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I. INTRODUCTION AND SUMMARY

o st )

&
! In ballistics work, and especially in smail arms firings
at targets to determine accuracy, it is quite natural to
! measure the closeness of a group of shots by the "extreme spread",
or the greatest distance between any two shots of a group.
| Moreover, the extreme spread may be determined quickly with
] a ruler and does not require any detailed or involved
computation, as does the round-to-round standard deviation
E in each direction, or the mean radius of the shots of a
group, for example. It is for these reasons that ballisticians,
riflemen and others have long had a great interest in the
extreme spread, for it is truly the most rapid measure of
dispersion of shots on a target. Sometimes the extreme
spread, or the maximum distance between pairs of points on
the target, is called the "group diameter", but there is a
very subtle difference between the two when onc delves into
the general problem on a statistical basis. We do not
intend to cover all the pertinent details relating to
the statistical analysis of patterns of shots on a target here,
but interested readers might well study the booklet of
Grubbs [1964]. Rather, we intend to develop in this paper
the properties of the extreme spread more extensively than
has been done in the past, and thereby contribute to an ;
improved understanding of the statistical characteristics of :
the probability distribution of the extreme spread, which is
required in any first-class or overall analysis of target
accuracy studies.

-

TS T b A S B
f RUC TR

o sty T R L \iw"-"w:l"r;",v,

In our introduction of the subject, we point out that
the extreme spread is a random variable which follows some
kind of statistical or probability distribution. Indeed, the
amount of random variation from one group of shots to
another depends markedly on the sample size, or the number
of shots in a group, and the underlying unknown, population
round-to-round standard deviation, which we will call
o. The population standard deviation, o, is a one-directional
or "linear" guantity, say for the x or hcrizontal direction
(as well as the y or vertical direction), and for a very
large number of shots it may be found as the square root of

' the sum of squares of deviations in the x-direction from
' the mean divided by the number of rounds. In rifle firing,
3 and in many other types of weapon studies, the population

- standard deviations in the two directicns are equal or very
nearly so. Hence, it may be assumed in »ur following

analysis that Ug = Oy = 0. The exact theoretical probabilaty

distribution of the extreme spread, or bivariate range, as
it is often called, has not been determined as of this date, ]
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although many of the key properties of the distribution are
fairly accurately known from previous studies. In the
followiig, we report on the results of a Monte Carlo type of
computer simulation, along with the necessary statistical
analyses, to find approximate statistical distributions which
for all the practical purposes result in the degree of
accuracy needed to round out sufficiently our understanding
of properties of the distribution of the extreme spread, at
least for the very important practical cases involving small
sample sizes of predominant interest.

Our acknowledgements must go to Mr. Philip G. Rust,
retired industrialist of the Winnstead Plantation,
Thomasville, Georgia, for his great interest in critical
analyses of accuracy firings of rifles, which provided much
of the motivation for this iavestigation, as well as for the
booklet by Grubbs [1964], which are of importance to ballistic

analyses generally,
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IT. SOME ANALYTICAL PRELIMINARIES
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Consider a random sample X;, ..., Xn (Xi = (xi, yi))
é from a bivariate normal distribution with probability
i density function (p.d.f.) given by F
: o (x24y2 2
i £(x, y) = 2 " (X*¥%)/20%, (o =0, =0). (1)
2102 Xy

w "
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The extreme spread (ES), or bivariate range, is defined as
ES = max |Xi°xj|. This ES is of course a random variable,

i,j

as previously pointed out, and we seek its probability
distribution, realizing that it will be dependent upon the i
sample size n. For the case n=2, for example, we have ]

E3 = |X;-X2| = /kxl-x2)2+(y1-y2)2 = 2xg, where the random

variate chi has two degrees of freedom. In this case, the
mean value of the extreme spread, E(ES) = 1,772450, and the
variance V(ES) =(.9265¢)2, This result does not have a
direct extension to higher sample sizes, (n>2) however, and
the distribution of the extreme spread ES has not been
determined analytically.

