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KK Aatraet (eontlnuad) 
register structure, djit« tvpes ar:,d operators, control operators'and iddr«»f cnlcu- 
lation.  These may be evaluated in terms of four types of costs:  execution time, 
memory space, cost of prosraminint',, and the cost of hardware.  The methods preconted 
are mostly concerned with time. 

A set of prograM, the subject set, was used to represent the ISP workload.  This 
was chosen primarily to investigate the variations in the results caused by var- 
iation of language, language implementation, algorithm, and programmer. 
Register structure is invesirtgated through the concept of a register life.  This 
is the period from when a register is loaded, until its last use before the next 
time it is loaded.  The methods provide data relevant to two problems: 
a) What is the optimal number of registers?  b) How desirable is generality of 
regi sters? 

An algorithm is presented which will find how many registers are live at each time 
during the program execution.  This algorithm is extended to compute an upper 
bound o': the Increase in time if the program were to run on an ISP with fewer 
registers.  This computation is based on temporarily storing registers that are 
live but unused for long periods, and on interleaving several lives In one register. 
Th3 thesis also presents a classification of the operations that may be performed 
on a register.  This Induces a classification of register lives which may be used 
to assess the need for generality. 
Most of the other methods presented apply equally to data operators, control 
operators, and addressing.  The main problems are: 
a) how to detect operators that are In the ISP, but not used sufficiently to just- 
ify them.  This is done by frequency counts and various derivatives therof.  Par- 
ticularly Interesting are the frequency results obtained by weighted summation over 
the whole subject sot.  b) How to detect operators that should be included in the ISP. 
Theis problem is approached by studying instruction sequences. 
'flic main problem in detecting sequences is to reduce the space and time require- 
ments of the analysis program.  This problem was solved by using a multi pass al- 
gorithm.  Baefi nnss pxtomis the tltitting sequences by one insUu^Liuu.  Aller each 
päöo, Smu^iaLic uiL Lhocis are used to discard insignificant sequences. 
The thesis proposes methods to study operand values, infor-mation used for control 
and addressing, information related to the addressing problem for tests, and infor- 
mation on use of indirection. 
The most inportant conclusions drawn about the validity of the methods are: The 
experimental results show good i"i-ernal consistency. Their trend is independent 
of algorithm and programming language. They agree well with previous knowledge. 
The dependence on language is most important for those languages that use a run 
time systoiji. The use of data operators and data structures depend on algorithm, 
the register usage does not. 
In a subject set for a full scale analysis, the data operators and data structures 
of the area of applications should be well represented.  The Individual subject 
programs should he large enough that dominating loops are avcided. 
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ABSTRACT 

The thesis develops and evaluates methods for evaluation of the architecture of instruction 

set processors (ISPs). (An ISP is the logical processor defined by the instruction set, 

independent of physical implementation). The methods are based on analyzing traces of 

program executions which contain information about every instruction executed. 

The main advantages of the methods are: 

a) They permit a very detailed study of ISP behaviour. 

b) They are not restricted to specific languages or processors. 

c) They are easily programmed. 

Methods and experimental results are presented for four aspects of ISP architecture: 

register structure, data types and operators, control operators and address calculation. 

These may be evaluated in terms of four types of costs: execution time, memory space, cost 

of programming, and the cost of hardware. The methods presented are mostly concerned 

with time. 

A set of programs, the subject set, was used to represent the ISP workload. This was 

chosen primarily to investigate the variations in the results caused by variation of language, 

language implementation, algorithm, and programmer. 

Register structure is investigated through the concept of a regisier life. This is the period 

from when a register is loaded, until its last use before the next time it is loaded. The 

methods provide data relevant to two problems: 

a) What is the optimal number of registers? 

b) How desirable is generality of registers? 

An algorithm is presented which will find how many registers are live at each time during the 

program execution. This algorithm is extended to compute an upper bound on the increase in 

time if the program were to run on an ISP with fewer registers. This computation is based 

on temporarily storing registers that are live but unused for long periods, and on 

interleaving several lives in one register. 

iC 
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The thesis also presents a classification of the operations that may be performed on a 

registet. This induces a classification of register lives which may be used tc assess the need 

for generality. 

Most of the other methods presented apply equally to data operators, control operators, and 

addressing.  The main problems ara: 

a) How to detect operators that are in the ISP, hut not used sufficiently to just.fy them. 

This is done by frequency counts and various derivatives thereof. Particularly 

interesting are the frequency results obtained by weighted summation over the whole 

subject set. 

b) How to detect operators that should be included in the ISP. This problem is 

approached by studying instruction sequences. 

The main problem in detecting sequences is to reduce the space and time reauirements of 

the analysis program. This problem was solved by using a multi pass algorithm. Each pass 

extends the existing sequences by one instruction. After each pass, heuristic methods are 

used to discard insignificant sequences. 

The thesis proposes methods to study operand values, information used for control and 

addressing, information related to the addressing problem for tests, and information on use of 

indirection. 

The most important contusions drawn about the validity of the methods are: The experimental 

results show good internal consistency. Their trend is independent o» algorithm and 

programming language. They agree well with previous knowledge. The dependence on 

language is most important for those languages that use a run time system. The use of data 

operators and data structures depend on algorithm, the register usage does not. 

In a subject set for a fHl scale analysis, the data operators and data structures of the area 

Of applications ihould be well represented. The individual subject programs should be large 

enough that dominating loops are avoided. 
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A NOTE ON TERMINOLOGY 

By an instruction set processor or 1S£ we mean the logical processor defined by the 

instruction set, as opposed to its p..,'sical implementation. Included in the ISP structure are 

such things as instruction formats, register structure, instruction mterpretatio ' algorithm 

(including address calculation), datatypes and their representation, etc. Computer families, 

like the IBM 360 and 370 series and the CDC 6000 series are examples of ISPc with several 

different physical implementations. 

Obviously the logical structure can not always be entirely divorced from its physical 

counterpart, nor is such a separation always desirable. There should be no doubt, in our 

further discussion, when we take the physical aspects into account. 
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We use the term ISP to mean the instruction set processor itself, not the notation for 

describing such processors defined by Bell and Newell ([BelC71]). As a concession to 

readers unfamiliar with it, we have tried to avoid using this notation. The associated 

terminolo^/, however, is used. 

Italict are used for words that are previously defined. Underlining is used for woras that 

are being defined, or otherwise stressed. 

In the tables of results, 0 means an exact zero, 0.000 or similar constructs mean less than 

1/2000 (in this case) but not exactly 0. 

Unless otherwise stated, the term "PDP-10" is used to mean the DECsystemlO ISP or the 

KA10 processor of that system, both described in [DEC71]. 
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CHAPTER 1 

INTRODUCTION 

Sptilel ir {ivet os Mensker av Gud 
i..«n Fanden har |i«t det den Feih 
at Ott aldri| kan VIM hvordan man atr ud 
naar man >kk* itr i at Sped 

Kumbel Kumball 

This thesis is concerned with the architecture o( Instruction Set Processors. It identifies the 

most important parameters of such architectures, their interdependence and their associated 

costs. It proceeds to present a collection of methods for evaluating some of these costs. 

Most of the effort of the thesis lies m developing these methods and studying their 

performance for one ISP and a set of programs (a subject s^l) running on that ISP. 

Our point of view is that of the programmer, or mayb* more correctly, that of the program 

being executed. The goal of our methods is to evaluate the features of ISPs in terms of their 

utility to the program (or programmer). Thus the questions that they will attempt to answer 

can be generalized tc: "How well does the programmer/compiler utilize the features made 

available to him through the instruction set? Which of these features should be removed or 

changed?  Which should be adoed?*' 

The methods are based on analyzing traces of programs being executed, where the trace 

contains information about every instruction executed by the program The analysis is 

performed by separate programs, and is thus completely disjoint from the writing of the 

trace. Most of the methods presented, and certainly the most important ones, have been 

implemented as programs and used in experiments. The cvperimental results agree well with 

previous Knowledge and with intuition, and are also consistent among themselves. Hence the 

experimental evidence supports the validity or the methods. 

The experimental results that we present are from experiments designed primarily to 

evaluate the methods, not the ISP that we have worked on. In particular the programs we 

have analyzed are small, and from a restricted application area. Hence, although irany of our 

results certainly permit valid conclusions about the ISP we have worked with1, our set of 

subject programs has been too restricted to provide the basis for a valid, full scale 

evaluation of a general purpose ISP. 

♦ The POP-10 

—m—fa _^. 



pin      uiKiau i» »1 fi.ii«iiiwm**wmm .i*iim*i.*mnwm!^minmmi,.ini>tMi}iim'.m        ^»•'"immmvi     i    """••vwmnmu.i >ummVii""io.umnimmmmmimi*w~*mr' 

INTRODXTION 

1.1    Overview of the thesis 

This introductory chapter presents an overview of the basic ideas d the methods. It then 

gives a survey of related work and relates our work to this. 

In Chapter 2 we present the types oi cost associated with implementing and using (or not 

using) ISP features, and discuss their rtlationship. 

Chapter 3 describes the major sources of prrors and variation that might influence our 

experimental results, and describes how we selected a set of subject programs to evaluate 

these influences. 

Chapters 4 through 7 contain the core of the thesis. In those chapters we analyze the 

instruction set processor, concentrating on those features for which we have developed 

methods of evaluation.  The order of presentation is: 

Chapter 4: Register structure 

Chapter 5; Data types and their operators 

Chapter 6: Control operators 

Chapter 7: Address calculation 

Each chapter is further divided into sections, each discussing a different feature or aspect of 

the chapter topic. For each feature, we discuss the motivation for having this feature, and 

the costs and tradeoffs associated with it. Our methods for estimating some of these costs 

are described, and experimental results are presented where applicable. For each method its 

limitations, sources of errors, and dependencies on the various sources of variation, as 

presented in Chapter 3, are discussed. 

For our analysis we rely heavily on. the multidimensional computer space presented by Bell 

and Newell [BelC71]. The dimensions of this space represent such things as intended 

application, technology, word size, etc., and possess several levels of detail. We have made 

this structure finer or coarser to suit our needs, and will use it freely below without further 

reference to its origin. 

The most important dimensions for classification of instructior. set processors are (with those 

most highly related on the same line): 

    '         ^ -" J"-" mtu-  i ■■'■-■ -■--'■—'•■-*■-'-'-- 
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INTRODUCTION 

Computer (system) function 

Processor function 

Memory accessing algorithm 

Addresses per instruction  - 

Word size   -   number base 

Control structures 

As stated in Section 3.1, we take the computer and processor functions to be given, i.e. 

we investigate general purpose computers with a bias towards scientific calculations.   The 

next four coordinates above each corresponds to one of the four chapters listed. 

-  primary memory size 

M.processoi state 

data types 

The last chapter summarizes the results and points out areas for future research. 

The thesis describes two processes more or less in parallel. One is the development of the 

methods and their use to evaluate ISP architecture in terms of the costs discussed in Chapter 

2. The other is the evaluation of the methods themselves, in terms of the framework 

described in Chapter 3. Both processes go on through Chapters A to 7, and conclude in 

Chapter 8. 

1.2    The   problem 

Several approaches may be used to improve the performance of computers. These are to a 

large extent orthogonal and are oft'jn combined, as exemplified by many current commercial 

designs. 

One approach is to use faster circuit technology for a brute force increase of speed, leaving 

the ISP architecture unchanged.  This approach is of no interest to the present discussion. 

Another approach involves radical changes in the organization of the central processor, in 

particular higher d. gree of parallelism on the task, Instruction or sub-instruction levels. This 

sometimes implies more or less drastic changes in the way programs are thought about and 

formulated, as exemplified by the CDC STAR [HolS71], ILLIAC-1V [BarG68], and C.mmp 

[WulW72] machines. In other cases, as in the CDC 6600 design [ThoJ64], parallelism is on 

the instruction level, retaining the classical instruction stream concept and at worst requiring 

local reformulation of the algorithms. Instruction parallelism is peripherally of interest to our 

discussion, (see Section 2.3). Parallelism on the task level is outside the scope of this 

thesis. 
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INTRODUCTION 

A third approach is to improve the architecture of the Instruction Set Processor (ISP), but 

staying within the classical Von Neumann type of machine. This approach is the background 

for our work A difficulty with it, but also a major reason for it, may be the interest ve-led 

in existing instruction sets. In such a case the problem may be how to extend it compatibly, 

or to find features tha.' may be re moved at a reasonable cost. Data provided by our methods 

may be used in solving this problem and also to some extent when designing new instruction 

sets from scratch. 

There is ample evidence that the ISP archite ture is indeed an important factor in processor 

efficiency and economy. Notable is a study by J. A. Stewart [SteJ.nd], comparing program 

sizes and execution speed o* three contemporary computers* having approximately the same 

word sizes" and instruction execution timesm. When moving benchmark programs between 

these computers, program sizes varied by factors from 1.3 to 2.7 and running time by factors 

up to 5tm. Some of this variation may be due to inferior compilers and other software. 

However, code sequences for commonly occuring constructs indicate that the problem to a 

large extent lies with the instruction set. 

/mother example is provided by the Burroughs B1700 computer, (see page 15). A 

considerable gain in ^pace and time is claimed by the designers of this computer system, 

achieved by designing instruction sets lailored to the higher level language used. 

Human intuition about program behavior is notoriously bad. This has been demonstrated by 

several investigators. One example is given by Knuth in his well known study of FORTRAN 

programs [KnuD70]. The personal experience of people who have observed some aspect of 

their programs' behavior, as reported in countless stories of computer folklore, tend to 

corroborate this. 

The cited studies clearly de-nonstrate a need for quantitative methods which can aid the ISP 

architect in deciding values for the design parameters of his ISP, and to justify his decisions. 

The data obtained should be as independent of technology as possible, so that they will not 

change as technology progresses. They can then be used to compare the cost of 

implementing a structure using different technological solutions, or to compare the cost and 

utility of different structures in the context of the available technologies. 

♦ The IBM 360/44, the SDS Sigma 5 and the POP-10. 

W 32 or 36 bits. 
m For commonly used instructions, factors ranged from 0.7 to 1.8 compared to the PDP-10. 

♦w The PDP-iO being the best 
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INTRODUCTION 

Ideally the behaviour of all programs executing on the ISP should be studied. This can be 

done only superficially, as by accounting data and similar information. For a detailed study 

one is forced to restrict oneself to a set of, hopefully representative, ^ibjeci prQSrams- 

Given an application area, and such a subject set to represent it, there are several methods 

of obtaining data on program behaviour. They may be classified as static or dynamic 

methods, depending on whether data are collected before or during execution. 

Static information can be collected manually, by compilers, or by some program analyzing the 

relocatable or absolute code. Such methods should be used to obtain the space cost (see 

Se:tion 2.3) of the code and static data structures, but can not be used to obtain 

infermation pertinent to the execution behavior of the subject program. For this purpose 

dynamic data are needed. Several methods of obtaining such data are described and 

compared in Section 1.2.1. We chose to use traces containing information on every 

instruction executed by the program. These traces are written on an appropriate storage 

medium, and are analyzed later by separate programs. The advantages of this method are 

that the exact sequence of events is preserved, and that a large amount of detail may be 

recorded.  We discuss the appropriateness of this choice in Section 2. 

As we present the methods, their intended domain is to evaluate the features of ISP 

architectijre. The particular ISP design parameters that we consider include the number and 

types of registers, the data types and their operators, control operators and their associated 

data structures, ?nd address calculation methods. Our methods fall mainly in two groups, one 

dealing with register structure, the other with data and control operators. 

Register structure is evaluated through the concept of "register lives". We present a method 

to detect such lives, and to find to what extent registers are simultaneously alive. From this 

we are able to find an upper bound on the increase in execution time which would follow if 

the number of physical registers were reduced. We also present a method to assess the 

need for generality of registers. 

Our methods for operators and data types are based on frequency counts of single operators 

and of sequences of operators. We present an algorithm for counting the occurrences of 

sequences of arbitrary length, including a set of pruning heuristics designed to detect which 

sequences are in some sense significant. Only occurrences of such sequences are counted; 

this is what makes our algorithm economically feasible. 

We expect the methods to provide useful evaluation of existing designs as well as suggest 

ML.IMMH 



""   i..>'«J I WLPHLBIINII,       ii I  I.IHMILUIWipil   Jll.iIJiMIP   .      ■!■.>,..      I  j|   iiw«iqif«Mpn«|i!|^i|(«*npiil.|ilii.Jliii|l.i«Uillllwnji i  »J, 11 I III. I  i  I ia^ 

INTRODXTION 

improvements in existing designs and give ideas and guidelines for new designs. Such new 

designs could be for general purpose processors, or for processors specially designed for 

some particular language or some special class of computations. Such a specialized 

application is defined more by the selection of subject programs to which we apply our 

methods than by the methodology as such. 

Our methods can also be applied to domains less related to ISP design. As will be seen they 

have obvious applications in compiler design and language design, and also in the art of 

tuning programs to maKe them more efficient. In particular we expect our method for 

register utilization to be of interest to these domains. 

As in any other inquiry, the answers to one set of questions raise new questions that one 

would like to answer. In some cases our methods will produce compact data bases which will 

allow certain kinds of simple questions to be answered after the original analysis, and at a 

much lower cost. 

1.2.1    Obtaining dynamic information 

Dynamic information can be collected by hardware monitors, by programs running in parallel 

with the subject program*, by code inserted into the subject program by the compiler, or as 

in our case, by running the subject program on an interpreter for the ISP in question. In any 

case, the data can be analyzed on the fly or saved for later analysis by special programs. 

Programs or hardware monitors may be used to sample the program counter and other 

pertinent parts Of the processor state. This can give us information about the (relative) 

frequencies of various events, such as the execution frequency of the different parts of the 

program. Considerable analysis of the subject program is required to obtain information 

about its local behavior. Information about the sequence of events, such as the behavior 

across programmed jumps, can not be reconstructed completely. Also no information about 

register content and operand values is available. Furthermore, in the case of sampling by 

program, the results are not exact, but depend on sampling rate and random events. 

Code inserted by the compiler is usually restricted to maintaining execution frequency counts 

♦ As can be done in several contemporary systems. 
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for each straightline segment of code, since collecting more extensive information this way 

would make code size prohibitive. Hence we again have the problem of reconstructing 

sequences of events. Considerable analysis is needed to obtain detailed information on the 

ISP level behavior of the program, since the primary data relates to the language level. We 

are furthermore restricted to analyzing programs wiitten in languages that have this feature 

in their compiler (or a suitable preprocessor), and v hich are available for recompilation. It 

also disturbs locality aspects of the program execution, it is, however, more accurate than 

sampling, since we are guaranteed that all executed parts of the code are represented in the 

results in proportion to their execution frequency. 

We chose to run the subject program using an nterpreter for the ISP under investigation, 

and collected information on each instruction as it was interpreted. This method is usually 

called instruction trauilg, or just tracing. The information was, in our case, written on 

magnetic tape. This method allows one to study not only the instruction stream as seen by 

the processor, including the path taken through sequences of programmed jumps, but also to 

follow operand and index values, indirect address chains etc., if so desired. 

Also, tracing is language and compiler independent. It can be applied to any subject program 

that can be brought into the format acceptable to the interpreter. In many cases (as in ours) 

the interpreter will be a relocatable module running on its own ISP, which will then accept 

the standard relocatable format for the subject program. Tor a microprogrammed processor, 

the microprogram may be extended to output the information desired (See page 16). 

A further advantage is that analysis is naturally separate from the data collection. Provided 

a rich enough trace is written, new types of analyses can be performed at any time without 

having to retrace the subject program. Since writing the trace is cheap compared to 

analysing it, this may at first sight seem to be of little value. It does, however, guarantee 

that the results of different analyses are consistent and independent of changes in the 

program traced, the compiler compiling it, and of random environmental influences. 

In terms of computer resources needed to apply the methods, tracing is probably more 

costly than the others. Tracing a program using our current interpreter1 increases running 

time by a factor of about 60, and the analysis programs are slow This is, however, of little 

importance. As will be seen, a considerable amount of detailed information can be obtained 

at a cost which is not prohibitive, and the writing of the analysis programs is straightforward 

compared to what it would be with the other methods, to obtain similarly detailed information. 

♦ Interpreting the PDP-10 on the PDP-10 
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To have sufficiently detailed information, we wrote at least 4 words of trace for each 

instruction executed. These were: The instruction word, the program counter and effective 

address, the contents of the accumulator and of the effective address. If indirection or byte 

access was used, two further words were written for each level of indirection, containing the 

address and contents of the bytepcinter or indirect word. Writing at 556 bpi and blocking 

1000 words to a tape record, this allowed us to trace about 600 000 instructions on a 2400 

ft. reel of tape. This corresponds to 1.5 - 2 seconds of CPU (PDP-10/KA10) time when 

executed at full speed. 

Most of our methods use only the instruction word. Hence time could be saved both while 

tracing and analyzing, by omitting the other information in the trace. This would alro permit 

more information to be written on each tape. In the interest of generality, however, we used 

the approach stated. 

An alternative to instruction by instruction tracing is the jump trace described by Alexander 

[AleW72], (see page 14). With this tracing method information is written to the trace only 

»t instructions which change the program counter. In between such points the program runs 

at full speed. This method is fast, but information on operands and register contents 

between tabulation points is lost. To fully realize the gain in speed, the compiler should 

know about the tracer and insert appropriate instructions to call it. Analysis is simplified if 

the compiler also outputs a file of descriptions of each straightlme segmen' of code. This 

dependence on the compiler restricts the set of subject programs that ran be analyzed, 

increases code size and disturbs locality, as discussed above. 

1.3    Restrictions in domain 

We will restrict ourselves to traces obtained by executing single programs on an interpreter 

for the ISP to be evaluated. This means that we bar oursehes from studying problems 

related to interrupt handling, detailed 1/Ü management, multiprogramming and other operating 

system issues. On the other hand it allows us to concentrate on the behavior of one single 

program during a continuous span of time, without being disturbed by interference from 

other programs. This permits a study of the local behavior of the subject program to any 

desired level of detail. From this point of view the invisibility of interrupts is a strength 

rather than a restriction. Also, a change in the execution speed of an operating system will 

imply s change in the behaviour of its environment. Hence m studies of operating system 

behaviour one should restrict oneself to information that can be collected on the fly. 
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A further advantage r. that the trace is reproducible and free from random perturbations 

caused by interrupts etc. This is not strictly true for programs that use shared resources 

(such as primary memory dynamically allocated to users) or resources that operate in parallel 

to the traced program. In such cases different code might be executed depending on 

resource status. 

Although -«-ost of our methods are applicable with minor modifications to most ISPs, we focus 

our attention on ISPs with a general register structure. We take this term in a wide sense, 

meaning roughly that a sizeable repertoire of operations is available uniformly over a vector 

of 4, 8 or more registers. Another characteristic is that the registers can be addressed from 

more than one field of the instruction word1. (See also Chapter 4). Lisniting cases ar* 2 or 

3 address machines on one hand and one address machines with no index registers on the 

other; we do not, however, consider these. 

Our experimental results are from the PDP-10, which has a vector of 16 extremely general 

registers, and a very general instruction set, particularly for control operations (a rich set of 

skips and jumps, several forms of subroutine jumps etc.). Hence this ISP is a good starting 

point fc: detection of unnecessary features. However, as will be seen, we have also been 

able to detect some deficiencies of this ISP that are not due to unnecessary generality. 

1.4    Related work 

Studies of frequency counts of instruction executions have been described by several 

authors. The best known is the Gibson mix, developed by Jack C. Gibson at IBM in 1959. 

Gibson divided the instructions of the IBM 704 and 650 into 13 classes and counted how 

many instructions were executed from each class. His sample size was 17 programs, 

approximately 9 million instructions. The results are described in [GibJ70]j we tabulate them 

in Figure 5-3. 

Confer [GonR69] has compared the Gibson mix and the UMASS mix ♦♦, using essentially the 

same classification and tracing 15 million instructions on the CDC 3600. His results correlate 

well with Gibson's; they are tabulated in Figure 5-3. 

♦ Accumulator field, index field, memory address field, base reg«ster field etc. 

** UMASS - University of Massachusetts 

mm m—m 
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The substance of these results is that LOADs and STORl's account for about 307, of the 

instructions executed, branches for 167. to 387., index manipulations 137. to 187., arithmetic 37. 

to 197..  The results depend both on the ISP and the subject set. 

Other similar mixes and experiments are reported by Arbuckle [ArbR56], Connors, Mercer 

and Sorlini [ConW70], Raichelson and Collins [RaiE66], and Herbst, Metropolis and Wells 

[HerE55].  The latter is the earliest report known to the author. 

The emphasis of the above studies was mostly on evaluation of the raw processing capacity 

of the central processor. Little emphasis was made on improvements in the instruction 

repertoire or central processor structure. 

Foster, Confer and Riseman, [FosC71a] have gone one step further, by starting to investigate 

the effects of reducing the instruction set. They report their experience with two measures 

of instruction set utilization. Both of these measures are equally applicable to static and 

dynamic instruction counts. The static measures give an estimate of the space cost (Section 

2.3) and the dynamic measures estimate the time cost (Section 2.2) associated v ith 

using the instruction set. The examples of [FosC71a] use the CDC 3600. Our u&e of "**« 

measures is described in Section 5.1. 

The first of their measures is the undiluted information-theoretic measure of information 

content: 

T 
I - - Z  pi * log2(pl) 

N 
where 

pi is the probability of using the i'th opcode 

T is the total number  of different opcodes 

log2 is the logarithm base 2 

Intuitively, the interpretation of I is the average number of bits of information conveyed by 

each opcode. The value of this measure is doubtful, particularly with a fixed wordlength, 

since the space that could be saved in each instruction word by using the encoding depends 

on the frequency of occurrence of the instruction in question, and has no relation to its need 

for operand addressing capability etc. Furthermore, optimal encoding with respect to it 

implies variable length encoding of the opcodes and a correspondingly more complicated 

^—!-__-—__—, ^..JU---. ~. ^   .  . _.  . --M—. 
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decoder*. 

The other measure they propose is a function computed as follows: Order the operation 

cedes by frequency of occurrence. Let C, be the number of occurrences of the i'th opcode 

in this ordering, (C, > C„i for ail a Let P be the total number of instructions in the sample, 

and T the nijmbt»' of different opcodes, as before.  The FGR function is then computed as: 

N 
fosm" i - i/p z c, 

1=1 

(1 < N< T) 

This function measures the effort necessary to recode or run the original program on a 

central processor with a smaller instruction set. Indeed FGR(IM) is that fraction of the 

instructions which would have to be recoded (static) or interpreted (dynamic), were the 

instruction set reduced to the N most commonly occurring instructions. For some of these 

the recoding might be impossible, this is not taken into account. 

Substituting execution tirrvjs for C, and P above, and ordering the C, accordingly, we obtain a 

measure of the fraction of execution time accounted for by the omitted instructions, in this 

case the least timeconsuming ones. 

These measures were used on a set of CDC 3600 programs. In the dynamic case the 

subOperation field of the opcodes was disregarded. Also, a different sample was used for 

the static results than for the dynamic ones. The static I varied from 3.59 to 5.36 for the 

different programs, with a theoretical maximum of 7.16. The dynamic I varied from 3.94 to 

4.64, with a theoretical maximum of 6.00. FGR(32) vanec from 0 to about 0.2 in the static 

case, and from 1 to 0.06 in the dynamic case. This shows that a reduction of the instruction 

set to 32 instructions would cat ie some increase in program space, but that the instructions 

that must be interpreted are ones that are executed rarely. 

A related study is by Foster and Confer [FosC71b]. They investigated the effect of 

interpreting opcodes differently depending on the recent history of the ISP. Thus on a one 

accumulator machine the sequence LOAD ADD occurs often, LOAD LOAD hardly ever. Hence 

the LOAD and ADD instructions might use the same encoding in the instruction word, provided 

the LOAD instruction changes the state of the decoder. A "set state" instruction provides the 

necessary escape mechanism.   The intended application is to combine a large instruction set 

♦ An   approximation  to  this encoding was used with the  Burroughs  B1700.    See  further 

discussion on page 15. 

mmm . 
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with a roall opcode field, thus freeing instruction word space for addressing. They verify 

their idea by an analysis of some CDC 3600 programs. 

The results show that over 677. of the instructions could be executed without use of the 

«scape mechanism, even if the opcode field was reduced to 3 bits. For a 5 bit field, 957, of 

the instructions could be executed directly. By circumventing some machine specific 

properties in their data, the result for c bits was improved to 74Z. 

Riseman and Foster [RisE72] [FosC72] have used traces to study the effect of data 

dependencies on the execution speed of parallell processors. They postulate a machine 

where only the execution of the instructions take time; instruction fetch and dispatch, and 

data fetch and store, take no time. Further there is an infinite supply of registers and 

functional units so that no instruction is held up for the lack of hardware. The instruction set 

is as for a CDC 3600, and traces from this machine were used in their experiments. 

There are two restrictions which prevent instructions from being executed: 

a) Their operands have not yet been computed. 

b) The exact instruction to execute can not be determined until some condition (jump) 

has been resolved. 

Restriction b) can be circumvented by assuming a nondetermmistic processor, where both 

paths of the program are executed in parallell until the condition is resolved. This 

nondeterminacy can be carried to infinite depth, or restricted to a maximum of N unresolved 

conditions. 

The experiments show an average speedup by a factor of 1.72 for N - 0, 2.72 for N - I, 

7.21 for N - 8, and 24.4 for N - 128. For infinite nondeterminacy (N - oo) the speedup was 

by a factor of 51.2. Similar results were found by Tjaden and Flynn [TjaG71]. The results 

show that conditional jumps, and their dependency on calculated results, is a severe 

restriction on execution speed. 

Several investigators have used traces to study addressing patterns, with the object of 

determining optimal design of paging systems and cache memories. We mention Coffman and 

Varian [CofE68]. Gibson [GibD67], Hatfield [HatD72j, Kaplan [KapK71] (see below), Lewis and 

Yue [LewP71], and Seligman [SelL.nd]. 

A few authors have described more comprehensive studies based on traces: 

MBMM 
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At IBM, Muiphey and Wade [MurJ70] used traces to evaluate the performance o( the IBM 

360/195. Traces were made of programs believed to be representative of the 195 workload, 

as they were executed on other 360 models. Detailed studies were made of the behavior of 

these programs in a 195 simulator. The emphasis of this study was on design validation and 

performance prediction. Particular studies were made of the efficiency of the mechanism for 

parallel execution of different instructions. 

Winder at RCA [WinR71], [WinR73]. describes the nethod of tracing used on the RCA Spectra 

70/45 and also in some detail the various studies performed. These include cache system 

studies [KapK71], paging analysis, miscellaneous program statistics emphasizing I/O, 

branching and conditions, indexing, and operand length for variable length operands. A 

SIMSCRIPT simulator driven by the trace was used to investigate architectural variants liKe 

memory banking, cache parameters, instruction lookahead, multiprocessing etc. 

Wortman [WorD72] has designed an experimental technique to evaluate computer 

architecture, in particular its suitability for particular programming languages. It is based on 

collecting static and dynamic statistics on the use of language fragments. Language 

fragments are constituents of program code which map into non-overlapping segments of 

object programs, and which do not contain data dependent loops. As a case study Woriman 

chose a PL/I dialect called Student PL, and designed a stack oriented architecture suitable for 

this language. An interpreter for the architecture was written, and also a compiler to 

translate Student PL programs into its machine language. For his subject set he chose about 

1000 small student programs from an undergraduate programming course. Three kinds of 

statistics were observed: 

Source program statistics, essentially the number of application of each production during 

syntax analysis. 

Object  program statistics, i.e. frequencies of occurrences of  the  machine instructions 

(language fragments), and pairs and triples of these in the generated code. 

Run time statistics, i.e. frequencies of execution for the individual machine instructions. 

Based on these statistics he made several improvements in the instruction set, and found 

reductions of about 507 in each of program storage space, data and instruction accesses, and 

number of bits accessed.   The most significant improvements were: 

Information relating object instructions to source lines was moved to secondary storage. 
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The data accessing method was improved. 

An imnfdiate type instruction was introduced to move constants to the stack. (727, of 

the constants found were integer constants, and 98.87, of these could be represented in 

6 bits). 

The handling of conditionals and "builtin" functions was improved. 

By refining his language fragments Wortman also was able to compare his machine design 

with the IBM 360 as a vehicle for PL/I. 

Alexander [AleW72] has made a study similar to Wortmans, but for m excisting ISP (The IBM 

360) and a language (XPL [McKW70]) used mostly for compiler writing. His main goal was to 

investigate how the features of the XPL language were used, and what requirements they 

posed on the ISP. He presents statistics on source programs, object programs and run time 

behaviour. These were obtained by modifying the XPL compiler (XCOM), and by full trrcing 

and jump tracing. His subject set was slightly different for the different analyse?, it 

consisted of XCOM, several compilers written for undergraduate and graduate courses, ond 

his own analysis programs.  His results can be summarized as: 

Floating point and decimal arithmetic are not used by XPL, this leaves 91 instructions that 

can potentially be generated by XCOM Of these only 47 were actually generated. 10 of 

these account for 847. of the instructions executed. Tne 10 most generated instructions 

account for 857. of the total number of generated instructions, this set intersects the 

previous set of 10 by 9 instructions. 

XCOM allocates 3 registers as accumulators. The first of these was named in 477. of the 

accumulator references (as opposed to index or base register references). The second 

was named in 267, and the third in 117. of the accumulator references. Hence 

expressions rarely are complicated enough that many accumulators are needed. The 

register used for indt xed access accounts for 117. of the accumulator references. 

427. Of the references to index or base registers were to register 0, i.e. no indexing or 

base was used. That is: almost half of the addresses were unmodified. 87. were used in 

array accessing, 317. were used to access statically allocated data (as base). 7 fixed 

registers were allocated by XCOM for this latter purpose. 
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Most of the branches were to locations close to the branching instruction. Alexander 

suggests that the branch instruction of the 360 could be modified to address relative to 

the current program counter, and the 4 bits now used for base register addressing could 

instead be used to augment the written address field, to make it 16 bits long. Such an 

in«tructior would suffice for 997. of all brmches. 5K bytes of load instructions would be 

eliminated, saving 157 of the program space. 

If opcodes were conditionally decoded, as proposed by Foster and Gonter [FosC71b] (see 

above), 16.2Z of the program space could be saved by an encoding of the opcode in 3 

bits.   This result pertains to one particular subject program. 

Alexander extensively compares his dynamic and static results, and comments upon the 

significance to constructs used or not used within loops, and on special properties of the XPL 

language and system. He also advocates the use of program profiles, and in this context 

points out the need for string manipulating instructions in compilers. 

Studies Of architecture based on tracing have probably also been performed by computer 

manufacturers. Such work is usually considered "company private", and is not published, but 

a few have been: The work by Murphey and Wade [MurJ70], and that by Connors, Mercer 

and Sorlini [ConW70]l all at IBM, and also that by Winder [WinR71], [WinR73] and Kaplan 

[KapK71] at RCA.   All of these are mentioned above. 

A particularly interesting machine design is the Burroughs B1700, [WilW72a], [WilW72b]. In 

this system microcoded interpreters are provided for several "S-languages", each of them 

corresponds roughly in level to a classical machine language, but is tailored to fit the needs 

of a particular higher level language. The microprograms address memory by bit position, 

and desired access width is supplied on each access. Hence the processor gains effu '"»ncy 

primarily in two ways: 

i 

a) Time efficiency is gamed by using an S-language tailored to the application (higher 

level language), hence having essentially the "right instructions" for the task at hand. 

Each instruction is usually more complex than most classical machine instructions. 

b) Space efficiency is gained by encoding the S-language instructions in different 

formats depending on the need for space to represent the feature in question, and its 

frequency of use. 

mim mmm 
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One such S-language is SDL, particularly suited to systems programming. The opcodes of this 

language are of 3 lengths, 4. 6 or 10 bits, whereas a fixed length encoding would require 8 

bits. By using this €P;oding, space is gained at the cost of an increased decoding time. The 

two encodings men»..ned were compared to the Huffman encoding, which is space optimal. 

The following results   /ere found: 

Time lost: 

2.67. 

17.27. 

Hence the chosen encoding is almost as space efficient as the Huffman encoding, and almost 

as time efficient as the fixed field encoding. 

Encoding: Space saved 

Fixed 8 bits 07, 

SDL 4, 6, 10 bits 397. 

Huffman code 437. 

Similarly the SDL addresses were encoded using 8 different formats and a 3 bit field to 

distinguish them, giving a 387. saving in memory space compared to the 4 byte addresses 

needed on a byte oriented machine with fixed length addresses spanning the same address 

space. 

For FORTRAN and COBOL programs, using the appropriate S-language, the reduction in 

program space was found to be 407. - 707. over the IBM 360 and the Burroughs B3500. 

Furthermore, access width can be a parameter to the S-language interpreter, allowing the 

compiler to generate code more suited to the dvtual problem and also making possible a 

planned "Dial a precision FORTRAN". 

Wirth ([WirlV^]) has given a qualitative review of a particular ISP, the CDC 6000 series, from 

the viewpoint of programming ease and error detection. In particular he points out 

deficiencies of the data representations and operator implementations that maKe the 

detection of errors, and hence the juarantee of a correct result, impossible or at best 

uneconomical. He also points out the lack of an instruction for calling reentrant programs. 

His experience is from the implemeitation of PASCAL [WirN71] for this ISP, but his 

arguments apply equally well to all language implementations where security and error 

detection is a v' sign goal, and to al! uses of recursion or reentrancy. 

For microprogrammed processors, the microprocrammed interpreter can be extended to 

collect execution time data. This approach is advocated by Saal and Shustek [SaaH72]. For 

simple types of data this allows the subject program to run at almost full speed. However, 

full tracing by microprogram will be limited in speed by the device recording the trace. 

mmm t^m——m mmmtt 
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Since analysis time is considerably larger than trace time in any case, the advantage is 

doubtful. The authors discuss various aspects of implementing such techniques, and present 

data relating to opcode utilization and frequent instruction pairs. These results differ little 

from those of Alexander iAleW72] and Foster et. al. [FosC71b]. 

We have previously identified the most important dimensions of ISP architecture to be: 

register structure, data /pes and operators, control operators and structures, and address 

calculation. 

Of these, the operator dimensions have been relatively well explored in the works cited. 

This applies in particular to studies of the utilities of existing operators and possibilities for 

more efficient encodings. The problem of finding desirable but non existing opcodes has 

been touched upon by Alexander and Wortrnan, but needs further work. 

Other properties of control have been partially explored, particularly locality of jumps 

(Alexander), and the use of test instructions and conditions (Alexander, Winder). Locality 

properties of address streams have been studied in connection with virtual memories and 

caches, but the data structuring aspect is largely unexplored. Register structure has barely 

been touched (Alexander). 

1.4.1    Contributions of the thesis 

Our main contribution to this field of work is the methods for register utility and generality. 

We also break new ground in our work on instruction sequences. Previously Alexander (see 

page 14) has presented dynamic counts of sequences, but only of length up to 3. Our 

present program can accumulate counts for sequences of lengths up to 20*. Our pruning 

heuristics make the accumulation of counts for sequences of this lenght economically feasible. 

In fact we point out an improvement to our algorithm which will make the accumulation of 

sequences of this length and longer much more efficient than with our present program. 

Finally our approach is general (see Section 1.2.1), we present results spanning algorithms 

+  This  limit  was  arbitrarily set  because we believed longer  sequences would  not   be  of 

interest.   The method can handle sequences of arbitrary length. 
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coded in several languages and by different programmers, and we try to evaluate the 

influence of these factors on our results. Earlier work has in some cases ([AleW72)] and 

[WorD72]) been confined by methodology and other considerations to one language. In other 

cases the selection of subject programs and goals have been more restricted. 

We can not leave this section without mentioning the influence on our work by that of Foster, 

Gonter and Riseman [FosC71a]. The FGR function introduces some very simple and relevant 

measures ot the utility of ISP features, namely the change in execution time or instruction 

count resulting from a change in the ISP. Foster et. al. applied this idea to opcode utilisation. 

Much of our work consists of applying it to other features of ISP architecture. 

■ -^ - ■•—' '- ^ .. -,        -L ,-...,_._■.. 
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CHAPTER 2 

COSTS 

In this chapter we discuss the various basic cost measures pertaining to ISP features. After 

some introductory remarks we list four types of cost. For each of these we discuss its 

definition and other relevant issues, such as the way or ways we measure it and their 

related inaccuracies, other ways to measure it, and its relation to the other types of costs. 

As a necessary introduction to this discussion we will make some comments on the instruction 

word and issues related to it.   This follows after the introductory remarks. 

The four types of cost we propose are general. We believe they apply to all ISP structures, 

not only those with general registers. The units in which we measure might, however, vary 

with the structure of the processor in question. This is true even within the class of general 

register processors. 

Computer resources are allocated in units of space and time: space m memory units, time in 

processing, control and communication units. Since some memory must be in use whenever 

the central processor is in use, the product of space and time is a relevant measure of cost 

for the usage of memory units and time alone for other units. These are the basic units for 

measuring the costs incurred by running the program on the machine. Relating these to 

economic terms requires knowledge of the actual cost of the units of the computer, and of 

the operating expenses. In addition, the cost of producing the program (designing, coding 

and debugging), in terms of human effort and machine resources, depends on a good ISP 

design and may be highly relevant. 

Since we are concerned with the ISP we will disregard costs related to secondary memory 

except insofar as they are expressed by the costs relating to primary memory. Similarly the 

basic instructions for 1/0 are not part of the ISP seen by the user (See Section 1.3), hence 

we also disregard I/O costs and the costs of control and communication units. Thf latter are 

to some extent expressed by the cost of the central processor. The time cost (see below) 

associated wth I/O and secondary memory usage is considered independent of and irrelevant 

to ISP architecture, and will be disregarded except where explicitly noted otherwise. 

„MMMMM -MBMSMMM 
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Motivated by the above remarks and by further discussion below, we will regard the costs of 

having or lacking a given feature in an ISP as falling in 4 basic categories: 

1) Execution time (time cost) 

2) Memory space (space cost) 

3) Programming effort (programming cost) 

4) Hardware to implement     J 'eature (hardware cost). 

This list is roughly in order of importance. Our methods will be almost solely concerned with 

time cost, but the Others will be kept in mind and mentioned when relevant. 

The weighing and trading off of these costs is the concern of the 1SF designer and falls 

outside the scope of this thesis. Our goal is to provide methods for computing them, and in 

particular the time cost, exactly or approximately, as seems relevant and possible for the 

feature in question. 

2.1    The role of the instruction word 

The instruction word occupies a central position in any ISP design, being the quantum in 

terms of which the ISP forces the programmer to express his algorithm. Hence it brings 

together all the issues of ISP design and must be a focal point for our research. 

Some different views on how the instruction word can be organized are represented by the 

CDC 6000 series, the POP-10 and the IBM 360 series. The 6000s have 60 bit words and 

about 70 different user instructions packed 2 to 4 to a word; the PDP-10 has 36 bit words 

and about 420 different user instructions each filling one word; the 360 has about 130 user 

instructions of 16, 32 or 48 bits, .lie major data formats are 16 or 32 bits, memory fetch 

width is 8, 16, 32 or 64 bits depending on the model. Good performance is attempted in the 

first case by fast instruction issuance, in the others by powerful instruction sets. 

We now present some of the issues relating to the instruction word organization in a top 

down order, neither implying any order of importance nor a sequence in which design 

decisions should be made As is exemplified by the above designs, there is no generally 

accepted way of resolving these issues In fact, the solution is often strongly influenced by 

historical or ma.keting constraints, or other external considerations. In particular the 

introduction of the 8 bit byte by IBM with the 360 series in 1964 has had a standardizing 

influence. 

MM>m wii 
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The first issue is the size of the instruction word. The cost and power ranges, and in 

parttcuiar the addressing space, planned for a new processor, will to a large extent influence 

what features need to be accommodated in the instruction word. Its size is also influenced 

by issues not relating to the instruction word as such, particularly the desired accuracy of 

the arithmetic and other data types and the memory fetch width. 

A short instruction word implies at first sight a small space cost. Similarly a short instruction 

word may imply reauced instruction fetch time, particularly if more than one instruction is 

packed into one memory word. A slighüy shorter decoding time might also result from a 

short instruction word. However, the advantage of a short instruction word turns mto a 

disadvantage when the set of available features becomes too poor. At some point commonly 

used operations have to be expressed as a sequence of two or more instructions, and both 

time cost and space cost rise». Obviously there is an optimum for both space and time, not 

necessarily the same, and probably not very well defined". There is also an associated 

hardware cost, usually increasing with instruction word size. 

To simplify the discussion we will from now on assume that the word length is given, and one 

and the same for instructions and for integer and real operands. On this assumption we 

consider the problem of which of the desirable features can be represented within the 

instruction word. This represents little limitation on the scope of our methods. Data 

obtained by them are certainly vaM arguments in discussions of instruction word size, and 

the changes in the methods needed to handle more esoteric cases of mixed wordlengths are 

mostly trivial. 

The next issue brought up is the division of the instruction word into fields. Each field 

represents some r.n.hilitv of the ISP, such as operator selection, addressing mode selection, 

operand selection etc. Which capabilities to include is an open question, indirect addressing 

and base register addressing being cases in poir.t. 

Having decided which capabilities are wanted, thcrs is the question of the size of each field, 

and which functions to include for each capability. 

Knowing the relative values of the possible functions in a capability and given its field size. 

♦ A similar argument holds for data word lengths, in that case it is the need for accuracy 

which pushes towards longer words. 

M In particular this depends on the application. 
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one may select a set of functions for it. Some idea of the relative merits of functions from 

different capabilities is necessary to decide on the field sizes, or on the desirability of having 

a given capability at all. Note that a function becomes particularly expensive when the field 

capacity» of that capability is about to be exhausted. This means trading it against a 

considerable reduction in some other capability or against an increase in the instruction word 

size. In fact, the cost paid is usually that of doubling1* the n Tiber of functions. Once this 

cost has been paid, however, functions that would not otherwise have been considered, can 

be implemented cheaply. 

The goal of our methods is to estimate the relative costs and usefulness of capabilities and 

their functions. They thus give exactly the Kind of information that sheds light on the 

problems of how to allocate the mstru: ion word space to capabilities and functions. 

The allocation of functions to capabilities is not unique. Also structural changes in one 

capability may imply significant changes in another. One example is provided by two address 

ISPs. When both operands can be accessed by a full address, the traditional LOAD and 

STORE instructions are subsumed by a MOVE instruction. Another example is the handling of 

I/O devices. Commonly there are instructions like "connect", "send function" ano "read 

status" to control these. On the PDP-11 this is not sc The relevant registers of the 

external devices have been allocated functions in the addressing capability and the above 

instructions are subsumed under the MOVE instruction. Yet another example is provided by 

general registers. If these are part of the addressing space, register to register functions 

are not needed in the operation capability, they are subsumed under the memory to register 

functions. 

2.2    Time cost 

The primary time cost is the time the central processor spends executing the- program. For 

reasons explained in Section 1.3 the primary time cost excludes time soe.it in interrupt 

handling, whether the program's own or others'. Unless specifically mentioned, the term timfi 

cost is used to mean primary time cost. 

HMBI 

* Usually some power of two. 
M Assuming a binary instruction word. 
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Execution time can not be measured directly by our methods. We propose three 

approximations: 

One is the instruction CfiUüL i.e. the number of instructions executed. This suffers from the 

inaccuracy caused by assuming that all instructions execute in the same time. This is further 

discussed below. Modifications could be made depending on addresmg mode (particularly 

indirection) and other features. This was not done in our case. The major advantage of this 

measure is the ease with which it is computed, and its independence of technology1 and 

processor implementation. The instruction count also has another quality: In addition to 

being a crude measure of time, it is a precise measure of the number of opportunities there 

have been to express something in the program. 

For many designs, the memory reference caunt. may be more appropriate. The PDP-11 is a 

good example of this, since for the same data operation the number of memory accesses 

varies depending on addressing mode. In case of the ADD instruction the number of memory 

accesses may thus vary between 1 and 7. 

If there is no overlapping between instruction executions, a more accurate measure is the 

computed time, that is the sum of the execution times of all instructions executed. Even this 

is inaccurate since execution times of many instructions depend on operand values or lengths 

and also on hardware, like primary memory cycle time. The latter may vary even within the 

same run if the job is swapped. However, the time obtained in this way is probably as 

accurate as that used for accounting and other purposes by operating systems, where 

operating system overhead and interrupt handling on behalf of other jobs often is a major 

source of errors. 

We may gel an indication of the inaccuracy of the instruction count as a me'sure of the time 

cost by comparing it with ihe computed time. This is done in Figure 3-4, which displays 

the average instruction execution rate for our subject set m uni*s of thousand instructions 

per second of computed time (kips - kilo instructions per second). As the table shows, this 

rate varies from 210 to 417 kips, with an average of 324 kips and a standard deviation of 

63.    Hence  the instruction count may vary by a factor of 2 for  programs of  the same 

f A faster floating point unit would make a great difference in the execution time for many 

programs, but not in the instruction count. In one of our subject programs (Aitken E, see 

Section 3.2.2), 237. of the executed instructions, consuming 54Z of the computed time, 

are for floating point arithmetic. 

M^üaBMMMaiMMtt^   _ ._  ^~_* 
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computed time. Assuming the computed time to be close to correct, we may conclude that 

the instruction count is not overly accurate as a measure of time. We still use it. however, 

for the stated reasons. 

For a central processor where there is overlap between instruction executions the 

instruction court may be suffic.ent. Alternatively an interpreter for the instruct.on 

dispatching mechanism may be programmed and an appropriate version of computed time 

obtained. The choice depends on whether one wants to evaluate the mstruction set as such. 

or the processor that executes it. Such an interpreter might introduce add.t.onal 

inaccuracies. 

The relations between the time and space costs through the instruction word are described 

in Section 2.1. The tradeoff d.scussed there applies to all capabilities and functions of the 

instruction word, and also to the implied data types. 

The ^mndarv tima tost is the time spent in operating systems funct.ons on behalf of the 

running job. This can be measured by clock or by using operating system routines as the 

subject programs of the analys.s. This cost is influenced by the space cost as discussed m 

Section 2.3. 

2.3    Space cost 

This is the cost of the primary memory that a program occupies for code and data (static and 

dynamic). The importance of this cost follows from the relatively high cost of primary 

memory, which is commonly an expensive part of a computer installation*. 

Contributing to the space cost is instruct.on space and data space. Given an application ooth 

of these will vary with the ISP. in particular with the ava.lable data types and the.r 

operators. Variations in register structure and control operators will influence program 

space and space for temporary storage. 

♦ With the current trend towards semiconductor memories, the technology is the same for the 

memory and the processor. Since the memory .s usually much larger (in gates), memory cost 

will continue to be high until another technology becomes economical. 

L. ■ ■ ■  -■* - i^M 
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Space cost is best measured by static methods or by estimation based on miscellaneous 

assumptions as relevant in the particular case. The data space for dynamic data structures 

can not be measured by static means, 't can be measured by dynamic methods, but we 

present no method for this at the present time. 

For static methods one may rely on the compiler in question to produce the statistics, or a 

special program may analyze core images, relocatable programs or some similar general form 

of the program. The first approach suffers from lack of generality as discussed in Section 

1.2.1. The second may have inaccuracies due to the difficulty of distinguishing instruction 

words from data, in particular constants and descriptors. This inaccuracy depends on the 

central processor structure, it will be small or nonexistent on a central processor where code 

and data are completely separated, as on the HP 3000. 

Space cost is measured in bits, alternatively in words. Whenever we estimate this cost there 

will be inaccuracies inherent in the particular assumptions made. These will be discussed in 

each case. 

Memory access width relates the space and time costs by forcing unnecessary space to be 

used rather than increasing the time cost. Memory access width is again influenced by the 

amount of space necessary for representing data types. Dynamic methods may be desirable 

here, to determine the space necessary to represent the actual significance of numerical 

operands (See Section 5.5). 

Also space cost relates to time cost through the instruction word as discussed in Section 2.1. 

For a computer with a dynamic memory management (paging, overlaying) there will be an 

associated secondary time cost for this function which usually increases with the space cost. 

In a multiprogrammed situation there will also be a relation to secondary time cost through 

central processor idle time whenever the program is difficult to multiprogram. This also 

increases with the space cost. 

2.4    Programming cost 

This cost may be broken down as cost of design and coding, debugging and maintenance. 

Costs incurred by errors during production runs may also be included. Each of these is often 

a significant fraction of the costs associated with a program.   The most important way of 

mm. .  
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reducing the programming cost is to write programs in high level languages. However, for 

efficiency reasons, and in order to gam access to machine features, much coding still taKes 

place in assembly languages. Similarly most debugging is done by means of assembler 

oriented debuggers, or at least requires good knowledge of the representation of the 

program in ISP terms. Hence a gocu ISP architecture contributes to reducing this cost in 

several ways: 

By supporting high level languages and other good programming methodologies. This 

includes techniques for program factorization, like subroutines, coroutines and separately 

compiled modules, which should be well supported by the ISP. Also important are natural 

representations for a rich set of other control operators and their associated data 

structures. 

By supporting program security. A program should be protected against its own errors 

as well as those of other programs. The instruction set should not encourage the 

programmer to make unnecessary mistakes, and the ISP should permit inconsistencies to 

be detected during execution*. Possible dynamic checks could be: consistency of data 

types and operators, validity of effective address with respect to named data structure, 

consistency of control operators and their data etc. The standard techniques for 

protection against other programs are to a lesser extent relevant to our subject. 

By having the right operators. That is: fewest possible operators should have to be 

fabricated from existing ones. This contributes to understandability. For particular 

languages or application areas instructions for indexing in two dimensions, parameter 

checking, etc. might be relevant. 

By being clean and elegant. This means that the capabilities and their functions should 

be well defined and conceptually well separated (orthogonal). There should be few and 

well defined instruction word formats. The data types and control operators should be 

well defined, and their representations should be easily understandable. General 

concepts should be preferred to special. 

The methodology and elegance dimensions of this cost are currently not quantifiable except 

by   purely   subjective  evaluation.    Personal  biases   and  preferences   will   have   a  strong 

♦ Wirth, [WirN72] has stated the case for this form of security and its dependence upon the 

ISP very eloquently.  See Section 1.4. 

___ 
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influence. As for the secunty dimension, the cost «tnd value of proposed checking 

mechanisms can be estimated using our methods to obtain data on dynamic usage. We also 

provide methods for evaluating existing and missing operators, namely the freque cy counts 

and FGR function (Section 5.1 through Section 5.1) and the sequences (Section 5.2). 

Except for the "right operators" dimension, most of the programming cost is accumulated over 

features missing from the ISP. Introduction of new features, to lower the programming cost, 

will usually be at increased space, time and hardware costs. However, a generalization of 

existing features will often entail a reduction of all costs. 

We have discussed this cost partly to point out that security measures can be buit into the 

ISP at some (often low) cost in space and time, and that our methods can be used to estimate 

these costs. We also want to point out that we do not advocate rushing headlong into making 

some improvement suggested by our methods to save space or fime, without considering the 

issues just discussed. 

2.5    Hardware cost 

This is the cost of the hardware of the central processor needed to implement a feature. 

Given the approximate computing power of the processor and its general structure, the 

varying part is mostly a cost of electronic circuitry. Since the cost of integrated circuits is 

rapidly falling and becoming a small fraction of the cost of a computer system, the hardware 

cost is becoming less significant. 

Estimating the tu-dware cost is outside the scope of this thesis. As a general rule each 

feature introduced into the ISP will increase it, less so if the new feature, or part of it, is 

subsumed under an already existing concept and using existing hardware. It follows that an 

increased hardware cost is usually the consequence of an improvement designed to reduce 

the space and time costs. 

Time cost can be reduced by using faster circuits, thus increasing the hardware cost. This is 

irrelevant to the ISP architecture. Hardware cost is independent of space cost, its relation to 

progrcmming cost is discussed in Section 2.A. 

Maa^^M 
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CHAPTER 3 

VALIDATION STRATEGY 

A major concern of our research has been to establ.sh the validity of the methods we have 

developed. We wanted to ascertain that they apply with more or less equal generality to the 

ISP structures outlined in Section 1.3 and to all applicat.on areas where this class of 

processors is commonly used. We wanted to be confident that the results obtained by using 

them reflect general requirements of programmers, algorithms, languages and compilers 

rather than idiosyncrasies of particular instances of such. Specifically we wanted to assess 

the influence of each srjrce of variation on our results. 

The sources of variation can be groupea cc- 

Variation due to algorithm. 

Variation due to programmer. 

Variation due to language used. 

Variation due to the particular implementation of that language (including the operating 

system). 

Variation due to the ISP. 
One might also want to consider variation due to choice of representations, particularly for 

data structures.   This variation is closely related to those due to algorithm, programmer and 

language, and we do not treat it as a separate source of variation here. 

The validity of the results have been judged by several criteria: 

The methods confirm already known efficiencies or deficiencies of the ISP considered. 

The methods give  new insight into deficiencies or efficiencies of the ISP which are 

subsequently verified by other means. 

The methods themself may measure or illuminate the same property of the the ISP from 

several angles and these results corroborate each other. 

In   special  cases   the  approximate  measures  found  can  be  compared   against   direct 

measurements. 

-—*~~-  -         -im  „_ . 
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In this chapter we describe some simplifying assumptions which were made, and how we 

chose a subject set in order to investigate the influence of the above sources of variation. 

As the presentation of each method, and the experimental results obtained by it, is 

concluded, we also discuss the results in view of this validation strategy. Finally these 

discussions are summarized in Section 8.2. 

3.1    Some simplifying assumptions 

To make a full scale investigation of the effects of all these sources of variations would be a 

major programming task. Particularly costly is tracing on several ISPs, and selecting the 

subject programs from a wide area of applications. Firstly we would need an interpreter 

program for each of the ISPs to be investigated. Secondly, we would have to change the 

analysis programs to reflect the other ISPs'. Thirdly, m selecting subject programs we would 

need several programs from each major area of application. These would have to be coded 

in each of the selected languages and brought to run on each of the selected ISPs before 

analysis of them could stcrt. The analysis would entail a large expense in computer 

resources and the result would bring on us a data reduction problem of considerable 

magnitude. In addition it would involve locating and consulting experts in each application 

area. 

We believe that we have legitimately evaluated our mt ^hods without going to this large scale 

investigation, by introducing two simplifying assumptions: 

1) We restricted ourselves to one ISP, viz. the POP-10. This alleviated the first two 

difficulties above, but deprived us of the possibility of investigating the variation due 

to a change of ISP. Almost all of our experimental results would change if we 

performed our analyses on a different ISP, particuarly the results for register 

utilization,  details  of   instruction  sequences,  and   addessmg.    In   some   cases   the 

♦ There is an obvious advantage of running the analysis programs on the same processor as 

is traced, since many of the representations have obvious and efficient formats. Most of our 

programs were written in FORTRAN to ease portability, but even so many of the 

representations would have to be changed when tooling for another ISP. 
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methods would have to be modified, or new methods developed, to handle special 

features of particular ISPs*.  We believe this to be of little importance in the present 

context.  Our goal was to assess the ability of our methods to detect the utilities and 

costs of features in ISPs, as opposed to comparing ISPs.  Since our methods justified 

themselves  for one ISP we feel confident  they will work satisfactorily for  most. 

Analogously, if we were developing methods to determine the cost/utility ratio of 

programming language feat ; es based on their usage, we would certainly measure the 

performance of program on several ISPs but we might well restrict ourselves to one 

language  provided it were sufficiently rich.   Further justification follows from the 

generality of the PDP-10 as discussed on page 9.   If the findings of our validation did 

not have a certain generality to them we would suspect this assumption of failing.   As 

it is, we don't. 

2) We restricted ourselves to one, albeit rather general, area of application. This 

reduced the set of subject programs to manageable proportions. Again, we believe 

that since our methods showed their worth in evaluating an ISP over one application 

area then they can be applied over a spectrum of areas, separately or in union. We 

would expect the findings to differ from area to area but mostly in data types and 

data operators. This is probably the best understood part of the domain that our 

methods can be applied to and hence of least importance to us. We would also 

expect data accessing methods to be influenced by the application and our 

assumption deprived'us of assessing this influence. Considering this assumption, we 

restricted our study to programs mostly from the area of technical and scientific 

computations, uit with some other programs included, in particular compilers. 

We summarize this discussion as follows: The intended goal of our methods is to evaluate 

features of ISPs as suitable for a given general or specialized application area. Our main 

concern in validating the methods was to assess the influence of factors not related to the 

ISP or to the area of application. 

♦ Consider the IBM 360 ISP as an example, and compare it with the PDP-10. Base register 

addressing would imply that more registers would be used, and that information about 

addressing would become more important. The differences in instruction sets would imply 

changes, at least in detail, of tht instruction sequences. Also methods for investigation of the 

use of condition codes would have to be implemented. 
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3.2    Selection of data 

Again, since we evaluated the methods, and not any particular ISP, we were not worried that 

our selection of subject programs quantitatively constituted a fair representation of any 

actual workload. Rather we wanted to see all programming structures that occur with some 

minimal frequency in real world programs represented in our test sample. To estimate the 

influence of the various sources of variation we studied the behaviour of several versions of 

the same several algorithms, programmed by different programmers, in different languages 

and, if possible, compiled by different compilers for the same language. 

3.2.1     Language selection 

To study the language variation, we selected four available languages suited to the chosen 

application area, namely: FORTRAN, ALGOL, BASIC* and BLISS. These languages cover a 

range of age, degree of security, inherent efficiency and structure: 

FORTRAN [IBM56], [USAS65] was designed about 1954 but has since been modified and 

extended considerably. ALGOL [NauP63] was designed in 1957-60, BASIC [KemJSl] in the 

early sixties [KemJSl], BLISS [WulW70] was designed around 1969. 

In terms of control structu/es, including program factorization mechanisms, all the chosen 

languages have looping and conditional constructs. BASIC is the poorest, having subroutines 

but no local names. FORTRAN has more structure, particularly subroutines and localized data. 

