
P^11 'I MPUMJII 1 '^-—^liPBIIPiPWiraBF" '»I1.11 "" ■■■""«»

AD/A-004 824

EVALUATION OF INSTRUCTION SET PROCESSOR
ARCHITECTURE BY PROGRAM TRACING

Amund Lunde

Carnegie-Mellon University

Prepared for:

Air Force Office of Scientific Research
Defense Advanced Research Projects Agency

July 1974

DISTRIBUTED BY:

KTui
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

-- -—

•~~-~*m*~m ■>■ '" m ^W^i^ if n •«■ iHHiiiiaiiPw««nn MI im lOT^n^nmt^WVB^W^w^ ■

UNCLASSIFI D

MCWWTV CLASSlf ICAttON Of TMIi* &• (H'irn l>mli I nlrrc.n

REPORT DOCUMENTATION PACI

8 A
2. GOVT ACCLiSION NÜ

«. TITLC f«nJ Suhdl/.;

EVALUATION OF INSTRUCTION SET PROCESSOR ARC11TTECTIIR1
BY PROGRAM TRACING

7. AUTMORf«;

Amund Lunde

READ IHSTRUCTIONS
RRKORE COMPLETING KORM

J HLCIPIENT'S C Al ALOC NUMULH

S. TYPE OF REPOHT A PERIOD COVERID

Interim

C. PERFORMING OMG. REPORT NUMBER

6. CONTRACT OR GRANT NUMOERf«>

FA4620-73-C-0074

». PERFORM1KG OHGAMZATION NAME AND ADDRESS

C rnegie-Iiellon University
Dopartuient of Coinpviter Science
Pittsburgh, PA 15213

10. PROGRAM (LfMCNT. PROJECT, TASK
AREA A WORK UNIT NUMBERS

61101D
AO-2466

II. CONTROLLlriO OFFICE NAME AriD ADDRESS

Defense Advanced Research Projects agency
1400 Wilson Blvd
Arlington, VA 22209

12. REPORT DAI E

July 1974
13. F'UMÜER OF PACES

JA1 Zot
K. MONITORING AGE'.CV NAME ft AODRESSf/((////etonl Itorr ConUollInt Ollif)

Ac Force Office of Scientific Research (KM)
1400 Wilson 31vd
Arlington, VA 22209

IS. SECURITY CLASS, (ol Ihla ttpoil)

UNCLASSIFIED

IS«. DECLASSIFICATION/DOVN GRADING
SCHEDULE

16. DISTR|[,U1I0N ST ATEMEKT fo< f/W» «epon;

■«ppVCVCd for public rcloaro; A_m¥9iytf%¥im nnlinn'ted.

17. DISTRIBUTION ST ATEMENT (ol ihc tbtlttct rnlcfd In I lock 30, II dlllittnl (ton Report)

16. SUPPl.EMEllTARV NOTES

19. KEY WORDS (Conlmut on rrvtrt» »Id» II n»ctit»ry and Identity by block number;

20. ABSTRACT tCenlinue on rsvera« »id» II nec»i»»ry mnd Identity by block number) The thcsi ■ deVelODS Tlld f• V'J 1-

nates methods for evaluation of the architecture of instruction set processors
(ISPs). (An ISP is the logicnl processor defined by the instruction seu, inde-
pendent of physical implementation). The methods are based on analyzing traces
of program execution! which conlnin Infomatlotl about every instruction executed.
Th'! main •dvantagOf ol the nethodfl nrv.
a) 'Ihey pomlt a very detailed study ui ISP behaviour, b) They arc not restflcti
to specific languages or processors, c) They i're easily programmed.
Met'. I and e>:porimcncal results arc presented for fcn.r aspects of ISP architccLt

Do,r AN 73 1473 EDITION OF I NOV OS IS OOSOLCTt

 (rr;7rrrTiiTrrr7"

JC^LICSJ ETLD

2
■ -■ - ■

iHPW ■ ' ^ ■ I" Ill 11» 11J ■ ■■■■'» mp wn^«n^ ■■ «^w»ww^< «iwaii i i m mi mmmrmmm ■•■■M

MMMV

KK Aatraet (eontlnuad)
register structure, djit« tvpes ar:,d operators, control operators'and iddr«»f cnlcu-
lation. These may be evaluated in terms of four types of costs: execution time,
memory space, cost of prosraminint',, and the cost of hardware. The methods preconted
are mostly concerned with time.

A set of prograM, the subject set, was used to represent the ISP workload. This
was chosen primarily to investigate the variations in the results caused by var-
iation of language, language implementation, algorithm, and programmer.
Register structure is invesirtgated through the concept of a register life. This
is the period from when a register is loaded, until its last use before the next
time it is loaded. The methods provide data relevant to two problems:
a) What is the optimal number of registers? b) How desirable is generality of
regi sters?

An algorithm is presented which will find how many registers are live at each time
during the program execution. This algorithm is extended to compute an upper
bound o': the Increase in time if the program were to run on an ISP with fewer
registers. This computation is based on temporarily storing registers that are
live but unused for long periods, and on interleaving several lives In one register.
Th3 thesis also presents a classification of the operations that may be performed
on a register. This Induces a classification of register lives which may be used
to assess the need for generality.
Most of the other methods presented apply equally to data operators, control
operators, and addressing. The main problems are:
a) how to detect operators that are In the ISP, but not used sufficiently to just-
ify them. This is done by frequency counts and various derivatives therof. Par-
ticularly Interesting are the frequency results obtained by weighted summation over
the whole subject sot. b) How to detect operators that should be included in the ISP.
Theis problem is approached by studying instruction sequences.
'flic main problem in detecting sequences is to reduce the space and time require-
ments of the analysis program. This problem was solved by using a multi pass al-
gorithm. Baefi nnss pxtomis the tltitting sequences by one insUu^Liuu. Aller each
päöo, Smu^iaLic uiL Lhocis are used to discard insignificant sequences.
The thesis proposes methods to study operand values, infor-mation used for control
and addressing, information related to the addressing problem for tests, and infor-
mation on use of indirection.
The most inportant conclusions drawn about the validity of the methods are: The
experimental results show good i"i-ernal consistency. Their trend is independent
of algorithm and programming language. They agree well with previous knowledge.
The dependence on language is most important for those languages that use a run
time systoiji. The use of data operators and data structures depend on algorithm,
the register usage does not.
In a subject set for a full scale analysis, the data operators and data structures
of the area of applications should be well represented. The Individual subject
programs should he large enough that dominating loops are avcided.

I (X

^__ ■MM*

Mf^f^ippi JJI i|,iijii|iiJHii tw^minr HP?» 11(11 ■(IPIIIIH ■»I.WXI^I.II «ippgu»» *.JII

if

* -n»p«iwwr»pwiwpw ' HII KH ■•■ ' ■ ""■'" '

1

Evaluation of
Instruction Set Processor Architecture

by Program Tracing

Amund Lunde

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213
July, 1974

Submitted to Carnegie-Mellon University
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

D D C

10 1975

VW

This work was supported in part by the Advanced Research Projects Agency of the office of
the Secretary of Defence (F44620-73-C-0074) monitored by the Air Force Office of
Scientific Research; in part by The Norwegian Research Council for Science and the
Humanities (Norges almenvitenskapelige forskningsräd). This document has been approved
for public release and sale; its distribution is unlimited.

DISTfBBUTION STATEMENT A

ApptOfti hr pobttc rcloasa;
r ■ •.

>WP.I> ii<i.<inim IIJIIII^I^J iiiLiaMiii uuw.iii JI niiMlmij imimnminrurm^imii \i,,mi - "w'nwniiiipiiy.MJpi i- —>w!^vnOTinpaHm«i«ppapiH!|p«|iPimw> i I^II -w^wi^^wpni >"

r

ABSTRACT

The thesis develops and evaluates methods for evaluation of the architecture of instruction

set processors (ISPs). (An ISP is the logical processor defined by the instruction set,

independent of physical implementation). The methods are based on analyzing traces of

program executions which contain information about every instruction executed.

The main advantages of the methods are:

a) They permit a very detailed study of ISP behaviour.

b) They are not restricted to specific languages or processors.

c) They are easily programmed.

Methods and experimental results are presented for four aspects of ISP architecture:

register structure, data types and operators, control operators and address calculation.

These may be evaluated in terms of four types of costs: execution time, memory space, cost

of programming, and the cost of hardware. The methods presented are mostly concerned

with time.

A set of programs, the subject set, was used to represent the ISP workload. This was

chosen primarily to investigate the variations in the results caused by variation of language,

language implementation, algorithm, and programmer.

Register structure is investigated through the concept of a regisier life. This is the period

from when a register is loaded, until its last use before the next time it is loaded. The

methods provide data relevant to two problems:

a) What is the optimal number of registers?

b) How desirable is generality of registers?

An algorithm is presented which will find how many registers are live at each time during the

program execution. This algorithm is extended to compute an upper bound on the increase in

time if the program were to run on an ISP with fewer registers. This computation is based

on temporarily storing registers that are live but unused for long periods, and on

interleaving several lives in one register.

iC

MM I IllWill«!

fWW^WP^^PWT'WW ■H""1»"1 ,l""»1 •'' vr~- inim it^w ■imw ■■• n ■.mm

The thesis also presents a classification of the operations that may be performed on a

registet. This induces a classification of register lives which may be used tc assess the need

for generality.

Most of the other methods presented apply equally to data operators, control operators, and

addressing. The main problems ara:

a) How to detect operators that are in the ISP, hut not used sufficiently to just.fy them.

This is done by frequency counts and various derivatives thereof. Particularly

interesting are the frequency results obtained by weighted summation over the whole

subject set.

b) How to detect operators that should be included in the ISP. This problem is

approached by studying instruction sequences.

The main problem in detecting sequences is to reduce the space and time reauirements of

the analysis program. This problem was solved by using a multi pass algorithm. Each pass

extends the existing sequences by one instruction. After each pass, heuristic methods are

used to discard insignificant sequences.

The thesis proposes methods to study operand values, information used for control and

addressing, information related to the addressing problem for tests, and information on use of

indirection.

The most important contusions drawn about the validity of the methods are: The experimental

results show good internal consistency. Their trend is independent o» algorithm and

programming language. They agree well with previous knowledge. The dependence on

language is most important for those languages that use a run time system. The use of data

operators and data structures depend on algorithm, the register usage does not.

In a subject set for a fHl scale analysis, the data operators and data structures of the area

Of applications ihould be well represented. The individual subject programs should be large

enough that dominating loops are avoided.

MMMMtl ■M«

wmmmmmmmmmnmmmmmmmmmmmmmi i mutmmmmmmmmm»

"""■ mm -mrmmn^m**

ACKNOWLEDGEMENTS

First and foremost my thanks go to my advisor, Profess .T William A. Wulf, for encouraging

the project in its early stages, for contributing time and ideas throughout, and for reading

innumerable versions of the draft.

I am further indebted to my thesis committee, Professors John Grason, A. N. Habermann and

Daniel P. SiewioreK, and also to Professor Mary M. Shaw and Dr. Ma, 10 R. Barbacci. They all

suggested significant improvements tu the presentation.

Credit also goes to Ric Werme who helped debug my additions to his tracer, to Bill Wulf,

George Rolf, Larry Flon and Mario Barbacci who each programmed a version of the Aitken

algorithm, and to Rich Johnsson who helped out with the document production system.

The Computer Science Department at Carnegie-Mellon provided a stimulating environment for

both research and relaxation.

Final thanks go to CMU-10A: object and tool, lab assistant and analyst, ed.tor ana typesetter,

plague and playmate. Without her support, this work would never have been completed.

A NOTE ON TERMINOLOGY

By an instruction set processor or 1S£ we mean the logical processor defined by the

instruction set, as opposed to its p..,'sical implementation. Included in the ISP structure are

such things as instruction formats, register structure, instruction mterpretatio ' algorithm

(including address calculation), datatypes and their representation, etc. Computer families,

like the IBM 360 and 370 series and the CDC 6000 series are examples of ISPc with several

different physical implementations.

Obviously the logical structure can not always be entirely divorced from its physical

counterpart, nor is such a separation always desirable. There should be no doubt, in our

further discussion, when we take the physical aspects into account.

in

rte M^^M^MMM

'■ ■"■'■",'■'■■' 'i ■" l ■j" ■■ IM.«'"«I " -PI [KVHwtmrnmmmr^jm' i ■ n ^ l^mmm!mmmm|™mmmmmm*^mll^!mwm*fK**>'**,

We use the term ISP to mean the instruction set processor itself, not the notation for

describing such processors defined by Bell and Newell ([BelC71]). As a concession to

readers unfamiliar with it, we have tried to avoid using this notation. The associated

terminolo^/, however, is used.

Italict are used for words that are previously defined. Underlining is used for woras that

are being defined, or otherwise stressed.

In the tables of results, 0 means an exact zero, 0.000 or similar constructs mean less than

1/2000 (in this case) but not exactly 0.

Unless otherwise stated, the term "PDP-10" is used to mean the DECsystemlO ISP or the

KA10 processor of that system, both described in [DEC71].

 ■—■—* mi H „,. .;;, . ^am

'

^■a "•■i "" ' '■■ ""

TABLE OF CONTENTS

PAGE

ABSTRACT
ACKNOWLEDGEMENTS
A NOTE ON TERMINOLOGY "'
TABLE OF CONTENTS V

INTRODUCTION 2
1.1 Overview of the thesis •
1.2 The problem
1.2.1 Obtaining dynamic information •
1.3 Restrictions in domain
1.4 Related work
1.4.1 Contributions of the thesis

19
CnSTS 20

2.1 The role of the instruction word ■Jj
2.2 Time cost
2.3 Space cost
2.4 Programming cost
2.5 Hard* are cost

VALIDATION STRATEGY J
3.1 Some simplifying assumptions •■
3.2 Selection of data ^J
3.2.1 Language selection
3.2.2 The subject set
3.2.3 Subsets of the subject set ' m

REGISTER STRUCTURE V.
4.1 The basic tradeoffs 7*
4.2 Some definitions
4.3 A register usage classification
4.4 Register life detection
4.4.1 Summary
4.5 Register life classification °
4.5.1 Summary
4.6 Register blocK size J?
4.6.1 Detecting simultaneous lives ••
4.6.2 Cost of reducing the register block ^
4.6.3 Some sources of error
4.6.4 Utilizing dormant periods '*
4.6.5 Summary
4.7 Utilities of values *~
4.8 Register structure, Conclusions

pl^^wwl '•^"^""pmwiw i in m iin

5 DATA TYPES AND OPERATORS 87
5.1 Frequency counts 89
5.1.1 Instruction classification - Mixes 92
5.1.2 The FGR function and similar measures 93
5.1.3 Summary of frequency results 95
5.2 Collection of instruction sequences 102
5.2.1 The program 103
5.2.2 The pruning heuristics 105
5.2.3 Sources of errors 107
5.3 Results from the sequence program 109
5.3.1 The compilers Ill
5.3.2 SEC 114
5.3.3 AitKen 116
5.3.4 The CALG0 algorithms, initial remarks 120
5.3.5 Bairstow 120
5.3.6 Crout 123
5.3.7 Treesort 126
5.3.8 PERT 127
5.3.9 Hävie 130
5.3.10 Ising 131
5.4 Sequences applied to data types 133
5.4.1 Summary 135
5.5 Properties of operands 135
5.6 Data types, Conclusions 137

6 CONTROL OPERATORS 138
6.1 Sequences applied to control 139
6.2 Some special problems 142
6.2.1 Control information 142
6.2.2 Test instructions 144
6.3 Control operators, Conclusions 145

7 ADDRESS CALCULATION 147
7.1 Data structuring 147
7.1.1 Sequences applied to addressing 148
7.1.2 Indexing and indirection 149
7.1.3 Addressing information 150
7.1.4 Operand and result modes 152
7.2 Addressing, Conclusions 153

8 CONCLUSION 154
8.1 Overview of the methods 155
8.2 Validity of the methods 157
8.3 Specific results 159
8.4 Improvements to the methods 160
8.4.1 New methods 161

APPENDIX A Bibliography A-l
APPENDIXE The register usage classification B-l
APPENDIX C Output from register classification program C-l
APPENDIX D The total SNIFT D-l

VI

_ _ ^-_

1

APPENDIX E Listing of the short subject algorithms E-l

Vil

. . .

' ' " '-■ ■- •" ■ ■ " " •'- — i i " " iii.iiiiii.ii.i .mm

CHAPTER 1

INTRODUCTION

Sptilel ir {ivet os Mensker av Gud
i..«n Fanden har |i«t det den Feih
at Ott aldri| kan VIM hvordan man atr ud
naar man >kk* itr i at Sped

Kumbel Kumball

This thesis is concerned with the architecture o(Instruction Set Processors. It identifies the

most important parameters of such architectures, their interdependence and their associated

costs. It proceeds to present a collection of methods for evaluating some of these costs.

Most of the effort of the thesis lies m developing these methods and studying their

performance for one ISP and a set of programs (a subject s^l) running on that ISP.

Our point of view is that of the programmer, or mayb* more correctly, that of the program

being executed. The goal of our methods is to evaluate the features of ISPs in terms of their

utility to the program (or programmer). Thus the questions that they will attempt to answer

can be generalized tc: "How well does the programmer/compiler utilize the features made

available to him through the instruction set? Which of these features should be removed or

changed? Which should be adoed?*'

The methods are based on analyzing traces of programs being executed, where the trace

contains information about every instruction executed by the program The analysis is

performed by separate programs, and is thus completely disjoint from the writing of the

trace. Most of the methods presented, and certainly the most important ones, have been

implemented as programs and used in experiments. The cvperimental results agree well with

previous Knowledge and with intuition, and are also consistent among themselves. Hence the

experimental evidence supports the validity or the methods.

The experimental results that we present are from experiments designed primarily to

evaluate the methods, not the ISP that we have worked on. In particular the programs we

have analyzed are small, and from a restricted application area. Hence, although irany of our

results certainly permit valid conclusions about the ISP we have worked with1, our set of

subject programs has been too restricted to provide the basis for a valid, full scale

evaluation of a general purpose ISP.

♦ The POP-10

—m—fa _^.

pin uiKiau i» »1 fi.ii«iiiwm**wmm .i*iim*i.*mnwm!^minmmi,.ini>tMi}iim'.m ^»•'"immmvi i """••vwmnmu.i >ummVii""io.umnimmmmmimi*w~*mr'

INTRODXTION

1.1 Overview of the thesis

This introductory chapter presents an overview of the basic ideas d the methods. It then

gives a survey of related work and relates our work to this.

In Chapter 2 we present the types oi cost associated with implementing and using (or not

using) ISP features, and discuss their rtlationship.

Chapter 3 describes the major sources of prrors and variation that might influence our

experimental results, and describes how we selected a set of subject programs to evaluate

these influences.

Chapters 4 through 7 contain the core of the thesis. In those chapters we analyze the

instruction set processor, concentrating on those features for which we have developed

methods of evaluation. The order of presentation is:

Chapter 4: Register structure

Chapter 5; Data types and their operators

Chapter 6: Control operators

Chapter 7: Address calculation

Each chapter is further divided into sections, each discussing a different feature or aspect of

the chapter topic. For each feature, we discuss the motivation for having this feature, and

the costs and tradeoffs associated with it. Our methods for estimating some of these costs

are described, and experimental results are presented where applicable. For each method its

limitations, sources of errors, and dependencies on the various sources of variation, as

presented in Chapter 3, are discussed.

For our analysis we rely heavily on. the multidimensional computer space presented by Bell

and Newell [BelC71]. The dimensions of this space represent such things as intended

application, technology, word size, etc., and possess several levels of detail. We have made

this structure finer or coarser to suit our needs, and will use it freely below without further

reference to its origin.

