
Best
Available

Copy

AD/A-004 966

PROJECT MAC PROGRESS REPORT XI

E. F re d k i n

Massachusetts Institute of Technology

Prepared for:

Advanced Research Projects Agency
Office of Naval Research

December 1974

I

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

:.;

BIBLIOGRAPHIC DATA
SHEET

1. Kepon No.

Progress Report XI
3. Hci ipicnt's Acffssiun ' •.

A. I ii [i Jnu Suw ii [e

Project MAC Progress Report Xi

5. Re^öri n.iu

December 197A
6.

7- Auitior(s)

Project MAC Parttcipants-Prof. E. Fredkln, Director
8. IVrformmg ()r>;ani/.ui um Kepi

NoMAC-PR-ll
9. Performing Organisation Name and Address

Massachusetts Institute of Technology
Project MAC
5A5 Technology Square, Cambridge, Mass.

10. Project, Task/Work Unii Ni

02138

11. Contract/Gram No.

N0O014-7O-A-O362-000 6

12. Rponsotinfl Ür^am/.ation Name and Address

Advanced Research Projects Agency
3D-200 Pentagon
Washington, D.C. 20301

13. Type of Kepi.rt & Period
Covered Progress Report
6/73-12/73

14.

'S. Supplementary Notes

'6. ALs'Mrts

Final summary Report of Progress made at Project MAC under this contract during
the period 6/73-12/73.

17 K'-v Words and Document Analysis. 17a. Descriptors

Real-Time Computers
On-Line Computers
Multi-Access Computers
Dynamic Modeling
Heterarchical Programming
Ccmputer Systems
Artificial Intelligence
Computer Languages
Computer Networks
Information Systems

I7b. 1 letitif lers .'Open-Fnded Terms

Programming Languages
Computation Structures
Automata Theory

I7c. ' OSATI Tie Id/Croup

R*pfoducpd by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Deporlment of Commerca
Springfield VA 22151

PRICES SütüEG iu iKAuGE

'8. A illability Statement
This document has been approved for public release
and sale; its distribution is unlimited.

JL

19. Srturity (lass (This
Report)
 WU.ASMNM' .
20. Security (las« '!''••

Page
 UNCLASSIFIKL)

21. Mo. ol I'ug.

I3S
22,

(OPM NTI5 ^5 (OEV- 3-72)
THIS FORM MAY BE REPRODUCED

11 s COMM- fi r 1 40*S? ■ n

f

Institute ofTprhnnT » . T' ^"^ 0ut "^ ^^ MAC' a Massachusetts
he Ad!/nLH p 0 ^^o6 eP

t
8rlrntal lab0rdt0ry- SupDort was Provided i" Part by the Advanced Research Projects Agency of the Department of Defense, unde Naval

Researd-i Contract N00014-70-A-0362-0006, ense, unaer mavai

of »h. nnitlePcr^UCtrn 0f thiS ?P°rt'in Wh0le or in part'is Permitted ^ any Purpose of the United States Government. Distribution of this document is unlimited. ' H P

u

.■A

PROJECT MAC PROGRESS REPORT XI

JUNE - DECEMBER 1973

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS 0 2139

in

TABUE OF CONTENTS

INTRODUCTION

AUTOMATIC PROGRAMMING DIVISION

Introduction

Automatic Programming Group
A. Introduction
B. Understanding How a User Might

Interact with a Knowledge-Based
Application System

C. Attempting to Set Down the
Knowledge Possessed by Expert
Consultants

D. Design of the OWL System
E. Study of System Modeling Ä Analysis
F. Study of the Process of Algorithm

Generation
G. Development of a System for Translating

From a Very High Level Language Into
IBM/370 PL/1

H. A Business Model for Automatic
Programming

I. Conclusion

Engineering Robotics Group
A. Introduction
B. Engineering Robotics
C. Graphics
D. Development of Timesharing System
E. Language Semantics

Mathlab Group
A. Introduction
B. Description of MACSYMA
C. Summary

I

5

7

9
11

12

13
14
15

15

19

20
22

23
25
25
27
28
29

31
33
35
43

PROGRAMMING TECHNOLOGY ^
A. Introduction _.
B. Programming Technology
C. Networks •

D. Other Activities 76

COMPUTER SYSTEMS RESEARCH 81
A. Introduction 33
B. Certification of Computer Systems 84
C. ARPA Network Activities 103
D. Technology Transfer 107
E. Other Activities 109

PROJECT MAC PUBLICATIONS 113

^

INTRODUCTION 1 INTROOUCTION

INTRODUCTION

This annual progress report to the Advanced Research Projects Agency of
the Department of Defense describes research performed at Project MAC, funded by
that agencv. and monitored by the Office of Naval Research during the period 6/1 -
12/31 1973.

During this period, Project MAC consisted of approximately 275 peu^le,
including 27 faculty, 62 research and support staff members, 80 graduate students, 45
undergraduates, and 11 visiting researchers and scientists. Project MAC is organized
into four divisions -- Automatic Programming, Programming Technology, Computer
Systems Research and Fundamental Studies. The work presented herein was
conducted in the first three divisions.

Since the development and subsequent transfer to Honeywell of the Multics
time-shared system, the main thrust of research at Project MAC has been in the
Automation of Programming. In particu'ar, the Automatic Programming Division is
concerned with the acquisition, structure and utilization of expert knowledge in specific
domains. For example, in the Automatic Programming Group of this division,
knowledge-based systems are used to automatically generate special-purpose
programs from general descriptions of procedures in the context of inventory control.
In the Mathlab group, the knowledge barJe is on Algebra, and the resultant system,
called MACSYMA, is intended to be a mathematical assistant. In the Engineering
Robotics group, real-time scheduling programs are automatically generated for the
computer control of physical processes.

The Programming Technology Division is concerned with the computer
facilitation of human programming. The Dynamic Modeling System, under development
by this division, is an interactive programming system with a large repertoire of
subprograms providing an integrated set of advanced tools, including information
retrieval, graphics, and computer network capabilities.

The Computer Systems Research Division is studying methods of
transforming information system construction into a more methodical engineering
discipline. The primary laboratory for this research has been the Multics System, now
in use as a main-line time-sharing facility by the M.I.T. community. In addition, work is
being done on the development of certifiably correct systems, modeling of system
performance, and the integration of computer networks with a computer utility.

3

Prof. E. Fredkin
Prof. S. S. Patil
H. S. Hughes
D. C. Scanion
G. B. Walker
A. D. Egendorf
C. P. Doyle
B. H. Kohl
A. A. Platt

ADMINISTRATION

R. Elkin

Director
Assistant Director
Special Assistant to the Director
Administrative Officer
Business Manager
Director of Information Services
Administrative Assistant
Librarian
Information Services

Undergraduate Students

Support Staff

D. J. Morgan

G. W. Brown
L S. Cavallaro
R. B. Combs
L. L Gammei
J. I. Griffin
D. Kontrimus
M. K. Martucci
G. A. Morris
L M. Muise

A. E. Normend
D. S. Niver
A. A. Pandya
E. M. Roderick
D. C. Rut her ford
V. J. Sutherland
J. L Winbush
C. Woodard

Preceding page blank

AUTOMATIC PROGRAMMING AUTOMATIC PROGRAMMING

AUTOMATIC PROGRAMMING DIVISION

Academic Staff

Prof. M. L Dertouzos
Prof. M. Hammer
Prof. A. Hax
Prof. R. Marsten
Prof. W. A. Martin

Prof. J. Moses
R. J. Fateman
V. S. Pless
G. R. Ruth
P. S.-H. Wang

H. G. Baker
E. R. Banks
R. A. Bogen
G. P. Brown
J. P. Golden
L. P. Hawkinson

DSR Staff

Graduate Students

J. P. Jarvis
A. Nevins
G. F. Pfister
R. Schroeppel
A. Sunguroff
J. L White

R. V. Baron
V. A. Berzins
S. P. Geiger
R. T. Genesereth
J. J. Golovin
D. L Grabel
D. L Isaman
K. M. Kohn
R. B. Krumland
J. Kulp
M. Laventhal
A. Malhotra
N. Malvania
W. S. Mark

B. McFadden
L Meador
J. A. Melber
J. A. Meldman
A. K. Mok
M. L Morgenstern
G. A. Moulton
C. J. Terman
B. M. Träger
S. R. Umarji
T Victor
S. A. Ward
D. Y. Yun

Preceding page blank

AUTOMATIC PROGRAMMIMG 6 AUTOMATIC PROGRAMMING

Undergraduate Students

H. I. Badian
D. J. Littleboy
S. M. Macrakis
C. H. Mink
D. A. Moon
B. Niamir

E. C. Rosen
G. L St eel e
A. P. Swide
G. Thomas
R. E. Zippel

S^)port Staff

J. S. Lague
G. B. Moore

N. J. Robinson
N. B. Siporin

Guests

A. Miola
H. Watanabe

U. Pape

A

AUTOMATIC PROGRAMMING AUTOMATIC PROGRAMMING

AUTOMATIC PROGRAMMING DIVISION

A. INTRODUCTION

The Automatic Programming Division concerns itself with the replacement,
rather than ?he augmentation, of programmers. With this goal in mind we feel it is
essential that the automatic programming system have knowledge of the application
area for which it is to write a program. The appropriate knowledge is that possessed
by experts in the various areas, such as business, medicine, law, or applied
mathematics. Since these experts are largely unfamiliar with computer science
techniques we must form teams consisting of experts in a particular field together with
computer scientists. Each of the groups in the Automatic Programming Division is such
a team. Each field requires a somewhat different approach, but a sharing of views
among the groups of the division helps to sharpen the process of creating expert
computer systems.

The Automatic Programming Division is made up of four different groups,
three of which are included in this report: 1) The Automatic Programming Group
concerns itself with automatic program generation; 2) The Engineering Robotics Group
is developing tools for the automatic production of software for the control of physical
processes; 3) Mathlab has concerned itself with the development of a timesharing
system ~ MACSYMA - containing powerful and efficient algorithms in many areas of
algebraic manipulation.

,'

AUTOMATIC PROGRAMMING 9 AUTOMATIC PROGRAMMING

AUTOMATIC PROGRAMMING GROUP

Academic Staff

Prof. M. Hammer
Prof. A. Hax
Prof. R. Marsten

Prof. W. A. Martin
G. R. Ruh

DSR Staff

H. G. Baker
E. R. Banks
L P. Hawkinson

A. Nevins
G. F. Pfister
A. Sunguroff

Graduate Students

R. V. Baron
V. A. Berzins
J. J. Golovin
D. L Isaman
K. M. Konn
R. B. Krumland
A. Malhotra
W. S. Mark

B. McFadden
L Meador
J. A. Meldman
M. L Morgenstern
G. A. Moulton
S. R. Umarji
T. Victor

H. I. Badian
D. J. Littleboy
C. H. Mink
D. A. Moon

Undergraduate Students

Preceding page blank

B. Niamir
A. P Swide
G. Thomas

AUTOMATIC PROGRAMMING 10 AUTOMATIC PROGRAMMING

Support Staff

J. S. Lague G. B. Moore

 - .:

AUTOMATIC PROGRAMMING 11 AUTOMATIC PROGRAMMING

AUTOMATIC PROGRAMMING GROUP

A. INTRODUCTION

At the time of the last progress report, the Automatic Programming Group
had been in existance for a yea»- and a half. That time had been spent in defining the
general approach which the group would take to automatic programming, and starting a
number of relatively small projects, both with the aim of involving new people In the
work and exploring which would be the most fruitful areas for major efforts. The
beginnings of some of these projects, and the motivation behind them, were described
in the last progress report.

In the past year our work has matured to the point where we can now
identify the major thrusts we intend to pursue for the next two or three years. We
started out to build a single integrated system which we called Protosystem I. The
thrusts we have identified will make the construction of that system possible. Indeed,
we expect to integrate «he results of the various thrusts together without having to
do a complete re-design. Nevertheless, if each of the thrusts can produce major
results in its own right, our task of research project organization becomes much easier.
Below we describe our work in each of these areas. They are:

1. Understanding how a user might interact with a knowledge-based application
system.

2. Attempting to set down the knowledge possessed by expert consultants.

3. Design of the OWL system for buik'ing expert problem systems.

4. Study of systems modeling and analysis. How are simpler models which retain
the important characteristics of systems found?

5. Study of the process of algorithm generation by specialization of algorithms
written at a higher level of abstraction.

6. Development of a system for translating from a very high-level language into
IBM/370 PL/I in the area of business data processing.

AUTOMATIC PROGRAMMING 12 AUTOMATIC PROGRAMMING

B. UNDERSTANDING HOW A USER MIGHT INTERACT WITH A KNOWLEDGE-BASED
APPÜCAT10N SYSTEM

Ashok Malhotrf became interested in how an English language question
answering system could aid a user at a terminal in trying to ask questions about
business data. He postulated the imaginary company situation with rising sales and
decreasing profits described in section H. He then asked several businessmen to
pretend that he was a computer which contained data on sales, costs, and other
variables. He would also answsr questions on what data was available and how it was
computed. The results of these first experiments showed that two thirds of the
questions were about what data was available or how it was catalogued, and only one
third asked for the data itself or functions computed from it. The protocols showed
the process by which the manager moved from his initial model of the situation
(apparently dictated by his or her background) '-> a model commensurate with the way
the data was gathered.

These results lead to the more elaborate experiments which Mr. Malhotra
is now conducting. He has programmed a small question-answering system. A manager
in another room types a question at a console in English. Mr. Malhotra intercepts the
question and, rephrasing it if necessary, enters it into the system. The answer is then
typed back to the manager. Everything is saved for later analysis. This expriment is
providing a good sample of the English constructions which must be handled, the types
of questions which must be answered, and the overall structure of a console session.

We feel that our understanding of English dialogue is reaching the point
where we can define a level of capability fairly precisely. Since managers seem used
to the idea of rephrasing a question so that someone less experienced can understand
it, we pl?n to conduct further experiments where the experimenter will only answer
questions which fall within some postulated level of capability of the sytem.

Analysis of protocols seems to be a very important tool for us. We have
also participated in experiments where one physician pretends to be a patient and
another diagnoses him or her. The second does not know what is wrong with the
patient before the experiment starts and thinks out loud as he or she proceeds. We
plan to conduct similar experiments in management.

There are several systems on the market which allow a manager at a
console to define simple models and investigate their behavior. These are used, for
example, to figure real estate transactions, calculate cash flow requirements, or aid in
marketing media selection. Mr. Rand Krumland has been investigating these systems

AUTOMATIC PROGRAMMING 13 AUTOMATIC PROGRAMMING

and cataloguing their eiements, with an eye to building a general purpose system which
could be specialized to one of these areas by an English language dialogue.

C. ATTEMPTING TO SET DOWN THE KNOWLEDGE POSSESSED BY EXPERT
CONSULT AN1 ' TS

We have been working with Professor Arnaldo Hax in the M.I.T. Sloan
School. After formal training in operations research, Professor Hax had a number of
years of practical experience consulting in the design of information and decision
systems for operations management. Even before he Knew of our efforts, Professor
Hax had decided to try to put his consulting experience into an integrated framework.
He wanted to make possible the evaluation of alternative designs on a mce systematic
basis and to provide a framework for teaching others.

As Professor Hax had no previous knowledge of artificial intelligence work,
we decided it was best not to involve him initially in our efforts to find a better
representation for expert knowledge. Instead, we have been helping him to build a
system consisting of a series of packages which are configured according to the
answers a user gives to a multiple choice questionaire. The initial programming of the
packages has been completed; they are being gradually elaborated and improved. The
packages make possible the implementation of many common strategies for managenent
of operations in a production and distribution system from aggregate capacity planning
to detailed scheduling. The difference between these packages and commercially
available business software is that the latter tends to offtr only operations such as
accounts receivable which do not involva decision rules affecting the total behavior of
the system. Professor Hax is a proponent of a hierarchically integrated set of models
to support decisions that operating managers must make, and he has built his system
accordingly. These packages give us a well-defined target for the output of the design
process as represented by the questionaire.

As might be expected, the questionaire has given Professor Hax some
difficulty. He initially tried to write it by moving through the production process from
raw materials to finished goods distribution. However, he realized that the questions
to be asked for even the relatively straight-forward area of raw materials
procurement depended on the general nature of the organiztion under study. This has
led to a version which attempts to identify the firm as, for example, a one-factory
fabricator of inexpensive items. Questions relevant to that setting ar«! then asked. As
Professor Hax envisions the design process, after an initial series of questions, the
system will do a preliminary analysis of the firm in order to identify Its problems,
estimate the values of standard remedies, and confirm that the user's answers and data

AUTOMATIC PROGRAMMING 14 AUTOMATIC PROGRAMMING

fall into a consistent and believable pattern. It will then print out the general nature of
a suggested design for user study. If the user desires to go further the system will
ask further questions to acquire the detailed information mcessary for a complete
design.

In a seperate effort, Mr. Jeffrey A. Meldman, a member of the
Massachusetts bar and an M.I.T. doctoral candidate, has been attempting to set down
the knowledge required to assist a user in locating the legal doctrine relevant to a
case at hand. He has taken the area of battery as an example and has been
constructing in our new language, OWL, a model of battery, which the system woula
attempt to instantiate by using the facts of the user's case and legal findings, such as
that a tomato can be used as a weapon. Mr. Meldman has been appointed an
Assistant Professor in the Sloan School and plans to continue working with us there.

D- DESIGN OF THE OWL SYSTEM FOR BUILDING EXPERT PROBLEM-SOLVING

Last year we reported on a language, MAPL, which we proposed to use for
building models of the world. At the time, MAPL was incomplete. In seeking to solve
additional representation problems in MAPL we came to rely more and more on the
English language as a guide to how things could be represented. MAPL evolve d so far
that it seemed sensible to declare it a new language, OWL.

A major insight in OWL is that an event can be represented quite well as
action, such as hit, and a series of properties of the action derived from case grammer
We were investigating the notion of cases last year, but now we believe that there is
a universal set of cases which can be built into the language. An important step in
translating from English into the case grammer representation is to recognize that the
prepositions which flag the cases also have other uses. For example, in the sentence

I looked up the pipe", "up" can select a meaning of "look", in which case the sentence
means the pipe was looked up in some reference, or "up" can signal the tra:ectory
case, in which case "up the pipe" tells where I looked.

We have improved the parser which was described last year and we are
converting it to work with OWL. We ha/e partially implemented an interpreter for
OWL and we are attempting to write a program in OWL capable of the dialogue in
Hgure 1 in order to debug the system. An example of an OWL procedure Is shown in
Figure 2. Owl is embedded in LISP. Every list is backpointed to every list which
contains it as indicated in Figure 3.

^

TW

AUTOMATIC PROGRAMMING 15 AUTOMATIC PROGRAMMING

We consider OWL to be the key to our project a» d we have all four or our
DSR staff working on it. Lowell Hawkinson is leading the implementation effort. We
expect the language will have one or two major revisions before it reaches a semi-
stable form which can be published.

E. STUCY OF SYSTEM MODOIIMG AND ANALYSS

System modeling and analysis is a very difficult area. Sucress is not critical
to the success of our entire project but ii would be viry important. We currently
have three paradigms under which this problem is being attacked.

First, our system, which translates a very high !evel language into PL/I, must
pick between alternate organizations of the computations and data on the basis of
efficiency. Efficiency criteria require estimates of the number of data items and the
number of computations which will arise in a system. We have attempted to discover
these facts by simulation, but a strömt forward simulation often leads to the simulation
of rare events. Mr. V. Berzins has done some work to discover under what conditions
probability distributions of the needed variables can be estimated symbolically. The
calculations arising in business data processing are quite simple; nevertheless,
symbolic calculations get out of hand unless simplifying assumptions are made. The
correct assumptions to use are probably those now used by workers analyzing such
systems. These must be discovered and codified.

Second, William Long is seeking a process by which a system with an
elaborate model of the world could simplify that model in order to write a program for
a specific purpose. For example, the system might have the notion that seats are
intrinsically unique. If a ticket-selling program which sells non-resei -d seats is to be
written, tie system might deduce that only a count of the number sold need be
maintained, with no need to identify each seat.

Finally, William Mark is investigating whether a system with a notion of a
concept like negative feedback could recognize the conditions for that concept and
apply it in a problem description given by the user.

F. STUDY OF THE PROCESS OF ALGORI'mM GENERATION

At the moment we do not have an active project in the area of algorithm
generation by specialization of algorithms written at a higher level of abstraction.
Considerable light has been shed on this subject over the rjst year through the

AUTOMATIC PROGRAMMING 16 AUTOMATIC PROGRAMMING

Figure 1

Hello, I am Susie. What is your name?

* Bill.
* I need a program written to manipulate blocks.

I can help you solve the problem of writing a program which builds a scene using the
blocks from another scene.

* That is what I want.

OK. I need a description of the initial and final scenes.

* The final scene contains 3 Blocks: Bl, B2, B3.

OK.

* What else do you want to know about the final scene?

What are the positions of Bl, 82, and B3 with respect to each other?

* Bl is on top of B2 and B3 Is on top of Bl.

OK.

* Initially, all of them are on the ground.

Do you mean in the initial scene?

* Yes,
* Can you write a program from that?

I have enough i.-.formation to start writing the program. I can't determine all of the
information which I will need until I write the program.

* OK.
* Start writing it.

Do you want me to decide implementation issues such as what to grasp a block with?

* Yes, if I can ask you about them later.

AUTOMATIC PROGRAMMING 17 AUTOMATIC PROGRAMMING

You can. Is there a block on top of B2 in the initial scene?

* The initial scene only contains Bl, B2, and B3.

I see. I have fimched the program. Do you want me to describe the procedure?

* Yes.

First I move 82 with my left hand, then I put 81 on top of 82 with my left hand, then I
put 83 on top of 81 with my left hand.

* How did you decide to use your left hand to move 82?

I needt-d to choose a hand with which to grasp 82. Both of my hands are free at that
point in the problem. You told me to decide the implementation issues. I choce the
first hand which I thought of.

Figure 1
A hypothetical dialogue with Susie Software.

(LEARN (DEFINE PROCEDURE (PUT-ON-TOP-OF BLOCK-1))
(AGENT (PUT-ON-TOP-OF BLOCK-1) PERSON-1)
(INSTRUMENT (PUT-ON-TOP-OF BLOCK-1) HAND-1)
(PART ACENT KAND-1)
(SPECIFIC-POSITION (PUT-ON-TOP-OF BLOCK-1)

(ON-TOP-OF BLOCK-2))
(PRINCIPAL-RESULT (PUT-ON-TOP-OF BLOCK-1)

(POSITION OBJECT SPECIFIC-POSITION))
(METHOD (PUT-ON-TOP-OF BLOCK-1) (FIND SPACE-1))
(POSITION SPACE-1 SPECIFIC-POSITION)
(BENEFICIARY SPAGE-1 OBJECT)
(THEN (FIND SPACE-1) (GRASP OBJECT))
(THEN (GRASP OBJECT)

(MOVE (INSTRUMENT-1 (GRASP OBJECT))))
(DESTINATION (MOVE INSTRUMENT-]) POSITION-1)
(RESULT (MOVE INSTRUMENT-1)

(POSITION OBJECT SPECIFIC-POSITION))
(THEN (MOVE INSTRUMENT-1) (LET-GO-OF OBJECT))
(Y-COORDINATE POSITION-i

(PLUS 2
(Y-COORDINATE (POSITION (OBJECT (FIND SPACE-1))))

(MEASURE (HEIGHT OBJECT))))
(X-COORD1NATE POSITION-1

(X-COORD1NATE (POSITION (OBJECT (FIND SPACE-1))))))

Figure 2
Definition of PUT-ON-TOP-OF in OWL

J

B

AUTOMATIC PROGRAMMING 18 AUTOMATIC PROGRAMMING

(HOOT* LONG-TERM)

(HIT BALL)

Back pointers to all items containing this item
as a top level elt .ent not in first position.

Figure 3
The long term memory element: (HIT BALL).

AUTOMHC PROO^NG 19 AUTOMAT P.OGRAMM.NG

completion .< the PhD. the.es of GreBory R. Ruth ih our fW »d 8^^«^^
Ira Goldstein in the MIT. Artificial lntelli|ence Laboratory All three of these persons
are still at M.I.T. and this will help us in starting our project.

dÄ .ää.^. 'L6:: a sor.,n6 ^^ -^rw^
Mnr ^r. 'o" Ru;r:rr.no ^.r ^v^

"Thrioop test KO should have been 140, otherwise your program it ok.

G ncwn nPUgNT QF A PvcTpy Pflll TnA^ATHT, FROM A VERY H«H LEVa

LAhOUAGE mO IBM/yO 53

This large program, written in LISP, was the first project started by the
.n in the first vear the program reached the point where a s.mple example was

:r«. ZiIÄ Sis«—". -..««- - •-"» ■• »••
Both approaches are being implemented.