ALGOL has even more, notably the compound statement with its consequences for the other 

control structures, block structure, and an advanced parameter mechanism. BLISS is 

comparable to ALGOL, with a simpler parameter mechanism, but it has coroutines, and intra 

routine control structures so rich that a general GO TO has been omitted. This contributes 

towards better structured programs. 

For data structures, FORTRAN, BASIC and ALGOL all have vectors and multidimensional 

arrays, BLISS has any data structure which the programmer cares to define. 

* To obtain a fair comparison of the language structures involved, we did not use the matrix 

operators of BASIC where they would normally be called for. 

-—---1—-——  
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BASIC has only one type», floating point, converting to integer indexes automatically as 

needed. ALGOL and FORTRAN have several arithmetic types with automatic type conversion, 

and also a Boolean type. BLISS has no types but relies on the written operator to determine 

the correct operation. 

FORTRAN and BLISS have almost no run time checking, BASIC checks array bounds, ALGOL 

does this and also has extensive checking of parameters including type conversion. 

BLISS generates the most efficient object progr?ms, largely due to a highly optimizing 

compiler. FORTRAN programs are efficient, ALGOL programs are less efficient due to the high 

degree of security and to the precise definition of evaluation order in the context of possible 

side effects.   BASIC programs are inefficient due to a particularly fast and dirty compiler. 

It follows that our languages span most of the variations found within commonly used 

languages for scientific and technical calculations. 

3.2.2    The subject set 

For our subject programs we first selected six algorithms from the "Collected Algorithms 

from the Communications of the ACM", (CALGO). The selection was made in such a way that 

it included as many as possible of the common data types, data structures, control structures 

and parameter forms found in higher level languages. We also attempted to cover as wide a 

range as feasible of the modified SHARE classification, used by CALGO to classify the 

algorithms.   Other criteria used in the selection were: 

The algorithm must have a reasonable size, - large enough to contain the interesting 

features in context, but small enough to be coded in all four languages, traced and 

analyzed in a reasonable time. 

The remarks and certifications in the CALGO collection should not indicate that trouble 

might be expected using the algorithm. 

The subject matter of the algorithm should be sufficiently known to this author that he 

could detect obvious errors in the published algorithm and in his various versions of it. 

♦ Excluding the string type which we don't use. 
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Writing a main program for the algorithm should be straight forward. 

The CALGO algorithms selected are briefly described in Figure 3-1, along with the rest of 

the subject set. This set of algorithms gives us a good indication of the variations due to 

algorithm and language. Listings of all the ALGOL versions, all 4 versions of PERT, and all 5 

versions of AitKen, are reproduced in Appendix E. 

The language structures searched for, showing how they occur in the selected algorithms, 

are tabulated in Figure 3-2. The statement count given i« the approximate number of 

ALGOL statements' in the published version, included as a measure of the coding effort. As 

is seen from the table, several of the desired structures are not represented. Double 

precision arithmetic is only present m one algorithm, Crout, very locally in space (though not 

in time), and only in the ALGOL and FORTRAN versions since BLISS and BASIC do not support 

this type. Complex arithmetic is only marginally present, since Bairstows method finds 

complex roots but does no calculations using them and no variables are J-clared of this type. 

Bit manipulation, bit vectors and characters are not used by any of these algorithms. Note 

also that real arithmetic in treesort is present only to the extent in which it is needed for 

comparisons of magnitude, or for initialization. 

Only Grout's method uses two dimensional arrays and we found no suitable algorithm using 

arrays of 3 or more dimensions", and no triangular or ragged arrays. We also found no 

suitable algontnms using record structures or lists, although Treesort uses linked structures. 

We found a rich selection of GO T0sm, conditionals and loops, and one instance of a CASE 

statement (switch, computed GO TO). Since only BLISS and ALGOL support recursion, and this 

feature is little used in published algorithms, we did not include it. For the same reason we 

included no algorithm using label parameters. Other parameter forms are well represented. 

In particular, Ismg passes procedure names as parameters. For this reason Ising could not 

be coded in BASIC. 

I 
♦ Not counting <block>s and compound statements. Thus "IF B THEN BEGIN A:=X + lj It-1-1 

END ELSE A:=X-1;" counts as 4 statements. 

M Knuth [KnuD70] reports that 1.4/ of the static variable occurrences in his FORTRAN sample 

has 3 or 4 indices or parameters. He does not distinguish function calls from array accesses. 

AssLimmg functions of many parameters to be more common than arrays of many dimensions, 

this supports our findings. 
"♦ Most of the GO TOs caused little problem when translating into BLISS, an exception was 

the Bairstow program which required artificial loops, compounds and a function. 

—_ ■   - ■■■'■— ■ --- ■ 
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CALGO no. 30 
Bairstow 

CALGO no. 43 
Grout 

FIGURE 3-1 

Description of the subject set. 

Bairstow/Newton method for polynomial roots. 
Author: K. W. Ellenberger. Corrections by W. J. Alexander, K. J. Cohen and 
J. J. Kohfeld. 
Modified SHARE category C2: Zeroes of polynomials. 
Data: Initialization by explicit assignments. 
This is a classical algorithm for the problem. 

Grout's method for linear equations with pivoting. 
Author: H. C. Thacher. Corrections by C. Domingo and F. Roderiguez-Gil. 
Modified SHARE category F4: Linear equations. 
Data: Matrix values computed by simple expressions.   Logarithm used for 
right hand sides. 
A classical algorithm for the problem. 

Treesort. 
Author: R. W. Floyd. 
Modified SHARE category Ml: Sorting. 
Data: Initialization by simple expression.  Initial order is inverse of desired. 
A logarithmic sorting algorithm. 

Evaluation of a PERT network. 
Authors: B. Eisenman and M. Shapiro.  Corrections by L. S. Coles. 
Modified SHARE category H: Operations research, graphs. 
Data: Initialization by explicit assignments. 
A somewhat speeded up algorithm for this problem. 

CALGO no. 257     Numerical integration by Hävies method. 
Hävie Author: R. N. Kubick. 

Modified SHARE category 01: Quadrature. 
Data: Integrands are simple expressions involving square root or 
exponential. 
A modified Romberg integration. 

CALGO no. 355     An algorithm for generating Ising configurations. 

CALGO no. 113 
Treesort 

CALGO no. 119 
PERT 

Ising Author: J. M. S. Simoes Pereira. 
Modified SHARE category Z: Al1 others. 
Data: Maximal n read from teletype; n, x and t varied by loops over all 
significantly different combinations. 

An (x.t) Ising configuration is a sequence (Si,...,Sn) of zeroes and ones such 
that: 

I S, 
i<i 

and E'WI - SJ -1 
i'l 

The problem is of interest in theoretical physics. 

- i m 
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This algorithm was included mainly because routine calls is its most 
important control structure.  Since routine names are passed as parameters 
it could not be coded in BASIC. 

Aitken 

SEC 

FORFOR 

FORTEN 

ALGOL 

N-point polynomial interpolation. 
Authors: M. R. Barbacci, L. E. Flon, G. N. J. Rolf, W. A. Wulf and A. Lunde. 
(Each contributed one version of the algorithm.   The s^.vest version was 
omitted.   The fastest (and shortest) version was further improved by about 
107. in speed and size, and included.   Hence five versions of this algorithm 
were used.) 
Modified SHARE category El: Interpolation. 
Source language: BLISS. 
Data: Natural logarithm tabulated at irregular intervals by loop. 
Standard polynomial interpolation. 

Zeroes of simultaneous nonlinear equations by secant method. 
Author: G. W. Stewart. 
Modified SHARE category C5: Zeroes of trancedental functions. 
Source language: FORTRAN 
Data: Functions are linear combinations of linear and quadratic terms in the 
variables, parameters read from teletype. 
The program was designed for research in the problem area and method. 

Compiler for FORTRAN. 
Source language: Assembler. 
Data: FORTRAN version of the Treesort algorithm. 
A compiler of the Digitek design, simulating a one-accumulator processor. 

Compiler for FORTRAN. 
Source language: BLISS. 
Data: FORTRAN version of the Treesort algorithm. 
A compiler doing flow analysis and generating efficient code. 

Compiler for ALGOL. 
Source language: Assembler, structured control by macros. 
Data: ALGOL version of the Treesort algorithm. 
A fast ALGOL compiler generating efficient code (for ALGOL).  Language 
slightly extended. 

BASIC 

BLISS 

Compile and link phases of the BASIC system. 
Source language: Assembler. 
Data: BASIC version of the Treesort algorithm. 
A fast compiler generating extremely inefficient code. 

Compiler for BLISS 
Source language: BLISS. 
Data: BLISS version of the Treesort algorithm. 
A slow compiler generating efficient and small code. 

^MMMH^M J 
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FIGURE 3-2 

Language properties of the small subject algorithms: 
x means property present in algorithm. 

- means property marginally present in algorithm. 

Name: Bairst. Grout T.sort PERT Hävie Ising Aitken 

CALGO number: 
Mod. SHARE categ.: 
Statement count: 

30 
C2 

120 

43 
F4 
40 

113 
Ml 
15 

119 
H 

60 

257 
Dl 
35 

355 
Z 

45 
E 

30 

Typos: 
Integer 
Floating 

X 

X 

X 

X 

X X 

X 

X 

X 

X X 

X 

Double fl. 
Complex 
Boolean 
Bits 
Characters 

[Ma structures: 
1 Dim arrays 
2 Dim. arrays 
>2 Dim. arrays 
Ragged/triang. arr. 
Records 
Lists 
Linked 
Packed 

Contro' structures: 
Go to 
Conditionals 
Cases 
Counting loops 
Other loops 
Subroutines 
Recursion 

x 
x 
x 
x 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Parameter forms: 
Constants 
Variables 
Expressions 
Arrays 
Routines 
Labels 

x 
x 
x 

x 

x 

x 
x 
x 
x 
x 

MMtfH mmm 
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A related source of variation is that of language implementation. Luckily the PDP-10 has two 

FORTRAN systems, FORTRAN 40 and FORTRAN TEN, here denoted F0RF0R and FORTEN or 

simply FOR and TEN. Hence we had an obvious way of assessing this variation. We analyzed 

all the CALGO algorithms plus SEC (see below) using both of the FORTRAN systems. Due to 

suspected bug in TEN, we did not use the optimize option of TEN when compiling our 

programs. The various versions of these algorithms will be denoted ALGOL Ising, BASIC 

Crout etc. 

a 

To estimate the variations due to programmer habits we included 5 versions of an algorithm 

as coded in BLISS by 4 experienced programmers. The algorithm was polynomial 

interpolation* which nicely completed our coverage of the modified SHARE categories. BLISS 

was chosen since it gives the programmer more alternative forms of expression than do the 

other languages. This was thought to be of importance considering the small algorithm. 

These five programs are denoted by the letters L, G, B, A and E (efficient). 

For each of these algorithms a main program was written, to provide data for the algorithm 

and present the results. To initialize the data for the algorithms we used explicit 

assignments of either constants or calculated values, usually simple expressions involving the 

indices of the variables to be initialized. A short indication of the method used in each case 

is given with the description of the algorithm in Figure 3-1. 

After a few trial traces it became obvious that input and output accounted for a large 

fraction of the total activity. Not only did format interpretation take much time, but also 

channel and file initialization and status checking. We therefore decided to leave I/O out of 

the traced part of the algorithms, with a few exceptions: one parameter to the Ising program 

is read from the teletype, and a minimal output was included in some cases. 

Our sample so far had one major df.ficiency: all the programs traced were small. To rectify 

this we traced all the compilers involved, that is the A^GOL and BLISS compilers, the compile 

and link phases of the BASIC system and the two FORTRAN compilers. All these traces were 

made while compiling the appropriate version of the Treesort algorithm. An additional 

benefit from this was that we got examples of many of the structures our CALGO sample did 

not   have,  including  bit   manipulation,  bit  vectors,  character  handling,  records,  lists   and 

By Aitkens method as described in Milne [MilW49]. 

IM^iMMlMMMMMiMilMIIMBiiMliM  mill 
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recursion. We also believe that compilers account for a large fraction of the resources used 

in any installation and hence are of particular importance as constituents of sets of typical 

programs. 

We further included one somewhat larger program from the technical scientific calculations 

area, this was a program, SEC, to solve nonlinear simultaneous equations. This program was 

analyzed using both versions of FORTRAN. 

The resulting subject set consists of the 6 CALGO algorithms written in each of the 4 

languages, the Aitken algorithm written in BLISS by 4 programmers, 5 compilers and the 

large scientific numerical program. These programs are well distributed over the area 

spanne by the modified SHARE classification. The following general categories are 

represented: 

B (Standard functions) by the integrands for Havie. 

C (Polynomials, zeroes) by Bairstow and SEC. 

D (Integrals and differential equations) by Hävie 

E (Polynomial approximation) by AitKen. 

F (Matrix operations) by Crout. 

G (Statistics, permutations, subset generation) by Ising (related). 

H (Operations research, graphs) by PERT. 

L (Compiling) by the compilers. 

M (Sorting, data conversion) by Treesort. 

Z (Others) by Ising. 

The FORTRAN versions of the 6 CALGO algorithms, and also the large scientific program, were 

analyzed as compiled using the two different FORTRAN compilers. Thus, since the BASIC 

version of Ising was excluded, the sample altogether consisted of 41 traces. The traces vary 

in size from 19000 to almost 600000 executed instructions. Altogether about 5.3 million 

instructions were traced, corresponding to almost 16.8 seconds of CPU time (compuicd «me) 

on the KA10. This should give a good basis on which to evaluate the methods. The 

computed time and instruction count of the subject set are tabulated in Figure 3-3. The 

average instruction execution rate for each program is tabulated in Figure 3-4. 

/ 

   " — 
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FIGURE 3-3 

Time cost of the subject set. 
Computed time in seconds. 
Instruction count in 1000s. 

Source language: ALGOL 

Bairstow 

Crout 

Treesort 

PERT 

Hävie 

Ising 

SEC 

Algorithm\Programmer 
Aitken 

Assembler written 
compilers 

BLISS written 
compilers 

E 
0.18 

44 

BASIC 

B 
0.19 

47 

BLISS      F0RF0R      F0RTEN 

0.12 0.45 0.09 0.08 0.08 
36 156 23 21 19 

0.32 0.49 0.25 0.43 0.23 
115 163 62 109 63 
0.47 0.55 0.26 0.27 0.35 
140 187 106 HI 97 
0.16 0.41 0.07 0.08 0.07 
63 157 26 32 27 

0.48 0.33 0.12 0.18 0.17 
168 103 28 38 36 
0.22 - 0.07 0.05 0.05 
91 - 25 20 20 

- - - 2.08 1.94 
- - - 541 497 

A 
0.21 
60 

G 
0.41 
143 

L 
0.44 
139 

ALGOL   BASIC   BLISS  FORFOR  FORTEN 
0.19    0.25      -    1.56 
74     85      -    591 

1.67 
593 

0.78 
295 

BLISS versions would have been faster if OWN vectors and matrices had been used instead 
of LOCAL and parameter. 

WARNING: The format of this table is slightly different from the standard table format of the 
later chapters, first used in Figure 3-4. 

■MMMM^Ma «MBBaMMMM 
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FIGURE 3-4 

Instruction execution rate of the subject set 
in units of 1000 instructions per second (kips) 

( 

Algorithm\language 
Bairstow 
Grout 
Treesort 
PERT 
Hävie 
Ising 
Secant 

Algorithm\Programmer 
Aitken 

Source progr.\Compiler 
Treesort 

ALGOL BASIC BLISS FORFOR FORTEN 

300 345 261 247 243 
362 330 249 256 277 
300 339 401 412 275 
394 380 397 395 402 
351 308 230 210 219 
410 . 379 391 417 

mm - 260 256 

E 
245 

ALGOL 
382 

B 
243 

A 
282 

G 
344 

L 
318 

BASIC 
343 

BLISS    FORFOR    FORTEN 
354 379 379 

Max: 410,  Min: 210, Average: 324,  Standard dev.: 63. 

3.2.3    Subsets of the subject set 

In some cases it is desirable to study the experimental results from • «*£«*J** 
representing a subarea of the area of application. Our subject set falls naturally into three 

such subsets: 
a) The compilers. . 
b) The numeric set consisting of SEC, Bairstow, Crout, HSvie and Aitken. 
c) The nonnumeric set, consisting of Treesort, PERT and Ising. 

This subdivision is used in Section 5.1. 

MM 
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CHAPTER 4 

REGISTER STRXTURE 

We will now discuss the motivation for, and costs associated with general register designs. 

The main problems we attack are: 

a) What is the optimal number of registers? This is the most important issue in 

connection with register structure. All the costs discussed below depend heavily on 

this number. 

b) Kow desirable is generality? This can be an issue in some cases, particularly for 

designs with a short instruction word. 

We do not pretend to solve these problems, only to present methods for elucidating them. 

The central concept in our methods is that of a register lüa. We present an algorithm for 

detecting such livas, a method of classifying them according to the types of the events 

constituting them, an algorithm to detect simultaneous lives, and finally methods to estimate 

the cost of simulating parallel register activity in fewer registers than were used by the 

original subject program as traced. The data obtained by these methods are highly relevant 

to the problems of register block size and generality. The first few subsections discuss 

register structures in general, terminology, and other topics common to the methods. 

4.1    The basic tradeoffs 

In old ISP designs, the arithmetic registers that the programmer had access to were the 

actual input registers to the arithmetic unit. A typical design would have an accumulator (A 

register), and an extension of it (Q register) to hold double length products and dividends, 

quotients, multipliers, and the like. The second operand for arithmetic would come from 

primary memory. Further there would be a number of index registers which would have a 

restricted set of arithmetic and testing operations. From a slightly different viewpoint one 

might say that the registers were divided into groups according to criteria such as: 

^ ^—j i  
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Floating point capability 

Full fixed point capability 

Simple fixed point capabilities and indexing 

Temporary storage only 

etc. 
The "simple fixed point" group could be those having addition and subtraction only, possibly 

further restricted to immediate operands only. 

As electronic circuitry became cheaper and faste, compared to pnmary memory It became 

feasible and common to have a small electronic memory in the central processor for locally 

important operands. Operands, as specified by an extra address in the instructions, are 

transferred through a switch from these memory cells to the arithmetic input registers, 

whereas the latter registers are invisible to the programmer. One or both of the operands 

may come from this memory, the alternative being primary memory as before. As a natural 

extension, this memory contains not only the arithmetic operands but also the indexes, 

control information etc. The terms registers. Lfi&islfil UOfilb and in particular gfiufiLfii 

registers, are now used to mean this local memory. 

The general registers commonly serve a combination of several functions: 

Arithmetic registers 

Index registers 

Base registers (double indexing) 

Subroutine linkage 

Program flag registers (for Booleans) 

StacK pointers 

Address pointers (to data) 

Temporary data storage 

Temporary program storage (for small loops) 

Program counter (PC) 

etc. 
Few. if any. computers have registers with all these properties. In particular, few machines 

have the PC in a general register (exception: the PDP-11), and few may execute programs 

from them (exception: the PDP-10). The register blocK may be part of the memory address 

space for all functions (as in the PDP-10). just for some (as in the UNIVAC 1107), or not at all 

(as in the IBM 360). 

We   will   devote   this  section   mainly  to   registers  for  data  manipulation.    Indexing   and 
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inditsction will be discussed, however, to the extent that they are operations involving 

registers. 

Assuming that indices, if they exist at all, are always held in "registers" addressable by short 

addresses in the instruction word, we may list several factors that motivate the transition to 

a general register design: 

To save addressing space in the instruction word compared to two address designs. This 

is not discussed further in the thesis. 

To save code space and instruction excutions compared to single accumulator designs. To 

estimate this factor is outside the scope of the thesis. 

To have a fast store for locally important operands. This is further discussed in Section 

4.6 

To have a full complement of operators for indices and control informaticn as well as for 

normal arithmetic operands.  We discuss this in Section 4.5. 

To clean up the ISP :tecture and central processor design.   Tlv-.. is again motivateo 

by programming t d hardware considerations, to estimate its cost ano  utility is 

outside the scope of this thesis. 

The costs of general registers are contributed by: 

Space cost of lengthened instruction words compared to one address design. This 

question is not addressed in the thesis. 

Time cost of load and store instructions compared to a full two address design. Some of 

the results of Chapter 5 may bear on this factor. 

Time cost of saving and restoring registers. This can be reduced by having special 

"process swap" or "register save/restore" instructions, or by having separate blocks of 

registers for each program or for groups of r-rograms, commonly defined by the interrupt 

structure.    Hence this cost  may or  may r.ot  apply on interrupts.   The  cost  certainly 
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applies on subprogram calls, particularly if subprograms are separately compiled*. Again 

some of the results from Chapter 5 apply. 

Time cost of register access switch. This time is small compared to the time gained by 

not accessing primary memory, but may increase somewhat with the number of registers. 

It may be estimated from the results in this chapter. 

Hardware cost of the registers and the switch. To estimate this is outside the scope of 

the thesis. 

The relative importance of these factors depends on the state of technology. In particular 

the current trends towards cache memories, and towards larger, faster and cheaper 

electronic memories, tend to make the fast local store argument less important. To make 

valid design decisions when faced with cost effectiveness requirements, it is necessary first 

to establish quantitatively their relative importance in a technology independent way. 

4.2    Some definitions 

The intent of these definitions is to make precise the term "register life", and to define some 

important properties of register lives. 

♦ Our analysis of the trace of the BLISS compiler indicates that a "declarable register" is 

restored more than 5000 times every second due to subroutine calling; the same number as 

by restoring 16 registers 312 times. A complete process swap would thus have to be 

performed over 300 times per second in order for the time cost of register saving due to 

process swaps to exceed that due to subroutine calling. We believe this is a high frequency 

of process swaps for the PDP-10 (KA10), but not extremely high. Including the "F-register", 

the count for BLISS rises to 16500 registers per second, corresponding to about 1000 

process swaps per second. (This is about 1.15 registers saved per routine call). The 

"temporary registers" are not included at all in these counts. Measurements performed on the 

IBM 360/91 indicate about 470 SVCs and 1/0 interrupts per second. Assuming the 360/91 to 

be ten times as fast as the KA10, this corresponds to about 50 process swaps per second on 

the KA10. All this indicates that register saving because of routine calls is significantly more 

costly than register saving due to process swaps. 
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A register is load.'d when a new value is brought into it that is unrelated to its previous 

value (except for possible use of the old valut in the address calculation). 

A register is modified when a new value is brought into it which is the result of an 

operation involving the old value as one of its operands. 

A register is used when it is loaded, modified, employed in address calculation, used as an 

operand, stored, tested or otherwise referenced from an instruction. 

A register is C£ad when it is used but not modified or loaded. 

Since our finest grain of time is that of one instruction, a register may be loaded and 

otherwise used at the same time. In a finer time scale this would not be so. Hence we 

regard the sets of loadings, modifications and readings of a register as disjoint. Their union 

is the set of all usages of that register.  Two other subsets are often needed: 

A register is changed when it is modified or loaded, it is accessed when it is read or 

modified. 

A register life (R-life) 'or a given register is the span of time starting when the register 

is loaded and ending with the last access before the next time it is loaded4. If a register 

is used in the address calculation of a load to itself, this use is regarded as en access in 

the life prior to the loading. 

Typically a register life starts wth a LOAD; operations like ADD, STORE, SHIFT etc. may 

reference the register and possibly modify it during its life, it may be used as a stackpointer, 

indirect address etc. 

The initial loading usage in a register nfe is called its first uifij the term last usfi. has an 

equally obvious definition. The first and last uses of an R-life constitute its transitions. 

The length of an R-life is the time from its first use to its last use, both endpoints 

included. 

♦ An R-life should be thought of as closely related to its register. Formally this could be 

incorporated into the definition by defining an R-life to be a triple: <Register name, time of 

load, time of last use>. 

^^^^_l_ 
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A register is \ix£. during an R-life for that register. It is dfifld when it is not live. It is 

dormant when it is live but has not been used for some long period of time specified in 

each actual case. 

We emphasize that we are observing the dynamic behaviour of programs, hence the 

observed R-lives are in general different from those that we would observe by a static study 

of the code between the instructions responsible for the first and last uses, and the usages 

of a register during its life may involve instructions from quite remote parts of the code. 

The following definitions are introduced in order that we may classify R-lives according to 

the Kinds of operations they have been used for. This will be used to assess the need for 

generality of registers. 

A register usage classification is a set of possible modes or attributes, each describing a 

different way in which a register may be used by an instruction. 

A simple classification could be: {<loaded>, <stored>, <used for integer arithmetic^ <used for 

real arithmetic^ <us8d otherwise>}. A more complete classification is presented in Section 

4.3. 

A register usage attribute is a member of a register usage classification. The above 

classification has 5 attributes: <loaded>, <stored>, etc. 

A register uSäüfi. dass is a set of register usage attributes, i.e. a subset of the register 

usage classification. 

When no confusion can arise, the word "register" is usually omitted from the above 3 terms. 

Each R-life has a usage class associated with it, which is uniquely defined by the (unordered) 

set of usages of the register during its life. We will usually use the term to denote a class 

defined in this way. 

A register usage classification is in a sense a generalization of the set of instructions and 

other basic operations of the processor which involve the registers. It may also be thought 

of as a classification of the instructions of the ISP in terms of how they use registers. Given 

an opcode and a field of the instruction word which ma/ specify a register, a usage attribute 

is true or false depending on whether that instruction uses the register specified by that 
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field  in  that  particular mode.   This is in fact the way it is represented in our  analysis 

program. 

4.3    A register usage classification 

In Figure 4-1 and Appendix C we present a register usage classification for the PDP-10. 

It is designed to detect the loading, modification and reading of registers, < s well as the 

various forms of reading or modification. This classification was used in our analysis 

programs to detect and classify R-lives. Although it is designed for a particular ISP, few and 

obvious modifications would be necessary to use it for any other register oriented ISP*. 

This classification grew and generalized as we were working with it. Our experience is that 

the classification given in Figure 4-1 is satisfactory. It contains three minor improvements 

over the one we actually used for our analyses. The "Used as operand" and "Immediate 

fixpoinl add or subtract" attributes were included post hoc. Also, our analysis program did 

not check for instruction fetches from registers, only for jumps into registers or XCT" 

instructions addressing registers. The errors caused by this omission are considered 

insignificant. , 

For technical reasons the m-chine representation of the register usage attributes separate 

them into two kinds, reference attributes and atOfiii attributes. Reference attributes are 

used to define the three major types of reference, i.e. loading, modification or reading. 

They are used by the analysis programs as case selectors, and hence represented as 

consecutive values. The access attributes are used to accumulate the types of usage of a 

register during its R-life. They are represented as bit positions in a field, so that they may 

be easily included into a register usage class by OR-ing. 

Since tnere are 3 fields in each instruction word of the PDP-10 which may reference a 

register, the actual description of each instruction consists of 3 sets of attributes, each 

corresponding to one of these fields and the different ways it may use a register. Further 

complication follows from the existence of instructions which reference two registers by the 

"ACC" field, from the special treatment of register 0 by many instructions, and from the 

f For example, if analyzing the PDP-11, autoincrement might be introduced as an attribute. 
tf Execute contents of effective address 

-  j^ ih   . 
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FIGURE 4-1 

A register usage classification. 

Reference attributes: 
Not used 
Loaded 
Modified 
Used but not modified 
Undefined (Monitor communication etc.) 

Access attributes: 
Indexing data accesses 
Indexing jumps or executes 
Indexing immediate operands 
Immediate fixpoint add or subtract 
Fixpoint add or subtract w. memory operand 
Fixpoint multiply or divide 
Floating point arithmetic 
Halfword modified 
Byte loaded or stored 
Modified by logical operation 
Modified by shift 
Used as stacKpointer 
Used to hold an address (As in Block transfers etc.) 
Tested 
Used for monitor parameter 
Used as byte pointer 
Used as indirect address 
Used as an operand 
Stored 
Executed (XCT'ed* or fetched as an instruction) 

"result to memory" mode of many PDP-10 instructions. These complications affect the 

reference attributes, hence corresponding code has to be built into the analysis program. In 

Figure 4-1 we described the classification as independent of these complicating matters. The 

full classification, as we used it, is reproduced in Appendix C. 

t I.e. referenced by an execute instruction 

mmmtm 
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4.4    Register life detection 

In order to say anything beyond trivialities about register usage, it is necessary to detect 

the register lives. The following simple algorithm will do this in one scar over the trace. A 

register uxaga classification is needed which includes at least the attributes "loaded" and 

"accessed". As the trace is read, the algorithm keeps for each register the times of its most 

recent lonti and use. For each instruction in the trace, all fields that can possibly reference a 

register have to be examined with this in mind. Whenever the register is loaded anew, or at 

the r>nd of analysis, the transitions of its most recent R-life are the most recent load and use 

respectively. In our experiments we used the instruction count as our time measure; the 

computed time could be equally well used. 

As each R-life is detected, its length is immediately known. Similarly the number of 

references to each R-life, the number of memory and register references etc. are easily 

accumulated by this algorithm. 

Distributions of lifelengths and usages per R-life from a typical analysis run are shown in 

Figure 4-2. Because of the dominance of short lives but with a significant number of long 

ones, a loganihmic division was used in the table. These results are too voluminous to 

present in full for all of our subject programs. In Figure 4-3 we tabulate for each subject 

P'Ogram what fractions of all the lives are accounted for by lives of lengths at most 7, 15 

and 31 instructions. Similarly in Figure 4-4 we tabulate the fractions of all lives that are 

accounted for by lives with at most 3, 7 or 15 usages. 

A summary of other results of this algorithm from analyzing our subject programs is shown 

in Figure 4-5 through 4-11. All these results were obtained under the assumption that a 

register was dead when it had been dormant for 200 instructions. The reason for this 

assumption, and a d scussion of its consequences, is given in Section 4.6. For the present 

results it means that a few lives {the exact number is tabulated in Figure 4-26) are 

considered as two or more, with correspondingly shorter lives and fewer references per life. 

This algorithm is critically dependent on the ability to define the "load" and "access" usage 

attribute» with the intended intuitive meaning.   Certain instruction sequences, like HRR, HRL* 

* These instructions load the right and left halves of a register respectively, leaving the 

other half unchanged. Alone they were considered modifying instructions; however, HRRZ 

etc., which explisitely change the whole register, were considered loading. 

mmummMa^Mjmmmaimmm 
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FIGURE 4-2 

Distributions of lifelengths and usages per R-life 
(F0RF0R compiling Treesort) 

LIFE NUMBER 
LENGTH OF LIVES 

1 - 1 27186 |************** 
2 - 3 37627 I»******«»***«****** 
4 - 7 100480 |tmm»tM<MWMWmMMMMMMmMtMtM» 
8 - 15 20661 1*****«««*« 

16 - 31 6877 |*** 
32 - 63 4542 |«* 
64 - 127 3298 |»« 

128 - 255 1246 1* 
256 - 511 661 
512 - 1023 317 

1024 - 2047 196 
2048 - 4095 105 
4096 - 8191 37 
8192 - 16383 5 

16384 - 32767 1 

203239 t 

L S/ VGES NUMBER 
IN LIFE OF LIVES 

1 - 1 27186    | 
2 - 3 97693    1 
4 - 7 70482    | 
8 - 15 5119    | 

16 - 31 1700    | 
32 - 63 583    | 
64 - 127 195    | 

128 - 255 86    | 
256 - 511 187    | 
512 - 1023 S    1 

1024 - 2047 0    1 
2048 - 4095 0    1 
4096 - 8191 o   1 
8192 - 16383 0    1 

16384 - 32767 0    1 

«It************ 

* 

203239    | 
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FIGURE 4-3 

Fraction of R-lives of length at most 7, 
of length at most 15, 
of length at most 31. 

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN 

Bairstow <J 0.771 0.560 0.830 0.852 0.824 

<15 0.920 0.769 0.913 0.915 0.898 
<3\ 0.965 0.995 0.966 0.952 0.930 

Crout <7 0.709 0.631 0.624 0.606 0.636 
<15 0.875 0.846 0.884 0.857 0.788 
<31 0.917 0.988 0.943 0.934 0.939 

Treesort <7 0.906 0.549 0.8S2 0.902 0.901 
<15 0.998 0.769 0.599 0.999 0.998 
<31 0.999 0.999 0.999 0.999 0.998 

PERT <7 0.816 0.578 0.902 0.952 0.927 

SIS 0.883 0.783 0.961 0.982 0.979 
<31 C.930 0.999 0.982 0.990 0.983 

Hävie <7 0.604 0.756 0.585 0.526 0.808 
<15 0.734 0.956 0.840 0.767 0.845 
<31 0.806 0.998 0.918 0.989 0.981 

Ising <7 0.645 _ 0.859 0.888 0.822 
119 0.808 - 0.908 0.952 0.936 
<31 0.885 - 0.960 0.992 0.984 

Secant <7 _ _ - 0.782 0.603 
<15 - - - 0.930 0.970 
<31 - - - 0.979 0.985 

Algorithm\Programmer E B A G L 
Aitken <7 0.601 0.631 0.696 0.927 0.820 

<15 0.794 0.811 0.853 0.943 0.913 
<31 0.914 0.925 0.941 0.983 0.970 

Source progr.\Compiler A'.GOL BASIC BLISS FORFOR FORTEN 
Treesort <7 0.771 0.588 0.804 0.813 0.827 

SIS 0.856 0.801 0.923 0.915 0.897 
^31 0.910 0.869 0.975 0.949 0.950 

I^^BMHMM 
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FIGURE 4-4 

Fraction of lives used at most 3 times 
used at most 7 times 

used at most 15 times 

Algorithm\language 
Bairstow 

Crout 

Treesort 

PERT 

Hävie 

Ising 

Secant 

<3 
<7 

<15 

<3 
<7 

glB 

<3 
<7 

<I5 

<3 
<7 

CIS 

<3 
<7 

US 

<3 
<7 

<15 

<3 
<7 

<15 

Algorithm\Programmer 
Aitken 

Source progr.\Compiler 
Treesort 

ALGOL 
0.819 
0.951 
0.990 

0.743 
0.967 
0.989 

0.627 
0.998 
1.000 

0.788 
0.963 
0.981 

0.574 
0.910 
0.982 

0.640 
0.9f)5 
0.986 

<3 
<7 

S18 

<3 
<7 

<15 

BASIC 
0.736 
0.994 
0.999 

0.661 
0.999 
1.000 

0.741 
0.984 
1.000 

0.755 
0.999 
1.000 

0.731 
0.956 
0.999 

E 
0.518 
0.883 
0.944 

ALGOL 
0.753 
0.945 
0.989 

B 
0.573 
0.893 
0.944 

BASIC 
0.523 
0.800 
0.965 

BLISS FORFOR FORTEN 
0.830 0.570 0.567 
0.913 0.945 0.921 
0.966 0.974 0.970 

0.444 
0.934 
0.952 

0.732 
0.904 
1.000 

0.831 
0.977 
0.988 

0.672 
0.853 
0.994 

0.832 
0.924 
0.956 

A 
0.772 
0.912 
0.952 

0.702 
0.972 
0.993 

0.885 
1.000 
1.000 

0.831 
0.990 
0.994 

0.514 
0.775 
0.996 

0.755 
0.975 
0.983 

0.603 
0.970 
0.985 

G 
0.913 
0.979 
0.988 

0.651 
0.951 
0.993 

0.502 
0.999 
1.000 

0.895 
0.984 
0.991 

0.553 
0.858 
0.995 

0.765 
0.958 
0.995 

0.520 
0.965 
0.986 

L 
0 787 
09G4 
0.976 

BLISS FORFOR FORTEN 
0.842 0.614 0.870 
0.975 0.961 0.970 
0.994 0.986 0.995 

•MMaaBMMMM*. 
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FIGURE 4-5 

Number of register lives 

53 

Algorithm\language ALGOL BASIC BLISS FORFQR FORTEN 

Bairstow 12985 46101 7727 6133 5831 

Grout 51087 52978 15S71 46308 23515 

Trecsort 58088 55686 36493 49017 44269 

PERT 24324 156974 11264 12769 10387 

Hivie 60262 32189 7710 9504 8160 

Ising 35919 - 9310 7196 7024 

Secant - - - 198167 175569 

Algorithm\Programmer 
Aitken 

Source progr.\Compiler 
Treesort 

E B A G L 
13425      14390      19626      62495      43650 

ALGOL 
21662 

BASIC       BLISS    FORFOR    FORTEN 
16034    220222    203239    108675 

The high number of R-lives for the FORFOR and ALGOL versions of Crout, compared to the 
BLISS version, is probably due to the use of double length arithmetic in those versions. 
Similarly the high number of register lives for the ALGOL versions of Hävie and Ising is 
probably due to the large number of procedure and name parameter calls. 

FIGURE 4-6 

Average lifelength in instructions 

Aigorithm\language ALGOL BASIC BLISS FORFOR FORTEN 

Bairstow 12.3 12.3 11.2 12.9 12.9 

Crout 13.6 11.3 18.2 15.1 15.9 

Treesort 6.1 11.9 9.0 4.2 5.8 

PERT 10.9 11.4 8.4 5.0 7.9 

Hävie 16.6 11.2 13.5 14.3 20.0 

Ising 16.5 - 9.7 5.5 9.2 

Secant - - - 8.1 9.6 

Algorithm\Programmer E B A G L 

Aitken 14.3 14.7 13.0 8.9 11.9 

Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN 

Treesort 17.4 23.8 9.7 14.9 11.4 

Ml^M ^—^__ 
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Algorithm\language 
Bairstow 
Crout 
Treesort 
PERT 
Hävie 
Ising 
Secant 

Algorithm\Programmer 
AitKen 

Source progr.\Compiler 
Treesort 

Algorithm\language 
Bairstow 
Crout 
Treesort 
PERT 
H&vie 
Ising 
Secant 

Algorithm\Programmer 
Aitken 

Source progr.\Compiier 
Treesort 

FIGURE 4-7 

Usages per R-life 

ALGOL BASIC BLISS FORFOR FORTEN 

4.6 3.6 4.6 4.6 4.4 

3.8 3.7 6.6 3.7 3.9 

3.9 3.5 4.8 2.9 2.9 

4.1 3.4 3.8 3.1 3.2 

4.4 3.7 5.8 5.4 5.2 

4.0 - 4.5 3.1 3.3 
m - 3.8 3.8 

E 
5.4 

B 
5.5 

A 
5.2 

G 
3.9 

L 
5.2 

ALGOL 
3.7 

BASIC 
6.0 

BLISS    FORFOR    FORTEN 
3.5 4.1 3.2 

FIGURE 4-8 

Average number of live registers 

ALGOL BASIC BLISS FORFOR FORTEN 

4.4 3.6 3.8 3.8 4.0 

6.0 3.7 4.7 6.4 6.0 

2.5 3.5 3.1 1.8 2.7 

4.2 3.6 3.6 2.0 3.0 

6.0 3.5 3.7 3.6 4.5 

6.5 - 3.6 1.9 3.2 
m - 3.0 3.4 

E 
4.4 

B 
4.5 

A 
4.2 

G 
3.9 

L 
3.7 

ALGOL      BASIC       BLISS    FORFOR    FORTEN 
4.5 3.6 5.1 4.2 5.1 

Average number of lives is computed as: (sum of lifelengths)/{program length) 

54 
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FIGURE 4-9 

Memory references per instruction 

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN 
Bairstow 0.61 0.52 0.50 0.62 0.60 
Grout 0.44 0.59 0.50 0.55 0.64 
Treesort 0.65 0.50 0.51 0.57 0.53 
PERT 0.51 0.47 0.53 0.69 0.63 
Hävie 0.30 0.45 0.31 0.44 0.35 
Ising 0.40 - 0.60 0.67 0.60 
Secant - - - 0.60 0.53 

Algorithm\Programner E B A G L 
Aitken 0.45 0.48 0.52 0.50 0.53 

Source progr.\Gompiler ALGOL BASIC BLISS FORFOR FORTEN 
Treesort 0.40 0.32 0.45 0.42 0.40 

The instruction fetches are not included in the memory reference counts 

FIGURE 4-10 

Register references per instruction 

Algorithm\language A'GOL BASIC BLISS FORFOR FORTFN 
Bairstow 166 1.05 158 1.35 1.37 
Grout 1.67 1.21 1.67 1.56 1.46 
Treesort 1.62 1.04 1.65 1.28 1.32 
PERT 1.58 1.05 1.61 1.25 1.22 
Hlvie 1.57 1.14 1.61 1.36 1.16 
Ising 1.58 - 1.66 1.11 1.13 
Secant - - - 1.39 1.33 

Algorithm\Programmer E B A G L 
Aitkon 1.66 1.67 1.69 1.69 1.54 

Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN 
Treesort 1.09 1.13 1.32 1.39 1.17 

mammmit -*■'—■— 
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FIGURE 4-11 

Register references per r -rnory reference 

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN 

Bairstow 2.7 2.0 3.2 2.2 2.3 

Crout 3.8 2.1 3.3 2.8 2.3 

Treesort 2.5 2.1 3.2 2.2 2.1 
PERT 3.1 2.2 3.0 1.8 1.9 

Hävie 5.2 2.5 5.2 3.1 3.3 

Ising 4.0 - 2.8 1.7 1.9 

Secant - - - 2.3 2.i 

Algorithm\Programmer E B A G L 

Aitken 3.7 3.5 3.3 3.4 3.1 

Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN 

Treesort 2.7 3.5 2.9 3.3 2.9 

on the PDP-10 effectively constitute a load, but usages of these instructions in other cases 

do not.  As a consequence, some lives may not be properly detected. 

A comparison of the results of our sequence program, as described in Section 5.2, with 

the listing of the ALGOL run time support system, seems to indicate that this source of error 

may be significant for our ALGOL programs, particularly Crout, Havie ana Ising, which contain 

many procedure calls and narrd parameter transmissions. For the compilers traced there are 

many halfword loads, but no significant pairs of halfword loads, and for the otner programs 

there are no danger signs in our results. 

4.4.1     Summary 

We summarize these initial results as follows: 

Register lives are in general short, less than 32 instructions. Only for 3 of our .1 subject 

programs are more than 107. of the R-lives 32 instructions or longer, and for 11 of the 

programs 99'7. of the lives are ihorter than 32 instructions. The average lifelength is less 

than 24 instructions for all programs, less than 15 for 32 of them and less than 10 

instructions for 14 programs.   These results vary systematically with the algorithm; PERT and 

mtmaammm 
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Treesort have short lives, Hävie has long lives. The BASIC programs form an exception, they 

all have lifelength« between 11.2 and 12.3 instructions. 

The average number of usages per life varies between 3.1 (FQRFOR PERT, FORFOR Ising) and 

C.6 (BLISS Treesort). Again the results from the BASIC programs vary little with algorithm 

(3.4 to 3.'\ the other results vary more with the algorithm, but not very systematically 

except for tne two FORTRAN versions.  These correlate well with each other. 

The average ,-umber of live registers is less than 7 for all 41 programs, 4 or less for 24 of 

them. ALGOL programs generally keep more registers live than do programs in the other 

languages (See footnote on page 74). The results from the BASIC programs again vary 

little with the algorithm. The correlation between the FORTRAN versions is not ap good as 

for the lifelengths and the usages per life. 

The high ratio of register references to memory references suggest that those registers 

which are live are effectively used for temporary results. 

The influence of language and algorithm is not clear. Generally results from the BASIC 

programs are almost independent of the algorithm, and the ALGOL results often show a 

consistent trend, but with some variation. In some cases the correlation between the two 

FORTRAN versions is good. This indicates that the differences found are due to language and 

not to implementation. Variations due to the programmer are marked, as witnessed by the 

results from Aitken. 

4.5    Register life classification 

Specialization of registers may seem irrelevant in view of the current tendency towards 

general register structures, and the consequent increased generality of ISP ard program 

structure. However, specialization may be of relevance in short wordlength computers, 

where the addressing space saved by omitting register addresses can be used for more 

important capabilities. 

To assess the utility of a fu" set of operators for each register we need to know which kinds 

of operations are performed on a register during its R-life. One way of obtaining this 

information is to use a finer register utago clamficaiion than the "loaded", "acctssed" one 

- ■ ■ ■ MMMMM   ■•* 
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sufficient to determine the lives», and to extend the life detection algorithm to compute the 

utagn clan for each R-life. That is: at each usage of an R-life the appropriate usage 

attribute is included in the utago clats. Hence the number of R-Ues in each usage class may 

be accumulated. 

This method for classifying R-lives has two variants. One is to accumulate the usage classes 

strictly for one register life. The other is, for binary operations, to let the the usage class of 

the result become the union of the classes of the operands. The former is most relevant 

when we analyze a structure with very general registers to detect unneeded generality, the 

second variant can be used on an ISP with specialized registers to see the need for a more 

general structure.  Our experimental results were obtained by the former variant. 

The information may be tabulated by the register number, allowing us to see for each 

physical register how it was used. More interesting is to tabulate, for each usage class, 

statistics on the number of lives in each class, their average length and number of usages. 

\AM call this the usaifi Ciaai table or UCT. 

None of our analyses showed more than 200 different usage classes. About half of these 

account for more than 997« of the total number of lives. Hence the UCT forms a very compact 

database describing the register usage, which can be manipulated or stored for later use at a 

low cost. A natural format is to store the UCT sorted by the number of lives in the class, or 

by the sum of the lifelengths represented by the class. Thus we may cheaply ask questions 

that were not thought of at the time of the original analysis and, in particular, we may study 

that UCT which is the union of all the UCTs of the individual subject programs. Unfortunately 

it was not realized until a late stage in our experiments that the UCTs would be small. Hence 

we have not saved the UCTs from our analyses. 

Several forms of output may be obtained from the UCT. A very simpleminded output 

procedure, which takes usage classes as its parameters, can be employed to print data 

pertaining to all classes that ar;? subsets of, supt rsets of, or other simple combinations of the 

classes given as parameters, n this way we may obtain statistics on the usage classes a 

priori thought to be significant. Another procedure may - used to find combinations of 

attribvtcs that frequently occur in the same usage class. The -esult of such an analysis will 

be an a postenori classification of the R-lives corresponjing to suitable types of more 

specialized registers. 

f The one in Section 4.3 is a typical extrnple 
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In our case, we believed a priori that the classification into floating point accumulators, fixed 

point accumulators, index registers with simple arithmetic capabilities and temporary storage 

only, is of such a significance (See page 41). This belief is well founded in history. We 

display the fraction of lives in each of these arithmetic classes in figures 4-12 through 

4-15. Each class is defineH by the Vrongest" form of arithmetic used in it, floating point 

being stronger than fixed point multiply and divide, which again is stronger than fixed point 

add and subtract. R-lives not used for arithmetic may still be used for logical or other 

operations. These four classes are disjoint. We denote them: Flpating. JÜMMSL Counter and 

Noari. 

Some other classes were also thought to be of interest. The fractions of R-lives that were 

used only as storage locations are tabulated in Figure 4-15, this class is denoted 

Temporarv. The fractions of R-lives used for indexing (whether for data accessing, jumps or 

immediate operands) arc tabulated in Figure 4-17. This class is not disjoint from the 

arithmetic classes, and is denoted Indexing. 

Yet another classification of interest is the intersection of the indexing class with the 

arithmetic classes. We have no concise results for these classes, except the printout of 

statistics for all indexing classes discussed below. 

An output procedure as described above was programmed to print the number of lives, 

fraction of toHl number o* lives, average lifelength and an interpretation of the usage class 

encoding, for the selected set of classes. It was used to print the whole of the UCT as well 

as the subclasses for arithmetic and indexing discussed above. An example of tnis output is 

given in Appendix B. 

A study of these printouts brought up several questions which could not be quantitatively 

investigated since we did not have access to the old UCTs. We formulated several 

hypotheses, however, and checked them manually in a scan over all the printed results. 

1) A significant number of lives are of length one. This was verified. Some partial 

explanations could be: Values of subroutines returned in registers but not used at the 

call site. Double length results of integer multiplication and two results of division 

(quotient and remainder) where only one is used. Linenumbers of BASIC programs are 

loaded into a register for each source line executed, these are used only when errors are 

detected. 

mm ___. n^^HMM 
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FIGURE 4-12 

Algorithm\language 
Bairstow 
Grout 
Treesort 
PERT 
Hävie 
Ising 
Secant 

Algorithm\Programmer 
Aitken 

Source progr.\Compiler 
Treesort 

Fraction of lives with no arithmet 10 

Cl ass Noari 

ALGOL BASIC BLISS FORFOR FORTEN 

0.213 0.637 0.574 0.494 0.470 

0.528 0.716 0.214 0.349 0.440 

0.315 0.686 0.257 0.784 0.565 

0.597 0.735 0.547 0.457 0.416 

0.628 0.680 0.482 0.496 0.412 

0.695 - 0.620 0.744 0.622 
_ - 0.263 0.266 

E 
0.317 

B 
0.390 

A 
0.402 

ALGOL      BASIC 
0.844       0.744 

G     L 
0.475   0.391 

BLISS FORFOR FORTEN 
0.921   0.802  0.885 

FIGURE 4-13 

Fraction of lives with fixed point add/subtract 
Class Counter 

Algorithm\language 
Bairstow 
Crout 
Treesort 
PERT 
Hävie 
Ising 
Secant 

Algorithm\Programmer 
Aitken 

Source progr.\Compiler 
Treesort 

ALGOL BASIC BLISS FORFOR FORTEN 

0.504 0.106 0.054 0.118 0.141 

0.304 0.009 0.096 0.189 0.122 

0.355 0.103 0.710 0.208 0.056 

0.380 0.122 0.397 0.516 0.552 

0.278 0.085 0.149 0.123 0.156 

0.300 - 0.373 0.250 0.370 
_ - 0.359 0.303 

E 
0.210 

ALGOL 
0.130 

B 
0.202 

BASIC 
0.234 

A G L 
0.302       0.423       0.389 

BLISS    FORFOR    FORTEN 
0.074       0.190       0.108 

■ ■——  J 
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FIGURE 4-14 

Fraction of lives with fixed point multiply/divide 
Class Fixed 

Algorithm\language ALGOL BASIC BLISS F0RF0R FORTEN 
Bairstow 0.009 0.001 0.018 0.042 0.019 
Crout 0.006 0.064 0.433 0.156 0.142 
Treesort 0.317 0 0.011 0.000 0.370 
PERT 0.002 0.000 0.004 0.006 0.006 
Havie 0.002 0.001 0.031 0.018 0.015 
Ising 0.006 - 0.007 0.006 0.008 
Secant - - - 0.175 0.199 

Algorithm\Programmer E B A G L 
Aitken 0 0 0 0 0.085 

Source progr.\Compiler ALGOL BASIC BLISS F0RF0R FORTEN 
Treesort 0.026 0.019 0.005 0.009 0.008 

FIGURE 4-15 

Fraction of lives with floating point arithmetic 
Class Floating 

Algorithm \language ALGOL BA3iC BLISS F0RF0R FORTEN 
Bairstow 0.274 0.256 0.354 0.347 0.369 
Crout 0.103 0.211 0.257 0.306 0.296 
Treesort 0.014 0.211 0.022 0.008 0.009 
PERT 0.021 0.143 0.053 0.021 0.026 
Hävie 0.092 0.233 0.339 0.363 0.418 
Ising 0.000 - 0 0 0 
Secant - - - 0.203 0.232 

Algorithm \Programmer E B A G L 
Aitken 0.473 0.408 0.296 0.102 0.136 

Source progr.\Compiler ALGOL BASIC BLISS F0RF0R FORTEN 
Treesort 0.000 0.003 0 0 0 
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Fraction of R-lives used as temporaries only 
Class Temporary 

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN 
Bairstow 0.028 0.067 0.179 0.101 0.121 
Crout 0.018 0.101 0.049 0.137 0.142 
Treesort 0.001 0.107 0.000 0.000 0.001 
PERT 0.016 0.128 0.188 0.069 0.104 
Havie 0.072 0.279 0.062 0.250 0.019 
Ising 0.059 - 0.086 0.147 0.067 
Secant - - - 0.041 0.030 

Algorithm\Programmer 
Aitken 

E 
0.062 

B 
0.078 

A 
0.092 

G 
0.112 

L 
0.015 

Source progr.\Compiler 
Treesort 

ALGOL 
0.096 

BASIC 
0.089 

BLISS 
0.180 

FORFOR 
0.151 

FORTEN 
0.153 

FIGURE 4-17 

Fraction of lives ased for indexing 
Class Indexing 

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN 
Bairstow 0.513 0.407 0.226 0.341 0.251 
Crout 0.519 0.374 0.520 0.195 0.244 
Treesort 0.482 0.412 0.683 0.431 0.476 
PERT 0.592 0.421 0.556 0.445 0.497 
Havie 0.524 0.365 0.387 0.278 0.203 
Ising 0.571 - 0.484 0.267 0.249 
Secant - - - 0.376 0.406 

Algorithm\Programmer E B A G L • 
Aitken 0.185 0.196 0.232 0.318 0.474 

Source progr .\Compiler ALGOL BASIC BLISS FORFOR FORTEN • 

Treesort 0.401 0.364 0.341 0.509 0.313 

UMtM^M. .__. -      - 
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2) A significant fraction of the R-lives are never stored. This hypothesis was verified for all 

subject programs. It clearly demonstrates that registers are not only needed to produce 

result--, but also as indices and fast temporary storage. 

3) The usage classes representing most lives have few attributes, i.e. 2 or 3. This 

hypothesis was verified in all subject programs. It supports the idea put forward by 

Knuth [KnuD70], that programmers rarely do anything complicated. 

•"'■■•■ 

4) Most lives for indexing use no arithmetic at all. This was true in most cases, but with 

notable exceptions. 

5) Most lives used for indexing have no arithmetic stronger than fixed point add and 

subtract. Largely verified, but strong exceptions. Particularly noteworthy was the Crout 

algorithm, the only one where two dimensional arrays were used. There was a great 

difference between programs using a multiplicative address calculation (dope vectors) 

(FORTRAN and BLISS versions) and those using Iliffe vectors (ALGOL version) for array 

accessing. 

6) Lives used for floating point arithmetic rarely use fixed point arithmetic. True for all 

subject programs that have a significant amount of floating point arithmetic. The 

indications were that the exceptions were usages for fixed to floating conversion or vice 

versa, largely occuring in the initialization phases of our programs. 

Another observation was that most usage classes, although not the most frequent ones, 

contained the "tested" attribute. 

An obvious source of error with this method is its dependence on the correct detection of R- 

lives, as discussed on page 49. As noted there, this error may be significant for some of our 

ALGOL programs. 

Another deficiency is that the representation of a usage class does not take into account that 

some attributes may contribute to the class many more times than others. The algo 'thm 

could be augmented to compute the number of occurrences of each usage attributr while 

accumulating the class of an R-life. Even if these counts were averaged over the ..ves in 

each usage class, one word of storage would be required for each combination of ait-ibute 

mmm —-—-"-- - ■  -' -• mm i i< 



■P^WIWVWlr" Wi^^W^w^i^M". ii A.Mmmnium ' f^r*  iiim i-pppiiiMiij m^.«!'»  ""»i- HP^1""1» »"'■ffwwpw^Pjwww^^^i^iAP i   ^pppmifiippipfvffipipapi 

REGISTER STRUCTURE 64 

and u$ago clas», i.e. at least AOOO words. Since most lives are short and of few usages, we 

believe that this addition to the algorithm does not justify its cost. We be'ieve that the trend 

of such results would be that the infrequent events are even less frequent than shown by 

our present methods. 

4.5.1     Summary 

The results in figures 4-16 to 4-15 lead us to the following conclusions: 

For algorithms containing floating point arithmetic, up to 42'7o of the R-lives are from the 

"Floating" class, but usually considerably fewer: 207. to 371 The BASIC programs form an 

<ception, even though all arithmetic in BASIC is done in floating point, at most 267. of the R- 

lives are from this class. Except for BASIC programs, there is a systematic variation with the 

algorithm. 

Lives with fixed point multiplication and division occur almost only in the programs that use 

the multiplicative method for matrix access, or that use integer division for unpacking. Hence 

the dependence on algorithm is marked, but less so than for the "Floating" class, and 

particular techniques used by or enforced by the language or its implementation become 

significant. 

For the other classes, the interaction of the needs of the algorithm with the register 

allocation mechanism of the compilers obscure any systematic effects due to each of these 

factors singly. There is, however, some more stability to the results from the ALGOL and 

BASIC programs than from the others. This is most probably due to the run time system of 

ALGOL and to the lack of integer arithmetic in BASIC. 

ALGOL programs have a high number of lives in the "Counter" class, (307. to 507, of the lives); 

BASIC programs have a very large number of lives with no arithmetic (637 to 747.). ALGOL 

programs also have a high number of lives in this class (217. to 697). 

487. to 597 of the R-lives in ALGOL programs are used for indexing. The fraction of indexing 

lives is also high in BLISS programs (237. to 687.) and BASIC programs (377 to 427.), but not 

consistently. For the FORTRAN programs this fraction varies between 197 and 497., the 

agreement between the two FORTRAN versions is good. 

- - 
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For The "Temporary" class, the results vary between 0 and 28?. For ALGOL programs the 

results are consistently low, 0.1/ to 1.21.   For BASIC programs they are high: 6.77 to 287. 

The substance of these results is: The classes for strong arithmetic are used only if the 

algorithm or the accessing method used by the compiler requires such arithmetic. Hence for 

these classes the dependence on the algorithm is strong. In the classes for weak and no 

arithmetic the results seem to depend more on the language, particularly for those languages 

which enforce a strong regimen on their programs, such as ALGOL by its run time system and 

BASIC by its restriction to floating arithmetic and by its strictly statement by statement 

execution (no information is carried in registers between source program lines). 

These findings corroborate those of Alexander [AleW72], which indicate that two or three of 

the physical registers on the IBM 360 are used as accumulators, whereas most of them are 

used as indices or base registers. 

The results for the f-'ORTRAN and BLISS programs show little systematic variation except for 

a good agreement between the FORTRAN versions of the same algorithm. 

4.6    Register block size 

The results presented in Figure 4-9 through Figure 4-11 indicate that for our subject set the 

number of register references is between two and three times the number of memory 

references. Hence the need for a register block is well demonstrated by experiment, as well 

as being motivated by programmer experience. The problem is more one of size, i.e. how 

many registers can be utilized efficiently enough to warrant their cost. In addition to its 

obvious dependence on the other properties of the ISP, this number depends on the 

structure of the algorithm, the cleverness of the programmer and the compiler and the 

fineness of the factorization of the program. The combined effect of these factors is 

represented by our subject set. 

We now present a sequence of methods which in a gradually better way measure the utility 

of the register block and the time costs associated with its usage. 

We have already presented some crude measures in Section 4.4; The number of memory and 

register references per instruction presented in figures 4-9 through 4-11 are of relevance, 

another measure is the average number of live registers in Figure 4-8. 
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Some better measures could be developed if we knew the number of registers that are are 

live at each point in the program. In the next subsection we present an algorithm for 

computing this. This algorithm is extended to compute, for any N. what fraction of the time at 

least N registers were UM, and finally to give a coarse estimate of the time cost incurred if 

the number of registers were reduced below the maximum used by the program. This 

estimate Is based on the number of usages in each R-life. A further improvement takes into 

account long dormant periods of registers. We now describe these algorithms, the associated 

cost measures, and the experimental results, in more detail. 

4.6.1     Detecting simultaneous lives 

The algorithms are embodied in a two stage (or pass) program, the first stage reads the 

trace and writes an intermediate file of data items describing each R-life. This file is 

processed in the reverse order by the second stage. The algorithms are described below, 

and illustrated by an example in Figure 4-' 

The first stage is actually the algorithm which detects register lives, described in Section 4.4, 

with a minor addition: As each R-life is determined, (at the start of the next R-life for that 

register), a data item containing the times of its transitions, its usage class, number of usages 

etc.   is written to the intermediate file. 

The second stage reads this file backwards while maintaining a simulated time (s-time) which 

decreases as the algorithm proceeds. Initially the s-time is the duration of the program, later 

it is equal to the time of the transition most recently processed by the algorithm as 

described below. 

The stage two program keeps a data entry describing the statt {live or dead) of each 

physical register, there is also a counter of live registers, and a linked list of at most two 

entries (each describing an unprocessed transition) per physical register, as described below. 

Initially the second stage reads the data items decr.bmg the last R-life for each register, and 

enters the tnui^tieiu in the list, sorted by decreasing time. The algorithm proceeds by 

processing the transition first on the list, i.e. that having the highest time. Current s-time is 

set to this time, and the table and counter are updated according to the nature of the 

transition.   If the transition was a firs, use, we have finished processing an R-life.   The next 

^*m* ^_.__ 
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data item for that register is immediately read from the file (see below), and its iransitiom 

are entered in the list. Hence when the analysis is under way, the list contains one transition 

for each live register, (i.e. its first use), and both transitions for the other registers (whose 

data items have been read, but whose times of last uso are less than the current s-time). 

Note that, by the way the intermediate file was written, its data items are ordered by the 

time of first us« of the next (later in execution time) R-life of the register involved. When 

the file is read backwards by stage 2, one item is read each time a first use has been 

processed. The item read is the one that was output by stage one at that point of the trace 

when the execution time of the subject program was equal to the current s-time. But that is 

exactly the data item describing the next (earlier in execution, lower s-time) R-life for the 

register just processed by stage 2. An exception may occur when the same instruction 

loaded two registers, and hence started two R-lives, in which case their order in the file may 

be the reverse of what stage 2 expects. Consequently data space is needed to describe in 

full exactly one R-life for each physical register, plus one extra R-life possibly being held 

over for one read operation. This is further illustrated in Figure 4-18. The order of 

events during the interval described by the figure is: 

During execution: 

Before TO:   RO, R2 and R3 are live. 

At TO 

At Tl 

At T2 

At T3 

At T4: 

At T5: 

At T6: 

After T6: 

Rl is loaded, L10 starts.  R3 is accessed. 

RO is loaded using RO as index.  Hence LOO and L01 overlap at Tl. 

