ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES FOR COMPUTER AIDE==ETC(U)

SEP 77 C RIEGER, H SAMET» J ROSENBERG NOOOI#—?G-C-OQT?

UNCLASSIFIED TR=595
END

DATE
'II.HED

{W 3
~" AD=AONT 179 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 9/2 \

o

s 12

ol £

Lo fide
122

L

.

s -
=
22 flis pre

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAY OF STANDARDS-1963-1

W

ADAO47179

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

UNIVERSITY OF MARYLAND
: COLLEGE PARK, MARYLAND S
20742

AD No.——
000 FiLE copY

T—————

TR~595 September 1977

Artificial Intelligence Programming Languages
for Computer Aided Manufacturing

Chuck Rieger, Hanan Samet, Jonathan Rosenberg
Department of Computer Science
University of Maryland ‘:)
College Park, Maryland 20742

NOV

C

r':‘.‘r

D 0
i?_u—m -“;-‘
08 -

T .3
28 197]

o Do

ABSTRACT: Eight Artificial Intelligence programming languages
(SAIL, LISP, MICROPLANNER, CONNIVER, MLISP, POP-2, AL and QLISP)
are presented and surveyed, with examples of their use in an
automated shop environment. Control structures are compared, and
distinctive features of each language are highlighted. A simple
programming task is used to illustrate programs in SAIL, LISP,
MICROPLANNER and CONNIVER. The report assumes reader knowledge

of programming concepts, but not necessarily of the languages
surveyed.

This report was funded by the National Bureau of Standards,
and by the Office of Naval Research.

e A ARKT R

con ts

l. Introduction

2. SAIL

2.1. Introduction

.2. Associative Data Base

. Data Management Facility

. Control Structures

. System Building Capabilities
.6. Standardization

3. The LISP Family of Languages

3.1. LISP
3.1.1. LISP Data Structure
3.1.2. Property Lists
3.1.3. Reyresentative LISP Data Structure Manipulating Functiong
3.1.3.1. (MEMBER X Y)
3.1.3.2. (ASSOC X ¥)

3.1.3.4. (APPEND X Y)
LISP Data Types
LISP Functions
The PROG Feature
LISP Macros
Variable Scoping
LISP 1I/0
. Garbage Collectfon
. LISP as a Self-Contained System
LANNER :
The MICROPLANNER Database
MICROPLANNER Theorems
Heuristic Guidance of Theorem Applicaticn
Searching and Backup in MP
Other Representative MP Capabilities
S)ords Do 1l iTHFIND <mode> <variables> <skel> <body:)
3.2.5.2. (TIMESSAGE <variables> <pattern> <bod:>)
3. CONNIVER

3.
3.3.1. Frames, Au~-revoir and Adieu
3.4, Efficiency of the LISP Language Famil;
3.5. Standardization of the LISP Language Family

WNES WA

NN

e o o s o 0 0

® o pte * @
NN O ~e e\ OO ~ 3NN

L X Wbl bwww
BN A NI NI () 1 1ot ot st ot ot ot ot
o o 0o 2 Do o o+ s o @

i duaroaiaasd

4. Related Languages

] 4.1. AL
; 4.2, MLISP
: 4.3. POP-2

5. Examples
E) " S.1. Introduction
| IL

.2.1. Sample Program
.2é2. Commentary

S

3.1. Sample Program
.2. Commentar
LANNER (HICROPLXNNER)
4.1, Sample Program
4.2. Commentary
NNIVER

.5.1. Sample Program
.5.2. Commentary

y : 5.3.

o o p=t

w
~N

5.&.

(CAC L VIV T o U‘\lﬂ:

I 5.5.

8

wUn

6. Recommendations

7. Bibliography
8. Summary Chart

>

gue B SR Y

1. lpteogygction
This report aescribes some recently developec Artificial
Intelligence proyrammin languajes in the context of a computer-aided
manufacturing environment. The fanguages surveyed are SAIL, LISF,
MICROPLANNER, CONNIVER, MLISP, POP-2, AL, and GLISPe These lanaUéges
are distinct from Languages previously used in _ computer-aigded
manufacturing envirunments ELeslie?Z] in that they provide capabilitics
for the development. of high-Level symbolic planning and supervisory
control in «4dditfon to %he simple numerical control of machine tool:.
e paper dncludes (1) surveys and comparisons of the distinctive
features of these Llanguages as they might be used in a

]

computer-aytomateu manufacturin environment, (2) a sample automatec
»anufacturi?g tasky, and how it migjht be expressed as a program in each
Language, %) “discussions of fhe stancardization status of each
language, and (4) cunclusions with emphasis on the tzoes of features
which ar: most desirable ano applicable to the automated-sho;
environment.

2.1« Ingrogdystion

SAIL has d{ts origins in a merger of LEAP tssloman693 an
associative Llanguaye, and a version of ALGOL 60 [Nauré0le. Theretore,
unlike most of the other artificial intellisence languages, it s nct
LISP-baseas Insteawu, it is a _general purpose compiled languace with en
extensive run-time library of functions. As befits its ALGCL origins,
SAIL has block structure and explicitly typed statically scorec
variablese The data types available include INTEéER, REAL, STRINGs cf
arbitrary lgngthl,structure, go1nter, LIST, SET, 1TEM, and aggregates
of the previous (1eeey ARRAYS).

some of the more important features of SAIL are discussec
separately below. These include the associative data base facilit‘,
the capability for usage of SAIL as a host Llanguage 1in a CODASYL
CCODASYL71]) data tase management system, the control structures, anc
the system building facilitiess Finally, a summary is presented of
current standardizatiun efforts.

2620 Associative Data pase

SAIL contains dn associative data base facility known as LEaP
which s wused for symbolic computaticns This enables the storaye and
retrieval of informstion pased on partial specification of the date.
Associative dJata s stored 1in the form of associations which cre
ordered three-tuples cf ITEMs, denoted as TRIPLES. Examples of TRIPLES
are:

FASTEN XOR MAIL EQV HANMMER;
FASTEN XOR SCREWwW EQV SCRE#SRIVER;
FASTEN XOKR BOLT EQV PLIER;

?ssociations may be tonceptualizec as representing a relation of the
orm

Attrioute XOR Object EQV Value
or Attrioute (Ubject) = Value
Most programming Llanguages (eegsey LISP) provide the following

associative~like mechanism:

Given: Attricute,Object
Find: Value

However, SAIL enaoles the programmer to specify any of the components
of the _associationy, and then have the LEAP interpreter search the
associative store for all triples which have the same items in the
specified positionse. For examigle, the following may be wusea tc-
retrieve oll items that can fasten a nail:

FASTEN XOR MNAIL

An ITEF is a constant and is similar to a LISP atom. Items have
names anac may alsoc pe typed so that data can be associateoc with them.
An item may be declsred, or createc duriny, execution from a storage
pool of jtems by use of the function NEwe Ffor example:

o

T T

-

REAL ITEM ViSE;

declares VISE to ve an item which may have a datum of type recl
associated with ite. _The datum associated with an item is obtaineac ty
use of the functiun DATUM. Thus, DATUM(VISE) might be interpreted as

the capacity of the vise.

.In order to deal with items, the wuser has the capability of
storing them in wvariables (ITEMVARs), SETs, LISTs, and associations.
The distinction between SETs and LISTs Ys that an explicit orcer is
associatec with ‘the latter, whereas there is no explicit order
associateo with the former. 1In addition, an item may occur more than

once in a Liste.

Associations zre ordered three-tuples of items and may themselves
be considered as items and therefore participate in other associations.
Triples are added to the associative store by use of a VAKE statement
and erasea from the associative store by use of an ERASE statement.
for example, the following code could be used to detach assemtly 1 frcnm

assemuly 2 and attach it to assemply 3:
ERASE ATTACHELU XOR ASSEMBLY1 EQV ASSEMBLYZ;
MAKE ATTACHED XOR ASSEMBLY1 EQV ASSEMELYZ;

The motivation for using an associative store is a flexible search
and retrieval mechanisme Binding Booleans and Foreach statements are
twoc methods of accomplishing these goalse

The binding Boolean expression searches the associative store fcr
a specified_triple and returns TRUE if the triple is found ang FALLL
otherwises. The aim of the search is g? fino an association which meets
the constraints imposed by ¢the specifiea triplee. I1f some of the
components of the triple are unknown (such components are precedec Ly
the special item BIND), then a successful search will result in the
binding of the designated component. For exaacle:

IF FASTEN XOk BIND OBJECT EGV PLIER THEN PUT OBJECT IN PLIER!SET;

In this case the store is searchec for an object that can be fasteneg
by a PLIER and if such an object is found, it 1s placed in_the sct
PLIER!SET. Note the wuse of the ditem variable OBJECT in the
gssogiation. A successful search will result in this variable beiny
ounage.

The FOREACH statement is the heart of LEAP., It is similar to the
FOR statement of ALGOL in that the body of the statement is executed
once for each binoing of the control variable. For example:

FOREACH X | PART XOR B747 EQV X AND DATUM(X) < 3
DO PUT X IN B747!'ORDER!SET;

In this casey, assuminy that the datum associated with each part denotes
quant1t¥ @t hand, the associative store is searched for all parts of a
B747 ot which there are less than three on hand. These parts are
placea in the set 3747!0RDER!SET,

2.3. Date Management Facilijty

like other gartificial dJntelligence Languages, SAIL has the
ity o being used with an existing data base management system
LDEC]) to handle large data bases stored on external storage.
rface exists [(Samet76] which allows SAIL to be used as the oata
tion Languaye in a CODASYL based data base management sSystem.

relatively unique in this respect in that COBOL [COBOL7?74] has

ME—

almost veen exclusively used as the data manjpulatjon language (DFL) of
such systems. This situation is not surprisinc since examination of
the Jata _description fac1l1t¥ of the CCDASYL report reveals a very
strony similarity to the data division of CORBROL. Nevertheless, there
have oeen some attempts to use FORTRAN ([Stacey74], [RAPIDATAZ).
1deall¥, a data manipulation language should include the followiny
features. irsty, a full procedure capacility which allows carameter
passing, aoynamic stcrage allocation, anc recursion. Secondsy FrocesSsing
of Boolean requests should not be difficult. 1n a CCBOL-baseg systen
this task is rather cumbersome as gointed out ty [Parsons?74i, 1In orcer
to avoic currencg proolems raised by partial satisfaction of Booleaun
reguests (the acktracking problem [Taylor?b)), the user must build
collections of pointers to relatea records. Third, there shoulc

be a
capability for u1lo1ng an in-core data base¢ so that operations such a5
set UNION and set INTERSECTION can be performec without the overheaa of
accessing extendeu storage more than once for any record.

SAIL has @ mechanismy LEAP, for building associative dgata oasese.
Currently, this only works for internal memory due to implementaticn
decisions. SAIL also has @ recoroc structure capability which enables
the wuser to builc an in-core uata base. In a COEOL-based data tase
management system, whenever the user obtains an instance of a recorg
type from the data base (i.e.y he locates it via a F1%D ano fetches it
via 3 GeET), he has no convenient way of keeping it in temporary memory
while obtaining another instance of this record type. Cf course, hLe
can allocate temporery storage for the various fields; however, th1s
becomes rather wunwielay especially uhen he wishes to keep track ct
more than two instances o% a record ty Alternatively, instances c¢f
certain record typres can be refetc ed from the cata base. 1In fact,
this is the strategy that is generally followeds However, the cost is
srohibitive.

orietly, the SAIL interface provides a SAIL record structure
declaration for each record type that has teen defined in the data Lase
management systeme Primitives exist for the creation anc mogdificaticn
of such recordse The dynamic storaye allocation cagability of SAIL
enables the creation of several instances of each recorc type each of
which s identified by an entity known oS 3 recora pointer.

As an example of the use of ~4Ji. as 3 host language in a data base

msnajement system, consider the " ,ilowing progyram fragment. The task
is to traverse a set named *“'"'IFQ owned by a HA“EHOUSE record ano
extract an integer cata item kr:. .5 as PARTNUM from each PART record
which is a member of the set. {2 ezact instance of the set occurrence
is igentified by the owner recrrdy, WAREHOUSE, having the wvalue
ELECTRICAL for the data item IuDUSTRY. Since SAIL "has a data
structuring facility (known as RECORD!CLASS anc similar to o FL/1
[Seech70] structure) we define a data structure known as LISTX ano a
function to add items _to the front of a LISTX structure. cata
structure LISTX hes two fields - ELEMENT which is of type GER and
NEXT which is of type RECORD'!'POINTER (and pcints to another 1nstance Gt
the LISTXx data structure)les The function ADDTOLIST has two arguments =
3 pointer to the nead of an instance of LISTX and the integer to e
aaded tc this instance.,
RECORD YCLASS LISTXCINTEGER ELEMENT;
RECCANIPOINTER (LISTX) NEXT);
PXOCEDURE AUDTOLIST(yFEvy~"_wgE RECORDYPOINTER(LISTX) MEAD;
YhToLsR VAL)D;
BEGIN

RECORD!POINTER «LISTY., TEMP,

TEMP := NEWIELEMOINT(LISTX);

LISTX:ELEMENTLTEMP] := VAL;

LISTX :NEXTOTEMP] := HEAL;

HEAD := TEMP;

END;

The COEOL/DML ana SAIL encodings are given below. The critical

{14

difference is the step "Add PARTNUM in PART to result
283881ately obvious how the concegt of a List would be

List
imp

COBOL Proyram:
MOVE “ELECTRICAL” TO INDUSTRY IN WAREHOUSE.
FIND #AREHOUSE RECORD.
IF SUPPLIER SET EMPTY 60 TO NONE!SUPPLIED.
NEXT: FIND NEXT PART RECORD OF SUPPLIER SET.
IF ERROR~-STATUS = 0307 GO TO ALL'FOUND.
GET PART. :
Aadd PARTNUM in PART to result Lliste.
' 60 TO NEXT.
ALL 'FOUND :
SAIL Program:
INDUSTRY := “ELECTRICAL™"™;
FIND'CALCC(WAREHOUSE);
IF EHPTY!SET(SUPPLIE&) GO TO NONE!SUPPLIED;
WHILE TRUE DO BEGIN
FIND!NEXT(PART,SUPPL&ER)'
IF Enkon!svarus = 0307 TREN DONE;
GETC(PART);
engOLIST(HEAD,PAﬁTNUM);
2

2e46e Control Structures

In aodition to the wususal control str
ALSOL~Llike Llanguages (e.g., FOR loops, WHIL

; ctures associated with
recursive proceduresy etce)y SAIL has capabili

h

L

loops, case statements
jes to_ enable paragle[
In SAILs a process is o
e main procedure. Thus
Ye Note that the main

emc

processinyy backtracking, and coroutines.
procedure that may be run indepencently of t
several jrocesses may uve run concurrent
procedure is also a process.,

A process is created with a SPROUT statement as follows:
SPROUT (<i tem>,<procedure call>,<options>)

where <item> names the process for future reference, <procedure call>
indicates what the process is to do, and <options> is used to specify
attributes of the GSPROUTed and current processs Unless otherwise
stipulated (in <options>), a SPROUTed process begins to run as soon &s
it is SPROUTed and in para[lel with the SPROUTing process.,

Similarly, there exist primitives which result in the suspension
of a processy, the resumption of a processy and in the blocking of a
process until a number of other processes have terminated. These tasks
are accomplished vy the SUSPEND, RESUME, and JOIN primitives
respectively.

