumed 90 degree angle between impellers. Thus, in the

period of one complete revolution in a steady flow, four distinct velocities

appeared corresponding to each quadrant of the rotor. The varlations were

at least of the same order as the real turbulent fluctuations, so that there
was no choice but to sacrifice some frequency resolution for an accurate

period measurement over one complete revolution. This was accomplished by

treating every fourth pulse as significant and using the other three to

determine the period, between each significant event. The end result was

the same as 1f only one impeller were reflectorized,

Various other problems were discovered with the original data. Some,

such as wrong signs and very short periods caused by spikes in the pulse

train, were anticipated and easily corrected. Another problem observed on

some channels was the faillure of one or more impellers to trigger dipulses.
This phenomenon interacted with processing out the four-mirror problem to

create a curious wave-like feature in the current record; the problem was

easily corrected once its source was found.
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A particularly vexing problem occurred on a channel that was part of

L 7> S

the triplet at 4 m on the main frame. Apparently, an extraneous signal

would intermittently trigger the system with pulses of the wrong sign.

RS

Although the ensuing short period was thrown out by legic in the editing
prz ram, the sign of the following period was changed and this was not

detected. This resulted in anomalously high, but believable, Reynolds

TR O

stresses at intermittent intervals 4 m below the ice and these were referred

to in at least onec preliminary abstract (McPhee and Smith, 1972)., It was

= REESLass e

taken as a cautionary lesson in the pitfalls awaiting those who handle large

S LM A O

amounts of data.

Period-to-velocity conversion is described in Appendix A. The data

from original tapes were corrected for the four-mirror problem, edited and
4
A
converted to velocities, then output on new tapes. These tapes, containing

TP TR g sk 1&"- LENSC FS

velocity samples accurate to 9 binary places for each of 72 current meters
sampled approximately every .2 sec, then became the basic data set for the

remainder of the processing, which will be described in greater detail in

later secctions,
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5 DENSITY STRUCTURE IN THE BOUNDARY LAYER

5.1 Introduction

YA 7 Wiy SR N R A SR FROSIS IS AT SN TS I S AN SR

To this point in our discussion of the planetary boundary layer we

have assumed that the layer is neutrally bouyant, i.e., density differences

At i R

de not play a role in the dynamics of the layer. That density is a function
of depth and that -acting through gravity this .dependence can potentially

have an appreciable effect on the -turbulent structure cf the boundary layen

is the subject of this chapter.
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5.2 Measurements

Density measurements were made during the project with a Guildline

Conductivity-Temperature~Depth (CTD) sensor from a location about 10 m

west of the main-frame hut., Profiles sampled at approximately one-meter

intervals down to 65 m were made at periods ranging from a few minutes to

several hours. Deep casts were made daily to a depth of about 1000 m

(Morse and Smith, 1972).

Density is almost exclusively a function of salinity in the Arctic
during the winter and spring months, since the water column is very near

its freezing point to considerable depth. A typical deep profile of density

vs, depth is shown in Figure (5-1). Here density is expressed in o units

where o, = (p-1)x1000, and p has units gm-cm—3.

A few features are immediately obvious. A well-mixed layer extends

some 30-35 m. Beneath this a strong pycnocline extends to nearly 300 m,

below which the water column 1s nearly neutral. Thus, dynamically, the

upper part of the ocean is very stable except for a thin layer near the

surface.

Since our current measurements were restricted to the upper 54 m of

the ocean we were interested mainly in the density structure of the mixed

layer. Changes in the structure of the upper pycnocline will be discussed

in greater detail later in the treatment of transient currents there,
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5.3 The Effect of Buoyancy on Turbulence

The water column can be classified as stable, unstable or. neutral

according to -whether its density gradient is negative (i.e., density
ing with increasing depth), positive or zero. /It is clear that in a
environment work is dope against gravity at the expense of turbulent
while in the unstable case buoyant accelerations enhance turbulence.

A quantitative parameter for describing the interaction between

turbulence and buoyancy can be derived with the aid of the turbulent

increas-

stable

energy

shear

kinetic

energy budget, Equation (2.2.7). Under the constraints of steady-state,

horizontally homogeneous mean flow in the x-direction, it becomes

Ju, du,
1

— 3 -——

. L0 T i _1
-uw - plw = 5 (uiuiw + wp) + v (5.3.1)

9z 9X. 9%,
J

pO i

The first term on the left of Equation (5.3.1) represents the ; roduc-

tion of turbulent kinetic energy by mean £flow shear., It appears with

opposite sign in the equation of kinetic encrgy for the mean flow and thus

represents a sink for mean-flow kinetic energy (Tennekes and Lumley,

The second term is the buoyant energy term, It can be either a

1972).

source

or sink depending on the sign of p'w , the density flux. For instance, p'w

negative implies a downward transport of more dense material and thus would

add to the turbulent energy at the expense of potential energy of the fluid,

The terms on the right represent flux divergence- pressure transport

and viscous dissipation respectively. Viscous dissipation is the sink in

which turbulent kinetic energy is converted to internal energy of the fluid.

The flux Richardson number is defined as minus the ratio of the buoyant

encrgy term to the shear production term.
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A critical flux Richardson number above which turbulence cannot be
maintained against the restoring force of gravity has been experimentally
determined to be about .2 to .25.

A second Richardson number, the gradient Richardson number, is defined

as 3p
i = —.—g. -_0— .§I_J.2
Ri Po 3z /(az)

The relationship between Rf and Ri can be demonstrated by relating the
turbulent fluxes, wp' and G;, to their respective mean gradients via eddy

coefficients of diffusion and viscosity.

W= =Ky 32, w o= kX

Thus

1f Kp and K are about the same, as for example, they are in the atmo-
sphere where potential temperature is the dynamically important property,
the two Richardson numbers are sometimes considered interchangeable.

In the Artic Ocean, where density is primarily a function of salinity,
the relationship is not so clear. Direct salinity flux measurements are
quite difficult and thus the eddy exchange coefficient, Ks, is usually
inferred from dynamical considerations and estimates of its value vary by
an order of magnitude. Taylor (see Neumann and Pierson, 1966, p. 400)
suggests that the ratio’ KS/K is from 1/5 to 1/50. Thus a gradient Richard-
son number as large as 10 might still permit turbulence,

It should be emphasized that the flux Richardson number, since its
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definition stems directly from the turbulent energy budget, is the more

universal in the sense that a turbulent flow will behave in a certain way

given a specific Richardson number.

v d

k.
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5.4 Measured Average Density Structure

Figure (5-2) shows a typical cast made to approximately 60 m with the

CTD described above. Figures (5-3) and (5~4) show averages of casts made

on Apr. 12 and Apr. 13, made by classifying samples by depth and averaging

over about a dozen different casts on each date. The bars represent the

sample standard deviation measured each way from the mean value at each

depth. Figure (5-5) shows the different averages for four days during the

storm drawn on one graph,

The source of the large variance of measurements in the top 10 to 15

m remains a mystery. If it were due to instrumental sampling error, we

would expect it to carry throughout the cast. However, the variance toward

the bottom of the mixed layer becomes quite small. Also, measurements in

other arcas with the same probe have never shown a similar phenomenon (J.

Smith, personal communication).

If water of different salinity werc being carried by the mean (relative)

flow as a contaminant (either active or passive), we might expect such

behavior since a plot of velocity variance with depth shows many of the same

features: 1i.e., a great deal of variance ncar the surface falling off to

a minimum at the base of the mixed layer, then picking Jp again in the pyc~
nocline. If turbulent transport were the mechanism, however, the density
variance would be expected to fall off as the turbulent intensity decreased.
Casts taken on days when there was virtually no water movement relative to
the ice showed as much or more variation in the upper layers. This reason-~

ing scems to argue against the idea that the probe was advected through

plumes of more dense water resulting from active lead convection,

IO, N 7.
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Another suggestion that has been offered is that draining brine
pockets in the ice could be responsible for the large variance without the
necessity of mean velocity shear (an analog would be thermal plumes on a
hot day). But if this were the case, near the surface we would expect only
positive excursions from the salinity of the rest of the water column in
the mixed layer. Instead, excursions on the fresh side are as common as
the more saline ones, as Figure (5-2) demonstrates.

The fact that the phenomenon was observed on upward casts seems to
rule out flushing problems.

This aspect of the measurements was unsatisfying, since we could not
see a clear explanation, either natural or instrumental, for the large varia-
tion from cast to cast, It was found that averaging over scveral casts
provided a fairly smooth profile and this was the approach used. Straight
lines were fit to the data in the top 35 m of the water column (excluding
the uppermost meter, which was in the irstrument hole) in a least-squarcs

sense. For the average profile of Apr. 12 (Figure 5-3), the slope of this

9

line was %%~= -8.8x10~9 gm-cm_4; for Apr. 13 (Figure 5-4), %%-= ~2.2x10"

gm_ cm .
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5.5 The Obukhov Length Scale

In atmospheric studies, conditions are usually determined in the sur-

face layer and extrapolated to the outer layer. TFor instance, it is not

uncommon to classify a boundary layer as unstable because of an upward heat
flux at the surface while the cuter layer is characterized by a neutral or

even slightly stable mean potential-temperature profile up to the inversion

(J. Businger, class notes). The dynamical properties of the surface layer

secm to govern the properties of the whole boundary layer-- not too surpris-

ing since most of the dynamical action takes place there.

Straight lines fit to the average profiles for Apf. 12 and Apr. 13 in

a least-squares sense show slightly stable slopes. The point of the dis-

cussion above is that this does not necessarily preclude the possibility
of an unstable boundary layer; in fact, a good analog exists between the
upvard heat flux in the atmosphere due to solar heating of the surface and

the downward salt flux due to freezing at the ice-sea interface.

In order to investigate quantitatively the effect of freezing it is

convenient to introduce the Obukhov length scale, L. Since (5.3.1) is an

equation for the time rate of change of energy divided by deneity, it can

be non-dimensionalized by multiplying each term by an appropriate time scale

divided by the square of a velocity scale. For the surface layer these

scales are Rlu* and u, respectively. If ¢ = kz, the non-dimensional form

of (5.3.1) is

“kz ww W _ gk ——

T 5y 3 'wz = ¢D + ¢e (5.5.1)
U* pou‘k

where ¢D is the non-dimensional flux divergence-pressure transport term and

¢€ is the dimensionless dissipation.

B =¥
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From the second term in (5.5.1) a length scale may be definec by

L o= o, vl /e k5w (5.5.2)

— 2 . , . .
In the surface layer uw = u,~ and we can define the dimensionless wind

shear as —kz 3U

6 = =

m u, 3z

Equation (5.5.1) then becomes

¢ -

m

N

= ¢D * ¢c

The significance of the length scale L is now clear, L varies in-
versely as the density flux and is negative if the flow is unstable and
positive if stable. Also, at least for small dcpartures from necutrality
(vhere ¢m = 1), we sec that as ]zl approaches |L|, the contribution from
buoyant forces to the turbulent energy becomes as important as the shear
production,

A great deal of micrometeorological evidence supports the Monin-
Obukhov similarity hypothesis: di.e., that when velocities are scaled with
u, and lengths with L, there are universal descriptions for the dimension-
less wind shear and lapse rate in the surface layer (Businger, et al., 1971).

By again suggesting that the surface layer scales are approptriate to
the outer layer because they govern most of the dynamiés, we can form a
dimensionless stability parameter for the outer layer by dividing its char-
acteristic length by the Obukhov length (which is determined in the surface
layer). Thus we have y,= —zi/L if zg is the depth of the mixed layer (inver-
sion) in the unstable case or p, = u*/fL if the layer is neutral or stable.

We can make a rough estimate of the freezing rate required at the ice

surface to maintain p, = -1.0, corresponding to a slightly unstable layer
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(for comparison, the value of the dimensionless height, z/L, about halfway 2

through the surface layer would be -1/100).

Sl Al e S LT N L7 A T e ]

If the salinity of sea-water is taken as 30 parts per thousand and it

S b § e LA B

is supposed that it freezes fresh with a density of .9 gm-cm-3, then a

SIS Rl

-
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growth rate of 1 cm—sec“1 is associated with the release of .027 gm of salt

T FITEER

per cmz. Thus r = 36s where r is the growth rate in cm—sec_1 and s is the

mass flux in gm—sec-l-cm-z. For a steady state the turbulent density flux,

IR

PR TT S RGT Y

wp', must equal the mass flux at the surface. ;

Using typical values for the observed boundary layer-- u, = 1 cm—sec~l,

L=-3.5x% 103 em, k = .35 —- we can solve Equation (5.5.2) to get H

T BT AR N & TTLAT

25

p'w = -8.3 x 10._7 in cgs units. This requires a growth rate of 3.2 x 10~5

cm—sec"1 or 2.8 cm per day. Divers observing ice growth around cables at

f',uy:?p Pl 2 Heds

the base of the ice estimated average growth rates on the order of .1 cm 3

y
3
A

per day during the period of the experiment (Welch, et al., 1973), thus we
can infer that under thick ice during the spring, the freezing mechanism is é
not strong enough to cause appreciable iustability.