Last usage ot L01 and L20. 

Last usage of L10; RO is loaded; hence L02 starts.   R3 is accessed for the first 

time since TO. 

Last usage of L30; Rl is loaded; hence Lll starts. 

Both R2 and R3 are loaded by the same instruction.   L21 and L31 start. 

Last use of Lll. 

RO, R2 and R3 are live. 

During tint 1= 
At Tl 

At T3 

At T4 

At T5 

LOO is detected and its data item output. 

L01 is detected and its data item output. 

L10 is detected and its data item output. 

L20 and L30 are detected and their data 'terns output in some order. 

IM! 
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We denote the data items DLij etc.   The data items on the intermediate file are now in the 

order: 

.. . DLOO DL01 DL10 DL20 DL30 . . . 

The two last might be interchanged; we assume this order. 

During 

S-time 

S-time 

S-time 

> T6: 

= T6: 

-T5: 

S-time 

S-time 

S-time 

S-time 

- T4: 

-T3: 

-T2: 

- Tl: 

S-time ■ TO: 

Z: (Listed in order of occurrence in stage 2, i.e. by decreasing s-time). 

The data items DL02, DL21 and DL31 have been read and the last usages of 

their  lives  processed.   DLU  has been read but  its  transitions have  not  vat 

been processed. 

Last use of Lll is processed. 

First usages of L21 and LSI are processed, assume in that order. After L21 

has been processed a data item is read. By the above assumptions this is 

DL30. Hence it will be held over in temporary storage, and DL20 is read from 

the file, and entered into the tables. Next the first usage of L31 is processed 

and DL30 is fetched from the temporary store and entered in the tables. 

The first use of 111 is processed and DL10 is read from the file. The last use 

of L30 is processed. 

The first use of L02 is processed, and the data item DL01 is read.  The last use 

of L10 is processed. 

The last uses of L01 and L20 are processed. 

The first use of L01 is processed, the data item DLOO is read and its last use 

immediately processed. 

The first use of L10 is processed, the data item for its previous life, if any, is 

read. 

Now assume R3 was dormant from TO to T3. This would be detected by stage 1 at time T3, 

the data item for the first part of L30 (call it DLSO') would be output at this time. The data 

item for the second part of L30 (i.e. 0L30") would be output at T5, as was DL30. During 

stage 2, the data item DL30" would be read at s-time T5, its usages processed at T4 and T3. 

At T3 the cata DL30' would be read, its last usage would be processed at TO, and so on as 

before. 

For each interval of time, the number of live registers is given at the bottom of the diagram. 

In the latter case it would be reduced by 1 between TO and T3. 

This concludes our discussion of Figure 4-18. 
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FIGURE 4-18 

A typical situation of Register usage. 

Assume our ISP has four registers, RO, Rl, R2, R3.   The successive lives of Ri are denoted 
LiO, Lil The diagram has one horisontal line for each register, as labelled.   This line is 
solid when that register is live.  It is broken when that register is dormant.  The vertical bars 
correspond to times of transistion, as marked on the time axis at the top. 

TO Tl T2        T3 T4 T5 Ti time 

RO: 

Rl: 

R2: 

R3: 

LOO L01 

LIO 

L20 

L30 

L02 

Lll 

L21 

L31 

LIVE:     3 4(3) 4(3)        2(1)        2 

The u*Kigfl clas» of each R-life may be included in each data item on the intermediate file. 

Hence, if the result of an analysis as described in Section 4.5 should indicate that 

specialization of the registers is desirable we may do this simultaneity determination for any 

utage class we consider important in addition to the set of all registers. The "state" of each 

physical register has to be augmented to include its class, and an encoding of this class into 

the (probably much fewer) classes for which output is desired must be deviced. For each 

output class a counter of live registers must be added. 

We performed these analyses for the subclasses of R-lives defined in Section 4.5, as well as 

for the class of all registers. A typical output from phase 2 is displayed in Figure 4-19. A 

compressed form of the results from all the subject programs is given in figures 4-20 

through 4-22. 
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FIGURE A-19 

Output from simultaneously live register analysis for program PORTEN Hävie. 
Distribution of number of live registers in the different classes. 

For each class, the first coloumn gives the instruction count when exactly N registers were 
live. Coloumn 2 gives the fraction of the total instruction count for this state. Coloumn 3 is 
a cumulation of coloumn 2, it gives the fraction of the instruction count when at most N 

registers were live. 

N NO ARITHMETIC FIXP01 NT ADD/ SUB. HX^ Ulm MU -/UiV. IN 

1 25221 0.693 0.693 1960 0.054 0.054 410 0.011 0.011 1 

2 7580 0.211 0.904 23837 0.655 0.709 215 0.006 0.017 2 

3 1163 0.032 0.936 7460 0.205 0.913 14 0.000 0.018 3 

4 1038 0.029 0.964 198 0,005 0.919 0 0.000 0.018 4 

B 551 0.015 0.979 t:
;4 0.007 0.926 0 0.000 0.018 5 

6 A3C 0.012 0.991 134 0.004 0.930 0 0.000 0.018 6 

7 256 0.007 0.998 5 0.000 0.930 0 0.000 0.018 7 

8 41 0.001 0.999 0 0.000 0.930 0 0,000 0.018 8 

9 47 0.001 1.001 0 0.000 0,930 0 0.000 0.018 9 

10 14 0.000 1.001 0 0.000 0.930 0 0.000 0.018 10 

11 0 0.000 1.001 0 0.000 0,930 0 0.000 0.018 11 

12 0 0.000 1.001 0 0.000 0.930 0 0.000 0.018 12 

13 0 0.000 1.001 0 0.000 0.930 0 0.000 0.018 13 

TOTALS 
13 36444 1.001 33848 0.930 639 0.018 13 

N FLOATING POINT INDEXING ANY USAGE N 

1 18172 0.499 0,499 28218 0.775 0.775 166 0.005 0.005 1 

2 6446 0.177 0.676 5853 0.161 0,936 1104 0.030 0.035 2 

3 34 0.00 i 0.677 350 0.010 0.945 3171 0.087 0.122 3 

4 0 0.000 0,677 426 0.012 0,957 14985 0.412 0.534 4 

5 0 0.000 0.677 718 0,020 0.977 15092 0.415 0.948 5 

6 0 0.000 0.677 515 0.014 0,991 481 0.013 0.961 6 

7 0 0.000 0.677 335 0.009 1,000 298 0.008 0.969 7 

8 0 0,000 0.677 45 0.001 1.001 409 0.011 0.981 8 

9 0 0.000 0.677 18 0.000 1.002 419 0.012 0.992 9 

10 0 0.000 0,677 0 0.000 1,002 185 0.005 0.997 10 

11 0 0.000 0.677 0 0.000 1.002 78 0.002 0.999 11 

12 0 0.000 0.677 0 0.000 1.002 50 0.001 1.001 12 

13 0 0.000 0.677 0 0.000 1.002 M7 0.00 i 1.002 13 

TOTALS 
13 24652 0.677 36478 1,002 36485 1.0O2 13 

■M 
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FIGURE 4-20 

Maximal number of simultanejus R-lives 
Number of registers sufficient 98/ of the tine 
Number of registers sufficient 907 of the time 

Algorithm\lang uage ALGOL BASIC BLISS F0RF0R PORTEN 

Bairstow max 13 10 9 13 12 

98/ 11 7 6 10 9 

90 Z 8 6 5 9 7 

Crout max 13 7 7 13 12 

98/ 11 7 7 12 8 

907 10 6 6 10 7 

Treesort max 14 7 5 n 
-t 12 

98/ 4 7 5 4 5 

90/ 3 6 5 3 4 

PERT max 14 10 7 11 12 

98/ 10 7 6 8 8 

90/ s 6 5 3 5 

Hivie max 14 10 9 10 13 

98/ 11 6 5 6 9 

90/ 9 5 5 5 5 

Ising max 14 - 7 11 12 

98/ 11 - 5 7 9 

90/ 10 - 5 3 6 

Secant max - - - 13 12 

98/ - - - 6 5 

90/ - - - b b 

Aigorithm\Programmer E B A G L 

AitKen max 7 7 s 7 S 

98/ 7 7 7 7 7 

90/ 7 6 6 6 7 

Source progr \Compiler ALGOL BASIC BLISS fORFOR F0RTEN 

Trjesort max 15 11 13 13 .11 

98/ 10 9 6 8 8 

90/ 8 7 5 7 6 

_ 
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. .oURE 4-21 

Number of registers sufficient 907. of the time 
for the arithmetic classes previously defined. Classes denoted by 

FLO - Floating, FIX - Full fixpoint, COU - Fixpoint add subtract. 

Algorithm\langUuge 
Bairstow 

Crout 

FLO 
FIX 

COU 

FLO 
FIX 

COU 

ALGOL 
2 
1 

1 
0 
5 

BASIC 
1 
0 
2 

1 
1 
1 

BLISS FORFOR FORTEN 
2 2 2 
0 1 0 
2 1 2 

1 
2 
3 

3 

3 

2 
2 
3 

Treesort FLO 
FIX 

COU 

0 
1 
1 

1 
0 
2 

0 
0 
3 

0 
0 
1 

0 
1 
2 

PERT 

Havle 

FLO 
FIX 

COU 

FLO 
FIX 

COU 

0 
0 
4 

1 
0 
5 

1 
0 
2 

2 
0 
2 

1 
0 
3 

2 
1 
2 

0 
0 
2 

2 
0 
2 

0 
0 
3 

2 
0 
3 

Ising FLO 
FIX 

COU 

0 
0 
5 

0 
0 
4 

0 
0 
1 

0 
0 
3 

Secant FLO 
FIX 

COU 

1 
1 
a 

Algorithm\Programmer E B A G L 
Aitken FLO 2 2 2 2 2 

FIX 0 0 0 0 1 
COU 3 2 3 4 3 

Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN 
Treesort FLO 0 0 0 0 0 

FIX 0 1 0 0 0 
COU 3 2 2 2 2 

-   -   -  
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FIGURE 4-22 

Number of registers sufficient 907 of the time 
tor the no arithmetic class (NOA), the indexing class (IND) 

and the total class (TOT). 

i 
,  l 

Algorithm\ls iguage ALGOL BASIC BLISS F0RF0R FORTEN 
Bairstow NOA 4 4 3 7 5 

IND 6 3 2 5 5 
TOT 8 6 5 9 7 

Crout 
* 

NOA 6 4 2 3 6 
IND 9 3 3 2 3 

TOT 10 6 6 10 7 

Treesort NOA 2 4 2 2 2                                       | 
IND 2 3 3 2 2 

TOT 3 6 5 3 4 

PERT NOA 4 4 2 2 3 
IND 7 3 3 2 2 

TOT 8 6 5 3 5 

Havie NOA 5 3 2 2 2 
IND 8 3 2 2 2 

TOT 9 5 5 5 5 

Ising NOA 6 . 2 2 4 
IND 9 - 2 2 4 

TOT 10 - 5 3 6 

Secant NOA . _ . 2 2 
IND - - - 2 2 

TOT - - - 5 5 

Algorithm\Programmer E B A G L 
Aitken NOA 4 4 4 3 2 

IND 4 3 3 2 5 
TOT 7 6 6 6 7 

Source prog '.\Compiler ALGOL BAfIC BLISS FORFOR FORTEN 
Treesort NOA 6 5 4 6 4 

IND 4 4 2 4 2 
TOT 8 7 5 7 6 

■M^M 
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4.6.2    Cost of reducing the register block 

The results just presented show clearly that, except for ALGOL programs and the ALGOL 

compiler, at most 8 to 10 registers out of the 16 available are used simultaneously1, and that 

many only for short intervals of time. If the processor were equipped with fewer registers 

than this, a time and space cost would occur by having to store registers temporarily in 

primary memory. Intuitively, it seems from the above results that for a moderate reduction 

in the number of registers this cost would be low. We now describe an extension to our 

algorithm which enables us to compute upper bounds for this time cost. 

Assume we want to compute the additional time cost incurred by running the program on an 

ISP with M registers but otherwise similar to the one we investigate. At some point in the 

program we have N simultaneous Tves, N > M. We select the N - M least useful lives as 

descriood below, and assume that these can be interleaved with the remaining R-lives in the 

registers used for the latter lives. That is: Each time an omitted register is referenced, 

another register must be temporarily stored, and the desired value loaded into it. This value 

is stored after use, and the original value reloaded. The associated time cost is two STORE 

LOAD pairs per reference to the selected lives, i. e. 4 instructions per reference if the 

instruction count is used. If an R-life L so selected for omission, is selected again at some 

later time, but for the same M, the cost should not be added the second and later times. 

Th's computation is done during the second stage described above, each time we process a 

first use. It can be done simultaneously for all desired M, and for many criteria of usefulness 

of lives. Data space used by the algorithm is proportional to the number of criteria times the 

number of registers, but with a low factor (at most 5 words).   The amount of computation 

♦ The structure of an ALGOL program is almost like two coroutines calling each other, viz. the 

user prrgra^i and the run time support routines. These operate on disjoint memory cells and 

almost disjoin. '»*\% of registers. Similarly the ALGOL compiler consists of a lexical analyser, 

a syntax analyser and a code generator, each having its own set of registers allocated to it. 

This probably acco mts for the exceptional results obtained for ALGOL, and also indicates 

how programs may b^ structured to use many registers effectively. Further explanation may 

be the difficulty of de ectin^ multi-instructicn loads., as described on page 49. 

mm ^M tm*m. - 
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involved is small. Hence this is a relatively cheap measure to compute once we are doing the 

simultaneity analysis. 

Several criteria of usefulness can be used to select which R-lives to omit. The following 

were tried: 

The least used lives. 

The least densely used lives {usages per lifelength). 

The shortest lives. 

The longest lives, (hight be better than omitting many short ones). 

Of these, the "longest lives" never gave the lowest cost. The "shortest lives" criterion rarely 

gave good results. Almost all the lowest results were obtained using the "least used" or 

"least densely used" criteria. Furthermore the criterion giving the lowest cost often changed 

with the number of available registers (i.e. M) even for the same program. It follows that, in 

an analysis, several criteria should be used, including the 3 first ones above. The best cost 

obtained in each cat   should then be used as an upper bound. 

We present a typical output in Figure 4-23, and a summary of the results from the whole 

subject set in Figure 4-24. As is seen, thr cost of reducing the number of registers in most 

cases is low, less than a percent in som; cases, and less than 152 in most, but running very 

high in a few cases (707- - 1007 increase in cost).  We investigate this further below. 

Note that 3 of the programs which give extremely high costs are ALGOL programs, and just 

those which have many procedure calls and parameter transmissions. Hence the arguments 

presented above about the coroutine like structure of ALGOL programs, and also the error 

discussed on page 49 in connection with undetected loads, apply with force to these results. 

4.6.3    Some sources of error 

We now discuss some sources of errors associated with this method. 

The most significant is probably that the lives omitted are selected on basis of tneir average 

properties. A better selection might have been made, had the local properties of lives been 

known.  We discuss below how this can be done. 
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FIGURE 4-23 

Cost of reducing number of available registers. 
Lives with lowest utility are omitted, 4 utility criteria are used. 

Sample output from program PORTEN Hävie. 

UTILITY: REFERENCES IN LIFE UTILITY: DENSITY OF REFERENCES 

«OF OMITTED RELATIVE LIVES «OF OMITTED RELATIVE LIVES 
REGS ACCESSES MAX COST OMITTED REGS ACCESSES MAX COST OMITTED 

12 33 0.0036 17 12 7 0.0008 2 
11 98 0.0108 42 11 27 0.0030 6 
10 155 0.0170 66 10 58 0.0064 12 
9 227 0.0249 92 9 2386 0.2621 19 
8 409 0.0449 167 8 2500 0.2747 29 
7 659 0.0724 256 7 2704 0.2971 39 
6 1077 0.1183 361 6 2883 0.3167 51 

UTILITY: LENGTH OF LIFE UTILITY: SHORTNESS OF LIFE 

#OF OMITTED RELATIVE LIVES • OF OMITTED RELATIVE LIVES 
REGS ACCESSES MAX COST OMITTED REGS ACCESSES MAX COS! OMITTED 

12 33 0.0036 17 12 2410 0.2648 2 
11 122 0.0134 45 11 2591 0.2847 4 
10 206 0.0226 70 10 2713 0.2981 8 
9 356 0.0391 108 9 2815 0.3093 12 
8 700 0.0769 202 S 2888 0.3173 16 
7 1014 0.1114 294 7 3009 0.3306 24 
6 1342 0.1474 382 6 3170 0.3483 36 

MM^MM ^mmm 
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FIGURE 4-24 

Upper bound for time cost of reducing the register block 
to 10, 8 or 7 registers respectively, 

given as relative increase in instruction count. 

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN 

Bairstow 10 rg 0.054 0 0 0.013 0.005 

8rg 0.228 0.001 0.000 0.132 0.091 

7rg 0.368 0.002 0.004 0.250 0.180 

Crout 10 rg 0.076 0 0 0.440 0.000 

Srg 0.384 0 0 0.757 0.006 

7rg 0.772 0 0 1.046 0.081 

Treesort 10 rg 0.002 0 0 0 0.000 

8rg 0.005 0 0 0 0.001 

7rg 0.007 0 0 0 0.001 

PERT 10 rg 0.016 0 0 0 003 0.003 

8rg 0.132 0.000 0 0.035 0.037 

7rg 0.212 0.001 0 0.052 0.066 

Hävie 10 rg 0.060 0 0 0 0.006 

8rg 0.575 0.001 0.001 0.004 0.045 

7rg 0.734 0.003 0.006 0.017 0.072 

Ising 10 rg 0.067 . 0 0.000 0.004 

8rg 0.437 - 0 0.008 0.051 

7rg 0.997 - 0 0.029 0.105 

Sectint 10 rg _ - . 0.001 0.002 

8rg - - - 0.009 0.014 

7rg - ' - 0.015 0.020 

Algorithm\Programmer E B A G L 

Aitken 10 rg 0 0 0 0 0 

8 rg 0 c 0 0 0 

7rg 0 0 0.011 0 0.003 

Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN 

Treesort 10 rg 0.018 0.001 0.000 0.003 0.001 

8rg 0.068 0.037 0.002 0.062 0.009 

7rg 0.121 0.082 0.010 0.215 0.023 

_ 
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Furthermore a program written for an ISP with few registers will be quite different in its 

local structure from a program written with a large register block in mind. Hence this method 

can not be used to estimate the cost of large reductions in register blocK size. One would 

also, a priori, believe this argument to hold for reduction to a relatively small number of 

registers even if the program did not use many in the first place. This belief, however, is not 

vindicated by our results. 

For the same reason we would expect the upper bounds found by this algorithm, and by its 

modified version described below, to be considerably higher than the actual cost obtained by 

average to careful receding for the lower number of registers. 

A third source of errors is that successive lives of the sa!r,e register may overlap by one 

instruction», hence the simulation of two lives in one register may not be valid. We have 

counted the number of such overlaps and found it mostly to be small (see Figure 4-25). 

Hence this source of errors is insignificant. 

Finally our simulation might be invalid because there were not enough registers available to 

hold the necessary lives. Since at most 4 registers can be involved by any PDP-10 

instruction, this error will not occur for M > 4.  We never used M < 6. 

4.6.4    Utilizing dormant periods 

We now consider a way to take local behaviour of registers into account when computing the 

cost of running with a smaller register block. This is done by assuming that a register is 

dead whenever it has been dormani for some time K. If this assumption should be wrong, a 

time cost of one STORE, LOAD pair applies for each R-life prematurely terminated based on 

the assumption. 

We can detect such dormant periods during the first stage of the analysis.   Each time a 

♦ As when loading a register using the same register in the address calculation 

(MOVE RG,FLOP(RG)). If we had used a finer grain of time, as discussed in Section 4.2, this 

problem could have been avoided. 
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register is used, it is easily checked if its previous usage was more than K ago. If so, the 

present usage is processed as a load, and a "prematurely killed" counter is updated. 

The effect of this trick is tnat a register will appear to be dead whenever it has a long 

dormant period. Hence during this apparently dead period, the number of live registers is 

reduced by one. Non overlapping R-lives of other registers, occurring within this period, can 

be accomodated in the apparently dead register at no cost beyond that of saving and 

restoring the dormant life once (i.e. one STORE LOAD pair). This cost is at most half of the 

cost of interleaving any two lives, ^nd independent of how many other lives are accomodated 

in the dormant register. Since most R-lives are short, we would expect a considerable 

decrease of cost to be obtained this way. However, since each choice of K requires a 

separate intermediate file, at least logically, and the simultaneity determination has to be 

done for each of these, it is a more costly analysis to apply. 

An alternative approach is to use a hybrid method, - some reasonable K is chosen for phase 

one, and the interleaving process is applied in phase 2. If the cost so obtained seems 

unreasonably high, a new analysis can be run using a smaller K. 

Fcr our experiments we used this hybrid method. Unless otherwise specified, K was chosen 

to be 200 throughout all the experiments. The number of lives prematurely terminated by 

this assumption is tabulated in Figure 4-26. Note that if the same life has several dormant 

periods of length more than K, each non dormant period is counted as a life. 

To see the effect of varying K, we performed some experiments with K=100, K=60, K=40 and 

K«'25. For this purpose we chose programs that gave particularly high cost with K=200, in 

the hope that cost could be reduced this way. The programs chosen were the ALGOL 

versions of Ising, Hävie and Grout, and the FORFOR version of Grout. For comparison we also 

included two programs where *he analysis algorithm performed well, i. e. where the results 

for K=200 were regular and the costs low. These were the FORTEN versions of Hävie and 

Crout.   The results are displayed ;n Figure 4-27. 

The overall trend of these results is that the upper bound of the cost can be reduced 

considerably by using a small K. However, there is a point where the cost from storing and 

restoring dormant lives becomes comparable to the cost of imcrlrnving lives, and the total 

cost rises. This point is higher (larger K) the lower the cost of interleaving. We have at 

present no mechanical way of guessing what K will be optimal for a given program without 

performing a series of experiments.   By choosing K as low as 25, the cost of reducing the 

MM^M^MÜ 
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FIGURE 4-25 

Fraction of lives overlapping their successor 

80 

Algorithm\language ALGOL BASIC BLISS F0RF0R F0RTEN 

Bairstow 0.275 0.101 0.005 0.066 0.071 

Crout 0.190 0.135 0.028 0.113 0.136 

Treesort 0.155 0.103 0.050 0.002 0.097 

PERT 0.199 0.030 0 0.066 0.341 

Hävie 0.110 0.0 20 0.000 0.132 0.010 

Ising 0.106 - 0.022 0.074 0.013 

Secant - - - 0.036 0.042 

Algorithm\Programmer E B A G L 

Aitken 0 0 0.004 0.001 0.002 

Source progr.\Compiler ALGOL BASIC BLISS F0RF0R FQRTEN 

Treesort 0.038 0.020 0.002 0.044 0.003 

Computed as: (number of overlaps)/(number of lives). 

FIGURE 4-26 

Lives prematurely terminated by 200 instructions dormancy rule 

Algorithm\language ALGOL BASIC BLISS FGRFOR FÜRTEN 

Bairstow 45 8 64 39 35 

Crout 37 15 126 16 156 

Treesort 14 1 579 2 461 

PERT 35 3 5 11 8 

Hävie 15 11 21 17 8 

Ising 54 - 66 24 13 

Secant - - - 805 795 

Algorithm\Programmer E B A G I 

AitKen 63 63 72 99 135 

Source progr.\Compiler ALGOL BASIC BLISS FGRFOR FQRTEN 

Treesort 489 141 799 2819 1035 
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register block was dramatically reduced for those programs where this cost previously was 

high. The increase in instruction count for reducing to 7 registers was in all cases but one 

brought below 207.. We believe the cost for this program could be brought further down by 

using even lower K. 

The cost obtained by any of these methods is an upper bound, hence we may safely assume 

the smallest of them to be a valid upper bound. 

4.6.5    Summary 

The maximal number of registers used simultaneously by any of our 41 subject programs is 

16. For 17 programs it is 10 or less. 10 registers would suffice 907 of the time (instruction 

count) for all the programs, 987. of the time for 36 of them. 8 registers would suffice 907. of 

the time for 36 programs, 987- of the time for 29 programs. 

BLISS programs use the fewest registers, BASIC programs also use few. Hence time efficient 

programs do not necessarily use many registers. ALGOL programs use most registers, but 

not more than maximally used by FORTRAN programs. The compilers use no more registers 

than the small programs, and the reduction costs for the compilers are not significantly 

higher than for the small programs. Hence the size and complexity of the program has little 

influence on these results. 

The results for the individual classes show that 907 of the time 2 floating point accumulators 

would be sufficient for all the programs, 1 register with full fixpoint abilities would be 

sufficient except for the F0RF0R version of Grout, and 5 registers with fixpoint addition and 

subtraction would suffice for all programs. Similarly, 7 registers without arithmetic 

capabilities and 9 indexing registers would be sufficient 907. of the time for all the programs. 

All the above results are obtained on the assumption that a register is den., when it has 

been dormant for 200 instructions. Ou; experiments using a reduced such period indicate 

that lower results would be obtained that way. 

If the register block were to be reduced to 8 registers, the increase in instruction count 

would be less than 57. in 30 of the programs, less than 207 in 36 of them.   Again the results 

MMM—l 
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FIGURE 4-27 

Relative increase o  instruction count by interleaving R-lives 
as a function of K and M, for selected subject programs. 

Algorithm Maximal 
dormancy 

Lives added 
by dormancy 
saving 

Dormancy part 
of relative 
increase 

Total increase 
for reduction 
to 10 registers 

Total increase 
for reduction 
to 8 registers 

Total increase 
for reduction 
to 7 registers 

200 
100 

60 
40 
25 

200 
100 
60 
40 
25 

200 
100 
60 
40 
25 

200 
100 
60 
40 
25 

200 
100 
60 
40 
25 

ALGOL 
Ising 

ALGOL 
Hävie 

54 
417 
614 

1055 
5158 

0.001 
0.009 
0.013 
0.023 
0.113 

0.068 
0.048 
0.041 
0.023 
0.113 

0.438 
0.410 
0.349 
0.315 
0.121 

ALGOL    FORFOR    F0RTEIM    PORTEN 
Crout        Grout        Grout HJvie 

15 
65 

129 
1218 
7663 

0.993 
0.527 
0.577 
0.522 
0.190 

0.000 
0.001 
0.002 
0.014 
0.091 

0.060 
0.054 
0.054 
0.015 
0.091 

0.575 
0.558 
0.555 
0.269 
0.094 

0.734 
0.714 
0.710 
0.574 
0.149 

37 
320 
334 
509 

5007 

0.001 
0.006 
0.005 
0009 
0.087 

0.077 
0.009 
0.008 
0.009 
0.087 

0.385 
0.270 
0.259 
0.254 
0.088 

0.773 
0.411 
0.410 
0.377 
0.144 

16 
224 
255 

3692 
4931 

0.000 
0.004 
0.005 
0.067 
0.090 

0.440 
0.402 
0.403 
0.082 
0.090 

0.757 
0.731 
0.732 
0.277 
0.179 

1.045 
0.999 
1.000 
0.494 
0.269 

156 
324 
602 
611 

2561 

0.005 
0.010 
0.019 
0.019 
0.081 

0.005 
0.001 
0.019 
0.019 
0.081 

0.011 
0.012 
0.019 
0.019 
0.081 

0.086 
0.045 
0.041 
0.041 
0.082 

8 
29 
65 

108 
2299 

0.000 
0.002 
0.004 
0.006 
0.126 

0.006 
0.004 
0.004 
0.006 
0.126 

0.045 
0.026 
0.011 
0.010 
0.126 

0.072 
0.042 
0.030 
0.015 
0.127 

* m 
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are based on maximal dormant periods of 200 instructions. Additional exper.ments, using 4 

of the programs where reduction was most costly, show that by reducing this period to 25 

instructions the costs were reduceo from 44/, 58/, 38/ and 76/ to 12/, 9.4/, 9/ and 18/ 

respectively, for these 4 programs. We aid not investigate if a further reduction to 20 or 15 

wouid reduce the cost further. 

The cost is particularly high for ALG01- programs. This is discussed in a footnote on page 74. 

FORKOR Crout also has a high cost, and its cost was the hardest to reduce by decreasing the 

maximal dormancy. For BLISS and BASIC programs the reduction was particularly cheap, less 

than 1/ for each program, including the two compilers written in BLISS. The correlation 

between the two FORTRAN versions is not particularly good. 

4.7    Utilities of values 

The methods just described are aimed at establishing the effect of reJL'rmg the register 

block, and our experiments indicate that the registers on the whole are not used very 

efficiently. However, there might be values in memory that could benefit by being kepi in 

registers if the programmer or compiler had realized it. Hence it would be desirable to have 

a utility measure which indicates what values are most important, locally in time, at each 

point in the computation. Those values should be kept in registers which have the highest 

utility at that point in time. Further if values of high utility can not be held in registers, we 

have an indication that more registers should ^e mcluaed in the processor. The converse 

holds if only a few values have high utility. 

Such a measure must give greatest importance to values used by the current instruction, less 

weight to values used further away in the instruction stream. The function w(s) below is 

intended to express this. Furthermore to simplify computations, we might not want to 

conside- all accesses to a value, only those within some interval of time containing the 

current instruction execution.   This is expressed by the function i(s). 

A class of such measures can be defined as follows; Define the utility of a value V at time t 

to be: 
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to 
POM) - / w(T-t) » i(T-t; * u(V,T) dT 

0 
where 

w(s) is a weighting function 

i(s) is 1 in the interval considered, 0 elsewhere 

i V,t) is  1 if V was used by an instruction executed at time t, 

0 otherwise. 

w(s) and i(s) can be chosen freely to obtain different measures of utility, whereas u(Vlt) is a 

fornr.alization of the trace.   In choosing w(s) ana i(s) one must take care that values used by 

the current instruction get a higher utility than any other, regardless of how much they are 

used in the surrounding interval. 

It is reasonable to use the instruction count as the time measure rather than the computed 

time.   Some tentative choices for interval functions can then be cldssified as: 

[n,m] : i(s) «    1 for the interval contamino the last n and next m uses of the valut, 

0 otherwise. 

(n,m) : i{s) -    1 for the '^st n and next m instructions, 

0 otherwise. 

One such measure could be defined as follows: 

Let K be the next time value V will be used, i.e.: 

u(V,T) - 0 for T m [t,K>, 

u(V,k) - 1 for T - k, 

u(V,k) is irrelevant otherwise. 

Now let 

i(s) - 0 for s < 0 (T < t) 

i(s) - 1 for k > s > 0 

i(s) - 0 for s > k 

and let 

w(s)- l/(|s| ♦ 1) 

le. P(V,t) is inversely related to the time until the value will next be used.   This interval 

function is [0,1].   The same weighting function is naturally extended to any (n,m) or [n.m] 

interval. 

It is obviously impractical to perform such a calculation for ail memory locations at all times. 

m mm 
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It is sufficient, however, to consider those locations that are 'live" or "active" at each point 

in time. Detection of such active periods of memory locations (M-hver.) can be done in a way 

much similar to the detection of register lives. Some number K must be selected <«s the 

maximal dormant period permitted within an M-life. This corresponds roushly to an interval 

function of type (K,K). Since every location must be referenced a! least every Kth instruct: n 

in order to stay live, at most K locations can be live simultaneously. A K chosen for this 

purpose would hardly be larger than 256. Hence the data space required for detection of M- 

lives is definitely manageable. A hashing scheme must be used to access the tables of M-life 

data, rathe'- than the register address that was used for the R-life tables. Finally we must 

keep track of values that migrate from memory to registers and back. 

An appropriate weighting function would probably take into account only future usages of 

the location. By using a lookahead of K instructions, the utilities of the live memory locations 

could be calculated. 

We did not do this, but propose it as a possible tool to use for assessing the utility of a 

larger register block, or to assess the optimal size of a register block assuming a future more 

intelligent compiler. 

4.8    Register structure, Conclusions 

We now conclude the presentation of our methods for register structures. We have shown 

how to detect register lives, how to fmo the numoer of simultaneous lives and how to find an 

upper bound on the time cost incurred if the number of registers were to be reduced. Our 

results are summarized in sections 4.4.1, 4.5 1 and 4.5.5. On the whole, our experimental 

results seem io indicate that the time cost incurred by having only 8 general registers on the 

PDP-10 would not be excessive. (This assumes that instruction word space was needed for 

other purposes). 

This number depends, of course, on other architectural properties of the ISP. If the 

registers were specialized, or if base registers were introduced, a larger number of registers 

would be needea. This is clearly seen in the results of 'lexander [AleW72]( 4 or more 

registers in the IBM 360 were kept busy as base registers. On the other hand, if the 

registers were removed from the address space and no register to register operations were 

introduced, memory would have to be used for temporaries, and fewer registers would be 

needed. 
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It should also be noted that the results for a reduced register block, though they are upper 

bounds in one sense, can not be attained unless the register allocation policy of the 

compilers is sufficier My clever. In particular, dormant periods should be recognized, and no 

registers should be allocated to a fixed purpose. 

Finally we point out that a reduction in the number of registers, or a specialization of them, 

is likely to imply a higher programming cost, since the programmer will have to spend more 

thought to how he allocates them. 

On the whole, register usage is determined more by t' ..nguage and its implementation than 

by the algorithm. This is not surprising, since the programmer usually has no control over 

register usage. The observation is particularly true for languages that use a run time 

system, or otherwise impose a strong regimen on the structure of their object code. Thus 

our ALGOL and BASIC programs distinguish themselves in most of the results in this chapter, 

whereas systematic register use by BLISS and FORTRAN is lacking. 

We have also presented a method for classifying register lives with the object of assessing 

the need for generality of registers. Again our results indicate that register generality is not 

extremely beneficial to program efficiency, and that little would be lost if the PDP-10 had, 

say, 2 floating point accumulators, 2 fixed point accumulators and 8 index registers. 

However, the other motivations for general registers have not been invalidated. 

rf^ *.«MMMHM_*. 
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CHAPTER 5 

DATA TYPES AND OPERATORS 

We now turn to the data types of the processor, and the operators to manipulate data of 

these types.  We look at two problems: 

a) How to detect types and operators that are in the ISP, but are not sufficiently used 

to justify their inclusion. This is done by frequency counts and various derivatives 

thereof, as described in Section 5.1. 

b) How to detect data types and operators that are not in the ISP, but could be included 

at a benefit. This problem may be approached by studying instruction sequences and 

operand valjes.  We discuss this in Section 5.2 through Section 5.5. 

Again, we will be mostly concerned with the time cost. Most of the methods described in this 

section also apply to control operators and in part to address calculation methods, as will be 

further discussed in Chapter 5 and Chapter 7. As an introduction we give some seneral 

comments on data types and the associated costs. 

A MA tvpe is an interpretation rule which assigns meaning to the contents of one (or more) 

word(s), or parts of words. A data type is present in a computer if there are instructions 

that manipulate it. We list some commonly occuring data types and in some cases the 

associated operations or other characteristics. 

Word (LOAD, STORE) 

Arithmetic (Test of magnitude or sign) 

Integer (Single, multiple or variable length) 

Floating point (Single, multiple or variable length) 

Address (LOAD, STORE) 

Bit (Test, set) 

Bit vector (One word, logical and other operators) 

Character (Including 8-bit bytes as in the IBM 360 etc.) 

Character string 

Byte (Variable-length bit string «r field) 

byte string 

- ■-  - ■■--■ WMMMkMMx 
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Byte pointer (Generalized address) 

Word vector 

Vector 

Matrix 

Array 

List 

Stack 

Stack pointer 

Instruction (Execution) 

This list is not exhaustive, and the types hsted are neither weil defined nor disjoint. Some 

exist only for transfer purposes, the data operations being subsumed under some other type. 

Some are generalizations of others, i.e. the PDP-10 byte and byte pomter types general.ze 

all partial word transfer operations (Address, bit. character, charade,- string etc). The 

variable length arithmetic types will usually only ex.st en character or decimal based 

machines, i.e. business oriented machines. 

The cost Of including a data type in an ISP has several components: 

Consumption of space for the opcodes in the instruction word. 

Cost of hardware to implement it. 

Possibly longer lime to decode the whole instruction set. 

A data type included in the ISP should be used sufficiently to warrant these costs, as 

discussed in Section 5.1. 

On the other hand, a data type or 30me of its operators might not be present in the ISP 

although it is much needed in applical.ons. This usually means that the necessary data 

structures and operators have to be implemented (interpreted) in terms of the existing data 

types and their operators.  The cost shows up as: 

Increased execution time 

Increased space for program 

Increased time for programming 

Possibly increased space for data 

Less readable programs, implying an increased programming cost. 

This is discussed further in Section 5.2 through Section 5A 

-"——-  "■" ■ -   -■-■'—-      .. 
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A missing but desirable 'lata type might also be a variant of an existing type where the 

existing type is used instead. Examples of such types might be short integers* or Booleans 

(i.e. true/false valued). Since such types are simulated by existing ones", their desirability 

does not manifest itself as an instruction sequence. The costs of not having such data types 

are: 

Space cost of unnecessarily occupied memory. 

Time cost of using the slower instructions. 

We dccuss this further in Section 5.5. 

5.1    Frequency counts 

The obvious way to expose infrequently used data types and operators is to accumulate the 

number of executions of each instruction. This table of execution counts, the mstruction 

frequency table or IFT, is another compact data base which may be stored and used at a 

later time to obtain additional information. For I given ISP, the IFT has a constant size, 

hardly more than 512 words for any ISP. 

Once it is built, the IFT can be printed out sorted by opcode, frequency of execution, or time 

spent executing each instruction. From this we can immediately see which operators are 

little used and might be candidates for omission. Similarly, instructions and instruction groups 

where the fraction of time spent is significantly larger than the fraction of instruction 

executions, are possible candidates for improved implementation. A variant of the IFT (see 

below) is presented in Appendix D. In Figure 5-1 we tabulate the number of different 

opcodes used by each subject program, and in Figure 5-2 we tabulate how many different 

opcodes account for 757, 907 and 997 of the executed instructions for each subject program. 

I 

Clearly one can not omit instructions from the ISP on the strength of their non usage by one 

program. Hence it is necessary to build IFTs that are the sum of IFTs for individual 

programs. Summation can be over the whole subject set, or a subset thereof. When 

computing such IFTs, the data for each program should probably be normalized to account 

for the different program lengths, and also possibly weighed to account for the importance of 

each subject program.   We call such an IFT a SWIFT (Summed Weighed IFT). 

♦ Partword loads and stores with fullword arithmetic is not in general sufficient because of 

conventions for representing negative numbers, and overflow warnings. 

•* Fullword integers and bit vectors for short integers and Booleans. 

■MM 
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Another form of summed IFTs .o the SMEI (Summed Normalized IFT); A SN1FT is reproduced 

in Appendix D, including the printouts rorted by instruction count and computed time, as well 

as the FGR function. It was computed by normalizing each subject program to one executed 

instruction, summing the resulting IFTs, and renormalizmg to 1 million. This permitted the use 

Of our existing program, usmg integer arithmetic, but caused a few rounding errors in the 

type conversions. Hence the total counts given by the program are sometimes a few 

instructions off the exact million. By scaling to a round number, the individual results are 

easily interpreted as fractions. The FGR function and other results from this total SN1FT, and 

the SNIFTs for the compiler set and the numeric and nonnumeric sets, are given at the 

bottom of the respective tables in this section. Since we did not weigh our programs, some 

instructions, particularly unrounded arithmetic, which are frequent in some special contexts in 

our short programs, received counts that seem unreasonably high. 

FIGURE 5-1 

Number of different opcodes used by subject set. 

Algorithm\language ALGOL BASIC BLISS F0RF0R F0RTEN 

Bairstow 112 126 88 151 154 

Grout 104 109 52 87 94 

Treesort 100 95 33 58 73 

PERT 109 109 60 126 129 

Havie 113 122 85 140 145 

Ising 
Secant 

104 
- 

44 121 
149 

125 
152 

Algorithm\Programmer E B A G L 

AitKen 49 51 50 52 52 

Source progr.\Compiler ALGOL BASIC BLISS F0RF0R F0RTEN 

Treesort 158 129 130 153 162 

Total subject set: 274 Compiler set: 227 

Numeric set: 239 Nonnumeric set: 211 

MM i» in        in 
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FIGURE 5-2 

- Number of opcodes accounting for 
757., 907. and 997. of the executed instructions 

Algcrithm\language 
Bairstow 757. 

90Z 
997 

ALGOL 
15 
37 
77 

BASIC 
14 
19 
49 

BLISS 
16 
31 
66 

FORFOR 
25 
55 

112 

FORTEN 
24 
53 

111 

Crout 757. 
907 
997. 

22 
34 
60 

13 
19 
39 

7 
14 
28 

11 
21 
47 

12 
19 
37 

Treesort 757. 
907. 

5 
8 

28 

14 
19 
30 

5 
8 

21 

5 
8 

21 

6 
9 

24 

PERT 757. 
907 
997. 

18 
37 
63 

13 
18 
39 

9 
18 
41 

9 
19 
66 

9 
21 
69 

H^vie 757 
907. 
997. 

28 
42 
57 

19 
34 
55 

18 
26 
61 

18 
23 
74 

18 
23 
82 

king 

t 

757, 
907. 
997. 

22 
35 
58 

- 8 
15 
33 

9 
19 
61 

9 
23 
75 

Secant 757 - - - 8 8 
907, — - — 20 17 
997. - - - 55 56 

Algorithm\Programmer E B A G L 
AitKen 757 11 12 10 8 7 

907 21 22 18 14 12 
997 37 40 38 35 34 

Source progr.\Compiler i UG0L BASIC 3LISS FORFOR FORTEN 
Treesort 757 26 22 15 20 18 

907, 49 39 30 40 35 
997 94 80 63 81 74 

757. 907 99/ 
Total subject set: 29 67 133 
Compiler set: 2? 53 114 
Numeric set: 2a 60 129 
Nonnumeric set: 17 44 103 

  

^mt MMOIMHM 
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For some of the above results, as for the computed time in general, individual instruct.on 

execution times are needed. They can be taKen from the manual of the processor m quest.on 

or other available sources. In some cases assumptions have to be made about the average 

propert.es of the operands. These assumptions may have critical importance in the case of 

variable length operands (including bytes) but should otherwise be of little consequence by 

the law of large numbers. If variable length operands are common, this source of error may 

be reduced by including in the trace sufficient information that the correct execut.on t.me 

can be computed during analysis. 

Except for the possible dependence of instruction times on operands, tracing is too powerful 

a tool to obtain the IFT. A counter in each straight line p.ece of code in the subject program 

plus the necessary data on each such piece, or jump tracing, would be sufficient Trac.ng 

does, however, have the advantage of general applicability as discussed in Chapter 1. 

We now discuss some further measures computed from the IFT. 

5.1.1    Instruction classification - Mixes 

,„ order to bolter Soe the relation ol the mstroction executions to the MM types end other 

protremmin, structures, we may e-oup our instructions into classes and pnnt the 

distributions of instruction counts or computed lime over the classes. The cl.ss,l,cat,on may 

be by data type, control function or other properties. In some cases several data types may 

be 8rouped into one class, in other cases a data type may be split into several classes etc 

depending on the ouestions to be asked. This may be viewed as mapping the instruction set 

into a generalized and smaller instruction set. 

Two such classes d in our work.  One ol these was devised by Gibson tGibJ70] in 

1959 and used to obtain the well known Gibson mi.. It has later been modihed to M more 

„Odern computers by Gonter [GonRSS] and the present author. This i"^™ 

intended mostly for comparison of the internal processing power of ddferent centra 

processors. Another classificahon, It* Etfgnim ItadKt <i*stom* (or ES classiücahon). 

was deveioped by the present author. ,1 ,s .tended to reHect the ****"*"** 

program in a better  way than does the Qbson classification.   The dehmhons  of these 

'   -  ^MBNMl^ -    —-   ■ 
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classifications are given briefly in Figure 5-3 and Figure 5-4. For the full definition of 

the Gibson classification we refer to the papers by Gibson and Gonter. 

We use the term distribution (Gibson distribution, PS distribution) to denote the observed 

distributions for any (set of) program(s). By a mk we mean the observed distribution for a 

set of programs believed to be representative cf some actual workload (i.e. the Gibson mix 

[GibJ70], the UMASS mix [GonR69] etc.). 

A classification is easily described by a table with one entry for each instruction in a 

standard format, and with sorm further entries describing the number of classes etc., and 

giving their print names. This table can be interpreted by the program computing (and 

printing) the distribution over the classes and the same program can be used for all 

distributions. 

The original Gibson mix for the IBM 650 and 704, the UMASS mix for th: COG 3600, and the 

Gibson distribution for our subject set from the PDP-10, are reproüuced in Figure 5-3. 

Our program structure distribution for the subject set and its subsets is given in Figure 

5-4. When studying such distributions one should keep in mind that the number of 

instructions in each class is not the same. Hence a class of a few instructions averagely used 

may have a low count compared to a class of maiy instructions that are little used. 

5.1.2    The FGR function and similar measures 

The most striking observation from a quick glance at an IFT is that a small number of 

instructions account for a large fraction of the executed instructions. An abbreviated form of 

our results is displayed in Figure 5-1 and 'i^ure 5-2. This suggests that one might reduce 

the instruction set and set of data types at a low cost. Foster et. al. [FosC71a] have 

propo ed two measures related to this, they were both defined in Section 1 4, but we repeat 

the definitions here. 

One of their measures .s the information-theoretic measure of information content: 

T 
1 = - Z   p, * log2(p1) 

where 

-——MMa-———--■- ' IIIIWIWlll 
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Pi is the probability of using the i'th opcode 

T is the total number  of different opcodes 

log2 is the logarithm base 2 

Their other measure is a function computed as follows: Order the operation codes by 

frequency of occurrence. The i'th opcode in this ordering occurs Cj times, i.e. Cj i. Cj.i for 1 

i i < P-l, where P is the total number of instructions in the sample. The FGR function is then 

defined as: 

N 
FORM" 1 - 1/P  I Cj (1 <N<T) 

i»i 

FGR(N) is that fraction of the instructions which would have to be interpreted, were the 

instruction set reduced to the N most frequent instructions.  However, the function does not 

guarantee that the implied recoding is possible or feasible. 

Both of these measures are easily computed from the 1FT. They may be computed based on 

the lumber of executions of each instruction, i.e. using the instruction count, or based on the 

time spent executing each instruction, i.e. using the comp'/ed time. The exact instructions 

"removed" depend, of course, upon this choice. In the latter case, C| should be the time used 

by the i'th instruction when the instructions are ordered by the time spent executing them. 

Both the information-theoretic measure and the FGR function may also be computed from 

static data, and will then measure cost of repres. ntation rather than cost of execution. 

We have computed the information-theoretic measure with respect to both instruction count 

and computed time. Although the practical value of these measures k small, they give some 

indication of the overall utilisation of the instruction set. The results are tabulated in Figure 

5-5. 

A much better measure is the FGR function, which gives an estimate of the time cost incurred 

by reducing the instruction set. We compute this based on instruction count, and with a 

simple extension. Assuming that each of the omitted instructions can be recoded in terms of 

K of the N remaining instructions, one may easily compute the relative increase in instruction 

count. If the instructions used for the recoding are of average time, the relative increase in 

computed time will be the same as that in instruction count. The increase in space cost has 

to be found by static methods, the FGR function computed using static instruction counts 

gives the fraction of written instructions that have to be rewritten. 

I      IM—Ulli -      -  L—  -n^M^i^M^III 
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In Figure 5-6 we tabulate the extended FGR function for N=64, N=A8 and N=32, assuming 

a recoding factor (K) of 4, i.e. on the average 4 instructions needed to interpret each omitted 

instruction. This factor is the most significant source of error and is very hard to estimate, 

since many of the infrequently executed instructions are such that would require many other 

instructions to mimic exactly, but they are used where minimal changes of a larger context 

would get the intended operation done at no or very little extra cost. Hence the choice of K 

should be based on which instructions are candidates for omission. If, for instance, the 

floating point instructions are in danger, a factor of 4 will certainly be too low. 

Ideally one would want to compute these costs using actual recodings of each omitted 

instruction. This might also give seme information on the possible increase in space cost for 

data. This process is, however, not easily mechanized. Manual recoding is time consuming, 

since for each N considered one must code the missing instructions in the most optimal way 

using the N remaining instructions. Possibly the data representation must also be 

reevaluated each time. The recoding may also depend on space and time constraints for the 

particular application. 

To properly see the costs of removing data types, results similar to those from the FGR 

function should be computed by removing all instructions relevant to a data type rather than 

the least frequently used ones. The results of such a calculation can usually be predicted 

well by a glance at the Gibson or PS distribution in question. Also, we believe it may be 

more relevant in many cases to omit certain of the operations of the data type rather than 

the whole type. 

5.1.3    Summary of frequency results 

Our experimertal results indicate that a small number of instructions, at most 28, account for 

757, of the executed instructions for any one of our subject programs, and that 112 

instructions suffice for 99X of the instruction execuhons for any one program. No program 

used more than 162 instructions. Assuming a recoding factor of 4, 30 of the 41 programs 

could be run on a processor with 64 instructions at an increase of less than 57, in the 

number of instruction executions. For 18 of the programs this increase is less than 27., but 

in 3 cases it runs as high as 207. to 307.  (ALGOL, FORTEN Bairstow, F0RF0R Bairstow). 

The situation changes somewhat when we consider the need of the whole subject set.  Based 

  - I     IIM^MI 
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FIGURE 5-3 

The modified Gibson classification. 

Percentage of executed instructions in the Gibson classes. 
Percentage of time included for our subject set. 

Machine: 650/704 3600 KA-10 

Gibsons UMAS3 Our results 

Class results results Icount Time 

Load,store 31.2 30.0 42.4 35.6 

Fixpoirt add subtract 6.1 1.2 12.4 10.2 

Compares 3.8 1.2 - - 

Branches 16.6 38.3 28.2 19.0 

Floating add subtract 6.9 0.5 4.9 8.5 

Floating multiply 3.8 0.5 2.6 8.7 

Floating divide 1.5 0.2 1.1 4.9 

Fixpoint multiply 0.6 0.1 1.1 3.2 

Fixpoint divide 0.2 0.1 0.5 2.4 

Shifting 4.4 2.2 3.9 5.3 

Logical 1.6 0.5 1.0 0.6 

Miscellaneous 5.3 0.0 1.5 1.7 

Indexing 18.0 13.4 - - 

Fullword - 6.9 - ■ 

I/O control - 0.0 0.1 0.0 

Inter reg. transfer - 5.0 - — 

Monitor communic. — - 0.0 0.0 

User UUOs - - 0.3 0.0 

The classes are not equally applicable to all ISPs, as indicated by dashes. This applies in 
particular to index register instructions. 

In Gibsons original classification, use of indexing was counted as an extra instruction in the 
"Indexing" class; the "Compare" class consisted of the 3 way skips in the 704. 

In the UMASS version of the Gibson classification, the "Compares" class consists of all the 
vector search operations, "Indexing" is all the index register instructions, "Fullword" is all the 
48 bit instructions. The "Inter register transfer" class also includes other instructions that 
only manipulate processor state. 

Gibsons results were obtained using mostly scientific programs, but some business data 
processing programs, coded in unspecified languages. 

Thft UMASS results were obtained using assembly and FORTRAN coded programs, including 
'  e FORTRAN compiler and the assembler. 

- -  L—— MkMMaaaa^  -1^ ^^ ^^.^ _   . .,„- 
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FIGURE 5-4 

• The program structure distribution, part 1. 

Percentage of instruction executions in each class 
for the total subject set and its subsets. 

Class Compilers Nonnumeric Numeric Total 

Word to ace. 10.5 24.2 19.7 20.1 
Word to memory 4.6 9.4 7.2 7.6 
Immediate to ace. 3.4 4.5 4.1 4.1 
Set to ace. 1.3 0.4 0.3 0.4 
Set to memory 1.2 0.2 0.5 0.5 
Partword to ace. 10.8 4.0 3.2 4.4 
Ace. to partword 2.4 0.5 0.7 0.9 
Block move 0.2 0.0 0.1 0.0 
Set bits 0.9 0.6 0.8 0.7 
Add or sub. 1 1.6 1.8 1.6 1.7 
Fixp. add sub. 5.3 14.5 9.7 10.8 
Fixp. mul. div. 0.4 1.2 2.1 1.6 
Floating arith. 0.0 1.4 15.i 8.6 
Shifts 1.0 4.6 4.1 3.9 
Logic 2.1 0.7 0.9 1.0 
I/O transfer 0.0 0.1 0.1 0.1 
I/O administr. 0.0 0.0 0.0 0.0 
Other monitor eomm. 0.0 0.0 0.0 0.0 
User UUO 0 0.5 0.3 0.3 
Subr. jumps 5.1 2.5 2.7 2.9 
Subr. returns 3.9 2.2 2.2 2.4 
Stackptr. manip. 5.5 3.3 4.9 4.4 
Test ace. vs. immediate            7.7 1.7 1.0 2.1 
Test ace. vs. 0 2.5 1.8 2.1 2.0 
Test ace. vs. memory 3.0 4.9 4.5 4.5 
Test memory vs. 0 2.3 1.7 0.9 1.3 
Bit tests 7.4 1.2 1.4 2.0 
Status tests 0.1 0.0 0.4 0.2 
Loop jumps 3.9 3.3 3.6 3.6 
Uncond. jumps 12.:' 8.2 5.8 7.4 

• 
No-ops 0.0 0.0 0.0 0.0 
Executes 0.3 0.8 0.4 0.5 

- 
Miscellaneous 0.2 0.0 0.0 0.0 

The "Set to ace." and "Set to mem." classes load their destination with all zeroes or al ones. 
The "Set bits" group set individual bits in a word. 

MHMHM^M -- —' 
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The program structure distribution, part 2. 

Percentage of computed time in each class 
for the total subject set and its subsets. 

Class Compilers      Nonnumeric Numeric Total 

Word to ace. 9.4 
Word to memory 4.4 
Immediate to ace. 1.8 
Set to ace. 0.7 
Set to memory 1.1 
Part word to ace. 17.2 
Ace. to partword 5.4 
Block move 2.9 
Set bits 0.6 
Add or sub. 1 1.7 
Fixp. add sub. 5.1 
Fixp. mul. div. 1.5 
Floating arith, 0.1 
Shifts 1.0 
Logic 1-8 
I/O transfer 0.0 
I/O administr. 0.0 
Other monitor comm. 0.0 
User UU0 0 
Subr. jumps 5.1 
Subr. returns 4.6 
Stackptr. manip. 8.2 
Test ace. vs. immediate 5.0 
Test aec. vs. 0 1-6 
Test aec. vs. memory 3.0 
Test memory vs. 0 2.2 
Bit tests 5.3 
Status tests 0.0 
Loop jumps 2.9 
Uneond. jumps 7.1 
No-ops 0.0 
Executes 0.1 
Miscellaneous 0.2 

22.1 
9.1 
2.5 
0.2 
0.2 
4.7 
0.8 
0.5 
0.4 
1.9 

14.4 
7.2 
3.4 
4.5 
0.5 
0.0 
0.0 
0.0 
0.0 
2.6 
2.6 
5.1 
1.1 
1.2 
5.0 
1.6 
0.1 
0.0 
2.4 
4.6 
0.0 
0.4 
0.0 

13.1 
5.1 
1.7 
0.1 
0.3 
2.8 
0.8 
0.6 
0.4 
1.1 
6.8 
5.5 

34.5 
6.5 
0.5 
0.0 
0.0 
0.0 
0.0 
2.0 
1.9 
5.4 
0.5 
1.0 
3.4 
0.6 
0.8 
0.2 
1.8 
2.4 
0.0 
0.2 
0.0 

15.3 
6.1 
1.9 
0.2 
0.3 
4.8 
1.3 
0.8 
0.5 
1.4 
8.8 
5.6 

22.1 
5.4 
0.5 
0.0 
0.0 
0.0 
0.0 
2.5 
2.4 
5.6 
1.1 
1.1 
3.8 
1.1 
1.3 
0.1 
2.1 
3.5 
0.0 
0.2 
0.0 
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FIGURE 5-5 

Information theoretical measure of opcode utilization. 
Computed based on instruction count (IC) and computed time (CT) 

Theoretical maximum (all opcodes equally probable) is 8.7245 

Algorithm\language 
Bairstow 

ALGOL 
IC          4.64 

CT          4.52 

3ASIC 
4.49 
4.53 

BLISS 
4.85 
4.55 

FORFOR 
5.38 
5.00 

F0RTEN 
5.37 
4.83 

Crout IC 
CT 

5.10 
5.15 

4.44 
4.51 

3.75 
3.57 

4.46 
4.45 

4.35 
4.39 

Treesort IC 
CT 

3.21 
3.03 

4.40 
4.51 

3.17 
3.16 

2.93 
2.94 

3.36 
2.95 

PERT IC 
CT 

4.91 
4.89 

4.39 
4.45 

3.93 
3.98 

4.13 
4.21 

4.14 
4.24 

Hävie IC 
CT 

5.46 
5.35 

4.89 
4.85 

4.94 
4.55 

4.86 
4.34 

4.91 
4.31 

Ising IC 
CT 

5.19 
5.19 

- 3.88 
3.77 

4.18 
4.29 

4.30 
4.42 

Secant IC 
CT 

- - - 4.08 
4.08 

4.04 
3.9?. 

Algorithm\Programmer 
Aitken IC 

CT 

E 
4.25 
4.02 

B 
4.27 
3.97 

A 
4.09 
4.12 

G 
3.76 
3.99 

L 
3.56 
3.94 

Source progr.\Compiler 
Treesort IC 

CT 

ALGOL 
5.44 
5.48 

BASIC 
5.37 
5.20 

BLISS 
4.84 
4.73 

FORFOR 
5.20 
5.29 

PORTEN 
5.01 
5.08 

Total subject set: 
Compiler set: 
Numeric set: 
Nonnumeric set: 

IC 
5.48 
5.62 
5.50 
4.M 

CT 
5.53 
5.62 
5.44 
4.92 
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FIGURE 5-6 

The extencied FGR tunction. 
Relative increase in motruction count by reducing the instruction 

set to 64, 48 or 32 instructions using a receding factor of 4. 

100 

,Msorithm\language ALGOL BASIC BLISS    1 :0RF0R    f •ORltiN 

Bair-otow M 0.092 0.021 0.043 0.294 0.2^8 

48 0.225 0.042 0.140 0.496 0.461 

32 0.433 0.094 0.360 0.792 0.755 

Crout 64 0.022 0.006 0 0.006 0.005 

48 0.134 0.016 0.001 0.032 0.017 

32 0.447 0.081 0.023 0.174 0.093 

Treesort 64 0.003 0.001 0 0 0.000 

48 0.006 0.004 0 r.ooo 0.002 

32 0.026 0.018 0.000 0.003 0.007 

PERT 64 0.027 0.004 0 0.042 0.051 

48 0.184 0.019 0.012 0.081 0 103 

32 0.249 0.069 0.098 0.167 0.203 

Hävie 64 0.018 0.024 0.029 0.059 0.077 

48 0.222 0.060 0.010 0.115 0.128 

32 0.750 0.454 0.235 0.216 0.224 

Ising 64 0.020 _ 0 0.035 0.078 

48 0.100 - 0 0.073 0.163 

32 0.476 - 0.041 0.157 0.288 

Secant 64 _ . - 0.024 0.026 

48 _ - - 0,060 0.058 

32 - - - 0.184 0.160 

Algorithm\Programrner E B A G L 

Aitken 64 0 0 0 0 0 

48 0.000 0.000 0.000 0.000 0.000 

32 0.128 0.162 0.109 0.052 0.050 

Source progt ■.\Compiler ALGOL BASIC BLISS F0RF0R FORTEN 

Treesort 64 0.210 0.109 0.036 0.101 0.073 

48 0.406 0.253 0.121 0.273 0.197 

32 0.779 0.565 0.341 0.579 0.463 

128 64 48 32 

Total subjec set: 0.056 D.422 0.631 0.926 

Compiler set . 0.019 3.271 0.462 0.807 

Numeric set: 0.040 0.352 0.574 0.883 

Nonnumeric set: 0.010 0.199 0.342 0.585 

j 
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on the SNIFT, the total number of instructions used is 274. 29 of these are sufficient to 

account for 757. of the instruction executions, 133 of them cover 997. of the instruction 

executions. The increase in time cost for receding in a 64 instruction set is 42.27.. This 

recoding cost is well above the highest costs for individual subject programs. This shows 

that altough each individual program uses only a small set of instructions, this set is not the 

same for all the programs. Recoding into an 128 instruction set would increase the time by 

5.67.. 
:- I 

The results vary systematically with algorithm and language. BLISS programs generally use 

fewest opcodes, and have the lowest recoding cost. This may in part be due to the total lack 

of run time system in BLISS (no I/O initialization or timing unless explisitly requested). BLISS 

programs are also as fast as, or faster than, the other programs for the same algorithm. 

Except for Bairstow, ALGOL programs have the highest recoding cost for a 32 instruction set 

but the FORTRAN programs, except for Grout, are the most expensive to recede in a 64 

instruction set. The recoding cost of SEG is comparatively low, whereas it is consistently 

high for the compilers, though not higher than for several of the short programs. Treesort 

has the lowest recoding cost in all languages, Bairstow has the highest, except in BASIC. 

Hence there seems to be a correlation between the recoding cost and the size and 

complexity of the program. This is as one would expect. The difference between the results 

from the two FORTRAN versions seems significantly less than the difference between the 

results for the different languages. 

When removing an instruction from an existing ISP, one should not only consider its 

frequency of usage, but also the ease of coding it in the remaining instruction set, and the 

degree of system in the allocation of opcodes. A breaK in such a system may cause 

increased programming cost. This is particularly true for the PDP-10, which has a very 

systematic instruction set. 

The restricted selection of our subject set, and our use of SNIFTs instead of SWIFTs, casts 

some doubt on our conclusions about the necessity of individual instructions in the PDP-10. 