SUSPEND and RESUME have as their arguments single items while JOIN
has a set of items as its argument. These items are the names that
have been set up for the process by an appropriate SPROUT command,

For example, @ procedure to tighten a bolt may be defined as
follows:

ITEM P1,PZ;

SPRGUT(P1,GRASP(NAND1,SCREUDRIVER));

SPROUT (P2 yGRASP (HANDC,BOLT));

.

JOINC({P1,P2))

TURNCHAND 1,CL 6cxu155);
.
*

.Since SAIL runs on a s1n le processor computer system, true
multiprocessing is not possib Instead, the SAIL runtime systenm
contains a scheduler which decvdes uhvch process is to run and for hcw
longe The programmer makes use of the <options> field of the SPROULT
statement to specif, information which the scheduler uses to determine
the next fprocess to be rune. Such information includes time guantum
sizes, griority, whether or not to immediately run the SPROUTed
process, €tce

roces

e s may resul b1nd1n§ of ITEMVARS by wuse of <
WATCHINu PRUCEDUR: which is basically a Eoolean procedure. When one of
the rparameters is &an unbound FOREACH itemvar, then upon success the
parameter will be tcund « The matching procedure is actually SPROUTec
as a coroutine process and SUCCEED and FAIL are variants of KESUMZ
which return values of TRUE or FALSE respectivelye 1In addition, FALL
causes the process to terminate whereas when the matchiny procedure 1is
callea bty the surrouncing FCREACH via backupy then the orocedure 1is

resumed where it left oft on the Last SUCCFEED,.

For e¢xample, consider a box <contsining a numter of difterent
fasteners (nails, regular screws, bolts, nuts, tacks, etcs). The goeal
is to obtain °h1l[1ps screwse This can be achieved bty the following
MATCHINo PRCCEDURE which returns a different Fhillips screw each time
it is invoked.

pAé%:INS PRGCEDURE GET'FASTENER (?2ITEMVAR FASTENER,F'TYPE);
SE
FOREACH FASTENER | FASTENER IN 50X AND
TYPE XOR FASTENER EQV F!'TYPE

DO SUCCEED;

~.|—

FA1
END

gotedthat FASTENER 4s a FOREACH ITEMVAR which wupon success will e
ounae.

cacktracking is supported by variables of tgpe CONTEXT. However,
the programmer must sgecify the roints to which backup is to occur (for
example, recall SUCCEED). State saving and restoring is achieveo ty
use of CONTEXT variables which act as gpointers to storage areas of
undefined <capacity in which are stored the entities to be saved and
restored. Actual state saving ana restoring is accomplishec by use <cf
the primitives REMEMBER and RESTORE.

Processes may communicate with each other by use of the SAIL event
mechanisme This 1s a_ message processing system which enables the
programmer to classify the messages and to wait for certain events to
occur. Events occur via the CAUSE construct which has as its arguments
the event type, tnhe actual notice, and instructions with respect to the
disposition of the event. Similarly, there is a construct known as
INTERROGATE which specifies a set of event types and instructions with

respect to the disposition of the event notice associatea with the

desijnatec event types. A variant of this facility has been usec

E;ttns1v$% in the implementation of the Stanford Hand Eye Project
elaman

i

T R ——

i e o

— —

2¢5. System 3uilgipa Capabilities
SAIL includes nan{ features which are designed to aid in systen
a

buildinge. Assembly nguage statements ma oe interspersed with
regular SAIL statements by use of the START!CODE and GUICK'COCE
constructs. A numper of different files which are to be used with the

program can be specified via use of REQUIRE statements,
The statements:

REQUIRE “TOOLS"™ LOAD'MODUL
LIBR

REQUIRE "CAMLIBL1,32" ﬁv

will cause SAIL to inform the loader that the file TOOLS.REL must ce
loadeus In addition, the file CAMLIE on disk area [1,3] serves as o
Library and is searched for needed routines.

The statement:

REQUIRE "HEADER.SAI'™ SOURCE!'FILE;

will cause the compiler to save the state of the current ingut ile,
and scan HEADER.SAI for program text, khen HEADER.SAIl is exhaustgc.
scann1n the original file resumes at a point immediately following
the SUARE statement, This feature s articularly wuseful when
deal1ng with Libraries since in this case the REQUIREd file can contain
EXTERNAL oeclarat ions thereby freeing the application procrammer from
such work and possiole errors.

A rather extensive conditional compilation capability is

associatea with SAIL. This enables the develooment of large programs
which can be parameterized to suit a particular application without
compiling wunnecessary code and therebg wasting memory for progrim
segments which are never used. This capability is used to enahance &
macro tfacility to include compile-time type determination; for loogps
while statements, and case _statements at compile-time; generat1on o
unique symbols, anc recursive macros. for example:

DEFINE GRASP(SIZE) = L[IFCR SIZE > 1 THENC VISE
ELSES PLIERS
ENDC I,
results in the definition of a macro named GRASP having one formel
parameter, SIZE. The result is the name of a tool that is appropriate
for the s1ze of the item that is to be grasped - i.e.y, a vise in case
size is greater than 1 (assuming size is measured in centimeters, etc.)
and pliers otherwise. For example:
L1 := oRASP(10.0);
L2 := GRASP(0.5);
will result in the following statements:
TOOLY == VISE;
Tool2 := PLIERS;

Note that the choice is made at compile-time and thus the grogrammer
need not be concerned with the ava1lable grasp1n mechanisms Thus the
program compilation step can be used to he writing of the
program. The example illustrates the 1mportance of such a feature when
certain tashs can be achieved by similar, yet not identical, means.

SAIL also provides an excellent interface with the operating

systeme This enables its use for real-time applications such as
control of external devices. 1In fact interrupts can be handled ano
the user has at his disposal (of the 1/0 capabilities that an
assembly Language programmer has. Th1s enables the development of

programs ranging from scanners to mechanical arm contr
addition to compatibility with assembly language Oeouggers.
high-level breakpoint package known as bBAIL [Reiser?75

h
]
F
f that pro;ect
c
F
F

2.6, Standardizagion
Currentll, SAIL nas onll been implemented on the PDP-10.
under both the TENEX [BBNEXEC] ano TOPS=-1C [TOPS10) operating
There is an effort underway at SUMEX to develor a lancuage
SAIL known as MAINSAIL [wilcox761]. The goal o
capture the features that make SAIL an attractive
particular the ease of interaction with the oper
develop a lanauage that is capable of being run on large
machines, The "orientation of the prcject is tow
The lLanguage is consicerably different than SAIL and existing
programs will have to be modified 1n order to
An extensive run_ time l1brary is bteing providea as
structuring facilitye. is still uncertai
data base capabil ity of SAIL (ieeey LEAP) will be incorpcrated
MAINSAI
!

4

i

3

E

5

F

|

'P

8

systems.

language
tinc system)

X ards m1n1-compute
be capable of comp1l

n whether the assoc1at

Sy, ¥ %

3. 1Ihe LJSP Eamily of Lapgyages

3.1, LISP

LISP ([McCarthy60], (Levin653, [Weissman67], [Siklossy76]), a List
processin language developed by John HcCarthK'at MIT in the late 5C7s,
is an 1mp‘enen ation of parts of Alonzo Church”s work [Churché41] in the
lambda calculus. McCarthy“s intention was to recast the elegarcr of
recursive function theory as a theor{ of computaticne Thus, the Tirst
implementations of LISP relied exclusivel upon recursion as the

computational parauvio,m (i.e., no iteration), which, although elegant,
resulted in a first version of LISP which was not competitive with
FORTRAN as a practical programming tool. However, LISP®s character has
changed considerably, so that today LISP is_an extremel powerful aho
general gpurpose proyramming Llanguage which nevertheless retains its
original elegance.

The most interesting features of LISP cre:
(1) The Llanyuage is practically devoid of syntax; atlt

constructions in LISP fall into two categories: atoms and
compositions of atomsSe.

(2> Program ana data are interchangeable since they_ are
represented 1in the same format. iherefore, in LISP it is
possiole for one function to construct another tunction as
data, then execute it by ingicating to the LISP system to
regard it as code, alternativety, an existing function”s
code may be examined, modified or augmented by another
function at run-time. In fact, a function is _ canable of
self-modification if appropriate care is exercized.

(3) Memory allocation ana management are. automatic and

transparent to the user, except where the user explicitly
desires to influence them. With the exception of ar-ays,
there are no space declarations to be made, freeing the
programmer from the details of space allocation, _and
generally altowing for the unlimited growth of any given

ata structure. (For the most part, LISP data structures
have no size or complexity constraintse.) Used memory which
is no Llonger involved 1in the computation 1is recycled
1 automatically by a garbaye collector e]thtr on demand from
4 the user at specified points or automatically.

(4) LISP is an interpreted languaee. The system proper s a
unction of one argument, (EVAL X), such that calling EVAL
ith any LISP data structure as its argument causes that
gument to be reyarded as coge and executed. However, most
SP systems include a compiler which will produce
and-alone machine code for interpreted functions.
pically, compjlation provides an order of magnituae
eedup which makes LISP competitive with other compiled
nguages, or even with well-coded assembly language. Since
terpreted and compiled code may be intermixed, it is
ssiole to retain the flexibility and rower of the
erpreter, while obtaininy the speed requirea for
duction applications,

O = =A™ O K ~»

{ (5) lso accommodating iterative
ftature. both recursion and
i

tustrated 1in subsequent

a
orithms via a so-called PROG
erat ive psrogramming are

ekt 9303 0TN Ay =

t
o
SP remains recursive, white
g

@™ O -

(6) Because of the technique LISP uses in storing local and
lobal variaoles, some very powerful context-switching can
¢ carriea out, providing a fast way to enter and exit

hypothetical pltanning environments and to cause the

P r

behavior of a program ¢to vary as a function of its
environmental context.

Je1e1s LISP Data Structure

LI1SP’s data structure, called the S-expression, 1is simple, yet
extraord1nar1ly flexibley, proviaing a substrate upcn which a programmer
may oesign his own complex data structures. An S-expression is either
an “atom"’ or a "“"CONS node". An atom can be regarded as either a
variaole, a constent (a passive symbol), or both. There are no
declarations in L1SP; new atoms are simply admitted to the system asS
they are scanneo at the input level, and atoms with the same name are
guaranteec bty the system to be wunique (i.e.y they have the sane
internal pointer, or address).,

The other type of S-expression, the CONS node, ﬁrovides a means of
structuring atoms and other CON§ nodes into ierarchical data
structures.,_ A CONS node is ordinarily implementes as a single computer
word (say. 26 bits Llong) which contains a left pointer, calleo its CAk,
and a ?nt pointer, called its CDR, CONS nodes are created dynamically
via the unction (CUN> X Y), where X ano Y are any other S-expressicns,
or passively (as gata constants) via the ccnstruction (X.Y)., CCNS nodes
can ve composed to form arbitrarily compglex hierarchies, the bottommost
elements of which a4are wusually atoms (i.e.y pointers to atomic
S—-expressions) .

To illustratey suppose we wish to represent a particuler tooly soy
a screworivery in & LISP data structure. we first decide wupon a_ nane
for it, say, SCREuDRIVER -1y and what characteristics of it we wish to
encode, Let us suppose the characteristics are: type is Phillips, colour
is yellowy shaft length 4s 110 centimeters, and_ head size 11s Q.2
centimeter. There are many ways to encode this in LISP; the external
representation of the one we adopt here is:

((NAME SCREWDRIVER-1)
(TOOL-TYPE SCREWDRIVER)
(STYLE PHILLIPS)
(SHAFT-LENGTH 10 C%)
(COLOR-CODING_YELLOW)
(HEAD-SIZE 0.2 CM))

Here, all symbols such as NAME, YELLOW, etc. are LISP atoms, (So too
are the numdbers, however numbers are not entirely equivalent with
symbolic atoms.) The gart1cu ar hierarchy we have adopted is a Llist of
lists, where each sub-list consists of an initial atom describing that
sub-l1st s role in the structure, and a Llist of the informaticn
associatea with that role in the descript1on.

This structure would be graphically represented as follows:

L X i o= L Ty - ot L Bl
R e Y T e B I Ee e Y o E >fefaforecnen >|*1/]
qi--q QI--Q P ot -t L ot g]
¢ —— - Pt ==t oot e L el ot m——

Il =>)=)/7] (ele)=>=1/]) Je)e|=>|=)/] Ix)e|=>|«1/]

Oi--o L B LK Oi--o Pocat tooay LT X] tooaed b=t

NAME l TOOL-TYPE STYLE PHILLIPS COLOR-!ODING
SCREWDRIVEK=1 SCREWDRIVER R R YELLOW

PRy dom=t [Y =t bt ot

jele)=>|a)laj=d|a|/] [x)a|=D|s|n|=>]|=]/]
bomed bomed I--+ tmomd oi--o +i--+
SHAFT-LENGTH IO o] | 0.3 (o]

HEAD=SIZE

and could be constructed passively (as a fully constant structure) via
@ quoted S—expression:

“((NAME SCREWDRIVER=1) (TOOL-TYPE SCREWDRIVER) sse)

or dynamically via CONS:

(CONS “NAME (CONS “SCREWDRIVER=1 NIL))

(CON>
(CONS “TOOL-TYPE (CONS “SCREWDRIVER NIL))
(CONS

; “HEAD=SIZE (CONS 0.3 (CONS “CM NIL)))

Cito i ee Ml cieai i Lo

; Since it would be a rather harrowing experience to construct very large
‘ S-expressions dynamically in this fashion, LISP provides a spectrum of
higher-Llevel functions for constructini modifying ano accessing
S-expressions. Some highlights of these wi [be covered briefly in a
subsequent section. For our example, a more concise expression of cooe
which would build this structure dynamically woulgd be:

(LIST (LIST “NAME “SCREWDRIVER-1)
(CIST “TGOL-TYPE “SCREWDRIVER)
. (LIST “HEAD-SIZE 0.3 “CM)

Presunabl{. havin? defined this tool, we would want to record it
as one availadble tool in a large supply o¥ tools.. Againy there would be
numerous methods of doing this. One way would simply be to maintain a
3lobal list of all kmown tools in the system, and to add this entire
escription as a new tool on this List:

REWDRIVER=-1) (
ONS NEW-TOOL M

SETQ NEW=-TOOL “C(NAME SC REWDRIVER) +e4))
SETQ MASTER-TOOL-LIST (C IST)

T
~~

(SETQ is one of LISP”S assignment statements.) Alternatively,
| wish to put only the name of the screwdriver on the master t
and associate all the remaining information with property DE
t on SCREWDRIVER-1"s yroperty 1ist:
k
4

11

T

———

(PUT
(SETQ

A
XA
t10
- =g
O«
oom
rmx

!
rFon=
-y

T
R

m
~OWn
OO
O

(N

2T ¢cM)))
ER~-TOOL=-L1IST))

b T Yol
(2T P J
—SOm
mToX
aro
[}

(7.3 - BN
-~mo

1
v
N

P
3
)

ON
se e (HEAD-S¥ZE Coe
SCREWDRIVER~1 MAST

Jelecle P"Q c

et
 {ad

Lists
om may have a property list (ouilt up from CONS nodes).
e preperty list allows the attachment of an arbitrary

ibute-value pairs to the atom, therebty serviny to
describe racxer1st1cs of the real~-world entity represented Lty
the atome is a powerful feature for any rOQrammin? lan uage,
since it allous “"micro-gescriptions®” of atoms which ordinarily {(nct
be seer by the processes that manipulate the hierarchical structures in
which the atom participates. These m1crodescr1pt1ons can be maintained
and accessed by the functions PUT, GET and REMPRUGP in case more cetail
atout an atom is aesired.