The implementation of the enfre system is "ow being headed by Dr.
Gregory R. Ruth. He i. writing a rather long memo descnbmg the status of the system

which should be ready by February 1974.

Although this project is rather complex we feel ^l*>*™£ ^j

- Ä to=e^:^ ^X^T*^ ^

AUTOMATIC PROGRAMMING 20 AUTOMATIC PROGRAMMING

H. A BUSINESS MODEL FOR AUTOMATIC PROGRAMMING - THE GLOBE UNION
BATTERY COMPANY

Globe Union is an established manufacturer of leai batteries with head
office? located in the mid-west. It has four plants where the actual manufacturing is
carried out. These are spread out over the continental United States.

Globe Union manufactures fifteen variations of five basic battery types, for
various purposes. Each distinct variety is identified by a unit number.

Globe Union sells mainly in bulk, to twenty major customers located all over
the United States. Customers place long range "quotations" with Globe Union for
specified quantities of a certain unit number. Globe Union supplies against these
quotations on the receipt of orders from customer branches. Each branch is expected
to order from a certain plant, usually the one closest to it. In general a given plant
supplies customer branches in a set of states surrounding it.

Each plant manufactures all the types of units it supplies. The product is
heavy, and transportation can make up a large proportion of product cost. Only in rare
cas-js of shortages and lack of facilities to manufacture a specialized unit will batteries
be supplied from other than the closest plant.

Plants manufacture according to certain inventory and production rules.
They are expected to meet budgets on direct costs and overheads. Performance
against budget as well as customer service are the main criteria for plant manager
evaluation. Plants are not run as profit centers because prices on quotations are
negotiated by the head office eveis though standard price lists exist.

It is early February 1974 and as President of Globe Union you are a little
concerned at the results for 1973 which you have just received. Despite a 207.
increase in sales over 1972, profits decreased by 17..

You feel that the decrease in profit could be du^ to a combination of three
causes: increase in overhead expenses, decrease in contibution margins (difference
between selling price and direct cost) or a change in product mix toward less
profitable units. You would like to investigate the cause of the decreased profit using
the Globe Union Information System. Depending on what you find, you will make a
incision to enforce strict control of the pricing or the quotations, review and reset list
prices which are supposed to serve as guidelinss for quotations prices, or introduce a
cost control program. The purpose of this exercise is to determine which decisions are

AUTOMATIC PROGRAMMING 21 AUTOMATIC PROGRAMMING

appropriate under the circumstances.

As sales growth has bery healthy, you are inclined to disregard competitive
actions in your analysis. You also assume that the cost and other data contained in the

system is accurate. .
The Globe Union Information System contains data on sales, costs, prices, and

other indicators of Globe Union's operations during the last five years. It is capable of
answering questions posed to it in simple English about the contents of the database
and functions of these contents such as "profit" or "average pnce for unit 103 . In
addition, the system is capable of answering questions about K»«". •;••. * can
enumerate the data items it contains, explain the procedures embedded In the

functions, etc.

The system can be queried much as one would use an assistant to answer
questions, prepare repots, etc. It will p'Ov1de appropriate responses to requests it
does not understand or cannot accede to. A typical dialogue with the system may be:

Q: What data do you have regarding unit costs?
A: I have actual and budgeted costs for each unit at each plant.

Q: What was the cost of unit 103 in plant 8?
A: S78.23.

Q: What was the list price for unit 103?
A: SB 1.00

Q: Do you have a model for contribution margin?

A: Yes.

Q: How does It work?
A: t! computes list (standard) price minus actual cost for the given unit.

Q: What was the contributor unit 113 at Plant 2?

A: S9.20.

Q: What was the contribution for unit 81?

A: 39,30

Q: What was the avreage cost of unit 81?
A: Sorry, I don't know the word "avreage".

AUTOMATIC PROGRAMMING 22 AUTOMATIC PROGRAMMING

Q: What was the average cost for unit 81?
A: 878.67.

Q: What was the average budgeted cost for unit 81?
A: 876 00.

I. CONCLUSION

The directions of our group are now firmly established. We feel we have
posed some good problems. We now turn to strengthening these directions and to
solving the problems we have posed for ourselves.

Publications

1. Hax, A. C. and W. A. Martin, "Automatic Generation of Customized, Model Based
Information System; for Operation Management", Proceeding of the First
Conference on Research in Organizations, Wharton, Pa., October 24-25 1973.

2. Malhotra, A., with C. L Meador, "One-sided Cybernetics", Transactions of the
IEEE International Seriinar on Man. Systems and Cybernetics, Boston, Mass.,
November 7-9 1973.

WM ■ H

ENGINEERING ROBOTICS 23 ENGINEERING ROBOTICS

ENGINEERING ROBOTICS

Academic Staff

Prof. M. L DertoLtfos

Graduate Students

S. P. Geiger
N. Malvania
A. Melber
A. K. Mok

G. F. Pfisler
G. Sockut
C. J. Terman
S. A. Ward

Support Staff

N. Robinson

„•.■:.W.

ENGINEERING ROBOTICS 25 ENGINEERING ROBOTICS

ENGINEERING ROBOnCS

A. INTRODUCTION

In the report submitted by this group (formerly called "Educational Computer
Systems") for 1971-72 it was announced with the departure of Professor Weizenbaum
for a two year period, the research objectives of the group would be oriented toward
Engineering Robotics. This transition has preceded smoothly over the intervening two
years, and this is expected to continue until the departure in July 1974 of Professor
Dertouzos to serve as Acting Head of Project MAC.

The major long term research goal of the group continues to be the
development of tools for the automatic production of software for the control of
physical processes. Our approach has emphasized the utilization of descriptive
information which is ultimately resolved (by the system) into control algorithms, rather
than the explicit specification of the algorithms themselves. The designer of a control
system, for example, specifies time constants associated with the process to be
controlled rather than a detailed algorithm for the scheduling of the controlling program.
Efforts in this area have, during the past year, been concentrated on scheduling
algorithms and their relation to physical time constraints. Results include an optimal
scheduling algorithm and the successful implementation of an initial language using this
algorithm.

During the reporting period the group has also continued research Initiated
previously in the areas of (i) Systems for dynamic computer graphics; (ii) development
of the DELPHI timesharing system; and (iii) theory of programming languages. Two
doctoral theses have been initiated during this period, in the respective areas of
dynamic graphics and programming language semantics. In addition one Master's and
three bachelors theses were initiated in the area of Engineering Robotics.

B. ENGINEERING ROBOTICS

Continuing research in the area of computer control of physical processes
has focused on the following problems:

1. The study of algorithms for scheduling multiple autonomous control tasks on a
fixed number of processors;

2. The efficient implementation of these algorithms, and particularly their
incorporation into high level compiled languages designed for process control;

Preceding page blank

...

•1 ——

ENGINEERING ROBOTICS 26 ENGINEERING ROBOTICS

3. The establishment of a laboratory environment in which software tools may
readily be applied to physical processes for evaluation and demonstration.

Progress in each of these areas is described in a following subsection.

1. Scheduling Algorithms

The approach to control taken here features the use of multiple autonomous
control tasks, each roughly corresponding to a classical servo control loop. Each task
or daemon constitutes an independent locus of control and is, at least conceptually,
executed continuously by the system. Thus a program to balance on inverted
pendulum might contain daemons, assigned to the relatively independent tasks of
maintaining balance in the x and y directions respectively.

Requests for service (daemon activations) may arise as the result of either
programmed requests or external inputs (e.g. sensors); hence no assumptions
regarding the synchrony or periodicity of daemon activations may be made in the
general case. Associated with each request is a hard deadline (in absoluts time) by
which the request must be serviced. The theoretical problem of scheduling tasks so as
to guarantee that all deadlines are met is consequently of some practical interest here,
and has been the subject of investigations by Dertouzos and Geiger.

In cases involving a single processor and no a priori information regarding
computation times, the "Earliest Deadline" algorithm has been shown to be optimal (in
the sense that this algorithm fails only in those cases where every algorithm fails).
Ongoing research (by Mok) is directed toward extending this result to cases involving
multiple processors and additional a priori information (e.g. regarding computation times
and distribution of requests over time).

2. Implementation of Robotics Languages

The initial Implementation of a "daemonized" robotics system was completed
in the fall of 1973 by Geiger. This system extended the PDP11 assembly language by
a set of macroinstructions for the specification of daemons and control of sensors and
actuators. Programs written using this implementation run directly on the timeshared
POP 11/45.

An ALGOL compiler adapted to robotics use is currently under development
by Terman. This implementation will feature code generators for several
microprocessors (in addition to the PDP11), providing the DELPHI system with effective
means for the prod tion of microprocessor software. Significant technical problems
being attacked in tftN project include the reconciliation of the ALGOL stack structure
with the multiple loci of control dictated by the daemon structure.

■

ENGIIMEERING ROBOTICS 27 ENGIMEERING ROBOTICS

An initial implementation of the Robotics ALGOL Is expected to be
operational during the fall of 1974.

3. Development of Roboticsjjborator^

During the 1973 reporting period, development of a Engineering Robotics
Laboratory was initiated. The laboratory uses the M.I.T. Electrical Engineering
Department PDP11/45 DELPHI computer system, which has been augmented by
additional memory and software for this purpose.

Our goal is to provide, through this laboratory, a "Mechano" environment In
which a wide variety of representative physical devices may quickly and easily be
interfaced to a controlling processor. The project involves design and construction of a
variety of sensor and actuator module*, with a suitably general interface so that the
modules are readily interchangeable.

An initial design of the interface has been operational since the fall of 1973.
This preliminary version allows a number of plug-compatible sensor and actuator
modules to be controlled by the PDP11/45 directly; future versions will include local
microprocessors to relieve the timeshared 11/45 of the real time control task. This
interface is currently used to control two operational experiments: (I) an inverted
pendulum balance; and (ii) a recorder-playing apparatus.

A standard set of sensor and actuator modules is currently being developed
by Malvania; this work is expected to be completed by December of 1974.

C. GRAPHICS

During 1973 there has been work on two projects in the area of Computer
Graphics: the language DALI (described as continuing research in the report submitted
for 1972-73) was completed by Gregory Pfister, and the development of a graphical
animation system for the PDP11 was initiated by Gary Sockut.

DALI (Display Algorithm Language Interpreter) is a special purpose
programming language for the creation and control of changing pictures whicn exhibit
complex static and dynamic interactions among their elements. DALI allows complex
organizations of interpolated ("smooth") change, discrete change, and change in the
structure of a picture to be generated in a modular way, in the sense that picture
elements determine their own behavior and hence manner of change.

In DALI, pictures are composed of elements called picture modules. These
are analogous to procedural activations or processes, and contain arbituary event-
driven procedures called daemons. Daemons are run under the control of global
scheduling rules based on the functional dependence of daemons on one another

-

ENGINEERING ROBOTICS 28 ENGINEERING ROBOTICS

These rules result In smooth inter-daemon (process) communication and cooperation
with no implicit or explicit reference to semaphores or other synchronization primitives
in user code, while at the same time providing for a high degree of parallelism.
Circular inter-daemon functional dependence is possible, and results in iteration or
relaxation. The environment structure used is predominantly stack-oriented.

The system currently under development by Gary Sockut will run on a
PDP11/45 connected by a relatively low speed link, to a DEC GT4C display. As the
GT40 display includes a local processor, the effective dir-olay of dynamic pictures
necessitates running certain of the animation programs locally; the system thus
includes provision for communication of procedural display data to the GT40 along with
more conventional picture descriptions. The system is expected to be operational by
September 1974.

D. DEVELOPMENT OF TIMESHARING SYSTEM

The initial phase of the DELPHI Timesharing System, funded by the M.I.T.
Electrical Engineering department, was completed in January 1973 and is described in
the report submitted for 1972-73. The system has provided reliable service to 6.031
students since the Spring of 1973.

The additional use of DELPHI for research in Robotics has necessitated its
further expansion and development. Significant improvements made duting the past
year include:

1. Expansion of primary memory (core) to 104K words;

2. Reorganization and generalization of the mechanism for dynamic allocation of
memory;

3. Implementation of a general file system.

The initial DELPHI Implementation was highly specialized for the limited
requirements of 6.031 students. Its evolution over the past year, in response to the
requirements of more sophisticated Robotics users, renders DELPHI a system of
respectable general utility without comprcmising its usefulness as as economical
resource for large numbers of students. Much of the recent development has been
directed toward providing an environment amenable to the efficient use of high level
compiled languages, t.g. the sharing of pure portions of user-compiled programs.
Currently under development are:

1. BCPL, an initial implementation of which has been installed; and

2. ALGOL, which is expected to be operational by September 1974.

■

ENGINEERING ROBOTICS 29 ENGINEERING ROBOTICS

Rnhof T>e A/LG0L c°.mpiler wil1 serve as a host language for a Daemonized
Kobotics system ^see section A).

Future plans for this systen include ihe expans,on of its secondary storage
from two s.ngle-platter disk cartridges to one or more multiplatter disks Further
upgrading of the system software will involve recoding much of the system In a
compiled language, probably a derivative of BCPL

E. LANGUAGE SEMANTICS

Research by Ward during the past year has been directed toward the
semantics of applicative languages, in which there is an assumed correspondence
between procedures of a language and abstract mathematical functions. Principal
results of this work include the development and semantic justification of two new
applicative constructs: EITHER and »-conversion.

The syntactive mechanism of »-conversion provides means for reduction of
applicative expressions to approximations of those expressions, resulting in a syntactic
relationship between expressions which seems closely analogous to the semantic
constructions of Dana Scott. The addition of »-conversion to the lambda calculus allows
every expression to be reduced to one or more normal forms, and it has been shown
tnat the semantics of an expression x in the lambda calculus is completely
characterized by the set of normal forms derivable from x. This result provides a new
technique for proving the (extensional) semantic equivalence of expressions in
applicative languages.

The EITHER construct allows the expression of certain functions which are
inexpressible in the conventional lambda calculus. The semantic and implemenlationai
interpretations of EITHER are, respectively:

1. EITHER{a,b} corresponds, in the semantic lattice of Scott, to the least upper
bouna of the elements a and b. Thus EITHER provides unique least upper bounds
for sets of semantically distinct expressions, a provision which is conspicuously
absent from the Scott formalism.

2. The pragmatic interpretation of EITHER{a,b} suggests the dovetailed evaluation
of expressions a and b. Thus EITHER provides an applicative model for
multiprocessing.

Plans for future work in this area include further exploration and
ormalization of relationships between these mechanisms and the Scott constructions
n addition we intend to explore the possibility of eliminating the distinction between
the respective semantics of a language and its operating system by thoroughly
integrating their interpretative mechanisms. This approach would, for example, combine

ENGINEERING ROBOTICS 30 ENGINEERING ROBOTICS

file system and dynamic environment structures into a single, uniformly accessible
hierachy.

Publications

1. Geiger, S. P.. A User's Guide to the Macro Control Language, Project MAC, TM-
36, December 1973.

.

MATH.AB 31

MATH.AB GROUP

MATHLAB

Academic Staff

Prof. J Moses
R. J. Fateman

V. S. Pless
P. S.-H. Wang

DSR Staff

R. A. Bogen
J. P. Golden
J. P. Jarvis

R. Schroeppel
J. L White

Graduate Students

R. T. Genesereth
D. L Grabe!
J. Kulp

B. M. Trager
D. Y. Yun

Undergraduate Students

S. M. Macrakis
E. C. Rosen

Support Staff

G. L. Steele
R. E. Zippel

J. S. Lague G. B. Moore

Guests

A. Miola
H. Watanabe

U. Pape

r

MATH.AB 33 MATH.AB

MATHLAB

A. INTRODUCTION

Implementation of P(,ect MAC's SYmbolic MAnipulator, MACSYMA, began in
July, 1969. The system has quintupled in size since the first paper describing it
appeared in 1971 [20]. It therefore seem» appropriate to describe the goals of the
project and its major features once again. We first describe some of our early design
decisions and how, in retrospect, they fared. We then indicate the major features of
the current version of MACSYMA. We assume that the reader has some fan^arity
with features present in other algebraic manipulation systems*

The original design decisions for MACSYMA were made in 1968 by C.
Engelman, W. Martin, and J. Moses. The system was intended to be useful to a wide
variety of users without losing much efficiency in running Mme and working storage
space. The emphasis of the design decisions for MACSYMA were on ease of time-
shared interaction with batch operation available for production runs. The original
design assumed we would use algorithms (GCD, factorization, integration, simplification)
known in 1969. Because we realized there were faults in the known algorithms, such
as the lack of generality or basic inefficiencies, we began research on new algorithms.
As a result, the MACSYMA system contains a number of uniquely powerful and efficient
algorithms in many areas of algebraic manipulation, and much of whatever hac been
produced elsewhere.

The original design assumed that users with relatively small problems
wanted a great deal of built-in machinery so that the solution time using a computer
would be significantly less than that of a pencil and paper calculation. Users with l3rge
problems were presumed willing to spend more time optimising their programs in order
to achieve space and time efficiencies. Several d, .met representations for
expressions were considered necessary in order to achieve such efficiencies.

The system utilizes four major internal representations; general, rational,
power series, and Poison series. The gener3i representation is the default
representation for expressions It offers great flexibility and is quite useful in
interactive situations since the internal form of the expression is quite close to the
displayed form and the user's input. The rational representation is designed for
greater efficiency and offers a canonical representation needed in many algorithms (e.g.
GCD). Several generalizations of this representation exist (e.g. factored form), which
give greater efficiencies in space and time in certain situations. The power series
representation is used mostly in obtaining a Taylor (or Laurent) expansion of a function

«The bulk of this report will appear in a paper by Joel Moses entitled: "MACSYMA

Year", Proceedings of the EURQSAM 74 Conference, ACM, August 1974, pp. 105-110.

The Fifth

Preceding page blank

MATH.AB 34 MATH. AB

about a point. This representation \9 largely a polynomial representation with rational
funciiu.-- as coefficients. The Poisson series representation is used for manipulating
large expressions involving only polynomials and trigonometric functions.

We realized that a very large system would result from the decision to use
multiple representations and many built-in facilities. We assumed that memory costs
would decrease markedly in order to make such a system economical. MACSYMA
currently resides on the Project MAC's "Mathlab" PDP-10 which has 512K of 2 usec
memory and on the MULTICS system operating on a Honeywell 6180. PDP-10 memory
costs have decreased in our experience from 8.03/bit to 8.01/bit in the last 3 years
while memory speed has increased almost three-fold in that period. A much greater
decrease in costs, though with no comparable speed increase, is indicated for the next
5 years due to LSI Technology. Certain IBM vice presidents have publicly predicted
that the cost per bit of main memory might be as low as 0.01 cents/bit in 1980 [7, p.
220]. With such dramatic cost reductions, large systems such as MACSYMA will be
quite economical in the near future.

The current version of MACSYMA requires 1 75,000 words of memory on a
PDP-10 for the first user, including the underlying LISP system and 15,000 words of
free storage. Each additional user requires 35,000 words for data and working areas.
These areas rnay expand during a computation. An additional 65,000 words of
programs may be loaded from a di: k during a session.

Another effect of the large size and generality of the MACSYMA system has
been the sizable number of bugs due to the interactions between modules These
bugs were mostly prevalent as new modules were being integrated into the system in
past years. The system is sufficiently stable now that many projects do not encounter
ougs in several weeks of daily use Some modules (e.g. Laplace Transforms) are not
relied on by any of the others. Bugs in such modules were not noted until these
modules were heavily used. Since most new features are currently added only as a
result of user requests, immediate use of such features is guaranteed and leads to
stability in short order. Even relatively esoteric capabilities such as sirnmation of
finite and infinite series find users who will need them and experiment with them
further. On the whole, the system is presently in a fairly stable state. We owe this
m large part to the many users who helped us discover bugs and missing features in
the past years. Their help is gratefully acknowledged.

A third effect of a large system is the difficulty users have in learning all of
its features. For small problems requiring a few commands, there is little difficulty.
Users have been known to solve nontrivial problems after reading a twelve page
Primer. As the problems grow in complexity and efficiency considerations enter,
knowledge of a large number of facilities in MACSYMA may be required and a better
understanding of algebraic manipulation will be needed. We know of no easy way to
surmount the educational problems that are encountered in such areas. In the past,

MATH.AB 35 MATrt.AB

users working on large projects have maintained some contact with our group, either
by phone or directly. As we gather more experience regarding the difficulties users
have, we expect to develop a set of tutorials and automatic aids which will overcome
many of the problems Large projects will still require a local expert whose training
may take several months.

The MACSYMA system was made available over the ARPA network in May,
1972 while the system was still evolving quite rapidly. Several large projects have
begun using the system in the past two years By a large project we mean one
requiring several hours of interaction daily for at least six months (usually by more
than one person). The largest of these projects has been the work of Professor A.
Bers of M.I.T, and his students (notably J. Kulp and C. Karney) in plasma physics. This
required, among other features, development of machinery for keeping expressions in a
sum of vector-matrix products from simplifying (using boxes to surround them) so that
one could determine the physical phenomena which contributed most to the final
answer. Drs. H Yilmaz and R. Pavelle of Perception Technology Inc. have used
MACSYMA in calculations in general relativity. Some of these calculations have been
fairly classical (eg. Riemann tensors). Others involve use of many symmetry identities
to simplify large expressions involving tensors. Dr. C. Andersen and his colleagues at
NASA-Langely have been using the system to generate FORTRAN programs to
numerically solve partial differential equations using finite element techniques. The
integrations required in setting up the elements are done in MACSYMA. Professor B.
Rosen of Stevens Institute of Technology and his students have used the system in
studying long-range weather prediction. R. Gosper of M.I.T. has worked on techniques
for improving the convergence of series. Gosper's work relies heavily on the
multivariate factorization algor.thm in MACSYMA.

Hundreds of other people have used the system in the past two years.
While many were clearly playing with the system and learning its capabilties, there
were many other significant projects done using it. Some examples of areas of
application known to us are: gas chromatography, tree searching strategies,
hydromechanics, statistics, optimal control, algebraic coding theory, complexity theory,
nuclear reactor design. About one half of such users have been local to the M.I.T. -
Harvard community, about a half have used the system through phone lines and the
ARPA network. We feel that the decision to have a large and varied system was
proved correct because of the markedly different needs in terms of algorithms, data
representations and interactive capabilities required in the solution of these problems.

B- DESCRIPTION OF MACSYMA

To describe MACSYMA we have divided the modules comprising the system
into 7 major packages. These packages vary from 15,000 words of LISP code for the
Taylor series package to 35,000 words for the LISP system itself. Many of the
facilities were the work of several people, but we usually indicate the major

MATH.AB 36 MATH.AB

contributors only.

1. Language and Interactive Facilities

The first feature of MACSYMA that a user will likely notice is it« output
formatting. The two-dimensional output module of MACSYMA's is its most stable one.
It was originally written by W. A. Martin and follows his description [19] fairly closely.
Probably its most novel feature over the closely related Charybdis display program in
Mathlab [2] (which follows Martin's earlier approaches) is the nice break-up of
expressions too long to fit on a single line of output.

The input parser, on the other hand, has changed drastically over the years.
The original parser by W. A. Martin was a Knuth LR(1) parser. This was changed to a
Floyd operator precedence parser by S. Saunders and E. Rosen. Our latest, and best,
parser is fi Pratt parser [14,29] written by M. Genesereth. We feel that the Pratt
parser gives us a clean, fast, and highly extensible parser. The current syntax for the
MACSYMA language is Algol-like with blocks, various FOR statements and the like.

The programming language interpreter, originally written by W. A. Mariin,
but heavily modified since, is LISP-like with special machinery for algebraic
manipulation. Variables with no assigned value represent themselves and can become
parts of algebraic expressions. Arrays may be dimensioned or undimensioned.
Undlmensioned array elements are stored using hash-coding techniques. Matrices,
incidentally, are data objects which are distinct from arrays.

The interpreter has associated machinery allowing one to interrupt and trace
user-defined functions. One can also translate such functions into LISP and compile the
I SP, thus losing certain debugging capabilities. In return a significant improvement in
speed (up to a factor of 50) can be had in certain cases if one is able to declare the
types of his variables and functions (e.g. real, polynomial, array of rational functions).
The translation program was written by M. Genesereth.

The supervisor module controls the input-output process during a session.
Usually all intermediate user inputs (C-lines) and MACSYMA's output (D or E lines) are
stored in memory. By setting a flag, intermediate information can be automatically
stored on disk to be retrieved by the system when it is needed. Commands can invoke
modules (e.g. integration) which are not normally in main memory and these will be
quickly loaded. The user may store some or all results of a session on a disk to be
reloaded into a fresh MACSYMA at a later date. Special control characters can
interrupt the system to obtain run time statistics or debugging information. The
supervisor is the work of J. Golden.

