- Best
Available
Copy

B Y,

AD/A-004 966

PROJECT MAC PROGRESS REFORT XI
E. Fredkin

Massachusetts Institute of Technology

Prepared for:

Advanced Research Projects Agency
Office of Naval Research

December 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

BIBLIOGRAPHIC DATA |} Report No.

[N

Project MAC

2. 3. Recipient’s Accession * o,
SHEET Progress Report XI //) @@7/‘795
4. Title and Subtrele 5. R*IP““ Date
December 1974

Project MAC Progress Report X1 6.
7. Author(s) 8. Puforrnlng Organization Re

Project MAC Participants-Prof. E. Fredkin, Director ‘OMAC PR-11
9. Performing Organization Name and Address 10. Project/Task/%Work Uni No,

Massachusetts Institute of Technology

545 Technology Square, Cambridge, Mass. 02138

1Y, Contract /Grant No,

N00014~70-A-0362-000¢6

3D-200 Pentagon
Washington, D.C. 20301

12, Sponsoring Organization Name and Address 13 Type of Report & Period

Advanced Research Projects Agency 6/73-12/73

Covered Progress Report

14.

'S, Supplementary Notes

YA, Abseracts

the period 6/73-12/73.

Final summary Report of Progress made at Project MAC under this contract during

Real-Time Computers
On-Line Computers
Multi-Access Computers
Dynamic Modeling

Ccmputer Systems
Artificial Iutelligence
Computer Languages
Computer Networks

Informati stems
17b. Hlentifie rs18pcn~l'ynded erms

17 Key Wards and Document Analysis.

Heterarchical Programming

V7.

Descriptors

Programming Languages
Computation Structures
Automata Theory

Reproduced by

NATIONAL TECHNICAL . S e e g g
INFORMATION SERVICE PRKES SUBJEU iu LhAI\Ut

SATI Fie Uso t fC
17c. “ OSATI Field/Group 9273"97:1"& o g |
8. A ailahility Statement 19. Security € lass (This 2% Nosof Pages
2 F chort)
This docum?nt has been z.tpprc.)ved fc?r.publlc release UNCLASSIELLD /35 |
and sale; its distribution is unlimited. 20, Security Class (This 22.
» l) g
} UNCLASSIFIED

FORMNTIS 35 (REV, 3-72)

LISCOMM [LC 4983170

THIS FORM MAY BE REPRODUCED

Work reported herein was carried out within Project MAC, a Massachusetts
Institute of Technology interdepartmental laboratory. Support was provided in part by
the Advanced Research Projects Agency of the Department of Defense, under Naval
Research Contract NOOO14- 70-A-0362-0006.

Reproduction of this report, in whole or in part, is permitted for any purpose
of the United States Government. Distribution of this document is unlimited.

PROJECT MAC PROGRESS REPORT XI

JUNE - DECEMBER 1973

PROJECT MAC
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS 02139

(EX)

-

TABLE OF CONTENTS

INTRODUCTION

AUTOMATIC PROGRAMMING DIVISION

introduction

Automatic Programming Group

A
B.

nmo

0

H.

Introduction

Understanding How a User Might
Interact with a Knowledge-Based
Application System

Attempting to Set Down the
Knowledge Possessed by Expert
Consultants

Design of the OWL System

Study of System Modeling & Analysis
Study of the Process of Algorithm
Generation

Development of a System for Translating
From a Very High Level Language Into
IBM/370 PL/I

A Business Model for Automatic
Programming

Conclusion

Engineering Robotics Group

moowm>»

Introduction

Engineering Robotics

Graphics

Development of Timesharing System
Language Semantics

Mathiab Group

A.
B.
C.

Introduction
Description of MACSYMA
Summary

PROGRAMMING TECHNOLOGY

A.
B.
C.

introduction
Programming Technology

Networks .
v

13
14
15

15

19

20
22

23
25
25
27
28
29

31
33
35
43

49
51
51
72

D. Other Activities

COMPUTER SYSTEMS RESEARCH
Introduction

Certlfncatnon of Computer Systems
ARPA Network Activities
Technology Transtfer

Other Activities

moow»

PROJECT MAC PUBLICATIONS

76

81
83
84
103
107
109

113

SN

INTRODUCTION I INTRODUCTION

INTRODUCTION

This annual progress report to the Advanced Research Projects Agency of
the Department of Defense describes research performed at Project MAC, funded by
that agency, and monitored by the Qffice of Naval Research during the period 6/1 -
12/31 1973.

During this period, Project MAC consisted of approximately 275 pec.ple,
including 27 faculty, 62 research and support staff members, 80 graduate students, 45
undergraduates, and 11 visiting researchers and scientists. Project MAC is organized
into four divisions -- Automatic Programming, Programming Technology, Computer
Systems Research and Fundamental Studies. The work presented herein was
conducted in the first three divisions.

Since the development and subsequent transfer to Honeywell of the Multics
time-shared system, the main thrust of research at Project MAC has been in the
Automation of Programming. In particu'ar, the Automatic Programming Division is
concerned with the acquisition, structure and utilization of expert knowledge in specific
domains. For example, in the Automatic Programming Group of this division,
knowledge-based systems are used to automatically generate special-purpose
programs from general descriptions of procedures in the context of inventory control.
In the Mathlab group, the knowledge base is on Algebra, and the resultant system,
called MACSYMA, is intended to be a mathematical assistant. In the Engineering
Robotics group, real-time scheduling programs are automatically generated for the
computer control of physical processes.

The Programming Technology Division is concerned with the computer
facilitation of human programming. The Dynamic Modeling System, under development
by this division, is an interactive programming system with a large repertoire of
subprograms providing an integrated set of advanced tools, including information
retrieval, graphics, and computer network capabilities.

The Computer Systems Research Division is studying methods of
transforming information system construciion into a more methodical engineering
discipline. The primary laboratory for this research has been the Multics System, now
in use as a main-line time-sharing facility by the M.LT. community. In addition, work is
being done on the development of certifiably correct systems, modeling of system
performance, and the integration of computer networks with a computer utility.

Prof. E. Fredkin
Prof. S. S. Patil
H. S. Hughes
D. C. Scanlon
G. B. Walker
A. D. Egendorf
C. P. Doyle
B. H. Kohl

A. A. Platt

R. Elkin

W. Brown
S. Cavallaro
B. Combs
L. Gammel
|. Griffin
Kontrimus
K. Martucci
A. Morris
M.

G.
L.
R.
L.
J.
D.
M.
G
L. Muise

Ui

ADMINISTRATION

Director

Assistant Director

Special Assistant to the Director
Administrative Officer

Business Manager

Director of Information Services
Administrative Assistant
Librarian

Information Services

Undergraduate Students

Support Staff

D. J. Morgan

A. E. Normand
D. S. Niver

A. A. Pandya

E. M. Roderick
D. C. Rutherford
V. J. Sutherland
J. L. Winbush
Cw

oodard

Preceding page blank

AUTOMATIC PROGRAMMING

Prof. M. L. Dertouzos

Prof. M. Hammer
Prof. A. Hax

Prof. R. Marsten
Prof. W. A. Martin

. Baker
Banks

. Bogen

. Brown
Golden

Hawkinson

reeoamczc
U Ugog>»AA0

. Baron

. Berzins

. Geiger

. Genesereth
Golovin

. Grabel
Isaman
M. Kohn

B. Krumland
. Kulp

M Laventhal
A. Malhotra

N. Malvania
W. S. Mark

rFrrS—4O>» <

CARODO-AON<A

AUTOMATIC PROGRAMMING DIVISION

Academic Staff

DSR Staff

Graduate Students

Preceding page blank

AUTOMATIC PROGRAMMING

Prof. J. Moses
R. J. Fateman
V. S. Pless
G. R. Ruth
P. S.-H. Wang

J. P. Jarvis
A. Nevins

G. F. Pfister
R. Schroeppel
A. Sunguroff
J. L. White

<

cFadden
eador

. Melber

. Meldman
. Mok

. Morgenstern
. Moulton

. Terman
Trager

;«_;,,—;\-:»:»z

OVHODOEIP>-Cro
=}
[}
-~

<><™
b3
[+:]
=<
Q

AUTOMATIC PROGRAMMING

. |. Badian

. J. Littieboy
. M. Macrakis
. H. Mink

. A. Moon

. Niamir

oI

TOOW

J. S. Lague
G. B. Moore

A. Miola
H. Watanabe

Undergraduate Students

Support Staff

Guests

AUTOMATIC PROGRAMMING

N. J. Robinson
N. B. Siporin

U. Pape

Al

e

AUTOMATIC PROGRAMMING 7 AUTOMATIC PROGRAMMING

AUTOMATIC PROGRAMMING DIVISION

A. INTRODUCTION

The Automatic Programming Division concerns itself with the replacement,
rather than *he augmentation, of programmers. With this goal in mind we feel it is
essential that the automatic programming system have knowledge of the application
area for which it is to write a program. The appropriate knowledge is that possessed
by experts in the various areas, such as business, medicine, law, or applied
mathematics. Since these experts are largely unfamiliar with computer science
techniques we must form teams consisting of experts in a particular field together with
computer scientists. Each of the groups in the Automatic Programming Division is such
a team. Each field requires a somewhat different approach, but a sharing of views
among the groups of the division helps to sharpen the process of creating expert
computer systems.

The Automatic Programming Division is made up of four different groups,
three of which are included in this report: 1) The Automatic Programming Group
concerns itself with automatic program generation; 2) The Engineering Robotics Group
is developing tools for the automatic production of software for the contro! of physical

" processes; 3) Mathlab has concerned itself with the develcpment of a timesharing

system -- MACSYMA -- containing powerful and efficient algorithms in many areas of
algebraic manipulation.

AUTOMATIC PROGRAMMING 9 AUTOMATIC PROGRAMMING

AUTOMATIC PROGRAMMING GROUP
Academic Staff
Prof. M. Hammer Prof. W. A. Martin
Prof. A. Hax G. R. Ruth
Prof. R. Marsten
DSR Statf
H. . Baker A. Nevins
E. R. Banks G. F. Pfister
L. P. Hawkinson A. Sunguroft
Graduate Students
R. V. Baron B. McFadden
V. A. Berzins L. Meador
J. J. Colovin J. A. Meldman
D. L. Isaman M. L. Morgenstern
K. M. Konn G. A. Mouiton
R. B. Krumland S. R. Umariji
A. Malhotra T. Victor
W. S. Mark
Undergraduate Students
H. |. Badian B. Niamir
D. J. Littieboy A. P. Swide
C. H. Mink G. Thomas
D. A. Moon

Preceding page blank

B i PO L B POV E P TL o JOURry: W PP gl | & W) rlag

AUTOMATIC PROGRAMMING

J. S. Lague

10

Support Staff

AUTOMATIC PROGRAMMING

G. B. Moore

<4y

AUTOMATIC PROGRAMMING 11 AUTOMATIC PROGRAMMING

AUTOMATIC PROGRAMMING GROUP

A. INTRODUCTION

At the time of the last progress report, the Automatic Programming Group
had teen in existance for a year and a half. That time had been spent in defining the
general approach which the group would take to automatic programming, and starting a
number of relatively small projects, both with the aim of involving new people in the
work and exploring which would be the most fruitful areas for major efforts. The
beginnings of some of these projects, and the motivation behind them, were described
in the last progress report.

In the past year our work has matured to the point where we can now
identify the major thrusts we intend tc pursue for the next two or three years. We
started out to build a single integrated system which we called Protosystem |. The
thrusts we have identified will make the construction of that system possible. Indeed,
we expect to integrate the results of the various thrusts together without having to
do a complete re-design. Nevertheless, if each of the thrusts can produce major
results in its own right, our task of research project organization becomes much easier.
Below we describe our work in each of these areas. They are:

1. Understanding how a user might interact with a knowledge-based application
system.

2. Attempting to set down the knowledge possessed by expert consultants.
3. Design of the OWL system for builcling expert problem systems.

4, Study of systems modeling and analysis. How are simpler models which retain
the important characteristics of systems found?

5. Study of the process of algorithm generation by specialization of algorithms
written at a higher level of abstraction.

6. Development of a system for translating from a very high-level language into
IBM/370 PL/I in the area of business data processing.

AUTOMATIC PROGRAMMING 12 AUTOMATIC PROGRAMMING

B. UNDERSTANDING HOW A USER MIGHT INTERACT WITH A KNOWLEDGE-BASED
APPUCATION SYSTEM

Ashok Malhoirz became interested in how an English language question
answering system could aid a user at a terminal in trying to ask questions about
business data. He postulated the imaginary company situation with rising sales and
decreasing profits described in section H. He then asked several businessmen to
pretend that he was a computer which contained data on sales, costs, and other
variables. He would also ancwer questions on what data was available and how it was
computed. The results of these first experiments showed that two thirds of the
questions were about what data was available or how it was catalogued, and only one
third asked for the data itself or functions computed from it. The protocols showed
the process by which the manager moved from his initial model of the situation
(apparently dictated by his or her background) '2 a model commensurate with the way
the data was gathered.

These results lead to the more elaborate experiments which Mr. Malhotra
is now conducting. He has programmed a small question-answering system. A manager
in another room types a question at a console in English. Mr. Malhotra intercepts the
question and, rephrasing it if necessary, enters it into the system. The answer is then
typed back to the manager. Everything is saved for later analysis. This expriment is
providing a good sample of the English constructions which must be handled, the types
of questions which must be answered, and the overall structure of a console session.

We feel that our understanding of English dialogue is reaching the point
where we can define a level of capability fairly precisely. Since managers seem used
to the idea of rephrasing a question so that someone less experienced can undersiand
i, we plan to conduct further experiments where the experimenter will only answer
questions which fall within some postulated level of capability of the sytem.

Analysis of protocols seems to be a very important tool for us. We have
also participated in experiments where one physician pretends to be a patient and
another diagnoses him or her. The second does not know what is wrong with the
patient before the experiment starts and thinks out loud as he or she proceeds. We
plan to conduct similar experiments in management.

There are several systems on the market which allow a manager at a
console to define simple models and investigate their behavior. These are used, for
example, to figure real estate transactions, calculate cash flow requirements, or aid in
marketing media selection. Mr. Rand Krumland has been investigating these ‘'systems

F_w-’

AUTOMATIC PROGRAMMING 13 AUTOMATIC PROGRAMMING

and cataloguing their eiements, with an eye to building a general purpose system which
could be specialized to one of these areas by an English language dialogue.

