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PREFACE

Technology Incorporated, Dayton, Ohio, prepared this
report to document a program to collect, process, and an-
alyze loads recorded on various dynamic components in the
main and tail rotor systems of the UH-1H helicopter oper-
ating under extreme cold-weather conditions in the arctic
environment. This program was sponsored by the Eustis
Directorate, U. S. Army Air Mobility Research and Develop-
ment Laboratory, Fort Eustis, Virginia, under Contract
DAAJO02-74-C-0006. The program extended from September 1973

to September 1974. The Project Mornitor for the Army was Mr.

William Alexander.

Technology Incorporated personnel active in this pro-
gram were Mr, Thomas A. Torrec, Project Engineer, who di-
rected the project and off-site flight test work; Mr. Terry
Cox, who participated as flight test engineer and diracted
the data processing; Mr. Henry Pender, who directed the
instrumentation of the recording system; and Mr. Raymond B.
Johnson, Project Manager.

The authors acknowledge the support and contributions
of Mr. Alexander and of the personnel at Allen Army Air-
field, Fort Greely, Alaska, particularly the following:
Major Lloyd Morgan, Commander; Colonel Bruce Young, TECOM
advisor; Captain Don Stark and Lieutenant Larry Crosson,
test pilots; SP/5 Morris Talley, crew chief; and SP/4 Mike
Hall, crewmember.
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1. INTRODUCTION

For the continued study of dynamic component loads on Army
helicopters, an operational strain survey was conducted on a UH-
1H helicopter stationed at Fort Greely, Alaska, during January
and February of 1974. During this period approximately 24 hours
of flight data were recorded by an oscillograph recording sys-
tem. Of these hours, 18 were recorded during engineering flight
tests and 6 during pilot and recording system checkout flights.
The flight tests were designed primarily to monitor various
dynamic components in both the main and the tail rotor systems
under speciric flight conditions.

This report (1) describes the oscillograph recording system
to measure the strains on the various dynamic components, (2)
outlines the helicopter test configurations, (3) describes the
test procedures for each flight condition, (4) defines the
recorded and computed parameters, (5) explains the data process-
ing techniques, and (6) presents and analyzes the processed data.
Appendix C presents graphs of component loads as a function of
airspeed and rotor tip Mach number. Appendix D presents in
tabular form all data processed during this program.

The program objectives were accomplished by (1) instrument-
ing and calibrating the dynamic components, (2) recording flight
loads for various gross weight, center-of-gravity, altitude, and
temperature combinations, (3) processing the recorded data for
maximum oscillatory loads for each flight condition, and (4)
comparing these cold-weather data with warm-weather data col-
lected on the same type of aircraft, a UH-1D, to determine
temperature effects.




2. INSTRUMENTATION

2.1 General

To obtain the flight loads data, two oscillograph record-
ers, a signal conditioning unit, two slip rings, and numerous
pressure transduceis and strain gages were installed in the
test helicopter. Since the major components and transducers
are detailed in Reference 1, they are only briefly described
in the following paragraphs.

2.2 Oscillograph Reccrders

Two Consolidated Electrodynamics Corporation Model 5-114
P3-18 oscillograph recorders were used to record the in-flight
data. Each recorder has 18 data and 4 reference channels.
Since the flight test was conducted in an extremely cold
environment, heaters were installed in the oscillograph re-
corders and the signal conditioning unit to maintain a con-
stant temperature as well as to protect the electronic equip-
ment.

2.3 Signal Conditioning Unit

To convert the strain gage and pressure transducer output
into useful oscillograph input, a signal conditioning unit was
fabricated with the capability of conditioning the inputs to 36
data channels and of amplifying the inputs to 26 of these chan-
nels. Each conditioning circuit in the unit was mounted on a
separate printed circuit board which was easily accessible for
repairs or modifications. Calibration and zero switches for
each data channel were installed on the front of the signal
conditioning unit.

The acquisition of the strain data from the rotating com-
ponents required the installation of two slip-ring assemblies:
a main rotor slip-ring assembly consisting of 30 rings in a
cylindrical configuration and a tail rotor slip-ring assembly
consisting of 18 rings.

2.4 Transducers

Pressure transducers, namely, the Statham Model PL96TC-.5-
3550 unidirectional, differential pressure t ansducer, the
Statham Model P69-15A-350 absolute pressure transducer, and the
Viatran Model PTB-103 differential pressure transducer, were
used to sense airspeed, altitude, and engine torque, respec-
tively.

Accelerometers were used to sense the helicopter's longi-
tudinal, lateral, and vertical center-of-gravity accelerations.
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Statham Model A3-1.5-350 accelerometers were used to sense
longitudinal and lateral accelerations, and a Statham Model A3-
5-350 accelerometer was used to sense vertical accelerations.

Connected by special actuators to the control linkages be-
neath the cargo floor, Markite Model 2094 infinite-resolution
potentiometers were used to sense the lateral and Joigitudinal
cyclic stick positions, the collective stick position, and the
rudder position.

The outside air temperature was monitored by a Minco Model
5-6B thermal ribbon. The ribbon was attached to, but insulated
from, the skin of the aircraft beneath the cargo floor.

To monitor the main rotor's rotational speed, a special
circuit was designed and fabricated. This circuit sensed the
aircraft's rotor tachometer-generator and yielded a frequency
as an input to control an oscillator circuit. The resultant
oscillator output controlled a gate which varied the voltage
of a DC circuit between +5 VDC and ground. This voltage was
then filtered and reduced to a pure DC signal acceptable to
the oscillograph recorder.

In addition, the main rotor azimuth detector was used to
monitor rotor speed as ‘well as azimuth position. An Electro
Model 3020 AN magnetic pickup was used to sense the azimuth
position. By mounting the pickup tc a stationary member of
the aircraft and attaching a ferrous prote to a rotating
member, the resultant signal was a ''spike' per rotor revolu-
tion which permitted the determination of 1otor speed and
position.

11



3. HELICOPTER TEST CONFIGURATIONS

3.1 General

As listed in Table 1, the flight test plan called for
eight combinations of gross weight, c.g. position, and density
altitude conditions. In each of these combinations, the gross
weight was 8500 or 9500 pounds; the c.g. position was forward
or aft; and the density altitude was 1000 or 3000 feet. With
consideration for the instrumentation package as well as the
basic aircraft configuration, the helicopter was modified to
effect the two c.g. positions.

TABLEL 1. AITRCRAFI-DLNSITY ALTITUDE TEST CONFIGURATIONS

AIRURANET LOADING TEST ALTtTUDE
GW < Hp

8500 FWD 1000

8500 AFT 1000

8500 Fwb 3000

8500 AFT 3000

9504 FWb 1000

95010 AFT 1000

9500 FWD 3000

gJ500 AT 3000

3.2 Gross Weight and C.G. Determination

The calculations for the gross weight and c.g. position
of the test helicopter were based on pertinent information
logged on two types of Air Force forms: (1) DD Form 365C, the
Basic Weight and Balance Record, and (2) Weight and Balance
Clearance Form F; Appendix A shows samples of information
logged on the latter form. Fuel weight, passenger location,
and auxiliary fuel tank data were obtained from Reference 2.
Table 2 lists the gross weight, location, and moment for each
major item in the instrumentation package.

TABLE 2. WEIGHT AND LOCATION OF INSTRUMENTATION
EQUIPMENT WEIGHT LOCATION MGHENT
Tail Rotor Slip- 2.3 479.4 1102.6
Ring Installation
Oscillograph and Mounting 202.0 112.0 22624.0
Main Rotor Slip- 22,0 133.5 2937.0
Ring Installation
Signal Conditioning Unit 15.0 112.0 1680.0
Engine Torque Transducer 4.2 168.0 705.6
Accelerometers 1.5 133.5 200.3
Airspeed, Altitude Transducers 3.0 6.0 18.0
Control Position Transducers 1.5 87.5 131.3
Tail Rotor Wiring Bundle 15.6 346.0 §397.6
Miscellaneous Equipment 10.0 112.0 1120.0
TOTAL 277.1 35916.4

12



Table 3 lists the modifications to the aircraft configu-
ration to effect the forward and aft c.g. positions for the
two gross weight conditions prescribed in Table 1.