In particular, since all programs weigh equally, instructions used in special contexts in one of 

the small programs will get high representations in the SNIFT. Furthermore, the omission of 

I/O from the small algorithms leaves a timeconsuming and specialized aspect of most 

programs uninvestigated. We do, however, give some indications based on the SNIFT, which 

intuitively seem relatively independent of these deficiencies. 

—    
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Large sections of the logic instructions (only 6 out of 64 are used significantly), the bit test 

instructions (9 of 54) and the halfword instructions could be removed. The systematic 

allocation of opcodes would not be unduly broken, and few instructions would need 

interpretation. There are also unused sections of the loop control group and the arithmetic 

group. 

The UUOs are particularly little used. Their number could probably be reduced to 7 (3 user 

+ 4 monitor) or 15 (3+12) by encoding information about function in the address field or in a 

control block. UUOs are further discussed in Section 6.1, where the time cost cf using 

them is shown to be high relative to using routine call instructions. 

Finally there are many no-ops and duplicate instructions. Removal of these would, however, 

break the systematic allocation of operations. 

These remarks indicate that these results depend more on the algorithms than did those for 

registers. Hence a subject set should be chosen to cover the application area in the widest 

possible way. It should further contain as wide as possible a range of programming 

constructs. Commonly used languages should also be well represented. Finally Ma should 

not put too much significance into the results from one or a few analyses, particularly not 

from a small program. 

We finally point out that the Gibson and program structure distributions (Figure 5-3 and 

Figure 5-4) indicate that there is also a great deal of commonality between the results from 

the different programs, and also between different ISPs. 

5.2    Collection of instruction sequences 

We now turn to the problem of detecting data types and operators that might be added to 

the ISP with benefit, and which represent data operations genuinely different from the 

existing ones. As previously noted, one way of detecting such operators may be by 

observing frequently occurring sequences of instructions, viz. those sequences used to 

perform the data operations, representing encodings of the missing instructions in terms of 

the existing instruction set. 

„at* _ -      - ""-""-'•- • n iianilinii^W . 
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5.2.1    The program 

We first describe our method for detecting frequently occurring sequences of instructions. 

The major problems are due to the need for space and time efficiency in the analysis 

program. This is clearly demonstrated by a glance at the intermediate results of a large 

analysis': 1600 different pairs were found by our progr?™". If .•II of these were to be 

extended to triples, quadruples etc., data space and processing time requirements would soon 

become prohibitive. Hence some methods are needed to detect and omit insignificant 

sequences. 

The data structure where the information is collected is essentially a forest of binary trees 

[KnuD69], each node represents a sequence, and each root corresponds to the first 

instruction of the sequences represented in its tree. By a level (or level L) we mean all 

nodes representing sequences of a given length L. The leader of a sequence of length L is 

the L-l first instructions in it. Its trailer is its L-l last instructions. The descendants of each 

node are: 

a) The extension, i.e. the first of the nodes on the next higher level, representing an 

extension of the sequence represented by this node. 

b) The next, i.e. the next node on the same level having the same leader. 

To facilitate pruning, as described below, we also chain all nodes on the same level, and in 

order that we may reconstruct the sequence represented by a node, each node has a back 

pointer to the node representing its leader. Finally each node contains the last opcode of 

the sequence it represents, the occurrence count for that sequence, and its length (i.e. the 

level number of the node). 

For efficiency reasons we do not pack the nodes, hence 7 words are needed for eachm. 

2000 nodes were sufficient for the analysis of all the subject programs except FORTEN. 

About 2100 nodes were needed for the first pass of that analysis, the 1600 mentioned on 

page 103 plus 512 for level 1. 

♦ PORTEN, 295 000 instructions traced. 
n Which were reduced to 61 after applying the pruning methods to be described. 
m Easily reduced to 4 words per node if using a language that makes the halfword load and 

store instructions available. 

! 
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To keep the forest of limited acreage, we use a multi pass algorithm. The first pass 

accumulates the pairs, each subsequent pass extends the sequences by one instruction, thus 

adding one level to the forest. After each pass the forest is pruned. The pruning not only 

discards insignificant sequences, but also attempts to recognize closed loops, several 

representations of the same sequence, etc. If significant sequences remain after pruning, a 

new pass will be performed. 

This continues until either all sequences on the top level are pruned or until a predetermined 

level (read as data) is reached. In the latter case, the user of the program may decide after 

each pass whether to continue. His decision is based on a few simple data typed as each 

pass is completed. Furthermore the current version of our program saves status after each 

pass and is easily restarted if inspection of the output indicates that longer sequences would 

be of interest, or in case of machine breakdown. 

Maximal program capacity is sequences of length 20. This limit was arbitrarily set since we 

believed that seqjences of this length neither would be found, nor would be of interest. This 

turned out to be only partly true. Using the pruning algorithm outlined below, and cutting 

each tree at the root when all its nodes at the top level are deleted, the algorithm is not 

prohibitively expensive». Hence in the experiments we used a typed n limit of 20. About 

half of the analyses reached this level, all of them reached level 10. 

After about the tenth pass of our algorithm very few sequences remain, hence each could 

probably be extended by 5 or more in each pass without undue consumption of space. Thii 

would make the method significantly faster, and permit the analysis to run until all sequencis 

terminated "naturally".   It would, however, require some re programming 

At the end of the run the counts of shorter sequences are Lfidutfid to account for the 

extension of these sequences into longer significant sequences. That is: starting at the top 

level we visit each sequence in turn: and generate all its subsequences. For each such 

subsequence we reduce its count by the count of the main sequence. Hence the final count 

for each sequence reflects the unextendable fraction of the total numbe of occurrences of 

this sequence. The computed time for oach occurence of the sequence is easily obtained, as 

are the fractions of the total instruction count and computed time consumed by all 

occurrences of the sequence. 

t With approximately 100 000 instructions traced, (subject program F0RTEN Treesort), the 

run time was approximately 35 min. for sequences of length up to 20. Probably this could be 

reduced considerably by coding the tree lookup routine in assembly code. 

MM^ttMa^M mm*m ■aU^wlbftart^. 
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5.2.2    The pruning heuristics 

The results presented in Section 5.3 were obtained using the following pruning algorithm: 

After each level is built, each of thr new nodes is examined in turn and the heuristics about 

to be described are applied to It. Since some of the heuristics involve more nodes than the 

one thus examined, no nodes are deleted until a second pass down the level chain. The first 

pass merely marks the nodes to be deleted, using the extension field which is otherwise 

unused  .t the top level. 

In the examples below. A, B, ... denote instructions, J denotes a jump instruction. A sequence 

and its count (the latter often omitted) are given as: <A 8 0 D E: 547>. 

Rule K: 

All sequences whose count is less than 107. of the maximum count at the same level are 

marked for deletion. 

Heuristic 0: 

All sequences that are not a "significant" extension of their leader or trailer are marked 

for deletion. Exceptions are made for sequences of all the same instruction and for 

sequences whose count is at least 1/50 of the number of instructions in the subject 

program. The meaning of "significant" depends on the level. A factor is defined by the 

following table: 

Level: 2        3        4        >4 

Factor: 1/8     1/4     1/2    3/4 

All sequences whose count is not at least factor times the count of both its leader and its 

trailer are marked. (If the trailer does not exist, its count is taken to be 0). The intent 

of this heuristic is to isolate the common part of partly overlapping sequences as the 

more important. Given the sequences <A B C: 500>, <B C D: 150>, <C D E: 150> and 

<D E F: 800>, <B C D> would not be marked, but <C D E> would be. 

Heurisv ; 1: 

The intent of this heuristic is to detect loops. It is applied at levels Z 4. It is first 

checked whether the first and last pairs of instructions in the sequence are the same. If 

so, it is checked whether the sequence contains a jump instruction. If so, we assume we 

have found a loop of length 2 less than the present level.   Finally it is checked if the 
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same loop is represented elsewhere in the forest». Whenever such a representation is 

detected, it is marked for removal. Thus <A B C D E F A B> and <A B C D J E F G> are 

not loops by this heuristic, but <A B C D J E A B> is a loop. 

Heuristic 2: 

This heuristic is applied at level» > 4. It attempts to detect if there are several nodes 

representing subsequences of the same longer sequence yet to be built. ANS the top level 

nodes are examined, chains are built linking nodes that are believed to represent such 

sequences.  Let 

SI  - <C D E ... F G> 

be the sequence of length L that is currently under examination.   We .^cw examine all 

sequences of form: 

<X C D E ... F > 

for some X.  Let S2 be one of these.  S2 and its chain become the chain of SI if: 

a) Thei   count differ by at most 3. 

b) SI was not in this chain before. 

a) will ensure that the sequences are equally significant; b) that we do not delete all 

representations of a loop. Note that SI occurred later in the instruction stream than S2, 

but is before it in the chain. Hence the sequence occurring earliest in the instruction 

stream is the one which will have a null link, and ti erefore be kept. Thus for the 

sequences of <A B C D E>, <B C D E F> and <C D E F G>, the chain would go from 

<C D E F G> to <B C D E F> to <A B C D E>, and the latter would be kept. In the previous 

notation, if the chain consisted of SI and S2, SI would be deleted. 

Heuristic 3: 

This heuristic is applied at level» > 6, and is designed to detect and mark all but the most 

frequent of those sequences at the level which overlap by a significant number of 

instructions, - at least 2/3 of the level number. For each sequence at level L > 6 ( say 

<A B C D E F G H>), we consider all extensions of its trailer to the level of L (such as 

<B C D E F G H I>), and delete all but the one with the largest count. We then repeat the 

process for the iraiicr of the trailer (i.e. <C D E F G H>). extending to level I again and 

so on until we have reached the least overlap permitted. 

Each of  these heuristics is programmed as a routine, and called from one place  in  'he 

♦ A loop of length L may be represented at L places in level L+2, each starting with a 

different instruction of the loop. 

....- ..... .. ^^■„^.. 
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program, inside a pruning control routine.   Hence it is easy to change the heuristics and the 

order in which they are applied, or to add new heuristics. 

5.2.3    Sources of errors 

Thctre are some problems associated with this method. Some of these could be avoided by 

adjusting the parameters to the heuristics, but this is not sufficient. We now present the 

most significant of these problems, and propose some re'nedies. 

Sequence overlap 

Because of the heuristic nature of the pruning algorithm, we have no guarantee that the 

sequences at any level are really disjoint. Hence the final reduced counts are not completely 

reliable. In particular the counts for subsequences com,,ion to two overlapping longer 

sequences will be too low. This is clearly seen in all programs analyzed, severe! examples 

are shown in Section 5.3. 

To remove this problem, the heuristics for detecting overlaps must be improved. At first 

sight, the obviOL? way is to shift each sequence completely out of the sequence detection 

mechanism once it has been recorded, rather than trying to detect new sequences starting 

with instructions in its trailer. This assumes, however, that the sequence just recorded is 

more significant than those omitted as a consequence of the shift. Hence this technique can 

not be used at low levels, since that would prevent us from detecting which sequences are 

significant in the first place. Changing to this technique at a higher level requires great care 

lest we extend the wrong sequences of those now overlapping. Hence we reject this 

approach, and we believe the way to go must be to improve our present heuristics and the 

way they interact, and device new heuristics in the same spirit. 

We believe that not even the best of heuristics can completely avoid this problem. Hence we 

suggest two more ways to relieve it. Firstly, the counts at each level may be printed after 

the level is built, immmediately before pruning, as well as at the end of the analysis. These 

original counts may then be compared with the final reduced counts. We did this, and found 

it a help in detecting significant sequences in general during the manual analysis described in 

Section 5.3.   In Section 5.3 we present both original and reduced results. 

■MMMM 
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Secondly, one may decide from one run as outlined above, which sequences are important 

enough or which results are wrong enough that exact counts are desirable. A second run 

can then be done, with a slightly different program, collecting statistics on these sequences 

only. This can be done in one pass since we know what to look for. Such a program should 

be written to look for classes of sequences as, for instance, variants of a calling sequence, 

possibly defined by a regular expression.  We wrote nc program for this. 

Dominating loops 

Another problem is that of domiruting loops. Our program tends to find long sequences, 

sometimes representing whole loops of the subject program, rather than the shorter 

sequences that are more frequent and which could reasonably be implemented as 

instructions. This is particularly true for the short subject programs, where one or a few 

loops dominate the results. The situation is improved when subject programs of a more 

representative length and complexity are analyzed. Further improvement can most probably 

be achieved by strengthening the definition of "significant" in heuristic 0. This can be done 

either by increasing the "factor", particularly for the higher levels, or we may introduce new 

criteria of "significance". One such could be to compare the total time consumed by the 

sequences in question rather than their occurrence counts. Again a factor could be used in a 

way similar to the present one. 

Interacting heuristics 

A third problem is the interaction of the heuristics, particularly heuristics 1 (loops) and 2 

(subsequences of longer sequences). Probably the loop heuristic should be applied last, aftet 

all deletions resulting from the other heuristics have been performed. 

Semantics of sequences 

Finally there is the problem of relating the sequences back to tho subject program in 

question. This may be difficult because the semantics of the sequences is not always 

obvious, and can only be found after a careful anc time consuming study of well commented 

source and assembly listings. Also, the sequences found may not relate easily to intuitively 

meaningful notions. This is related to the problem of dominating loops. The double length 

arithmetic of Grout is a case in point.  This occurs in a context such as 

  -   «Hill idmtk* 
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IflC kx «- low step 1 until high dfi sum *- sum+A[lx,kx]»B[kx]; 

where sum is the double length variable.  The double length addition is easily spotted by the 

occurrence of the UFA» instruction, but it is embedded in a sequence of length 20 which also 

involves array accessing and the enclosing loop. 

More intuitive program elements can be brought out by: 

Looking for more specific sequences as indicated above. 

Improving the heuristics, possibly to start and break sequences at jumps more easily than 

now. However, an advantage of our present method is that it permits detection of 

significant sequences, crossing transfers of control, that might not have been suspected 

to be of importance".  This property should not be lost. 

Generate sequences longer than 20, and try to keep the "earliest" one as described 

under heuristic 2. 

5.3    Results from the sequence program 

Each result produced by our program consists of a sequence of operation cMes, together 

with its occurrence count and liming data computed from this count. Hence the results need 

quite a bit of manual analysis to yield useful data. This analysis involves comparing with 

assembly listings (possibly using interactive debugging systems to locate sequences), 

comparing counts obtained before and atter reduction or on different level», etc. Good 

knowledge of the subject program in question is an obvious advantage. 

The deficiencies of our pruning heuristics and the way they interact, as described in Section 

5.2.3, increase the difficulty of this analysis. We have, however, made an attempt, and 

present the results below. Due to the manual processing, the selection of sequences 

presented is necessarily subjective. 

* Lbnormahzed floating add 

M The BLISS calling sequences, the array access and UUO handling in BASIC programs, and 

the thunk of ALGOL PERT are examples of this. 
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The results are presented by algorithm. The characteristics of each algorithm, as described 

in Figure 3-2, rarely occur frequently enough to show up, but when they do we comment on 

it. For each program, the maximal sequence length reached during analysis is given. In some 

cases all sequences on tht highest level reached were deleted by the pruning mechanism. In 

those cases the highest level with significant sequences w£s one or two lower than the 

highest level reached, as is indicated in parentheses. In some cases the sequences at the top 

levcld) were rejected during the manual scan.   This is not explisitly indicated. 

Since this method of sequences is applicable to address calculation and control structures as 

well as to data types and their operators, we have made no distinction between sequences of 

these 3 types in the lists of sequences. For the same reason ve present them with the bare 

minimum of identifying comment. Evaluation is postponed until later sections in the relevant 

chapters: 5.4, 6.1 and 7.1.1. 

The sequences are presented in a standard format, giving the occurrence count cf the 

sequence, the percentage of the total computed time consumed by it, and a single letter (B or 

A) designating if the results are from before or after count reduction. This is followed by 

the sequence itself. Several versions of the same or largely overlapping sequences have 

been included when it seemed to be of interest, either because of a much larger count for a 

subsequence, because of a better correspondence with an intuitive program fragment, to 

show the difference due to count reduction, or to show examples of bad pruning. Since the 

sequences overlap, the percentages of time sometimes add up to more than 100. 

Note that an XCT instruction is immediately followed by its target instruction. User UUOs» 

are given m numeric (octal) form, followed by the code for the UUO interpreter, starting at 

location 41. Monitor UUOs are given in their octal form, followed by the next instruction of 

the program itself (see Section 1.3). 

♦ A user UUO is an instruction (octal 01 through 37) which causes a trap to location 41 in the 

users memory. Since the subroutine thus called is user defined, the UUOs do not have 

common mnemonic names. Monitor UUOs (octal 40 through 77) cause a trap to absolute 

location 41 and are used for monitor calls. 

MM -    ■ 
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5.3.1     The compi'ers 

Since these programs are large and complex, and little Known to the present author, the 

analysis of them is in some cases less thorough than desirable. This applies in particular to 

the two FORTRAN compilers. In the other cases experts were available for consultation and 

the results of the aralys ; are better. 

ALGOL 

Maximal sequence length: 11. 

Seq. Count 1. Time B/A Sequence 

(1) 170 2.9 A JRST 
ILDB 

LDB 
AOS 

MOVE 
MOVE 

CAIN 
XCT 

CAIE JRST JSP 

(2) 117 2.0 A LDB 
MOVEM 

SKIPE 
MOVE 

MOVE 
MOVE 

IBP 
MOVEM 

AOS POPJ JRST 

(3) 115 2.0 A MOVE 
LDB 

MOVE I 
SKIPE 

X0R3 
MOVE 

MOVEM 
IBP 

MOVEM PUSHJ SKIPE 

(4) 216 3.5 A CAME 
AOS 

POPJ IMULI ADDI SOJG PUSHJ ILDB 

(5) 295 2.8 A JRST CAIN ILDB AOS MOVE JRST 

(6) 333 3.5 B AOBJN LSHC ILDB AOS SKIPL 

(7) 541 5.6 A PUSHJ ILDB AOS CAME POPJ 

(8) 1641 9.3 B ILDB AOS 

(9) 176 2.4 A PUSHJ 
CAME 

ANDI 
JRST 

MOVE 
HRLI 

HRRM 
MOVEM 

MOVE MOVEM AOS 

(10) 109 2.2 A MOVE 
ANDI 

PUSHJ 
1DIVI 

T3NN 
ADDI 

POPJ 
TLNN 

MOVE MOVE ADDI 

(11) 1442 2.5 B TLNE JRST 

(12) 1418 3.7 B MOVE MOVEM 

(13) 917 2.7 B AOS CAME 

Sequences (1) to (8) represent various for.ns of input of characters. (9) and (10) are 

concerned with outputting relocatable code. (11) shows the need for test bit(s) and jump, 

(12) may be a memory to memory move, (13) is loop control. 

"-—"■*—J        -    ■;-1—-■'-■ - ^ 
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BASIC 

Maximal sequence length: 17. 

Seq.     Count    7. Time      F",/A quence 

(1) 1104       20.7 JRST 
CAIN 
AOJA 

CAIE 
CA1G 

CAIN 
CAIA 

CAIN 
CA1GE 

CAIE 
IDPB 

\ Sr iPE ILDB 
CAiN CAIE 
SKIPL     SOSLE 

990 8.0 A ILDB CAIN IDPB JRST 

456 2.9 A ILDB HLL TRNE TLNE      JRST 

402 2.1 A HLL TRNE HRL TLNE      POPJ 

517 5.7 B ILDB HLL TRNE TLNE      PQPJ 

521 2.9 A PUSHJ ILDB HLL 

314 3.3      A        MOVEI    PUSHJ    MOVE     ADD       CAIE 
EXCH      POPJ      MOVEM 

677 3.5      A       CAIGE    JRST      MOVEI    ADD       ASH 

(1) Is a loop to move text lines from the TTY Input buffer to the BASIC line buffer, character 

by  character.   As the  line is  moved special characters, like VERTICAL TAB,  LINE  FEED, 

RETURN,    are removed or special action is taken on them.   This loop could probably be 

reduced to two instructions (ILDB JRST) at the space cost of a one word table entry per 

character in the character set. 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

SKIPA     CAMLE 

CAMLE 

Sequence (2) represents the loop that moves a line from the line buffer into the program 

text area, stopping at a return. Further sequences, (3) to (6), are associated with the routine 

that reads the next character, sets appropriate flags depending on its properties, and ignores 

blanks. 

The main data structure of BASIC is the cM, which essentially is a contiguous but dynamically 

relocatable memory area. The compiler has a fixed number of rolls, which are packed to 

conserve space and occasionally have to be relocated in order to let one of them expand. 

The sequences (7) and (8) relate to this data structure. The first of these adds a data item 

to the end of a roll, first checking if there is room. The second loop performs binary search 

in an ordered roll. 

— MMiBMaM^ 
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BLISS 

Maximal sequence length: 10 (8). 

113 

Seq. Count % Time B/A Sequence 

(1) 15763 14.3 A PUSH PUSHJ JSP PUSH 

(2) 10462 7.2 A JRST POP POPJ SUB 

(3) 3724 3.5 A JRST POP POP POPJ 

(4) 4897 3.5 A PUSH HRRZ PUSH JRST 

(5) 4489 3.0 A PUSH PUSH PUSHJ 

(6) 3264 2.4 A PUSH PUSH PUSH 

(7) 18275 12.1 B PUSHJ JSP PUSH HRRZ 

(8) 12256 6.9 B JSP PUSH HRRZ JRST 

HRRZ 

SUB 

All these represent the routine entry and exit mechanism, which probably accounts for at 

least 257. of the compilation time. Note that these sequences have considerable overlap, and 

that (7) and (8) are from before reduction. 

FORFOR 

Maximal sequence length : 10 (8). 

Seq. Count 7, Time B/A Sequence 

(1) 17484 11.3 A AOJA MOVE HLRZ TRNN JRST 

(2) 14555 9.9 A AOJA MOVE HLRZ TRNN TRZE 

(3) 6390 5.9 A HLRZ TRNN TRZE JUMPN TRZE AOJA MOVE 

(4) 5750 7.0 A HLRZ 
SOJE 

CAIN ADD HRRZM HRRZ ADD HRRZM 

(5) 4411 5.1 A PUSHJ LDB ANDI MOVEI HLRZ CAIG 

(6) 5635 5.0 A SOJGE HLRZ CAIN ADD HRRZM HRRZ 

(7) 26907 5.9 B TRNN JRST 

(8) 38569 10.8 B HLRZ TRNN 

This compiler is highly interpretive, simulating a one or few register machine on the 16 

register PDP-IO. Sequences (1) to (3) are associated with the "instruction fetch" cycle of 

this interpreted machine. 

(4) to (6) aie associated with roll maintenance. We believe that a roll in FORFOR is 

approximately the same as in BASIC (see under BASIC above), but since no FORTRAN expert 

is available, and the assembly listing is poorly commented, we have not been able to verify 

this. 

tmm m*mm -1   ■- 
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Some further short sequences, (7) and (8), with large counts and time were spotted in the 

output from before count reduction. They clearly demonstrate the need for a test bit and 

jump instruction. 

PORTEN 

Maximal sequence length: 20. 

Seq.     Count    7. Time      B/A    Sequence 

(1) 571 3.2 A CA1G POPJ CAIE JRST CAIE JRST MOVE 

TRNE CAIE JRST CAIN AOS CAMG JRST 

PUSHJ MOVE CAMGE JRST AOS MOVEM 

(2) 949 3.2 A CAIG POPJ JUMPE MOVE TRNN JRST CAIE 

JRST MOVE TRNN JRST SETZ POPJ 

(3) 4960 4.7 B POP POPJ 

(4) 2532 4.1 B PUSHJ JSP PUSH HRRZ JRST 

(5) 2403 4.7 B PUSHJ JSP PUSH HRRZ PUSH 

(6) 1936 5.5 A PUSHJ SOSG CAIA ILDB MOVE I CAIG POPJ 

(1) and (2) show the need for good testing instructions. (3) to (6) are from the BLISS routine 

entry and exit sequences (PORTEN is written in BLISS). From these results it is reasonable to 

assume that the routine call administration consumes at least 157. of the time in PORTEN. (6) 

represents re? ling a character from input, with some additional administration. 

5.3.2    SEC 

Most of the sequences of this program represent loops of considerable length. Usually 

several matrix accesses can be observed in each loop, but these are not brought out 

separately after count reduction. 

PORPOR SEC 

Maximal sequence length: 20. 

Seq.     Count    7. Time      B/A    Sequence 

(1)        2987        11.9      A CAMGE AOJA MOVE      MOVEI IMUL MOVE ADD 

MOVE ADD PMPR      MOVE ADD MOVE ADD 

PMPR FADR MOVEM   MOVE MOVEI IMUL 

—    - ..jl^^^^^.....^..^..   ...- .....^.^t—«d 
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(2)        2340 5.5      A       CAMGE   AOJA      MOVEI    IMUL      ADD       MOVE     MOVE 
ADD       FMPR     MOVE 

CAMGE   AOJA 

ADD       MOVE 

IMUL      MOVE 

IMUL      ADD 

MOVE     ADD 

ADD        FMPR 

ADD        FMPR 

IMUL       ADD 

(1) and (2) are loops as mentioned, (3) to (5) are sections of such loops, with loop control and 

matrix access showing. The original count for (2) was 2980, and 77. of the time was 

consumed by it. The original time was 15.72 for (4), 10.77 for (5), 12.87. for (6). (6) is a load 

of a matrix element. (7) to (10) are original results. The MOVE ADD OPERATE sequence is 

access to formal vector, (10) is the matrix accessing sequence. 

(3) 2987 3.0 A MOVEk 

(4) 9390 9.6 A MOVE 

(5) 8777 8.0 A MOVEI 

(6) 11072 8.7 A MOVEI 

(7) 15364 14.0 B ADD 

(8) 12499 11.2 B MOVE 

(9) 20181 15.7 B MOVE 

(10) ?1i28 14.0 B MOVEI 

IMUL ADD   MOVE 
ADD FADRM 

MOVE MOVEI IMUL 

ADD FMPR 

ADD MOVE 

MOVE 

FMPR 

MOVE 

PORTEN SEC 

Maximal sequence length: 20. 

Seq. Count 7. Time B/A 

(1)        2987        12.7      A 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

2980 

4760 

5940 

21006 

11523 

10562 

34831 

26790 

7758 

5134 

12337 

22689 

7.3 

8.0 

3.9 

5.4 

6.1 

9.0 

20.2 

19.4 

8.4 

5.7 

10.3 

15.7 

A 

A 

B 

A 

A 

B 

B 

A 

A 

A 

B 

Sequence 

ADD MOVN 
MOVEI IMUL 
AOJL MOVEI 

FADRM ADDI 
MOVEI IMUL 

MOVE FMPR 

MOVEM MOVE 

MOVE MOVEM 

MOVE ADD 

MOVEI IMUL 

MOVEI IMUL 

MOVEI IMUL 

FMPR FADRM 

MOVE FMPR 

ADD MOVE 

MOVE FMPR 

FMPR     MOVE     FMPR     FADR      MOVEM 
ADD        ADD        MOVE     MOVEM   ADDI 
IMUL      MOVE     ADD        ADD 

AOJL       MOVE ADD 
ADD       MOVE FMPR 

FADR      MOVEM MOVEI    IMUL 

MOVEM  MOVE MOVEM 

MOVE      ADD 

ADD 

ADD 

MOVE 

MOVE 

ADD 

ADDI      AOJL 

FADRM   ADDI 

FMPR 

M^aa^MMUMa   MkkM 
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Sequence (1) here is obviously the same loop as (1) under SEC40. (2) to (4) represent 

similar structures. The lattar may indicate ihe need for a memory to memory move, as 

illustrated further by (5). (6) contains vector access. (7) is matrix element load. The 

importance of the matrix data structure is further illustrated by (8) and (9), from before 

reduction. (10) to (12) are of doubtful origin. (10) and (11) might represent some inner 

product like loop, (12) consumed 12.8/. of the time using the values from before reduction. 

(13) would be considerably more efficiently executed on a two address design. The MOVE 

ADD OPERATE sequence represents the use of a 'ormal vector and is present in several of 

the sequences. 

5.3.3    Aitken 

This algorithm consists of two phases, first a search in the vector of abscissae to locate the 

interval where interpolation is to take place, then the interpolation itself which is somewhat 

similar to successive calculations of two by two determinants, controlled by two nested loops. 

Depending on implementation the local data are a two dimensical array or some number of 

vectors. Also some implementations work directly on the parameter vectors defining the 

abscissae and ordinates, others move the values needed to local vectors thereby saving 

accessing code. Two implementations perform arithmetic on the values while so moved. All 

these variations show up clearly in the results to be presented. 

The surrounding program, which sets up the vectors of function (logarithm) values, and calls 

AITKEN with different parameters, does not show up in the results from the most time 

consuming implementations of Aitken, but is very conspicuous in the results from the more 

efficient versions. 

Aitken - E 

Maximal sequence length: 20. 

Seq.     Count    7. Time      B/A    Sequence 

(1) 200 8.2      A FAD 
FMP 

FDV 
FAD 

MOVE     FMP        MOVE 

(2) 200 11.9 

MOVE FAD 
FAD FMP 

MOVE     FMP MOVE     FMP        FAD        FMP        FAD 
FMP       FAD MOVE     FMPR     JRST      POP        POP 
POP        POP POP        POPJ      SUB        MOVEM 

in—*——in     i iiiamMtiMii II   -__ .... ■■nd 
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(3) 198 6.1 A CAMG 
MOVE 
PUSH 

JK^ST 
CAML 
PUSH 

AOJA 
PUSH 
PUSH 

CA1LE 
PUSHJ 
PUSH 

MOVE 
JSP 
JRST 

MOVEM 
PUSH 
MOVE 

JUMPLE 
HRRZ 

(4) 196 6.7 A MOVEM 
MOVE 
JUMPLE 

MOVE 
CAMG 
MOVE 

FADRB 
JRST 
CAML 

MOVE 
AOJA 
PUSH 

FMPRB 
CAILE 
PUSH 

GAMG 
MOVE 
JSP 

JRST 
MOVEM 

(5) 1485 49.4 A MOVE 
FDVR 

FMPR 
MOVEM 

MOVE 
SOJGE 

FMPR FSBR MOVE FSBR 

(6) 405 8.7 A MOVE 
FSBR 

SOJ JUMPL MOVE FMPR MOVE FMPR 

(7) 324 4.7 A MOVEM 
FMPR 

SOJGE SOJG MOVE SOJ JUMPL MOVE 

(8) 255 3.2 A ASH 
GAMG 

CAML 
MOVE 

JRST 
ADD 

MOVE JRST MOVE AOJ 

(9) 405 5.4 A MOVE 
AOJ 

MOVEM 
SOJGE 

FSBR MOVEM MOVE MOVEM AOJ 

Sequences (1) to (4) are from the contrclling program, and represent the internals of LOG, its 

entry and exit, and the controlling loop. The two first and the two last overlap. As is seen, 

the routine entry and exit sequences are dominant, particularly the saving and restoring of 

local registers.  There is also some indication of use of Horners rule. 

Sequences (5) to (7) represent the determinant like loop, with the first being the inner loop, 

the next two the outer loop and partly overlapping the inner. Binary search in the abscissae 

vector is represented by (8), and vector move by (9). The original result for (9) was 6.47. of 

the computed time. Addresses of the vector elements are used directly in the code, to save 

address calculation. 

Aitken - B 

Maximal sequence length: 14 (12). 

Seq.    Count    7. Time      B/A    Sequence 

(1) 1485       53.8      A        MOVE     FSBR      FMPR     MOVE     FSBR      FMPR     FSBR 
MOVE     FSBR      FDVR      MOVEM  SOJGE 

(2) 405 6.9      A        MOVE     SOJ        JUMPL    MOVE     FSBR      FMPR      MOVE 
FSBR 

!) 324 3.4      A        MOVEM  SOJG      SOJG      MOVE     SOJ        JUMPL    MOVE 
FSBR 

(4) 630    6.4  A   MOVE  SUB   CAIG  MOVE  ADD   ASH   MOVE 
CAML 

(5) 405 3.3      A        AOJ        AOJ        SOJGE    MOVE     MOVEM  MOVE     MOVEM 

MMW-rMMM» 
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(6) 282   3.9  A   POP   POP   POP   POP   POP   POPJ  8ÜM 

(7) 444    3.7  A   PUSH  PUSH  PUSH  PUSH 

(8) 400    6.4  A   FMP   FAD   FMP   FAD 

The routine uses the addresses of the formal vectors directly, hence there is no extra 

accessing code. The determinant loop, and the partly overlapping sequences from its 

enclosing loop are almost as m the E version, as seen in (1) to (3). The binary search shows 

up as (4). The vector move of formal to local is (5), its original time was 3.87.. Procedure 

entry and exit is shown by (6) and (7). From the initialization we have (8), which is Homers 

rule in unrounded arithmetic. 

AitKen -A 

Maximal sequence length :20. 

Seq. Count 7. Time B/A Sequence 

(1) 1320 38.4 A CAMLE 
FSBR 

MOVE 
FDVR 

FMPR 
MOVEM 

MOVE 
AOJA 

FMPR FSBR MOVE 

(2) 432 3.3 A MOVE AOJ MOVE SOJ MOVEM CAMLE MOVE 

(3) 288 11.0 A CAMLE 
SOJ 
FSBR 

JRST 
MOVEM 
MOVE 

AOJA 
CAMLE 
FSBR 

CAMLE 
MOVE 
FDVR 

MOVE 
FMPR 
MOVEM 

AOJ 
MOVE 
AOJA 

MOVE 
FMPR 

(4) 1920 8.6 A MOVE MOVEM AOJA CAMLE 

(5) 261 5.3 A MOVE 
JRST 
CAME 

CAMLE 
MOVE 
JRST 

SKIPA 
SUB 
MOVE 

MOVE 
CAIG 
ADD 

ADD 
MOVE 

ASH 
ADD 

MOVE 
MOVE 

(6) 540 7.4 A MOVE 
JRST 

SUB 
MOVE 

CAIG 
ADD 

MOVE 
MOVE 

ADD 
CAMLE 

MOVE CAME 

(7) 360 7.2 A CAMLE 
ADD 
MOVEM 

AOJ 
MOVE 
AOJA 

MOVE 
MOVEM 

ADD 
MOVE 

MOVE 
ADD 

MOVEM 
MOVE 

MOVE 
FSBR 

(8) 282 3.5 A POP POP POP POP POP POPJ SUB 

(9) 400 7.2 A FMP FAD FMP FAD 

(10) 3433 7.3 B AOJA CAMLE 

(11) 3078 7.5 B MOVE ADD 

(12) 2538 9.1 B MOVE ADD MOVE 

The determinant loop is represented by (1) to (3); the two latter represent the outer loop 

and also overlap the first, which is the inner loop. (4) is own to own vector move in the 

outer loop. From the binary search we have (5) and (6). The formal to local vector move is 

(7). The initialization phase shows up as routine exit and Homers rule, as shown by (8) and 

(9).  (10) to (12) show the original results for loop control and access to formal vectors. 

■OHM M^MM 
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Aitken - G 

Maximal sequence length: 14(12). 

Seq.    Count    7. Time      B/A    Sequence 

(1) 6336 41.9 A MOVE ADD MOVE MOVEI CAML 
CAMG AND TRNN AOS JRST 

(2) 2970 17.0 A MOVE ADD MOVE MOVE ADD 

(3) 18837 23.5 B MOVE ADD 
(4) 11439 20.9 B MOVE ADD MOVE 

(5) 2970 11.5 B MOVE ADD FMPR 

(5) 1971 3.7 B MOVE ADD MOVEM 

(7) 1485 3.9 B MOVE ADD FSBR 

MOVE     MOVEI 

FMPR 

The search in the vector is linear, and represented by (1). The determinant loop is not 

represented significantly except for a short section which occurs twice in the loop and hence 

overrides the accumulation of longer sequences. This is (2), which represents multiplication 

of two vector elements. Other fractions of this loop are present but not significantly. The 

access to a local vector is of the format MOVE, ADD, OPERATE. This is shown in (3) to (7), 

from before reduction. 

Aitken - L 

Maximal sequence length: 18. 

Seq.     Count    7, Time      B/A    Sequence 

(1) 1485 31.0 A MOVE SOJ IMULI ADD MOVE FSBR FMPR 
MOVE FSBR ADD FMPR FSBR MOVE FSBR 
FDVR MOVEM AOJA CAMLE 

(2) 1485 17.0 A MOVE 
ADD 

IMULI 
MOVE 

MOVE 
FSBR 

ADD 
FMPR 

MOVE SOJ IMULI 

(3) 6264 40.5 A CAMLE 
ADD 

MOVE 
MOVE 

ADD 
CAMGE 

MOVE 
JRST 

CAME 
AOJA 

JRST MOVE 

(4) 9127 9.5 B AOJA CAMLE 

(5) 15219 18.1 B MOVE ADD 

(6) 14247 24.8 B MOVE ADD MOVE 

(7) 1971 7.1 B MOVE IMULI MOVE ADD 

The sequences (1) and (2) represent the determinant loop. The vector search (linear) is 

shown by (3). The original results representing loop control and vector access are shown In 

sequences (4) to (6).  (7) represents access to a matrix. 

»•adBMiMmaB iim^^iiiiiirii 
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5.3.4    The CALGO algorithms, initial remarks 

Before presenting the result for the CALGO algorithms, we make some general remarks about 

the languages and their peculiarities: For matrix access the present ALGOL implementation 

uses Iliffe vectors, whereas the other systems use multiplicative methods. 

In ALGOL programs a complicated run time system is used to implement the parameter 

mechanism (call by name), space allocation and block structure, and to check the legality of 

operations. This is particularly noticeable in routine calls and parameter access. The run 

time system sequences are easily detectable by the bit manipulating instructions they 

contain. 

BASIC uses a similar run time system. User UUOs are used to call the routines of this 

system, this even holds for routines to do vector and matrix access. Furthermore all 

arithmetic is in floating point, so the indexes must be truncated to integers. The routine to 

do this also checks the result against the upper bound. The code to fetch and store vectors 

is the same except for one MOVEI at the beginning which loads a register with a MOVE, 

MOVEM or MOVNM instruction. This is XCT'd from that register at the end of the access 

routine.  The code for matrix access overlaps that of vector access to a large extent. 

5.3.5    Bairstow 

ALGOL Bairstow 

Maximal sequence length: 11 (10). 

Seq.     Count    7, Time      B/A    Sequence 

(1) 345 9.6 A JRST 
ADD 

AOS 
MOVE 

CAMLE 
FMPR 

MOVE ADD MOVE MOVE 

(2) 1001 24.5 A MOVE ADD MOVE FMPR FSBR MOVE ADD 

(3) 535 11.7 A MOVE ADD MOVE MOVE ADD MOVE FMPR 

(4) 516 6.4 A MOVE ADD MOVE JRST AOS CAMLE 

(5) 470 6.0 A ADD MOVEM MOVE ADD MOVE MOVE 

(6) 518 5.8 A FSBR MOVE ADD MOVEM 

(7) 3085 19.5 3 MOVE ADD MOVE 

(8) 1025 6.6 B MOVE ADD MOVEM 

-  ill mi     iimi^ii 



,™W*?»^™*»ipj-T»ywr»wI>»j^»iiwmTI»P»»»T!^wwWCTn.^»^«J»»j^RiT ~™r**mmmif**^m*.,t*a»mi '^rmftmmrmm^'m\.«mmfu ßiiii,ni\. i —" 

DATA TYPES AND OPERATORS 121 

(9) 4710       20.3      B        MOVE     ADD 

(10) 637 3.8      B        JRST      AOS       CAMLE 

Sequence (1) to (6) show mainly vector access (MOVE ADD OPERATE) and loop control (JRST 

AOS CAMLE) with some other operations intermixed. The results for the vector access and 

loop control before reduction are given as (7) to (10). 

BASIC Bairstow 

Maximal sequence length :20. 

Seq.     Count 7, Time B/A Sequence 

(1)        3488 35.7 A MOVEI MOVE HRRZ TRNN JRST PUSHJ MOVE 

AOS MOVE FAD TLZ CAMGE POPJ ADD 
ADD XCT MOVE POPJ 

(2)        1138 10.2 A MOVEI MOVE HRRZ TRNN JRST PUSHJ MOVE 

AOS MOVE FAD TLZ CAMGE POPJ ADD 
ADD XCT 

(3)        1171 4.9 A JSR JRST PUSH LDB JRST JRST 

(4)        4626 9.7 B MOVE FAD TLZ 

Sequence (1) gives all of the code for vector fetch, except the initial MCVEI. (2) gi/es the 

same for vector store, but truncated at the XCT instruction. The coums are correct, as can 

be checked against the count for the appropriate UUOs. (3) is the general UUO handler. Its 

original count was 4659, representing 19.57. of the time. (4) represents the conversion of 

indices to fixed point. 

BLISS Bairstow 

Maximal sequence length: 20. 

Seq. Count 7. Time B/A Sequence 

(1) 90 5.1 A TRNN JRST SKIPE PUSH PUSHJ JSP PUSH 

HRRZ JRST 051 SETZ JRST POP POPJ 
SUB JRST MOVEI SUB JRST POP 

(2) 452 22.4 A MOVE 
MOVEM 

FMPR MOVE FSBR MOVE FMPR FSBR 

(3) 370 9.1 A MOVE FMPR FADR MOVEM 

(4) 329 7.8 A MOVEM AOJA CAMLE MOVE FMPR 

(5) 263 6.6 A FSBR MOVEM MOVE FMPR 

(6) 263 6.6 A FMPR FSBR MOVEM MOVE 

(7) 276 5.3 B PUSH PUSHJ JSP PUSH HRRZ JRST 

(8) 376 4.4 B POP POPJ SUB 

•Ma MMMMMOi ...-—.-.^  „....■.■ ^-  J 
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(9) 819 43      B        AOJA     CAMLE 

Sequence (1) and several overlapping sequences not listed represent output to TTY. (2) is 

synthetic division of a polynomial with a quadratic term. (3) is an expression of form D[j] ♦- 

D[j]+R*D[j-l]. (4) to (6) are various parts of the important loops. (7) and (8) represent 

routine calling overhead.  (9) is loop control. 

FORFOR Bairstow 

Maximal sequence length: 18 (16). 

Seq.     Count    7. Time      B/A    Sequence 

(1) 181 18.4 A FMPR FADR MOVIMM MOVE FMPR FSBR MOVE 
FMPR FADR MOVNM CAMGE AOJA MOVE FMPR 
FSBR MOVE 

(2) 181 9.7 A FADR 
MOVE 

MOVNM 
FMPR 

CAMGE AOJA MOVE l-MPR FSBR 

(3) 226 10.9 A MOVE FMPR FS3R MOVE FMPR FADR MOVNM 

(4) 148 8.3 A FMPR 
CAMGE 

FADR 
AOJA 

MOVEM 
MOVE 

MOVE FMPR FADR MOVEM 

(5) 492 2.6 B CAMGE AOJA 

(6) 859 19.2 B MOVE FMPR FADR 

(7) 581 13.1 B MOVE FMPR FSBR 

Sequence (1) is the full loop of the synthetic division. (2) and (3) are probably sections of 

this loop which remain thanKs to bad pruning. (4) is the same as (3) in BLISS Bairstow, but 

the full loop. (5) is loop control, (6) and (7) are timeconsuming combinations of arithmetic 

operations. 

FORTEN Bairstow 

Maximal sequence length :20. 

Seq. Count % Time B/A Sequence 

(1) 44 4.4 A MOVEM 
ASHC 
FAD 

MOVEI 
ADDI 
MOVE 

(2) 148 8.9 A FADR 
AOJL 

MOVEM 
MOVE 

(3) 222 6.1 A MOVE FMPR 

(4) 452 23.7 A MOVN FMPR 

(5) 181 5.9 A ADDI AOJL 

(6) 226 6.6 A FMPR FADR 

PUSHJ CAIA MOVF JUMPG   CAMN 
MOVSM MOVSI FADM ASH        TLC 
FAD FDV MOVEM FMP 

MOVE FMPR FADR MOVEM   ADDI 
FMPR 

FADR MOVEM 

FADR MOVN FMPR FADR  MOVEM 

MOVN FMPR FADR MOVN 

MOVEM ADDI AOJL 

MMüMM^k^-^ — - -       -i « II  i iiiBifiiaiiMt''ülli . tääa*t ilia m 
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- BASIC Crout 

Maximal sequence length :20. 

Seq. Count 7. Time 9/A Sequence 

(1) 2811 36.7 A FAD 
PUSHJ 
POPJ 

TLZ 
MOVE 
ADD 

CAMGE 
AOS 
ADO 

POPJ 
MOVE 
XCT 

HRRZ 
FAD 
MOVE 

IMUL 
TLZ 
POPJ 

HRRZ 
CAMGE 

(2) 2811 36.5 A JSR 
MOVE 
TLZ 

JRST 
HLRZ 
CAMGE 

PUSH 
PUSHJ 
POPJ 

LDB 
MOVE 
HRRZ 

JRST 
AOS 
IMUL 

JRST 
MOVE 
HRRZ 

MOVSI 
FAD 

(3) 1001 13.7 A MOVE 
FADR 
006 

POPJ 
JRST 
JSR 

FMPR 
CAMLE 
JRST 

FADR 
MOVEM 
PUSH 

MOVEM 
MOVEI 
LDB 

MOVEI 
MOVE 
JRST 

MOVE 
MOVEM 

(4) 1239 4.1 A MOVEI MOVE FADR JRST CAMLE MOVEM 

(5) 918 3.5 A JSR JRST PUSH LDB JRST JRST 

(6) 7126 13.7 B MOVE FAD TLZ 

(7) 7126 34.7 B PUSHJ 
POPJ 

MOVE AOS MOVE FAD TLZ CAMGE 

Sequences (1) and (2) are largely overlapping parts of the array accessing code. (3) contains 

most of the general UUO handler in the context of one of the inner product loops, with 

access to a matrix and some arithmetic. (4) is loop control. Its original time was 5.17. of the 

total. (5) is the general UUO handler. Its original time wa» 15.37,. (6) is the abbreviated 

truncation of indices to integer, (7) shows this in the context of the routine that also checks 

for index overflow. 

BLISS Crout 

Maxima! sequence length :20. 

Seq. Count 7. Time B/A Sequence 

(1) 2109 47.9 A CAMLE 
ADD 

MOVE 
ADD 

IMULI 
MOVE 

ADD 
FMPR 

ADD 
FADRB 

(2) 361 11.0 A CAMLE 
ADD 
JRST 

MOVE 
ADD 
MOVE 

IMULI 
MOVE 
SUB 

ADD 
FMPR 
JRST 

ADD 
FADRE 
POP 

(3) 2451 39.8 A ADD 
IMULI 

MOVE 
ADD 

FMPRB FADRB AOJA 

(4) 865 4.2 A PUSH PUSH PUSH 

(5) 424 2.8 B PUSH PUSH PUSH PUSH 

(6) 6010 38.8 B MOVE IMULI ADD ADD 

(7) 5530 41.1 B MOVE IMULI ADD ADD MOVE 

(8) 400 3.0 B MOVE IMULI ADD ADD MOVN 

MOVE IMULI 
AOJA 

MOVE IMULI 
AOJA CAMLE 
POP 

CAMLE MOVE 

- -■■ -   - - 



■ ■ i" *i^^mm**imm*'**^*ii^w*imrwmmmmmm^*mmmfr':   >w>'''>''mw w*mmi*™mmm lyiimt^^v^mmimm'timfiimimr^'^' —•— —■ 

DATA TYPES AND OPERATORS 
123 

Sequence (1) is the call of ALOG in the beginning of the program, with some environment. (2) 

is the same as (3) in BLISS Bairstow. (3) is part of the same and reflects bad pruning. (A) to 

(6) are from the synthetic division and again reflect bad pruning. 

5.3.6    Crout 

ALGOL Crout 

Maximal sequence length :20. 

Seq. 

(1) 

Count 

1282 

7. Time 

19.6 

B/A 

A 

Sequence 

AOPJ?    MOVE 
EXCH      ROTO 
LSH      AND: 

MOVE 
ROT 
LSH 

ADDI 
ANDI 
CAIN 

HLLZ 
HLRZ 
JRST 

SETZB 
HRRZ 
HLRZ 

ROTC 
ANDI 

(2) 1001 21.3 A ADD 
PUSHJ 
MOVEM 

FMPR 
UFA 
JRST 

MOVE 
FAD1 
AOS 

JSP 
UFA 
CAMLE 

MOVEI 
FADI 
MOVE 

JRST 
POPJ 
ADD 

MOVEI 
MOVEK 

(3) 819 14.3 A MOVEM 
ADD 
MOVE 

JRST 
MOVE 
JSP 

AOS 
MOVE 
MOVEI 

CAMLE 
ADD 
JRST 

MOVE 
MOVE 
MOVEI 

ADD 
ADD 
PUSHJ 

MOVE 
FMPR 

(4) 1585 3.5 B JRST AOS CAMLE 

(5) 7351 12.0 A MOVE ADD 

(6) 1225 6.2 A MOVE ADD FMPR 

(7) 3532 11.5 A MOVE ADD MOVE ADD 

(8) 1646 6.6 A MOVE ADD MOVE ADD MOVE 

\9) 1015 6.8 A MOVE ADD MOVE ADD FMPR 

The run time system shows up prominently, as in sequence (1) and others. The double 

precision add or conversion is (2), part of an innerproduct loop with a call to a double 

precision routine is shown in (3). (4) '* loop control. (5) to (9) are various representations of 

the matrix and vector access code: (5) is the basic vector access, (7) the basic matrix access, 

using Iliffe vectors.  (6), (8) and (9) are common contexts for these accesses. 

mmmm .MM^Ma^MiHaB_ 
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(S)        3460 6.3      B        AOJA     CAMLE 

Sequence (1) shows the inner product loop {two matrixes).  (2) shows the same loop with its 

exit, and exit from the routine.  (3) is unknown, maybe part of both inner product loops.   (4) 

and (5) show parts of routine entry, (6) to (8) are forms of the matrix access, (9) is loop 

control. 

FORFOR Grout 

Maximal sequence length: 20. 

Seq.     Count    7. Time      B/A 

(1) 

(2) 

(3) 

1225       24.2      A 

1015 

2466 

15.3 

18.7      B 

JFCL UFA 
POP POP 
PUSH      PUSH 

MOVEM   MOVE 
ADD       MOVN 

JFCL 
POPJ 
UFA 

1MUL 
ADD 

FMPI       J' CL 
MOVEM   MOVEM 
FAD! 

Sequence 

JFCL       FMPR 
UFA        FADI 
MOVEI    PUSHJ 

MOVE     MOVEI 
ADD        MOVE 
MOVEI    MOVEM   MOVEM   MOVEM   PUSHJ 

MOVE     IMUL      MOVE     1MUL       ADD 

The double precision arithmetic is shown in (1). the inner product loop in (2).  (3) is access to 

a formal matrix. 

IMUL 
MOVEI 

MOVE 
MOVE 
PUSH 

MOVE  ADD 

PORTEN Crout 

Maximal sequence length: 20. 

Seq.     Count    X Time      B/A 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

819       29.4 

511 

256 

735 

2390 

2796 

1345 

3.3 

1.7 

4.9 

21.2 

21.8 

2.1 

A 

B 

B 

B 

B 

B 

Sequence 

ADDI       AOJL MOVE 
IMUL       ADD ADO 
PUSHJ    PUSH PUSH 

MOVE     MOVE MOVE 

IMUL 
MOVE 
PUSH 

MOVE 

ADD 
FMPR 
UFA 

MOVE 

ADD 
MOVEI 
FADI 

MOVE 

MOVE 
MOVEI 

MOVEM   MOVEM   MOVEM   MOVEM   MOVEM   MOVEM 

MOVEM   MOVE     MOVEM  MOVE     MOVEM   MOVE 

MOVE     IMUL      ADD       ADD       MOVE 

MOVE     IMUL      ADD       ADD 

... ...       _        ADDI      AOJL 

(1) is an innerproduct loop with loop control, access to two matrixes and entry to the double 

precision routine. (2) to (4) indicate the need for a vider variety of rn^ves. (2) and (3) are 

from routine entry and exit sequences.  (5) and (6) are matrix access.  (7) is loop control. 
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5.3.7    Treesort 

This algorithm was chosen beceuse it contains packed data and linked structures. It is the. 

shortest of our subject programs, and the WHILE loop dominates all the results. The only 

intersting feature is the different way the five s,stems use to pack information into words. 

In each case we tried to write the program ir a way that the system in question was known 

to handle efficiently. In the case of FORFOR, therefore, we used division by an octal constant 

that is a power of 2 to unpack, since this was known to generate a shift. Similarly in the 

BLISS version we used the bytepointer construct, which generates halfword instructions. 

The BASIC result is not compatible with the others for two reasons: A shorter vector was 

sorted, to reduce execution time, and the vector fetch is very different from in the other 

systems, as stated elsewhere. 

The results were: 

ALGOL Treesort: 

(1)        8574      18.23 B MOVE     IDIVI 

BASIC Treesort: 

(2)        2514 6.5      B FDVR 

BLISS Treesort: 

(3)        8174 7.5      B        HLRZ 

FORFOR Treesort: 

(4)        8974        16.0      B MOVE     LSH 

PORTEN Treesort: 

(5)        8174       45.0      B MOVE     IDIV 

^MM .. ■ --     A ^ • ■* *" 
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5.3.8    PERT 

ALGOL PERT 

Maximal sequence length: 20. 

Seq.    Count    7. Time      B/A    Sequence 

555       20.0      A (1) 

(2) 

(3) 

(4) 

(5) 

(6) 

411        13.6 

487 

1461 

3415 

622 

6.7      B 

9.5 

16.3 

2.8 

P 

B 

B 

XCT 
PUSH 
POP 

MOVE 
POPJ 
SOS 

JRST 
MOVE 

MOVE 

MOVE 

JRST 

PUSHJ PUSHJ MOVE 
HLRZ PUSHJ MOVE 
POP TLNE POPJ 

POPJ POP POP 
MOVE MOVE ADD 
CA1GE XCT PUSHJ 

CAMLE MOVE AOS 
CAIG 

ADD 

ADD 

AOS 

PUSH MOVEI MOVE 
ADD MOVE POPJ 
MOVE POPJ 

TLNE POPJ MOVE 
CAME JRST JRST 
PUSHJ MOVE 

ADD MOVE ADD 

MOVE 

MOVE 

CAMLE 

ADD 

Sequence (1) is the complete thunk for the parameter to SCAN, including its call by XCT in 

SCAN, its excursions into the run time support routines, and its return to SCAN. (2) is the 

loop in SCAN, when the test in the enclosed conditional is false. It overlaps the thunk in (1), 

but not completely. (3) is the beginning of the loop enclosing the first case statement 

(switch usage), including loop control. (4) is access code for two level indexing, (5) is the 

access code for one level indexing in vectors.  (6) is loop control. 

BASIC PERT 

Maximal seque nee length : 20. 

Seq.    Count 7, Time B/A Sequence 

(1)          874 10.5 A JRST CAMLE MOVEM MOVEI 
PUSH LDB JRST JRST 
HRRZ TRNN JRST PUSHJ 

(2)        3989 44.8 A MOVEI MOVE HRRZ TRNN 
AOS MOVE FAD TLZ 
ADD XCT MOVE POPJ 

(3)          874 8.6 A MOVEI MOVE HRRZ TRNN 
AOS MOVE FAD TLZ 
ADD XCT 

(4)        3989 35.7 A PUSH LDB JRST JRST 
HRRZ TRNN JRST PUSHJ 

005 JSR JRST 
MOVS1 MOVEI MOVE 
MOVE AOS 

JRST PUSHJ MOVE 
CAMGE POPJ ADD 

JRST PUSHJ MOVE 
CAMGE POPJ ADD 

MOVSI MOVEI MOVE 
MOVE AOS MOVE 

MMMIiteMMil 
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(5) 3115   17.2  A   005   JSR   JRST  PUSH  LDB   JRST  JRST 
MOVSI 

<6) 1002 4.6      A        JSR JRST       PUSH      LDB        JRST       JRST 

(7) 926 3.3      B        MOVE     FADR      JRST       CAMLE   MOVEM 

(1) is probably the SCAN loop, showing loop control and entry into the vector fetch UUO.   (2) 

is  the  body of the vector fetch UUO. (3) overlaps (2) and represents the  vector store 

operations.   (4) and (5) are included as examples of bad pruning.   (4) overlaps the general 

UUO mechanism but does not complete the vector fetch sequence of which it is a part.   The 

same holds for (5), which contains the complete UUO mechanism but continues into the fetch. 

(6) is the UUO mechanism as it should be with good pruning.   Its original count was 4991, 

with 22.97. of the time consumed by it.  (7) is loop control. 

BLISS PERT 

Maximal sequence length: 13 (12). 

Seq.     Count    7. Time      B/A    Sequence 

(1) 437        12.1      A        ADD       MOVE     CAME     JRST      SOJG      MOVE     MOVE 
MOVE 

(2) 487 12.8 A AOJA CAMLE MOVE ADD       MOVE     ADD        SKIPG 

(3) 399 6.2 A MOVE ADD MOVE ADD 

(4) 527 8.2 B MOVE ADD MOVE CAME 

(5) 202 3.1 B MOVE ADD MOVE MOVEM 

(6) 1716        19.6      B        MOVE     ADD       MOVE 

(7) 996 6.8      B        AOJA      CAMLE 

(1) is the loop in SCAN, when the test is not equal. (2) is the loop control and test of the 

loop enclosing the first CASE statement. (3) is addition of vector element, or two level 

indexing. It consumed 14.57. of the time before reduction. (4) to (6) show further variants of 

vector access, with one or two level indexing. (7) is loop control. 
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FORFOR PERT 

Maximal sequence length: 14 (12). 

Seq.    Count    7. Time      B/A    Sequence 

(1) 411 14.6 A ADD 
ADD 

CAME 
SUB 

JRST 
MOVEM 

CAMGE 
MOVE 

AOJA 
MOVE 

MOVEM MOVEI 

(2) 227 6.8 A MOVt 
MOVE 

JUMPLE 
ADD 

MOVE 
ADD 

CAMGE AOJA MOVEM MOVE 

(3) 536 12.5 A ADD ADD MOVEI HRRM JSA MOVM JRA 

(4) 625 10.3 B MOVEI HRRM JSA MOVM JRA 

(5) 545 8.8 A MOVEM MOVE MOVE ADD ADD 

(6) 1170 15.1 B MOVE MOVE ADD ADD 

(7) 1725 16.4 B MOVE MOVE ADD 

(8) 481 7.2 A MOVE CAMGE AOJA MOVEM MOVE 

(9) 1228 10.9 B CAMGE AOJA MOVEM 

(1) is the loop in SCAN, (2) is the beginning of the loop surrounding the first case (computed 

GO TO). (3) shows a rather inefficient way of obtaining absolute values, it is shown in its full 

glory as (4). (5) indicates that vector access with two level indexing may be of importance, 

this is verified by (6) and (7).  (8) shows loop control in context, (9) on its own. 

FORTEN PERT 

Maximal seque nee length : 13(12). 

Seq. Count 7. Time B/A Sequence 

(1) 268 11.8 A ADD 
MOVE 

SKIPG 
ADD 

SKIPLE 
MOVE 

CAILE 
ADD 

JRST 
MOVM 

MOVE ADD 

(2) 227 6.1 A ADD 
MOVE 

SKIPG JRST AD1I AOJL MOVE ADD 

(3) 487 12.1 A ADDI AOJL MOVE ADD MOVE ADD SKIPG 

(4) 411 16.3 A MOVE 
ADD 

CAME 
SUB 

JRST 
MOVEM 

AOS 
ADD 

AOSGE JRST MOVEI 

(5) 477 7.4 A MOVE ADD MOVE ADD 

(6) 1986 22.6 B MOVE ADD MOVE 

(7) 268 4.0 A MOVE MOVEM MOVE MOVEM 

(8) 913 4.9 B ADDI AOJL 

(1) is the body of the CASE statement (computed GO TO), including the preceeding test and 

the computation of absolute value. (2) is the loop enclosing (1), as seen when the initial test 

is false.   (3) is the same when the test is true and calculation is to proceed as in (1).   (4) is 

-   ———>-»'——— u. ■ 
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the loop in SCAN.   (5) and (6) show the vector accessing code, <7) indicates the need for 

memory to memory move, (8) is loop control. 

5.3.9    HSvie 

All the results from this algorithm are dominated by the loop which calls on the integrand, 

and by the computation of the integrand. The only interesting feature is the use of 

unrounded an other ur usuai arithmetic in the mathematical library routines computing SQRT 

and EXP.  We give a few examples Of this. 

ALGOL Hävie: 

Normal arithmeti c used. 

BASIC Hivie: 

(1)         1024 11.6 B FAD MOVE FDV FAD 

(2)         1024 9.9 B rDV FADR XCT FSC 

BLISS Hävie: 

(3)          512 13.4 B FSC MOVEM FMP FAD 

(4)          512 21.2 B FDV FAD FSC FDV 

(5)          512 10.5 B FSC JRST POP POP 

FSC 

MOVE 

FADR 

POP 

These are believed to be conesecutive sequences during execution. 

FORFOR H4vie: 

(6) 1024       21.5      B        FAD        MOVE     FDV        FAD        FSC 

(7) 1024       20.8      B        FDV        FADR     FSC        SKIPA    JRA 

These are believed to be consecutive.   The BLISS mathematical routines were "borrowed" 

from the FORTRAN library, this explains the similarity of results for these two languages. 

PORTEN Hävie: 

(8) 1024   17.7  B   MOVE  FDV   FAD   FSC   MOVE 

(9) 1024   22.3  B   MOVE  FDV   FADR  FSC   POPJ 

MMMH >^^HHaHaBaiaaMtana, — —  
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5.3.10    Ising 

ALGOL Ising 

Maximal sequence length : 17. 