Some earlier work of Wilks and Grubbs in the last
reference [1964] have led to Monte Carlo estimates of the
first four moments of the three-dimensional or trivariate
range, the trivariate midrange, the extreme spread or
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bivariate range, and the bivariate midrange. Cacoullos and
DeCicco [1967] have investigated two approximations of the

ES distribution based on the Monte Carlo moment data of Wilks
and Grubbs. In this paper we present improved Monte Carlo
moment estimates (by virtue of greatly increased sample
size), as well as quantile estimates, or percentage points,
which were not available previously and propose some g
approximate distributions, which will suffice for most
analytical studies in practice. The large-sample moments
tabulated below include the mean u, standard deviation o,

the skewness measure a3, and "kurtosis" or peakedness measure
ay. (See any standard textbook on statistics for further

I definitions and formulas.) i

ITI. MONTE CARLO RESULTS

The moments (Table 1) and various quantiles of interest
(Table 2) are based upon 10“ Monte Carlo samples of the
random variable ES for each value of sample size, n. The value
of n specifies the number of points sampled from the circular
normal distribution to determine a single value of ES.

R

¥ The quantiles of Table 2 are, of course, subject to
standavd lefinitions and interpretations. For example, for a
samp! size of n = 7 and known population standard deviation

g, the lcwer 1% peint is 1.8420 and therefore in random sampling
from a bivaviate normal population with standard deviation ¢ ‘
we would e-.ect that only 1% of the extreme spreads for a E
sample of size seven would fall below 1,.842¢. Similarly, for

the 99% point, P 9900° (or upper 1% significance level) we

would expect only 1% of the extreme spreads for sample size n = 10
to exceed 5.750. The mean value of the extreme spread for a
sample of size 10 from Table 1 is 3.813¢.
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IV. APPROXIMATE PROBABILITY DENSITIES

Candidates for approximating the probability
distribution of the extreme spread were chosen fron three
well known families of distributions, specifically, the
chi distribution, the lognormal distribution, and the two-
parameter Weibull distribution. Some particulars of our
findings are detailed in the following paragraphs.

Chi Distribution Approximation

In considering the Chi distribution, we made use of the
fact that meﬁlv is approximately distributed as x2? with

v = Z%i degrees of freedom (see, for example, Grubbs et al
{1966]), where L is the sample range for randon samples of
size n from a univariate normal population. In our
notation, m = E(wﬁ) and v = V(wﬁ). We used this same type

of approximation for the extreme spread ES and interpolated
linearly to evaluate chi-square for fractional degrees of
freedom. Using the sample moments of ES to estimate m and
v, this family provided a rather good fit to the sample
guantiles over the entire range of n considered, although the
imension of the sample space has increased from one to two.
The results are summarized in Table 3 where the italicized
value is the fitted value juxtaposed to the Monte Carlo

quantile es*imate.

Lognormal Distribution Approximation

The lognormal distribution provides an excellent fit for
large values of n. Following recommendations of Aitchison
and Brown [1966], we used the method of quantiles (specific-
ally, the 10th and 90th percentiles) for purposes of estimating
u and ¢ of the associated normal distribution. Possibly, a
different choice of quantiles might lead to a better fit for
small n; however, a summary of results for the larger values
of n is included as Table 4 with the same format as Table 3.

Weibull Distribution Approximation

In fitting a two parameter Weibull distribution,

8
F(x) = lne'(x/°) , to our data, we were precluded from
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obtaining maximum likelihood estimates since we have at

our disposal only the Monte Carlo moments of tane distribution
and not the individual sample values. In lieu of these, we
used a moment estimate suggested by Cohen [1965], but with
somewhat less than sati-fying results. In fact, both the
chi approximation and 2i.% lognormal seem preferable to the
two parameter Weibull K .Jthough a three parameter Weibull
with the introduciion ol a location parameter would
prohably c’fer some improvement. We felt that this
excceded our charter of consideration of a few commonly
encounterec distribution:s however, and postponed any
further inquiry for a later date, especially since the chi
and iognormal distributions gave ‘rery satisfactory results.

Data Suncz:ry and I''am-le of Fitting Procedure

Th- chi vaiiale is less dec~riptive in terms of absolute
difference betwe: . “ne Monte Carlo and fitted value as we
go further out in t.ue tails of the distribution and the
parameter n increases. As a matter »f fact, the upper tail
(perhaps of most interest) is described somewhat better than
the lower tail, although the percentage error between the
Monte Carloed and fitted value rarely exceeds 4% and then
only in the extrexe percentiles of the lower tail. It is
also worthy of note that for hypothesis testing the region
of rejection will be slightly larger than that indicated for
the fitted x variate.

The lognormal variate as previously stated provides a
good fit for the larger values of n(15 < n < 34), with a
percentage error in excess of 2% occurring only in the most
extreme percentiles.