Any
Conceptu
number

Terrerrp
Mﬂ!ﬁ:’ﬂ ~

E
S
y
e

- e U (0

LI
all
of t

the ¢
h

-

Properties are attached to an atom via the function (PUT <atcm>
<attribute> <value>), looked wup via (CET <atom> <attribute>), anc
removed via (REMPKOP <atom> <attr1bute>). e have seen one way tc
associate -the screwuriver information wijth the atom SCREWDRIVER-1 usiny
property Llists. Another, more ccnvenient way would be to split apart
all the vérious attritutes of this atom, meking each a different entry
on the property tist:

(PuT :SCREHDRIVER-1 :TOOL-T!PE “SCREWDRIVEK)
(PUT “SCREwDRIVER-1 STYLE “PHILLIPS)
(PUT “SCREWDRIVER=1 “HEAD=SIZE “(C.> CM))
To deternine SCREWDRIVER-1°s heaag size, we would then write: (Ct7
SCREWOKIVER-1 HEAD=-SI2c)e If such an attritute of S REWDRIVER-1
exists, it will be located and returned.

tructure %anipulating Functions

3.1.3. Representative LISP Pata
defi ';ign and brief example of several of the
arc

we include here a de
more stancard, high-level
n

unctions thkat pertain to data structure
creatijony, modification a

3eTe3e1e (HE!EER Z !2

. 1f S-express on x is a member of S-ex
list)y return UE", otherwise, return "F
0

EXAMPLE: (MEM3ER SCREHDRIVER 1 MASTER-TO
the at (“true”) if
MAST:R TOOL-LIST. and a pointer
otherwisee.

sijon Y (assumed to be o
®

pointer tc
s on the
L ("false™)

12

TrST——

e

Tele302. (ASSQC X X2

Y is a list of Listse Y is scanned, comparing the first item of
each sublist to X until a match is found, or until Y is exhausted. In
case a match is founo, ASSOC returns the entire sublist whose first

item mbdtched X.

EXAMPLE: (A;;?C “HEAD=SIZE “((NAME SCREU

DRIVE) (HEAD-SIZE Ce3
4.} woulc return the sublist (HEAD SIZE De2 CM).

3e1¢3036s (SURST Xx Y 2)
Ay Y and 2 are arbitrary S-expressions. SUBST creates a new COLYy
of 2, where all occurrences of ¥ in Z are replaced with X se

EXAMPLE: (SUEST 0.2 0.3 '((NAHE SCREHDRIVtR-1) ee e (HEAD"SIZC. Co:
M)yl uould produce a new structure for our screwdriver,
1dent1cal in all respects to the or1§inal. except that its

head width would be D.2 instead of

re
it

3e1.3.4. (CAPREND X Y2

X anc Y are Llistse A new list is created which is the result of

appending Y onto the end of X.

EXAMPLE: (APPEND “((NAME SCREWDRIVER=1) (STYLE PHILLIPS)) “((COLOR-CODE
YELLOW) (HEAD=-SI1ZE De2 tM))) wsould (NANE
§C§Egg§§VER-1) (STYLE PHILLIPS) (COLOR-CODE YELLOH) (HEAD-SI(E
Ue

3elebe LJISP Data Iypes

In addition to atoms and CONS nodes, most LISP systems include the
following other data types:

1. integer numbers

¢+ real numbers

3. strings

) arra{s]

5 octal numbers (for bit-level manipulations)

Some versions of LISP (notably MACLISP [Moon74]) have highly developed
numerical and trigonometric facilities and accompan ing Opt1m1z1nh
co?gllers geared to the efficient generation of “number crunching
software,

3.1¢5« LISE Eupnctiens

A LISP "program” is a collection of functions. No function is
syntactically decl-red as the "main program" Functions are enerally
typeless (f.e.y Nno distinction such as integer”, “real" string”,
etce s nadc‘ However, each function may be declared so that 1ts
calling argunents are passed to it either evaluateg (as 2 most
programming Llanguages), or unevaluated. Except for this agistinction,
there is no need for function-related declarationse.

13

=T

A function is regarded as simply another type of data. As such,
one t‘pvcally,deflnes a function by as51gning to some atom the function
as the atom“s values .Strictlz speaking, the function itself is
nameless, and is identified by the form:

(LAMBDA <argument-list> <body>)

when « "lambda expression” is stored as the value of an atom, we Say
that & function has peen defined. Although the implementatior details
governing how a Lambda expression comes to be associateo with an atcm
vary considerably, one common format for defining a function in LISP

is:
(DEFUN <name> <arguments> <tody>)

DEFUN is o macro which creates the appropriate Llambda expression ana
assgﬁqs it to the atom <name> as the function”s bodg. A function may be
annihilated or alterea simpl by reassigning the value of the atom
which represents it. Another virtue of this separability of a function
from its name is that nameless functions can pe created and passed <5
arguments to other functions without having to bother to name them f
they are needed only once,

To illustrate LISP functions, Llet us define a function of tao
uments,y, (LOCATE-ALL <tool-type> <tool-Llist>), which, given the name
a tool type (e.g., SCREWDRIVER), and a master tool Llist, will search
tool List for tools of the specified type and report back a Llist of
tggls of that type it finds. Framiny, this as a recursive function,
ri{ctes

LU0 W

rg
f
he
Lt
€

L]

ST) “TOOL-TYPE) TYPE)

T
1
DR MASTER-LIST))))
ASTER=LIST)))))

.has been reduced to) NI
f the next item on the mast
?stermined by the GET), th
seey CONS it onto the frc
on the remainder of the l:

y simply proceed, without recording

(4]
c
-~
-
®
3
(a4
(a4
29 O wa

i.e.y enter a PROG (akin
temporary local wvariab
non-nil, repeatedly exam
correct type on_ the

statement™), scanning to
MASTER-LIST (CDR MASTER-L

efining one
List remains
e with the
"1ssignnent
List (SETQ

b
- DI~

14

LISP ccomm

v a odates iteratfvely-phrasco
ruction called a "PROG",

A PROG has the form:

(PROG <local-variables> <statement=1> ... <statement-nd>)

As a PROG is entereu, the local varjables (if an} are allocatea for
the scope of the PROG, and each s initialized to NIL. Next, the
statements which comprise the PROG”s bod are sequentially executeo
(evaluatea) until execution either “falls off the bottom” of the PROG
(an implicit exit from the PROG)y, or wuntil a G0 or RETURN s
encountercd. Statements which are atoms are interpreted as labels
within a PRC6, ano are ignored during sequential execution. When a GO
is encountered, a branch to the specified lapel occurs, and sequentisl

execution proceeds from that point,

Since a PROG introduces some temporary variables which must ve
claimed as the PROG is exited, there must be some ua{ of informing
SP that a PRQG s aoout to be exited. The function RETURN is used for
is _purposey inform1ng the system that a PROG is being exited, and
ecifyiny what value the PROG is to return to the calling environment.

PROG“s _may be nested and may appear at any point in a LILP
programe. The ' PROG construction will typically result in o more
efficient implementation of an algorithm than the corresponocing
recursive implementation. Although some feel that PROG makes LIS
“impure” it is in _reality the feature which 1is probably most
respon§15le for LISP”"s present widespread acceptance in both the Al
community and elsewhere,

3¢1¢7. LISP Macros

,Most _ LISP implementations support two types of macros:
compile-time macros and scanner macros. A compile-time macro 1S nothing
more than a function whichsy when evaluated computes not a final
result, but another S-expression which, when eva(uated, will compute s
final result., Thus, when & macro 1is encountered by the LISP
interpreter, a ggggée evaluation is performed (the first to compute the
intermediate form, the second to run the intermediate form). khen LISP
functions are compiled into actual machine code, the compiler
recognizes macros and evaluates them once to obtain the intermediate
form which it then compilese This technique is a very general and
powerful implementation of the macro concept.

Most LISP scanners are quite modular, in the sense that they can

be conditioned to jnitiate an arbitrary computation upon eqcountgr1ng a
iven character in_the input streame. Fcr exampley in Wisconsin LISP
Normané9l1, there exists a facility called (READMAC <char> <functiond),
er

which conuitions the scanner to call <function> (no.arguments) whenev
<char> is detectec in the input stream. <function> is tree to perform
any computationy, and whatever <function> returns is spliceo into the
scanner”s input stream. This style of table-driven scanner makes it
possible to superimpose additional syntax _on LISP input, even to the
point where LISP can model another Llanguage”s syntax (by redefining
delimitersy etces)e MLISP [Smith?0]) is an example of thise.

3.1.8. VYariadble scopiny

LISP variable values are derived as a functi
nvironment rather than as a function of lexi
rogram executes, there are two times at which new variables are
ntroducedy or "boupd": (1) at function entry time (these are the names
1 the function®s arguments that are mentijoned in the LAMBDA

on of the run-time
cal environment. As a

[X0 X, 1

15

- P (IR

T

T T VT ——

structures can grow

ion), and (2) at PROG entr
$s). Varjables are "unb
a
1

time (i.e., the PROG’s tempo
nd” at the corresponding exit ti
ROG is exited.

unction returns or when

the “top-level”. of L (wvhen no function is currently
3, anl variables which receive values are thought of és

e systeme Therefore, at any gyiven moment auring
: ny there will be a pool of global atoms plus all the atoms
introcducea via LAMBDA or PROG on the <current seguence of functicn
callse ALL these variables and their associateo values ("bindings") are
recordea on a structure calleac the ™association list® (A-LIST), &
user-accessible List of CONS nodes. ALl varijable lookups consult this
List, from most recent to least recent. Since this List is dynamically
maintainec at run-time, the question of what varijables are and are nct
bound (i.e.y are on the A-LIST) 4is exclusively determined cy the
dynamic calling environment, rather than the lexical scope of variables
at the time functions were defined., This means that “free" wvariables
(ones which have no binding at the current level) will assume a value
at run-time which is dependent wupon_ their definitions in functions
farther ug the calling hierarchy. In this manner, one function "peeks
into", or borrows the variables of another.

oy changing the system“s A-LIST pointer while inside a function,
that _function“s entire environment can be altered. For this reason,
LISP is a ver{ powerful tool wherever hypothetical reasoning (1nvolv1nc
switches to a tered contexts) is nec essar{ Most other languages either
Ltack such an ability, or make it difficult to carry In LISk,
context su1tch1n and “taking snapshots® of contexts to which execution
is to be returned are very natural operations.

0
Traditionally
at |

input/output has been LISP"s .weakest Linke Most

systems define east the following 1/0-rclated functions:

(READ) read an S-expressio

(READCH) read an 1ndividgal characteq

(PRINT X) print S-expression X, skigp1ng to a new Lline

(PRIN? X) print S-expression Xx'on the current output Lline

(TERPRI) skip to beginning of new Line on output
While these functions pr0v1de adeyuate formatting control, most LISFs
are deficient in file-handlino operations. (INTERLISP [(Teitelman74] is
the exceptiony, with more highly developed dinterfaces to the TENEX
virtual operating Kstem). Wwe regard this deficiency as more of a
historical accident than as an inherent problem of LISP (since adding
these features is simply a matter of uriting the code). In fact, there
are efforts underway for improved multiple-file interaction and rancom
tigg;s facilities both at MIT (MACLISP) ang at Maryland (Wisconsin

3.1.10. Garbage Collection

.S ince LISP data structures can yrow Jin unrestricted ways, a
crucial art of any LISP system, 1s a conceptu=lly as‘nchronous process
called the ”garbage collector"” The role of process is
per1od1callg to take control, mar garts of storage that are still
referenced by the ongoing computation, then reclaim 2l storage that i
not so referenced (garbage) Garbage collection s an unavofdabl
overhead of any gstem with no declarations, and in which cat
n unrestricted wayse.

S
€
é

une potentia(disadvantage of garbage collection is that, once the
system runs out of free storage, a garbage collection must occur.

16

Since a rbage collect causes current computing activity to Le
suspended. if LISP s controlling a real-time process, disastrous
consequencs can accrue. Such problems can normally be avoided by
forcing the system into a premature garbage collect prior to entering
real-time critical sections of computation. Alternatively, there is
jrowing 1nterest n trulg asynchronous (parallel) garbage collection
technigques which could obviate the problem altoyether (see (Dijkstra?.]

for instance).

3e1.11. L]SP as a Selfz-Contained Sysiem

LISP interpreters are tyﬁ1cally implemented in assembly Llanjuage.
After this basic facilit as been brought up, most other suppurt1n,
software can be written in LISP itself. Typical software includes

(1) A compiler which will generate (potentially quite ooag)
nacRQne code for LAMBDA expressions (i.e., functions) and
PkOGSs. Typlcally, the LISP compiler will be written in
interpreted LISP, then used to compile itself. The compiled
version is subsequently used as the LISP system compiler.

(¢) A debug packa which will permit_ the tracing and
interactive development of functions. Typically, functions
(toyether with their calling arguments) can be traced at
entry time, and (together with their returned values) at
return time. Most LISPs will also accommodate the tras-~ing
of variables (i,e, inform the user whenever a Hac’d
variable’s value is about to be changed). The debug
potent1als of LISP are essentially unlimited (the INTERLISP

system s the most advanced to date), and are responsible
(in part) for LISP“s _reputation as _one of the best
languages for the efficient ancd rapid development of
complex software. In particular, there is no time- consummng
interaction with system comp1lers. loaders and Llinkers to
be contended with; a proyram can be developed and put 1nto
production within the confines of the LISP system itself

-le

(3) An S-expression editor (or system editor interface) which
makes possible The~ onven1ent editing of S-expressions and
maintenance of files

3e2. MICROPLANNER

shile LISP is generally accepted as the standard for computing in
Al, 1t goes not supply the user with any a-priori conceptions apout
intelligence. LISP is simply the blank tablet onto which the user must
write is theory of intelligence or control, Not surprisinaly, this
resulted in numerous reinventions of the wheel in areas Like database
organization, groblen solving, hypothetical reasoning, and language
understanaing. Most reinventions were at a fairly Llow Llevel, but
occurred often enouyh to warrant some investigations into some of the
undercurrents of Al programning techniques.

