
AD-A047 179 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/0 9/2
ARTIFICIAL INTELLIGENCE PR09RAMMIN9 LAN0UA9ES FOR COMPUTER AIDE—ETC(U)
SEP 77 C RIE9ER» H SAMET» J R0SENBER9 N0001*-76-C-0%77

UNCLASSIFIED TR-593 NL

END

-78

•i.o ;.;:•

i.i

.25

JA IM

2.0

1.8

"4 II. 6

MICROCOPY RESOLUTION TES1 CHA.R1

NATIONAL BURIAII 01 STANDARDS l<ft.t-,<

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

O 9 C

iss* * •;

UNTVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

*•>•' .'••--. •

• ". .^ -• . •du» aahi I, Hill. 'Ulli VTi 4-;>-A-+ lV

•
——i

TR-595 September 1977

Artificial Intelligence Programming Languages

for Computer Aided Manufacturing

Chuck Rieger, Hanan Samet, Jonathan Rosenberg
Department of Computer Science

University of Maryland
College Park, Maryland 20742 D D C

RUnKnanns
lOfTI

ffi

V

y«92"!
ABSTRACT: Eight Artificial Intelligence programming languages
(SAIL, LISP, MICROPLANNER, CONNIVER, MLISP, POP-2, AL and QLISP)
are presented and surveyed, with examples of their use in an
automated shop environment. Control structures are compared, and
distinctive features of each language are highlighted. A simple
programming task is used to illustrate programs in SAIL, LISP,
MICROPLANNER and CONNIVER. The report assumes reader knowledge
of programming concepts, but not necessarily of the languages
surveyed.

This report was funded by the National Bureau of Standards,

and by the Office of Naval Research.

»turn -^•--jg--»^ '.iZitfl..

CON NTS

1. Introduction

2. SAIL

2.1. Introduction
2.2. Associative Data Base
2.3. Data Management Facility
2.4. Control Structures
2.5. System Building Capabilities
2.6. Standardization

3. The LIST Family of Languages

3.1. LISP
3.1.1. LISP Data Structure
3.1.2. Property Lists
3.1.3. Representative LISP Data Structure Manipulating Function!

3.1.3.1. (MEMBER X Y)
3.1.3.2. (ASSOC X Y)
3.1.3.3. (SUBSI X Y Z)
3.1.3.4. (APPEND X Y)

3.1.4. LISP Data Types
3.1.5. LISP Functions
3.1.6. The PROG Feature
3.1.7. LISP Macros
3.1.8. Variable Scoping
3.1.9. LISP I/O
3.1.10. Garbage Collection
3.1.11. LISP as a Self-Contained System

3.2. M1CR0PLANNER
3.2.1. The MLCROPLANNER Database
3.2.2. MICROPLANNER Theorems
3.2.3. Heuristic Guidance of Theorem Application
3.2.4. Searching and Backup in MP
3.2.5. Other Representative MP Capabilities

3.2.5.1. (THFIND <mode> <variables> <skel> <body>)
3.2.5.2. (THMESSAGE <variables> <pattern> <bod/>)

3.3. CONNIVER
3.3.1. Frames, Au-revoir and Adieu

3.4. Efficiency of the LISP Language Family
3.5. Standardization of the LISP Language Family

4. Related Languages

4.1. AL
4.2. MLISP
4.3. POP-2

5. Examples

5.1. Introduction
5.2. SAIL

5.2.1. Sample Program
5.2.2. Commentary

5.3. LISP
5.3.1. Sample Program
5.3.2. Commentary

5.4. PLANNER (MICROPLANNER)
5.4.1. Sample Program
5.4.2. Commentary

5.5. CONNIVER
5.5.1. Sample Program
5.5.2. Commentary

6. Recommendations

7. Bibliography

8. Summary Chart

I

•Ml -••--•'-'- -—-:: —

1« iDiES&UiliSQ

T
Intell
manufo
"ICROP
are d
manufa
for t
contro
The p
featur
comput
manufa
langua
langua
which
enviro

his report oe
•> gence pro), r»i
cturi ng envlron
L ANNER t CONNIV
i st inct fro*
cturing env i ron
he devt lopnent
I in addition t
aper includes
es of these
er-automateu m
cturi nc
ge, (!)

task t a
d iscu

ge, and (A) con
are BIOS t d

nment •

scrib
• ing
cent.
M«
langu
ments

of
o the
(1)

langu
anufa
nd ho
ssion
clusi
es i ra

es s
langu
The

«LISP,
ages
CLesl
high-
simpl
surve

ages
cturin
w it m
s of
0 n s w i
ble a

one r
a?es in

langua
POP-2

previou
ie723 i
level s
e numer
ys a nö

as t
g envi
läht be

the s
th emph
no app

ecent
the

ges
»At-,
slyL
n t ha
ymbol
ical

CO*
hey
ronme
ex pr

tanca
asi s
lical

ly
cont
surv
and
use

t th
ic p
cont
pari
m ig

nt,
esse
rdiz
on t
le

dev
ext
eyed
CLI

d
ey P
lann
rol
sons
ht
(2)

d as
a t io
he
to

elopec
of a con

are S
SP. Thes
in co*
rovide c
ing and
of *ach
of the
be us
a sampl
a progr

n statu
types o
the aut

Artif
puter-
A1L,
e tan*
puter-
apabiI
superv
ine t
distin
ed i
e auto
SRI in
s of
f fea
omated

i c i« I
a i at a
LISP,
uaut v
aidta
i t it. s
i sory
00 lb •
ct ive
n a
matte
each
each

turts
-s hoj-

!

L - — - •^-iilltrtiiiü- - - -

•-'•" ,M-mjmK mmmmm.miimvt., I [III •••HID "WWWWW m~~m*—^^

2. SAIL

2.1. Int ro Suit is D

.EAP Cfelaman69j
LNöur60]

onoTj. ön
The re for€,

SAIL has its origins in a merger of LEAP
associative language, and a version of ALGOL 60
unlike most of the other artificial intelligence languages, it is net
LISP-baseo. Insteao. it is a general purpose compiled language with on
extensive run-time library of functions. As befits its ALGOL origins,
SAIL has block structure and explicitly typed. statically scopec
variables. The oata types available include INTEGER, REAL, STRINGS of
arbitrary length, structure, pointer, LIST, SET, ITEM, and aggregates
of the previous (i.e., ARRAYs).

Some of the
separately be low .
t he capab il i ty for
CCO0ASYL71] data
the system building facilities,
current stanaardizatiun efforts

more important features of SAIL are discussec
These include the associative data base facility,

of SAIL as a host language in a CODASYL uSdge
caie management system, the control structures,

F inally , a summary is presented of

2.2. Associative Data base

SAIL contains an associative data base facility known as LEAP
which is used for symbolic computations This enables the storage and
retrieval of information oased on partial specification of the dato.
Associative data is stored in the form of associations which are
ordereo three-tuples cf ITEMs» aenotea as TRIPLES. Examples o* TRIPLES
are :

FASTEN XOR
FASTEN XOR
FASTEN XOR

NAIL
SCREW
öOLT E

CQV HAMMER;
EQV SCREWDRIVER;
iV PLIER,

Associations may be conceptuaIizee as representing a
form

relation of the

or
Attrioute XOR Object EQV Value
Attrioute (Object) = Value

Most programming languages (e.g., LISP)
associative-like mechanism:

Given: Attrioute,Object
Find: Va lue

provide the following

However, SAIL enaoles the programmer to specify any of the components
of the association, ana then have the LEAP interpreter search the
associative store for all triples which have the same items in the
specified positions. For example, the
ret rieve 11 items

FASTEN XOR

that can

NAIL

fasten a na iI:
following may be useo tc

An ITEM is a constant and is similar to a LISP atom. Items have
names ana may also oe typed so that data can be associated with them.
An item may be declared, or created during execution from a storage
pool of items by use of the function NEh. For example:

—. "•*»-fc^»-^.

\immmmmmmm

RtAL ITEM VISE;

declares VISE to be an item which may have a datum of type reel
associated with it» The datum associated with an item is obtained by
use of the function DATUM. Thus, DATUM(VISE) might be interpreted äs
the capacity of the vise*

In order to deal with items, the user has the capability of
storing them in variables (ITEMVARs). SETs, LISTS, and associations.
The distinction between SETs and LISTs is that an explicit order is
associateo with trie latter, whereas there is no explicit order
associateo with the former. In addition, an item may occur more than
once in a List •

Associations ere ordered three-tuples of items and may themselvts
be considered as items and therefore participate in other associations.
Triples are added to the associative store by use of a v*KE statement
and erased from the associative store by use of an ERASE statement.
For example, the following code could be used to detach assembly 1 freu
assembly 2 and attach it to assemoly 3:

ERASE ATTACHES, XOR ASSEMBLY! EQV ASSEMBLY2;
MAKE ATTACHED XOR ASSEMBLY1 EQV ASSEMBLY3;

The motivation for using an associative store is a flexible search
and retrieval mechanism. Binding Booleans and Foreach statements are
two methods of accomplishing these goals*

The binding boolean expression searches the associative store fcr
a specified triple and returns TRUE if the triple is found and FAL-L
otherwise. The aim of the search is to find an association which meets
the constraints imposed by the specified triple. If seme of the
components of the triple are unknown (such components are preceded ty
the special item BIND), then a successful search will result in the
binding of the designated component. For example:

IF FASTEN XOfc BIND OBJECT E&V PLIER THEN PUT OBJECT IN PL1EK!SET;

In this case
by a PLIER
PLIER!SET.
assoc i ati on •
bound.

the store is searched for an object that can be fasteneo
and if such an object is found, it is placed in the stt

Note the use of the item variable OBJECT in the
A successful search will result in this variable beinj

The FOREACH statement is the heart of LEAP. It is similar to the
FOR statement of Ai_G0L in that the body of the statement is executed
once for each binding of the control variable. For example:

FOREACH X | PART XOR B747 E8V X
DO PUT X IN B747!0RDER!SET;

AND DATUM(X) < 3

In this case, assuming that the datum associated
quantity at hand, the associative store is se
B747 of which there are less than three on
placed in

which "there are less
the set S747!0RDER!SET.

with each part denotes
searched for all parts of a

hand* These parts are

2.3. 5at3 Management f_a.c.iiiiy

Unlike other artificial intelligence languages, SAIL has the
capability of being used with an existing data base management system
(DBMS-10 iDECJ) to handle large data bases stored on external storage.
An interface exists CSamet76J which allows SAIL to be used as the oata
manipulation language in a CODASYL based data base management system.
SAIL is relatively unique in this respect in that COBOL CC0B0L74D has

•wiaft*

"

almost been exclusively used as the data manipulation languaae (DKL) of
such systems. This situation is not surprising since examination of
the aata description facility of the CCDASYL report reveals a very
stron, similarity to the data division of COBOL* Nevertheless, there
have oeen some attempts to use FORTRAN (CStacey74D, [RAPIDATA2).

fed
pas
of
thi
to
r eq
col
cap
set
ace

C ur
dec
the
Tan
typ
v ia
«hi
c an
bee
m or
cer
thi
D ro

I
tur
sin

Bo
s t
avo
ues
lee
abi

JN
ess

S
ren
isi

u
age
e

a
le
al

ome
e t
toi
s i
hib

dea
es.

ole
ask
ic
t s
t io
lit
ION
i ng

U Ur
ay nan
an r
is r

curre
(the

ns of
y for

and
e xte

AIL h
tly,
ons *
ser
men t
f rom
GET),

ob ta
lOC at
s ra
ban t
n re
s t ne
i ti ve

as
th
SA

to

the
he

ini
e t
the
wo
cor

st

a d
st,
ic
equ
ath

K
set
nde

a m
is
IL

bu
tern

da
ha

ng
emp
r
i ns
d
rat

ata
a f

stcr
ests
ere

pro
ackt
inte
i lai

INT
a st

echa
onl

al so
ilo
. »h
ta D
s no
ano

or»r
unwi
tanc
type
eg/

ma mp
ull p
age a
shou

umber
ol ems
racki
rs to
ng an
tRSEC
orage

ni sin»
y wo
has
an i

en eve
öS e (
conv
ther
y sto
«lay,
es of
s ca
that

ulat
roce
Hoc
Id n
some
rai

ng
rel
in-

TION
mor

LEA
rks
a re
n-co
r th
i.e.
enie
ins

rage
es

a r
n b
i s g

i on
dure
at io
ot b
as

sed
prob
atea
core
can

e th

P. f
for
coru
re a
e us
, he
nt M
tanc
for

pec i
ecor
e re
ene r

langu
capa

n, an
e dif
point
by pa
lern
reco
data
be p

an on

ace si
cl i it:

folionin.,
y which allows parameter

o recursion. Second» processing
ficult. In a CCBOL-oasea systex
ed out by CParsons7Aj. In order
rtial satisfaction of Boolean
CTaylor76D), the user must build
rds. Third, there should be a
base so that operations such 0s

erformec without the overheao of
ce for any record.

or bui Id
internal
st ru ctu

ata base
er obtai
locates

ay of ke
e of thi
the var

ally wh
d type,
fetched
ally fol

ing as
memor

re cap
. In
ns an
it vi

eping
s reco
i ous
en he
Alter

from t
lo.ee.

socia
y due
aoi I i
a COE
insta
a a f
it in
rd ty
field
wi she
na t i v
he da

How

11 ve
to i

ty w
OL-ba
nee
IND a
temp

pe.
s; h
s to
e ly,
t a ba
ever f

aata
mp lern
hich
sed d
of a
no f e
orary
Of co
owe ve
keep
insta
se .
the

oas
ent at
enao

ata b
rec

tcnes
mem

urse,
r» I track
nces
In fa
cost

es •
ion
les
ase
oro
it

or/
r.e

his
cf
cf

ct,
i s

orietly, the SAIL interface provides a SAIL recora structure
declaration for each record type that has been defines in the data La^e
management system. Primitives exist for the creation ana modification
of such records. The dynamic storage allocation capability of SAIL
enables the creation of several instances of each recora type each of
which is identified b> an entity known as a recora pointer.

länaj
i s t
e xt ra
which
is i
EwtCT
s t rue
[= eec
f unct
s true
NEXT
the
a poi
aoded

Asa
emen
o t
ct a

i s
aent
RICA
t uri
h7G3
ion
t ure
wh ic
LIST
nt er

to

n examp I
t system
raver se
n inte^e
ä member
ified b
L for
ng f aci
st ructu
to add
LISTX h

l) is of
x data s
to t he

th i s i ns

e of
, co

a
r Q3

of

the
li ty
re)

it
aS t
type
t rue
head
tanc

the
ns ide
se t n
ta it
the s
he o
data

(kn
we de
ems
wo fi

RECO
ture)
of a

e.

use of •
r the ' i
amed •••' .'
em krv.. .*.
et. tue
wner re

item
own as
fine a d
to the
elds - t
RD'POINT
. The f
n i nstan

MJL a
11 >*1
P' I ER

ar P
er. ac

crrd*.
I 11> US

a RE
ata s
front
LEMEN
ER (a
uncti
ce of

s a
ng
ow

ART
t i

w
TRY
COR
tru
of

T w
nd
on

hos
prog
ned
NUM
nsta
AREH

D!CL
c tur
a L

hich
pcin
ADDT
STX

t lang
ram fr
oy a w
f rom

nee of
OUSE,
Since
ASS an
e know
ISTX s
i s of

ts to
CLIST
and t

uage
agme
AREh
eac
the
hav
SAI

d si
n as
t rue
typ

anot
has
he

1 n
nt .
OUSc
h P
set

ing
L h
mi la

LI
ture
e I
her
t.o
inte

a d
T

re
ART
oc
th

as
r t
STX

NTF
ins
arg
ger

ata
he
cor

r
cur
e
a

o a
a

The
GER
tan
ume

t

base
t ask

d ana
ecoro
re nee
va lue
data
PL/1

na a
cata
ana

ce of
nts -
o Le

RtCOROfCLASS LiSTX(INTCGER ELEMENT;
RECCRi '.POINTER (LISTX) NEXT);

PKOCEDURE A&DTOLISTCtF. •'->;. «1.6 R ECORD !POINT ER (L I STX) HEAD;
»frTYfc-.Ä VAL);

BEGIN
RECORDfPOINTER UIS1*', TEMP;
TEMP := NEW ! ELEKf.NT tLI S fX);
LISTX :ELEMENTCTEMP] := VAL;
LISTX :NLXTCTEMP3 := HEAD;
HEAD := TEMP;
END;

The COEOL/DML ana SAIL encodings are given below The critical

rc-
^fljbdfc^i ». i A i

.1,11.. ..„.I III „I II Ul„l,

difference is the step "Add PARTNUM in PART to result
immediately obvious how the concept of a list would be
COBOL.

list." It is not
implemented in

COBOL Pro-ram:
MOVE

NLXT:

ALL!F0UND

IN WAREHOUSE. ELECTRICAL' TO INDUSTRY
FIND WAREHOUSE. RECORD.
IF SUPPLIER SET EMPTY 60 TO NONE!SUPPLIED .
FIND NEXT PART RECORD OF SUPPLIER SET.
IF ERROR-STATUS = 0307 60 TO ALL!F0UND.
6ET PART.
Aud PARTNUM in PART to result list.
60 TO NEXT.