The most important dimensions for classification of instructior. set processors are (with those

most highly related on the same line):

 ' ^ -" J"-" mtu- i ■■'■-■ -■--'■—'•■-*■-'-'--

■' "-*■" "■ ■■■■'■ ■- wp '"> ™*'"<mrm*mmmmimmrm***wmmm*m**m*^*" iiuiiiiMiii, iiiiu

INTRODUCTION

Computer (system) function

Processor function

Memory accessing algorithm

Addresses per instruction -

Word size - number base

Control structures

As stated in Section 3.1, we take the computer and processor functions to be given, i.e.

we investigate general purpose computers with a bias towards scientific calculations. The

next four coordinates above each corresponds to one of the four chapters listed.

- primary memory size

M.processoi state

data types

The last chapter summarizes the results and points out areas for future research.

The thesis describes two processes more or less in parallel. One is the development of the

methods and their use to evaluate ISP architecture in terms of the costs discussed in Chapter

2. The other is the evaluation of the methods themselves, in terms of the framework

described in Chapter 3. Both processes go on through Chapters A to 7, and conclude in

Chapter 8.

1.2 The problem

Several approaches may be used to improve the performance of computers. These are to a

large extent orthogonal and are oft'jn combined, as exemplified by many current commercial

designs.

One approach is to use faster circuit technology for a brute force increase of speed, leaving

the ISP architecture unchanged. This approach is of no interest to the present discussion.

Another approach involves radical changes in the organization of the central processor, in

particular higher d. gree of parallelism on the task, Instruction or sub-instruction levels. This

sometimes implies more or less drastic changes in the way programs are thought about and

formulated, as exemplified by the CDC STAR [HolS71], ILLIAC-1V [BarG68], and C.mmp

[WulW72] machines. In other cases, as in the CDC 6600 design [ThoJ64], parallelism is on

the instruction level, retaining the classical instruction stream concept and at worst requiring

local reformulation of the algorithms. Instruction parallelism is peripherally of interest to our

discussion, (see Section 2.3). Parallelism on the task level is outside the scope of this

thesis.

vmrm^mtmmmimimmwmm«'''1- 1,■ M-miwi-Mmmmwim****^'*'^ .■■"JJW.«I,IIJIIJIM»I IIII«»I.«IIW».' :»> tm.mmmmt^rimmfifiigmpamm^^' ^n"

INTRODUCTION

A third approach is to improve the architecture of the Instruction Set Processor (ISP), but

staying within the classical Von Neumann type of machine. This approach is the background

for our work A difficulty with it, but also a major reason for it, may be the interest ve-led

in existing instruction sets. In such a case the problem may be how to extend it compatibly,

or to find features tha.' may be re moved at a reasonable cost. Data provided by our methods

may be used in solving this problem and also to some extent when designing new instruction

sets from scratch.

There is ample evidence that the ISP archite ture is indeed an important factor in processor

efficiency and economy. Notable is a study by J. A. Stewart [SteJ.nd], comparing program

sizes and execution speed o* three contemporary computers* having approximately the same

word sizes" and instruction execution timesm. When moving benchmark programs between

these computers, program sizes varied by factors from 1.3 to 2.7 and running time by factors

up to 5tm. Some of this variation may be due to inferior compilers and other software.

However, code sequences for commonly occuring constructs indicate that the problem to a

large extent lies with the instruction set.

/mother example is provided by the Burroughs B1700 computer, (see page 15). A

considerable gain in ^pace and time is claimed by the designers of this computer system,

achieved by designing instruction sets lailored to the higher level language used.

Human intuition about program behavior is notoriously bad. This has been demonstrated by

several investigators. One example is given by Knuth in his well known study of FORTRAN

programs [KnuD70]. The personal experience of people who have observed some aspect of

their programs' behavior, as reported in countless stories of computer folklore, tend to

corroborate this.

The cited studies clearly de-nonstrate a need for quantitative methods which can aid the ISP

architect in deciding values for the design parameters of his ISP, and to justify his decisions.

The data obtained should be as independent of technology as possible, so that they will not

change as technology progresses. They can then be used to compare the cost of

implementing a structure using different technological solutions, or to compare the cost and

utility of different structures in the context of the available technologies.

♦ The IBM 360/44, the SDS Sigma 5 and the POP-10.

W 32 or 36 bits.
m For commonly used instructions, factors ranged from 0.7 to 1.8 compared to the PDP-10.

♦w The PDP-iO being the best

pHHjjiui Hi «wipi'ix J. M |I.PM|J|I^I»I .UM"!"'" "-J-l"«.""»"'! J..IIMMIIPP IIU,I i iwU^iHiPIVPiPP^^'P" «■IHiMWIH^I« •>•■<■■ IIIIMHI II «<m.m""-»

\
INTRODUCTION

Ideally the behaviour of all programs executing on the ISP should be studied. This can be

done only superficially, as by accounting data and similar information. For a detailed study

one is forced to restrict oneself to a set of, hopefully representative, ^ibjeci prQSrams-

Given an application area, and such a subject set to represent it, there are several methods

of obtaining data on program behaviour. They may be classified as static or dynamic

methods, depending on whether data are collected before or during execution.

Static information can be collected manually, by compilers, or by some program analyzing the

relocatable or absolute code. Such methods should be used to obtain the space cost (see

Se:tion 2.3) of the code and static data structures, but can not be used to obtain

infermation pertinent to the execution behavior of the subject program. For this purpose

dynamic data are needed. Several methods of obtaining such data are described and

compared in Section 1.2.1. We chose to use traces containing information on every

instruction executed by the program. These traces are written on an appropriate storage

medium, and are analyzed later by separate programs. The advantages of this method are

that the exact sequence of events is preserved, and that a large amount of detail may be

recorded. We discuss the appropriateness of this choice in Section 2.

As we present the methods, their intended domain is to evaluate the features of ISP

architectijre. The particular ISP design parameters that we consider include the number and

types of registers, the data types and their operators, control operators and their associated

data structures, ?nd address calculation methods. Our methods fall mainly in two groups, one

dealing with register structure, the other with data and control operators.

Register structure is evaluated through the concept of "register lives". We present a method

to detect such lives, and to find to what extent registers are simultaneously alive. From this

we are able to find an upper bound on the increase in execution time which would follow if

the number of physical registers were reduced. We also present a method to assess the

need for generality of registers.

Our methods for operators and data types are based on frequency counts of single operators

and of sequences of operators. We present an algorithm for counting the occurrences of

sequences of arbitrary length, including a set of pruning heuristics designed to detect which

sequences are in some sense significant. Only occurrences of such sequences are counted;

this is what makes our algorithm economically feasible.

We expect the methods to provide useful evaluation of existing designs as well as suggest

ML.IMMH

"" i..>'«J I WLPHLBIINII, ii I I.IHMILUIWipil Jll.iIJiMIP . ■!■.>,.. I j| iiw«iqif«Mpn«|i!|^i|(«*npiil.|ilii.Jliii|l.i«Uillllwnji i »J, 11 I III. I i I ia^

INTRODXTION

improvements in existing designs and give ideas and guidelines for new designs. Such new

designs could be for general purpose processors, or for processors specially designed for

some particular language or some special class of computations. Such a specialized

application is defined more by the selection of subject programs to which we apply our

methods than by the methodology as such.

Our methods can also be applied to domains less related to ISP design. As will be seen they

have obvious applications in compiler design and language design, and also in the art of

tuning programs to maKe them more efficient. In particular we expect our method for

register utilization to be of interest to these domains.

As in any other inquiry, the answers to one set of questions raise new questions that one

would like to answer. In some cases our methods will produce compact data bases which will

allow certain kinds of simple questions to be answered after the original analysis, and at a

much lower cost.

1.2.1 Obtaining dynamic information

Dynamic information can be collected by hardware monitors, by programs running in parallel

with the subject program*, by code inserted into the subject program by the compiler, or as

in our case, by running the subject program on an interpreter for the ISP in question. In any

case, the data can be analyzed on the fly or saved for later analysis by special programs.

Programs or hardware monitors may be used to sample the program counter and other

pertinent parts Of the processor state. This can give us information about the (relative)

frequencies of various events, such as the execution frequency of the different parts of the

program. Considerable analysis of the subject program is required to obtain information

about its local behavior. Information about the sequence of events, such as the behavior

across programmed jumps, can not be reconstructed completely. Also no information about

register content and operand values is available. Furthermore, in the case of sampling by

program, the results are not exact, but depend on sampling rate and random events.

Code inserted by the compiler is usually restricted to maintaining execution frequency counts

♦ As can be done in several contemporary systems.

iipii"^w(pww«»«w"""fi^w™»«i^pp"ww»w^^w«p»^^iwwwi»^ri«pw^»^^pi*!r'^»i«'"w"w"^'w"^"i

NiMHM t4mir»m* fgfumgttmnHfift^ ■!•«■•.
^».•.'.r!*'

INTRODUCTION

for each straightline segment of code, since collecting more extensive information this way

would make code size prohibitive. Hence we again have the problem of reconstructing

sequences of events. Considerable analysis is needed to obtain detailed information on the

ISP level behavior of the program, since the primary data relates to the language level. We

are furthermore restricted to analyzing programs wiitten in languages that have this feature

in their compiler (or a suitable preprocessor), and v hich are available for recompilation. It

also disturbs locality aspects of the program execution, it is, however, more accurate than

sampling, since we are guaranteed that all executed parts of the code are represented in the

results in proportion to their execution frequency.

We chose to run the subject program using an nterpreter for the ISP under investigation,

and collected information on each instruction as it was interpreted. This method is usually

called instruction trauilg, or just tracing. The information was, in our case, written on

magnetic tape. This method allows one to study not only the instruction stream as seen by

the processor, including the path taken through sequences of programmed jumps, but also to

follow operand and index values, indirect address chains etc., if so desired.

Also, tracing is language and compiler independent. It can be applied to any subject program

that can be brought into the format acceptable to the interpreter. In many cases (as in ours)

the interpreter will be a relocatable module running on its own ISP, which will then accept

the standard relocatable format for the subject program. Tor a microprogrammed processor,

the microprogram may be extended to output the information desired (See page 16).

A further advantage is that analysis is naturally separate from the data collection. Provided

a rich enough trace is written, new types of analyses can be performed at any time without

having to retrace the subject program. Since writing the trace is cheap compared to

analysing it, this may at first sight seem to be of little value. It does, however, guarantee

that the results of different analyses are consistent and independent of changes in the

program traced, the compiler compiling it, and of random environmental influences.

In terms of computer resources needed to apply the methods, tracing is probably more

costly than the others. Tracing a program using our current interpreter1 increases running

time by a factor of about 60, and the analysis programs are slow This is, however, of little

importance. As will be seen, a considerable amount of detailed information can be obtained

at a cost which is not prohibitive, and the writing of the analysis programs is straightforward

compared to what it would be with the other methods, to obtain similarly detailed information.

♦ Interpreting the PDP-10 on the PDP-10

«p^pnppnw^awn mi i vm iimKm>V>"*"*,m^1*yW "■ i J'1. ^PHiJw., >' ■■""M.'.MP«» w>«»n»w^><mwB>w»^piP^RW^wiww«.'WP(|p|^r ^■•MNqpRV"*

INTRODUCTION

To have sufficiently detailed information, we wrote at least 4 words of trace for each

instruction executed. These were: The instruction word, the program counter and effective

address, the contents of the accumulator and of the effective address. If indirection or byte

access was used, two further words were written for each level of indirection, containing the

address and contents of the bytepcinter or indirect word. Writing at 556 bpi and blocking

1000 words to a tape record, this allowed us to trace about 600 000 instructions on a 2400

ft. reel of tape. This corresponds to 1.5 - 2 seconds of CPU (PDP-10/KA10) time when

executed at full speed.

Most of our methods use only the instruction word. Hence time could be saved both while

tracing and analyzing, by omitting the other information in the trace. This would alro permit

more information to be written on each tape. In the interest of generality, however, we used

the approach stated.

An alternative to instruction by instruction tracing is the jump trace described by Alexander

[AleW72], (see page 14). With this tracing method information is written to the trace only

»t instructions which change the program counter. In between such points the program runs

at full speed. This method is fast, but information on operands and register contents

between tabulation points is lost. To fully realize the gain in speed, the compiler should

know about the tracer and insert appropriate instructions to call it. Analysis is simplified if

the compiler also outputs a file of descriptions of each straightlme segmen' of code. This

dependence on the compiler restricts the set of subject programs that ran be analyzed,

increases code size and disturbs locality, as discussed above.

1.3 Restrictions in domain

We will restrict ourselves to traces obtained by executing single programs on an interpreter

for the ISP to be evaluated. This means that we bar oursehes from studying problems

related to interrupt handling, detailed 1/Ü management, multiprogramming and other operating

system issues. On the other hand it allows us to concentrate on the behavior of one single

program during a continuous span of time, without being disturbed by interference from

other programs. This permits a study of the local behavior of the subject program to any

desired level of detail. From this point of view the invisibility of interrupts is a strength

rather than a restriction. Also, a change in the execution speed of an operating system will

imply s change in the behaviour of its environment. Hence m studies of operating system

behaviour one should restrict oneself to information that can be collected on the fly.

■up .lii.^niiii ■Wpi>ipii,IWi.|piiMli.>n> i ii. . m^-^rf^mmmmgm^^^rrw^mm^iir^ "" HJI I I nm^rnrnm^fiyf" ■' ■■ ' ' '""'.n iiMiim"]i!tBpi.wii™ « m.»i - ■"PIMIWWIWHI

INTRODUCTION

A further advantage r. that the trace is reproducible and free from random perturbations

caused by interrupts etc. This is not strictly true for programs that use shared resources

(such as primary memory dynamically allocated to users) or resources that operate in parallel

to the traced program. In such cases different code might be executed depending on

resource status.

Although -«-ost of our methods are applicable with minor modifications to most ISPs, we focus

our attention on ISPs with a general register structure. We take this term in a wide sense,

meaning roughly that a sizeable repertoire of operations is available uniformly over a vector

of 4, 8 or more registers. Another characteristic is that the registers can be addressed from

more than one field of the instruction word1. (See also Chapter 4). Lisniting cases ar* 2 or

3 address machines on one hand and one address machines with no index registers on the

other; we do not, however, consider these.

Our experimental results are from the PDP-10, which has a vector of 16 extremely general

registers, and a very general instruction set, particularly for control operations (a rich set of

skips and jumps, several forms of subroutine jumps etc.). Hence this ISP is a good starting

point fc: detection of unnecessary features. However, as will be seen, we have also been

able to detect some deficiencies of this ISP that are not due to unnecessary generality.

1.4 Related work

Studies of frequency counts of instruction executions have been described by several

authors. The best known is the Gibson mix, developed by Jack C. Gibson at IBM in 1959.

Gibson divided the instructions of the IBM 704 and 650 into 13 classes and counted how

many instructions were executed from each class. His sample size was 17 programs,

approximately 9 million instructions. The results are described in [GibJ70]j we tabulate them

in Figure 5-3.

Confer [GonR69] has compared the Gibson mix and the UMASS mix ♦♦, using essentially the

same classification and tracing 15 million instructions on the CDC 3600. His results correlate

well with Gibson's; they are tabulated in Figure 5-3.

♦ Accumulator field, index field, memory address field, base reg«ster field etc.

** UMASS - University of Massachusetts

mm m—m

^W" ' " "S^^WWFTlSWP^PIWfiiiiuii piiwwmpMM|emiP||pR(«n|(|ipPK ■- ,' ■ ""Mi i 'm ^ .m inm i.uii ^mmmmmu»» i -wm^mm^m

INTRODUCTION 1U

The substance of these results is that LOADs and STORl's account for about 307, of the

instructions executed, branches for 167. to 387., index manipulations 137. to 187., arithmetic 37.

to 197.. The results depend both on the ISP and the subject set.

Other similar mixes and experiments are reported by Arbuckle [ArbR56], Connors, Mercer

and Sorlini [ConW70], Raichelson and Collins [RaiE66], and Herbst, Metropolis and Wells

[HerE55]. The latter is the earliest report known to the author.

The emphasis of the above studies was mostly on evaluation of the raw processing capacity

of the central processor. Little emphasis was made on improvements in the instruction

repertoire or central processor structure.

Foster, Confer and Riseman, [FosC71a] have gone one step further, by starting to investigate

the effects of reducing the instruction set. They report their experience with two measures

of instruction set utilization. Both of these measures are equally applicable to static and

dynamic instruction counts. The static measures give an estimate of the space cost (Section

2.3) and the dynamic measures estimate the time cost (Section 2.2) associated v ith

using the instruction set. The examples of [FosC71a] use the CDC 3600. Our u&e of "**«

measures is described in Section 5.1.

The first of their measures is the undiluted information-theoretic measure of information

content:

T
I - - Z pi * log2(pl)

N
where

pi is the probability of using the i'th opcode

T is the total number of different opcodes

log2 is the logarithm base 2

Intuitively, the interpretation of I is the average number of bits of information conveyed by

each opcode. The value of this measure is doubtful, particularly with a fixed wordlength,

since the space that could be saved in each instruction word by using the encoding depends

on the frequency of occurrence of the instruction in question, and has no relation to its need

for operand addressing capability etc. Furthermore, optimal encoding with respect to it

implies variable length encoding of the opcodes and a correspondingly more complicated

^—!-__-—__—, ^..JU---. ~. ^ . . _. . --M—.

mmvmmv tw*m^imm**immmimm «ii i" ■ t'mi m.P .i..!. ■> ... M..I i.] „mi ii - "••■u >

INTRODUCTION 11

decoder*.

The other measure they propose is a function computed as follows: Order the operation

cedes by frequency of occurrence. Let C, be the number of occurrences of the i'th opcode

in this ordering, (C, > C„i for ail a Let P be the total number of instructions in the sample,

and T the nijmbt»' of different opcodes, as before. The FGR function is then computed as:

N
fosm" i - i/p z c,

1=1

(1 < N< T)

This function measures the effort necessary to recode or run the original program on a

central processor with a smaller instruction set. Indeed FGR(IM) is that fraction of the

instructions which would have to be recoded (static) or interpreted (dynamic), were the

instruction set reduced to the N most commonly occurring instructions. For some of these

the recoding might be impossible, this is not taken into account.

Substituting execution tirrvjs for C, and P above, and ordering the C, accordingly, we obtain a

measure of the fraction of execution time accounted for by the omitted instructions, in this

case the least timeconsuming ones.

These measures were used on a set of CDC 3600 programs. In the dynamic case the

subOperation field of the opcodes was disregarded. Also, a different sample was used for

the static results than for the dynamic ones. The static I varied from 3.59 to 5.36 for the

different programs, with a theoretical maximum of 7.16. The dynamic I varied from 3.94 to

4.64, with a theoretical maximum of 6.00. FGR(32) vanec from 0 to about 0.2 in the static

case, and from 1 to 0.06 in the dynamic case. This shows that a reduction of the instruction

set to 32 instructions would cat ie some increase in program space, but that the instructions

that must be interpreted are ones that are executed rarely.

A related study is by Foster and Confer [FosC71b]. They investigated the effect of

interpreting opcodes differently depending on the recent history of the ISP. Thus on a one

accumulator machine the sequence LOAD ADD occurs often, LOAD LOAD hardly ever. Hence

the LOAD and ADD instructions might use the same encoding in the instruction word, provided

the LOAD instruction changes the state of the decoder. A "set state" instruction provides the

necessary escape mechanism. The intended application is to combine a large instruction set

♦ An approximation to this encoding was used with the Burroughs B1700. See further

discussion on page 15.

mmm .

■ ■'mm, i|i u ■■■■• IM J M .u IIIIKJI n iii|p^||l.l(lia u ■.■«Pi

INTRODUCTION 12

with a roall opcode field, thus freeing instruction word space for addressing. They verify

their idea by an analysis of some CDC 3600 programs.