As mentioned earlier, if a least-squares straight line is fit to the
average density profiles on Apr. 12 and 13, the lines have negative (stable)

slopes with magnitudes 8.8 x 10"9 and 2,1 x 10“9 gm—cm-'4 respectively, If

N

we assume that a constant slope persists to the surface we can estimate the
mean density gradient required to maintain p, = +1.0 by using an eddy diffus-

ivity censtant,

S8
I
i
2]

S

We estimate KS = K/5 (to give a minimum 35/az) and use K, the eddy viscosity,
as 70 cmz—sec_l (see Section 9,7), For w, = 1.0, ow = 8.3 x 10-7, we get
dploz = -6 x lO"Bgm-cm"4 which is still considerably steeper than the slopes

observed. :
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5.6 Conclusions

The calculations carried out in the preceding section are not intended
to give definitive values for the buoyancy parameters, but rather to pro- i
vide some guidelines. Without measurements within the surface layer, it is

questionable whether it is possible to categorize the stability of the

My Y Tve N\ eaveda o oeh o

boundary layer directly. The arguments of this chapter imply that gradient :

s e

Richardson numbers are of little valuz in describing the turbulent structure
of the outer layer. The rough calculations indicate that the layer is
nearly neutral, possibly only slightly stable. As will be shown presently,
the density structure inferred from the dynamical measurements will support
this assessment,

Although calculations indicate that freezing cannct induce appreciable
instability under thick ice, the situation under a fresh lead or polynya,
where rapid freezing, evaporation and heat flux are occurring simultaneously,
could be quite different. Since an unstable boundary layer is considerably
more efficient at transferring stress, such regions of open water might be
much more important to the overall stress balance than their relative area
might indicate. Offsetting this effect to some degree is the fact that

these areas are presumably much smoother than surrounding ice and thus do

not have the form drag associated with older ice.

s !
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6 RESULTS OF CURRENT MEASUREMENTS

6.1 Procedure

In light of the models discussed in Chapter 3, it was decided that the
mean current and stress data would be presented in a manner making compar-
ison between our measurements and the models as easy as possible. For this
reason, a fixed (with respect to the earth) referc. . frame was rejected
in favor of one attached to the ice. The x-axis was ¢hosen to lie along
the direction of surface stress which was approximated by using the mean
current direction @ 2 m depth, The assumption of negligible turning in the
upper 2 m appears to be borne out by the measurements, A right-handed co-
ordinate system with the vertical axis positive upward was chosen to conform
with the development of the equations in Chapter 2.

From 3153 = Uin + G;ES, the Reynolds stresses are calculated by aver-
aging the instantaneous component products over a specified time interval,
then subtracting from each such average the product of the corresponding

mean components, i.e.,

Sij = (ﬁi-Ui)(ﬁj—Uj)
N u
{kil ui(k)uj(k) - i ui(k) . i uj(k)}

[
Zj=

where N is the number of samples in the averaging time.

In practice the average velocity vector and the Reynolds stress tensor
were calculated in the experimental reference frame described in Section
(4.3) over the specified averaging time, then rotated into final form with
a rotation matrix determined from the mean components, Details of the rota-

tion are given in Appendix B,
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6.2 Averaging Intervals

In most theoretical treatments of turbulence, an ensemble average is
assumed, If a flow is stationary in time, and certain other conditions
are met (Tennekes and Lumley, 1972), the ensemble average is replaced by a
time average, taken over T as T + = as discussed in Section (2.2). Clearly,
this is an idealization that cannot be met in measurements of natural phe-

nomena., Any success of a statistical treatment of turbulence data rests
on the assumption of a spectral gap between what we consider turbulence

(a difficult thing to define) and nther phenomena such as long gravity
waves, tides, synoptic-scale systems, or possibly in our case, independent
ice motions.,

Monin (1972, Chapter 1) has broken the entire spectrum of meteorolog-
ical events into nine intervals and has shown evidence that between the
first, which he calls micrometeorological oscillations, and the second,
mesometeorological oscillitions, there is a broad minimum in the areca-
preserving spectrum, £S(f), of wind velocity. From‘Reynolds number simi-
larity we expect the ocean to behave much the same. In order to measure
turbulence, we would like to cut off our averaging interval somewhere in
this minimum,

Besides this constraint, which is really just saying that we do not
want deviations from the mean resulting from long-term trends to mask

turbulent variances, we also were limited by the physical length of our

data files, which were generally from 20 minutes to an hour long,

It cannot be clearly established from the data that a gap in the true

energy spectrum exists. The problem is compounded by the fact that the
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spectrum of, say, the downstream velocity component fluctuations is not
easily related to the true turbulent spectrum at low wave rumbers. This is
discussed in greater detail in Chapter 9.

Table (6-1) shows the effects of different averaging times on the
computed average momentum fluxes for a one-hour segment of data., To clarify
further, if one minute is the averaging interval, then -uw is calculated
for each minute of data and the average of 60 such calculations is shown.
Similarly, if 20 minutes is the interval, the average value for three
stress calculations is shown, .

It is apparent that the major contribution to the stress comes from
disturbances with time scales of 5 minutes or less. TFrom tests like that
shown in Table (6-1) and because it was convenient in terms of recorded file
lengths, an averaging interval of 20 minutes was chosen for all Reynolds

stress calculations.
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6.3 Composite Averages

e #_sAi e

Although evidence such as Table (6-~1) indicates the presence of a

AT ekt bat

spectral gap, it does not imply that one realization of the turbulent flow
field over a period longer than 5 minutes will provide .a stable estimate of
the actual stress. Atmospheric surface-layer measurements indicate that
averaging times of at least an hour under unstable buoyancy conditions were
required to estimate stress and that even then these data showed large
scatter (Wyngaard, 1973).

According to Lumley and Panofsky (1964, p. 36) if an acceptable level
of error is a, the averaging time required for a quantity to be estimated

within a is given by the following formula:

——

where f'2 is the ensemble variance of f about its mean, "/ is the integral

time scale

©
J = [ e(t)dt
0

and p(t) is the autocorrelation (normalized autocovariance) of f(t).

Clearly, we need some prior knowledge of f in order to estimate its
averaging time, Figure (6-1) is an autocorrelation function calculated
for the u-component of the 2-m triplet during the storm on Apr. 12, It
is an average of several 28 minute samples. By approximating the area
under the curve, we can estimate its integral time scale as somewhere in
the neighborhood of 35 sec., Using twenty-minute averages, a typical value

for u'2/U2 is found to be .01, Thus to ensure 5% accuracy in estimating

the true mean speed we must average for something like 280 sec or roughly
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5 minutes. The averaging time varies as the inverse square of accuracy, so
that to increase the accuracy by 5 times would .require averaging for about
two hours in a steady flow., If the results that hold for the atmosphere are
any indication, we might expect conrsiderable scatter in stress estimates
for averaging periods up to an hour and even longer. This was confirmed by
comparing individual twenty-minute averages.

It was felt that this problem would be minimized if a composite average
were made of many twenty-minute averages representative of fairly steady con-
ditions. To this end the current recoxrd was searched for such conditions
and composite averages formed.

Figure (6-2) shows measured specds and bearings for Apr. 12 at two
levels: 32 m and 54 m. The dots ‘epresent smoothed data from the ABR system
showing apparent bottom speed and bearing with respect to an observer on the
ice. In the current traces, each solid segment represents a file of data;
gaps between are times when data were not recorded.

The triplet at 54 m is situated well into the pycnocline and the current
there was plotted to demonstrate the increase in activity compared to the
32 m level which is near the bottom of the mixed layer.

The time scgment in Figure (6-2) labeled "Composite Average' starting
at about 1230 denotes the time considercd best for curfent measurements in
terms of steadiness and maximum speed. Mean flow and stress data for each
complete twenty-minute interval during this period were calculated and then
all these calculations were averaged to arrive at composite profiles. This
formed the basic data set for the project and is summarized in Table (6-2).
It represents 15 twenty-minute averages or 5 hcurs of data. Similar cal-
culations were carried out for 8 hours of composite data collected on Apr.

11 and are summarized in Table (6-3).
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1 minute 5 minutes | 10 minutes | 20 minutes
Depth ___ . ___ ___ _ L . .
(m) -uw  ~vw -uw  ~vw -uw  ~vw -uw  -vw
2 -.32 +.16 |-.55 +.20 |-.58 +.20 |[-.61 +.19
4 -.05 +.11 |-,18 +.13 |-.18 +.14 |-.19 +.14
8 0 +.16 |-.03 +.24 [~.04 +.25 |~-.04 +.25
12 +.03 +.12 |[+.02 +.18 |+.04 +,18 |+.04 +.19
16 +.08 -+, 16 |+.10 +.22 |+.,12 +,24 |+,11 +.26
20 0 +.,06 |+.03 +.11 | +.,04 +.12 | +,04 +.13
26 +.01 0 +.02 0 +.02 -,01 }|~.01 0
32 0 0 +.01 -,02 | +.,02 -,06 |~-.,05 -.03
Table 6.1

Effect of different Reynolds stress

the same one~hour segment of data

averaging time for
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7 _CALCULATION OF SURFACE STRESS

7.1 Introduction

Without means of directly measuring the stress on the underside of the
ice, we must infer its value from current measurements. In this chapter
some standard methods for estimating the surface stress will be discussad,
and it will be shown that such methods give ambiguous results when applicd
to our data. Then it will be shown that horizontal homogeneity, upon which
most methods depend, cannot be assumed in our case, and u, will he calcu-

lated from a combination of measurements.
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7.2 Surface Layer Methods

If conditions are steady enough to get suitable time averages, we can
make direct measurement of the Reynolds stress, -puw, at a level close
enough to the surface to be considered within the surface layer as discussed
in Section (2.2) and equate it directly to the surface stress, pu*2 (for
simplicity, hereafter p will be considered to have the value 1.0 and surface

friction stress and u*2 will be considered identical). Recalling that in

the surface layer the latwral stress is zero, it is obvious from Table (6-2)
that at 2 m there is already considerable turning of the stress ''vector."
However, the modulus of the stress at 2 m, .67 cm2~sec—2, sets a lower bound
on any surface stress calculation and we can say immediately that u, (min) =
/.67 = .8 cm~sec—1.

A consequence of Rossby-number similarity discussed in Section (2.6)
is that the logarithmic profile is not confined to the surface layer proper

but extends into the lower outer layer in order to satisfy the matching

requirements. Tennekes (1973) suggests rhat in the neutral boundary layer,

the log profile may be expected in roughly the lower tenth of the total

boundary layer thickness, which he defines as § = fz/u, = .3,

We can assume a log profile and use measured values of U at 2 and 4 m

<&

to solve for u,, i.e,, we integrate the dimensionless wind shear equation

- kz oU
o = u, 92 1
between the limits z = -4 and z = -2, to get

u, = k(Ué - U2)/1n2
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Using mean values from Table (6.2) and k-= .35 we get

u, = 1.1 cm—sec-1

The use of k = .35 requires some explanation. It is the value reported
by Businger, et al. (1971) for conditions on the Kansas prairie with Ro, =
u*/fz0 - 107. We can anticipate by solving the law of the wall, Equation

(2.4.1), with u, = 1 cm—sec~l that z, ~ .1 cm and Ro, ~ 105, From the argu-

0
ments given by Tennekes (1973) and discussed in Section (3.4), we might
expect k to be larger than .35. Tor k = .4, u, = 1.3 cm-sec. Thus even if
the log profile is valid to 4 m, which we have not demon-trated, there is
still considerable uncertainty in the value in u, due to the uncertainty in
k.