SAIL Program
INDUSTRY := "ELECTRICAL";
FIND!CALC(WARcHOUSE);
IF EMPTY!SET<SUPPLIER) 60 TO NONE!SUPPLIED;
WHILE TRUE DO BEGIN

FIND'NEXT(PART,SUPPLIER);
IF ERROR'STATUS = 0307 THEN DONE;
6ET(PART);
ADDTOLI ST(HEAD,PARTNUM);
END;

2.4. Csoirgi S.$ryc£yres.

In aodition to the ususal control structures associated with
ALSGL-like languages (e.g., FOR loops, WHILE loops, case statements,
recursive procedures, etc.), SAIL has capabilities to enable parallel
processing, backtracking, and coroutines. In SAIL, a process is °
procedure that may oe run indepenoently of the main procedure. Thus
several processes may ue run concurrently. Note that the main
procedure is also a process.

A process is created with a SPROUT statement as follows:

f.PRGUT(<item>,<procedure call>,<options>)

where <item> names the process for future reference, <procedure call>
indicates what the process is to do, and <options> is used to specify
attributes of the SPROUTed and current process. Unless otherwise
stipulated (in <options>), a SPROUTed process begins to run as soon «s
it is SPROUTed and in parallel with the SPROUTing process.

Similarly, there exist primitives which result in the suspension
of a process, the resumption of a process, and in the blocking of a
process until a number of other processes have terminated. These tasks
are accomplished by the SUSPEND, RESUME, and JOIN primitives
respect ively.

SUSPEND and RESUME have as their arguments single items while JOIN
has a set of items as its argument. These items are the names that
have been set up for the process by an appropriate SPROUT command.

For
follows:

example, a procedure to tighten a bolt may be defined as

ITEM P1,P2;

SPROUT(Pi ,6RASP(HAND1,SCREWDRIVER));

--"- •

*"•"- I II» ^^^^^mmmmmmmm

SPROUT(P2 »GRASP (HANDe.BOLT));

J0INKP1, P2>);
TURN(HAND 1 , CLOCKW1SE);

Since SAIL runs on a single processor computer system, true
multiprocessing is not possible. Instead, the SAIL runtime system
contains a scheduler »hich decides which process is to run and for he»
long. The programmer makes use of the <options> field of the bPRCoT
statement to specif/ information which the scheduler uses to determine
the next process to be run. Such information includes time quantum
sizes, priority, whether or not to immediately run the SPROUTec
process, etc.

A process may result in the binding of ITLI*VARs by use of <-
MATCHING PROCEDURE, which is basically a Boolean procedure. When one of
the parameters is an unbound FOREACh itemvar, then upon success the
parameter will be bound . The matching procedure is actually SPROUTtc
as a coroutine process and SUCCEED and FAIL are variants of RESUME
which return values of TRUE or FALSE respectively. In addition, FAIL
causes the process to terminate whereas when the matching procedure is
callea by the surrounding FOREACH via backup» then the orocedure is
resumed where it left off on the last SUCCtED.

For example, consider a box
fasteners (nails, regular screws,
is to obtain Phillips screws. This can be achieved by the
YATCHINo PROCEDURE which returns a different Phillips screw
it is invoked.

cont ain i ng
bolts» nut s

number of
cks, et c .)

different
The g oaI

following
each t ime

Note th
bound.

MATCHING PROCEDURE GET'FASTENER (7ITEMVAR FASTENER , F ! TYPE);
BEGIN

FOREACH FASTENER | FASTENER IN bOX AND
TYPE XOR FASTENER EQV F!TYPE

DO SUCCEED;
FAIL;
E^D;

it FASTENER is a FOREACH ITEMVAR which upon success will ue

backtracking is supported by variaDles of type CONTEXT. However,
the programmer must specify the points to which backup is to occur (for
example» recall SUCCEED). State saving and restoring is achieved ty
use of CONTEXT variables which act as pointers to storage areas uf
undefined capacity in which are stored the entities to be saved and
restored. Actual state saving ana restoring is accomplished by use of
the primitives REMEMBER and RESTORE.

Processes mat communicate with each other by use of the SAIL event
mechanism. This is a message processing system which enables the
programmer to classify the messages and to wait for certain events to
occur. Events occur via the CAUSE construct which has as its arguments
the event type, the actual notice, and instructions with respect to the
disposition of the event. Similarly, there is a construct known as
INTERROGATE which specifies a set of event types and instructions with
respect to the disposition of the event notice associated with the
desijnatec event types* A variant of this facility has been usec
extensively in the implementation of the Stanford Hand Eye Project
[Fe loman71 J .

:.—•— f-^:-

wm—1"•," ""• 1^tIIH.»WUI.WIIWJIJJI'.l..l'l I I m«H*pimi' •

2.5
features which SAIL includes many features which are

building. Assembly language statements
SAIL statements by use of the

A numoer of different files which are
prograir can be specified via use of REQUIRE statements.

regula r
construct s.

specif ied via

The statements:

designed to aid in system
«ay oe interspersed with
START'CODE and CUICK'CODE

to be used with the

RtQUIRE "TOOLS" LOAD!MODULE;
REQUIRE "CAhLIBC1,3D" LIBRARY;

Mill cause SAIL to inform the loader that the file TOOLS.REL must c.e
loadeo. In addition, the file CAMLIE on disk area C1»33 serves as a
library and is searched for needed routines.

The statement:

REQUIRE "HEADER.SAI" SOURCE'FILE;

will cause the compiler to save the state
and scan HEADER.SAI for program text,
scanning of the original file resumes at a
the REQUIRE statement. This feature
dealing with libraries since in this case
EXTERNAL aeclarations thereby freeing the
such MOTK and possiole errors«

of the current input file,
When HEADER.SAI is exhaust«!,,
point immediately following

is particularly useful whei
the REQUIREd file can contain
application proorammer from

A rather extensive conditional compilation capability is
associateo with SAIL. This enables the development of large programs
which can be parameterized to suit a particular application without
compiling unnecessary code and thereby wasting memory for progriir.
segments which are never used. This capability is used to enahance 0
macro facility to include compile-time type determination; for loops,
while statements! and case statements at compile-time; generation of
unique symbols, ano recursive macros. For example:

DEFINE GRASP(SIZE) = CIFCR SIZE
;EC 1

ENDC3;

> 1 THENC VISE

results in the definition of a macro named 6RASP having one fornn.1
parameter. SIZE. The result is the name of a tool that is appropriate
for the size of the item that is to be grasped - i.e., a vise in case
size is greater than 1 (assuming size is measured in centimeters, etc.)
and pliers otherwise. For example:

TC0L1 := oRASP(IO.O);
TO0L2 := CiRASP(0.5);

will result in the following statements:

TOOL! :s VISE;
T00L2 := PLIERS;

Note that the choice is made at compile-time and thus the programmer
need not be concerned with the available yrasping mechanisms Thus the
program compilation step can be used to aid in the writing of the
program. The example illustrates the importance of such a feature when
certain tasks can be achieved by similar, yet not identical, means.

SAIL also provides an excellent interface with the operating
system. This enables its use for real-time applications such as
control of external devices. In fact, interrupts can be handled ano
the user has at his disposal all of the I/O capabilities that an
assembly language programmer has. This enables the development of

»laü^Ai^hitttfiiMiMtaMnMM H*mami^mm*^*am<m*a*i*XM 1ilimi.ni »in 1 - v _JlllA±_

r — •'•-•'•••' •'-•"• -••!.• •niiiiii mi i ^mmmmmmmmmmmmmm

programs ranging from scanners to mechanical arm controllers*
addition to compatibility with assembly language fleouggers, SAIL has
high-level breakpoint package known as bAlL CReiser7SJ.

In
a

.6. S tandardiiaiian

under
The re
SAIL
captur
Partie
develo
mac hi n
The la
progra
An ext
struct
data b
YAINSA

urr
bo

i s
k no
e
u la
p a
e s.
ngu
IPS
ens
uri
ase
IL.

fcnt ly
th th
an ef
wn a
the
r th
UTÜ

age i
will

ive r
ng f

c apa

, S
e T
for
s
tea
e
uag
e
s c

ha
un
aci
bil

AIL
fcNtX
t un
MAIN
ture
ease
e th
orie
onsi
ve t

t im
li ty
ity

nas o
CfaBN

derwa
SAIL
s th

of
at is
nt ati
ce rat>
o be
e li

I
of SA

nly
EXEC
y at
Cwi

at
inte
cap

on
ly d
modi
brar
t i
IL

been
3 an
SUM

I cox
make
ract
able
of t
iffe
f ied
y 1
5 .st
c i »e

impl
o TOP
EX to
763.

SAI
ion w
of b

he pr
rent
in o

s be
ill u
., L

emen
S-1C
de v
Th

L a
ith
eing
c je c
thö
rder
ing
nee r
LAP)

ted on
CTOPS

elop a
e goa I
n att
the op
run o

t is t
n SAI
to be
provi
tain w

will

the
103
Ian
of

ract
e rat
n a
owa r
L a
cap

ded
neth

be

PDP-
opera
cuage
that
ive
i ng s
larg

ds mi
nd e
able
as

er th
inc

10.
ting

s 1
proj
la ng
ystc
e n
ni -c
xi s t
of c
is
e as
orpc

It
sy s

ir i lo
ect
uage
m) a
urr.be
ompu
i ng
ompi
a r
soci
rate

runs
terns,
r to
is to

(ir,
nc to
r of
te rs.

SAIL
I i na .
ecoro
at ive
d in

t • - : r -rrg-s«»««, XJLJLZ^-.;..:-^..-.-. •...--- -• ^ah.-af --i. d^Mii';.

lb* use ftaiiz si Lioausass

3.1

proce
is an
I ambd
recur
imp le
compu
resut
FORTR
chang
gener
origi

USE
LISP <
s s in _,

imp le
a ca le
s i ve
ment at
t ati on
ted in
AN as
ed con
at pu
nal el

CMcCar
langua
men tat
ulus .
functi
ions o
al pa

a fir
a pra

s id era
rpose
egance

thyb
ye d
ion
McCa
on t
f L
raui
st v
ctic
Dlyt
pro

03, C
evelo
of pa
rthy*
heory
ISP
»m (
er sio
a I pr

so t
^r am»

Levin65
ped by
rts of
s inten
as a t

relied
i.e., n
n of LI
ogrammi
hat tod
ing la

John
Alon
t ion
heor
exc

o it
SP
ng t
*y L
ngua

We i ss
McCa

zo Ch
was

y of
lusiv
erati
wh ich
oo I .
ISP i
ge w

rran6 73
rthy a
urcn's
to re
comput
11 v u
on) , w

was
Howeve
sane
hich n

, Csik
t MIT
work

cast
at ion.
pon r
hich,
not

r, LIS
x t reme
everth

lossy76D), a I
in the late 5C
CChurch41] in
the e legar. •

Thus, t h T i
ecur si on as
although elega
compet11 i ve w
P's character
ly powerful
eles s retains

he most interesting features of LISP «re

(1)

(2)

(3)

The language is practically devoid of syntax; all
constructions in LISP fall into two categories: atoms and
compositions of atoms.

data arc interchangeable, since they are
in the same format. Therefore, in LISP it is
one function to construct another function as
execute it by indicating to the LISP system to

an existing function's
jü or augmented by another

at run-time. In fact, a function
if appropriate care is

is canable
exerc ized .

Program .na
repres ent ed
possisle for
data, then
regard it as code; alternatively,
code may be examined, modifie
function at run-t" ' **
self-modi fication

Memory allocation ano management are. automatic and
transparent to the user, except where the user explicitly
desires to influence them, with the exception of ar-ays,
there are no space declarations to be made, freeinc the
programmer from the details of space allocation, ano
§enerally allowing for the unlimited growth of any given
ata structure. (For the most part, LISP data structures

have no size or complexity constraints.) Used memory which
is no longer involved in the computation is recycled
automatically by a garbage collector either on demand from
the user at specified points or automatically.

ist
'i,
the
of

rs t
the
nt,
ith
has
ano
its

U> LISP i s a
f uncti on
with any
a rgume nt
LISP sy
s tand-alo
Typically
speedup w
languages
i nterp ret
DOS sio le
i nte rpret
p roduc tio

n in
of

LliP
to b
stem
ne
». c

hi ch
, or
ed
to

er,
n ap

te rpre
one ar
data

e reya
s in
machi n
ompila
make s
even
and c
retai
whil

pl icat

ted
gume
stru
rded
clud
e c
tion
LIS

with
ompi
n t
e
ions

langu
nt, (
cture
as c

e a
ode

p ro
P com
well

led
he f
obtai

ace . T
EVAL X
as it

oop an
compi
for

vides
pet iti
-coded
code
lex ibi
niny

he
), s
s a
d ex
ler
int
an

ve
ass

may
lity
the

syst
uch
rgum
ecut
wh i

erpr
ord
with
emb I
be
an

spe

em
that
ent
ed.
ch
eted
er

ot

r ia
inte
d p
ed

proper
calli
cause

Howe ve
will

f un
of ma
her c
ngua ge
rmi xed
ower
requir

is a
ng EVAL
s that
r, most
produc e
eti ons .
gni tuJe
omp i led
. Since
, i t i s
ef the
eo for

(5) LISP remains recursive, while also accommodating iterative
algorithms via a so-called PROG feature, both recursion and
iterative programming are illustrated in subsequent
sections.

(6) Because of the technique LISP uses in storing local and
global variaoles, some very powerful context-switching can
be carriea out, providing a fast way to enter and exit
hypothetical planning environments and to cause the

L, ilüiiija ,„• .. •• • .,„. .-:•.. .^.., _—. mtmmm

r T
wxm "^"~

behavior of a program to vary
environmental context«

as func t ion of its

3.1.1. WISE Dälä SiCy£iure

LISP's data structure! called the S-expression, is simple, yet
extraordinarily f lexible, proviaing a substrate upcn which a programmer
may aesi^n his own complex data structures. An S-expression is either
an "atom" or a "CONS node". An atom can be regarded as either a
variaoU, a constant Ca passive symbol), or both. There are no
declarations in LISP; new atoms are simply admitted to the system «s
they are scanneo at the input level, and atoms with the sane name are
guaranteed by the system to be unique (i.e., they have the san.e
internal pointer, or address).

The other type of S-expression, the CONS node, provides a means of
structuring atoms and other CONS nodes into hierarchical data
structures. A CONS node is ordinarily implemented as a single computer
word (say, 36 bits long) which contains a left pointer, calleo its CAM«
and a riant pointer, called its CDR. COKS nodes are created dynamically
via the function (CON» X Y), where X ano V are any other S-expressiens,
or passively (as aata constants) via the construction (X.Y). CCNS noaes
can be composed to form arbitrarily complex hierarchies, the bottommost
elements of which are usually atoms (i.e., pointers to atomic
S-express ions) •

To illustrate, suppose we wish to represent a particular tool, Be)
a screworiver, in a LISP data structure. We first decide upon a narre
for it, say, SCREwDKIVER-1, and what characteristics of it we wish to
encode. Let us suppose the characteristics are: type is Phillies, col«r
is yellow, shaft length is 10 centimeters, and head size is 0.3
centimeter. There are many ways to encode this in LISP; the external
representation of the one we adopt here is:

((NAME SCREWDRIVER-1)
(TOOL-TYPE SCREWDRIVER)
(STYLE PHILLIPS)
(SHAFT-LENGTH 10 CM)
(COLOR-CODING YELLOW)
(HEAD-SIZE 0.3 CM))

Here, all symbols such as NAME, YELLOW, etc. are LISP atoms. (So too
are the numoers; however numbers are not entirely equivalent with
symbolic atoms.) The particular hierarchy we have adopted is a list of
lists. where each sub-list consists of an initial atom describing that
sup-list's role in the structure, and a list of the information
associated with that role in the description*

This structure would be graphically represented as follows:

10

mhm —— •»1,'ii.inl

"

4 4
1*1*1-
4— -4

4 4
->l*l*l-

4- —4

• —-4

• 4
•>l*l*l-

•—-4

4 •
•>l*l*l-

4- — *

4---4
>l*|/|
4---4

• 4 4 4 4 • 4 4 4- • 4 4
M*l->t*|/l l*l*l->l*l/l l*l*l->l*l/l
• —-4 4 — 4 4- —4 4~ -4 4-—4 4~ -4

STYLE PHILLIPS NAME TOOL-TYPE

SCRENDRIVER-1 SCREWDRIVER

4 4 4 4
l*l*l->l*l/l
4---4 *---4

COLOR-COCI M
YELLOW

I
4--- 4 4—-4 4—-4 4-~4 4- 4 4---4
|*|*|->M*|->|*|/| |*|*|->|«|*|->|»|/|
4 4 4 4 4 4 4 4 4 4 4 4

IHAFT-LENGTH 10 C CM I 0.3
MEAD-SIZE

I I
CM

and could be constructed passively (as a fully constant structure) via
a quoted S-exDression:

'((NAME !>CREWDRIVER-1) (TOOL-TYPE SCREWDRIVER) ...)

or dynamically via CONS :

(CONS (CON;, 'NAME (CONS 'SCREWDR1VER-1 NIL))
(CONS 'TOOL-TYPE (CONS 'SCREWDRIVER NIL))

(CONS 'HEAD-SIZE (CONS 0.1 (CONS 'CM NIL)))
)

Since it would be a rather harrowing experience to construct very lar^e
S^express ions dynamically in this fashion, LISP provides a spectrum of

acce s s in» higher-level functions for constructing, modiTying ana ac<
S-express ions. Some highlights of these Mill be covered briefly in a
subsequent section. For our example, a more concise expression of cooe
which would build this structure dynamically would be:

(LIST (LIST 'NAME 'S CREWDR1VER-1)
(LIST 'TOOL-TYPE 'SCREWDRIVER)

(LIST 'HEAD-SIZE 0.3 'CM)

Presumably, having defined this tool, we would want to record it
as one available tool in a large supply of tools. Again» there would be
numerous methods of doing this. One way would simply be to maintain a
§lobal list of all known tools in the system, and to add this entire
escription as a new tool on this list:

(SETQ NEW-TOOL '((NAME SCREWDRIVER-1> (TOOL-TYPE SCREWDRIVER) ...))
(SETO MASTER-TOOL-LIST (CONS NEW-TOOL MASTER-TOOL-LIST))

(SETQ is one of LISP'S assignment statements.) Alternatively, we might
wish to put only the name of the screwdriver on the master tool list,
and associate all the remaining information with property DESCRIPTION
on SCREWDRIVER-1's k£BB££lX lilt*

11

tfto^i^tit^Mi _ - —

ltm •!«»«. III! I . *-mw~*-mm-»-•-« 11 | ,

3.1

(PUT 'SCREwDRIVER-1 'DESCRIPTION
'((TOOL-TYPE SCREWDRIVER) ... (HEAD-SI

(SETQ MASTtR-TOOL-LIST (CONS 'SCREWDRIVER-1

Ers£££i^ kisis

ZE G.3 CM>>>
MASTER-TOOL-LIST))

Any LISP aton« may have a property list (built up *roir CONS nodes).
Conceptua 11y« the property list allows the attachment of an aroitrary
number of attribute-value pairs to the atom, thereby serving to
describe the characteristics of the real-world entity represented Ly
the atom. This is a powerful feature for any programming language,
since it allows "micro-oescriptions" of atoms which ordinarily Mill net
be seer by the processes that manipulate the hierarchical structures in
which the atom participates. These microdescriptiens can be maintained
and accessed by the functions PUT i GET and REKPRüP in case more aetail
about an atom is aesired.