C. ATTEMPTING TO SET DOWN THE KNOWLEDGE POSSESSED BY EXPERT
CONSULTANTS

We have been working with Professor Arnaldo Hax in the M.L.T. Sloan
School. After formal training in operations research, Professor Hax had a number of
years of practical experience consulting in the design of information and decision
systems for operations management. Even before he knew of our efforts, Professor
Hax had decided to try to put his consulting experience into an integrated framework.
He wanted to make possible the evaluation of alternative designs on a more systematic
basis and to provide a framework for teaching others.

As Professor Hax had no previous knowledge of arlificial intelligence work,
we decided it was best not to involve him initially in our efforts to find a better
representation for expert knowledge. Instead, we have been helping him to build a
system consisting of a series of packages which are configured according to the
answers a user gives to a multiple choice questionaire. The initial programming of the
packages has been completed; they are being gradually elaborated and improved. The
packages make possible the implementation of many common strategies for management
of operations in a production and distribution system from aggregate capacity planiing
to detailed scheduling. The difference between these packages and commercially
available business software is that the latter tends to offcr only operations such as
accounts receivable which do not involva decision rules affecting the total behavior of
the system. Professor Hax is a proponent of a hierarchically integrated set of models
to support decisions that operating managers must make, and he has built his system
accordingly. These packages give us a well-defined target for the output of the design
process as represented by the questionaire.

As might be expected, the questionaire has given Professor Hax some
difficulty. He initially tried to write it by moving through the production process from
raw materials to finished goods distribution. However, he realized that the questions
to be asked for even the relatively straight-forward area of raw materials
procurement depended on the general nature of the organiztion under study. This has
led to a version which attempts to identify the firm as, for example, a one-factory
fabricator of inexpensive items. Questions relevant to that setting are then asked. As
Professor Hax envisions the design process, after an initial series of questions, the
system will do a preliminary analysis of the firm in order to identify its problems,
estimate the values of standard remedies, and confirm that the user’s answers and data

AUTOMATIC PROGRAMMING 14 AUTOMATIC PROGRAMMING

fall into a consistent and believable pattern. It will then print out the general nature of
a suggested design for user study. If the user desires to go further the system will
ask further questions to acquire the detailed information necessary for a complete
design.

In a seperate effort, Mr. Jeffrey A. Meldman, a member of the
Massachusetts bar and an M.I.T. doctoral candidate, has been attempting to set down
the knowledge required to assist a user in locating the legal doctrine relevant to a
case at hand. He has taken the area of battery as an example and has been
constructing in our new language, OWL, a model of battery, which the system woui
attempt to instantiate by using the facts of the user’s case and legal findings, such as
that a tomato can be used as a weapon. Mr. Meldman has been appointed an
Assistant Professor in the Sloan School and plans to continue working with us there.

D. DESIGN OF THE QWL SYSTEM FOR BUILDING EXPERT PROBLEM-SOLVING
SYSTEMS

Last year we reported on a language, MAPL, which we proposed to use for
building models of the world. At the time, MAPL was incomplete. In seeking to solve
additional representation problems in MAPL we came to rely more and more on the
English language as a guide to how things could be represented. MAPL evolved so far
that it seemed sensible to declare it a new language, OWL.

A major insight in OWL is that an evenl can be represented quite well as
action, such as hit, and a series of properties of the acticn derived from case grammer.
We were investigating the notion of cases last year, but now we believe that there is
a universal set of cases which can be built into the language. An important step in
translating from English into the case grammer representation is to recognize that the
prepositions which flag the cases also have ather uses. For example, in the sentence
“l looked up the pipe", "up" can select a meaning of “look”, in which case the sentence
means the pipe was looked up in some reference, or "up” can signal the traiectory
case, in which case "up the pipe" tells where | looked.

We have improved the parser which was described fast year and we are
converting it to work with OWL. We have partially implemented an interpreter for
OWL and we are attempting to write a program in OWL capable of the dialogue in
Figure 1 in order to debug the system. An example of an OWL. procedure is shown in
Figure 2. Owl is embedded in LISP. Every list is backpointed to every list which
contains it as indicated in Figure 3.

AUTOMATIC PROGRAMMING 15 AUTOMATIC PROGRAMMING

We consider QWL to be the key to our project ai'd we have all four or our
DSR staff working on it. Lowell Hawkinson is leading the implementation effort. We
expect the language will have one or two major revisions before it reaches a semi-
staole form which can be published.

E. STUCY CF SYSTEM MOUSLING AND ANALYSIS

System modeling and analysis is a very difficult area. Success is not critical
to the success of our entire project but it would be vary important. We currently
have three paradigms under which this problem is being attacked.

First, our system, which translates a very high !evel language into PL/I, must
pick between alternate organizations of the computations and data on the basis of
efficiency. Efficiency criteria require estimates of the number of data items and the
number of computations which will arise in a system. We have attempted to discover
these facts by simulation, but a straightforward simulatior often leads to the simulation
of rare events. Mr. V. Berzins has done some work to discover under what conditions
probability distributions of the needed variables can be estimated symbolically. The
calculations arising in business data processing are quile simple; nevertheless,
symbolic calculations get out of hand unless simplifying assumptions are made. The
correct assumptions to use are probably those now used by workers analyzing such
systems. These must be discovered and codified.

Second, William Long is seeking a process by which a system with an
elaborate model of the world could simplify that model in order tc write a program for
a specific purpose. For example, the system might have the notion that seats are
intrinsically unique. If a ticket-selling program which sells non-resei - d seats is to be
written, ti.e system might deduce that only a count of the number sold need be
maintained, with no need to identify each seat.

Finally, William Mark is investigating whether a system with a notion of a
concept like negative feedback could recognize the conditions for that concept and
apply it in a problem description given by the user.

F. STUDY OF THE PROCESS OF ALGORITHM GENERATION

At the moment we do not have an active project in the area of algorithm
generation by specialization of algorithms written at a higher level of abstraction.
Considerable light has been shed on this subject over the past year through the

1

et

i

AUTOMATIC PROGRAMMING 16 AUTOMATIC PROGRAMMING

Figure 1

Hello, | am Susie. What is your name?

+ Bill.
*+ | need a program written to manipuiate blocks.

| can help you solve the problem of writing a program which builds a scene using the
blocks from another scene.

* That is what | want.
OK. | need a description of the initial and final scenes.
*+ The final scene contains 3 Blocks: BI, B2, B3.
OK.
+ What else do you want to know about the final scene?
What are the positions of Bl, 82, and B3 with respect to each other?
+ Bl is on top of B2 and B3 is on top of BI.
oK.
* Initially, all of them are on the ground.
Do you mean in the initial scene?

+ Yes.
* Can you write a program from that?

| have enough information to start writing the program. | cant determine all of the
information which | will need until | write the program.

+ OK.
+ Start writing it

Do you want me to decid. implementation issues such as what to grasp a block with?

* Yes, if | can ask you about them later.

AUTOMATIC PROGRAMMING 17 AUTOMATIC PROGRAMMING

You can. Is there a block on top of B2 in the initial scene?
+ The initial scene only contains Bl, B2, and B3.
| see. | have finiched the program. Do you want me to describe the procedure?

+ Yes.

First | move B2 with my left hand, then | put Bl on top of B2 with my left hand, then |
put B3 on top of Bl with my left hand.

+ How did you decide to use your ieft hand to move B2?

| needed to choose a hand with which to grasp B2. Both of my hands are free at that
point in the problem. You told me to decide the implementation issues. | chose the

first hand which | thought of.
Figure 1
A hypothetical dialogue with Susie Software.

R e e e e e S L S AR

(LEARN (DEFINE PRCCEDURE (PUT-ON-TOP-OF BLOCK-1))
(AGENT (PUT-ON-TOP-OF BLOCK-1) PERSON-1)
(INSTRUMENT (PUT-ON-TOP-OF BLOCK-1) HAND-1)
(PART AGENT HAND-1)

(SPECIFIC-POSITION (PUT-ON-TOP-OF BLOCK-1)
(ON-TOP-OF BLOCK-2))
(PRINCIPAL-RESULT (PUT-ON-TOP-OF BLOCK-1)

(POSITION OBJECT SPECIFIC-POSITION))
(METHOD (PUT-ON-TOP-OF BLOCK-1) (FIND SPACE-1))
(POSITION SPACE-1 SPECIFIC-POSITION)
(BENEFICIARY SPACE-1 OBJECT)

(THEN (FIND SPACE-1) (GRASP OBJECT))
(THEN (GRASP OBJECT)

(MOVE (INSTRUMENT-1 (GRASP OBJECT))))
(DESTINATION (MOVE INSTRUMENT-J) POSITION-1)
(RESULT (OVE INSTRUMENT-1)

(POSITION OBJECT SPECIFIC-POSITION))
(THEN (MOVE INSTRUMENT-1) (LET-GO-OF OBJECT))
(Y-COORDINATE POSITION-1i

(PLUS 2

(Y-COORDINATE (POSITION (OBJECT (FIND SPACE-1))))
(MEASURE (HEIGHT OBJECT))))
(X-COORDINATE POSITION-1
(X-COORDINATE (POSITION (OBJECT (FIND SPACE-1))))))

Figure 2
Definition of PUT-ON-TOP-OF in OWL

PR w———

AUTOMATIC PROGRAMMING '8 AUTOMATIC PROGRAMMING

N

(HOOT « LONG-TERM)

(HIT BALL)
| |
intermediate term long term

Back pointers to all items containing this item

as a top level ele.aent not in first position.

Figure 3
The long term memory element: (HIT BALL).

AUTOMATIC PROGRAMMING 19 AUTOMATIC PROGRAMMING

completion ot the PhD. theses of Gregory R. Ruth in our group and Gerald Sussman and
Ira Goldstein in the MLT. Artificial Intelligence Laboratory. All three of these persons
are still at M..T. and this will help us in starting our project.

Ruth was able to find a series of productions, corresponding to design
decisions, which could be used to generate various implementations of a sorting
algorithm, such as a bubble sort. Given a sorting program written by a student in a
beginning programming course in a simplified version of PL/l, Ruth’'s program would
check it for errors. The basis of Ruth’s scheme is to generate the same program as
the student by referring to the student’s program; discrepancies may suggest that
general transformations such a. algebraic simplification or rotation of the statements in
a loop be applied to the generated program to bring it in line with the student
program. Alternatively, discrepancies may suggest one of the common student errors
known to Ruth’s system. This allows Ruth’s system to respond with comments like:
"The loop test 1<0 should have been 120, otherwise your program is ok.”

G. DEVELOPMENT OF A SYSTEM FOR TRANSLATING FROM A VERY HIGH LEVEL
LANGUAGE INTO IBM/370 PL/!

This large program, written in LISP, was the first project started by the
group. n the first year the program reached the point where a simple example was
put through the system and PL/! code generated. This was done, however, without an
"optmizer”, 'he routine which makes the design decisions. An interactive version of
this routine was used. Over the past year, two designs for an optimizer have been
proposed, one by Mathew Morgenstern and one by Steve Alter. The Morgenstern
approach is to start at the inputs and move toward the outputs, generating all
reasonable partial designs in the process. The alter approach is to make several
passes over ihe whole set of computations. For example, all reasonable aggregations
of data are found first, independent of what file organizations will eventually be used.
Both approaches are being implemented.

The implementation of the enlire system is now being headed by Dr.
Gregory R. Ruth. He is writing a rather long memo describing the status of the system
which should be ready by February 1974

Although this projrct is rather complex, we feel it is a good one to have in
our portfolio because it c¢irectly attacks a real world probiem. 1t will be a good
complement to the somewhat more theoretically oriented work of Professor Hammer.

AUTOMATIC PROGRAMMING 20 AUTOMATIC PROGRAMMING

H. A BUSINESS MODEL FOR AUTOMATIC PROGRAMMING - THE GLOBE UNION
BATTERY COMPANY

Globe Union is an established manufacturer of lead batteries with head
offices located in the mid-west. It has four plants where the actual manufacturing is
carried out. These are spread out over the cortinental United States.

Globe Union manufactures fifteen variations of five basic battery types, for
various purposes. Each distinct variety is identified by a unit number.

Globe Union sells mainly in bulk, to twenty major customers located all over
the United States. Customers place long range "quotations” with Globe Union for
specified quantities of a certain unit number. Globe Union supplies against these
quotations on the receipt of orders from customer branches. Each branch is expected
to order from a certain plant, usually the one closest to it. In general a given plant
cupplies customer branches in a setl of states surrounding it.

Each plant manufactures all the types of units it supplies. The product is
heavy, and transportation can make up a large proportion of product cost. Only in rare
casizs of shortages and lack of facilities to manufacture a specialized unit will batteries
be supplied from other than the closest plant.

Plants manufacture according to certain inventory and production rules.
They are expected to meet budgets on direct costs and overheads. Performance
against budget as well as customer service are the main criteria for plant manager
evaluation. Plants are not run as profit centers because prices on quotations are
negotiated by the head office evei: though standard price lists exist.

It is early February 1974 and as President of Globe Union you are a little
concerned at the results for 1973 which you have just received. Despite a 20%
increase in sales over 1972, profits decreased by 17%.

You feel that the decrease in profit could be due to a combination of three
Causes: increase in overhead expenses, decrease in contibution margins (difference
between selling price and direct cost) or a change in product mix toward less
profitable units. You would like to investigate the cause of the decreased profit using
the Globe Union Information System. Depending on what you find, you will make a
uecision to enforce strict control of the pricing or the quotations, review and reset list
prices which are supposed to serve as guidelines for quotations prices, or introduce a
cost control program. The purpose of this exercise is to determine which decisions are

AUTOMATIC PROGRAMMING 21 AUTOMATIC PROGRAMMING

appropriate under the circumstances.

As sales growth has bery healthy, you are inclined to disregard competitive
actions in your analysis. You also assume that the cost and other data contained in the
system is accurate.

The Globe Union Information System contains data on sales, costs, prices, and
other indicators of Globe Union’s operations during the last five years. It is capable of
answering questions posed to it in simple English about the contents of the database
and functions of these contents such as "profit” or "average price for unit 103" In
addition, the system is capable of answering questions about itself, i.e., it can
enumerate the data items it contains, explain the procedures embedded in the
functions, etc.

The system can be queried much as one would use an assistant to answer
questions, prepare reporis, etc. It will provide appropriate resporses to requests it
does not understand or cannot accede to. A typical dialogue with the system may be:

Q: What data do you have regarding unit costs?
A: | have actual and budgeted costs for each unit at each plant.

Q: What was the cost of unit 103 in plant 8?

A: §78.23

Q: What was the list price for unit 103?

A: §81.00

Q: Do you have a model for contribution margin?
A: Yes.

Q: How does it work?

A: it computes list (standard) price minus actual cost for the given unit.
Q: What was the contribufor unit 113 at Plant 2?7
A: $9.20.