The results show that over 677. of the instructions could be executed without use of the

«scape mechanism, even if the opcode field was reduced to 3 bits. For a 5 bit field, 957, of

the instructions could be executed directly. By circumventing some machine specific

properties in their data, the result for c bits was improved to 74Z.

Riseman and Foster [RisE72] [FosC72] have used traces to study the effect of data

dependencies on the execution speed of parallell processors. They postulate a machine

where only the execution of the instructions take time; instruction fetch and dispatch, and

data fetch and store, take no time. Further there is an infinite supply of registers and

functional units so that no instruction is held up for the lack of hardware. The instruction set

is as for a CDC 3600, and traces from this machine were used in their experiments.

There are two restrictions which prevent instructions from being executed:

a) Their operands have not yet been computed.

b) The exact instruction to execute can not be determined until some condition (jump)

has been resolved.

Restriction b) can be circumvented by assuming a nondetermmistic processor, where both

paths of the program are executed in parallell until the condition is resolved. This

nondeterminacy can be carried to infinite depth, or restricted to a maximum of N unresolved

conditions.

The experiments show an average speedup by a factor of 1.72 for N - 0, 2.72 for N - I,

7.21 for N - 8, and 24.4 for N - 128. For infinite nondeterminacy (N - oo) the speedup was

by a factor of 51.2. Similar results were found by Tjaden and Flynn [TjaG71]. The results

show that conditional jumps, and their dependency on calculated results, is a severe

restriction on execution speed.

Several investigators have used traces to study addressing patterns, with the object of

determining optimal design of paging systems and cache memories. We mention Coffman and

Varian [CofE68]. Gibson [GibD67], Hatfield [HatD72j, Kaplan [KapK71] (see below), Lewis and

Yue [LewP71], and Seligman [SelL.nd].

A few authors have described more comprehensive studies based on traces:

MBMM

"■■"■

I

INTRODUCTION 13

At IBM, Muiphey and Wade [MurJ70] used traces to evaluate the performance o(the IBM

360/195. Traces were made of programs believed to be representative of the 195 workload,

as they were executed on other 360 models. Detailed studies were made of the behavior of

these programs in a 195 simulator. The emphasis of this study was on design validation and

performance prediction. Particular studies were made of the efficiency of the mechanism for

parallel execution of different instructions.

Winder at RCA [WinR71], [WinR73]. describes the nethod of tracing used on the RCA Spectra

70/45 and also in some detail the various studies performed. These include cache system

studies [KapK71], paging analysis, miscellaneous program statistics emphasizing I/O,

branching and conditions, indexing, and operand length for variable length operands. A

SIMSCRIPT simulator driven by the trace was used to investigate architectural variants liKe

memory banking, cache parameters, instruction lookahead, multiprocessing etc.

Wortman [WorD72] has designed an experimental technique to evaluate computer

architecture, in particular its suitability for particular programming languages. It is based on

collecting static and dynamic statistics on the use of language fragments. Language

fragments are constituents of program code which map into non-overlapping segments of

object programs, and which do not contain data dependent loops. As a case study Woriman

chose a PL/I dialect called Student PL, and designed a stack oriented architecture suitable for

this language. An interpreter for the architecture was written, and also a compiler to

translate Student PL programs into its machine language. For his subject set he chose about

1000 small student programs from an undergraduate programming course. Three kinds of

statistics were observed:

Source program statistics, essentially the number of application of each production during

syntax analysis.

Object program statistics, i.e. frequencies of occurrences of the machine instructions

(language fragments), and pairs and triples of these in the generated code.

Run time statistics, i.e. frequencies of execution for the individual machine instructions.

Based on these statistics he made several improvements in the instruction set, and found

reductions of about 507 in each of program storage space, data and instruction accesses, and

number of bits accessed. The most significant improvements were:

Information relating object instructions to source lines was moved to secondary storage.

""'—'■
1 " "^■HP ^—

INTRODUCTION 14

The data accessing method was improved.

An imnfdiate type instruction was introduced to move constants to the stack. (727, of

the constants found were integer constants, and 98.87, of these could be represented in

6 bits).

The handling of conditionals and "builtin" functions was improved.

By refining his language fragments Wortman also was able to compare his machine design

with the IBM 360 as a vehicle for PL/I.

Alexander [AleW72] has made a study similar to Wortmans, but for m excisting ISP (The IBM

360) and a language (XPL [McKW70]) used mostly for compiler writing. His main goal was to

investigate how the features of the XPL language were used, and what requirements they

posed on the ISP. He presents statistics on source programs, object programs and run time

behaviour. These were obtained by modifying the XPL compiler (XCOM), and by full trrcing

and jump tracing. His subject set was slightly different for the different analyse?, it

consisted of XCOM, several compilers written for undergraduate and graduate courses, ond

his own analysis programs. His results can be summarized as:

Floating point and decimal arithmetic are not used by XPL, this leaves 91 instructions that

can potentially be generated by XCOM Of these only 47 were actually generated. 10 of

these account for 847. of the instructions executed. Tne 10 most generated instructions

account for 857. of the total number of generated instructions, this set intersects the

previous set of 10 by 9 instructions.

XCOM allocates 3 registers as accumulators. The first of these was named in 477. of the

accumulator references (as opposed to index or base register references). The second

was named in 267, and the third in 117. of the accumulator references. Hence

expressions rarely are complicated enough that many accumulators are needed. The

register used for indt xed access accounts for 117. of the accumulator references.

427. Of the references to index or base registers were to register 0, i.e. no indexing or

base was used. That is: almost half of the addresses were unmodified. 87. were used in

array accessing, 317. were used to access statically allocated data (as base). 7 fixed

registers were allocated by XCOM for this latter purpose.

p^nwr«"^»« ***• •m^m --rr-— um in u i(«nww«i ^ww^i^»»» "i m < '»•'HfP

INTRODUCTION 15

Most of the branches were to locations close to the branching instruction. Alexander

suggests that the branch instruction of the 360 could be modified to address relative to

the current program counter, and the 4 bits now used for base register addressing could

instead be used to augment the written address field, to make it 16 bits long. Such an

in«tructior would suffice for 997. of all brmches. 5K bytes of load instructions would be

eliminated, saving 157 of the program space.

If opcodes were conditionally decoded, as proposed by Foster and Gonter [FosC71b] (see

above), 16.2Z of the program space could be saved by an encoding of the opcode in 3

bits. This result pertains to one particular subject program.

Alexander extensively compares his dynamic and static results, and comments upon the

significance to constructs used or not used within loops, and on special properties of the XPL

language and system. He also advocates the use of program profiles, and in this context

points out the need for string manipulating instructions in compilers.

Studies Of architecture based on tracing have probably also been performed by computer

manufacturers. Such work is usually considered "company private", and is not published, but

a few have been: The work by Murphey and Wade [MurJ70], and that by Connors, Mercer

and Sorlini [ConW70]l all at IBM, and also that by Winder [WinR71], [WinR73] and Kaplan

[KapK71] at RCA. All of these are mentioned above.

A particularly interesting machine design is the Burroughs B1700, [WilW72a], [WilW72b]. In

this system microcoded interpreters are provided for several "S-languages", each of them

corresponds roughly in level to a classical machine language, but is tailored to fit the needs

of a particular higher level language. The microprograms address memory by bit position,

and desired access width is supplied on each access. Hence the processor gains effu '"»ncy

primarily in two ways:

i

a) Time efficiency is gamed by using an S-language tailored to the application (higher

level language), hence having essentially the "right instructions" for the task at hand.

Each instruction is usually more complex than most classical machine instructions.

b) Space efficiency is gained by encoding the S-language instructions in different

formats depending on the need for space to represent the feature in question, and its

frequency of use.

mim mmm

mmt********!*'*'* .l«UWiim JU'I«« «l.i"»»i«.l, 11 "^^^^■lp>«p»!W,WW"«PPPf(IPP' ■»(■prww^P»T!wwr5iip»w^wiir^wf^iWP^pBWW^I»iiiliJi|iJ i.imii. in .i.iiiimnpiiii

INTRODUCTION 16

One such S-language is SDL, particularly suited to systems programming. The opcodes of this

language are of 3 lengths, 4. 6 or 10 bits, whereas a fixed length encoding would require 8

bits. By using this €P;oding, space is gained at the cost of an increased decoding time. The

two encodings men»..ned were compared to the Huffman encoding, which is space optimal.

The following results /ere found:

Time lost:

2.67.

17.27.

Hence the chosen encoding is almost as space efficient as the Huffman encoding, and almost

as time efficient as the fixed field encoding.

Encoding: Space saved

Fixed 8 bits 07,

SDL 4, 6, 10 bits 397.

Huffman code 437.

Similarly the SDL addresses were encoded using 8 different formats and a 3 bit field to

distinguish them, giving a 387. saving in memory space compared to the 4 byte addresses

needed on a byte oriented machine with fixed length addresses spanning the same address

space.

For FORTRAN and COBOL programs, using the appropriate S-language, the reduction in

program space was found to be 407. - 707. over the IBM 360 and the Burroughs B3500.

Furthermore, access width can be a parameter to the S-language interpreter, allowing the

compiler to generate code more suited to the dvtual problem and also making possible a

planned "Dial a precision FORTRAN".

Wirth ([WirlV^]) has given a qualitative review of a particular ISP, the CDC 6000 series, from

the viewpoint of programming ease and error detection. In particular he points out

deficiencies of the data representations and operator implementations that maKe the

detection of errors, and hence the juarantee of a correct result, impossible or at best

uneconomical. He also points out the lack of an instruction for calling reentrant programs.

His experience is from the implemeitation of PASCAL [WirN71] for this ISP, but his

arguments apply equally well to all language implementations where security and error

detection is a v' sign goal, and to al! uses of recursion or reentrancy.

For microprogrammed processors, the microprocrammed interpreter can be extended to

collect execution time data. This approach is advocated by Saal and Shustek [SaaH72]. For

simple types of data this allows the subject program to run at almost full speed. However,

full tracing by microprogram will be limited in speed by the device recording the trace.

mmm t^m——m mmmtt

 '—'■ »• ' ■ *^" mw >■ '•"w^mmmi'^mmim mvmm'imjii.unw ■ J w 11 mim^m

INTRODUCTION 17

Since analysis time is considerably larger than trace time in any case, the advantage is

doubtful. The authors discuss various aspects of implementing such techniques, and present

data relating to opcode utilization and frequent instruction pairs. These results differ little

from those of Alexander iAleW72] and Foster et. al. [FosC71b].

We have previously identified the most important dimensions of ISP architecture to be:

register structure, data /pes and operators, control operators and structures, and address

calculation.

Of these, the operator dimensions have been relatively well explored in the works cited.

This applies in particular to studies of the utilities of existing operators and possibilities for

more efficient encodings. The problem of finding desirable but non existing opcodes has

been touched upon by Alexander and Wortrnan, but needs further work.

Other properties of control have been partially explored, particularly locality of jumps

(Alexander), and the use of test instructions and conditions (Alexander, Winder). Locality

properties of address streams have been studied in connection with virtual memories and

caches, but the data structuring aspect is largely unexplored. Register structure has barely

been touched (Alexander).

1.4.1 Contributions of the thesis

Our main contribution to this field of work is the methods for register utility and generality.

We also break new ground in our work on instruction sequences. Previously Alexander (see

page 14) has presented dynamic counts of sequences, but only of length up to 3. Our

present program can accumulate counts for sequences of lengths up to 20*. Our pruning

heuristics make the accumulation of counts for sequences of this lenght economically feasible.

In fact we point out an improvement to our algorithm which will make the accumulation of

sequences of this length and longer much more efficient than with our present program.

Finally our approach is general (see Section 1.2.1), we present results spanning algorithms

+ This limit was arbitrarily set because we believed longer sequences would not be of

interest. The method can handle sequences of arbitrary length.

^MMBHdMMMHtk "■' — ■ -- - ■ Miiiii^ai^MiH>itiiM—i«ii in i

r L . 1.1 *w,mV' 'pi. i iwpnpünpwppi UJ ilJJlniHfWWI»|»^p«w»fW<i»qp|l^ • . '.!■ liWlvnVMIWWPapilHpmPMi1" ■ iniiini i mi nwmpnüp — '"' ■"" — ■■«

INTRODUCTION 18

coded in several languages and by different programmers, and we try to evaluate the

influence of these factors on our results. Earlier work has in some cases ([AleW72)] and

[WorD72]) been confined by methodology and other considerations to one language. In other

cases the selection of subject programs and goals have been more restricted.

We can not leave this section without mentioning the influence on our work by that of Foster,

Gonter and Riseman [FosC71a]. The FGR function introduces some very simple and relevant

measures ot the utility of ISP features, namely the change in execution time or instruction

count resulting from a change in the ISP. Foster et. al. applied this idea to opcode utilisation.

Much of our work consists of applying it to other features of ISP architecture.

■ -^ - ■•—' '- ^ .. -, -L ,-...,_._■..

P^^^WPI I« " HI J ■ I IWPIWH " ■■"" u i im^^mmw^^^'^mm mttmm ^■i' ■"

19

CHAPTER 2

COSTS

In this chapter we discuss the various basic cost measures pertaining to ISP features. After

some introductory remarks we list four types of cost. For each of these we discuss its

definition and other relevant issues, such as the way or ways we measure it and their

related inaccuracies, other ways to measure it, and its relation to the other types of costs.

As a necessary introduction to this discussion we will make some comments on the instruction

word and issues related to it. This follows after the introductory remarks.

The four types of cost we propose are general. We believe they apply to all ISP structures,

not only those with general registers. The units in which we measure might, however, vary

with the structure of the processor in question. This is true even within the class of general

register processors.

Computer resources are allocated in units of space and time: space m memory units, time in

processing, control and communication units. Since some memory must be in use whenever

the central processor is in use, the product of space and time is a relevant measure of cost

for the usage of memory units and time alone for other units. These are the basic units for

measuring the costs incurred by running the program on the machine. Relating these to

economic terms requires knowledge of the actual cost of the units of the computer, and of

the operating expenses. In addition, the cost of producing the program (designing, coding

and debugging), in terms of human effort and machine resources, depends on a good ISP

design and may be highly relevant.

Since we are concerned with the ISP we will disregard costs related to secondary memory

except insofar as they are expressed by the costs relating to primary memory. Similarly the

basic instructions for 1/0 are not part of the ISP seen by the user (See Section 1.3), hence

we also disregard I/O costs and the costs of control and communication units. Thf latter are

to some extent expressed by the cost of the central processor. The time cost (see below)

associated wth I/O and secondary memory usage is considered independent of and irrelevant

to ISP architecture, and will be disregarded except where explicitly noted otherwise.

„MMMMM -MBMSMMM

^~ I I ■■ I - ■'—> 1 I ■ I—I ■ -—■'-——'-■ ■ ■- ■'»»J^»'^"- ■ ^- ■^(IFWW »•■■ -«MBipHWP

COSTS 20

Motivated by the above remarks and by further discussion below, we will regard the costs of

having or lacking a given feature in an ISP as falling in 4 basic categories:

1) Execution time (time cost)

2) Memory space (space cost)

3) Programming effort (programming cost)

4) Hardware to implement J 'eature (hardware cost).

This list is roughly in order of importance. Our methods will be almost solely concerned with

time cost, but the Others will be kept in mind and mentioned when relevant.

The weighing and trading off of these costs is the concern of the 1SF designer and falls

outside the scope of this thesis. Our goal is to provide methods for computing them, and in

particular the time cost, exactly or approximately, as seems relevant and possible for the

feature in question.

2.1 The role of the instruction word

The instruction word occupies a central position in any ISP design, being the quantum in

terms of which the ISP forces the programmer to express his algorithm. Hence it brings

together all the issues of ISP design and must be a focal point for our research.

Some different views on how the instruction word can be organized are represented by the

CDC 6000 series, the POP-10 and the IBM 360 series. The 6000s have 60 bit words and

about 70 different user instructions packed 2 to 4 to a word; the PDP-10 has 36 bit words

and about 420 different user instructions each filling one word; the 360 has about 130 user

instructions of 16, 32 or 48 bits, .lie major data formats are 16 or 32 bits, memory fetch

width is 8, 16, 32 or 64 bits depending on the model. Good performance is attempted in the

first case by fast instruction issuance, in the others by powerful instruction sets.

We now present some of the issues relating to the instruction word organization in a top

down order, neither implying any order of importance nor a sequence in which design

decisions should be made As is exemplified by the above designs, there is no generally

accepted way of resolving these issues In fact, the solution is often strongly influenced by

historical or ma.keting constraints, or other external considerations. In particular the

introduction of the 8 bit byte by IBM with the 360 series in 1964 has had a standardizing

influence.

MM>m wii

■ ,mm.mmm< »ipi»»«.i.. r iOT^mawn ■ i ■ i. inn ti ^V«^^^^W^MI«« i im in «IM w ■ 11 j i ■•■

COSTS

The first issue is the size of the instruction word. The cost and power ranges, and in

parttcuiar the addressing space, planned for a new processor, will to a large extent influence

what features need to be accommodated in the instruction word. Its size is also influenced

by issues not relating to the instruction word as such, particularly the desired accuracy of

the arithmetic and other data types and the memory fetch width.

A short instruction word implies at first sight a small space cost. Similarly a short instruction

word may imply reauced instruction fetch time, particularly if more than one instruction is

packed into one memory word. A slighüy shorter decoding time might also result from a

short instruction word. However, the advantage of a short instruction word turns mto a

disadvantage when the set of available features becomes too poor. At some point commonly

used operations have to be expressed as a sequence of two or more instructions, and both

time cost and space cost rise». Obviously there is an optimum for both space and time, not

necessarily the same, and probably not very well defined". There is also an associated

hardware cost, usually increasing with instruction word size.

To simplify the discussion we will from now on assume that the word length is given, and one

and the same for instructions and for integer and real operands. On this assumption we

consider the problem of which of the desirable features can be represented within the

instruction word. This represents little limitation on the scope of our methods. Data

obtained by them are certainly vaM arguments in discussions of instruction word size, and

the changes in the methods needed to handle more esoteric cases of mixed wordlengths are

mostly trivial.

The next issue brought up is the division of the instruction word into fields. Each field

represents some r.n.hilitv of the ISP, such as operator selection, addressing mode selection,

operand selection etc. Which capabilities to include is an open question, indirect addressing

and base register addressing being cases in poir.t.

Having decided which capabilities are wanted, thcrs is the question of the size of each field,

and which functions to include for each capability.

Knowing the relative values of the possible functions in a capability and given its field size.

♦ A similar argument holds for data word lengths, in that case it is the need for accuracy

which pushes towards longer words.

M In particular this depends on the application.

 -' -^^^^*«««li-^»-^»~—^-^-^ ... - M—illüMIHlMIIM- - -- ■

F"1 ■ " ' *irm*m*im!^m^mmH !••"'■■ ii «upvmvHnnwaairmn HP«- ""n

COSTS

one may select a set of functions for it. Some idea of the relative merits of functions from

different capabilities is necessary to decide on the field sizes, or on the desirability of having

a given capability at all. Note that a function becomes particularly expensive when the field

capacity» of that capability is about to be exhausted. This means trading it against a

considerable reduction in some other capability or against an increase in the instruction word

size. In fact, the cost paid is usually that of doubling1* the n Tiber of functions. Once this

cost has been paid, however, functions that would not otherwise have been considered, can

be implemented cheaply.

The goal of our methods is to estimate the relative costs and usefulness of capabilities and

their functions. They thus give exactly the Kind of information that sheds light on the

problems of how to allocate the mstru: ion word space to capabilities and functions.