We can investigate the effects of slight stability on u, by integrating
the log-linear profile, Equation (3.5.2), and using y, = 1.0 and L ~ 35 m,

i.e., the same hypothetical case discussed Z.: Section (5.5). Using the

value B = 4.7 reported by Businger, et al. (1971), we get

4.7(2)

u k(U/+ - U2)/(].n2 + -'3-6——)

which yields

.8 cm—sec-1

[
{l

for the same data., Clearly, even slight stability has a large effect on the
calculation of surface stress.,

Using the neutral value for u,, we can evaluate the depth z = .03 u,/f
which marks an outer limit on the validity of the log profile according to

Tennekes (1973). For u, = 1.1, f = 1.4 x 10—4, this is about 2.4 m, so that

PTG T
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the value of U at 4 m in a log profile calculation is possibly not justified.
From the examples and arguments given, it is fairly clear that surface

layer profile methods will not give a clear estimate of the surface stress

from our data.
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7.3 Momentum Integral Methods

We can define functions My(z) and Mx(z) such that

My(z) [v(z') - VR] dz'

(7.2.1)

Mx(z) [u(z') - UR] dz'

z
;

z
:
If we multiply each by ~-p, they can be identified with the total mass trans-
port above the level z in the y~ and x-directions respectively.

By integrating the mean component equations, (2.2.9), from the surface

to some level z we have

2
—fMy(z) = f dez - w(z) + u*2
Oz (7.2.2)
M (z) = F dz - vu(z
L (2) gy v(z)

where we have lumped local pressure gradients, advective accelerations,
ete., into the force vector F.

Before Equations (7.2.2) can be applied to the data set of Table (6-2)
we need to estimate the importance of the local rate of change of the mean
true velocity. If we take the change in the mean downstream .omponents for
the first and last data files of the composite average and divide by the
time between them we have for the triplet at 2 m

U

- -6 -2
(U—UR)END - (U—UR)START/AC 57 3 X 10 ° cm-sec

By comparison, —f(V—VR) at 2 mis ~ 12 x 10—4 cm-sec_2 so that apparently
the time derivative term can be ignored for currents as steady as those

chosen for the composite average.
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Hunkins (1974b) made integrated mass~-transport calculations using one-
hour mean currents measured independently at the 1972 AIDJEX site and found

the mean time dependent term to be an order of magnitude less than the

Coriolis term, His measurements included relatively unsteady currents.

If we assume the flow to be steady and horizontally homogeneous then

_u*2 Tx(z) + fMy(z)

(7.2.3)

1,(z) = -uw(z)

Thus, if a level at which stress vanishes can be identified, the surface

stress can be calculated from the mean V profile alone.

Table (7-1) shows a numerical integration of M_(z) for the data in

Table (6-2)., 1t is obvious that if we ignore measured stresses and assumc

that the stress vanishes near the reference level, 32 m, then

u*2 = 3,0 cmz-sec"2

However, if we utilize the stress measurement at 2 m and apply Equation
(7.2,3) we get
2 2 ~2
u,~ = .8 cm-sec

For 4'm we get .7 cmznsec~2, ete,

Thus, if we retain the condition that horizontal homcgencity holds,

i.e., that fodz = 0, then we must conclude that either our stress mcasure-

ments or direction measurements are wrong or that the method fails. Rather

than admit any of these, we shall investigate the effect of including a

topographic term.
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7.4 A Non-Homogeneous Estimate

In order to estimate the magnitude of the topographic force, F, we

TP R R R e

can find the difference of its integrated effect at two levels by consider-
ing directly measured quantities.

Let

Z
f Fx(z') dz!

7 (2

’ i
~ z '3
z) = F (2') dz!
;@ {)y<>

We can write the first of Equations (7.2.2) as

ENOETTRIEEN CRORENOY

™

Again using a finite difference approach we can determine Fx(z) between

s et e s VER AT 437 o D B P

levels from AS;(Z) = FxAz‘ These calculations are summarized in Table

UL S

(7-2).

This technique does not divulge information about the function Fx in
the upper 2 m. The origin of the force field is not clear but we assume
that it is set up by some large~scale inhomogeneity and that in the surface
layer it does not vary wildly., 1I1f we decide to treat Fx as constant in
the upper 4 m, we can estimate the surface stress from

" u*z = -[fMy(z) + 1 (2)] - F.z @2m p

)

o >

.97 cmz-sec_

It might seem more logical to extend Fx to the surface with the slope given
by our estimate at 3 and 6 m, If that is donc

"
L

v = 1.1 cmz-sec-2
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However, it might seem just as plausible to say that Fx decreases to zero

at the surface; this yields

U*z = .9 sz-SeC-z

Q. -2 . .
Thus we chose u, =1.0 4 .1 cm -sec ~ as the estimate utilizing the maxi--

mum amount of information available,
To summarize, the method for estimating stress involves:

(1) Taking long enough averages to get stable estimates of the

momentum flux at 2 and 4 m.

(2) Using mean velocity profiles to estimate the function My(z)

at 2 and 4 m..

(3) Calculating f?#(z) as the difference of the sums of Tt M

. at 2 and 4 m.

(4) Adding - (Tx + My) +<’]> to get u*z.
In Chapter 8 the composite profiles are non-dimensionalized by u, and

u*/f where u, is calculated by this method. Comparison with theoretical

treatments tends to confirm the validity of this procedure, although cer-

tainly not to better accuracy than given above.
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7.5 Reflections on the Momentum Integral Method

So far we have tacitly assumed that the surface stress, u,” is skin

friction, i.e. tangential stress due to viscosity and the no-slip condition

b T RN A L N TR

at the surface. Although it is not a priori obvious, we assume that the

turbulent structure responds besically to this type of stress since the

surface layer is small compared to the horizontal distance between the

a e AAE e 4

larger features. However, in determining the total stress the ice exerts
H

upon the water, form drag, i.e. the normal stress (pressure) exerted against

a1 4 S Bee Ve oear

bluff irregularities in the ice surface (Batchelor, 1967, Chapter 5), must
be considered, Clearly, forces such as F discussed in the previous section ‘
will manifest themselves as form drag.

We can conceptually break the downstream Coriolis force, f(V—VR) into ;

two parts: one that balances the turbulent stress gradient and one that :

balances the local pressure-gradient, advective-acceleration term, Fx’ Thus :
~fy_ = E:?
E 3z :
—va = F

The values for v, and v, are tabulated in the rightmost two columns of

E L

Table (7-2).

The origin of v, is not clear, but seems to indicate that non-linear !

L
terms other than the vertical Reynolds stress gradient are important. Tt
is obvious that Vi whatever its cause, is important in stress calculatiocns
involving mean profiles in the entire boundary layer. Figure (7-1) shows

velocity profiles for the three frames for the period 1230 to 1930 (AST) on

Apr. 12. The zero reference level is the under-ice elevation at the main
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frame. Integration of the outer frame profiles will yield an even higher

!
}
1

o g Syl ol abdattabdda

estimate of surface stress than the main frame. Figure (7-2) contains the

PORIPWEIN

same information for Frames 1 and 3 (main and ridge) in the form of hodo-
graphs. The under-ice topography map, Figure (4-1), shows that topographic :
changes in the vicinity of the outer frames are more abrupt, possibly
explaining the curious shapes of the current profiles there.
Figure (7-3) demonstrates the effect wf a different “"fetch" on the main--

frame profile. During most of the storm from Apr. 10 through Apr. 13, the

ice moticn was almost due west, but for a few hours on Apr. 14 the'current ;
direction changed. The profiles marked by diamonds were taken from a

twenty-minute average early in the storm on Apr. 1l and the circles repre-

sent a twenty-minute average taken on the afternoon of Apr. 14, In terms

of speed, conditions during the latter case were not steady, but the direc-

tion and shape of the profile are representative of several hours of data,

implying that the flow direction has an apprecilable effect on the shape of

the velocity profile., Unfortunately, threshold problems with the independent
current-meter component, Vv s on the outer (fixed) frames made determination

of mean profiles there impossible during the latter time.

Figure (7-4) shows a comparison of measurements mgde by the Lamont

group (Hunkins, 1974b) to ours for the period 1200-2400 (AST) on Apr. 12.
The Lamont current-meter array was situated approximately 110 m southeast

(roughly downstream) of our main mast in what appeared from the upper sur-
face to ge smoother ice. The ice velocity was determined for the 12 hour

period from satellite navigation data as reported by Hunkins (1974b). The

ABR was non-functional during part of this time and thus did not provide

an independent ice motion measurement.,
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The solid vectors emanating from the points labeled "Ice' are stress
vectors (acting on the ice) calculated using the momentum integral (mass
vransport) technique as described by Hunkins (1974b). For the Lamont
measurcments the reference level was 25 m, while for ours it was 32 m.
From these we see the somewhat startling result that flow profiles mea-
sured at two points quite close to each other, each apparently exhibiting
similar surface layer behavior and about the same amount of total turning,
give estimates of stress that vary by a factor of nearly 2 1/2. It can
be argued that if we were to integrate to 25 m, our stress estimaté would
be somewhat lower, but the main point is that the major contribution to
the momentum integral in our profile comes because there is no appreciable
turning above 16 m in contrast to Hunkins' profile in which turning starts
at about 8 m. Reference to Figure (7-2) is helpful in visualizing the area
of the momentum integral, f f(V—VR)dz.

Hunkins (1974b) has demonstrated that the momentum integral will give
a measure of the total stress on the ice including form drag if it is
averaged over a suitable horizontal area. The evidence presented in this
section implies that determining a suitable horizontal average may require

very extensive measuremernts., We shall recurn to this in the last chapter,
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g Depth v-v 2@ V-V V=V_)az" M (z)P -uw ©
A R R 82 ) 2 -2
3 m cm-sec (x10%) cm —-sec cm -sec
: 0 s9.47 *1 0
A 9.47 -18.9
: 2 +9.47 T -.58
3 © 9,14 -18.3
‘ 4 +8.81 -.52 -.19
8.87 -35.4
8 +8,93 -1,02 +.08
8.91 -35.6
12 +8.89 -1.52 +.02
8.61 -34.4
16 +8.33 -2.00 +,06
7.58 -30.4
20 +6.84 -2,43 ¢ +.02
5.03 -30.2
26 +3,22 -2.85 +.13
+1.61 -7.2
32 0 -2,95 +.07

%
No turning in upper 2 m assumed

a VR is reference lateral velocity at 32 m
b

z
My(z) = é [V(z') - VR]dz'

¢ Measured momentum flux values from T..le (6.2)

b I G

Table 7.1

"
ERRE ¥ S

s P Ve B Ty SRR

Mass transport calculations for the cross-stream component
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2 -
Depth Az x(z) +u, Azi Fx4 v Vi
(x 107)
0
=200
2 +.84 -.13 +6.5
-200 -.3 9,1
4 +.72 +.23 ~5.8
-400 +7.1 1.8
8 +.94 +.36 ~14.,0
=400 +8.5 0.4
12 +1,50 +.44 -11.0
-400 +8.4% 0
16 . +1.94 +.50 -12.5
-400 +6,3 0.5
20 +2,41 +.31 ~5.2
-600 +2.8 0.4
26 +2,72 +,15 -2.5
-600
32 +2.87
Table 7,2

The force field and velocity decomposition

discussed in Sections (7-4) and (7-5)
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Fig. 7-~1 Mean current profiles on all three masts for the
composite averaging period on Apr. 12. Raference
velocity is at 32 m on the main frame.
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o 12.12 | 26° LARGER FEATURES UPSTREAM

Fig. 7-3 Twenty-minute mean cross-stream profiles showing the effect
of different flow direction
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Fig. 7-4 Comparison of independeht measurements made about 110 m »
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8 COMPARISON OF MEASUREMENTS AND THEORY

8.1 Turbulence Theories

With the friction velocity calculated for the composite data set;
Table (6-2), we can calculate a scale length for the outer layer:
u /f = W01/1.4 x 107% = 70 m

With this length scale :and u_ we can non-dimensionalize the mean profiles

%
of velocity and velocity ccvariances. Figures (8-1) through (8-4) show
theoretical predictions from several models plotted as curves with solid
markers showing measured (~on-dimensionalized) values. ‘These graphs prob-
ably represent the most important results of this project.

A word of explanation is in order regarding the choice of theoretical
curves in these figures. In most cases there was so little difference among
the models for the neutral PBL that results from Businger and Arya's first-
order model are shown for convenience since we wanted to show the effect
of positive stability., The stable case shown is the one closest to neutral
treated in their model. Clearly, a K-model will not explicitly predict
turbulent variances and the non-horizontal shear stress, E;, however, and
for these, the values from Wyngaard, et al., (1973) and.Deardorff (1972)
are shown., Incidentally, the pycnocline at 35'm in effect imposes a "1id"
on the PBL at about § = .5,

Figure (8-1) depicts the mean dimensionless downstream current. Al-
though not shown, because of the scale of the plot, its value at the ~.rface
(UR/u*) is 22, TFor the Wyngaard et al. model the surface value is :' ..