TABLE 3. AIRCRAFT MODIFICATIONS TO ACHIEVE VARIOUS
GROSS WEIGHT-C.G. POSITION CONFIGURATIONS

GROSS C.G. SPECIAL
WEIGHT LOCATION PROVISIONS
8500 AFT Battery in aft compartment
(144) Survival equipment at STA. 151

Aux. tank installed, 60 gallons
Ballast, 100 1b at STA. 120
Ballast, 50 1b at STA. 233
Three crewmembers

8500 FWD Battery in forward compartment
(134) Survival equipment at STA. 85

Aux. tank installed, 0 gallons
Ballast, 50 1b at STA. -2
Ballast, 127 1b at STA. 46.7
Ballast, 170 1b at STA. 65
Ballast, 50 1lb at STA. §
Four crewmembers

9500 AFT Battery in aft compartment
(143) Survival equipment at STA. 151
Aux. tank installed, 150 gallons
Ballast, 125 1b at STA. 100
Ballast, 50 1b at STA. 233
Four crewmembers

9500 FWD Battery in forward compartment
(136) Survival equipment at STA. 85

Aux. tank installed, 130 gallons
Ballast, 50 1b at STA. -2
Ballast, 127 1b at STA. 46.7
Ballast, 170 1b at STA. 65
Ballast, 50 1b at STA. §
Four crewmembers

3.3 Density Altitude and Temperature Requirements

In addition to the prescribed density altitudes of 1000
and 3000 feet, the flight test plan called for the recording
of data at temperatures below -25°F. To reach a density
altitude of 1000 feet at -25°F would have normally required
flying at a pressure altitude of about 5500 feet. However,
extreme temperature inversions frequently precluded attaining
the prescribed temperatures at the higher pressure altitudes.
Consequently, the helicopter was often flown at low pressure

13



altitudes, as shown in Figure 1. As a result, the in-flight
data were recorded at density altitudes ranging from -2900 to

3400 feet.

Nevertheless, the data are representative of the

temperatures, altitudes, and component loads of helicopters
operating in the arctic environment,
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Density Altitude-Temperature Combinations by Flight.
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4. TEST PROCEDURES

1.1 General

To ensure the efficiency of the data collection and the
accuracy and repeatability of the recorded data, the same pro-
cedures were used each flight to check the aircraft and instru-
mentation integrity, to conduct the various in-flight opera-
tions, and to review the postflight data. The following par-
agraphs explain the test procedures and identify the actual
flight conditions investigated during the flight test.

4.2 Procedures

Before each flight, the aircraft and instrumentation sys-
tem were inspected to verify the aircraft and system integrity.
In addition to the test configuration-density altitude combi-
nations listed in Table 1, each flight was performed according
to one of the two sets of flight conditions listed in Tables 4
and 5. These operations, however, were occasionally modified
because of weather conditions, aircraft instability, or mal-
functioning equipment. During each flight, the observer re-
quested various pressure altitude and indicated airspeed com-
binations. The values requested for pressure altitude and
indicated airspeed were adjusted to compensate for instrument
errors and temperature effects. Before a flight coadition was
initiated, the aircraft was stabilized and the recording sys-
tem was activated.

After the aircraft landed, the oscillograph channels were
recalibrated. Then, after the oscillogram rolls were removed
and processed, the oscillogram traces were reviewed to detect
any equipment malfunctions, trace misplacements, and other
anomalies so that remedial action could be taken before the
next flight.

15
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TABLE 4.

FLIGHT PLAN 1

Flight Conditions

Flat Pitch: RPM Check

250, 309, 314, 324
Hover IGE 209, 324 RPM
Left Hovering Turn, 324 RPM
Right Hovering Turn, 324 RPN
Vertical Takeoff
Hover to Full Pcwer Climb
Full Power Climb
Level Flight, 50% Vi

60% Vp

Left Turn, 60% Vh
Right Turn, " "
Cyclic Pull-up,"
Coll. Pull-up, " "

Left Sideslip "
Right Sideslip " "
"S" turn, 60% Vh

Level Flight, 70% Vj
Level Flight, 80% Vj
Level Flight, 90% Vh
Left Turn, "
Right Turn, u "
Cyclic Pull-up," "
Coll, Pull-up,90% Vi
"S'" Turn, 90% Vp
Level Flight,100% Vj
Partial Power Descent
Approach and Landing
Hover, 324 RPM

TAS
8500 1b 9500 1b
1000'Hp | 3000'Hp | 1000'Hp 3000'Hp
Vh=115 Va=112 Vh=110 Vh=107
€5 65 65 65
65 65 65 65
59 oo o0 --
71 67 68 66
71
71 67 68 66
84 82 80 78
95 93 91 89
107 104 1n3 non
107 104 103 100
107 104 103 100
119 116 113 111
65 65 65 65
Note 1 Note 2

Note 1: Terminate flight after 700 1b of fuel has been
burned; start again with hover 324 RPM

Note 2: Terminate flight after 700 1b of fuel has been
burned; start again with hover 324 RPM

16
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TABLE 5.

FLIGHT PLAN 2

IAS
8500 1b 9500 1b
Flight Conditions
1000'Hp | 3000*Hp | 1000'Hp | 3000'Hp
Vh=115 | Vp=112 | Vj=110 Vh=107
Rotor Start Normal
Flat Pitch, 250, 324 RPM
Hover IGE 309, 324 RPM
Left Sideward Flight, 324 RPM
Right Sideward Flight, 324 RPM
Rearward Flight, 324 RPM
Jump Takeoff
Level Flight, 60% Vj 71 67 68 66
Power to Autorotation, 60% Vp 71 67 68 66
Autorotation to Power, 60% Vh 71 67 68 66
Level Flight, 90% Vh 107 104 103 100
Power to Autorotation, 90% Vp 107 104 103 100
Autorotation to Power, 90% Vh 107 104 103 100
Autorotation Landing with
Power Recovery, IGE

Hover 324 RPM

309 RPM

Note 1 Note 2

Note 1: Terminate flight after 700 1b of fuel has been

burned; start again with hover 324 RPM.

Note 2: Terminate flight aftcr 500 1b of fuel has been

burned; start again with hover 324 RPM.
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5. DATA DEFINITIONS

5.1 General

As listed in Table 6, 29 in-flight parameters were re-
corded during each flight. In addition to the conversion of
the analog recording of these parameters to engineering units,
an additional three parameters were derived from computations
involving both the oscillogram data and the supplemental data
logged on special forms.

TABLE 6. IN-FLIGHT RECORDED PARAMETERS

OSCILLOGRAPH 1 OSCILLOGRAPH 2
ICHANNEL CHANNEL
NO. PARAMETER NO. PARAMETER
1 MR Chord Bndg. Moment, 1 TR Chord Bndg. Moment,
STA. 162 STA. 11.0
2 MR Beam Bndg. Moment, 2 TR Beam Bndg. Moment,
STA. 192 STA. 11.0
3 MR Chord Bndg. Moment, 3 TR Chord Bndg. Moment,
STA. 150 STA. 21.5
4 MR Beam Bndg. Moment, 4 TR Beam Bndg. Moment,
STA. 150 STA. 21.5
[ MR Beam Bndg. Moment, 5 TR Shaft Torque
STA. 35
6 Drag Brace Load 6 TR Azimuth
7 - 7 MR Azimuth
8 Scissors Link Load 8 OAT
9 - 9 Nx
10 2 10 N
11 Long. Boost Tube Load 11 NY
12 Lat. Boost Tube Load 12 Ridder Pedal fusition
13 Coll. Boost Tube Load 13 Rotor Speed
14 Coll. Stick Position 14 Altitude
15 Long. Stick Position 15 Airspeed
16 Lat. Stick Position 16 Engine Torque
17 Voltage Monitor 17 Voltag~ Monitor
18 MR Azimuth 18 ’ -

5.2 Computed Parameters

The three computed parameters were density altitude, true
airspeed, and roto: tip Mach number. The first two of these
parameters were derived for each flight condition, and the
third was calculated for various level-flight conditions when
the azimuth of the instrumented rotor blade was 90 degrees.
From Reference 3, the basic equation for the density altitude
is
\ 0.235

° ]

(1)

'DID

Hp = 145,300 1 8= (
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where HD = density altitude, ft
p = density at altitude, 1b/ft°®

p_ = density at sea-level, s.andard-day conditions,
1b/ft?