The allocation of functions to capabilities is not unique. Also structural changes in one

capability may imply significant changes in another. One example is provided by two address

ISPs. When both operands can be accessed by a full address, the traditional LOAD and

STORE instructions are subsumed by a MOVE instruction. Another example is the handling of

I/O devices. Commonly there are instructions like "connect", "send function" ano "read

status" to control these. On the PDP-11 this is not sc The relevant registers of the

external devices have been allocated functions in the addressing capability and the above

instructions are subsumed under the MOVE instruction. Yet another example is provided by

general registers. If these are part of the addressing space, register to register functions

are not needed in the operation capability, they are subsumed under the memory to register

functions.

2.2 Time cost

The primary time cost is the time the central processor spends executing the- program. For

reasons explained in Section 1.3 the primary time cost excludes time soe.it in interrupt

handling, whether the program's own or others'. Unless specifically mentioned, the term timfi

cost is used to mean primary time cost.

HMBI

* Usually some power of two.
M Assuming a binary instruction word.

- ■-■ ■WMMMMMa ■Ml

■MiqpHnjiiHw ■ i ■ OT ^IIB l^^l-WWi I ■ ll

COSTS 23

Execution time can not be measured directly by our methods. We propose three

approximations:

One is the instruction CfiUüL i.e. the number of instructions executed. This suffers from the

inaccuracy caused by assuming that all instructions execute in the same time. This is further

discussed below. Modifications could be made depending on addresmg mode (particularly

indirection) and other features. This was not done in our case. The major advantage of this

measure is the ease with which it is computed, and its independence of technology1 and

processor implementation. The instruction count also has another quality: In addition to

being a crude measure of time, it is a precise measure of the number of opportunities there

have been to express something in the program.

For many designs, the memory reference caunt. may be more appropriate. The PDP-11 is a

good example of this, since for the same data operation the number of memory accesses

varies depending on addressing mode. In case of the ADD instruction the number of memory

accesses may thus vary between 1 and 7.

If there is no overlapping between instruction executions, a more accurate measure is the

computed time, that is the sum of the execution times of all instructions executed. Even this

is inaccurate since execution times of many instructions depend on operand values or lengths

and also on hardware, like primary memory cycle time. The latter may vary even within the

same run if the job is swapped. However, the time obtained in this way is probably as

accurate as that used for accounting and other purposes by operating systems, where

operating system overhead and interrupt handling on behalf of other jobs often is a major

source of errors.

We may gel an indication of the inaccuracy of the instruction count as a me'sure of the time

cost by comparing it with ihe computed time. This is done in Figure 3-4, which displays

the average instruction execution rate for our subject set m uni*s of thousand instructions

per second of computed time (kips - kilo instructions per second). As the table shows, this

rate varies from 210 to 417 kips, with an average of 324 kips and a standard deviation of

63. Hence the instruction count may vary by a factor of 2 for programs of the same

f A faster floating point unit would make a great difference in the execution time for many

programs, but not in the instruction count. In one of our subject programs (Aitken E, see

Section 3.2.2), 237. of the executed instructions, consuming 54Z of the computed time,

are for floating point arithmetic.

M^üaBMMMaiMMtt^ _ ._ ^~_*

yui'v I.I.....«J i-Miiiiin iwmnw"* mi P"ii _ ^ff ■ WIR ■•in ,i ■■■anNiipj.Hvuwavnmp^mpqpmHfipjqpj.mi ■^wwplwil

COSTS
2A

computed time. Assuming the computed time to be close to correct, we may conclude that

the instruction count is not overly accurate as a measure of time. We still use it. however,

for the stated reasons.

For a central processor where there is overlap between instruction executions the

instruction court may be suffic.ent. Alternatively an interpreter for the instruct.on

dispatching mechanism may be programmed and an appropriate version of computed time

obtained. The choice depends on whether one wants to evaluate the mstruction set as such.

or the processor that executes it. Such an interpreter might introduce add.t.onal

inaccuracies.

The relations between the time and space costs through the instruction word are described

in Section 2.1. The tradeoff d.scussed there applies to all capabilities and functions of the

instruction word, and also to the implied data types.

The ^mndarv tima tost is the time spent in operating systems funct.ons on behalf of the

running job. This can be measured by clock or by using operating system routines as the

subject programs of the analys.s. This cost is influenced by the space cost as discussed m

Section 2.3.

2.3 Space cost

This is the cost of the primary memory that a program occupies for code and data (static and

dynamic). The importance of this cost follows from the relatively high cost of primary

memory, which is commonly an expensive part of a computer installation*.

Contributing to the space cost is instruct.on space and data space. Given an application ooth

of these will vary with the ISP. in particular with the ava.lable data types and the.r

operators. Variations in register structure and control operators will influence program

space and space for temporary storage.

♦ With the current trend towards semiconductor memories, the technology is the same for the

memory and the processor. Since the memory .s usually much larger (in gates), memory cost

will continue to be high until another technology becomes economical.

L. ■ ■ ■ -■* - i^M

^Iiniaa i i.ili i ■ p ji ■■ i ill .1 ■■•lai ip u 111 i .1 JMUIII»! IIII mil -< <«•■■■■ IU i i. OT I. J mim Uli..! n ■ M miUM iwmmmm*q^*mm^

COSTS 25

Space cost is best measured by static methods or by estimation based on miscellaneous

assumptions as relevant in the particular case. The data space for dynamic data structures

can not be measured by static means, 't can be measured by dynamic methods, but we

present no method for this at the present time.

For static methods one may rely on the compiler in question to produce the statistics, or a

special program may analyze core images, relocatable programs or some similar general form

of the program. The first approach suffers from lack of generality as discussed in Section

1.2.1. The second may have inaccuracies due to the difficulty of distinguishing instruction

words from data, in particular constants and descriptors. This inaccuracy depends on the

central processor structure, it will be small or nonexistent on a central processor where code

and data are completely separated, as on the HP 3000.

Space cost is measured in bits, alternatively in words. Whenever we estimate this cost there

will be inaccuracies inherent in the particular assumptions made. These will be discussed in

each case.

Memory access width relates the space and time costs by forcing unnecessary space to be

used rather than increasing the time cost. Memory access width is again influenced by the

amount of space necessary for representing data types. Dynamic methods may be desirable

here, to determine the space necessary to represent the actual significance of numerical

operands (See Section 5.5).

Also space cost relates to time cost through the instruction word as discussed in Section 2.1.

For a computer with a dynamic memory management (paging, overlaying) there will be an

associated secondary time cost for this function which usually increases with the space cost.

In a multiprogrammed situation there will also be a relation to secondary time cost through

central processor idle time whenever the program is difficult to multiprogram. This also

increases with the space cost.

2.4 Programming cost

This cost may be broken down as cost of design and coding, debugging and maintenance.

Costs incurred by errors during production runs may also be included. Each of these is often

a significant fraction of the costs associated with a program. The most important way of

mm. .

• inn pit i mniii iimaiiai n i •mn^mm^ftm ■■" "'

COSTS 26

reducing the programming cost is to write programs in high level languages. However, for

efficiency reasons, and in order to gam access to machine features, much coding still taKes

place in assembly languages. Similarly most debugging is done by means of assembler

oriented debuggers, or at least requires good knowledge of the representation of the

program in ISP terms. Hence a gocu ISP architecture contributes to reducing this cost in

several ways:

By supporting high level languages and other good programming methodologies. This

includes techniques for program factorization, like subroutines, coroutines and separately

compiled modules, which should be well supported by the ISP. Also important are natural

representations for a rich set of other control operators and their associated data

structures.

By supporting program security. A program should be protected against its own errors

as well as those of other programs. The instruction set should not encourage the

programmer to make unnecessary mistakes, and the ISP should permit inconsistencies to

be detected during execution*. Possible dynamic checks could be: consistency of data

types and operators, validity of effective address with respect to named data structure,

consistency of control operators and their data etc. The standard techniques for

protection against other programs are to a lesser extent relevant to our subject.

By having the right operators. That is: fewest possible operators should have to be

fabricated from existing ones. This contributes to understandability. For particular

languages or application areas instructions for indexing in two dimensions, parameter

checking, etc. might be relevant.

By being clean and elegant. This means that the capabilities and their functions should

be well defined and conceptually well separated (orthogonal). There should be few and

well defined instruction word formats. The data types and control operators should be

well defined, and their representations should be easily understandable. General

concepts should be preferred to special.

The methodology and elegance dimensions of this cost are currently not quantifiable except

by purely subjective evaluation. Personal biases and preferences will have a strong

♦ Wirth, [WirN72] has stated the case for this form of security and its dependence upon the

ISP very eloquently. See Section 1.4.

mm 1 " •"'•-■•■^•^^■^«■■■^•^^^■■■■PPIPP^B^W

COSTS 27

influence. As for the secunty dimension, the cost «tnd value of proposed checking

mechanisms can be estimated using our methods to obtain data on dynamic usage. We also

provide methods for evaluating existing and missing operators, namely the freque cy counts

and FGR function (Section 5.1 through Section 5.1) and the sequences (Section 5.2).

Except for the "right operators" dimension, most of the programming cost is accumulated over

features missing from the ISP. Introduction of new features, to lower the programming cost,

will usually be at increased space, time and hardware costs. However, a generalization of

existing features will often entail a reduction of all costs.

We have discussed this cost partly to point out that security measures can be buit into the

ISP at some (often low) cost in space and time, and that our methods can be used to estimate

these costs. We also want to point out that we do not advocate rushing headlong into making

some improvement suggested by our methods to save space or fime, without considering the

issues just discussed.

2.5 Hardware cost

This is the cost of the hardware of the central processor needed to implement a feature.

Given the approximate computing power of the processor and its general structure, the

varying part is mostly a cost of electronic circuitry. Since the cost of integrated circuits is

rapidly falling and becoming a small fraction of the cost of a computer system, the hardware

cost is becoming less significant.

Estimating the tu-dware cost is outside the scope of this thesis. As a general rule each

feature introduced into the ISP will increase it, less so if the new feature, or part of it, is

subsumed under an already existing concept and using existing hardware. It follows that an

increased hardware cost is usually the consequence of an improvement designed to reduce

the space and time costs.

Time cost can be reduced by using faster circuits, thus increasing the hardware cost. This is

irrelevant to the ISP architecture. Hardware cost is independent of space cost, its relation to

progrcmming cost is discussed in Section 2.A.

Maa^^M

i<ii>i>|i • •«!■ ii mi in mi i ■>-• i ■ _p^>-<_^vn^vwwnw«V1^' i ill .O-^TWIX.I ■ l^m' . '■ ■■- 1 ■ ■ ii» ■" ^^ -»MWi™^»"

28

CHAPTER 3

VALIDATION STRATEGY

A major concern of our research has been to establ.sh the validity of the methods we have

developed. We wanted to ascertain that they apply with more or less equal generality to the

ISP structures outlined in Section 1.3 and to all applicat.on areas where this class of

processors is commonly used. We wanted to be confident that the results obtained by using

them reflect general requirements of programmers, algorithms, languages and compilers

rather than idiosyncrasies of particular instances of such. Specifically we wanted to assess

the influence of each srjrce of variation on our results.

The sources of variation can be groupea cc-

Variation due to algorithm.

Variation due to programmer.

Variation due to language used.

Variation due to the particular implementation of that language (including the operating

system).

Variation due to the ISP.
One might also want to consider variation due to choice of representations, particularly for

data structures. This variation is closely related to those due to algorithm, programmer and

language, and we do not treat it as a separate source of variation here.

The validity of the results have been judged by several criteria:

The methods confirm already known efficiencies or deficiencies of the ISP considered.

The methods give new insight into deficiencies or efficiencies of the ISP which are

subsequently verified by other means.

The methods themself may measure or illuminate the same property of the the ISP from

several angles and these results corroborate each other.

In special cases the approximate measures found can be compared against direct

measurements.

-—*~~- - -im „_ .

 > ' ■ > ""'•>' . .i m w—-M—f . M.ii.i»i.i a . i MI —~^» mmm < '■'■ 'vr-W««l,<HPmws^ipaMaP*

VALIDATION STRATEGY 29

In this chapter we describe some simplifying assumptions which were made, and how we

chose a subject set in order to investigate the influence of the above sources of variation.

As the presentation of each method, and the experimental results obtained by it, is

concluded, we also discuss the results in view of this validation strategy. Finally these

discussions are summarized in Section 8.2.

3.1 Some simplifying assumptions

To make a full scale investigation of the effects of all these sources of variations would be a

major programming task. Particularly costly is tracing on several ISPs, and selecting the

subject programs from a wide area of applications. Firstly we would need an interpreter

program for each of the ISPs to be investigated. Secondly, we would have to change the

analysis programs to reflect the other ISPs'. Thirdly, m selecting subject programs we would

need several programs from each major area of application. These would have to be coded

in each of the selected languages and brought to run on each of the selected ISPs before

analysis of them could stcrt. The analysis would entail a large expense in computer

resources and the result would bring on us a data reduction problem of considerable

magnitude. In addition it would involve locating and consulting experts in each application

area.

We believe that we have legitimately evaluated our mt ^hods without going to this large scale

investigation, by introducing two simplifying assumptions:

1) We restricted ourselves to one ISP, viz. the POP-10. This alleviated the first two

difficulties above, but deprived us of the possibility of investigating the variation due

to a change of ISP. Almost all of our experimental results would change if we

performed our analyses on a different ISP, particuarly the results for register

utilization, details of instruction sequences, and addessmg. In some cases the

♦ There is an obvious advantage of running the analysis programs on the same processor as

is traced, since many of the representations have obvious and efficient formats. Most of our

programs were written in FORTRAN to ease portability, but even so many of the

representations would have to be changed when tooling for another ISP.

mm

mj>'' ■"•• nm u i'^r7mimm0i*w> — '. iiu»l«»ww«w*^^^"^inp||«i i*'ni»*rm*mm****my^■'*•*''*•"»>*lmmt.mmi''^mmmmmmmmi^****r-

VALIDATION STRATEGY ow

methods would have to be modified, or new methods developed, to handle special

features of particular ISPs*. We believe this to be of little importance in the present

context. Our goal was to assess the ability of our methods to detect the utilities and

costs of features in ISPs, as opposed to comparing ISPs. Since our methods justified

themselves for one ISP we feel confident they will work satisfactorily for most.

Analogously, if we were developing methods to determine the cost/utility ratio of

programming language feat ; es based on their usage, we would certainly measure the

performance of program on several ISPs but we might well restrict ourselves to one

language provided it were sufficiently rich. Further justification follows from the

generality of the PDP-10 as discussed on page 9. If the findings of our validation did

not have a certain generality to them we would suspect this assumption of failing. As

it is, we don't.

2) We restricted ourselves to one, albeit rather general, area of application. This

reduced the set of subject programs to manageable proportions. Again, we believe

that since our methods showed their worth in evaluating an ISP over one application

area then they can be applied over a spectrum of areas, separately or in union. We

would expect the findings to differ from area to area but mostly in data types and

data operators. This is probably the best understood part of the domain that our

methods can be applied to and hence of least importance to us. We would also

expect data accessing methods to be influenced by the application and our

assumption deprived'us of assessing this influence. Considering this assumption, we

restricted our study to programs mostly from the area of technical and scientific

computations, uit with some other programs included, in particular compilers.

We summarize this discussion as follows: The intended goal of our methods is to evaluate

features of ISPs as suitable for a given general or specialized application area. Our main

concern in validating the methods was to assess the influence of factors not related to the

ISP or to the area of application.

♦ Consider the IBM 360 ISP as an example, and compare it with the PDP-10. Base register

addressing would imply that more registers would be used, and that information about

addressing would become more important. The differences in instruction sets would imply

changes, at least in detail, of tht instruction sequences. Also methods for investigation of the

use of condition codes would have to be implemented.

L—-■—'•—''—'*'*''"-"'-'—-— ■- —^^MMM.lMM^^,—^,. ^

■q^V^||*MI)nP)l^«WMIU*^lW^Si^«^-nVH<n^ppnpiM|iW"liii ^„mmm^M. I li^iP^^^^^V ^Jll^ (Ml ^pW.PJWIPiiHW«."'. ■) . MW V-'!■'WW?*

m

VALIDATION STRATEGY 31

3.2 Selection of data

Again, since we evaluated the methods, and not any particular ISP, we were not worried that

our selection of subject programs quantitatively constituted a fair representation of any

actual workload. Rather we wanted to see all programming structures that occur with some

minimal frequency in real world programs represented in our test sample. To estimate the

influence of the various sources of variation we studied the behaviour of several versions of

the same several algorithms, programmed by different programmers, in different languages

and, if possible, compiled by different compilers for the same language.

3.2.1 Language selection

To study the language variation, we selected four available languages suited to the chosen

application area, namely: FORTRAN, ALGOL, BASIC* and BLISS. These languages cover a

range of age, degree of security, inherent efficiency and structure:

FORTRAN [IBM56], [USAS65] was designed about 1954 but has since been modified and

extended considerably. ALGOL [NauP63] was designed in 1957-60, BASIC [KemJSl] in the

early sixties [KemJSl], BLISS [WulW70] was designed around 1969.

In terms of control structu/es, including program factorization mechanisms, all the chosen

languages have looping and conditional constructs. BASIC is the poorest, having subroutines

but no local names. FORTRAN has more structure, particularly subroutines and localized data.

ALGOL has even more, notably the compound statement with its consequences for the other

control structures, block structure, and an advanced parameter mechanism. BLISS is

comparable to ALGOL, with a simpler parameter mechanism, but it has coroutines, and intra

routine control structures so rich that a general GO TO has been omitted. This contributes

towards better structured programs.

For data structures, FORTRAN, BASIC and ALGOL all have vectors and multidimensional

arrays, BLISS has any data structure which the programmer cares to define.

* To obtain a fair comparison of the language structures involved, we did not use the matrix

operators of BASIC where they would normally be called for.

-—---1—-——

'■""■"" ii i i» 11 P> ■■ i i [^«n^^WMiii.HIlp i immmmr^mmmm^imm****i^**m*mm*mmm*^^****r -^m^mmmm

VALIDATION STRATEGY 32

BASIC has only one type», floating point, converting to integer indexes automatically as

needed. ALGOL and FORTRAN have several arithmetic types with automatic type conversion,

and also a Boolean type. BLISS has no types but relies on the written operator to determine

the correct operation.

FORTRAN and BLISS have almost no run time checking, BASIC checks array bounds, ALGOL

does this and also has extensive checking of parameters including type conversion.

BLISS generates the most efficient object progr?ms, largely due to a highly optimizing

compiler. FORTRAN programs are efficient, ALGOL programs are less efficient due to the high

degree of security and to the precise definition of evaluation order in the context of possible

side effects. BASIC programs are inefficient due to a particularly fast and dirty compiler.

It follows that our languages span most of the variations found within commonly used

languages for scientific and technical calculations.

3.2.2 The subject set

For our subject programs we first selected six algorithms from the "Collected Algorithms

from the Communications of the ACM", (CALGO). The selection was made in such a way that

it included as many as possible of the common data types, data structures, control structures

and parameter forms found in higher level languages. We also attempted to cover as wide a

range as feasible of the modified SHARE classification, used by CALGO to classify the

algorithms. Other criteria used in the selection were:

The algorithm must have a reasonable size, - large enough to contain the interesting

features in context, but small enough to be coded in all four languages, traced and

analyzed in a reasonable time.

The remarks and certifications in the CALGO collection should not indicate that trouble

might be expected using the algorithm.

The subject matter of the algorithm should be sufficiently known to this author that he

could detect obvious errors in the published algorithm and in his various versions of it.

♦ Excluding the string type which we don't use.

tmmv^pmfv"' - 1 .•iu.I..«p. i.wwp.^.ni .1... T—IW ■1 *i I ii I.^^^^WSWIB

VALIDATION STRATEGY 33

Writing a main program for the algorithm should be straight forward.