32, This discrepancy is reconciled by noting that in the surface layer U
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of the medel. For Ro. = 105,:Shir‘s((1973)znbd@; predicts the corresponding :
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is a fuirly strong function. of Ro, which ~ iOz:for the Standard conditions ;

value of U/, to be 24,

Figure (8-2) -demonstrates the V.@rbfile‘g‘depétture from ideal alreudy
diSCdSSéd in S?ction (7,%4) and attributed téﬂtppbgréphiq effects. Th: open
circlesurepresent‘vE7u# caléulated gs§d§§c;iﬁed in Section (7.4). Figure
/(8-3) shows the shear stresses. The cuy&e fof ;;Vuizis taken from Wyngaard
gg_gl; Consideredjtggetheﬁ, Figu%es (8-1), (8-2) and: (8-3) demonstrate well )
the coupling between the :stresé gradient, the Coriolig force and the form
drag<fgrée, ﬁ} Clearly the uw stress gradient alone is not sufficient to
bélancé/the downstream Coriolis force associated with the V component. On
the other hand, the vw stress and ‘the U compement fit their respective f
horizontally homogeneous models quite nicely, indicating that the lateral
component -of ¥ is not impoxtant in that balanie. Thus we conclude that F
must be in the direction of ice motion and it is natural to consider it a
manifestation of form drag.

Figure {8-4) shows dimensionless varianciés, the sum of which is twice
the turbulent energy. Curves from Deardorff's model seem to show more of
the structure demenstrated by our measurements than the simpler second-order
model. The fact that measured levels of turbulent kinetic energy deep in
the layer are higher than model predictions might be because the mixed layer
is bounded by an active pyenocline rather than by a rigid lid as in Dear-
dorff's model or by nothing as in the Wyngaard et al. model.

At first glance, it seems that the turbulent field is not much affected

by the form drag field that makes itself so noticeable in the mean V com-

ponent, and we are tempted to classify the layer as slightly stable, mainly
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because 6f the behavior of the dowmstream stress, uw. There are -several
objections to this, however. First, the measured vw stress fits a neutral

model very well. Secondly, the turbulent energy does not behave as if

——

there were a vertical force affecting it, particularly the wl component,.
which fits Deardorff's neutral model very closely. Thirdly, thé arguments
of Section (4.5) indicate that a much steeper slopée to the density profile
would be required for p, = 10, say, than was observed. 7

Tutuitively, the suppression of uw with -depth.might be explained by
again referring to the local pressure-gradient force ¥. We can picture it
as a standing field being advected along with the ice with just the right
magnitude to bring Equation (2.2,9) into- balance. In -the region deeper
than 2 m this forée is negative, so that we can visualize a blob of fluid
with excess momentum being trafsported downward by a turbulént eddy but
feeling a restraining force in the x-direction. The net effect then will
be to inhibit momentum exchange in a manner somewhat analogous to the action
of a stably stratified environment except that it occurs in the x-direction.
Since we chose the x-axis to coincide with the ice motion, the cross-stream
momentum exchange is not affected so much.

Some insight may possibly be gained by writing down a pair of the co-
variance equations. TFor simplicity, but with no rigorous justification, we
assume that the effects of non~homogeneity are not significant except in
the pressure-velocity covariance terms. Then for steady-state conditions

2.3

2
we can write the u” and v~ covariance equations (from Equation (2.,2.6)) as

P SR RreroeB N S SR orer ST eing) 4 £ 3
uw = + 5 g UUW = ~uge 2w(uw cos¢ ~ uv sing) + 3 6.:.1)
I — z
— 3V 1 §——- = -y . 2. W sing + = (8.1.2)
. vv 37 + 3 i Ay 3
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In general, it is dangerous to try to infer much from cursory looks at
complicated equations, but we can see from./(8,1.1) that uw is closely

coupled to u%% and we expect this term to b« strongly affected by a local
pressure gradient such as we have discussed. On the other hand, vw in
Equation (8.1.2) is coupled to events in the x-direction (at least in this
-simplified version) only througii the- rotation term.

We thus conclude, although the evidence is somewhat ambiguous, that
the boundary layer was essentially neutral and that the flattening of the
uw stress -profile was the result of topographic effects rather than stable
.stratification.

Figure (8-5) and (8-6) compare the non-dimensionalized profiles for
the two composite averages summarized in Tables (6-2) and (6-3). For the
latter case, Apr. 11, the average rcference speed was 16.32 cm—sec"l and
u, = .7 cmz—seé- + Current direction was almost the same in each case.

Of particular significance is the behavior of the cross-stream velocity
near the bottom of the boundary layer. In Case A (reference speed = 16.3
cm-sec“l), the reference level, 32 m, has dimensionless déepth & = ,55. 1In
the second case, with u, larger, the 32 m level falls at & = .45, The depth
of the mixed layer remained ccnstant at about 35 m, so ve conclude that the
depth of influence of the topographic force, f3 respondé to u,/f scaling
rather than to the depth of the mixed layer. The importance of this will
be discussed in Section (11.1).

The fact that the turbulent energy is laxger on Apr. 12 may be related

to the fact that we observed more activity in the pycnocline on that day (see

Section 10.5) although this is not clearly established.

T 4T TR il w1 ClMES RGO AL T R S DN S Cach A "'"***v‘r;-ﬁv



. e e e e e - - v s e e [ [

93 :

8.2 Similarity Constants

If we assume that the log profile is valid -to 2 m and use the values
for u, calculated by the method outlined in Section (7.3) we can Solve for
z from

o

In 2, = in 200 - kU(2)/u,

For k = .35 and U(2)/u* 20

0.18 cm

Z
(o)

With the surface roughness scale established we can solve Equation (3.6.3)
and (3.6.4) for the similarity constants A and B

kU

Ir. Ro, - ——
*
Uy

>
n

~kV

U,

-

From the data for the two composite cases studied we can solve to get:

u, Ro*

Date ok ok A B
4/11 .7 2.8x10" 2.9 3.3
4/12 1.0 4.0x10" 3.0 3.6

Although these values are within ranges reported for the atmosphere in
the literature, our results show that topography can distort the profiles
significantly and we expect the coefficients A and B to vary with position.
In particular, we do not expect the non-~dimensional cross-stream component
VR/U* to be constant, It may be that B can be related to the gross roughness
features of the ice and that A is not particularly sensitive to topography.
If this is the case, the similarity approach may provide a viable means of

predicting stress from ice motion or vice versa.
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Fig. 8-1 Non-dimensional downstream component with respect to
32 m reference. Curves are model predictions from
Businger and Arya, 1974, Solid markers are experi-
mentally determined data,
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(Vg- V) 10,

e

D
fz/u

Ux= O [ NEUTRAL) i

® - ACTUAL MEASUREMENTS
O - Vg

>
} 6
My 10 ( SLIGHTLY STABLE ) /

Fig. 8-2 Non-dimensional cross-stream component with respect
to 32 m reference, See-Section (7-5) for explanation
of Vg+ Curves are from Businger and Arya, 1974.
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9 "TURBULENCE SPECTRA IN THE OUTER LAYER

9,1 JIntroduction

There are two rather distinct reasons for investigating the spectral

structure of turbulence measuremznts: first, that the spectrum can provide
. the best -direct evidence as to whether or not the data collected have in

fact measured the turbulent velocity field, and secondly, for the intrinsic
interest in the comparison of measurements to turbulent spectral theory,

Extensive measurements of -turbulent velocity spectra have been made in
the surface layer of the atmosphere, and in the lower part of the outer PBL
with the aid of toders and airplanes. However, the data collected during
the 1972 AIDJEX project arc probably the first for which simultaneous spec-
tra have been calculated throughout the entire outer layer under more or
less steady conditions of mean current and stability.

In this chapter, a cursory review of turbulent spectral theory is pre-
sented with emphasis placed on lending some justification to the methods of
analysis used. Results are presented and used to derive an eddy viscosity

profile from a mixing-length argument.
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9,z Spectral Theory

9.2.1 Definition of the Turbulent Energy Spectrum

Briefly, the turbulent energy spectrum is defined as the integral over

spherical shells of radius x = kK in wave-number space of one-half the

- sum of the diagonal components of the spectrum tensor Qii(K), which is the

three-dimensional Fourier transform of the correlation tensor, Rij(r)'
b ~

P‘ij(f) = ui(f,t)u (>~c + f,t)

where the overbar represents an ensemble average and the tilde denotes a

vector.
— 1 Y -. .
¢1j(f) = ?;;;5 {if Rij(f) exp { 15 f} df

B() = 3 ff 4, () do

(Tennekes and Lumley, 1972, Chapter 8)

One-dimensional spectra can be defined by co.siderii.g the correlation

tensor along a spatial line, e.g.,

Rij(E,0,0) = {i[ ¢ij(f) exp {inlg} dry di, dkg
= fm F l(K )y exp {ik, £} dk
AR S TR ARt K
where 1 w
Fij (ky) =~~£f ¢ij(f) dk, dky

(Lumley and Panofsky, 126&)
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In general, the relationships between the energy spectrum and the

various one-dimensional spectra are complicated, but under the assumptions

T AN AL Or

of homogeneity and isotropy in space, stationarity in time and incompres-

sibility, there exist simple relations between the one-dimensional spectra

and the enevgy spectrum.

20 AT b S L R G
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9.2.2 Isotropic, lomogeneous Turbulence

An isotropic, second-order tensor that depends on a single vector

argument must have the form

YRS TRIA TR AT "I A R R R Vwm
N vy

= - 4
Qij(f) Ak) kin + B{k) Gij

(Batchelor, 1953).

TV Y Tty

ou,

For an incompressible fluid, 3;5 = 0, and if the fluid is homogeneous
i

9 9
a, Ry®1 = 5, By@) = 0

1}

AR T T w LA R RN

and

]
[« TN

7
E
]
v
3

k.0,.()
jdi.
since the functions are a Fourier-transform pair. Thus

2 B . L2
A(K)KjK + B(x) éij Kj = 0 B(k) KA

The total cnergy in wave-number space between spheres of radius x and k + dx

for an isotropic field is given by
1 2 O
§'¢ii(K) 4ae” dv = E(x) dk

Using these relations the spectrum tensor can be written in terms of the

energy spectrum as

~£55% (Kz éi - K,K,)
4
K

P15 37

Thus

[o+]
l = ~
Fig (k) = {i ®y3 (K)dk, diey
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By considering a transformation to polar co-ordinates in the KosKq

plane, the integral can be expressed as

1 15
Fiy () = 3 f
p=0

- 2
E(:) p-p dp
K

where

Transforming to k space by noting that in the KgsKq plane, p dp =k dk,; we

have

E(k) , 2

3
K

Flll(Kl) = %- (k™ - Klz) dx 9,2.1)

AR~ 8

1

A fupnction of k alone, when differentiated by SE will be an exact

differential inside the integral, and since E(x) is bounded

1
P ) 7B 4
.BKl l_K 3
1 1
2 @l By (9.2.2)
9K, K. 3K 3 *e
171 Kl
or finally
: 3 09 1 8F111 (9.2.3)
E(k) = x7 = Q; el
{Batchelor, 1953)
Similarly, it can be shown
2 1 _ 1,1 _ 3 1
Fii = Fpp = 7 Py - x50 Fp) (9.2.4)

A few comments on the development so far are in order:
(1) The correlation tensor from which the energy spectrum is
calculated is a function of three space variables and is

consequently difficult to measure.
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‘The cne-dimensional correlatioun tensor is easier to measure
but is still a function of space at a given instant in time.
While the energy spectrum v;nishes at zero wave number, the
one~diménsional spectra do not, since integrating over a
plané of wave-number space destroys directional information
and treats, for instance, a disturbance of bigh wave number
impinging on the surface obliquely the same as a disturbance
of lower wave number propagating parallel to the surface.
fTennekes and Lumleyﬁ 1972, refer to this as aliasing, al-

though it should not be confused with instrumental aliasing.)

No. simple relationship between the energy spectrum and a

one-dimensional spectrum exists except under the rathér re-

strictive assumption of isotropy. There is little reason to
assume that the turbulent field is isotropic at low wave-

nurbers.