With the assumption that air is an ideal gas at sea level and
at altitude, the density altitude may be expressed in terms

of pressure and temperature by the ideal gas equation of state.
Therefore, by substituting the pressure and temperature con-
stants for sea-level, standard-day coaditions, Equation (1)
becomes

0.235
- ) 17.326P
Hy = 145,300 |1 (-77135-) (2)

where P = pressure at altitude, inches of mercury

T

temperature at altitude, °F

The reccrded indicated airspeed was corrected to calibrated
airspeed (CAS). From Reference 4, the basic equation for
true airspeed is

0.5
TAS = CAS (%-) (3)
(o]

where TAS true airspeed, knots
CAS = calibrated airspeed, knots
p = density of air at altitude, 1b/ft?
Py = density of air at sea-level, standard-day
°  conditions, 1b/ft?
Again, with the assumptions and substitutions applied to Equa-
tion (1), Equation (3) becomes

0.5
TAS = 4.16 CAS (q77gp) (4)
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where P = pressure at altitude, inches of mercury

T = temperature at altitude, °F

To compute the rotor tip Mach number, which was used to inves-
tigate temperature effects on component loads, the pertinent
oscillogram data were substituted in Equations (5) and (6):

where V = velocity at the tip of the instrumented rotor
blade at a 90° azimuth, ft/sec

Vp = rotational velocity of the tip of the rotor
blade, ft/sec

vA/C = yelocity of the aircraft, ft/sec

=V
M 5 (6)

where M = Mach number

a = local speed of sound, ft/sec
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6. DATA PROCESSING

6.1 Data Editing

To provide accurate and useful data, each oscillogram was
initially reviewed to detect any evidence of equipment malfunc-
tions and missing or indistinguishable traces. Whenever the
data were judged to be invalid because of the extent of the
apparent equipment malfunction, the oscillogram was not pro-
cessed. However, if an oscillogram had some missing or indis-
tinguishable traces but the nthers reflected valid data, the
osciilogram was processed.

After this initial review, the traces were scanned to
find the maximum oscillatory loads and moments during each
specific flight condition. As illustrated in Figure 2, at
each maximum oscillation, an envelope representing the double
amplitude was drawn, and the mean point about which the trace
tended to oscillate was marked. The mean value did not always
fall midway between the double-amplitude envelope since the
positive and negative peaks were not necessarily of the same
amplitude.
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Figure 2. Sample Oscillogram Showing Data Editing Model.
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6.2 Data Reading and Digitizing

In addition to the foregoing markings, all other traces in
the area where most of the maximum oscillations occurred were
manually measured from a common reference line.

6.3 Data Reading Quality Control

To define the reading accuracy, a random sample of oscil-
logram data was measured, and then these measurements were
compared with the corresponding original measurements. The
differences between the two measurements were then expressed
in terms of engineering units to define the expected reading
error. Any oscillograms whose measured data were outside the
established reading error limits were reread. The reading
error of the data recorded in each data channel during each
flight is listed in Append’: .,
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7. DATA PRESENTATION AND ANALYSIS

7.1 General

The following paragraphs (1) describe the data presenta-
tion methods, (2) present and analyze loadings for each heli-
copter dynamic component, (3) note significant trends, (4)
compare the current loads data with those previously gathered
under similar programs, and (5) detail the technique to make
the chordwise loads and the temperature compensation inde-
pendent in the bending gages on the tail and main rotor blades.

To investigate the effects of cold-weather operations on
the loads of various dynamic helicopter components, the com-
ponent loads in selected level-flight data were plotted against
main rotor blade tip Mach number and airspeed; these figures
are presented in Appendix C. On the basis of these figures,
the tabular data in Appendix D, the Bell UH-1D fatigue life
substantiation (Reference 5), and the UH-1D load level tests
(Reference 6), the loads on each of the relevant dynamic hel-
icopter components are discussea in the following paragraphs.

7.2 Main Rctor Blade

As indicated in Figures C-25, C-27, and C-29, the beam-
wise and chordwise oscillatory moments of the main rotor blade
increased greatly as the main rotor tip Mach number increased.
The high main rotor tip Mach numbers were a direct result of
the extremely cold environment. These figures also indicate
that the oscillatory moments in the cold-weather (-25°F) data
were much higher than those in Bell Helicopter's warm-weather
(68°F) data, which were collected on a UH-1D equipped with the
same rotor blade as on a UH-1H. The UH-1D had a gross weight
and c.g. position similar to those for the UH-1H in the cold-
weather tests.

For the cold-weather data, Figures C-1, C-2, C-3, and C-
17 illustrate the oscillatory and mean beamwise bending mo-
ments versus the percentage of never-to-exceed velocity (% V_)
for the main rotor blade. As apparent, the oscillatory momeht
increased with airspeed, whereas the mean moment remained
relatively constant.

The warm-weather data in the fatigue substantiation
report indicate that the largest oscillatory tensile stress
occurred during an autorotation-to-power transition. This
same trend appears in the tabular data of Appendix D. However,
the cold-weather tests indicate that the loads during an auto-
rotative landing approach with power recovery IGE can be twice
as large as those recorded during a normal autorotation-to-
power transition. Some of these loads approached oscillatory
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levels of 90,000 in.-1b for chordwise bending at Station 192.
Also, cyclic and collective pull-ups caused oscillatory loads
greater than 50,000 in.-1b. The same trends appear in the
data for the UH-1D load level tests, but the oscillatory lev-
els are not as high as those in the cold-weather data. Appar-
ently, therefore, the airspeed and maneuver type affect the
dynamic load levels on the main rotor blade. However, the op-
erating temperature affects the loads more since the compres-
5ibility effects become extremely critical as the temperature
becomes lower.

7.3 Tail Rotor Blade

As with the main rotor blade, the beamwise and chordwise
oscillatory moments of the tail rotor increased markedly as
the tail rotor tip Mach number increased. Since the tail
rotor tip Mach number is proportional to the main rotor tip
Mach number (MTR = 0.92 MyMr), the moments are plotted versus
main and tail rotor tip Mach numbers for reference purposes.
For the tail rotor blade, Figures C-26 and C-28 show plots of
oscillatory beamwise and chordwise moments versus Mach number,
and Figures C-4 and C-5 present plots of mean and oscillatory
beamwise moments versus airspeed.

Whereas the beamwise oscillatory moments at Station 11.0
in the cold-weather data are almost twice as large as those in
the warm-weather data, those at Station 21.5 are approximately
the same in both sets of data. This disparity could be due to
one or more of the following: (1) the physical and mechanical
properties of the blade, (2) the delta-hinged tail rotor systenm,
and (3) the compressibility effects associated with high Mach
number airflow.

The latter two possibilities appear to be most likely since
they affect the blade loads. The delta-hinge allows the rotor
blades to flap when the 1ift of one blade is higher than that of
the other. This flapping imposes centrifugal force loads per-
pendicular to the blade; as a result, the loads on the advancing
blade decrease while those on the retreating blade increase.
Consequently, the blade flaps until it reaches an angle where
the loads are in a state of equilibrium.