The CALGO algorithms selected are briefly described in Figure 3-1, along with the rest of

the subject set. This set of algorithms gives us a good indication of the variations due to

algorithm and language. Listings of all the ALGOL versions, all 4 versions of PERT, and all 5

versions of AitKen, are reproduced in Appendix E.

The language structures searched for, showing how they occur in the selected algorithms,

are tabulated in Figure 3-2. The statement count given i« the approximate number of

ALGOL statements' in the published version, included as a measure of the coding effort. As

is seen from the table, several of the desired structures are not represented. Double

precision arithmetic is only present m one algorithm, Crout, very locally in space (though not

in time), and only in the ALGOL and FORTRAN versions since BLISS and BASIC do not support

this type. Complex arithmetic is only marginally present, since Bairstows method finds

complex roots but does no calculations using them and no variables are J-clared of this type.

Bit manipulation, bit vectors and characters are not used by any of these algorithms. Note

also that real arithmetic in treesort is present only to the extent in which it is needed for

comparisons of magnitude, or for initialization.

Only Grout's method uses two dimensional arrays and we found no suitable algorithm using

arrays of 3 or more dimensions", and no triangular or ragged arrays. We also found no

suitable algontnms using record structures or lists, although Treesort uses linked structures.

We found a rich selection of GO T0sm, conditionals and loops, and one instance of a CASE

statement (switch, computed GO TO). Since only BLISS and ALGOL support recursion, and this

feature is little used in published algorithms, we did not include it. For the same reason we

included no algorithm using label parameters. Other parameter forms are well represented.

In particular, Ismg passes procedure names as parameters. For this reason Ising could not

be coded in BASIC.

I
♦ Not counting <block>s and compound statements. Thus "IF B THEN BEGIN A:=X + lj It-1-1

END ELSE A:=X-1;" counts as 4 statements.

M Knuth [KnuD70] reports that 1.4/ of the static variable occurrences in his FORTRAN sample

has 3 or 4 indices or parameters. He does not distinguish function calls from array accesses.

AssLimmg functions of many parameters to be more common than arrays of many dimensions,

this supports our findings.
"♦ Most of the GO TOs caused little problem when translating into BLISS, an exception was

the Bairstow program which required artificial loops, compounds and a function.

—_ ■ - ■■■'■— ■ --- ■

wmm^iirmmmmf^ijr-^— ^••wwpww^^i^'w . ■ IIIUJIIUU ipimuuMinpip mimj\ i n.,i J MI ji^niwwnmpimv^nMP^^ ■^■pwpppjpwwpi

VALIDATION STRATEGY 34

CALGO no. 30
Bairstow

CALGO no. 43
Grout

FIGURE 3-1

Description of the subject set.

Bairstow/Newton method for polynomial roots.
Author: K. W. Ellenberger. Corrections by W. J. Alexander, K. J. Cohen and
J. J. Kohfeld.
Modified SHARE category C2: Zeroes of polynomials.
Data: Initialization by explicit assignments.
This is a classical algorithm for the problem.

Grout's method for linear equations with pivoting.
Author: H. C. Thacher. Corrections by C. Domingo and F. Roderiguez-Gil.
Modified SHARE category F4: Linear equations.
Data: Matrix values computed by simple expressions. Logarithm used for
right hand sides.
A classical algorithm for the problem.

Treesort.
Author: R. W. Floyd.
Modified SHARE category Ml: Sorting.
Data: Initialization by simple expression. Initial order is inverse of desired.
A logarithmic sorting algorithm.

Evaluation of a PERT network.
Authors: B. Eisenman and M. Shapiro. Corrections by L. S. Coles.
Modified SHARE category H: Operations research, graphs.
Data: Initialization by explicit assignments.
A somewhat speeded up algorithm for this problem.

CALGO no. 257 Numerical integration by Hävies method.
Hävie Author: R. N. Kubick.

Modified SHARE category 01: Quadrature.
Data: Integrands are simple expressions involving square root or
exponential.
A modified Romberg integration.

CALGO no. 355 An algorithm for generating Ising configurations.

CALGO no. 113
Treesort

CALGO no. 119
PERT

Ising Author: J. M. S. Simoes Pereira.
Modified SHARE category Z: Al1 others.
Data: Maximal n read from teletype; n, x and t varied by loops over all
significantly different combinations.

An (x.t) Ising configuration is a sequence (Si,...,Sn) of zeroes and ones such
that:

I S,
i<i

and E'WI - SJ -1
i'l

The problem is of interest in theoretical physics.

- i m

"■•"-" '"»^»■..wf7ir,^",™»"'»'W f*l,, H.J.I^milll, ■^^n^B^imiJll.^iW^^lin^iiiHUW l .imjl MIL l.lllUllfU|IJHi »»»—mm

VALIDATION STRATEGY 35

This algorithm was included mainly because routine calls is its most
important control structure. Since routine names are passed as parameters
it could not be coded in BASIC.

Aitken

SEC

FORFOR

FORTEN

ALGOL

N-point polynomial interpolation.
Authors: M. R. Barbacci, L. E. Flon, G. N. J. Rolf, W. A. Wulf and A. Lunde.
(Each contributed one version of the algorithm. The s^.vest version was
omitted. The fastest (and shortest) version was further improved by about
107. in speed and size, and included. Hence five versions of this algorithm
were used.)
Modified SHARE category El: Interpolation.
Source language: BLISS.
Data: Natural logarithm tabulated at irregular intervals by loop.
Standard polynomial interpolation.

Zeroes of simultaneous nonlinear equations by secant method.
Author: G. W. Stewart.
Modified SHARE category C5: Zeroes of trancedental functions.
Source language: FORTRAN
Data: Functions are linear combinations of linear and quadratic terms in the
variables, parameters read from teletype.
The program was designed for research in the problem area and method.

Compiler for FORTRAN.
Source language: Assembler.
Data: FORTRAN version of the Treesort algorithm.
A compiler of the Digitek design, simulating a one-accumulator processor.

Compiler for FORTRAN.
Source language: BLISS.
Data: FORTRAN version of the Treesort algorithm.
A compiler doing flow analysis and generating efficient code.

Compiler for ALGOL.
Source language: Assembler, structured control by macros.
Data: ALGOL version of the Treesort algorithm.
A fast ALGOL compiler generating efficient code (for ALGOL). Language
slightly extended.

BASIC

BLISS

Compile and link phases of the BASIC system.
Source language: Assembler.
Data: BASIC version of the Treesort algorithm.
A fast compiler generating extremely inefficient code.

Compiler for BLISS
Source language: BLISS.
Data: BLISS version of the Treesort algorithm.
A slow compiler generating efficient and small code.

^MMMH^M J

nmniPipHiajrii. iJiiiiiiwiaiipniimmn»' i > >i v iit^w^mur*'*'*!* ■ ."■m*'&imr1^- 'mnwi\w».*' nimfmnt miitwii'i>nm>>.i«mrmw"n^m'"-.i''-'-fiiwmv""",'mw>"' Tm&mmmm^'i^mt

VALIDATION STRATEGY 36

FIGURE 3-2

Language properties of the small subject algorithms:
x means property present in algorithm.

- means property marginally present in algorithm.

Name: Bairst. Grout T.sort PERT Hävie Ising Aitken

CALGO number:
Mod. SHARE categ.:
Statement count:

30
C2

120

43
F4
40

113
Ml
15

119
H

60

257
Dl
35

355
Z

45
E

30

Typos:
Integer
Floating

X

X

X

X

X X

X

X

X

X X

X

Double fl.
Complex
Boolean
Bits
Characters

[Ma structures:
1 Dim arrays
2 Dim. arrays
>2 Dim. arrays
Ragged/triang. arr.
Records
Lists
Linked
Packed

Contro' structures:
Go to
Conditionals
Cases
Counting loops
Other loops
Subroutines
Recursion

x
x
x
x

X

X

X

X

X

X

X

X

X

X

X

X

Parameter forms:
Constants
Variables
Expressions
Arrays
Routines
Labels

x
x
x

x

x

x
x
x
x
x

MMtfH mmm

I.M»H.*>11| ■■ •■! NMWIW» MHIIIHJ« . »'IIII.IIIWIWWI II «Hü MJB^ptpiBF" IMU» llljlllf jpi|^ -^mii««liniPmm9«!«P. 11 II li-,,l»l,P«WUWII»» "IW I

VALIDATION STRATEGY 37

A related source of variation is that of language implementation. Luckily the PDP-10 has two

FORTRAN systems, FORTRAN 40 and FORTRAN TEN, here denoted F0RF0R and FORTEN or

simply FOR and TEN. Hence we had an obvious way of assessing this variation. We analyzed

all the CALGO algorithms plus SEC (see below) using both of the FORTRAN systems. Due to

suspected bug in TEN, we did not use the optimize option of TEN when compiling our

programs. The various versions of these algorithms will be denoted ALGOL Ising, BASIC

Crout etc.

a

To estimate the variations due to programmer habits we included 5 versions of an algorithm

as coded in BLISS by 4 experienced programmers. The algorithm was polynomial

interpolation* which nicely completed our coverage of the modified SHARE categories. BLISS

was chosen since it gives the programmer more alternative forms of expression than do the

other languages. This was thought to be of importance considering the small algorithm.

These five programs are denoted by the letters L, G, B, A and E (efficient).

For each of these algorithms a main program was written, to provide data for the algorithm

and present the results. To initialize the data for the algorithms we used explicit

assignments of either constants or calculated values, usually simple expressions involving the

indices of the variables to be initialized. A short indication of the method used in each case

is given with the description of the algorithm in Figure 3-1.

After a few trial traces it became obvious that input and output accounted for a large

fraction of the total activity. Not only did format interpretation take much time, but also

channel and file initialization and status checking. We therefore decided to leave I/O out of

the traced part of the algorithms, with a few exceptions: one parameter to the Ising program

is read from the teletype, and a minimal output was included in some cases.

Our sample so far had one major df.ficiency: all the programs traced were small. To rectify

this we traced all the compilers involved, that is the A^GOL and BLISS compilers, the compile

and link phases of the BASIC system and the two FORTRAN compilers. All these traces were

made while compiling the appropriate version of the Treesort algorithm. An additional

benefit from this was that we got examples of many of the structures our CALGO sample did

not have, including bit manipulation, bit vectors, character handling, records, lists and

By Aitkens method as described in Milne [MilW49].

IM^iMMlMMMMMiMilMIIMBiiMliM mill

jii.y- «!B»IIJII«I>MI«JII i in ••■[■■ii.Bi«iiip(i|iuiiiiiiMp i M»II.»IJ i iijiiiMinm^mnapw^^ii^^^mmpppmu mi i i

VALIDATION STRATEGY 38

recursion. We also believe that compilers account for a large fraction of the resources used

in any installation and hence are of particular importance as constituents of sets of typical

programs.

We further included one somewhat larger program from the technical scientific calculations

area, this was a program, SEC, to solve nonlinear simultaneous equations. This program was

analyzed using both versions of FORTRAN.

The resulting subject set consists of the 6 CALGO algorithms written in each of the 4

languages, the Aitken algorithm written in BLISS by 4 programmers, 5 compilers and the

large scientific numerical program. These programs are well distributed over the area

spanne by the modified SHARE classification. The following general categories are

represented:

B (Standard functions) by the integrands for Havie.

C (Polynomials, zeroes) by Bairstow and SEC.

D (Integrals and differential equations) by Hävie

E (Polynomial approximation) by AitKen.

F (Matrix operations) by Crout.

G (Statistics, permutations, subset generation) by Ising (related).

H (Operations research, graphs) by PERT.

L (Compiling) by the compilers.

M (Sorting, data conversion) by Treesort.

Z (Others) by Ising.

The FORTRAN versions of the 6 CALGO algorithms, and also the large scientific program, were

analyzed as compiled using the two different FORTRAN compilers. Thus, since the BASIC

version of Ising was excluded, the sample altogether consisted of 41 traces. The traces vary

in size from 19000 to almost 600000 executed instructions. Altogether about 5.3 million

instructions were traced, corresponding to almost 16.8 seconds of CPU time (compuicd «me)

on the KA10. This should give a good basis on which to evaluate the methods. The

computed time and instruction count of the subject set are tabulated in Figure 3-3. The

average instruction execution rate for each program is tabulated in Figure 3-4.

/

 " —

FW» ^»^W"*PHr«W«*"*i»WiflWW^^^w»w»wwi»P"w^""*w»jitfp(|f»'"iii|H^,'^w^ uniiiiinjiii ■ i imvunuii- -v^n^nnqnwwmwi

VALIDATION STRATEGY 39

FIGURE 3-3

Time cost of the subject set.
Computed time in seconds.
Instruction count in 1000s.

Source language: ALGOL

Bairstow

Crout

Treesort

PERT

Hävie

Ising

SEC

Algorithm\Programmer
Aitken

Assembler written
compilers

BLISS written
compilers

E
0.18

44

BASIC

B
0.19

47

BLISS F0RF0R F0RTEN

0.12 0.45 0.09 0.08 0.08
36 156 23 21 19

0.32 0.49 0.25 0.43 0.23
115 163 62 109 63
0.47 0.55 0.26 0.27 0.35
140 187 106 HI 97
0.16 0.41 0.07 0.08 0.07
63 157 26 32 27

0.48 0.33 0.12 0.18 0.17
168 103 28 38 36
0.22 - 0.07 0.05 0.05
91 - 25 20 20

- - - 2.08 1.94
- - - 541 497

A
0.21
60

G
0.41
143

L
0.44
139

ALGOL BASIC BLISS FORFOR FORTEN
0.19 0.25 - 1.56
74 85 - 591

1.67
593

0.78
295

BLISS versions would have been faster if OWN vectors and matrices had been used instead
of LOCAL and parameter.

WARNING: The format of this table is slightly different from the standard table format of the
later chapters, first used in Figure 3-4.

■MMMM^Ma «MBBaMMMM

r^vq|fgui.MiiJIPHIi^n9^W^W^«n«Namf^m«^l^^vn*IMRJI«ili«|l i -IM "^,-^-,l ll11" •""■• *'•'• •■.■! I P»' J1..PJ •" '■' '■ '■,

VALIDATION STRATEGY
40

FIGURE 3-4

Instruction execution rate of the subject set
in units of 1000 instructions per second (kips)

(

Algorithm\language
Bairstow
Grout
Treesort
PERT
Hävie
Ising
Secant

Algorithm\Programmer
Aitken

Source progr.\Compiler
Treesort

ALGOL BASIC BLISS FORFOR FORTEN

300 345 261 247 243
362 330 249 256 277
300 339 401 412 275
394 380 397 395 402
351 308 230 210 219
410 . 379 391 417

mm - 260 256

E
245

ALGOL
382

B
243

A
282

G
344

L
318

BASIC
343

BLISS FORFOR FORTEN
354 379 379

Max: 410, Min: 210, Average: 324, Standard dev.: 63.

3.2.3 Subsets of the subject set

In some cases it is desirable to study the experimental results from • «*£«*J**
representing a subarea of the area of application. Our subject set falls naturally into three

such subsets:
a) The compilers. .
b) The numeric set consisting of SEC, Bairstow, Crout, HSvie and Aitken.
c) The nonnumeric set, consisting of Treesort, PERT and Ising.

This subdivision is used in Section 5.1.

MM

ipmmrm^m^i mm^*^—*' ■ inm"mnm'i nyn • ■oaiwwB« ji ■' ^■" "■' •*mm*mm*m^~^m~

41

CHAPTER 4

REGISTER STRXTURE

We will now discuss the motivation for, and costs associated with general register designs.

The main problems we attack are:

a) What is the optimal number of registers? This is the most important issue in

connection with register structure. All the costs discussed below depend heavily on

this number.

b) Kow desirable is generality? This can be an issue in some cases, particularly for

designs with a short instruction word.

We do not pretend to solve these problems, only to present methods for elucidating them.

The central concept in our methods is that of a register lüa. We present an algorithm for

detecting such livas, a method of classifying them according to the types of the events

constituting them, an algorithm to detect simultaneous lives, and finally methods to estimate

the cost of simulating parallel register activity in fewer registers than were used by the

original subject program as traced. The data obtained by these methods are highly relevant

to the problems of register block size and generality. The first few subsections discuss

register structures in general, terminology, and other topics common to the methods.

4.1 The basic tradeoffs

In old ISP designs, the arithmetic registers that the programmer had access to were the

actual input registers to the arithmetic unit. A typical design would have an accumulator (A

register), and an extension of it (Q register) to hold double length products and dividends,

quotients, multipliers, and the like. The second operand for arithmetic would come from

primary memory. Further there would be a number of index registers which would have a

restricted set of arithmetic and testing operations. From a slightly different viewpoint one

might say that the registers were divided into groups according to criteria such as:

^ ^—j i

p. ,' ' '—■ I—^^^-^ ■ >"■■'W- .■»■ • -—■■■" ^^^^■^^VIIVIPII^ "^p^Bwpm .. —r^-^ rm

REGISTER STRICTURE
42

Floating point capability

Full fixed point capability

Simple fixed point capabilities and indexing

Temporary storage only

etc.
The "simple fixed point" group could be those having addition and subtraction only, possibly

further restricted to immediate operands only.

As electronic circuitry became cheaper and faste, compared to pnmary memory It became

feasible and common to have a small electronic memory in the central processor for locally

important operands. Operands, as specified by an extra address in the instructions, are

transferred through a switch from these memory cells to the arithmetic input registers,

whereas the latter registers are invisible to the programmer. One or both of the operands

may come from this memory, the alternative being primary memory as before. As a natural

extension, this memory contains not only the arithmetic operands but also the indexes,

control information etc. The terms registers. Lfi&islfil UOfilb and in particular gfiufiLfii

registers, are now used to mean this local memory.

The general registers commonly serve a combination of several functions:

Arithmetic registers

Index registers

Base registers (double indexing)

Subroutine linkage

Program flag registers (for Booleans)

StacK pointers

Address pointers (to data)

Temporary data storage

Temporary program storage (for small loops)

Program counter (PC)

etc.
Few. if any. computers have registers with all these properties. In particular, few machines

have the PC in a general register (exception: the PDP-11), and few may execute programs

from them (exception: the PDP-10). The register blocK may be part of the memory address

space for all functions (as in the PDP-10). just for some (as in the UNIVAC 1107), or not at all

(as in the IBM 360).

We will devote this section mainly to registers for data manipulation. Indexing and

f^^»■*IP■WIP^iW^W^■WWB■^»"•"••'■■,"■''■•«"»•""■i ■■»•■"■w»""^»« ■,«•!•' iwupin i mail in • HUH iipwiawnwii IIIHIJ UIM>I.II i tmi -mm^mm^^^fm

REGISTER STRUCTURE 43

inditsction will be discussed, however, to the extent that they are operations involving

registers.

Assuming that indices, if they exist at all, are always held in "registers" addressable by short

addresses in the instruction word, we may list several factors that motivate the transition to

a general register design:

To save addressing space in the instruction word compared to two address designs. This

is not discussed further in the thesis.

To save code space and instruction excutions compared to single accumulator designs. To

estimate this factor is outside the scope of the thesis.

To have a fast store for locally important operands. This is further discussed in Section

4.6

To have a full complement of operators for indices and control informaticn as well as for

normal arithmetic operands. We discuss this in Section 4.5.

To clean up the ISP :tecture and central processor design. Tlv-.. is again motivateo

by programming t d hardware considerations, to estimate its cost ano utility is

outside the scope of this thesis.

The costs of general registers are contributed by:

Space cost of lengthened instruction words compared to one address design. This

question is not addressed in the thesis.

Time cost of load and store instructions compared to a full two address design. Some of

the results of Chapter 5 may bear on this factor.