Tc carry our treatment further then, we have to make assumptions abhout

the shapc of the spectrum, particularly at higher wave numbers, and also re-

late our time-series measurements to spatial correlations,
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9.2,3 Universal Equilibrium aid the Inertial Subrange

A large body of experimental evidence suggests that the basic mechanism
of turbulence, i.e., the transfer of kinetic energy of the mean flow to in-
ternal energy of the fluid, depends cily on two processes: the production
of energy via non-linear inertial transfer at large scales and the viscous
dissipation of energy at small scales. As the Reynolds number of a par:icu-
lar flow increases, the disparity in scales increases and if the Reynolds
number is high enough the energy dissipation is found to be proportional
to u3/£ where u and & are velocity and length scales characterizing the
large features of the flow (Tennekes and Lumley, 1972), In other words, at
sufficiently high Reynolds number, changing the viscosity, v, will not alter
the gross features of a turbulent flow, This, of course, is implicit in
neglecting the ;iscous stress term compared to the Reynolds stress term in
the equations of motion.

The wide separation of energy input and dissipdtion scales has another
important consequencé best expressed in -the wave-number domain: as wave-
number increases the degrees of freedom of the dynamical system increase
and order imposed at large scales is decreased, Thus at high enough Rey-
nolds number the range of the spectrum in which dissipation occurs is locally
isotropic and depends only on the viscosity, v, and the energy dissipation
rate, ¢ (Kolmogorof, 1941; see Batchelor, 1953). Length and velocity scales,
called Kolmogoroff microscales, can be defined from v and ¢ such that

v3/45_1/4 1s a length scale and v = (\»&:)l/4 is a velocity scale. By

dimensional arguments, the dimensionless parameter E(K)/vzn is a universal

function, Ep, of another dimensionless group nk:
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E() = von E_(xn) (9.2.5)

Thus the spectrum of a turbulent flow in the .equilibrium range has a uni-
versal description when scaled by the Kolmogoroff microszales, n and v.

As the gross Reynolds number of a particular flow increases, the dissi-
pation range shifts toward higher wave-numbers. The possibility then exists
of a region in which universal equilibrium is achieved -but in. which the
effects of viscosity are not significant. Such a region is called the
inertial subrange, where energy is "cascaded'" from lower to higher wave-
numbers with very little interaction between the turbulent flow and the mean-
flow forces (production) on the one hand, or between the turbulent flow and
molecular forces (dissipation) on the other.

In the inertial subrange the energy spectrum has a simple expression

since JE/3v = 0., Let ¢ = kn, differentiate (2.2.5), and rearrange,

P | -5y
Ee 3
- ~5/3
Ee = ol
E(c,t) = o2/ 5/3 (9.2.6)

(Batchelor, 1953)
The corresponding longitudinal one-dimensional speétrum can be found

by integrating Equation (9.2.1)

Flll(K) = a152/3 K-5/3 (9.2.7)

Similarly, the vertical and lateral one-dimensional spectra are touad from

Equation (9.2.4) to be

Py ) = Rt = 2N (9.2.8)

R x.‘iﬁ
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The concept of local homogeneity can ve introduced in a manner analogous
to that of local isotropy. Thus, given a high enough Reynolds number, any
turbulent flow can be considered homogeneous aad isotropic at small scales.

Furthermore, if an inertial subrange exists in the flow, it .can be identi-

fied from simple criteria: namely, the minus five-thirds power law and the

four-thirds ratic of cross-stream to longitudinal spectral amplitudes (Busch,

et al., 1968).
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9.2.4 Taylor's Hypothesis

It was postulated by G. I. Taylor that if the mean stream veloc’ty in

a stationary, homogeneous flow is large compared to the downstream root-

mean-square turbulent velocity, the spatial structure of the turbulent field

can be considered frozer and advected past a fixed observer at the mean

stream speed.

The hypothesis can be extended by making the transformatiin x = Ut and

treating the time autocorrelations as one-dimensional space actocorrelations

(Lumley and Panofsky, 1964).

Taylor's hypothesis furnishes a basis for the assumption that we can

regard our triplets as probes .being dragged through a turbulent flow field

measuring that field as a function of space,

Lumley and Panofsky (1964) suggest that near the ground Taylor's hypo-

thesis is valid for u2 %.Uz ~ 1/9 provided lag distances in the stmosphere

are less than 90 m. At 2 m from the ice, we found typical ratios of u2/U2 -
1/100 indicating that the hypothesis is justified, particularly for wave

numbers characterizing the inertisl) subrange.
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9.3 Instrumental Aliasing

Suppose that for a given uinstant in time along a particular spatial

direction there exists a continuous functicn of positiom, “(x), €.g., thé
auvtocovariance of the downstream velocity component. Suppose further that
this function is sampled at length intervals L.. The measured function,

fs(x) is the product of the actual function and the So-called Dire. «comb,

-]

fs(x) = f(x) I O8(x - jL)
j:—oo
oY
£ (x) = T £(GLYS(x - LY
X _ .
j..-oo
The function GL(x) = I §(x - jL) is periodic and can easily be shown to
j:—oo
have .the Fourier transform
. o 3
1 = N = -—
] {8, (x)} kooko(k) koni-wd(k nk )

(Hsu, 1967, Chapter 5) where ko = 1/L, Multiplicatien in the spatial

domain corresponds to convolution in the wave~number domain, so

P =F{E ) = £8 PO * 6(enk )

S0
that is, Fs(k), the transform of the measured function, is.made.up of the
kth component of the true transform plus components at k+ko, K+2ko, etc.

It is apparent that if there are no components of F(k), the true transform,
for |k| > ko/2, then the measured tvansform will be the scaled true trans-
form. Conversely, if coméonents at |k| > k°/2 exist, these components will
be folded back on the measured transform, which is then said to have been

aliased. 'The wave number kN = 1/21, is called the Nyquist wave number (or
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Nyquist frequency in the frequency domain).
The problem of aliasing in geophysical measurements is inescapable,
but if it can be shown that the measurements are made to scales small enough

that from our knowledge of the physical processes involved we know higher

wave-number compoenets are small, the measured transform will very nearly
reproduce the actual transform.

As related to our measurements, if we can show that we have measured
at small enough scales so that turbulent energy in higher wave numbers cau-
not much affect the energy spectrum when aliased to lower wave numbers, then
we can say we have measured the turbulent flow field. In other words, we
need to show that we have measured well into the equilibrium range of the
energy spectrum so that disturbances of smaller scale cannot appreciably
alter the Reynolds stress tensor.

From the calibrations for head-on currents, the distance a current meter
travels for one complete revolution in still water is given by the formula
d=7.4+ 1,1t in cr vhere t is the period for one revolution. In the
range of velocities encountered, the distance between samples is avproxi-
mately 8 cm., This implies that if Taylor's hypothesis is valid, then turbu-
lent eddies with scales smaller than 8 cm will not be detected even by a
meter aligned into the flow. For c meter with its axis'at some angle from
the streamline, the minimum sampling distance will be increased by the
factor sec ( © ), where € is the angle of attack. For a triplet aligned
in some arbitrary way With the average streamline, the minimum sampling
length is determined by the slowest-turning meter.

In the time series used to calculate spectra, the average of the slowest

component divided by the mean speed was about 1/3 to 1/4 corresponding to a
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sampling length of 24 to 32 cm, or a Nyquist wave number of 1.6 to 2.1

m_l. This argument would hold rigorously were the time series actually

e ORI RER I HFATL LT RRESCER IS San St g
N IR

IR R R AR T Y R

discretely sampled. As J. Smith (personal communication) has pointed out,
the mechanical nature of the current meter used acts as an effective fi.ter
for frequencies higher than its turning frequency. For this reason we do
not expect aljasing in the usual sense to be a problem; however, the argu-
ment 1s still effective for determining that part of the spectrum to which

we can measure, and the criteria outlined above are still valid..
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9.4 Calculations

In practice, discrete Fourier transforms were calculated using a slight-—
ly modified version of the Data General Users Group fast Fourier transform
routine supplied by Ron Stuttheit of Scripp's Institute of Oceanography.

It transforms a maximum size array of 1024 points in about 1 sec. The fast
Fourier transform is a high-speed algorithm for computing discrete trans-
forms and its use has no effect on the properties of the discrete Fourier
transform described in Appendix C.

Calculating spectra from discretely-sampled, finite length time series
is an endeavor fraught with hazard. One of the more obvious proiLlems is
the fact that a finite realization of a time series assumed stochastic is
actually the product of the infirite series with a rectangular data window,
a function whose value is one for all measured times and zero for others.
Since multiplication in the time domain implies convolution in frequency
space, we see that our estimate of the spectrum is the true spéctrum con-
volved with the transform of the rectangular window. If the true spectrum
is characterized by sharp peaks, éhis convolution will result in serious
"leakage" of energy to other frequency components.

It is also true that although increasing the length of the time series
being analyzed allows greater frequency resolution, it does not increase
the quality of the spectral estimate (Jenkins and Watts, 1968).

Numerous methods exist for alleviating these problems and iméroving
the spectral estimates. For instance, various tapered data windows have
been suggested that have better frequency domain characteristics, i.e.,

they reduce leakage compared to the rectangular data window. It should be
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pointed out however, that from the nature of turbulence, a very random sort
of phenomenon, we do not expect sharp peaks in its spectrum and do not
anticipate leakage to be a major problem; but, for the same reason, there
is apt to be a great deal of variance in the spectral estimates from one
realization to the next (a good example of this is given for white noise
in Chapter 6 of Jenkins and Watts, 1968).

In their classic paper on the subject, Blackman and Tukey (1958) sug-
gest calculating the autocovariance function from a time series for lags
up to some fraction of the total number of samples, weighting this function
by an empirical data window, then transforming to get the power spectral
density estimate. It should be emphasized that this technique pre-dated
the advent of fast algorithms for discrete transformation. Also, the
number of lags calculated in the autocorrelation series is usually 1/10 to
1/9 of the total number of samples, so that frequency resolution is decreased
considerably.

The fast Fourier transform algorithm has made the transformation of
many long time series feasible and allows greater flexibili.y in reducing
the variance in spectial estimates. Kanasewich (1973) suggests that, for
a long data set, dividing the series into I subsets and then calculating
the average energy density for each frequency is an e%celle;t way to proceed,
The asymptotic variance (the expected variance of spectral estimates if the
spectrum were uniform or '"white") should decrease as 1/I.

After several tests cqmparing the latter technique to the Blackman and
Tukey approach showed little significant difference, the direct transfor-

mation and multiplication approach was chosen for its relative simplicity.
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The actual computation of spectra presented in the next sections was
done following the steps outlined below:

1)

A time series of N points for each component is formed by
block averaging the velocity data, usually in groups of 8
corresponding to a time step of 1,62 sec, N was usually
1024 although it could be divided by multiples of two.

(2) An average streamline reference frame is determined by

AT ISP, k‘k\;,ﬁf;“\,ﬂw\!z}:{v&‘\mi"‘lfﬂ A Tty e:r:":-?'l:'.‘.“;ﬂ;'"\\"z“ﬁ'ﬁ'mA 3
PTG AIN YISV R R B K

rotating out the average V and W components. Each point

e

vector in the series is rotated into this frame and the
mean speed, U, is removed from the resulting u component,

leaving three series of fluctuating components:

downstrean,

u; lateral, v vertical, w, all with zero mean.

(3) Each series is transformed and the spectral estimate, S(n),
is calculated by taking the absolute square.

(4) Each spectral estimate is multiplied by its index, n, and
classified according to the log of its dimensionless wave
number, kz = nz/N At U,

(5) Several runs are accumulated, averaged and plotted
log[nSu(n)/oaz] vs. log xz, a = u,v,w.

By using the weighted spectral estimate nS(n) rath;r than S(n) the

function loses its dependence on the particular units chosen for the fre~

quency or wave-number axis. Also, it is a- fairly standard representation

for atmospheric turbulent spectra with which comparison to spectra measured

above the surface layer can be made (e.g., Panofsky and Mazzola, 1971).
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9.5 Results

In order to calculate averaged spectra the current record was searched
for reasonably steady periods and from these, time series approximately 28
minutes long were chosen more or less at random. In all, thirty such series
taken over the period Apr. 11 through Apr. 13 were analyzed and combined
in the manner described in the preceding section. Figures (9-1) through
(9-3) show the results of this procedure. For small wave numbers the number
of samples was comparatively small resulting in fairly large variance; a
smooth line was drawn by eye to estimate the spectrum. This was usually
limited to wave-number ranges below the peak in the w-spectrum. An example
of an untouched computer plot for the u-spectrum corresponding to TFigure
(9-1) is shown in Figure (9-4). Because th; spectrum in Figure (9-4) has
been scaled by the variance, the vertical axis is offset from that in
Figure (9~1) although the shape of the curve remains the same (this was one
reason for using a log plot for the weighted spectrum rather than the "area-
preserving" plot).

