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Social dilemmas are easy to invent. Consider a game in which each of 

three participants must place either a blue poker chip or a red poker chip 

in an envelope in private. Each participant who places a bJue chip in the 

envelope receives $1.00, and hir choice has no effect on the other two parti- 

cipants.  Each one who places a red chip in the envelope receives $2.00, and 

the other two are fined $1.00 each for this choice.  (Equivalently, that 

individual receives $3.00 and then pays his share of a $3.00 fine assessed 

to the group as a whole.)  Which chip should each participant choose? No 

matter what the other two people do, each is $1.00 better off choosing a red 

chip; moreover, the choice of the red chip is the only guarantee against 

losing money.  But if all choose the red chip, no one gets anything; while if 

all had chosen the blue, each would have received $1.00. 

Social dilemmas — which are often described as involving a conflict between 

"individual rationality" and "group rationality" ~ have become of increasing 

interest to both social scientists and laymen.  Overpopulation and pollution 

are two dramatic examples of particular interest. Mathematically oriented 

psychologists and sociologists have developed formal models (usually algebraic 

or geometric) of social dilemmas. This chapter attempts a systematic review 

and integration of such models; it draws heavily on the work of Hamburger (1973) 

and Schelling (1973) — attempting both to integrate their work and to delineate 

its relationship to a "commons dil*mma game" devised by the author.  In 

particular, three dilemma games discussed by other authors and the commons 

dilerana game are proved to be equivalent. 

The simplest social dilemma is one involving two people, the well-known 

prisoner's dilemma.  In the example from which it draws its name, the dilemma 

concerns two men who are known to have robbed a bank, who have been taken 

prisoner, but who cannot be convicted without a confession from one or both. 

The law enforcement people offer each an identical proposition:  if you confess 
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and your partner does not, you will go :ree and he will be sent to jail for 

ten years; if you both confess you wi]l both be sent to jail for five years, 

while if neither confesses, ' will semi both of you to jail for a single year 

on a lesser charge.  Each prisoner is now asked to consider his own best 

interests in light of what the other may do.  If the other co.-fesses, each is 

better off confesting, for then he will go to jail for five years rather than 

ten; if the other does not confess, each is still better off confessing, for 

then he will go free rather than go to jail for a year.  Hence, the strategy 

of confessing is better is both circumstances; it is termed a dominating 

strategy.  Both prisoners would be better off, however, if neither confessed; 

hence simultaneous choice of the dominating strategies (confession) leads to a 

deficient equiliblrium, a result that is less preferred by both prisoners than 

is the result that would occur if neither chose his dominating strategy, i.e., 

if neither confessed.  This result is termed in "equilibrium" because neither 

prisoner is motivated to change his choice given that the other has confessed. 

In tne game considered at the beginning of this chapter, the dominating 

strategy is choosing the red chip and the resulting deficient equilibrium is 

that no one gets anything — while if all hud  chosen the bl>le ship, all would 

have received a dollar. 

In general, a social dilemma may be defined as a situation in which each 

player has a dominating strategy and in which the choice of dominating strategies 

results in a deficient equilibrium.  This definition may easily be stated 

formally when each player has a choice between two strategies (or choices of 

action) and all players have the same payoff structure, one thf.t depends only 

on the number of people who choose the dominating strategy.  iCondition (1) in 

Schelling's 1973 article].  Although the concept of social dilemma does not 

require that choice is limited to two alternatives or that all players have the 

same payoff structure, most formal theoretical work is within this framework. 
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Consider that each of N players has a choice between two strategies 

D and C (D for "defecting" and C for "cooperating").  Let D(m) be the 

player's payofl for a D choice when m players choose C and let C(m) be the 

2 
payoff for a C choice when m choose C . A social dilemma game is one in which: 

(1) D(m) > C(m+1) [Hamburger's Condition P3, 
Schelling's Condition (2)] 

That is, whenever any number m of other people choose C each player is 

better off choosing D than choosing C and becoming the m + 1st cooperator, and 

(2)    C{N) > D(0) THamburger's Condition P7] 

(1) and (2) guarantee that D is a dominating strategy that remits 

in a deficient equilibrium. 