Time cost of saving and restoring registers. This can be reduced by having special

"process swap" or "register save/restore" instructions, or by having separate blocks of

registers for each program or for groups of r-rograms, commonly defined by the interrupt

structure. Hence this cost may or may r.ot apply on interrupts. The cost certainly

■ ■iHllimPiiiui *** pppi.iM .HI PK'ii ü w I' i nil II. IWPPIIIP,IP mill ii L i II^JI ii ij u mi ip^nai MM pi>>iiiiui uuiiKipBiiwiiRpi i i i mm m IHHIIII

— — .I „

REGISTER STRUCTURE 44

applies on subprogram calls, particularly if subprograms are separately compiled*. Again

some of the results from Chapter 5 apply.

Time cost of register access switch. This time is small compared to the time gained by

not accessing primary memory, but may increase somewhat with the number of registers.

It may be estimated from the results in this chapter.

Hardware cost of the registers and the switch. To estimate this is outside the scope of

the thesis.

The relative importance of these factors depends on the state of technology. In particular

the current trends towards cache memories, and towards larger, faster and cheaper

electronic memories, tend to make the fast local store argument less important. To make

valid design decisions when faced with cost effectiveness requirements, it is necessary first

to establish quantitatively their relative importance in a technology independent way.

4.2 Some definitions

The intent of these definitions is to make precise the term "register life", and to define some

important properties of register lives.

♦ Our analysis of the trace of the BLISS compiler indicates that a "declarable register" is

restored more than 5000 times every second due to subroutine calling; the same number as

by restoring 16 registers 312 times. A complete process swap would thus have to be

performed over 300 times per second in order for the time cost of register saving due to

process swaps to exceed that due to subroutine calling. We believe this is a high frequency

of process swaps for the PDP-10 (KA10), but not extremely high. Including the "F-register",

the count for BLISS rises to 16500 registers per second, corresponding to about 1000

process swaps per second. (This is about 1.15 registers saved per routine call). The

"temporary registers" are not included at all in these counts. Measurements performed on the

IBM 360/91 indicate about 470 SVCs and 1/0 interrupts per second. Assuming the 360/91 to

be ten times as fast as the KA10, this corresponds to about 50 process swaps per second on

the KA10. All this indicates that register saving because of routine calls is significantly more

costly than register saving due to process swaps.

»»^■^PipippiWPII^ÜPIWmPPP1'"-1 .1 - mtm.vii i in i mi -vmiimmm ' l«"1 ~ " i>i ..i,,.,.,,,,,» n, . .., ,,„,., mm, ...iKHiDnmmmmiti im i w JIJIIIIW*I!I|,PI»HH

REGISTER STRUCTURE

A register is load.'d when a new value is brought into it that is unrelated to its previous

value (except for possible use of the old valut in the address calculation).

A register is modified when a new value is brought into it which is the result of an

operation involving the old value as one of its operands.

A register is used when it is loaded, modified, employed in address calculation, used as an

operand, stored, tested or otherwise referenced from an instruction.

A register is C£ad when it is used but not modified or loaded.

Since our finest grain of time is that of one instruction, a register may be loaded and

otherwise used at the same time. In a finer time scale this would not be so. Hence we

regard the sets of loadings, modifications and readings of a register as disjoint. Their union

is the set of all usages of that register. Two other subsets are often needed:

A register is changed when it is modified or loaded, it is accessed when it is read or

modified.

A register life (R-life) 'or a given register is the span of time starting when the register

is loaded and ending with the last access before the next time it is loaded4. If a register

is used in the address calculation of a load to itself, this use is regarded as en access in

the life prior to the loading.

Typically a register life starts wth a LOAD; operations like ADD, STORE, SHIFT etc. may

reference the register and possibly modify it during its life, it may be used as a stackpointer,

indirect address etc.

The initial loading usage in a register nfe is called its first uifij the term last usfi. has an

equally obvious definition. The first and last uses of an R-life constitute its transitions.

The length of an R-life is the time from its first use to its last use, both endpoints

included.

♦ An R-life should be thought of as closely related to its register. Formally this could be

incorporated into the definition by defining an R-life to be a triple: <Register name, time of

load, time of last use>.

^^^^_l_

pwpPUPPPWMPWW^wiwwiB»««'»-""1""1 i.iiiiNioiiipimwiwpw«—WP"!-"»!.! ' '" ' i« mi at^^tfmm.

REGISTER STRUCTURE 46

A register is \ix£. during an R-life for that register. It is dfifld when it is not live. It is

dormant when it is live but has not been used for some long period of time specified in

each actual case.

We emphasize that we are observing the dynamic behaviour of programs, hence the

observed R-lives are in general different from those that we would observe by a static study

of the code between the instructions responsible for the first and last uses, and the usages

of a register during its life may involve instructions from quite remote parts of the code.

The following definitions are introduced in order that we may classify R-lives according to

the Kinds of operations they have been used for. This will be used to assess the need for

generality of registers.

A register usage classification is a set of possible modes or attributes, each describing a

different way in which a register may be used by an instruction.

A simple classification could be: {<loaded>, <stored>, <used for integer arithmetic^ <used for

real arithmetic^ <us8d otherwise>}. A more complete classification is presented in Section

4.3.

A register usage attribute is a member of a register usage classification. The above

classification has 5 attributes: <loaded>, <stored>, etc.

A register uSäüfi. dass is a set of register usage attributes, i.e. a subset of the register

usage classification.

When no confusion can arise, the word "register" is usually omitted from the above 3 terms.

Each R-life has a usage class associated with it, which is uniquely defined by the (unordered)

set of usages of the register during its life. We will usually use the term to denote a class

defined in this way.

A register usage classification is in a sense a generalization of the set of instructions and

other basic operations of the processor which involve the registers. It may also be thought

of as a classification of the instructions of the ISP in terms of how they use registers. Given

an opcode and a field of the instruction word which ma/ specify a register, a usage attribute

is true or false depending on whether that instruction uses the register specified by that

mmmm ww»> «nmnwpviHviii«D.niimuiwiiiiiiiKjiiim!ivn > iwmt t*tirimm*imim^m*mMi«-'y[■■ »i'i .'»'»^^^w»pwppp|pn»ipiipi

REGISTER STRUCTURE 47

field in that particular mode. This is in fact the way it is represented in our analysis

program.

4.3 A register usage classification

In Figure 4-1 and Appendix C we present a register usage classification for the PDP-10.

It is designed to detect the loading, modification and reading of registers, < s well as the

various forms of reading or modification. This classification was used in our analysis

programs to detect and classify R-lives. Although it is designed for a particular ISP, few and

obvious modifications would be necessary to use it for any other register oriented ISP*.

This classification grew and generalized as we were working with it. Our experience is that

the classification given in Figure 4-1 is satisfactory. It contains three minor improvements

over the one we actually used for our analyses. The "Used as operand" and "Immediate

fixpoinl add or subtract" attributes were included post hoc. Also, our analysis program did

not check for instruction fetches from registers, only for jumps into registers or XCT"

instructions addressing registers. The errors caused by this omission are considered

insignificant. ,

For technical reasons the m-chine representation of the register usage attributes separate

them into two kinds, reference attributes and atOfiii attributes. Reference attributes are

used to define the three major types of reference, i.e. loading, modification or reading.

They are used by the analysis programs as case selectors, and hence represented as

consecutive values. The access attributes are used to accumulate the types of usage of a

register during its R-life. They are represented as bit positions in a field, so that they may

be easily included into a register usage class by OR-ing.

Since tnere are 3 fields in each instruction word of the PDP-10 which may reference a

register, the actual description of each instruction consists of 3 sets of attributes, each

corresponding to one of these fields and the different ways it may use a register. Further

complication follows from the existence of instructions which reference two registers by the

"ACC" field, from the special treatment of register 0 by many instructions, and from the

f For example, if analyzing the PDP-11, autoincrement might be introduced as an attribute.
tf Execute contents of effective address

- j^ ih .

iMiiiMiMwui!", i " um'. mmmr^^mmm^Ufmw^*" «"•-»■" —'-^ll"li I'll " m .I.III ip^niniipi^n^fw^pin^ninwilPnipipipmF

REGISTER STRUCTURE 48

FIGURE 4-1

A register usage classification.

Reference attributes:
Not used
Loaded
Modified
Used but not modified
Undefined (Monitor communication etc.)

Access attributes:
Indexing data accesses
Indexing jumps or executes
Indexing immediate operands
Immediate fixpoint add or subtract
Fixpoint add or subtract w. memory operand
Fixpoint multiply or divide
Floating point arithmetic
Halfword modified
Byte loaded or stored
Modified by logical operation
Modified by shift
Used as stacKpointer
Used to hold an address (As in Block transfers etc.)
Tested
Used for monitor parameter
Used as byte pointer
Used as indirect address
Used as an operand
Stored
Executed (XCT'ed* or fetched as an instruction)

"result to memory" mode of many PDP-10 instructions. These complications affect the

reference attributes, hence corresponding code has to be built into the analysis program. In

Figure 4-1 we described the classification as independent of these complicating matters. The

full classification, as we used it, is reproduced in Appendix C.

t I.e. referenced by an execute instruction

mmmtm

fp^mn^nu "i n "P i«.*mm*i&m'rmmm^m~m»mmm^mm'*m 1 'LI.""'I " —-~ ™_ ~" ' "" •" ' ' "l '■"•■•■ ■ i

REGISTER STRUCTURE 49

4.4 Register life detection

In order to say anything beyond trivialities about register usage, it is necessary to detect

the register lives. The following simple algorithm will do this in one scar over the trace. A

register uxaga classification is needed which includes at least the attributes "loaded" and

"accessed". As the trace is read, the algorithm keeps for each register the times of its most

recent lonti and use. For each instruction in the trace, all fields that can possibly reference a

register have to be examined with this in mind. Whenever the register is loaded anew, or at

the r>nd of analysis, the transitions of its most recent R-life are the most recent load and use

respectively. In our experiments we used the instruction count as our time measure; the

computed time could be equally well used.

As each R-life is detected, its length is immediately known. Similarly the number of

references to each R-life, the number of memory and register references etc. are easily

accumulated by this algorithm.

Distributions of lifelengths and usages per R-life from a typical analysis run are shown in

Figure 4-2. Because of the dominance of short lives but with a significant number of long

ones, a loganihmic division was used in the table. These results are too voluminous to

present in full for all of our subject programs. In Figure 4-3 we tabulate for each subject

P'Ogram what fractions of all the lives are accounted for by lives of lengths at most 7, 15

and 31 instructions. Similarly in Figure 4-4 we tabulate the fractions of all lives that are

accounted for by lives with at most 3, 7 or 15 usages.

A summary of other results of this algorithm from analyzing our subject programs is shown

in Figure 4-5 through 4-11. All these results were obtained under the assumption that a

register was dead when it had been dormant for 200 instructions. The reason for this

assumption, and a d scussion of its consequences, is given in Section 4.6. For the present

results it means that a few lives {the exact number is tabulated in Figure 4-26) are

considered as two or more, with correspondingly shorter lives and fewer references per life.

This algorithm is critically dependent on the ability to define the "load" and "access" usage

attribute» with the intended intuitive meaning. Certain instruction sequences, like HRR, HRL*

* These instructions load the right and left halves of a register respectively, leaving the

other half unchanged. Alone they were considered modifying instructions; however, HRRZ

etc., which explisitely change the whole register, were considered loading.

mmummMa^Mjmmmaimmm

H) ."i ■ .i ■l|■l|lll«l■■l■lI^^m^<vmRmcw,■ >l ' ii < > w ii iiuimM irro^wippM ■' '|ii'""iw»^»^BP!P«jBPiipw!WR»iip jm f >•».! i mi>M'*m*''im!mmmiifm<mii**r ^mmrnmmm

REGISTER STRUCTURE 50

FIGURE 4-2

Distributions of lifelengths and usages per R-life
(F0RF0R compiling Treesort)

LIFE NUMBER
LENGTH OF LIVES

1 - 1 27186 |**************
2 - 3 37627 I»******«»***«******
4 - 7 100480 |tmm»tM<MWMWmMMMMMMmMtMtM»
8 - 15 20661 1*****«««*«

16 - 31 6877 |***
32 - 63 4542 |«*
64 - 127 3298 |»«

128 - 255 1246 1*
256 - 511 661
512 - 1023 317

1024 - 2047 196
2048 - 4095 105
4096 - 8191 37
8192 - 16383 5

16384 - 32767 1

203239 t

L S/ VGES NUMBER
IN LIFE OF LIVES

1 - 1 27186 |
2 - 3 97693 1
4 - 7 70482 |
8 - 15 5119 |

16 - 31 1700 |
32 - 63 583 |
64 - 127 195 |

128 - 255 86 |
256 - 511 187 |
512 - 1023 S 1

1024 - 2047 0 1
2048 - 4095 0 1
4096 - 8191 o 1
8192 - 16383 0 1

16384 - 32767 0 1

«It************

*

203239 |

^»—W—P-.

■■■■■■■
»*»w^w»^

REGISTER STRUCTURE 51

FIGURE 4-3

Fraction of R-lives of length at most 7,
of length at most 15,
of length at most 31.

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN

Bairstow <J 0.771 0.560 0.830 0.852 0.824

<15 0.920 0.769 0.913 0.915 0.898
<3\ 0.965 0.995 0.966 0.952 0.930

Crout <7 0.709 0.631 0.624 0.606 0.636
<15 0.875 0.846 0.884 0.857 0.788
<31 0.917 0.988 0.943 0.934 0.939

Treesort <7 0.906 0.549 0.8S2 0.902 0.901
<15 0.998 0.769 0.599 0.999 0.998
<31 0.999 0.999 0.999 0.999 0.998

PERT <7 0.816 0.578 0.902 0.952 0.927

SIS 0.883 0.783 0.961 0.982 0.979
<31 C.930 0.999 0.982 0.990 0.983

Hävie <7 0.604 0.756 0.585 0.526 0.808
<15 0.734 0.956 0.840 0.767 0.845
<31 0.806 0.998 0.918 0.989 0.981

Ising <7 0.645 _ 0.859 0.888 0.822
119 0.808 - 0.908 0.952 0.936
<31 0.885 - 0.960 0.992 0.984

Secant <7 _ _ - 0.782 0.603
<15 - - - 0.930 0.970
<31 - - - 0.979 0.985

Algorithm\Programmer E B A G L
Aitken <7 0.601 0.631 0.696 0.927 0.820

<15 0.794 0.811 0.853 0.943 0.913
<31 0.914 0.925 0.941 0.983 0.970

Source progr.\Compiler A'.GOL BASIC BLISS FORFOR FORTEN
Treesort <7 0.771 0.588 0.804 0.813 0.827

SIS 0.856 0.801 0.923 0.915 0.897
^31 0.910 0.869 0.975 0.949 0.950

I^^BMHMM

.

r^ wmmi**mm^**mm ^rmm^^m^imm w*m. '" ' ■•»•^»»■«■■^•^«■•■■""«^•"■■»•WWIPWPPBPIPP""

REGISTER STRUCTURE
52

FIGURE 4-4

Fraction of lives used at most 3 times
used at most 7 times

used at most 15 times

Algorithm\language
Bairstow

Crout

Treesort

PERT

Hävie

Ising

Secant

<3
<7

<15

<3
<7

glB

<3
<7

<I5

<3
<7

CIS

<3
<7

US

<3
<7

<15

<3
<7

<15

Algorithm\Programmer
Aitken

Source progr.\Compiler
Treesort

ALGOL
0.819
0.951
0.990

0.743
0.967
0.989

0.627
0.998
1.000

0.788
0.963
0.981

0.574
0.910
0.982

0.640
0.9f)5
0.986

<3
<7

S18

<3
<7

<15

BASIC
0.736
0.994
0.999

0.661
0.999
1.000

0.741
0.984
1.000

0.755
0.999
1.000

0.731
0.956
0.999

E
0.518
0.883
0.944

ALGOL
0.753
0.945
0.989

B
0.573
0.893
0.944

BASIC
0.523
0.800
0.965

BLISS FORFOR FORTEN
0.830 0.570 0.567
0.913 0.945 0.921
0.966 0.974 0.970

0.444
0.934
0.952

0.732
0.904
1.000

0.831
0.977
0.988

0.672
0.853
0.994

0.832
0.924
0.956

A
0.772
0.912
0.952

0.702
0.972
0.993

0.885
1.000
1.000

0.831
0.990
0.994

0.514
0.775
0.996

0.755
0.975
0.983

0.603
0.970
0.985

G
0.913
0.979
0.988

0.651
0.951
0.993

0.502
0.999
1.000

0.895
0.984
0.991

0.553
0.858
0.995

0.765
0.958
0.995

0.520
0.965
0.986

L
0 787
09G4
0.976

BLISS FORFOR FORTEN
0.842 0.614 0.870
0.975 0.961 0.970
0.994 0.986 0.995

•MMaaBMMMM*.

vwwv.'.'m^m. m ■■-' Jwrn^pm^ Wi.inpii»r«i..i,. JIIII^I •' 'mmimyM iiKi.t\m\wm^mr^^m^mmr<mmmi<i'i.'ii'imw'nmmm^mmmiw^mm-r^^ ■'mq^mfmr^^^mm

REGISTER STRUCTURE

FIGURE 4-5

Number of register lives

53

Algorithm\language ALGOL BASIC BLISS FORFQR FORTEN

Bairstow 12985 46101 7727 6133 5831

Grout 51087 52978 15S71 46308 23515

Trecsort 58088 55686 36493 49017 44269

PERT 24324 156974 11264 12769 10387

Hivie 60262 32189 7710 9504 8160

Ising 35919 - 9310 7196 7024

Secant - - - 198167 175569

Algorithm\Programmer
Aitken

Source progr.\Compiler
Treesort

E B A G L
13425 14390 19626 62495 43650

ALGOL
21662

BASIC BLISS FORFOR FORTEN
16034 220222 203239 108675

The high number of R-lives for the FORFOR and ALGOL versions of Crout, compared to the
BLISS version, is probably due to the use of double length arithmetic in those versions.
Similarly the high number of register lives for the ALGOL versions of Hävie and Ising is
probably due to the large number of procedure and name parameter calls.