The compressibility effects caused by the high Mach numbers
at the outboard stations of the blade so affect the blade loads
that some blade areas produce less lift than normal because of
the adverse results of the compressibility effects on the section
lift coefficients of the blade, as shown in Figure 3. Since
the strain gages only sense a moment equivalent to the total
load outboard of their stations, the load distribution is
unknown. Therefore, depending on the severity and location of
the compressibility effects, the moments may vary drastically
from station to station.
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Figure 3. Compressibility Effects on Lift Coefficients.

In any event, since the fatigue life of the tail rotor
blade is substantiated on the basis of the chordwise and beam-
wise oscillatory moments at Station 21.5, the stresses induced
at this station by the cold-weather loads were investigated.
The findings are as follows: The oscillatory stress levels for
the trailing edge of the tail rotor blade in the cold-weather
data agree closely with those in the warm-weather data. How-
ever, the high-speed turns in the cold-weather operation caused
loads greater than those in the warm-weather operation. For
example, an S-turn at 0.9Vy in the cold-weather operation pro-
duced a chordwise moment of 1772 in.-1b and a beamwise moment of
1084 in.-1b. Inserting these values into an equation in the
fatigue substantiation report (Reference 5) yields a stress of
5031 psi. This equation is as follows:

fo = 0.178 My # 4.35 My (7)

where fo maximum oscillatory stress at tail rotor

Station 21.5, psi

M_ = chordwise bending moment at tail rotor Station
€ 21.5, in.-1b

Mb beamwise bending moment at tail rotor Station
21.5, in.-1b

The 5031-psi stress is nearly 34 percent higher than the maxi-
mum stress of 3759 psi recorded during a collective pull-up at
0.9Vy in the fatigue substantiation program.
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7.4 Drag Brace

For the cold-weather data, Figures C-6, C-12, and C-19
indicate that the mean compressive load on the drag brace gen-
erally increased with increasing airspeed, while the oscilla-
tory load increased slightly. These trends are directly
related to the increasing main rotor blade 1lift and drag
forces associated with increasing airspeed. The increase in
these forces increases the chordwise and beamwise moments,
which, in turn, increase the drag brace loads.

As stated in the fatigue substantiation report, collec-
tive pull-ups produced the highest oscillatory load on the
drag brace, namely, 12,815 pounds. This load was recorded
when the aircraft flew at a 2000-ft density altitude with an
8500-1b gross weight and a forward c.g. position. The
Alaskan cold-weather data revealed that cyclic pull-ups and
autorotations with power recovery IGE caused oscillatory loads
of about 10,000 pounds. In general, the oscillatory loads in
the cold-weather data are in the same range as those in the
warm-weather data.

The warm-weather data list a maximum oscillatory load of
9900 pounds on the drag brace during a collective pull-up.
However, during autorotations, the oscillatory levels remained
nearly the same as those during power-on flight, which is in
contrast to the levels in the cold-weather data. These dif-
ferences were possibly due to pilot technique or Mach number
effects on the main rotor blade which caused very large oscil-
latory loads on the drag brace during cold-weather operations.

7.5 Scissors Link

In Figures C-7, C-13, and C-20, mean and oscillatory
axial loads on the scissors link are plotted against airspeed.
As evident, the oscillatory load levels increased as airspeed
increased. Also, the oscillatory loads for a 9500-1b aircraft
arefapproximately twice as large as those for an 8500-1b air-
craft.

In comparison with the mean and the osciliatory loads in
the warm-weather data, those in the cold-weather data are
slightly larger and approximately 2 to 3 times larger, re-
spectively. However, the trends of the two sets of data are
quite similar. For both sets of data, the oscillatory levels
are highest for high-speed turns and pull-ups. Since the
loads in the warm-weather data are not as large as those in
the cold-weather data, the fatigue damage calculated for the
UH-1D may not be as large as it should be. In any event, the
number of damaging flight condition occurrences in the cold-
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weather data should be determined before the respective damage
fractions are compared.

7.6 Collective and Cyclic Boost Tubes

The boost tube loads data recorded on a UH-1H operating
in Southeast Asia (SEA) (Reference 7) are not in the same
format as the cold-weather tabular data of Appendix D. There-
fore, Tables 7 and 8 were prepared to present both sets of
data in a comparable format. As apparent from this table, the
oscillatory loads in the cold-weather environment were sig-
nificantly higher than those in SEA. This difference was
likely due to the ambient flight conditions during the re-
spective data recordings: whereas the conditions during the
SEA data collection were high temperatures and positive dens-
ity altitudes, those during the current data collection were
low temperatures and negative density altitudes.

TABLE 7. WARM-WEATHER BOOST TUBE LOADS

Flight l.ateral Longitudinal Collective
Condition A/S  Np GW 1/Rev  2/Rev  Mean 1/Rev  2/Rev  Mean 1/Rev  I/Rev  Mean
kn rpm 1b +1b *1b 1b +1b *1b 1b *1b +1b 1b
Autorotation 80 322 6450 282 188 =129 213 128 48 164 oo -15°
83 325 6402 282 106 -0 170 8S 32 109 38 <266
81 325 6364 117 25 -41 166 64 b 55 .- <200
85 321 6305 188 94 =76 128 64 59 120 53 -194
78 323 6263 164 71 18 170 106 -5 160 54 57
Hover 0 322 7322 142 95 -53 97 05 -16 2 -- -80
0 322 8785 95 oo -100 65 ok -5 13 -- -67

TABLE 8. COLD-WEATHER BOOST TUBE LOADS

Lateral Longitudinal Collective
Flight A/S NR GW Flight

Condition kn rpm 1b No. Mean 0SC Mean 0sc Mean 0SC
Autorotation| 70 321 8500 27 129 491 166 384 381 97
80 314 8500 26 51.72 413 169 377 415 213

85 333 9500 19 62.85 540 209 617 363 338

77 329 4500 28 -204 382 12.4 419 373 243

Hover 0 320 8500 27 155 181 89 320 134 85
0 | 309 8500 27 181 284 102 269 70 70
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7.7 Tail Rotor Shaft

Figures C-11 and C-18 present the tail rotor shaft torque
versus airspeed during level flight. Figure C-11 indicates
that the mean torque of the tail rotor shaft increased with
airspeed, and the tabular data show that the mean torque
levels were very high during hovers, but decreased upon reaching
the forward airspeed.

As airspeed increased from near zero to forward level-
flight conditions, the 1lift (antitorque) of the tail rotor
blade increased because of the higher airflow velocity over
the blade. Therefore, the blade pitch angle can be reduced and
thus decrease the tail rotor shaft torque. However, as the
airspeed increases beyond the initial level-flight airspeed,
the benefits of increased airspeed are offset by the need for
more engine power to propel the helicopter and consequently
the need to increase the pitch angle of the rotor blade to
keep the aircraft stabilized. This in turn increases the shaft
torque. In addition, at low airspeeds, the engine power
required to produce lift is high; at the intermediate air-
speeds, the required engine power is less because of the
benefits of increased airspeed and low fuselage drag; and at
high airspeeds, the additional engine power required to over-
come fuselage drag is high. Consequently, the shaft torque of
the tail rotor fluctuates in response to the engine power
requirements. ’

Such trends appear in the cold-weather data. However,
the torque levels in the cold-weather data are higher than
those in the warm-weather data. This is reasonable since the
loads on the tail rotor blade in the cold weather were higher
than those in the warm weather, and the tail rotor shaft
torque reflects the 1ift and drag forces acting on the tail
rotor blades.

It is difficult to compare the warm- and the cold-weather
data with respect to stress since only torsion was recorded
during the cold-weather survey and bending moment stresses as
well as torsion are required to calculate tail rotor shaft
stresses. However, as in the warm-weather survey, the highest
torque levels in the cold-weather survey occurred during the
power-to-autorotation transitions. In the fatigue substantia-
tion study, the following equation was used to calculate the
resultant stress in the tail rotor shaft:

£, = [(1.64Mp)? + 3(3.63T)2]'/2 (8)

where fe = maximum oscillatory stress, psi
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M, = resultant bending moments, in.-1b

R
T = tail rotor shaft torque, in.-1b

If MR is assumed equal to zero, to be conservative, and T equals
4542 in.-1b, the oscillatory stress is +28,557 psi, which is
above the endurance limit of $22,900 psi. This stress level is
66 percent higher than the 17,254 psi stress level used to sub-
stantiate the tail rotor shaft. The substantiation data is 25
percent lower than the endurance limit, whereas the cold-weather
data is nearly 25 percent higher. Therefore, the loads on the
tail rotor shaft should be investigated further (in the event
helicopter cold-weather operations are to continue).