Hamburger (1973) has discussed these conditions at length, in relation 

to other conditions. 

Two other aspects of most social dilemmas are that both the individuals 

in the society and the society as a whole are better off the more people who 

cooperate.  In the present context of two choice games with identical outcome 

structure across players, these conditions may be expressed as: 

(3X    D(m+1) > D(m) 

C(n+1) > C(m) , and 

[Schelling's Condition (3)] 

(4)    (m+l)C(in+l) + {N-m-l)D(m+l) > mC{m) + (N- .,i)D(m)   [Hamburger's 
Condition P12] 

Conditions (1) and (2) guarantee only that D is a dominating choice 

'ior everyone and that the end result of everyone's choosi».^ D is deficient. 

  ■ 
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They do not in and of themselves imply conditions (3) and (4).  In fact, as 

will be demonstrated shortly, games can satisfy (1), (2), and (3) but not (4) 

or (1), (2), and (4) but not (3). 

Two person prisoner's dilemmas do necessarily satisfy condition (3) 

because by conditions (1) and (2), D(0) > C(l), D(l) > C(2), and C(2) > D{0); 

it follows that C(2) > C(l) and D(l) > D(0). They do not, however, necessarily 

3 
satisfy condition (4). 

As shown by Schelling (1973), two choice games can be simply and neatly 

characterized by graphing D{m) and C(m) as a function of m, an empirical 

demonstration appearing in Kelly and Grzelak (1972). Condition (1) is then 

that the curve for D at point m must always lie above that for C at point m-H. 

(There is occasionally some confusion here; it is not enough that the curve 

for D simply dominate that for C; rather it is at the point at which a player 

may choose to become the m + 1st cooperator that D(m) must dominate.)  Condition 

is that the end point on the C curve must be higher than the 0 point on the D 

curve.  Condition (3) stipulates that both curvet must L-e monotone, and 

condition (4) involves a rather complex averaging property.  An esample of 

C and D curves satisfying conditions (1) through (4) is given in Figure 1. 

(Note that it is necessary to specify some metric on the absyssa in order to 

insure that condition (1) is satisfied.) 

(2) 

Insert Figure 1 about here 

Figure 2 represents a gamr .n which conditions (1), (2) and (3) are met 

but (4) is not. 

Insert Figure 2 about here 
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Number of P_ayers Choosing C 

Figure 1.  A Social Dilemma Game 
Satisfying Conditions 

(1) - (4) 
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Figure 2.  A Four Person Social Dilemma 
Game Satisfying Conditions 
(1), (2), and (3) But Not (4) 
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In contrast, condition (4) implies condition (2). 

proof; by condition (4)9 society as a whole is better off if one player 

chooses C than if none do.  That is, 0(1) + (N- l)D(l) > ND(0). Again 

by condition (4), society is better off if two players choose C than if 

one does. That is, 2C(2) + (n-2)D(2) > C(l) + (N-l)D(l).  Iterating and 

combining inequalities yields NC(N) > ND(0) , which reduces to (2?) by 

dividing by N. 

Figure 3 represents a game in which conditions (1), (2), and (4) are 

met but (3) is not. 

Insert Figure 3 about here 

One type of social dilemma game of particular interest is that which 

generalizes a two person separable prisoner's dilemma. A prisoner's dilemma 

is defined as separable if and only if: 

(5) D(l) - C(2) = D(0) - C(l) [This is a restriction of Hamburger's 
Condition PS to a situation of 
identical payoff structure for both 
players] 

That is, the increment for defection is constant whether the other player 

cooperates (in which case the player receives D(l) for defecting and C(2) for 

cooperating) or defects (in which case the player receives D(0) or C(l)). 