MICROPLANNER [Sussman, winograd, Charniak 71] is the outcropging
of some of these undercu rrents, art1cularl where automatic problem
solving is concerned. ROPLANN R ? written in 1970-71 as a
small-scale inplementation of ddeas or ginally proposed by Hewitt in
1969 [Hewitté9l. The 1ntent of the lLanguage was and is to provide some
autom:t1c mechanisms of database organfzation, context, and heuristic
searche

MICRUPLANNER is implemented entirely in LISP. Because of this, its
syntax is essentially LISP”s syntax, and while in the MICROPLANNER
environment the user has full access to all of LISP., To distinguish
MICROPLANNE& (hereafter abbreviated MP) functions from pure LISP

17

functions, the _conventio Jismint:
about £0 of them) u1th “TH " (stand
notion in MP).

o
in

prefix all MP functions (there arc
, we presume, for "theorem®, a key

g9

The most sal ient features of MP are these:

(1 ComEutat1on in MP is induced by pattern, rather than oy
ing functions by their names. 1In this style of
computation (often called ‘"pattern-directed invocation"),
whenever a goal requires solution, a pattern descr1b1ng the
goal is posted to the entire system. "Entire system"
normally means a large population of problem-solv1ng
experts with patterns which advertise each one”s expertise.
Whenever a need is posted, the system searches through the
database of experts looking for those whose advertised
petterns matc the neea. Each expert so located is_then
tried in turn until one succeeds, or until all have faileo.
This is a r¢d1cally o1fferent comput1n~ paradigm from the
standaro parad 2 "name calliny"y, since it makes for a
very modular system uhere the requestor needn”t know any
experts cy name, problems are solved by anonymous exgerts
in the population at large.

() MF automatically maintains a context-sensitive database of
both factual assertions and the experts]USt ment joned. The
factual database is _a collection of highly indexed
n-tuples, expressed as LI,P s-express1ons. Any one n-tuple
("assertion™), or collection of n=tuples can oe
"associatively” accessed bty presenting the lookup routines
with a pattern containing 2ero or more variables. Only
those facts that are deemed active in the current
"context”, regardless of whether they physically exist in
the memory, will be locatece.

(3) MF does all the bookkeeping requirea for depth-first,
nonoeterministic programming. That is, anyt1me there is 2
decision of any sort in MP, the syste makes a <choice
(e¢ither arbitrarily, or under the control of user-specified
heuristics), records the alternatives for possibple future
reference, and then rroceeds. If a failure ever causes a
“"gackup” to that decision point, the system automatically
discards the current (failing) choice, selects the next
alternative, and then attempts to proceed again. In the
backup process all computations performed between the
initial (bad) choice and the failure point are uncone (2
record of all ghanges to the database is maintainea), and
the system picks wup from the decision point as though
nothing hed ever yone urong Thus, MP <can be said 1o
maintain, at least implicitly, an entire coal tree (search
tree) for each problem it attempts to solve. As we will
suggest Llater, there are toth advantages and disadvantages
to such automatic control.

These are the three main contributions of MpP. In the following
ction we highlight and illustrate some of the srecific features o
is problem solving language.

3¢2+1. The MICROPLANNER Database

Conceptuall{. the MP database is divi&gd into two segments: facts
and theorems. heorems are further classified into three categories:
"antecedgent®” theorems, "erasing" theorems? and "consequent*' theoremse.
Theorems are discussed in sect Je2e20

Both facts and theorems are entered into the datatase via the
function THASSERT; an ditem js deleted from the database via the
function THERASE. Facts are fully-constant LISP n-tupless Thus,y, to
represent our screwdriver in MF, we might augment the database as

18

b il

follows:
(THASSERT (TOOL-TYPE SCKREWDRIVER=-1 SCREwWDRIVER))
(THASSERT (STYLE SCREWDRIVEK-1 PHILLIPS))
(THASSERT (HEAD-SIZE SCREWDRIVER-1 0.3 CM))

Datakase lookups and fetches are accomplished via the functicn
THGOAL . Therefor if at some point in a MP program, we required a
k?ouked?e of CRENDRIVER 1°s head width, we could write a fetch pattern
of the form:

(THOOAL (HEAD-SIZE SCREWDRIVER-1 (THV X) (THV Y)))

For aur example, this would respond with "success" (i.e.y, a fact which
natched this template was located in the database, and 1t uogld produce
the side effects of binding tnhe MP variables X and and ’
respectively. The THV form is used in MP to 51gnal referenCes to
varijables (all else is implicitly constant).

tvery fact and theorem in the MP database has a_ context markin nge

dhenever « fact or theorem is THASSERTeo, if such a fact is not alreacy
physically Yresent in the database. it is created and then marxed as
also oe1n5 gg1ga L‘ present. 1f the THASSERTed fact 1is present
ohys1ca l,, ut " marked as logically Q%; present, its logical status 1s
changed to “present”. If the act is already loa1cally and fghysically
present, THASSERT does nothing, cut reports a "failure”™ to store a new
copy of the facte THERASE exerts fposlte effects on facts in the
database: it causes a fact to ogically masked, either by changirg
the fact”s logical context mark1ng or bg actually physically deLet1ng
the fact (i.,e., if the fact is be1ng THERASEd at the level at which it
was originally THASSERTed).

Context markinygs allow MP to keeﬁ track of the history of the
logical status of each fact and theorem. This enables the system to
back up to prior context levels, thereby restor1ng the database to the
corresponuing prior statee Thu; althoug there are mechanisms for
makiny, permanent catavase changes (e.g., er some segment of MP cocue
is cunfigent that «hat it has done is absolutely correct), normally
(except at the top level), THASSERT”s and THERASE®s are not permanent;
insteady, they normally exist only for the duration of some stretch ct
planning or hypothetical reasoning.

Je2

¢ MICROPLANNER Iheorems

ALl reasoning (in fact, all computation) in MP is carried out Ly
THANTE, THERASING, and THCONSE “theorems™ which are called bty pattern
rather than by name. The three tygces of theorem . are 1nd1st1nﬁu1shable
in internal formy, except with regard to the type of event to which each
responds. A THANTE theorem is triggered by the THASSERTion into the
factual database of any pattern which matches its invocation pattern. A
THERASING theorem is tr19hered by the THERASEure from the database of
any tfactual pattern which matches its invocation pattern. In the sense
that these two classes of theorems resgond spontaneousl{ (not 1in
response to any gart1cular request), they represent a general interrufpt
capapbility. HCONSE theorem responds to THGOAL requests whose goeul
patterns natch its invocation pattern.

Because of this last interactjon between THGOAL”S and THCONSE, a
THSOAL can amount to consideracly more than a simple database fetch.
In MP, when a THGOAL is issued, the system first attempts to lqcate the
desired oal directly as a_fact in the database. If this fails, and
the THG req es has_indicated that it is permissible .to do so, MP
will begin searchin g for THCONSE theorems whose 1invocation patterns

19

h«d.‘l'l\ ad

match the desired joal. 1If K are found, each is executed in turn
until one re?orts success (in whlc case the THGOAL is satisfiec), ur
until all HCONSE theorems have failec (in which case the TH:cCxL
fails). It is in this manner that more complex knowlecdce (i.e.,
theorems, problem solving techniques, etc.) can ke automatically
brought tu bear on some goal if that joal is not alreacy explicitly
present in the factual database.

The forms of these three MP theorem types are:

(THANTE <optional-name> <variables> <invocation-pattern> <bccly>)
(THERASING <optional-name> <variables> <invocation-pattern> <tooy>)

(THCONSE <optional-name> <variacles> <invocation-pattern> <tocy>)

As a brief illustration of the uses of each cf these, suppose e
wish to implement the following three capabilities in MP: (a) uheneve
a new screwdriver is oefined to the syster, autom=t1cally caus its
name to be added to the master tool list; (B) whenever a scre udrwver is
deleted from the system, automatwcally remove its name from the master
tool list, and also remove al its accomyanywng informatio (c)
whenever, during some assembl;)task. 2 TREOAL 0t the form: (SCREw-1i:

<some screw> <some threaded hole is announced, automatically search
fory and return the ndme of an appropriate screwdriver for the task
(baseo on the screw’s style and heaa size)., Task (a) will be modelea s

a MP THANTE theorem T art (b) bty a THERASING theoremy, and part (c) Ly @
THCONSE thecrem as % lows:

(THANTe (X) (TGOL-TYPE (THV X) SCREWDRIVER)
(SETQ MASTER=-TCGOL-LIST (CONS (THV X) MASTER=-TOOL-LIST)))
(THERASING (X) (TOOL-TYPE (THV X) SCREWDRIVER)
(THPROG (ST (C oo HS HSU)
(SETQ MASTER-TOOL-LIST (DELETE (THV X) MASTER-TOOL-LIST))
(THAND (THGGAL (STYLE (THV X) (THV ST)))
(THENRASE (STYLE (THV X) (THV £7))))
(THAND (ThGOAL (COLOR=-COGDE (THV X) (THV €C)))
(TnERASE (COLOR-CODE (THV X) (THV €C))))
CTHAND (THGUAL (HEAD=-SIZE (THV X) (THVY HS) (THV HSU)))
(THERASE (HEAD-SIZE (THV X) (THV HS) (THV HSU))))))
(THCONSE (SCKREW HOLE) (SCREW-IN (THV SCRKEW) (THV HOLE))
(THPROG (ST HS HSU DRIVER DST DHS DHSU)
(ThGOA. (STYLE (THV SCREW) (THV ST)))
(ThGOUAL (HEAD-31ZE (THV HOLE) (THV HS) (THV HSU)))
(THGOAL (TOUOL-TYPE (THV DRIVER) SCREWDRIVER))
(THAND (THGOAL (STYLE (THV DRIVEK) (THV DST)))
(EQUAL (THV DST) (ThV ST)))
(THAND (THGOAL (HEAD=-SIZ2E (THV DRIVER) (THV DHS) (THV DHSU)))
(EQUAL (THV DHS) (THV HS)))
(THRETURN (THV DKRIYER)))) .
e2e3e Hguristic CGuigance of Theorem Application
It 1s possible, by incluuing special indicators in THGOAL,
THASSERT and THERASt callsy to intluence the order in which theorems
are applied, or in fact to indicate whether or not they should be
fed at all. s§ecifically, a THGOAL (similar remarks apply tc
T ASSERT end THERASEL) with pg indicators will fail unless the requestec

e R

goal canp ve satisfied exclusively by catabase fetches (no theorems will
be applieg)., (This is the form we have 'been using for illustration
purposes.,) If there is an indicator present, it has either the form of
a “filter" or a specific "recommendation list” of theorems (referencea
bK name). Wwhen a filter is included in a THGOAL request, only those
theorems whose properties pass the filteriny test (theorems can possess

roperty lists) will ve candidates for application. If ¢the indicatcr
as the form of a specific recommendation listy all theorems on thet
list will be applied first (in order) before any other theorems fron
the general theorem base are attempteg. bBoth forms allow the grogrammer

to insert limitec heuristic influences. Also, since one MP theorem can
create or moditfy another MP theorem, the filter facility oproviges a
setting 1in which 5 collection of theorems themselves can evolve into 2
more structured configyuration on the oasis of ast experience (e.g.,
who iin the past has proven to Le the most reliable expert). Althcuyn
filtering and recommendations are a step in the right directiony a5 w¢
will discuss Llater CONNIVER provides a more flexible environment in
which to encode heuristic knowledye.

lel2ebs Searching and Bagkup in MP

Search and backup in MP can occur for _two reasons: (1) sone
THCONSE theorem which was run to accomplish a THGOAL fails, and another
theorem must oe invokea (restoring the environment to the state at
which the first theorem took over), or (2) some ob)ect to which_ the
system has committec itself is oiscoverec to be inappropriate, giving
rise to the need of locating another candicate obtject and retryinc.
The THGOAL-THCONSE wmechanism_ underlie the selection and backup where
theorems_are concernea, but object selection is hancled daifferentl,y,
via the THPROG MP constructione.

In the previous THCONSE exampley the oal as to locate some
screwdriver which satisfied some set of teat

w

T tures (in that casey the
correct STYLE and HEAD-SJZE). This was accomplished by a THPROG which
“conjectures" that such an object, say X, exists, then rroceeds to
determine whether or not this con)ecture is true. In the exqmﬁle above,
the THPROG searched for a screwdriver of type and size whic matched
the type ana size of the particular screw which was to be inserted. for

the sake of illustration, suppose the screw was of type Fhillips of
head size J.3. Then, the THPROG 1in the example above would _have
performed essent1al[y the same secarch as the followingy more specific,
THPROG ¢
(THPROG (X)

(THGOAL (TOOL=-TYPE (THV X) SCKRE<DRIVER))

(THGOAL (STYLE (THV X) PHILLIPS))

(THGOAL (HEAD-SI;E (THVY X) G.3))

(THRETUKN (THV XJ)))
ie€ey introduce an initially uncommitted variatle, X, to represent the
object bein searched for. First, ovtain a candidate for ty finding
an ooject which is of TOOL-TYPE SCREwWDRIVER .(the first THGOAL does
this)s, At that point, X will be tentatively bouna to the first such an
object found. Continue with this candidate until eijther all THGOALs
have een satisfied (in which case, the candidate is a success), or
until some TH50AL fails (in which case, the system must back up _ and
choose another candidate). Since some objects may pass the first
THGOAL, or even two, but not all three, the system must automatically
keep track of what object it is currently considering, and what other
objects remain to be tested. This is the source of backups which are
propagatec because ¢f bad object selections.

., To «xeep track of theorem_ and object selectijon obackups, MP
maintains a decision tree, THTREE, which is essentially a record of
every decision maoe, ano what to _do in case the decision |eads to a
failure. The strength of THTKEE s of course, that 1t frees the
programmer from having to worry acout fa*lures: if there is a solutior,

21

it will eventually be found by an exhaustive search. The fatal weakness
of THTREE is that it imposes an often undesirable depth-first ordering
on the search (i.e., one subgoal must bLe solved in its entirety pefcre
any other subgoals can be attacked). This makes it difficult, if not
impossible, to fabricate complexly intertwined solutions, since

subgoals cannot communicate laterallg in the tree. The MP organization
is also gquite awkeard in its ackup technique pecause_ of the
depth-first organization of THTREE. Often, one small failure will cause
an entire branch of THTREE to be undone, when in fact most of it was
correct. It woulu be more desirable to be able to discard only the tac
part of the tree, retaining the oarts which are correct, so that
wholesale resynthes1s of large parts of the THTREE does not have 1¢
occur. uUnfortunately, this is, again, ver{ difficult, if not impossible
to do in HPe CONNI v has a better control structure in these respects.

Ye2e5. Ciher Rgpreseptative MR Capabilities

To complete our description of MICROPLANNER we include two
representatives of the other functicns available in this lanjuage,
together with a brief example of each.
Te2e5.1, HEIND <moge> <variables> <skel2 <body2)

THFIND provides a way of finding all_objects in the {stem which
satisty o« certain_ set of criteria. A THFINL is essentially a TH? oe
an

which is made to_fail artificially after each successful location o

object which satisfies the criteria. <mode> indicates how many oojects
are to be locatec (eegey "ALL", "(AT-LEAST <count>)",..¢); <variables>
serve the same role as THPROG variables, <skel> speC1¥1es what form to
return as each otject s found; <body> contains the THGOALTs, etc.

which define the criteria. THFIND returns either a failure (in case
<mode> number of objects could not be found), or a list of <skel>“s,
each <skel> corresponding to one successful object thus found.