Q: What was the contribution for unit 817

A: §9.30

Q: What was the avreage cost of unit 81?

A: Sorry, | don’t know the word "avreage”.

AUTOMATIC PROGRAMMING 22 AUTOMATIC PROGRAMMING
Q: What was the average cost for unit 81?7
A: §78.67.

Q: What was the average budgeted cost for unit 81?7
A: $76.00.

I. CONCLUSION
The directions of our group are now firmly established. We feel we have

posed some good problems. We now turn to strengthening these directions and to
solving the problems we have posed for ourselves.

Publications

1. Hax, A. C. and W. A. Martin, "Automatic Generation of Customized, Model Based
Information Systems for Operation Management”, Prnceeding of the First
Conference on Research in Organizations, Wharton, Pa., October 24-25 1973.

2. Malhotra, A., with C. L. Meador, "One-sided Cybernetics”, Transactions of the

IEEE International Serminar_on Man, Systems and Cyternetics, Boston, Mass.,
November 7-9 1973.

ENGINEERING ROBOTICS

Prof. M. L. Dertouzos

S. P. Geiger
N. Malvania
A. Melber
A. K. Mok

N. Robinson

23

ENGINEERING ROBOTICS

Academic Staff

Graduate Students

Support Staff

ENGINEERING ROBOTICS

G. F. Pfister
G. Sockut

C. J. Terman
S. A. Ward

T

ENGINEERING ROBOTICS 25 ENGINEERING ROBOTICS

ENGINEERING ROBQTICS

A. INTRODUCTION

In the report submitted by this group (formerly called "Educational Computer
Systems”) for 1971-72 it was announced with the departure of Professor Weizenbaum
for a two year period, the research objectives of the group would be oriented toward
Engineering Robotics. This transition has proceded smoothly over the intervening two
years, and this is expected to continue until the departure in July 1974 of Professor
Dertouzos to serve as Acting Head of Project MAC.

The major long term research goal of the group continues to be the
development of tools for the automatic production of software for the control of
physical processes. Qur approach has emphasized the utilization of descriptive
information which is ultimately resolved (by the system) into control algorithms, rather
than the explicit specification of the algorithms themselves. The designer of a control
system, for example, specifies time constants associated with the process to be
controlled rather than a detailed algorithm for the scheduling of the controlling program.
Efforts in this area have, during the past year, been concentrated on scheduling
algorithms and their relation to physical time constraints. Results include an optimal
scheduling algorithm and the successful implementation of an initial language using this
algorithm.

During the reporting period the group has also continued research initiated
previously in the areas of (i) Systems for dynamic computer graphics; (ii) development
of the DELPHI timesharing system; and (iii} theory of programming languages. Two
doctoral theses have been initiated during this period, in the respective areas of
dynamic graphics and programming language semantics. In addition one Master’s and
three bachelors theses were initiated in the area of Engineering Robotics.

B. ENGINEERING ROBQTICS

Continuing research in the area of computer control of physical processes
has focused on the following problems:

1. The study of algorithms for scheduling multiple autonomous control tasks on a
fixed number of processors;

2. The efficient implementation of these algorithms, and particularly their
incorporation into high level compiled languages designed for process control;

Preceding page blank

| G

ENGINEERING: ROBOTICS 26 ENGINEERING ROBOTICS
3. The establishment of a laboratory environment in which software tools may
readily be applied to physical processes for evaluation and demonstration.
Progress in each of these areas is described in a following subsection.

1. Scheduling Algorithms

The approach to control taken here features the use of multiple autonomous
control tasks, each roughly corresponding to a classical servo control loop. Each task
or daemon constitutes an independent locus of control and is, at least conceptually,
executed continuously by the system. Thus a program to balance on inverted
pendulum might contain daemons, assigned to the relatively independent tasks of
maintaining balance in the x and y directions respectively.

Requests for service (daemon activations) may arise as the result of either
programmed requests or external inputs (e.g. sensors); hence no assumptions
regarding the synchrony or periodicity of daemon activations may be made in the
general case. Associated with each request is a hard deadline (in absolute time) by
which the request must be serviced. The theoretical problem of scheduling tasks so as
to guarantee that all deadlines are met is consequently of some practical interest here,
and has been the subject of investigations by Dertouzos and Geiger.

In cases involving a single processor and no a priori information regarding
computation times, the "Earliest Deadline” algorithm has been shown to be optimal (in
the sense that this algorithm fails only in those cases where every algorithm fails).
Ongoing research (by Mok) is directed toward extending this resuit to cases involving
multiple processors and additional a priori information (e.g. regarding computation times
and distribution of requests over time). ~

2. Implementation of Robotics Languages

The initial implemeniation of a “"daemonized” robotics system was completed
in the fall of 1973 by Geiger. This system extended the PDP11 assembly language by
a set of macroinstructions for the specification of daemons and control of sensors and

actuators. Programs written using this implementation run directly on the timeshared
PDP11/45.

An ALGOL compiler adapted to robotics use is currently under development
by Terman. This implementation will feature code generators for several
microprocessors (in addition to the PDP11), providing the DELPHI system with effective
means for the prodiction of microprocessor software. Significant technical problems
being attacked in this project include the reconciliation of the ALGOL stack structure
with the multiple loci of control dictated by the daemon structure.

ENGINEERING ROBOTICS 27 ENGINEERING ROBOTICS

An initial implementation of the Robotics ALGOL is expected to be
operational during the fall of 1974,

3. Development of Robotics Laboratory

Ouring the 1973 reporting period, development of a Engineering Robotics
Laboratory was initiated. The laboratory uses the M.I.T. Electrical Engineering
Department PDP11,/45 DELPHI computer system, which has been augmented by
additional memory and software for this purpose.

Our goal is to provide, through this laboratory, a "Mechano" environment in
which a wide variety of representative physical devices may quickly and easily be
interfaced to a controlling precessor. The project involves design and canstruction of a
variely of sensor and actuator modules, with a suitably general interface so that the
modules are readily interchangeable.

An initial design of the interface has been operational since the fall of 1973.
This preliminary version allows a number of plug-compatible sensor and actuator
modules to be controlled by the PDP11/45 directly; future versions will include local
microprocessors to relieve the timeshared 11/45 of the real time control task. This
interface is currently used to control two operational experiments: (i) an inverted
pendulum balance; and (ii) a recorder-playing apparatus.

A standard set of sensor and actuator modules is currently being developed
by Malvania; this work is expected to be completed by December of 1974,

C. GRAPHICS

During 1973 there has been work on two projects in the area of Computer
Graphics: the language DALI (described as continuing research in the report submitted
for 1972-73) was completed by Gregory Pfister, and the development of a graphica!
animation system for the PDP11 was initiated by Gary Sockut.

DAL! (Display Algorithm Language Interpreter) is a special purpose
programming language for the creation and control of changing pictures which exhibit
complex static and dynamic interactions among their elements. DALl allows complex
organizations of interpolated ("smooth") change, discrete change, and change in the
structure of a picture to he zenerated in a modular way, in the sense that picture
elements determine their own behavior and hence manner of change.

In DALI, pictures are composed of elements called picture modules. These
are analogous to procedural activations or processes, and contain arbituary event-
driven procedures called daemons. Daemons are run under the control of global
scheduling rules based on the functional dependence of daemons on one another.

ENGINEERING ROBOTICS 28 ENGINEERING ROBOTICS

These rules result in smooth inter-daemon (process) communication and cooperation
with no implicit or explicit reference to semaphores or other synchronization primitives
in user code, while at the same time providing for a high degree of parallelism.
Circular inter-daemon functional dependence is possible, and results in iteration or
relaxation. The environment structure used is predominantly stack-oriented.

The system currently under development by Gary Sockut will run on a
PDP11/45 connected by a relatively low speed link, to a DEC GT4(display. As the
GT40 display includes a local processor, the effective disnlay of dynamic pictures
necessitates running certain of the animation programs locally; the system thus
includes provision for communication of procedural display data to the GT40 along with
more conventional picture descriptions. The system is expected to be operational by
September 1974

D. DEVELOPMENT OF TIMESHARING SYSTEM

The initial phase of the DELPHI Timesharing System, funded by the M.L.T.
Electrical Enginecring department, was completed in January 1973 and is described in
the report submitted for 1972-73. The system has provided reliable service to 6.031
students since the Spring of 1973.

The additional use of DELPHI for research in Robotics has necessitated ite
further expansion and development. Significant improvements made duting the past
year include:

1. Expansion of primary memory {core) to 104K words;

2. Reorganization and generalization of the mechanism for dynamic allocation of
memory;

3. Implementation of a general file system.

The initial DELPHI implementation was highly specialized for the iimited
requirements of 6.031 students. lts evolution over the past year, in response to the
requirements of more sophisticated Robotics users, renders DELPHI a system of
respectable general utility without comprcmising its usefulness as as economical
resource for large numbers of students. Much of the recent development has been
directed toward providing an environment amenable to the efficient use of high level
compiled languages, e.g. the sharing of pure portions of user-compiled programs.
Currently under development are:

1. BCPL, an initial implementation of which has been installed; and

2. ALGOL, which is expected to be operational by September 1974.

ENGINEERING ROBOTICS 29 ENGINEERING ROB011CS

The ALGOL compiler will serve as a host language for a Daemonized
Robotics system (see section A).

Future plans for this syster: include the expansion of its secondary storage
from two single-platter disk cartridges to one or more multiplatter disks. Further
upgrading of the system software will involve recoding much of the system in a
compiled language, probably a derivative of BCPL.

E. LANGUAGE SEMANTICS

Research by Ward during the past year has been directed toward the
semantics of applicative languages, in which there is an assumed correspondence
between procedures of a fanguage and abstract mathematical functions. Principal
results of this work include the development and seman'ic justification of two new
applicative constructs: EITHER and *-conversion.

The syntactive mechanism of *-conversion provides means for reduction of
applicative expressions to approximations of those expressions, resulting in a syntactic
relationship between expressions which seems closely analogous to the semantic
constructions of Dana Scott. The addition of *-conversion to the lambda calculus allows
every expression to be reduced to one or more normal forms, and it has been shown
that the semantics of an expression x in the lambda calculus is completely
characterized by the set of normal forms derivable from x. This result provides a new
technique for proving the (extensional) semantic equivalence of expressions in
applicative languages.

The EITHER construct allows the expression of certain functions which are
inexpressible in the conventional lambda calculus. The semantic and implementational
interpretations of EITHER are, respectively:

1. EITHER{a,b} corresponds, in the semantic lattice of Scott, to the least upper
bound of the elements a and b. Thus EITHER provides unique least upper bounds
for sets of semantically distinct expressions, a provision which is conspicuously
absent from the Scott formalism.

2. The pragmatic interpretation of EITHER{a,b} suggests the dovetailed evaluation
of expressions a and b. Thus EITHER provides an applicative model for
multiprocessing.

Plans for future work in this area include further exploration and
formalization of relationships between these mechanisms ard the Scott constructions.
In addition we intend to explore the possibility of eliminating the distinction between
the respective semaniics of a language and its operating system by thoroughly
integrating their interpretative mechanisms. This approach would, for example, combine

ENGINEERING ROBOTICS 30 ENGINEERING ROBOTICS

file system and dynamic environment structures into a single, uniformly accessible
hierachy.

Publications

1. Geiger, S. P, A User’s Guide to the Macro Control Language, Project MAC, TM-
36, December 1973.

MATHLAB

Prof. J. Moses
R. J. Fateman

R. A. Bogen
P. Golden
J. P. Jarvis

=

. T. Genesereth
. L. Grabel
Kulp

—-oax

S. M. Macrakis
E. C. Rosen

J. S. Lague

A. Miola
H. Watanabe

31

MATHLAB GROUP

Academic Staff

DSR Staft

Graduate Students

Undergraduate Students

Support Staff

Guests

MATHLAB

V. S. Pless
P. S.-H. Wang

R. Schroeppel
J. L. White

Trager

B. M.
D. Y. Yun

G. B. Moore

U. Pape

MATHLAB 33 MATHLAB
MATHLAB

A. INTRODUCTION

Implementation of Ft:ject MAC's SYmbolic MAnipulator, MACSYMA, began in
July, 1969. The system has quintupled in size since the first paper describing it
appeared in 1971 [20] It therefore seems appropriate to describe the goals of the
project and its major features once again. We first describe some of our early design
decisions and how, in retrospect, they fared We then indicate the major features of
the current version of MACSYMA. We assume that the reader has some far:!‘arity
with features present in other algebraic manipulation systems.+

The original design decisions for MACSYMA were made in 1968 by C.
Engelman, W. Martin, and J. Moses. The system was intended to be useful to a wide
variety of users without losing much efficiency in running time and working storage
space. The emphasis of the design decisions for MACSYMA were on ease of time-
shared interaction with batch operation available for production runs. The original
design assumed we would use algorithms (GCD, factorization, integration, simplification)
known in 1969. Because we realized there were faults in the known algorithms, such
as the lack of generality or basic inefficiencies, we began research on new algorithms.
As a result, the MACSYMA system contairs a number of uniquely powerful and efficient
algorithms in many areas of algebraic manipulation, and much of whatever has been
produced elsewhere.

The original design assumed that users with relatively small problems
wanted a great deal of built-in machinery so that the solution time using a computer
would be significantly less than that of a pencil and paper calculation. Users with large
problems were presumed willing to spend more time optimizing their programs in order
to achieve space and time efficiencies. Several d. .inct representations for
expressions were considered necessary in order to achieve such efficiencies.

The system utilizes four major internal representations; general, rational,
power series, and Poi.son series. The gererai representation is the default
representation for expressions. It offers great flexibility and is quite usefui in
interactive situations since the internal form of the expression is quite close to the
displayed form and the user’s input. The rational representation is designed for
greater efficiency and offers a canonical representation needed in many algorithms (e.g.
GCD). Several generalizations of this representation exist (e.g. factored form), which
give greater efficiencies in space and time in certain situations. The power series
representation is used mostly in obtaining a Taylor (or Laurent) expansion of a function

+The bulk of this report will appear in a paper by Joe!l Moses entitled: "MACSYMA - The Fifth
Year”, Proceedings of the EUROSAM 74 Conference, ACM, August 1974, pp. 105-110.

Preceding page blank

- ;

MATHLAB 34 MATHLAB

about a point. This representation is largely a polynomial representation with rational
functions as coefficients. The Poisson series representation is used for manipulating
large expressions involving only polynomials and trigonometric functions.