The origin of the term "separable" comes from Evans and Crumbaugh (1966), 

Pruitt (1967) and Messick and McClintock (1968), who independently noted 

that when condition (5) is satisfied, each player's choice of C or D may be 

conceptualized as choosing between the two options: 

m*mt ■    - -- ■ 
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Number of Players Choosing C 

Figure 3. A Four Person Social Dilemma 
Game Satisfying Conditions 
(1), (2), and (4) But Not (3) 
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C:  give the other player C(2) , give me nothing 

D:  give the other player C(l) , give me D(0) - C(l) 

The outcome is the result of these two separable options if and only if: 

(5')    D(l) = D(0) - C(l) + C(2), 

which is just a restatement of condition (5), i.e., if and only if the payoff 

to a single defecting player can be expressed as the sum of D(0) - C(l) from 

his or her own choice and C(2) from that of the ovher player. Clearly it is 

also true that is both players choose C both qet C(2) (as a result of the other's 

choice); if both choose D both receive D(0) [D(0) - C(l) as a result of their 

own choice and C{1) as a result of the other's], and a single cooperating 

player gets only C(l) (from the defector's choice). 

Consider, for example, the separable two person prisoner's dilemma game 

in which D(l) = 9, C(2) = 6, D(0) = 3, and c(l) =0. AC choice may be 

conceptualized as having the experimenter give 6 to the other player, a D 

choice as having the experimenter give the chooser 3 and the other player 

nothing.  If both choose D, both get 3; if one chooses D and the other chooses 

C, the D chooser gets 9 and the other player 0; if both choose C both get 6. 

The term separable refers to the fact that each choice may be conceptualized 

as yielding one payoff for the chooser and another for the other player in 

such a way that the final payoffs are simply the sum Oi.: these payoffs.  If, 

for example, D(l) ?  9 but C(2), D(0) and C(l) were still 6, 3, and 0 

respectively, the game could not be separated in the above manner. 

Condition (5) can also be restated as: 

(5") D(l) - D(0) =■ C(2) - C(l) , 

■MMM mtmmmm 
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which implies that tiie araph of the game consists of two straight lines 

of equal slope, as illustrated in figure 4(a). Figure 4(b) is a graph 

of a generalization to an N person game in which C(m) and D(m) are linear 

functions of m with equal slopes. 

Insert Figure 4 about here 

Hamburger (1973, p. 38) has proved that games characterized by a graph 

in which C(m) and D(m) are linear functions correspond to simultaneous 

prisoner's dilemma games in which each of the N players pi?vs against each 

of the N-l others. The payoffs for each of these pairwise prisoner's dilemnas 

are D(0), D(l), C(l) and C(2) (subject to the usual constraints that 

D(0) > C(l), D(l) > C(2) and C(2) > D(0)), and the equations for C(m) and D (m) 

ave given by: 

(6)    C(m) = [C(2) - C(l)lm + C(1)N - C(2) 

D(m) = [D(l) - D(0)]m + D(0)[N-l] 

The proof is straightforward. First, each individual who cooperates 

when m-1 others also cooperate receives C(2) for those games and C(l) for the 

remaining (N-l) - (m-1) * N-m games. Hence, that individual's payoff is 

(m-l)C(2) + (N-m)C(l) = [C(2) - C(l)]m + C(1)N - C(2).  Similarly, each 

individual who defects when m others cooperate receives D(l) for those m 

games and D(0) for the remaining N-m-1; i.e., he or she receives 

(m)D(l) + (N-m-l)D(O) = [D(l) - D(0)]m + D(0)[N-l].  Conversely, if a is 

the intercept of the C(m) function and t  the slope, it is possible to solve 

for C(l) and C(7) in the first part of (6).  Specifically, C(l) = (a+ß)/(N-l) 

and C(2) = (a+Nß)/(N-l).  Similarly, if Y is the intercept of D(m) and 6 

its slope, D(0) = Y/(N-1) and D(l) = [y + (N-1)61/(N-1).  Q.E.D. 

. .  . —^  ■————— '— 
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Number of Players Choosing C 

Figure 4 (a) 

Number of Players Choosing C 

Figure 4 (b) 
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Note that the relationship between games as defined by the graphs 

and as defined by the pairwise prisoner's dilemmas is not independent of N; 

that is for any pairwife structure there is a different graph depending on 

N and for graphs with different values of N there are different values of 

ri(0), D(l), C(l), and C{2) in the pairwise games. Note also that such games 

satisfy condition (3) (triviilly, since linear functions are monotone). 