Properties are attached to an atom via the function (PUT <atcm>
<öttributfc> <value>), looked up via (GET <atom> <at t ri but e>) , ar.j.
removed via (REMPKOP <atom> <attribute>)• We have seen one way to
associate the screworiver information with the atom SCREWORIVEP-1 usin^
property lists. Another, more convenient way would be to split apart
all the various attributes of this atom, making each a different entry
on the property list:

(PoT
(PuT
• • •
(PuT

'SCREwDRI VER-1 'TOOL-TYPE 'SCREWDRIVER)
'SCREwDRI VER-1 'STYLE 'PHILLIPS)

'SCREWDRIVER-1 'HEAD-SIZE '(C.T CM))

To determine SCRfcWDRIVER-1's heaa size, we would then «rite: (CtT
'SCREWDKIVER-1 'KEAD-SIZC). If such an attribute of SCREWDR1VER-1
exists, it will be located and returned.

3.1.3. E§B££S£DlätiSit kliE ßälä Struc.J.y££ *4DiByt4tiDa EUQttiOQS.
we include here a definition and brief example of several of the

more stanoard, hiyh-level LISP functions that pertain to data structure
creation, mootficotion and searching.

3.1.3.1 . (ö£3w.w.R I 11

If S-expression X is a member of S-expression Y (assumed to be a
list), return "TRUE", otherwise, return "FALSE".

EXAMPLE: (MEMBER 'SCREWDRIVER-1 MASTER-TOOL-LIST) returns a pointer to
the atom T ("true") if SCREWDR1VER-1 is on the
MSTeR-TCOL-LIST, and a pointer to the atom ML ("false")
otherwise •

12

Mw^MMMiMttMMtaiiiiteMMMiaMiMlWMiiiriliiMattM «•MT

r .1.11'WIIUIW«. •• •'••«. iJI"»»w

iÄSSQt £ 12 ^.1 .3.2
Y is a list of lists. Y is scanned» comparing the first item of

each sub list to X until a match is found, or until Y is exhausted. In
case a match is founo« ASSOC returns the entire sublist whose first
item matched X.

EXAMPLE: (ASSOC 'HE«D-SIZE '((NAME SCRE WDR IVER-1) ...
CM))) woulc return the sublist (HEAD-SIZE 0.2

(HEAD-SIZE C.
CM).

3.1.3.3. (§yasi X Y Z)

are arbitrary S-expressions. SUfaST creates a
occurrences of Y in Z are replaced with X s.

new cot./ X» Y and Z
of Zf whe re all

EXAMPLE: (SUBST 0.2 3.3 '((NAME SCREWDRIVtR-1) ... (hEAD-SIZt C.2
CM))) would produce a new structure for our screwdriver,
identical in all respects to the original, except that its
head width would be 0.2 instead of 3.3.

3.1.3.A. ueeEMp, i n
X anc Y a re

appending Y onto
lists. A new
the end of X

list is created which is the result of

EXAMPLE: (APPEND '((NAME SCREWDRIVER-1) (STYLE PHILLIPS)) '((COLOR-CODE
YELLOW) (HEAD-SIZE 0.3 CM))) would produce ((NAME
SCREWDRI VER-1) (STYLE PHILLIPS) (COLOR-CODE YELLOW) (HEAD-SUE
Li.3 CM))

3.1.4. LISP »aia Ixess
In addition to atoms and CONS nodes, most LISP systems include the

following other data types:

1. integer numbers
2. real numbers
3. strinjs
A. arrays
5. octal nuiDDers (for bit-level manipulations)

Some versions of LISP _.-. (notably MACLISP EMoon743) have highly developed
numerical and trigonometric facilities and
compilers geared to the efficient
software.

generation
accompanying
of "number

OptImi zin*
crunch in^"

3.1.5. LISP. £UQ£lifiCl

A LISP "program" is a collection of functions. No function is
syntactically declared as the "main program". Functions are generally
typeless (i.e., no distinction such as "integer", "real", "string",
etc. is made). However, each function may be declared so that its
calling arguments are passed to it either evaluateo (as in most
programming languages), or unevaluated. Except for this, distinction,
there is no need for function-related declarations.

13

-

V>v.

, , i wm^m^ "1 »"

A function is regarded as simply another
function by assigning

eakin
one typically defines a
as the atom s value«
nameless, and is identified by

Strictl if. spt
form :

9.

type of data. As such,
to some atom the function
the function itself is

(LAMBDA <argument-list> <body>)

When e "lambda expression" is stored as the value of an atom* we say
that a function has oeen defined. Although the implementation details
governing how a lambda expression comes to be associated with an atcm
vary considerably« one common format for defining a function in LISP
i s :

(DtFoN <name> <arguments> <body>)

DEFUN
assign:
annihiI at ed

is o macro which creates the appropriate lambda expression ana
is it to the atom <name> as the function's body. A function may De

or alterea simply by reassigning the value of the atom
which represents it. Another virtue of this separability of a function
from its name is that nameless functions can oe created and passed «. s
arguments to other functions without having to DOther to name them if
they are needed only once.

To illustrate LISP functions, let us define a function of t.o
arguments» (LOCATE-ALL <tool-type> <tool-l ist>), which, given the name
of a tool type (e.g.» SCREWDRIVER)» and a master tool list» will search
the tool list for tools of the specified ty^e and report back a list of
all tools of that type it finds. Framing this as a recursive function»
we write:

(DEFUN LOCATE-ALL (TYPE MASTER-LIST)
(COND ((NULL MASTER-LIST) ML)

((EQUAL (GET (CAR MASTER-LIST)
(CONS (CAR MASTER-LIST)

(LOCATE-ALL TrPE (CDR MASTER-LIST))))
(T (i_OCATE-ALL TYPE (CDR MASTER-LIST))).))

'TOOL-TYPE) TYPE)

that is« if (COND) the master list is (or has been reduced to) NIL»
then report back "nothing"; otherwise* if the next item on the master
list (its CAR) is of the correct type (as determined by the GET), then
add this tool to the list to be reported (i.e.» CONS it onto the front
of this list) and proceed with the search on the remainder of the list
(its COR); otherwise (T...)» simply proceed, without recording the
current tool.

v ia
A Ite rnati vely» we

the PKOG feature:
could express this algorithm in iterative form

(DEFUN LOCATE-ALL (TYPE MASTER-LIST)
(PROG (RESUuT)

LOOP (COND ((NULL MASTER-LIST) (RETURN
((EQUAL (GET (CAR MASTER-LIST* 'TOOL-TYPE) TYPE)

(SETQ RESULT (CONS (CAR MASTER-LIST) RESULT))))
(SfcTi MASTER-LIST (CDR MASTER-LIST))
(GO LOOP)))

vESy^T)

i.e.» enter a PROG (akin to an ALGOL begin-end block)» defining one
temporary local variable, RESULT; then» while the master-list remains
non-nil» repeatedly examine its next item, collecting those with the
correct type on the RESULT list (via SETQ, LISP's "assignment
statement"), scanning to the ntxt tool on the master list (SETQ
MASTER-LIST (CDR MASTER-LIST)).

14

•jklfflMtitaMBmtfkMiiiäM mmi^m ».«*•••

'• '• ' • • "mr~"***mm • ' •••-« UM i in um i i •••i mi mmm

3.1.6. The. PgOG Ffiityrfc

As just illustrated. LISP accommodates i terat ive ly-ph ra sto
algorithms via a construction called a "PROG". A PROG has the form:

(PR06 <local-variables> <statement-1> ... <statement-n>)

As a PROG is entereu, the local variables
the scope of the PROG* and each is
statements which comprise the PROb's bod)

•falls

(if any) a
ini tialized

are
off

are allocates for
to MIL. Next» the

sequentially executeo
the bottom" of the PROG

a GO or RETURN is
interpreted as labels

execution. When a öO
occurs, and sequential

(evaluated) until execution either
(an implicit exit from the PROG)* or until
encountered. Statements which are atoms are
within a PROG, ana are ignored during sequential
is encounteredf a branch to the specified laoel
execution proceeds from that point.

Since a PROG introduces some temporary variables which must te
reclaimed as the PROG is exited, there must be some way of informing
LISP that a PROG is aoout to be exited. The function RETURN is used for
this purpose» informing the system that a PROG is being exited» and
specifying what value the PROG is to return to the calling environment.

PROG
program.
effici ent
recurs i ve
'"impure",

ippear at any
will typi caI ly
apt point

resu It
in

in
LHP
more

s may be nested and may
The PROG construction
implementation of an algorithm than
implementation. Although some feel that PROG makes
it is in reality the feature which is probably most

responsible for LlSP's present widespread acceptance in both the AI
community and elsewhere.

the correspondinj
LISP

3.1.7. USE 32££fiS

compi
more
resul
f inal
inter
inter
f unct
recog
form
power

be co
given
LNorm
whi ch
<char
any
scann
possi
poi nt
del im

Most
le-t

tha
t , b

r
pret
medi
i ons
ni ze

whi
ful

Most
ndit

ch
an69
con

> is
comp
er's
ble
whe

iter

LIS
ime n
n a
ut an
esult
er, a
ate f

ar
s» mac
ch i
imple

LISP
ioned
aract
3, th
ui tio
dete
utati
inpu
to

re LI
s, et

P
acr
fu

oth

'is
orm
e
ros
t
men

sc
to

er
ere
ns
cte
on»
t s
sup
SP
c.)

i m v I e m
os and
nction
er S-e
Thus»

!*».•
compi
and e

then
tati on

anne rs
ini t i
in t
exi i.t
the sc
o in t

ana
tream,
erimpo
can mo
. MLI

entations
scanner m<*
which» w

xpression w
when a

valuation i
second to r
led into
valuates th
compiles•
of the mac

support two types of macros:
cros. A compile-time macro is nothing
hen evaluated. computes not a final
hich» when evaluated» will compute a
macro is encountered by the LISP
s performed (the first to compute the
un the intermediate form), when Lü>F
actual machine code» the compiler
em once to obtain the intermediate
This technique is a very general and

ro concept.

are
ate a
he i
s a f
anner
he in
what
This

se a
del a
SP CS

qui t
n ar
nput
aci I
to

put
ever
sty

ddit
not h
mith

e modul
bi trary
stream

ity cat
call <f
stream.
<funct

le of
ional s
er Ian
703 is

ar» in
comput

• Fore
led (RE
unc tion
<funct

ion> re
table-d
yntax o
guage's
an exam

the sen
ation u
xamp le»
AD*AC <
> (no a
ion> is
turns i
riven
n LISP

synta
Pie of

se t
pon

in
char
rgum
rre

s sp
scan
inpu
x (
this

hat
enco
Wise
> <f
ents
e t
lice
ner

by

they
unter
onsin
uncti
) whe
o pe
d int

make
vert t
redef

can
ing a
LISP

on>) »
never
rf orm
o the
s it
o the
ining

3.1.8. yariaBie $c.gßind

LISP variable values are derived as a function of the run-time
environment rather than as a function of lexical environment. As a
program executes» there are two times at which new variables are
introduced» or "bound": (1) at function entry time (these are the names
of the function s arguments that are mentioned in the LAMBDA

15

tm ••«-'-•• — tfk^&al

expression), and (2) at PROG entry tine (i.e.« the PROG s temporary
variables). Variables are "unbound" at the corresponding exit times:
when a function returns or when a PROG is exited.

e xe
"9 I
e xe
int
cal
r ec
use
lis
mai
bou
dyn
at
(on
at
far
int

At
cut i ng
obal"
cut ion
roJuce
IS. Al
ordeo
r-a c ce
t, .tr
nta ine
nd (i
ami c c
the ti
es wh
run-ti
ther
o", or

the
)»
to

t t
Q VI
I th
on

ss ib
om m
cat
•?•!
alii
me f
ich
me w

bor

"to
any

the
here
a LA
e se

a
le I
ost

run
ar

ng e
a net

hav
h ich
the
rows

p-le
var

Wl
MBDA
vari
stru
ist
rece
-tim
e o
nvir
ions
e no

is
call

the

vel"
iable
stem.
II b
or P

ables
ct ure
of CO
nt to
e, th
n th
onmen

were
b ind

depen
ing h
vari

of
s w

Th
e a
ROG

and
ca

NS n
lea

e qu
e A
t, r

def
ing
dent
iera
able

LIS
hich
eref

po
on
the

lleo
odes
st r
esti
-LIS
athe
ined
at t

up
rchy
s of

P (w
rec

ore«
ol of
the

ir as
the

. All
ecent
on of
T) i
r tha
. Thi
he cu
on t
. In
anot

hen
eive
at
gl o
cur

soc i
"a

va r
. Si
wh a

s e
n th
s me
rren
hei r
this
her .

no
val

any
bal a
rent
ate a
ssoci
iable
nee t
t var
xc lus
e lex
ans
t lev

def
mann

f unc
ue s
g iv

t oms
seq

va lu
at io
loo

his
iabl
i vel
i cal
that
el)
i ni t
er,

t i on
are

en m
p lus

uence
es <"
n lis
kups
list
es ar
y det
scop
"fr

will
ions
one f

is c
thoug

oment
all t
of

bindin
t" (A-
consu

is dyn
e and
ermine
e of v
ee" v
a ssume

in f
unc t io

urr e
ht o

ou
he a
f unc
gs")
LIST
It
ami c
are
d oy
aria
ari a

a v
unc t
n "p

nt ly
f eS
ring
t oms
t icn

are
>, *
this
ally

net
the

b Us
o U s
a I UP
i ons
eexs

oy changing the system's A-LIST pointer while inside a function,
that function's entire environment can be altered. For this reason,
LISP is a very powerful tool wherever hypothetical reasoning (involving
switches to altered contexts) is necessary, "ost other languages either
lack such an ability, or make it difficult to carry out. In LISF,
context switching and "taking snapshots" of contexts to which execution

to bt returned are very natural i s operations.

3.1 .9. L.JS.P I/O

Traditionally, input/output has been LISP's
systems define at least the following I/O-related

weakest link. Host
funct ions:

(READ) read an S-expression
(READCH) read an individual character
(PRINT X) print S-expression X, skipping to a new line
(PRIN1 X) print S-expression X on the current output line
(TERPRI) skip to beginning of new line on output

While these functions provide adequate formatting control, most LlSFs
are deficient in file-handlina operations. (INTERLISP CTeite lman743 is
the exception, with more highly developed interfaces to the TENEX
virtual operating system). We regard this deficiency as more of a
historical accident than as an inherent problem of LISP (since adding
these features is simply a matter of writing the code). In fact, there
are efforts underway for improved multiple-file interaction and rancom
access facilities both at f* IT (MACLISP) ana at Warylana (Wisconsin
LISP).

3.1.10. Garfeaafi £sll«UlfiQ

Since LISP data structures can i,row in unrestricted ways, a
crucial part of any LISP system is a conceptually asynchronous process
called the "garbage collector". The role of this process is
periodically to take control, mark parts of storage that art still
referenced by the ongoing computation, then reclaim all storage that is
not so referenced (garbage). Garbage collection is an unavoidable
overhead of any system with no declarations, and in which oat«
structures can grow in unrestricted ways.

one potential
system runs out of

disadvantage of
free storage,

garbage collection is that, once the
a garbage collection »yst occur.

16

^v*-.^^.