7.8 Aerodynamic Compressibility Effects

The following discusses factors contributing to changes in
M/R and T/R loads. First described in terms of the known char-
acteristics of two-dimensional airfoil data, these effects are
discussed in general terms so that they may apply to the more
complex flow in the flight performance of rotary-wing aircraft.

The variation of section 1lift coefficient and drag coeffi-
cient with free-stream Mach number is well known for the thin
airfoil used in the UH-1 design (NACA 0012 for main rotor,
NACA 0015 for tail rotor), as evidenced by Reference 8.

Figure 3 shows the effect of compressibility on a two-dimen-
sional 1lift coefficient for various angles of attack. The
early separation of flow and the change in center of pressure
result in the characteristics shown. The effect of compressi-
bility on two-dimensional drag characteristics is shown on
Figure 4. The drag coefficient rises markedly as the Mach
number increases because of the shock forming on the airfoil
as a result of local airfoil velocities. As indicated in
Figure 5, the drag increase required an increase in engine
power to maintain the forward airspeed. These figures repre-
sent data for an NACA 0012-34 airfoil, which is similar to the
M/R blade section, at least for discussion purposes.

Although these two-dimensional characteristics represent
the simple flow fields of fixed-wing aircraft, they may be
reasonably assumed to represent to some degree the complex
flow fields of rotary-wing aircraft in forward flight. This
assumption would imply that high drag is expected when free-
stream Mach numbers reach critical values, as the data in
subsequent sections indicate. In addition, since the main
rotor blade has a built-in twist along the spanwise axis, the
measured chordwise and spanwise loads are both affected by the
lift and drag.
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Figure 4. Compressibility Effects on Drag Coefficients.
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Figure 5. Mach Number Effects on Required Power.

7.9 Centrifugal Force - Temperature Compensation Trade-off
Analysis

The reduction of the chordwise loads for the M/R and T/R
blades was a problem because of the compromise required in
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selecting a strain gage configuration for the blade instru-
mentation. The configuration had to cancel axial strains due
to centrifugal loads, provide temperature compensation, and
still produce chordwise strain trace deflections with suffi-
cient amplitude for data reduction.

The first strain gage cos iguration to be selected con-
sisted of two gages on the le: n1g edge and two on the trail-
ing edge wired to cancel axia’ .rains due to centrifugal
loads. Although this configuru .on proved to be independent
of spanwise loads, the different coefficients of thermal ex-
pansion for the stainless steel in the leading edge and for
the aluminum in the trailing edge caused an unacceptable
strain. Consequently, after several strain gage configura-
tions were tested, the final configuration included provisions
for temperature compensation. This compensation, however,
introduced mean centrifugal loads which had to be eliminated
by analytical techniques.

Only the mean centrifugal loads are affected since, for a
given flight condition, the rotor speed remains nearly con-
stant; therefore, the centrifugal force remains constant and
does not influence the oscillatory load levels. Thus, only an
analysis of the mean chordwise loads is necessary.

This method is based on the fact that, knowing the main
rotor and tail rotor mass distributions, centrifugal force can
be calculated as a function of blade station and rotor speed.
The data concerning the mass distributions on the main rotor
and tail rotor blades were taken from References 9 and 10,
respectively. By knowing these two distributions, an equation
correlating centrifugal force with rotor speed for each sta-
tion of interest on the blades was derived. These equations
are presented in Table 9.

TABLE 9. ANALYTICAL CENTRIFUGAL FORCE EQUATIONS

STATION, BLADE EQUAT ION
192, MAIN F = .478N§ -1.033 Ny
. 2
150, MAIN F = .609N -3.35 N
11, TAIL Fo= .1222N§
21.5, TAIL Fs .1052N§

F = CENTRIFUGAL FORCE, LB

N, = MAIN ROTOR SPEED, RPM

R
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Since the stress due to centrifugal force is much greater
than that of the chordwise bending moments during the flat
pitch flight conditions, the assumption was made that at flat
pitch, 250 rpm, the entire trace deflection recorded on the
oscillogram was due to centrifugal force only. Since the cen-
trifugal force component of the deflection varies linearly
with centrifugal force, and since an analytical centrifugal
force for the flat-pitch (250-rpm) flight condition can be
calculated by applying the equations in Table 9 to the actual
measured trace deflection, a linear relationship was estab-
lished for trace deflection and centrifugal force. However,
since centrifugal force is a known function of rotor speed and
the deflection is a known function of centrifugal force, a
relationship of trace deflection as a function of rotor speed
was developed. Then for each flight condition, the measured
rotor speed was used to calculate a deflection due to centrif-
ugal force. This deflection was then subtracted from the mea-
sured deflection to give the deflection due to chordwise bend-
ing. The resultant deflection was then converted to engineer-
ing units by using the same procedures outlined previously.

The above-stated procedures were applied only to flights
that had a flat-pitch (250-rpm) condition and therefore not
to flights that had rotor speeds too high to make the same as-
sumptions.

The following illustrates the application of the fore-
going procedures to the data for Stition 192 on the main rotor
blade in flight No. 19:

First, the following equation expressing centrifugal
force as a function of main rotor speed was derived from the

mass distribution data and the information given in References
9 and 10:

‘

F = 0.478NR? - 1.033Np (9)

where F = centrifugal force, 1b

NR = main rotor speed at flat-pitch condition, rpm

Therefore, since NgR = 246.6 rpm, F = 28,816 1b.

) Since the centrifugal force deflection varies linearly
with centrifugal force, a constant for the slope of the deflec-
tion versus the centrifugal force may be expressed as

K = 6m/F (10)
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where K = slope constant, in counts/1b

dm = measured trace deflection at flat-pitch condition,
in semiautomatic reader counts

Therefore, since 6y = 193, K = 0.0067.
Finally, the product of Equations (9) and (10) is
GCF = KF = K(0.478NR2 - 1.033NR) (11)

where GCF = trace deflection due to centrifugal force, in
counts

Therefore, since K = 0.0067, Equation (11) becomes

= 2 -
$ 0.0032NR 0.0069NR (12)

CF

Now the trace deflection due to centrifugal force may be cal-
culated for any instant of flight by substituting the corre-
sponding main rotor speed in Equation (12). Then the subtrac-
tion of this deflection from the measured deflection yields
the mean chordwise moment.
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8. CONCLUSIONS

As conclusively evidenced by the foregoing presentation
of the loads data, the dynamic component loads varied with
temperature as well as with density altitude during the cold-
weather tests. The dependence of these loads on temperature
is of great significance since current Vpe limitations on
operational aircraft are based solely on density altitude.
Also, as indicated in the data for the loads versus the rotor
tip Mach number, the severe loading on the main and tail rotor
components was due principally to the extreme cold tempera-
tures in the arctic environment.

As indicated by the plots of beamwise oscillatory loads
versus rotor blade Mach number for the main rotor blade at
Stations 35, 150, and 192, the magnitude of the oscillatory
loads on the UH-1H is twice those recorded on the UH-1D during
the warm-weather tests. In similar plots for the tail rotor
blade at Station 21.5, the magnitude of the oscillatory loads
on the UH-1H is 90 percent greater than those recorded on the
UH-1D.