EXAMPLE: (THF
EgDRIVER))

o
LB
(=
ruw
=
o™
-

3020502+ (THUESSAGE <variables> <pattern2 <bogy2>)
As subgoals are descended into (i.e. '"on the way down" the _goal
ree)y THMESSAGE statements have no effect. They are essentially
“hooks" which will 1ntercept failures benesth them in the goal tree s
such failures opr gaga back up to the THMZISSAGE via a (THFAIL
THMESSAGE <pattern Upon bein, backed up to by a THFAIL, an
THMESSAGE whose pattern matches the THFAIL pattern will take contro
(its <body> will be executed). Thus, the THMESSAGE-THFAIL combinaticn
provides a way of legégg}1n- possible problems without actually
check1n? for them teforehan ¥ all goes well pbeneath the THMESSAG:,
it wil never run; however, if someone gets into trouble teneath the
THMESSAGE (in some way the THMESSAGE is prepared for), the THMESSAGE
can correct the problem and then cause the part of the tree bteneath it

to pe reattempted.,

22

EXAMPLE: e (anticipate diff1cult% in insertin? a screw)
(THMESSAGE (X Y) ((THV X) WILL 07 TURN IN (THV Y)
(THGOAL (LUBRICATE (THV X))) (attempt a remeoy)
(THGOAL (SCREW=IN (THV X) (THV Y)))) (retry)
cee (attempt to insert some scre« in some hole)
eo o (report a failure back up to the THMESSAGE)
(THFAIL THMESSAGE ((THV SCREw) WILL NOT TURN IN
(THV HOLE)))

would anticipatey, detecty regort, and correct a problemy, then retrye.

3e3e CONNIVER

The most recent stage in the evoluticn of the LISP family of
languages was the result of McDermott”s and Sussman”s_develogrment of a
language callec CONNIVER {McCermott, Sussman 73]. CNNIVER s
development wWas principally mnotivated by the control structure
deficiencies of MP, as suggesteo i1n the earlier discussion of TnTREt.
Although there were some improvements in the database and
pattern-directed invocation control (e. .y the pattern matcher is more

sophisticated), the most significant feature of CONNIVER is its avility
to maintain numerocus computations 1in states of suspencded animation,
then to switch amony them, working on many subgoals or altcrnate
strategies in unison rather than one at a time. In such an environment
partial computations need not be undone simply tecause some smal[
aspect of the problem solving has gone awry.

by CONNLVER is less a programming languaze than it is a collection ouf
icdeas about control structure. (The lanyuaoce agparently has never been
used for more than one or two significant pqo?ramm1q tasks
[Fahlman731). Because of this, our discussion wil omi most
references to syntuxy and highlight only the aspects of C(ONNIVERTs
control structure which are unusual or unigue to it.

3.3.1. Framess Aucreyoir and Agiey

In a conventional pgogramming Language (MP included), one functioun
calls another function either by name or pattern and waits wuntil the
called function returns controle. 1In a conventionpal language, once a&
function returns, that copy of it dies; the function may te calleo
anewy, but the new call will cause a new "copy" of the function to
begine. No memory of & function”s current status can be preserved across
call-return segquences. This type uf control is usuall{ .carriea out
under the control of push~down stacks which record callina arguments
and return addresses; calling a function causes stacks to e pushec,
while returning rom a "function <causes stacks to be poppeuy
annihilating all control informatione

ferent. To call a function

In CCNNIVER, things are quite a Dit f t
me"” for the called function,
n

1

)
in CONNIVER Js to create a so-called "f tion
rather than to push informatjon onto ; tral stacke A function”s
frame will contain all the dinformati needed to characterize thre
function at any moment (e.g., from what A ST it derives wvalues for
its free variables, to whom it is to return when it has finishea,
etce)e There are twu important features of a frame, First, it 1is a
user-accessible LISP gata strugtures This means that a function may
alter its own or ancther function®s frame in arbitrary ways, causing
free variables to o0e Llooked up on some other function’s A~-LIST, or

di
ra
a ce
ation
t A-L

causing the identity of the function to which control is to be returned
to be altered. Second, because there is no central stac: which is
chronologically gpushed and popped at function entry/exit, executicn
control 1s free to meander from one _function to the next without
permanently closiny any function. Thus, at any moment, there can te

23

ST A o A YR e - vy v

numerous susEendeo tunctions which may te resumed at the point at which
they last relinquisheu control, or in fact, at an erbitrary Llabelced
point witnin them,

As one might expect, this ability makes the context marxin

technique for items 1in the database¢ more ccmplex than in 4P, .ih
perticulary, since control may eventually be returned to any suspendcd
function (the system in general has no way of knowinc whether or not it
actually will be), every fact in the datahase must have mark1ncs whic
specify fur every suspended function s whether or noct that lact 3
supposed to be logyically resent -h1[e is running. To accomglisn thi
tyre of markings, the context scheme was jeneralizeo from
stack-like arrangement to c tree of contexts. Tasically, every foact
lives on some branch of the tree, and functions have access to limbs ot
the tree. Although there is considerable overhesd, the system manaecs
tuv mask and unmask facts in the aatabase in synchrony witn the
meanderiny of executiun control from one function to the next,

¢ mt-y

To distinguish the permanent return of a tunction from the cease
where a function merely relinguishes control, reserving the oction to
continue, CONNIVER cefines two methocs of _returning: ADIEU (finecl,
permanent return) and AU-REVOIR (suspension). One very important
application of the AU-REVOIR feature 1is in_ the (otten costly)
zeneration of alternatives. Rather than call1ng a function (such a:
7HFIND in MP) to generate all possible candicdates before any detailed
filterin tests are applied (a procedure which may waste an inorainate
amount ot time in the initial collectiny phase), in CONNIVER 3t 15
possiole to call a "generator"™ function which will locate _and return
candicates one at a time suspending itself across callss This makes
for a more intimate orm of interaction between the generating anc

testing functions than 1is possible in_MP, ang can ead to more
efficient searches bvpecause of this intimacye TOo facilitate the use f
generatorsy CONN‘V:R has some rather elaporate machinery for
maintaining "possioilities Llists®, including a *unction, TRY-NEXT,
which controls the extraction of poss ibilities from such Llistse.

Comgutation in CONNIVER s similar _in mos ther reocarcs to
computation in MP. The counterparts of THANTE, THERASING and TnlONCE
theorems are, respect1vely IF-ADDED, IF-REMOVED and IF=-NEeDED
"methods", Except for tlerences in syntax anc a more genercl
pattern-directed 1nvocat1on scheme, these three tunctions 2re the sane
2s the MP versions. CONNIVER counterparts of ™MP“s oatabase arnc
goal-statement functions, THASSERT, THERASE and THGOAL are,
respectively, ADD, REMOVE ana FETCH,

3.6. Efficiency of tne LISP Langyaye Faemily

Beiny an interpreted language, LISP is slower than, FOKTRAN,
by between one and two orders ot magnitude. Houever. §Q$Q LISP can
be competitive with a good FORTRAN compiler., ne feel t prov1dcs
the best of both worlcs, in the sense that the interpreter prov1des fcr
easy program Jeve lopment and debuyging, while the LISP ccmpiler can
transform debuygea cooe into production-level efficiencye.

MICRCPLANNER ano CONNIVER, on the other hand, are inherently Lless
efficient, ?rimar1ly vecause of tne control structures they superimpose
on LISP. e fatal tlaw with MP is its backup system, which can te
extremely slow; compilation will not typically remedy the problem.
TORRIVER™ is slow for similar reasons; however, in addition to data
structures, processes must also be garbage collected, and an elaoorate
context tree mus ue maintained. Lthough these two languages contain
many noteworthy features, we feel thaet neither (as currently

implemented) is appropriate for production applicaticnse.

24

P
.

; :‘::'_“:T'II\-!,M e v——— firdd

TP PO WL T

.

3.5,

Th
UNIVAC
Othgrs. .
anticipate
including
there

t he

Ssandardization of the LISP Language fFamily
the fol lowing nschi

are accessec,

about

one da

characterizea
Finally, most

written in LIS

Fwma

2 g o T 5

stems for
y CODC 6500,
. retatively
sionificant
i microcomputers,

is uvxactly one cialect,
semantics

ere are
110664 11
ceiny

b g

easy
develo
Since L

have

25

we woulc
problems machine,
SP°s syntax §s nearly non-existent,
Although there are ainor
of how functions are defined,
"jncompatibilities”™ can normally be

t macro-writing.

differences
how variables
ameliorated
2 Lecause of this, LISP can Ue
tanguage which is fafjrly standard and transportatle.

accompanying

compiler,

TR I

bels AL

AL 3is a hign-level programm1n§ system for specification cf
man1pulatort taskS,_ developed at anford Artificial Intelligence
Laooratory (Finkel7«]. It js$ a SAIL-like language and incluoes aryé€
runtime support for controll1ng devices.

Trajectory calculation 1is a crucial feature of manipulatory

control. AL contains a wide range of primitives to support efficient
trajectory calculationss As much computation as possible ic done &t
compjiLe~time anag calculations are modifiec at run-time only oS

necessary.

besices a aimensionless scalar data type (i.e., REAL), AL
recognizes and manipulates TIME, MASS and ANGLE SCALARs, dimensionless
and typed VECTORs, KOT (rotat1on‘ FRAME (coordinate system), PLALL
(region _separator) ano TRANS ttransformat1on) data tygeso Proper
compositiun of variaties of these types gives a simple reans of

performin, calculations of any type of movement.

Also included are PL/1-like ON-conoitions, which allow monitoring
of the outside worluy and concurrent processese.

ixamgle:
PLANE p1;
. { statements initializing ¢1 2
SEARCH yellow { SEARCH is a primitive which causes
a hand to move over a spec1f1ec
area. Yellow is a hand }
ACKROSS p1 { hand moves across plane)
WwITH INCREMENT = 3=CM { every I cm)
REPEATING i
2EGIN { do at every iteration)
FRAME set; X
set _ ye L{ow; { yetlow is also coord system of hand J
MOVE yel low XOR = Z#CM
move hand 1 c¢m down _from current
position along Z-axis
ON FORCc(Z) > SOOO'DYNES
DO TERMINATE; { keep in touch with real world)
MOVE yellow TO set DIRECTLY; <{ mcve the hanc back to where
s it was in a straight line)
- ’

26

o T ot T B et b

——T

T T —— Y —

belo MLIsP

MLISP (meta-LISP) 1is a high=-Llevel List-processing language
develorped at Stanford University U[Smith701l. MLISP programs are
translatec into LISP programs which are then executed or compiled.s The
MLISP translator itself 1s written in LISP

MLISP is an attempt to improve the readability of LISP programs as
well as alleviate sume _inconveniences in the control structure of LISP
(eegey E icit dJterative construct). Since run-time errors are¢
only detected y the LISP system (when actually executing the program),
users frequently find themselves debugging he translated LISP code.
This somewhat defeats the purpose of any high—-level languace.

Alt LISP functicns are recognized and translated in MLISF, but the
Cambricdge prefix notation of LISP has been laced by standard infix
anc prexix function notation. Instead of (P US X Y) one may write X «+
Y, anc (FUO “A B C) becomes FOO(“A, B8, ().

MLIS+ also provtues a powerful set of iterative statements and &
se number of "vector operators." Vector operators are used to apcly
ndard operators in a straightforward manner_ to Llistse. Thus, in
SP, Ty 2y 3> +8 <€y S5, 4> yielos <7, 7, 7>, +8 is the vector
ition cgperator and <A, B, C> j3s equivalent to (LIST A 6 C) in LISP.

Example:

Given & List of the form <obj1, obj2y eee otjn>, this functicn
witl return a list of the form <<obj1, holder*>, eeey oL jn, holcern>>
where holderi is either PLIERS, VISE or NOTHING accordingly as needed
to hold the objecte X oeeX is an MLISP comment.

EXPR szD -LIST(OBJ-LIST); 4 EXPR sterts a regular func %
2] N
NEW S, % local declaration b3
RETURN ~ RETURN is a unary operator X
FOR NEW OGFJ IN OsJd-LIST

COLLECT . .
4 0BJ is local to the FOR loope. 2%
£ 0BJ will be bound in turn 4
~ to each element of 0BJ-LIST. X
% COLLECT indicates that ths X
4# result cf each iteration is 4
X to be APPENDed to the prev10us %
» result and this whole Llist %
% returnec as the result of %
v e X the FOR. %

IfF (S _6ET(0BJ, SIZE)) LEQUAL S
THEN

<<0BJ, “PLIERS>>
ELSE
IF S LEGUAL 10
THEN

<<0BJ, “VISE>>
ELSE
<<0BJy “NUTHING>>
END;

27

b4e3. PBOR=¢

POP-¢ is a conversational langua?e desiagneo bg Re M. EBurstall ano
Re Jo Popplestone at the University of Edinburgh [Burstall?71].

POP-¢ features an Algol-like syntax and draws heavily _from LISF.
Intejers, reals, LISP-like lists and atoms (callea “names”), functicn
constants (lambda expressions), records, arrays, extensible data tygpes,
and run-time macros are supported. A uniaque feature of the POP-:
system 1is the heavy use of 2 system stack, which the user may easily
control toc enhance the efficiency of progrems.

A full comclement of List-manipulation, numeric anu

storage-management functions are ovailableo
Example:

Surpose we u ?

0o obtain a
functioninge. A]

t f all machinery not currently
ul functio €

COMMENT sublist returns a List of all elements of argument Llist xl
which satisfy argument predicate r ;
FUNCTION sublist xl p; { arguments are xL and ¢)
VARS x; . { declaration of localy, no type)
IF null(xt) THEWN nil { just Like LISP)
ELSt ??(x%))—> x; { he(a) = (car ad))
X
PHEN x::sublist(tlixl), p)
{ tl(af = (cdr a)y x::L = (cons x L))
ELSE sublist(ti(xl), p)
LOSE
CLOSE
END;

A call miyht then lLook Like,

sublist(machine-list i
LAMBDA m; not(functioning(m)) END);

which right return,
CLpunch-press? drill-press2 uniti0)]

which is o POP-2 Llist.

4ebe 3LISP

«LlSP is an extended_ version of GA4 (a PLANNER-Like LISF
deriv tive) L[Rulifson 1973) embedded in the sophisticated INTERLISP
stem. GCLISP supports a wide variety of data txpes designred to aic in

t e flexiole handling of Llarge uata vas mong the data tyres
supported are "TUPLL," "BAG" anao “CLASS.” A TUPLE is essent\allg e LISF
List that can te retrieved associativelg (see below)e A BAu 15 a
multisety, an unorcerec collection of (possi l{ duplicated) elements.
Bags have been found to be useful for describing certain commutative
associative relationse. A CLASS 1is an unordered coliection of

28

P ——

non-duplicated etements (i.e.y basicatlly a set).
. Arbitrary expressions may be storea in the system data base ano
manipulated 23associatively. The QLISP pattern matcher 1is used to

retrieve expressions in a flexible manner. The System function MATCHGG
may be used to invoke the pattern matcher explicitly, as in:

(MATCHQQ (<=X <=-Y) (A B))

which causes X to be tound to A and Y to B ("<-" indicates this "need
for a binding”). The patterns to MATCHGQG may be arbitrerily complex,
as in:

(MATCHQQ (A (<=x <-Y)) (<-X (A (B ())))

in which X is bound to A and Y to (8 C).