Since a garbage collect causes current computing activity tc te
suspended! if LISP is controlling a real-time process* disastrous
consequencs can accrue* Such problems can normally be avoided t>y
forcing the system into a premature garbage collect prior to entering
real-time critical sections of computation. Alternatively* there is
growing interest in truly asynchronous (parallel) garbage collection
techniques which could obviate the problem altogether (see CDi j kst ra7i, 3
for instance)*

3.1.11. LXiE as a Se^frtfiQlaingd. S.y.üe.m.

LISP
After this
software can

interpreters are typically implemented in assembly language.
facility has been brought up* most other supporting

LISP itself. Typical software includes
basic
be written in

(1)

(Z)

A £fimE "> i£ £ which will generate (potentially quite gooo)
machine code for LAMBDA expressions (i.e.* functions) and
PkOGs. Typically* the LISP compiler will be written in
interpreted LISP* then used to compile itself. The compiled
version is subsequently used as the LISP system compiler.

A debug
i nteracTi
(toyet her
entry ti
return ti
of varia
variab le'
potent ial
system i
(in part
languages
complex s
i nteracti
be conte
produc tio

ya ck
we ~3e
with

me* a
me. Mo
bles
s va lu
s of L
s the
) for

for
oftwar
on wit
nded w
n wi th

age
veto
thei
nd
st L
(i.e
eis
ISP

mos
LI

the
e. I
h sy
ith;
in t

whi
pmen
r ca
(tog
ISPs
••.
abo

are
t ad
SP s

ef
n pa
stem

ua p
he c

ch will
t of fun
I liny ar
ether wi
wi11 al
inform
ut to b
essentia
vanced t

reputa
ficient
rti cular
compi le

ro
on
aa» c
t ines

ctio
gume
th t
so a
the
e c
Uy
o da
t ion
and

. th

an b
of t

rmi t
ns. T
nts)
hei r
ccomm
user

hange
unl im
te),

as
rap

ere i
loade
e dev
he LI

the
ypic
can
retu
odat

wh
d).
ited
and
one

id
s no
rs a
e lop
SP s

trac
ally,
be t
rned v
e the
enever
The
(the

a re re
of

develo
time-

nd li
ed and
ystem

ing
func t
raced
alues

tra
at?

debug
INTER
spons
the
pment
consu
nker s
put
itsel

and
ions

at
) at
'ing
ac ;d
ging
LISP
ible
best

of
ming

to
into
f .

(3) An S-expression editor (or system editor
makes possible tfie'cönvenient editing of
maintenance of files*

interfa ce) which
S-expressions and

3.2. 21£Kfi£L.ASNE.a

while LISP is generally accepted as the standard for computing in
AI* it ooes not supply the user with any a-priori conceptions aoout
intelligence. LISP is simply the blank tablet onto which the user must
write his theory of intelligence or control. Not surprisingly* this
resulted in numerous reinventions of the wheel in areas like database
organization, problem solving* hypothetical reasoning* and language
understanding. Most reinventions were at a fairly low level* but
occurred often enough to warrant some investigations into some of the
undercurrents of AI programming techniques.

MICROPLANNER [Sussman, winograd* Charniak 713 is the outcropping
of some of these undercurrents* particularly where automatic problem
solving is concerned. MICROPLANNER was written in 1970-71 as a
small-scale implementation of ideas originally proposed by Hewitt in
1969 CHewitt693. The intent of the language was and is to provide some
automatic mechanisms of database organization, context, and heuristic
search •

MICROPLANNER is
syntax is essentially
envi ronment ,
MICROPLANNER

the user
(he reafter

implemented entirely
LlSP's syntax, and

"••» full acc~
abbreviated

in LISP. Because of this, its
- while in the MICROPLANNER

has full access to all of LISP* To distinguish
MP) functions from pure LISP

17

wmmm -— -

T ^mmmmmmmmm

functions» the convention
about 50 of them) with "TH"
notion in MP).

is to prefix all Mp functions (there art
(standing, we presume, for "theorem", a kty

The most salient features of MP are these

(1)

(Z)

(3)

Comput
c cl I in
c omput
whenev
goa I
normal
expert
Whenev
dot aba
pat ter
t ried
This i
stands
vtry ii
e xpert
in the

ati
9 .
ati
er
i s
ly
s w
er
se
ns
in
s a
ro
odu
s
po

on l
fun

on (
a go
pos
mea

ith
a n

of e
mat

turn
rod
par
lar
by
pula

n MP
ct ion
often
a I re
ted
ns a
^atte
eed i
xpert
ch t
unti

icaU
ad igm
syste
name;
ti on

i s l
s b
ca I

qui r
to

la
r ns
s po
s I
he
I on
y di

of
m wh
pro

at I

nduc
y t
led
es s
the
rce
wh i c
sted
ook i
neeo
e su
ffer
"na

ere
blem
arge

ed by
hei r
"pat

oluti
enti
popu

h adv
, the
ng f
• Ea
cceed
ent c
me ca
the r
s a re

pa
nam

tern
on,
re
lat i
ert i

sy s
or
ch e
s, o
omp u
Hin
eque

sol

t tern
es.
-d i re
a pat
syste
on o
se ea
tern s
those
xpe rt
r unt
ting
*", s
stor
ved b

* r
In
cted
tern
m •
f
ch o
ea re

wh
so

i I a
para
i nee

nee
y an

a t her
this

i nv
de sc

"Enti
p robl
ne 's
hes t
ose
I ocat
U ha
di qm
it JI

dn't
ony mo

th
sty

ocat
r it i
re s
e m-s
e xpe
hrou
adve
ed i
ve f
fro

a ke s
kno

us e

an uy
le of
ion"),
ng the
ystem"
oIving
rt i se •
gh the
rt i sed
s then
a ilea .
m the

f or a
w any
xpert s

Mr automatically maintains a context-sensitive database of
both factual assertions and the experts just mentioned. Trie
factual database is a collection o.f highly indexed
n-tuples. expressed as LI3P S-expressions. Any one n-tuple
("assertion"), or collection of n*tuples can oe
"associatively" accessed by presenting the lookup routines
with a pattern containing zero or more variables. Only
those facts that are deemed active in the current
"context", regardless of whether they physically exist in
the memory, will be located.

MP o
nono
deci
(tit
heur
rtf e
"Lac
disc
alte
back
i n i t
reco
the
not h
main
t ree
sugg
to s

oe s
et erm
si on
he r a
is t ic
re nee
kup"
ards
rnati
up pr
ia I
rd of
syst

ing h
ta in,
) for
es t
uch a

all
inis
of a
rbit
s),
, an
to

the
ve,
oces
(bad
all

em
ad e

at
eac

late
UtOR

the
tic
ny so
ra ril
reco

d the
that

cur re
and

s, a
) ch

c han
pi cks
ver v)

leas
h pro
r, th
at ic

bookk
prog ra
rt in
y» or
rds t
n proc

deci s
nt (fa
then

11 CO
oi ce
ges to

up
one wr
t imp I
b lern i
ere ar
cont ro

eepina
mming.
MP, t

under t
he alte
eeds. I
ion poi
i I ing)
attemo

mputati
and the
the da

from t
ong.
icltly,
t attem
e both
I.

re
Th

he
he
ma
f a

ch
ts
ons
fa

tab
he
Thu
an

adv

qui r
at i
sys

cont
t ive
fai
the

oice
to

i lur
ase
dec

s»
ent
to

anta

eo for
s, anyt
tern ma
rol of
s for p
lure e
systern

, sele
proceed
rformed
e point
is ma i
i s i on p
KP can
ire goa
so I ve .

ges and

de
i me
kes
user
os si
ver

aut
cts

aga
be

are
ntai
0 i nt

be
1 tr

As
dis

pth-f i
t he re

a ch
-spec i
b le fu

cause
omat i c

the
in. In
t ween

undon
neo) ,

as t»*
•v a I d

ee < se
we

advant

rst ,
is a
oice
f ied
tur e
s a
ally
nex t

the
the

e (a
and

to
arch
wil I
age s

In the foilow in. These are the three main contributions of MP. in the following
sections we highlight and illustrate some of the specific features of
this problem solving language.

3.2.1. The MICRO PL ANNER Database

Conceptually, the MP database is divided into two segments: facts
intothree

"consequent" theorems.
and theorems. theorems are further classified into three categories:
"antecedent"
Theorems are

t heo rems,
disc ussed

"erasing" theorems/' and
in sect ion 3.2.2.

Both facts and theorems are entered into the database via the
function THASSERT; an item is deleted from the database via the
function THERASE. Facts are fully-constant LISP n-tuples. Thus, to
represent our screwdriver in MP, we might augment the database as

18

 - • — •• SMK

— — • • --- • . iummmmmm^****

*olIOMS :

(THASSERT (TOOL-TYPE SCkEWDRIVER-1 SCREwORIVER))
(THASSERT (STYLE SCREWDR IVER-1 PHILLIPS))

(THASSERT (HEAD-SIZE SCREWDRIVER-1 0.3 CM))

Database
THGOAL. Therefore,
knowledge of SCREWDRIVER
of the Torn:

lookups and fetches are accomplished via
if at some point in a MP program*

1's head width, we could write a

the function
we requi red a
fetch pattern

(THbOAL (HEAD-SIZE SCREWDRI VER-1 (THV X) (THV Y)))

For our example, this would respond with "success" (i.e., a fact hhich
Hatched this template was located in the database, and it would produce
the side effects of binding the MP variables X and Y to 0.3 and cr,
respectively» The THV form is used in MP to signal references to
variaoles (all else is implicitly constant).

Ever
whenever

also oein
ohysica 11
changed t
present ,
copy of t
database:
the fact'
the fact
was firigi

*S

y !*c
a fac
y.
b
y»
o "pr

THAS
he fa

it
s log

(i .e
Dili*

t and t
t or th
esent

ut mark
esent".
SERT Oo
ct. THE

ca uses
ica I co
., if t

THASSE

heorem
eorem
in th

pres
ed as
If th

es not
RASE e

a fac
ntext
he fac
RTed).

in the
is THAS
e datab
ent. I
log ical
e tact
hing, c
xerts
t to be
marking
t i s be

MP database has a context
SERTeo, if such a fact is not
ase, it is created and then m
f the THASSERTed fact is
ly QP.1 present| its logical s
is already logically and ph
ut reports a "failure" to sto
opposite effects on facts
logically masked, either by

t or by actually physically
ing THERASEd at the level at

mark i
al re

ar*ed
pres

tatus
ysi ca
re a
in

chang
deiet
whi ch

ns •
acy

as
ent

i s
Uy
ne »
the
ir.a
ing
it

Context markings allow KP to keep track of the history of the
logical status of each fact and theorem. This enables the system to
bdck up to prior context levels, thereby restoring the database to the
c or resoonui ng prior state. Thuj». although there are mechanisms for
makins permanent bataoase changes (e.g., after some segment of MP cooe
is Cunfiuent that what it has done is absolutely correct), normally
(except at the top level), THASSERT's and THERASE's are not permanent;
instead, they normally exist only for the duration of some stretch cf
planning or hypothetical reasoning.

3.2.2. tJlC.R.O.P.LA*b£E Ibegrerns

THANT
rat he
in in
r espo
fac tu
THERA
any
that
r espo
capao
pat te

All
E.
r th
tern
nds.
al d
SI KG
fact
thes
nse
i lit
rns

rea so
THERA
on by
al fo

A
«t aba
theo

ua I p
e two
to an
>. A
match

nine (i
SINb,

name,
rm, exc

THANTE
se of a
rent is
att ern

c lass
y parti

THCOM
its in

n fac
and T
The t
ept w

the
ny pa

wh ich
es o
cu lar
SE t
vocat

t, a
HCON
hree
ith
orem
tter
ered

mat
f t

req
heor
ion

11 c
SE "
typ

rega
i s

n wh

ches
heor
uest
em r
patt

omput ati
theorems
es of th
rd to th
triggere
ich mate
the THER
its inv

ems res
), they
esponas
ern.

on) in
" whic
eorem .
e type
d by t
hes it
ASEure
oca tio
pono
repres
to THG

MP
h ar
a re
of

he T
s in
fro

n pa
spon
ent
OAL

i s ca
e cal

ind
event
HASSE
vocat
m the
ttern
t aneo
a gen
reque

r ried
led by
i st ing
to wh

RTion
ion pa
data

. In t
us ly
e ral i
sts wh

out
patt

uisha
ich e
into
tte rn
base
he se
(not
nte r r
ose g

by
ern
ble
ach
the
. A
of

nse
in

uct
Ocl

Because of this last interaction between THGOAL s and THCONSE, a
TH30AL can amount to considerably more than a simple database fetch.
In MP, when a THGOAL is issued, the system first attempts to locate the
desired goal directly as a fact in the database. If this fails, and
the THGOAL request has indicated that it is permissible to do so, MP
will begin searching for THCONSE theorems whose invocation patterns

19

•**• «^MAMMMMM ——.

(THANTE <optional-name> <variables> <invocation-pattern> <bcey>)

(THERAS1N6 <optional-name> <variables> <invocation-pattern> <touy>)

(THCGNSfc <optional-name> <variat.les> <invocation-pattern> <Lody>)

4s a brief illustration of the uses of
wish to implement the following three cap*
a new screwdriver is oefined to the s/steir
name to be added to the master tool list; (
deleted from the system, automatically rex
tool list, and also remove all its ace
whenever, during some assembly task, a T
<some screw> <some threaded hole>) is annou
for, and return the name of an appropri
(basea on the screw's style and heao size),
a MP THANTE theorem, cart (b) by a THERASIT.
THC0NSE theorem as follows:

each of these, suppoie w«
bilities in MP : (a) whenever
, automatically cause its
b) whenever a screwdriver is
ove its name from the masttr
ompanying information; (c)
HGOAL of the form: (SCREw-lN
ncea, automatically »earth
ate screwdriver for the task

Task (a) will
S theorem, and

be modeleo
part (c) cy

(THAf.Tt (X) (TOOL-TYPE (THV X) SCREWDRIVER)
(SETQ MASTEK-TOOL-LIST (CONS (THV X) /,ASTER-TOOL-LI S T)))

(THERASING (X) (TOOL-TYPE (THV X) SCREWDRIVER)
(THPROG (ST CC ... HS HSU)

(SETQ «ASTER-TOOL-LIST (DELETE (THV X) MASTER-T00L-LI ST))
(THAND (THGOAL (STYLE (THV X) (THV ST)))

(THFKASE (STYLE (THV X) (THV ST))))
(THAND (ThGOAL (COLOfi-CGDt (THV X) (THV CO))

(TnEKASE (COLOR-CODE (THV X) (THV CO)))

(THAND (THGOAL (HEAD-SIZE (THV X) (THV HS) (THV HSU)))
(ThERASE (HEAD-SIZE (THV X) (THV HS) (THV HSU))))))

(THCONSE (SCREW HOLE) (SCREW-IN (THV SCREW) (THV HOLE))
(ThPROG (ST HS HSU DRIVER DST DHS DHSU)

(ThGOA^ (STYLE (THV SCREW) (THV ST)))
(ThGOAL (HEAD-ilZE (THV HOLE) (THV HS) (THV HSU)))
(ThGOAL (TüOu-TYPE (THV DRIVER) SCREWDRIVER))
(THAND (THbOAL (STYLE (THV DRIVER) (THV DST)))

(EQUAL (THV DST) (ThV ST)))
(TKAND (THGOAL (HEAD-SIZE (THV DRIVER) (THV DHS) (THV

(EQUAL (THV DHS) (THV HS)))
(THRETURN (THV DRIVER))))

DHSU)))

3.2.3« Ü£y.£i§Ü£ §.üi2ä£}££ 2l ItSüIIÜ 5kSii£äilSC
it is possible, by including special indicators in THGOAL,

THASStRT and THERASt calls« to influence the order in which theorems
are applied, or in fact to indicate whether or not they should be
applied at all. Specifically, a THGOAL (similar remarks apply to
THASStRT ana THERASL) with no. Indicators will fail unless the requestta

L
20

-'- •- - '-- ~- —' - - • -•*•"—-L>-———
.^

mmm mm mm—

goat
be ap
purpo
a "fi
by n
t heor
P rope
has
list
the g
to 1
creat
setti
more
who
f Ute
will
whi ch

can
p t ie
ses.
Iter
ame)
ems
rty
the
M1 11
tner
nser
e or
ng
st ru
i n
r ina

dis
to

be sa
a). (
) If
"or

those
lists
for»
be a

al th
t lim

modi
in wh
cture
the

and
cuss
encod

t is f ied
Thi s> is
th ere

a speci
hen c
proper

) will
o f a

pplieo
eorem b
iteo he
fy anot
ich a c
d confi
past ha
rec omme

la ter.
e heuri

excl
the

is an
fie "
fi Ite
ties
be ca
speci
first
ase a
ur ist
her N
ol lee
aurat
s pro
ndati

CON
stic

usi v
form
ind

reco
r is
pass
ndid
fie
(in

re a
ic i
P th
tion
i on
ven
ons
NIVE
know

ely
we

i cat
mmen
inc
the

ates
reco
ord

ttem
nf lu
eore
of

on t
to b
are
R pr
leds

by aa
nave

or pr
dat io
luded
filt
for

mmend
er) b
ptea.
ences
m, th
theor
he Da
e the
a ste
ovide
e.

t aba
be

esen
nil

in
eri n
appl
atio
ef or

Bot
. Al
e f
ems
sis

mo s
pin
s a

se fet
en US
t, it
st" of
a THGO
^ test
icatio
n list
e any
h form
so, si
ilter
the use
of pa
t rel i
the r

more f

ches
ing
has
the

AL r
(th

n.
t al
oth

s al
nee
fac

I ves
st
able
ight
lex i

(no
for

e i the
orems
eques
eorem
If t
I the
er t
low t
one M
ility
can

expe r
expe
di re

ble e

theo
ill

r th
(r
o

ca
t,
s
he
or em
heor
he
P

pr
evol
ienc
rt).
et i o
nvi r

tn

rents
ustr
e fo
e f er
n ly
n po
i ndi
s on
ems
r ogr
eore
ovia
ve i
e (
Alt

n f a
onme

will
at ion
rrr. of
encta
those
ssess
cater
that
fror,

ammt r
m car.
es a
nt o a
e.g.»
hou>,n
S at
nt in

?.2.<». SfciE£biQ9 and 6ä£kyp. in ÜE

Search and baexup in HP can occur for two reasons: (1) sent
THCONSE theorem which was run to accomplish a THGOAL fails, and another
theorem must oe invokea (restoring the environment to the state at
which the first theorem took over), or (2) some object to whicn the
system has committee itself is oiscovered to be inappropriate, giving
rise to the need of locating another candidate object and retrying.
The THGOAL-THCONSE mechanism underlie the selection and backup where
theorems are concerneo, but object selection is handled differently,
via the THPROG MP construction.