During the UH-1H cold-weather tests, the combination of
low temperature, negative density altitude, and unrestricted
Vne performance produced blade section Mach numbers in the
transonic region. These Mach numbers in turn caused the
greater loads, as explained in the discussion on the wind
tunnel data for the section lift and drag coefficients.
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9. RECOMMENDATIONS

As expressed above, the aerodynamic significance of the
current loads data for helicopter performance in the arctic
environment should be verified by further investigation.
Because of the importance of the analytical and empirical
relationship in explaining the significance of these 1loads,
future investigation should include a computer model incor-
porating the latest state-of-the-art dynamic loads and a
flight test program with helicopters instrumented with sensc:s
to yield data such that the measured parameters may be di-
rectly compared with those in the computer output. Such an
investigation would reveal (1) whether or not the load charac-
teristics in the flight test program are independent of pilot
techniques, aircraft dissimilarities, and test and calibration
nrocedure differences, and (2) the additional analytic capa-
bilities required to predict the loads in this environment.
These findings will permit the trends observed in the reported
data to be verified or modified and consequently will lead to
a better capability of predicting them. In addition, such
findings should be analyzed in the light of such considera-
tions as past, present, and future usage and the size of the
helicopter fleet.

A fatigue variability study should be initiated to deter-
mine the effect of the arctic environment on a helicopter
fleet as follows: an operational usage spectrum should be
formulated on the basis of the current data, and the service
life of a typical helicopter structural component should be
calculated according to existing fatigue substantiation me-
thods. In addition, since these methods are based on the
assumption that fatigue life is a function of only usage and
loads, the effects of cold weather on fatigue-critical com-
ponents should also be investigated.

In summary, the following three efforts are proposed:

(1) An analytical study involving (a) the use of com-
puter models incorporating methods to predict loads,
(b) the analysis of these loads to determine the
effects of various ambient flight conditions on
them, and (c) the modification of existing aero-
dynamics principles, if necessary, to account for
compressibility effects.

(2) A flight test program with helicopters instrumented
similarly as in the current program but also
equipped with sensors to yield data directly com-
parable with those in the computer output and with
pressure transducers to measure airfoil pressures on
the main and tail rotor blades.
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(3) An analytical study to determine the c¢ffect of the
current loads data on the fatigue substantiation and
life of typical critical components.
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APPENDIX A

FLIGHT LOG AND AIRCRAFT
CONFIGURATION DATA

This appendix contains two types of information: (1) a
listing of the flight-by-flight log data and (2) the weight
and balance forms to derive the aircraft gross weight and c.g.
position for each test flight and configuration.
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A/C MODEL_Jen-sH

SIN _672-/72686 .
FLIGHT LOG
DATE G.R. | FLT. | OURA. | TOT. | G.W. C.G. | Temp Hd FIELD COMMENTS
NO. NO. (MIN) | TIME | (LB) (I18) { (c®) | (FT) | CONDITIONS
/-1 o yo yo - - - /ST, Pl penc gy en,
/-3 02 20 6o = - -2y Ceea INST. CHE, FoT
1-72 o3 ¥0 100 7% ) - -2 Scv Tie~neo@pn
/-7y ey a0 /20 7220/ - -23 Ciono Kun
r-+8 os 75 795 | Jsoo |y | -a29 sy con FuT
/-76 06 70 2085 | fseo |y — fusT. CHx, For
1-18 o7 30 aJ5 | I50° | svs0 | -2a I7cr Con. Fir
’-7? I’ 4 60 | 295 | 9500 | /y0 | -2F8 FecTCyp For
r-20 o9 6o 755 gs00 | r00 | -3 Niewr, Cor
7-a0 ,9 78 770 Y00 |svs0 -7 NiewT, CeR
7~/ 1/ R0 ysv = - - TR CvwmDiree
1-22 73 /0 Y60 - - - /s T Cuech
/-9 V3 70 529 | 9500 | /¥l -75 Ceen
r-4F 'y 70 609 | 9500 | sysv | -25
r-2F /5 s oys [9svo /s © | L5
Y 4 /b 4o | 05 |fsvoo | e | -ia Noew7
a-v /7 6o 726y | gsoo | /¥y -7 = /st Corx For
2-5 7 20 795 | preo | - -1 Gusry /sr Cur Feot
2-n 79 g5 |Fro0 |d590 |syy | -28 Nicwr
21/ Jo Is | L5 | F5O0 | vy -a9 Niewr
A/C MODEL_Je M -/H oY
S/N 67-17686
FLIGHT LOG
DATE G.R. | FLT. | OurRA. | TOT. | 6.w. C.G. | Temp Hd FIELD COMMENTS
NO. NO. (MIN) | TIME | (LB) (IN) | (c®) | (FT) | CONDITIONS
21/ 2/ 24 g25 | 7509 s385.3 | - Cere
242 ¥} s P70 | o500 /350 | -22 MrewT i fécoloe
ova 23 vs |rcos | 9500 | 1353 |-u¥ ot 5ot Vissarosr?
2-/2 2y s |r060 | 9500 |si55 2/ Niwr |l fecococ
22 25 s 7108 | fsoo |r3vs | -2a MEwT Owi KecorobR
oy 26 ys |5 | fsoo |27 -2 AICHT, EusTT
avy 27 s0 /200 | fsoo |/207 | -2¥ Niow?, GusTy
245 ar Jgo |/a70 | #s00 13523 | o8 Jwow, Qusr?
a5 27 60 /290 | 9500 | /354 -2
a-/s Jo ¥ |00 | 9900 |ii53 | S rNicaT
avs 2/ Go | s77° | f5o° [ /327 | -2oF NiGHT
X WA yo l,/y70 | fs00 |12 7 | -2% A 6T
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NOTE.-THIS TRANSPORT CLEARANCE FORM HAS RESULTED FROM TRIPARTITE AGREEMENT AND NO FURTHER CHANGES
MAY BE MADE TO IT WITHOUT PRIOR CONSIDERATION BY TRIPARTITE AUTHORITIES.

WEIGHT AND BALANCE CLEARANCE FORM F ) e v
TRANSPORT RCAP Fom ¥ 116 C rolisee
(USE REVERSE FOR TACTICAL MISSIONS) AOM &-81 (2177) ANoI-1B-¢0
DATT MRMANE 1YL ROM HOME STATION
JLH-1#4 RERF Fr. Gesees
MIZSION/TRIP/IFLIGHTNO, SFRIAL MO. 1o PiLOT
C7-1760¢ fs Bepueeo
LIMITATIONS " .
-__m TAREOFY LANDNG ";:.‘;",'m ; frew WG “0:""%'00'
= 1 | BASIC AIRPLANE (Mram Mhart ) s (3 ’ : slo y
r-r::g'::.w.l't!euv 9800 7.; co — [ owt Gel | 712
wimm | 9oy | > EACTC TP Selol TTs1al/
DPARTH ¥ < < Lo
E‘E’E?ﬁ?‘?‘um & PYs/ = 8 |arewano s rouirmeny 1]
[ oseraTinG witGHT = & | ruincency rourmeet /17151 21513
of. L- S o -
tRel. |: = o985 7 [rxren courmint e Zwere 57 717
ATINALER ST A /2 66 /7656 . 8 | oremarme wiigny ,1Y1f AR
tamssime = W0 MACWINI[ o [ramcorFsuL (30 9 Gul) S19 20718
»——“‘ fastoey — /3¢ 'omi,’:’:. G110 | wasamrwe )k, 40 Oul) 00 si7y
PERMISSIBLE
C. G LANDING /7390 (244 11 [ roTaL AmeLANE WEIGHT J.l NEIY /17 7
e /0% 12 DISTRIBUTION OF ALLOWABLE LOAD (PAYLOAD)
FUEL WEIGHT UPPER COMPARTMENTS LOWER COMPARTMENTS
REMARKS coury nss(mn_‘ canto oury) PASSCNGERS caneo
Barrear w Aer Corner: | woen . wo | wranr B
A sz Y17 20771 11 12]5]
Cpswuariyy Foed Srs, | ® 57 |720 olo) G
_ < lnugs7 1271 2] 11717
Sugvivae Eguie, »
[
’
.
L
1
[
x
TOTAL FREIGHT A
TOTAL AR »
COMPUTER PLATE UNBER (If wod) [
°
1 Bnter conotant ueed. ’ LN
eovrent sppivcsbie T. O. LIS 44
. AL c
Ko 2
SRet. 9 minue Ret. 17
CORRECTIONS (Rd. 1§ 13 TAKIOFF CONOITION { Uncorvostod) [AAVi /12112 |o
CHANGLS (4 o =) 14 CORRICTIONS (If requued)
coner e imotxon | 15 TARIOMP CONDITION (Owrertef) HANRURARINE
VT | wow/ 16 TANEOPF C. 6. M % M. A C O W, /9Y. 0
17_umna 7lo}o VAV
10 LESS AM SUPILY LOAD DROPED
19 MaC. VANABLES
20 ESTIMATED LANDING CONODITION 712161/ /121516
21 ESMMATED LANOING C. 6. W % M. A C. OR 3. /Y2. &
CONPUTLD BY
e
TOTAL WieHT Atmoves | - - ot
ponATUR
TOTAL WENHT ASOED + + e
/4 e pomarine
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NOTE.-THIS TRANSPOAT CLEARANCE FORM MAS RESULTED PFROM TRIPARTITE AGREEMENT AND NO FURTHER CHANGES
MAY BE MADE TO IT WITHOUT PRIOR CONSIDERATION BY TRIPARTITE AUTHORITIES.