We can use the spectra in Figure (9-1) to investigate the effect of
instrumental filtering. In Section (9.3) we set a lower limit on the
Nyquist wave nuinber at about 1.6 m—l. At 2 m, this cor;esponds to a dimen-
sionless wave number of 3.2 which places us somewhere near the right edge
of the graphs (the reason for this is that we block-averaged eight sampies}.
When we consider that Fhe weighted spectrum, nS(n), falls ¢ff much slower
than the true spectrum, the fact that the weighted u-spectrum has fallen
off by a decade and a half confirms that aliasing of energy in wave numbers

higher than the Nyquist wave number is negligible., From Figures (9-2) and
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: (9-3) it is clear that the dimensionless Nyquist wave number moves right-

3 S

ward with increasing depth faster than the spectra do, and we conclude that
the triplet at 2 m is the critical case. Thus the first question posed

for spectral analysis is answered: the response of our data-collection
system is sufficiently fast to measure the turbulent flow field.

4 Some other observations can be made about the spectra in Figure (9-1).
i They are qualitatively similar to atmospheric surface-layer spectra com-
piled by Busch and Panofsky (1968), particularly with respect to the peak

3 in the w-spectrum. However, as has be?n demonstrated elsewhere, 2 m is out
é of the surface-layer and surface-layer scaling is not necessarily correct.

Also, the Reynolds number for flow beneath the ice is smaller than in the

atmosphere by probably a couple of ocrders of magnitude and we expect vis~
cosity to affect the spectrum at lower wave numbers.

For the triplet at 2 m there appears to be evidence for an inertial
subrange, i.e., there exists a short region in which all three spectra fall
off with a -2/3 slope and the ratio Sw(n)/Su(n) ~ log—l(.l) = 1.3, At 4 m
and 8 m regions of -2/3 slope appear in all the spectra but the v- and w-
spectra have generally the same magnitude as the u-spectrum,

We can calculate the dissipation rate, &, from Equation (9.2.7):

5/3

[F(K) K
%

]3/2

Busch and Panofsky (1968) suggest a value for the constant, a, = .15 and

1
using the values kz = 1, kS(k) = .1

e = 2.7 x 10"3 cmz—sec“3

We can estimate the shear production of turbulent energy as




RO U R e ST o Sl o S S e b - v~

5 - 118

with average values from Apr. 11 and Apr. 12, This is approximately

6? = 6 x 10-'3 cmz—sec—3

W T, T N T T v

This is a crude calculation that depends on the log profile to estimate

T

J the slope and uses an estimate of stress conditions for the time that spec-
tra are actually calculated, but nevertheless the results seem to indicate
that prodnction 1s significantly larger than dissipation. This may not be

3 too surprising in light of the flattening of the uw stress profile discussed
in Section (8.1). We would expect the same mechanism to act as a sink for
turbulent energy, in much the same way as a stably stratified medium extracts

encrgy from a turbulent flow.
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9.6 Vertical Spectra

Figure (9-5) shows average normalized vertical spectra obtained by

averaging spectra from 30 different time series and smoothing the resulting !

average by eye in the lower wave numbers., The abscissa is the non-dimen-

sional wave number, kz, where k is the wave number determined from the mean

velocity using Taylor's hypothesis. The most notable feature is the right-

ward shift of the spectra with increasing depth. The spectrum of vertical

velocity at 32 m appears to be different from the others; this may be due

to diffusion of effects taking place in the pycnocline such as internal

waves.

Measurement of vertical spectra are fairly common for the surface layer
of the atmosphere and are usually presented in a form similar to that shown.
The peak of the spectrum is taken to be the characteristic wave number

km = l/Am where Am is the length scale of eddies that transfer energy from

the mean flow to the turbulence. If an inertial subrange exists, then in

it the spectrum should fall off as k~5/3 or with a ~2/3 slope in the repre-

sentation shown.
Surface-layer similarity theory predicts that the peak in the w-spectrum
should scale with the distance from the boundary and thus the spectrum should

depend only on the non-dimensional wave number and the stability parameter,

z/L (Busch, et al,, 1963). Busch and Panofsky (1968} found that in the at-

mospheric surface layer under neutral or unstable conditions, the vertical

spectra from different levels at three sites coincided with a peak at non~

dimensional wave number kz ~ .4, Under stable conditions the spectrum

retains its shape but is shifted toward higher wave number since gravity

e s et o e el r———

——



120
tends to limit the size of energy-carrying eddies in the vertical.
Away from the surface layer, the effect of the boundary on eddy sizes
should become less and less important. Presumably a maximum scale size
is reached at some distance from the boundary beyond which.we would expect
spectral peaks to shift toward higher dimencilonless wave number. This is
confirmed by our observations and also from observations in the atmosphere

from towers and airplanes (e.g., Panofsky and Mazzola, 1971).
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9.7 Inferred Mixing Length and K Distributions

The concept of eddy viscosity draws heavily from the idea of a char-
acteristic length scale for turbulent momentum transfer thiat allows the

turbulent stress to be related to the mean velocity shear.

Thus -uw = K 82.

oz
where K, the eddy viscosity, has dimensions Lzlrl and is proportional to a
characteristic velocity times a characteristic length by analogy to the
molecular viscosity of an ideal gas.

In the neutral atmospheric surface layer the dimensionless wind shear
kz 3

¢ = em— —

T is equal to 1.0 provided von Karman's constant is .35 (Businger,
*
et al,, 1971). Thus K is identified as proportional to the friction velo-

city times the distance from the surface, But since the ratio z/Am is also

constant, K is proportional to u, times %u,an even more fundamental rula-

tionship in terms of mixing-~length theory.

For the outer boundary layer, K-theory is on shakier footing, As
described earlier, various K models have been proposed that can yield cred-

ible results, but without placing such emphasis on the physical meaning. of

a mixing length. Deardorff's (1972) results indicate that fox the unstable

case, K passes through + = and becomes negative: taxing to the imagination

if thought of in terms of a mixing length,
It would be interesting, however, to investigate the relationship
between K and the vertical spectral peaks in the neutral or slightly stable
outer layer, since wavelengths associated with the peaks suggest a scale
length for the outer region., We postulate that K = ¢

u,A , and use surface
1"%"m

layer arguments to evaluate ci from measurements at 2 m, since we expect

the log profile to be valid there (Tenneckes, 1973).
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K = -uw X2
Uy
c. = -uw kz
17 LA

in the log profile region only.

From the spectra in Figure (9-5) it is evident that in some cases a
"peak" is hard to identify. In most of the curves, though, a region where
the spectrum falls off with a -2/3 slope can be found, so it is reasoned
that choosing the point where the spectrum first matches a straight chord
with -2/3 slope would provide a consistent estimate of the characteristic
wave number for the energy-producing eddies. ObQiously,Ethis entails some
subjectivity on the part of the observer and should be toasidered as an
order-of-magnitude estimate only,

The calculations described were carried out and are summarized in the

following table. Typical measurements at 2 m were used to evaluate ¢y = .1,

Depth log z/Am Am(m) fz/u, Kf/u*2
2 -.30. 4.0 .03 5.9 x 107
4 -.07 4.7 .06 6.9 x 107>
8 -.03 8.6 11 12.6 x 107
12 +.18 7.9 . .1 11.6 x 1073
16 +.33 7.5 .22 11,0 x 1073
20 +,30 10.0 .28 14.7 x 107>
26 +.83 3.9 .37 5,7 x 107>
32 +1.52 1.0 .45 1.5 x 1072
Table 9-1

K-distribution Calculations
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These values are plotted in Figure (9-6) along with curves from Dear-
dorff (1972) and Businger and Arya (1974) for two stability classeé, neutral
and slightly stable.

For comparison, an eddy viscosity can be calculated from simple Ekman
theory by equating the Ekman depth with the depth of the mixed layer (Hlun-
kins, 1966). Solving for K when z = 32 m = 7 V2K/f we get K = 70 cm2~sec_l.
We can non-dimensionalize this to get fK/u, = .01, which fits in fairly
well with the values shown.

It should be reiterated that the result shown in Figure (9-7) is not
derived from the mean current profile, but rather from vertical velocity
spectra. As we have indicated previously, the lateral velocity profile
cannot be described as a balance between the Reynolds stress gradient and
the Coriolis feorce, Clearly, under these conditions the Reynolds stress
cannot be related simply to the mean profile gradient becasue a large por-
tion of the V component balances the form-drag force, Fx' An interesting
feature of this exercise is that although the measured uw profile behaves
as if it were in a stable environment, (see Fig. 8-3), the eddy visccosity
assoclac2i with peaks in the w-spectra is clowar to what we would expect in
a neutrally stable column. Thus the arguments of Section (8.1) wherein ve
argued that the flattening of the uw profile was due to‘the form-drag force,

Fx’ are bolstered by the results of this section.
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nS(n)

Fig. 9-1 Averaged and smoothed weiglited spectra of downstream, u,
cross-stream, v, and vertical, w, velocity components
for Triplet 1, 2 m below ice
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Fig. 9-2 Averaged and smoothed weighted spectra for Triplet 2,
4 m below ice

i
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Fig. 9-3 Averaged and smoothed weighted spectra for Triplet 3,
8 m below ice
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to Fig. 9-1 without visual smoothing

Fig. 9-4 Normalized average weighted u spectrum corresponding
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f Km/UE
.005 oo - .0I5 .020

BUSINGER & ARYA 1974, u=0 (NEUTRAL)
DEARDORFF 1972, NEUTRAL

BUSINGER & ARYA, U = 10 (SLIGHTLY STABLE)
CALCULATED VALUES

Fig. 9-6 Distribution of dimensionless eddy viscosity
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10 SUB-MIXED-LAYER BAROCLINIC CURRENTS

10.1 Background

It has been mentioned previously that the triplets located within the
pycnocline showed the existence of many more transient current phenomena
than those located toward the base of the mixed layer.

Probably to a large extent these could be attributed to internal waves
propagating along the stcep demsity gradient., It was recognized that our
data could provide some information about the nature of these waves, but
that a rigorous investigation of them was beyond the scope of this parti-
cular project,

On the other hand, it became apparent that other, larger-scale pheno-
mena were also present that could account for considerable mass transport.
In fact, toward the latter part of the storm on Apr. 14, as currents were
falling off to threshold in the mixed layer, we observed currents in the
pycnocline that persisted for more than a day and that were nearly compar-

ably to the maximum ice-drift velocity.
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10.2 Time Development of the Density Structure

Figure (10-1) is a plot of isopycnals (lines of constant density)
vs. time for the period Apr. 6 to Apr. 15, and below that a plot of the
average density of the water column above 60 m expressed in Oy units. In
each case, the graphs were made from daily average o, plots of which
Figures (4-2) and (4-3) are examples.

If the isopycnals and isobars (lines of constant pressure) in a flow

are parallel the flow is said to be barotropic, while if they intersect

the flow is termed baroclinic. Since depth and pressure surfaces closely

coincide in the ocean, the structure of the pycnocline is baroclinic over
the time scale of the storm.

In general, as winds and ice motion increcased from Apr. 10 through
Apr. 12, the mixed layer deepencd and became slightly denser while at a

given level in the upper pycnocline the density decreased significantly.

On Apr. 13 the trend began to reverse and on Apr. 14 a sharp change occurred

with large increases in density in the upper pycnocline and freshening of
the mixed layer,

The average density above 60 m is plotted to show that while at a
particular level in the pycnocline that the density migﬁt change by as much
as .15 . units over the development of the storm, the density of the whole
column above that .evel was roughly conserved, at least until Apr. 14.

Figure (10-2) from Hunkins (1974a) STD measuremenis at the AIDJEX site

provides a better overall view. Here isohalines are drawn instcad of iso-

pycnals but the density structure follows salinity quite closely. Also,

times are shown in Greenwich Mean Time which leads Alaska Std. Time by ten
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hours, so that, for instance, 1200 GMT is 0200 AST on the same date. The
plot has been modified to include barometric pressure.
Figure (10-3) shows in greater detail the density structure over a
nine~hour period beginning at about 0900 on Apr. 14 (AST). The isopycnals
in the upper pycnocline slope quite sharply and steadily upward, while

below 45-50 m the slope is opposite. Figure (10-4) shows two casts, one

toward the start of the period, one toward the end.
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10.3 Baroclinicity and Geostrophic Shear

Baroclinic conditions require geostrophic shear, a fact that can be

demonstrated by differentiafing the geostrophic balance equation, i.e.