Seq. Count 7. Time B/A Sequence 

(1) 983 18.9 A AOBJP MOVE MOVE ADDI HLLZ SETZB ROTC 
EXCH ROTC ROT ANDI HLRZ HRRZ ANDI 
LSH ANDI LSH 

(2) 438 7.8 A LSH JUMPN AND JFFO SKIPN PUSH HRRZ 
ADD1 MOVE CAIG MOVEI SUB HRLI MOVN 
HRLZI HRRI ADDI 

(3) 438 8.4 A SOJL PUSH HLRZ ANDI LSH HRLZ HLRZ 
ANDI LSH JUMPN AND JFFO SKIPN PUSH 
HRRZ ADDI MOVE 

(4) 414 8.3 * K/IOVE HRRZ ADDM HRRZ XCT CAIE PUSH 
PUSH HLLZ PUSH MOVEI EXCH HLRZ SOJL 
PUSH AOJA SOJL 

(5) 381 7.2 A EXCH HLRZ SOJL PUSH AOJA SOJL PUSH 
AQJA SOJL PUSH HLRZ ANDI LSH HRLZ 
HLRZ ANDI LSH 

(6) 360 7.1 A HRRZ TLNE JUMPN MOVE MOVE MOVEM MOVEM 
AOJA AOBJP MOVE MOVE ADDI HLLZ SETZB 
ROTC EXCH ROTC 

(7) 396 5.5 A CAIN HLRZ ANDI ADD ADD HRRZ TLNE 
JUMPN MOVE MOVE MOVEM MOVEM AOJA AOBJP 

(8) 381 6.6 A PUSH PUSH HLLZ PUSH MOVEI EXCH HLRZ 
SOJL PUSH AOJA SOJL PUSH AOJA SOJL 

(9) 1044   9.3  A   CAMLE MOVE  MOVE  ADD   MOVE  MOVEM JRST 
AOS 

(10) 574 5.1       A        JRST       AOS        MOVE     CAMLE   MOVE      MOVE      ADD 
MOVE 

Sequences (1) through (8) all represent parts of the run time support routines, particularly 

those used at routine calls and name parameter access. These functions probably account 

for around 50^ of the execution time. (9) and (10) represent parts of some some program 

loop or loops, possibly the assignment to nonlocal vectors m SORT. 

 —    
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(2) 784 19.3 A 

(3) 296 6.9 A 

(4) 381 13.6 A 

(5) 378 5.7 B 

(6) 281 5.4 B 

(7) 1163 8.0 B 

(8) 1999 15.6 B 

MOVE ADD MOVE ADD 
MOVE CAMG JRST 

ADD MOVE MOVEM AUJA 

MOVE MOVE ADD 

PUSH HRRZ SUBI PUSH 
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BLISS Ising 

Maximal sequence length: 14 (13). 

Seq.     Count    7. Time      B/A    Sequence 

(1) 184 8.4      A        AOJA      CAMLE   JRST 
AOJ        MOVEM  AOS 

CAMLE MOVE  MOVE 

LOVE  MOVEM CAMLE MOVE 

PUSHJ PUSH  PUSH 

POP   POPJ  SUB 

SUB   POP   POPJ  SUB 

AOJA  CAMLE 

MOVE  ADD 

Here (1) is a piece of the SORT routine, containing the end of one loop, an assignment 

statement involving a formal vector, and a test ending an outer loop. (2) is from the loops 

that initialize formal vectors. (3) is probably the initialization of one of these loops and some 

of the loop. The function entry and exit sequences are represented by (4) through (6), loop 

control by (7) and formal vector access by (8). 

FORFOR Ising 

Maximal sequence length: 14. 

Seq.    Count    7. Time      B/A    Sequence 

(1) 112 7.2      A        SUB        MOVEM MOVNI    ADD       MOVE     ADD        ADD 
MOVEM   MOVE MOVEM  MOVE     MOVEM  CAMGE 

(2) 184        10.6      A        MOVEM  CAMGE MOVEI    ADD       MOVE     ADD        ADD 
MOVEM  AOS MOVE     CAMG     JRST 

(3) 860        15.9      A        MOVE     MOVEM CAMGE  AOJA 

(4) 245        10.3      A        JSA        MOVEM MOVEM  MOVEI    PUSH      PUSH      PUSH 

(5) 248 5.3      A        JRST      MOVE MOVE     HRROI     JRA 

(6) 414 6.5      B        JSA        MOVEM MOVEM 

(7) 657 6.6      B        MOVE     ADD 

The sequence (1) was not identified.   (2) is the same loop as (1) for BLISS Ising, (3) is the 

vector initialize loops, the vectore in the FORTRAN version being held in COMMON.   (4) to (6) 

represent the calling and exit sequences, (7) gives an idea of the cost of formal vector 

access. 
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FÜRTEN Ising 

Maximal sequence length: 16 (15). 

Seq.     Count    7. Time      B/A    Sequence 

133 

(1) 184 13.4 A MOVE 
ADD 
MOVE 

ADD 
SUB 

MOVNI 
MOVE 

ADD 
MOVE 

ADD 
MOVEM 

MOVEM 
ADDI 

MOVNI 
AOJL 

(2) 184 9.2 A MOVE 
CAMG 

ADD 
JRST 

MOVEI 
MOVE 

ADD ADD MOVEM AOS 

(3) 860 15.2 A MOVE MOVEM ADDI AOJL 

(4) 360 6.0 A M0VE1 MOVEM MOVEI MOVEM 

(5) 657 7.0 B MOVE ADD 

(6) 381 4.4 B MOVE POPJ 

(7) 414 6.1 B MOVEI PUSHJ MOVEM 

(8) 381 5.5 B JRST MOVE POPJ 

(9) 1144 8.4 B ADDI AOJL 

<1) is unknown, but probably in SORT. (2) is the same sequence as (1) in BLISS Ising, (3) is 

the initialization of the COMMON vectors in SORT, (4) is unknown, (5) is at least in part formal 

vector access, (5) to (8) is routine entry and exit, and (9) is loop control. 

5.4    Sequences applied to data types 

Sequences (1) to (6) of the BASIC compiler consume about 307 of the total time of 

compilation. Much of this could be saved by receding (1), as previously described. An even 

larger gain in time would be achieved, however, if the PDP-10 had an instruction to move 

text (byte strings), with the action to be taken on each byte defined by a table. By a 

suitable set of options defined by each table antry, this instruction could replace all of the 

constructs pointed to by sequences (1) to (6). Such an instruction would also reduce space 

cost compared to the recoded form of (1), and programming cost in any case. 

Character handling also shows up in the results from ALGOL, sequences (1) to (8), where it 

may be assumed to consume well above 107. of the time, and in PORTEN, sequence (6), where 

It consumes at least 5.57. of the time. We know thai all compilers have to perform this kind 

of processing, the reason it does not show up in the others may be that it is more 

distributed over the program, and that text lines are not processed as an entity. If an 

instruction as indicated were provided, compilers would be written to make use of it at a 

in..      
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benefit. It can further be safely assumed that it would find application in I/O routines, the 

importance of such routines is vindicated by our introductory experiments as related on page 

37.   The need for this type of instruction was also pointed out by Alexander [AleW72]. 

Another observation we can maKe from this material is that vector operations are important 

in many different contexts, and occur to a significant degree in many of our programs: Vector 

moves consume 47. to 147. of the time in AitKen, 67. to 207. in Ising. Searches in ordered 

vectors consume 37. to 407. in Aitken, innerproduct consumes 207 to 607. of the time in Grout. 

Access to vector elements consumes from 57. to 507. in many programs, most in the BASIC 

programs where they are done through run time system routines. 

Hence instructions for vector operators could be introduced to advantage. The least that cßn 

be done is to make the vector move operation already existing in the hardware easily 

available in higher level languages. This is only a first step, however. We propose a vector 

type along the following lines: 

The concept of vectors with a compile time determined address should be unified with 

that of dynamically located vectors. They should be given a common formal descriptor 

and representation. 

The descriptor should allow for vectors stored in non consecutive but equidistant 

locations. Zero should be a legal value for this distance. This would facilitate operations 

on both coloumns and rows of matrixes; vector moves would perform initialization of a 

vector with a single value, vector addition would compute the sum of a vector, and so on. 

Further, the vectors should be easily combineable into matrixes and access to individual 

elaments of vectors and matrixes should be no more difficult than in common 

implementations in present systems. 

The operators could include moves, searches (possibly binary), vector addition, and inner 

product, the latter accumulated in double precision. 

Possibly this vector type could further be unified with the character string type discussed 

above. 

Other data instructions that might be useful are memory to memory move, and conversion 

between fixed and floating point  numbers.   Both of these contribute significantly to the 
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execution time in more than one of our programs. The type conversions have in fact been 

included in the KI10 processor for the DECsystem 10. This saves 4 to 5 instuctions on each 

use in a general context, 1 or 2 in the restricted context of BASIC matrix access. For some 

BASIC programs, this could amount to 3t or 47 of the execution time. 

Finally we remark that instructions for packing can save considerable time where they exist 

in the ISP and are made available by the compiler used. The language PASCAL [WirIM71] 

shows how this can be integrated into a rigid type mechanism. 

Two objections against some of these instructions are that they do not easily fit into the 

PDP-10 instruction format, and the difficulty of accessing them from current higher level 

languages. The latter problem can, in part at least, be solved by giving them the syntactic 

status uf subroutines. This is already commonly done for operations like negate and absolute 

value. 

5.4.1    Summary 

In the previous section we proposed several data types and instructions for inclusion in the 

PDP-10. For each of these, evidence of its usefulness was found in several algoritms and 

across most languages. The sequences used to perform these operations were different from 

language to language, but the underlying operations were the same. This convinced us that 

our results are valid descriptions of the needs of algorithms. For subject set selection it 

indicates that the intended area of application should be covered reasonably well, but that 

the choice of language is less important. 

5.5    Properties of operands 

As mentioned in the introduction to this chapter, data types desi-able for inclusion in the ISP 

are not only such that are expensive to simulate using existing operators. Other data types 

might be desirable in order to reduce the space cost of data storage, and to some extent the 

time cost of the operators. 

Examples arc given by Wortman [WorD72] and Alexander [AleW72].   They have observed the 

MMMMMta ■    - i.-■          
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distribution of written constants in source programs, and found that a large fraction of the 

integer constants can be held in very few bits. (93/ and 567 respectively in A bits. The 

discrepancy may be caused by Wortman's use of student programs, whereas Alexander used 

larger programs). One would expect a similar observation to hold for dynamic occurrences of 

integers. 

If the operands of each instruction are written on the trace, this dynamic distribution can 

easily be observed. To relate these observations back to specific storage locations and 

variables, and to find the maximum space needed for each variable, would require an array 

equal to the whole data area of the subject program, hence this is a relatively expensive 

analysis. Furthermore several variables might share the same physical storage location, 

adding further complication. Hence the utility of a hardware subrange type is not easily 

determined exactly, although a good indication could be found.  We do not do this at present. 

To do a similar analysis for floating point types is even harder, since there is no way of 

telling how much of the accuracy provided is really necessary. This must be left to numerical 

analysts. A weak indication is provided by observing the usage of immediate type floating 

point instructions. 

Non-uniform distribution of values is not a phenomenon restricted to written integer 

constants. It has been observed, as reported by Hamming [HamR70] and Pmkham [PinR61], 

that "naturally occurring numbers" do not have uniformly distributed mantissae. Rather, the 

mantissae seem to be distributed according to the density function: 

r(x) - l/(x * ln(b))     (l/b<x<l) 

where b is the base of the number system. For a binary computer with mantissae in [0.5, 1>, 

this seems to imply that about 587. of the mantissae would be in [0.5, 0.75>. The essential 

property of this distribution seems to be its invariance to scale ti ansformations. 

Tracing methods can be used to obtain more »«penmental verification of this, and to evaluate 

methods designed to exploit it. Other observations of operand values could have relevance 

for: 

Variable length data types 

Representation of control and addressing information 

Rounding procedures in floating arithmetic 

MMMM .-^ _.       .     .„..£.   . J 
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5.6    Data types, Conclusions 

In this chapter we have piesented various methods for detecting unnecessary data types and 

operators in existing ISPs, and for detecting non existing but desirable ones. 

The former methods are based on frequency counts of instructions, and most of them have 

also been presented by other workers in the field. Our conclusions about these methods 

were presented in Section 5.1.3. We pointed out that the results are sensitive to changes 

both in programming language and algorithm, and hence that a subject set should be well 

distributed over the area of application and over the languages used. 

For the latter problem, we presented a heuristic algorithm for detecting significant dynamic 

sequences of instructions. This algorithm, including the heuristics, is our work. The algorithm 

is structured so that the heurstics are easily changed, and new heuristics may be easily 

added.   This method is also applicable to control operators and address calculation. 

The results were presented in Section 5.4. They are less dependent on language and 

algorithms than the frequency results, and properties common to the programs are brought 

out strongly. This led us to propose several types and operators for inclusion in the ISP 

that we worked on. A subject set for this method need not represent many languages, but 

should cover most concepts of the intended area of application. 

Finally we propose that desirable data types may also be suggested by a study of the 

operand values from existing data types. No experimental results from this method are 

presented. 

MMMHWM ■■■^—iM ii -'   — 
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CHAPTER 6 

CONTROL OPERATORS 

Our major methods for studying control operators are the same as for data operators, i. e. 

frequency counts in its various disguises, and instruction sequences. The results of the 

sequence studies are presented in Section 6.1. We give no comments on the frequency 

results above those given in Section 5.1.3. We also propose some new methods for use in 

particular situations.  These are discussed in Section 6.2. 

Frequency counts indicate that control operators, as defined below, account for a large 

fraction of the total number of instructions executed (33Z by our SNIFT, Figure 5-4). 

Furthermore, control structures are among the most important means of structuring 

programs. It follows that efficient implementation of control operators contributes to 

reduced programming cost as well as time and space cost. 

Further motivation for studying control structures and operators is found in the difficulties of 

compiler writing, particularly in code optimization. A great deal of effort at both compile and 

run time goes into maintaining (setting and restoring) state .nformation. This applies on 

subroutine and coroutine calls as well as in more local control contexts where several 

program branches merge. The inability of compilers to cope with this problem is one of the 

major reasons for generation of inefficient code. An alternative approach to the problem 

would be to design ISPs such that the amount of state to be maintained is less, or where it 

can be saved and restored more efficiently. 

Control operators are primarily those which may change the contents of the program counter 

to a value different from the default value (Old value + 1, n+Tth address etc). Since almost 

all programs are written in higher level languages, it is reasonable to extend this definition to 

include instructions used for implementing higher level control structures. Such control 

structures may be grouped as: 

Statement level: 

Unconditional jumps 

Conditionals 

Case selection 

Loops 
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Program level: 

Subroutines 

Coroutines 

Parallel processes (tasks) 

On   the   program   level,  program context  changes  and  program  communication   are   most 

important.    Communication  ranges from  oarameter  and  result  passing for  subroutines  to 

synchronization for processes. 

Our methods are not suited to analysis of programs with processes, since such programs, and 

certainly the most important ones, have to execute at full speed m order to adequately 

handle the real time situation they are designed for. The slowdown caused by the tracing 

interpreter would therefore perturb the results. 

There may also be more or less control associated with the ope-ators of the language, ie. the 

programmer may or may not have to supply explicitly the control necessary for, say, matrix 

operations, depending on the language {FORTRAN vs. APL). If the control is supplied wittl the 

operator, the compiler can in general generate more efficient code, since the context is 

better defined. 

The most important classes of con' 

Unconditional jumps 

Simple tests (implying jumps or skips) 

Loop jumps (count, test and jump) 

Subroutine and return jumps 

Stack manipulating instructions 

Execute instructions 

Some monitor calls 

Other instructions in special contexts 

itors on the ISP level may now be described as: 

6.1    Sequences applied to control 

In this section we discuss those sequences from Section rj.3 that are relevant to control 

operators. 

Most noticeable is the cost of the run-time system for ALGOL programs.  This consumes 507. 

--■—'—   ■  
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of the execution time for Ising, 207, for Crout. To achieve a reasonable efficiency for ALGOL 

programs with many routine calls and name parameters, special instructions and descriptor 

formats should be introduced. This observation is not new; it has influenced several ISP 

designs, in particular those of the Burroughs B5000 and its descendants and siblings. 

A related feature, more common to all the languages, is the cost of subroutine calls. This is 

most easily spotted in BLISS programs, since the BLISS calling sequences include .lack 

instructions that are never used in other contexts. In the BLISS compiler calling sequt ices 

consume at least 257, of the time, in the PORTEN compiler at least 157.. Both of these 

compilers were written in BLISS*. In the other programs where we have observations, the 

time consumed varies between 57, and 207. of the total; 57. in PORTEN Crout, 127. in PORTEN 

Ising, and over 157, in P0RP0R Ising. 

The functions performed by these sequences are transmission of parameterr and result, 

manipulation of return linkage, and state setting. The latter includes setting up system 

registers as well as saving and restoring user registers. The exact constructs needed 

depend heavily on the language.  We present one example: 

BLISS programs would execute considerably more efficiently if the PUSHJ and POPJ 

instructions could manipulate the P register", and remove the parameters from the stack 

after exit. The address field of the POPJ instruction, presently unused, could be used to hold 

the number of parameters, so there would be no space cost at the call site, and the change 

would fit cleanly into the existing structure. This would reduce the instruction count by 4 in 

each call, more in some cases. Por the BLISS compiler 1/8 of the instruction cou'.t would be 

saved this way; this is about half H .he instructions executed in calling sequences. If one 

were able to specify which registers to save on entry and restore on exit, two further 

instructions could be saved on each call for each such register. There is, however, no room 

in the instruction word to specify this.  This is a problem common to all calling sequences. 

A variant of the subroutine call is the UUO. In our material this is used almost only to call 

the BASIC run time system. Since this includes vector and array accessing, UUOs are 

frequently used by BASIC programs, and the central UUO handler of BASIC contributes 157. 

to  237. of  the  total  execution time.   This UUO handler, which consists of   6  instructions, 

♦ Two reasons for the difference may be that parameters of PORTEN are passed in registers, 

or that there are fewer small routines. 

" The P register points to the activation record of the most recently entered routine. 

M^M mm— 
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processes the return linkage and selects the right run time routine. Parameters and state 

are processed at the call site and in the individual routines. Hence the cost of UUOs is 

extremely high compared to using one of the subroutine call instructions. An exception is 

when only one UUO is used. In that case the central DUO handler reduces to one instruction. 

The advantage of UUOs over other subroutine calls is that they allow a memory address 

(subjected to the standard effective address calculation) and an accumulator address to be 

transmitted to the routine at no extra cost in space or time at the call site. It also permits 

linkage to subroutines through a table defined at load time and with no name 

correspondence. This is of small importance, however. From this we conclude that UUOs 

should be used only in very special circumstances where the extra time cost is justified. 

UUOs are also discussed in Section 5.1.3. 

Another common construct is loop control. This often consumes no more than 2t to 57. of the 

execution time, but may consume as much as 9/ (Aitken-L) or 107. (FORFOR PERT). It 

appeared in at least 15 programs, consuming at least 2Z of the time in each. In spite of the 

looping instructions provid d in the PDP-10, most loop control sequences consist of two or 

more instructions. This is primarily due to the fact that most loops count upward to a non 

zero limit, hence loop control r. eds to address both the limit and the branch target (assuming 

the counter to be in a register and the increment to be 1). Contributing are the facts that 

languages often require ihe test to be performed at the beginning of the loop but the 

stepping of the counter at its end, and the need to store the loop counter in memory. 

Results reported by Knuth [KnuD70], Shaw [ShaM71], and Alexander [AleW72], for FORTRAN, 

ALGOL and XPL, show that 937 to 957 of all wri ten counting loops have an increment of one. 

This form of loop could be done more efficiently in the PDP-10 if the AOBJN (Add one to 

both, jump if negative) were used. This instruction keeps the loop counter in the right half 

of a register, the left half is initialized to the negative of the desired number of traversals of 

the loop. F.dch tine the AOBJN is executed, both halves of the register are incremented by 

one, and the jump is taken if the result (i.e. the left half) is negative. 

This instruction is rarely used in our subject set: 709 times in our 1 million instruction SNIFT. 

The reason is that extra tests must be performed to make sure that the bound and counter 

will not overflow the halfword allocated to them. This suggests that two registers should be 

used, one to hold the upper bound and one for the counter. Our results in Chapter 4 show 

that there are sufficiently many registers to permit this. Downwards count to a nonzero limit 

can be handled by a similar instruction. 

-- - 
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Commonly used sequences for loop control consist of a AOJXX CAMXX pair. Our instruction 

will execute in less time than the CAMXX, since no memory operand is needed. Hence these 

instructions would reduce the time cost of loop control by 407, to 507, or up to 57. of the 

execution time of some programs. For very short loops, such as initialization of vectors, this 

saving could be a significant fraction of the time of the loop. The prologue may imply a 

larger space cost than for most present loop controls. The hardware cost is that of adding 

the new instruction(s). The instructions integrate reasonably well into the PDP-10 ISP 

structure, hence the programming cost will probably be reduced. 

We finally draw attention to various forms of testing that are prominent in some of our 

subject programs. This is seen in the ALGOL run time system and in the compilers, and 

consumes 27. to 117. of the time. The ALGOL run time system also does a great deal of bit 

manipulation. We can not suggest any improvements on these operations without further 

Knowledge of their semantics. 

6.2    Some special problems 

In this section we discuss some problems associated with control operators in general, or 

with special control operators, which are not easily solved using the more general methods. 

6.2.1    Control information 

An important aspect of control operations is the control information, i.e. that information 

which is processed by the normal data operators, but whose main raison d'etre is its use for 

control purposes. This includes loop counters, stack pointers, return addresses and other 

addresses, parameter descriptors, displays, etc. Ideas for improved control operators might 

come from studying how such information is processed. 

We make the simplifying assumption that we may disregard information stored in primary 

memory, and consider only register contents. The information in a register is used for 

control purposes at the cflnkfli Bfliüli '.*• whenever the register is addressed by a control 

operator. We are interested in the history of control information accumulated at control 

points. 

mmmmm    III^UMI in ii ^a 
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' 

The sequences of sections 5.2 and 6.1 tell us something about this, but they have several 

deficiencies: They are not accumulated at control points, they contain instructions irrelevant 

to the control information, and they cover a too short span of time. 

Another form of history which we already have is the register usage classes of Section 4.5. 

These classes are also inadequate for the present purpose, since only the kinds of events in 

the life of the register are known, their order and number is unknown. 

A third form of history is the sequence of instructions that operated on the specific register 

before the control point was reached. Such Legister sequences can be collected by a 

process somewhat similar to that described in Section 5.2, but in many ways simpler. Its 

main properties are: 

a) Sequences are accumulated separately for each register, and only instructions 

affectir.i;, ii at register are mcluded. 

b) Each sequence is restricted to one R-life of that register. (R-life defined in Section 

4.2). This might cause some sequences (particularly those representing the history of 

a loop counter) to become very long. A Kleene star kind of concept would be useful 

in such cases, or the sequences may be truncated at the old end. 

c) Sequences are tabulated each time the register is used for a control purpose. 

d) The collection takes place in one pass. If space is scarce, some kind of pruning might 

be necessary. 

In such histories, the time order of the events is preserved, but only events affecting the 

particular register is recorded. If parts of the computation have taken place in other 

registers, this information is lost. We do not believe this to be a serious problem, however. 

If it is, one may build the expression trees for the information instead of the sequences. 

Techniques for doing this are constantly used in compilers, though with the opposite goal. In 

such trees the exact order of operations is lost, and only those aspects of it are preserved 

which are relevant to the arithmetic value of the result. 

We propose register sequences as the method for study of control information, most likely to 

give useful results at a reasonable cost. We have, however, not programmed this method, 

and hence have no experimental results to support this contention. 

HteMM --        ■ 
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6.2.2    Test.instructions 

To perform a test, 3 addresses are needed: two for the values to compare and one for the 

instruction that is to be executed it the test succeeds. On the other hand, most ISPs have at 

most 2 addresses in each instruction (memory address and register or 2 memory addresses). 

Three techniques are commonly in use to solve this problem: 

a) An implicit operand, usually 0, is used for the test. This method is adequate when the 

value tested either does not have to be computed, or is used for other purposes than 

testing. This can be studied by regiticr toquoneet, possibly extended beyond the 

control point. 

b) An implicit change (SKIP), usually 1, 2 or 3, is made in the value of PC depending on 

the result of the test (succeeds or fails; >, - or <). This may require another 1 or 2 

jump instructions to follow the skip instruction, but at most one of these is executed, 

often none. This method is adequate when the false path is exactly one instruction 

long, and continues into the true path. Sequences may be used to study the relative 

frequencies of SKIP JUMP and SKIP NO-JUMP pairs. This requires a modification to 

the sequence program so that these combinations are always printed before they are 

pruned.  Many SKIP NO-JUMP pairs indicate that this construct is used to advantage. 

c) A condition code (CO is used to store the resuU of the test. This is subsequently 

tested by an instruction which specifies the conditional new value of PC in its address 

field and the desired state of CO in its opcode or register address field. If CO is set 

by the arithmetic instructions, the first instruction of this pair is not always 

necessary and thic scheme may or may not be more economical in space and time 

costs than the ones previously described. This method is adequate if the value 

tested is that most recently computed and it is also used for other purposes. 

If the ISP under study does not use CC's, a few lines of code in the program that 

accumulates IFT's will simulate a CO. The tables that describe the instructions in 

terms of the program structure distribution must be available. In this way we may 

estimate how frequently the introduction of condition codes would have simplified the 

program. 

None of the above methods were implemented; some of the other results, however, have 

some bearing on these problems. 

MMMMMi 
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The program structure distribution, presented in Figure 5-4, indicates that the accumulator is 

most often tested against memory. The compilers form an exception; here the bit tests and 

the tests against an immediate operand are more used. The importance of testing against 

memory may in part be due to the use of these instructions in the loop control. Bit testing 

and testing against immediate operands are second in importance; tests against 0 are least 

important. However, testing memory against 0 is as important as the analogous test for the 

accumulators. Taken together, the tests against zero are almost as important as the 

accumulator versus memory tests. These results refer to instruction count. In computed 

time, the tests involving mamory tacreaM in relative importance. 

We conclude that programmers prefer b) to a), and that they rarely need to test values 

genuinely for zero, at least not recently computed ones. The memory against zero tests are 

most common in compilers, this rnay indicate tests of 'ong lasting status indicators, table 

entries, etc.. 

6.3    Control operators. Conclusions 

This concludes our discussion of control operators. We have presented the results from the 

sequence method as applied to control structures, and also suggested some other methods 

for obtaining additional information. The latter methods, however, have not been 

implemented. 

The detailed implementatio; of control varies more from language to language than does the 

use of data operators. This> is particularly so for languages that use a run time system for 

their space allocation and parameter transmission. There is also some variation from 

algorithm to algorithm due to the different degrees to which the algorithms use certain 

control structures, and in particular those that involve the run time system. Differences are 

also inherent in the forms of processing that the algorithms do, as is evident from the 

program structure distributions in Figure 5-4. We also found significant similarities across 

languages and algorithms. This is clearly seen in the program structure distribution, and 

even more clearly in the sequences. In the latter case, though the sequences differ in detail, 

they reflect common underlying control concepts, and can in many cases be unified. This led 

us to propose a modification of an existing instruction foi loop control, and to point out a 

basic flaw of the routine call instructions. We also pointed out the inefficiency of the UUO 

concept of the PDP-10. 

■'»-'''''*■'■*'—'—■-——-—"     -- - ■■ ■'•'-"■'""•*•*-—Um 11  ,          -  ■■  ■ 



W"IWWW1«H     ■     IWWWT^WMBMH»! i» l>.     ■•■ill    IKII^   mail,  linn      u.a. '■      -■"P«|i     II IM  l.niiiUJ.   iiB.iv.PliiaiK   I«WW,II mu»!  .niunvJH »i»-«.' »™«?^ww» "I »I l 

CONTROL OPERATORS U6 

If the goal is to detect which control structures are common, the subject set need not 

represent many languages, but it should be well distributed over all control concepts used in 

the area of application. However, the detailed implementation of these control concepts is 

highly language dependent, particularly where a run time system is used. Hence a thorough 

analysis of programs from the particular language should be done if detailed implementation 

is the goal. 

Our results do in fact suggest that the ISP should have separate control operators, possibly 

microprogrammed, for each commonly used language. 

For the same reasons as when we discussed data types, the generality and consistency of 

our results lead us to believe in our methods. Our remark in the introduction to this chapter 

about compilers and state maintenance correlates well with our findings about routine calls. 

Finally we remark that our results agree well with experience, intuition and afterthought. 

«MHMMU MMMUHHIÜi 
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CHAPTER 7 

ADDRESS CALCULATION 

By address calculation (in a wide sense) we mean the calculation of an effective address to 

operands or instructions in physical memory, based on information provided in the instruction 

word, in memories addressed by the instruction word, and on other information held in the 

processor state.  Within the problem area so outlined, there are 3 subproblems: 

a) Address calculation for data structuring and control operations, which is discussed in 

Section 7.1. Some ».f our sequence results are relevant to this problem. These 

are discussed in Section 7.1.1. We also propose some other methods for special 

problems in Section 7.1.3. Some of these are closely related to those proposed 

for control operators in Section 5.2. 

b) The problem of mapping a larp.e virtual memory into a small real one. This problem 

has been addressed by many authors, hence we do not discuss it here, but refer the 

reader to work mentioned in Section 1.4. The basic idea of these methods is to study 

the stream of effective addresses, and observe how locality in time implies locality in 

space. 

c) Uniting the need for a large name space with a short address field. We propose no 

method for this problem; it can be studied by methods similar to those used for b). 

7.1    Data structuring 

The most common tools in address calculation are indexing, indirection, and base registers. 

We discuss our methods and results for indirection and indexing. The use of base registers 

is closely tied to problem c) above. Since we present no methods for this problem, we only 

mention base registers in passing. 

Following  a terminology proposed by Foster [FosC70] we will  mean by nominator  a cell 

. .........*^-—.;  
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containing   an   (indirect)   address,  and   by   nominee   the   cell   thus   addressed.    Our   other 

terminology is standard. 

7.1.1    Sequences appliea to addressing 

In this section we discuss those of the sequences in Section 5.2 which are relevant to data 

structuring, and which indicate the need for more specialized address calculating techniques. 

Our results reveal two related such structures, namely vectors and matrices. 

Vector access consumes 57, or more of the time of al least 14 of our programs, much more in 

two special cases: 537 in BASIC PERT, and 467 in ALGOL PERT which has a vector element as 

a name parameter. It consumes more than 107. of the time in Aitken-G, Aitken-L, ALGOL 

Bairstow, BLISS PERT, FORFOR PERT, FORTEN PERT and BLISS Ising, where more conventional 

accessing methods are used. In many accesses in PERT the index is itself an indexed 

variable, a fact which contributes to the cost for that algorithm. 

Vector access is particularly time consuming when the base address of the vector is not 

known to the compiler, that is when the vector is passed as a parameter or when dynamic 

space allocation is used. The problem could be reduced by addressing vector elements 

indirectly through a nominator whose written address is the base of the vector. This would 

require that the same index register was used for all accesses to the vector. The compilers 

that we used do not seem willing to accept this restriction. 

In Section 5.4 we proposed the introduction of a vector type to handle vector operations as 

well as access. Alternatively some other solution, such as the introduction of base registers, 

should be found to reduce the accessing cost. 

The other data structure giving rise to significant sequences is matrices. Matrices are used 

in Crout, SEC, and Aitken-L. The time cost of accessing was 77 of the total computed time in 

Aitken-L, and 157 to 207 in SEC. The costs for the versions of Crout are not comparable, 

due to the special use of UUOs in BASIC, and the non-uniform use of double precision 

arithmeti which consumes much of the time where used. They were: 11.57 for ALGOL Crout, 

607. for BASIC Crout, 397 for BLISS Crout and approximately 207 for the FORTRAN versions. 

The time advantage of using Iliffe vectors ;s clearly seen in the ALGOL Crout result. 
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In many algorithms, such as Crout, the matrix elements are accessed in a systematic manner 

as row or coloumn vectors. Hence this cost could be reduced by introducing the vector type 

proposed in Section 5.4 or by adequate language constructs. To speed up genuine random 

access to matrices, a matrix type with special descriptors and operators could be devised. 

This should be integrated with the vector type. A step in this direction has been taken in 

the Burroughs B5000 and related computers. A vector is described by a one word 

descriptor, the vector so described may itself consist of vector descriptors (i.e. it is an Iliffe 

vector) and so on. 

7.1.2    Indexing and indirection 

By observing the frequencies of use of indirection and indexing, we may assess the utility of 

those features. Thinking the utility of indexing to be above doubt, we did not actually count 

the number of instructions using it. We did, however, count the number of register lives 

used for indexing, and we also observed what other kinds of operations those lives were 

subject to. These are the register usage classes of Section 4.5. Our observations are 

reported in Figure 4-17 and Section 4.5. 

We did observe the frequency of use of indirection, and also to how many levels indirection 

was carried, whether the ittmfiwttr was in a register, and whether pre indexing or post 

indexing or both were used*. 

Two level indirection was observed in all the ALGOL programs, and in PORTEN Crout and 

PORTEN Ising, the level 2 nominators comprising from about 1/10 to 2/3 of the total number 

of nominators in these cases. Indirection off byte pointers was found in F0RP0R, PORPOR 

Bairstow, PORPOR PERT and PORPOR SEC, probably associated with I/O, and comprising about 

2.67- of the total number of indirect accesses. 

Post indexing, was found in the ALGOL programs and in the ALGOL, BASIC and PORPOR 

compilers. In PORPOR 6.77. of the iiominaton were indexed, in ALGOL PERT 63.81 Por the 

other programs the percentage ranged between 20 and 50. Our other results are displayed 

in figures 7-1 through 7-3. 

* By pre indexing we mean indexing used in the instruction word to access the (first) 

nominator By post indexing we mean indexing in the nominator to access the data or the 

next nominator. 

 ^ i n Mm '■■•- ■      
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The low number of indirections through registers indicates that indirection could not be 

replaced by indexing except at the cost of extra LOAD instructions. 

The results for the ALGOL programs indicate that two level indexing may be useful in certain 

circumstances, for instance where the access path is computed and has a relatively long 

lifetime, or where it depends on more than one index. Indirection to one level is justified by 

being used in most programs; one instruction execution is saved on each indirection not 

through a register. The instruction count of PORTEN Crout would increase by over 77. if 

indirection were removed, and by 37. or more for 14 of the 41 subject programs. 

7.1.3    Addressing information 

By addressing information we mean computed information used in address calculation, such as 

indexes or nominators. The analogy with control information is obvious, and information 

about them may be collected in the same way, except that addressing information is 

collected at addressing points, defined by analogy to control points. The reader is referred 

to Section 6.2.1, which applies mutatis mutandis to addressing information. 

A study of addressing information might reveal important manipulation of such information, 

that could lead to new address calculation algorithms in the ISP. Analysis of addressing 

information should be correlated well with that of control information, particularly loop 

counts and case selectors, which from other experience might be expected to play a double 

role. 

It may also be of interest to study the context of indexed data accesses. Indexing may be 

used in several contexts, and the following can probably be distinguished mechanically: 

Record access, with constant offset and computed base. 

Array access, with computed offset and constant base. 

Array access, with computed base and computed offset. 

Immediate operands. 

 — 
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FIGURE 7-1 

Fraction of instructions using indirection 

Algorithm\language ALGOL BASIC BLISS F0RF0R FORTEN 
Bairstow 0.006 0.030 0 0.024 0.010 
Crout 0.017 0.047 0 0,040 0.073 
Treesort 0.000 0.031 0 0.000 0.000 
PERT 0.025 0.034 0 0.048 0.034 
Hävie 0.019 0.036 0 0.060 0.060 
Ising 0.018 - 0 0.032 0.053 
Secant - - - 0.034 0.022 

Algorithm\Programmer 
Aitken 

Source progr.\Compiler 
Treesort 

E 
0 

ALGOL 
0.026 

B 
0 

A 
0 

G 
0 

L 
0 

BASIC 
0.015 

BLISS    F0RF0R    FORTEN 
0.000       0.003       0.000 

FIGURE 7-2 

Fraction of nominators in a register 

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN 
Bairstow 0.021 0.007 0 0.02^ 0.005 
Crout 0 0.001 0 0 0.000 
Treesort 0 0.001 0 0 0.167 
PERT 0.002 0.003 0 0.003 0.001 
HW\e 0.001 0.003 0 0.001 0.000 
Ismg 0.001 - 0 0.048 0.001 
Secant - - - 0.171 0.000 

Algorithm\Programme 
Aitken 

Source progr.\Compiler 
Treesort 

E 
0 

B 
0 

A 
0 

G 
0 

L 
0 

ALGOL      BASIC       BLISS    F0RF0R    FORTEN 
0.127       0.999       0.059       0.069 0 
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FIGURE 7-3 

Fraction of indirections pre inde- 

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN 
Bairstow 0.359 0.985 0 0.953 0.990 
Crout 0.854 0.933 0 1.000 1.000 
Treesort 0.600 0.999 0 0.500 0.667 
PERT 0.719 0.951 0 0.993 0.998 
Hävie 0.661 0.435 0 0.534 0.526 
Ising 0.690 - 0 0.737 0.875 
Secant - - - 0.828 1.000 

Algorithm\Programmer E B A G L 
Aitken 0 0 0 0 0 

Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN 
Treesort 0.615 0.001 0.937 0.008 0.175 

7.1.4    Operand and result modes 

Related to addresss calculation is the choice of destination for the result of data operations, 

and of the order of the operand for non-commutative operators (Examples: Add accumulator 

to memory, result to memory; Subtract accumulator from memory; etc.). These variants of the 

operators may be expressed as part of the opcode, or by special addressing modes. If such 

modes exist on the ISP in question, their utility can be assessed by frequency counts. If 

such modes do not exist, sequences do not suffice to establish the need for them, since 

information about the identity of operands is needed. The "result to memory" mode is 

indicated by the occurrence of OPERATE STORE pairs with the same address. If the 

accumulator contents is used after such a pair, the indication is for a "result to both" mode. 

The "inverse order of operand" mode is needed if a large number of LOAD OPERATE pairs 

exist, where both specify the same accumulator, and the OPERATE is noncommutative and 

addresses a register for its memory operand. 

We did not implement detection of such sequences, and hence have no indications for or 

against the need for "inverse order of operand" instructions in the PDP-10.   The frequency 

  -^ --,..  .      -.'...—   - 
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counts in the SN1FT indicate that both the "result to memory" and the "result to both" modes 

are used, particularly for the commutative operators. Thus FADRB represents 147, and 

FADRM   217  of   all   the   occurrences  of   FADRX   instructions*  in  our   SNIFT,   r ^rjRB 

represents 2.47. of all the FMPRXs. Similarly the immediate mode for floating arithmetic point 

is justified, with 6.47. of the FADRXs and 5.47 of the FMPRXs. 

7.2    Addressing, Conclurions 

The most important part of this chapter discussed those results of our sequence method 

which applied to address calculation. These results indicated a need for improved accessing 

methods fo- matrices, and for vectors with a dynamically determined base address, such a', 

vectors passed as parameters. 

We further presented some results from our bNIFT, throwing light on the ust; of different 

result destinations for arithmetic operators. Due to our restricted subject set, these latter 

results are considered inconclusive, but they do suggest a need for the "result to memory" 

and the "result to both" modes on the POP-10. 

There is nothing in these results to contradict our earlier conclusions about the validity of 

our methods. We refer the reader to the conclusion sections of chapters 5 and 6, which also 

apply here, but with some less weight on the dependency of operator implementation on 

language. 

Finally we presented some results on the use of indirection. These show that one level of 

indirection is certainly useful for our subject set, possibly two. Both pre and post indexing 

was used. 

♦ FADR is floating add with rounding, FMPR is floating multiply with rounding.   The suffix X 

indicates the special mode: Both, Memory or Immediate. 
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CHAPTER 8 

CONCLUSION 

In this thesis we have developed some methods for evaluation of the architecture of 

instruction set processors. The methods are based on analyzing traces of program execution, 

the traces contain information about every instruction executed by the program. The traces 

are written as the program is executed on an interpreter for the ISP under investigation. A 

set of programs, the subject set, is used to represent the workload of the ISP. 

The main advantages of these methods are: 

a) The level of detail to which they permit us to go. In general every instruction 

executed, as well as any desirable information from the processor state between 

instructions, is easily recorded on the trace. If desired, parts of the instruction 

interpretation may be simulated, and information from this traced. In our case we 

recorded the instruction word, effective address, program counter, indirect chains, 

byte pointers and final operands. 

b) The general applicability of the methods. The subject set can usually be chosen 

among any programs that can be compiled into the standard relocatable format used 

on the processor. The methods are not restricted to a single language or set of 

languages. 

c) The ease of programming of the methods. Other methods could conceiveably provide 

some of the same information, but w'Jd imply a cons derable analysis of relocatable 

programs or core images to reconstruct instruction sequences and register usage. 

The subject programs have to be brought into a format acceptable ro the interpreter. 

Usually the standard relocatable format is convenient. For an ISP inder design it may 

therefore be difficult or impossible to obtain a representative subject stt. However, in these 

days of microprogramming, it is not improbable that compilers may be written for an ISP 

before the ISP itself is frozen. For existing ISPs, as in our experimental work, the 

interpreter may run on its own ISP. In such cases the relocatable form of the subject 

programs may be used, and no restrictions are posed on the selection of the subjsct set. 
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8.1    Overview of the methods 

In chapters 4 through 7 we presented various issues of ISP architecture, viz. register 

structure, data types and operators, control operators and address calculation. In each 

chapter we presented methods to deal with these issues, together with experimental results 

obtained using our subject set. 

Some of the methods were the same, or analogous, for several ISP problems. We now review 

the methods m a methodologically systematic manner.   They fall in five categories: 

Instruction sequences, with the variant register sequences. Sequences are used to 

assess the need for new data types and data operators, control operators, and 

addressing modes. Register sequences (i.e. instruction sequences restricted to 

instructions affecting one register) can be jsed for studying control and addressing 

information in more detail and with greater accuracy than is permitted by the general 

se ;uences. 

Frequency counts of instruction usage. The instruction frequency table can be displayed 

in different formats, sorted by execution frequency or by time consumed, grouped into 

distributions/mixes. Or output in the form of the FGR function. From these results we can 

see which operators were not used, and can be omitted. We can also estimate the cost 

incurred by having to recode some of the instructions if the instruction set L reduced, 

and we can see which instructions are candidates for improved implementation. 

Register life classification. We showed how to detect register lives (R-lives), and how 

they could be classified according to the use made of the registers during the lives. This 

information can be used to assess the need for generality of registers. 

Simultaneity of register lives. We presented algorithms to detect how many registers are 

used simultaneously, and to calculate upper bounds for the time cost incurred if the 

number of registers were to be reduced while preserving the rest of the ISP structure. 

These calculations may be done for each of a number of classes of registers, as defined 

above, as well as for the total set of registers. 

Miscellaneous methods. We proposed several special methods for special problems. 

These can be used to investigate indirection, the utility of condition codes and other 

solutions to the addressing problem for test instructions, distribution of operand values 

— -"•**—"**•**"--"-  .-^_»^ .»■^_-J^— ___, _ . . .    ^^^^^^t^L^t^i 
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with partword operands in mind, and so on.   One may also implement methods for special 

properties of the ISP, such as byte pointers on the PDP-10. 

The methods have different needs for data space and tables of der.cnpt.ons. They also use 

different parts of the trace input. These factors, and also the forms of analysis performeo. 

have some implications for the programming of the methods: 

The instruction sequence algorithm makes many passes over the trace, and needs a large 

data space, but only the mstruct.on word is needed from the trace, and no tables of 

descriptors are needed. Hence this program should be preceeded by a program that 

condenses the trace. This latter program can also accumulate the IFT and print its var.ous 

forms. This latter process requires several tables of descriptors but a moderate amount of 

data space. 

The algorithm for simultaneity of register lives has two phases, the former writing a special 

file for use by 'he latter. Neither phase uses much data space, but the first needs some 

table space. These tables are the same as are used for R-life classification. The latter 

algorithm needs some data space, but not overly much. Hence it may be programmed w.th 

the first phase of the simultaneity algorithm. 

In this first phase all register usage, including mdexing and indirection through registers, 

must be detected. For this the effective address .s needed. Hence the indirection statistics 

is best accumulated m this program, and also the special sequences for operand and result 

modes, if space permits. 

To accumulate rwtir.r ***** we need information about the addresses, to see which 

registers are used, so that the instruction can be associated with the proper register(s). 

Also, some data space is needed to store the sequences. These sequences can furthermore 

be collected m one pass. Hence this algorithm does not blend as well with the general 

sequence algorithm as n.ght be believed at first sight. Many of the same routines and 

structures can be used, but the mam control .s different. Hence this method is best 

programmed separately. 

The same holds for operand analysis. For th.s methods the tables of descriptions used for 

the Gibson or Program Structure d.stnbutions are needed. From the trace, we need the 

instruction word and the operand words. 

HMHi^M   MMH 
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8.2    Validity of the methods 

In Section 1.2.1 we discussed various methods for collecting dynamic data. It is at th1«; point 

evident that we could not have obtained our major results without using traces. Both the 

methods for register structure and the sequence method require the exact sequence of 

instructions executed. The register results also require the indirect chains and bytepointers 

as well as the effective rather than the written address of most instructions. This amount of 

detail, and the preservation of sequentiahty which is inherent in tracing, could not be 

obtained by any of the other methods discussed in Section 1.2.1. Jump tracing could not be 

used, since we could not have recorded indirect chains or effective addresses that way. 

Many of the methods are exact. This applies in particular to the instruction frequency 

results, the register results up to simultaneity, the register classification results, and the 

miscellaneous small methods. Hence for these method; the validity of the results depend 

mostly on the selection of the subject set. 

The sequence method is particularly inexact, due to its use of heuristic methods, and to the 

need for manual analysis. However, the results from this method showed very general 

results, and many of the sequences found represented general concepts not particular to the 

language or algorithm where they were found. This supports our contention that these 

results are valid and useful. 

The cost of reducing the number of registers is also inexact, being an upper bound. Our 

intention was to check these results for some of our BLISS programs. In theory and manuals 

the BLISS compiler permits the programmer to reserve a number of registers, so that they 

are not used by the object program except where explicitly named in the source program. 

However, the compiler refused to generate code for such unwholesome conditions, and the 

verification could not be done. 

Our experimental results show good internal consistency. Many of the results are in general 

trend independent of both the algorithm and the programming language in which it was 

coded, and the details often show systematic variation with langucoe and with algorithm. 

Examples .ire the register results for ALGOL and BASIC programs, ;jnd the use of floating 

point arit imetic in Bairstow, Crout and Hävie.  This is a strong support for their validity. 

Some if the results also agree well with previous knowledge - tht state maintenance 

problem for compilers as discussed in Chapter 6 is one example, another is the good 

agreement of our Gibson distribution with those of Gibson and Gonter. 

CONCLUSION , = 7 
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The dependence on language is most imDOrtant for those languages that use a run time 

system for significant parts of their control and accessing functions. In the case of ALGOL, 

both the sequence results and the register lives were clearly influenced by this. BASIC also 

influenced the results more than did FORTRAN and BLISS. This is because BASIC uses only 

one type, because no information is kept in registers between statements, and because a run 

time system is frequently used. Hence languages with such special properties should be 

represented in the subject set if they are used. Also, register usage in general depends on 

language. 

Our Aitken results show that the variation due to programmer habits can be large. Analysis 

of the source programs show that the variation is due mostly to the selection of strategies 

for subproblems, but that application of coding tricks also plays a part. Our sample is too 

small to show more than this. The variation is mostly in the sequence results, less in register 

usage. This suggests that register usage is r ore a function of the language and compiler 

used than of the programmer or algorithm. 

The register results are not particularly dependent on algorithm. This is natural, since higher 

level languages hide register usage from the programmer. The choice of algorithm has a 

strong influence on the use of data operators and data structures. 

The results from the FORTRAN programs show good correlation between the two compilers. 

This may indicate that language has more influence on the object program structure than do 

compilers. The observation may be peculiar to FORTRAN, which is a well understood 

language. 

A deficiency of the methods in general is that to a large extent they depend on the compilers 

available for the machine analyzed. A particularly bad or unusual implementation of a 

commonly used language may flavour a whole analysis, and in no case do the results of an 

analysis reflect usage of ISP features beyond those that can be made available to programs 

within the state of the art of compiler writing. On the other hand, the results do indicate 

what is needed to generate good code for existing langujges using existing compiler 

techniques. 

Similarly, if an analysis indicates the need for a new operator or other feature in the ISP, it 

«s not sufficient to implement it in the processor. It must also be made available to the users 

through the languages they use.  This may cause compiler-technical and linguistic problems. 

mtm MMfl ■- .u^ ■  '     ■ .. -^ 
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When selecting a subject set for a full scale analysis, care should be taken so that the area 

Of applications is wei! represented. In particular, all important data structuring methods and 

special Operations should be included. The matrix access of Crout, and the unnormalized 

arithmetic in certain contexts clearly show this; they are significant where they occur. The 

individual subject programs should be large enough that the problem of dominating loops is 

reduced to its right proportions. Good representation of languages is important for register 

analysis, and particularly for details of control structures and access methods for data 

structures..  It is less important for data operators. 

Another problem occurs when analyzing large programs. How can one represent all aspects 

M the program within a trace of at most about one million instructions? The obvious solution 

is a slight modification to the tracer, and possibly the operating system, so that the tracer 

can be "turned on" for maybe 5000 instructions*, then off for a period of time in which the 

program executes at full speed, and then on again. Each time the tracer is turned on 

computation in the subject program has progressed significantly, and different sections of it 

will be traced. We do not, with this method, have any guarantee that the resulting trace 

represents a cross section of the program, but our hope is better than by tracing a 

consecutive tape-full. 

8.3    Specific results 

We now repeat some of the specific results obtained using our subject set on the PDP-10. 

We believe most of them generalize to similar ISPs. 

Register utilization was low. The average number of live registers was 7 or less for all 

programs, the number of registers used was 10 or less 90/- of the time for all programs, 

and 8 or less 987 of the time for 29 of the 41 programs. Time here is the instruction 

count. If the ISP had only 8 registers, the instruction count of the programs would 

increase by less than 201 for all programs. 

The instruction count of calling sequences can be as high as 25t of the total instruction 

count. This is particularly noteworthy in view of the common assumption that well 

structured programs will have many subroutines. 

* It should be long enough that transients caused by the endpoints are insignificant 

mmm 
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The utilization of the opcodes was low. Our subject set used only 27the 4 out of 421 

different user instructions. One set of 128 instructions would suffice for 98.87. of the 

computed time, and a slightly different set of 128 instructions would suffice for 98.67 of 

the executed instructions. We nott in passing that an instruction set of 128 instructions 

is twice the size of that of the CDC 6000 Central Processor ISP, and about the same size 

as tnat of the IBM 360. 

Much time was consumed by vector operations or in operations that could be subsumed 

under a general vector type. This is also true for programs that do not use the 

mathematical concepts of vectors or matrices. A vector type with sufficiently general 

operators could be used to advantage by most of our programs. Possibly as much as 307. 

to 407 of the execution time could be saved in some cases. 

We also mention the need for character string operations, and 'he high cost of using 

UUOs. 

The PDP-10 has a very spacious instruction word, hence both a rich instruction set and a 

large addressing space. Several of the results above indicate a reduction of the functions in 

a capability, thus freeing instruction word space. Our suggestions for addition of functions 

do not nearly consume this space In fact, the additions indicated could probably be done 

using the instruction word space which already is available. For an ISP where space is 

scarce, microprogrammirg could provide one way of using it efficiently for a given class of 

applications (See our discussion of the Burroughs B1700, page 15). 

8.4    Improvements to the methods 

Our present programs could be improved in several ways: 

The pruning heuristics used for the sequence collection are not adequate, as discussed in 

Section 5.2.2. We would expect improved heuristics to significantly reduce the amount of 

insignificant output from this algorithm, with correspondingly simplified manual analysis. 

The results of Figure 4-27 show that we would have achieved a lower cost for reduction of 

the number of registers if we had pronounced the registers to be dead after a dormancy of 

only 100 or 60 instructions, instead of 200. An even lower number should be used if the 

cost is high when using 60. 
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All of our analysis programs are fairly slow. We believe worthwile reductions in the cost of 

analysis could be achieved by coding critical routines in machine code, and by cleaning up 

certain inefficiencies causing extra parameter transmissions. 

What is most needed, however, is to try the methods out in a large scale analysis using a 

significantly larger subject set, where the individual programs also are larger. Only when 

such an analysis has been successfully completed can we claim that our methods have really 

proved their worth. 

8.A.1    New methods 

Some  new  methods could be  implemented.   These  include the operand  analysis, register 

sequences and other methods outlined in previous chapters, but also one more general one: 

Each instruction could be mapped into its generalization in the Program Structure 

classification, and sequences of such general instructions accumulated. This would bring 

certain control operations out more clearly, as for example SKIP JUMP sequence.;, since the 

conditions on the tests would be suppressed. Also, we could hope to obtain information on 

common expression forms, generalized calling sequences and loop control, etc. 

If the results of such analyses show that the number of sequences found in each analysis is 

low, and that commonality between algorithms is significant, results of such analyses might be 

combined to represent the whole subject set, in a way analogous to our present SNIFT. 
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MflRFII.Z«m>POFFl 
M«RFL0'4«WlR0FF . 

tO   .PltuntllC PESULI  TO nEHORY 
COUNTER OPERnMONS IFIXP.  •-) 
FI.POINT   OPEPSIIONS 
FLOflTING OPERrtllONS 

1   NON-HRITHMETIC  «CCUnULrtTOP  OPEPHIION?, 

PCNONE'kl'RCOFFi 
PCSTOPM'PCOFF; 
PCHUHO=c«RCOrF: 
PCBTTE'I'RCOFF: 
RCLOGIM9»PCOFF: 
PC5HIF.20»PCOFFi 
PCSTW MO»PCOFF i 
PCHOOP»lW»RCOFFi 
RCTESWOO'RCOFFI 

NOT   USED 
VMIUE   IN ., .  ST'IPI 0 
ONT  HrtLFUl- P  1   rtOEC      1U«.P UNCHtA,-*0. 
B(TE   L0M0E0/;\ot.b|TLr 
LOGIC«.   OPf^rtU&xb 
BCC    SHIFTED 
rtCC.   USED HS SI«>  POINIEP 
K.C USED FOR fiDOPtSS IMS IN BLl). 
«CC.   TESTED UPON 

 ■   
 ... . . . 

-■■ —        ^^.-^ i   i^  M' ■- : ^ J 



rill II IJJ   ^^l   ■! ... ...i v«!!, la. mm>>i mmmm mm«' ■wnnvnfnmnmi "■ "»■'"   ipMvmpw      !■ i 

Th«   rt^iitcr   uta^e  cia^ .iftcMlipn 

i NOI« MPiiHntnc mnom DKMIIOM 

B ? 

nCNONt"j«ntnf ; nn NOI i«o. 
nCSTOP'l'MLDfF i M IS SHWfD iPUSKOi. 
ncHunO':»ritOFr i «M HMfunro hooif ito. 
MCBvTEti.firnf r : IH p,if ncoiriEo. 
nCLOCl'lO'HCOff: IM nODIUfO BY  lOClCN.  «'ICMIION. 
ncTFST.?no.MCorF: r..i itsiro 
fCnONl'-KKfncntfi *M uwo TOP nnN^r>■ p-p-mup, POSSIBU HOOK no 
nc9PiP"ioof<"nrn'Fj «H u'.^o TOP Biir POiNiff 
nriNOö-rnon»m-0ff^ "H U'JEO FDP INOIPFCI MOOf'lSS 
nCEXECliHM'MCOffi tVi EIECUIEO uonP OR f »in 

S«f1PU   INSTPUCIION OESr.PIPTIONi. 

rcwei    iFioHTiNC cwioi • PESuLi io HcanjiHiop MNO ntnopvi 
UOPD   |l   MCCnOO<lN«DMl>nriOOIM(»iPriO'l1i«FLO 
UOPD Zi  PCSIOP 

naii     rtlUiTIPir  lnn(DI"ili 
wopo i: «ccMi.r»ii««im«nNusto*wiPri« 
uopo ti e 

«OJXi     cfcOO ONE  TO ftCCUfUOTOP.  JUMP V III 
WOPO  |i  F«:CM0O»IN<JMP»noSE0«MflPC0U 
UOPO :■■   HCE»EC'PCIE5T 

mamm»i*mn t^-JM 



mi iiii|JLinp^^^«i^||HqipiHg^if^wni.i!iiiu«ii«qn««|i|«fa!pnnwiin>«i ii.pi.ji.iii HMi w   in»    imivmm'i muwmftmmmm' •*•'■ 

C-l 

üijlpul   fr o* rtMittf   cl«»*i f n r*t ion progr #■ 

Fi«ppinl   addition   »nd   »>jb1r«c(ion  arc   Tifttrtd  to  «>  LOgnlcr   rfir dt ions 

The  non   obvious  •ncodin'j*   of   If»«   usaa«  M^MTltri  *fe: 

COflX Counter   and  fi>rciirl   jr 11tunet iL 

rxFLO Fi.rd  and  ItsMtH« (»inl 
CO* I 0 Crunttr   and  tlojtinq  pmnt 
C'XFL Counter,   fi-ed and  Moating 
ll[WTrt Ind'-'inc^ data acreises 
<JUMP Indf-inq   lumps 
KlfWIt IndC'tng   lamcdiatr opera*'l- 

fVtS*   retrrs   to the  ciass  definition  given   tn  the output   procedure- 

UNION C'.rtSS   is tha  union  of   all   clashes   listtil atovt   it 

tDlllM 
»irjn 
»Onjfl 

Indc-mq >i-4ta access 
Indexing   iniiirdiate   and   lunps 
Ir,i. -   i'i data areaä'. and juwps 
Inde-iiici data accesses'   iu«ps and  iMicdiat« 

IHC   KUIL  UCI 

HHS»   «NO  ITS COftPltnlNf 
777777 CF<ri «njin sioet MHtrw BVIOP IXIC snifi SIHC» «OOPI IISIS MONIT BYIPI inoct EXECI 

ClftSS 

•MIM 
ftOunni 
fttuHini) 
Ofinoi« 
nnnioo 
(irnfinft 
C(»il30 

MOtlZ 
iK n io 11 
ormn 
or« ii ft i 
O.-nOil.) 

or MOO 
ft:: loi 
ww 
or« UM 
ooono 
004000 
orolol 
omoi 
01 »si n 
nriiioo 
orotoo 
or"003 
oroio« 
OOOHJO 
tetum 
OCIIM; 

o?3i04 
ooo j03 
or:103 
oo:104 
oorcos 
oroisi 
Ot'OlO? 

ojdoor 
0:3100 
0:0010 
004100 
1V106113 
010000 
010300 
000400 
0:1300 
0:0401 
•MM 
00:610 
o:i170 
OliWOI 
OOOOO: 

o::o:i 
3:o3SO 
0:1500 
691293 
401:0(1 
•MUZ 
r.-ocn 
0:71:1 
0:3107 
000430 
oe.iee 

FRHC  cimuL.   tutet 
COUNT       I10N FPHCI    LtW.lh    HntRNtlllTKM 

1349 
71: 
61B 
Ml 

48 ' 
ztt 
IB: 
110 
IM 
MB 
109 
10B 
fi4 

M 
SB 
39 
3^ 
3fi 
:z 
:i) 
IB 
IB 
IB 
IB 
IS 
Ii 
13 
13 
II 
12 
1: 
1: 
It 
12 
12 
11 
9 

o.::ii 
0.116 
0. Ml 
0.091) 
0.0B9 
P.(C9 
0 0(6 
0,030 
0.0:4 
O.iVl 
0.019 
P.01B 
0.01B 
0.014 
0.010 
0.11119 
•.Ml 
•.Mt 
I.Mt 
1.0114 
0.003 
0.0113 

0. 1W3 
O.0113 
O.O113 
O.oo: 
0. M2 
O.OO: 
0 00: 
0.00: 
O.oo: 
o.o.i: 
H on: 
0.00: 
0.00,- 
0. on: 

•.M2 
0. M i 
I.MI 
O.Olll 
0.001 
0.001 
O.oni 
I.MI 
O.oiil 
0 Ml 
0.001 
•.Ml 
0 »ml 
0 Ml 
0.001 
0.001 
o.oni 
0.001 
n. tin 1 

•.Ml 
o.oni 
•.Ml 
n 11111 
O.1101 
O.oni 
0.001 
O.eni 

o.::ii 

0 33b 
0.43"• 
o.s:? 
0.616 

•■Ml 
0.741 
0.770 
0 rg'j 
>< Bis 
0. IM 
0 Bs-r 
HBO 
1 8B4 
0.893 
n.9ii: 
11.9119 
0.91S 
I 9:i 
o,g:4 
II.9:B 
i.m 
o.gjT 
0936 
0.939 
• 94 1 
0.9-14 
0 946 
•.Ml 
0.9'.,ii 
o.9s: 
0.9^4 
0.91.6 
0.9S8 
n 960 
0.96: 
0.91.3 
0.96!, 
0.96h 
0.%7 

0 96'. 
o.9;'ii 

0.9.'l 
097,- 
0 9'3 
0.9.4 
0 976 
0977 
O.g.'B 
•.|7| 
0980 
0.9B1 
0.98- 
0 983 
n.9Bi 
0.986 
• 986 
0  967 
• 908 
0.989 
0 990 
0 991 
0 997 

5.S(> 
3 63 
1 31 
3:6 
7 98 
:.46 
9.:i 

14 S9 

'   49 
S3 Si 
4.70 

12.« 
".Oil 
9 FO 

6:i 
t »iS 
4. M 

14 44 
68  -3 
:6 On 
15 1111 
4. no 
7.94 
S   76 

16 6n 
:9 4n 
: 46 

:n.S4 
11 on 
79 n 
::.s'i 

B.Sn 
19 33 
in (m 
s:.4: 
: 00 

14 11 
:7.n.i 

7:5 
3B n1 

8 'HI 

HOMI 

finni 

COUNT 
FIU'l 
cauti 
COl/M 
cam 

SlOPt 

5I0PE 

«o.ijM SIOPE 

>0H1H 

■MM 
VDOtO SIOPl 

iTon 
SIOPl 

".IUHP 

COUNI 

CUUNI 

fLOnt 
(.nuNi 
COUNT 

1 |<P1 
F L n.i 1 
era 1 > 
en'1. 
1 mm 
Cllfl.O 
COUNT 
run 
tlxri 

»imi 

<lm>i 

CU) i> 
:. no 
7.00 

90. no 

93 On 
8.'"• 

:3 ar, 
IB  I'i 
66 79 
I.M 
.-43 

13 nn 
76. on 
14 nn 
39."n 
5. 00 

S: nn 
6. nil 

b: n" 
17. on 
I.M 
6 00 

COUNI 

C 01 INI 
Finni 

CJONI 

COM« 

f l»pr 
COilN! 
cnoM 
cfuri 

<OHIM 

»Ojin 

SIOPl 

SlOt'C 
SIOPl 

SIJPE 

SIOPl 

SI9PE 

SIOPE 
5; OPE 
siot 
51 OPE 

51ÜPE 
S'OPE 

SIOPl 

SIQPE 

SIOPE 

SIOPl 

siat'i 

SlOPf 

HiIOP 
BiIOP 
BflOP LOClC 

LOGIC 
SMUI 

ItHO 

BlIOP LOGir 
BY TOP 

LOGIC 
BY I OP 

llnLFW 

10C1C 
10CIC StilFI 

SHIFT 
Stilt I 

1D6IC SH1H 

USIS 

IESIS 

IESIS 

ItSIS 

USIS 
IESIS 

IESIS 

IESIS 
TESTS 

USIS 
IESIS 
IESIS 
IESIS 

TESIS 
TESIS 

ifSI<; 

TESTS 

TESTS 
IESIS 
TESTS 

EKECI 

SIOCl 
Hut • - 61IOP 

HHiru 
OYIOP 

l"i: i » LOGIC 
BY I OP 

HHtru 

imfw B>IOP SHIM 
HKilC 

Mt 5 
.4)0.S 

USIS 
IESIS 

MOUPS 

"jon" 
• iiion tlOPC HHiru 

^lOPF O'lOP LOI.IC 
'»«in ionic 
HMIIU I061C 

«Oiilii SWE 

SHUT 

■ JullP SIOPl 
SUlPf 

«on.m 
SIOPl 

stun 
LOCII son 1 

USIS 
IESIS 
IESIS 

IFSIS 
USIS 
USIS 

usis 

BYIPI   INDPK 

f»lCI 

I NOP! 