"Hey need not, however, satisfy condition (4) 

• functions C(m) and D(m) will have the same rlope if and only 

if c(2) - C(l) = D(l) - D(0), i.e., if and only if the pairwise games are 

separable.  It will be proved later that games in which C{m) and L(m) are 

linear functions with the same slope satisfy condition (4), (a result implicit 

in Theorem 2, p. 34 of Hamburger). 

An essential equivalence has now been established. Games described 

by graphs in which C(m) and D(m) are linear functions with ecual slopes are 

identical to games in which each player simultaneously plays separable 

prisoner's dilemmas with each of the remaining N-l players.  (This r^ulvalence 

has previously been proved by Hamburger, but it is reiterated here with 

slightly different proof and terminology because of its importance in what 

follows.) 

Another approach to N person social dilemmas has been taken by Dawes 

(1973), who proposed a simple algebraic structure for the commons dilemma 

as expounded by Hardin (1960).  (This dilemma is based on a somewhat minor 

point made by Lloyd in 1833 in an essay on population; its exposition and 

development are due mai ly to Hardin.)  In the example from which it draws 

its name, each of 10 people owns one 1,000 lb. bull and all 10 bulls graze 

upon a conmon pasture that is capable of sustaining them all. The introduction 

of an additional bull would result in the weight of each bull decreasing to 

900 lbs.; that is, with the introduction of an additional bull the pasture 

   - ■ ---'■' 
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could support only 9,900 lbs. of cattle rather than 10,000. Any individual 

who introduces an additional bull has increased his wealth by 800 lbs., 

because he now has two 900-lb. bulls rather than only 1,000-lb. bull. But 

the total wealth has bMlk reduced by 100 lbs., as he., -he wealth of each 

of the other individuals. 

This commons dilemma, gain to self with loss shared by everyone, is 

ubiquitous — especially in large societies.  In its most dramatic form, 

it may cause each single soldier to flee from a battle, because each reasons 

that his own participation r.akes little difference in the final outcome, yet 

it makes a great difference to him personally, and he thereby ensures rout 

and disaster for all the soldiers -- incl-Jd.ng himself (unless the soldiers 

on the other side are equally rational!).  In a milder form, it may result 

m an academician's securing a job offer from another institution solely to 

achieve a better salary at his or her own institution.  If he or she is 

successful, colleagues will, of course, suffer through restrictions of funds 

available to grant them raises, although the adverse effect on each individually 

will be quite small in a large institution. An : ntermediate form of the 

dilemma may be found in people's decisions to obtain unrealistically high 

payoffs from insurance companies because "after all, the company can afford 

it" (with the result that everyone's premiums skyrocket).  Even the decision 

to have children may be regarded as involving a commons dilemma (Dawes, 

Delay and Chaplin, 1974, p. 3).  "With the world as our commons, each of as 

may believe he stands to gain (fulfillment, 'eternal life', companionship 

and perhaps wealth) by having children, while the lose of each 'consumatory 

and polluting agent' to the commons is clearly distributed among all the living 

creatures in It, and particularly the other people.  That this one type of 

pollution may underlie most other pollution problems makes the study and 

resolution of the class of such problems particularly timely." 

^MMMHBM   
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These coiranons dilemmas all clearly involve two principles: 

(A) gain for defection accrues directly to self 

(B) loss, which is greater than gain, is spread out among dll the 

■<» 4 

members of the group (e.g., commons, or society, or world). 

Again within the context that each player has a choice between two 

actions and each has the same payoff structure dependent only on the number 

of cooperators and defectors, Dawes (1973) has defined the commons dilerona 

game as follows. 

(i)  each player who chooses D rather tnan C has his payoff incremented 

by an amount d > 0 above the payoff C(N) for total cooperation. 

(ii)  players are collectively fined d + X (X>0) for each choice of D, 

each player's share of the fine being (d + >)/N. 