We realized that a very large system would result from the decision to use
multiple representations and many built-in facilities. We assumed that memory costs
would decrease markedly in order to make such a system economical. MACSYMA
currently resides on the Project MAC’s "Mathiab" PDP-10 which has 512K of 2 usec
memory and on the MULTICS system operating on a Honeywell 6180. PDP-10 memory
costs have decreased in our experience from $.03/bit to 8.01/bit in the last 3 years
while memory speed has increased aimost three-fold in that period. A much greater
decrease in costs, though with no comparable speed increase, is indicated for the next
S years due to LS| Technology. Certain IBM vice presidents have publicly predicted
that the cost per bit of main memory might be as low as 0.01 cents/bit in 1980 [7, p.
220] With such dramatic cost reductions, large systems such as MACSYMA will be
quite economical in the near future.

The current version of MACSYMA requires 175,000 words of memory on a
PDP-10 for the first user, including the underlying LISP system and 15,000 words of
free storage. Each additional user requires 35,000 words for data and working areas.
These areas rmay expand during a computation. An additional 65,000 words of
programs may be loaded from a dick during a session.

Another effect of the large size and generality of the MACSYMA system has
been the sizable number of bugs due to the interactions between modules. These
bugs were mostly prevalent as new modules were being integrated into the system in
past years. The system is sufficiently stable now that many projects do not encounter
ougs in several weeks of daily use. Some modules (e.g. Laplace Transforms) are not
relied on by any of the others. Bugs in such modules were not noted until these
modules were heavily used. Since most new features are currently added only as a
result of user requests, immediate use of such features is guaranteed and leads to
stability in short order. Even relatively essieric capabilities such as sinmation of
finite and infinite series find users who will need them and experiment with them
further. On the whole, the system is presently in a fairly stable state. We owe this
in large part to the many users who helped us discover bugs and missing features in
the past years. Their help is gratefully acknowledged.

A third effect of a large system is the difficulty users have in learning all of
its teatures. For small problems requiring a few commands, there is little difficulty.
Users have been known to solve nontrivial problems after reading a twelve page
Primer. As the problems grow in complexity and efficiency considerations enter,
knowledge of a large number of facilities in MACSYMA may be required and a better
understanding of algebraic manipulation will be needed. We know of no easy way to
surmount the educational problems that are encountered in such areas. In the past,

MATHLAB 35 MATHLAB

users working on large projects have maintained some contact with our group, either
by phone or directly. As we gather more experience regarding the difficulties users
have, we expect to clevelop a set of tutorials and automatic aids which will overcome
many of the problems. Large projects will still require a local expert whose training
may take several months.

The MACSYMA system was made available over the ARPA network in May,
1372 while the system was still evolving quite rapidly. Several large projects have
begun using the system in the past two years. By a large project we mean one
requiring several hours of interaction daily for at least six months (usually by more
than one person). The largest of these projects has been the work of Professor A.
Bers of M.I.T. and his students (notably J. Kulp and C. Karney) in plasma physics. This
required, among other features, development of machinery for keeping expressions in a
sum of vector-matrix products from simplifying (using boxes to surround them) so that
one could determine the physical phennmena which contributed most to the final
answer. Drs. H Yilmaz and R. Pavelle of Perception Technology Inc. have used
MACSYMA in calculations in general relativity. Some of these calculations have been
fairly classical (e.g. Riemann tensors). Others involve use of many symmetry identities
to simplify large expressions involving tensors. Dr. C. Andersen and his colleagues at
NASA-Langely have been using the system to gene-rate FORTRAN programs to
numerically solve partial differential equations using finite element techniques. The
integrations required in setting up the elements are done in MACSYMA. Professor B.
Rosen of Stevens Institute of Technology and his students have used the system in
studying long-range weather prediction. R. Gosper of M.I.T. has worked on techniques
for improving the convergence of series. Gosper’s work relies heavily on the
multivariate factorization algor.thm in MACSYMA.

Hundreds of other people have used the system in the past two years.
While many were clearly playing with the system and learning its capabilties, there
were many other significant projects done using it. Some examples of areas of
application known to us are: gas chromatography, tree searching strategies,
hydromechanics, statistics, optimal control, algebraic coding theory, complexity theory,
nuclear reactor design. About one half of such users have been local to the M.I.T. -
Harvard community, about a half have used the system through phone lines and the
ARPA network. We feel that the decision to have a large and varied system was
proved correct because of the markedly different needs in terms of algorithms, data
representations and interactive capabilities required in the solution of these problems.

B. DESCRIPTION OF MACSYMA

To describe MACSYMA we have divided the modules comprising the system
into 7 major packages. These packages vary from 15,000 words of LISP code for the
Taylor series package to 35,000 words for the LISP system itself. Many of the
facilities were the work of several people, but we usually indicate the major

E—

MATHLAB 36 MATHLAB

contributors only.

1. Language and Interactive Facilities

The first feature of MACSYMA that a user will likely notice is its output
formatting. The two-dimensional output module of MACSYMA’s is its most stable one.
It was originally written by W. A. Martin and follows his description [19] fairly closely.
Probably its most novel feature over the closely related Charybdis display program in
Mathlab [2] (which follows Martin’s earlier approaches) is the nice break-up of
expressions 0o long to fit on a single line of output.

The input parser, on the other hand, has changed drastically over the years.
The original parser by W. A. Martin was a Knuth LR(1) parser. This was changed to a
Floyd operator precedence parser by S. Saunders and E. Rosen. Our latest, and best,
parser is @ Pratt parser [14,29] written by M. Genesereth. We feel that the Pratt
parser gives us a clean, fast, and highly extensible parser. The current syntax for the
MACSYMA language is Algol-like with blocks, various FOR statements and the like.

The programming language interpreter, originally written by W. A. Martin,
but heavily modified since, is LISP-like with special machinery for algebraic
manipulation. Variables with no assigned value represent themselves and can become
parts of algebraic expressions. Arrays may be dimensioned or undimensioned.
Undimensioned array elements are stored using hash-coding techniques. Matrices,
incidentally, are data objects which are distinct from arrays.

The interpreter has associated machinery allowing one to interrupt and trace
user-defined functions. One can also translate such functions into LISP and compile the
LISP, thus losing certain debugging capabilities. In return a significant improvement in
speed (up to a factor of 50) can be had in certain cases if one is able to declare the
types of his variables and functions (e.g. real, polynomial, array of rational functions).
The translation prngram was written by M. Genesereth.

The supervisor module controls the input-output process during a session.
Usually all intermediate user inputs (C-lines) and MACSYMA’s output (D or E lines) are
stored in memory. By setting a flag, intermediate information can be automatically
stored on disk to be retrieved by the system when it is needed. Commands can invoke
modules (e.g. integration) which are not normally in main memory and these will be
quickly loaded. The user may store some or all results of a session on a disk to be
reloaded into a fresh MACSYMA at a later date. Special control characters can
interrupt the system to obtain run time statistics or debugging information. The
supervisor is the work of J. Golden.

The editor allows one to correct an expression typed into the system. The
parser pinpoints the location of a parsing error. The commands to the editor are

MATHLAB 37 MATHLAB

modelled after the text editor TECO [8]

The graph module allows one to plot a graph of a function. The module will
automatically calibrate the coordinate system in order that the plot will fit on the
printing device being used. The editor and graph modules were originally written by
W. A. Martin and by J. Golden

2. General Representation - The simplifier and basic commands

All inputs to MACSYMA, function definitions included, are converted to
general representation. This representation is a natural one for list structure oriented
systems. Classically, LISP-based simplifiers would convert the expression X + 1 to the
list (PLUS X 1). In MACSYMA this format is generalized to ((MPLUS) §X 1). Here we
see that user-defined variables are lexically modified by adding a dollar sign so that
they do not accidentally conflict with free variables used in the system. Furthermore,
the operator PLUS is changed to an operator list. The significance of this change is
noted in the simplified form of the expression which is ((MPLUS SIMP) 1 $X). The
simplified expression has been sorted and its operator list contains the indicator SIMP
which will prevent resimplification of the expression. After factoring the expression,
we would obtain ((MPLUS SIMP IRREDUCIBLE) 1 §X) which convevs additional
information about the expression.

The simplifier is based on Korsvold’s general simplifier, but modified to the
point of nonrecognition, largely by J. Moses [23] Part of its task is to perform
automatic conversions of numbers and data representations. For example, rational
numbers are converted to integers when possible and floating point arithmetic is
contagious. Likewise the rational representation is contagious. Hence multiplying an
expression by a | represented in rational form converts the whole expression to
rational form.

The operation of the simplifier is controlled by global flags. For example,
the NUMER flag determines if SIN(1) is to be convertad to a floating point value. The
flag ZEMODE will determine if constants of the form e««ill/m), are to be replaced by
algebraic expressicns.

MACSYMA knows a great deal about trigonometric functions. It knows how
to simplify, SIN(I1/3). It can convert SIN(5 X) to a polynomial in SIN(X) and COS(X) and
vice-versa. It can convert trigonometric functions to complex exponential form and
vice-versa. Much of this is true of hyperbalic functions as well. These modules were
written largely by P. Wang and M. Genesereth.

The simplifier also interacts with the matrix module. Non-commutalive
multiplication of vectors and matrices is provided. Commutative multiplication is

element-by-element as in APL. The user can decide by changing values of flags at
}v"ﬁh

MATHLAB 38 MATHLAB

which point in the computation to perform the indicated operations. Boxing facilities
allow one to look at several terms in a sum without combining the terms. The matrix
package was written by P. Wang. The interaction with the simplifier is the work of J.
Kulp.

There is a set of commands for getting at parts of an expression (e.g.
numerator of quotient, third term in a sum). These allow the user to perform intricate
manipulations on an expression. These commands and the the differentiation and
substitution routines were written by J. Moses.

The major pattern matching module in MACSYMA is attached to the general
simplifier. Pattern matching rules allow one to add to or override transformations in
the simplifiar. This module is the work of R. Fateman [10]

3a. The Rational Function Representation

The rationa! function representation is used either directly for efficiency or
indirectly in major aigorithms such as factorization or integration. The internal
representation for the polyncmial, (X + 4)Y=+3 + 5is ((8Y . 1) 3 ((§X.2)1 1 0 4) 0 5).
Several facts can be noted in this representation. First, it is recursive with the main
variable Y having the rank number 1 associated with it, and the secondary variable X
having rank 2. Second, the representation is sparse, with missing terms not present.
Rational functions form a dotted psir, numerator and denominator, with a header
containing the ranked list of variables. Thus the rational function corresponding to the
polynomial above is (in LISP):

((MRAT SIMP ((8X. 2) (8Y . 1)) (8Y . 1) 3((8X.2)104)05).1)

it is possible to use rational functions with different ranking for variables in
the same computation. The variables in the rational function are not limited to atoms
(e.g. X, Y). Any expression which is not a sum, product -+ integer power can be used
as a variable in the representation(e.g. SIN(X+1),e«X/3). Factored representation,
similar to that in ALTRAN [5], is also available. Thus, X/(X+1)++3 can be operated on
without being expanded. Factored representation can be of great value in many
computations by avoiding GCD computations. Research is under way on a canonical
representation using partial fractions.

The polynomial representation is due originally to W. Martin. The rational
function representation is due to R. Fateman. The factored representation is the work
of B. Trager.

MATHLAB 39 MATHLAB

3b. Major Algorithms for Polynomials and Rational Functions

MACSYMA contains most of the major algorithms for manipulating polynomials
and rational functions. In the case of the GCD algorithm a user can choose between
the Reduced [4], Modular [4] or EZGCD algorithms, the EZGCD algorithm being the
default algorithm. MACSYMA’s factorization algorithm is based on Berlekamp’s mod-p
factorization algorithm. The EZGCD and the factorization algorithms rely on an
extension of the Hensel lemma approach for factorization originally suggested by H.
Zassenhaus. These algorithms are due to Moses and Yun (EZGCD) [28,34] and
Rothschild and Wang (factorization) [32],

The factorization algorithm has been extended to coefficients which are
algebraic numbers (i.e. given as roots of polynomial with integer coefficients). This
algorithm relies on Berlekamp’s latest factorization algorithm for factorization
mod pe+r [1], r the degree of the algebraic number. The implementation of this
algorithm is being completed by P. Wang. The algebraic number manipulation algorithms
are due to B. Trager.

Currently there are two resultant algorithms in MACSYMA: one is based on
the Reduced GCD algorithm and one on Collins’ modular version [6] Research is under
way to find alternative algorithms. The resultant algorithms were written by B. Trager.

Algorithms for the solution of linear equations present in MACSYMA are
Lipson’s variant of Gaussian elimination [18] and Gentleman and Johnson’s [15] variant
of the minors method. The Lipson algorithm was written by P. Wang.

The method of solving systems of polynomial equations by eliminating
variables was written by D. Yun [35]. His approach relies on factorization to reduce
the complexity of the intermediate systems and a resultant algorithm for performing
the elimination. Due to the inefficiency of existing resultant algorithms anc the growth
of the degree of intermediate systems, this algorithm is useful for small systems only.

Experimen!s in the utilization of discrete FFTs and various fast multiplication
schemes for polynomials have used this subsystem [3) In particular cases (dense

polynomials), alternative polynomial multiplication and powering algorithms are available
[12]

The MACSYMA command SOLVE attempts to determine which of several
solution techniques is most appropriate to a given input. Linear and polynomial
systems of equations are solved using techniques already mentioned. Single polynomial
equations will be factored. If the factors are of degree < 4, the appropriate formulas
will be used.

The RADCAN is a powerful simplification algorithm. The aleorithm is, in our

MATHLAB 40 MATHLAB

terminology, a regular one. That is, it determines a set of algebraically independent
expressions from which to obtain an expression equivalent to the original expression
using rational operations. The algorithm is regular for all expressions involving
logarithms and exponentials. It is canonical in certain situations as well (e.g. first order
exponentials). RADCAN contains as a subcase an efficient canonical simplification
algorithm for roots of polynomials. Unfortunately, this subcase can not handle even
roots of unity in an entirely canonical manner. RADCAN is used both as a simplification
algorithm and as a front end tu the Risch integration algorithm. RADCAN was designed
and implemented by R. Fateman [11].

4. The Integration Subsystem

The integration subsystem in MACSYMA is composed of 5 major modules:
irtegration of rational functions, the SIN indefinite integration program, the Risch
integration algorithm, the limit program and the definite integration program
WANDERER. The first three are the work of J. Moses, the last two are due to P.
Wang.

The method for integration of rational functions is fairly classical [24]). It
uses a square-free decomposition of the denominator followed by partial fraction
decomposttion. Irreducible polynomials of degree < 2 are solved and the logarithmic
parts for these are produced. A new partial-fraction algorithm for this method is being
produced by B. Trager.