£ 13p
g p OX
v
fF—£& = l._ﬁ.(ﬁﬂ) 3p 39 (1)
9z p 9z '9X 9x 9z p

- 2 3% 3z (10.3.1)

where we have used the hydrostatic relation

ap

That the last term in Equation (10.3.1) is small can be seen by considering

a case in which 3p/9x = 0. Then

0z p g 9z
or
Av ) ‘_@_0_
v
g %

and we see that to create a change in geostrophic current of the same

order as the original would require an enormous density gradient so we can

say
v . =g 3p
—ﬂaz = __&pf % (10.3.2)
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10.4 Calculations and Measurements

In order to estimate the geostrophic shear (called thermal wind .
the atmosphere) associated with the horizontsal dersity gradients depicted
in Figures (10-3) and (10-4) we can try as a first guess a length scale
associated with our westward iée drift and calculate the expected north-
south currents. In other words, we determine Ap from the density casts
and an advective length scale for the distance between casts, and use these
values for a finite-difference integration of the thermal wind equation,
(10.3.2)., These calculations are summarized in Table (10-1).

Figure (10-5) shows the actual north-south currents observed using the
mean current at 32 m as the subtracted reference. In these plots the velo-
cities have heen filtered with a twenty-minute running average to remove
internal waves of shoivter period. Considering the crudeness of our treat-
ment in arriving at the velocity values in Table (10-1), the correspondence
with measurements is remarkable.

Although it is not.clear from the plots, prior to about 0900 the iso-
pycnals were relatively flat, so that the time development of the currents
in Figure (10-6) is illustrative of the response time for this sort of
forcing. It apparently takes on the order of three hours for currents as
high as 14 cm--sec"l to respond geostrophically to their forcing mechanisms
at this latitude,

At other times sub-mixed-layer cuxrents were observed although none
were as striking as those occuring on Apr. 14 and Apr. 15, A vector plot
of the velocities at the four lowest triplets during the morning of Apr. 13

(Figure (10-7)) shows an extremely complicated structure to the velocity
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field and presumably the density field. For instance, at 033C a relatively

T

strong south-west flow at 44 m has turned more than 90 degrees to southeast
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10.5 Discussions and Conclusions

East-west currents during .the period shown in Figure (10-6) were
small., This, combined with the fact that we could use the advective length
scale %o calculate geostrophic velocities, suggests that the east-west
motion of this disturbance was small and that it could be considered a
front aligned predominantly in the north-south orientation. The origin of
this front is not well understood, but .thé following heuristic explanation,
which borrows heavily from Holton's treatment of .synoptic-scale spin-down
and associated secondary circulations in the atmosphere (Holton, 1972,
Chapter 6), is offered as a possibility,

The idealized Ekman equations for an ocean with no barotropic pressure
gradients can be written

£8 x = %i—?ﬂ (10.5.1)

where € is the vertical unit vector and ¥ =1 & + v € is the "stress
z n ZX X zy y

vector,"

If we define De as' the depth at which stress vanishes (the depth of

the Ekman layer) we can rearrange and integrate Equation (10,.5.1)

0
- - -]_. e - N
——éﬁip udz = F e, ¥ T, (10.5.2)
e

where ?b is the surface stress,

If we take the horizontal divergence of Equation (10.5.2) and apply
some vector manipulation, we have

0 1 S
-—é v, Pl dz = -E-Vh'(ez X To) = -fFe,Ux
e
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From continuity

aw _ .
P oz = “Vyoeu

and if the surface vertical velocity is zero, this becomes

W, = 1 g VxT
0 pf "z 0

(C.B. Leovy, class notes)

Thus we have the result that the curl of the ice-stress field, which
can be related to the vorticity of the ice-velocity field, is balanced by
a vertical velocity at the base of the mixed layer.

In cyclonic motion about a low pressure area in the Northern hemisphere,
the curl of the wind stress will be positive and can be estimated by At1/AL
where AL is the advective length scale., For the period Apr. 10 to Apr. 12,
At/AL ~ 7 x 10”7 giving wy ~ 5 x .1.0"3 cm—sec_1 upward.

Another way of viewing this is to recognize that there must exist a
small upward flow at the base of the boundary layer to compensate for Ekman
divergence in the boundary layer proper. Note that the "mirror image"
analogy breaks down here. In the atmosphere, the Ekman transport is toward
lower pressurc, i,e. toward the center of the cyclone, while in the ocean
it is &irected away from the center.

If the fluid were neutrally buoyant, this upward flow would be balanced
by a very small inward flow throughout the whole interior of the fluid.

In the actual case, vertical motions ;re inhibited in the strongly
stable pycnocline and the return flow is confined to a relatively thin sec-
tion near the base of the mixeq layer.

If we visualize a cyclonic system suddenly imposed on a quiet ocean

we might expect the following development, Ekman divergence beings ijmme-
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diately, resulting in vertical transport of more dense material into the
mixed layer. As the spin-up continues, the net influx of water typical of
the top layers ui the pycnocline toward th; center of the system sets up
horizontal density gradients. These gradients in turn cause secondary
circulations that just balance vorticity at the base of the Ekman layer and
bring the upward transport to a halt.

This was roughly the course of events observed during the storm. Early
on there was a marked increase in mixed-layer density, but not much current
activity in the pycnocline. As the storm matured the density build-up
slowed and more currents were observed at depth. Finally, as winds and sur-
face stress fell off and pressure reached a minimum on Apr. 14 (see Figure
(10-2)) we were advected into a region characterized by an excess of water
typical of the upper pycnocline and observed a strong baroclinic circula-
tion. Clearly, the actual system is ruch more complicated than the simple
picture presented here, but if the secondary circulations are a result of
the vorticity balance mechanism, their energetics should be considered in
modeling ice drag.

If we formulate a simple mixing problem it is possible to estimate the
average density of water influxed by vortex pumping required to force the
observed density change in the mixed layer., We assuﬁe tha& mixing is rapid

arnd solve the resulting first-order differential equation to get

Ao
py = ————— top
1 (1-e wt/h) )
where Po is the original density,

Ap is the observed change,
Py is the average density of introduced water,

h is the depth of the mixed layer.
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For the period Apr. 10 to Apr. 12, Ap = ,03, wt/h = .2

-

_ 03 i
p; = ‘3z 24,05 = 24,17

N ST T TON

This is typical of water at 35-40 m. Presumably the water that is trans-

ported vertically is replaced by fresher water flowing in along the base
of the mixed layer to account for the decrease in density observed in the
top layers of the pyecnccline,

It is interesting to note that Hunkins observed a strong "eddy" with
large vertical shearc centered at around 100 m depth on Apr. 18 (llunkins,

1974a). He argues that because thc size scale corresponds to the Rossby

mwmmmpw AT ST RN AT N

radius of deformation and is much smaller than the synoptic scale of the

1
5
"
4
3

storm, such eddies are spawned by baroclinic instability some distance off

and are not directly related to the storm.

However, looking at Figure (10-2) and considering the arguments put
forth above, it seems possible that the distortion near the top of the
pycnocline observed on Apr. 14 through Apr. 17 might create such an instabil-
ity. In fact, at a cursory glance, the presence of deep currents scems to

be associated with calms following the passage of storms. As Hunkins points

out, the kinetic energy associated with such phenomena is considerable and

they should be the subject of more study.
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Fig. 10-1 Isopycnals (lines of constant density) vs, time in the
upper pycnocline




ot + ~Q0Z
o e
- - — . — -~ - - -
oz + I = e e a e aw? Ner SV~ Izl\\\ L S T~ dow
oy <+ ° 1o9
ave | . ye TV
Oiﬂ)\/\l\/\/\/\qx\/\,\l/\l\/\/\‘".\|lb
ez 4 ot
-~ - AT s
SECr = - e - - — S - N\ \\llll P T - i
o0 + o TR l/ l\\ 58 .~ X - - 4 o
-’ m
0
o o 4+ g “w
” (313 - ~oef “~
d . o~
Don - O.nm|\n|\/|\||l.\ll\-/|\l I, -
H -~
Mloc. + . + ovi
L
- - \-I - - — - o -
I P LU " S~ lol\\-ll\\»t\g I.Jll'l\\\l\:t\ N - oﬂnh\\"lll/'\.\\-l’\\ - — o
+ T o0l
~ oot
= 131 .I/\I\/\Io.«ﬂf\/l/\/\\n/\./!\ulq:
. og + i ro3
o9 + 1oy
o 4 jo¥ .
\
oy + v -0z
v
J [
o JL FEPUNFI SIS SF S YTV W Mt MW WP WOCITIT T WS B DR BT SIS e ot Al s S g U B 2 s s o
I R ATHY VIR I N BR ¥R R gl s N 36 A4 Te e .a&au“luﬁ‘.‘uu‘““!ﬂﬂx MWt N & ° -00!1
o - ~ <<
b3 - <~ < it _ ' - I.\\»\n/.i?d — 'l g kA
/r .\\{\.\ (STVYEW) IHASSIVE ~ - =101
R4 = - / = <2 v r]
. 9 / \l\/\\ . \\ ” Af\u\n\N) (l 9
. S _ C ' S e - ozo!
- T T~ -~ —{esfw)-~3Ti30ud QA — TN jd ’
o — N s ot
o : gy — \ 1 3 — } 2 - 8201

A L e g T 8y pre 0 ESE 0 SRadl0fmD,

o
2
X
©
€
Ly
X
©
¢
o
b
.

T T -
WOy Me Wbl we w3l e il fa LI 23 = wgt
TLOY WudY 1w

ot aagied v R AN S

pressure) from Hunkins (1974a)

Bt LA

s

Fig. 10-2 1Isohalines vs. time (adapted to include barometric

P U R B P o CUE TP o W M LY



WA, N

PRI TR a WO Tl s T el RS

DEPTH (m)

143

14 APRIL 1972
0900 1200 1500

1800 AST

encountered on Apr., l4

1

Fig. 10-3 Isopycnals vs. time showing steep density gradient
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Fig. 10-4 Density profiles during the period of rapid change
depicted in Fig, 10-3
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Fig. 10-5 North (positive)-south (negative) currents relative to the

mean at 32 m showing geostrophic shear in response to
density gradient
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11 CONCLUSIONS AND FINAL COMMENTS

11.1 The Total Strc-s on the Ice

In Section (7.5) we alluded to the contribution of form drag to the
total ice stress and deferred discussion until further results were pre-
sented, It has become apparent that the question of form drag and how to
treat it is one of the crucial problems in estimating both wind and water

stress on sea ice. Obviously, an ice model requires some sort of reliable

estimate for each. 7To this end, extensive measurements under varied con-
ditions are planned for the 1975 AIDJEX experiment hopefully to provide
drag coefficients that are functions of easily measured parameters.

F. A. Lee (1973, unpublished manuscript) has shown by modeling turbu-
lent flow without separation over a sinusoidal boundary under conditions
similar tc flow under ice, that form drag determined by integrating the
surface pressure is comparable o skin friction. These results have been
substantiated by G. Spooner (personal communication) for arbitrary shapes
decomposed into Fourier components,

Arya (1973) has calculated the ratios of form drag per unit area to
surface friction for the upper ice surface, using obser;ed values for
ridging intensity and a drag coefficient from laboratory flows over obsta-
cles similar to pressure ridges. He finds.that in regions of fairly
intensive ridging, and particularly under stable stratification, form drag
can be quite significant even in the atmosphere, and suggests that in the

ocean form drag may completely dominate skin friction.

Hunkins (1974b) calculated average air stress at the AIDJEX site for
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the afternoon of Apr. 12 and reports a magnitude of approximately 1.9
dynes-cm-z. Clearly our skin friction estimate ("1 dyne-cm-z) is a sizable
portion of this., On closer investigation, however, Arva's method appears
to give reasonable estimates. For instance, if we use his values for the
drag coefficient (CDn = ,4) and the dimensionless ridging intensity (R =
.025), then for neutral conditions with an average underside ridge depth ~

3mand z; ~ .2 cm e get FD/TD ~ 1 to 2 (see Arya, 1973, Figure 3). This
might seem surprising but it should be noted that Ro, for flow under the
ice is considerably smaller than in the atmosphefe and thus the roughness

scgle, is much larger in the ocean, other things being equal,

20
Unfortunately, we come up against a formidable problem in trying to
describe a turbulent flow over varied topography, and at present we seem
to be able to say only that the form drag is of the same order of magnitude
as the skin friétion. We can estimate the total stress by integrating the
mean equations to get mass transport (this is discussed in detail in Hun-
kins, 1974b, Appendix; see also Faller and Mooney, 1971), but this requires
that profiles be averaged over a representative surface area. We showed
in Section (7.5) that the mean profile in any one location seems to be very
sensitive to the particular topographic features of that point and ques-
tioned whether a suitable average 1s possible without saméling steady
currents from every direction.
There is one feature in this, however, that should..not be overlooked:

the ice represents a rigid lid over a fairly large area compaced to the

depth of the boundary layer and thus the ice velocity is a representative

average.