In the previous THCONSE example, the goal was to locate some
screwdriver which satisfied some set of features (in that case, the
correct STYLE and HLAD-SIZE). This was accomplished by a THPROG which
"conjectures" that such an object, say X, exists, then proceeds to
determine whether or not this conjecture is true. In the example above,
the THPROG searched for a screwdriver of type and size which matched
the type ano size of the particular screw which was to be inserted* For
the sake of illustration, suppose the screw was of type Phillips of
head size 0.3. Then, the THPROG in the example above would have
performed essentially the same starch as the followina, more specific,
THPROG :

(THPROG (X)
(THGOAL (TOOL-TYPE (THV X) SCREWDRIVER))
(THGOAL (STYLE (THV X) PHILLIPS))
(THGOAL (HEAD-SIZE (THV X) C.3))
(THRETURN (THV X)))

i.e.,
object
an ooj
this).
object
have
unt il
choose
THGOAL
keep
object
propay

i nt roduc
bei no

ect whlc
At tha

found.
been sa
some THS

anot he
, or eve
track o
s remain
ateo bee

e a
se

h i
t p
Con
tis
OAL
r
n t
f w

to
aus

n init
arch ed
s of T
uint,
t inue
fied
fai Is

cand id
wo, bu
ha v ob

De te
e of b

ially
for.

OOL-T
X wil
with
(in
(in

ate) .
t not
ject
sted.
ad ob

unc
Fir

YPE
I be
this
whi c
wh i c

S
all

ft i
Thi

ject

ommitte
st, out
SCREWD
tentat
candid

h case,
h case,
i nee s
three,

s curre
s is th
select

o v
ain
RIV
ive
ate
th
th

ome
th

ntl
e s
ion

ariatle. X, to represent
a candidate for X by find

ER (the first THGOAL 0
ly bouna to the first such
until either all THGO

e candidate is a success),
e system must

objects may
e system must
y considering,

back up
pass the fi
automati ca

and what ot
Ource
s

of backups which

the
ing
oes
an

ALs
or

and
rst

her
are

To keep track of theorem and
maintains a decision tree, THTREE,
every decision maoe, ano what to oo in
failure. The strength of THTKEE is. of

from having to worry aoout failures programme r

object selection oackups, MP
which is essentially a record of
case the decision leads to a

of course, that it frees the
if there is a solution,

21

aa» «UH Aitaiaiiili

m

it Mil
of THT
on t h
any ot
i mposs
subgoa
is a
depth-
an ent
correc
part
wholes
occur.
to do

I eventu
REE is t
e search
her subg
ible,
Is canno
I so qui
first or
i re b ran
t. It *
of the
ale resy
Unfortj

i n HP . C

all
hat

(i
oal
to
t c
te
gan
ch
oul
tr

nth
nat
ONN

y be
it

.e.,
s ca

fa
ommj

awk
i zat
of T
a be
«i
e sis
ely,
iVfcfi

found
impose

one s
n be a
or i cat
nicate
-a rd
ion of
HTREE

more
retai
of la
this
has a

by a
s an
ubgoa
ttack
e co
late

in i
THTR
tobe
desi r
nina
rge p
is, a
bett

n exh
often
I mus
ed).
mp lex
rally
ts b
EE. 0
undo

able
the

arts
gain,
er co

austi
unde

t be
This
ly i
in t

ac kup
ften,
ne t w
to be
oart

of th
very

nt rol

ve s
sira
sol V
make
nter
he t

te
one

hen
abl

s w
e TH
dif
str

ea re
ble
ed i
sit
twin
ree .
chn i

Sffio
in f
e to
hich
TREE
f i cu
uc t u

h. T
dept
n it

di
ed

The
que
11 f
act
dis
are

do
U,
re l

he f
h-f i
s en
f fie
solu

M»
Dec

a i I u
most
card

cor
es
if n
n th

atal
rst
ti ret
ult ,
t ions
orga

ause
re wi

of
only

re c t,
not
ot im
ese r

weo k
orae
y oe
if

» s
ni i a

of
11 c
it
the
so

haue
pos s
espe

nes s
r ing
f ore

not
i nee
t ion

the
a use

WaS
to J

that
to

ible
c ts.

2.2.5. Qib^r £fiB re.s£Qt aiiye. JJP CäEäfeÜl £i £s

To complete Our description of MI C ROPLANNER, we include t«.o
representatives of the other functions available in this lan^uagt»
together with a brief example of each.

2.5.1. CTHFiND <moge> <variab±es> <£kel> <oodv.>)

the which sy stem
essentially a THPROC

THFIND provides a way of finding all objects in
satisfy a certain set of criteria. A THFINt is
which is made to fail artificially after each successful location of an
oDJect which satisfies the criteria. <mode> indicates how many oojects
are to be locateo (e.g., "ALL'S "CAT-LEAST <count>>"....) ; <variables>
serve the same role as THPROG variables; <skel> specifies what form to
return as each object is found; <body> contains the THGOAL's, etc.
which define the criteria. THFIND returns either a failure (in case
<mode> number of objects could not be found), or a list of <skel>'s,
each <skel> corresponding to one successful object thus found.

EXAMPLE (THFIND ALL
(THGOAL
(THGOAL

(X) (THV X)
(TOOL-TYPE (THV X) SCFEWDRI VER))
(STYLE (THV X) PHILLIPS))

would return a list of all tools which were Phillips screwdrivers.

.2.5.2. ilöüESSAGE <variables> <eattern> <booy.>)

t ree)
"hook
such
THKES
THMES
(its
prov i
check
it w
THMES
c an
t o oe

ASS
t T
S" w
fai

SAGE
SAGE
<bod
des
i ng
ill
SAGE
c orr

rea

ubuoa
HMESS
hich
lures
<pat

who
y> wi

a w
for t
neve
(in

ect t
tt emp

Is
AGE
wil

P
ter
se
11
ay
hem
r
son
he
ted

are
st

I in
ropa
n>).

pat
oe e

of
bef

run;
e MS
prob

de see
at erne
te ree
•jate

UDO
te rn
xecut
äQli

ore na
howe

y the
lern a

nded
nts

bac
n b

mat
ed).
siea
nd.
ver.

THM
nd t

int
hav

ai lu
k u
eina
ches

Thu

HD*
if

ESSA
hen

o (i.e .
e no e
res bene
p to t

bac ked
the THF

s, the
possib

11 yoes
someone
GE is pr
cause th

"on
ffec
ath
he

up
AIL
THME
le
well
gets
epar
e pa

the
t.
them
TH*£

to
patt
SSA6
prop

oen
int

ed
rt o

way dow
They ar
in t he

SSAGE v
by a

ern will
E-THFAIL
lems wit
eath th
o troubl
for), t
f the tr

n" t
e ess
goa I
ia a

THFA
take

com
hout
e TH
e ben
he 1
ee be

he g
ent ia
t ree

(THF
1L,
cont

binat
act ua
MESSA
eat h
HMfcSS
neat h

CJ I
Uy

o s
AIL
any
rcl
ion
U>
GL,
the
AGE
it

22

•iMiäMMii f-- lifcrähiVmSi

• '• I

EXAMPLE: ... (anticipate difficult
(THMESSACE (X Y.) (CTHV X) WILL

(THGOAL (LUBRICATE (THV X)))
(THGOAL (SCREW-IN (THV X) (THV

a screw)
IN

(attempt a
Y)))) (retry)

y in insertin
NOT TURN IN (?HV O)

remeoy)

(THFAIL

(attempt to insert some screw in some hole)
(report a failure back up to the

THdESSAGE ((THV SCREw) WILL
THHESSAGE)

. NOT TURN IN
(THV HOLE)))

would anticipate« detectt report» and correct a problem» then retry.

I an
I an
dev
def
Alt
pat
sop
to
the
str
par
a sp

T
gua
$ua
elo
ic i
hou
ter
his
ma

n t
ate
tia
ect

CONNIVER

he most
aes was
ge call
pme nt
enc ie s o
gh the
n-d irect
ticated)
i nt «i n
0 switch
a ie s in
1 compu

of the

rec
th

ed
was
f fi
re
ed
» t
num

am
uni
tat
p ro

ent
e re

CO
P

P. a
we

1 n«o
he m
e rou
OHji
son
ions
0 lern

stage
suit
NNIVE
ri nci
s sug
re
ca tio
GSt S
S CO

them
ra the

nee
solv

in the
of McDe
R CMC
pally
gestea
some
n contr
igni fie
mputat i
« work
r than
d not
i ng has

ev
rmot
Derm
•not i
in t
i mpr
ol (
ant
ons
i ng
one

be
gon

ol ut i
t's a
ot t ,
va ted
he ea
oveffie
e • c, • |
featu
ins
or.

at a
undo

e awr

en
nd S

Su
by

r li e
nts
the

re o
täte
it, any
t ime
ne
y.

of th
ussman
s s m a n

the
r disc

i n
patte

f CUNN
s of s

subq
.Ins
simply

e LI
's de

73:
cont

us sio
the

r n ma
IVER
uspen
oa Is
uch a
teca

SP family
velopment

CONNIV
rol strjc
n of TMT
database

t eher is
is its aoi
ded anima t
or alter

n envi ronm
use some s

of
of a
ER's
ture
Hit .

and
more
I i t y
ion,
nate
ent •
mall

CONNIVER is less a programming lani,ua-e than it is a collection of
ideas about control structure. (The language apparently has never been
used for more than one or two significant programming tasks
CFahIman7i]). Because of this, our discussion will omit most
references to syntax, and highlight only the aspects of CONNlVtR's
control structure which are unusual or unique to it.

3.3.1. Fr.4m.g5j Ay;r£y.2ir and Ap;ie.u.

In a conventional programming language (MP included), one function
calls another function either by name or pattern and waits until the
called function returns control. In a conventional lanouage, once a
function returns, that copy of it dies; the function may be calleo
anew, but the new call will cause a new "copy" of the function to
begin. No memory of a function s current status can be preserved across
call-return sequences. This type uf control is usually carriea out
under the control of push-down stacks which record callina arguments
and return addresses; calling a function causes stacks to be pushec,
while returning from a function causes stacks to be poppeo,
annihilating all control information.

in C
rat he
f rame
f unct
its
etc.)
user-
a Iter
free
causi
t o be
c hron
contr
perma

In C
ONNI
r th

wi
i on
f ree
. Th
acce

its
y/ar

not
alt

0 log
01 1
nent

CNNIV
VER
an to
U c
at an

var
ere a
ssibl

own
iab le
he id
er ed.
icall
s fre
ly c

ER.
is

pu
ont
y m
iab
re
e
or
s
ent

Se
y
e t
los

thi
to c
shi
ain
omen
le=>,
two
LISP
anot
to
ity
cond
push
o me
in»

ng s a
reate
nf orm
all

t (e.
to

impor
oat

he r f
ue I
of th
, bee
ed a
ander
any

re q
a s

at io
the

g..
who

tant
a s
unct
ooke
e f u
ause
nd

fr
fun

ui te
o-ca
n on

i n
from
m i
fea

t rue
ion*
d u
ncti
the

popp
on
c t i o

a Di
lied
to a
forma
what

t is
tures
ture.
s f ra
p on
on to
re i
ed a
one
n. T

t diff
"frame

cent
t ion
A-LIS
to re
of a

This
me in
some 0

wh ich
s no
t f unc
funct i
hus , a

e ren
" fo
ral
need
T it
turn
fra
mea
arb

ther
con
cen

t ion
on
t an

t. T
r th
sta

ed t
de

whe
me.
ns t
it ra
fun

t rol
tral
ent

to
y mo

o call
e ca I le
ck. A
0 chara
r i ves
n it ha
First,

hat a f
ry way
c t ion s
is to
st a c

ryttx it
the ne
ment, t

a f
d fu
fun

cte r
valu
s fi

it
unc t
s »
A-L

be r
wh

, ex
xt
here

unc t
ncti
c t i 0
ize
es
ni sh

i s
ion
caus
1ST,
et ur
ich
ec ut
wi th
can

ion
on,
n's
the
for
eo,

a
may
in;
or

ned
i s

icn
out
te

23

••*"-•• • • -•

—-——

numerous suspended functions which may te resumed at the point at which
they last relinquisheu control« or in fact, at an arbitrary labeled
point within t hem .

A
t ec hni
Partie
funct i
act ua I
speci f
s uppos
type
stack-
lives
t he t
to mas
meande

T
whe re
c ont i n
per man
app li c
aenerw
THFIND
f i Iter
amount
possio
c ana i o
for a
testin
e ff ic i
genera
mai nta
which

s on
que
ula r

(on

y fo
ej t
o<
like
on s
r ee .
k an
r in^

e mi
for

, si
the
will
r ev/
o be
ma rk

a rr
ome

Al
d u

of

o d ist in
a f unc

ue, CONN
ent ret
ati on o
tion of

in MP)
ino tes

of time
le to
ates one

more
g functi
ent sea
tors, C
i ni ng "
c ontrols

ght
i

nee
Soe
ery

lo
ing
ang
bra
tho
nma
exe

gui
tio
IVE
urn
f

a
to
ts
in

cal
at

int
ons
rch
ONN
pos

th

ex
terns

con
teii.
), e

sus
a i Cd
, t
tii'tn
nch

Sp
cuti

sh t
n me
K ae
) a
the
Iter
jene
ore

the
I a

a t
i mat
tha

es
: Vt.fi
sioi
e ex

pect,
in t

t ro I ma
in gene
very fa
pended
11 y pre
he MP
t to a
of the
there i
fa c ts
on cont

this
he da
y even
ra I ha
ct in
funct i
sent *
conte

tree o
tree»
s cons
in th
rol fr

he pe r
rely r
f i nes
nd AU
AU-RE

native
rate a
applie

i nit i
"gene
ime t s
e for
n is
be caus

has
li t ies
tract i

manent
eIi nqui
two me
-REVOIR
VOIR f
s. Rat
11 ross
d (a pr
al coll
rator"
uspendi
m of i
pos s it

e of th
some
lists

on of p

abi li
tabas
tuall
s no
the d
on, F
hile
xt s
f CO
and f
idera
e aa
om on

ret ur
shes
thocs

(su
eat ur
her
ible
ocedu
ec t in
f unct
ng it
nt era
le i
is in
rath

"» ,J
oss lb

ty
c
y b
way
a t a

» *
F 1
ehe
nte
unc
ble
tab
e f

n o
con

o
spe
e
tha
can
re
U
ion
sei
cti
n
t im
er
ncl
i li

makes
more c
e retur
of kno

base mu
h e t h e r
s runni
me was
x t s . £
t ions h
overhe

ase in
unct ion

f a f un
t rol, r
f ret u
ns i on).
is in
n ca 11 i
didates
which m
phase),
whi ch

f acros
on oetw
MP, an
acy. TO

e UDO
uding
ties f r

the
ompl
ned
wine
st h
or n
ng.

dSl C
d ve
ad,

sy
to

co
e x
to
whe

a ve
ot
To a
nera
ally
a cce
the
nchr
t he

nte xt
t han i
a ny s
t he r o
mar k i n
t hat
c c o m p I
I w eu
t eve
ss to
system
ony w
next .

c t i on
e se r v
r ni ns

One
the

ng a
bef o

ay wa
in

«ill
s ca
een t
J ca

f ac i
rate
a fu
om su

f r
ing
: A

ve
(of

•'unc
re
ste
CON

loca
Us.
Se ?
lita

mo
net i
ch I

om t
the o
DIEU
r> i
ten
t i on
any
an in
Nl VER
te an

Thi
ene ra
ead
te th
chine
on , T
is t s .

ma r K
n Ap.
uspen
r not
c s wh
?act
i sh t
f r orr.

ry f
limbs
iidriu

itn

he c
pt i on
(f in

mpo r t
cost
(SüCh
det ai
orain

i t
d ret
s mo
ting
to m
e use
ry
RY-NE

in
In

di J
i t

i».h
i :

his
b

oC t
of

»«• -

the

att-
ic

of, t

ly)

leü
a 11

i i,
urn
kt E
•nd
ore
of

for
XT,

C ome ot at ion
comput ati on in
t he orems a
"methods". Except

in CONNIVER is similar
MP. The counterparts of

are, respectively. IF-ADDED,
for differences in

scheme , t he se
illC i IIU , i . l_ A V. C ^ L I \J , WIllClCri^CTJ

pattern-directed invocation scheme,
as the r.P versions. CONNIVER c
gGo l-statement functions, THASSE
respectively, ADO, REMOVE ana FETCH.

in most other
THANTE, THFKASIKG

IF-KEMOVED and
syntax, anc a
three Tunc t i ons

ounterparts of NIP'S
RT, THERASE and

reoaro s t c
and TnCON_L

I F-\iEtD£D
more general

are the sane
oatabase •na

THGOAL art,

3»*« L11 j£ie.nc.v. of tng LISP Langya^g EsEÜi.