WEIGHT AND BALANCE CLEARANCE FORM F A L) FOR USE IN
e
TRANSPORTY RCAP Poum P 130 rolises
(USE REVERSE POR TACTICAL MISSIONS) AOM 8 81 1717m) ANOI-18
DATE ARPLANE 1YPE (L HOMF STATION
LH-1H AAEE £, GLéeer
MZHON TRIPIFLIGHTNO, SERIAL WO 1o ({714
b7-/70/6 AS feowﬂdp
| _ SIMITATIONS e : mew weiGHT mom Y R
ConprTIon TARIOPT LAND#G ST Tl L J
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SukvivaL EpuiP. D 1] s 7le yle
[ by /lole [
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NOTE.=THIS TRANSPORT CLEARANCE FORM HAS RESULTED FROM TRIPARTITE AGREEMENT AND NO FURTHER CHANGES
MAY BE MADE TO IT WITHOUT PRIOR CONSIDERATION BY TRIPARTITE AUTHORITIES.
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MAY BE MADE TO IT WITHOUT PRIOR CONSIDERATION BY TRIPARTITE AUTRORITIES.

NOTE.~THIS TRANSPORT CLEARANCE FORM HAS RESULTED FROM TRIPARTITE AGREEMENT AND NO FURTHER CHANGES
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APPENDIX B
CALIBRATION AND READING ERROR DATA

For each of the recorded parameters, this appendix pre-
sents the transducer and galvanometer type to record the param-
eter variation on the oscillograms and the calibration factor
to convert the parameter deflections to corresponding engineer-

ing units.

With reading errors based on a measurement error of 2
counts on a scale of 200 counts per inch, the reading error
for each parameter channel was computed as follows:

(1)

(2)

(3)

(4)

(5)

(6)

Component Loads and Moments

(2 counts) x (channel slope)
maximum oscillatory level-flight value

Engine Torque Pressure

(2 counts) x (channel slope)
maximum allowable torque pressure, 50 psi

Airspeed

(2 counts) x (channel slope)
maximum allowable airspeed, 120 kn

Outside Air Temperature

(2 counts) x (channel slope)
coldest recorded temperature, -59°F

Longitudinal, Lateral, ard Vertical Acceleration

(2 counts) x (channel slope)
level-flight acceleration, lg

Pressure Altitude

. (2 counts) x (channel slope)
standard-day pressure, 29.92 i1n. of Hg
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oscmor.mn NO. _L FLIGHT _ gp thru lo
DATE  JAN-FiB_1974
A/C WOBEL LI 1M SHEEY 3 OF 4
SIN. . pl-lloBo CALIBRATION DATA
", RECORDED UPSCALE REFERENCE CAL. TRANS TRANS . GALYVO
NO. PARAMETER UNITS TRACE TRACE VALUE PULSE TYPE TYPE
DEFLECTION VALUE S/N
L JMR CHORD 192 oM  JIN-LB INEG MOMENT - 18621.0 - A TS
2 | MR BEAM 192 MM IN-1.8 [ PoS MOMENT $066.0
3 | MR CHORD 150 MoM IN-LB_|NEG MOMENT - 436970 -
4 | MR BIAM 150 MoM IN-LB [POS MOMENT 5023.0 --
5 | MR BLAM 35 MOM | IN-LB | POS MOMENT 16798, 0
6 | DRAG BRACE LOAD LB | COMPRESS 10N 3537.0 55
7 - - - - - . - -
3 2 - N ftrain -
8 | SLISSORS LINK LOAD L.B__| COMPRESS10M 440.9 . A 7-315
9 - - .- -
l(' B - - . .- -
11| LONG. BOOST TUBK LB | COMPRISSTON 481,12 ShEdin 7315
12 | LAT. BOOST TURL L | COMPRESS 1O 452.5 |
13 | coLL. BOOST TUBL LB [COMPRESSTON 454.8 il
14 D eoLL. STICK POSITION [l DOWN - Qiter | "-330
15 [ LONG. STICK posITION] % AFT - - - [
16 | LAT. STICK POSITION 1 RIGHT . - -- '
)~ | VOLTAGE MONITOR - 2 - T 312
18 | MR AzMUTH : 5 R ST B
COMMENTS:
oscmocmn NO. 2 FLIGHT _ 06 THRU 16
A/C noo‘ﬁm‘ — JIIEH-“! SHEET_20F §
A Z-17082 CALIBRATION DATA
TR. RECORDED UPSCALE REFERENCE CAL. | TRANS TRANS . GALYO
NO. PARAMETER UNITS TRACE TRACE VALUE| PULSE TYPE TYPE
DEFLECTION VALUE | S/N
1 | TR cHORD 11.0 MOM JIN-LB [NEG MOMENT g 1437.3 sifdtn 1 7.8
2 | TR BEAM 11.0 MOM [IN-LB |NEG MOMENT - 940.3 -
3 | TR cHORD 21.5 MOM JIN-LB JNEG MOMENT - 1233.6 -
4 | TR BEAM 21.5 MOM |IN-LB |[NEG MOMENT - 452,2 -
S | TR SHAFT TORQUE IN-LB | NEG_TORQUE - 697. 4 4 7-339
6 | TR AZIMUTH -- -- - - - pekpesdq 7-312
7 | MR AZIMUTH - -- - - - ]
8 | 0AT F* | INCREASING - 25.8 - Leodt | 7-339
9 | Nx g | POSITIVE - 1.04 | 12091 ] -1 7-341
10| Ny g | POSITIVE - .75 | 12044
11 | Nz g |POSITIVE - .81 | 12070 T
12 | RUDDER PEDAL POS. [ RIGHT - -- .- °‘:,,"
13 | ROTOR SPEED RPM | DECREASING - - I 7-315
14 | ALTITUDE IN.HG. | DECREASING - 5.99 65 ﬂ’m‘
15 | AIRSPEED IN.HG.| INCREASING - .752] 2802 |
16 | ENGINE TORQUE IN.HG.| DECREASING - 77.2 | 143468 !
17 | VOLTAGE MONITOR - - - - - - 7-312
18 - - - ! - - - -
COMMENTS:

*#® FREQUENCY TO VOLTAGE CONVERTER
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i B 1™ thry
Ozt;lll.of.i.(APN N FLLGut Jbothiu oo
UATE  JAN JLb 1271
A/ MODI1 S an SHEET 30b 1
S LT Liese CALIBRATION DATA