'««■M MHHMi 
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Output   fro« rcsiBtcr   cla< ^'l ical ion  provon C-? 

004010 
o:iz:8 
o?3ioe 
0:3102 
BHA'lll 

801001 
O::OII 
onom 
0iVW30 
e;ooi3 
«V'SOC 
ooooro 
ooozoo 
OO4110 
0O0703 
oocioi 

ojosni 
0001S1 
OCOOll 
OlOZOO 
400000 
400600 

0.OO1 
O.OHl 
0.001 
0.001 
0.000 
O.OfiO 
OOiW 
0.0<1O 

I. OiXi 
0.0OO 
0.000 
0.000 
0.000 
o.e<w 
0. Ol iO 
B   441TO 

O.OuO 
0 ono 
O.OoO 
O.OilO 
0.000 
e.ooo 

0,903 
0 9'J4 
>.M 
0 ■)% 
0.0% 
0.99' 
"OS.' 
OOO; 
n.90B 
n.90P 
0900 
0 000 
0 098 
0.999 
0 909 
0009 
0999 
0.999 
0900 
1000 
1000 
1.000 
1 000 

11. IV 
14.U 
14.00 
CO i'O 
10. B; 
3.00 

83 50 
14 10 
6 00 
|,M 

31.00 
4b 00 

:B oii 
44.00 
13 00 
5 00 
6.00 

57.00 
16.00 
4;. 00 
9.00 

19 00 
I?   HO 

rxno 
ri>pi 
COUNT 
COUNI 
C0UN1 
C0UN1 

«OAIO 
«JUMP HM.ru 

SIO»t 

STOCK 
LOGIC TESTS 
LKIC SHIFT TESTS 
11.101C SHIFT TESTS 

SACK 
OMT*. 

OHIO SIO« 
"Dtijn 

Coria  «OHIH 
HHLFU B'lOP 

'DJIM 
HMFU 

ii0.tlM SICE 
COfl« 51 OPE HOIFH BYTOP 
ClIUMT SIOPl 

«inoo 
COUM 5I0PE BVTOP 
COUNT  »inoo 5T0PE 
COUNT   >DHTH 

HHlFU 

HHUM B»TOP 

SHIFT 

SHIFT 

STHCk 

SHIFT 

HOOPS 

TESTS 

TESTS 

TESTS 

TESTS 

EHECT 
EKECT 

UNION CIOSS «NO US COnPlEHtNT 
737777 

6133 HFETinES.      86 DIFFEPENT CLASSES 

CF>FL »OJItl STOPE mm BTIÜP LOCK SHIFT S'OCK HOOPS TESTS BVTPT  INOPK UICI 
WNIT 

CLOSSES USED FOP  INDEXING 

tlOSl'. 'NO  ITS COHPLEMENI 
eoof 0 
77'7e7 CFXFL SIDPE  HlllFU BTIOP LOGIC SHIFT  SIHC»   HOOPS  TESTS tttNIT  BYTPT   INOPK  E«ECT 

CLASS  COUNT 
FPHC- CUMUL. 

T1DN PPKCI. 

000010 
000130 
000«ll2 
000011 
0:0111 
0004:0 
800118 
000411 
0000:0 
8?1842 
o:oisi 
0:0010 
08:610 
e:ii78 
8::o:i 
i:0358 
00011: 
8:.'i:i 
0O0430 
004010 
o:i::8 
e::oii 
8<.i011) 
OOoOSe 
8:0013 
000870 
804110 
80OOS0 
800151 
8:0011 

511 
:BO 

ISA 
i:6 
119 

B4 
36 
18 
13 
12 
i: 
8 
7 
7 
6 
6 
6 
I 
6 
6 
6 
: 
: 
: 
: 
1 
1 
1 
1 
1 

0.090 
0.046 
0.0:4 
0.0:i 
0.019 
0.014 
0.0O6 
0.003 
OOO: 
o.on: 
O.OO: 
O.OOI 
O.OOl 
8.001 
O.OOl 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.30i.i 
0.000 
eooo 
0. OOO 
0000 
0.000 
0. OOO 
0.000 
8.000 

0. OOO 
0. 1J5 
0 160 
0.1B0 
0. :oo 
o.:i3 
o.:i9 
0.::: 
o.::4 
O.:.-G 
o.:rB 
o.rao 
0:31 
0:3: 
0:33 
0:34 
a.:3s 
0.:36 
o.:37 
0 :38 
o.:3o 
0:39 
0:39 
0 :4fl 
0.:4G 
e.:4o 
o.:4o 
0 :4i 
8.:4i 
e.:4i 

Oi'PGE 
LENGTH 

3 :G 

9:1 
rs: 
4.49 

53.51 
r.oo 

14.44 
4.00 
2 46 

11.00 
5: 4: 
r.n 

IS.14 
66 :9 
13 00 
76.00 
52.00 
R;.oo 
4.00 

11.17 
14.17 
83 SO 
14.50 
6 00 
6 00 

45.00 
4«   00 
6. i.K 

16 00 
4:.00 

INUPPPETHTION 

Fl.PI 
COUNT 
COUNT 

COUNT 

FUPT 
COUNT 

COUNT 

FUPT 
COUNT 

COUNT 
COUNI 

cor 111 

r.i,JNT 
OUNT 

■ DMTH 

.Oojn 
XDHTH 

«BHTH 

XOMTM 

xjunp 
XOHTH 

XDOTA 

XJUHP 
XIMME 
»inno 
«O11TA 
IOHTH 

xojin 
»junp 
xmoo 
XDOTH 
«JUMP 
xoojn 
«OHIH 

XJUNP 
XOMTH 

KDHTH 

»DnJfl 
»Inl't 
xOJin 
XDHTH 
xinoo 
xinoo 
XOHTH 

STOPE 

5I0PE 

STOPE 

STOPE 

BYTOP 

BYTOP 

LOGIC 

HHLFU BYTOP SHIFT 
STOPE LOGIC 

SHIFT 

STOPE  HALFM 
SI OPE 
STOPE SHirT 

BYTOP 
STHCr. 

HOLFU LX1C 
SHin 

STOPE 

STOPE 

STOPE 

S1ACI 

TESTS 

TESTS 
TESTS 
TESTS 

TESTS 
TESTS 
TESTS 

TESTS 

TESTS 
TESTS 

TESTS 

TESTS 

BYTPT   INOPt. 

1477 LIFETIMES.      30 01.   EPENT CLHSSES. 

UNION  CLASS ANO   ITS COnPLEHEMT 
327773 COr. 
450084 rcoo 

XOJin STOPE HAtru BYTOP LOGIC SHIFT STHCr TESTS BYTPT   INOPK 
AOOPS MONIT EJECT 

MM ■ - ■ -  ■'. 
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Output  fro» rtf<il«r clciof >cal ion troar — 

m «PITHfCTIC CLUSStS 

C-l 

CLASS'      NO «RUHfUUC 

W.5lf ft«) IIS COi-aEWKT 

77777« 
crxrL 

«OJIN S10« HHIFM B<I0P LKIC StUfT SlftO «OORS IES1S MONII 9YIPI  IM»K £«CT 

FPrtC-  CUMU..     ftVP&l 
CIHSS      COUNT      TION FPMCI    LENÖ1H    iNIEPPRETAIIOt. 

Ntm El« «.Ml 0.101 131 
BWKlie sr.i 0.09.1 0  191 3.rB «UATA 
nmilHil StS «.089 0.?79 7.98 SIQPE 
eenoen id.' 0.079 0.3S9 ME TESTS 

(W130 ?80 0.01E 0105 9 CI «DAJN SIOPE 
«zosee 1«« 0018 e.irz ir.no SIOPE BYIOP TE'.TS 

eoo^zo 81 0.011 0 136 2 00 »junp BMOP 
e:M9e 60 0.010 0 11E 9 60 BTTOP LOGIC TESTS 

IftlWO 39 O.OOE o.is: l.ns LOGIC 
«ton lie ■ O.O'E 0.1S8 H 11 »DAIA SIOPE 
«Hwe Z2 0.001 0 1EI E8 SI STACK 
oneue IE «003 0.1E1 7.91 LOGIC ItSIS 
6?e^iM IB 0.003 0.1E7 5 7S BVIOP TESTS 

or«100 IS o.onr 0.1E9 29 10 SIOPE TESTS 

oooo^O 13 o.oo: 0.1^1 :.i6 XJUW 
oooseo 13 o.oor 0.173 :n.si STOP» BYIOP 
ocsioo 1 0.001 0.17S 27.00 SIP". LOGIC SH1FI TESTS 

orooio 8 0.0«! 0.1 TB Mi XDAIA TESIS 

W4IM 8 «001 0.177 30 im SIOPJ SIACK 
OlOOOO 7 o.ooi 0.1^8 I.« HOOPS 

«10300 7 0.001 e.ieo 7 00 SIOPE HHLFU AOOPS 

eoiiioe 7 0.001 0.181 90.00 BTTOP 
e^l3oo 7 o.ooi 0.18." 93 no SWl HALFU               LOCir IESTS 
000 3«0 7 O.OOl 0.183 D  Bf. SIOPE HALFU 

OOJ610 7 0.001 0.181 IB.11 XOHIA HOLFH BTTOP SHIFT 

on 170 7 o.ooi 0.18S BE.:9 xojin si   . LOGIC TESTS 

3:i13S0 G 0.001 0.18B 7B  0« mnoA SIL'E HALFU ItSIS BTIPT  INOPK 

onseo E «.ooi 0.107 h.« SIOPE BTTOP LOGIC TESTS 

teizoo E 0.001 0 188 5.00 HHLFU             LOGIC 
ooo<30 E e.ooi 0189 I.M «DM .in BTIOP 
oruee B e.eoi 0 19« B M SIOPE LOGIC TESTS 

00101« E O.OOl 0.191 1117 «D'ITA STACK 

O:i270 E 8.001 0.19: 11.17 'JUMP HHLFU             LOGIC TESIS 

000030 2 e.ooo o.i9: 6 «o «nojn 
oorsoo 1 8.000 0 193 31.00 HALFU BTTOP 5HIF1 

eof'«7o 1 CO«« 0.193 15.no «OJIH 
oo'iroo 1 O.ni'O 0.193 :B oo HHLFU 

001110 1 01-00 0 193 11.00 xOtl.'A SIOPE S AC» 

e<i«o50 1 «.«00 0 193 E on XIMO^' 
otoroe 1 «000 0.193 9.00 MMM HOOPS 

(MM* 1 e.ooo 0191 1900 
idoseo 1 e.ooo 0191 12.00 HHLFU BVTOP 

30ZB LIFETIHES .      12 01FFEPEM CLASSES. 

UNION CLASS ANO   US COnPLEnENT 
737770 «OJin SIOPE HHLFU BTIOP LOGIC SHIFT S1AO AOOPS TESIS BTTPI  1N0PK 

010007 CFXFL MONII 

EXECI 

EXECT 

EXECT 
EXECT 

MMMaHHBII 
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1 

• 

Output   fro» r«9i»t»r  clntificatisn program 

CLWSi       f KPOINT A00 ««0 SUeilftCT      • • •• 

C-1 

W»S»  UNO IIS COMPLtntM 
eoeoni 
77777S 

rouNi 
FXfLO «OJin SIO« HMiru BYTOP LOGIC SHIFT SIAC> «OOW TESTS flONlt BriPI  INOPt   tXECI 

f»«C- CUIUJL.    nWCE 
CLSSS      COUNT       I ION FPrtCT.   LINCTH    INIEPPSf TdTION 

fjzeoni 18" 0.030 0 030 10.S9 COUNT TESTS MWI i in »Ml O.OSO t.4| COUNT tDxTA 
or« in 118 O 019 0.069 S3.SI COUNT \0H\0 STOPt TESTS 
WOlOl IN 0 016 O.OB? 1.70 COUNT STOPt 
Kzm 66 0 («19 0 096 6.-1 COUNT STOPC SHIFT TESTS 
o?eiei 37 0 «I« Oio: 1.01> COUNT S'OPE TESTS 
ezMoi IB 0.003 0105 IS 00 COUNT BMOP LOGIC TESTS i**» 11 le 0 0" 3 0.10B 1.00 COUNT «DATA BrlOP 
«001)3 IS (.ME 0.111 16.60 con« TESTS 
000103 II O.iXV 0113 ::.so COM« STOPE 
oreio3 r 0.00; OUS Bb" con. 5I0PE SHIFT TESTS 
oonros 11 o.oiir 0117 10.00 COfLO HHLFU 
omisi 12 0.00: 0.119 s:.i: COUNT «IIWM STOPE TESTS 
000603 1 0.001 O.ICO BOO con» HALFU BYTOP 
e?o<oi ? 0 001 o.in B. Oi" COUNT BYTOP TESTS 
eiooai ? 0001 o.ir? 3.00 COUNT «OOPS 
orzoct B 0.001 0 1:3 13 00 CUUNT «junp SHIFT TESTS 
001:03 6 O.oni OICI 39.00 con» HAEFW LOGIC ZZnooi 6 0.001 o.izs B.00 COI,;JT TESTS 
0ZZ1Z1 6 0.001 0.1:6 s: 00 COUNT «JUMP STOP«" SHIFT TESTS 0Z31O7 6 0.0111 o.ir? 17.00 curt STOPE LOGIC  SHIFT TESTS 
(KHWOl 3 O.OiKi 0 1:7 10.67 (II .N. 
004001 1 0.000 O.I:B 3.CK' COUNT SIACt orzon t 0.000 0.1 ro B3.S0 COUNT >DATH SHIFT TESTS 0001 u 1 0 O1.1O O.I:B M.SO COUNT «DATA STORE 
0Zi1013 7 0. »too 01:9 6 00 conx «DHTN TESTS 
000703 1 0.000 01:9 13.011 COf 1« STOPE NALFU BYTOP 
«<i?iei 1 O.oon 0.1:9 5 00 COUNT STOPE SHIFT 
0ZO501 1 o.oon •.in 57.00 COUNT STOPE BYTOP TESTS 
00CIS1 1 0.000 0.1:9 IB OO COUNT »I«OH STOPE 
9?0«tll 1 e.000 0 1Z9 «.00 COUNT «DATA TESTS 

791 LlFEIIntS 31 oirrcPENT CLASSES. 

UNION CLHSS HNO MS COMPLEHtNT 
Z37777 
sieooo 

CfXFL KDJIN STOPE HALfH BTIOP LOGIC SHIFT STACK «OOPS TESTS 

INOPIt 

INOPK 
nONIT BYTPT EXECT 

CLASSi       FULL FIKPOINT  APITHI1ETIC 

HAST ANO ITS COHPLEMENT 

ooooo: 
777775 

NMI2 
0:0003 
0:10-.: 
0*YO1O3 
o::io3 
000IO: 
0:000; 
000603 
001100: 
001:03 
00011: 
0:3107 
0:3106 
0:3107 
orofjis 
600783 

F I»PT 

COf 10 <OJln STOPE HALFU BYTOP LOGIC SHIFT  STACk  A00PS  TESTS MONIT  BYTPT   INOPT   E»ECT 

CLASS       COUNT 

ISO 

IS 
IT 
12 
12 
11 
9 
7 
7 
E 
I 
6 
6 
I 
2 

FPAC    CUIKIL. A'TO 
TION FPHCT. LENGTH IMEPPPETAT ION 

0.0:t     0.0:i f.K fI>PI   XDMTA 
o.on:    0.0:7 16.60 COf I« 
0.00:  0.0:9 n.no FUPT «innc 
000?  0.031 zr.so con»         STOPE 
ooti.-  0.033 6.50 con«         STOPE 
0.00:   o.03s :.oo fi»pT         SIOPF 

001    n.036 11.11 r|«pi 
o.iioi   0,03? BOO con« 
O.0.11    0.038 :.13 FI'PT 
•.Ml    0.039 39.00 COT I» 
O.ooi    o.nio s; 00 FIIPT «DMTM STOPE 
0.001    0.011 17(10 CF»F1              SlOPf 
•.Ml    0 Oi: 11.00 F«FLO             STOPf 
•.Ml   •.Ml :9.oo n«PT         sicPE 
0.000  fl.oiri 6.00 con« «atsiA 
0.0110   n.011 13.00 COf I«            STOPE MALFW BIIUP 

:67 LIFETIflES.        16 OIFFEPLNI   CLASSES. 

LOGIC 

SHIFT 

HMLFH BYIOP 

MHIIU LOGIC 

LOGIC SHIFT 
LOGIC SHIFT 
LOGIC SHIM 

UNION CLOSS ANO   ITS  COMPLEMENT 
0:3757 
751O:0 

TESTS 
TESTS 

TESTS 

TESTS 

TESTS 
TESTS 
TESTS 
TESTS 

CMFL   »IHDH STOPE  HMLFH BlIOP LOGIC  SHIFT TESTS 

«JUW STAC»  AOOPS MONIT  BYTPT   1N0PT'  E«ECT 

■MMMi jmm  ■  —  '' - •    ■ ■ ■   - 
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Output fro« r«9<itcr classification prosra« 

CL«5Si      fLOHTIHC «RIlHHEtlC      ...... •• 

c-s 

tttST AND MS COHPIEMCNT 
eeooei 
777773 

FLOrtI 
cofi« «OJin siost m.fu Bit»' LKIC SMIFI stack HOORS rests noun BYIPI INORK OECI 

CLASS COUNT TION HKiCT.  LENGTH INTEPPKTATION 

W«1M 13« 0220   0220     SSS fLOA, STOPt 

«KlOOl 711 • .HE   0 336      3 63 FLOAT 

tcmei :0 0.003    0339    2600 FLOAT STOPt TESTS 

e?3ie< i? 0.002    0.3HI    79 B3 FLOAT STOPt LXIC SHIFT TESTS 

eeriet 12 0.002    0 3t3    19 33 FLOAT STOPt SHIFT 

eoojes 12 0.B02    0 34S    IBM COFLO NALFU 

ezai;"" 6 0.001    0.346    17.00 CC«FL STOPt LDCIC SHIFT TtSTS 

e;3iM 1 0.001    0347    14.00 F«FLO STQKt LX1C  SHIFT TISTS 

2129 LirtTintS.        B DIFffKNT CLASSES. 

UNION CLASS ANC lib COnPLEftNT 
023307 CFXFL STORt  HALFU LX1C  SHIFT TESTS 

754170 «OJlfl BYIOP                            STACK AOOPS tWNIT BYTPT   INOPT CXECT 

cunuLATivc STATISTIC: FOR THE PHYSICAL REGISTERS 

TOTAL TOTAL FRACTION AUPG USES PP. USES PR. USES PP. 
REG LIWES L1YE USES LIVE lENCIH LIFE LlUt  INSTP TOTAL  INSTP 

00 882 5299. 3084. 0254 6.01 3.50 O.SB 0.15 
Ol 2B3 6630. 1634. 0.318 2343 5.77 025 0.08 
02 2217 I1S98. 7940. 0 556 5.23 3.58 0.6B 038 
03 1368 5092 4199. 0 244 3.72 3.0? 0.82 020 
04 298 1262. 793. 0.060 4.23 2.63 0.62 0.04 

OS 21 4B5B. 231. 0 233 231.33 11.00 O.OS 0.01 
06 4B 684. 72. 0.033 14.25 1.50 O.II 0.00 
07 8 369. 0.242 632.25 46.12 0.07 (1.02 
10 O 0. 0. A.OOO 0.00 0.00 O.OO 000 
11 B 5691 517. 0.273 711.37 64.62 O.M 002 
12 9 e. 0. 0.000 0.00 o.oo 0. On 0.00 
13 12 3462 34B. 0.168 288. SO 29.00 O.IP 002 
14 12 1044. 48 O.OSO 87.00 4.00 0.05 0.00 
IS 316 11376. 5122. 0545 36.00 16.21 0.15 0.25 
16 626 9346. 2705. 0.448 14.93 4.32 0.29 013 
17 34 7427. 1168. 0.356 21844 34.35 0.16 0.06 

SUFI OR AUERAGESi 
6133 3.779 12.BS 4.60 036 009 1 35 

UNION OF USAGE CLASSES FOR THE PHYSICAL REGISTERS^ 

00 
01 
02 
03 
04 
05 
06 
07 
18 
11 
12 
13 
14 
IS 
16 
17 

637707 
033757 
023537 
023537 
021557 
021310 
020100 
002610 
oooooo 
021320 
€KV:W*W 
320350 
020001 
020351 
021170 
01411« 

CFUFL STOPt HALFU BYIOP LOGIC  SHIM  STAC!   AOOPS  TESTS 
CFifL  «IHOM SIOPE HALFU BtlOP LOGIC SHIFT 
CF«FL   <00jn STOPt BYTOP LOGIC SHIFT 
CFKFL  »DAjn STORE BYIOP LOGIC SHIFT 
CF«FL XIHOA SIOPE BYTOP LOGIC 

«DATA STOPt HALFU              LOGIC 
SIORt 

XOATH HALFU BYTOP               SHIFT 

«JUMP SIQRt HALFU LKIC 

XinOA SIORt HALFU 
COUNT 
COUNT  XIHOA SIORt HALFU 

xDJin STOPt LOGIC 
XOATA STORE 

AOOPS TESTS 
TESTS 
TESTS 
TESTS 
TtSTS 
TESTS 

TESTS 

STACK AOOPS 

TESTS 
TESTS 
TtSTS 
ItSTS 

INORK EXECT 

BYTPT  INORK 

UNION Of CLASSES ANO COnPLtntNI 
737777 

«40000 
CFXfL XDJin SIORt HALFU BYTOP LOGIC SHIFT STACK AOORS TESTS BYTPT  INORK EXECT 

MONII 

■MMM  II    IMOII lllll  II — .. ...^idl 
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UPPtNOl»  0 

1h* total  SMI I 

0 1 

lOTflt EKECUTED  INSIPUCHONS «NO  IHCi     M «Ob 

r;i OlfFEPENI  INSIPUCIIONS USED 

THE SNIfl OPOfPEO BY NUMEP1C 0PC0OE 
U1TH 1NSIPUC11CW COUNI HW) COtlPuTED 11ttE 

3:il8B9 S9 U5£C 

«0 • 0 
e eo 

Ml • 0 
0  00 « 

■ 
0.110 

00 3 
• 0.00 

urn 
• M 

0.011 
mis • 1868 

0.00 
nub 
• 122 

0.00 
wiv 
« 119 

0 00 

01 010 56 
0.00 

Oil 
■ 

89 
0 00 

Ml • 31 
0.W1 

013 • 0 
0 00 

I'M • 0 
0.00 

01s • 
1 

0 00 
nlB 
1 0.00 

017 • 11 
o.oe 

02 M 3 
eo« 

021 • 1 
0.00 • 0 

0.00 
023 • 0 

0 00 
0.-1 • 0 

o.oo 
02s • 0 

0.00 
026 * 0 

0.00 • 0 
0.00 

03 030 e 
e oo 

IM • 0 
0.00 

032 • 0 
0. M 

0 
0 00 

Oil • 0 
O.DO 

IM 
■ 

2 
0.00 

036 • 0 
0.00 

037 • 0 
0.00 

»t MO 6 
0.00 

on 
■ 

1 
0.00 

Ml 0 
0 00 

• H3 
■ 

0 
e 00 

1111 
■ 

0 
0.110 

01s 
t 

0 
000 

016 
■ 

0 
0.00 • 137 

0.06 

OS IM -1 
0.00 

m • 576 
o.eo 

Ob: • 0 
0.00 

053 
■ 

0 
0.00 

n'ji • 0 
0.00 

Hi 
■ 

0 
0.00 

055 • 
2 

o.oo 
057 • 1 

0.00 

06 060 0 
o.oo 

061 • 3 
e oo • 0.00 

063 • 1 
000 

nbl | 3 
0.00 

obS 
■ 

3 
000 

5 
e 00 

067 • 10 
0.00 

07 070 15 
0.00 

071 
• M 

e oo * 
0 

0.00 
073 • 1 

0.00 
»71 
• 0 

000 
HI • 0 

0.00 
Mi 
• 1 

8.00 « 0 
0.00 

10 100 0 
0 (O 

101 • 0 
o.w 

10.- 
■ 

0 
0,00 

103 • 0 
0.00 

IM 
• 0 

0.00 
MS • 

0 
0 00 

106 • 0 
0.00 

107 
■ 

1 
0   00 

11 lie 0 
0.00 

111 • 0 
0 00 

111 • 0 
0.1 Hi 

113 • 0 
0 00 

IM 0 
0.00 

IIS • 
0 

0.00 
us 
• 

0 
0.00 

117 
• 0 

0.00 

If m 0 
0.00 

in • 0 
o.oo 

1:: 
1 

0 
0 00 

123 • 0 
0 00 

in • 0 
0.00 

125 « 
0 

0.00 
126 
I 

1 
000 

127 | 0 
000 

13 ur« 2558 
1Z761.42 

OfK • 3 
10.62 

F5C           7BB(\ 
•        BS611.96 

I HP 
■ 

211 
730.23 

ILOB • 
3601 

;BS19.32 
I OB 
■ 

6212 
17521.80 

IDPB 
• 

ISM 
6958.01 

V| • 821 
6978.50 

11 F^-n 10706 
S«t3.6B 

FHOI • 2286 
13SS5 98 

roon 
■ 

516 
3303.30 

FMOB B6 
520.30 

FHOP 

■ 
11353 

61907 38 
FHOPI 1250 

5737.50 
FODPn        3982 
•       25601.26 

(HOPH 

• 
2722 

7502.16 

15 FSB 287 
1509.62 

F5B1 • 0 
0 00 

Fsan • 0 
0 00 

FSÜB 
I 

0 
0 00 

FSB* • 12876 
72620.61 

FSBPI 162 
2203.71 

FSBPn 236 
1559.96 

F50PB • 0 
0.00 

16 FflP 4173 
t3BSB.23 • 3089'92 

Fnp» 
■ 

8 
e.io 

fnpe • 0 
0.00 

Fni'R 19386 
13052.H 

rnppi 
1 

1113 
10229 85 

rnppn 
» 

158 
18B9.6B 

Fnppa • 512 
6123.52 

17 m 503* 
71986 20 

FDVI • 1 
15.80 

fD'-IM • BB 
nis.Bo 

FO'.S 0 
0 00 

FOUP 
■ 

5533 
79121.90 

FDüPI • 321 
1301  10 

Fovpn 5 
76 SO 

FDOPB • 33 
501.90 

JO MOVE 191789 
166017.27 

NMI • 36075 
53030 25 

NOKM      72293 
•       1B6SI5.91 

novts • 0 
0.00 

nojs • 919 
2306.07 

WS I • 32911 
1836 30 

nousn • 556 
1131  IB 

novss • 12 
31  11 

?1 no^ 5097 
13303  17 • 2013 

33:1.15 
nouNi • 1138 

3110.OB 
MOUNS 

a 
107 

121135 
noun • 2519 

6571.59 
noun 1 0 

O.OO 
noynn * 

0 
O.O.i 

nouns • 315 
960.75 

zz muL 6513 
63892 S3 

inu.1 • 338 3 
32660 50 

mm • 220 
2371 60 

IMULO 25 
269 SO 

Ml • 117 
1265 91 

nut! 
■ 

17S 
1520.75 

nui" 
■ 

0 
0.00 

nuiB • 0 
0.00 

23 IOW 2182 
36139.40 

IOW • 2581 
10779.80 

IDlUtl • 0 
0.00 

1DIV8 0 
0.00 

D1U • 0 
0.00 * 0 

0.00 
oion • 0 

0.00 
OIUB • 0 

0.80 

et «SM 15230 
36552 00 

POT 
• 331S 

8028 00 
L5M 
■ 

7630 
18312 no 

JFfO « 1208 
1711.20 

«SI« 
t 

2070 
9956.'0 

ROTC • 1 752 
8127.12 

LSMC • 1111 
5313 91 

NULL • 0 
o.oo 

2S EKCH 1737 
5228 37 

ÖL1 570 
26125 2" 

M18JP • 
1277 

tsm.u 
H08JN • 709 

IM.il 
JPS1 
• 

AM BO 
03161 60 

JFCL • 2390 
3SI3 30 

C1 • 5168 
7596 96 

NU I • 0 
0 00 

26 PUSMJ       IBCCS 
•        56804. li. 

PUSH 

• 
30236 

23>160 52 
POP 
■ 

139<.1 
S7909.10 

POPJ       210SO 
•        66939.00 

j<.p 
■ 

3251 
9070 29 

JSP • 1759 
699S 73 

JSM 
■ 

2812 
8239 16 

JPM 

1 
2836 

8905.01 

27 ADO • 79290 
218017.50 

HOOi • 11391 
20395 25 

Hoon • 1180 
3761 20 

«Doe 
1 

287 
915 53 

M • 11316 
31201 SO 

SUBl 
■ 

1337 
7763.23 

SUBn • 11 
35.09 

51)08 • 0 
0.00 

30 COi 
1 

71 
132 16 

CftiL • 726 
1299 Si 

CMS • 1216 
760(i 31 

CrtliE 
■ 

2825 
S0S6.75 ■ 

1501 
2692.16 

CfllGE • 18i,- 
3213 18 • 7IB6 

12862 91 
CHIC • 3706 

6633.71 

31 • 0 
0.00 

CHHL 
■ 

6BB9 
18911  75 

EM • 1627 
12721 25 • 11166 

397BI  SO 
riiriH 0 

O.Ol 
turn 
• 

11210 
30910. («1 

THHtt 
1 

1SI6 
1169 0.) 

CHHG 5783 
15903.25 

MM 11 11 —11 
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U., total SNin 0-2 

3Z • 11 
ZS 06 

JUnPL        3827 
•         6811  38 

.um     sole 
•        10111.22 

JUMPLE     1178 
.         717862 

JUHPA • 0 
0.00 

JUWCE 
■ 

1131 
2561.19 

JUMPN • 3703 
5628.3? 

JUflPC • 111? 
2053.13 

33 SKIP • 0 
0.00 

StlPL 
■ 

1222 
9189.12 

St 1«        2701 
•          7057.11 

SI IPLE 
« 

S3B 
101.18 

SMPo • 1761 
1601 01 

SilPCE • 3111 
8119.71 

StlPH 
■ 

3185 
931285 

SUPC • 2301 
6005.61 

31 AOJ • 2131 
1356.86 

AOJl. 
I 

S3S6 
3587.21 

HOJE • 223. 7S 
MOJIE • 21 

S.'.SS 
AOJO         18297 
•       32 75163 

HOJGE 
a 

1 
179 

hOJN • 11 
73.39 

AOJG • 29 
51.91 

35 "OS          10531 
•        3:il9.SS 

AOSL 
■ 

0 
000 

A05C • IS 
15.7S 

HOSIE 

■ 
171 

S.-l. 55 

HOSO • 122 
372.10 

HOSCE • 919 
2891.15 

AOSN • 6 
18.30 

AOSG • 236 
719.80 

36 SOJ • 2293 
1181.17 

SOJL • 986 
1761 91 

SOJE • 261 
167 19 

SOJLE • 223 
399.17 

SOJA • 233 
117.07 

SOJCE | 2850 
5101.50 

SOJN 
1 

158 
282.82 

SOJC 
a 

1811 
3295.39 

37 SOS • 1279 
3980.95 

SOSL 
■ 

S 
IS. 25 

sose • 1 
21 M 

SOStE • 610 
860 SO 

SOSrt 
a 

1 
12 20 

SOSCE 11 
131.20 

SOS* • 156 
1390 8o 

sosc 
a 

125 
1296.25 

IB • 3773 

5516.31 
SCT2I 66 

9,. 82 
Stl2n       2110 
•         595360 

SCT2B 
■ 

1760 
1291.10 

..no • 2901 
7661  17 

HNDI 1908 
7901.88 

MNon 
t 

13 
39 13 

woe 2 
6.02 

«1 ANOCA • 19 
55 18 

HNOCHI 

1 
0 

(1.00 
AMXon 
« 

19 
177.87 

MWX.IB • 0 

0.00 
SEIN 0 

0.00 
sEim • 0 

0.00 
SETfin 
1 

0 
0.00 

sfine • 0 
e.oo 

« ANKM • 55 
111  35 

ANDCni • 87 
HO.07 

AN0CW1 1 
0.00 

HNoena 
■ 

e 
o.oo 

SEIH 
■ 

0 
000 

SEIAI • 0 
0.00 

SEIHTI • 0 
0 00 

StlMD 
■ 

0 
0.00 

13 ><0P • 137 
352. 09 

XORI « 30 
18. 30 

KQpn 
i 

1 
12 01 

>OPB • 72 
215.72 

m • 702 
1801.H 

IOHI • 16 
71.06 

lopn • 117 
352.I? 

I OPS 
■ 

66 
190.66 

11 ftNOCB 3 
8.76 

WOCBI 0 
0.00 ■ 

1 
0.00 

(iNOCOG 0 
ooo 

tm 
■ 

171 
117.18 

n 

0.00 
MM 
■ 

0 
0.00 

EOVO 
a 

0 
0.00 

IS SETCA • 3 
1.83 * 0 

000 
SETCAfl 
■ 

11 
105  78 

SETCrt8 0 
ooo 

OPCA • 20 
58.10 

OPcm 0 
0.00 

OPCrtn 
t 

0 
0.00 

OPCAB 
a 

0 
6.00 

16 SUCH • 270 
656.10 

stTcm | 
0.00 

SEicnn • 5 
11. 35 

SEiCr« « i 
2.87 

oecn 
■ 

173 
111.61 

ORCMl • 11.2? 

OPcnn • 0 
0.00 

OPCHB 
a 

0 
0.00 

17 0PC8 • 0 
8.00 

0PC9I 
1 

0 
0.00 

OPcen • 0 
0.00 

nPCB8 
■ 

0 
o oo 

SEID 
t 

319 
168.93 

5EI01 11 
20.58 

SETOH 
a 

305 
711.20 

SEI08 12 
29.28 

59 HLL • 738 
<896.66 

HLLI • 0 
0.00 

HLin • 33 
99.33 

HllS 0 
0.00 • 717 

2191 ..1 

HPI.I 2181 
1271.76 

HPtn • 581 
1718.81 

MPLS 
a 

17 
18. 79 

SI HLL2 • 1186 
3610.98 

NUJI 
■ 

0 
0 00 

HU2n 
i 

11 

36  12 
HU2S 
■ 

20 
p.« 

HPL2 
■ 

1191 
3630.12 

HPL?I • 1279 
1880 13 

MUN • 76 
196 08 

HPUS 
■ 

1 
11  18 

Sc- HLLO 10 
21.30 

0 
eon 

HLLOn • 1 
O.on 

HI LOS • 3 
0 00 

MPIO 0 
0.00 

HP101 
a 111.12 

HPLOM 0 
0.00 

MPLOS • 0 
0.00 

53 HUE • 8 
0.00 

HtLEI » 
0 

ooo 
MUEn • 0 

0.00 
HLUS 
1 

0 
p. 00 

HPLE 
■ 

8 
0.00 

HPIEI 
■ 

0 
0.00 

HPLEU • 0 
0.00 

HPLES 
a 

0 
0.00 

51 MKR • 719 
192193 

HPPI • 1210 
1918 1C 

HPPtl 
•     1 

1198 
2635.98 

HPPS • 0 
o.oo 

MLP • 21 
61.32 

HIPI 
■ 

0 
000 

HIPM 
a 

11 
33.11 

HLP5 
■ 

32 
91.81 

55 12307 
29906.01 

HPP?1 
■ 

1081 
159318 

HW»2n • 782 
2017.56 

HPR2S • 367 
105329 

HLP2 
■ 

92 .'1 
22528.53 

MMI 0 
0.00 

HI.P2M 
a 

20 
51.60 

UM 
■ 

6 
17.22 

So MPPO • 16 
38 88 

HPR01 
■ 

561 
829.08 

HPPOH • S 
12.30 

HPPOS • 3 
8.61 

aRO 
■ 

0 
0 00 

HlPOl 0 

0.00 
I:LPO« 
a 

0 
0 00 

HL POS • 0 
000 

S7 * 23 
55.89 

HPRE1 • 13 
19.11 

HPPEH • 1 

10.32 
HRPES 
I 

5 
11.3S 

HLPE 367 

891.81 
HLPEI 
■ 

0 
0.00 

MlPffl 
1 

1 
2 SB 

HLPES 
■ 

0 
0.00 

60 TPN 0 
8.00 

TIN 
> 

0 
0.00 

IP« 1211 
2132.36 

1LNE         5110 
•        10662.10 

IPNM • 1 
0 00 

Mm « 0 
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11586.32 
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2965 
5811  10 
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O.OO 
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■ 
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Mil 
m 
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361.5b 
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O.OO 

Mid 
1 
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7LZN 
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21? 
125.32 

63 101 • 9 
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0.00 
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I 

0 
000 
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I02A 
■ 

BOO 
2569 60 
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O.OO 
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0 00 
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0.00 

TSCft • 0 
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0.00 

TSCN > 0 
0.80 

66 TRO 
■ 

28 
SI.88 

ILO • 720 
1111.20 

I POE • 0 
ooo 

ILOE • 37 
72.52 

TPOH 

■ 392 
TLOA * 22 

13.12 

TPON 
a 
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0.00 

TLON 13 
25.18 

67 TOO 
■ 
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8.00 
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0.00 

TSOE • 0 
0.00 

TOGO 
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TSOA 
t 
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0 80 
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The  total   SNIF1 
0-3 

1HC   tlBSON DISIPIBU'ION 

CthSS COIIM FPHCI. 101ML  UW FKHCI. 

1 LOOST ^rs.'fii O.I:3B inrcs c t.we LOMOS "NO SIOPIS 

: n»«- I:I3B: •.1244 KMM.H 0.1017 T I»FO PoiNi HOO SUBIBHCI 

3 COMPrt 
1 ;I"HNC ZBIBM n ;ai8 61VJ1H.4 51 0  IB1« BPHNCHIS 

S fLT»- 49113 t.tw ^-3^:3 os n.oo'j: IIOHIING WO 5 .tilPOCI 

I ftrtUL :S6M tv«:sG r7B:t3 34 O.ODOe FIOMIING nmiiPiY 

1 FLOW lini3 e.»lin is.-3:r 'vt 0."49'1 ILMIINC OMM 

n rxfitx. 11033 0 Oil" 101 Miv 9: 0.0318 fi>fo naiiPLT 

i f»DIV ^63 e <'Mt ?;:ig r# (>. O.-O' FUfD OlVIOt 

II SHIFT 3an:i 0.03»' irr.'Sl  69 0 i'S36 SHIFTS 

II LOGIC 9673 (<.i»i9r roiro si O.0ii63 10GIC 

12 HISCL I&3&I 0.015* 5:97: 61 0 0165 nlSCEUMNCOUS 

13 INOC» 

M ruLUO 
IS I/O.. 7ii: O.nno? 0 no 0. MM 1/0 1N51PUCIION5 

If. CPU.. 
1,' nONU 113 •.«Ml 0. CO P.iMlO MNIIOP CHILS 

IB uuuo. 3ZS6 0 0033 O.lH.1 O.(i0i") USfP UU05 

THt  PPOGPMM SIPUCIUPC OIS'PIBOTION 

CLOSS COUM FPMCI. TOIftL   IIW FPHCI. 

1 mo» :010B9 |i.2eil 4904711.5: (1.15:7 root wan 10 »r.c 
1 MTOM 76035 o,ti76ii 19'001 55 0 i'6l1 MM net. io mwt 
3 into« 41378 0.0114 GllHfl.110 0.11191 nu"t tmOlMll  to ..ct. 
4 Stl« 417: R.MNf 613: 84 1.1.11.119 sri 0 OP   1 10 "Cc 

5 SETPI 4517 o.iyi45 110:1  48 0.0.134 sti 0 OP -1 TU won 
6 PUTOA 439:3 0 04 39 154 781.45 O.I.IB: noui PHPIUOPO IB nfC 

7 OTOPH 646« I.ACH 40'B'V93 0.01:7 rwc HCC. TO PHPIHOPD 

B attw S'O II.OMIIG :64:5 :o o.iv«: BLOD  «OMt 

9 STBIT 7:00 (1.0073 14407  76 o.oms SET 8115 

10 JNUSO 
UNU50 
HSONE 

11 
16537 fl.oi65 444BI   B3 0.11138 "BO OP SUBIPnCI   GNf 

13 ru" 1078*5 0.IO7B :B:I::.3I o.i'n-H Fl«fO MOO SUHIPHCI 

14 f IX«/ 15796 O.OISB 179:00.1: 0 O'.'.B FI»tO MULIIPLY niUIOt 

15 FLOHT 8610n O.11B6I 709:89.70 O.:.-.IB FLDMIING oPiiMniuc 
16 SHIFT 390:4 0.0390 i7::6i 69 0.0536 SHI» IS 

17 LOGIC 9673 0 onv 20170.55 O.o..i63 LOCICHL 0P(PMI10NS 

IB UNUSD 
19 ■JNLI50 
ro IO«FP 5:4 O.Oi'iiG 0 00 O.on.'.i I/Q  IPHNSFIPS 

^1 lOnOfl 4^, ll.Otuitl 0..10 O.O.ii'.l I.a MOniNlsiPHiinN 
"^ lIUOTH 143 O.Oiii'l 0.00 O.O.i.'.i niHfP noNiioP uufls 

21 UUUO 3:56 0 11033 0.00 e. 0.1.10 U5tP UUOS 

W UNUr.O 

21 UNU'>0 
:6 UNUSD 
Z7 SP.mP :9"87 S.9J9I 01109. 33 o..i:53 MMUtM JUMPS 

:B 5PPET :3nHG o.i\ 39 75814.'14 (...i,-3G SUMUIIM  PMliChS 

.-9 5KPT 411911 0.044: lB'i9ü9.t: 0 i'y.3 SUtlPOINKP Of'IPMllONS 

311 il'JSIM cosoi 0.0.-115 IK9G ;i 11..11I4 T15T  .CC    UIPSU5  IMWOIHK 

31 •lyso 20099 0 iCOl 35977 :i 0 ni: U5I  MX.   UPS05 /IPO 

3: Hiisnc 445:i 0.0445 l"43,-. 75 0,.'3B1 I [ST  .CC    WP5U5 WnOPT 

33 «VM 13061 0 0131 31iiB9 :i 0 01,16 iisi man VIPSUS BM 
34 ait 15 
35 BITST :o4i7 (1.11:04 4:493 3: 0.1113: BIT   11515 

35 STHT5 :4:3 0.011:4 3513 3" (ViiOil 51..105  11515 

37 LOOPJ 35459 9.9KS 67315 0- ».one I OOP  JUMPS 

38 UNCJP 74379 0,0744 11314- 64 (1,035: uNC0SDinnN.il JUMPS 

33 NUQPS 88 P.MiOl 157 5: 0. Oil. 10 NO O^Pi-MDNS 

40 >CT 5160 0 oos: 7596.96 11.00.-4 t-CCUU  LFMC1WC ODOPtSS 

41 MISCL :4i o.ooo: 730 :3 «.(im': MiSCEUHWOUS 

I 

mmm 
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The telal SNIFT CM 

HOST tinecoNsuniNC INSTRUCTIONS EXCLUDING noNUW CALLS 

Rtlttiv«  ftcution  itwm   i» Mi*h re«p«cl   lo   Ih«  •verigc   tnjtruction  for   thif progr«». 

NAK HD FR«CT10N CUMUL. PELfillWE «Tims FROCII0N 
USEC.   or TOT.  TIME FPOCTION EXEC.  TIHE EXECUTED Of E>ECNS. 

i   nt)W£ 466047.27 0.1451 0 1451 8.7566 191789 0,1918 
2    «00 218i)47.5« 0.0679 U.2130 0.8L62 79200 00793 
3   rnpp 213052.14 0.P663 0 2793 3.4217 1930B 00191 
♦   nrjcn 18551594 0.0581 0.3374 0.8033 72:93 0.0723 
5    PUSH 123060.52 P.03B3 0 3757 12672 30.-36 O.030: 

E    JPST 103164.60 0.0321 04078 ».«77 70180 O.(i70: 
7    fSC 85641.96 00267 0.4345 3.3012 7806 P.0O79 
a  royp 79121.90 O.P246 0.4591 4.4522 5533 (LOSS 
9    fSBR 72620.64 (1.0226 0.4B17 1.7560 128-6 0.0i:3 

19    fDV 719(16.20 o.o::4 O.Si'H 4 '522 5034 0.0050 

11    POPJ 66939.00 0,0208 0.5.-50 0 9901 :\m 0.0:10 

12    I'M. 63632.53 0.0199 0 5449 3.0513 6513 O.01'65 
13    fW 61987.38 0 0193 0.5G12 1.6999 11353 0.0114 
14    POP ITM'M o.oiao 0.58.-2 12921 13951 O.OHO 
15    PUSHJ 56804.15 0.0177 05999 0.968 Iü:G5 0.0183 
16   rma 51843.68 0.0171 0617. 1.5018 1073G O.o108 
17    MOVtl 53030.25 0.0155 0.6335 0.4577 36075 0.0361 
18    LOS 4 7521 BiJ 0 014B 0 6183 2.3818 621: 0.OO62 
19  rnp 43B5B.23 0.0137 0.6K19 3.2722 4173 0.0042 
20    IOIVI 40779.80 0.0127 0.6746 4.9192 2581 0.0026 
21    CrtflLE 39781.50 00124 0.6870 0.6562 141B6 0.0145 
22    «SH 3G552.00 0 0114 05981 0.7472 15:30 0.0152 
23    IOIW 36439 40 0.0113 0. W 5.1995 :i82 0.0022 
2«    flOJ« 32751.6J 0.0102 07199 0.5573 1829.' 0 0183 
25    IIUCl 3:660.6« o.oio: 0.7301 2.5530 3993 ti.nmo 

26    «OS 3211155 0.01O0 0 7401 0,9196 10531 0.0105 
27    SUB 31201  50 0,0097 0,7498 0 B562 1131B 0.0113 
28    C«nGE 30910.00 0 0096 0,7591 0.8562 11210 0.0112 
29    MPR2 29WG.01 0.0093 0.76BB 0.7566 123117 0.0123 
30    HOB 2B5I9.92 t.MH 0.7776 2.4G59 36i>l 0.iir.36 
31    BLT 26425.20 O.0HB2 0.7B53 14.4339 670 0.0006 
32    fftOPH 25604.25 0, MM 0.7938 2.0019 3992 0.0040 
33    HLP2 22528.53 0.0070 0 BOOB 0.7566 9.-71 0.1.1133 
31    «001 20395.2S n,0O63 0.8072 0.5573 11331 0..1114 
3S    CHtlt 18944.^5 0.f059 0,8;31 08562 KM O.o,i69 
36    LSH 18312.00 O.OOS? o,BI80 0.747.- 763« 0,0076 
37    F.iOPB 175«:.46 0.0051 O,B:42 2.0019 2722 0.00,-7 
38    1DPB 15958 04 0.0O53 0.0:95 2,75B5 nn ».WH 
39    CiMG 15903 25 O.OnSO 0 B315 0,8562 5783 0,nit5B 
49    TPNN 145B6.32 0.0015 0,63911 fl.BHC 7442 0,00 74 

41    F«OI 13S55 98 8, «MJ 084 32 1  6163 "OB 0.0073 
42   nwN 13303.17 0.0011 O.B4 74 O,BI:B 5097 0.1.051 
43    C«IN 12BG2 94 0.0010 8.WH 0.55.-J 'IM 0.0.17: 
44     UF« 12764.42 0 0040 0 Bri54 1.5536 .-558 0.0076 

45   CM 12724.25 00040 0.8S93 0.8bR2 4627 o.i.oiG 
46    HPPH 12635 IB 0,0039 O.BS33 09371 1198 (1 "04,- 

47     TLN£ IPGb.'.IO 0.0033 0,0(.b6 o.bio: bim 0.01.51 
48     JUMPE 10414.22 0.0032 8. KM 0.5573 50 IB O.OniB 
49    friPRI 10229 85 0.0032 0.8730 2.7BG5 1113 O.OHll 

50     «SHC 9956.70 0.0031 0.0761 1.49-B 20-11 0,0o:i 

51    «OJL 9587 24 0.0030 11 8791 0.5573 5356 0.0054 

52    JSP 9070.29 o.oore 0.8019 0.B667 3751 0.0O33 
53    JP« 8905.04 O.OiVB 0.8Bt7 0,9776 ,'836 O.ni.JB 
54    TL2 8514.24 0,00,-7 o,on-3 0 Gio: 1311 0. in H 3 
55    POTC 8427.12 000,-6 O.B900 1 1976 1752 0.0018 
56    S»IPN 8312.B5 o.oo:6 0.89:5 ».»in 3IB5 O.o. o,: 
57    JS« 8239.16 (1.00:6 O.B951 0,91:: :8i: (1.00:8 
58    SKIPCE 8119.71 O.0O2S 0.89'5 0.8126 3111 0,0031 
59    ROT 8028 W 0.0025 0,9001 0.74 72 3315 a.ouu 
60    «NOI 790 IBB o o.i25 11.90:6 (I.5"I3 l'j"8 0.0013 
61    SUSI 7763.23 o. 0024 0.9OS0 0.5573 1337 0.004 3 

62    «NO 7651.17 0.00:4 0,9ii7' 0 800: :9U1 0 0030 

63    CHIE 7600,31 0^0:4 t.vm 0.5573 i:i6 ...0012 
64    XCT 75% 96 00024 0.917! 1 4577 5169 .1.0.is: 

65    JUWU 74 78.62 0.0o:3 0.9115 (1.5573 1178 0.0O42 
66    SURE 7057 44 0.00:2 OOIB-1 OBI.-« :704 o.o..;? 

67    JSP G995 73 0.0O22 0,9188 0.4577 1759 0.0048 
68    DPB 6978.50 0.0022 0.3210 2.6464 821 0. On. 18 
69  Mm. 6041.38 0.0021 0.9.-31 0.55 .'3 3027 0.1.030 
70    C«IC 6633.71 0,0021 o.a.v- 0.5573 17« 0.OO37 
?|    JUhPN 6628 37 0 00-1 0 9.-73 0 5573 3703 O.0037 

72     MOWfl 6574.59 •.W028 0 9293 0.81,-6 7519 fl. 00,-5 
73    FWPB 6123.52 0.0019 0,931; 3.7:37 5i: 0,00115 
74     SMPC 6005.61 0.0019 0 9331 O.BI:6 :301 0,o.C3 
75     SEI2»1 5953 BO 0 0019 0 9319 0.7597 .-410 B.0O74 

76     TLNN 5811.40 0 001B 0.9368 0.6102 :9G5 0.01130 
77    FMOPI 5737.50 O.OOiB 8. mi 1.1.-91 1:50 0.0012 
78    SET? 5546 31 0.0017 0.9103 0.4577 3773 0 0.'38 
79    LSHC 5343.91 0 0017 0 9119 1.4976 mi 0.0011 
00    EXCH 5228 37 0.0O16 0 94 36 0.9371 1737 0.0017 

81    SOJCE 5101 50 0 0016 11 9451 05573 7650 0.0028 
82    C'.ILE 5056 75 0 0016 0.9167 05573 28:5 0 00:9 

83    WSI 4836.30 0.0015 0.9182 0.457? 3:90 0.0033 
84    JFFO 4711 20 0 0015 0 9137 i.n« i:.io ».»•II 
85    5>IP« 4604.04 «01114 0.9511 0.61.-6 1 .bi t.a»ll 
86    AOJ 43S6 B6 0 0014 095,-5 8.5573 ;i.' 0.0021 
87    FDVPI 4301.40 0 0013 0 9538 4.1720 321 0.0003 

88    SET2B 4291.10 ».mi 0.9552 0.7597 1760 0.P018 
89    HPII 4274.76 0,0013 0.9565 O.BIO: 7181 0.0022 
90    C*1N 4169 00 «0013 0.9578 0.8562 1516 0 0015 

: 

: 

1 
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Uw  total  SNIFT D-S 

91    SOJ 1101.17 n 0013 0 9591 0 5573 2293 0.9i>23 
sr   sos .  oo % (1 0012 0.9G03 0 9496 12 73 «.Mil 
93    '.3Dn 3^61.t» 9.0012 0.9615 09932 1180 9.9012 

94     MPLZ HIM: 9.0011 0.9626 0.7566 1494 0.0015 

95    MLLZ 3610.98 P.0011 0.9637 P. 755b 1486 P.OOIS 

96    JFCL 351330 9.0011 0 9640 P 457? 2390 O.P021 

97    HOW I 3321.45 0.0,110 0 9658 0.5137 2013 9.9929 
98    F.KW 33"3.')0 0 On 10 0.9669 1   0836 516 0.0005 

99    50JC 3:95.39 P OHIO 0.9679 O.SS73 1041 9. Mil 
104    C.It.f 3213.18 0 0"10 0 9689 0.5573 1812 0.00 IB 

191    S» IPL 3189.i: 9.0U10 0 9699 0 8126 1222 9.91)12 

192   tmrn 3110 flB O.otiin 09709 0.8593 1138 0,0011 

193   Frvi 3089 9: n i'0|0 'V97IB 3 5369 -72 0.01103 

IM    tic 2998 M p,0009 0.9-28 P 6102 153" 0.0015 

19S   *0SGC 289115 p.'.009 P.9737 0 949b 949 0 OpiiB 

196    1P?E 2777.32 P.Oi'09 0.9-45 P 6102 1417 0.PPI1 
197    C«Irt 263:  16 P.iv.'B 9.9754 0.5573 1504 P. 0015 
198    tOcrt .-569 60 0 00'18 0.9762 9. MM 880 0.0009 
199    JU«PC£ 2561  49 P.OHOB O.97'0 P.5573 ■ 431 0.0011 
119    TPNt 2132.36 P. OH'19 0.9777 0 6102 124 1 0.0012 
ill    inan .-371.60 O.01107 0.9785 3.3563 229 O.ooo: 
III   nous 2306.07 p 0007 0.9-92 0. 7506 949 p.0009 

113    90BJP 22B5 83 P.OOlV 0.9-99 9,5573 1277 R.MII 
IM    rSBPI 2293.71 P.0I-H17 0.9IM6 14851 462 O.OO'iS 

IIS     HPL 2181.24 9,0007 0 9013 0.9091 74- P. POP: 

116    JUttPC 2053  13 O.000B (i,9019 0.55-3 1117 0.0011 

117    HPP2I1 2017.56 P. 0006 0.9025 9.Km 782 0.0008 

118    HPPI 1948.10 P.Oi'06 0,9031 O.S"13 1210 0.OP12 

119    hPR 1924.93 P.Pi" 6 0 9037 0.B.'02 749 (1.0007 

120    MLL 1896.66 P.0.106 0 984 3 t,BOO: 7iB p. 0007 

1(1    FflPPfl 1889 88 O.OOOB 0 9049 3.7237 IH p. 01102 

12c     HPUI 18B0.13 O.oi.l'B 0.9BS5 0.4577 1279 O.OO13 

123    SnSLE 1860.SO P. OOi« p.9061 P.9496 610 0.9006 

121    IOP 1804.14 p 00,16 0.90G6 P.8002 702 O.P007 

12S    SOJL 1 764 . 34 9.0005 0.9B72 9.1171 906 0.0010 

126   '»in 1748.81 P Oi"'S II.M77 P.9371 5H1 9.9MI 
127    HPP2I 1593 48 r PiVS o.ooo: 0.4577 1P84 9. Mil 
128    FSBRO 1 SSO 96 P.0005 0.908- 2.('5B'i rib 0,0002 

129    MULl 1520.75 P.0005 0 9092 2.7056 ITS 0.01102 

139    FSB 1509.62 0.PO05 0,9097 16377 :H.- 0.0003 

131   nousn 1434.48 O.P004 0.5901 0,B"31 IH p.OoOG 

132    TLO mi:' P. 11004 O.9905 9.91«: 729 O.OOP: 

133    S'IPIE 1101.18 9,9004 0.9910 0,8126 SIB 0.0005 

131    SdSN 1390 (10 9.(0,14 P.9914 0.9496 (U o.P"05 

135    fO'.'n 1315.80 p. 01104 0.9318 4,7636 111, P.OOOI 

136    C-iU 1299.51 (1 pool •.99:: 0,5573 726 0.0O07 

137    SOSG 1236 25 P.0004 P.9926 0,9496 125 0.POO4 

138    *ODM 1269.11 9.C"io4 0.9930 0.5573 7o9 P.POO7 

139   m. 1265.91 P.P004 0.9934 3 3688 117 0 OOOI 

M9    nOVNS 1211  35 P.P004 P. 9938 0 9496 407 9.0004 

Ml    HPP2S 1053.29 n 0003 0.9941 0.B93G 36 ■ 0,0001 

M2   nouns 960.-S 0.0003 0,9944 P.9196 III 0,0003 

113    (-MB 915.53 0,0003 0994 7 0.9932 .-87 0.0003 

111    HLPE 891  81 p.0003 0,99SO 0.,'5bG K7 0.0004 

IM    HPPOI 829.08 0.0003 0,9953 9.4577 HI ('.0006 

116    SEIOM 714.20 90002 P.gast P.7597 id o.('('03 

117    IBP 730.23 9.P0"2 0.9:157 0,9(34 24 1 0.0002 

118    HOSG 719.80 P.0002 0.5959 0,3496 :JG 9.0007 
119    SETCM 656  10 P.OO112 0.99GI 0.756G 2-0 P. ("'03 

159    1P2 564 48 9.0002 o,9l)61 0.5102 288 9.0091 
151     TPC 548.80 9,0902 0,9965 0.6102 280 p.01103 

152    M)5LE 521  55 0   Or 102 0 99SB 0.9496 n O.Ooo: 

153    FMOB 520.30 p.00112 0.9960 1 6036 86 0.0001 

151    FOUPB 504.90 0.poo: 0.9970 4,7636 33 O.OO'iO 

155   sno 468.93 0.0001 0.99"1 P.4577 119 00003 

156    SOJE 467   19 0.0001 O.9973 0.5573 ,-1,1 t 0003 

157    EW 447.18 9 Oooi P. 9'.r4 P.B0O2 174 0,0002 

1SB   open 444  61 0 Pool 0.3975 0 B002 171 O.oi'o2 

159    IL2N 4,-5.3: O.I'Ol.tl 0.9977 0 6102 217 0.0002 

150    SOJ« 417  0- O.OoOl O.9970 0.5573 .ii o.(uio2 

161    SOJLE 393  17 0,0001 0 99 9 P.5573 Kl 0.0002 

162    TONE 37B 68 n 0001 0 99HO 0 9091 129 O.Oool 

163    W3SA 372.10 9,9991 o,99n; 0.9495 122 0.0001 

1S1    KK 364.SB 0.0001 09903 9.119: IH 0,oö02 

165   inpn 352.7 0 0001 0,9994 0.9371 117 0.11(101 

166    »OP 352 '19 0  OOP 1 O'JIIRS P,B"0,- 137 0,0001 

1F7    TSC 283.-4 P.00OI p ynor. 0,9o91 97 9.9901 

16«    SOJN 282 82 ■.«Ml 0 SM7 0 5573 ISO O.poo: 

16<J     inULB 269 SM 0.0001 0  MOB 3  3563 2S o.oooo 

179    f.OJE 22375 p.Ol'OI 9. MM 0 5573 in 0.9991 

171     »OPB 21672 p 0001 0,9909 11 9371 72 0.0001 

172    IOPB i98 6S o.oooi 0,9909 0.9371 H 9,9001 
173   HPL2n 196 OB p.oooi n.sMH 0,8033 76 O.oooi 

171   (WDC«n 177.87 O.oooi 0,9991 1.1302 4« 9.OOOO 

175    (iNDCn 14 1   35 n 00, »i 0.9991 0.999: SS 0.0001 

176    HPLOl 141.12 0.9000 09992 0.4577 96 0.0001 

177    HNDCMI 140,07 p.0000 P. 9992 ('5013 17 9  Pool 

178   sosa 134  20 (I.PPOP 9.909: 0.9496 44 O.oi'OO 

179    CHI 13,-46 0.OOOO 0.9993 0,5573 74 0 011OI 

180    TP?N 115  64 0 pooo 0.9993 0.9IK 59 o.oooi 

161     SETCftfl 105   78 e.0000 0 9993 0 B033 41 0.00,10 

182   nan 99 33 0   0000 0,9194 0 9371 33 0,0000 

1B3    SET2I 97 02 p.OOi'O 0.9994 0.4577 H 9.0901 

1B1    tLCN 94 08 0,0000 0.9994 9610: 40 0. Pi« 1 

185    MIPS 91.84 0,0000 0 999S P 8935 32 O.OOoO 

186    FOVPH 76.50 0,00110 0.9995 4,7636 5 (1.1 0 

187    IOPI 74.06 P. POOP 0,9995 0.5013 4b 0.ooop 

18£    HOJN 73 39 ••MM 0,9995 0.5573 41 9.99M 

■    - 
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Ih. tot.I Mirr D-6 

189 TLQC 
194 HLP 
191 o»c« 
192 HLLZS 
193 HPPE 
19t UHOCK 
195 1R0 
196 TOW 
197 AOJC 
196 HL»zn 
199 HOLS 
zeo ICWI 
zei «.osc 
ZK LOA 
ZM «NW1 
zei HPPO 
zes WO.ILE 
ZÖ6 HLLZM 
207 suen 
Z08 MOVSS 
zeg HLPH 
Z1Q SCtOB 
zu TOZ 
Z1Z TONN 
Z13 TLON 
ZM JUMP 
Z15 S05E 
ZIE HLLO 
Z17 SETOI 
218 HPPE I 

Z19 BOSN 
ZZO TLZrt 

ZZ1 HLP3S 
:zz roui 
2.-3 S05L 
221 SETCMH 
225 HPPE 5 
226 HPPOM 
a? SOSH 

228 xoPn 
229 TICE 
230 HPIZS 
231 opcm 
232 OrN 
233 H"PErt 
,-3-t hNOCB 
235 H'POS 
236 HNDB 
237 TSO 
238 . SETCrt 
239 TPO« 
210 SETens 
211 KPEtl 
Z12 «OJCE 

72. SZ 
61.32 
58.10 
57.10 
55.89 
55.18 
51 88 
52.56 
51 91 
U.M 
iB.rg 
IB. 30 
1575 
13.1Z 
39 13 
38 88 
37.59 
36.12 
35.09 
31.11 
33.11 
29.28 
26.28 
26.28 
25.18 
25.06 
21.10 
21.30 
20.58 
19.11 
18. 30 
17.61 
17.22 
15 80 
15 25 
11.35 
11 35 
12.90 
12.20 
iz.oi 
11.76 
II. 18 
11.27 
10.62 
10.32 
8.76 
8.61 
6.f'2 
S.B'I 
1.83 
3.92 
2.87 
2.SB 
1.79 

0.00(10 
O.OOcM 
oeooo 
o.oooo 
0. oono 
O.OMV 
O.OOIHI 
0.1801 
o.oooo 
o.oooo 
fl.O'liK) 
8, MM 
|. KM 
O.OOtKl 
0. Oi mo 
0 OOiiO 
0.0000 
0.OMO 
O.OOilO 
0.0000 
0.0000 
n.onoo 
0.0000 
O.OOOO 
0. Ofu'lO 
O.OW'O 
O.OOOO 
0.0000 
0. OOi »I 
0.0000 
O.oooo 
0.0000 
O.pooo 
0.0000 
0,0008 
o.oooo 
(1 (lo.io 

0.0080 
0.0800 
0.0000 
O.OOilO 

0,0880 
0,0000 
0.0000 
O.OOflO 

(i. OO('i) 

0.0000 
0.0000 
0,0000 
O.OOOO 
O.OOOO 
O.oooo 
0.0IHIO 

O.OOM 

MEON EHECUTIQN TIME      3.21 niCPOSEC 
WHICH nEANS     03113 niPS. 