(iii)  d > N-l 

Condition (iii) simply guarantees that the individual's increment for 

defection is not so small that it is offset by his or her share of the fine. 

Theorem 1:  The commc.is dilemma game as defined by conditions (i) - 

(iii) satisfies conditions (1) - (4). 

Condition (1):  D(m) = C(N) ♦ d - BÜ^^J , while C(m+1) = C (N) - 

itedJ IfltM . Hence, D(m) - C(m+1) = d - -d^ = &£**   ,  which is greater 

than 0 by condition (iii).  Note that D(m) - C(m+1) is independent of m. 

Condition (2):  D(0) - C(N) ♦ d - N(^X)  = C(N) - X < C(N) 
N 

, ,   (N-m-1) (d+X)  ^ „/VT.   (N-m) (d-t->)   <^| 
Condition (3):  C(m+1) = C(N) r.   > C(N)   C(m) r. I 

(N-m-1)(d+X)   „-_,       (N-m)(d X) 
D(m+1) = C(N) + d - *"   > C(N) + d   - D(tt) 

—  - 
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Condition (4)I Each choice of D decreases the outcome for the players 

as a whole by an amount X.  g.E.D. 

For example, the gam« proposed at the beginning of this chapter is a 

conmons dilemma game in which C(N) = $1, d - $2, and X ■ $1. 

The following theorem establishes that the commons dileitma game is 

identical to the two equivalent ones described earlier. 

Theorem 2: Commons dilemma games, games described by graphs in which 

C(m) and D(m) are linear functions with equal slopes, and games in which 

-^ P^Y-^ gim.ili-am.nu3ly olays separable prisoner's dilemma games with 

each of the N-i remaining players are all identical. 

proof:  Given the previous equivalence it is necessary only to establish 

the identity of commons diU-nma games and those described by graphs in which 

C(m) and D(m) are linear functions with equal slopes. 

C(m) * C(N) - 
(N-m) (d-t-X) 

N 

D(m) = C(N) + d - 
(N-m) (d-*-X) 

M 

+ [COD - (d+xn 

m + [C(N) - X] 

which shows that C(m) and D(m) are linear functions with equal slopes. 

Conversely, if I is the slope of C(m) and D(m), a is the intercept of C(m) and 

y  is the intercept of D(m), it is possible to solve for d, X, and C(N). 

Specifically, d = ^ - a, X = Nß + ci - y, and C(N) = MB + a. Q.B.D. 

Corollary 2.1.  Since the commons dilemma game satisfies condition (4), 

the other two do as well. 

< 
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The relationships between the parameters of the three equivalent 

social dilemma qames are outlined in Table 1. 

Insert Table 1 about here 

The commons dilemma game has a property not found in the other two. 

Even though it is strictly equivalent for any value of N, variation of N 

defines a whole additional dimension.  Thus, while each commons dilemma 

game with a given N may be conceptualized as a game whose graph consists of 

linear functions witl equal slopes, the entire class of commons dilemma 

games with d, X, and C(N) fixed but N allowed to vary may be conceptualized 

as a graph consisting of planes in 3-space — the dimensions being m, N 

and the resulting values of C(m) and D{m). 

Moreover, the class of commons dilemma games formed by fixing d, >, 

and C(N) and letting N vary has the property that the degree to which D(m) 

dominates C(m+1) increases as a function of N. That is, 

(7)     [D(m) - C(m+1)] ♦ ■ 

proof:  As pointed out in the first part of Theorem 1, 

D{m) - C(m+1) = d - '^ ' .  Q.E.D. 

How can the commons dilemma gam*> have property (7) given that the 

difference in intercepts of D(m) and c (m) is always d? 

d+X . .. 
The answer is that the slope of both functions, -jr     , decreases witn 

increasing N.  (This reason sounds a bit "paraaoxical" at first, but a few 

moments thought will reveal that for any given intercept difference, the 

smaller the slope, the larger the difference between D(m) and C(m+1).) 