. QLISP expressions are represented wuniquely in_ the data base,
unlike L1iSP where only atoms are unigque. To distinguish between
“jdentical”™ expressions, "properties” may Le associated with eény

expression by QPUT.

(«PUT (UNION (A B)) EGUIV C(UNION (B C)))

- ereama

The above puts the expression (UNION (B C)) uncer the property EQUIV
for the expression (UNICN A B).
: GLISP provides facilities for backtracking and pattern-directed
invocation of functions, as jllustrated ty:
(«LAMBDA (FRIENDS JOE (CLASS <=F <=5 <=<=-REST))
(1S (FATHER %S 3F))
BACKTRACK)

tion will find an occurrence of a CLASS denoting FRIENDS of
and S will be bound to the first two elements of the CLASS and
e bounad to the remainder of the CLASS (indicated by %<-<-%),
ather of F, then the function succeeds. {("$" causes the
] BACKTRACK causes
and REST until

nding of 1i1ts argument to be wused.)
on of the function with new bindings for S,
n succeecs or there are no untried ‘binaings.

. The user may collect teams of functions to be invoked under
desired circumstances. Manx QLISP data base manipulation functions may
have optional arguments which denote & team of routines to be used to
perform antecedent-type functions (as in PLANNER).

GLISP provides a general context and generator mechanism simi
to that ot CONNIVER. Also provided is o smoothy, readily accessi
interface to the underlying INTERLISP system which aids in
development and maintenance ot large systems.

Ltar
ble
the

Future plans for QLISP d{nclude multiprocessing primitives,
semantic criteria for pattern matching (as opposed to the current
syntactic information), and the atility or the pattern matcher to
return more information than a simple match or fail.

29

O " et fﬁIlEIIIllllIIIIIIlIllll.ll-..........-I-.-!Ill.!.

—~—

T TR T BASE w e T ——

Boaiciii st/

S s ek

S«1. Introgduetioop [

A common example will be usea to illustrate the distineuisbin,
features of SAIL, LISP, MICROPLANNER anc CONNIVER. With only mincr
varifations the program segments use the same algorithm. . The
program-segments agpear ou of context and are not meant to inuicate
the most eticient (or preferred) implementation of the problem in each
languagey, but merely to illustrate the languages” major attritutes.

Problem statement:

Siven two distinct assemblies (say A1 anc A2), attempt to wunscrew »1
from Aly, and incicate success or failure accordingly. The "worlao" f
the example is assumeo to include:

(1) Two handsy, LEFT and RIGHT, carable of moving, arasping, twisting
and sensing force and motion.,

(c) A fixed number (possivly zero) of PLIERS
() A fixed number (possibly zero) of VISES

(4) A fixed number of "assemblies”

For each PLIERS ang VISE, the data base contains an assertion «f
the form “PLIERS (VISE) # n is &t location (X, Yy, Z) anc is of
capacity (cm." In addition, for each assembly the deta base contains
an assertion of the form, “assembl{ A is at location (X, Y, Z) anac is
of size S cm."” As we shall see, the languages are dvstvnguvsﬂed in part
by the methods each uses to represent such knowledge.

= tach example assumes the existence of the routines describteo belcw
in ALGOL~Llike notation.

ATTACHED(A1,y A2) - TRUE if and only if the assembly represented oy A1
(her>after referred to as A1) is attached to the assembly
representeo by A2 (referred to as A2). The routine has no

stide effecis.

MOVECHAND, LOCATION) - Moves HAND® (LEFT or RIGHT) to LOCATION (but sece
PLANNER®s cescription of MOVE).

TWIST(HAND, DIRECTIUN) = Tuwists HAND (LEFT r RIGHT) in the jven
DiRECTlON (CLOCKWISE or COUNTER-CLOCKWISE). The DIRECTION is
oriented looking down the length of the arm. Excegg for SAIL,
all programs assume a routine cal led TwIST-BOTh, which causes

toth hanas to twist at once.

GRASP(HANDL, O3JECT) - Causes HAND (LEFT or RIGHT) to grasp OoJECT,
whic? must be within some fixed range of HAND (1.e., the hanc
must MOVe to the OBJECT first).,

ATTEMPT(ObJ1, OBJcy A1, A2) - Attempts to do the actual unscrewing of
assembly A1 from A2 usinyg objects UBJ1 ana O0EJ2 (which, in our
examples, are either VISEs or PLIERS):. ATTEMPT returns TRUE

if and only if the attempt ¥s successful.

tach program applies the following sequence to solve the proolem:

(1) Attempt to unscrew the assemblies using the hands. This entai
oobtaining the location of the assemblies, moving the hands to the
respective locations, grasping, and then twisting.

ls
ir

(2)
(3)

(4)

(3

1f the objects are no longer attached, then return “success.”

At this point, it is assumed that the hands weren“t strong enough.
It is roposea to try two ?lirs of PLIERS next, A search ensues
for a suitable set of available PLIERS (i1.e., 5"?' enough to holc
the assemblies). 1f one set o PLIERS ails the search is
for another set, with the hoge that the differences among
(gripy sizey, etce) will eventually lead to success.

attempt to use PLIERS has failed. Tri to sol¥e the problem <oy
ding one of the assemblies in a2 VISE. Perform a search for an
2ggrlate VISE. This search proceeds in a fashion similar to that
K

o
=3
mee
X e
wd

c

.]

N> TN

Sr
e 3D00

[N

ltteﬂnts nhave failed. Output an appropriate message and return
IMure™. .

31

P

N CINQ 0O O N 8 WA md O 00 SO AN IR =2 1O QNN S IR = Q1O G SRS LI R . =2 OO0 NOMR B R = RO YN O N B U N b

O O- WM UMAA NP VIVUAN S 8- 85 8~ 8~ 8 88 8 8 WL WL G I W R RO PO PO RO P NI AL b b b b b b b d b b

Ssmple Progrén

INTEGER PhOCEODURE BIGENOUGH(ITENVAR HOLDER, HOLDEE);

% RETURN TRUE IFF OBJECT HOLDER IS LARGE
: ENOUGH TC HOLC UBJECT HOLDEE *

BEGIN
INTEGER ITEMVAR C, S;
C _ COP(CAPACITY XOR hOLDER);
S ~ COP(SIZE XOR nOLDEE);
RETURN(DATUM(C) GEG DATLRC(S))
END;

INTEGER PROCEDURE UNSCREWCITEMVAR A1, AZ2);
“ ATTEMPT TO DISASSEMBLE ASSEMBLY A1 FXOM A2, BEY UNSCRcWINE "
BeGIN
DEFINE KUNME = 1;
ITEMVAR V1, PL1, PLZy P11, PZ;
INTEGER FLAG;
1F NOT ATTACHED(A1, AZ) THEN RETURN(1); " DON“T BOTHER "

MOVECLEFT, LOCATION XOR A1); novs(nxenr. LOCATION XOR Ac);
GRASPC(LEFY, A1); GRASP(RIGAT, AD)

“ GET BOTH HANDS TWISTING AT ONCE *

PROUT(P1. TWISTC(LEFT, COUNTER!CLOCKWISE), RU
8?301 FZ. THIST(RIGHT. COUNTER!CLOCKWIS Es. R
F

" HANDS NOT STRONG ENOUGH, TPY PLIERS
FOREACH PL 2 [

: 1, A1)

ué L2, A1, AZ))

>
=
(2% 5 1)

Mxx
P =1~
ox
xrer
D) b
e
mmm
[\NT-¥~]
- <
»00
Nre e
A o]
-mm

DO RET
" EITH
0

N

-4 >

xm Cc=2
Som:n o0

V=t o

-4 2T
VT MMXO D
™™ om
TOO= VI
et -2 - B
-_— OoZEMm
~<< mmD
<™ - oM
- b sz
Y
\—d
-
>
wn
-4
b
o
2r

-

>
4
©
P Yalal ol)
X =2PNUVNe or-xX =20V

AND
DO RETURN
" OALL ATTE

0V N>
-t %o =f

S FAILED *

32

[o gl e Xe XL X6 X4
G NO NN

TSTRO"CAN"T UNSCREW " §& CVIS(A
oy FLAG) & (11

8 CVIS(AZ,

RETURNCL)

EnD;

33

ittt il

S5e2
r
9.

11.

13.

¢« (Commentary

In SAiL, FALSc = Uy TRUE <> 0. BICENOUGH is o SGOLEAN procedure.
C and S are items whose DATUM 4is assumed to be of INTEGER typee

COP(<set>) returns the first item of <set>, We are assuming that
there exists only one triple of the form CAPACITY XOk <cbject> EGV
<capacity> for each <object>.

C anc S are necessar{ because DATUM(COP(<set>)) is illegal., SAIL
must know at ccmpile-time what the type of a DATUM is. GEa 1s o
numeric test for greater than or egual.

UNSCREwW is a BOGOLEAN procecure which returns TRUE (nun-zero) if it
succeeos in unscrewing the objects.,

This is a3 macro aefinition. Whenever RUNME is encountered by
%AIL tcompilgr. it will be replaced oy the constant 1, (Sce
or its use,

vy
e ®

SPROUT is a 3AlL function which causes activation of its seccna
argunent (a3 procedure/function call) as a process. The first

;unent is an item whose DATUF will be set b‘ SPROUT tc contain

ormation sbout the SPROUTed process (see 4 for its use). The
th1ra argument to SPROUT oetermines the status of the current anu
the created processe. RUNME (bit 25 set) <indicates that the
cu;ren{ and new processes are to be run in parallel by the SAIL
scheculer.

DOOLEAN tests in a FOREACH must be enclosed irn parentheses,

Notice (PLY1 NEW PL2) to insure that two distinct pairs of pliers
are found,

if the body of the FOREACH is entered, then all went well and we
return successe

CVIS is a SAIL function which will return a ch
“name” associated with an item. FLAG is set by C
the presence of an error.

T ——

SR - . T T eI SRS a————— S SE RIS S D SRR R L At Sl e

~0N
SV 1" 4
-
(L any
& ~ ~
~4 —eQ, ~N
= [o] <
w ax
[+ 4 - O ~e
(&) 43D -.J
v cwo <Q
2 -z [
p X w x X
[T 0] (U] >0 ~ =}
> DO 2 pe] - -
@ ~ ~ OZW o P Y <~
~ ~ o~ 2 wZ - x
- ~ ~ w w 2w L 4 (L} L ad A
o~ = - oo (=T za. > Y-
< ~Z (L] Ze ~oe [~} Wy
4 4 0< -4 wao o w z x &
=4 - 3 K N o~ o (LA g ar w aa
(o] > b=« 4 -~ [+ 4 - o~ ~
[} 4 - ~ = W -y [o (o] o w -0
“w w N W N < v ~wning ~e (0] r-r
@ ~ X) e g Y] -3 wwv w
- oA AW O) e - —ad < L 4 =t w
< AZ W t < (o] Nie 3 - ~ -t d <
~ ZOXITWVA~A > VUV 4 I K 4 e >= ()
- ~ OO~ @ & Y. xz 7] — -0
© N BN - W oJd [+ 4 e (ST (] o~ A~ W
o <« LMK -t O [~} -t wx ~ [SY.N - -
- QL O - (7, p=]. % Zo w -<w @ o
4] - VO O I a0 - T -a D woow o ~ N~ X
o « OJdA I O -l <0 > ~ o o - - -3 -
N N 2 ZZ O b] 2> Q A - -l (> X7] QOO w
- - KIO O rm ow Zm W VN2 o o (YR [=Y=7-
o w NXXid 2 - ZO 4 - 2 Jd £ X hd Z
I =<QWI w =N o wied -0 - od > o w - 17}
> W € YW -dd EM VI ~JAdENN €« W 2 @ - L g < [34]
-l - - Z2< O a0 w~ w >aw~ W 232 w ww oo o x
~ = WA= - O [o ool = o ww JYd @ (%]
N E A~ F~ wWeO— O X [t - 4 X - vy e - =ma 00 x <
€ W I € UVVvEKLUS T O < «2 VUV «KZ P~ 22O © 4 TITX < wd
- A e W \'w - < W WJAO & o A M- xx OO - & o~
- = (7] po= | w D X xxw A T o QO
« « v = PTwIpF - 4 O W a O w box ("8 ww “w a
~ > 0 wWOWrO k- O aw O O aw = Yww T wr 9O x =
~- L WeJI0Z O W o T wu [A O Y ww (=] -
[} 3 D 4w dxN v Z W w > w ~ X - > w < [T
(] oY) - W NN)~ (=] 7] (] (5] © = a wh ag
[] x = QO [w x < - &£ o wv > 4 [V I
ol v a o wWwwwno o o w - w ZOo wv (=] o
o VN X e Z D3LZ 2 2 - < 9 w 'S [S IR A
ol 2 W J O 0030 « O T - Do 4 - W
a.t D 0 VU EEVORV X W - M e, W (&) £ -
- w W NN IO - [wo w — ~
- o Zz « Z xr - a t 3
1 - =) <9 o oo =Y o v %]
- 2 - o - 3 “w o
- w e W et - w & @
ad L] B a ~ o o Y
i (%2} ~ ~ ~ ~ ~ ~ ~
]
P
LY = INMY S WY OO ONM D o= WY 12N O 00O Ov NIM AN O P KOO = NN N O WO O e (MNF N O DO D= (I N O DONOYIe= N
c.“ == e e e e e NN O NIN OSOINI I NI NN MM IV RS F 38 W2 8 -8 2 - 3 1AW NN DININININN O OO
L]
(g] ™y
* L]
w [7a)
‘

ey

[
vy .
w
=
[
(72} [~}
L (YY)
b4 ~
Q @ ~ ~
w o ~ ~
- | = ba N
=) - ° a [«
o < - (=] o
S - o o
< -~ o |
< [[
[- 3 (&] o
o0 () 9
£ ~ o ~ ~
m m ww \ N
~ ~ x o
(= (oY aa ~ ~
~ Q. Q. - o=y
~ o [« o [~ Q
~ (=] ~ o [o w Wi
-l -t m - wun ~ (-3 @
= ~ = (] Q. Q. z
z [&] - o - ~ ~ @~
-] Q. O~ - - (] —2~
z ~ o L L 4V -~ O ~oes O~
(< 4 o & Er Zr~ 2 L e T 4 W P
~ D ~a ~Z D - \ [WAV W £ V]
~ = A ~x - 4 Z.J o ~ Q.
- W ~ery O ~A~AruD —N—- X @ - (=] -\ O
- AearEr OUANOE - (%7 ~ D VA Jdx O
NV VAL Wy AW @NO « - P—a =Cd < >
- Ll o L] INE 2040 u - W PO e T R T 4
- AR D AAWANW A ~ [+ 4 N @EWw v Ow w0
-X)r NE - o~ (=] (A T S T W) (U]
- W a0 aWw Q. < .) ~rad ol ol
< ¥ Frrxa>O aQ ~ee 0 ~ONN
> W a>> w o>axd f¢] ('S - AN (NI -
W FFeowl e WEJ x O Ad WD Jdd UMD daw
~ = L1 1) = {1 £ [V, [oX. 4 74 (o] 4 4 74 Y
-l -l 2 .40 -4 P | - O - O
- dVe N AW ~ (=] o Jowas Jouva
a O aoda O a.0>w - = D= 2= D=wZ
E Ze¥XIFY ZNE2Z2W x V¥ i 2u Ow Zu O
W SN W W TN (&) X WA NV N
[X o] T S T Y, . TS W W T < Ww NN N NN N N
(] o 7] >
o o Jgas o oo [+ 4 Y- ar-dee oOr-sk-
- 22 22 D QD DN 2w Z2nkn
W Owwow owwo w X Xr4 Orillrir OHW-
VI VNNV LNVW O 0l QaNnJdd LJand
W W NI (=) € VW Wi NI
- < L 4 -\ AR
- o~ x - o Q.
Q. Q. [* w O (=]
o o ~ w C - O (=]
D [o] ~ Q -] ~
-d | ~ (¥ ~w N \ ~

M1 2N OM QOO NN FIN O OO O (NN PN O P 00 (D= (IM AN O 000 O e NN
ool e le lolloRlo L U U o L A N A ot N e D T o RO TIO T T By Lo b0 To X No Xb 00 Yo T ot Jo Jo o Top [om Ten
e

T P T T

Gk o

F ¥ S

S

36

50342 Cummentary

1s.
34.