The editor allows one to correct an expression typed into the system. The
parser pinpoints the location of a parsing error. The commands to the editor are

*

MATH.AB 37 MATH.AB

modeÜGd after the text editor TECO [8].

The graph module allows one to plot a graph of a function. The module will
automatically calibrate the coordinate system in order that the plot will fit on the
printing device being used. The editor and graph modules were originally written by
W. A. Martin and by J. Golden

2. Ggngral Representation - The simplifier and basic commands

All inputs to MACSYMA, function definitions included, are converted to
general representation. This representation is a natural one for list structure oriented
systems Classically, LISP-based simplifiers would convert the expression X + 1 to the
list (PLUS XI). In MACSYMA this format is generalized to ((MPLUS) SX 1). Here we
see that user-defined variables are lexically modified by adding a dollar sign so that
they do not accidentally conflict with free variables used in the system. Furthermore,
the operator PLUS is changed to an operator list. The significance of this change is
noted in the simplified form of the expression which is ((MPLUS SIMP) 1 8X). The
simplified expression has been sorted and its operator list contains the indicator SiMP
which will prevent resimplification of the expression. After factoring the expression,
we would obtain ((MPLUS SIMP IRREDUCIBLE) 1 SX) which conveys additional
information about the expression.

The sirnplifier is based on Korsvold's general simplifier, but modified to the
point of non'-ecognition, largely by J. Moses [23]. Part of its task is to perform
automatic conversions of numbers and data representations. For example, rational
numbers are converted to integers when possible and floating point arithmetic is
contagious. Likewise the rational representation is contagious. Hence multiplying an
expression by a 1 represented in rational form converts the whole expression to
rational form.

The operation of the simplifier is controlled by global flags. For example,
the INJUMER flag determines if SIN(l) is to be converted to a floating point value. The
flag %EMODE will determine if constants of the form e^ill/m), are to be replaced by
algebraic expressions.

MACSYMA knows a great deal about trigonometric functions. It knows how
to simplify, SIN(II/3) It can convert SIN(5 X) to a polynomial in SIN(X) and COS(X) and
vice-versa. It can convert trigonometric functions to complex exponential form and
vice-versa. Much of this is true of hyoerbolic functions as well. These modules were
written largely by P Wang and M. Genesereth.

The simplifier also interacts with the matrix module. Non-commutative
multiplication of vectors and matrices is provided. Commutative multiplication 's
element-by-element as in APL. The user can decide by changing vaiues of flags at

.

MATH.AB 38 MATH.AB

which point in the computation to perform the indicated operations. Boxing facilities
allow one to look at several terms in a sum without combining the terms. The matrix
package was written by P. Wang. The intpraction with the simplifier is the work of J.
Kulp.

There is a set of commands for getting at parts of an expression (e.g.
numerator of quotient, third term in a sum). These allow the user to perform Intricate
manipulations on an expression. These commands and the the differentiation and
substitution routines were written by J. Moses.

The major pattern matching module in MACSYMA is attached to the general
simplifier. Pattern matching rules allow one to add to or override transformations in
the simplifier. This module is the work of R. Fateman [10].

3a. The Rational Function Representation

The rational function representation is used either directly for efficiency or
indirectly in major algorithms such as factorization or Integration. The Internal
representation for the polynomial, (X + 4)Y"3 + 5 is ((8Y . 1) 3 ((8X .2)1 1 0 4) 0 5).
Several facts can be noted in this representation. First, It Is recursive with the main
variable Y having the rank number 1 associated with it, and the secondary variable X
having rank 2. Second, the representation is sparse, with missing terms not present.
Rational functions form a dotted pm, numerator and denominator, with a header
containing the ranked list of variables. Thus the rational function corresponding to the
polynomial above is (in LISP):

((MRAT SIMP ((8X . 2) (8Y . 1))) (8Y . 1) 3 ((8X . 2) 1 0 4) 0 5) . 1)

It is possible to use rational functions with different ranking for variables In
the same computation. The variables in the rational function art not limited to atoms
(e.g. X, Y). Any expression which is not a sum, product - Integer power can be used
as a variable in the representation^e.g. SIN(X+l),e*»X/3). Factored representation,
similar to that in ALTRAN [5], is also available. Thus, X/(X+lh#3 can be operated on
without being expanded. Factored representation can be of great value In many
computations by avoiding GCD computations. Research Is under way on a canonical
representation using partial fractions.

The polynomial representation is due originally to W. Martin. The rational
function representation is due to R. Fateman. The factored representation >s the work
of B. Träger.

MATHLAB 39 MATH.AB

3b. Maior_Algorithms for Polynomials and Rational Functions

MACSYMA contains most of the major algorithms for manipulating polynomials
and rational functions. In the case of the GCD algorithm a user can choose between
the Reduced [4], Modular [4] or EZGCD algorithms, the EZGCD algorithm being the
default algorithm, MACSYMA's factorization algorithm is based on Berlekamp's mod-p
factorization algorithm. The EZGCD and the factorization algorithms rely on an
extension of the Hensel lemma approach for factorization originally suggested by H.
Zassenhaus. These algorithms are due to Moses and Yun (EZGCD) [28,34] and
Rothschild and Wang (factorization) [32].

The factorization algorithm has been extended to coefficients which are
algebraic numbers (i.e. given as roots of polynomial with integer coefficients). This
algorithm relies on Berlekamp's latest factorization algorithm for factorization
mod p^r [1], r the degree of the algebraic number. The implementation of this
algorithm is being completed by P. Wang. The algebraic number manipulation algorithms
are due to B. Träger.

Currently there are two resultant algorithms in MACSYMA: one is based on
the Reduced GCD algorithm and one on Collins' modular version [6]. Research is under
way to find alternative algorithms. The resultant algorithms were written by B. Träger.

Algorithms for the solution of linear equations present in MACSYMA are
Lipson's variant of Gaussian elimination [18] and Gentleman and Johnson's [15] variant
of the minors method. The Lipson algorithm was written by P. Wang.

The method of solving systems of polynomial equations by eliminating
variables was written by D, Yun [35]. His approach relies on factorization to reduce
the complexity of the intermediate systems and a resultant algorithm for performing
the elimination. Due to the inefficiency of existing resultant algorithms and the growth
of the degree of intermediate systems, this algoriihm is useful for small systems only.

Experiment in the utilization of discrete FFTs and various fast multiplication
schemes for polynomials have used this subsystem [3| In particular cases (dense
polynomials), alternative polynomial multiplication and powering algorithms are available
[12].

The MACSYMA command SOLVE attempts to determine which of several
solution techniques is most appropriate to a given input. Linear and polynomial
systems of equations are solved using techniques already mentioned. Single polynomial
equations will be factored. If the factors are of degree < 4, the appropriate formulas
will be used.

The RADCAN is a powerful simplification algorithm. The algorithm is, in our

■

MATHLAB 40 MATHLAB

terminology, a regular one. That is, it determines a set of algebraically independent
expressions from which to obtain an expression equivalent to the original expression
using rational operations. The algorithm is regular for all expressions involving
logarithms and exponentials. It is canonical in certain situations as well (e.g. first order
exponentials). RADCAN contains as a subcase an efficient canonical simplification
algorithm for roots of polynomials. Unfortunately, this subcase can not handle even
roots of unity in an entirely canonical manner. RADCAN is used both as a simplification
algorithm and as a front end to the Risch integration algorithm. RADCAN was designed
and implemented by R. Fateman [11].

4. The Integration Subsystem

The integration subsystem in MACSYMA is composed of 5 major modules:
integration of rational functions, the SIN indefinite integration program, the Risch
integration algorithm, the limit program and the definite integration program
WANDERER. The first three are the work of J. Moses, the last two are due to P.
Wang.

The method for integration of rational functions is fairly classical [24]. It
uses a square-free decomposition of the denominator followed by partial fraction
deconrposition. Irreducible polynomials of degree < 2 are solved ard the logarithmic
parts for these are produced. A new partial-fraction algorithm for this method is being
producej by B. Träger.

The SIN program [25] has been improved by D. Grabel and modified to use
MACSVMA's representations and general simplifier. Its pattern matcher, SCHATCHEN,
has been made available to the rest of the system (it is used to perform simplifications
nvolving combinatorial terms). The original third stage of SIN, a heuristic integration by
parts method, has been replaced by the Risch algorithm. The special integration
methoas in SiN are retained because of their efficiency and, in algebraic cases, because
of their power.

Our implementation of the Rise* algorithm [30] handles the full exponential
and logarithmic cases and by using SIN, algebraic cases of genus 0 (e.g. v'x"is removed
by substitution in SIN). The RADCAN routine is used to generate the ranked list of
exponential and logarithms required by the Risch algorithm. After integration,
trigonometric functions previously transformed to complex exponentials are
reintroduced by obtaining the real and imaginary parts of the integral. Our
implementaion of the Risch algorithm can also handle some special functions in its input
and produce them in its output (e.g. error functions) [26], Work on increasing the
number of such special functions is under way.

The current limit program [33] relies on making certain simplifying
transformations and a classification of the inputs into various classes. Differem

MATHLAB 41 MATHLAB

methods for obtaining limits are available in each class. Parts of this heuristic program
are about to be replaced by algorithmic versions which rely on obtaining a Laurent
seriös of the expression at the limit point.

The definite integration module [31] also attempts to classify its input.
Among the many methods available to it are several variants of cortour integrations
and indefinite integration. This module uses more machinery than any other module in
MACSYMA.

5. The Power Series Subsystem

The power series representation in MACSYMA is similar to a polynomial
representation, but allows coefficients to be rational functions. Moreover the power
series representation will remember truncation information about variables. The
representation is more general than a similar one in ALTRAN [5] in that it allows for
negative exponents (thus obtaining a Laurent as well as Taylor series representation)
and fractional exponents (thus allo Ying for representation of branch curves). There
are only a few functions which cannot be represented in this manner at a point.
Examples with which this representation has difficulties are essential singularities (e.g.
SIN(1/X) at X = 0).

The TAYLOR command in MACSYMA obtains a truncated Laurent expansion
of a function at a point. Rather than using the inefficient method of obtaining the
expansion by differentiation, the program converts all functions in the input to power
series and performs the indicated power series operations on them.

In addition to the obvious direct applications of the power series
representation there is an indirect application to the computation of limits. Essentially,
the only heuristics that are required in addition to the machinery in TAYLOR would be
ones needed to handle essential and isolated singularities and one-sided limits. The
power series subsystem is due to R. Zippel.

6. Miscdlaneous Facilities

The Poisson series representation is the fourth representation of
expressions used in MACSYMA. It is restricted to sums of trigonometric functions with
polynomial or power series as coefficients. Its novel feature relative to other Poisson
series manipulators is the use of a tree sort to optimize Poisson series multiplication
times. This work is due to R. Fateman [13].

The Laplace Transform module provided for the direct transform of a class
of expressions involves polynomials, exponentials, trigonometric functions, derivatives
and integrals. The inverse transform of rational functions is also provided. This facility
is a slight extension of a similar facility in MATHLAB [9] and is due to R. Bogen.

. .

MATH.AB 42 MATHLAB

Heuristic methods for finding closed form sums of classes of expressions
over finite (e.g. 0 to N) or infinite ranges were written by R. Zippel. There is
machinery for simplification of sums of certain combinatorial terms, thus moving closer
to solving one of Knuth's 50 point problems [17, sec. 1.2.6].

A third pattern matching facility in MACSYMA is a variant of REDUCE's LET
facility [16]. This pattern matcher uses the rational function representation, rather
than the general representation to perform the required transformation. The LET
facility is due to K. Nishihara.

7. The MACUSP System

Development of a LISP system for the PDP-6/10 computers at M.I.T. was
begun in 1965 by R. Greenblatt and S. Nelson. By 1967 the interpreter, support
routines and compiler were sufficiently stable that the system was exported to
Stanford as LISP 1.6. Improvement of LISP 1.6, largely for the needs of MACSYMA, was
undertaken by W. Martin and J. White in 1968. An efficient compiler which accepts
mode declarations was developed by 1972 by J. Golden, E. Rosen, and J. White. Tests
by R. Fateman indicate that in certain inner loops the code produced by the LISP
compiler was more efficient than the DEC PDP-10 FORTRAN'S compiler. The dynamic
type-checking of other LISP systems usually leads to a loss of a factor of 20-30 to
FORTRAN in such situations.

Due to the large size of MACSYMA, sharing is an important issue. Since the
code produced by the compiler is "pure", sharing of programs is fairly straight-forward.
Our LISP, now called MACLISP [22], allows each user to decide whether he wants to
be in debugging mode (and experience a factor of four slow down in speed) or in
execute mode. The same code is shared in both cases, through writable transfer-
vector pages.

In addition to sharing programs, MACLISP can also share fixed data (e.g.
differentiation rules). ALout 2/3 of the data in MACSYMA is sharable. Furthermore,
the impure data areas (e.g. free storage) are dynamically expandable during a
computation. This partially ooviates the need for a user to guess at the size of his
intermediate expressions and generate a system large enougs to handle the worst
situation. Both large and small users share the code and pure data. The effect of all
this sharing is to reduce the memory cost for each simultaneous user beyond the first
to 35,000 words. Ten simultaneous users of MACSYMA are then possible without
requiring swapping to slower memories. The code for sharing is due to G. Steele and
J. White.

MATHLAB 3 MATH. AB

C. SUMMARY

It is difficult to do justice to a system such as MACSYMA with a report of
this size. Since the system has evolved so rapidly in the past three years, it is clearly
desirable to indicate, however roughly, the range of its current facilities.

Some of the facilities we have not discussed are several dealing with user-
definable extensions to various modules in the system (e.g. special display formats,
new differentiation rules). There are also certain unusual linguistic issues which arise
in a symbolic manipulation system. For example, suppose you sum S + I with index I
ranging from 0 to 5. Suppose S is a variable whose value 's an expression containing I.
What should be the result of the sum?

Among the credits we have omitted are those for writing the reference
manual [2] (R. Bogen), the Primer [27] (J. Moses), and for over-all maintenance of the
system (J. Golden).

The above summarizes the accomplishments of the past five years of
research. The major activities of the past year were in the following areas:

1) Factored representation of rational functions.

2) Algorithms for manipulation of algebraic numbers.

3) Factorization of polynomials with algebraic coefficients.

4) Completion of the EZGCD algorithm.

5) Algoritnms utilizing the Fast Fourier Transform.

6) Poisson series manipulation.

7) Data sharing facility in MACLISP.

MA™B » MATH.AB

REFERENCES

1. Berlekamp E. R., "Factoring Polynomials over Large Finite Fields," Math of
Cpm^, vol. 24, no. HI, July 1970.

2 Bogen R. A. et al. MACSYMA Reference M^i, version 6, Project MAC MIT
Cambridge. Massachusetts, Jaa 1374. J ' ^

3. Bonneau. R., Fast Polynomial Operations Using the Fast Fourier TriMifiBft PhD
thesis. Department of Mathematics, M.I.T. (to appear). wsjorm, mu.

4 Brown. W S.. "On Euclid's Algorithm and the Computation of Polynomial Greatest
Common Divisors", JACM, vol. 18, no. 4, pp. 478-504, Oct. ^j0™'ureaIesl

5. Brown, W. S., The ALTRAN User's Manual, Bell Telephone Labs, Murray Hill. N.J.,

6ÄI p;7ih5%t Üoni097Lu,tivariate Po,ynomial Resu,tants" ^ vo,•
7. Datamation, May, 1973.

8. Dowson. M, Ho!Uo_geLorLth^^Ali^ Memo 215, A.I. Lab, M.I.T, April

^/nH^'lT'h' C\7he .'fCy 0f Mathlab M"' Pr0C- 2nd Symposium on Symbolic and Algebraic Mampulatmn pp. 29-41. ACM. March 1971:^ E

10. Fateman. R. J.. "The User-level semantic matching capability in MAüSYMA", Proc
.2nd Symposmm on Sxmboljcjnd Algebraic Manipulation, Pp.311 -323. ACM, Ml^h

111 M'IJTÄ ;'-7
E

2
ssays in M^™ Simplifiratinn,, Tech. Report 95, Project MAC,

lZ FA^ltt "0r thft
Computa

v
tion cf Powers of Sparse Polynomials". Studies in

Applied Mathematics (to appear). Ei-Lü

13" app^r)"' R' J" ^ the mumplicati0n of Poisson Seri< Celestial Mechanics (to

14. GeneseretK MR, A Grammar Primer for MACgYMA, Project MAC, M.I.T, July

j

F
■ml

MATH.A8 45 MATH.AB

15. Gentleman, W. M. Ä Johnson, S.C., "Analysis of Algorithms, A Case Study:
Determinants of Polynomials", Fifth Annual ACM Symposium on Theory of
C^putmg, Austin.s, April 1973, pp. 135-141.

16. Hearn, A.C., "Reduce-2 User's Manual", Report UCP-19. University o» Utah, March

17. Knuth, D., The Art of Computer Programming, vol. 1, Addison Wesley, 1968.

18. Lipson, J.D., "Symbolic Methods for the Computer Solution of Linear Equations
with Applications to Flow Graphs", Proc. of the 1968 Summer Institute on
Symbolic Math. Conf.. R. Tobey (ed.) IBM, June 1969.

19. Martin, W.A., "Computer Input/Output of Mathematical Expressions", in
Proceedings 2nd Symposium on Symbolic and Algebraic Manipulation, pp.78-89,
ACM, March, 1971.

20. Martin, W.A. and Fateman, R.J., "The MACSYMA System", Proceedings 2nd
Symposium on Symbolic and Algebraic Manipulation, pp. 59-75, ACM, March
1971.

21. Miller, J.K., "CHARYBDIS: A LISP Program to Display Mathematical Expressions on
Typewriter-like Devices", Interactive Systems for Experimental Applied
Mathematics. Academic Press, 1968, pp. 155-163.

22. Moon et al., MACLISP Reference Manual. Project MAC, M.I.T., (to appear).

23. Moses, J., "Alic Simplification - A Guide for the Perplexed", CACM, vol 14. no
8, pp.527-537.

24. Moses, J., "Symbolic Integration - The Stormy Decade", CACM vol 14, no 8
pp. 548-560.

25. Moses, J., Symbolic Integration. Technical Report 47, Project MAC, M.I.T.. Dec
1967.

26. Moses, J., "The Integration of a Class of Special Functions with the Risch
Algorithm". SIGSAM Bulletin, no. 13, ACM, Dec. 1972, pp. 14-27.

27. Moses, J., MACSYMA Primer. Project MAC, M.I.T., 1973.

28. Moses, J. & D.Y.Y. Yun, "The EZ GCD Algorithm", Proc. 1973, ACM National
Conference. Atlanta, Ga, Aug. 1973, pp. 159-166.

MATH.AB 46 MATH.AB

29. Pratt, V.R., "Top Down Operator Precedence". Proc. ACM Symposium on
Principles of Programming Languages, Boston, Oct. 1973, pp. 41-51.

30. Risch, R, K, "The Problem of Integration in Finite Terms", Trans. AMS. vol. 139,
Mar. 1959, pp. 167-189.

31. Wang, P., "Automatic Computation of Limits", Proceedings 2nd Symposium on
Symbolic and Algebraic Manipulation, ACM, March 1971, pp.

31. Wang, P. and Rothschild, L., "Factoring Multivanate Polynomials over the
Integers", SIGSAM Bulletin kO, ACM, Dec. 1973, pp.21-29, and Math
Computation (to appear).

33. Wang, P., Evaluation of Deiinite Integrals by Symbolic Manipulation, Report 92,
Project MAC, Ml.T., Oct. 1971.

34. Yun, D.Y.Y., The Hansel Lemma in Symbolic Manipulation, Tech. Report, Project
MAC, M.I.T. '(to appear)

35. Yun, D.Y.Y., "An Algorithm for Solving Systems of Polynomial Equations", SIGSAM
Bulletin 27, ACM, Sept. 1973, pp. 19-25.

MATH.AB 47 MATH. AB

Publications

1. Faleman, R. J., "A Case History of Interactive Problem Solving Systems", SIGSAM
Bulletin No. 28, December 1973.

2. Moses, J., and D. Y. Y. Yun, "The EZGCD Algorithm", Proceeding of the ACM
National Convention, August 1973.

3. Pless, V., "Self-Dual Codes Over GF(q) Satisfy a Varshamov Bound", (with John
Pierce) Information and Control, August 1973.

4. Pless, V., "Attitudes About and of Professional Women: Now and Then", Career
Guidance for Women Entering Engineering, Edited by Nancy Fitzroy, Proceedings
of an Engineering Foundation Conference, New England College, Henniker, New
Hampshire, August 1973.

5. Yun, D. Y. Y., "On Algorithms for Solving Systems of Polynomial Equations",
SIGSAM Bulletin, September 1973.

PROGRAMMING TECHNOLOGY 49 PROGRAMMING TEChWOLOGY

PROGRAMMING TECHNOLOGY

Acadeniic Staff

Prof. J. C. R Licklider A. Vezza

DSR Staff
A. K. Bhushan
E. H. Black
M. F. Brescia
M. S. Broos
H. I. Badian
L G. Daniels
S. W. Galley

J. F. Haverty
P. D. Lebling
J. C. Michener
C. L Reeve
N. D. Ryan
R. W. Weissberg

Graduate Students
P. M. Allaman
A. Chan
S. E Cutler
B. K. Daniels
J. D. DeTreville
G. J. Farrell

J. W. Johnson
W. J. Long
G. D. McGath
H. F. Okrent
M. S. Seriff
R. A. Stern

S. A. Bengelloun
J. H. Harris
A. G. Jaffer
J. H. Morrison
J P. Sybalsky

Undergraduate Students
G. A. Thompson
T. To
K. E. Van Sant
J. Westcott
C. K. Yap

Support Staff

S. B. Pitkin

Preceding page blank

PROGRAMMING TECHNOLOGY 51 PROGRAMMING TEOWOLOGY

A. INTRODUCTION

The major goal of the research and dev 'opment effort of the Programming
Technology Division is the automation of the technology of programming. The research
of the division is directed toward the development of programming methodologies,
programming tools, and programming aids that can lead to significant technical
advancements in computer program production methods. Our major efforts during the
reporting period have been concerned with completing the CALICO system with its
well-documented library of slightly more than 2000 assembly-language subroutines,
improving the programming facilities of the language MUDDLE, planning the
implementation of a MUDDLE library system, planning the development of a system for
automating program documentation, and designing a message system.

Work on automatic programming described in the last report has been
deferred to accommodate Professor Ucklider's imminent leave of absence to
temporarily serve the government in Washington.

B. PROGRAMMING TECHNOLOGY

1. CAUCO

Development of the programming environment CALICO and its 29 or so
-ubsystems [1] is nearing completion. For this reason parts and aspects of CALICO will
be discussed in more detail than a report of this nature would normally warrant.

The CALICO project has thus far produced a subroutine libr^y that is large,
is easily modified and enlarged, is heterogeneous (in that the subsystems produced
from the subroutines in the library serve a variety of purposes) and promotes its own
growth. The implicit availability of a wide variety of directly-callable subroutines
visibly increases programming productivity. The increased productivity in turn
encourages CALICO programmers to add to the library all new subroutines they create.
Aids for on-line search and off-line maintenance of the library are available, and some
principles that make the nbrary feasible have been developed:

(1) Protocols for such things as error handling and data structuring are necessary if
arbitrary subroutines are to coexist harmoniously. As the CALICO library grew,
ad hoc protocols were developed as they were needed, and utilized by new
subroutines In retrospect these protocols provide excellent insight into the
protocols needed in a library environment. Furthermore the experience with
CALICO indicates that use of the protocols must be enforced, and they must be
used uniformly. This latter requirement imp'ies that changes to protocols must
be effected in library programs retroactively and automatically. The use of a
sufficiently-rich programming language makes it easier for programmers to follow

Preceding nage blank

PROGRAMMING TECHNOLOGY 52 PROGRAMMING TECHNOLOGY

the protocols

(2) Abstracts of subroutines — condensed descriptions used to aid design and
maintenance of software — must be structured sufficiently so that they can be
manipulated and (insofar as possible) understood by programs. Aids to help a
programmer create and edit properly-formatted CALICO abstracts are available.
However, experience indicates that a large portion of each abstract should and
can be generated by a program that is similar to the analysis phase of a
compiler, leaving the human programmer to supply only those parts to be used
exclusively ty humans.

(3) Subroutines and abstracts must be tested and pass standards before being
accepted into the library. In CALICO there are three stages of subroutine
testing: by the author (the subroutine residing in a personal disk area), by the
group (in a "development" library), and by the outside world (in the standard
public library). In addition the subroutine and abstract are evaluated by three
staff members — with all the fallibilities of humans — for aspects of quality:
format, protocol, correctness, generality, efficiency, etc. Our experience
indicates that, for library systems to work well in an operational environment,
much of the validation of the structure and protocol used in programs and
abstracts currently performed by humans can and must be done by programs.