FIGURE 4-6

Average lifelength in instructions

Aigorithm\language ALGOL BASIC BLISS FORFOR FORTEN

Bairstow 12.3 12.3 11.2 12.9 12.9

Crout 13.6 11.3 18.2 15.1 15.9

Treesort 6.1 11.9 9.0 4.2 5.8

PERT 10.9 11.4 8.4 5.0 7.9

Hävie 16.6 11.2 13.5 14.3 20.0

Ising 16.5 - 9.7 5.5 9.2

Secant - - - 8.1 9.6

Algorithm\Programmer E B A G L

Aitken 14.3 14.7 13.0 8.9 11.9

Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN

Treesort 17.4 23.8 9.7 14.9 11.4

Ml^M ^—^__

■ "■" '» i i.iiinww^p^wipiiini . i ir"^«w»wnBPP»«iww,iji"ii.wii •>•'""•^'^m'^m^mmmmm^ tm ■■■ >> i >P>» ■■ n

REGISTER STRUCTURE

Algorithm\language
Bairstow
Crout
Treesort
PERT
Hävie
Ising
Secant

Algorithm\Programmer
AitKen

Source progr.\Compiler
Treesort

Algorithm\language
Bairstow
Crout
Treesort
PERT
H&vie
Ising
Secant

Algorithm\Programmer
Aitken

Source progr.\Compiier
Treesort

FIGURE 4-7

Usages per R-life

ALGOL BASIC BLISS FORFOR FORTEN

4.6 3.6 4.6 4.6 4.4

3.8 3.7 6.6 3.7 3.9

3.9 3.5 4.8 2.9 2.9

4.1 3.4 3.8 3.1 3.2

4.4 3.7 5.8 5.4 5.2

4.0 - 4.5 3.1 3.3
m - 3.8 3.8

E
5.4

B
5.5

A
5.2

G
3.9

L
5.2

ALGOL
3.7

BASIC
6.0

BLISS FORFOR FORTEN
3.5 4.1 3.2

FIGURE 4-8

Average number of live registers

ALGOL BASIC BLISS FORFOR FORTEN

4.4 3.6 3.8 3.8 4.0

6.0 3.7 4.7 6.4 6.0

2.5 3.5 3.1 1.8 2.7

4.2 3.6 3.6 2.0 3.0

6.0 3.5 3.7 3.6 4.5

6.5 - 3.6 1.9 3.2
m - 3.0 3.4

E
4.4

B
4.5

A
4.2

G
3.9

L
3.7

ALGOL BASIC BLISS FORFOR FORTEN
4.5 3.6 5.1 4.2 5.1

Average number of lives is computed as: (sum of lifelengths)/{program length)

54

M^UdHi -

REGISTER STRUCTURE 55

FIGURE 4-9

Memory references per instruction

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN
Bairstow 0.61 0.52 0.50 0.62 0.60
Grout 0.44 0.59 0.50 0.55 0.64
Treesort 0.65 0.50 0.51 0.57 0.53
PERT 0.51 0.47 0.53 0.69 0.63
Hävie 0.30 0.45 0.31 0.44 0.35
Ising 0.40 - 0.60 0.67 0.60
Secant - - - 0.60 0.53

Algorithm\Programner E B A G L
Aitken 0.45 0.48 0.52 0.50 0.53

Source progr.\Gompiler ALGOL BASIC BLISS FORFOR FORTEN
Treesort 0.40 0.32 0.45 0.42 0.40

The instruction fetches are not included in the memory reference counts

FIGURE 4-10

Register references per instruction

Algorithm\language A'GOL BASIC BLISS FORFOR FORTFN
Bairstow 166 1.05 158 1.35 1.37
Grout 1.67 1.21 1.67 1.56 1.46
Treesort 1.62 1.04 1.65 1.28 1.32
PERT 1.58 1.05 1.61 1.25 1.22
Hlvie 1.57 1.14 1.61 1.36 1.16
Ising 1.58 - 1.66 1.11 1.13
Secant - - - 1.39 1.33

Algorithm\Programmer E B A G L
Aitkon 1.66 1.67 1.69 1.69 1.54

Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN
Treesort 1.09 1.13 1.32 1.39 1.17

mammmit -*■'—■—

twplPiW!«W"W"»',w"*^(msBj« •^wwirpi^ww^?ww *'mui*rvi^^w^*e3*mrm*9im*mn. 'i«

REGISTER STRUCTURE 56

FIGURE 4-11

Register references per r -rnory reference

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN

Bairstow 2.7 2.0 3.2 2.2 2.3

Crout 3.8 2.1 3.3 2.8 2.3

Treesort 2.5 2.1 3.2 2.2 2.1
PERT 3.1 2.2 3.0 1.8 1.9

Hävie 5.2 2.5 5.2 3.1 3.3

Ising 4.0 - 2.8 1.7 1.9

Secant - - - 2.3 2.i

Algorithm\Programmer E B A G L

Aitken 3.7 3.5 3.3 3.4 3.1

Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN

Treesort 2.7 3.5 2.9 3.3 2.9

on the PDP-10 effectively constitute a load, but usages of these instructions in other cases

do not. As a consequence, some lives may not be properly detected.

A comparison of the results of our sequence program, as described in Section 5.2, with

the listing of the ALGOL run time support system, seems to indicate that this source of error

may be significant for our ALGOL programs, particularly Crout, Havie ana Ising, which contain

many procedure calls and narrd parameter transmissions. For the compilers traced there are

many halfword loads, but no significant pairs of halfword loads, and for the otner programs

there are no danger signs in our results.

4.4.1 Summary

We summarize these initial results as follows:

Register lives are in general short, less than 32 instructions. Only for 3 of our .1 subject

programs are more than 107. of the R-lives 32 instructions or longer, and for 11 of the

programs 99'7. of the lives are ihorter than 32 instructions. The average lifelength is less

than 24 instructions for all programs, less than 15 for 32 of them and less than 10

instructions for 14 programs. These results vary systematically with the algorithm; PERT and

mtmaammm

■■ • ' " ■■■ "—- «W»"^IWBWWW^WWWiP^K,',»»^,T«»w»»^"W»WJ»I^W^^|PIf(pfpppp^l • '"' mm •

REGISTER STRUCTURE 57

Treesort have short lives, Hävie has long lives. The BASIC programs form an exception, they

all have lifelength« between 11.2 and 12.3 instructions.

The average number of usages per life varies between 3.1 (FQRFOR PERT, FORFOR Ising) and

C.6 (BLISS Treesort). Again the results from the BASIC programs vary little with algorithm

(3.4 to 3.'\ the other results vary more with the algorithm, but not very systematically

except for tne two FORTRAN versions. These correlate well with each other.

The average ,-umber of live registers is less than 7 for all 41 programs, 4 or less for 24 of

them. ALGOL programs generally keep more registers live than do programs in the other

languages (See footnote on page 74). The results from the BASIC programs again vary

little with the algorithm. The correlation between the FORTRAN versions is not ap good as

for the lifelengths and the usages per life.

The high ratio of register references to memory references suggest that those registers

which are live are effectively used for temporary results.

The influence of language and algorithm is not clear. Generally results from the BASIC

programs are almost independent of the algorithm, and the ALGOL results often show a

consistent trend, but with some variation. In some cases the correlation between the two

FORTRAN versions is good. This indicates that the differences found are due to language and

not to implementation. Variations due to the programmer are marked, as witnessed by the

results from Aitken.

4.5 Register life classification

Specialization of registers may seem irrelevant in view of the current tendency towards

general register structures, and the consequent increased generality of ISP ard program

structure. However, specialization may be of relevance in short wordlength computers,

where the addressing space saved by omitting register addresses can be used for more

important capabilities.

To assess the utility of a fu" set of operators for each register we need to know which kinds

of operations are performed on a register during its R-life. One way of obtaining this

information is to use a finer register utago clamficaiion than the "loaded", "acctssed" one

- ■ ■ ■ MMMMM ■•*

«»"^•^^■■■P^"IP«WW?P»»»»WW<»1^I»W—"W"™— «ii H w .M " i.i LIJI iifiiiippn «■iiBpip«qarprn><^F^n^<mnffOTMnBf«p«pMvii(ii -rmpn^r^iwt'iww"

REGISTER STRUCTURE 58

sufficient to determine the lives», and to extend the life detection algorithm to compute the

utagn clan for each R-life. That is: at each usage of an R-life the appropriate usage

attribute is included in the utago clats. Hence the number of R-Ues in each usage class may

be accumulated.

This method for classifying R-lives has two variants. One is to accumulate the usage classes

strictly for one register life. The other is, for binary operations, to let the the usage class of

the result become the union of the classes of the operands. The former is most relevant

when we analyze a structure with very general registers to detect unneeded generality, the

second variant can be used on an ISP with specialized registers to see the need for a more

general structure. Our experimental results were obtained by the former variant.

The information may be tabulated by the register number, allowing us to see for each

physical register how it was used. More interesting is to tabulate, for each usage class,

statistics on the number of lives in each class, their average length and number of usages.

\AM call this the usaifi Ciaai table or UCT.

None of our analyses showed more than 200 different usage classes. About half of these

account for more than 997« of the total number of lives. Hence the UCT forms a very compact

database describing the register usage, which can be manipulated or stored for later use at a

low cost. A natural format is to store the UCT sorted by the number of lives in the class, or

by the sum of the lifelengths represented by the class. Thus we may cheaply ask questions

that were not thought of at the time of the original analysis and, in particular, we may study

that UCT which is the union of all the UCTs of the individual subject programs. Unfortunately

it was not realized until a late stage in our experiments that the UCTs would be small. Hence

we have not saved the UCTs from our analyses.

Several forms of output may be obtained from the UCT. A very simpleminded output

procedure, which takes usage classes as its parameters, can be employed to print data

pertaining to all classes that ar;? subsets of, supt rsets of, or other simple combinations of the

classes given as parameters, n this way we may obtain statistics on the usage classes a

priori thought to be significant. Another procedure may - used to find combinations of

attribvtcs that frequently occur in the same usage class. The -esult of such an analysis will

be an a postenori classification of the R-lives corresponjing to suitable types of more

specialized registers.

f The one in Section 4.3 is a typical extrnple

mm

P" !■-■ "■'•■■■ P. 1" ' ■ 1 |l .ipi I. II JIIIWU II i i iiu jwiiii.iiiu ■.iii»niii«i!ii>iMii ■.■«■^mrnnpmnv

REGISTER STRUCTURE 5S

In our case, we believed a priori that the classification into floating point accumulators, fixed

point accumulators, index registers with simple arithmetic capabilities and temporary storage

only, is of such a significance (See page 41). This belief is well founded in history. We

display the fraction of lives in each of these arithmetic classes in figures 4-12 through

4-15. Each class is defineH by the Vrongest" form of arithmetic used in it, floating point

being stronger than fixed point multiply and divide, which again is stronger than fixed point

add and subtract. R-lives not used for arithmetic may still be used for logical or other

operations. These four classes are disjoint. We denote them: Flpating. JÜMMSL Counter and

Noari.

Some other classes were also thought to be of interest. The fractions of R-lives that were

used only as storage locations are tabulated in Figure 4-15, this class is denoted

Temporarv. The fractions of R-lives used for indexing (whether for data accessing, jumps or

immediate operands) arc tabulated in Figure 4-17. This class is not disjoint from the

arithmetic classes, and is denoted Indexing.

Yet another classification of interest is the intersection of the indexing class with the

arithmetic classes. We have no concise results for these classes, except the printout of

statistics for all indexing classes discussed below.

An output procedure as described above was programmed to print the number of lives,

fraction of toHl number o* lives, average lifelength and an interpretation of the usage class

encoding, for the selected set of classes. It was used to print the whole of the UCT as well

as the subclasses for arithmetic and indexing discussed above. An example of tnis output is

given in Appendix B.

A study of these printouts brought up several questions which could not be quantitatively

investigated since we did not have access to the old UCTs. We formulated several

hypotheses, however, and checked them manually in a scan over all the printed results.

1) A significant number of lives are of length one. This was verified. Some partial

explanations could be: Values of subroutines returned in registers but not used at the

call site. Double length results of integer multiplication and two results of division

(quotient and remainder) where only one is used. Linenumbers of BASIC programs are

loaded into a register for each source line executed, these are used only when errors are

detected.

mm ___. n^^HMM

'-, ""' - fi.wiWMi|ii>vwiin'.<ui!i mifm«mtfwmmm*mi* mmnmir ■ ■■'! •-""v^mmamfm

REGISTER STRUCTURE

WWW^iPÜF^^^^w vßm w.wm'wf^mF^m

60

^

FIGURE 4-12

Algorithm\language
Bairstow
Grout
Treesort
PERT
Hävie
Ising
Secant

Algorithm\Programmer
Aitken

Source progr.\Compiler
Treesort

Fraction of lives with no arithmet 10

Cl ass Noari

ALGOL BASIC BLISS FORFOR FORTEN

0.213 0.637 0.574 0.494 0.470

0.528 0.716 0.214 0.349 0.440

0.315 0.686 0.257 0.784 0.565

0.597 0.735 0.547 0.457 0.416

0.628 0.680 0.482 0.496 0.412

0.695 - 0.620 0.744 0.622
_ - 0.263 0.266

E
0.317

B
0.390

A
0.402

ALGOL BASIC
0.844 0.744

G L
0.475 0.391

BLISS FORFOR FORTEN
0.921 0.802 0.885

FIGURE 4-13

Fraction of lives with fixed point add/subtract
Class Counter

Algorithm\language
Bairstow
Crout
Treesort
PERT
Hävie
Ising
Secant

Algorithm\Programmer
Aitken

Source progr.\Compiler
Treesort

ALGOL BASIC BLISS FORFOR FORTEN

0.504 0.106 0.054 0.118 0.141

0.304 0.009 0.096 0.189 0.122

0.355 0.103 0.710 0.208 0.056

0.380 0.122 0.397 0.516 0.552

0.278 0.085 0.149 0.123 0.156

0.300 - 0.373 0.250 0.370
_ - 0.359 0.303

E
0.210

ALGOL
0.130

B
0.202

BASIC
0.234

A G L
0.302 0.423 0.389

BLISS FORFOR FORTEN
0.074 0.190 0.108

■ ■—— J

i mumm^^^^ WBPWW»" ■'' ■■ " •■ " ' •—■ m "•• • ■ ' IMP

REGISTER STRUCTURE 61

FIGURE 4-14

Fraction of lives with fixed point multiply/divide
Class Fixed

Algorithm\language ALGOL BASIC BLISS F0RF0R FORTEN
Bairstow 0.009 0.001 0.018 0.042 0.019
Crout 0.006 0.064 0.433 0.156 0.142
Treesort 0.317 0 0.011 0.000 0.370
PERT 0.002 0.000 0.004 0.006 0.006
Havie 0.002 0.001 0.031 0.018 0.015
Ising 0.006 - 0.007 0.006 0.008
Secant - - - 0.175 0.199

Algorithm\Programmer E B A G L
Aitken 0 0 0 0 0.085

Source progr.\Compiler ALGOL BASIC BLISS F0RF0R FORTEN
Treesort 0.026 0.019 0.005 0.009 0.008

FIGURE 4-15

Fraction of lives with floating point arithmetic
Class Floating

Algorithm \language ALGOL BA3iC BLISS F0RF0R FORTEN
Bairstow 0.274 0.256 0.354 0.347 0.369
Crout 0.103 0.211 0.257 0.306 0.296
Treesort 0.014 0.211 0.022 0.008 0.009
PERT 0.021 0.143 0.053 0.021 0.026
Hävie 0.092 0.233 0.339 0.363 0.418
Ising 0.000 - 0 0 0
Secant - - - 0.203 0.232

Algorithm \Programmer E B A G L
Aitken 0.473 0.408 0.296 0.102 0.136

Source progr.\Compiler ALGOL BASIC BLISS F0RF0R FORTEN
Treesort 0.000 0.003 0 0 0

' """"'"•^"" ll i IIIippi^iniWllf«IMnfPipp«!ppiHHP<iPni««lp iium «^»^lup^BmBp^MHIUipiipiliHllpili ll ■ I ■IIUHIJ« II ll

REGISTER STRUCTURE

FIGURE 4-16

62

Fraction of R-lives used as temporaries only
Class Temporary

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN
Bairstow 0.028 0.067 0.179 0.101 0.121
Crout 0.018 0.101 0.049 0.137 0.142
Treesort 0.001 0.107 0.000 0.000 0.001
PERT 0.016 0.128 0.188 0.069 0.104
Havie 0.072 0.279 0.062 0.250 0.019
Ising 0.059 - 0.086 0.147 0.067
Secant - - - 0.041 0.030

Algorithm\Programmer
Aitken

E
0.062

B
0.078

A
0.092

G
0.112

L
0.015

Source progr.\Compiler
Treesort

ALGOL
0.096

BASIC
0.089

BLISS
0.180

FORFOR
0.151

FORTEN
0.153

FIGURE 4-17

Fraction of lives ased for indexing
Class Indexing

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN
Bairstow 0.513 0.407 0.226 0.341 0.251
Crout 0.519 0.374 0.520 0.195 0.244
Treesort 0.482 0.412 0.683 0.431 0.476
PERT 0.592 0.421 0.556 0.445 0.497
Havie 0.524 0.365 0.387 0.278 0.203
Ising 0.571 - 0.484 0.267 0.249
Secant - - - 0.376 0.406

Algorithm\Programmer E B A G L •
Aitken 0.185 0.196 0.232 0.318 0.474

Source progr .\Compiler ALGOL BASIC BLISS FORFOR FORTEN •

Treesort 0.401 0.364 0.341 0.509 0.313

UMtM^M. .__. - -

papmvmp uu. iM^.irJili"»!«!, .iJI'"v"i"-i'm«"i' •.«^iiuium i »IHHJHI >,.im\i..> » «.MJI ■mmMi>>nKm0..ii| i »11.1^1.11 m >. n.n

• irff'MirTinr~'TnTrr^-iniiw H1..1111.11. . ..mj. .j , —

REGISTER STRUCTURE

"mm

63

2) A significant fraction of the R-lives are never stored. This hypothesis was verified for all

subject programs. It clearly demonstrates that registers are not only needed to produce

result--, but also as indices and fast temporary storage.

3) The usage classes representing most lives have few attributes, i.e. 2 or 3. This

hypothesis was verified in all subject programs. It supports the idea put forward by

Knuth [KnuD70], that programmers rarely do anything complicated.

•"'■■•■

4) Most lives for indexing use no arithmetic at all. This was true in most cases, but with

notable exceptions.

5) Most lives used for indexing have no arithmetic stronger than fixed point add and

subtract. Largely verified, but strong exceptions. Particularly noteworthy was the Crout

algorithm, the only one where two dimensional arrays were used. There was a great

difference between programs using a multiplicative address calculation (dope vectors)

(FORTRAN and BLISS versions) and those using Iliffe vectors (ALGOL version) for array

accessing.

6) Lives used for floating point arithmetic rarely use fixed point arithmetic. True for all

subject programs that have a significant amount of floating point arithmetic. The

indications were that the exceptions were usages for fixed to floating conversion or vice

versa, largely occuring in the initialization phases of our programs.

Another observation was that most usage classes, although not the most frequent ones,

contained the "tested" attribute.

An obvious source of error with this method is its dependence on the correct detection of R-

lives, as discussed on page 49. As noted there, this error may be significant for some of our

ALGOL programs.

Another deficiency is that the representation of a usage class does not take into account that

some attributes may contribute to the class many more times than others. The algo 'thm

could be augmented to compute the number of occurrences of each usage attributr while

accumulating the class of an R-life. Even if these counts were averaged over the ..ves in

each usage class, one word of storage would be required for each combination of ait-ibute

mmm —-—-"-- - ■ -' -• mm i i<

■P^WIWVWlr" Wi^^W^w^i^M". ii A.Mmmnium ' f^r* iiim i-pppiiiMiij m^.«!'» ""»i- HP^1""1» »"'■ffwwpw^Pjwww^^^i^iAP i ^pppmifiippipfvffipipapi

REGISTER STRUCTURE 64

and u$ago clas», i.e. at least AOOO words. Since most lives are short and of few usages, we

believe that this addition to the algorithm does not justify its cost. We be'ieve that the trend

of such results would be that the infrequent events are even less frequent than shown by

our present methods.

4.5.1 Summary

The results in figures 4-16 to 4-15 lead us to the following conclusions:

For algorithms containing floating point arithmetic, up to 42'7o of the R-lives are from the

"Floating" class, but usually considerably fewer: 207. to 371 The BASIC programs form an

<ception, even though all arithmetic in BASIC is done in floating point, at most 267. of the R-

lives are from this class. Except for BASIC programs, there is a systematic variation with the

algorithm.

Lives with fixed point multiplication and division occur almost only in the programs that use

the multiplicative method for matrix access, or that use integer division for unpacking. Hence

the dependence on algorithm is marked, but less so than for the "Floating" class, and

particular techniques used by or enforced by the language or its implementation become

significant.

For the other classes, the interaction of the needs of the algorithm with the register

allocation mechanism of the compilers obscure any systematic effects due to each of these

factors singly. There is, however, some more stability to the results from the ALGOL and

BASIC programs than from the others. This is most probably due to the run time system of

ALGOL and to the lack of integer arithmetic in BASIC.