The SIN program [25] has been improved by D. Grabel and modified to use
MACSYMA’s representations and general simplifier. Its pattern matcher, SCHATCHEN,
has been made available to the rest of the system (it is used to perform simplifications
~volving combinatorial terms). The original third stage of SIN, a heuristic integration by
parts method, has been replaced by the Risch algorithm. The special integration
methods in SIN are retained because of their efficiency and, in algebraic cases, because
of their power.

Our implementation of the Risch algorithm [30] handles the full exponential
and logarithmic cases and by using SIN, algebraic cases of genus O (e.g. /X is removed
by substitution in SIN). The RADCAN routine is used to generate the ranked list of
exponential and logarithms required by the Risch algorithm. After integration,
trigonometric functions previously transformed to complex exponentials are
reintroduced by obtaining the real and imaginary parts of the integral. Our
implementaion of the Risch algorithm can also handle some special functions in its input
and produce them in its output (e.g. error functions) [26] Work on increasing the
number of such special functions is under way.

The current limit program [33] relies on making certain simplifying
transformations and a classification of the inputs into various classes. Different

MATHLAB 4] MATHLAB

methods for obtaining limits are available in each class. Parts of this heuristic program
are about to be replaced by algorithmic versions which rely on obtainirg a Laurent
serius of the expression at the limit point.

The definite integration module [31] also attempts to classify its input.
Among the many methods available to it are several variants of cortour integrations
and indefinite integration. This module uses more machinery than any other module in
MACSYMA.

5. The Power Series Subsystem

The power series representation in MACSYMA is similar to a polynomial
representation, but allows coefficients to be rational functions. Moreover the power
series representation will remember truncation information about variables. The
representation is more general than a similar one in ALTRAN [5] in that it allows for
negative exponents (thus obtaininz a Laurent as well as Taylor series representation)
and fractional exponents (thus allo-ving for representation of branch curves). There
are only a few functions which cannot be represented in this manner at a point.
Examples with which this representation has difficulties are essential singularities (e.g.
SIN(1/X) at X = 0).

The TAYLOR command in MACSYMA obtains a truncated Laurent expansion
of a function at a point. Rather than using the inefficient method of obtaining the
expansion by differentiation, the program converts all functions in the input to power
series and performs the indicated power series operations on them.

In addition to the obvious direct applications of the power series
representation there is an indirect application to the computation of limits. Essentially,
the only heuristics that are required in addition to the machinery in TAYLOR would be
ones needed to handle essential and isolated singularities and one-sided limits. The
power series subsystem is due to R. Zippel.

6. Miscellaneous Facilities

The Poisson series representation is the fourth representation of
expressions used in MACSYMA. 1t is restricted to sums of trigonometric functions with
polynomial or power series as coefficients. Its novel feature relative to other Poisson
series manipulators is the use of a tree sort to optimize Poisson series multiplication
times. This work is due to R. Fateman [13]

The Laplace Transform module provided for the direct transform of a class
of expressions involves polynomials, exponentials, trigonometric functions, derivatives
and integrals. The inverse transform of rational functions is also provided. This facility
is a slight extension of a similar facility in MATHLAB [9] and is due to R. Bogen.

MATHLAB 42 MATHLAB

Heuristic methods for finding closed form sums of classes of expressions
over finite (e.g. 0 to N) or irfinite ranges were written by R. Zippel. There is
machinery for simplification of sums of certain combinatorial terms, thus moving closer
to solving one of knuth’s 50 point problems [17, sec. 1.2.6}

A third pattern matching facility in MACSYMA is a variant of REBUCE’s LET
facility [16] This pattern matcher uses the rational function representation, rather
than the general representation to perform the required transformation. The LET
facility is due to K. Nishihara.

7. The MACLISP System

Development of a LISP system for the PDP-6/10 computers at M..T. was
begun in 1965 by R. Greenblatt and S. Nelson. By 1967 the interpreter, support
routines and compiler were sufficiently stable that the system was exported to
Stanford as LISP 1.6. Improvement of LISP 1.6, largely for the needs of MACSYMA, was
unde.taken by W. Martin and J. White in 1968. An efficient compiler which accepts
mode declarations was developed by 1972 by J. Golden, E. Rosen, and J. White. Tests
by R. Fateman indicate that in certain inner loops the code produced by the LISP
compiler was more efficient than the DEC PDP-10 FORTRAN’s compiler. The dynamic
type-checking of other LISP systems usually leads to a loss of a factor of 20-30 to
FORTRAN in such situations.

Due to the large size of MACSYMA, sharing is an important issue. Since the
code produced by the compiler is "pure”, sharing ~f programs is fairly straight-forward.
Our LISP, now called MACLISP [22], allows each user to decide whether he wants to
be in debugging mode (and experience a factor of four siow down in speed) or in
execute mode. The same code is shared in both cases, through writable transfer-
vector pages.

in addition to sharing programs, MACLISP can also share fixed data (e.g.
differentiation rules). AlLout 2/3 of the data in MACSYMA is sharable. Furthermore,
the impure data areas (e.g. free storcez) are dynamically expandable during a
romputation. This partially obviates the need for a user to guess at the size of his
intermediate expressions and generate a system large enough to handie the worst
situation. Both large and small users share the code and pure data. The effect of all
this sharing is to reduce the memory cost for each simultaneous user beyond the first
to 35,000 words. Ten simuitaneous users of MACSYMA are then possible without
requiring swapping to slower memories. The code for sharing is due to G. Steele and
J. White.

e

MATHLAB 43 MATHLAB

C. SUMMARY

It is difficult to do justice to a system such as MACSYMA with a report of
this size. Since the system has evolved so rapidly in the past three years, it is clearly
desirable to indicate, however roughly, the range of its current facilities.

Some of the facilities we have not discussed are several dealing with user-
definable extensions to various modules in the system (e.g. special display formats,
new differentiation rules). There are also certain unusual linguistic issues which arise
in a symbolic manipulation system. For example, suppose you sum S + | with index |
ranging from O to 5. Suppose S is a variable whose value ‘s an expression containing |.
What should be the result of the sum?

Among the credits we have omitted are those for writing the reference
manual [2] (R. Bogen), the Primer [27] (J. Moses), and for over-all maintenance of the
system (J. Golden).

The above summarizes the accomplishments of the past five years of
research. The major activities of the past year were in the following areas:

1) Factored representation of rational functions.

2) Algorithms for manipulation of algebraic numbers.

3) Factorization of polynomials with algebraic coefficients.
4) Completion of the EZGCD aigorithm.

5) Algoritnms utilizing the Fast Fourier Transform.

6) Poisson series maripulation.

7) Data sharing facility in MACLISP.

MATHLAB a4 MATHLAB

REFERENCES

1. Berlekamp, E. R, "Factoring Polynomials over Large Finite Fields,” Math. of
Comp,, vol. 24, no. 111, July 1970,

2. Bogen, R. A. et al, MACSYMA Reference Manual, version 6, Project MAC, M.LT,,
Cambridge, Massachusetts, Jan. 1374.

3. Bonneau, R, Fast Polynomial Operations Using the Fast Fourier Transform, Ph.D.
thesis, Department of Mathematics, M.LT. (to appear).

4. Brown, W. S, "On Euclid’s Algorithm and the Compitation of Polynomial Greatest
Common Divisors”, JACM, vol. 18, na. 4, pp. 478-504, Oct. 1971.

S. Brown, W. S, The ALTRAN User’s Manual, Bell Telephone Labs, Murray Hill, N.J.,
1973.

6. Collins, G. E., "The Calculation of Muitivariate Polynomial Resultants”, JACM, vol.
10, no. 4, pp.515-532, Oct. 1971.

7. Datamation, May, 1973.

8. Dowson, M., How to get on the MAC/AI System, Memo 215, A.l. Lab, M.L.T., April
1971.

9. Engelman, C., "The Legacy of Mathiab 68", Proc. 2nd Symposium on Symbolic
and Algebraic Manipulation, PP. 29-41, ACM, March 1971.

10. Fateman, R. J,, "The User-level semantic matching capability in MACSYMA™, Proc.

11.

12.

13.

14.

2nd Symposium on Symbolic and Algebraic Manipulation, pp.31 1-323, ACM, March
1971.

Fateman,R. .., Essays in Algebraic Simplification, Tech. Report 95, Project MAC,
M..T, April 1972.

Fateman, R. J., "On the Computation cf Powers of Sparse Polynomials”, Studies in
Applied Mathematics (to appear).

Fateman, R. J., "On the multiplication of Poisson Series”, Celestial Mechanics (to
appear).

Genesereth, MR, A Grammar Primer for MACSYMA, Project MAC, MLT., July
1973.

MATHLAB 45 MATHLAB

15. Gentleman, W. M. & Johnson, S.C., "Analysis of Algorithms, A Case Study:

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

Determinants of Polynomials”, Fifth Annual ACM Symposium on Theory of
Computing, Austin,s, April 1973, pp. 135-141.

Hearn, A.C, "Reduce-2 User’s Manual”, Report UCP-1 9, University of Utah, March
1973.

Knuth, D., The Art of Computer Programminig, vol. 1, Addison Wesley, 1968.

Lipson, J.D.,, "Symbolic Methods for the Computer Solution of Linear Equations
with Applications to Flow Graphs”, Proc. of the 1968 Summer Institute on
Symbolic Math. Conf, R. Tobey (ed) IBM, June 1969

Martin, W.A,, "Computer Input/Output of Mathematical Expressions”, in

Proceedings 2nd Symposium on Symbolic and Algebraic Manipulation, pp.78-89,
ACM, March, 1971.

Martin, W.A. and Fateman, RJ., "The MACSYMA System®, Proceedings 2nd

Symposium on Symbolic and Algebraic Manipulation, pp. 59-75, ACM, March
1971.

Miller, J.K,, "CHARYBDIS: A LISP Program to Display Mathematical Expressions on
Typewriter-like Devices”, Interactive Systems for Experimental Applied
Mathematics, Academic Press, 1968, pp.155-163.

Moon et al,, MACLISP Reference Manual, Project MAC, M.L.T,, (to appear).

Moses, J., "Alic Simplification - A Guide for the Perplexed”, CACM, vol. 14, no.
8, pp.527-537.

Moses, J,, "Symbolic Integration - The Stormy Decade”, CACM, vol. 14, no. 8.
pp. 548-560.

Moses, J., Symbolic Integration, Technical Report 47, Project MAC, M.LT., Dec.
1967.

Moses, J., "The Integration of a Class of Special Functions with the Risch
Algorithm", SIGSAM Bulletin, no. 13, ACM, Dec. 1972, pp. 14-27.

27. Moses, J., MACSYMA Primer, Project MAC, M.LT,, 1973,

28.

Moses, J. & D.Y.Y. Yun, "The EZ GCD Algorithm", Proc. 1973, ACM National
Conference, Atlanta, Ga, Aug. 1973, pp. 159-166.

i

MATHLAB 46 MATHLAB

29.

30.

31.

32.

33.

34.

35.

Pratt, V.P.,, "Top Down Operator Precedence”, Proc. ACM Symposium on
Principles of Programming Languages, Boston, Oct. 1973, pp. 41-51.

Risch, R. H,, "The Problem of Integration in Finite Terms", Trans. AMS, vol. 139,
Mar. 1969, pp. 167-189.

‘#/ang, P., "Automatic Computation of Limits", Proceedings 2nd Symposium on
Symbolic and Algebraic Manipulation, ACM, March 1971, pp.

Wang, P. and Rothschild, L., "Factoring Muitivariate Polynomials over the
Integers”, SIGSAM Bulletin <0, ACM, Dec. 1973, pp.21-29, and Math
Computation (to appear).

Wang, P, Evaluation of Delinite Integrals by Symbolic Manipulation, Report 92,
Project MAC, ML.T,, Oct. 1971,

Yun, B.Y.Y., The Hensel Lemma in Symbolic Manipulation, Tech. Report, Project
MAC, M.LT. (to appear)

Yur, D.Y.Y, "An Algorithm for Solving Systems of Polynomial Equations”, SIGSAM
Bulletin 27, ACM, Sept. 1973, pp. 19-25.

e

MATHLAB 47 MATHLAB

Publications

1. Fateman, R. J., "A Case History of Interactive Problem Solving Systems”, SIGSAM
Bulletin No. 28, December 1973.

2. Moses, J., and D. Y. Y. Yun, "The EZGCD Algorithm”, Proceeding of the ACM
National Convention, August 1973.

3. Pless, V., "Self-Dual Codes Over GF(q) Satisfy a Varshamov Bound”, (with John
Pierce) Information and Control, August 1973.

4. Pless, V., "Attitudes About and of Professional Women: Now and Then", Career
Guidance for Women Entering Enginecring, Edited by Nancy Fitzroy, Proceedings
of an Engineering Foundation Conference, New England College, Henniker, New
Hampshire, August 1973.

5. Yun, D. Y. Y., "On Algorithms fer Solving Systems of Polynomial Equations”,
SIGSAM Bulletin, September 1973.

PROGRAMMING TECHNOLOGY

Prot. J. C. R. Lickiider

o
o
3.
o
n

P. M. Allaman
A. Chan

S. E. Cutler

B. K. Daniels

J. D. DeTreville
G. J. Farrell

A. Bengelloun
H. Harris

. G. Jaffer

H. Morrisan
D. Sybalsky

Cerew

S. B. Pitkin

49

PROGRAMMING TECHNOLOGY

Acadeniic Staff

DSR Staft

Graduate Students

Undergraduate Students

Support Staff

Preceding page blank

PROGRAMMING TECHNOLOGY

A. Vezza

J. F. Haverty

P. D. Lebling

J. C. Michener
C. L. Reeve

N. D. Ryan

R. W. Weissberg

G. A. Thompson
Van Sant
Westcott

A
To
E.

K. Yap

r
K.
J.

C

PROGRAMMING TECHNOLOGY 51 PROGRAMMING TECHNOLOGY

A. INTRODUCTION

The major goal of the research and dev: ‘opment effort of the Programming
Technology Division is the automation of the tezhnology of programming. The research
of the division is directed toward the development of programming methodologies,
programming tools, and programming aids that can lead to significant technical
advancements in computer program production methnds. Our major efforts during the
reporting period have been concerned with completing the CALICO system with its
well-documented library of slightly more than 2000 assembly-language subroutines,
improving the programming facilities of the language MUDDLE, planning the
implementation of a MUDDLE library system, planning the development of a system lor
automating program documentation, and designing a message system.

Work on automatic programming described in the last report has been
deferred to accommodate i*iofessor Licklider’s imminent leave of absence to

temporarily serve the government in Washington.

B. PROGRAMMING TECHNOLOGY

1. CAUCO

Development of the programming environment CALICO and its 29 or so
subsystems [1] is nearing completion. For this reason parts and aspects of CALICO will
be discussed in more detail than a report of this nature would normally warrant.