Bein;, an interpreted languaqt, LISP is slower than, say,
by between one and two orders of magnitude. However, con-gitec
be competitive with a good FORTRAN compiler. *e feel that L*T"
the best of both .crUs, in the sense that the interpreter provides
easy program development and debugging, while the LISP compiler
transform debugged cooe into production-level efficiency.

FOKTRAN,
LliP con
provi dt s

"c r
can

MICROPLANNER ano CONNIVER, on the other hand, are inherently le^s
efficient, primarily because of the control structures they superimpose
on LISP. The fdtal flaw with MP is its backup systtm, which can te
extremely slow; compilation will not typically remedy the problem.
r'RFITvPR" is slo- for similar reasons; however, in addition to data
structures, processes must also be garbage collected, and an elaoorate
context tree'must ue maintained. Although these two languaoes contain
many noteworthy features, we feel that neither (as currently
implemented) is appropriate for production app I icatiens .

24

»mim

*mmm*m*^*l

3.5. äiaQdacdiiüifiQ si lb« LI&£ LiQfluass tamiix

ÜNIVAC
others
ant ic i
i nclad
there
the s
are ac
about
c ha rac
FinaU
wri tte

here are
1106, 1

• teinj
pate no
i ng mic
is «.xact
emant ics
c es sec ,

one da
ter iiea
y, most
n i n LIS

LI
108

a
s

roc
ly

o
sue
y's
as
LIS
P i

SP sy s
, 1110

re la
igni f i
ompu te
ont ai
f how
h "1 nc

wort
a lang
f sys
tstlf.

tens
. CD
tive
cant
rs.
alec
f unc
ompa
h of
uage
terns

for the following machines: PDP-1C, PDP-11,
C 6500, 66CD, 1EK 360, 37G. SIG^A 5, ar.j
ly easy language to implemtnt, we wool:

development problems for any machine.
Since LlSP's syntax is nearly non-existent,

t. Although there are minor differences in
tions are defined, and how variables values
tibilities" can normally be ameliorated in
macro-writing, because of this, LISP can b<
which is fairly standard and transportable,

have an accompanying compiler, usuoll:

25

ätmiium*,,

 ^^mmm^mmmmmmmm

ÜSkäted LäDäüääSS

4.1. AL

AL is a h igh- level
manipulatory tasks, developed
Ldoorätor; LFinkel7«,3. It is a
runtime support for controlling

programming system
Stanford at

SAIL-Mke
devices•

for specification cf
Artificial InteIligenet

language and induces lar^t

Trajectory calculation is a crucial feature of manipulator/
control. AL contains a wide range of primitives to support efficient
trajectory calculations. As much computation as possible is done fit
compile-time ano calculations are modified at run-time only „s
necessa ry .

öesiaes a oiniensionless scalar data type (i.e., CE*L), AL
reco^nwes and manipulates TIME. MASS and ANGLE SCALAPs, di irension 11 ss
and typed VECTORS, ROT (rotation), FRAME (coordinate system), PLAt.-
(region separator) anQ TRANS (transformation)
composition of variables of these types gives
performing calculations of any type of movement.

data types. Proper
a s imp le irean s of

.

Also included are PL/1-like ON-conoitions,
of the outside worlu, and concurrent processes.

which allow monitoring

Examgle^

PLANE p1;

•C statements initializing p1 3

SEARCH yellow

ACROSS
*ITH I
REPEAT

?EG

Pi
NCREM
1NG
IN
FRAME
set _
MOVE

ENT = 3*CM

i SEARCH is a primitive which causes
a hand to nove over a specifiec
area. yellow is a hand >

{ hand moves across plane >
•f everv 3 c • >

set;
ye llow;

ON

MOvE

END.

\. no'iu HI w» c ; o
•C every 3 cm >

< do at every iteration >

r -, i yellow is also coord system of hand J
yel low XOR - Z*CV

< move hano 1 cm down from current
position alon, I-axis >

FOSCc(Z) > 3000*DYNES
DO TERMINATE; < keep in touch with real world }

yellow TO set DIRECTLY; <. meve the hand back to where
it was in a straight line >

26

Afcii'h- •'- .**?:: J

4.2. ÜLI&E

MLISP (meta-LISP) is a high-level list-processing language
developed at Stanford University CSmith703. MLISP programs are
translatec into LISP programs which are then executed or compiled. The
MLISP translator itself is written in LISP.

MLISP is an attempt to improve the readability of LISP programs *«
well as alleviate some inconveniences in the control structure of LISP
(e.g., no explicit iterative construct). Since run-time errors are
only detected by the LISP system (when actually executing the program),
users frequently find themselves debugging the translated LISP code.
This some»hat defeats the purpose of any high-level languaqe.

All LISP functions are recognized ana translated in MLISF, but the
Cambridge prefix notation of LISP has been replaced by standard infix
anc prexix function notation. Instead of (PLUS X Y) one may write X •
Y, ano (F00 'A B C) becomes FOOCA, 9, C).

MLlSr also p roviues a powerful set of iterative statements and t
Idr^e number of "vector operators." Vector operators are used to apply
standard operators in a straightforward manner to lists. Thus, in
1LISP, <1, Z, 3> *3 <6, 5, 4> yields <7, 7, 7>. +3 is the vector
aadition operator and <A, a, C> is equivalent to (LIST A 6 C) in LISP.

E£ä8>ui£i

Given a list of the form <obj1, objZ, • ••> objn>. this function
will return a list of the form <<obj1, holder1>, ..., <ocjn, holdern>>
where holderi is either PLIERS, VISE or NOTHING accordingly as needed
to hold the object. * ...X is an MLISP comment»

EXPR HOLD-LIST(OBJ-LlST);
BEGIN

NEW S;
RETURN

FOR NEW OBJ IN OoJ-LlST
COLLECT

J. EXPR starts a regular func

X local declaration
* RETURN is a unary operator

IF 'SIZE))

END;

(S GfcMOoJ,
THEN

<<0BJ, 'PLIERS>>
ELSE

IF S LEwUAL 10
THEN

«OBJ, 'VISE>>
ELSE

«OBJ, "NuTHlNG>>

OBJ is local to the FOR loop.
OBJ will be bound in turn
to each element of OBJ-LIST.
COLLECT indicates that the
result cf each iteration is
to be APPENDed to the previous
result and this whole list
returned as the result of
the FOR.
LEQUAL 5

X
X
X
X
X
X
X
X
X

27

"--^"-—»—-- - -^-'- - -^-^^

*«3« PQlzi

POP-«, is a conversational language desioneo by R* M. Eurstall and
A. J. Popplestone at the University of Edinburgh [Burstal171j.

POP-* features an Algol-like syntax and draws heavily from LISf.
Integers» reals» LlSP-like lists and atoms (called 'names), function
constants (lambda expressions)« records» arrays, extensible data types,
and run-time macros are supported* A unique feature of the POP-_
system is the heavy use of a system stack» which the user may easily
control to enhance the efficiency of programs*

A full complement of Iist-manipulation, numeric an-
storage-management functions are available*

Suppose we wish to ootain a list of all machinery not
functioning* A useful function would be,

current Iy

COWMEN* sublist returns a list of all elements of argument list xl
which satisfy argument predicate p ;

FUNCTION sublist xl p;
VARS X '
IF nult(xl) THEN nil

i arguments are xl and \. >
< declaration of local, no type >
< just like LISP >

ELSE hd(xl) -> x; <. ha(a) = (car a) >
IF p(x)

THEN x: :sublist(tl(xl>, p)

CLOSE
END;

U(»Ui (J J
i tl(a) • (cdr a), x::l = (cons x I) >

ELSE sublist(tl(xl), p)
CLOSE

A call mifeht then look like,

suDlist(maChine-l ist»
LAMBOA m; not<functioningCm)> END);

which right re turn,

Cpunch-pressl drill-press2 unitlOD

which is a POP-2 list.

4.4. 3L.ISE

«LISP is an extended version of »A4 (a PLANNER-like LISP
derivative) CRulifson 1973D embedded in the sophisticated INTcRLlSP
system. CLISP supports a wide variety of oata types designed to aic in
the flexiolt: handling of large oata oases. Among the data types
supported *rt "TUPLt," "BAG" ano "CLASS." A TUPLE is essentially a LISP
list that can ce retrieved associatively (see below). A BAu is a
multiset, an unoroereo collection of (possibly duplicated) elements.
Bags have been found to be useful for describing certain commutative
associative relations. A CLASS is an unordered collection of

28

mate write •fei .,.*»••

•Mi

non-duplicated elements (i.e., basically a set)«

Arbitrary expressions may be storea In the system data base ano
manipulated associatively. The QLISP pattern matcher Is used to
retrieve expressions In a flexible manner* The system function MATCHUi
may be used to Invoke the pattern matcher explicitly, as In:

(hATCHQQ (<-X <-Y) (A B>>

which causes X to be cound to A and Y to B ("<-" indicates this "neeJ
for d binding")« The patterns to MATCHGQ may be arbitrarily complex,
as in:

(HATCHQQ (A (<-X <-Y)) (<-X (A (B C))))

in which X is bound to A and Y to (B C).

QLISP expressions are
unlike LISP where only
"identical" expressions»
expression by QPUT.

represented uniquely in the data bast,
atoms are unique. To distinguish between
"properties" may be associated with any

(taPUT (UNION (A B)> EUUIV (UNION (B C)>)

The above puts the expression (UNION (B O) unoer the property EQulV
for the expression (UNION A B).

QLISP provides facilities for backtracking
invocation of functions, as illustrated by:

and pattern-directed

(«LAMBDA (FRIENDS JOE (CLASS <-F <-S <-<-REST))
(IS (FATHER SS SF))
BACKTRACK)

This
JOE.
REST will

function will find an occurrence of a CLASS denoting FRIENDS of
F and S will be Dound to the first two elements of the CLASS and

be bouno to the remainder of the CLASS (indicated by "<-<-'
If S is a father of F, then the function succeeds.
current binding of its argument to be used.) BACKTRACK causes
re-invocation of the function with new bindings for S, F and REST until
the function

("$'
_,..,.,.. to be used.)

the function with new bindings for S, F
succeeos or there are no untried 'bindings •

')
the

The user may collect teams of functions
desired circumstances. Many QLISP

optional arguments which

ntiiwni to be invoked under
data base manipulation functions may

. . - denote a team of routines to be used to
perform antecedent-type functions
have

(as in PLANNER).

QLISP provides a general context and generator mechanism similar
to that of CONNIVER. Also provided is a smooth» readily accessible
interface to the underlying INTERLISP system which aids In the
development and maintenance of large systems.

1,
multiprocessing Future plans for QLISP Include

semantic criteria for
syntactic information)« and the atility for the pattern
return more information than a simple match or fail.

pattern matching (as opposed to
primit1ves»
the current
matcher to

29

"'.•••.M • " "'

5« §* äSBiSi

5.1. lDl£2Sy£ii2D

A common exa
features of SAI
variations the
program-segments
the most eficient
language« but mer

Problem statement

Given two distinc
from A2, and in
the example is as

(1) Two hdnost LE
and sensing f

(21 A fixed numbe

(2) A fixed numbe

(4) A fixed numbe

t assemblies (say AT and A2)» attempt to unscrew fc1
oicate success or failure accordingly. The "world" if
sumea to include:

FT and RIGHT, capable of moving» qraspinb» twisting
orce and motion.

r (possibly zero) of PLIERS

r (possibly zero) of VISES

r of "assemblies"

For each PLIERS ano VISE* the data base contains an assertion if
the form. "PLIERS (VISE) # n is «t location (X, Y, Z) and is of
capacity C cm." In addition* for each assembly the data base contains
an assertion of the form» "assembly A is at location (X, Y, z) ana is
of size S cm." As we shall see* the languages are distinguished in part
by the methods each uses to represent such knowledge.

Each example assumes the existence of the routines describeo belcw
in ALGOL-like notation.

ATTACHED(A1» A2) - TRUE if and only if the assembly represented of AT
(hereafter referred to as A1) is attached to the assembly
representeo oy A2 (referred to as A?). The routine has no
side effects.

MOVE(HAND. LOCATION) - Moves HAND* (LEFT or RIGHT) to LOCATION (but
PLANNER'S description of MOVE).

ste

TUIST(HAND. DIRECTION) -Twists HAND (LEFT 0. DIRECTION) - Twists HAND (LEFT or RIGMT) in the given
DIRECTION (CLOCKWISE or COUNTER-CLOCKWISE). The DIRECTION is
oriented looking down the length of the arm. Except for SAIL«
all programs assume a routine called TWIST-BOTH, which causes
both hanas to twist at once.

GRASP(HANt/, OBJECT) - Causes HAND (LEFT or RIGHT) to grasp OoJECT,
whici must oe within some fixed range of HAND (i.e.» the hano
must MOVc to the OBJECT first).

ATTEMPT (ObJ1» OBJt, Al» A£) - Attempts to do the actual unscrewing of
assembly A1 from A2 using objects wBJl ana 0EJ2 (which» in our
examples, are either VISEs or PLIERs). ATTEMPT returns TRuE
if and only if the attempt is successful.

Each program applies the following sequence to solve the problem:

(1) Attempt to unscrew the assemblies using the hands. This entails
ootaining the location of the assemblies» moving the hands to their
respective locations» graspin»» and then twisting.

30

mwuwmWHt •*«*' I' u.—w—•"•I'T—r '-tm^-w •! ,.•»••'

(2) the objects longer attached, then return "success*1

U) An attempt to use PLIERS has failed,
holding one of the assemblies In
appropriate VISE. This search proceeds
In (3).

Try to solve the problem Ly
a VISE. Perform a search for an

In a fashion similar to that

(5) All attempts
"failure".

nave failed. Output an appropriate message and return

31

-'----'•••-^ HB ' JmW.

- - - ;•"•: •

9

5.2. §Ali

5.2.1. SgteiE ££fiS£ä£

c
3
4
5
6
7
&
9

\\

\\ u
15

\S
H
20
21
lc
23
24
25
26
27
2i
29

IS
I!
34
35

J
3ö
39

tt a
44
45
46
47
46
49
50
51

H
J

I*
58
59
60
61
62

INTEGER PkOCEDURE B IGENOUG H (I TE KVA & HOLDER, HOLDEE);

BEGIN

" RtTURN TRUE IFF OBJECT HOLOER IS LARGE
ENOuGH TO HOLD OBJECT HOLDEE "

INTEGER ITEMVAR C, S;

C COP(CAPACITV XOR hOLDEfc);
S " COP(SIZE XOR KOLDEE);
RLTG&.*CDATUM<C) GEG DATLK(S))

END;

INTEGER PkOCEDURE UNSCREW(ITEMVAR A1, A2);

• ATTEMPT TO DISASSEMBLE ASSEMBLY A1 FROM A2, BY UNSCRcWING "

BtGIN

DEFINE fcUNMt = 1;

ITEMVAR V1, PL1, PL2, P1, P2;

INTEGER FLAb;

IF NOT ATTACHEDCA1, Ac) THEN RETURNd); " DON'T BOTHER "

MGVECLEFT, LOCATION XOR A1); MOVECRIGHT, LOCATION XOR At>;
GRASPCLEFT, A1); GRA$P(RIGHT, A2);

" GET BOTH HANDS TWISTING AT ONCF "

SPR0UT(P1, TW1ST(LEFT, COUNTER!CLOCKwISE). RUNME);
SPROUT(P2, TWISTCRI6HT, COUNT ER!CLOCKWISE), RUNME);
J0IN(<P1, P2>);
IF NOT ATTACHEDCA1, A2) THEN RETURNd);

" HANDS NOT STRONG ENOUGHt TRY PLIERS "

FOREACH PL1, PL2 | . .
ISA XOR PL1 EQV PLIERS AND (BIÖENOUGH<PL1, AD)

AND ISA XOR PL2 EQV PLIERS AND (PL1 NEG PL2> „ ., ,
AND (BiGENOU6H(PL2, A2)) AND (ATTEMPT(PL1, PL2, A1, A*))

DO RETURNd);

" EITHER THtRE «EREN'T ANY PLIERS LARGE ENOUGH,
OR THE PLIERS WEREN'T STRONG ENOUGH. TRY A
VISE ON ONE SIDE "

FOREACH vJ|A
pLjRly1 Eev vl$t AND (B16EN0UGH(V1, AD)

AND ISA XOR PL1 EQV PLIERS A:,D (BIGENOUGH(PL1 , A2))
AND (ATTEMPTCV1, PL 1, A1 , A2))

DO RETURNd);

• ALL ATTEMPTS FAILED "

32

\

64 OUTSTRCTAN'T UNSCREW • & CVU (A 1 , FLAG) t " I
65 & CVIS(A2t FLAG) & < 15 t ^(.^^.
66 RtTJRN(v)
67
6 b EhD;

33

•' IM"

5.! £fii!£Qiatx

2.

9.

11.

13.

20.

47.

4S.

50.

64.