For practical situations either fit is adequate,
the chi fit being more versatile over the range of n
considered and the lognormal variate offering a closer
approximation over a restricted range of the sample size,
n.

Suppose we take a random sample Xy eoes X of size

n from an univariate normai distribution and determine the
sample range w_ = max |xj-xj|. Since Z%f « w? is

1,) n
2m?
approximately distributed as x2(—1) where m; = E(wg) and
vy
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vV, = V(wﬁ), we wanted to see if the extreme spread, ES,

which acts like a bivariate sample range did not also
closely follow a chi distribution (or, equivalently, ES?

follow a x2 distribution).

]
4

To ‘:termine, for example, the 95th percentile P 95

A ST L

2

of ES? corresponding to some value of n we must satisfy
the relation

A Ginge & SRS

Pr{ES2 < P _.} = .35 = Px{ES < VP _ }

+95

e %

or equivalently,

2m o2 . 2M -
Pr{—‘; ES i v p.95} .95

To test our approximation, we assume

P R Y R ST

2m 2 . 2211\2 .
AR |

argghen

RS Y

where m and v are the mean and variance of ES?2, so that we
may substitute to obtain

2
Prix2(3) < 2 p .} = .05

and 'nterpolate in the chi square table to determine Z% P gs-

R TP ItPr  WET . S

Finally, multiplication of this quantity by i%;yields P o for

ES?,. and /P . is the 95% point for ES.

R T L

It is easy to show that the mean, m, and variance v, for

the extreme spread squared, i. e. ES2, may be expressed in
terms of the moments of the extreme spread ES as follows:

woise v < tt el

m= g2 + yu?,

\ve g

‘

and v = ayot + dazcdy + 402u? - of,

.

where the i, o, a3 and a, are moments of ES.
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Hence, referring to Table 1 for n = 10, we have
m= (0.745)2 + (3,813)2 = 15,094,
v = 3.288(0.7+5)% + 4(0.388)(0.745)3(3.813)
+ 4(0.745)2(3.813)2 - (J.745)" = 35.430,

and we want to determine P 951 where

Pr{x2(12.86) < 0.852 P ..} = .95
Interpolating in the chi square table for 12.86 d. f. yields

0-852P,95 = 22.20, or P g5 = 26.06 for ES2, and /P.gs = 5,11
which is the 95% point for ES, corresponding to the entry
in Table 2.

Example. Compare the relative precision of the extreme
spread ES and radial standard deviation RSD for 15 rounds.

For n=15 rounds and from Table 1, ¢ = ES/4,190 gives an
unbiased estimate of o, and quantity .,694/4.190 = .166
is the relative precision for the extreme spread. In a
like manner, the precision of the RSD is found from Grubbs
(1964) Table 4 for 15 rounds to be .1817/1.354 = ,134.
Therefore .166 vs. 134 indicates that the RSD is slightly
more precise than the ES. (For the relative precision, we
compare standard errors for unbiased estimates.)

To use Table 2, suppose from previous firings we established
that o = 3 inches. Then for n=15 rounds, the chance that
the extreme spread, ES, exceeds 5.396¢c = (5.396)(3) = 16.19 inches
is .05,
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MOMENT CONSTANTS OF THE EXTREME SPREAD

TABLE 1

n ¥ES %ks a3 (L TN

2 1.766 0.932 0.632 3.294

3 2.406 0.887 0.451 3.143

4 2,787 0.856 0.393 3.163

5 3.066 0.828 0.390 3.171

6 3.277 0.806 0.374 3,104

7 3,443 0.783 0.373 3.177

8 3,582 0.771 0.392 3.231

9 3.710 0.754 0.382 3.215

10 3,813 0.745 0.388 3.288 :
15 4.190 0.694 0.395 3.255 :
20 4.452 0.668 0.400 3.240 i
25 4,639 0.650 0.439 3.307 i
28 4.734 0.642 0.426 3,357 3
30 4.788 0.635 0.463 3.441 ,
31 4.822 0.631 0.434 3.321 ;
34 4.891 0.623 0.422 3.318 3

Note: The numbers in the second column are E(ES)/o, and those
of the third column are SD(ES)/¢.
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PERCENTAGE POINTS OF THE EXTREME SPREAD ! :g