The significance of this becomes clearer if we consider the lateral

(V) profile. First consider the following sketch depicting the lateral
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from a neutral, horizontally homogeneous model (e.g., Wyngaard, et al.,

1973):

V/Ut

-10 -5
*_ t

§= fz/u$

Ve can estimate the area under the curve by considering the triangle

with legs 50 = 45 and V/u* = 5, This illustration overestimates the stress,

TS/u* , by about 107, but demonstrates that a linear approximation for the

V profile is not too bad.

Next we superimpose curves from Hunkins' measurements and our own

sketched from hodographs in Figure (7-5).
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The upper value of the V curve at any location is clearly representa-

tive of the average throughout the region because of the rigidity of the

ice.

We then postulate the following:

1)

(2)

(3)

The point at which the V profile goes to zero is
gove}ned by the turbulent structure and is taken to
be 50 = ,45, since the mixed layer is neutrally buoyant.
In other words, the lower limit is set by the friction
velocity, u,. Although this cannot be proved, Figures
(8-5) and (7-2) are strong supporting evidence. We
assume that u, does not vary greatly over the averaging
region. | ‘
Although V profiles may differ radically from point to
point, the average over a large cnough horizontal area
can be crudgly approximated by a straight line.

The total non-dimensional stress can be related to the
non~dimensional lateral velocity by a shape factor, Y,

2
i.e., Tb/u* = yVR/u*
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The shape factor for the simple triangle with EO = 45 is

.22, By noting that in the horizontally homogeneous case,

'rb/u*2 = 1, we can round this to .2. Thus

’ 2
Tb/u* = ,2 VR/u*

It should be stressed that this shape factor is based more on intui-

~—

tion than evidence. We presume that on the average the V profile comes
fairly close to a straight line from the surface to the depth of frictional
influence, as it does in the horizontally homogeneous case. Our approxima-
tions may be crude, but they should be viewed in the context that even if
our calculated stresses are wrong by 257 we would consider this a large
improvement on other means available.

For reasonably steady conditions observed on Apy. 1l and Apr. 12, the
total non-dimensional stress is approximately 1.9.

If G is the modulus of the reference velocity (equal to the absolute

ice speed if no geostrophic flow is present) we can define a drag coeffi-

cient:

%

C = T

D b

From our measurements

-~ -3
C 3.4 % 10
)
1f we accept this method of estimating drag as valid, an interesting
implication is that stress can be estimated from relatively simple measure-
ments. Yor instance, supposc the ocean is assumed still, i.e., geostrophic
currents are small compared to the ice-drift veleocity. Then the ice speed,

G, and direction can be measured by navigation; u, and the direction of

water stress can be estimated from the mean measurements made in an area
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of reasonably smooth ice at two locations in the log profile region, e.g.,
1 and 2 m. From these & can be determined and the stress calculated from

(11.1.1) with VR = Gsina.

::I:::: ! Vo
G

Alternatively, if a can be measured and u, and 2, estimated as above, UR
can be calculated from the geostrophic drag law and the lateral velocity
given by VR = URtana. This method would require more extensive confirma-~

tion of the downstream geostrophic drag law

UR/u*_ = -%(ln Ro, - A)

since clearly we do not expect 1ts homogeneous lateral counterpart

|~

=.B—
k

to hold. If this approach could be shown to work and the lateral coeffi-
cient, B, could be expressed empirically as, say, a function of the ridging
intensity, R, introdhceé by Arya (1974); then a geostrophic drag law might
be of considerable value. If, however, it is found that the density struc-
ture is not neutral except in isolated cases, obviously thg problem is
more complicated and becomes analogous to the atmospheric case where both
diabatic effects and surface topography neéd to be considered.

The approach to estimating the ovérall stress outlined in this section
is offered as a pracéical.alternative to the methods discussed in Chapter 7.
The assumptions on which it rests surely require more testing and hopefully

the 1975-76 AIDJEX experiment will provide such data.

=)
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11.2 Summary

The main features of this dissertation can be summarized as the follow-
ing:

(1) The so-called mixed layer was found to coincide closely with the
frictional boundary layer ohserved during maximum wind speeds and was very
nearly dynamically neutral. This was confirmed by direct measurements and
inferred from the dynramical properties of mean currents, Reynolds stresses
and current spectra.

(2) The best estimate of the friction veleccity, u,, was determined

%
from momentum flux mecasurements and consideration of the mean momencum equa-
tions. It agrecs reasonably well with the value calculated by assuming a
logarithmic mean profile to 4 m, even though the assumption is probably not
justified in terms of surface layer theory. Stress estimated using a
momentum-integral technique for the whole boundary layer gave a significantly
higher value.

(3) With the important exception of lateral velocity, the profiles of
mean current and Reynolds stresses, when non-dimensionalized by u, and u*/f,
agreed quite well with recent atmospheric PBI models.

(4) The surface roughness, Zgs Was found to be .18 cm from u, and the
mean velocity at 2 m (with k = .35). This implies a friction-velocity
constant of .05; i.c., u, = .05 U(2).

(5) Spectral analysis showed some evidence of an inertial subrange,
although the Reynolds number of the flow was considerably smaller than in

the atmosphere. Length scales associated with peaks in the weighted w-

spectra were used to derive a K (eddy viscosity) distribution from the
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relationship, K ~ u,2, that agrees reasonably well with Deardorff's (1°72)
distribution. Contrary to common assumption however, there was no simple
relationship between K and 2V/dz and vw., Again this was attributed to
inviscid topographic effects.,

{6) Secondary currents at various levels in the pycnocline were
observed and related to baroclinicity there. These were described heuris-
tigally by a spin-up argument and it was shown that such an arguaent could
account for the increased salinity of the mixed layer observed as the storm
developed.

(7) Finally, by assuming neutrally buoyant conditions and that the
depth of the boundary layer was determined by the turbilent structure, the
departure of the lateral velocity profile from what would be expected in
the ideal horizontally homogenéous case was used to estimate the contribu-
tion of form drag'to total drag. Form drag was found to be approximately

the same (90%) as the skin friction drag and thus led to a total drag

coefficient of 3.4 x 10-3.
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APPENDIX A

Velocity Conversion

Extensive calibrations of the meters used during the 1972 projects
were done at Harris Hydraulics Lab, University of Washington, in Feb.-
Mar,, 1971. Those calibrations were best fit by straight-line segments

described by the following equation:

1.82f + 1.3 8<f<5
u = { 1.86f + 1.1 5<f <30
2,05¢ = 4.7 £ > 30

where f equals 4 divided by the rotation period of a meter headon to the
flow.
Response of the meters to angle of attack (i.e., the angle the meter
makes with the streamline) can be described by the following:
f = fmG(cos 8)
where f 1is the frequency to be used in the calibration equation, fm is the

measured frequency and 6 is the angle of attack (Smith, 1973).

1 cosb > .94
G(cos 8) = 1.29(cos 8) ~ .21 .84 < cos 8 < ,91
91 cos 6 < .87

Given a triplet oviented arbitrarily Lo the flow, correction for angle
of attack involves an iteration scheme wherein first an uncorrected stream-
line is established, angles from the streamline are calculated for each
component, the components are corrected for angle of attack, a new stream-

line is established and the process repeated until the desired accuracy is
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achieved. This procedure is quite time consuming, however, and should be
simplified wherever kaowledge of the flow allows it to be.

In our case we knew that the v and v components were at approximately
30° and 60° respectively to horizontal and that the strealine would always
be nearly horizontal. Moreover, when turbulence measurements were made the
masts were oriented so the u and v were nearly equal. Thus it could be
said with reasonable certainty that the angles of attack of u and W were
always greater than 30°, In the simplified scheme actually used for velo-

city conversion, the following procedure was used:

uH/vm b (fu/cos 30 )/fv

Let B = (fu)m/(fv)m, B 2ucos 30°/v

_(fv)m B < .31 = tan 20° cos 30

.’1 (fv)m B > .49 = tan 30° cos 30°

In between fv varies linearly with B8, i.e., fv = (1,27 - .56 B) fvm' Al-
though this is a compromise between computing time and accuracy it is con-
sidered to be at least as accurate as the more basic supposition of current
meter response to angle of attack.

The final step in velocity conversion was to smooth the step-functions
resulting from redundant data on the slower-turning meters linearly. It
was supposed that this would more closely approximate the true velocity
field and might affect the calculated turbulent stresses. In practice it
was found to have little éffect except at very low velocities, for which

Reynolds stress calculations were questionable anyway.,
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APPENDIX B

Vector and Tensor Rotation

In order to rotate the mean flow vector and Reynolds stress tensor
into the co-ordinate system used in Chapter 8 from the experimental frame
of reference described in Chapter 2, a cosine matrix is calculated from
the conditions that the mean vertical velocity at each triplet is zero
over the averaging time and that the surface stréss is aligned with the
mean flow at 2 m. Thus we can break the complete rotation.into two steps.

First we rotate the measurement reference frame about the horizontal

. m -
(ym) axis so that u;' = a, ' u., w'=0

i3 3

I Yo
, 0 = tan (wm/um)

Win
) B for each triplet.
(q’

Next we rotate the primed system about its vertical (z') axis so that

the average v- component at 2 m is zero:

Von A

" a = tan Q£1—~0
— u'(2)
w

/ V=
i{

al
These two operations can be combined into one rotation matrix so that

any instantancous vector is given by

BV A te Awk VWY

N ovwae edan
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2 and

d

3 cosa cosd sina cosa sinb
; A = ~sino cos6 cosa -~sina sin@
3 ~-siné 0 cos

;

>

E 1f Rij(m) is the Reynolds stress component in the measurement frame
4 of reference,

e

4 - (m)

3 Ris = 2ue®iifue

or in matrix notation:

[R]

(A1 (R} [a)T
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APPENDIX C

Calculation of Spectra

The Fourier transform of a continuous function of time, Xi(t), is

usually defined by

-]

A(f) = f xi(t) e_zniftdt

=00

If XC(t) is sampled at discrete intervals of time, 4it, for N samples,

then X(3) = Xi(jAt), j=0,1, «..., N-1; and the discrete Fourier transform

(DFT) is
N-1
A(naf) = At T X(j) e
j=0

~2nknAfjAt

If the basic frequency interval is chosen Af = 1/NAt = 1, the DFT is given

by

N-1

L X(je
j=0

-2 $ /N
A(n) = '% minj/N

Adopting the notation of Cooley, et al. (1969), the DI¥T pair is

N-1
A = 3oz x(u™
§=0
N-1 (c-1)
XG) = % A(u)WNnj
i=0
_2ni/N
WN = e

From the properties of WN it follows that A(n) and X(j) are cyclically
redupdant, i.e., A(n) = A(n+kN) = A(-n), X(3) = X(F+kN) = X(~j). Under
these conditions the DFT has many casily proved properties analogous to
those for continuous Fourier transform pairs. A few of these properties

are listed here without proof; for straightforward derivations see Cooley,
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et al. (1969).
Let X(3) <> A(n) be a DFT pair (the symbol ++ represents the trans-
form operations (C-1))., Also let X(j) be real. Then A(-n) = A*(n) where

*
A (n) is the complex conjugate of A(n) and

e,

N-1 5
I X(k)X(k+j) <> A(-n)A(u) = |A(n)] (c-2)
k=0

Z(|=

The left-hand side of (C-2) can be identified as the discretez counter-
part of the autocovariance function for the series Xc(t). Thus the DFT of
the autocovariance function is the absolute square of the DFT of the origi-
nal series, allowing us to estimate the spectrum by taking the absolute
square of the transform of the velocity series, rather than calculating
and transforming the autocovariance function,

‘Parseval's Theorem follows directly from (C-2) by setting j = O:

N-1 N-1
PR |2 = 5 a2
k=0 n=0

Z =

If X(k) 1s a turbulent velocity component, the mean square of the velocity
fluctuations is equal to the sum of the spectral components. Clearly this
is twice the turbulent kinetic energy in that component divided by the
density.

Finally, 1if X(j) is even (and real), then A(n) is real and even.
Since the autocovariance function is real and even, we can represent its
transform on the positive wave-number axis as the one-sided power spectrum

A°(n) = 2A(n).