1R, RECORDED UPSCALE AEFLRENCE CAL. TRANS TRANS GALVO
NO PARAMETER UNTTS TRACE TRACE VALUE PULSE TYPE Type
DESLECTION VALUE S/N
i [ MK CHORD 192 vy IN LB OINEG MOMIST o NY.EU Zl‘isl" 315
2 MR B 1a yom [N LR O [ros MompNT I
3 Lur cnorp 150 won IS LB [NEG MoMNT - Th0-, 0
4 MR OBEAM QS0 MOMO BN LB P0S MOMENT 50230
5 1Mk BraM 35 woM iy aw Jros wow sy 10708, 0
o | DRAG BRACE 1.0AD TR {CoMpRESSTON 153°.0
B [ SCISSORS LINA LoAD IR [CoMPRESSTON 10,0 A K
)
1n
11 fronG, roosT TURE LR feoMPRESSTON 397,20 St IR
12 JrAL, BansT TUBE LR COMPRESSTON 152.5 ]
i3 Joonr, woost 1um LR JCOMPRLSSION 1548 ]
13 oL, STICK POSITION 1 foows BOTERIT | - 330
15 | LoNG, STHOK PosTTION L R i
1o | LAT. sTICK PosITION v [Riant ‘ 1
1° ] VOLTAGE MONTTOR . RN
18 | Wk AZIMuTH I - SRS EEE
COMMENTS:
T thru 27
OSCILLOGRAPH NO. 2 T TLIGHT 26 thru 32
DATE ~ JAN-FIB 1974 .
A/C MODEL . LT B I L
S CALIBRATION DATA
. RECORDED UPSCALE REFERENCE CAL. TRANS TANS. GALVO
NO. PARAMETER UNITS TRACE TRACE VALUE| PULSE TYPE TYPE
DEFLECTION VALUE S/IN
VTR corn 11,0 MoM Jin-tp [NEG MOMINT o 1437.3 Rtiraiin 2 316
2 TR BEAM 11.0 MOM JIN-LB [NLG MOMENT - 440.3
3 PTR CHORD  21.5 MOM JIN-1B NVG MOMENT - 1233.6
4 [ TR BEAM 21,5 MOMTIN-LR [NLG MOMENT 452.2
s | TR sHa¥T TORQUL IN-LB [NEG TORQUE 0974 *330
6 | TR AZINUTH s : - ES IR
2 MR AzIMUTH - - 4 i
8 |oaT +°  TINCRLASING 25.8 thermal T =.339
9 § Ny g |POSITIVE 1.04 [12091 gsgeter [ - 341
10 [Ny g rosITIvE .75 12044
1) [N- % [POSITIVL - .81 [12070
12 | RUDDER PEDAL POS. 1 [ricHT - 5 - BRSNS
13 | ROTOR SPEED RPM DECREASING o . "e I.31%
14 [ ALTITUDE IN.HG. [DECREASING 5.99 65 TeEsyTe
15 [ ATRSPEED TN.HG. [INCREASING - .752| 2802 |
16 | ENGINE TORQUL IN.NG. | DECREASING - 77.2 [143408 +
17 | VOLTAGE MONITOR - - - 7312
18 - 5 . - "

COMMENTS:

** FREQULNCY TO VOLTAGE CONVERTER
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PERCENT READING ERROR FOR RECORDED PARAMETERS BY FLIGHT

RECORDLY FLIGHT
PARAME TERS
13 14 15 16 19 20 21
MR CHORD 192 MOM 20" . 3.45 3.33 2,63
MR BEAM 192 MOM .82 .85 °8 .81 .93 .91 75
MR CHORD 150 MOM : . : 2,07 2.86 1.89
MR BEAM 150 MO "3 .71 82 .76 .83 .89 .66
MR BEAM 55 MOW 1.82 1.80 1.94 1.80 2.50 2.006 1.32
DRAG BRACE LOAD 1.74 2.35 244 1.40 2,00 1.08 1.43
SCISSORS LINK LOAD 1.18 .68 93 .95 1.31 1.39 1.13
LONG, BOOST TUBE : - - 2.78 2.90 1.85 2,16
LAT, BOOST TUBE 1.01 2,00 2.74 2.15 2.33 1.57 1.08
COLL. BOOST TURE .95 1.21 I I .78 1.54 1.45 .62
TR CHORD 11.0 MOM : 2.80 1.82 2.50 - -
TR BEAM  11.0 MOM 1.20 1.39 1.41 .94 1.26 .79 A3
TR CHORD 1.5 MOM 3.13 3.03 6.90 3.13 4.88 2.94 -
TR BEAM  21.5 MOM 1.90 .89 2.82 1.90 1.44 211 1.07
TR SHAFT TORQUE 3.08 4.14 5.13 3.64 3.85 2,78 1.77
OAT .49 47 .48 .46 .57 .58 .57
Nx 65 .67 .63 .80 .81 .79
Ny .48 .47 .45 $.17 .54 .56 .54
N7 1.18 1.27 92 10,0 1.46 1.51 1.47
ALTiTUDE .07 .07 2 .07 .07 .04 .04
AIRSPEED .50 .50 50 .58 49 .31 .31
ENGINE TORQUE .31 .31 30 .30 .37 .37 .37
PEKCENT READING ERROR FOR RECORDED PARAMETERS BY FLIGHT
RI CORDLD FLIGHT
PARAME TER
26 i 28 29 30 31 32
MR CHORD 192 MOM 3.45 3.45 3.08 2.94 2 2.94 3.64
MR BLAM 192 M0M 1.05 .80 .81 .84 looo .85 .98
MR CHORD 150 MOM 3.57 2.50 21 2.25 2.86 2.22 3.28
MR BLAM 150 MOM .8" 1 .09 .77 .85 .74 .82
MR BLAM 35 MOM 2,90 1.72 1.87 1.80 2.30 1.60 1.79
DRAG BRACE '0AD 120 1.61 1.49 1.68 1.98 1.60 2.00
SCISSORS 1LINK LOAD 2.25 i1l .87 1.06 2.22 .98 1.64
LONG. BOOST TUBE 2,99 1,74 1.80 2.78 3.44 2.94 3.57
LAT. BOOST TUBL 6.25 1.82 1.61 1.90 4.08 1.77 3.28
COLL, BOOST TUBE 3.17 1.20 1.05 1.09 2.11 1.09 2,83
TR CHORD 11.0 MOM 3 : - - . E :
TR BEAM  11.0 MOM : . - - . s -
TR CHORD 21.5 MOM 3.77 3.51 3.17 3.89 3.70 2.86 4.00
TR BEAM  21.5 MOM 1.82 1.27 1.54 1.57 2.02 1.33 1.90
TR SHAFT TORQUL 3.39 215 2,50 3.64 4.17 2.86 3.08
OAT .58 .56 57 .57 .56 .87 .87
NK .80 .78 80 .80 .81 .80 .79
Ny .55 .54 .56 .58 .56 .56 .56
N= 1.48 1.44 1.49 1.49 1.48 1.48 1.52
ALTITUDL .08 .05 05 .08 .05 .08 .05
AIRSPELD .40 40 39 .40 .39 .40 .40
ENGINE TORQUE .37 .37 37 .37 .37 .37 .37
48




APPENDIX C

GRAPHS OF SELECTED
LEVEL-FLIGHT DATA

This appendix contains four types of graphs for selected
level-flight data: (1) component load versus airspeed, (2) en-
gine shaft horsepower versus main rotor tip Mach number, (3)
tail and main rotor oscillatory bending moments versus rotor
tip Mach number, and (4) airspeed versus main rotor tip Mach

number.

49



IN.-LB

10000

OSCILLATORY MOMENT,

X
-1
'
Fd
—
[
7
53
-
Q
=
A
-,
28]
-

-10000}

10000}-

-10000f-

3t e S A Ty g
20 40 60 80 100 120

AIRSPEED, % Vn

a) Flights 13 and 14, 9500-1b Gross Weight, and AFT C.G.

Figure C-1.

Main Rotor Blade Beamwise Bending at Station 192
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