(4) The library must be easy to use by both humans and programs. This dictum
applies to all aspects: finding a subroutine to do a given task, specifying a call
to it, loading it, finding bugs in it or (usually) in its caller and reporting the
former to the responsible party, submitting a new subroutine, updating an old
one, discovering the side effects of an update, publicizing the update or addition,
protecting the subroutine data base from accidents.

a. Events of the year

The CALICO subroutine library is central to the methodology of programming
In the CALICO environment. During the year, the CALICO library was cleansed (Broos,
Galley, Michener, Haverty, Lebling). All obsolete entries were expunged and most non-
obsolete entries without documentation were abstracted. The library clean-up
resulted in a program library that is better than 957. abstracted. The cleansing
expunged several hundred subroutines; even so, the size of the library increased by
642 subroutines during the year from 1412 to 2054 (as measured by the abstracts in
the abstract library).

Four additional subsystems, BATCH (Seritf, Morrison) [2], TAILOR (Seriff) [3],
CONDIT (Seriff) [4], and RUN ^Galley) [5], became operational, and a fifth, a rudimentary
CÜMSYS (Haverty) [6], was implemented. In addition, the console interface was
redesigned (Seriff, Gai'ty, Lebling, Michener, Bhushan, Haverty, Vezza, Broos) and

PROGRAMMING TECHNOLOGY 53 PROGRAMMING TECHNOLOGY

implemented (Senff) [7J.

The CALICO BATCH subsystem provides a facility t'nr: (1) automatic
rescheduling of tasks that are run periodically, and (2) future schedu!it;o of tasks to be
run during slack periods for absentee users. The primary reason for the existence of
BATCH resulted from the need to schedule periodically (daily, weekly and monthly)
certain computer tasks to relieve the creative programmer of the burden of performing
repetitive, mundane tasks. A partial list of such tasks includes: program and abstract
library updates (daily); retrievals from the Datacomputer and graphing uf host
availability data (daily, weekly, and monthly); weekly retrieval, from the OFFICE-1
computer, of the official host list for updating the SURVEY and other local programs'
host lists; personal directory house-keeping tasks The future scheduling feature
provides for a more uniform distribution of load. Tasks of this latter type are typically
compilations, cross-reference listings and assemblies. The BATCH processor is capable
of running any job in the ITS environment without modification Jobs run under BATCH
perform their console I/O through a pseudo-console.

The TAILOR and CONDIT subsystems taken together provide a full macro
capability for the CALICO command interpreter (it goes beyond simple string or symbol
substitutions). TAILOR allows a user to "tailor the user command interface to suit his
or her personal idiosyncrasies and also to define new commands in terms of two or
more of the existing ones. The CONDIT subsystem provides for the capability of
conditional commands in a stored command sequence that specifies the TAILORed
CALICO.

The RUN subsystem provides a CALICO user with the ability to run one job
inferior to the CALICO Job It was implemented mainly to provide the library
subroutines necessary to allow the BATCH processor to support an inferior job.
CÜMSYS will be discussed in greater detail in the section on the PTD Message Facility.

The new CAUCO console interface provides a uniform interface throughout
the CALICO subsystems for both programs and users. All programs that receive input
or send output to the console do so through the standard console interface. The
standard console interface obviates the need for designing and implementing a console
interface for each separate subsystem and also makes easier the task of providing a
user interface that is uniform in appearance, throughout all the CALICO subsystems.
Thus, if a user learns how to use one subsystem, that knowledge can be applied to
learn about other subsystems. Features of the CALICO console interface are these:

(1) An enforced standard prompting scheme on all requests for user input. A
prompt always consists of two parts: a semantic part, telling the user what
meaning will be attributed to what is typed, and a syntactic part, telling in what
form it should be typed. The following is a typical prompt for input:

PROGRAMMING TECHNOLOGY 54 PROGRAMMING TECKNOLOGY

name of item (SYM):

This tells the user that what is typed will be interpreted as the 'name of item'.
It also says that symbol input is currently available.

(2) Symbol completion for symbol input. When the input expected by the program
is a symbol, a user has the option of only partly specifying the input, with
CALICO supplying the unspecified characters. In addition, should a user not know
what can be input, the character control-F can be typed at any time. CALICO
will respond by listing the name of each current symbol that begins with the
characters that have been input thus far. If nothing has been input, all current
legal symbols are listed.

(3) A mechanism to allow a user to gain additional information about required input.
If a user types "r immediately following a prompt for input, CALICO will respond
by typing a more verbose (2 or 3 lines), and hopefully more informative, prompt.
If the user types '?' again, then CALICO will check its library of 'help messages'
to see if there is one associated with the current input. If there is, the user will
see the first few lines of the message. Each additional time that the user types
'?', a few more lines of the help message will be seen.

(4) Erasure of single characters, words, lines or the entire buffer, and redisplay of
the entire buffer (with leading prompts).

(5) Flex;bie appearance. The TAILOR subsystem allows almost all of the
characters used by the command READER to be modified (including terminators,
deletion characters, etc.). Using TAILOR and CONDIT, CALICO can be made to
look like many different systems, for example, the TENEX monitor. A user can,
therefore, make CALICO behave in a way that suits his or her exact idiosyncratic
needs.

b. Scenario

A CALICO program abstract can describe a single subroutine or a collection
of subroutines, each of which is described by an abstract. The concept of a CALICO
abstract is simple: it is supposed to be a definitive statement about what a subroutine
does -- net necessarily how it does it, albeit that may be of paramount importance in
some instances. The abstract attempts to provide enough information for a
programmer to decide whether a subroutine would be useful as a part of some larger
program, and, if so, how to use it [8].

The programming methodology employed by CALICO programmers
undertaking a programming task typically follows this sequence: (1) create a rough
design of the programming task; (2) survey the library for subroutines that are

PROGRAMMING THEOLOGY 55 PROGRAMM«« TCO«OLOGY

pofntUlly useful. (3, re.,ne th. d..l,n; ^ ^^ZToX'^ Z%T^
subroutiner. to become part ol the program '5'J7*'"''^ ' , ,'? debug the
additional subroutines necessary to complete the tatki (6) test and depug in.

,^ri ^q^ Qt.hmit the Droeram and all new subroutines and abstracts to me iiorary
The pfUess ör^eying the program hbrary is aided by a general mlormat.on
The process ot su' *' * f .', |RS ; designed to be interactive so the

larger program.

Upon hearing of the subroutine library, visitors often ask "Wh?t klnd of
subroutines are in it?" Unfortunately, this is very analogous to the quest.on What
does Macy's sell-' Common sense prevents anyone from try.ng to ^erat.e' an* *
simple ex'ampe or two would more often than not give the wrong J^8^ J^
nTtance teTng an uninitiate that the IRS subsystem is composed ^ '^ ^0 ..^^

mmmsim .- i « *v,a rM irn lihrarv The capab ities OT 1Kb are pernd^» >->^**
ÄX . «- r. K^w«, be usedP to il.ustrate aggregate data about

Zubrtry ^ how an indiv.dual might use IRS to aid a programm.ng task.

In the following scenario, user input ol commands is indicated by upper-case

activate it (in this instance, the CALICO was IAILUKBO 0 d ^CAUC0 'escape' is
character in addition to a completion character -- in an unTAILORed CAU^U escape
thrbreak character); (2) the argument, if the command requires one; and (3) an

the central computer system at a 2000 character/second rate.)

First some general CALICO features are illustrated to show what facilities
(commands) IRS p"^" Second, some information about the subrcut.ne library

©COMmands « (int): 3

IRS LEVEL MANIPULATION COMMANDS
irs.frequency.table irs.sort.current,level.by.frequency
irsprune.current.level.by.frequency irs.save.current.level
irs.list.saved.levels irs.restore.saved.level

PROGRAMMING TICHNOLOGY 56 PROGRAMMING TECHgaOGY

aggregate will be extracted Third, a subroutine to do a specific task will be found.
The parts of the scenario are delimited by three dashes with descriptive prose
between each section.

To look at what facilities IRS provides, its command tables are printed by using the
COMMANDS command.

ffiCOMmands « (int): 0

CURRENT CALICO COMMAND TABLES:

* TITLE
1 INFORMATION RETRIEVAL SYSTEM USER COMMANDS
2 IRS CALICO SUBROUTINE LIBRARY USER COMMANDS
3 IRS LEVEL MANIPULATION COMMANDS
4 LIBRARY ACCESS COMMANDS
5 PERSONAL COMMANDS
6 CALICO DEBUGGING COMMANDS
7 GENERAL SYSTEM COMMANDS
8 GENERAL CALICO COMMANDS

©COMmends * (int): 1

INFORMATION RETRIEVAL SYSTEM USER COMMANDS
irs.simple.search irs.basic.search irs.old.findobject
ire earch irs.distribution.table irs.up.level
irs.down.level irs.top.level irs.print.status
irs.print.object irs.print.current.level irs.list.class.names
irs.lis'.attributes irs.list.association.attributes
irs.activate.standard.data.base irs activate.data.base
irs.deactivate.data.base

@COMmands » (int): 2

IRS CALICO SUBROUTINE LIBRARY USER COMMANDS
irs.print.abstract

.

Fvf v*"-1-"
1

PROGRAMMING TECHNaOGY 57 PROGRAMMING TEOWOLOGY

irs.merge.saved.levels

ffiCO-^mands « /:nt): 4

LIBRARY ACCESS COMMANDS
library.print.file library.retrieve.file
library.print.abstract library.retrieve.abstract
library.print.irs.info library.retricsve.irs.info
library.findfile library.check.file library.list.files
library.new.files library.badfiles
'ibrary.get.listing.tab.number

Now some characteristics of the CALICO subroutine library data base are illustrated.

QlRs.List.Class.names

ARGUMENT.TYPE
AUTHOR
CATEGORY
DESCRIPTOR
EXTERNAL
GLOBAL
1NSERT.FILE
NAME.OF.ABSTRACT
OBJECT.TYPE
RESULT.TYPE
SOURCE.FILE
STATIC.VARIABLE

These are the names of the abstract fields that are inverted. Most names are self-
explanatory; EXTERNAL means other subroutines that are called by a subroutine (in
the CALICO environment any subroutine or collection that calls another subroutine must
declare it external); OBJECT.TYPE tells whether the subroutine is mediated at call and
return time, or unmediated, or a display subroutine; STATIC.VARIABLE means a
variable accessible only to the subroutine, in which it can store information between
calls to it.

The categories into which a subroutine falls are assigned by the programmer
by choosing from a controlled list. Most of the subroutines with no category

PROGRAMMING TECHNOLOGY 58 PROGRAMMING TEOWOLOGY

(NO.ATTRIBUTE) are old ones that joined the library prior to the time the category
field was added to the abstract. The distribution of subroutines into categories is
shown next:

ffilRs.Dlstribution.table over (sym): CAtegory

ATTRIBUTE FREQUENCY PERCENTAGE

357.
19'/.
12%
11%
107.
87,
77,
67,
67.
57.
47.
07.
07,

Descriptors applicable to a subroutine are assigned freely by the programmer. The
common ones are listed next:

®IRs Dlstribution.table over (sym): DEscriptor

ATTRIBUTE FREQUENCY PERCENTAGE

DATA 263 127.
NO.ATTRIBUTE 185 97,
DISPLAY 173 87.
STRING 172 87.
VECTOR 138 67.
FILE 138 67.
ARRAY 131 67.
OUTPUT 121 57.
CHARACTER 103 57.
PRINT 99 4%

UTILITY 725
i/o 400
DATA.MANAGEMENT 254
DISPLAY 237
DATATYPES 225
STRING 183
CHILLI 150
NO.ATTRIBUTE 132
CARE/C2 131
STAT/MATH 116
NETWORK 98
INTERRUPTS 13
SIGNALS 8

■■■'■•■■

1

PROGRAMMING TECHNaOGY 59 PROGRAMMING TECWOLOGY

DISK
BLOCK
COMMAND
LIBRARY
DICTIONARY
IRS
CHILL
SEARCH
LIST
ASCII
INPUT
BUILD
TYPES
READ
NLS
ESP
FUNCTION

92
90
85
84
83
82
78
77
76
74
71
71
70
70
68
67
66

47.
47.
47.
47.
47.
37,
37.
37.
37,
37
37.
37.
37
37.
37.
37.
37.

By examining the distribution of authors, one finds that three authors contributed
nearly half of the subroutines in the library, but 25 different authors contributed
something:

ffilRs.Dlstribution.table over (sym): AUthor

ATTRIBUTE FREQUENCY

JFH
MS
DL
JM
MSS
SG

376
354
270
242
212
122

PERCENTAGE

187.
177,
137.
117.
107.

- ■

PROGRAMMING TICHNOLOGY 60 PROGRAMMING TECWOLOGY

me next distribution table gives an idea of how interdependent the subroutines in the
library are. The first column contains a subroutine name, the second the number of
subroutines or collections that declare it external (call it) and the third the percentage
of the library that this number represents. Note that NO.ATTRIBUTE indicates the
subroutines that call no others, that is, bottom-level routines. An interesting point
about the subroutines most often EXTERNed, that is, DATREL (data release), VCTBLD
(vector build), etc., is that they are part of the data type system o; \LICO.

■alRs.Dlstribution.table over (sym): External

ATTRIBUTE FREQUENCY PERCENTAGE

DATREL 577
VCTBLD 314
NO.ATTRIBUTE 284
INTBLD 273
BLKBLD 206
DATCPY ig6

VCTAPi i81

DATCPD 153
RDWANT 106
CH£RRi 94
VCTINF 90
VCTIM go

287.
157.
137.
137.
107.
97.
87.
77.
57.
47.
47.
37.

i he list is of course very long. Using the entire list, one discovers that:
8 subroutines are called by at least 100 others;

30 50 others;
134 " 20 others;
^C 10 others.

The total number of external references is 13 690, of which about 457, are declared
external in a subroutine written by an author other than the one who wrote the
suDroutme EXTERNed.

Some statistical properties of the (static) trees implied by (unexecuted) call
statements from one program to another within the CALICO library were also obtained
A naive measure of such a tree is its depth and width, measured in nodes We

PROGRAMMING TECHNOLOGY 61 PROGRAMMING TEOfKXOGY

considered each assembler source file ("program") to be an atomic unit, since it is too
difficult to tell, in unstructured assembly language, which control paths leading from
which entnes into the program can actually execute a particular call. This simplification
also implies that the various entries into a program (which may differ only in the
number or kind of arguments passed) are not considered distinct. The 2054 entries in
the library are reduced to 1316 programs. Of these, 258 (197.) are "top-level", in the
sense that they are never called by any other program. These top-level programs are
designed as such, to be called only by a console user.

Given the programs potentially called by each program in the library (the
average program contains calls to 4.3 programs), the 258 "call trees" can be
constructed. It turns out that the size of the forest is enormous, even if recursive
branches are pruned off. A lack of (computer) time precluded exploring it in depth, but
the partial results are interesting. Two deep static call trees were explored. The
derth of one was 34; the other 39. The inner tree silhouette shown in Figure 1 was
obtained by taking the logarithm of the sum of the node counts at each level of calling
for these two trees. The maximum node count is 254 213 at a call depth of 23. In
addition, all call trees were explored to a depth of seven. The solid part of the outer
silhouette shown in Figure 1 shows the corresponding node counts. The dashed part is
the hypothesized extrapolation of the shape of the entire forest. Counting nodes at
each level, the forest appears to be pear-shaped, with its maximum width below 20
levels down: the first seven levels have node counts of 258, 922, 5 495, 25 855,
102 179, 348 712, and 1 136 232. The maximum width of the hypothesizeo forest
appears to be on the order of 10**9 nodes. It is possible that a good number of these
calls are within tne CALICO data system, or the CHILL interpreter, or in other functional
areas that would not appear in the MUDDLE library. But even ignoring those calls, a
complete examination of the reduced forest is still too time-consuming.

The next part of tne scenario will illustrate the use of IRS to find a
subroutine to do a specific task. Suppose one needs a subroutine that will find a
string in a set of strings. The STRING category would probably be examined first.
Note that '9' is typed at one point to get an additional prompt for the current input.
The syntactic prompt '(mult-sym)' means that multiple symbols can be input for an

argument.

READY AT TOP LEVEL WITH 2054 OBJECTS IN DATA BASE.

(SlRs.Slmole search on (sym): CAtegory aoplying (sym): ?
Specify logical operation to be applied in search. Default is "OR*
(Symbol is acceptable.)
: Or to (mult-sym): STRing

READY AT LEVEL 1 WITH 182 OBJECTS.

PROGRAMMING TECHNOLOGY 63 PROGRAMMING TECHSIOLOGY

[["OR" "CATEGORY" "STRING"]]

Now oni can get more specific by using descriptors. For Illustration purposes, a
different IRS searching command is used, which allows arbitrary Boolean combinations
of search conditions but does not provide completion of partially-typed names. (The
terminator for the search request is represented by 'S'.)

©IRs.Basic.search with (txt): ["AND" "DESCRIPTOR" "SEARCH" HEQUALITYH]8
*** NAMES OF OBJECTS FOUND **»

FXDSER
FXDSSV
SERCH
VSSRC

READY AT LEVEL 2 WITH 1 OBJECTS.
[["OR" "CATEGORY" "STRING"] ["AND" "DESCRIPTOR" "SEARCH" "EQUALITY"]]

The names of the four subroutines which are possible candidates ^or the task were
output because the list was shorter than twenty. Printing their descriptors gives an
idea of their characteristics.

talRs.Prlnt.Current.level class (mult-sym): Name,
class (mult-sym): Descriptor

NAME:
DESCRIPTOR:

NAME:
DESCRIPTOR:

NAME:

(Frequency = 1)
FXDSER

SEARCH, PATTERN, BYTE POINTER, SUBSTRING,
STRING MANIPULATION, CHAR, ALTERNATIVES. TECO, ASCII. SIXBIT,
MATCH, COMPILE, COMPARISON, EQUALITY, TESTING

(Frequency = 1)
FXDSSV

SEARCH, PATTERN, BYTE POINTEN, SUBSTRING,
STRING MANIPULATION, CHAR, ALTERNATIVES. TECO. ASCII, SIXBIT,
MATCH, COMPILE. COMPARISON. EQUALITY, TESTING

(Frequency ■ 1)
SERCH

PROGRAMMING TECHNOLOGY 64 PROGRAMMING TCONOLOGY

DESCRIPTOR; SEARCH, PATTERN, BYTE POINTER, SUBSTRING,
STRING MANIPULATION, CHAR, ALTERNATIVES, TECO, ASCII, SIXBIT,
MATCH, COMPILE, COMPARISON, EQUALITY, TESTING

(Frequency = 1)
NAME: VSSRC

DESCRIPTOR: STRING, VECTOR, COMPARISON, EQUALITY, SEARCH

READY AT LEVEL 2 WITH 4 OBJECTS.
[["OR" "CATEGORY" "STRING"] ["AND" "DESCRIPTOR" "SEARCH" "EQUALITY"]]

All but VSSRC have identical large descriptor sets, indicating that the three constitute
a subroutine collection of some power. In addition, the descriptor SUBSTRING indicates
that the collection may be too powerful for the intended purpose. (Of course the
abstract(s) could be examined to confirm this notion.) VSSRC seems to be the prime
candidafe, so its abstract is printed. (The abstract format and semantics, including the
meaning of abbreviations and jargon (such as W for standard and 'tptr' for typed
pointer, etc.) are all set forth and explained in a set of documents known as
Convention II [8,11-15]. Briefly, the physical form of the abstract is a set of comment
lines (starting with a V) at the beginning of the source program. The parts of the
abstract are indicated by various heading and spacing conventions which must be
strictly adhered to, lest the abstract parser — which sees only a stream of characters
-- fail to find everything.)

■;Rs.Prlnt.Abstract called (sym): VSSRC

TITLE 'SSRC MJM005 J. MICHENER (JM) 3 FEB 73

*** VSSRC SIMPLEX ***

A3STR

VECTOR OF STRINGS SEARCH

SEARCH FOR A STRING AMONG A VECTOR C«7 STRINGS

LANG: MIDAS

VSSRC: This rsr accepts a std string and a std vector of std

PROGRAMMING TECHNOLOGY 65 PROGRAMMirJG TECHMOLOGY

strings. It compares the std string to each element of the std vector
(using STRCEQ (REF1)) and returns the index of the first match found in
the vector. If no element equals the given string, -1 is returned.

CRSF: A/
B/

^tptr to std string*
«tptr to std vector of std strings*
PUSHJ P,@VSSRC

; RO: Always return here

RTRNS: A/ Index of first matching siring; -1 if none.

REF1: Abstract of STRCEQ in STREQU MJFHxx

CONT: RSR SIMPLEX
ATTR: Monrecursive, Reentrant
DEF: Nothing
NEEDSA: Nothing
NEEDSN: Nothing
HDW ENV: PDP-10
SFTW ENV: ITS, CALICO
CAT: String
DESCRPTR: string, vector, comparison, equality, search
WARN: STRINGS OF DIFFERENT BYTE SIZES WILL EQUAL EACH OTHER IF

THEIR CONTENTS ARE THE SAME, DUE TO THE USE OF STRCEQ AS
OPPOSED TO STREQU.

VSSRC fills the bill; so one would choose a vector as the data structure in which to
store the set of strings and use VSSRC to rind the individuals. As an example of how
VSSRC might be called, here is a portion of assembly-language code, with the call to
VSSRC in the instruction labeled 'CALL':

PROGRAMMING TECHNOLOGY 66 PROGRAMMING TECHViOLOGY

Search thru rest of args for mode strings:
MODSCN: AOBJP N,OPCHl Done??

MOVE A,(N) next arg
AGETYP 0,A Get its type.
CAIE O.STGTYP If it's not a string,
JRST WRGTYP return error code

: Find out which mode it is:
MOVE B.MDTABL pntr to mode table

CALL: PUSHJ P,S>VSSRC (Seirch for arg strln
JUMPGE A.STGFND , Jump if found.

; Mode string unrecognized:
SCALL CHERR1,[BADMOD] ; Generate error.
JRST ERROUT

BADMOD: ASTMAK [UNRECOGNIZED MODE SPECIFICATION]

; Mode string found:
STGFND: XCT INSTAB(A) ; Execute appropriat

JRST MODSCN ; And continue scan.

; mode table:
MDTABL: VCTMAK

ASTMAK [READ]
ASTMAK [WRITE]
ASTMAK [ASCII]
ASTMAK [IMAGE]
ASTMAK [UNIT]
ASTMAK [BUFFERED]
ASTMAK PARSE]
ASTMAK [PAGED]
VCTEND -1

.

PROGRAMMING TECHNOLOGY 67 PROGRAMMING TECHNOLOGY

2. MUDOLE

Several major developments centered about the MUDDLE programming
language [1,16] the past year. These included: (1) the development of the compiler
to a state where it produces moderately efficient code; (2) the design and
implementation of a mechanism to allow users to share compiled code; (3) the design
and implementation of a mechanism to allow MUDDLE programs to possess core images
of greater than 256K (K-1024)j (4) the implementation of a new garbage collector;
(5) the implementation of a mechanism for communicating with other processes; and (6)
the debign of a library system.

The MUDDLE compiler (Reeve) currently open-compiles almost all of the
arithmetic SUBRs (+, -, *, /, MIN. MAX, MOD, ABS, FIX, FLOAT), many of the predicate
SUBRs (G?, L?, G-?. 1=?, I?, 0?, «?f ASSIGNED', TYPE', NOT) and the structure
manipulators (NTH, REST, LENGTH, EMPTY', PUT, PUTREST). For many other SUBRs the
compiler generates fast calls into the interpreter rather than going through the
somewhat expensive call mediator. In addition, groups of functions can be compiled
together, removing the expense of the standard call between the functions in the
group. Currently compiled code achieves speedup factors over interpreted code of
between 20 and 200 -- the 50 to 100 range being the norm.

Compiled (and assembled) code can easily be made pure and sharable. Its
form is such that it can be "loaded" by simply having its disk file included in MUDDLE'S
memory map (Reeve). If the memory map overflows, any page containing only pure
compiled or assembled code can be removed and later added again automatically, in
effect giving MUDDLE an expanded address space.

The new garbage collector (Reeve) also uses the memory-mapping
mechanism. During a garbage collection, all useful list structure is copied into a
temporary address space in another process and compacted to reduce future page
faults. When copying i« completed, the new pages are simply mapped into the
permanent address space and the temporary process is destroyed.

The inter-process communication facility (Ryan) was implemented in MUDDLE
to allow programs to send messages to autonomous (daemon) processes. Daemon
processes are used, for example, by the Message Facility (see below) and the batch-
mode MUDDLE compiler (Ryan). The facility has also been used to rescue MUDDLEs
belonging to remote ARPANET users when normal console communication has gone
awry and to rescue daemons under development.