099% 
O.MM 
0,nK 
0.9996 
09916 
0.9997 
0.9997 
0.9997 
0.9997 
0 9997 
0.IH7 
0 9997 
0.9998 
0.999B 
09998 
09998 
0.9998 
0.9998 
0.9998 
0 9998 
0.9999 
09999 
0.9999 
0.9999 
0.9999 
09999 
0.9999 
0.9999 
0.9999 
09999 
0.9999 
0.9999 
o 9999 
•).9999 
0.9999 
I. Oi IOO 

1.8000 
1. OOOO 
I. Oi 100 
1.0000 
1.oooo 
1.oooo 
1.OOOO 
1. OOOti 
I.oooo 
1.OOOO 
1. OOOO 
1.0000 
1.0000 
1.0000 
1.0000 
I. oooo 
1.oooo 

i. oooo 

) 6102 
0.9091 
0.9.-91 
0.8936 
,i.75r.5 
0.9. .91 
0 6102 
0 9'i91 
(1.5573 
0.8033 
0 8916 
0.5013 
09196 
0,610: 
0.9371 
0.71,66 
0.5573 
.1 a.'3) 
0.9937 
0.8936 
0.9371 
»7597 
0.9091 
0.9'191 
0.610: 
0.5i.73 
0.9196 
0. TbBfi 
0.i57r 
O.157- 
0.919B 
0.6102 
O.B93G 
1 9197 
0.9<96 
0.D93G 
0.89.16 
0.8O33 
0 919G 
•.9371 
O.6I11: 
0. 89 3f. 
0.5013 
1.10" 
0,8033 
0,1091 
0.8936 
0.9371 
0.9091 
0.5013 
0.6IOC 
06936 
0 8033 
0.5573 

37 
Zl 
M 
zo 
23 
19 

J 
18 
29 
20 
17 
M 
lb 

II 
lb 
21 
M 
II 
12 
II 
12 

9 
9 

13 
11 

fl 
1" 
li 
13 

G 
9 
G 
1 
i 
5 
5 

O.OOOO 
0.0000 

0.oooo 
0.0000 

o.o{i(io 
0.oooo 
0.0000 
0.0 WO 
0,0000 
0.0000 
0.0000 
e.oooo 
0.oooo 
0.oooo 
0.00110 
O.OOO11 
0.0000 
0,0000 
0. woo 
O.OIIIJO 

0.0000 
0.0000 
0.OOOO 
0.0000 
0,0000 
O.OoOO 
0.0000 
0.0000 
O.OOilO 
0.0000 
O.OOOO 
0.0000 
o.oooo 
0.0000 
0.0000 
0.0000 
0.0000 
O.O11OO 
0.0000 
0.0000 
0.0000 

0,0000 
0.0000 
0.0000 

0. OOOO 
0.00.10 
0.0(100 
o.oooo 
0.0000 
0.oooo 
0.0000 
0,8000 
0.0000 

0.0000 

mM kMa mtmmmmm^Mmi umtmm^ 
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I 1 
1K< total  SNIFI D-7 

nOSt   "«tCUIEO   INSIPUCHONS; 

NMt.   a   TIMES E1ECUUD.   FPNCUON.   LUna     IPMCIION 

1 nowt 191783 0.1918 0.1919 
: ftDO 79:90 0.0793 o.:7ii 
3 novtn 72.-93 0.07:3 0.3131 
4 JRSI 7« 180 0.0702 0.1135 
5 novtl 360 75 0.0361 0.1196 
I PUSH 30:36 0 0302 0.1799 
7 POPJ :i"50 0.02111 •.MM 
B Fnpp 19386 0.0191 0.5:03 
9 AOJA 18:97 0.0183 6.5386 

10 PII5HJ IÄ76S 0.0183 0.5569 

11 ASH 15<:30 o.ois: •.»TTI 
u CHHLE 11166 o.dits 0.5B6B 
13 POP 13951 O.OHO O.Bi.iS 
M rsep 12976 0.0129 0.61J1 
IS HPP2 123«:i7 0 0123 0.6:57 
16 ftOOI 11391 0.0111 0.6371 
17 TrtOP 11353 O.0111 0 6181 
ia sue 11316 0.0113 0.6598 
19 CMHCE li:i8 00112 0.6710 

zo KO 10796 0.0108 OBBIB 
21 »05 10531 0.0105 0.69:i 
22 HLPi 9271 0. (1(193 0.7016 

23 FSC 7886 0.0079 0.7095 

2* LSH 7630 0.0076 0.7171 

rs TPNN 7112 0.0071 0.7216 

2E CHIN 7186 0.0072 0.7318 
27 CoflL 6889 •.MM 0.7307 

H mm 6513 •■MM 0.7152 

29 LN 6:i: I.MK 0.7511 

30 JjnPE 5BI8 0.O058 0.75." 
31 C«1C 5783 •.MM 0.7630 

32 FD>« 5533 0.11055 0.76Bb 
33 UNE 5110 0.0051 0.7710 

St OOJL 5356 0.0051 0.7793 

3S XCT 5168 o.oos: 0 7815 
36 nouN 51197 0.0051 0 7B9B 
37 Foy 5031 O.ooso 0.7916 

38 MNOI 1908 0.0019 0.7995 

39 JSP 1759 O.0018 0.B013 

19 C«1E 1627 0.0016 0 B0B9 

11 TL/ 1311 0.0013 0813: 

<2 SUB1 133" 0.(1013 08176 

13 C":E 1:1b O.Odi: 09:18 
11 HPPM 1198 0.0012 0.8:60 

IS JUtlPLE 1170 0.0012 0 83ii: 

16 Fnp 1173 o.om: 0.8311 
17 inuui 3983 0.0010 08301 

18 FHOPM 398: 0.H0in O.Bi:3 

19 JUMPL 38" O.003B 0.816: 

50 SET,; 3773 00039 09199 

SI C^IG 3706 0.0037 0.B&36 

S2 JJMPN 3703 O.0037 0 8573 
S3 IIDB 3601 0.0036 •.MM 
SI POT 3345 0.0,133 0.8613 
5b novsi 3:90 (1.01133 0 Bh76 
S6 JSP 3251 t.Mtn O.fliVB 
57 S> IPN 3105 t.OMZ 08710 
58 S' IPCE 3111 0.0031 0.8771 
59 HNO :901 O.0030 8 BOiM 
Bn TlNN :%5 0. 1030 0.8B31 
61 50JGC :n5o 0.00:9 o.BOM 
R: JP« 2036 o.(.,':8 08808 
53 CHILE :B:5 O.O'CB O.B9lb 
G1 J58 :8i2 0.00:0 •.«HI 
65 FHDPB t.1   Li. 0.00:7 0.69-1 
6fi S> 1PE :?M 0.011.-7 0 8938 

6? ID1UI :58i t.KH 0.9o:i 

68 uc« :558 0. 0.1:6 0.905.1 

69 noun rsi9 O.O.CS 0.9..7', 

70 5ET2H :-HO OmCI •.MM 
nl MJ 2131 o.i'i':i 0.91:1 
1- JFCL :MO 0.10:1 0  9117 

^3 S>1PG :3"i ii.oi.:3 0.91M 
71 S3J .-:o3 11.00:3 0 9193 

75 FHOI ::86 0 00:3 O.9:IB 
76 IOW 218,- o.on:: 0.9:38 
77 HPLI :i8i 0.00:,- 0 9:60 

78 hSHC :o7o 0.00,-1 O.'J:UI 
70 noi.'Nl :on o.iuv-n •.HOI 
80 IDPB 1911 0.0019 0.91:0 
81 MS 186B o.ortig 0 9339 
8r SOJC 1811 0. on IB 0.9357 
83 MICE ifli: 0 no is 0.9375 
84 V IPO 1761 .1.0019 o,93'.rj 
85 SET 28 1760 O.O'ilB 0.9110 
86 paic 1752 •.Mil 0.91:8 
87 E»CH 1737 0.11.117 0.9115 
08 TLC 1530 0.00is 0 9161 

01 CHMN 1516 0.0015 0.9176 

9" coio ism 0.0015 0.n191 

9. HP1.2 1191 O.ooib 0.95.16 

a: HI.L2 1186 0.O015 n.95:i 
93 JUMPCE 1131 0.0011 0.9S35 
91 TP2E 1117 00011 0 9519 

— „^_ 
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Th. U   ., SMf 

98 HPLZl 
98 sns 
97 t-OBJP 
9B rwi 
99 IK« 

100 S'IPL 
101 HPRl 
lor jrro 
103 «Don 
10< junpc 
108 FUPPI 

106 nouNfi 
107 ISMC 
106 HPP?! 
109 SOJL 
110 HUV8 
111 hOSCE 
ii? TO;H 

113 0"B 
IH HP9?n 
115 HP» 
116 HPL 
117 HI.L 
118 CAU 
119 
W.< «08 JN 
1:1 lop 
\:z sastc 
ir3 HPIM 
1C4 051 
1:5 Bit 
ire MCPOI 
127 novsn 
I;B FHDM 
\H 5* IPLE 
130 FiPPB 
131 FiflPI 
132 50SN 
133 01? 
134 50SC 
135 »MB 

' 36 mm 
13? MPP^s 
138 HLPE 
139 fCMM 
MO 5ET0 
141 nnws 
142 004 
143 SUOn 
144 IP? 
145 «008 
146 FSB 
147 IPC 
148 FdPI 
149 SEICH 
150 SOJE 

I UP 
FSBPH 

151 
15? 
153 «OSG 
154 StlJH 
155 SOJLE 
156 imJLII 
157 TL?N 
158 II.2E 
159 nu.1 
160 EQV 
161 OPCfl 
IB: «OSLE 
163 fflPPM 
164 SOJN 
165 0)7 
IbB «OP 
167 IONE 
168 «CUE 
169 «05« 
170 nuL 
171 lOPH 

ISC 
173 HPLOI 
174 Oil 
175 «Norm 
i re FHüB 
177 FDUM 
178 Hi»L?n 
179 C«I 
180 »OPB 
IBI IOPB 
IB." SET?I 
183 l-'N 
184 »'I" 
185 «NOCn 
186 «Nocnn 
187 IICN 
188 H)PI 
189 SQSOE 
190 5ElC«n 
191 «OJN 
19? «F,7 

1:79 
1.-79 
IZ77 
1?50 
1241 as 
1:10 
i:oe 
1180 
1147 
1143 
1138 
1111 
1084 
986 
9<9 
949 
00" 
e:i 
re: 
749 
747 
738 
7:6 
7?n 
709 
MS 
610 
SRI 
576 
S.'o 
56* 
SbG 
54 B 
S38 
si: 
46: 
456 
449 
425 
4?: 
407 
ST. 7 
367 
3:i 
319 
315 
3'<e 
305 
:eB 
:87 
:87 
:8" 
"7? 
:7o 
:6i 
?41 
:36 
:36 
:33 
?:3 
?:o 
?17 
186 
175 
174 
173 
171 
158 
ISO 
137 
137 
i:9 
1?5 
1:: 
117 
117 
97 
96 
89 
87 
86 
86 
76 
74 
7: 
66 
66 
59 
56 
55 
49 
48 
46 
44 
41 
41 
40 

8.  Oil 
0,. 13 
O.1W13 
o.noi: 
o.o^i: 

0.001: 
0.001: 
t.tOtf 
0 on u 
o.omi 
0 00 n 
O.O'MI 
0.0011 
O.'OlO 
0.0009 
U 1'in 19 

IV."9 
o.OtiOB 
o.iiivis 
O.l'OiV 
H. niii>r 
0.0i>"<7 
O.niW 
O.i'« »07 
o.iimo 
0.01107 
O.1MO6 
O.oi'HB 
0.011116 
0 1I1I1I6 
U.I10116 
t.l 6 
O.i 10^5 
O.o.if'5 
O.OOiiS 

. Öl« '5 
..«15 

. 01104 

.0iiO4 

. MM 
. Oil04 

• nil 14 
. Oiiili 

n r«'n3 
8.0083 
O.i'i'i'l 
OlniOS 
0,i'I'O 3 
0 ili'i"i3 
0. ill »13 
0. Oi'03 
0.0i">3 
0.00'13 
0.1111113 
(1. ill 1113 

0. M(C 
0 oin': 
0. Oi Hi? 
o.oim: 

0. oini: 
0 Him: 
0 rnii c 
o.oiio: 
(1,1'Oll^ 
o.nniv 
o.oi-o: 
I.OMZ 
0. Oi ni: 
o.ni'n: 
11 m mi 
0.0001 
0. in nl I 
O.Oi'.M 
0,0001 
O.di'ill 
0 Oi iO I 

0.0001 
0.0001 
O.lHllll 
O.O'iOl 
0.0001 
0.0001 
0. lino I 
0,0001 
0,0001 
0.0001 
0.0001 
0*0001 
0.1« nil 
0.0001 
O.oooo 
0. Oi nlfl 
0. 0000 
fl.0000 
o. iwio 
0.0000 
e.oooo 

0.956: 
0.95-5 
09587 
0.9600 
0.961. 
o.%:4 
0 9637 
0.9G49 
0 9660 
0 %-: 
0 %B3 
0.9695 
0.9.oe 
0.9717 
0.97:7 
0.9736 
09746 
0.9754 
0.9763 
o.97.,o 
0.9778 
0.3-85 
0 5 ''I 
0.90"" 
o.9flo7 
0.91114 
0.90:1 
0 91177 
U 9(133 
0.9033 
0.3045 
11 3(150 
O.OO'.fi 
0.501.1 
0 98(i.- 

0.907: 
0.9H'6 
O.MBI 
I.I.SURS 
0.9090 
0.3094 
o.nnsB 
0.99": 
0.99"S 
0.93113 
0.991: 
0 9915 
0.9318 
il.99:i 
0.99:4 
0.93.-7 
0.9310 
0393.- 
0.9935 
"9338 
0 9910 
0 9943 
0.994b 
0.9348 
II.93'IO 

0.395: 
0.3954 
1I.93S7 
li.395fl 
0.9360 
o.m: 
0 9364 
0.9965 
0 996' 
0.3'!BB 
0.9'J-O 
0,99-1 
li.99,3 
0.9974 
0.93.'S 
0.93'6 
o.93:'7 
0 99 .'8 
0.3379 
0.998'> 
0.99B1 
0.938: 
0.9903 
0.9383 
0.9381 
0.9985 
0.9305 
0.99BG 
0.99B- 
0.9987 
0.9308 
0 9988 
09989 
0.99B9 
0.999" 
0.9390 
0.9991 
0.3891 

Reproduced  From 
best available copy. 
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The  total  SNIFT 
D-9 

193 TLOE 37 0.0000 0.9991 
13H 012 31 Ö.QOOO 0.999: 
19') Han 33 0.0000 0.9992 
13G TO'JPB 33 0.ooon 0.999: 
197 KP5 32 0. n. too 0 99Q3 
198 XQPI 3.1 O.C'OOO 0.9993 
199 HO.IC 29 0,0000 0.9993 
20'3 IPO 2B o oooo 0.9991 
JOI 0G2 27 Q.COOO 11.9.191 
262 inuiB 25 0.0000 0.9991 
203 HPPE 23 0,0000 0.9991 
201 no« i-L 0  0000 0.9995 
Z05 «OJLE 21 0,0000 0.9995 
206 HLR 21 0.0000 0.999'.! 
207 OPCfi 20 0.0000 0.9995 mo HuL2S 20 0.0000 0.9995 
?<i3 Hi.P?n 20 0.0000 0.9996 
210 H\OCH 19 O.OOnrj 0.999S 
?11 TOQH IB 0.0000 0.999G 
212 HPLS 17 9.0000 0.9396 
Z13 HPPQ 16 0.0000 8.9996 
211 870 15 O.oiioo 0.999G 
CIS finsE 15 o.oooo 0.9997 
Z16 071 11 0.0000 0.9997 
Zl? HLL2M 11 0,0000 0.9937 
:IB SETOI 11 0.0000 0.9997 
219 JUMP 11 0.0000 0.9997 
220 HPPE I 13 0.0000 0.9997 
221 TLON 13 0.0000 0.9997 
222 HNDU 13 0.0000 0.999D 
223 Maygs 12 O.oooo 0.9999 
224 SflOB 12 0.0000 0.9999 
225 SUflM 11 0.oooo 0.3998 
22b HLUM 11 0,0000 0.9990 
227 017 11 O.OOOO 0.999R 
229 HLLO 10 0.00(10 0.9991) 
229 TONN 9 0.0000 0.93911 
231 TDZ 3 0,0000 0.9990 
231 TLZrt D O.OOOO 0.9990 
232 SQSE 9 0.OOOO 0.D399 
233 OPCfll 7 0.oooo 0.9999 
231 mm 6 O.oooo 0.9999 
23S TICE 6 0.oooo 0.9999 
236 eio 6 0.0000 0.9999 
237 HLPES 6 O.OOOO 0.9999 
239 uppon 5 o.oooo 0.9999 
233 SOSL 3 0.oooo 0.9939 
240 056 0. Oi IOO 0.9999 
211 HPPES 0.0000 0.3999 
212 SETCm 0.0000 0.9993 
213 FO'JRM 0.0000 0.9999 
211 en O.i'000 09999 
215 SOS»» 0.0000 0.9999 
246 o:i o.oooo 0.9999 
217 015 O.OOOO 0.9999 
219 050 0.OOOO 0.9999 
213 Hi-'PEM 6■oooo 0.9999 
250 HOPM O.oooo 0.9999 
251 MfLZS 0. oooo 0.9993 
252 HPPOS 0.oooo 1.OOOO 
253 OFN 0.0000 1.OOOO 
251 061 0.oooo 1.oooo 
255 6NDCB o.oooo 1.oooo 
25B ^61 O.OOOO 1. OOOO 
257 020 0.Oooo 1.oooo 
259 0G5 O.oooo 1. OOOO 
259 SETCA O.OOOO 1.oooo 
260 063 o.oooo 1.0000 
261 076 0.0000 1.oooo 
262 602 0.0000 1.oooo 
263 035 0.0000 1. OOOO 
261 «NOB 0.oooo 1 .0,10.1 
265 Ob6 O.oooo 1, OOOll 
266 016 0.0000 1. OOOO 
267 003 0.000(1 1,0000 
269 TPOfl o. OOOO 1,0000 
253 TSD O.oooo I.Oono 
270 FD'vlI O.OOOO 1.0000 
271 HLPEM 0.0000 1.oooo 
272 hOJGE O.OOOO 1. Oooo 
273 SEICHB o.oooo 1 .000(1 
271 057 0.0000 1.0000 

Mi —-  i     MUM-   -  ■  ■ V -li* W- >l£ k'U&W 
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The tola! SNIfT D-10 

INS1PUCII0N SEI UIIL1S«II0N 

INrOPWIION    IHEOPEIICftL; 

BY « EKECUIED INStPUCTlDNS.  (CIl)iil;    5.1BI6 
er EKECuTiGN TIMES. MCTUiUi   s.srao 
THEOPfTIC«. MHXItlUd!    8.?215 

FOSTER CONTER-PISEnuN FUNCTION 

"OPCODES    • OPCODES    «OPCODES    FPMCIION I 1NCP.   IN « («IClllED IN5IP. .'   Tim 

USED PECOOED INTEPP. INUPP. "fCOOING roCIOPS OPE 2.4. 8.   IB. 

ZM 0 0 o. roiio (1.0, Will 0.oono 0.0000 O.i moo 

2?3 11 O.lVvCi P.Oi'i'ii 0.OOOO (1.(11100 (1.1,,100 

I'll 2 z O.i'OOO 0. OOOO O.OOOO O.lVOO 0.0000 

271 3 3 0.0.'00 0, ..'Oi „.i (1. oooo o.oooo O.Oooii 

;7o 4 4 O.liOOO O.M.iOO O.Ol'OO 0. oi»1(1 O.liO.il 

zss s 5 O.oooo 0. oooo 11.11000 0.0000 OOiiiil 

;R9 6 7 O.i'OHO O.o,,oo (i.nooo 0.0001 11.011,11 

?&? 9 o.oooo O.OOHO 11.00011 O.Ollill P.Oi uil 

rse B 11 O.ooon p. OOOO 0,0060 O.IIOOI 11.00112 

:bs 9 13 fl. fill 10 0.0000 O.OOOI O.ooil 0.0",C 

-B1 10 IS 11,0000 o oono O.OOOI (i.OOO I 11.0002 

263 11 17 O.OOOO O.pooo O.OOOI O.OOOI (1.0063 

rs; 12 19 O.OOOO 0.0000 0.0001 0.0002 0.0003 

:si 13 21 O.oooo (1.0000 O.OOOI 0.00112 0.1111113 

zso H 23 0.0000 0. Oi '00 O.OOOI 0.1111112 0.0001 

2S9 15 26 O.oooO P. pool (1.0001 O.O0112 (1.11004 

:3B IB 29 0. Oi 100 O.oooi O.POOl 0.0002 O.OOiiS 

25? 17 32 0.0000 n.ooo; O.OOOI O.0003 n. ,1,1,15 

r^s IB 3S O.OOHO O.OnOl 11.0001 00003 ii.oiiiin 
A 19 3B o.oooo O.OOOI (1.110,12 0.0003 0 1111O6 

251 20 41 0.0000 o.oooj 0.001.12 0.0003 0.0007 

253 21 44 0,0000 P. 0001 0.00(t2 O.OOOI (1.0(1(17 

252 •»•1 
It- 47 0.oooo O.oooi 0.0002 O.POOl 0.0,100 

251 23 50 o.oooo O.OOOI 0.0OO2 O.OnOl 0.000(1 

:5o 2-4 54 O.oooi o.oooi 11.00112 0.0004 0.1.111119 

2-.9 25 SB O.oooI O.OOOI 0.0002 0.0005 0.0009 

:<B 2G 62 0.0001 0.0001 0.0002 0.onus 0.0010 

Zl? 27 6B 0.0,11)1 O.OOOI 0.0003 O.OOOS 0.01111 

^^6 28 70 O.oooi O.oooi 0.00,13 .1.0006 n.oiiu 

Z15 .-9 "4 0.0001 0,0001 0.0,1,13 d.OOOR 0.0012 

2« 30 •B 0. ooii i 0.0002 0.0,103 o.oooB 0,01112 

:H3 31 s: O.i'OOl 0.0002 0.0003 0.0007 11,(1013 

2« 32 B; O.OOOI (i.0O'i2 0.0003 0.01107 0.0014 

2'tl 33 92 O.OOOI (i. 0002 0.001:14 0.00(17 0.0015 

210 34 97 0. POO 1 0.0002 0.0004 o.ooon O.oii IB 

239 35 io: 0.0001 o.ooo: 0.0004 O.Ooofl 0.0016 

730 36 107 0.0001 0.0002 0.01104 0.000a 0.01117 

:3r 37 112 O.OnOl 0.0002 0 0004 0.0009 O.Onin 

736 30 MB O.OOOI 0 ■ 0(iO2 0,0005 O.oong O.OnlU 

J35 39 124 O.OOOI O.O1102 0,0005 0.0010 ii.OiCO 

Z3t 40 130 0.oooi O.0003 O.OOOS 0.0010 0.111121 

:33 41 136 0.0001 0.0003 0.0005 (1.0011 0.0(122 

232 42 143 O.OnOl 0.0003 0.0,1,16 O.dOll 0.0023 

231 43 IS1 P. 0002 0.0003 0.000G 0.0,112 0.00:4 

7301 44 160 0.0002 0.0OI13 O.oooB 0.0013 0.0O26 

2:9 45 160 0.0002 0.00,13 0.0007 0.0014 0.110:7 

228 46 178 0.0002 0.0004 ll. ill ill 7 0.11014 O.Oi'.-B 

227 47 18tl 0.0002 n.1100.1 0.0000 0.0,115 il.nnao 

226 4B 199 0.0002 0.0,1114 O.oooo 11.00 IB 0.0113: 

225 49 210 0.0002 0.0004 O.OOOB 0.0017 11.0031 

2;t SO 221 0.0002 (1.1 „104 O.ooog (i.oniB 0.0035 

223 51 233 o. pOPZ 0,0005 0.0,109 0.0013 0.0037 

222 S2 245 0. oi vi2 o.ooos O.l'OlO 0.0020 11.0,139 

221 53 259 0.0003 O.OOOS 0.0010 0.0021 (1.1'OU 

220 54 271 0.0003 O.0O05 P.0011 0.0022 (1.0043 

219 55 "84 0.0003 0.0006 0.0011 0.0023 (1.0045 

21B 56 298 0.0003 0.0006 0.11012 0.0024 0.0,110 

217 57 312 0.0003 O.oiiOG 0.0012 0.0025 O.OOliO 

216 SB 326 0.0003 0.0007 0.11013 0.01J2B 0 005: 

215 59 340 0.0003 0.0007 00014 0.0027 0.O1151 

2H BO 35S (l. 0004 0.0007 0.01-14 O.OOZB 0.0057 

213 51 370 0.00O4 0.0007 O.0015 0.0030 0.(11159 

212 52 386 P. ('001 O.dofB 0.0015 (1.01131 ti.0062 

211 63 403 P.oooI 0.0000 0.0016 0.0032 O.O11R4 

210 64 421 0.0004 O.OOi'fl 0.0OI7 0.0034 0.0067 

209 6S 440 0.0004 o.ooog 0.00 IB 0.0035 0.11070 

2.10 66 460 O.ooos ('.0,109 P.0018 0.01137 0.0071 

207 67 4H0 O.0005 0.0010 0.0019 0.003B 0.OO77 

2^6 GO 500 O.O0O5 0.0010 n.0020 0.0040 O.O11BO 

205 69 521 0.O0O5 0. On 10 0.00:1 0.0042 0.0'103 

2.11 70 542 o.ooos P.n"ll 0.0022 0.0043 0,OII07 

203 71 564 n. niii IB n.fioii 0.01123 0.0045 (1,11090 

202 •%•% 587 P.OOOo 0.P0I7 0.0023 11.111147 0,Oii94 

201 73 612 0■0006 0.0012 0.0021 0.0019 (i,0ii9B 

200 74 63'J (i. 0006 0.0013 0.0026 0.0051 0.0102 

199 75 667 0.0007 0.0013 0.0027 0.0053 0.OI07 

19B 76 596 p. 0007 poo 14 0.00:8 (i. 0056 o.om 
IB" 77 7,-S 0.0007 0.0015 0.0029 0.0058 0.0116 

196 7B 75B p.OOna 0.0015 0.0030 0.0061 11.0121 

195 79 791 O.OnOB 0.0016 0.0032 0.01163 0.0127 

ist 80 824 0.0008 0.0016 0.0033 0.0066 o.ois: 
193 81 858 o. firms 0.0017 0.0034 ii.0"B9 0.0137 

192 92 895 0.0009 P.00 IB 0.0036 0,pii72 P.OI43 

111 83 935 O.Oiiog 0.0019 0.0037 (1.P075 0.P1S0 

•«. a^MM '"■■t'-''L';'J"^-' AaafcÜtÄI iiÜte^Jfek5a*w*v^^. l-„,-^ 
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I 
;;..-'::-;^.^1'-'.t:,..-' ■ 

Thr total  SN1FT 0-11 

f-      v 

i   \ 

130 81 975 0.0010 0.0020 0.0O39 0.0078 0.0156 
103 05 1017 0.0010 0.0.Co 0.0011 00081 00163 
IBB B6 1061 o.ooii 0.0021 0.0012 0.0OBS 0.0170 
IB? 87 1107 o.oou 0.0022 0.0011 0.0089 0.0177 
IB6 08 1155 0.0012 0.O023 0.0015 0.0092 0.O185 
185 89 1201 00012 0.0021 0.0018 00006 0.0193 
181 30 1259 0.0013 0.0025 0,0.-150 0.0101 0.0201 
183 91 1315 0.0013 0.0026 0.0053 O.01O5 0.O210 
IB: 92 1371 0.0011 0.0027 0.0055 O.01in 0.0220 
181 93 1110 0.C0I1 0.0029 0.OO5O 0.0115 0.0230 
ifln 91 1505 0.0015 O.OOJII 0,0060 0.0120 0.0211 
1?9 95 1578 0.0016 0.0032 0.0063 0.0126 0.11252 
1?8 96 1552 0.0O|7 0.0033 0.0066 0.0132 0.0251 
1?7 97 1728 0.0017 0.0035 0.0069 0,0138 0.0275 
176 38 1811 0.0018 O.O.OC. 0,0073 0.0115 0.0290 
ITS 99 inno O.o.iig O.on30 o.M.1,'6 0.0152 0.0301 
\7i K'O 1387 0.0020 o.aoio 0 0079 0.0150 0.0318 
173 101 2075 0.0021 0.0012 0.0003 0.0155 0.0332 
172 102 2172 0.0022 0.0013 0.01107 0.0171 0.0318 
171 103 2263 0.0023 0.0016 0.0091 0.0182 0.0.153 
170 101 2386 0.0021 0.0010 0.01195 0.0191 0.0382 
169 10b 2503 0.0025 0.01150 0.0100 0.02110 0.11100 
158 106 2625 O.0O26 O.OOS2 0.0105 0.0210 0.1H2O 
167 107 2750 00027 0.0O55 0.0110 0.0220 0.0110 
1R6 108 2B79 O.0023 0.0058 0.0115 0.0230 0.0161 
1S5 109 3015 0.0030 o.pnc.i 0.0121 0.0211 O.01B3 
151 110 3153 0,0032 0.0063 0.0125 0.0252 0.0501 
163 111 3311 0.0033 0.0066 0.0132 0.0265 0.0530 
16J 112 3169 0.0035 0.0069 0.0139 0.0278 0.0555 
1G1 113 3610 0.0036 0.0073 0.0116 0.0291 0.0582 
160 111 3B13 0.0038 0.0076 0.0153 0.0305 0.O61P 
153 115 3387 0.0010 0.0080 0.0153 0.0319 0.0538 
lr.8 116 1162 o.ooir 0.0003 0.0165 0.0333 P.0566 
IS? 117 1318 0.0013 (1.0087 0.0171 0.0318 p.0635 
IS6 118 1565 0.0016 0.0091 0.01E3 0.0355 0.0730 
155 119 1785 0.0018 0.0095 0.0191 0.0383 0.0755 
151 120 5008 0.0050 0.0 H'O 0.0200 0.0101 0.0801 
153 121 5211 0.0052 0.0105 00210 0.0119 0.0839 
152 122 5177 0.0055 0.0110 0.0219 0.0138 0.0076 
151 123 5713 o.(io57 O.OIH 0.0229 0.0157 0.0311 
15P 121 5951 0.0050 0.0119 0.0230 0.0176 0.0953 
119 125 6215 0.0052 0.0121 0.0219 0.0197 0.0331 
11B 126 6185 0.0065 0.0130 0.0259 0.0519 0.103B 
117 127 6757 0.P0B8 0.0135 0.0-70 0.0511 O.IOBI 
116 128 7037 O.0070 0.0111 0.0281 0.0553 0.1126 
115 129 7321 0.0073 0.0116 0.0293 0.0585 0.1172 
HI 130 7611 0.0O75 0.0152 0.0301 0.0609 0.I21B 
113 131 7839 0.0079 0.0158 0.0315 0.0632 0.1251 
1« 132 8201 0.0002 0.0161 0.0328 0.0555 0.1313 
111 133 8512 0.0085 0.0170 0.0310 0.0681 0.1362 
HO 131 BB27 0.0088 0.0177 O.0353 0.0705 O.Hl? 
139 135 9115 0.0091 0.010? 0.0365 0.0732 0.1153 
138 136 9167 0.O09S 0.0189 0.0379 0.0"S7 P.1515 
137 137 9BJ1 0.0098 0.0197 0.0393 0.0787 0.1573 
136 138 10201 0.0102 0.0201 0.01110 0.0818 P. 1532 
135 139 10608 0.0106 0.0212 0.0121 O.O019 0.1697 
131 110 11030 0.0110 0.0221 P.0111 0.0882 0.1765 
133 HI 1 H5S 0.0115 0.0229 0.0158 0.0915 0.1833 
132 112 11901 0.0119 0.0210 0.0176 0.0952 01905 
131 113 123GO 0.0121 0.0217 0.0101 0.0909 0.I97B 
130 111 12822 0.0128 0.0256 0.0513 0.1026 0.2052 
129 115 13331 0.0133 0.026? 0.0533 0.1057 0.2133 
129 116 13872 0.0139 0.0277 0.0555 0.1110 0.2220 
127 117 HUB 0.0111 00288 0.0577 0.1153 0.2307 
126 118 H971 0.0150 0.0299 0.0599 0.1198 0.239G 
125 119 15530 0,0155 0.0311 0.0522 0.1213 0.2185 
121 150 16108 0.P161 0.0322 0.0611 0.1289 0.257? 
123 151 165BI 0.01S7 0.0331 0.0657 0.1335 0.2563 
122 152 17265 0.0173 0 03(5 0.0691 0.1381 0.2752 
121 153 17B75 0.0179 0.0357 0.i..nl5 0.1130 0.2850 
120 151 18577 0.P186 6.0372 0.0713 P.1186 0.2372 
119 155 19286 0.0193 0 0386 0.0771 01513 0.3086 
118 156 20005 0.0200 0.0100 0,0800 0.1600 0.3201 
117 157 20732 0.0207 0.0115 0.0829 0.1659 0.3317 
116 158 21170 0.0215 0.0123 0.0859 01718 0.3135 
115 159 22217 0.0222 0.0111 0.0BB9 0.1777 0.3555 
111 160 22956 0.02 30 0.O159 0.0919 P.1837 0.3575 
113 161 23718 O.0237 0.0175 00950 0.1900 0.3800 
112 152 21569 0.0216 0.0191 0.09B3 0.1966 0.3331 
111 163 25H9 0.0251 0.0503 0.1018 02036 P.1072 
110 161 2533Ü 0.0251 O.052B 0.1055 0.2112 0.1221 
103 165 27317 0.0273 0.0517 O.IO'JI 0.2188 0.1375 
10B 166 26333 0.0283 0. i'567 01133 0.2267 0.1533 
107 167 29117 0.0291 0.0588 0.1177 0.2353 0.1707 
106 158 30528 0.0305 0.0611 0.1221 0.2112 P.1B81 
105 159 31566 0.031? 0.0633 0.1267 0.2533 0.5057 
m 170 32809 0.03:0 0.ii656 0.1312 0.2625 0.5219 
103 171 33355 0.0310 0.0679 0.1358 0.2715 0.5133 
102 172 35135 0.0351 0.0703 0.1105 0.2811 0.5622 
101 173 35311 0.0363 0.0727 0.1151 0.29iiB 0.5B15 
10,) 171 37551 0.0376 00751 0.1502 0.3001 O.GO09 
99 175 38776 0.0308 0.0775 0.1551 0.3102 0.5201 
98 176 111017 0.0100 0.0800 0.1601 0.3201 0.6103 
37 177 11267 O.oin 0.0025 0.1651 0.3301 0.6503 
35 178 12511 0.0125 0.0051 0.1702 0.3101 P.60O7 
35 173 13823 0.0138 0.0875 0.1753 0.3505 0.7012 
31 180 15102 0.0151 0.0302 0.1801 0.3608 0.7216 
93 181 1G519 0.01B5 0.0930 0.1851 P. 3722 07113 

— ■-'-■ - - —     - —-■■ -'-'"'■"'■""•laiiitfriiiii 
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Th.   total   SNIFT 
D-12 

3r 18Z 4 7350 0.0479 0.i'95Q .1.1918 0.3fl3B 0.76.': 

31 183 494 36 0.0491 0.11399 11. 1977 0.3955 0. 7910 

30 IB4 5093" 0.0509 0.1.119 0..-1137 0.4074 0.11119 

83 185 5Z4 34 0.05:4 0.1049 0.2097 04195 O.B389 

08 IBB 53950 0.0539 0  1079 0.:i5B 0.4316 0.8632 

87 187 55400 0.0555 11  1110 0.7:19 0.443B 0.887? 

B6 IBS 5.717 0.0572 (1.1114 (i.;:B9 0.4577 0.9155 

as 189 5GJG9 O..'590 0.11-9 0.Z359 0.4717 0,9135 

84 190 G07Z9 O.O&i? 0.1.-15 0.2429 0.1B5B 0.9717 
83 191 BZ493 0.06.-5 0.1:5.1 0.2500 0.4999 0.9999 

o: 19: 64 3H5 0.0643 0.1286 0.2572 0.5144 1  ii.-fl'J 

01 193 65146 0.0651 0.13:3 0.2646 0.6292 1.0583 

8i> 194 6B014 0   GOO 0| 360 02771 0.5441 1.ooo: 
73 195 699:B ■ ..0699 01399 0.279? 0,5594 11100 

78 196 71941 0.0719 0 1439 0.2878 0.5755 1.1511 
77 197 74011 0.0740 O HOO o.zgso 0.59.-1 i.1842 
7o 198 7613Z 0.0762 0.15Z4 0.3018 O.61195 1,2191 

75 199 70374 0.0704 0  1567 0.3135 0.6270 1,2510 
'1 ZOO B"5GO 0.0807 0.1613 o.3::6 0.6153 1.2906 
73 201 0:953 0.00311 0.1659 11.3118 0.6635 1.3:72 
72 ZO.- 85.-54 0.0853 0.17.15 0,3410 0.6B7O 1  31,41 
71 r"3 87644 0.0876 0.1753 0.15.16 0.7011 I.I11.-3 

70 .-04 9.1078 0.0901 0.1602 0.31.O3 0.7.-06 1.4412 

G9 Zns 9:51fl o.P9:'5 0.1850 0.3 ••ot 0. 71111 1.10.1.1 

68 Z06 95037 0.0950 0.1901 0.3801 P.-603 1.5206 
S7 207 g'sgs 0.0975 0.1952 O.39.1I 0. ?Biia 1.5515 

66 :I<B 100176 o.1002 0.2001 0.400? (1.8014 lün.'O 

S5 :o9 102800 0.10:9 0.2058 0.1115 0.B230 1.6461 
SH 210 IO!iG02 0.1056 0.2112 (i.IZM 0.8448 1.(1096 

63 ZU 100114 0. 11'04 0 :IGII 0.1337 O.0G73 1. 7346 

s; Z1Z 111.-39 0.111Z 0.2225 0.4150 0.6899 1.7790 

61 Z13 II l.>-5 0.1141 0 :.-BI 0.1563 0.9126 1.8252 

60 Z14 llf.9-S 0.11G9 0.2338 0.4677 0.9.i5-l IO'IO 

S3 Z15 119090 0.1199 o.:3n8 0,4 795 0.9591 1.3182 
SB :i6 122871 0  1.-79 0 2457 0,4915 0.90.11' 1.9559 
57 Z|7 irsin: 0.1ZGO 0.252**1 0,5.139 1,0079 2..1157 

56 ZIB 123167 11 1232 0 :5ii3 0.516? 1.11333 2.ii667 

55 Z19 i3:4i8 0.13:4 0 7610 o,5.-97 1.0593 2.1107 

54 220 I357..0 0.1357 0.2714 0.51,-0 1.0(157 ;M7I3 

53 t.L   1 13').'5 3 0.1391 0..-701 0.556: 1. 11Z4 2.2218 
5: t i   c 14:554 0.142? 0 Z053 0.5706 1.1412 Z,.-B.-5 

51 ZZ3 145357 0   1464 0:9,-7 0.5054 I,17ii9 .-.3117 

50 ::4 I5i.'63 11.1501 0.3001 O.61 H'- 1..-.105 2.4OI0 
43 zzs 151036 n.1510 0.3077 il. 5151 1,2307 7.1611 

48 ZZB 157650 0.1577 ■1.3153 0.6306 1.2KI3 2.5225 
47 161640 0.1G15 0.3733 0.6466 1  7931 2.5862 

46 zro 1B56Z3 0.1656 0.3312 ii.65:5 1.3250 Z.(.5.io 

45 zr9 IGT-96 0.1690 0.3396 U.679: 1,3501 2.7167 

44 230 173374 0.IV40 0.3179 0.6959 1.3910 2.7836 

43 Z31 KB 177 0  17HZ 0. 3561 0.7127 I.I.-51 2.8507 

4? Z3Z 10.-410 0.1824 0.3510 0.7797 1.1593 .".9107 
4 Z33 105755 0 1058 0.3735 11.7170 1.4910 2.9001 

40 Z34 1911 "19 0.1911 0.3822 0  -544 1.5288 3.115-6 

39 236 195 7.-6 0.1957 0.3915 0,70:9 1.5550 3  1116 

36 Z3G 2*3405 0..-005 0.4010 0.0ili9 1.6039 3.21177 

37 :37 205393 n..-ii54 0. MOB 0.8216 1.6431 3.2BG3 

36 ,-30 210427 0.2104 0.4:.19 O.OU" 1.61111 3.3550 

35 Z39 Zl 55.-4 0.Z1S5 0.43IO 0.8621 1.7242 3.1101 

34 :40 220632 0.2207 0.4111 .i.BOZO 1.7655 3.5111 

33 241 22B048 0.2260 0.I5ZI 11.9114; l.O'iOl 3.6167 
s: 242 ZSMHO 0:315 O.151.1 11.9.-59 1.0519 3.7.130 

31 :4 3 2370Z1 0..-3.-0 0.4740 0.9481 1.8362 3.79-3 
30 .-4 4 Z4:B.I4 o.:4.-fl 0.1050 0.9712 1 9424 J.OHIO 

:g 245 Z4os."z o.,-4Hi; 0.4972 .1.9915 1 .90911 3.9 ■■79 

:B ZH6 Z54B34 0..-548 0.5.'97 1  11191 2.039." 4.0773 
,-7 ."4 7 Z6I317 o,n;i3 0.5227 1.0454 Z.oDiia 4.10:5 

:G 248 zr.o:3b 0.2582 0.5366 1.117Z9 2.1459 1.2918 
:5 .-49 27542Z 0.7754 0.5508 1.1017 2.2034 4.1.'67 

24 250 292804 .v."fl:9 P 5657 1.1315 2..-5.-9 1.5750 

:3 Z51 Z9"191 0.2305 0.5810 1.1620 2.3.-39 4.6479 
7-1 Z5Z 29B3flo ii.:904 0.5950 1.1935 2,307.1 4.7.'41 

z\ Z53 307651 0.3075 0.6153 IZIiiG 2.1612 4  9.'.-4 

2n ."54 31010" O.3IB: 0.6161 1.2727 2.5451 5.i",l"9 

19 Z55 328378 n,3290 0.650.1 1.3159 2.6318 5.2836 

18 ZSfi 340Z1B 11.3107 0.6BO4 1.16119 2. "17 5.1115 

17 257 351564 0.3516 0.7i)31 1.4062 2.8125 5.6250 

IB :5B 36,"9|7 0 ;)n:9 0. 7.-58 1,1517 2.91.33 5. Oi'66 

15 Z59 3-4311 0.3743 0.7486 1197; 2.9915 5.9009 

14 260 301,510 0.3066 0.773.- I.5465 3.0929 6.1059 

13 ZG1 399494 0 3995 0.75911 I.5900 3.1959 6.1919 

1? ZGZ 413140 0 4134 0 B769 I 6510 3.3076 6.6151 

11 Z63 4Z7914 ii.4:79 0 0550 1.7115 3.42J3 6.0165 

10 :B4 44 3144 0.1131 00063 1. 7726 3.5451 7.0903 

9 :fi5 461409 0.4614 0.9.-.'8 1.0456 3,6913 7,30:5 

0 Z6G 4'971« 0  1797 11.9594 I.91B0 3,8376 7.6753 
7 rB7 49909: 0.4991 0.9982 1.9961 3.9927 ,'.9851 
6 ZGfl 5Z0I4: 0.5201 1.11101 2.0806 1.1611 B..r,-2 
5 ZG9 550378 0.5501 1.1008 2.2015 4.403.1 BOiilm 

4 Z70 500(53 0.5065 1.1729 7.3150 1.691G 9,30.i.- 
3 Z71 655633 0.6SGG 13133 :,G:65 5.2530 10.5"6I 
2 Z7Z 728326 0.7209 1.4570 2.9157 5.B3I1 11.65.-6 

1 273 808ZI6 0 80BZ 1.6164 3,23:8 6.4G57 12.9114 

Reprod need From        i W%k 
best available copy. % vw 
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APPENDIX I 

Listins of  (he  «horl  «ubicct  »l9orith«5 

ALGOL  PROGPHMS 

BHIPSIOU 

BEGIN 
COMflENI   IHI5  IS mCOPITHn 30 rPOH THE CMCM HLGOPUHMS SECTION 
TYPE-IN HND CHLLINC PPOGPHH BY d.  LUNDEi 

ftPPH»  COCFFSI'lrl^l.PPEHLIliini.RlniiClliiri.CONCONIlilZll 
INTEGEP I0EG.ITEP.NDICS.1X.1SET: 

PPOCEDUPE PUTOUTdOi: 
UMLUE  IOI     INTEGEP  IDi 
BEGIN 

WPIIEl'IZClDHTrt SET  'I:    PP1NTI10.3.PI1 
TOP  IX  •   I  STEP  1  UNTIL   IDEG DO 
BEGIN 

HBITEl'ICI'H 
PPINTIPPEHLIIXI.G.?!!    PRINTlPinrtGIIXI.B.?.- 

PPlNTiCONCONIIxl.ia.tii 
END;   !  OUTPUT LOOP: 

PETUPN: 
ENOi   '  PPOCEDUPE PUIOUTi 

PPOCEDUPE POOTPOLiNDEC.UCOF.LITEP.NriGS.PPE.PIfl.CONVli 

UHLUE  NDEG.LITEP.NrlGGi 
INTEGtP LIIEP.NriGS.NDEGi 
HPPH»  «TCOf.PPE.PIM.COWi 
BEGIN 

INTEGER I.J.ni 
BRPH» CDF.B.C.O.EI-JiNOEGIi 
PErtL  IST.OCCUP.PS.OS.PT.QT.SCL.P.PEU.P.Oi 

PPOCeDUfiE PtWERSEi 
BEGIN 

TST  ' -TSTl 
n ' ENTIEPMNDEG-li/Oi 
FOP J > 0 ST;P 1 UNTIL n DO 
BEGIN 

SCL  • LOFUli    C0FIJ1 - COFINDEC-Jl; 
COFINDEG-JI  •■ SCL; 

ENOi   I  SHIPPING LOOP; 
ENDi   !  REL'EPSEi 

INTEGER PPOCEDUPE LINEAR; 
BEGIN 

IF  TST  ■   n.O THEN P »  l.n/R; 
PPEIN0EG1  >■ Pi      PIWNOEGl  - P.O; 
CON'.MNDEGl - ^CCUP; 
NDEG - NDCG-li 
FOP J - n STEP  I UNTIL NOEG DO 

IF «nS'Coriji/Dun < BCCUR THEN COFUI - oui 
EISE enru) . o.o: 

LINtftP > NDEC; 
END;   I PPOCEDUPE LINEAR; 

Bi-n ' BI-:I • ci-n ► ci-zi • DI-U •■ EI-II • 
C0F(-11  > 0.0; 
FOR J ' P STEP 1 UNTIL NDEG DO CDFIJ1 -  XTC0FIJ1; 
TST - 1.0; HCCUP -  IP.O'NFICS; 

COnrCNT WHILE C0FINDEC1 = P.P DO; 
ZPOTESI; 

IF CHFINDEGl = e.O THEN 
BEGIN 

PPCINOEGI - 0.9;  PiniNDECl » 0.0; CONWINDECl ► ACCU«; 
NDEG • NDEG-I; 
GO TO 2R0TEST; 

END; 

COnnCNT UNTIL NDEG • 0 00; 
BEGIN 

INIT; 
IF NDEG • P THEN GO TO RETURN; 
PS <■ 0.0; Q5 • 0.0; PT • 00: OT - 0.0; 
SCL •■ 0.0; 
REV -  l.Oi      ftCCUR -  100 t NFIGS; 

IF NDEG -   1  THEN 
BEGIN 

R .  -COFIll/COFiei; 
LINEAR: 
GO   TO RETURN: 

END; 

FOP J » 0 STEP 1 UNTIL NDEC DO 
BEGIN 

IF COFUI " 00 
THEN SCL • LNiH3S(C0FIJlntSCL; 

END; 
SCL • EXPiSCL/iNOCGMII. 

FOP J - 0 STEP 1 UNTIL NDEC DO COFUI - COFUI/SCL; 
IF ABS(COFI1I/COF10)) < ADSiCOFINOEG-11/C0FINOEC1) 

THEN REVERSE: 

COMMENT WHILE TRUE DO I FIND LIN OR OUAD FACTOR; 
BEGIN 

REVStO: 
IF  QS "0.0 THEN 
BEGIN 

P . PS;     0 - QS; 
END ELSE 
BEGIN 

IF COFINDEG-;i = 0.0 THEN 
BEGIN Q - 1.0;    P • -Z-0 END 
ELSE 
BEGIN 

0 • COflNOEGl/COFINOEG-21; 
R -  (COF1NDEC-11-0«CDFINDEC-31)/COF(NOEG-21 

END: 
IF NDEG = 2 THEN GO TO QADPTIC; 
R ► 00; 

END; 

COMMENT WHILE TRUE DO <  LOOP FOP LINEAR FACTOR; 
BEGIN 

ITERATE: 
FOR I  •  I STEP 1 UNTIL LITER 00 
BEGIN 

BAIRSTOU: 
BEGIN 

FOR J ► 0 STEP 1 UNTIL NDEG DO 
BEGIN 

BUI ► COrUl-P«BU-ll-0'BU-Zl; 
CIJ1 - aUl-P»CU-ll-<3»CIJ-2I; 

END; 
IF COFINDEC-11 a 0.0 THEN 
BEGIN 

IF BINDEGII " 0.0 THEN 
BEGIN 

IF AOSrCOFlNDEG-ll/BINDEG-m  < ACCUR 
THEN GO TO NEWTON; 

HINOEGI - C0FINDEG)-0>BINDEC-21; 
END; 

END; 
BNTEST. 

IF BINDEGI = 0.0 THEN GD TO QADPTIC1 
IF ABSiCOFINOEGI/BINDECll > ACCUR 

THEN GD TO OMDPTIC; 
END; 

NEWTON: 

LIN-. 

FOP J •■ 0 STEP 1 UNTIL NDEG DO 
BEGIN 

OUI - C0MJ1*R'DU-I1; 
EU) * DU1»R'EU-11; 

END; 

IF 01NDEGI ■ 0.0 THEN GO TO LIN: 
IE ACCUR ( ABSICOFINDEGI/DINDEGD THEN 

BEGIN 

IF LINLAR x 0 THEN GO TO RETURN 
EISC CD TD ITERATE 

END; 

CINDtG-11  ■■  -P«CINDEC-JlCl«CINDEG-31; 
SCL • CIN0EG-2l»CINDEC-:i-ClNDEG-n>CCNDEG-3I; 

IF SCL = 0.0 THEN 
BEGIN P • P-:.0;     13 . 0'iOM.OU    END 

ELSE 
til ft 1N 

P > P»(B|NDFr,-n«CINDEG-ZI-BINDEGI«CINDEG-31)/SCH 
O . g.(-BINnEG-ll«CINDEG-lMBINDEGI»CIN0EG-2Il/SCL 

END: 

IF EINDLG-ll  • 00 THEN R • R-l 
ELSE P ' R OINDECI/LINDEG-U; 

END ITERATE LOOP; 
END LINEAR FACTOR LOOP: 

PS  •  PT:       OS -  OT;       PT 
IF  BEV ' 0.0 THEN ACCUP 
REV » -PEV; 
REVERSE; 
GO TO PEV5E0; 

END FHCIOP FOUND; 

• P;      OT • IJ; 
ACCUP/10.0; 

Reproduced from 
Jest available copy. 
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Liitma of  (he short   »ubjeel  sl<»crilhmi 

OMWTICi 
IF   IST <  «.0 THEN 

BEGIN    P > P/Q;      Q •  1/Qi      ENO.- 
IF  fi)-IP/2.ai«CP,7.8ll  s 9.0 IHtN 
BEGIN 

PPSIN0EC1 * PPEINDfC-11 •  -P/:0: 
5CL  «■ SOP1IO-lP/2.0i»(P/2.oni 
PiniNOCGi - sa. 
PIt11N0£G-ll •  -SCLi 

ENO ELSE 
BEGIN 

SCL •■ SQPTi(P/r.O)«iP/?.ai-Qli 
IF P < fi.O IHEN PPflNOEGI •  -P/J.CK'JCL 

ELSE »PEINOEGI  -  -P/Z.O-SCLi 
PPEINOEC-11 • iJ/PPtlNDtGh 
PimNOEGl - PiniNOEG-ll  •■ B.Ol 

ENO i 
C0W1N0EG1  <■ HCCUPI      C0W(N0CG-I1  - HCCUPI 
NDtG •- NDfC-:^ 
FOP J >■ 0 STEP 1 UNIIL NDEG 00 
BEGIN 

IF BUI  ■ 0.0 THEN COflJl "• O.fl 
ELSE  IF f«S(C0F(Jl/8IJ|l  <. ftCCUP THEN COflJl - BUI 
ELSE C0FIJ1 • 9.01 

ENO i 
CO TO INITi 

ENOi   I  UNTIL NDEG --  f> DO LOOPi 
RETURN: 
ENOi   !  PR0CE01FE POOTPOL i 

ISET -  1: 
IOEC •• 4i ITEP -  IB:      NOIGS • T: 
COEFFSini . ipnaonnn.oi    COErFSIll • -iin3l3ii.|i! 
COEFFSI") * -109900.61    COEFFSO)  '  K"WOO.Oi 
COEFFSIil  - 1.81 

POOTPOi (IOEC.COEFFS.ITEP.NDICS.PREHL.Rin.iG.CÜNCONii 
PUTOUTIISETIi 

ISET - 2i 
IOEC * <: HEP -   10:    NOIGS - 7: 
C0EFFS19) -  1.0>      COrFfSIll  '  -3.11: 
COEFFSm - 20.Oi    C0EFFSI31 - M.O: 
COEFFSUl - SI.Oi 

POOIPOLUOEG.CDtFFS.lUR.NOIGS.RPEHI.RIMHG.CONCONII 

PUlOUTlISETli 

ISET -  3i 
IOEC -6:      ITEP »   Hl:      N01G5 •• 7l 
COEFFSIPil  ►  1.0'    COEFFSIll - -2.Öl 
CDEFF5I21 - 2.0:    E0EFFSI3)  -  1.0: 
COEFFSUl  - B.O:    C0EFF5I5I •  -6«: 
CDEFFSI6I  ► 8.0: 

RDQTPOLI IOEC.COEFFS. HER.NOIGS.RPlHL.RimiG.CDNCON)! 
PUTOUTHSETi: 

ISET • II 
IOLG •   5:     ITEP » 10:       NOIGS • ?: 
COEFFSI«!  -  10: COEFFSUl  •  1.0: 
COEFFSUl  -  -B.O:    CHErrs(31  •     16.0: 
COEFFSUl  -  7.0: COEfFSISl  •  15.0: 

ROOTPOLI IOEC.COEFFS.IUR.NOIGS.PPEMI.RIMHG.CONCONI: 

PUTOUTIISETII 

ISEI - 5: 
IOEC - 11     ITEP ' Ifl:       NDIG5 -   7: 
COEFfSIOl   •   1.0: COEFFSUl   •   50: 
COIFFS  121  -  3.0: COEFFSUl  - -50: 
COEFFSUl  -  -9.0: 

POOTPOL I IOEC.COEFFS. ITEP.NDIGS.RPChL.RItlFtG.CONCONr: 
PUTOUTIISETIi 

ISET - 6i 
IDEG ► 3:      ITEP » 1":      NOIGS *  7: 
C0EFFSI01  »   1.0: COEFFSI1i  •  -B Ol 
COEFFS 121  •■  17.0i COEFFSUl -  -10.0: 

RnOTPOLHOEC.COEFFS.nEP.NDlGS.RPEfiL.PIIInG.CONCONIi 
PUTOUTIISETIi 

ENO 

E 2 

CPÜUI 

COWINT liUS IS CWCO «.COPITHtl 13. CROUT LINEhR EOUNS. 
«.CORniHI BY HINPV C  THHCHER JR. . 
NEW I^rPPPOOUCI ROUTINE «NO OTHER DRESSINGS B» ft.  LUNGE 
C-mj 13".: 

MPPM( IC/UMTI 11 IS• 1:151 .RIGHT11 ■ 151 .SOL 1111511 
INIlfifP IIPPHY LOIrtGI l:15li 
Phil   OIPMN: 
FOPUHPD LHBEL SINCULWi 
INIIG1P  I.Ji 

PEnl. PPOCEOUPF  INPPRllftL.fiR.lIN.LOW.IlHXIi 
I/.IUL LlN.lOM.fWK: 
IMCGEP LIN.LOU.miXi 
HPPHY dl.M: 

UEGIN 
LONG PEil SUfti 
IMF KP K«l 

SUM -O.O: 
FOP 1.« ' 10W STEP 1 UNTIL IK« DO 

Sllrt > SUn<W.ILlN.Ml»HRIUl: 
INPI'Pl  •  SUn: 

END: 

RErtl   PPOCFOUPE   INPPPnuiPPY.LlN.IOL.LOM.nftXll 
llnlUF LIN.tOl. .LOH.rirtXl 
INTfGEP LlN.>OL.lDM.tlHXi 
rtPPlVF KPPYi 

BEGIN 
LOW. PEfll  sum 
INIIMP IX: 

sun ► 9.0i 
FOP M  •   LON STEP   1   UNTIL  Hll«  DO 

5Un . SUH'flPPYILlN.m.ftPPYIKX.i:OLl' 
INPPP: •  SUM: 

ENO: 

PPOCEOUPt CPOUiriHPP.RHS.NBYN.PES.IVOTP.OEI.PEPEftTli 
WllUE   NFIYN.PFPFMT: 
„I'PMY  HPP.PHS.PES: 

INTEGER NOYNi 
IMtr.FP MPPilY  1V0TP: 
PI nl  DEI I 
noni f HN PI PEHT : 

BCCIN 
INUTifP  IX.J/i.lX.imX.IPl 
PLHI   UMP.OUOI: 

OF I   •   10: 
IF RIPtftI THIN CO TO LdBLRi 
FOP l< ■   1 STEP 1 UNIIL NIIIN DU 
BEGIN 

IIMP .   0.0: 
FOP I» • I' 5IEP  1  UNIIL NIHN DO 
III r,IN 

MPPUX.FXI •  fiPPI|X.F«l-INPPP:ihPP.IX>'X.l.F.<-lli 
II   ..BSUiPPIIX.KXIl   >  TEMP  IHN 
01 GIN 

IIMP - HOSHIPRIIX.FXIU 

IIIMX  •  IX: 
EM): 

ENOi 
IWlll'IFXl   -   iniK: 

IF  mux » F« IllfN 
uiniN 

Of!   •   - Oil: 
ri)'' J- '  1 STEP  1  UNTIL NHlN DO 
BEGIN 

IMP • hPPIIX.JXl: 
Hf'IFX.JXl - rtPPliniu.Jxli 
H   I IMlW.Jld  »  TEMP: 

END: 

ilf.l' •  RHSlmll 
Htisiixi . piisiinrixii 
PHSimHXi . imp 

END: 

IF HPPIkX.kXI  - O.P IIIIN GO 10 SINGUlilRi 

gilOT •   l.O/HPPIlX.FXli 
FOP IX - ix»l STEP 1 UNIIL NOFN 00 

MPPUX.FXI   >  IJUOI'liPPIU.FXl: 
FOP J«  • FXM  STEP  1  UNTIL NBYN 00 

MPPIM.JXI   •   ftPPUX.JXl   -   |NPPP2lftPR.KX.JX.l.KX-l)l 
PH51MI  ' PHSIt-Xl  -  INPPPUfiPR.RHS.FX.l.rX-ll: 

END: 
CO TO IBL71 

i 
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Liltina of th« short  »ubject «IsonthM E-3 

LRBLBi  COnnENT NEU RIGHT SIDE ONLY.) 
FOR KX > 1 STEP 1 UNTIL N8YN 00 
BEGIN 

TEMP » PHSlIUOTPIfXIli 
RHSIIVOTPIKXII -  PHSIKXI: 
PHSIKX1 ► TEMPI 
PHSIKX) > RHSIKX1 - INPPPIIMR.RHS.KX.I .KX-I li 

END I 

LBL7i 
FOP KX * NBVN STEP -1 UNTIL  I 00 
BEGIN 

IF NOT REPEAT THEN OET » ARPIKX.KXI'DEI i 
PESIKXI  -  (RH5IKX1 

-  INPPRHftRR.PES.M.KXM.NaVNH/HRPlKX.KXIi 
ENOi 

ENOi ! THAT HAS CROUT 2.) 