In SAiL, FALSc =

C and S are items

LOP(<set>) retur
there exi sts onl
< c ap«c ity > for e

C one S are nece
most know at c
numeric test for

OVSCKEW i s a BOO
succeeos in un*c

This is a ma cro
S AIL compiler,
for its use.)

SPR00T is a »AIL
argument (a pr
argument is an i
information «bou
thirc argument
the created proc
current and ne
s checu ler .

Ü, TRUE <> 0. BICENOLGH is u 3C0LLAN procedure.

whose DATUM is assumed to be of INTEGER typt.

ns the first item of <set>. We are assuming that
y one triple of the form CAPACITY XOR <cbject> Ei.V
ach <object>.

ssary because DATUK(C0P(<set>)) is illegal« iAU
ompile-time what the type of a DATUf» is. GE* is a
greater than or equal.

LEAN procedure which returns TRUE (non-zero) if it
rewing the objects.

aefinition. whenever RUNML is encountered by the
it will be replaced oy the constant 1. (See 59«

function which causes activation of its >eccno
ocedure/function call) as a process. The first
tern whose DATUM will be set oy SPROUT to contain
t the SPROUTed process (see 41. for its use). The
to SPROUT aetermines the status of the current an:
ess. RUNME (bit 55 set) indicates that tnt
w processes are to be run in parallel by the SAIL

bOOLtAN tests in a FOREACH must be enclosed in parentheses.

NEW PL2) to insure that two distinct pairs of pliers Notice (PL1
are found.

If the body
return succe

C VIS is a SA
'name' asso
the presence

of the FOREACH is entered, then all went well and »e
ss.

1L function which will return a character string
cioted with an item. FLAG is set by CVIS to indicate

of an error.

34

"*-—

5.3. int

5.5.1. iilfclt P£S&£än

i
3
i
5
o
7
a
9

10
11

\\
15

to

It
!?
22
13
!4
!5

30

\\
33

Ü
36
37
36
39

»

43

tl
4L
49

I?

(liEFUN UNSCKE

? ATTEMPT

(PR06 (PL1 PL

(COND I

(MOVE *
(MOVE *
(GRASP
(TW1ST-
(COND C

? HANDS

(COND C

w (A1

OISAS

2 V1

(NOT

LEFT
KIGHT
'LEFT
BOTH
(NOT

A2)

SEMBLV OF OBJECT A1 FROM A2, BY UNSCREWING

IN)

(ATTACHED A1 A2>) (RETURN 1)1)

(GET A1 'LOCATION))
(6ET At 'LOCATION))
A1) (GRASP 'RIGHT Ac)

'COUNTER-CLOCKWISE)
(ATTACHED A1 A2)) (RETURN 1)1)

NOT STRONG ENOUGH, TRY PLIERS

(FORE

))

ACH PL1 IN PLIERS-LIST (BIGENOUGH PL1 AD
PL2 IN PLIERS-LIST (AND (NOT (E6 PL1 PLC))

(BIGENOUGH PL2 A2))
DO (ATTEMPT PL1 PL2 A1 A2))

(RETURN 1)1

? PLIERS NOT LARGE ENOUGH OR NOT STRONG ENOUGH.
? TRY A VISE ON 1 SIDE

C(FOREACH VI IN VISE-LIST (BIGENOUGH V1 A1)
PLl IN PLIERS-LIST (BIGENOUGH PL1 A2)

DO (ATTEMPT V1 PL1 A1 A2))
(RETURN T)J

? ALL ATTEMPTS FAILED

CT («>RIN1 "CAN'T UNSCREW ") (PRIN1 A1)
(PRIN1 " t ") (PR1N1 A2) (TERPRI)
(RETURN NID3)

(DEFUN BIGFNOUGH (HOLDER HOLDEE)

RETURN T IFF OBJECT HOLDER IS LARGE ENOUGH TO
HOLD ODJECT HOLDEE

(NOT (LESSP (GET HOLDER 'CAPACITY)
(GET HOLDEE 'SIZE))) i

i4
55

60
61
62

(DEFSPEC FOREACH (LAMBDA (0BJ1 IN1 LIST1 PRED1
0BJ2 IN2 LIST2 PRED2
DO TRY)

? MIMIC SAIL FOREACH IN SIMPLE CASE

(PROG (TEMPI TEMP2)

35

•~^:-ü^g...^.j. ~-mmuimmdit- MWMMM

~^m

63
6«.
65
66
67
66
69
70
71
72
73
74
75
7o
77
7b
79
S3
31
32
il
ck
85
36
&7
3b
89
90
91
92
93
y4
95
96
97
98
99
100
101
102
103

LOOP1

LÜOP2

)))

(SETO T£MP1 (EVAL L1STD)

(COND t(NULL TEMPI) (RETURN NIL)]) ? PAN OUT
(SET 05J1 (CAR TEMPI))
(SETQ TEMPI (CDR TEMPI))
(COND C(NOT (EVAL PRED1)) (GC LOOP1)]) ? FAILED 1ST TEST
(SETO TLMP2 (EVAL L1ST2))

(COND [(NULL TEMP2) (GO LOOP1)])
(SET OBJ2 (CAR TEMP2))
(SETQ TEMP2 (CDR TEMP2))
(COND [(NOT (EVAL PRED2)) (GC LOOP2)3

C(EVAc TRY) (RETURN T)3
[T (CO LOOP2)3)

? IT WORKED

(DEFMAC FüRtACH (LAMBDA (OBJ1 IN1
OBJ2 IN2
DO TRY)

LIST1
LIST2

PKED1
PRED2

? MACRO VERSION OF FORcACH

(LIST

'LOOP1

'PROG 'U1 L2)
(LIST 'iETQ *L1 L1ST1)

'LOOP£

(COND [(NULL L1) (RETURN ML)])
(LIST 'SETQ OBJ1 '(CAR L1))
(SETQ L1 (CDR L1))
(LIST 'COND (LIST (LIST 'NOT PRED1)
(LIST 'SETQ 'L2 LIST2)

))

(COND [(NULL L2) (GO LOOPD3)
(LIST 'SETQ 08J2 '(CAR L2))
(SETQ Lc (CDR L2))
(LIST 'COND (LIST (LIST 'NOT PRED2)

(LIST TRY '(RETURN T))
'(T (GO LOOP2))))

'(GC LOOP1)))

(GO LOQP2))

36

Jitt

. , U..II... . i ii in,.,,i .!..„., in» .in.«,..«., i. i.imi m nwmap

 um '"i

5.3.2. £ylB£Qiä£i

13.

18.

19.

34.

35.

47.

55.

63.

66.

66.

72.

UNSCRcW is the main function.
disassembly .as successful.

Unlike SAIL» LISP does not support co
primitive function to get both hands

FOREACH is an iterative special form
FOREACh. FORcACH will try pairs
predicates succeed or it runs out of
Note that the arguments to a special

It returns

ncurrency.
twisting.

if and only if

We thus assume

which mimics a simple SAlc
of pliers until the qivtn
pliers (and returns NIL).

form need not be quoted.

Check to insure that distinct pairs of pliers are found.

PRIN1 is a LISP function which loads its argument into the stream
output buffer.

TERPfcl is a LISP function which dumps the output buffer.

Return T if capacity >= size.

times called a FEXPR). A
LISP function except that its

DEFSPEC defines a special form (some
special form is identical to a
arguments are passed unevalu&ted.

EVAL is necessary since the argument was passed unevaluated.

Note the use of SET rather than SETQ.
to fett the intenoed atom (SET evalu
does not) •

Note the use of EVAL (see 63.).

Note the use of se.T (see 66.).

This is an alternative macro version
a PROG which is similar in nature
Note the absence of SET or EVAL.

0bJ1 needs to be evaluated
ates its first argument» SETQ

of FOREACH. It expands into
to the special form FOKEACH.

37

Wfa*b
L—- t A , ' j

wfm^m»

5.4. PL.A&N.E.B leitBOELAN5jk52

5.4.1. isSüEie E£fi^£äCD

2
3
4
5
6
7
£
9

13
11
12
13
U
15
16
17
1ö
19
23

lc
23
24
25

\S
28
29

I?
i

34
35

i?
3b
35
43
41
42
43
44
45
46
47
45
49
53
51

l!
54
55
56
57

II
63
61
62

(THCONSE uNSCREW (A1 A2)
(UNSCRtW (THV A1) (THV A2D

ATTEMPT DISASSEMBLY OF OBJECT A1 FROM A2, EY UNSCREWING

(THOR
(THNOT (ATTACHED (THV A1) (THV AZ>))
(THAND

(TH60AL (MOVE LEFT (THV AD) (THT^F THTRUE))
(TH60AL (MOVE ÄIGHT (THV A2)) (THTBF THTRUt))
(SRASP 'LEFT (THV AD) (GRASP 'RIGHT (THV A2D
(TWIST-BOTH 'COUNTER-CLOCKWISE)
(THNOT (ATTACHED (THV AD (THV A2)))

)

? HANDi NOT STRONG EN0U6H, TRY PLIERS

(THPROb (PL1 PL2)
CTH60AL (ISA (THV PLD PLIERS) (THTSF THTRUE))
(ThGOAL (BIGENOUGH (THV PLD (THV AD) (THNODB)

(THUSE BIGENOUGH) (THTbF TwTRUt))
(THGCAL (IS* (THV PL2) PLIERS) (THTBF THTRUE))
(THNOT (EC (THV PLD (THV PLZ)))
(THGOAL (BIGENOUGH (THV PL2) (THV A2)) (THNODB)

(THUSE LIGEN0U5H) (THTbF THTRUD)
(ATTEMPT (THV PL1) (THV PL2) (THV AD (THV A2))

? NO PLIERS LARGE ENOUGH, OR NO PLIERS STRONG cNOUGH.
? TRY K VISE ON 1 SIDE

(THPROG (V1 PL)
(TnGOAL (ISA (THV V1) VISE) (THTBF THTRUE))
(THGOAL (BIGENUU6H (THV VD (THV AD) (THNCDB)

(THUSE BIGENOUGH) (THTBF ThTRUD)
(THGOAL (ISA (THV PL) PLIERS) (THTBF THTRUE))
(THGOAL (EIGENO GH (THV PL) (THV A2)) (THNCDB)

(THUSE LIGENOUGH) (THTEF TuTRL't))
(ATTEMPT (THV VI) (THV PL) (THV AD (THV A2))

)

? NOTHING «ORKED, JUST FAIL

(THNOT (THDO „
(PP1N1 "CAN'T UNSCREW ") (PRIN1 (THV AD)
(PCIN1 " ") (PRIN1 (THV A2)) (TERPRI)

))
(THFAIL THEOREM)

))

(THCONSE oltoENOUGH (HOLDEk HOLDEE C S)
(BI6EN0UGH (THV HOLDER) (THV HOLDEE))

? SUCCEEDS ONLY IF OBJtCT HOLDER IS LARGE ENOUGH TO HOLD
? OBJECT HOLDEE

(THGOAL (CAPACITY (THV HOLDER) (THV C>> (THTBF THTRUE))
(THGOAL (6IZE (THV HOLDEE) (THV S)) (THTBF THTRUE))

38

•M«W>

 — .L H.lüllll). " • ' ' "-"•""•"

63 (1HCOS0 C(NoT (LESSP (THV C) (ThV S)>)
64 ITHSüCCEED)3
65 C7 (ThFAlL THEOREN)])
c>6)

39

L y—'—-s-r-- ••• - ^_

1' " PÜ I •'" I JJ" • •a j n >^««>

5.4.2. CfiSBtDifirx

Defines and asserts a consequent theorem with name UNSCREW.

This is the pattern on which to invoke this theorem if neeoeo
(e.g., (UNSCkEw ASSEKBLY1 ASSEHBLY2>) .

THOR sequentially executes each of its arguments until one
succeeds» and then the THOR succeeds. The THOP is used here to
prevent undesireo oackup.

(THNOT p) is aefineo as (CONO Cp (THFAIL>3 CT (THSUCCEED)2) .

THAND succeeds if and only if all of its arguments succeeo. unlikt
THOR» backup may occur among the arguments of a THAND.

Atteir.pt to move the left hano to object A1. There may be sevtr.l
experts (theorems) on moving hands• PLANNER will try as many as it
needs. (THTBF THTRUE) is a theorem base "filter" which is
satisfied by every theorem.

THPROG behaves in a similar manner to THANU except that local
variables may be declared.

Attempt to fino a pair of pliers.

See if the pair of pliers is large encugh. (THNODc) indicates to
PLANNEK not to mother searching the data base. (THUSE <theoretr>)
inoicates to try <theorem> first.

Hake sure that we have two distinct pairs of pliers.

THDO executes its arguments and then succeeds. nowever, at this
point we know that we have failed, and THNOT is used to generate s
failure from THDO. This is necessary because PRIN1 returns its
first argument as its result» which (being non-ML) would cause
the THOR to succeeo.

49. Generate explicit failure of the theorem.

7.

o

9.

10.

19.

20.

21.

24.

45.

40

"^n -T ri'ii „__

'•'

5.5. tÜNjsl^tg

.5.1. isBfeig Prfis.£äffi

1
2
3
i
5
6
7
w
9

10
11
12
13
14
15
16
17
16
19
20
21
22
23
2H
25
26
27
2&
29
30
31
32
33
3H
35
36
37
3b
39
40
41
42
43
44
45
46
47
4ö
49
50
51

[j
54
55
56
57
5o
59
60
61
62

(CDEFu

? A

N Ui.SCR

TTEMPT

"A

(CO*D [

(PRCSLN
(PRtSt.N
(MOVE '
(GRASP
(COND L

elf (A

TO DI

UX" (

(NOT

T '(L
T '(L
LEFT
'LEFT
(NOT

1 A2>

SASSEMBLE A1

LOC1 LOC2 GEN

(ATTACHED Al

OCATION
OCATION
LOC1) <M
A1) (6k
(ATTACHL

•fA1
!,A2
OVE
ASP
D Al

FRO.'' A: , B r UKSCREw litt

1 6E,\2 V1 PL1 FL2)

A2)) (RETURN T)3)

!>L0C1))
!>LOC:>)

'RIGHT LCCZ)

RIGhT A2)
A2)> (RETURN T)3)

? nA.\DS NOT STRONG ENOUGH, TR/ FLIERS

(CStTw

:HL00P1
(CSLT«
(CStT*

oENl
(«Gt

PL1 (
*EN2

•"((«POS
NERATOR

TRY-NEXT
•"((«POS

(«GEN

SISIL
(NEXT

G£N1
SIEIL
ERATO

ITIES) «IGNGSF
-OLJ 'PLIERS '(EIGfc^GUGM I » 1)))))

:PLOOP2
(CScTu PL2 (TRY-NEXT GEhZ
(CONC C(ATTEMPT PL1 PL2 A

CT (GO 'PLOOP2)J)

'(GO 'TRY-VISE)))
lTItc) «IGNORE
R (NEXT-OBJ 'PLIERS
'(AND (NOT (EU PL1 i>)

(älGENOUGH S AZ))))))

'(GO 'PLO0P1)))
1 A2) (RtTüRN T)j

? ,\0 PLIERS LARGE ENOUGH
? ENOUGH. TRY A V,St GN

:TRY-V

:VLOOP

ISE
(CS LTV. bEM »"((«POSSIBIL

(«GENERATOR (NE

I OR »LIERS NOT STRONG
ONE SIDE.

ITIES) «IGNORE
XT-OLJ 'VISE '(PIGENOUG* *. A1)))))

(CS
(CS

: KL00P3
(CS
(CO

'(GC 'NC-CAN-DO)))
_ITIES) «IGNORE

(«GENERATOR (NEXT-GSJ 'PLIERS '(PIGENUU6M i A«.)))))

Hi. V1 (TRY-NEXT CEN1
LT» «EN2 !"((»P0SSI9IL

tTu PL1 (TRY-NtXT GEN?
ND [(ATTEMPT V1 PL1 A1

CT (GO 'PLOGP3)D)

ALL ATTEMPTS FAILED

'(GC 'VLOCP)))
A2) (RETURN T)3

INO-CA

)

N-D
(PR
(PR
(RE

INI "CAN'T UNSCRtU ") (PRI\^ A1)
IN1 " ") (PRIM A2) (TERFRI)
TURN NIL)

(CDEFJN BiGENOUGH (HOLDER HOLDEE)

? RETURN T IFF OBJECT HOLDER IS
? ENOUGH TO HOLD OBJECT HOLDEE

"AUX" (C S)

.ARGE

41

*-m *m

(PRESENT '(CAPACITY '.HOLDER !>C>>
(PRESENT '(SIZE ».HOLOEE ! >S))
(NOT (LESiP C S>> j
) f

(CDEfUN NtXT-08J (TYPE PReD)

? GENERATOR TO RETURN NEXT ObJECT OF 'TYPE'
? aHICh SATISFIES *PREl/'

MAüXH (OBJ TEMP)

(CStTw TEMP (FETCH '(ISA !>OtJ !,TYPE)))
LOOP

(TRY-NEXT TEMP '(ADIEU))
(CONC C(CVAL (SUBST OBJ *% PRED))

(NOTE OBJ)
(AU-REVOIh)D)

(60 'LOOP)

—.

5.5.2 • £fiBS£Qtar^

6.

10.

15.

CDEFUN defines o function to CONNIVER.

"AUX" <list> oefines local variables.