In keeping with our goal of promoting the sharing of software, a software
library management mechanism for MUDDLE was designed. This mechanism, in addition
to performing the housekeeping chores necessary to build and maintain library data

PROGRAMMING TECHNOLOGY 68 PROGRAMMING TECHMOLOGY

bases, will impose a discipline which will allow the software produced by different
programmers to coexist peacefully.

3. Automation of Program Documentation

At present, the CALICO programmer who creates a program Is required to
write an abstract, preparing it from personal knowledge of the program. This
technique works well, though not perfectly, in our environment. The regimen and
discipline demanded of the programmer to produce an acceptable abstract is significant.
Frequently when programming methodology and program documentation is discussed, a
remark that has been voiced by several PTD programmers is, "Convention II and
abstracts are the best thing that ever happened to us, but that doesn't mean I must
like them." Even with the aid of TECO macros that prompt and aid the construction of
a CALICO abstract, it is still an unrewarding task for most PTD programmers to prepare
abstracts. Because the documentation task is so unrewarding, we are beginning to
formulate plans to automate the process, in order to relieve the programmer of much
of the unrewarding tedium currently required in abstract preparation. A program
similar to the analysis phase of a compiler could generate automatically much of the
information needed in a program abstract. Accordingly, we are beginning to design such
a program.

4. Project Reporting System

A first effort was made at providing an automated mechanism for monitoring
the status of the various on-going projects and sub-projects in which PTD members
are involved (Vezza, Broos). This mechanism was dubbed the "Project Reporting
System" and was implemented as an extension of the existing information retrieval
ystem (IRS). With this mechanism we were able to: monitor the status of individual
.rejects; determine the rate of progress of individual projects, by examining their
status histories; and survey the overall status of arbitrary subsets of projects, using
statistical distributions.

With the Project Reporting System it was found that, while the mechanism
itself worked very effectively, the current user interface used to update project
status information is inadequate, resulting in a lack of motivation among its users to
keep the status information for their projects up to date.

5. Application Programs

The development of a number of application programs was undertaken by
students (with some advice and help from tho staff) associated with the Programming
Technology Division (Cutler, Long, Seriff, To, Yap), a member of the Robotics group of
the Automatic Programming Division (Pfister) anc1 two members of the Research
Laboratory for Electronics (Pangaro, Raymond).

■ '

PROGRAMMING TECHNOLOGY 69 PROGRAMMING TICHNOLOGY

The development of the application programs provides a good mechanism to
test the DMS on real users, albeit friendly ones. A number of times, the development
of application programs has provided the stimulus to add a feature that may not have
been added without the stimulus. They also serve to provide benchmarks of capability.
An example is the program DALI, whose author (Pfisler) provided invaluable aid to the
developer of the MUDDLE compiler (Reeve). DALI is a sufficiently complex program
that it uses a large subset of MUDDLE, and uncompiled (or compiled by an early
version of the compiler), runs excruciatingly slow. Because DALI's author desired to
see pictures on the CRT move in real time, he had many suggestions about what
compiler features might next yield the largest gain in the efficiency of compiled
programs. In his enthusiasm to achieve an efficiently compiled DALI, he invariably
offered to compile DALI with each new compiler about to be released, thus testing and
helping to debug the compiler. The efficiency gained by compiling DALI with a new
compiler was also used by others to determine the cost benefit -- in terms of program
efficiency -- of recompiling programs. Some of the earliest MUDDLE compilers
provided only a factor of two or three speed-up in execution time over interpreted
DALI code. This meant that ten milliseconds of CPU time were required to effect
movement of a line on the CRT. The current compiler produces code that accomplishes
the movement in hundreds of microseconds.

a. DALI

The development of a Display Algorithm Language Interpreter (DALI) is
nearing completion (Pfister). It is a special-purpose programming language for the
creation and control of changing pictures which exhibit complex static and dynamic
interaction«; among their elements. DALI allows complex organizations of interpolated
('smooth') change, discrete change, and change in the structure of a picture to be
generated in a modular way, in the sense that picture elements determine their own
behavior and hence manner of change.

In DALI, pictures are composed of elements called picture modules. These
are analogous to procedural activations or processes, and contain arbitrary event-
driven procedures called daemons. Daemons are run under the control of global
scheduling rules based on the functional dependence of daemons on one another.
These rules result in smooth inter-daemon (process) communication and cooperation
with no implicit or explicit reference to semaphores or other synchronization primitives
in user code, while at the same time providing for a high degree of parallelism.
Circular inter-daemon fur.ctional dependence is possible, and results in iteration or
relaxation. The environment structure used is predominantly stack-oriented.

mmw.' ■

PROGRAMMING TECHNaOGY 70 PROGRAMMING TECHWaOGY

b. Multi-Processor Micro-Computer Simulation System

A simulator was designed (Cutler) providing an environment that allows up
to eight independent micro-processors connected in a network to be simulated
concurrently. Each processor simulation is to be a separate ITS job, but the design
allows common code and data to be shared.

The core image of each simulation job is divided into four parts: (1) storage
for internal registers of the simulated micro-computer (accumulators, flags and data);
(2) storage for the core space of the simulated computer; (3) storage for the
simulator itself; (4) storage for interprocessor communication. This last area can be
written as well as read by any of the processors being simulated.

The simulator design is for an assembly-language program that is table-
driven and is capable of simulating any micro-computer. Currently the data base is
being prepared to simulate the INTEL 8080 micro-computer.

c. World Model and DYNAMO

An implementation of a version of the DYNAMO II language for modeling non-
linear feedback systems was completed (Seriff, Long). The implementation consists of
a series of MUDDLE functions to provide all but a very few of the features of DYNAMO
^although with a completely different syntactic appearance). The PTD implementation is
capable of tunning any simulation that could be run under DYNAMO II (although again
the input syntax is different). It is also interfaced to the MUDDLE Console Graphics
Package [1 7] to allow a user to plot the results of the simulations.

The PTD DYNAMO has several features which are not available in
" YNAMO II, the most important of which are these:

(1) The ability to stop non-destructivdy a partly-completed simulation to examine
intermediate results or modify parameters. The simulation can then be continued
as if no interruption had occurred.

(2) The implementation is completely integrated with MUDDLE, and any MUDDLE
statement can be used in the description of a model. Therefore the behavior of
the model is not limited to certain predefined modes.

A basic version of the PTD implementation was written and debugged in
approximately 2 person-hours. Another 5-7 person-hours was spent adding features
(including the plotted output). As a test, Forrester's World Model (from World
Dynamics) was converted to PTD format and run. The conversion of the World Model
required approximately 2-4 person-hours' effort. As one would expect, the PTD
World Model runs slower than the TSO one.

PROGRAMMING TECHNOLOGY 71 PROGRAMMING TECHNOLOGY

d. Graphing of System Statistics

Since early 1973, when our operating system began paging and swapping
memory contents, a daemon process, called the Dragon, has recorded system-
performance statistics on disk. During this year a project was begun to display these
statistics at graphs on display terminals (Yap). The operating system was modified to
record in system memory additional performance measures, and the Dragon program
was modified to obtain all the measures from the system and record then-, on disk in
MUDDLE-readable format (Brescia). The Dragon now records all logging in and out of
humans and daemons, and, at five-minute intervals; the number of human users; the
number of running jobs; the total size of virtual memory and the total number of
swapped-out pages, for running jobs and for all jobs; the amount of unused core; and
accumulated idle time, execution time for all jobs, and requests for swapped-out
pages. The capability to easily graph the system's behavior under real load conditions
will provided some insight that we hope will help us understand how such systems
behave ano lead to improved system performance.

e. Computer Simulation of a Bifurcating Axon

The PTD system is being used by two members of the Research Laboratory
for Electronics (S. A. Raymond, Professor of Biology, and P. Pangaro) to model and
simulate the way synaptic activity affects nerve membranes. The computer is being
used to model and simulate a hypothesis concerning the dependence of nerve threshold
on impulse discharge patterns imposed upon it. The hypothesis is difficult to explore
biologically because of the volume of recordings from axon endings required. The PTD
system is being used to gain insight into what physiological experiments on single
nerve fibers would prove fruitful in testing the hypothesis. In the computer, simulated
sections of nerve membrane, each having an independently-specified dependence of
threshold on activity, are coupled together to form a bifurcating tree. The simulation
output is presented in graphical and animated forms on the PTD Evans and Sutherland
display. The simulation is quite rapid (compared to time required for a physiological
experiment) and the output is easily digested. The information displayed consists of
input records, threshold curves for any branch in the tree, post-synaptic cells, that
connect to the axons, long-term output graphs, and two copies of the tree, one
showing invadability, the other actual invasion by an impulse into the tree.

f. Teleconferencing

An experimental system was implemented (Lebling, Thompson) this year that
allows several uses to interact through the computer as a group in conference. Each
participant interacts directly with a program that sends messages to and receives them
from other incarnations of the program, corresponding to other participants. The
program processes messages in rea1 time, decides which ones should be shown to the
user, and outputs those to the console in a user-controllable format. Messages are

PROGRAMMING TECHNOLOGY 72 PROGRAMMING TECHNOLOGY

sent among users' programs by being put into a shared in-core data base. All
interactions can be recorded, so that the "proceedings" are available for later
inspection. To test the system, a game was devised wherein conferees attempt to find
one another in a simulated maze of hallways, each user seeing broadcast messages and
a schematic view of the immediate surroundings and other visible players. The high
degree of interaction and communication necessary for this game was achieved.

g. An Interactive Statistics Package for the Social Sciences

Social science oriented statistical packages are often used naively. This is
partly due to a lack of real user-system interaction, partly due to deficiencies in design
of the systems, and partly due to errors and ignorance on the pjrt of the user. After
considering ways in which these problems can be alleviated, a system called ISP
(interactive Statistics Package) was designed to eliminate the problems and was
implemented in the CALICO environment (Lebling) [18].

ISP contains a unitary and uniform command structure and data storage and
retrieval system, its operations are user-expandable. ISP contains a matrix and
statistics oriented desk calculator facility and an interactive graphics capability.
Emphasis is placed in four areas: documentation, expandability, ease of interaction, and
system cognizance of the assumptions under which its operations are taking place.

C. NETWORKS

The PTD continued this year to focus on tools that allow the ARPA computer
network and its resources to appear to be an integral part of the DMS environment, as

aborated below. As a serving host (MIT-DMS), we (Chan) implemented for the "new"
elnet protocol a server program that is compatible with the "old" protocol.

1- Qatacomputer Experiments

We have continued our experiments with the Datacomputer, an ARPANET
se vice run by Computer Corporation oi America providing storage and retrieval
capabilities in a mass store -- potentials 10**12 bits. The SURVEY program was
modified to send its ARPANET host availability data only once a day (normally at
midnight) to minimize interference with process- and user-initiated retrieval requests.
Provision for surveying arbitrary socket addresses was added.

A specialized interactive program, SURRET (Bengelloun, Westcott), used as
an interface between MUDDLE and the Datacomputer's Datalanguage to request
retrieval of SURVEY data from the SURVEY data base at the Datacomputer, was
integrated with the MUDDLE Console Graphics program (Ryan) to provide for display of
the SURVEY data in graphic form on an IMLAC, on a storage tube display (ARDS), and

PROGRAMMING TECHNOLOGY 73 PROGRAMMING TECHNOLOGY

HREE ARPANET HOSTS BETWEEN FEB 1 74 FEB 23 74

100 _

80 _ __

60 _ __

20 _

0

40 _ __

15.0 20.0 25.0

PERCENTAGE OF SURVEYS LOGGER AVAILABLE
SINCE START OF TIME PERIOD

FIGURE 2.

...-.■ ._

. . -. 1

PROGRAMMING TECHNOLOGY 74 PROGRAMMING TECHNOLOGY

on Xerox Graphic Printer output. A typical graph is shown in Figure 2.

2. PTD Messsge Facility

A PTD Message Facility was designed. Its structure was determined by
several basic design goals (Haverty, Black, Vezza, Sybalsky, Chan, Bhushan). First, the
system is meant to be easily usable by both humans and processes. Second, a user
must not be required to wait needlessly while the message transmission and other
processing are accomplished; only processing to support interactive facilities, such as
editing the text of a message, is done while the user waits. Third, the system must be
capable of being 'programmed' to a large extent. Users must be able to set up their
own particular entries in the data base to control how the message system behaves
for them. This is especially valuable for experimentation purposes.

The Message Facility design logically divides the system into two functional
parts. The first part is composed of two elements: the communication daemon
COMSYS (Haverty) [33] and the ARPANET interface NETOUT (Chan). They handle the
actual transmission and delivery of messages. In addition, COMSYS controls the
scheduling of other processing that can be performed an or at the direction of the
message.

The second, interactive, part of the facility is to be composed of three
integrated elements: the composer COMPOS (Black), the READER (Sybalsky), and the
retrieval system IRS (Broos). These systems are to be used only by human users;
processes presumably do not need the facilities provided, or, if they do, a process can
either implement the requi-ed function itself, or communicate directly with the daemon,
as the interactive systems sometimec do, to accomplish its ends.

a. Communication Daemon and Network Interface

The communication daemon COMSYS is to handle virtually all of the non-
mteractive processing involved in transmitting a message. It maintains several data
bases, which are used to keep trdck of messages as they are processed, and to hold
information to tailor the processing done to the specifications of the sender and
receiver, as appropriate, Simply modelled, the daemon is a process with several inputs
and several possible outputs, with a large dynamic data base. Messages and requests
for information enter the daemon via one of its inputs, and messages and data leave
the daemon over one or more of its outputs. For example, one input path is via a
publicized file name. If such a file is written, containing the specifications of a message
to be sent, the daemon will read the file and process the message. The message will
possibly be placed in another file, in the recipient's directory, if that is the output path
selected.

COMSYS will possess the framework to envoke additional processes, called

.

PROGRAMMING TECHNOLOGY 75 PROGRAMMING TECHNOLOGY

'author' or 'recipient' processing, as commanded by data bases, author or recipient
actions via a console, and a flag in or attached to the message. These additional
processes can perform arbitrary tasks, such as inhibiting sending of the message until
all authors agree to send, or redirecting an incoming message to another or for that
matter several recipients.

The daemon additionally will handle requests to perform several types of
standard processing on messages, such as copying it to the printer or a disk file,
inserting it into an IRS data base, converting a group addressee into individual
addressees, etc.

The network interface NETOUT will handle all protocols concerned with the
current ARPANET implementations. It will provide isolation from ARPANET
dependencies to permit the communication facility to be developed without any
restrictions imposed by the present network protocols, since one goal of the project h
to determine what, if anything, is needed in a protocol to support such a facility.
Additionally, the network interface handles problems related to multi-computer
systems, such as what to do when the addressee's site computer is currently down.

b. COMPOS, READER and IRS

The three interactive elements are to be an integrated unit so the user can
easily use functions of any element without inconvenience. This would permit, for
example, a user to read his or her mail, retrieve a message to which a reply has just
been received, and refer to it in composing a new message that is the reply to the one
just received.

The composer will provide an environment for writing and editing a message
(including the use of intelligent terminals for editing), and specifying how the message
is to be handled and transmitted by the daemon, querying the status of messages
previously sent, retrieving information about messages sent or received for use in
composing a new message. The composer system is intended to handle virtually all
interactive processing involved with an author's composition and control of her or his
messages. Additionally, it will provide commands to edit the COMSYS daemon's data
bases.

The current composer design allows the user to edit any of the message's
fields at any time up until the message is transmitted. The design specification
currently admits the following fields: action addressees, carbon-copy addressees, blind
carbon addressees, from (sender), authors, subject, message (text), files for output,
references (list of reference numbers), reply-to (message number this message is
response to), keywords.

The READER is to be an interactive program through which human users

r-

PROGRAMMING TECHNOLOGY 76 PROGRAMMING TECHNOLOGY

examine and act on the messages they have received It will provide indexing facilities
for categorizing messages according to their urgency, author, etc., and commands to
specify how to dispose of the messages. The daemon provides several basic
processing capabilities which the READER can trigger, such as printer output, file
output, etc., which will be provided as READER commands. Additionally the READER
system will keep track of the status of each message, so that the user can inquire at
any time to find out what messages are still pend.ng, need replies, etc.

The Information Retrieval System, IRS, is a generalizeJ data base
interrogation system, that was developed separately for use in subroutine library
systems. It will be interfaced to the PTD Message Facility so that messages can be
entered into an inverted data base, and commands used to extract messages by
keyword, author, recipient, carbon copies reference, etc. A user will be able to direct
that all received mail be placed in such a data base automatically, so that old messages
can, at any time, be examined, sorted according to author, etc.

D. OTHER

1. Multi-screen Console Program

A new console-control program for the IMLAC programmable display
terminals was implemented (Lebling) and is available at the urer's option. Its main
feature is the capability to maintain up to eight "virtual screens", that is, dirplay
buffers for text and/or graphics. Each buffer can be visible or invisible and has
seltable location on the display screen. A user can switch between buffers by making
first one and then the other the only visible one. The contents and parameters of ail
creens are accessible and incrementally changeable (including graphical data) from

both the console keyboard and the PDP-10. There is no set limit on the number of
characters in each buffer, only on the sum for all buffers. If a buffer has more lines in
it than will fit on the screen, only a contiguous subset is displayed, the subset window
moving by scrolling action. An ability to change command functions or character fonts,
by overlay loading different subprograms from the PDP-10, is designed but not
implemented.

The future use cf this console program will be in associating multiple display
buffers with a user's multiple tasks. A user will be able to carry on independent tasks
concurrently, with each task's console I/O going in its own buffer, which may be viewed
only when needed. For example, the delivery of a message by the Message Facility
can be to a suitable buffer, without disrupting the appearance of editing operations or
abstract-checker output in other buffers. Protocols for communication between the
operating system and consoles of graphical and multi-screen data are being designed
(Brescia, Lebling).

PROGRAMMING TECHNOLOGY 77 PROGRAMMING TECWOLOGY

2. Operating System

During the years that the PTD POP-10 had no paging hardware, the
operating system ITS, obtained originally from the M.I.T. Artificial Intelligence
Laboratory, diverged from the Al and Mathlab version through upgrading of both.
Because the PTC, Mathlab and Al hardware bases are now sufficiently similar, the
merging of ITS versions was completed this year (Brescia, Cutler of PTD; Stallman,
Greenblatt, Knight of Al; and Jarvis of Mathlab). Thus only one source file is
maintained and upgraded, with assembly-time switches accounting for minor hardware
differences. The commonality also allows sharing utility programs (for example, DDT,
TECO, MIDASI) on all systems without modification.

Part of the operating system is the Network Control Program, which
interfaces user-level programs to the ARPA computer network. This year the NCP
was upgraded (Brescia) to give user-level programs all available data about the
up/down status of remote hosts, and to supply our status to remote hosts prior to
service interruptions. The output speed of network traffic was increased through a
redesign of buffering in the NCP, allowing user-level programs to output before buffer
allocation has been received from the destination host.

m^mmmmmmmm

PROGRAMMING TECHNOLOGY 78 PROGRAMMING TECHNOLOGY

REFERENCES

Note: The form XXX.nn.nn denotes a PTD document,

!• P'QJect MAC Progress Report X. 1972-73, Section III.

2. Seriff, Marc, The BATCH Processing Facility. SYS. 14.12 (unpublished).

3. Seriff, Marc, The TAILOR Facility. SYS.14.11 (unpublished).

4. Seriff, Marc, CALICO Conditional Commands. SYS.14.07 (unpublished).

5. Galley, S. W., Managing Inferior Jobs in CALICO. SYS. 14.13 (unpublished).

6. Haverty, John F., The CALICO Message Facility. SYS. 14.14 (unpublished).

7. Seriff, Marc, How to Write Programs for the CALICO Environment. SYS. 14.04
(unpublished).

8. Reeve, Chris, Marty Draper, D. E. Burmaster, and J. C. R. Licklider, Convention 11;
Standards for Listings. Listing Abstracts. GA.01.09.02. Aueust 1971.

9 Broos, Michael, IRS — Information Retrieval System. SYS. 14.01, January 1S73.

10. Broos, Michaei, IRS -- Generating and Maintaining D-jta Bases, SYS. 14.02
(unpublished).

11. Licklider, J. C R., and Karolyn Martin, Convention tl: Overview of Glossaries.
GA.01.02.00, January 1972.

12. Licklider, J. C. R, and Karolyn Martin, Convention II: Glossary of Standard
Notation, GA.01.02.01, August 1971.

13. Licklider, J. C. R., and Karolyn Martin, Convention 11: Glossary of Standard Terms.
GA.01.02.02, January 1972.

14. Licklider, J. C. R., and Karolyn Martin, Convention II: Glosrary of Abbreviations
and Expansions, GA.01.02.03, January 1972.

15. Martin, Karolyn, Convention 11: Standards for Naming Files, GA.01.05, August
197i.

16. Pfister, Gregory F., A MUDDLE Primer. SYS.11.01, December 1973.

PROGRAMMING TEO^aOGY 79 PROC«AMMING TEO^aOGY

17. Ryan, Neal, MUDDLE Console Graphics. SYS.11.11, October 1973.

18' ^"TK^ ^x l
|
n

L
teractive Statistics Package for thg c;nriai §cj & S. B. and

b. M. Thesis, MIT, Department of Political Science, August 1973.

.

PROGRAMMING TECHNOLOGY 80 PROGRAMMING TECHNOLOGY

Pubiications

1. Licklider, J. C. R, Psychological and Technological Dynamics of Informatjon
Science, NATO Advanced Study Institute, Aberystwyth, Wales, August 1973.

2. Licklider, J. C. R., "Potential of Networking for Research and Education,"
Networks for Research and Edueftlonr Martin Grenbeger, Julius Aronofsky, James
McKenney, and William F. Massy, editors, The MIT Press, Cambridge, Mass, 1974
Chapter 5.

3. Licklider, J. C. R., "Communication and Computers," Communication. Language, and
Meaning, George A. Miller, editor, Basic Books Inc., New York, 1973, pp 196-207.

4. Weissberg, R. W., "A Tool for Interactive Graphical Simulation of a Hospital
Emergency Room", Proc. IEEE Conf. on Systems, Man, and Cybernetics, Nov.
1 973.

"lueses Completed

1. Daniels, Bruce K, A Compiler for MUDDLE: Optimization with Partial Knowledge.
S.M. Thesis, MIT, Department of Electrical Engineering, August 1973.

2. Farrell, Gerald J, A Graphics System for MUDDLE Programming. S.M. Thesis, MIT,
Department of Electrical Engineering, August 1973.

3. Lebling, P. David, Interadive Statistics Package for the Social Sciences, S.B. and
S.M. Thesis, MIT, Department of Political Science, August 1973.

4. Metcalfe, Robert M, Packet Communications. Ph.D. Thesis, Harvard University,
Division of Engineering and Applied Physics, June 1973 (MAC TR-114).

5. Weissberg, Richard W, HGERSLAJM for interactive Graphical Emergency
Room Simulation, S.B. and S.M. Thesis, MIT, Department of Electrical Engineering.
August 1973, •'

COMPUTER SYSTEMS RESEARCH 81 COMPUTER SYSTEMS RESEARCH

COMPUTER SYSTEMS RESEARCH

Academic Staff

Prof. F. J. Corbatö
Prof. J. H. Saltze;-
Prof. M. D. Sclvoeder

Prof. E, Wada
D. D. Clark

DSR Staff

R. K. Kanodia
R. J. Mabee
E. W. Meyer, Jr.
M. A. Padlipsky

K. T. Pogran
E. L. Thomas
D. M. Wells

Graduate Students

A. J. Benjamin
R. G. Bratt
R. J. Feiertag
R. M. Frankston
B. S. Greenberg

D. H. Hunt
D. P. Reed
L J. Scheffler
J. A. Stern
V. L Voydock

Undergraduate Students

R. H. Gumpertz
J. B. Williams

D. H. Moon

COMPUTER SYSTEMS RESEARCH 82 COMPUTER SYSTEMS RESEARCH

Support Staff
0. D. Carey
S. M. Clark
D. E. Cohen

S. D. Grant
D. L. Jones
M. F. Webber

^

COMPUTER SYSTEMS RESEARCH 83 COMPUTER SYSTEMS RESEARCH

COMPUTER SYSTEMS RESEARCH

A. INTRODUCTION

The current research activities of the Computer Systems Research Division
can roughly be described as trying to discover and implement the minimum mechanism
essential to support a full-scale computer utility system. Its activities are pragmatic,
which means that most ideas are subjected to practical implementations as part of
their development. The division uses the Multics development facilities to test special
modified versions of the system.

The largest portion of current work is inspired by the need to certify the
correctness of privacy-achieving and other information-isolating mechanisms in a
shared-user system. On the basis that certification of correctness should be easier if
the mechanism being certified is simpler, work is proceeding to first identify and then
minimize the complexity of the central protection kernel of Multics.