FOP I - I STEP 1 UNTIL IS 00 
BEGIN 

FOP J • I STEP 1 UNTIL 15 00 
EQUATII.JI - II«J)/Z.ei 

PICHTII1 ► LN(I/3.9>i 
EQUATII.ll  - EQUATII.IIMS-Ii 

ENDi 

CR0UT2(EQUAT,RICHT.IS.S0L.IDIM;.DTRMN.rHL5E)i 

GO TO EXIT; 
HPITECMCl'li 
PPINTIOTPMN.10.6)1 
UPITECICl'li 

FOP  I  •■  1 STEP t UNTIL  15 00 
BEGIN 

HPITE'MCl-K 
FOP J •  1 STEP I UNTIL  IS 00 

PPINT(E0UHT(I,JM0.61I 

ENOI 
MRITEClCl'll 
FOR  I  -  1  STEP 1 UNTIL 15 00 
PPINT(LOIM>III.ie.eii 
wPiTEi'icru 

FOP I  -  1 STEP 1 UNTIL IS 00 
PPINTIPIGHTIII.ie.Gli 
UPITECICl'li 

FOP  I  -  1 STEP 1 UNTIL  IS DO 
PPINT(50L[IMe.B)i 
GO TO EXIT I 

SINCULARi 
MBITElMCJSINGULflPlCI'li 

EXITi 
ENOi!  ENO OF MAIN PPKPAM. i 

IPttSOPT 

BEGIN 
COWIENT ALCOPITHM 113 fPDM THE COLLECTED ALCOPITHMS COLOUMN 

OF THE MM.    ALCOPITHM AUTHOR IS ROBERT U FLOYD. 
MHlN PPOGPrtM U.  CALLING SEQUENCE SUPPLIED BY A.  LUNOEl 

ARRAY BEF0PEI1I401I.AFIERI1>100|I 

INTEGER INFINIW.Ki 

PROCEDURE TPEE50PTIUNS0PTED.'J.SORTED.KlI 
VWLUE N.IC; 
INIEGER N.» > 
APPAY UNSORIEO.SDPIEDi 

BEGIN 
INTEGER I.Ji 
INTEGER APPAY niii2*N-l)l 

FOP I »  1 STEP 1 UNTIL N 00 MIN*I-ll •• HIBOOB^N»!-! i 
FOP I  • N-l  STEP -I  UNTIL   1 00 

Mill »   IF UNSDRIEDIMU«!) D1V 100001 
< UNS0RTEDIMI2MMI DW 180001  TICN MIZ'Il 

ELSE MIZ'IMIi 

FOP  I •  1 STEP 1 UNTIL K DO 
BEGIN 

S0PTEDIJ1 - UNSÜPTEOinil) DIV lOOOOli 
1  - MI1MMI11 DIU lOOOOXieOOOi 
Mill  -  INFINITY <  IrtOOO: 
FOR  I  •  I OIV 2 WHILE   I   > 0 00 

Mill ■>  IF UNSORTEOIMIZ'll DIV 100001 
< UNS0PIE0IMIZ«I*11 DIV 109001 THEN MIZ"!! 

ELSE MIZMMli 

ENO J LOOPi 

ENR IREESOPTJ 

INFINITY • •1011 
FOP 1^  •  1 STEP 1 UNTIL 100 00 BEFOREIKl - 401.e-Ki 
BEF0PEI1011 •• UWOO.Oi 

TPEESDPKHtFOPE.IOO.AFTER.'tOCil; 

FOP K ► I STEP 1 UNTIL 339 00 
IF MFTEPIU  > AFTEPIK'll  THEN 
BEGIN 

WPITEi'lCl'M 
PPINTiK.E.OH 
WRITEl-        OUT OF OROEPICDi 

ENOi 

ENO MAIN PROGRAMi 
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E-4 

Luting of  lh« »hort lubjtct •Igonlh»» 

PtHT 

BEGIN 
INTEGER NEWS.IXi .    ,. „., 
INTECE» «Pf»«» INlttlftST.tlMKtllSeOll 
hPPftY ESTiri£.E«L»S.L«TEFlli3901i 
REW.  TSTflRTi 

PROCEDURE P£RT(NI«l<.lBEG.JENO.IE,ST.l'«X.LNt..ES.«TI. 

IN1ECER Nmx.EWi«! 
PEHL ST: 
INTEGER flRR«lf  IBEG.JENO.LNKi 
REM. «PR«'' TE.ES.ftTi 
WLUE NtWX.STi 
BEGIN 

INTEGER li ..    „„ 
INTEGER NX.IEX.ISX.ITX.kXi 
REAL «XX.XXXi 
SWITCH SM - Gl.GZi 

PPOCEOUPE SCfWITOBJH 
INTEGER TOBJi 
BEGIN 

INTEGER KXi 
IF  1EX » 1  THEN 

^FOP M -  1EX-1 STEP -1 UNTIL 1 DO 
IF TOOJ - LNKim THEN 
BEGIN TOBJ » KXi    CO TO RETURNi    END 

LNK1IEX1 * TOBJi    TOBJ ►  lEXi    IEX >  IEXM. 
RETURN. 

END SCAN I 

FOR NX  '-  1  STEP 1 UNTIL NtlAX 00 
BEGIN     SCANCJENDINXl).      SCANMBEGINK1U ENOi 

EHAX .  lEX-li    ISX -  II    AXX . STi 
MHILETRUEDOi 

FOR* IEX - I STEP 1 UNTIL EtIAX DO ATI IEX 1 ► AXXi 

S2 
FOP NX ►  1 STEP 1 UNTIL NtlAX 00 
BEGIN 

IF LNMIBECINX!)  > 0 THEN 
BEGIN 

SWITCH SHI • 01.B:i 
GO TO SW1I1SX)! 

91 = 

BZi 

XXX . ABSIATIIBEGINXIP • 'EINXli 
IF XXX > ABSIATIJENDINXIP THEN AllJEND1NX1) 
GO TO ESACli 

KX ► kX»li 

JEN0INX1 • ITXl 

INIECER APPAT LFi 
APPHY EAS.Xl.Fl 
BEGIN 

WRIIEC EUENTStCl'U 

^VxxT^iÄiiiilV^NATUENOlNxn.-XXX, 
ESACli 

END) 

FOR'IEX ► 1 STEP 1 UNTIL EUAX 00 
BEGIN 

IF LNKIIEXK 8 THEN 
BEGIN 

IF ATIIEXI < 0 THEN 
BEGIN 

LNK1IEX1 -  ABSlLNMirxlli 
ATIIEXI - ABSIATlIEXlli 

END: 
END ELSE 

'^ÄIlExr-LNinEXl. KX^X-I. END 
ELSE ATIIEXI - AB5IATI IEXDI 

END) 

IF KX ■ 8 THEN GOTO SZ> 
GOTO SUZIlSXIi 

61t 
isx * zi 
FOP NX . 1 STEP 1 UNTIL NtlAX DO 

Knx . IBEGINX1)  IBEGINXI . JENDINXI. 
ENOi 
AXX •■ 0; 
FOP IEX »  I STEP 1 UNTIL EflAX DO 

BEEs7lEXl . ATIIEXI.      LNUIEX1  > ABSaNHlEXDi 
IF ATIIEXI  ■> A« THEN AXX •  HTIIEXIi 

ENOi 
GO TO MH1L£TRUED0> 

"FOR  IEX ♦  1 STEP 1 UNTIL EUAX 00 LNU1EX1 • AÖS.LNKIIEX1): 

END PERTi 

PROCEDURE PUTOUTINEU.LK.EAS.XLF): 

UALUE NEWi 
INTEGER NEU■ 

WPIUVICl'li    PRINTINEW.^.Oli 
CO TO PriURNi 
FOR IX • 1 STEP 1 UNIIL NEW 00 
HEG IN 

URIlECltlMl    PRlNTILtllXl.1.011 
PPN1.EASIIX1.10.1)1     PR1NT1XLFIIX1,10.411 
IF HOSiiEHSIlxl-XLFIlXin < 9-001 

IHENWPITEl*    CPIllCAL'li 
EWl 
MRIIECICIMi 

RITUPN-. 
END i 

PROCEOUPE UDRMNACIS)! 
WALUE NMCTSI    INIECfR NtCTSi 
BEGIN 

INITIli  • li 
INITI:I •■ ll 
1N1TI3I - 11 
IN1TM1 - ll 
1N1TISI > :■■ 

INlllEl - 2i 
INITI71 ► 2i 
INITIBl • 3: 
INIllOl • 3i 
INI II UM ii 
INITIllI 6; 
INITIICI > b. 
1NITI13I .  7i 
INITim . 7i 
INlTllbl ► ?; 
IN1TIIG1 - Si 
INUIWl • Bi 
INI1I1B1 . 9i 
INlllllll . IOi 
IN1II.-01 ' Si 
INITICII . B 
INITI:.-! ► fli 

iNinrai .  Uli 
IMTItH - \Z> 
INITICSl - Ill 
iNinrBi ► 111 
INIUZ^l - bi 
INITITBI . 7i 
iNinrai • 111 
1NI1I3»! . 31 
IN1TI3II ► Ml 
iNni3:i • 4i 

LASTI1I • 
LH5TI21 ► 
LMSTI31 - 
LHSTI41 ► 
LASTIS1 * 
LHSHBI ► 
LA5TI7I  - 
LHSTIBI  • 
IA51I9I ► 
LASTI10I • 
LASTIUI • 
LAST 1121 ► 
LAST1131 • 
LASTIUI  « 
LAST 1151  • 
LAST 1161 • 
LHSTI171 • 
LASH IB I   ■ 

LASH 191 
LASH 201 • 
LAST1211 ' 
LAST 1221 ' 

1 ASH.'SI 
LAST 1211 
LASH2SI 
LAST 1261 

LASH 271 
LAST 1281 
IHSTI29I 

LAST 1301 
LASTI31I 

LAST 1321 

3; 
li 
lOi 
&l 
bi 
7i 
6i 
7i 

- 7; 
. 5i 
- Bi 
. Bi 
> 9i 
.  101 
- Hi 
. Ill 
•  Hi 

Hi 
12i 
12i 
Hi 
Hi 
13i 

■ 13i 
■ Hi 

13i 
Si 

►  12i 
►  12i 

I3i 
18i 

ES1II1EI11 ► Z.5i 
ESTIMEIZl  ► l-Bi 
ESTIHEISI - 3.0i 
fSHW.IIl ►  18-41 
E51IMEIS1 - 4.2i 
tSTintlBl ► 3-81 
E5TmEI71 . B.7i 
ESTinEIBl -  l-li 
ESimEI91 •■  l-3i 
ESIIHEIIOI - «.Zi 
ESTIMEIllI * B-Si 
ES1II1EII21 - 2 Zi 
ESTmEll3l •• 1-9i 
tSTltlEIHl • 3.Zi 
ESIinFIISl ►  l-li 
ESTIHEIIBl - 6.0i 
ESTinEll71 • 6.0i 
EST1I1EI1B1 ► B-li 

ESTIMEI191 - 0.71 
ESIinEIZOl •• 4 Bi 
ESTinEIZIl - 0.7i 
ESTIMEIZZl •■ 6.4i 

FSI1I1EIZ31 •• 3-8i 
ESIII1EI241 •• O.Zi 
tSVIIEUbl • Z.Si 
ESTIMEIZBl - 0-9i 

ESTIIEIZ?! •  tl-H 
ESTmEI2Bl  - 6.01 

ESTIf1EI291 - 731 
csTinciaai - S-BI 
ESIin£l3ll ► 0-7, 

ESIIi1EI3Zl ► IZ-61 

151APT • O.Oi 
PCRnNHCIS.INIl.LAST.ESTinE.TSlHPT.NEWNTS.LINII.EARLTS.LATEF). 

PUI0UT1NEWNTS.LIN»..EARLYS.LATEFI1 

ENOi 

UDPM32I1 
W0Ri:i27)i 

ENDi 
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Listing of  ihr short fubjtct  slsorithms 

HMWIE 

BEGIN 
COMMENT  THIS IS O'L&D ALCOPITHn NO.  Z57. HAAV1E  NIEGPhllON. 
ALGOPITHtl B¥ POBEPT N.  tUHIl .  PUBLISHED CHCII I9ES, 
TYPED BY ft.  LUNOE. C-MU 1972.1 

REfL ft.B.EPS.tlHSK.Y.rtNSUERi 

REAL PROCEDURE HftVIElA.B.EPS.CRrtND.H)! 
WLUf n.B.EPS.tli 
1NTEKP til 
REftL fl.E.EPSi 
REAL PROCEDURE CRHNDI 

BEGIN 
REAL H.rilOPTS.SUm.SUtlU.O.Xi 
INTEGER  l.J.K.N; 
APPAY TI1>1Z1.U11I1Z).TPREUII<IZ).UPKEV(1I|ZII 

ENDPTS • GPAND(A)i 
ENOPTS • e.SXCRANDiBHENOPTSI.' 
SUrtT •■ I).di 
I  . N ►  1> 
H •. B-A: 

ESTIMATEi 
Till  • H«1EN0PTS»SUMT)I 
SUMU - O.Bi 

K  » ft-H/Z.0i 
FOP J »  1 STEP I UNTIL N 00 
BEGIN 

*   .  X«Ht 
sum - sunu>CRANO(xii 

END) 
Ulli  •■ H'SUMUi 
K -  li 

TEST> 
IF ABSITIKl-UlKl)  <■ EPS THEN 
BEGIN 

HHUIE   •.  e.S«(TIKl«U(Klll 
GO TO EXITi 

END i 

IF K ■  I  THEN 
BEGIN 

D * D t (2*IOi 
TIK'II  -  (D«Tlf.l-TPREVlKl)/(0-l.e)i 
TPPEVIK'll  -  TIKli 
UIKM1 .  rO«UIKl-UPREWIKll/{0-l.e)i 
UPREVIK1  . UIKli 
K •. It<li 
IF (C . tl THEN 
BEGIN 

HAUIE > nftSKi 
GO TO EXITi 

END i 
CO TO TESTi 

END i 

H » H/Z.Bi 
sum ► SUHT * SUtlUi 
TPPEVIK1  •. TtKli 
UPPEWIK1 >■ UlKli 
I  ■.  IMi 
N * 2"Ni 
GO TO ESTItlATEi 

EXITi 
ENOi     '  END OF HAAVIE  INTECPHTOR. i 

REAL PPOCEDUPE EKPZm I 
VALUE X; 
REAL  X: 
EXPZ ♦ EXP(-X»Xl! 

A » B.Oi 
6 .  l.Oi 
EPS » o.eooosi 
tlASI.  <• 9.39: 
ANSWER » HAUIEIA.B.EPS.SQRT.IZX 
UPITEi'ICl'li    PPINTihNSMEP,1,10)1    WRITEl'ICl'lr 
EPS - o.eooeAD 
A - 0.01 
B - V3i 
ANShER - HAUIE'A.B.EPS.EXPZ.IZ)! 
URITEI'ICDi    PR1NTIANSWER.4.10)1    HRITECICl'li 

END)     'END OF tlHlN PROGPAM. 

E-S 

ISING 

BEGIN 
COI-WNI  THIS IS HLCOPIH« 3S5 OF  IHE EACH ALGORITHM SECTION. 

PUBllSHtD IN EHCM 12.10 (OCT  19B9I P.562. 
OUTER BLOCI   WITH 1/0 HND 01HER STATEMENTS INTRODUCED 
MW) IMUE PARIS ANU REMMINDEP OPERATOR HOOED BY A.  LUNOE. 
CHPNECIE-MELLÜN UNIVERSITY. JULY  197Z.i 

INTEGER APPAV SEQUIlilOOli 
INTEGER MHX.ONES.SH1FIS.1.UPPER.HAXMI,mil 

PkOCEOUrE  ISlNGiN.X.I.Sli VALUE N.K.Ti 
INTEGER N.X.Ii  INTEGER APPAY Si 

BEGIN 
INTEGER t,: 
INTEGER APPAy L.niltt OIV ZMh 

PPOLTDUPr SORKL.M.ZIi VALUE Z> 
INTEGER ARRAY L.Ml   INTEGER Zl 

BEGIN 
1NTEGEP R.I.J.ML.ZBi 
FOR Ml.  -   1  STEP 1  UNTIL N 00 SIML1 - Zl 
R .  1 ► li      ZB •  1-Zi 

AAi      J ■. R«Llll-li 
FOR ML   -  P STEP   1   UNTIL  J  00 SIML1   »  ZBl 
IF   I»l  <• k  THEN 

BEGIN R » J«M(llMi     1  •  IM l    GO TO AA ENOi 
GO TO EXITi 
MPUEl'ICrii 
FOP r*  -  1 STEP 1 UNTIL N DO 

BEGIN 
IF  'ML PEM ZU  = 0 THEN WRITEIMC1—')i 
PPlNTISIMLl.Z.eii 

ENDi 
EXIT: 

END SOPTl 

PPOCEDUPE BISORTIL.MH    INTEGER ARRAY L.Ml 
BEGIN 

SOPTIL.M.Oli      SORTiH.L.ll 
ENO BISOPTi 

PPnrEDUPE CDMPOSEiX.k.L.Pn    VALUE X.Ki  INTEGER X,Ki 
INTEGER ARRAY Li    PROCEUURE Pi 

BEGIN 
INTEGER I.Ai 
.' X ■  >   THEN GO TO CCi 
LI II * X-Mli 
FOP I*: STEP 1 UNTIL K DO LIII •  li 
Pi 
IF k <=  1  THEN GO TO CCi 
A -  li 
IF LlAi  >  1 THEN 

BEGIN 
IIAI - LIAl-li      LIA'l) • LIA^llMi      Pi 
IF A • K-l  THEN A . AMi 
GO TO ÜB 

ENDI connrNT LIAI > i LOOPI 

LIA1 
IF  A 

LIAMll       LIAMI 
■   I   THEN GO TO BBi 

li A-ll 

CC; 
END COMPOSEi 

L - T OIV ZMi 
IF  H PEM Zl  '  1  THEN 

BEGIN 
PPOCEDUPE Pll  BISHPTiUMli 
PPOCEDUPE PZi COMi'TCEiN-x.K.M.Plli 

CDMPDSEiX.K.L.PZ) 
END 

ELSE 
BEGIN 

PPOCIOUPE P3i    SOPTU. .M.M) 
PRQCEDDPE Pit    COI1l'05EiN-X.»;-l.M.P3Jl 
PPOCEDUPE PSi    SOPTiM.L.Di 
PROCEDURE PBi    COMPOSEiN-X.f.M.PS)i 

COMPOSEiX.k'.L.P'tli 
CDMP05EiX.t.M.L.rGl 

ENOi 

END ISlNGi 
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**—~-     , UM* u . i    .liaMMMMtMaaillMr 



|^pipi(Apil^'u*«|WWJ,M^lH!4W|!l«-,lllM)^ ^«WWWBESBWWpimS^wiWi^WM^ir^'^-HS^^^^ ^mmmmM^^m^-^w^.ut^imv Mi(M'»,|»!»-i».iw4tf'" 

Lilting of tht Short  subject  ■Isonthas 

HRITCl'IClTYPE UPPER BOUND FOR rWX(Cl«-)i 
REMXUPPERIi      MRlTECICI'li 
FOR tWX > 3 STEP I UNTIL UPPER 00 
BEGIN 

rvixm » mx-11 
FOP ONES > 1 STEP 1 UNTIL tWXNl DO 
BEGIN 

mi • imwoNes.MUX-ONES)i 
FOR SHIFTS - 1 STEP 1 UNTIL IMI 00 

IS1NGIW»;.ONES.SHIFTS.SEOUI • 
ENOl 

END i 

ENO rWINPMCRMIi 

E-8 

B«5IC VEPSION OF PERT 

300  DIM Ii30Cn.L(3O(li.m3O0) 
100  DIM Ei3O0).fl3OO>.Xl3OOI 
110 Nl > 3: 
1?0 CD5UB V00 
130 N - 27 
110 GOSUD .MO 
150 S10P 
700 PEM SUBPOUTINE WORK 
BOO III) ■ li 
900 Ltn • z 
1000 nn ' 2.5 
1100 ICi • 1 
uoo U21 ■ 3 
1300 Et2) ■ 1.6 
Hoo 113) • 1 
1500 LI31 ■ 1 
1600 EI3) = 3.0 
1700 Id) • 1 
1800 LID « 10 
1300 EID • 1B.1 
:ooo lISi ' 2 
21O0 Ll^l • 5 
2:00 EI5) • 1.2 
J300 116) ■ 2 
:ioo LI61 • 6 
JSOO E16) • 3.8 
:6oo 117) • 2 
J700 LI7) . 7 
JBOO E(7) • 5.7 
:goo 118) • 3 
3000 LIB) • P 
3100 EI8) ■ I.I 
3:uo 119) • 3 
3300 Ll9) = 7 
3100 EI9) ■ 1.3 
3500 IUOI 1 1 
3600 LI 10) = 7 
3700 EHO) ■ 0.2 
3800 HID -■ 6 
3900 LHP = 5 
1000 Ellll ■ 6.6 
1100 11121 ■ 6 
iroo L(IZ1 » 8 
1300 El ID • 2.2 
1100 |I|3) • 7 
1500 LII31 • a 
1600 Ei|3) . 1.9 
1700 1111) - 7 
1B00 DID ■ 9 
1900 EIID ■ 3.2 
5000 HIS) ■ 7 
5100 LII5) = 10 
sroo E(15i > 1.1 
5300 HIS) « 5 
5100 LUG) • 11 
5500 Eit6) » 6.0 
5600 III?) > B 
5700 LII7) > 11 
5B00 EI17I r B.e 
5900 HIB) « 9 
60O0 LI iöi ■ 11 
6100 Eiiei '  8.1 
s:oo IMS) . 10 
6300 LI19) • 11 
6100 EII9I = 0.7 
6500 1(201 • 5 
6600 LI:O) • 12 
670O El.TO) . 1.8 
6800 UJII = B 
6900 Lirn ■ 12 
7000 Ein) • 0.7 
7100 1122) • B 
7:00 LI;2) '  11 
7300 EI::) - 6.1 
7100 11:3) ■ 18 
7500 Lirsi '  11 
7600 EI:3) = 3.8 
7700 11:11 • 12 
7B00 L(."l • 13 
7900 EI:D ■ 0.2 
8000 1(25) ■ 11 
B100 H25) • 13 
BJOO E12S1 • 2.5 
8300 1126) • 11 
8100 L12G) • M 
85O0 El 26 . 0.9 
8600 1127 ■ 6 
8700 LI27 ■ 13 
8800 EI27 • 11.1 
8900 II2B . 7 
9001 LI28 • 5 
91O0 Ei2e . 6.0 
9:0l 1129 • 11 
9301 LI29 ■ 12 
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Lilting of th« fhorl  fubjtcl ■Igorithat E-7 

3ioe  ties) • 7.3 
9509    1138) • 9 
9600    U301 ■  12 
9700    E(301 ■ 39 
9600    1(311 •  11 
9900    L(31) >  13 
10000 EOll - 0.7 
10100 1(32) • 4 
10200 Li32» • 10 
10300 E(32) •  12.6 
10500 Tl « 0.0 
10700 PI» CfiLL PE»I(N1.U,L.E1.T1.N2.L2.E2.X1) 
10000 COSUO 13300 
10805    KM COLL PUT0UI 
108)0    G0SU8 10910 
10830    RETURN 
IOSOO 
10910 REH SUBROUTINE PUTOUT 
UOOO PRINT «.• EVENTS' 
11100 RETURN 
11200 FOR 12 »  1  TO N2 STEP 1 
11300 IF 0.001  > A85IIF(I2)-XI|Z))) THEN 11700 
11100 PR.NT 11(12).FII2I.X(I2I 
11600 GO TO 11900 
11700 PRINT M(I2).F(12).»(12).- CRlTICilL' 
11900 NEXT  12 
11990    RETURN 
11998 REM 
11999 REfl 
12000 REM SCHN(I2.I1.L2) 
12010 REP1 
12200 IF 12 ■ 1 THEN 13000 
12100 FOR Kl = 12-1 TO ) STEP -1 
12B00 IF II • (KKl) THEN 12700 
17B50 CO TO 12900 
12700 11 ■ Kl 
12800 RETURN 
12900 NEXT Kl 
13000 Ml 12) • II 
13100 II • 12 
13200 12 ■ 12*1 
13290 RETURN 
13298 PEM 
13299 PEM 
13300 PEM PERT(NI.I1.L.E1,T1.N2.L2.E2.X1) 
13100 REM 
13608 12 ■ 1 
13700 FOR N3 • 1 TO Nl STEP 1 
13780 II • LIN3I 
13790 G0SU8 12000 
13800 REM COLL SCnN(IZ.L(N3).LZ) 
13810 L(N3) • II 
13880 II • I(N3I 
13890 GOSUB 12000 
13900 REM COLL SCAN(I2.1(N3).L2) 
13910 I(N3) ■ II 
11000 NEXT N3 
11100 N2 - 12-1 
11200 IS - 1 
11300 01 ■ Tl 
11500 REM   WHILE TRUE 00 
11800 n  ■ NZ 
11900 FOR 13 •  1  TO N2 STEP 1 
15000 >(I3I  > 01 
15050 NEXT 13 
15200 PEM DO <B00Y> WHILE KZ X 0 
15500 FOR N3 •  1  TO Nl  STEP 1 
15S00 IF 0    ■ M(I(N3I)  THEN 16900 
15800 REM CftSE  15 OF 
16000 ON IS GO TO 16200.16600 
16200 «2 • nBSixiIiN3))HEiN3) 
16300  IF (ieSIXILIN3)n  V. X2 1HEN 16900 
16350 X(L(N3))  ■  -X2 
16100 GO TO 16900 
16S00 XZ • 0nSiX(I(N3)l)-tlN3) 
16700 IF X2 >• 0BS(X(LIN3))I THEN 16900 
15750 X(L(N3))  ' -XZ 
16900 NEXT N3 
17100 FOP 13 -  1  TO N2 STEP 1 
17200  IF M(I3I  >• 0 THEN 17BO0 
17300 IF  X(I3)   - 00 THIN 18300 
17100 M(I3) = ftB5(MiI3)) 
17500 KZ '  KI»I 
17600 *l]2}  = ftBSIXII3ll 
17700 CO TO 18300 
17900 IF O.O > XI131 THEN 1B200 
17900 MlI3i  « -MII3I 
18000 t:2 • «-1 
18100 GO TO 18300 
18200 K(I3) • RBS(XII3)I 
18300 NEXT  13 
18100 IF K2 - 0.0 THEN 1B700 
18150 GO TO I'xOO 
18700 ON 15 CO TO 19000.Z05Q0 
18000 REM   CASE I 
13000 15 • Z 
19100 FOR N3 •  1  TONI STEP 1 
19200 16 • 1IN3) 

mm IIN3) ■ LIN3I 
19-1110 LIN3) » IS 
lü&on NEXT N3 
19600 ftl • 0.0 
107W.I FOR 13 • 1 TO N2 STEP 1 
19000 FII3) • K(I3) 
19900 Mi 13) » 0B5IM(I3I) 
ZOOOO IF HI >'  X(I3) THEN Z01OO 
Z60S0 01 ' XI13) 
Crtino NEXT 13 
20200 CO 10 20900 
ZOIOO REM CtlSE Z 
Z0500 FOR 13 « 1 TO N2 STEP 1 
ZOGOO Ml 13) ■ ABSIMIIS)) 
20ES0 NEXT 13 
20700 RETURN 
200« CO TO 11500 
21000 END 
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Listing of  th« short subject ■laorithos 

BLISS WERSION W PERI 

MODULE BLlllSISTACKdOCd))  • 
BEGIN 
MhCPO («SIX)  • (IF  IX) CEO 0.9 THEN IKi ELSE FNEC l«))«i 
MKCPO lABSrxi  >  (IF  IX) CEO 0 THEN (X) ELSE -IXDti 

F.XTEPNAL OUTdSG.OECOUT.FLOUTi 
KOPWflPO PUTOUTi 

OUN NEWTSi 
OWN  INni3O0).L*iSTI3OP)LlNH3001i 
OUN ESTinCIMOI.EARLYSOOOI.LATErOOOli 

STRUCTURE WECTUIl ■  l,«ECtl«,l-l><0.38M 
rw WECT1  INlTiLftSTiLlNkiESTIMEiEASLYSil.rtTEFj 

FUNCTION f>£RT(NI1«X.lBEG.JEND.TE.5T,Erw«.LNk.ES.HTTl . 
BEGIN 

STRUCTURE RrtR^ECdl •  If.PrtRWEC». I-U<6.3G'i 
NAP PrtPVEC IBCGiJENQiLNKiTEiESiMTi 

LOCHL  lEX.ISX.ITX.kXi 
L0CM. AXX.XXXl 

FUNCTION SCBNiTOOJl  • 
BEGIN 

IF  .IEX NEQ 1  THEN 
BEGIN 

OECR KX FPOtl .IEX-1  TO 1 BY  1 DO 
IF ».TOBJ EOL  .LNKl.KXl THEN 
BEGIN I.T0BJi<0,3G> ►  .»Xi    RETURN   END 

END i 
LNM.IEX1  - i.TOBJi    (.T0BJ1<0.3B> -  .lEXi    IE» •    IEXMI 

END)       I SCANi 

IEX ►  li 
1NCP NX FPOn 1  TO  .Nn»< BY  1 DO 

BEGIN      BCAN(JEM>l>NXI<e-0>1l      SCrtNdBEGI.NXKO.OMi     ENOi 
(.Et1flXK0.3G> -  .lEX-li    ISX •• Oi    ftXX •  .STi 

WHILE  1 DO !  WHILE  TRUE DO 
(  KX . ».EMAKi 

INCR IEX2 FROII I  TO ».EmX BY  1 DO rtTTl.lEXZl ►  .mil 

00 >.  DO <BODY> WHILE  .KX NEO 0. 
(   INCR NX FROfl I  TO   NtWX BY 1 00 

BEGIN 
IF  .LNK1.1BEGI.NX11 GTR 0 THEN 
BEGIN 

CASE  .ISX OF 
SET 

I  CASE  1 
BEGIN 

XXX » ADSi.ATII.IBECI.NXIll FrtDR .TEINXI) 
IF  .XXX CTR fiBS'.ATTt.JENOI.N<in 

THEN ATTI.JEN0I.NX1I •■ FNEGl.XXXH 
ENOi 

!  CASE 2 
BEGIN 

XXX - ABSI.HTTI.IBEGI.NIcllI F5DR .TEI.NXli 
IF   .*'* LSS HDSI.ATTI.JENDI.NX1I) 

THEN ATTI.JENOl.NXll ■• FNEGi.XXXH 
ENOi 

TESi 
END) 

END) 

INCR IEX2 FROM 1  TO ».EMHX BY  1 DO 
BEGIN 

IF  .LNM.IEX21 LSS 0 THEN 
BEGIN 

IF   .ATTMEXZl LSS 0 THEN 
BEGIN 

LNFl.lEXZ) •  IfcflSi.LNI I.IEX21):      KX •    KXMi 
ATTI.IEX21 - hOSCATTI.IEXZl)) 

END i 
END ELSE 
IF  .ATTMEXZl GEO 0 THEN 
BEGIN   LNKI.IEX2I  • -.LNKl.IExei!    KX..KX-1)    END 
ELSE AITI.IEX?! • HBS(.AITt.IE«?li; 

ENOi 
)  WHILE  .KX NEO 0; 

CASE  .ISX OF 
SET 

E-B 

ISO 

ENOi 
MXX • Pi 
INCR 1EXZ FROH 1  TO «.EHAX BY   1 DO 
BEGIN 

tSIIEXZI •  .ATTl.IEXZIl 
LNKI.IEX2) •  lAOSILNKI.IEXZDi 
IF  .AITI.lEXZl GTR .AXX THEN AXX 

END) 
END)      ! OF CASE 1 

! CrtSE Z 
BEGIN 

INCR 1EX2 FROM 1 TO ».EIWX BY  1 DO 
LNII.IEX2I •  lABSI.LNKI.IEXZIIi 

RETURN 
END)      ! Of CHSE 2 

TESi 
i END OF WHILE TRUE DO LOOP. 

I PERTi 

.ATTI.IEXZli 

FUNCTION WOPMNACTS) » 
BEGIN 

LOCAL 1SIAR1I 

INIT1II •  ti LASTI11 • 2i 
INlllZI - li LASTIZl • 3i 
INITI3I ► li LA51I3I - li 
INIH4I ►  li LASKII •■  1«) 
IN1T151 • 2i LAST151  ' Si 
INITI61 ► 2i LASIIG1 > Ei 
1N1I171 •• 2i LAST(71   •  7i 
INITIBI - 3i LA51IB1 - Ei 
INITI91 - 3i LASTI91 > 7i 
INIIIIOI ► it LAStllOl •• 7i 
INITilll • Bi LH51II1I > Si 
IMTIIZI ► Ei lrtSTI12l • Bi 
INIIim - 7i I.ASTI131 • Oi 
INIIIHI •  7i LA5T1MI - 9i 
INIMSl  > 7l LhSlllSl ' I8l 
INIKIBI  • Si LASTIIBI - 111 
INITll?) • Bi LA5II17I •■  111 
1NITI1B1 •  9i LA5I11B1 -  III 
INITIISI -  Id 11)511191  •   ID 
INITIZO) ► Si LA5T(201 ►  12) 
INIimi • Bi LASU2II -  I2i 
INITI::I • BI LASTI221 •  Ml 
INIIIZSI •  lOi Lrt5I(Z3l ►  Mi 
INITIZHl •  I2i inr.TIZd ••  13) 
INUCSl *  11) LASIirSl •• 13i 
iNiTirsi ► li) LASII26I •  Ml 
IN1TI271 •. Ei LA5T1271 -  I3i 
INIII2B1 •■ 7) LASIL-Bl ' Si 
INITICSI ►  11) LASII29I •   12i 
INlIISOl • 9) LASH 301 •  12i 
1N1T131I •  M) iHsinn » i3i 
INIIISZI • 1) LAST1321 •  IPi 

ISIHPT • O.Oi 

ESTIMEIll  ► Z.S) 
ESIIMEI2I '  I.Bi 
ISTIHE13I - 3.0i 
fSIIMCm »  IB.1i 
E5IIMEI5I ' I.Zl 
ES1IMEIEI - 3.BI 
E5IIMEI7I - B.7i 
EST1MEIBI -  Ml 
ESTIMEI9I •  1.3i 
ESTIMEI101 •■ 0.2i 
ESTIMEIIII • E.Ei 
E5TIMEI12I <• 2.2) 
ESIIMEmi • 1.9l 
ESIIMEIld ► 3.Zi 
[S1IMEI1SI  ► J.ll 
ESIlMEIIEI - E.Oi 
fSUMEim  - BOi 
ESTIMEI1B1 - B.li 

EST1MEII9) > 0.71 
ESTIMEIZOI • I.Bi 
E5IIMEI2I1  ► 0.7) 
FSI|nEI22l  - B.li 
E5imn23l - 3.8i 

ESTIMEIZII  •■ O.Zi 
ESTIME1ZS1  •■ 2.5i 
ESTIMEI26I  - 6.91 

r5TIMEI27l  -  II.H 
EST1HEI2BI  -. G.3i 

E5TIME1291 - 7.3) 
ESTIt1£l3ni  • 381 

ESTIMEI311 » 0.71 
ESTIMEI32I  •  IZ.G) 

PtRTi.NhCT5.INlI<0.0>,LA5T'0.0>.E5nME'0.0>..TSTART. 
NCUNI5n.i".llNK<H.O>.EAPL>'J'.0.0.'.lATEF<0.0>)) 

PUTOUTI,NEUNIS.LINI<0.0'.EARLYS'-O.OJ.LATEF<0.0>1I 

ENOI    '    ROUTINE UCIPI - 

ROUTINF PUTOUIINtl'.D .FAS.XIF)   ■ 
ffiCIN 

SU'lir.IUPE PrtPVtCIII  •  I».PHPUEC<.I-11-.0.3B>I 
MHP PuPWr. I.Ki[fi5:«lF i 

DUTMSGlO-PLlT  "WJ'I)    DF.COUHO.I. .NEVn 
OUTMSGIO'PLtl  '    EUCNTSII'J'li 
PEIUPNi 
1NCP IX FPDM 1  ID .NEV BY 1 Du 
BEGIN 

nuinscio.PLH •'H'J'II   ofcouno.i,.LKi.ixni 
FL0UTiB>.CnSt.IXI.|0<4)i    fLOUT in, .XIFl. IX1.10.111 
IF ABSIf.EASl.IXI F5BP  .X1.F1.KI)) LSS 0.001 

1MFN DUlnSCiO.PLIT   '     CPIIICAL')! 
ENOi 
OUTMSCIO.PLIT ■■wr )i 

ENDi    I ROUTINE PUTOUI 

WOPt 13? 11 
wDPii:7)i 

END 
ELUOOM 

CASE  I 
BEGIN 

ISX ..  li 
IhCP NX FROM I TO  .NMHX BY 1 00 
BCCIN 

ITX .  .IBECI.NXIi      IBECINXl 
JENDI.NXI •  .ITXi 

.JENOI.NXIi 
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Lilting of  <h« short  subject  «Igonthnt 

rORTPfN VERSION Of PERT 

CHLL WOPnS:) 
CHLL H0PK1J7) 
END 
SUBPOUriNE UOPKiNnCISl 
INlTIIiLIZE Dfilrt rtNO C«LL  THE PROPER SIUTf. 
DIMENSION 1NIT(3WI .LAST 1309).LINt 13001 
DIMENSION ESTIMEISOai.EOPlVSiatKO.XLiiUFiaOOi 

E-3 

r.s 

l.B 

3.0 
1 
10 
IBM 

1.2 

3.8 

B.7 

1.1 

1.3 

INITd) ' 
LflSTUI » 
ESTIMEIH 
INITiJi • 
LHS112) • 
ESTIMEiCi 
INIT13I = 
LhSTISi = 
ESTIMEI3) 
INITdi = 
LASTIIl • 
ESTIMEH) 
INIT(5i ' 
LHSTI5) > 
ESTIME(S1 
INITIE) = 
L«ST(6) = 6 
ESTII1EC6I ■ 
INITI?! = ; 
LHST'7)  =  ' 
ESIIMEin 
INUIB) • ; 
LHSTIB'  • I 
ESTIMEfBI 
INITiOl  ■ 
L«STi3)  • 
EST1MEI9I 
INITHOI  ■ 
LHSTIIOI  = 
tSTiMEdei 
1NIT11II  < S 
LHSTIIII  • 5 
ESTIMEdll • 6.6 
INITIiri  • E 
LrtSTIlZi  ■. 
ESTIMEMZ) 
INIT(13l  • 7 
LASH 13)   -  8 
tSnMEll3l  ' 1.9 
INITUIl ■ 7 
LftSTIlD  ■= 
ESTIHE(ll) 
INIKIS) - 
LHSTdS)  • 
ESTIMEHS) 
INITI16I  • 
LrtSTUB)  = 
ESTIMEI16)  = 6.0 
INITU?) r 8 
Lfi5Til7)  = 
ESTinE(17) 
IN1TI18)  ' 
LHSTI18)  • 
ESTiMEUB) 
INITII9) • 
LrtSTUBI  • II 
ESTiMEngi • e.7 
INITiee) 
LftSTiCO) 
ESTIMEIZO) 
iNHCli 
LHSTIZD  • 
ESTIMECl) 
INITCZ)  > 8 
LASTfZJ)  • 14 
ESTIME122)  ■ 6.1 

0.. 

2.2 

3.2 
7 
10 

1.1 
5 
II 

II 
6.0 

9 
II 

10 

5 
12 

l.B 
B 
12 

0.7 

INITI23) • 
L«5TIZ3) - 
ESTIMEI23) 
INIT(21) • 
LHSTI21) ' 
ESTIME(21) 
INIT(75I • 
LAST'25) • 
ESTIMEI2S) 
INIT126I = 
LASTi26) ■ 
E5TIMEI26) 
INIT127) « 
LftSt'27) = 
ESIIMEI27) 
INIT1291 « 
L0S1(2B1 • 
ESTIME'ZB) 
INIti-S) • 
LftSl.:3) ' 
ESTIMEI29) 

10 
11 
. 38 
12 
13 
= 0.2 

2.S 

0.9 

11.1 
7 
5 
• 6.0 
11 
12 
• 7.3 

INITOOI  ' 9 
III5II30I  = 12 
tStir,ti30i - 3.8 
IN1TI3II  < M 
LH5TI31I   - 13 
ESIIMEUl) - 0.7 
INITI3?)  ' 1 
L«Ti3.:i  = 10 
Esir,£i3:) • 12.6 

isioRi = on 
CftLL PtPllNHCIS.lNU.LrtST.ESnME.TSTftRT. 

1 NEVNIS.UW .EOPDS.XLflTEF) 
COLL PUTÜUKNEW.IS.LIN)   EhRLYS.XLftlEF) 
PL TURN 

END 
SUflPOUTINL  PUIOUIlNEU.U.EfiS.XLF) 
DIMENSION Uin.EHSill.ninil 

irPE   1000.NEV 
lOOil FOPMHl   11».II.711 EUENTSl 

RETUPN 
00 I   I»  =   l.NEU.I 

IF (hnSilEhSiIXI-XLFU»))) .LT. 0.001) GO 10 2 
TYPE lOOl.U.im.EASIIXI.XLFUX) 

1001 F0PMH1 IU.I1.2Ft1.11 
CO TO 1 

2    TYPE 1002.IMIXI,E(«iIXl.XLFiIxi 
1002 fOPMOT (1X.11.2F11.1.9H CRITICftL) 
1   CONTINUE 

K TURN 
END 
SUflPOUTINE SCMNiIEX.ITOBJ.LNK) 

DIMENSION INI ID 
IF  iIE»  .EU.   II CO TO 1 
LUCY •  IEX-1 
00 2 m  =   l.LUCY.l 

*.X   =  LUCY-IX2*I 
IF  IITQBJ  .NE.  LNIIt:» i) CO TO 2 
ITOBJ • M 
RETURN 

2      CONTINUE 
1       LNlllEXi   ■  ITOBJ 

ITOBJ «  IEX 
IEX =  IEX-1 
END 
SUBROUTINE  PERTiNMHX.IBEC.JtNO.TE.ST.mxE.LNr.ES.fll) 
DIMINSION  IfltCi I). JENOI1).LNt(11,TE( 11.ES(1).AT 11) 

IEX '  1 
00   1   N»   =   1 .NMHX.1 

CHLL SCONiIEX.JENOiNxi.l.Nl.i 
CHLL SCHNIIEX.IUECiNXl.LNf) 

1 CONTINUE 
MOXE  •  IEX-1 
ISX =  1 
AXX = ST 

C WHILE TRUE DO 

2 CONTINUE 
LX • MOXE 
00 3 IEX.'' .  l.M.ixE.l 

3 MT11EX2)  • ftXX 

C DO <D0DO WHILE )»    NE. 0 

6 CONTINUE 
DO 1 NX =  l.NniiX.l 

IF   ILN) II1IECINX1)   .LE.  0) CO TO 4 

C COSE  ISX OF 

CO TO 1101.102).ISX 

101 

102 

XXX * HBSiftTHBECiNXDXTElNX) 
IF  ixxx  .01.  MIS'AIIJENOINXU)) flT(JtNO(NX)i  - -XXX 

CO TO 1 

XXX = ABSiHllIHEGiNXMi-TElNXi 
IF  IXXX  .LT.  ABSI0TIJENDINX)))) ATUENDINX)» •  -XXX 

CONTINUE 

00 7  IEX2 -  l.MHXE.l 
IF  ILN) MI »2)    CE.  0) CO TO 8 
IF   I «I i lEXD    CE.  p n) CO TO 7 
LN) ilE>2)  '  IHBSUNI IIEX21I 
IX = tXM 
ATHEX.-i  = HB5IOTIIEX21) 
GO TO 7 
IF  1HTIIE»2I  .LT. 0.0) CO TO 9 
LNU1EX2I  * -LNk(IEX2) 
»X ■ I.X-1 
CO TO 7 
0IMEX2I  ' fiOSiBTIlEX2l) 

CONTINUE 

n „„^aa^Mi 
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1 
Lutini of the ihort >ubj«ct •Isontha« 

IF (KK .NE. 01 CO TO E 

C     END OF DO <B00Y> UHlt.t KX - 0. 

CO TO (2«l.l'0:i.ISX 

C    CASE 1 
zei  isx • z 

DO 12 NX • I.WIHX.1 
ITX • IBEC(NXI 
1BEC(NXI ■ JENOINXI 
JENQINXI > ITX 

12    CONTINUE 
iwx ■ e.e 
DO 11  IEX2 •  l.MHXE.l 

ESIIEX2I  ' ATdtXZI 
LNKI1EX2I •  lABSHNKiIEXZn 
IF IATIIEX2)    01.  AXX)    AXX • ATIIEX2) 

11 CONTINUE 
GO TO zoe 

C CASE 2 
292        DO 16 IEX2 •  l.WtXE.l 
10 LNKIEK2I  •  U'ieS(LNK(IEX2>l 

RETURN 
zee       CONTINUE 

CO TO 2 
C END OF UHILE TRUE DO LOOP. 

END 

E-ie 

THE 5 YtPSIONS Of Will EN. Ml.   IN ONE  PPOCPWI. 
VERSION SELECTED BV CHGE  INDEX. 

nooaE iNiEPPaisi(:iCi..iin£P=ExTEPNHLisixi2ii • 
BEGIN 

GLOEMl 
nnxc. 
HSTfP. 
IPhCECrtSEi 

BIND 
NMHX ' le. 
IHBSI2 • ZOli 

DUN 
X. 
xRscisi'Hnsm. 
OPOINMHBSI^II 

EXIEPNHL 

LOCI 

I  UHPIHOLES INITIALLED BY DDT 
i UPPEP Linn FOP LOOP 
I STEP LENGTH DUPING INTERPOLATION LOOP 
! SELECTS ROUTINE TO BE TRACED 

I tlAXHIAL NUMBER Of POINTS. 
! SI2E OF ruNCTION TABLE- 

'ABSCISSAE Of FUNCTION TABLE 
!fUNCTION UHLUES. 

V) 
VERSION A 
 <\ 

ROUTINE (WITIENiXl.TT.XX.N.LI  ' 
BEGIN 

REG15IER HI. LO.  Ii 

DUN 
MNtlinl.        I  ABSCISSAE 
OXINMiiXl.      i  ABSCISSAE DlfTEPENCE. 
YINM.lVl, I   DID FUNCMON VALUES. 
CINHMXII        ' NEW FUNCTION VALUES. 

SIPUC1URC PHPVECIII 
HUP PIIPVEC XT.YTi 

(■.PARVEC<.II<0.36>i 

IF .XX CiJL   .XTI.LI  THEN RETURN .YTI.Lli 

! RPEPHRE AND PERFORM BINARY SEARCH FOR RIGHT  INTERVAL. 

LO •  0;      HI -  .Li    I •   .L/2: 

WHILE i.Hi-.LDi GTP 1 DO 
( <  LOOP INVARIANT ISi 

! .XTI.IO) LE'J .XX LSS .XTI.HIl 

IF  .»X EQL  .XII.LOl 1H1N REIURN    VTI.LOli 
IF  .XX LSS .XI I. II  THEN HI  »  .1 ELSE LO ••  .Ii 
I '  I.HI«.L0i/2 

li 
I  NOW  .XII.LOl LEO    XX LSS  .XTI.L0«1I 

IF ILO -  .LO-.N/JM) LSS 0 THEN LO • Oi 
IF LO • .N - I CTR .L THEN LO ' .L-.N»li 

I NUN READY TO INTtRPOLAlE. 
! U5IW. POINTS .LO. .1.0*1 LD».N-1. 
I FIR5I  INIUALIZE LOCAL  TABLE. 

LO »  .10-11 
INCP J IROM 0 TO .N-l 00 
I  XI.J| -   .XTILO -  .LOM!i 

YI.J1 •.  .YIMOU 
0X1.Jl -  .XII.LOl FSBf    »Xr 

lOUTINII.Jli'OUIINTi.JT:   JUIFLS'.XI.JIH 
'OUIFlSi.YI.JIu  !Oli'  i Oi .0X1 .J1U   iCRLFIli 

li 

1  NOW COMPUTE SUCCESSIVE APPPOilMAIIONS 
I   USING SUCCESSIVELY HOPE  POINTS 

INCR J FROM 0 TO .N T DO 
(   INCR I   IROM ..I'l TO   N-l DO 

( 21.tl ►  K.YI.Jl FMRR .0X1,Kll FSBR t.VI.KI FHPR  .0X1.JIM 
FDVR I.XI.U FSBR  .XI.Jlli 

'OUIFLBI.ZIFlli  ICRlFOi 
t: 

INCP I   FROM    JM  TO    N-l  00 YI.CI  -  .2I.K1 

! NOW READY ID DELIVER VALUE: 

.2I.N-11 
END:       <  ROUTINE AAITFEN. 

. 
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Litting of th* short  »ubnot  alsorithnt 
E-1J 

\> 
VIFSION I  a 

\i 

POUTINE  INOExii(lf.B.L.N.K'  • 
BEGIN 
*> 

FIND THE  INDEX OF  THE ELErENI  IN XThB WHICH IS IME FIRST 
Of  THE N ELEMENTS CLOSEST  TO X 

<X 

STPUCTUPE  IVECII1 «  (i. 1VEC». I K0.36>: 
MHP IV£C KTrtBi 

LOCM. K.S.Ti 

I  FIND K S.T.   .XTftBI.M LEQ .XTABl.t.'!! 

INCP I FPOn I TO    L DO 
(   IF .X EQC .XTftBI.Il  THEN (t. •■  .li EXITLOOPi: 

If .X LEO .XTABI.l)  THEN CK -  .l-li EXITLOOPU 
II 

!  FIND START AND FINISH ELEMENTS DISRECMRDING XTHB rtRRHV BOUNDS. 

S -  A-.N/2MI      T -   .l'».N/2i 
IF  (,N MOO :i EUL  1  THIN 

IF  i.X FSBP  .XIABI.» 1) LSS I.XTAOI.KMI F5BR    Xl 
THEN S •   .5-1    ELSE T -  .TM; 

!  ADJUST START ELEMENT  TO CONFORM TO ARRAY BOUNDS. 

If  .S LSS 0 THEN S * 0 ELSE IF    T GTR .L THEN S •  .S-.T«.Li 

RETURN .S 

ENO>       '  ROUTINE  INDEX. 

ROUTINE LAITIENIXTAB.YTAB.X.N.LI ■ 
BEGIN 
!  N POINT  INTERPOLATION. 

STRUCTURE  IUCCII1  •  («.IWEC«.IK0.3G>i 
STPUCTUPE MAIRIXCI.J) = IJ'JI I.IWTBIX«.J«J«.II<0.36>I 

MACRO OEIlA.B.C.Ol = HA FMPP 01 F5DR IB fMPR Cll»l 

DUN MAIR1X INI 10.IO)i 
OWN xcmii 
LOCAL  Ji 
MAP IUEC XTABiYTABi 

J •. INDEX!.XTAB..L..N..Xii 

!   INITIALIZE XCIOi.N-ll  TO  .XIABI.Ji .J».N-l 1 
INCP  I FROM 0 TO    N-l  00 XCI.II  -   .XTrtfll. l«.Jll 

!   INITIALIZE  INI0i.N-l.«l TO TTABI.Ji.J».N-1) 
INCR I FROM 8 TO  .N-l DO INI.1.91 -  .«TABI. I». Jl i 

! GO 
INCR i  FROM 1 TO N-l DO 

INCP K FROM 1 TO .J DO 
INI.J..K1 • DETM.1NI.I.-1..K-I1I.(.XCI.K-11 FSDR .Xl. 

|.INI.J..K-I|1.(.XC1.J) FSBP .XII 
FOVR I.XCIJI FSBP .XCl.K-llli 

RETURN .INI.N-l..N-l1 
ENOi  I ROUTINE LAIUEN. 

VERSION C  a 

AND 

FUNCTION GAIUENUTAB.VTAB.X.N.LI  = 
BEGIN LOCAL XX.MllOl.LB  I BIND NI = .N-1   I 

•  X« MILL MOID «III-» FOP Tilt DATA POINTS CHOSEN 
'   r«  THE   INUPI'OIAUD UALUES. 

BIND XT = .«TAO  .  YT..TTAB  ;  MAP XT.YT   1 
LB-I LOCAL  l.i.  i 

|.(i i 
UHILE  .» GTR    XTI.II AND  .1 LSS   L DO I-.I«!   1 

■  I Win IIDL05 THE  INDEX OF  THE FIRST XI.. I 
1  THAT  IS GEO X. 

K..I-.N/: i 
IF   F LSS 0 THEN S 

ELSE  IF  .K GTR  .L-.NM  THEN .L-.NM 
ELSE  .F: 1I 

i LB NUH HOLDS THE  INDEX OF OUR SMALLEST BASE POINT. 
!   INlllHLItE   XX AND  YY. 

INCR  I  FPOM 0 TO Nl   DO 
(   MI.IN.XTI.LB'.ll FSBP    X   : 

IY|.ll-.<T|.l.B».ll H 
i  INIERPOIAIION EXACTLY ACCORDING TO 
! SCHEME Of GIVEN PEFEPENCt. 
i EHCH l-IIERATION GIVES VALUES OF  l-IM DEGREE. 

INCR 1 FPOM I  TO Nl DO 
(MHCPO ll=.l-l«  ! 
INCR J FPOM  .1  TO Nl  DO 

YYI.JI-    I     .YYIII1 FMPR .XXI.J1 
FSBP .YYI.JI FMPR .XX1I1I I 

FOVR (.XXI.JI FSBP .XXIIII)     li 
YYINI) 

END:  ! Grtlll: I 

VERSION B 
 <\ 

PUIJ1IM B.1ITFENIXT1.B.YIAB.X.N.LI   • 
DFG IN 

SIPUCIvPt   IVECIII *  l«.lWEC».|Kn.36>i 
HAP |V£C »TAniYlAB; 
OWN «mop ci 101.xxi 1011 
PEGI51ER B.Ei 

B •• XTABIOh      E •  XTABI.L-II: 
»HIE  l.E-.Bl GTR I DO _    r   ,, 

IF •il.B'.Ei/:i GTR .X THFN i"  -   I.B'.El/J ELSE B -  I.B».El/2; 

IF ID •  .D-.N/ZMI LSS XIADHIl   .HFN B '  XTAOIDl 
ELSE  IF  .0 GIP XIABI.L-.N>I1   THEN B >  XIABI .L-.NM 11 

E > YIHHI.B-XTHBIOII; 

DECP I FPOM  .N-l  TO 0 DO 
(  XX|.I) - *.i>    Cl.ll  - ».Ei    B •   .B»li    E  •  .EMU 

DFCR I FROM .N-l  10 1 DO 
DECP J FROM    I-1  TO 0 DO 

CI.J1 •  K.CIIl FMPR 1.xxl.JI F5BR .XII F5BR 
I.CI.J1 FMPR  I.XXI.II  FSBP  .XIII FOVR 

I.XXI.JI FSOR  .XXI.Illi 

.ciei 
[NO:      I ROUTINE BAITI.EN 

. 
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Lilting of the »hart »ubicct ■l^crithaü 

»>         
VERSION C 
 <\ 

POUTINE CAITKENIXTAB.VTAB.XP.N.LI • 
BEC1N 

OWN uecTOf» ciiei-xxnoi.xxKiioi: 
BEGIN  I   THIS BLOCIf SAVES ONE  INSTR.   IN THE ENTRY COOE HND ONE 

!   IN THE EXIT COOE SINCE WE NOW ONLY USE 1 REGISTERS. 
REGISTER B.E.Xi 

8 -  .XTABi      E •  .XTAB»2».L-.Ni    X •  .XP; 
WHILE  .E CTR i.BM) 00 

If •l(.B«.E)/ZI GTR    X THEN E ►  I.B*.EI/r ELSE B «  I.B».EI/:i 

IF  (B ►  .B-.N/Z*!) L5S .XTftB THEN B ••  .XTHB: 
E  •■  .YTrtB'.B-.XTflB; 

DECK 1 FROM .N-l TO 0 DO 
(  XXXI.II .  (XXI.li . ».Bi F5BR .Xi    Clll •■ •.£! 

B ►    BMi    E «  .£•! 
)i 
ENOi       !  OF THE BLOCK  WA\ SAVES US ENTRY/EXIT CODE. 

OECR I FROM .N-t  TO 1 DO 
DECR J FROH .1-1 TO 0 Dl 

CI.JI •  K.CI.II FMPR  .XXXI.J)) FSBP 
(.CI.J1 FMPR    XXXI.ID) FDVR 

I.XXI.JI FSl'R  .XXI.Ill; 

.ciei 
END;       I  ROUTINE EAITKEN 

POUTINE TEST(IRO.HO) 
BEGIN 

LOCAL 
J. 
H. HMAX,  HtllN. 
X, 
Y. 
OY. 
FACT i 

E-1Z 

H » .HOi  FACT ► l.OSi  X 
HMAX - .HO FMPR 3.91  HMIN 

l.Ol 
.HO r^R o.zi 

INCR  I FRWI 8 TO TABSIZ-I BY  1 00 
I  ABSCISMI  -  .Xi 

IF  .1 CTR 9 THEN I   IF  .ABSCI5l.il LEQ .HBSCISI. 1-11  THEN tl 
0P0INI.I1 - LOGI.Xii 
X »   .X FAOP  .Hi      H »   .H FMPR  .TACTi 
IF   .H GTR  .HflAX THEN (X .  .X FHOR  .H FOVR 3.HI 

FACT • 0.9511 
IF  .H LSS .HMIN THEN FACT •  1.65: 

li 

INCR COUNT FROM 1  TO    MAXC DO 
(   X ►  1.01      H >  .HSTEPi 

WHILE  .X LEQ  .AB5C1SITAB5IZ-11 DO 
(   INCR I FROM Z TO NMAX DO 

(.IPO)IABSCI5':O,O>.OPDIN':0.0>..X..I.TABSIZ-ni 
X »  .X FADR  .H 

ll 
li   !  END OF TIMING LOOP 
ENOi     t  OF ROUTINE TEST. 

CASE  .TRACECASE OF 
SET 
X0t    TEST(AAITKEN'.0.0>.0.1)i 
MX    TESTaAITfEN'O.O.P.Hi 
XZ\    TESTIGAITFEN'O.e.'.O.Di 
\3X    TEST(BAITKEN<?.0>.O.IH 
\H\    TEST(EAITKEN<.O.0>.O.lli 
TESi 

END 
ELUOOn 
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