The CALICO project has thus far produced a subroutine librery that is large,
is easily modified and enlarged, is heterogeneous (in that the subsystems produced
from the subroutines in the library serve a variety of purposes) and promotes its own
growth. The implicit availability of a wide variety of directly-callable subroutines
visibly increases programming productivity. The increased productivity in turn
encourages CALICO programmers to add to the library all new subroutines they create.
Lids for on-line search and off-line maintenance of the library are available, and some
principles that make the nbrary feasible have been developed:

(1) Protocols for such things as error handling and data structuring are necessary if
arbitrary subroutines are to coexist harmoniously. As the CALICO library grew,
ad hoc protocols were developed as they were needed, and utilized by new
subroutines. In retrospect these protocols rrovide excellent insight into the
protocols needed in a library environment. Furthermore the experience with
CALICO indicates that use of the protocols must be enforced, and they must be
used uniformly. This latter requirement imp'ies that changes to protocols must
be effected in library programs retroactively and automatically. The use of a
sufficiently-rich programming language makes it easier for programmers to follow

Preceding nage blank

PROGRAMMING TECHNOLOGY 52 PROGRAMMING TECHNOLOGY

the protocols.

(2) Abstracts of subroutines -- condensed descriptions used to aid design and
maintenance of software -- must be structured sufficiently so that they can be
manipulated and (insofar as possible) understood by programs. Aids to help a
programmer create and edit properly-formatted CALICO abstracts are available.
However, experience indicates that a large portion of each abstract should and
can be generated by a program that is similar to the analysis phase of a
compiler, leaving the human programmer to supply only those parts to be used
exclusively by humans.

(3) Subroutines and abstracts must be tested anc pass standards before being
accepted into the library. In CALICO there are three stages of subroutine
testing: by the author (the subroutine residing in a personal disk area), by the
group (in a "development” library), and by the outside world (in the standard
public library). In addition the subroutine and abstract are evaluated by thiree
statf members -- with all the fallibilities of humans -- for aspects of quality:
format, protocol, correctness, generality, efficiency, etc. Our experience
indicates that, for library systems to work well in an operational environment,
much of the validatiori of the structure and protocol used in programs and
abstracts currently performed by humans can and must be done by programs.

(4) The library must be easy to use by both humans and program:. This dictum
applies to all aspects: finding a subroutine to do a given task, specifying a call
to it, loading it, finding bugs in it or (usually) in its caller and reporting the
former to the responsible party, submitiing a new subroutine, updating an old
one, discovering the side effects of an update, publicizing the update or addition,
protecting the subroutine data base from accidents.

a. Events of the year

The CALICO subroutine library is central to the methodology of programming
in the CALICO environment. During the year, the CALICO library was cleansed (Broos,
Galley, Michener, Haverty, Lebling). All obsclete entries were expunged and most non-
obsolete entries without documentation were abstracted. The library clean-up
resulted in a program litrary that is better than 95% abstracted. The cleansing
expunged several hundred subroutines; even so, the size of the library increased by
842 subroutines during the year from 1412 to 2054 (as measured by the abstracts in
the abstract library).

Four additional subsystems, BATCH (Seriff, Morrison) [2], TAILOR (Seriff) [3],
CONDIT (Seritf) [4], and RUN (Galley) 5], became operational, and a fitth, a rudimentary
COMSYS (Haverty) {61, was implemented. In additicn, the console interface was
redesigned (Seriff, Galiey, Lebling, Michener, Bhushan, Haverty, Vezza, Broos) and

PROGRAMMING TECHNOLOGY 53 PROGRAMMING TECHNOLOGY

implemented (Seriff) [7].

The CALICO BATCH subsystem provides a facility tor: (1) automatic
rescheduling of tasks that are run periodically, and (2) future scheduliiig of tasks to be
run during slack periods for absentee users. The primary reason for the existence of
BATCH resulted from the need to schedule periodically (daily, weekly and monthly)
certain computer tasks to relieve the creative programmer of the burden of performing
repetitive, mundane tasks. A partial list of such tasks includes: program and abstract
library updates (daily); retrievals from the Datacomputer and graphing of host
availability data (daily, weekly, and monthly); weekly retrieval, from the OFFICE-]
computer, of the official host list for updating the SURVEY and other local programs’
host lists; personal directory house-keeping tasks. The future scheduling feature
provides for a more uniform distribution of load. Tasks of this latter type are typically
compilations, cross-reference listings and assemblies. The BATCH processor is capable
of running any job in the ITS environment without modification. Jobs run under BATCH
perform their console /0 through a pseudo-consale.

The TAILOR and CONDIT subsystems taken together provide a full macro
capability for the CALICO command interpreter (it goes beyond simple string or symbol
substitutions). TAILOR allows a user to tailor’ the user command interface to suit his
or her personal idiosyncrasies and also to define rew commands in terms of two or
more of the existing ones. The CONDIT subsystem provides for the capability of
conditional commands in a stored command sequence that specifies the TAILORed
CALICO.

The RUN subsystem provides a CALICO user with the ability to run one job
inferior to the CALICO job. It was implemented mainly to provide the library
subroutines necessary to allow the BATCH processor to support an inferior job.
COMSYS will be discussed in greater detail in the section on the PTD Message Facility.

The new CALICO console interface provides a uniform interface throughout
the CALICO subsystems for both programs and users. All programs that receive input
or send cutput to the console do so through the standard console interface. The
standard console interface obviates the need for designing and implementing a console
interface for each separate subsystem and also makes easier the task of providing a
user interface that is uniform in appearance, throughout all the CALICO subsystems.
Thus, if a user learns how to use one subsystem, that knowledge can be applied to
learn about other subsystems. Features of the CALICO console interface are these:

(1) An enforced standard prompting scheme on all requests for user input. A
prompt always consists of two parts: a semantic part, telling the user what
meaning will be attributed to what is typed, and a syntactic part, telling in what
form it should be typed. The following is a typical prompt for input:

PROGRAMMING TECHNOLOGY 54 PROGRAMMING TECHNOLOGY

name of item (SYM):

This tells the user that what is typed will be interpreted as the 'name of item’.
It also says that symbol input is currently available.

(2) Symbol completion for symbol input. When the input expected by the program
is a symbol, a user has the option of only partly specifying the input, with
CALICO supplying the unspecified characters. In addition, should a user not know
what can be input, the character control-F can be typed at any time. CALICO
will respond by listing the name of each current symbol that begins with the
characters that have been input thus far. If nothing has been input, all current
legal symbols are listed.

(3) A mechanism to allow a user to gain additional information about required input.
If a user types *” immediately following a prompt for input, CALICO will respond
by typing a more verbose (2 or 3 lines), and hopefully more informative, prompt.
If the user types *> again, then CALICO will check its library of *help messages’
to see if there is one associated with the current input. If there is, the user will
see the first few lines of the message. Each additional time that the user types
’?”, a few more lines of the help message will be seen.

(4) Erasure of single characters, words, lines or the entire buffer, and redisplay of
the entire buffer (with leading prompts).

(5) Flexible appearance. The TAILOR subsystem allows almost all of the
characters used by the command READER to be modified (including terminators,
deletion characters, etc.). Using TAILOR and CONDIT, CALICO can be made to
look like many different systems, for example, the TENEX monitor. A user can,
therefore, make CALICO behave in a way that suits his or her exact idiosyncratic
needs.

b. Scenario

A CALICO program abstract can describe a single subroutine or a collection
of subroutines, each of which is described by an abstract. The concept of a CALICO
abstract is simple: it is supposed to be a definitive statement about what a subroutine
does -- nct necessarily how it does it, albeit that may be of paramount importance in
some instances. The abstract attempts to provide enough information for a
programmer to decide whether a subroutine would be useful as a part of some larger
program, and, if so, how to use it [8]

The programming methodology employed by CALICO programmers
undertaking a programming task typically follows this sequence: (1) create a rough
design of the programming task; (2) survey the library for subroutines that are

PROGRAMMING TECHNCLOGY 55 PROGRAMMING TECHNOLOGY

potentially useful; (3) refine the design; (4) setect from the library appropriate
subroutines to become part of the program; (5) code the top-level program and
additional subroutines necessary to complete the task; (6) test and debug the
program; (7) modiiy the design and appropriate parts of the program it warranted; (8)
document the top-level program (or collection) and all new lower-level subroutines
created; (9) submit the program and all new subroutines and abstracts to the library.
The process of surveying the program library is aided by a general information
retrieval system, IRS (Broos) [9,10]. IRS is designed to be interactive so the
documentaticn about a program can be easily obtained when needed. An inverted file
data base is used to insure rapid retrieval. Using IRS, a programmer can locate
subroutines in the library that are appropriate candidates for ‘ncorporation into some
larger program.

Upon hearing of the subroutine library, visitors often ask "What kind of
subroutines are in it?". Unfortunately, this is very analogous to the question "What
does Macy’s sell?”. Common sense prevents anyone from trying to cnumerate, and a
simple example or two would more often than not give the wrong impression. For
instance, telling an uninitiate that the IRS subsystem is composed entirely of CALICO
library subroutines very often gives the quite erroneous impression that the library is
comrosed almost wholly of routines used by IRS. Because IRS is useful in extracting
from the computer system not only the items in its data bases but also some general
information atout the aggregate, IRS can be used to shed some light on what kinds of
subruutines make up the CALICO library. The capabilities of IRS are perhaps best
illustrated by a scenario. The scenario will be used to illustrate aggregate data about
the library and how an individual might use IRS to aid a programming task.

In the following scenario, user input of commands is indicated by upper-case
portions of lines beginning with a '@ (plus a ’space’, that doesn’t print on the console,
at the end of each upper-case portion). Jpon input of the *space’, CALICO responds by
completing the remaining unambiguous portion of the symbol. (CALICO indicates that
the symbol is still ambiguous by printing a doltar sign (8) on the consoiz. This dollar
sign disappears when the user types another character.) When the command
specification is complete, the user types: (1) a break character indicating a wish to
activate it (in this instance, the CALICO was TAILORed to allow *space’ to be a break
character in addition to a completion character -- in an unTAILORed CALICO ‘escape’ IS
the break character); (2) the argument, if the command requires one; and (3) an
‘escape’ after the argument if an argument is required. (The reader may be struck by
the length of each commard name and the verbosity of the output and think that, even
though compietion is provided, waiting for it to print would be tedious. Such is not the
case because all local programming consoles are displays capable of communicating with
the central computer system at a 2000 character/second rate.)

First some general CALICO features are illustrated to show what facilities
(cnmmands) IRS provides. Second, some information about the subroutine library

PROGRAMMING TECHNOLOGY 56 PROGRAMMING TECHNOLOGY

aggregate will be extracted. Third, a subroutine to do a specific task will be found.
The parts of the scenario are delimited by three dashes with descriptive prose
between each section,

To look at what facilities IRS provides, its command tables are printed by using the
COMMANDS command.

@COMmands # (int); 0
CURRENT CALICO COMMAND TABLES:

TITLE
INFORMATION RETRIEVAL SYSTEM USER COMMANDS
IRS CALICO SUBROUTINE LIBRARY USER COMMANDS
IRS LEVEL MANIPULATION COMMANDS
LIBRARY ACCESS COMMANDS
PERSONAL COMMANDS
CALICO DEBUGGING COMMANDS
GENERAL SYSTEM COMMANDS
GENERAL CALICO COMMANDS

XN DWN — #

@COMmands # (int); 1

INFORMATION RETRIEVAL SYSTEM USER COMMANDS
irs.simple.search irs.basic.search irs.old.find.object
ire .earch irs.distributiontable irs.up.level
irs.down.level irstop.level irs.print.status
irs.print.object irs.print.current.level irs.list.class.names
irslis’.attributes irs.list.association.attributes
irs.activate.standard.data.base irs.activate.data.base
irs.deactivate.data.base

@CCMmands = (int): 2

IRS CALICG SUBROUTINE LIBRARY USER COMMANDS
irs.print.abstract

@COMmands # (int); 3

IRS LEVEL MANIPULATION COMMANDS
irs.frequency.table irs.sort.current.level.by.frequency
irs.prune.current.level.by.frequency irs.save.current.level
irs.list.savedlevels irsrestore.saved.level

PROGRAMMING TECHNOLOGY 57 PROGRAMMING TECHNOLOGY

irs.merge.saved.levels
@COMmands # int): 4

LIBRARY ACCESS COMMANDS
library.print.file library.retrieve.file
library.print.abstract library.retrieve.abstract
library.print.irsinfo library.retrigve.irs.info
library.find.file library.check.file library.list.files
library.new.files library.bad.files
library.get.listing.tab.number

Now some characteristics of the CALICO subroutine library data base are illustrated.

@IRs.List.Class.names

ARGUMENT.TYPE
AUTHOR
CATEGORY
DESCRIPTOR
EXTERNAL
GLOBAL
INGERT.FILE
NAME.QOF.ABSTRACT
OBJECT.TYPE
RESULT.TYPE
SOURCE.FILE
STATIC.VARIABLE

These are the names of the abstract fields that are inverted. Most names are self-
explanatory; EXTERNAL means other subroutines that are called by a subroutine (in
the CALICO environment any subroutine or collection that calls ancther subroutine must
declare it external); OBJECT.TYPE tells whether the subroutine is mediated at call and
return time, or unmediated, or a display subroutine; STATIC.VARIABLE means a
variable accessible only to the subroutine, in which it can store information between
calls to it.

The categories into which a subroutine falls are assigned by the programmer
by choosing from a controlled list. Most of the subroutines with no category

PROGRAMMING TECHNOLOGY 58 PROGRAMMING TECHNOLOGY

(NO.ATTRIBUTE) are old ones that joined the library prior to the time the category
field was added to the abstract. The distribution ot subroutines into categories is
shown next:

@IRs Distribution.table over (sym): CAtegory

ATTRIBUTE FREQUENCY PERCENTAGE
UTILITY 725 35%
/0 400 19%
DATA MANAGEMENT 254 12%
DISPLAY 237 11%
DATA.TYPES 225 10%
STRING 183 8%
CHILL1 150 7%
NO.ATTRIBUTE 132 6%
CARE/C2 131 6%
STAT/MATH 116 5%
NETWORK 98 &4
INTERRUPTS 13 0%
SIGNALS 8 0%

Descriptors applicable to a subroutine are assigned freely by the programmer. The
common ones are listed next:

@IRs.Distribution.table over (sym): DEscriptor

ATTRIBUTE FREQUENCY PERCENTAGE
DATA 263 12%
NO.ATTRIBUTE 185 9%
DISPLAY 173 8%
STRING 172 8%
VECTOR 138 6%
FiLE 138 6%
ARRAY 131 6%
QUTPUT 121 5%
CHARACTER 103 5%

PRINT 99 47

e —

PROGRAMMING TECHNOLOGY 59 PROGRAMMING TECHNOLOGY

DISK 92 47,
BLOCK 30 4%
COMMAND 85 47
LIBRARY 84 47
DICTIONARY 83 47,
IRS 82 3%
CHILL 78 37
SEARCH 77 3%
LIST 76 3%
ASCII 74 34
INPUT 71 3%
BUILD 71 3%
TYPES 70 37
READ 70 3%
NLS 68 3%
ESP 67 3%
FUNCTION 66 3%

By examining the distribution of authors, one finds that three authors contributed
nearly half of the subroutines in the library, but 25 different authors contributed
something: .