35
L7,
55.

£3.
66

m ~y o
oo

n
[}

Y]

Note that the arguments to a special form need not be quoted.

Checx to insure that distinct pairs of pliers are found.

1

e

SAl

t

-}

L

NSCRew is the main function. It returns T if and only
gisassembly was successfule

Unlike SAIL, LISP does not sugport concurrency. ¥e thus assum
primitive function to get both hands twisting,

FOREACH is an iterative special form which mimics a simgcle
FOREACH.,. FORcACH will try pairs of pliers wuntil the given
predicates succeed or it runs out of pliers (and returns RIL).

PRINY is a LISF function which loads its argument into the strecm

output buffer.

TERPKI is a LISP function which cdumps the output buffer.
Return T if capacity >= size.

DEFSPEC defines a special form (sometimes called & FEXPR),
special form dis 1identical to & LISP functicn except that
arguments are passed unevaluated.

EVAL is necessary since the argument was gassed unevaluated.
Note the use of SET rather than SETQes 05J1 needs to be evalu
to wet the intenaed atom (SET evaluates its first argument,
does not).

Note the use of EVAL (see 63.).

Note the use ot S5T (see 66.).

This is an alternative macro version of FOREACH. It expand

a PROG which is similar in nature to the special form F
Note the absence of SET or EVAL.

on
x
m

it

ate
SET

A
S

PPN LRI e

EY UMSCREWING

TRY PLIERS

~ N -
N=DO =oQ

(THNOT (ATTACHED (THV A1) (THV AZ)))
(THAND

HANDS NOT STRONG ENOUGH,

ATTEMPT DISASSEMBLY OF OBJECT A1 FROM A2,
(THPRO

(THOR

2

L)

sspple PBroyranm

PLANNER SMICROPLANNER)

Sebo
5.‘.1.

TRUL))
TRUL))

~ X ~ T~
~Drn D=~
~o ~ O NN
WoOWww Ouw«<
D2Z0DD ZA
XX P>
Xk —XX
XX =
- = -
”~ ”~

M lalaTlal
Cle=XTQ NI«
O «O«
X DX 2
—2>0rF, 2>0>
I EZwA~I 22T
—w AW
NN LD PN (DN
(7 I 17 IOV I]
[« TN+)¢ 7 VST
we wanNn N
[I [TV R | YU |
AV d>a na
e 2ax O
> F=2>I>
¥ 4ol 4 - o
L ad A B ol
- P N

x X
>0 >auv
X X O
-0 =20
w2 wIZ

w -w
oy «

(ATTEMPT (THV PL1)

d I U
(- ~r
“d J
- o « <)
L4OO0 00O
avyw V2V
L IXIIX
—r—
D

?ggGH, OR NO PLIERS STRONG ENQUGH.

)
ThTRUL))
HTRUE))

o~
M ~@O ~
(-1 V-1 "N
AL DWOWIN
AZFEDZr-a
WIXIXxIXx
poo N ot N o ol ol
Er s~ T~ ~r T
- Lol -
oo A
Lalat <L Yo o
- OO~
W DD ™
o O O«
—_2>2Zr-—->2
T WITW>
=0 =0X
NN P g
QN LI
~N e~
W= Wi s
No>2NrHand
~ 2DdJd Da
>>Xa>x

> a
x x
>0 >uv
x> T
-2 O
wZE -z
w w
<V <

1
B
1
e
(ATTEMPT (THV V1) (T

= N TN O WA O M -FVOR 1O I N S N ON WO CYe= ' WM W ORI (UM N OOV D & VM TN OO Y e
e e O NN N NN NS Y MM NN N M ST -2 2 8 -2 -3 8 <3 -3 TN nnnnnn - 00 0

Ao

. #ivd

b

V HOLDEE))

OLDEKR HOLDEE C S)
LDER) (TH
38

JUST FAIL
IF ObJeCT HOLDER 1S LARGE ENOUGH TO HOLD

oENOUGH

(THFAIL THEOKEM)
SE ol (H
E6ENOUGH (THvV HO

NOTHING WwORKEL,

))

L)

(THCON
(BI

!
'
}
}
t
;
|
{
!

€) (Thy $§)))

>~

el
&
~
—d
o
4
o
L
x
[d
~

S5e4.2. Compengary

[V B N]

[o¥]
- O
L]

")
L]

24,
45.

49,

Defines and asscerts a consequent theorem with name UNSCREW,

This is the pattern on which to 1invoke this . theorem 1if needeoc
(eeG oy (UNSCKkEw ASSEMBLY1 ASSEMBLYZ)).
THOR sequentiall executes each of its a t
succeecsy, and then the THOR succeedss. The

prevent undesirea vackur.
(THNOT p) is aefinea as (COND [p (THFAIL)I LT (THSUCCEED)D) .

THAND succeeds if and only if all of its arguments succee0s unlike
THOR,y Eackup may occur among the arguments of a THAND.

aumeqts u cn
OF 1is e t

on

ntitl
d here

—~

us

There may be several
will try 3s many as it
se "filter”" which is

Attexpt to move the left hana to object A1,
experts (thecrems) on moving hands, PLANNER
needs. (THTBF THTRUE) s a theorem b
satisfied by every theorem.

THPROG behaves in & similar manner to THAND except that Llocel
variables may be declared.

Attempt to fina & gair of pliers.

See if the psir of ﬁliers is large encugh. (THNODS) indicates
PLANNEKR not to tother searching the data base. (THUSE <theoren

incicates to try <theorem> first.

o
)

Vet

Make sure that we have two distinct pairs of pliers.,

THDO executes its arjuments and then succeeds, Hhowever, . at this
point we know that we have failed, anc THNOT is used to yenerate &
tfailure from THDQ. This is necessary because PRINT returns its
first arzument as its result, whick (teing non-nNIL) would cause
the THOR to succeeo.

Generate explicit failure of the theorem,

~ ”~ ~
~ -~ ~~
-~ ~ o~
~ ”~ -~
~ ~~ ”~
- - L
- o~ L4 L
”~
w o~ L] v
”~
P 4 ~ b 3 X
9 ~o (%] (¥]
(G pe) Ny (L] > =)
< (&3 L X & & o k=]
(0 P4 o 4 &
& - View « w w
w o~ O A «Jd - O A~ O
X N o~ ~ ~ o~ Wwax 5) - e
WO M (] (i1} ~ - W A~ @& -~ Q. (2n]
[7, T S) ~ W D A - w O W s
4 - - wh VL WC -~ o wiv Q un -~
D e~ w ~XN W2 —2 2 -4 & ~
- & &L &€ Own >0 w O Ow Z0wn oz
> Qo x ~ X W Sx P Zwr—0 OO (%] 2V €XZax Ox
4] 2 (4 D ™ Ow >VON0Om O @x o D= VOW OO ~
- - QDA J e X~NOZ2N AN ww (g [T e - w
. 2 W AAONW L Bl -t I vw -a s Qed > L 9
(] X AAJdEXx a - (Gt -d L a v x L] ©
o€ N W ey - b P N Y ~xXO aw ~ N AN o - -«
Z (L] x v O QO wa v L% P -4
X W A OCIILIA - W™ VUZx [OXa¥) &x ! WO VW™ VA ~
D VW A DADOA L) N N N ~weak o2 —] D W -« w
- 4 N A Ay & =0 N = O A Y o —r w0 \ < Q- ~ =
w ™ g T XL T ™| ~a - - -3 N =) - - “w
4 LI Y O A e~ dJO < b < 4 -l W) -l ue w oo
-) e ey - D X Zrp= 4 DO EZ e 2Z2< ~ Q WwWd
€ VU « << O MHMw wibh< wN~ D @ 20w W ~ a N -l 00
- o>V Z2 ™2 O=x VI OW - WeEZ e O < O X
w VN QO =e 0O« W unw ww am~ 20w N DN T VY] = x ©
- 9 X N —2 — N e Y= n —-ary .4 ye = “
D O X ZFZZwYVT YV Ox >xXO0Ow »eQ > O =0Ox X a ™ xZ ac (%}
E & O 00 wu ZT QA0 wayw WO w A< X400 ‘w0 <« (1) W A
~ w € N £ O wp- 2R TacC O=x s W 2250 & w a W= »n
N VN e A @ wa | v [I - 4 v v | o Zza = wm
€< UV W P LU = Y >w >F—Q «> -z Ix >r-Qa wv D O =0o w
€ O « VUOK< v 3w «x2 @ an -l H >3 w o - I @ A
- V d v O0d W -2 = - | o - x=ZF +X a e - .08
L 4 W -l d - - W ~uwd ® = W wwo = N2~ - 3
~ o - Ywihrwp O O ~N - & —w WO -0 w Z o4 X wO xX
H O V\V WWO 2 2% —~Z NP W e & ZR e~ - «< WD wXx 2D
T O X 2 waz W~ w b [T w —ww J« - [S -] D - <
&t ‘U = 3 W pmpm N B D a2 avr—- J9] > D A~ « H (=] o 2
L] & L b PPN - o —a QD (W P 2 e
L) 0 - 2 wd Qe L 3 5.9 ¥ 2 9 5 K] -4 = w
(5,) v a 0 wnWno G M [l o - o=z - - o e} 'z w Zx
=] < X 2 Udu>dSKZ L u o J ue 24] J.J 4 < D= - XV
(] > w O XxXOXO (%] wu no wwv wwv wo [~1-°4- 4T7] @ DD
a - (SN % U8 (8} [SYS) (818} o (G118)] (ST} tlaa -0
=z [A4 o Nt N N [) oy o N\ aw Y [¥ X3 [A e 3(((1 N(((N -tN
[4] (7] N « a aQ > a a < D xw
2l -4 -~ o o L] o o (¥ -
> >] g Qo o > (=] (=] (] [*Y)
-4 . [-] [= -l -d a -l - o O O
] o [™ [P - > 2 8 4 L)
b] i ~ 1) se oo oo se 1} ~ ~r
(=]
(W]
L] NN SN O DR = INMSN OO O ™ UM SN ON WO = I 2NV O O M) 0 G ID FN O OO NN -ON OO (Y= N
- - e e e e NN O NINC N O IMNY MM TN I M M E P F 2 F 8 8 2 T S N NVWAWNIN VNN N OO O
L] L]
vy 72

L]
c
- ©®

WO QIO ADN NNNNNNNN NG OO0 000
QO U IR 1adl (AU O S LIN 0 OO N S WY

50
)

i’

cXT-08J (TYPE PRED)

KATOR TO RETURN NEXT OBJECT OF “TYPE”
n SATISFIES “PREL

“AUX® (OBJ TEMP)
(CSETG TEMP (FETCH “(ISA !>0tJ ',TYPE)))

(TRY-NEXT TEMP “(ADIEU))

(COND [(CVAL (SUBST 0BJ “§ PKED))
(NOTE 0bJ)
(AU=-REVOIKk)))

(GO “LOGP)

NN
ENE
HIC

42

5e5.¢. Commentary

2.
-3
13.

24
6‘0.
65.

0
L]

COEFUN defines a function to COUNNIVER.
YAUX" <Llist> cefines local variables.

PRESENT is a CUNNIVER function which searches the data base for
jtem which maetches its pattern argument. If one is founo, PKRES
sets the indicated variables (marked with !< or !>) anc retu
t es the current C(ONNIVER value cf
J is to be bound if possicles

L
t
c1
TRY=NLXT possibilities Lliste.
2 expansion® of the following
e

u

V?

ja
jten, 'sA1 indica
OC1 indicates that LOC
h1 is pein, aossigned & TR 1
NNIVER to do a "skeleton Li

necessary to CONNIVER®s internals)., The («POSSIFILI
GNGRE are syntatic markers to TRY-NEXT_ whose function
nore. (*GENERATOR <func-call>) in91§age§ to TRY-NE
unc-call> to generate additional possicilities if needed

'
st
TI
XT

XT-08J will ccntinue to yenerate objects of type FLIERS whic
isfy the predicate (2nd argument) It will generate one PLIER
o time. (6IGENOUGH S A1) is a skeleton predicate whic
witl use to screen esch possidility. The current

e 1is substituted for $ before the fredicate is CVALuateo

R’s form of EVALuation).
1

~OZFZon Z Awde % b0 G
OO ODMADM 4D~ Om

t
X
n
o
e ontains no more Boss1bil1t1es, TRY-NEXT will execute
.0 SE)e Unlike LIS

sure that two distinct pair. of pliers will be founce.

~e

GO evaluates its argument here.

RETUKN is not necessary since the value of a CONNIVER function is
the last expression evaluatec.

Define the generator, NEXT-OtJe Note that NEXT-G2J looks Llike a
recular function to CONNIVER until it is called.

FETCh is a CONNIVER primitive which returns a possibilities Llist
of all items 1in the data base which match its pattern argument,
!'>0BJ indicates that CBJ should he tound by TRY=-NEXT to each

possibility in turn.

TRY-NEXT binas OoJd from the .ossibilities Llist TEMP anc removes
the current possibilitye 1f there iS5 no current possibility,
(ADIEU) is evaludated which causes termination of the generator.

The aesired pred1cate is CVALuated after substatut1n§ the current
obtject 1into tne skeleton. (SUBST A B C) is a LISP unct1on which
returns a Llist which is the result of substituting A for every

occurrence of ¢ in list C,

(NOTL 0sJ) s a CONNIVER function which places the current value
of Ovd o0vto the current possibilities list. .

(AU-REVOIR) returns control from NEXT-0BJ obut leaves the generator

in a suyspended state. when TRY-NEXT returns control to NEXT-0&4,

execution will resume at (GO “LOGP).

T

6. Conclusions

Either SAIL or LISP could provide an excellent basis for real-time
planning and execution control of a Large automated shop., However, each
language possesses features which facjlitate certain tyces of
operations. In particular, SAIL is generically better at the low level
control of 1/0 devices, and has more extensive abilities for
interacting with the operating system (especially where file
manipulations are concerned). LISP, on the other hand, is more flexible
at the higher planning Llevels and where system development and

debugging are concerned.

we envision an ™ideal" system as one which merges all tre
desirable features of these two language classes., Such a merger woulc
incorporate LISP"s program and data structure format, augmented where
necessary to accommouate SAIL-like file operations, and possibly LEAF.
SAlL features would be implanted in this environment, anc, at tre
implementor“s discretiony, an ALGOL-like syntax (such as MLISP) coulo te
grafted onto the front o# the system to make it more tractable.

in acdition, such a merger should take <care to preserve tne
following desirable features of SAIL anc LISP:

(1) vata structures should accommodate complex symbolic
information as well . as primitive types, As in LISF, data
structures should be free to grow in unrestricted ways, and
storage declarations should be cptional to the user.