The second major area of interest is simplifying and better understanding
the attachment of the ARPANET to Multics. Because the ARPANET involves an element
of distributed computations connected by communication lines, it relates directly to a
longer-range interest in the future of computer-utility systems in an era when logic
and memory costs are predicted to make personal computers as commonplace as
today's hand-held calculators. The centra! utility is still needed for communication,
sharing of information, and handling peak loads, but its interfaces and possibly its
functions must certainly be different from those of today's systems.

Another activity reported here is called "technology transfer", a collection of
efforts to communicate with industry and users the results of previous research,
particularly the development of the Multics system.

This report is organized in four sections. The first three describe the major
work: certification/simplification projects, ARPANET-related activities, and the
technology transfer activities. The fourth reports other miscellaneous activities of the
division.

COMPUTER SYSTEMS REl^RCH 84 COMPUTER SYSTEMS RESEARCH

B. CERTIFICATION OF COMPUTER SYSTEMS

This year the Computer Systems Research Division began a new research
project with the goal of making possible the certification that the data security
facilities i " a large-scale, multiuser computer system have been correctly implemented.
This effon Ihe primary research e:tivity of the Computer Systems Research Division
for approximately three years, has the goal of producing computer systems which
guarantee prevention of unauthorized release, modification, and denial of use of the
information they contain. The need for such certification arises when a single system
provides computation and information storage service to a community of users. As the
economic and functional advantages of such shared systems have been recogni ^d, so
has the need to include facilities for controlling the access of the various users to the
contained information. Without these facilities, sensitive information can be handled
only if the user community is carefully restricted to be a highly homogeneous group.
Many systems now include protection mechanisms for enforcing intricate, externally
specified policies on information access. The presence of such mechanisms, however,
is not enough. Users, whether they be individuals or private or governmental
organizations, ^ust have confidence in the integrity of the protection mechanisms
before they can entrust sensitive data to a system. The system must be certified to
implement without failure the desired policies for controlling access to the contained
information.

There are three ways in which the security of information stored in a
computer system can be violated:

1. unauthorized release: an unauthorized person is able to read, and take
jdvantage of, information stored in the computer. Concern sometimes extends to
"traffic analysis", in which the person observes only the patterns of use of
information and from those patterns can infer some content;

2. Unauthorized modification: an unauthorized person is able to make unexpected
changes to stored information;

3. Unauthorized denial of use: an unauthorized person can prevent legitimate
access or modification, even though he or she may not be able to access or
modify the informatic.', for example by causing a system "crash".

Complicating hings in a shared computer is the fact that the unauthorized person with
respect to a specific act may be an otherwise legitimate user of the system.

COMPUTER SYSTEMS RESEARCH 85 COMPUTER SYSTEMS RESEARCH

In practice, producing a system that actually does prevent all such
unauthorized activities has proved extremely difficult. Sophisticated users of most
currently available systems are probably aware of at least one way to "crash" the
system. Penetration exercises involving a large number of different systems have
shown that, in all systems confronted, a wily user can construct a program that can
obtain unauthorized access to information stored within the system.

The primary reason for these failures is the presence of design and
implementation flaws that provide paths by which the access constraints supposedly
enforced by the system can be circumvented. Underlying this cause are two
interacting difficulties. Tie first is that preventing ail unauthorized acts is a negative
kind of requirement. It is intrinsically quite hard to prove that this requirement has
actually been achieved, for one must demonstrate that no means for violating data
security exist. The second is the well-known tendency for the operating systems of
shared, general-purpose computers to be extraordinarily complex, large in size, difficult
to maintain, and awkardly organized. This tendency interacts badly with the need to
prove non-existence of paths for violating data security, by providing a very complex
environment in which to attempt such a proof.

as:
There seem to be several reasons for the tendency toward complexity, such

1. attempts tc stretch the functional capabilities of the system as far as possible;

2. working in a hardware environment that was determined before software
requirements were fully understood;

3. attempts to squeeze the system to its absolute limit of performance;

4. attempts, because of the high cost of system development, to get the system
running in the absolutely shorrest time possible.

Of these four, probably the last two are the strongest contributors to overall
complexity, since both encourage shortcuts to be taken and modularity to be violated
against the better judgement of the system designer.

The certification of a system means that someone has signed-off on a
statement of adequacy, 3y signing, the certifier states that the security provided is
adequate to the intended application. He also assumes the responsibility for failures.
A system is certifiable if the certifier can be convinced to sign. With currently

COMPUTER SYSTEMS RESEARCH 86 COMPUTER SYSTEMS RESEARCH

available commercial systems, there is no way for a potential certifier even to start
developing the confidence in a system prerequisite to signing. Most are of a size and
comnlexity to preclude even reading all of the code, much less comprehending the
entire mass in detail.

The Computer Systems Research Division research effort is aimed directly at
the size and complexity. The overall plan is to evolve an existing, commercial
multiuser computer system -- Multics -- which is easily modifiable and which has
advanced protection mechanisms, into a prototype operating system with all the
essential features of the present Multics system, but with a small and simple central
core that is su ptible to certification through line-by-line review by an expert. The
goal is a system sufficiently small, well-structured and easy to understand that a
certifier can read it all, understand the reason for every line of code, and develop
confidence that its correct operation is adequate for most applications.

1. Method of Attack

The problem of constructing a certifiably secure system recently has
attracted cons.aerable interest and is being attacked with a variety of different
strategies by many research groups in addition to the Computer Systems Research
Division {Seltzer: "Ongoing Research and Development on Information Protection" ACM
Operating Systems Review, July, 1974;. It is generai|> recognized that the key to the
ultimate solution is methodical design and construction techniques which systematically
exclude flaws that can be exploited to produce security violations. Many imagine
ultimately being able to construct a formal specification for a system, prove desired
security (and other) properties about the specification, and then, by essentially
rr.ecnamcal step;,, construct a matching operational system. To this end, many research
•;-oups are conducting investigations into methods of proving assertions about programs
ana program-like specifications, metnods for formally describing properties like
security, and techniques of top-down program construction by successive refinement of
descriptions of algorithms and data structures. On the other end of the spectrum,
several groups are engaged in finding and cataloguing flaws in existing systems with
tne aim or convincing skeptics that the p-oblem is real and of understanding the sort of
flaws that can be exploited. Somewhere cetween these two extremes are several
groups, including our own, looking for the simplest possible structures with which to
■.ecureiy implement the full .et of functions that seem desirable in a multiuser, general-
purpose computer system. An understanding of simpler ways to organize such systems
will contribute to the development of the ultimately required mechanical construction
tecnmques. But of more immediate importance, it will also allow us to build less
complex systems to do the same job, thus providing a less complex environment in

„., „r^.o^-u R7 COMPUTER SYSTEMS RESEARCH
COMPUTED SYSTEMS RESEARCH 8' l-u,v'ru

which to establish the absence ot security (laws.

G,ven thai problems ol structure are to be attacked, '«° ^°*ch" ^

possible Thirst I, to w,pe the slate clean ^ ^ ^^ bT rtj «To bTJt
J,e accumulated knowledge ol past successes and ^ '«uW be b™g

an attempt to produce a new design that is wel'-orff "^;'^e the entire system

tar
a,i„g from scratch a great deal ollreedom ^JXro^^ S"0nd

and its specifications to facilitate te™^}'0"**1*^ so as to simplify its

Ä 'to r;c, i:::1 r=:? r-Ä - be.—,.-.
Our cho,ce of this second approach requires some comment.

The first approach, while appealmg, has '^^^^'^^pL^'y

no way to release the designer ol a ^/^f ^ :^ get a sys eroperatio'nal as
which were mentioned earlier, especia y ,he P'essu'' ,0 .^ ^e

y
mpt to mitigate this

soon as possible because ol the development expense. A" ^emp , h\^ ,w0

pressure by stopping shorl of P-^^^ ^^X'. of cluter systems. It is
problems First, with the current '^^^"'^^'^"'"Xre are understood
hard to have confidence that the full 'm^f "n5

cD
0 '^.^ f" ^ " no the goal, it is

without complete implementat.on, S«0"* j/" ^^^enience features that

secunty violations tend not to be a problem in toy systems

To avoid these difficulties, the Computer Systems Research DWhion has

adopted the approach of evolving an ^°'^t^^ ^^
and reduce its bulk The greater danger » »^ ^^ ^„'Jtolut on of structure is
evolution will ^.ore.^^^^^ ^ ^ ^^

possible, short of ^'^^1 ^J p' ously developed by the Computer
subject. We are using the Multi« system P"» ° Y or6aniZed than most
Systems Research Division ol Pro)ect W*C' 7' " ';e,a|ive,y ;odu|ar, is largely

äy
ys,ems lor evolution -^ j ^ ^^e ^t 0 S^.?. pr-ary' ob^otive.

written in PL/l, and was orignally constr^iea win information it

Also. Multics has been developed from ^^Z^pTeluon mechanisms as

^Ä^ny^SÄ

COMPUTER SYSTEMS RESEARCH 89 COMPUTER SYSTEMS RESEARCH

L jer code of that process. Such a request will be granted only if the supervisor has
been informed that the user controlling the process is authorized to access the
segment.

The security of the data stored in the system certainly depends upon the
correctness of the supervisor, for it is the primary path by which one user's
computation can influence another's data or computation, legitimately or otherwise. For
example, an attempt by one user to gam unauthorized access to data, or to deny
access to an authorized user, might be made by invoking a supervisor entry with an
unexpected pattern of arguments, perhaps causing the supervisor to mistakenly cause
problems for another user. Because of the size and complexity of the supervisor, the
chances of a clever attacker ultimately succeeding in uncovering an exploitable flaw

are good

The supervisor is a software mschanism that is common to all users of
Multics. A mechanism is common to a group of users if it can be used by one to
influence the data or computation of finother in the group, legitimately or otherwise.
At the heart of every common mechanism must be some group of data items whose
value one user's computation can influence and another's can notice. The influence and
notice may be very direct — one writes into a data item and another reads it — or
quite indirect -- the invocation of a procedure by one somehow alters its internal
state so that the outcome of a later invocation by another is affected. Common
mechanisms are required to implement any explicit or implicit communication among a
set of users. If no such communication or coordination is involved, however, then a
common mechanism is not required to implement such a function. It is precisely the
existence of common mechanisms that allow one user the possibility of exerting
unauthorized influence over the computations or data of c.nother. Malicious users must
exploit flaws in common mechanisms to work their will. To prevent such malicious
activity it is the common mechanisms that must be certified to contain no exploitable
flaws, and once certified must be protected against taTpering.

The Multics supervisor is bigger anc' more complex than it needs to be. This
is partly the result of the presence in the supervisor of procedures and data-providing
functions that need not be implemented with common mechanisms because they include
no element of communication or coordination. Yet, by being part of the supervisor,
with the attendant access privileges, effectively they are part of the common
mechanism. Flaws they contain may be exploited as illicit access paths.

. .

COMPUTER SYSTEMS RESEARCH 91 COMPUTER SYSTEMS RESEARCH

by a potential random error causing undesired release or modification or a users' data
is acceptable for most applications. Unlike the software mechanisms of the security
kernel, these are not susceptible to willful exploitation by other users. In any case, a
user unsatisfied with their trustworthiness may, in Multics, choose not to use them,
substituting his own procedures.

The last comment suggests the second category of procedures executing in
the user environment of a process -- procedures constructed by that user. Any
security threat posed by errors in these is the user's own problem. The only possible
help would be providing tools to aid the user in certifying his own programs.

The third category, possible in Multics, is procedures borrowed from other
users. These are a reel danger to the security of the borrower's data. Because they
will execute with all the access authority of the borrower's own procedures, they can
contain "trojan horse" code maliciously constructed to cause a security violation.* A
user should only borrow procedures from another when the borrower has reason to
trust the lender. The inclusion of security kernel facilities to support user-constructed
protected subsystems provides a tool to reduce the potential damage suoh a borrowed
trojan horse can do, but a user-initiated certification of the borrowed program is the
only complete protection against this threat.

The fourth category is common mechanisms set up among a group of users
by their mutual consent to implement some function involving interuser communication
or coordination. Such a mechanism makes the group susceptible to undesired
interaction in the same way that an uncertified supervisor does for the whole user
community. If a user agrees to become party to such a common mechanism, then he
must satisfy himself of its trustworthiness.

In considering these four categories, it is apparent that none is so important
to system security as the common mechanism of the security kernel, for every user of
the system is forced to rely upon it. Because it appears to have maximum leverage on
the security problem, the Computer Systems Research Division is concentrating on
abstracting the security kerne! and on simplifying its internal structure. A Multics with
a certified security kernel would provide a usefully greater level of security than the
present system provides.

»Note that this is a special case of a common mechanism. The data items whose value the lender

can cair.c' to change and thereby influence fhe data of the borrower is the code of the lent

procedure itself. Even if the procedure is non-writable when lent, it was written by the lender

when constructed.

COMPUTER SYSTEMS RESEARCH 92 COMPUTER SYSTEMS RESEARCH

3. Specifics

The effort by the Computer Systems Research Division to produce a
security kernel for Multics can be broken into four interrelated categories of activity:
reviewing, removing, simplifying and partitioning. This section describes these
categories, giving examples of each. The next section provides a complete list of the
work performed during this report period.

The review category covers all efforts to understand better the specific
problems of the current Multics supervisor. In addition to trying to understand the
reasons for the size and complexity of the current supervisor, an effort is being made
to identify and correct existing security flaws. A list of all known Multics security
flaws is maintained. Each flaw reported is analyzed to determine how it happened,
how it can be fixed, and how similar flaws can be avoided in the future. Several audits
have been made to uncover suspected new flaws. One highly successful search for
new flaws was undertaken as a result of a suggestion by Richard Bisbey II, at the
Information Sciences Institute of the University of Southern California, who has been
trying to abstract from many system penetration exercises some general patterns that
lead to security flaws in different systems. He reported that multiple references by
supervisor code to user-provided arguments can be exploited in many systems to
cause supervisor malfunction, and pointed out one example he had uncovered in
Multics. The problem is illustrated by the following procedure which might be used to
implement the segment deletion function In a system like Multics:

delete seg: procedure(name, code); 1
call verifyj)ermission(name, "delete", code), 2
if code = proper access 3

then call delete(naine, code), 4
return, 5

end; 6

Assume that "name" and "code" are user-provided arguments passed by address. The
first identifies the segment to be deleted from the file system while the second
provides a place for a return error code. The call to "verifyjsermission" verifies that
the user controlling this process has permission to destroy the named segment. If the
"code" returned indicates that the user has delete permission for the segment, then
the "delete" procedure is called to perform the requested act. Now imagine that the
user contrives to change the value of "code" between lines 2 and 3. Then clearly he

COMPUTER SYSTEMS RESEARCH 93 COMPUTER SYSTEMS RESEARCH

can cause the deletion of a segment for which he has no delete permission. The same
problem exists with the "name" argument. In almost all systems, including Multics, the
user can cause such a carefully timed change in the value of an argument in a
methodical way.*

As a result of Bisbey's suggestion, an audit of the 1 70 entries to the Multics
supervisor was made, 'ooking for this pattern. The audit uncovered 50 entries that
made multiple references to arguments. Of these, 8 clearly were exploitable security
flaws, 34 looked safe, and 8 were questionable. The problem can be systematically
avoided by requiring all supervisor entries to copy their arguments before using them.

So far, all of the flaws uncovered by the review activities are isolated and
easily repaired. No major design flaws have been found.

The second category of activity is removing from the supervisor those
mechanisms not implementing functions of information sharing, interprocess
communication, or physical resource management, i.e., those functions not required to
be implemented as common mechanisms. In many cases removal involves undoing a
pattern caused by a performance characteristic of the Multics implementation for the
Honeywell 645 computers. For that older machine, protection rings were simulated in
software and cross-ring calls were quite expensive. Thus, a call that went from a user
protection environment to the supervisor cost much more than a call which did not
change protection environments. The result was an effective pressure to Include many
functions in the supervisor that did not need to be implemented as part of a common
mechanism. The reason for this pressure can be seen from the following figure:

USER

SUPERVISOR

B

»In fact, it is particularly easy on the Multics Honeywell 6180 processor, because of the existence

of a mode of addressing where the value of an indirect address stored in memory will increment

automatical!/ wfh each use. Placing an auto-mcrementmg indirect address in an argument list of a

supervisor call can generate the desired change of argument value at just the right moment.

COMPUTER SYSTEMS RESEARCH 94 COMPUTER SYSTEMS RESEARCH

A and B are procedure modules in the supervisor. Imagine that a single invocation of A
(by a user procedure) can result in a flurry of calls from A to B. Then there is a clear
performance cost in moving the user/supervisor boundary to between A and B, even if
only B need be part of the protected, common supervisor.

The new hardware base for Multics, the Honeywell 6180, imp. lents the
protection rings in hardware. One result is that calls from one ring to another now cost
no more than calls inside a ring. Thus, the performance penalty associated wi'n
supervisor calls has been remover, »«"d many modules included in the supervisor tc
performance reasons rather than protection reasons now can be removed.*

The actual removal activities are much more complex than suggested by the
example of the previous paragraph. In most cases the common and private parts of a
facility are not so neatly packaged in separate procedures, but are intricately
intertwined in the same procedures and data bases. Insight and ingenuity are required
to separate the private and common parts of a mechanism, leaving a reasonable
interface. Also, supervisor procedures execute in a slightly different environment than
other procedures. Code written for the supervisor environment often depends upon
the special way in which the supervisor execution environment is initialized, the
availability of internal interfaces implementing powerful but primitive operations, and
the ability to access all segments in the acdtess space of a process, regardless of the
protection rings. Even if a module implementing only a private function were found, it
might not execute outside the supervisor environment without being carefully modified.

This year the most important removal activities have been centered on the
file system. In a project now almost completed, the functions of dynamic intersegment
linking and directing the search of the file system to satisfy a symbolic reference have
oeen removed from the supervisor. This project is notable for two reasons. First, it
removed an especially vulnerable and complex mechanism from the supervisor. The
vulnerability is a result of the linker having to accept user-constructed code segments
as input data; the chances of such a complex "argument", if maliciously malstructured,
causing the linker to malfunction while executing in the supervisor were demonstrated
to be very high by numerous accidents. T^e complexity is apparent in that the linker's
removal eliminated 107. of the gate entry points into the supervisor. The second
interesting result of the linker's removal was the demonstration that linking procedures
together across protection boundaries, i.e., rings, could be done without resorting to a

«There may sMI exKf other performance penalties associated with removing functions from the

supervisor that will inhibit production of the smallest possible kernel. One goal of the research is to

understand better the performance cost of security.

COMPUTER SYSTEMS RESEARCH 95 COMPUTER SYSTEMS RESEARCH

mechanism common to both protection regions.

A second project related to the file system is the removal from the
supervisor of the facilities for managing the association between names and the
segments in the address space of a process. This project, now in its initial
implementation phase, requires that a data base central to the management of the
address space, the known segment table, be split into a private and a common part,
and that the supervisor learn to lie convincingly on occasion about the existence of
certain file system direct-: ies. The project will result in a new, simpler interface to
the file system portion of the supervisor. Instead of identifying a directory by the
sequence of character string names locating it in the directory hierachy, a segment
number for the directory will be used. The notion of a tree name locating an element
of the hierachy is thus removed from the supervisor to be implemented by procedures
executing in the user protection environment (the actual file system hierachy still
remains protected inside the supervisor).

Another removal project of a different flavor is investigating the possibility
of moving most of system initialization from executing inside the supervisor each time
the system is started to executing once in a user environment of a previous system.
The idea is to produce as a system tape a bit pattern which, when loaded into memory,
manifests a fully initialized system, rather than letting the system bootstrap itself in a
complex way each time it is loaded from a tape containing the separate pieces. One
pattern of operation may be much simpler to certify than the other.

The third category of activity is simplifying those mechanisms that must
remain in the kernel. Such activities can reduce both the size and the complexity of
the kernel. Simplification activities cover a broad range. In some cases a piece of the
kernel can simply be eliminated because its function can be duplicated by another
kernel mechanism. For example, the possibility of replacing all mechanisms for
performing external I/O (to terminals, tape drives, card readers, card punches, and
printers) with the ARPA Network attachment is being explored. This would remove
from the kernel a large bulk of special mechanisms for managing the various I/O
devices, leaving behind a single mechanism for managing the network attachment. Using
network technology to provide the only path for external I/O to Multics appears
feasible. Internal I/O functions (for managing the virtual memory, performing bcckup,
and loading the system) would still be managed in the kernel.

Another example of simplification involves a less obvious duplication of
mechanisms. A new buffering strategy for inout and output from the network has been
devised which, by utilizing the virtual memory, provides a core resident buffer which

COMPUTER SYSTEMS RESEARCH 96 COMPUTER SYSTEMS RESEARCH

appears to be of infinite length. The infinite buffer scheme is much simpler than the
old circular buffer which pad to be used over and over again, with attendant problems
of old messages not being removed before a complete circuit of the buffer was made.
The old buffer scheme was really providing a special purpose storage management
facility, and the simplification was to use the standard storage management facility of
the system -- the virtual memory -- for this (Unction.

Several soecific simplification projects involve using mulitiple parallel
processes to implement kernel functions. A characteristic of the current Multics
implementation is that processes are relatively expensive, for each must have an
independent address space. As a result, many system functions involving inherently
parallel activities are forced into sequential algorithms. The cost is increased
complexity. As a basis for reimplementing such functions taking advantage of their
natural parallelism, a facility providing low cost processes is being implemented. The
processes are made cheap by having several of them sha^e the same address space.
Several applications of cheap processes are underway. Each interrupt handler will be
assigned its own process in which to execute, rather than being forced to inhabit
whatever user process was running when the interrupt occurred. As a result, the
system interrupt interceptor will simply turn each interrupt into a wakeup of the
corresponding process. By virtue of being full-fledged procesces, the interrupt
handlers can use the normal system interprocess communication mechanisms to
coordinate their activities with one another and the user process, greatly simplifying
their structure.

Another important application of low cost processes is in simplifying the
structure of system resource management algorithms. The mechanism for moving pages
among the three levels of the memory hierarchy is a good example. Whenever a
missing page fault occurs In a process, the fault handler attempts to initiate the
transfer of the desired page from bulk store or disk to co^e. This can only be done if
a free core block is available, if not, then the fault hardier first must move a page
from core to the bulk store to make room. This, m turn, in possible only if a free block
of bulk store is available. If not, a page must be moved from the bulk store, via core,
to a disk by the fault handler. This complex series of steps occurs sequentially with
page control executing in the process which took the page fault and then in various
other user processes that happen to receive the subsequent I/O interrupts. The new
scheme involving multiple cedicated processes is much simpler. One process runs in a
loop making sure that some small number of free core blocks always exist. Whenever
the number of free core blocks drops below that number, this process is awakened to
transfer pages to bulk store. Another keeps space free on the bulk store by moving
pages to disk when required. The core freeing process is activated by wakeups from

COMPUTER SYSTEMS RESEARCH 97 COMPUTER SYSTEMS RESEARCH

processes that have taken a page fault and discovered a lack of free core blocks. The
bulk store freeing process is driven in a similar minner by the core freeing process.
The path taken by a user process on a page fault is greatly simplified. This process
can wait until a core block is free and then initiate the transfer of the desired page
into core. The overall structure looks as though it will be much simpler than that
currently employed.

The various simplification activities will eventually extend to all parts of the
kernel, and to the overall structure of the kernel. Careful attention will be paid to the
proper modularization of the entire kernel.

The final category of activity is partitioning the kernel into differently
protected pieces that can be certified separately, some perhaps less carefully than
others. While the specific projects in this category are less well developed than those
for other categories, two techniques for partitioning seem worth exploring. The first is
dividirg the kernel that is part of each process into mutiple layers in different rings of
protection. For example, the bottom layer might implement a file system in which all
segments were named by system generated unique identifiers. The next layer would
implement a user named directory hierarchy on top of the primitive first layer file
system. Another suggestion is that mechanisms to provide absolute
compartmentalization of users and stored information be implemented at the bottom
layer, and mechanisms to allow controlled sharing within the compartments be
implemented at the next layer. This last suggestion is particularly intriguing, because if
correctly done the notion of minimizing common mechanisms would be well supported.
The second layer mechanisms would be common only within each compartment.

The second partitioning technique under investigation is separating the
policy component from the mechanism component of resource management algorithms
by putting the policy algorithms in a non-kernel protection ring in special system
procesoes. For example, the process described earlier that removed pages from core
memory cou'd be arranged as a multi-ring process. The standard system kernel would
execute in the most privileged ring Filong with some special gate entry points to
implement movement of a particular page from core to a particular free block on the
bulk store. Other gates would provide usage information on pages in core. The policy
algorithm that decides which page to remove when another free core block needs to
be generated would execute in a less privileged ring. The special gates into the
superviso- would be used to do the actual moving, once a decision was made. The
policy algorithm, however, could never read or write the contents of pages, learn the
segment to which eacn page belonged, or cause one page to overwrite anotner,
because the supervisor gates would be programmed to prevent these actions. The

..._ ,..- J.,.^-a.J.