@IRs.Distribution.table over (sym): AUthor

ATTRIBUTE FREQUENCY PERCENTAGE
JFH 376 18%
MS 354 17%
DL 270 13%
JM 242 11%
MSS 212 10%
SG 122 5%

PROGRAMMING TECHNOLOGY 60 PROGRAMMING TECHNOLOGY

Tne next distribution table gives an idea of how interdependent the subroutines in the
norary are. The first column contains a subroutine name, the second the number of
subroutines or collections that declare it external (call it) and the third the percentage
of the library that this number represents. Note that NO.ATTRIBUTE indicates the
subroutines that call no others, that is, bottom-level routines. An interesting point
about the subroutines most often EXTERNed, that is, DATREL (data release), VCTBLD
(vector build), etc., is that they are part of the data type syster. ¢. . ALICO.

@IRs.Distribution.table over (sym): EXternal

ATTRIBUTE FREQUENCY PERCENTAGE
DATREL 577 287
VCTBLD 314 15%
NO.ATTRIBUTE 284 13%
INTBLD 273 13%
BLKBLD 206 10%
DATCPY 196 97
VCTAPI 181 8%
OATCPD 153 77
ROWANT 106 5%
CHERRI1 94 47
VCTINF 90 47
VCTINI 80 3%

Ihe list is of course very long. Using the entire list, one discovers that:
3 subroutines are called by at least 100 others;

so" " L 50 others;
134 " i " " " 20 others;
410" " " " . 10 others.

The total number of external references is 13 690, of which about 45% are declared
external in a subroutine written by an author other than the one who wrote the
subroutine EXTERNed.

Some statistical preperties of the (static) trees implied by (unexecuted) call
statements from one program to another within the CALICO library were also obtained.
A naive measure of such a tree is its depth and width, measured in nodes. We

PROGRAMMING TECHNOLOGY 6l PROGRAMMING TECHNOLOGY

considered each assembler source file (“program”) to be an atomic unit, since it is too
difficult to tell, in unstructured assembly language, which control paths leading from
which entries into the program can actually execute a particular call. This simplification
also implies that the various entries into a program (which may differ only in the
number or kind of arguments passed) are not considered distinct. The 2054 entries in
the library are reduced to 1316 programs. Of these, 258 (197%) are "top-level”, in the
sense that they are never called by any other program. These top-level programs are
designed as such, to be called only by a console user.

Given the programs potentially called by each program in the library (the
average program contains calls to 4.3 programs), the 258 "call trees™ can be
constructed. It turns out that the size of the forest is enormous, even if recursive
branches are pruned off. A lack of (computer) time precluded exploring it in depth, but
the partial results are interesting. Two deep static call trees were explored. The
deith of one was 34; the other 29. The inner tree silhouette shown in Figure 1 was
obtained by taking the logarithm of the sum of the node counts at each level of calling
for these two trees. The maximum node count is 254 213 at a call depth of 23. In
addition, all call trees were explored to a depth of seven. The solid part of the outer
silhouette shown in Figure 1 shows the corresponding node counts. The dashed part is
the hypothesized extrapolation of the shape of the entire forest. Counting nodes at
each level, the forest appears ta be pear-shaped, with its maximum width below 20
levels down: the first seven levels have node counts of 258, 922, 5 495, 25 855,
102 179, 348 712, and 1 136 232 The maximum width of the hypothesized forest
appears to be on the order of 10+:9 nodes. It is possible that a goed number of these
calls are within the CALICO data system, or the CHILL interpreter, or in other functional
areas that would not appear in the MUDDLE library. But even ignoring those calls, a
complete examination of the reduced forest is still too {ime-consuming.

The next part of the scenaric will illustrate the use of IRS to find a
subroutine to do a specific task. Suppose one needs a subroutine that will find a
string in a set of strings. The STRIMG category would probably be examined first.
Note that *” is typed at one point to get an additional prompt for the current input.
The syntactic prompt *(mult-sym)’ means that multiple symbols can be input for an
argument.

READY AT TOP LEVEL WITH 2054 0BJECTS IN DATA BASE.

@IRs.Slmole search on {sym): CAtegory applying (sym): ?
Specify logical operation to be applied in search. Default is "OR"
(Symbol is acceptable.)

: Or to (mult-sym): STRing

READY AT LEVEL | WITH 182 OBJECTS.

PROGRAMMING TECHNOLOGY 62 PROGRAMMING TECHNOLOGY
SEMILOGID SILHOUETTE OF CALICO-LIBRARY STATIC CALL FOREST
T T T T 1 v T T T T T T
,,./ \ N
5
s / S —r- \ \‘.
1oL / + \
| D ’/
e 15 L / : \\
P 20 | |
| !
T | \
5 \
H " \ \ *r' I
| '\ \ l
{ |
i IL \ \\ A1— /
i - ¢ X | /
‘ 25 ',- l'\\ ‘ _l‘ / /
l_ o s L*_*_l_._&l..____l____l,. A 1 | 1
3 < % & 8 19 12
(REFLECTION) LOG OF NUMBER OF NODES

FIGURE 1.

PROGRAMMING TECHNOLOGY 63 PROGRAMMING TECHNOLOGY

[["OR" "CATEGORY" "STRING"]]

Now on2 can get more specific by using descriptors. For illustration purposes, a
differeni IRS searching command is used, which allows arbitrary Boolean combinations
of search conditions but does not provide completion of partially-typed names. (The
terminator for the search request is represented by ’$’)

@IRs.Basic.search with (txt): ["AND" "DESCRIPTOR" "SEARCH" "EQUALITY"]$
++x NAMES OF OBJECTS FOUND ##+

FXDSER

FXDSSV

SERCH

VSSRC

READY AT LEVEL 2 WITH 4 OBJECTS.
[["OR" "CATEGORY" "STRING"] ["AND" "DESCRIPTOR" "SEARCH" "EQUALITY"]]

The names of the four subroutines which are possible candidates for the task were
output because the list was shorter than twenty. Printing their descriptors gives an
idea of their characteristics.

@IRs.Print.Current.level class (mult-sym): Name,
class (mult-sym): Descriptor

(Frequency = 1)

NAME: FXDSER

DESCRIPTOR: SEARCH, PATTERN, BYTE POINTER, SUBSTRING,
STRING MANIPULATION, CHAR, ALTERNATIVES, TECO, ASCH, SIXBIT,
MATCH, COMPILE, COMPARISON, EQUALITY, TESTING

(Frequency = 1)

NAME: FXDSSV

DESCRIPTCR: SEARCH, PATTERN, BYTE POINTEw, SUBSTRING,
STRING MANIPULATION, CHAR, ALTERNATIVES, TECO, ASCI, SIXBIT,
MATCH, COMPILE, COMPARISON, EQUALITY, TESTING

(Freqﬁency = 1)
NAME: SERCH

PROGRAMMING TECHNOLOGY 64 PROGRAMMING TECHNOLOGY

DESCRIPTOR: SEARCH, PATTERN, BYTE POINTER, SUBSTRING,
STRING MANIPULATION, ZHAR, ALTERNATIVES, TECO, ASCII, SIXBIT,
MATCH, COMPILE, COMPARISON, EQUALITY, TESTING

(Frequency = 1)
NAME: VSSRC '
DESCRIPTOR: STRING, VECTOR, COMPARISON, EQUALITY, SEARCH

READY AT LEVEL 2 WITH 4 OBJECTS.
[("OR" "CATEGORY" “STRING"] ["AND" "DESCRIPTOR" "SEARCH" "EQUALITY"]]

All but VSSRC have identical large descriptor sets, indicating that the three constitute
a subroutine collection of some power. In addition, the descriptor SUBSTRING indicates
that the collection may be too powerful for the intended purpese. (Of course the
abstract(s) could be examined to confirm this notion) VSSRC seems to be the prime
candidate, so its abstract is printed. (The abstract format and semantics, including the
meaning of abbreviations and jargon (such as ’std’ for standard and tptr’ for typed
pointer, etc.) are all set forth and explained in a set of documents known as
Convention Il [8,11-15]. Briefly, the physical form of the abstract is a set of comment
lines (starting with a ') at the beginning of the source program. The parts of the
abstract are indicated by various heading and spacing conventions which must be
sirictly adhered to, lest the abstract parser -- which sees only a stream of characters
-- fail to find everything.)

"Rs.Print.Abstract called (sym): VSSRC

’

TITLE 'SSRC MJMO05 J. MICHENER (JM) 3 FEB 73

; #++ VSSRC SIMPLEX #3+

» ABSTR

; VECTOR OF STRINGS SEARCH

» SEARCH FOR A STRING AMONG A VECTOR CF STRINGS
; LANG: MIDAS

i VSSRC: This rsr accepts a std string and a std vector of std

PROGRAMMING TECHNOLOGY 65 PROGRAMN.NG TECHNOLOGY

; strings. It compares the std string to each element of the std vector
; (using STRCEQ (REF 1)) and returns the index of the first match found in
i the vector. If no element equals the given string, -1 is returned.

; CRSF: A/ <tptr to std string>
P B/ <tptr to std vector of std strings>

PUSHJ P,@VSSRC
; RO: Always return here

] RTRNS: A/ Index of first matching string; -1 if ncne.
; REF1: Abstract of STRCEQ in STREQU MJFHxx

; CONT: RSR SIMPLEX

; ATTR: Nonrecursive, Reentrant

; DEF: Nothing

; NEEDSA: Nothing

; NEEDSN: Nothing

; HOW ENV: PDP-10

; SFTW ENV: ITS, CALICO

; CAT: String

; DESCRPTR: string, vector, comparison, equality, search

; WARN: STRINGS OF DIFFERENT BYTE SIZES WILL EQUAL EACH OTHER IF
! THEIR CONTENTS ARE THE SAME, DUE TO THE USE OF STRCEQ AS
; OPPOSED TO STREQU.

VSSRC fills the bill; so one would choose a vector as the data structure in which to
store the set of strings and use VSSRC to iind the individuals. As an example of how
VSSRC might be called, here is a portion of assembly-language code, with the call to
VSSRC in the instruction iabeled 'CALL’;

v —

PROGRAMMING TECHNOLOGY

66

; Search thru rest of args for mode strings:

MODSCN:

; Find out which mode it is:

CALL:

; Mode string unrecognized:

BAOMOD:

AOBJP
MOVE
AGETYP
CAIE
JRST

MOVE
PUSHJ
JUMPGE

SCALL
JRST
ASTMAK

; Mode string found:

STGFND:

; mode table:

MOTABL:

XCT
JRST

VCTMAK
ASTMAK
ASTMAK
ASTMAK
ASTMAK
ASTMAK
ASTMAK
ASTMAK
ASTMAK
VCTEND

M,0PCHI
AN

0,A
0,STGTYP
WRGTYP

B,MDTABL
P,@VSSRC
A,STGFND

CHERR1,[BADMOD]

ERROUT

PROGRAMMING TECHNOLOGY

; Done??

; next arg

; Get its type.

; it it’s not a string,

; return error code.

; pntr to mode table
; Search for arg string.
; Jump if found.

; Generate error.

[UNRECOGNIZED MODE SPECIFICATION]

INSTAB(A)
MODSCN

[READ]
[WRITE]
[ASCHI]
[IMAGE]
[UNIT]

(BUFFERED]

[PARSE]
[PAGED]
-1

; Execute appropriate insn.
; And continue scan.

PROGRAMMING TECHNOLOGY 67 PROGRAMMING TECHNOLOGY

2. MUDDLE

Several major developments centered about the MUDDLE programming
language [1,16] the past year. These included: (1) the development of the compiler
to a state where it produces moderately efficient code; (2) the design and
implementation of a mechanism to allow users to share compiled code; (3) the design
and implementation of a mechanism to allow MUDDLE programs to possess core images
of greater than 256K (K=1024); (4) the implementation of a new garbage collector;
(5) the implementation of a mechanism for communicating with other processes; and (6)
the design of a library system.

The MUDDLE compiler (Reeve) currently open-compiles almost all of the
arithmetic SUBRs (+, -, %, /, MIN, MAX, MOD, ABS, FIX, FLOAT), many of the predicate
SUBRs (G?, L?, G=?, L=?, 1?, 0%, ==? ASSIGNED?, TYPE?, NOT) and the structure
manipulators (NTH, REST, LENGTH, EMPTY?, PUT, PUTREST). For many other SUBRs the
compiler generates fast calls into the interpreter rather than going through the
somewhat expensive call mediator. In addition, groups of functions can be compiled
together, removing the expense of the standard call between the functions in the
group. Currently compiled code achieves speedup factors over interpreted code of
between 20 and 200 -- the 50 to 100 range being the norm.

Compiled (and assembled) code can easily be made pure and sharable. Its
form is such that it can be "loaded” by simply having its disk file included in MUDDLE’s
memory map (Reeve). If the memory map overflows, any page containing only pure
compiled or assembled code can be removed and later added again automatically, in
effect giving MUDDLE an expanded address space.

The new garbage collector (Reeve) also uses the memory-mapping
mechanism. During a garbage collection, all useful list structure is copied into a
temporary address space in another process and compacted to reduce future page
taults. When copying is completed, the new pages are simply mapped into the
permanent address space and the temporary process is destroyed.

The inter-process communication facility (Ryan) was implemented in MUDDLE
to allow programs to send messages to autonomous (daemon) processes. Daemon
Processes are used, far example, by the Message Facility (see below) and the batch-
mode MUDDLE cornpiler (Ryan). The facility has also been used to rescue MUDDLESs
belonging to remote ARPANET users when normal console communication has gone
awry and to rescue daemons under development.

In keeping with our goal of promoting the sharing of software, a software
library management mechanism for MUDDLE was designed. This mechanism, in addition
to performing the housekeeping chores necessary to build and maintain library data

PROGRAMMING TECHNOLOGY 68 PROGRAMMING TECHNOLOGY

bases, will impose a discipline which will allow the software produced by different
programmers to coexist peacefully.