(<) PrOﬁram and data should, s in LISP, be in the same format.
Such _a reprgsentation_ underlies (3a) a strong _macro
facility, (b) rapid editing, modification ano debugging of
programs, _anu (c) self-modifying and self-extending
systems. The Llast capavility, for example, enables tne
systemy, given the description of a new type of tool,
automatically to synthesize the proyrams for controlling
the tool from a library of supb-functions.,

(3) strong 1/0 ana file manipulation facilities, as are found
in SAIL, must be included. A good ranaom-access file system
is dimperative for even moderately Llarge databases. The
system should have both high and (low Llevel <control over
input_ and output formatting which provides control down to

the bit Level of the machine.

(4) A highly-aeveloped interrupt subsystem would be desirable.
Wwith_the merger of SAIL’s bit-wise interrupt control, and
LISP“s symbolic cafabilit1e§._such a system as is _described
in (Rieger 761 could be efficiently 1mflemented. This would
serve as the network protocol for a arge collection of
highly autonomous processes where the synthesis and control
of many parallel events is importante.

(5) For software development and debuggingy, an interpreter

should exist for the language. Nevertheless, the lLanguaje
should be have a compiler for production wusage. LISP
currently satisfies these requirements.

(6) The system should provide for a Llarge, context-sensitive,
associative database. This would involve some new
engineer1ng to coordinate a MP-like database _with an
efficient rancom-access file system. [McDermott75al surveys
sume ideas on this topic.

(7) There shoulo pe some degree of automatic problem-solving
control which 1includes a CONNIVER-Like context-switching
and process-suspending mechanism, Accommodations should be
made for SAIL-like parallel process control, and emphasis
should pe placed on inter-process communications protocols.
Most of the ideas alreaagy exist in CONNIVER and SAIL, but
they need to be synthesized into a unified system,

7. piblicacaphy

(baumyart?72] Baungort, Be Geo "Micro-Planner Alternate Reference
?3?ga * Stanford Al Lab Operating tote Noe. 67, 2prit

[EBNEXEC) bolt Beranek and Newman, “TENEX Executive Manual,"

tan bricge, Massachusetts, April 1§

73,
teech?70]) Beech, Do "A Structured View of FL/1," ACM C na Sur $
b P’larcn 1970' Ppe 33’6‘00 Fhwy -an! 1-2 -9-!21-'

fsobrow?7éd Boorgu. D. ?.1and Tap?ael{l?. “Veu af ao amm123 Lgn,uages
or Artificia nte ence M Co cye
September 1974, ppe. 153-?74. a¢ FEMSARE RMLYEXIh

feurstall71] surstall, R. n., Coll1ns. Je S _and Popglestone, Re 9
Programming ;. The Rouna le and Edinburgh
Oniversity Priss. 197 .

CChurché41] Churchy A £ Con
Un*versify Pr%gé. él getok?maeu Jers

v
e
{(COBOL743 CO30L. "American National Standard Pro
COs0L," X332 - 1974, American N
Institutey, INncey New York, 1974,

[CODASYL71] CODASYL Data Base Task Groupe "April 1971 Report," ACM, New
Yo "k' 1971.

[osC) DEC. ™DEC System-10 Data Base Management System Programmer”s
Procedures Manual,* Document DEC-10-APPMA-B=-D, Maynarc,
Ma ssachusettsoe

E;}SE‘. Princetcn

amming Lanquage
ional Standaras

(o din]

[Dijkstra75] Digkstra. EeWosDey Lamport, Martin Aed ey Scholtern,

Sey Stef fen Sy LteFoMe "On-the-fly éarbage Collection:

An Exercise in Cooperation"” EurrOu Plataanstraat L
NL-4565NOENEN, The ketherlandsy € -G.

(Fahiman?73) fFahiman, S, "A P anning S¥stem for Robot Construction
Tasks,"™ MIT AI Memo 283, 1973

CFelaman69) Feldman Jo A. and Rovner, P. Do AN ALEOL-Based
Assoclative a7 uage,” Communications of the ACM, August
1969' pPp e 439~]

[Feldman71) Felaman, Jo A. and Sproully Re Fs "System Support for the
Stcn*ord Hanc-Eye System,' Second International Joint
gogfe;e?ge on Artificial Intelligence, London, September

- Y
[Finkel74] F1nkel, e, Taylor, R., Bolles, Roy Pauly, Rs and Feldman, J,.
“ALy A Programmin? System for Automation,” Stan; gd

Artificial Intelligence Laboratory, Memo AIM=-24:,
November 1974,

CHewitté9] Hewdtt, Coy "PLANNER: A Longuage for Proving Theorems in
Robots " Proce. 1JCAI=-1, 19

EHS L"“°',.:-::"°Noﬁzaiast:;ncﬂusmszkinsmsssg o5
hggunst

[Leviné$l Levin& Meloe "LISP 1.5 Programmer”s ualy” The M,I.T.
re

M
ss, Cambridge, Massachusetts, 196
S
¢

[rcCarthyo0l McCarthy, Jo "Recurs ve Functions of
ano their Computat by Machine.“
ACM, April 1960, pp. 18‘ 19¢%.

.O‘(U'U

45

[McDermott?2]) McDermott, D. V. and Sussman Ge Jeo "The Conniver
. q$;§rence Manual," Al Memo No. 559. MIT Project MAC, May
L

[Moon74] Moon, De.A. "MACLISP kweference “Manual,"” Project ¥AC -
Massachusetts Institute of Technology, Cambridce,
Massachusetts, 1574,

[Naur6031 naur, P. (tditor). "Revised Report on the Algorithmic Language
ALGOL 60," Commupnications of the Acm, May 1960, rr.
299=-314,

[(Normané¢9J Norman, &« "LISP," University of Jisconsin Computing Center,
Madison, Wisconsin, April 1569,

(Parsons?4] Parsons, fe Goy Paley, Ae Go and Yurkanan, C. V. “Data
Manipulation Language Requirements for Dataoase
Management Systems,” Computer Journal, May 1974, r¢.
99 -103.

CRAPIDATA] RAPIDATA Corporation. “A FGRTRAN DML Imnlementation four
0BMS-10," fFairfield, New Jersey.

{Reiser?5J keisery Jo Fo "BAIL--A aebusger for SAIL," Stanford
artificial Intelligence Eaboratory. Memo AIM=-2C7(C,
Oc touer 1975.

[Reiser761 Reiser, Jo. Fo. (Editor). "SAIL," stanford Artificial
Intelligence Laboratory, Memo AIM-289, Rugust 1976.

[Rieger?6] Rieger, CoJ. "Spontaneous Computation in Coonftive Moauels,"
Department of Comguter Science, University of Marylanc,
TR=459, July 1976,

(Samet76] Samet, he "The SAIL Data Base Manajement System," C(omputer
Science Department, Un1versit¥° of Maryland, Colle,e

Park, Maryland, Unpublished, 19
(Siklossy76] Siklossy, Le Let’s Talk LISP, Prentice-Hally, Incey 1976,

(Smith?CG) Smithy, Ds Ceo "“MLISP," Stanford Artificial intelligence
Project, Memo Al”-‘BS' 1970.

[Stacey?4] Stacey, Geo M. "A FORTRAN Interface to the C(ODASYL Datapase
Task122r?gg Specifications," Computer Journal, May 1974,
pD e b1 .

[Sussman?c] Sussman, uvey Wdinogrady Tey and Charniaky Eo. "MICROPLANNER
Reference Manual," M.,I.T. AI-TR-203a, 1°’1

[Taylor?63 Taylor, R. We and Frank, R. L. "CODASYL Data-Base Manayement
Systems,"” ACM Computing Suryeys, March 1976, pr. 67-1C:.

(Teitelman74) Tejtelman, we "INTERLISP Reference Manual,"™ XEPOX Palo
Lto Research Center, Palo Alto, Cal1forn¥a. 1974,

[TOPS10] DEC. "DECSYSTEM-10 Operating Systems (ommang Manual,"
DEC-10~-0SCMA~-A-D, Digital Equipment Corporation,
Maynard, Massachusetts, May 1974

(weissman67]) deissmany, Co "LISP 1.5 Primer,” Dickinson Publishing
Company, 1967.

[Wwilcox?6) wWilcoxy Co Ro "MAINSA%% Language Manual,"” SUMEX, Stanforc
University, May 1976,

e e i e el itk

c:oounnnno“wu“m'»'
SestY vy 8@ 38y)

G““n““.'!o _

4804500 034
8030

yeRsuoiee)&

reslued 4

..- ni.car”

8. Summary Chart

.ﬂﬁnﬂt-n

otl v
['TY ukauut-n"" uwuu
Ihg @SV S0 coes

0100000, *e0juis
-u-.a‘ua. Seg1Y
1048l

ogV) 8¢ Sues
vy @

eV 8¢ sues o1 03 40y 08

\Rasue
50 Wainiiwed Be

1w ipajaadsdlvy

NI R)

A -duuws-““u“ o esv3eey JNINNDS
L s csonsue} isaette TILITINENSE
3 -lﬁ SALAELINEE B YV ~¥ LY te0sr08

.bs....” u“ -M“llﬁ otu ues s4t0e Ve ‘else

sausl ‘e feed

2000ugqop

L]])““_ P Q‘osm) .t.!.vtn

Jos1wen saysuer es)Y 8o sues oVlY oy seypey
194083048 - w0y
‘el wy whlpam

130 esey

199 ...uonaunu

4311 8¢ oues Sion)ouy

ety O3 ss)jons

10p pue wesbese

s BHEELE e
yesles

SIVeNN0) 10,0009 Leglid) .’..A LLITERTL L Ak ol)

el 8¢ swes

M BRI R Y

q 03 Y040} wo) C0su) V8- 00)e

aur- = juerjerse

v.
waysseaddfSiit
408000 4)1udn0dd)

LURINIRL N T2

outay *3j00uip

lisouie

ey

"9 30400 °8)oe0)
104 1venves

sseyeedy

-u.: 80 owes
ey ss0sete.

400 40440

ssereess siynprere | 1028304 S3001 eejiedery *3)eeey
~.oun-l. o HH Siaeedtsd
o013 *€i8803040 & vou“nuo.
fl . ‘380 ﬂ““ j"ﬂ-.a.ﬂ“
Ty oy, eans st
1t b Lo d Lot
Syees ‘soboruy ssesssvede
seves
s canidited
1 %0 oves
SseAe Ly Qllleeesaten *103 duaness
0039043 p-us01 300
1 80 ewes o-..oun.ﬂon
o)) [
se01004; Mevesssesese.s .o.-n.""w-cn.-.c"u
r] w0y

0s0) 0043 yeemds o
L3 0} 40} ‘s0dlv c.w.»
31810000 Cej000) 311 109t S shsuua Senauanben
403 J)shreey sedy uo *
Swe) $804000.
SNSRI BRSNS sads; oreg 1003003 30 neYg

29uR9 %W

47

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE R R s L o

1. REPORT NUMBGER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

~ et

4. TLILE (and Subtitte) 5. {YPEOF 0D COVEREO
@Artificial Intelligence Programming Languages @T‘eﬂnic al_&ﬁ_—J- %

for Computer Aided Hanufacturing' |_..._- = ORG. REPORT NUMBER

2 7. AUTHOR(®) — .l OR GRANT NUMBER(s)
= e —————————————————

L0 uck/Rieger, Hanan/Samet, Jonathan /Rosenber I
L 8

9. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

/ Computer Science Dept.
Univ, of Maryland

rk. Md. 20742 : Qe
11. CONTROLLING OFFICE NAME AND ADORESS

Informations Systems Branch
Office of Naval Research NUMBER OF €S

. PAG J -~
Wash., D.C. 20305 47 Q&—‘ SO i EE:J’
14, “ONlTOR!NG AGENCY NAME & ADDRESS(If different fromm Controlling Office) 1S. SECURITY CLASS. (of thie repol

Unclassified
1Sa. DECL ASSIFICATION/ OOWNGRADING
SCHEDULE

6. OISTRIBUTION STATEMENT (of rhie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebetraci entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

F 19. KEY WORDS (Continue on reverse side If neceesary and identify by block number)

Artificial Intelligence Systems Control
i Programming Languages
i Computer Aided Manufacturing

20. AWACT (Continue on reverse side if necessary and identify by block number)

ight Artificial Intelligence programming languages (SAIL, LISP,
MICROPLANNER, CONNIVER, MLISP, POP~2, AL and QLISP) are presented and
surveyed, with examples of their use in an automated shop environment.
Control structures are compared, and distinctive features of each
language are highlighted. A simple programming task is used to
illustrate programs in SAIL, LISP, ' MICROPLANNER and CONNIVER. The
report assumes reader knowledge of programming concepts, but not

o pecesaarily of the languages surveved,.,

'| DD ,an'ys 1473 EOrioN OF 1 NOV 6s 1S OBSOLETE \ OSSN
’ SECURITY CLASSIFICATION OF THIS PAGEH (When Dete Entered)

N e

Off of Naval Research
Branch Office, Boston
495 Summer St.

Boston, Mass. 02210

New York Area Office
715 Broadway-5th Floor
New York, N.Y. 10003

Mr. E. H. Gleissner

Naval Ship R+D Center
Computation and Math Department
Code 18

Bethesda, Maryland 20084

Capt. Grace M. Hopper
NAICOM/MIS Planning Branch
OP-916D

0ff, Chf. of Naval 0p.
Washington, D.C. 20350

Mr. Kin B. Thompson

Technical Director

Information Systems Div. OP-91T
Off., Chf, of Naval Op.
Washington, D.C. 20375

Naval Research Lab.
Technical Info. Division
Code 2627

Washington, D.€. 20375

Dr. A.L. Slafkosky
Scientific Advisor
Commandant, USMC

Code RD-1

Washington, D.C. 20380

National Security Agcy.
Attn: Dr. Maar
Fort Meade, Maryland 20755

Off. of Naval Research
Code 1021P
Arlington, Va. 22217

Asst. Chief for Tech.]
ONR Dept. of Navy !
Code 200

Arlington, Va. 22217

Off. of Naval Research
Information Sys. Program
Code 437

Arlington, Va. 22217

Off. of Naval Research
Code 455
Arlington, Va. 22217

Off. of Naval Research
Code 458
Arlington, Va. 22217

Defense Documentn. Cent.
Cameron Station
Alexandria, Va. 22314

Off. of Naval Research
Branch Office, Chicago
536 South Clark St.
Chicago, I11. 60605

Off. of Naval Research
Branch O0ff., Pasadena
1030 East Green St.
Pasadena, Calif. 91106

Naval Electron. Lab. Ctr.
Adv. Software Tech. Div.

Code 5200

San Diego, Calif. 92152