- i - 
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Tabl« 1 

Graph 
Parameters 

ß 

Y 

6 

(a+N3)/(N-l) 

{oi+6)/(N-l) 

[y  + (N-])6]/(N-l) 

Y/{N-1) 

m + öL 

y  -  a 

Nß + a - Y 

Pcirwise Prisoners' 
Dilemma Parameters 

C{1)N  - C(2) 

C(2)   -  C(i)   =  D(i)   -  D(0) 

D(Ü)    [N   -   1] 

CU)   -  C(i)   =   D(l)   -  D(0) 

C(2) 

C(l) 

D(l) 

D(0) 

(N-1)C(2) 

N(D(0)   -  C(l) ]   -  C(2)    -  D(0) 

(N-l)    IC(2)        D(011 

Commons Dilemma 
Parameters 

C(N)   -   (d+X) 

(d+,.)/N 

C(N)   -   X 

(d+A)/N 

C(N)/{N-1) 

C(N)/(N-1)   -   (d+X)/N 

(d+X)/N   +   [C(N)-X]/{N-1) 

(C(N)-A)/(N-1) 

C(N) 

d 

X 

»Note that throughout tf = 6.  Further, given that D{1) - D(")) == D(2) 
there are only three free parameters in each game. 

C(l) 

i 

, 

■   
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Property (7) is considered crucial to many people analysing real-world 

conmons dilemmas — particularly Hardin (1972). The more people among whom 

the bad consequences of defecting behavior is spread out, the less each 

individual "suffers the consequences" of his or her own defection. 

Another specific game of some interest is Messick's union game 

(Messick, 1973). This oame is defined by the following three conditions: 

(a) Each member of a potential union of size N must pay a fixed cost 

c to join. 

(b) If the union succeeds in its goal each member of the potential 

union not just each member whc pays the cost c to join) receives a prize P, 

otherwise nothing. 

(c) The probability that the union succeeds in its goal is equal to 

the number of members of tne potential union who join (and pay c) divided by N. 

Suppose, Messick reasons, m other people have joined the union.  The 

expected value of joining the union when ■ othe-s have joined is equal to: 

te1)' - 

The expected value of not joining is equal to: 

An expected value maximizer will then join if and only if 

( ELLj P - c - (-) P > 0, that is if and only if 

- - c > 0 [equivalently P/N > c or P/c > N] 

— - 
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Note that this result does not depend on m. 

Mow, let us reformulate the problem.  Let c be regarded as the amount 

saved by not joining the union (i.e., a defecting payoff) and let 

W - -d) NP = P be the expected loss to all the potential union members 

together from each defection. Thus, c is identified with d in the commons 

dilemma game, and P with d + X.  Hence, the expected value maximizer will 

join if and only if; 

d "*" X - d > 0, i.e., the player will refuse to join if and only if 
N 

A -    > 0, i.e., if and only if 
N 

d > 
N - 1 

which is condition (iii) of the commons dilemma game. That is, condition (iii) 

guarantees that the result of joining or not on the basis of maximizing expected 

value results in no joining — which establishes s dilemma, because if all 

joined all would receive P-c=d+X -d=X, whereas if none joined none 

would receive anything. 

The following theorem has been established. 

Theorem 3:  The Messick union game results in a social dilemma for 

expected value maxinuzers if and only if it is equivalent to a commons 

dilemma game (hence equivalent to a game whose graph consists of linear 

functions C(m) and D(m) with equal slopes, hence equivalent to simultaneous 

separable prisoner's dilemmas in which each player plays against the N-l 

remain in .j ones) ■ 

- ■ --        
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Corollary 3.1.  If the Messick union qanie results in a social 

dilemma for expected value maximizers it satisfies conditions (3) f (4), 

and (7) . 

Actually, conditions (3) and (4) are immediate, and condition (7) can 

be derived easily from Messick's formulation.  Messick himself, who is 

concerned with when it is his game results in a dilemma for expected value 

maximizers, points out that when P and c are held constant some N is 

reached at which a dilemma occurs (1973, pg. 148). 