TABLE 2 i

P P P

n P oooos P.oo10 P.o0oso P.oi00 P.ozs0 P.os00 P.1000

0.339 0.383 0,578 0.687 0.882 1.066 1.313
0.653 0.710 0,946 1.076 1.283 1.477 1.725
0.885 0.983 1,260 1.400 1.611 1.801 2.046
1.137  1.227 1.491 1.636 1.853 2.043 2.278
1.348 1.452 1,710 1.842 2.043 2.243 2.477
1.525 1.608 1.863 1.998 2.208 2.403 2.636
1.607 1,709 2.030 2.167 2.373 2,563 2.786
10 1.798 1.884 2,140 2,277 2.482 Z.66S 2.896
15 2,295 2.372 2,656 2,772 2.963 3.129 3.340
20 2.630 2.721 2.972 3,095 3,276 3.438 3.626
25 2.894 2.965 3,220 3.329 3.504 3.652 3.845
28 2.952 3,044 3,312 3.424 3.605 3,759 3.953
30 3.084 3.170 3.402 3,511 3.678 3.834 4.017
31 3.149 3,216 3.429 3.541 3.712 3.868 4.055
3,216 3.297 3.517 3,630 3.797 3,946 4.127
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TABLE 2 (CONTINUED)

. ¥
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n P ggoo P.osoo P.9750 P.oo00 P.9sso F.o990 P.9995

PR T L U

e,

3 3.588 3,984 4.318 4.746 5.002 5.595 5.834 :
4 3.916 4.285 4.602 5,010 5.290 5.938 6.190 §
s  4.156 4.519 4,832 5,207 5.461 6.057 6.288 :
6 4.33 4.670 4,973 5,361 5.655 6.221 6.431 :
7  4.480 4.805 5.110 5.471 5.728 6.245 6.427 ;
8  4.595 4,937 5,227 5.582 5.848 6.379 6.621 5
9  4.702 5.029 5.308 5.672 5.930 6.398 6.658 :
10 4.786 5.118 5.409 5.750 6.004 6.552 6.742 :
15  5.101 5.396 5.668 6.000 6.235 6.727 6.897 §
20 5.33 5.630 5.880 6.205 6.436 6.890 6.998 ;
25  5.494 5,790 6.049 6.364 6.578 7.012 7.198 4
28  5.575 5.860 6.113 6.453 6.664 7,138  7.323 y

30 5.619 5.898 6.170 6.476 6.711 7.205 7.386
31 5,651 5.927 6.180 6.503 6.719 7.146 7.317
34 §.706 5.979 6.224 6.523 6.731 7.218 7.389
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10

15

20

25

28

30

34

0.578
0.562

0.946
0.805

1,260
Z. Z82

1.491
1.410

1.710
1.608

1,893
1.755

2.030
1.810

2.140
2.027

2.656
2.496

2.972
2.808

3.220
3.027

3.312
3.144

3.402
3.209

3.429
3.266

3.517
3.342

CHI APPROXIMATION

P 0100

0.687
0.67¢6

1.076
1.038

1.400
1.325

1.636
1.560

1.842
1.756

1,998
1.904

2.167
2.060

2.277
2,176

2.772
2.642

3.095
2,963

3.329
3.171

3.424
3.284

3.511
3.351

3.541
3.398

3.630
3.485

TABLE 3

P 0250

0.882
0.868

1.283
1.25¢4

1.611
1.580

1.853
1.787

2.043
1.984

2.208
2.136

2.373
2.288

2.482
2.404

2.963
2.864

3.276
3.173

3.504
3.388

3.605
3.493

3.678
3.560

3.712
3.601

3.797
3.688

P 0500

1.066
1.067

1.477
7.45068
1,801
1.758

2.043
1.995

2,243
2.191

2.403
2,341

2.563
2.4956

2.669
2.609

3.129
3.061

3.438
3.359

3.652
3.671

3.759
3.686

3.834
3.74¢6

3.868
3.785

3.946
3.871

.1000

1.313
1.297

1.725
1.707

2.046
2.011

2.278
2.249

2.477
2.442

2,636
2.692

2.786
2.740

2.896
2.8583

3.340
3.299

3.626
3.584

3.845
3.800

3.953
3.9038

4,017
3.961

4,055
4.003

4,127
4.085
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CHI APPROXIMATION
TABLE 3 (CONTINUED)