3. Automation of Program Documentation

At present, the CALICO programmer who creates a program is required to
write an abstract, preparing it from personal knowledge of the program. This
technique works well, though not perfectly, in our environment. The regimen and
discipline demanded of the programmer to produce an acceptable abstract is significant.
Frequently when programming methodology and program documentation is discussed, a
remark that has been voiced by several PTD programmers is, "Convention Il and
abstracts are the best thing that ever happened to us, but that doesn’t mear | must
like them." Even with the aid of TECO macros that prompt and aid the construction of
a CALICO abstract, it is still an unrewarding task for most PTD programmers to prepare
abstracts. Because the documentation task is so unrewarding, we are beginning to
formulate plans to automate the process, in order to relieve the programmer of much
of the unrewarding tedium currently required in abstract preparation. A program
similar to the analysis phase of a compiler could generate automatically much of the
information needed in a program abstract. Accordingly, we are beginning to design such
a program.

4. Project Reporting System

A first effort was made at providing an automated mechanism for monitoring
the status of the various on-going projects and sub-projects in which PTD members
are involved (Vezza, Broos). This mechanism was dubbed the "Project Reporting
System” and was implemented as an extension of the existing information retrieval

ystem (IRS). With this mechanism we were able to: monitor the status of individual
rojects; determine the rate of progress of individual projects, by examining their
status nistories; and survey the overall status of arbitrary subsets of projects, using
statistical disiributions.

With the Project Reporting System it was found that, while the mechanism
itselt worked very effectively, the current user interface used to update project
status information is inadequate, resulting in a lack of motivation among its users to
keep the status information for their projects up to date.

5. Application Programs

The development of a number of application programs was undertaken by
students (with some advice and help from the staff) associated with the Prograrming
Technology Division (Cutler, Long, Seriff, To, Yap), a member of the Robotics group of
the Automatic Programming Division (Pfister) and two members of the Research
Laboratory for Electronics (Pangaro, Raymond).

PROGRAMMING TECHNOLOGY 69 PROGRAMMING TECHNOLOGY

The development of the application programs provides a good mechanism to
test the DMS on real users, albeit friendly ones. A number of times, the development
of application programs has provided the stimulus to add a feature that may not have
been added without the stimulus. They also serve to provide benchmarks of capability.
An example is the program DALI, whose author (Pfister) provided invaluable aid to the
developer of the MUDDLE compiler (Reeve). DALl is a sufficiently complex program
that it uses a large subset of MUDDLE, and uncompiled (or compiled by an early
version of the compiler), runs excruciatingly slow. Because DALI’s author desired to
see pictures on the CRT move in real time, he had many suggestions about what
compiler features might next yield the largest gain in the efficiency of compiled
programs. In his enthusiasm to achieve an efficiently compiled DAL, he invariably
offered to compile DALl with each new compiler about to be released, thus testing and
helping to debug the compiler. The efficiency gained by compiling DALl with a new
compiler v/as also used by others to determine the cost benefit -- in terms of program
efficiency -- of recompiling programs. Some of the earliest MUDDLE compilers
provided only a factor of two or three speed-up in execution time over interpreted
DALI code. This meant that ten milliseconds of CPU time were required to effect
movement of a line on the CRT. The current compiler produces code that accomplishes
the movement in hundreds of microseconds.

a. DAL

The development of a Display Algorithm Language Interpreter (DALI) is
nearing completion (Pfister). It is a special-purpose programming language for the
creation and control of changing pictures which exhibit complex static and dynamic
interactions among their elements. DALI allows complex organizations of interpolated
(’smooth’) change, discrete change, and change in the structure of a picture to be
generated in a modular way, in the sense that picture elements determine their own
behavior and hence manner of change.

In DALI, pictures are composed of elements called picture modules. These
are analogous to procedural activations or processes, and contain arbitrary event-
driven procedures called daemons. Daemons are run under the control of global
scheduling rules based on the functional dependence of daemons on one another.
These rules result in smooth inter-daemon (process) communication and cooperation
with no implicit or explicit reference to semaphores or other synchronization primitives
in user code, while at the same time providing for a high degree of parallelism.
Circular inter-daemon fur.ctional dependence is possible, and results in iteration or
reiaxation. The environment structure used is predominantly stack-oriented.

PROGRAMMING TECHNOLOGY 70 PROGRAMMING TECHNOLOGY

b. Multi-Processor Micro-Computer Simulation System

A simulator was designed (Cutler) providing an environment that allows up
to eight independent micro-processors connected in a network to be simulated
concurrently. Each processor simulation is to be a separate ITS job, but the design
allows common code and data to be shared.

The core image of each simulation job is divided into four parts: (1) storage
for internal registers of the simulated micro-computer (accumulators, flags and data);
(2) storage for the core space of the simulated computer; (3) storage for the
simulator itself; (4) storage for interprocessor communication. This last area can be
written as well as read by any of the processors being simulated.

The simulator design is for an assembly-language program that is table-
driven and is capable of simulating any micro-computer. Currently the data base is
being prepared to simulate the INTEL 8080 micro-computer.

c. World Model and DYNAMO

An implementation of a version of the DYNAMO Il language for modeling non-
linear feedback systems was completed (Seriff, Long). The implementation consists of
a series of MUDDLE functions to provide all but a very few of the features of DYNAMO
(although with a completely different syntactic appearance). The PTD implementation is
capable of running any simulation that could be run under DYNAMO II (although again
the input syntax is different). It is also interfaced to the MUDDLE Console Graphics
Package [17] to allow a user to plot the results of the simulations.

The PTD DYNAMO has several features which are not available in
“YNAMO I, the most important of which are these:
(1) The ability to stop non-destructively a partly-completed simulation to examine
intermediate results or modify parameters. The simulation can then be continued
as if no interruption had occurred.

(2) The implementation is completely integrated with MUDDLE, and any MUDDLE
statement can be used in the description of a mode!l. Therefore the behavior of
the model is not limited to certain predefined modes.

A basic version of the PTD implementation was written and debugged in
approximately 2 person-hours. Another 5-7 person-hours was spent adding features
(including the plotted output). As a test, Forrester’s World Model (from World
Bynamics) was converted to PTD format and run. The conversion of the World Model
required approximately 2-4 person-hours’ effort. As one would expect, the PTD
World Model runs slower than the TSO one.

PROGRAMMING TECHNOLOGY 71 PROGRAMMING TECHNOLOGY

d. Graphing of System Statistics

Since early 1973, when our operating system began paging and swapping
memory contents, a daemon process, called the Bragon, has recorded system-
performance statistics on disk. During this year a project was begun to display these
statistics as graphs on display terminals (Yap). The operating system was modified to
record in system memory additional performance measures, and the Dragon program
was modified to obtain all the measures from the system and record ther: on disk in
MUDDLE-readable format (Brescia). The Dragon now records all logging in and out of
humans and daemons, and, at five-minute intervals: the number of human users; the
number of running jobs; the total size of virtual memory and the total number of
swapped-out pages, for running jobs and for all jobs; the amount of unused core; and
accumulated idle time, execution time for all iobs, and requests for swapped-out
pages. The capability to easily graph the system’s behavior under real load conditions
will provided some insight that we hope will help us understand how such systems
behave anc lead to improved system performance.

e. Computer Simulation of a Bifurcating Axon

The PTD system is being used by two members of the Research Laboratory
for Electronics (S. A. Raymond, Professor of Biology, and P. Pangaro) to model and
simulate the way synaptic activity affects nerve membranes. The computer is being
used to model and simulate a hypothesis concerning the dependence of nerve threshold
on impulse discharge patterns imposed upon it. The hypothesis is difficult to explore
biologically because of the volume of recordings from axon endings required. The PTD
system is being used tc gain insight into what physiological experiments on single
nerve fibers would prove fruitfu in testing the hypothesis. |n the computer, simulated
sections of nerve membrane, each having an independently-specified dependence of
threshold on activity, are coupled together to form a bifurcating tree. The simulation
output is presented in graphical and animated forms on the PTD Evans and Sutherland
aisplay. The simulation is quite rapid (compared to time required for a physiological
experiment) and the output is easily digested. The information displayed consists of
input records, threshold curves for any branch in the tree, post-synaptic cells that
connect to the axons, long-term output graphs, and two copies of the tree, one
showing invadability, the other actual invasion by an impulse into the tree.

f. Teleconferencing

An experimental system was implemented (Lebling, Thompson) this year that
allows several use-s to interact through the computer as a group in conferefnice. Each
participant interacts directly with a program that sends messages to and receives them
from other incarnations of the program, corresponding to other participants. The
program processes messages in rea! time, decides which ones should be shown to the
user, and outputs those to the console in a user-controllable format. Messages are

PROGRAMMING TECHNOLOGY 72 PROGRAMMING TECHNOLOGY

sent among users’ programs by being put into a shared in-core data base. All
interactions can be recorded, so that the "proceedings” are available for later
inspection. To test the system, a game was devised wherein conferees attempt to find
one another in a simulated maze of hallways, each user seeing broadcast messages and
a schematic view of the immediate surroundings and other visible players. The high
degree of interaction and communication necessary for this game was achieved.

g An Interactive Statistics Package for the Social Sciences

Social science oriented statistical packages are often used naively. This is
partly due to a lack of real user-system interaction, partly due to deficiencies in design
of the systems, and partly due to errors and ignorance on the purt of the user. After
considering ways in which these problems can be alleviated, a system called ISP
tinteractive Statistics Package) was designed to eliminate the problems and was
implemented in the CALICO environment (Lebling) 18]

ISP contains a unitary and uniform command structure and data storage and
relrieval system. Its operutions are user-expandable. ISP contains a matrix and
statistics oriented desk calculator facility and an interactive graphics capability.
Emphasis is placed in four areas: documentation, expandability, ease of interaction, and
system cognizance of the assumptions under which its operations are taking place.

C. NETWQORKS
The PTD continued this year to focus on tools that allow the ARPA computer
network and its resources to appear to be an integral part of the DMS environment, as
‘aborated below. As a serving host (MIT-DMS), we (Chan) implemented for the "new"

-einet protocol a server program that is compatible with the "old" protocol.

1. Datacomputer Experiments

We have continued our experiments with the Datacomputer, an ARPANET
se vice run by Computer Corporation o1 America providing storage and retrieval
capabilities in a mass store -- potentially 10++12 bits. The SURVEY program was
nodifica to send its ARPANET host availability data only once a day (normally at
midnight) to minimize interference with process- and user-initiated retrieval requests.
Provision for surveying arbitrary socket addresses was added.

A specialiced interactive program, SURRET (Bengelloun, Westcott), used as
an interface between MUDDLE and the Datacomputer’s Datalanguage to request
retrieval of SURVEY data from the SURVEY data base at the Datacomputer, was
integrated with the MUDDLE Console Graphics program (Ryan) to provide for display of
the SURVEY data in graphic form on an IMLAC, on a storage tube display (ARDS), and

PROGRAMMING TECHNOLOGY 73 PROGRAMMING TECHNOLOGY

THREE ARPANET HOSTS BETWEEN FEB 1 74 FEB 23 74

100 | |

80 L

60 |

40 | 1

20 L J

PERCENTAGE OF SURVEYS LOGGER AVAILABLE
SINCE START OF TIME PERIOD

FIGURE 2,

PROGRAMMING TECHNOLOGY 74 PROGRAMMING TECHNOLOGY

on Xerox Graphic Printer output. A typical graph is shown in Figure 2.

2. PTD Message Facility

A PTD Message Faciliiy was designed. Its structure was determined by
several basic design goals (Haverty, Black, Vezza, Sybalsky, Chan, Bhushan). First, the
system is meant to be easily usable by both humans and processes. Second, a user
must not be required to wait needlessly while the message transmission and other
processing are accomplished; only processing to support interactive facilities, such as
editing the text of a message, is done while the user waits. Third, the system must be
capable of being ’programmed’ to a large extent. Users must be able to set up their
own particular entries in the data base to control how the message system behaves
tor them. This is especially valuable for experimentation purposes.

The iMessage Facility design logically divides the system into two functional
parts. The first part is composed of two elements: the communication daemon
COMSYS (Haverty) [33] and the ARPANET interface NETOUT (Chan). They handle the
aciual transmission and delivery of messages. In addition, COMSYS controls the
scheduling of other processing that can be performed on or at the direction of the
message.

The second, interactive, part of the facility is to be composed of three
integrated elements: the composer COMPOS (Black), the READER {Sybalsky), and the
retrieval system IRS (Broos). These systems are to be used only by human users;
processes presumably do not need the facilities provided, or, if they do, a process can
either implement the required function itself, or communicate directly with the daemon,
as the interactive systeris sometimes do, to accomplish its ends.

a. Communication Daemon and Network Interface

The communication daemon COMSYS is to handle virtually all of the non-
Interactive processing involved in transmitting a message. It maintains several data
bases, which are used to keep track of messages as they are processed, and to hold
information to tailor the processing done to the specifications of the sender and
receiver, as appropriate. Simply modelled, the daemon is a process with several inputs
and several possible outpits, with a large dynamic data base. Messages and requests
for information enter the daemon via one of its inputs, and messages and data leave
the daemon over one or more of its outputs. For example, one input path is via a
publicized file name. If such a file is written, containing the specifications of a message
to be sent, the daemon will read the file and process the message. The message will
possibly be placed in another file, in the recipient’s directory, if that is the output path
selected.

COMSYS will possess the framework to envoke additional processes, called

PROGRAMMING TECHNOLOGY 75 PROGRAMMING TECHNOLOGY

’author’ or ’recipient’ processing, as commanded by data bases, author or recipient
actions via a console, and a flag in or attached to the message. These additional
processes can perform arbitrary tasks, such as inhibiting sending of the message until
all authors agree to send, or redirecting an incoming message to another or for that
matter several recipients.

The daemon additionally will handle requests to perform several types of
standard processing on messages, such as copying it to the printer or a disk fiie,
inserting it into an IRS data base, converting a group addressee into individual
addressees, etc.

The network interface NETOUT will handle all protocols concerned with the
current ARPANET implementations. It will provide isolation from ARPANET
dependencies to permit the communication facility to be developed without any
restrictions imposed by the present network protocols, since one goal of the project is
to determine what, if anything, is needed in a protocol to support such a facility.
Additionally, the network interface handles problems related to multi-computer
systems, such as what to do when the addressee’s site computer is currently down.

b. COMPQS, READER and IRS

The three interactive elements are to be an integrated unit so the user can
easily use functions of any element without inconvenience. This would permit, for
example, a user to read his or her mail, retrieve a message to which a reply has just
been received, and refer to it in composing a new message that <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>