Olsen (1965) has made a similar argument both with respect to the 

difficulty of getting laborers to join a union in an "open shop" situation 

and with respect to the difficulty of getting people to contribute to a 

public good or venture when a large number of contributions is necessary 

for success.  The logic of Olsen's argument is essentially the same as 

that of Messick's.  The main difference in mathematical development is 

that Olsen proceeds from differential equations (1965 pgs. 24-28) and hence 

considers a larger class of possible functions for determining whether or 

not an individual should join a union or contribute to a public effort. 

(Toward the end of his paper, Messick also broadens his scope - by considering 

probabilities of union success that aro monotonic in m but not necessarily 

linear.) Moreove., Olsen supports his argument with examples from the history 

of the labor union movsment.  The relative importance and influence of 

Olson's work far outweigh its relative space in this chapter. 

Messick and Olsen reach the same conclusions -- especially with 

respect to the inportance of N.  Frolich and Oppenheimer (1970) have 

challenged the idea  that the type of social dilemma discussed by Olsen 

and others (and outlined in this chapter) necessarily becomes more acute 

as N increases.  They argue that the probability of failing by exactly k 

mmm ^■MM 
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units of effort (e.g., contributions) should be unrelated to N — unless 

certain assumptions are made about "how subjective probabilities vary from 

situation  to situation [1970, pg. 113]."  Such an assumption is explicit 

In Mossick's union model and is certainly reasonable in the contexts discussed 

by Olsen.  The probability of failing by exactly k units should decrease 

with N.  Isn't it reasonable to assume, for example, that a candidate for 

city council has a higher probability of failing by three votes than does 

a candidate for mayor of the city, who in turn has a higher probability 

of failing by three vctes tnan does the candidate for governor of the state? 

Voters aio clearly reasonable in assuming the contribution of their vote 

has lost-. ...ffect on the probability of victory for their favorite gubinatorial 

candidate than on the probability of victory for tneir favorite city 

council candidate.  Hence, as Messick and Olsen argue, granted a certain 

amount of negative value involved in bothering to go to the poll, the 

expected value of voting for a city council candidate should be greater than 

that of voting for a gubinatorial candidate if the success of each candidate is 

equally valued. 

The four equivalent games (hence single game) described above are (is) 

rather restricted.  The way in which various constraints can be relaxed 

(hence the gam- generalized) can best be seen by considering the graph of 

the functions C(m) and D(m).  Kirst, these functions can remain linear but 

not have equal slopes,- if so, the game is equivalent to one in which each 

playe- is engaged in a nonseparable prisoner's dilemma game with each of 

the N-l remaining players.  Monotone but nonlinear functions can describe 

social dilemmas which cannot correspond to pairwise prisoner's dilemmas. 

And then, of course, it is possible to consider the functions that do not 

satisfy one or both of the social dilenma conditions [(1) and (2)], functions 

wh-ich ricrrihpH oamps that UP bevond the scooe of this chapter. 

Schelling (1973) has described a wide variety of such functions. 

-- --- ■- "- 
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Also, it is possible to relax the assuirption that thfe payoff 

structure is the same for all players.  If such a relaxation is made, 

it is necessary to examine the game in some detail to see whether in 

fact it constitutes a social dilemma.  For example, some players may 

profit so mvch by engaging in a defecting strategy and pay so little 

of the penalty that the resulting equilibrium is not deficient — i.e., 

it benefits them although it hurts others severely.  Such player may be 

analagous, for example to industries that share the dirty air they create 

with the rest of u? but profit much more greatly per unit of pollution 

they create than we could by creating the same unit.  Or perhaps their unit 

profit is the same but they pay the same fraction of the price as do the 

other "players," despite owning more units. 