PRtStNT is a CONNIVER function which searches the data base for un
item which matches its pattern argument. If one is founo» PRESENT
sets the indicated variables (marked with !< or J>) «no rtturr.s
the ite.n. !fA1 indicates the current CONNIVER value cf A1 .
!>LCC1 indicates that L0C.1 is to be Pound if possible.

OEM is oein« ossigned ö TRY-NtXT possibilities list. •" tells
CONNIVER to do a "skeleton expansion" of the followinq list (which
is necessary to CONNIVER's internals). The (*P0SS1PILITIES) an-
•IGNORE are syntatic markers to TRY-NEXT whose function we can
ignore. (*bENERAT0R <func-call>) indicates to TRY-NEXT to ust
<func-call> to generate additional possibilities if needed.

19. NEXT-OBJ will continue to generate objects of
;ument >•

type PLIERS which
satisfy the predicate (2nd"argument>. It will generate one PLIERS
at a time. (&IGEN0UGH S AD is a skeleton predicate which
NExT-OEJ will use to screen e«ch possibility. The current
candidate is substituted for S before the predicate is CVALuatto
(CONNIVER's form of EVALuation).

contains no more possibilities! TRY-NEXT will execute
VISE). Unlike LISP» GO evaluates its argument here.

insure that two distinct pair, of pliers «ill be founc.

not necessary since the value of a CONNIVER function is
expression evaluates.

21. •hen GEN1
(GO 'TRV-

24. Check. to

6 H . See 13.

66. RETUfcN is
the last

72. £»e f i ne th
regular f

79. FETCH is
of all
!>0BJ ind
poss ib i li

•1. TRY-NEXT
the curr
(ADItU) i

22. The oesir
object i
returns a
oc currenc

2?. (NOTE OoJ
of 0i>J oi

!*. (AU-REVOI
in a susp
t xec ut ion

e generator
unc t ion to

, NEXT-OtJ. Note
CONNIVER until it

that NEXT-G?J looks like
is called.

a CONNIVER primitive which r
items in the data base whic
icates that CBJ should be
ty in turn.

binos ODJ from the Hossibili
ent possibility. If ther
s evaluated which causes ter

ed predicate is CVALuated af
nto tne skeleton. (SUBST A
list which is the result of

e of b in list C.

) is a CONNIVER function «hi
to the current possibilities

R) returns control from NEXT
ended state. when TRY-NEXT
will resume at (GO 'LOOP).

eturns a possibilities list
h match its pattern argument,
bound by TRY-NEXT to each

ties list TEMP and removes
e is no current possibility
ruination of the generator.

ter substituting the current
B C) is a LISP function which

substituting A for every

ch places the current value
list. .

-OBJ out leaves the generator
returns control to NEXT-OBJ»

43

m —r-

generlcally better at the low level
extensive abilities for

t. £0Q£iüSi2Q£

Either SAIL or LISP could provide an excellent basis for real-tiir.e
Dlanniny and execution control of a large automated shop. However, each
language possesses features which facilitate certain types of
operations. In particular, SAIL is generically better
control of I/O devices, and has «ore extent'
interacting with the operating system (especially where file
manipulations are concerned). LISP, on the other hand, is more flexible
at the higher planning levels and where system development and
debugging are concerned.

tie envision an "ideal" system as one which merges all trie
desirable features of these two language classes. Such a merger woulc
incorporate LISP's program and data structure format, augmented where
necessary to accommouate SAIL-lihe file operations, and possibly IcAt-.
SAIL features would be implanted in this environment, and, at tr.e
implementor s discretion, an ALGOL-like syntax (such as MLISP) coulo Lt
grafted onto the front of the system to make it more tractable.

in audition, such a merger should take
following desirable features of SAIL anc LISP:

care to prese rve

(1)

(<.)

(6)

(7)

wata structures should
information as well as
structures should be free to ,
storage declarations should be

accommodate complex symbolic
primitive types. As in LISP, data

grow in unrestricted ways, and
optional to the user.

•og n
jch

and data should, as in LISP, be in the same format.
Such a representation underlies (a) a strong macro
facility, (b) rapid editing, modification ano debugging of
programs, anu (c) seIf-modifying and se If-ex tending
systems. The last capability, for example, enables the
system, given the description of a new type of tool,
automatically to synthesize the programs for controlling
the tool from a library of sub-functions.

(3) Strong I/O ana file manipulation facilities, as are found
in SAIL, must be included. A good ranaom-access file system
is imperative for even moderately large databases. The
system should have both high and low level control over
input and output formatting which provides control down to
the bit level of the machine.

(4) A highly-oeveloped interrupt subsystem would be desirable.
Hith the merger of SAIL's bit-wise interrupt control, and
LISP s symbolic capabilities, such a system as is described
in CRieger 76 3 could be efficiently implemented. This would
serve as the network protocol for a large collection of
highly autonomous processes where the synthesis and control
of many parallel events is important*

(5) For software development and debugging, an interpreter
should exist for the language. Nevertheless, the language
should be have a compiler for production usage. LliP
currently satisfies these requirements.

The system should provide for
associative database. This
engineering to coordinate a
efficient random-access file
some ideas on this topic*

large, context-sensitive,
would involve some new

MP-like database with an
system. [WcDermott75al surveys

There shoulo be some degree of automatic problem-solving
control which includes a CONNIVER-like context-switching
and process-suspending mechanism* Accommodations should be
made for SAIL-like parallel process control, and emphasis
should oe placed on inter-process communications protocols.
Most of the ideas already exist in CONNIVER and SAIL, but
they need to be synthesized into a unified system.

tne

44

atmm ate *a>«>tkfl>yatM«a>Mkbaw»i Mtak*

. ... i ii i ii, i.. i-tvw

7* si^iibaciBbx

Cb«umaart72 3 Baumgort, b. 6. "Micro-Planner Alternate Referenc
Manual," Stanford AI Lab Operating Note No> 67, pr-
1972.

t
: I

CBBNcXECJ bolt. Eer<mek and Newman. "TENEX Executive ^anuil,"
Cambridge, Massachusetts, April 1973.

C£eech7o3 Seech, D. "A Structured View of FL/1," ACM Ccjmp.utinc Syrytys,
Maren 1970, pp. 33-64.

Ccoorow74j Loo row» t). G. and Raphael, B.
for Art ifi cial Intel li cence,
September 1974, pp. 153-174.

"New Programming Languages

[burst a 11713 surstall, R. M.. Collins, J. S. and Popplestone» K. 4*
Proorajminy in POP-2» The Round Table and Edinburgh
On lversTTy Pr5ss »~Tv7T.

CChurch413 Church. A. The C.a.l£uli fif kaB,feäa Conversion. Princetcn
university Press, Princeton, New Jersey, T9*1 .

CCOBOL^fci C030L. "American National Standard Programming Languabt
CODOL," X3.32 - 1974, American National Standards
Institute, Inc.* New York, 1974.

[C0DASYL71D CDDASYL Data Base Task Group. "April 1971 Report," AC«, Hew
York, 1971.

COECJ DEC. "DEC System-10 Data Base Management System Programmer's
Procedures Manual," Document DtC-10-ApPMA-B-D, Maynaru»
Ma ssac nusett s.

rDijkstra753 Dijkstra, E.W.D., Lamport, L., Martin, A.J., Schölten,
C.S.» Steffens, t.F.M. "On-the-fly Garbage Collection:
An Exercise in Cooperation," Burroughs, Plataanstraat 5,
NL-4565 NUcNEN, The Netherlands, EWD496-G.

[Fahlman733 Fahlman, S. "A Planning System for
Tasks," MIT AI Memo 283, 1973.

LFelaman693 Feldman. J. A. and Rovner» P. D

Robot

"An

Construct ion

ALGOL-Based laman. «1 . «• <inu novner» r. v. nn sLcui-custu
Associative Language," Communications of the ACM, August
969, pp. 439-449.

CFeldman713 Feldman, J. A. and Sproull, R. F. "System Support for the
Stanford Hana-Eye System," Second International Joint
Conference on Artificial Intelligence, London, September
1-3, 1971.

CFinkel743 Finkel, ft* , Taylor, R., Bolles, R., Paul, R. and Feldman, J.
"AL, A Programming System for Automation," Stanford
Artificial Intelligence Laboratory, Memo AIM-24X«
November 1974.

CNeuitt693 Hewitt, C. ».."PLANNER : ^Language tor Proving Theorems

CLeslie7Z3

ig i
Robots." Proc. IJCAI-1, 1969

in

Leslie. w.H.P. (editor). Nu.ge.ric.al £o.nt£2l. ElßSIäffiliöä
L§nSue.d£5« North-Hoi lane Publishing Company, London,

"LISP 1.5 Programmer's Manual," The M.I.T.
mbridge, ,1 as sac huse tf -

• "Recursive Functioi
Computation by Mach-

A.C.JJ» April 1960, pp. 184-195.

[Levin65] Levin, M.I. tur I < J rruarmitr a n«n
Press, Cambridge, Massachusetts, 1965.

CMcCarthyu03 McCarthy, J. "Recursive Functions of Symbolic Expressions
ana their Computation by Machine»" C2mmy.nic.tt jc«Bs. gf j|j$

45

w—r
1

[Mc Der mot

CMoon743

CNaur603

[Normanfc9

CParsuns7

CRAPIDATA

CReiser75

CReiser76

CRieger76

CSa»et763

ZSi klo s sy

CSmith703

t7£D McDermott, t. V. and Sussman, 6. J. "The Connivtr
Reference Manual«" AI Me«,o Ko. 25<J, MIT Project MAC t f..y
1972.

Moon, O.A. "MACLISP keference Manual," Project MAC
Massachusetts Institute of Technology, Cambrioce,
Massachusetts, 1974.

Naur, P. (tditor). "Revised Report on the Algorithmic Language
ALUOL 60," C.o.8gu.nic.aiions fif jhe ACM, May 1960, pp.

J Norman, t. "LISP," University of Wisconsin Computing Center,
ri I Madison, Wisconsin, Apt 1969.

43 Parsons, F. G., Dale, A. &.
Manipulation Language Rtquirements for Dataoas
Management Systems," Computer Journal, May 1974, pp
99-103.

and Yurkanan,
Rtquirements

C . V . " D a t a
for Dataoase

RAPIOATA Corporation. "A FORTRAN DMl
DBMS-1ÜV* Fairfield, New Jersey.

Implementation fur

Reiser, J. F. "BAIL—A debugger for SAIL," Stanford
Artificial Intelligence Laboratory, Memo AIM-27C,
Octouer 1975.

3 Reiser, J. F. (Editor). "SAIL," Stanford Artificial
Intelligence Laboratory, Memo AIM-289, August 1976.

j Rieger, C.J. "Spontaneous Computation in Cognitive Moaels,"
Department of Computer Science, University of Marylanc,
TR-459, July 1976.

Samet, h. "The SAIL Data Base Management
Science Department, University of
Park, Maryland, Unpublished, 1976.

System," Computer
Maryland, College

763 Siklossy, L. kfill« Hi*. LlSEt Prentice-Hall, Inc., 1976.

Smith, D. C. "MLISP," Stanford Artificial intelligence
Project, Memo AIM-135, 1970.

CStacey743 Stacey, b. M. "A FORTRAN Interface to the CODASYL DataDase
Task uroup Specifications," Computer Journal, May 1974,
po. 124-129.

CSussman7

CTaylor76

CTeiteIma

CT0PS103

CWeissman

CUilcox76

i.2 Sussman, o., Minograd, T., and Charniak, E.» "MICROPLANNER
Reference Manual," M.I.T. AI-TR-203a, !??1

j Taylor, R. w. and Frank, R. L. "CODASYL Data-Base Management
Systems," A£M CeiBüIiDä iUEX£Y.3» March 1976, pp. 67-1Ci.

n743 Teltelman, w. "INTERLISP Reference Manual." XEPOX Palo
Alto Research Center, Palo Alto, California, 1974.

DEC. "DECSYSTEM-10 Operating Systems Command Manual,"
DEC-10-OSCMA-A-D, Digital Equipment Corporation,
Maynard, Massachusetts, May 1974

673 rfeissman, C. "LISP 1.5 Primer," Dickinson Publishing
Company, 1967.

j wilcox. C. R. "MAINSAIL Language Manual," SUMEX, Stanforc
University, May 1976.

46

HbaHiM tfte^dka^ •a^a. #..**••

wmmmmmmmmmmmmBM^Bmm

8. Suamary Chart

i i

IfKif! 2Ö

RS* S

s :sziSm:

if

i

* -*• •
-- •• a - ii •-
-.«. • -e t
J--»- c

a»*
- »a*-- ••

w • e ~
*•• *•- *-
»«y-S «•
- ' M • * ~
-C*-•*

itSiii

a:

3

:
2

i
5
mt #
i

H

at.'
• MC* *

t
•1

:

i i

«I

a
:m

3 fit
5 K*
.•-: =
Si» I

=•»

• *«•-*
Z'.Zi

:.t

1 I

i
i
X

I. i

i tin
i-r-t

I
i

IS
• •
H

T5 : « - -• tu:
ifii

B
1 i
Ellis

! I

-•».-» j • •

Si.:: . rtii
.•s.t.s i*::

*. •> k mm 9 * -*.

•=:::;. tisi

Sit*;;*
risst :;:;rtl

ts I

t:

:t

1

47

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PACE (Whit Dot» Entered;

REPORT DOCUMENTATION PAGE
I. REPORT NUMBER 2. COVT ACCESSION NO

TITLE fand Subtitle)

C4J Artificial Intelligence Programming Languages
for Computer Aided Manufacturing^

READ INSTRUCTIONS
BEFORE COMPLETING KORM

3. RECIPIENT'S CATALOG NUMBER

»• -TYPE OF REPORT | PERIOD COVERED

/Technical AaJtoS^"» 1
P»ffFf»»"'"p ORS. REPORT NUMBER

TR-595

S. PERFORMING ORGANIZATION NAME AND AOORESS

Computer Science Dept.
Univ. of Maryland
College Park. Md. 20742

II. CONTROLLING OFFICE NAME ANO ADDRESS

Informations Systems Branch
Office of Naval Research
Wash., P.C. 20305

M- MONITORING AGENCY NAME • AOORESSf" dlttotont San Controlling Office;

10. PROGRAM ELEMENT, PROJECT, TASK
AREA « WORK UNIT NUMBERS

12. REPOR

»<-»77) Sep
NUMBER • PAGES

47
IS. SECURITY CLASS, (ol thlt r.pb

Unclassified

Tw DECLASSIFICATION/ DOWNGRADING
SCHEDULE

I*. DISTRIBUTION STATEMENT (ol Oil» R.porfj

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol fne ebetrac« entered In Block 30, It d/fferenf from Report;

I». SUPPLEMENTARY NOTES

It. KEY WOROS 'Continue on revere* efrfe II neceeeary ana Idontlty by block number;

Hkm
E

Artificial Intelligence
Programming Languages
Computer Aided Manufacturing

Systems Control

10. AfcfTRACT (Conllnu* on rovott» »Id» It neeeeewy and Idontlty by block number;

ight Artificial Intelligence programming languages (SAIL, LISP,
MICROPLANNER, C0NNIVER, MLISP, P0P-2, AL and QLISP) are presented and
surveyed, with examples of'their use in an automated shop environment.
Control structures are compared, and distinctive features of each
language are highlighted. A simple programming task is used to
Illustrate programs in SAIL, LISP, MICROPLANNER and C0NNIVER. The
report assumes reader knowledge of programming concepts, but not
necessarily of the languages surveyed.

DO,: *\Tn 1473 EOl'iiON OF I NOVSS IS OBSOLETE s cuf

J
LttJiOiSSIIIffl.

SECURITY CLASSIFICATION OF TM

am

am
THIS PAGSfr

0(^ik ^
fMien Der* enter«/;

. *.

 '• H mtf
r T

Off of Naval Research
Branch Office, Boston
495 Summer St.
Boston, Mass. 02210

New York Area Office
715 Broadway-5th Floor
New York, N.Y. 10003

Mr. E. H. Gleissner
Naval Ship R+D Center
Computation and Math Department
Code 18
Bethesda, Maryland 20084

Capt. Grace M. Hopper
NAICOM/MIS Planning Branch
OP-916D
Off, Chf. of Naval Op.
Washington, D.C. 20350

Mr. Kin B. Thompson
Technical Director
Information Systems Div. 0P-91T
Off., Chf. of Naval Op.
Washington, D.C. 20375

Naval Research Lab.
Technical Info. Division
Code 2627
Washington, D.C. 20375

Dr. A.L. Slafkosky
Scientific Advisor
Commandant, USMC
Code RD-1
Washington, D.C. 20380

National Security Agcy.
Attn: Dr. Maar
Fort Meade, Maryland 20755

Off. of Naval Research
Code 1021P
Arlington, Va. 22217

Asst. Chief for Tech.
ONR Dept. of Navy
Code 200
Arlington, Va. 22217

Off. of Naval Research
Information Sys. Program
Code 437
Arlington, Va. 22217

Off. of Naval Research
Code 455
Arlington, Va. 22217

Off. of Naval Research
Code 458
Arlington, Va. 22217

Defense Documenta. Cent.
Cameron Station
Alexandria, Va. 22314

Off. of Naval Research
Branch Office, Chicago
536 South Clark St.
Chicago, 111. 60605

Off. of Naval Research
Branch Off., Pasadena
1030 East Green St.
Pasadena, Calif. 91106

Naval Electron. Lab. Ctr.
Adv. Software Tech. Div.
Code 5200
San Diego, Calif. 92152

tm .—.