COMPUTERS™*™ S8 COMPU^SVSTCMS RESEARCH

TZ Äf* a^Ar zir:unau,hori2ed UM - -«««««""'
crcumstances that den.al o use wa jee^, ^ "?" denial e' use' Under '^
violations, the policy algoritl need no be .M'Z «''2 the.0ther ^'^
kernel. It appears that the idea of seoaraL, „.i y erl,,'ed as ,he rest <" «•»
resource manasement algorithms P ' e P0"Cy ,rom ^chanisms applies le all

Computer ^^Z^S^^^^^^ '» ^ -d by the

Th^next section details the specie Ä^ÄÄ^."^.^

4. Twk8 {n thft Cartffteatfon Pm^»

Since the ^ll^Z^ ^t L^nK? ^ ^ duri^ the ^
the previous section * kS rner'tl0ned here d^c^ the samples of

a. Census of Rin^ 0

get some r^Ä^f fh«* maXfrll^ ^^ SyStem' ^ Was n—V to
system. To provide thi« (nf0rm»^n ^Ifv wrUC.tUre 0f the present k^nel of thi
aü the ring 0 module nd l^t d th e^ m^^^^^^^^^^ ^T*? SUmmary 0f the size of

were a part of, and ac ording ol^heir ourcl I n t* t0 What ^^^ they
system was very helpful \ndmiJmfJJl^JmUm Th,S overview of the present
attacked first. P determmmg wh.ch components of the system ought to be

b. ggmoygLoMhe Unkgr from Rin^ 0.

Jansen as ÄÄrS wi« b?; 'T.T 0 WaS UndertakCT ^ «PP«
that the linker be removed ^ncesevJall"' ^ '" ^ ,974 " was ^P^nt
the management of referenclnZl IT' cm^^ »' H» system, in particular

after the linker had been moved Z uZTZT* "t "Tf fr0m ,he K»^

- leas, e.uivalen. to the pÄ 'o", Ärr^Ä ÄÄ

COMPUTER SYSTEMS RESEARCH 99 COMPUTER SYSTEMS RESEARCH

c. Removal of Name-Space Management From Ring 0.

One of the functions of the Known Segment Table, or KST, is to remember
the associations between segment numbers and reference names on a per-process
basis. One of the principal users of this facility is the linker, which must resolve named
references into segment numbers. With the linker now existing in (he user ring, it is
possible to consider removing portions of the KST manager into the 'jser ring as well.
Richard Bratt, as part of his Master's thesis research, has proposed a scheme for
moving this function to the user ring which eliminates the drawbacks of allowing the
user to directly initiate directories, The only function which remains inside the kernel
of the system in his proposal is the association between segment numbers and unique
IP's.

d. Removal of the Storage Hierarchy from Ring 0.

The two previous tasks represent removal from the kernel of the system of
much of the per-process segment name management. Douglas Hunt is also considering
whether certain of the system-wide name management mechanism could be removed
from the kernel or at least partitioned in a separate area of the kernel. In particular,
he is considering whether the concept of the storage hierarchy could be removed from
the kernel, leaving within the kernel only a catalog of segments indexed Ly unique ID.
In the outer ring an association would be maintained between name, unique ID, and
segment numbtr.

e. Removal of User I/O from Ring 0.

A thesis completed by David Clark, now available as Project MAC Technical
Report TR-117, discusses a strategy for handling user-initiated I/O which operates
almost completely in the user ring. The only function which is required within the
kernel is the management of multiplexed devices. The scheme uses as the buffering
strategy for I/O the virtual memory management algorithm of the system itself. The
scheme described in the thesis effectively removes I/O from the kernel of the system;
however, it requires an I/O controller with capabilities slightly greater than the one
currently available on Multics, so that this particular removal will not actually be
implemented in the near future. However, Honeywell has implemented an interface to
the I/O system, which has some of the same features as the scheme described in the
thesis.

COMPUTER SYSTEMS RESEARCH 100 COMPUTER SYSTEMS RESEARCH

f. Simplification to Page Control.

Andrew Huber is considering ways to simplify the memory management
algorithm of the Multics system. In particular, he is considering a reorganization in
which most of the functions of page control are executed in separate asynchronous
processes, so that the only task which the user process executes is the actual fetching
of a missing page. It is felt that by isolating functions in separate processes, and
constraining them by restricting the interprocess communication paths, it will be easier
to understand and certify the overall algorithm. One of the other benefits of
structuring page control in this way is that it should be possible for several processors
to take und handle a page exception simultaneously, without interfering with each
other. We are currently preparing, in a high level language devised by Bernard
Greenberg, a version of page control structured in this fashion, which can be used for
discussion.

g. Simplification of Traffic Control.

The group is attempting to restructure the process scheduling algorithm of
the Multics system. In particular, we are interested in separating two ideas, the actual
switching of the processor from one process to another, and the decision making
algorithm which determines which processes are eligible to run. It is hoped that this
will speed up the act of switching from one process to another, and also make the
algorithm easier to understand.

h. Removal of the Answering Service from the Kernel of the System.

The Answering Service, t 3se algorithms which authenticate users, create
orocesses, and manage teletype lines, must currently be considered within the kernel
of the system, even though they are not within ring 0 but within a separate process.
it is very desirable that we identify some component of this mechanism which, If
properly isoiated and certified, would eliminate the need to certify the remainder of
the answering service. Warren Montgomery has proposed a strategy for user-
authenticat'on and process creation which would effectively remove from the kernel
almost all of the current answering service mechanism. He is currently attempting to
discover what problems arise from this proposed division of the function.

COMPUTER SYSTEMS RESEARCH 1C1 COMPUTER SYSTEMS RESEARCH

i. T^eUseojJvjulitjgle Processes as an Organizational Tool.

As the discussion of page control suggested, an approach to understanding
the structure of the system is to separ te portions of it into separate processes.
There are a variety of projects underway to explore this organizational structure. We
are currently developing a special kind of process which runs only within ring 0, which
has limited capability, and is very efficient to execute. It is our intention to use this
kind of process in several applications within the system kernel. The example of page
control has already been given. Another application of these processes is in the
handling of interrupts. Code which executes at interrupt time is subject to several
special constraints, for example, it may not abandon the processor and it may not loop
on a lock. This makes code which runs at interrupt time much more complex and prone
to errors. Running this code instead in a different process will eliminate these sorts of
problems. Robert Mabee is currently proceeding with the implementation of this sort
of process, and as a test case intends to modify the typewriter control software so
that the code now running at interrupt time runs instead in a process.

Another experiment with the use of multiple processes involves
modifications of the user ring environment so that the single process of the user is
conceptually shared between a number of tasks, all running in the same virtual address
space. This structure, in addition to simplifying the user ring environment, seems to
have several beneficial effects on the structure of the kern-l. The handling of the
Multics "quit" is an obvious example. The propagation of this signal through the kernel
from its receipt by the interrupt handler to the ultimate process interrupt is very
complex and tortuous. It appears that the simplest thing for the kernel to do with a
"quit" signal is to translate it immediately into a wake-up for some process. It is not
clear, however, what arrangement of processes in the user ring can best take
advantage of this interpretation of a "quit". The current experiment with the user ring
environment will let us explore how to take advantage of this interpretation of the

quit .

Restructurmg of Network Control Program, J-

Because of our group's direct involvement in the connection of Multics to
the ARPA Network, we have developed significant expertise in that portion of the
system. For this reason, the network is a good candidate for investigation of
techniques for simplification of the system kernel. Having the network software
properly structured is especially important, since it is possible that a suitable network
could serve as the sole form of external I/O. For this function it seems appropriate to
use multiple processes as a tool for simplification. In this case, it may be possible to

COMPUTER SYSTEMS RESEARCH 102 COMPUTER SYSTEMS RESEARCH

remove some of the processes from the kernel thus reducing directly the bulk of the
supervisor code related to the ARPA network. Notice that the ARPA network is
especially interesting in this respect, since, being a multiplexed facility, some
protection is required of the de-multiplexing and multiplexing function. Any technique
tiiat removes this from the kernel, without compromising its security, is an especially
valuable modification to the system,

k. System Initialization.

In order to certify the Multics system, it will be necessary to certify the
"initial state" of the system; the ad hoc initialization techniques currently used makes
such a certification very difficult, if not impossible. The intention of this study is to
discover new ways of initializing the system which are more amenable to certification.

I. Recovery from System Errors.

Related to the issue of system initialization is the issue of recovery from
errors. They have in common the requirement that it is necessary to certify or assure
that the system is in some known state. We are interested in determining whether
there are some particular structures for data bases and algorithms which makes it
much easier to assure that the data base is in fact consistent and correct. One
particular project which we are carrying out in an attempt to learn more about the
structure of data bases is a comparative analysis of Multics and the Burroughs
operating system, currently being prepared by Ben Williams. The Burroughs Master
Control Program apparently recovers very effectively from a wide variety of errors,
and we are hopeful that insight gained from an understanding of this system can help
the Multics system recover from errors more gracefully and reliably.

m. High-level Description of System Functionality.

As part of any attempt to certify a system, it is necessary to have some
description of the intended functionality of the system itself to serve as a standard
against which to certify. Several members of the project have tried various notational
schemes for describing the functionality of various parts of the system. A
representation of system data bases and related algorithms in the Vienna Definition
Language was performed by Richard Bratt, using the known segment table as a case
study. A similar description with directory control using English as the descriptive
language was performed by Douglas Hunt. Finally, Bernard Greenberg, as part of his
thesis (Project MAC Technical Report TR-127), has devised a language for describing
programs with complexly structured data bases, which attempts to avoid implications

COMPUTER SYSTEMS RESEARCH 103 COMPUTER SYSTEMS RESEARCH

concerning the implementation of the data base structure. This language is now being
used to represent various alternative algorithms being considered as part of the
restructuring of page control.

n- Formulation of Criteria for Inclusion of Modules Within the Kernel.

Richard Feiertag is currently attempting to develop a specific set of rules
which would determine whether a module should or should not be included within the
kernel of the system. He is attempting to identify these rules by studying a number of
specific parts of the current system and identifying the trade-offs related to moving
these particular parts out of the kernel. He is currently studying the separation of
policy from mechanism in page control.

0- Study of Multics Security Holes.

An understanding of how system bugs arise and what is required to fix them
gives insight into the problems of certification. For this reason we are interested in
the discovery and understanding of the flaws in the current system. We attempt,
periodically, to catalog all known ways to violate the security of Multics, and to identify
the general class of problems of which each bug is a specific example.

p. Implementation of New I/O Buffering Strategy

As part of designing a simple structure for I/O, we are producing a buffer
management mechanism which uses the virtual memory manager algorithm. This is
described in the section of the progress report which describes CSR division work on

the ARPA network.

C. ARPA NETWORK ACTIVITIES

This last year has been a year of transition for those working on the ARPA
network, as the development effort necessary to get the network operational on
Multics is gradually phasing out, to be replaced with more research-oriented projects.

These research efforts on which the division is now embarking represent
the best indication of the direction in which we see ourselves going in the next year.

As part of this transition, the number of staff assigned to this area has
dropped from five full-time to one full-time and two half-time, with the half-time staff
spending the remainder o^ their time working on projects related to the division's

COMPUTER SYSTEMS RESEARCH 104 COMPUTER SYSTEMS RESEARCH

certification effort. This sharing of staff is part of our effort to unify the various
efforts of the division.

The various network tasks in which the division has engaged are detailed
below.

1. Conversion of Multics to New Hardware

Before and during the Summer of 1973, the Multics operating system was
modified to run on a Honeywell 6180, rather than a Honeywell 645. It was necessary,
as part of this transition, to modify the Multics software so that the ARPA network
would operate with the 6180. Several sub-tasks were implied by this transition. First,
it was necessary to redesign a portion of the Network Control Program so that it
would interface to a full duplex rather than a half duplex network interface. Our
experience, in common with that of the network community at large, was that the half
duolex interface was undesirable; we seized this opportunity to convert to full duplex.
It was also necessary, as part of the move, to construct a new hardware interface
between the 6180 and the IMP, The interface designed for the 645 was inappropriate,
first because it was half duplex, and second because it did not support the distant
interface, which we intended to use.

It has been our intention to hand off the day-to-day operation of the ARPA
network to the staff of the Information Processing Center. For this reason, we
invested some effort during the move in developing and integrating the network
software so that it could be manipulated by the Multics system operators, as part of
their standard procedures. This effort, which involved automating the starting,
stopping, and recovering from errors of the network, was successful to the extent that
we now need intervene only in very exceptional circumstances, such as a network
crash or a hardware failure.

In the switching from one machine to another, the physical location of the
hardware changed. For this and other reasons, the M.I.T. community obtained a second
IMP. A certain amount of effort was required on our part to change over from the old
to the new IMP. This task has been completed, and the operational responsibility for
this IMP has been given to the Information Processing Center's staff.

COMPUTER SYSTEMS RESEARCH 105 COMPUTER SYSTEMS RESEARCH

2. Improvements to Network Service

During the course of the year, the Computer Systems Research Division has
completed several tasks to enhance the quality of the network service provided by
Multics. Several programs have been rewritten, either to enhance performance or to
eliminate bugs. For example, the user interface to the Telnet protocol, which
previously existed as a privately maintained program on Multics, has been upgraded
and made a part of the official Multics network software library. There is a continuing
effort to enhance the mail sending facility, both in-bound and out-bound. Multics now
supports a facility which allows unsendable out-bound mail to be queued for later
retransmission. In-bound mail can now be delivered without the sender knowing the
project ID of the recipient. We have recently designed a modification to in-bound mail
handling which would decrease the cost and increase the reliability. This feature
should be installed in the near future.

The network documentation has been upgraded substantiblly during the year.
We assembled a draft version of a Network User's Supplement to the Multics
Programmers Manual, which gives an overview of the ARPA network on Multics, and
describes how to get into Multics from the ARPA network, and how to get out to the
ARPA network from Multics. In addition to the Network User's Supplement, we are
also producing a description of internal interfaces and program strategies of the system
programs which support network use, to be published as one of the series of Program
Logic Maunuals which Honeywell is producing to describe the Multics operating system.

3. New Protocols

During the year our group has participated in the development and
implementation of several new network protocols. Code to implement the new Telnet
protocol was implementd and installed by Douglas Wells. Kenneth Pogran has
contributed to the current redesign of the file transfer protocol and plans to implement
this new protocol whenever the specificiation has stabilized. In addition to these two
new protocol revisions, which have required significant effort on our part, Rajendra
Kanodia has also proposed modifications to the host protocol which attempt to deal
with lost message-: in a more graceful manner than the current protocol.

4. Research Topics

The division has carried out several research tasks in the network area this
year; this is perhaps the most interesting work done relating to the ARPA network. In
an attempt to increacs the efficiency of transmitting data to and from the network, and

COMPUTER SYSTEMS RESEARCH 105 COMPUTER SYS1 EMS RESEARCH

at the same time gain a more basic understanding of the interaction between
input/output functions and virtual memory computer systems, Rajendra Kanodia and
David Clark have been devising a new buffering strategy for reading and writing from
the network. The result of this design is a buffer which, by utilizing the virtual
memory, appears to be infinite in length. This use of the virtual memory eliminates any
need to compact or otherwise manage the buffer area, thus reducing overhead. The
buffer is also directly accessible to a user process, since it is in the virtual address
space; this avoids the necessity of copying data in order to make it accessible. It is
our intention to attempt to use this same buffering strategy to interface the typewriter
control processor as well as the ARPA network; it appears that this strategy can be
exploited successfully for all devices for which the system's nucleus must take
responsibility. This unification of buffer management, by reducing the bulk and
complexity of the kernel, is a significant contribution to our certification project
discussed earlier in the report. *

As part of our research into the use of the ARPA network as a vehicle for
communication between active processes, Warren Montgomery and Kenneth Pogrtn
have been studying and implementing the RSEXEC protocol devised by Robert H.
Thomas of Bolt, Beranek and Newman. Initial investigation of this protocol suggests
that parts of it can be adapted easily for our operating system, but the other parts, in
particular the manipulation of files, are difficult to dovetail into our particular view of a
storage system and user interface thereto. More research is intended in this area, as
time and personnel allow; we hope that a partial implementation of RSEXEC will
become available on Multics

In a project related to the previous one, we have currently established a
process in Multics which is always available for the purpose of providing services
related to the ARPA network. Currently, this process will queue and retransmit mail
which for some reason is currently undeliverable across the network. In the near
future, we' intend that this process will handle in-bound mail, and support those
functions of RSEXEC which we are able to implement.

As part of our redesign of the buffering strategy for the network, Arthur
Btnjamin has attemptea to increase the precision of the meters which tell us about
traffic flow between Multics and the ARPA network.

Michael Padlipsky has developed the specification for a network-wide text
editor, called neted, which has been implemented and used at eight different sites on
the ARPA network. It is feit that this editor serves as a small but valid example of the
fashion in which one standard command interface can be adapted to va'ious time

COMPUTER SYSTEMS RESEARCH 107 COMPUTER SYSTEMS RESEARCH

sharing systems, with their various user interfaces.

5. Network Commjttees

During the year our group has contributed to the network effort by active
participation in several ARPA network committees. These include the "USING"
subcommittees which are specifying the common command language and neted; the
committee which is redesigning the file transfer protocol; the Review Committee for
the ARPA network terminal system (ANTS) and the ELF operating system for the PDP-
11; the Graphics protocol committee; and the informal group redesigning the ARPA
network host-to-host protocols.

D. TECHNOLOGY TRANSFER

The term "technology transfer" may be loosely applied to making research
results accessible to industry, government, and educational institutions. Since, in
undertaking the Multics project, the Computer Systems Research Division developed a
sizable store of technology, transfer of that technology has recently been a major
activity. Several specific points indicate the progress of this transfer:

1. In April, 1974, Honeywell Information Systems Inc. will announce availability of
an upgraded hardware system for Multics, the model 68/80, which includes a
cache memory in each processor and support for a large (2-8 million word)
directly addressable memory.

2. Honeywell 6180 Multics installations were completed or scheduled at M.I.T., the
Air Force Data Services Center, Ford Motor Co, and General Motors. These
installations are in addition to the older Honeywell 645 Installation at Rome Air
Development Center and also Honeywell internal Multics sites in Billerica, Mass.,
Waltham, Mass, Phoenix, Arizona, Paris (Honeywell Bull) and Tokyo (Toshiba) In
total, as of June 30, 1974, there will be three 645 sites and seven 6180 sites
running Multics. Each of the non-Honeywell sites has initiated contact with M.I.T,
to facilitate more direct transfer of knowhow and, in some cases, of M.I.T.-
developed Multics subsystems.

3. The M.I.T. Information Processing Center and the Telefunken Co. completed
negotiations for Telefunken's acquisition of knowhow and rights to utilize the
Multics PL/I compiler.

4. As development of the Multics ARPANET attachment has matured, transfer of

COMPUTER SYSTEMS RESEARCH 108 COMPUTER SYSTEMS RESEARCH

that technology to Honeywell has begun. Although not yet fully supported by
Honeywell, the network attachment is currently available to customers as an
option, using M.l.T.-supplied software.

5. One M.l.T. staff member versed in ARPANET development has moved to the
MITRE Corporation to help implement a government network slmllir to the

ARPANET.

6. Of the ten undergraduate and graduate students of CSR who have complelea or
will soon complete their educational programs, four accepted positions with

Honeywell.

7. Faculty members of the Computer Systems Research Division have been actively
consulting with several different government and industrial organizations; these
consulting activities largely consist of translating the Multics experience into
forms applicable to other system designs. Organizations include Control Data
Corporation, IBM Corporation, General Telephone and Electronics, and System
Development Corporation, and groups within the Department of Defense. In a
related activity, the Computer Systems Research Division entertained several
industrial visitors interested in Multics technology, many making contact through
the M.l.T. Industrial Liaison Office.

8. The first draft of a tutorial paper on the protection of information in computer
systems was completed by Professors Saitzer and Schroeder. This paper
captures for educational purposes many of the insights discovered in the course
of Multics development. Also made available in Project MAC Technical Report
form was the introduction to the Multics Programmers' Manual.

9. Japanese interest in computer systems technology has been high for several
years; in most recent periods we have had one or more Japanese visitors. This
year. Professor Eiiti Wada of the University of Tokyo ijmed the division as a
visiting Associate Professor. Also, two books about Multics were published (in
Japanese) by former visitors. The first was a translation of Elliott Organick's
book The Multics System, by Akio Sasaki and Toyohiko Kikuchi. The second, a
new book entitled Structure of Computer Utility - Anatomy of Multics. was
written by Professor Katsuo Ikeda of Kyoto University.

COMPUTER SYSTEMS RESEARCH 109 COMPUTER SYSTEMS RESEARCH

E. OTHER ACTIVITIES

During the current reporting period Masters' theses by RoberlM Frankston
and Lee J, Scheffler have been completed under the supervision of F. J. Corbato.

In the thesis by Frankston. entitled The Computer Utility as a Marketplace
for Computer Service!, the implications of widespread commercial use of a computer

utility were explored. As stated in the abstract:

"Most contemporary computer systems are oriented towards
users who run programs. The environment for services puts
different requirements on the computer system than do the
needs of programmers, so as to permit all the participants in the
market to make effective use of its facilities without requiring
dedicated facilities and without interfering with each other. As
with any marketplace, it must be convenient to do business

within its framework."

The thesis, available as MAC TR-128, also includes as an example a design
evolved from the Multics System which implements a particular marketplace model.

Performance Evalufitjon of Rating Disk Subsystems in MultiproRrammed
CftWmuUr System« i« the title of the thesis by Scheffler. This thes.s ana ytically
derives, using ^Tmarily the mathematics of Operations Reseach, •^•^•/^
some c ses bound.) for the performance of various common classes of d'f «em
subject to work loads typical of large-scale multi-programmed computer utilities. As

stated in the abstract, this study

" is fundamental to: 1) predicting the overall performance of
the system; 2) erhancing disk performance to meet evolving
secondary memory performance requirements; and 3) choosing
disk subsystems to meet stated performance requirements."

The derived expressions were validated against measurements taken on the Multics

System at M.l.T.

Another Master's thesis, by Bernard Greenberg, developed a set of
measuring tools for exploring the paging rate of Multics for very '^ge memory ^
This work involved modifying Multics to intercept all movements of data to and from
[he dTsk and thereby record an address reference string. The reference stnng il

COMPUTER SYSTEMS RESEARCH 110 COMPUTER SYSTEMS RESEARCH

recorded during actual Multics operation, and later analysed with a least-recently-used
algorithm simulator to discover what disk traffic rate would have resulted with larger
main memory sizes The measurement is complicated by a variety of real-life factors
such as Multics cleverly not writing out pages which happen to contain all zeroes, and
Greenberg succeeded in providing suitable corrective measures for each of them.
Unfortunately the development and proof that the measuring tool worked was a thesis
in itself; a systematic program of measurements with the tool awaits some other
student.

■"»•"«■- mm

COMPUTER SYSTEMS RESEARCH 111 COMPUTER SYSTEMS RESEARCH

Publications

1. Introduction to Multics, Project MAC Technical Report TR-123, November 1973.

2. MULTICS Programmer's Manual. Part I (Introduction), Revision 14, September 30,
1973.

3- MULTICS Programmer's Manual. Part II (Reference Guide), Revision 15, November
30, 1973.

4. Schroeder, M. D., with R. M. Graham, "Proceedings of the ACM SIGPLAN/SIGOPS
Interface Meeting", SIGPLAN Notices 8, 9, September, 1973.

5. Schroeder, M. D., "A Brief Report on the SIGPLAN/SIGOPS Interface Meeting",
Operating Systems Review 7. 3, July 1973, pp. 4-9.

Theses Completed

1. Clark, D. D., An Input/Output Architecture for Virtual Memory Computer Systems.
Ph.D. thesis, M.I.T., Department of Electrical Engineering, August 1973.

2. Gumpertz, R. H., The Design and Fabrication of an ARPA Network Interface, SB.
thesis, M.I.T. Department of Electrical Engineering, July 1973.

3. Rotenberg, L J., Making Computers Keep Secrets, Ph.D thesis, M.I.T. Department
of Electrical Engineering, June 1973.

4. Stern, J, A., Backup and Recovery of On-Line Information in a Computer Utility,
E. E. thesis, M.I.T, Department of Electrical Engineering, August 1973.