Poooo P.osoo P.o7s0 P.ogo0 P.ogso  P.ogoo

3 3 3,588  3.984 4.318 4.746 5.002 5.595

3 3.683 3.975 4,306 4,717 4,997 5.578

e 4 3,916  4.285 4.602 5.010 5.290 5.938

: | 3.923  4.289 4.597 4.981 5.233 5.786

R 5 4,156  4.519 4.832 5.207 5.461 6.057

g’ , 4.164 4.516 4.813 5.177 5.424 5.938

2 | 6 4.336  4.670 4.973 5.361 5.655 6.221 ;
ke i 4.352  4.677 4.966 5.318 5.559 6.052 :
E § 7 4,480  4.805 5.110 5.471 5.728 6.245 f
4 ) 4.483  4.799 5.083 5.417 5.647 6.127 L
iy i 8 4.595  4.937 5.227 5.582 5.848 5.379 :
3 ‘ 4.608  4.921 5.196 5.521 5.752 6.222 ?
e ’ 9 4.702  5.029 5.308 5.672 5.930 6.398 !
f 4.704 5.012 5.280 5.598 5.820 6.277 ‘
b: | 10 4.786 5.118 5.409 5.750 6.004 6.552 %
. ; 4.799  5.105 5.363 5.680 5.893 6.343

;- 15 5.101  5.396 5.668 6.000 6.235 6.727

3& §.009 5,387 5.627 5.916 6.118 6.524 ;
3 20 5.336  5.630 5.880 6.205 6.47%4 6.890 é
.g 5.333 5.598 5.833 6.105 6.258 6.688 §
E 25 5.4984 5,790 6.049 6.364 6.578 7.012 ;
- 5.499 5,768 5.980 6,246 6.429 6.809 .
3 28 5.575 5,860 6.113 6.453 6.664 7.138 '
g; 5.582 5.836 6.056 6.317 6.497 6.875

2 30 5.619  5.898 6.170 6.476 6.711 7.205

§ 5.626 5.877 6.100 6.3589 6.533 6,908

9 31 5.651  5.927 6.180 6.503 6.719 7.146

E 5.654 5.802 6.122 6.378 6,563 6.920

2 34 5,706  5.979 6.224 6.523 6.731 7.218 .

é 5.715 5.968 6.173 5.424 6.598 6.958
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LOG NORMAL APPROXIMATION
TABLE 4

P ooro P.ooso P.o100 P.o2s0 P.oso0 F.1000 :
' 15 2.295  2.372 2.656 2.772 2.963 3.129  3.340 :
2.307  2.478 2.687 2.811 2.986 3.146 3.340 :

20 2.630 2,721  2.972 3.095 3.276 3.438 3.626 3
2.679 2.761 2.984 3.098 3.274 3.433 3.626 .

25 2.894 2.965 3,220 3.329 3,504 3.652 3.845
2.807 2,989 3.211 3.325 3.499 3.655 3.845

28 2.952 3.044 3.312 3.424 3.605 3,759  3.953 ]
3.020  3.102 3.323 3.436 3.609 3.765 3.953 :

30 3.084 3.170 3.402 3.511 3.678 3.834 4.017
3.088 3.170 3.397 3.50¢ 3.676 3.830 4.017 i

31 3.149 3.216 3.429 3.541 3.712 3.868 4.055
3.127 3.200 3.437 3.542 3.714 3.869 4.05%

34 3.216 3.297 3.517 3.630 3.797 3.946 4.127 !
3.202 3.284 3.504 3.617 3.788 3.942 4.1l27
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LOG NORMAL APPROXIMATION 3
TABLE 4 (CONTINUED)
15 5.101 5.396 5.668 6.000 6.235 6.727 6.897
5.101 5.416 5.706 6.062 6.3l7 6.877 7.108 '
20 5.33 5.630 5.880 6.205 6.436 6.890 6.998 ,
5.336 5.636 5.910 6.246 6.485 7.008 7.222 |
25 5.494 5.790 6.049 6.364 6.578 7.012 7.198
5.494 5.779 6.038 6.354 6.578 7,067 7.266
28 5.575 5.860 6.113 6.453 6.664 7,138 7.323
: §.575 5.853 6.106 6.413 6.632 7.105 7.298
L 30 5.619 5.898 6.170 6.476 6.711 7.205  7.386
~ §.619 5.893 6.141 6.442 6.656 7.120 7.306
31 5.651 5.927 6.130 6.503 6.719 7.146 7.317
5.651 5.923 6.170 €.469 6.:82 7.142 7,329
34 5,706 5.979 6.224 6.523 6,731 7,218  7.389
5.706 5.974 6.217 6.511 6.720 7.171 7.388
.g :
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