In general, it is possible to create a wide variety of N-person 

social dilemma games; all that must be guar. i teed is that conditions (1) 

and (2) are met.  The game discussed in the bulk of this chapter hopefullv 

captures many characteristics of the real-world social dilemmas that 

motivate the study of experimental dilemmas; for example, conditions (3) 

and (4) seem ubiquitous in these real-world dilemmas — as does condition 

(7) when size varies.  Moreover, the game My be presented ir a variety 

of manners:  in terms of the graph of the payoff function for C(m) and D(m) , 

in terms of the prisoner's dilemma, or in terms of the gain-for-self- 

loss-spread-out principle.  (Whether different presentations result in 

different behaviors is an empirical question which may be of interest at least 

to propagandists.)  As noted in a recent Western Psychological Association 

paper by Goehring, "a parsimonious representation of the N-player prisoner 

dilemma game matrix is possible if restrictions are imposed upon payoffs 

such that the incentive for defection and the payoff decrement incurred by 

individual players per player choosing his defection strategy are constant. 

mm MM mm. __ amm**~—~*— 
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values independent of player identifications and of the distribution of 

player cnoices."  These characteristics are precisely those of identity 

of payoff structure and of the independence of 0(a) - C(in+1) of m, which 

of course guarantees that if C(m) and D(m) are linear functions then their 

slopes are equal. 

A final note.  As Amnon Rapoport (1967) has so persuasively argued 

in the context of prisoner's dilemma games, a social dilemma game that is 

repeated (iterated) may not constitute a dilemma at all.  If there is the 

possibility of "tacit collusion" (pg. 140) or "that each p.ayer believes 

that his decision at Time t-u can partly effect what will happen at Time 

t" (pg. 141), then it is no longer clear that defection is a dominating 

strategy.  In fact, the situation can become horribly complicated -- even 

„ore  complicated than envisioned in Rapoporfs "optimal strategies."  We 

have a situation in which people are attempting to control the future 

behevior of others by dispensing rewards and punishments which simultaneously 

determine - in a complex interactive way - their own present rewards and 

punishments.  It should not be surprising that fe-v if any simple generalizations 

about "cooperative" or "compel itive" behavior have arisen from studying 

people faced with such a complicated task, despite literally thousands 

of attempts to do so.  In contrast, the so.ial dilemma games discussed in 

this chapter do not involve iteration.  They face the subject with a rather 

simpU though compelling dilemma.5  Perhaps subDects- behavior in these 

game situations - and the effect of variables such as communication and 

humaniza.ion - can shed some light on behavior in the real-world dilemmas 

the games were constructed to represent. 

tmtm. a^MMHM.» ■ inr«. ii i i i   ii fuM tiü^^^B 
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Footnotes 
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valuable criticisms of earlier drafts of this paper.     I would like to 

thank particularly:     Baruch Fischhoff,   Lita Furby,   Sundra Gregory, 

Paul Hoffman,   Len Rorer,  Mick Rothbart,   and Harriet Shaklee. 

The m refers  to the number of players who choose C,  not to a particular 

set of m players.     When m players choose C   (i.e.   cooperate),  N-m choose  D 

(i.e.  defect).     Payoffs could be expressed in terms of the number of defectors 

rather than  th« number of cooperators  — and such a choice has  seemed 

more  "natural"  to ma;iy readers of earlier versions of this paper — but 

number of cooperators has been chosen in order to be consistent with past 

authors. 

Some theorists, for example Rapoport and Chammah in their classic 

book on prisoners' dilemmas, require that 2C(2) > C(l) + D(l), — 

in which case condition (4) is satisfied.  The reason for this 

requirement is that the outcome yielding C(l) and D(l) may be 

preferable to that yielding C(2) to each player if:  (i) the subjects 

are permitted to redistribute the payoffs after the game, or (ii) 

the subjects may play the game many times and alternate who gets 

the C(l) payoff and who gets the D(l) payoff. Neither possibility 

is considered in this chapter; hence, this inequality is not used 

in the definition of a prisoners' dilentna. 

If the loss to society as a whole did not outweigh the benefits to 

the defector, the result would be merely a redistribution of wealth — 

perhaps with a net increase.  Such a situation would scarcely constitute 

a dilemna. 
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5. My experience has been that moderate sized groups cf students run 

for moderate amounts of money (e.g., N = 8, C(N) »= $2.50, d ■ $5.50, 

A ■ $2.50) take the conmons dilemma very seriously indeed 

J2. 
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