ARPA Network Committee memberships

1. Padlipsky, M. A.: User Interest Group (USING) and subcommittees.

2. Thomas, E. L: ARPA Network Graphics Group

3. Pogran, K. T: ARPA Network Graphics Group, ARPA Network nal System
Steering Commitee

PUBLICATIONS 113 PUBLICATIONS

TECHNICAL MANUALS

TM-10 Jackson, James N.
Interactive Design Coordination

for the Building Industry
June 1970

•TM-ll Ward, Philip W.
Description and Flow Chart of the

PDP-7/9 Communications Package
July 1970

*TM-12 Graham, Robert M.
File Management and Related Topics

(Formerly Programming Linguistics
Group Memo No. 6, June 12, 1970)

Seotember 1970

AD 708-400

AD 711-379

AD 712-068

*TM-13 Graham, Robert M.
Use of High Level Languages

for Systems Programming
(Formerly Programming Linguistics
Group Memo No. 2, November 20, 1969)

September 1970

♦TM-14 Vogt, Carla M.
Suspension of Processes in a Multi-

processing Computer System
(Based on S.M. Thesis, EE Dept.,
February 1970)

September 1970

AD 711-965

AD 713-989

TM's 1-9 were never issued.

Preceding page blank

PUBLICATIONS 114

TM-15 Zilles, Stephen N.
An Expansion of the Data Structuring

Capabilities of PAL
(Based on S.M. Thesis, EE Dept.,
June 1970)

October 1970

TM-16 Bruere-Dawson, Gerard
Pseudo-Random Sequences

(Based on S.M. Thesis, EE Dept,
June 1970)

October 1970

TM-17 Goodman, Leonard I.
Complexity Measures for Programming

Languages (Based on S.M. Thesis, EE Dept.,
September 1971)

September 1971

*TM-18 Reprinted as TR-a5

*TM-19 Fenichel, Robert R.
A New List-Tracing Algorithm
October 1970

*TM-20 Junes, Thomas L
A Computer Model of Simple Forms

of Learning (Based on Ph.D. Thesis,
EE Dept., September 1970)

January 1971

*TM-21 Goldstein, Robert, C.
The Substantive Use of Computers

for Intellectual Activities
April 1971

PUBLICATIONS

AD 720-761

AD 713-852

AD 729-011

AD 714-522

AD 720-337

AD 721-618

1

PUBLICATIONS 115 PUBLICATIONS

TM-22 Wells, Douglas M.
Transmission of Information Between

a Man-Machine Decision System
and Its Environment

April 1971

TM-23 Strnad, Alois J.
The Relational Approach to the

Management of Data Bases
April 1971

TM-24 Goldstein, Robert C. and Alois J. Strnad
The MacAIMS Data Management System
April 1971

TM-25 Goldstein, Robert C.
Helping People Think
April 1971

TM-26 lazeolla, Giuseppe G.
Modeling and Decomposition of

Information Systems for Performance
Evaluation

June 1971

TM-27 Bagchi, Amitava
Economy of Descriptions and

Minimal Indices
January 1972

TM-28 Wong, Richard
Construction Heuristics for Geometry

and a Vector Algebra Representation
of Geometry

June 1972

AD 722-837

AD 721-619

AD 721-620

AD 721-v98

AD 733-965

AD 736-960

AD 743-487

^

n

PUBLICATIONS 116 PUBLICATIONS

TM-29 Hossley, Robert and Charles Rackoff
The Emptiness Problem for Automata

on Infinite Trees
Spring 1972

TM-30 McCray, William A,
S1M360: A S/360 Simulator
(Based on S.B. Thesis, ME Dept., May 1972)
October 1972

'M-31 Bonneau, Richard J.
A Class of Finite Computation Structures

Supporting the Fast Fourier Transform
March 1973

TM-32 Moll, Robert

An Operator Embedding Theorem for Complexity
Classes of Recursive Functions

May 1973

TM-33 Ferrante, Jeanne and Charles Rackoff
A Decision Procedure for the First Order

Theory of Real Addition with Order
May 1973

TM-34 Bonneau, Richard J.
Polynomial Exponentiation; The Fact

Fourier Transform Revisited
June 1973

TM-35 Bonneau, Richard J.
An Interactive Irpplementatior of the Todd-

Coxeter Algorithm
December 1973

AD 747-250

AD 749-365

AD 757-787

AD 759-999

AD 760-000

PB 221-742

AD 770-565

.

PUBLICATIONS 117 PUBLICATIONS

TM-36 Geiger, Steven P.

A Upfir's Guide to the Macro Control Language
December 1973

TM-37 Schonhage, A.

Real-Time Simulation of Multidimensional
Turing Machines by Storage Modification
Machines

December 1973

TM-38 Meyer, Albert R.

Weak Monadic Second Order Theory of
Succesor is not Elementary-Recursive

December 1973

AD 771-435

PB 226-103/AS

PB 226-514/A?

PUBLICATIONS

*TR-

118

TECHNICAL REPORTS

Bobrow, Daniel G.
NatuM Language Input for a Computer

Problem Solving System,
Ph.D. Thesis, Math. Dept.
September 1964

PUBLICATIONS

AD G04-730

*TR-2 Raphael, Bertram
SIR: A Computer Program for Semantic

Information Retrieval,
Ph.D. Tnesis, Math. Dept.
June 1964

AD 608-499

TR-3 Corbato, Fernando J.
System Requirements for Multiple-Access,

Time-Shared Computers
May 1964

AD 608-501

*TR-4 Ross, Douglas T, and Clarence G. Feldman
Verbal and Graphical Language for the

AED System: A Progress Report
May 1964

AD 604-678

TR-6 Biggs, John M., and Robert D. Logcher
STRESS; A Problem-Oriented Language

for Structural Engineering
May 1964

AD 604-879

TR's 5, 9, 10, 15 were never issued

PUBLICATIONS 119 PUBLICATIONS

TR-7 Weizenbaum, Joseph
OPL-1: An Open Ended Programming

System within CTSS
April 1964 AD 604-680

TR-8 Greenberger, Martin
The OPS-1 Manual
May 1964 AD 604-681

»TR-11 Dennis, Jack B.
Program Structure in a Multi-Access

Computer
May 1964 AD 608-500

TR-12 Fane, Robert M.
The MAC System: A Progress Report
October 1964 AD 609-296

♦TR-13 Greenberger, Martin
A New Methodology for Computer Simulation

October 1964 AD 609-288

TR-14 Roos, Daniel
Use of CTSS in a Teaching Environment
November 1964 AD 661-807

TR-16 Saltzer, Jerome H.
CTSS Technical Notes
March 1965 AD 612-702

TR-17 Samuel, Arthur L
Time-Sharing on a Multiconsole Computer

March 1955 AD 462-158

PUBLICATIONS 120 PUBLICATIONS

*TR-18 Scherr, Allan Lee
An Analysis of Time-Shared Computer Systems,
Ph.D. Thesis, EE Dept.
June 1955

AD 470-715

TR-19 Russo, Francis John
A Heuristic Approach to Alternate Routing in a Job Shop,
S.B. & S.M. Thesis, Sloan School
June 1965

AD 474-018

TR-20 Wantman, Mayer Elihu
CALCULAID: An On-Line System for

Algebraic Computation and Analysis,
S.M. Thesis, Sloan School
September 1965

AD 474-019

*TR-21 Denning, Peter James
Queueing Models for File Memory Operation,
S.M. Thesis, EE Dept.
Octcoer 1965

AD 624-943

*TR-22 Greenberger, Martin
The Priority Problem
November 1955

AD 625-728

*TR-23 Dennis, Jack B., and Earl C Van Horn
Programming Semantics for Multi-programmed

Computations
December 1S55

AD 627-537

*TR-24 Kaplow, Roy, Stephen Strong and John Brackett
MAP; A System for On-Line Mathematical

Analysis
January 1956

AD 476-443

i

PUBLICATIONS 121 PUBLICATIONS

TR-25 Stratton, William David

investigation of an Analog Technique
to Decrease Pen-Tracking Time in
Computer Displays,

S.M. Thesis, EE Dept.
Maren 1966

TR-26 Cheek, Thomas Burrell
Design of a Low-Cost Character

Generator for Remote Computer Displays,
S.V. Thesis, EE Dept.
March 1966

TR-27 Edwards, Daniel James

OCAS - On-Lme Cryptanalytic Aid
System,

S.M. Thesis, EE Dept,
May 1965

TR-28 Smith, Arthur Anshel

Input/Output in Time-Shared, Segmented,
Multiprocessor Systems,

S.M, Thesis, EE Dept.
June 1 956

TR-29 Ivie, Evan Leon

Search Procedures Based on Measures
o* Reiat^dness between Documents,

Ph.D. Thesis, EE Dept.
June 1 95fa

TR-30 Saltzer, Jerome Howard
Traffic Control ;n a Multiplexed

Computer System,
Sc.D. Thesis, EE Dept.
July 1965

AD 631-396

AD 631-269

AD 633-678

AD 637-215

AD 636-275

AD 635-966

L

PUBLICATIONS 122 PUBLICATIONS

TR-31 Smith, Donald L
Models and Data Structures for Digital

Logic Simulation,
SM. Thesis, EE Dept.
August 1966

AD 637-192

*TR-32 Teitelman, Warren
PILOT: A Step Toward Man-Computer

Symbiosis,
Ph.D. Thesis, Math. Dept.
September 1966

AD 638-446

*TR-31 Norton, Lewis M.
ADEPT - A Heuristic Program for

Proving Theorems of Group Theory,
Ph.D. Thesis, Math. Dept.
October 1966

AD 645-660

*TR-34 Van Horn, Earl C, Jr.
Computer Design for Asynchronously

Reproducible Multiprocessing,
Ph.D. Thesis, EE Dept.
November 1966

AD 650-407

*TR-35 Fenichel, Robert R.
An Qn-Line System for Algebraic Manipulation,
Ph.D. Thesis, Appl. Math. (Harvard)
December 1966

AD 657-282

*TR-36 Martin, William A
Symbolic Mathematical Laboratory,
Ph D. Thesis, EE Dept.
January 1967

AD 657-283

1

PUBLICATIONS 123 PUBLICATIONS

*TR-37 Guzman-Arenas, Adolfo
Some Aspects of Pattern Recognition

by Computer,
S.M. Thesis, EE Dept.
February 1967

TR-38 Rosenberg, Ronald C, Daniel W.
Kennedy and Roger A. Humphrey

A Low-Cost Output Terminal For Time-
Shared Computers

March 1967

*TR-39 Forte, Allen
Syntax-Based Analytic Reading of

Musical Scores
April 1967

TR-40 Miller, James R.
On-Line Analysis for Social Scientists
May 1967

*TR-4! Coons, Steven A.
Surfaces for Computer-Aided Design

of Space Forms
June 1967

TR-42 Liu, Chung L, Gabriel D. Chang
and Richard E. Marks

Design and Implementation of a Table-
Driven Compiler

System
July 1967

AD 656-0^1

AD 662-027

AD 661-806

AD 668-009

AD 663-504

AD 668-960

■

PUBLICATIONS 124 PUBLICATIONS

TR-43 Wilde, Daniel U.
Program Analysis by Digital Computer,
Ph.D. Thesis, EE Dept.
August 1967

AD 662-224

TR-44 Gorry, G. Anthony
A System for Computer-Aided Diagnosis,
Ph.D. Thesis, Sloan School
September 1967

AD 662-665

TR-45

TR-46

Leal-Cantu, Nestor
On the Simulation of Dynamic Systems

with Lumped Parameters and Time Delays,
S.M. Thesis, ME Dept.
October 1967

Alsop, Joseph W.
A Canonic Translator,
S.B. Thesis, EE Dept.
November 1967

AD 663-502

AD 663-503

*TR-47 Moses, Joel
Symbolic Integration,
Ph.D. Thesis, Math. Dept.
December 1967

AD 662-666

TR-48 Jones, Malcolm M.
Incremental Simulation on a Time-

Shared Computer,
Ph.D. Thesis, Sloan School
January 1968

AD 662-225

PUBliCATIOIMS 125 PUBLICATIONS

TR-49 Luconi, Fred L

Asynchronous Computational Structures,
Ph.D Thesis, EE Dept.
February 1968

*TR-50 Denning, Peter J.
Resource Allocation in Multiprocess

Computer Systems,
Ph.D. Thesis, EE Dept.
May 1968

*TR-51 Charniak, Eugene
CARPS, A Program which Solves

Calculus Word Problems,
S.M. Thesis, EE Dept.
July 1968

TR-52 Deitel, Harvey M.
Absentee Computations in a Multi-Access

Computer System,
S.M. Thesis, EE Dept.
August 1968

*TR-53 Slutz, Donald R.
The Flow Graph Schemata Mode! of

Parallel Computation,
Ph.D. Thesis, EE Dept.
September 1968

TR-54 Grochow, Jerrold M.
The Graphic Display as an Aid in the

Monitoring of a Tine-Shared Computer
System,

S.M. Thesis, EE Dept.
October 1968

AD 667-602

AD 675-554

AD 673-670

AD 684-738

AD 683-393

AO 689-468

PUBLICATIONS 126 PUBLICATIONS

TR-55 Rappaport, Robert L
Implementing Multi-Process Primitives

in a Multiplexed Computer System,
S.M. Thesis, EE Dept.
November 1968

*TR-56 Thornhill, D. E., R. H. Stotz, D. T. Ross
and J. E. Ward (ESL-R-356)
An Integrated Hardware-Software System

for Computer Graphics in Time-Sharing
December 1968

*TR-57 Morris, James H
Lambda-Calculus Models of Programming

Languages,
Ph.D. Thesis, Sloan School
December 1958

AD 689-469

AD 685-202

AD 683-394

TR-58 Greenbaum, Howard J.
A Simulator of Multiple Interactive

Users to Drive e Time-Shared
Computer System,

S.M. Thesis, EE Dept.
January 1969

AD 686-988

*TR-59 Guzman, Adolfo
Computer Recognition of Three-

Dimensionai Objects in a Visual
Scene,

Ph.D. Thesis, EE Dept.
December 1968

AD 692-200

*TR-60 Ledgard, Henry F.
A Formal System for Defining the

Syntax and Semantics of Computer
La' uages,

Ph.D. Thesis, EE Dept.
April 1969

AD 689-305

- . -
1

PUBLICATIONS 127 PUBLICATIONS

TR-61 Baecker, Ronald M.
Interactive Computer-Mediated Animation,
Ph.D. Thesis, EE Dept.
June 1969

TR-62 Tillman, Coyt C, Jr. (ESL-R-395)
EPS: An Interactive System for

Solving Elliptic Boundary-Value
Problems with Facilities for Data
Manipulation and General-Purpose
Computation

June 1969

TR-63 Brackett, John W., Michael Hammer and Daniel
E. Thornhill
Case Study in Interactive Graphics

Programming: A Circuit Drawing
and Editing Program for Use with
a Storage-Tube Display Terminal

October 1969

*TR-64 Rodriguez, Jorge E. (ESL-R-398)
A Graph Model for Parallel Computations,
Sc.D. Thesis, EE Dept.
September 1969

»TR-65 DeRemer, Franklin L
Practical Translators for LR(k)

Languages,
Ph.D. Thesis, EE Dept.
October 1959

♦TR-66 Beyer, Wendell T
Recognition of Topological Invariants

by Iterative Arrays,
Ph.D. Thesis, Math. Dept.
October 1969

AD 690-887

AD 692-462

AD 699-930

AD 697-759

AD 699-501

AD 699-502

■

PUBLICATIONS 128 PUBLICATIONS

*TR-67 Vanderbilt, Dean H.
Controlled Information Sharing in

a Computer Utility,
Ph.D. Thesis, EE Dept.
October 1969

*TR-68 Selwyn, Lee L
Economies of Scale in Computer Use:

Initial Tests and Implications for
The Computer Utility,

Ph.D. Thesis, Sloan School
June 1970

tTR-69 Gertz, Jeffrey L
Hierarchical Associative Memories

for Parallel Computation,
F-h.D. Thesis, EE Dept.
June 1970

*TR-70 Fillat, Andrew I,, and Leslie A. Kraning
Generalized Organization of Large

Data-Bases: A Set-Theoretic
Approach to Relations,

S.B. & S.M. Thesis, EE Dept.
June 1970

*TR-71 Fiasconaro, James G.
A Computer-Controlled Graphical

Display Processor,
S.M. Thesis, EE Dept.
June 1970

TR-72 Patil, Suhas S.
Coordination of Asynchronous Events,
Sc. D. Thesis, EE Dept.
June 1970

AD 699-503

AD 710-011

AD 711-091

AD 711-060

AD 710-479

AD 711-763

L

PUBLICATIONS 129 PUBLICATIONS

*TR-73 Griffith, Arnold K.
Computer Recognition of Prismatic

Solids,
Ph.D. Thesis, Math. Dept.
August 1970

AD 712-069

TR-74 Edelberg, Murray
Integral Convex Polyhedra and an

Approach to Integralization,
Ph.D. Thesis, EE Dept.

August 1970

AD 712-070

TR-75 Hebalkar, Prakash G.
Deadlock-'ree Sharing of Resources

in Asynchronous Systems,
Sc.D. Thesis, EE Dept.
September 1970

AD 713-139

*TR-76 Winston, Patrick H.
Learning Structural Descriptions

from Examples,
Ph.D. Thesis, EE Dept.
September 1970

AD 713-988

TR-77 Haggerty, Joseph P.
Complexity Measures for Language

Recognition by Canonic Systems,
S.M. Thesis, EE Dept.
October 1970

AD 715-134

TR-78 Madnick, Stuart E.
Design Strategies for File Systems,
S.M. Thesis, EE Dept. & Sloan School
October 1970

AD 714-269

L

 ■■—-^ H

PUBLICATIONS ,qn
U PUBLICATIONS

TR-79 Horn, Berthold K

Shape from Shading: A Method for
Obtaining the Shape of a Smooth
Opaque Object from One View

Ph.D. Thesis, EE Dept
November 1 970

AD 717-336
TR-80 Clark, David D, Robert M. Graham,

Jerome H. Saltzer and Michael D. Schroeder
The Classroom Information and Computing

Service
January 1971

AD 717-857
TR-81 Banks, Edwin R.

Information Processing and Transmission
m Cellular Automata,

Ph.D. Thesis, ME Dept.
January 1971

AD 717-951
*TR-82 Krakauer, Lawrence J.

Computer Analyse of Visual Properties
of Curved Objects,

Ph.D. Thesis, EE Dept
May 1971

AD 723-647
TR-83 Lewm, Donald E

In-Process Manufacturing Quality
Control,

Ph.D. Thesis, Sloan School
January 1971

AD 720-098
»TR-84 Winograd, Terry

Procedures as a Representation for
Data in a Computer Program for
Understanding Natural Language,

Ph.D. Thesis, Math. Dept.
February 1971

AD 721-399

PUBLICATIONS 131 PUBLICATIONS

TR-85 Miller, Perry L

Automatic Creation of a Code Generator
from a Machine Description,

E.E. Degree, EE Dept.
May 1971

TR-86 Schell, Roger R.

Dynamic Reconfiguration in a Modular
Computer System,

Ph.D. Thesis, EE Dept.
June 1971

TR-87 Thomas, Robert H.

A Mode! for Process Representation
and Synthesis,

Ph.D. Thesis, EE Dept.
June 1971

TR-88 Welch, Terry A.

Bounds on Information Retrieval
Efficiency in Static File Structures,

Ph.D. Thesis, EE Dept.
June 1971

TR-89 Owens, Richard C, Jr.
Primary Access Control in Lar^e-

Scale Time-Shared Decision Systems,
S.M. Thesis, Sloan School
July 1971

TR-90 Lester, Bruce P.
Cost Analysis of Debugging Systems,
S.M. & SB. Thesis, EE Dept.
September 1 97'

AD 724-730

AD 725-859

AD 726-049

AD 725-429

AD 728-036

AD 730-521

L

"WH IDyWWKMWI«

PUBLICATIONS 132 PUBLICATIONS

*TR-91 Smoliar, Stephen W,
A Parallel Processing Model of

Musical Structures,
Ph.D. Thesis, Math. Dept.
September 1971

TR-92 Wang, Paul S.
Evaluation of Definite Integrals

by Symbolic Manipulation
Ph.D. Thesis, Math. Dept.
October 1971

TR-93 Greif, Irene Gloria
Induction in Proofs about Programs,
S.M. Thesis, EE Dept.
February 1972

TR-94 Hack, Michel Henri Theoaore
Analysis of Proauction Schemata

by Petri Nets,
S.M. Thesis, EE Dept.
February 1972

TR-95 Faternan, Richard J.
Essays in Algebraic Simplification
(A revision of a Harvard Ph.D. Thesis)
April 1972

TR-96 Manning, Frank

Autonomous Synchronous Counters Constructed Only of
J-K Flip-Flopi,

S.M. Thesis, EE Dept.
May 1972

AD 731-690

AD 732-005

AD 737-701

AD 740-320

AD 740-132

AD 744-030

PUBLICATIONS 133 PUBLICATIONS

TR-97 Vilfan, Bostjan
The Complexity of Finite Functions
Ph.D. Thesis, EE Dept.
March 1972

TR-98 Stockmeyer, Larry Joseph
Bounds on Polynomial Evaluation Algorithms
S.M, Thesis, EE Dept.
April 1972

TR-99 Lynch, Nancy Ann

Relativization of the Theory of Computational Complexity
Ph.D, Thesss, Math. Dept.
June 1972

TR-100 Mandl, Robert

Fu-ther Results on Hierarchies of Canonic Systems
S.M. Thesis, EE Dept.
June 1972

TR-101 Dennis, Jack B.

On the Design and Specification of a Common Base Languaee
June 1972 6 *

AD 739-678

AD 740-328

AD 744-032

AD 744-206

AD 744-207

TR-102 Hossley, Robert F.
Finite Tree Automata and
S.M. Thesis, EE Dept.
September 1972

-Automata

AD 749-367

TR-103 Sekino, Akira

Performance Evaluation of Multi-programmed Time-Shared
Computer Systems
Ph.D Thesis, EE Dept.
September 1972

AD 749-949

'

PUBLICATIONS 134 PUBLICATIONS

TR-104 Schroeder, Michael D.
Cooperation of Mutually Suspicious Subsystems

in a Computer Utility
Ph.D. Thesis, EE Dept.
September 1972

AD 750-173

TR-105 Smith, Burton J.
An Analysis of Sorting Networks
Sc.D. Thesis, EE Dept.
October 1972

AD 751-614

TR-106 Rackoff, Charles W
The Emptiness and Compiementation Problems

for Automata on Infinite Trees
S.M. Thesis, EE Dept.
January 1973

AD 756-248

*TR-107 Madmck, Stuart E.
Storage Hierarchy Systems
Ph.D. Thesis, EE Dept.
April 1973

AD 760-001

TR-108 Wand, Mitchell
Mathematical Foundations of Formal Language Theory
Ph.D. Thesis, Math. Dept.
December 1873

TR-109 Johnson, David S.
Near-Optimal Bin Packing Algorithms
Ph.D. Thesis, Math. Dept.
june 1973

PB 222-090

PUBLICATIONS 135 PUBLICATIONS

TR-110 Moil, Robert
Complexity Classes of Recursive Functions
Ph.D Thesis, Math. Dept.
June 1973

TR-I11 Linderman, John P.
Productivity in Parallel Computation Schemata
Ph D. Thesis, EE Dept.
December 1973

TR-112 Hawryszkiewycz, Igor T.
Semantics of Data Base Systems
Ph.D. Thesis, EE Dept.
December 1973

TR-113 Herrmann, Paul P
On Reducibility Among Combinatorial Problems
S.M. Thesis, Math. Dept.
December 1973

TR-114 Metcalfe, Robert M.
Packet Communication
Ph.D. Thesis, Applied Math., Harvard University
December 19right
AD 771-430

AD 767-730

PB226-159/AS

PB 226-061/AS

PB 226-157/AS

L

PUBLICATIONS 135
PUBLICATIONS

Project MAC Progress Report
to July 1964

Project MAC Progress Report
July 1964-July 1965

* Project MAC Progress Report
July 1965-July 1966

Project MAC Progress Report IV
July 1966-July 1967

Project MAC Progress Report V
July 1967-July 1968

Project MAC Progress Report Vl
July 1968-July 1969

Project MAC Progress Report Vll
July 1969-July 1970

Project MAC Progress Report Vlll
July 1970-July 1971

* Project MAC Progress Report IX
July 1971-July 1972

AD 465-088

AD 629-494

AD 648-346

AD 681-342

AD 687-770

AÜ 705-434

AD 732-767

AD 735-148

AD 756-689

PUBLICATIONS 137 PUBLICATIONS

Project MAC Progress Report X
July 1972-July 1973

AD 771-428

Copies of all MAC reports listed in Publications may be secured from the National
lJ„ rt ln

A
f°rmat,

u
on Serv,ce' Operat.ons Division, Springfield, Virginia, 22151. Prices

vary. The AD number must be supplied with the request.

* Out of print, may be obtained from NTIS (see above).