ALGOL programs have a high number of lives in the "Counter" class, (307. to 507, of the lives);

BASIC programs have a very large number of lives with no arithmetic (637 to 747.). ALGOL

programs also have a high number of lives in this class (217. to 697).

487. to 597 of the R-lives in ALGOL programs are used for indexing. The fraction of indexing

lives is also high in BLISS programs (237. to 687.) and BASIC programs (377 to 427.), but not

consistently. For the FORTRAN programs this fraction varies between 197 and 497., the

agreement between the two FORTRAN versions is good.

- -

1 ' ',l ■■' ■" ■ ■ II ■■ 11..H11 JIIPWW^»» i,m,w*-mmm^^w*mK*mm*mmm^mi'w> ■••••i 1 m wmw^^mmmmmm

REGISTER STRUCTURE 65

For The "Temporary" class, the results vary between 0 and 28?. For ALGOL programs the

results are consistently low, 0.1/ to 1.21. For BASIC programs they are high: 6.77 to 287.

The substance of these results is: The classes for strong arithmetic are used only if the

algorithm or the accessing method used by the compiler requires such arithmetic. Hence for

these classes the dependence on the algorithm is strong. In the classes for weak and no

arithmetic the results seem to depend more on the language, particularly for those languages

which enforce a strong regimen on their programs, such as ALGOL by its run time system and

BASIC by its restriction to floating arithmetic and by its strictly statement by statement

execution (no information is carried in registers between source program lines).

These findings corroborate those of Alexander [AleW72], which indicate that two or three of

the physical registers on the IBM 360 are used as accumulators, whereas most of them are

used as indices or base registers.

The results for the f-'ORTRAN and BLISS programs show little systematic variation except for

a good agreement between the FORTRAN versions of the same algorithm.

4.6 Register block size

The results presented in Figure 4-9 through Figure 4-11 indicate that for our subject set the

number of register references is between two and three times the number of memory

references. Hence the need for a register block is well demonstrated by experiment, as well

as being motivated by programmer experience. The problem is more one of size, i.e. how

many registers can be utilized efficiently enough to warrant their cost. In addition to its

obvious dependence on the other properties of the ISP, this number depends on the

structure of the algorithm, the cleverness of the programmer and the compiler and the

fineness of the factorization of the program. The combined effect of these factors is

represented by our subject set.

We now present a sequence of methods which in a gradually better way measure the utility

of the register block and the time costs associated with its usage.

We have already presented some crude measures in Section 4.4; The number of memory and

register references per instruction presented in figures 4-9 through 4-11 are of relevance,

another measure is the average number of live registers in Figure 4-8.

-.^HMMM

PMPIIKJ«"» .U .11 .HHlll.M.IIII.Ul '* wi""*m*^w^p«»«n(irw^w^ III^F»» «■wwü'r1 P.-.-U.-JP"

REGISTER STRUCTURE
66

Some better measures could be developed if we knew the number of registers that are are

live at each point in the program. In the next subsection we present an algorithm for

computing this. This algorithm is extended to compute, for any N. what fraction of the time at

least N registers were UM, and finally to give a coarse estimate of the time cost incurred if

the number of registers were reduced below the maximum used by the program. This

estimate Is based on the number of usages in each R-life. A further improvement takes into

account long dormant periods of registers. We now describe these algorithms, the associated

cost measures, and the experimental results, in more detail.

4.6.1 Detecting simultaneous lives

The algorithms are embodied in a two stage (or pass) program, the first stage reads the

trace and writes an intermediate file of data items describing each R-life. This file is

processed in the reverse order by the second stage. The algorithms are described below,

and illustrated by an example in Figure 4-'

The first stage is actually the algorithm which detects register lives, described in Section 4.4,

with a minor addition: As each R-life is determined, (at the start of the next R-life for that

register), a data item containing the times of its transitions, its usage class, number of usages

etc. is written to the intermediate file.

The second stage reads this file backwards while maintaining a simulated time (s-time) which

decreases as the algorithm proceeds. Initially the s-time is the duration of the program, later

it is equal to the time of the transition most recently processed by the algorithm as

described below.

The stage two program keeps a data entry describing the statt {live or dead) of each

physical register, there is also a counter of live registers, and a linked list of at most two

entries (each describing an unprocessed transition) per physical register, as described below.

Initially the second stage reads the data items decr.bmg the last R-life for each register, and

enters the tnui^tieiu in the list, sorted by decreasing time. The algorithm proceeds by

processing the transition first on the list, i.e. that having the highest time. Current s-time is

set to this time, and the table and counter are updated according to the nature of the

transition. If the transition was a firs, use, we have finished processing an R-life. The next

^*m* ^_.__

11 IIUPWWPBWWP—»"""^^^r^1^1 "' "*'-"|>l-,'ji" '■'' "»J^IP'
,J "" HBIWJIIH I«! PUI lli^^^«««^!!

REGISTER STRUCTURE 67

data item for that register is immediately read from the file (see below), and its iransitiom

are entered in the list. Hence when the analysis is under way, the list contains one transition

for each live register, (i.e. its first use), and both transitions for the other registers (whose

data items have been read, but whose times of last uso are less than the current s-time).

Note that, by the way the intermediate file was written, its data items are ordered by the

time of first us« of the next (later in execution time) R-life of the register involved. When

the file is read backwards by stage 2, one item is read each time a first use has been

processed. The item read is the one that was output by stage one at that point of the trace

when the execution time of the subject program was equal to the current s-time. But that is

exactly the data item describing the next (earlier in execution, lower s-time) R-life for the

register just processed by stage 2. An exception may occur when the same instruction

loaded two registers, and hence started two R-lives, in which case their order in the file may

be the reverse of what stage 2 expects. Consequently data space is needed to describe in

full exactly one R-life for each physical register, plus one extra R-life possibly being held

over for one read operation. This is further illustrated in Figure 4-18. The order of

events during the interval described by the figure is:

During execution:

Before TO: RO, R2 and R3 are live.

At TO

At Tl

At T2

At T3

At T4:

At T5:

At T6:

After T6:

Rl is loaded, L10 starts. R3 is accessed.

RO is loaded using RO as index. Hence LOO and L01 overlap at Tl.

Last usage ot L01 and L20.

Last usage of L10; RO is loaded; hence L02 starts. R3 is accessed for the first

time since TO.

Last usage of L30; Rl is loaded; hence Lll starts.

Both R2 and R3 are loaded by the same instruction. L21 and L31 start.

Last use of Lll.

RO, R2 and R3 are live.

During tint 1=
At Tl

At T3

At T4

At T5

LOO is detected and its data item output.

L01 is detected and its data item output.

L10 is detected and its data item output.

L20 and L30 are detected and their data 'terns output in some order.

IM!

paPOTvi^wa^wn^aiii i J ■»■■pi i i «PMüm*"^"*^!^7 — in ■••iiwLi.iainwimiiiKi IIIIHUKIII unnii """" i i ill ■■ i

REGISTER STRUCTURE 68

We denote the data items DLij etc. The data items on the intermediate file are now in the

order:

.. . DLOO DL01 DL10 DL20 DL30 . . .

The two last might be interchanged; we assume this order.

During

S-time

S-time

S-time

> T6:

= T6:

-T5:

S-time

S-time

S-time

S-time

- T4:

-T3:

-T2:

- Tl:

S-time ■ TO:

Z: (Listed in order of occurrence in stage 2, i.e. by decreasing s-time).

The data items DL02, DL21 and DL31 have been read and the last usages of

their lives processed. DLU has been read but its transitions have not vat

been processed.

Last use of Lll is processed.

First usages of L21 and LSI are processed, assume in that order. After L21

has been processed a data item is read. By the above assumptions this is

DL30. Hence it will be held over in temporary storage, and DL20 is read from

the file, and entered into the tables. Next the first usage of L31 is processed

and DL30 is fetched from the temporary store and entered in the tables.

The first use of 111 is processed and DL10 is read from the file. The last use

of L30 is processed.

The first use of L02 is processed, and the data item DL01 is read. The last use

of L10 is processed.

The last uses of L01 and L20 are processed.

The first use of L01 is processed, the data item DLOO is read and its last use

immediately processed.

The first use of L10 is processed, the data item for its previous life, if any, is

read.

Now assume R3 was dormant from TO to T3. This would be detected by stage 1 at time T3,

the data item for the first part of L30 (call it DLSO') would be output at this time. The data

item for the second part of L30 (i.e. 0L30") would be output at T5, as was DL30. During

stage 2, the data item DL30" would be read at s-time T5, its usages processed at T4 and T3.

At T3 the cata DL30' would be read, its last usage would be processed at TO, and so on as

before.

For each interval of time, the number of live registers is given at the bottom of the diagram.

In the latter case it would be reduced by 1 between TO and T3.

This concludes our discussion of Figure 4-18.

■M

i.(u •M.i*'nnnn^«PV,''aH,<a>1-" '" i'i^w*m^^*T^mm i ii ■ < m^i^^^^mm ii mm i i i aaii i m -*mm

REGISTER STRUCTURE 69

FIGURE 4-18

A typical situation of Register usage.

Assume our ISP has four registers, RO, Rl, R2, R3. The successive lives of Ri are denoted
LiO, Lil The diagram has one horisontal line for each register, as labelled. This line is
solid when that register is live. It is broken when that register is dormant. The vertical bars
correspond to times of transistion, as marked on the time axis at the top.

TO Tl T2 T3 T4 T5 Ti time

RO:

Rl:

R2:

R3:

LOO L01

LIO

L20

L30

L02

Lll

L21

L31

LIVE: 3 4(3) 4(3) 2(1) 2

The u*Kigfl clas» of each R-life may be included in each data item on the intermediate file.

Hence, if the result of an analysis as described in Section 4.5 should indicate that

specialization of the registers is desirable we may do this simultaneity determination for any

utage class we consider important in addition to the set of all registers. The "state" of each

physical register has to be augmented to include its class, and an encoding of this class into

the (probably much fewer) classes for which output is desired must be deviced. For each

output class a counter of live registers must be added.

We performed these analyses for the subclasses of R-lives defined in Section 4.5, as well as

for the class of all registers. A typical output from phase 2 is displayed in Figure 4-19. A

compressed form of the results from all the subject programs is given in figures 4-20

through 4-22.

mmm

m*m >• in ■■ » ■'• ^ '«•l" ' i i i i»i i IBII IIIIUIB i ■ ■ in mw—^~- mitmn i ■■

REGISTER STRUCTURE 70

FIGURE A-19

Output from simultaneously live register analysis for program PORTEN Hävie.
Distribution of number of live registers in the different classes.

For each class, the first coloumn gives the instruction count when exactly N registers were
live. Coloumn 2 gives the fraction of the total instruction count for this state. Coloumn 3 is
a cumulation of coloumn 2, it gives the fraction of the instruction count when at most N

registers were live.

N NO ARITHMETIC FIXP01 NT ADD/ SUB. HX^ Ulm MU -/UiV. IN

1 25221 0.693 0.693 1960 0.054 0.054 410 0.011 0.011 1

2 7580 0.211 0.904 23837 0.655 0.709 215 0.006 0.017 2

3 1163 0.032 0.936 7460 0.205 0.913 14 0.000 0.018 3

4 1038 0.029 0.964 198 0,005 0.919 0 0.000 0.018 4

B 551 0.015 0.979 t:
;4 0.007 0.926 0 0.000 0.018 5

6 A3C 0.012 0.991 134 0.004 0.930 0 0.000 0.018 6

7 256 0.007 0.998 5 0.000 0.930 0 0.000 0.018 7

8 41 0.001 0.999 0 0.000 0.930 0 0,000 0.018 8

9 47 0.001 1.001 0 0.000 0,930 0 0.000 0.018 9

10 14 0.000 1.001 0 0.000 0.930 0 0.000 0.018 10

11 0 0.000 1.001 0 0.000 0,930 0 0.000 0.018 11

12 0 0.000 1.001 0 0.000 0.930 0 0.000 0.018 12

13 0 0.000 1.001 0 0.000 0.930 0 0.000 0.018 13

TOTALS
13 36444 1.001 33848 0.930 639 0.018 13

N FLOATING POINT INDEXING ANY USAGE N

1 18172 0.499 0,499 28218 0.775 0.775 166 0.005 0.005 1

2 6446 0.177 0.676 5853 0.161 0,936 1104 0.030 0.035 2

3 34 0.00 i 0.677 350 0.010 0.945 3171 0.087 0.122 3

4 0 0.000 0,677 426 0.012 0,957 14985 0.412 0.534 4

5 0 0.000 0.677 718 0,020 0.977 15092 0.415 0.948 5

6 0 0.000 0.677 515 0.014 0,991 481 0.013 0.961 6

7 0 0.000 0.677 335 0.009 1,000 298 0.008 0.969 7

8 0 0,000 0.677 45 0.001 1.001 409 0.011 0.981 8

9 0 0.000 0.677 18 0.000 1.002 419 0.012 0.992 9

10 0 0.000 0,677 0 0.000 1,002 185 0.005 0.997 10

11 0 0.000 0.677 0 0.000 1.002 78 0.002 0.999 11

12 0 0.000 0.677 0 0.000 1.002 50 0.001 1.001 12

13 0 0.000 0.677 0 0.000 1.002 M7 0.00 i 1.002 13

TOTALS
13 24652 0.677 36478 1,002 36485 1.0O2 13

■M

iii>mf«raTaiiu">iu ■ ■',,«. ■i ii" i«uimr*nB*n**nmw*mw**mw*m '"" 'wmm^j!

**m*

REG1STEI. STRUCTURE 71

FIGURE 4-20

Maximal number of simultanejus R-lives
Number of registers sufficient 98/ of the tine
Number of registers sufficient 907 of the time

Algorithm\lang uage ALGOL BASIC BLISS F0RF0R PORTEN

Bairstow max 13 10 9 13 12

98/ 11 7 6 10 9

90 Z 8 6 5 9 7

Crout max 13 7 7 13 12

98/ 11 7 7 12 8

907 10 6 6 10 7

Treesort max 14 7 5 n
-t 12

98/ 4 7 5 4 5

90/ 3 6 5 3 4

PERT max 14 10 7 11 12

98/ 10 7 6 8 8

90/ s 6 5 3 5

Hivie max 14 10 9 10 13

98/ 11 6 5 6 9

90/ 9 5 5 5 5

Ising max 14 - 7 11 12

98/ 11 - 5 7 9

90/ 10 - 5 3 6

Secant max - - - 13 12

98/ - - - 6 5

90/ - - - b b

Aigorithm\Programmer E B A G L

AitKen max 7 7 s 7 S

98/ 7 7 7 7 7

90/ 7 6 6 6 7

Source progr \Compiler ALGOL BASIC BLISS fORFOR F0RTEN

Trjesort max 15 11 13 13 .11

98/ 10 9 6 8 8

90/ 8 7 5 7 6

_

-r~-~~r~~~—*^-~~- ■. ■■ Kqmjm9**mp***m JJ n •■« niqpv^pmp !\nii\iii\iii.-*tmimm*mw*fimmiv' mluuii- ■'^»rw'»*«"'w»^^m

REGISTER STRUCTURE 72

. .oURE 4-21

Number of registers sufficient 907. of the time
for the arithmetic classes previously defined. Classes denoted by

FLO - Floating, FIX - Full fixpoint, COU - Fixpoint add subtract.

Algorithm\langUuge
Bairstow

Crout

FLO
FIX

COU

FLO
FIX

COU

ALGOL
2
1

1
0
5

BASIC
1
0
2

1
1
1

BLISS FORFOR FORTEN
2 2 2
0 1 0
2 1 2

1
2
3

3

3

2
2
3

Treesort FLO
FIX

COU

0
1
1

1
0
2

0
0
3

0
0
1

0
1
2

PERT

Havle

FLO
FIX

COU

FLO
FIX

COU

0
0
4

1
0
5

1
0
2

2
0
2

1
0
3

2
1
2

0
0
2

2
0
2

0
0
3

2
0
3

Ising FLO
FIX

COU

0
0
5

0
0
4

0
0
1

0
0
3

Secant FLO
FIX

COU

1
1
a

Algorithm\Programmer E B A G L
Aitken FLO 2 2 2 2 2

FIX 0 0 0 0 1
COU 3 2 3 4 3

Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN
Treesort FLO 0 0 0 0 0

FIX 0 1 0 0 0
COU 3 2 2 2 2

- - -

T-r. ■'■■"'- ■PW» KPVF ■'i ■"■""i^mm&i*m***m**r

REGISTER STRUCTURE 73

FIGURE 4-22

Number of registers sufficient 907 of the time
tor the no arithmetic class (NOA), the indexing class (IND)

and the total class (TOT).

i
, l

Algorithm\ls iguage ALGOL BASIC BLISS F0RF0R FORTEN
Bairstow NOA 4 4 3 7 5

IND 6 3 2 5 5
TOT 8 6 5 9 7

Crout
*

NOA 6 4 2 3 6
IND 9 3 3 2 3

TOT 10 6 6 10 7

Treesort NOA 2 4 2 2 2 |
IND 2 3 3 2 2

TOT 3 6 5 3 4

PERT NOA 4 4 2 2 3
IND 7 3 3 2 2

TOT 8 6 5 3 5

Havie NOA 5 3 2 2 2
IND 8 3 2 2 2

TOT 9 5 5 5 5

Ising NOA 6 . 2 2 4
IND 9 - 2 2 4

TOT 10 - 5 3 6

Secant NOA . _ . 2 2
IND - - - 2 2

TOT - - - 5 5

Algorithm\Programmer E B A G L
Aitken NOA 4 4 4 3 2

IND 4 3 3 2 5
TOT 7 6 6 6 7

Source prog '.\Compiler ALGOL BAfIC BLISS FORFOR FORTEN
Treesort NOA 6 5 4 6 4

IND 4 4 2 4 2
TOT 8 7 5 7 6

■M^M

^mma^rmiwmnil^^mmma^s'^w iijüi im .laua —• v-t» v i m.ni i. n *^~<^^^^*mimm*^mumm

REGISTER STRUCTURE 74

4.6.2 Cost of reducing the register block

The results just presented show clearly that, except for ALGOL programs and the ALGOL

compiler, at most 8 to 10 registers out of the 16 available are used simultaneously1, and that

many only for short intervals of time. If the processor were equipped with fewer registers

than this, a time and space cost would occur by having to store registers temporarily in

primary memory. Intuitively, it seems from the above results that for a moderate reduction

in the number of registers this cost would be low. We now describe an extension to our

algorithm which enables us to compute upper bounds for this time cost.

Assume we want to compute the additional time cost incurred by running the program on an

ISP with M registers but otherwise similar to the one we investigate. At some point in the

program we have N simultaneous Tves, N > M. We select the N - M least useful lives as

descriood below, and assume that these can be interleaved with the remaining R-lives in the

registers used for the latter lives. That is: Each time an omitted register is referenced,

another register must be temporarily stored, and the desired value loaded into it. This value

is stored after use, and the original value reloaded. The associated time cost is two STORE

LOAD pairs per reference to the selected lives, i. e. 4 instructions per reference if the

instruction count is used. If an R-life L so selected for omission, is selected again at some

later time, but for the same M, the cost should not be added the second and later times.

Th's computation is done during the second stage described above, each time we process a

first use. It can be done simultaneously for all desired M, and for many criteria of usefulness

of lives. Data space used by the algorithm is proportional to the number of criteria times the

number of registers, but with a low factor (at most 5 words). The amount of computation

♦ The structure of an ALGOL program is almost like two coroutines calling each other, viz. the

user prrgra^i and the run time support routines. These operate on disjoint memory cells and

almost disjoin. '»*\% of registers. Similarly the ALGOL compiler consists of a lexical analyser,

a syntax analyser and a code generator, each having its own set of registers allocated to it.

This probably acco mts for the exceptional results obtained for ALGOL, and also indicates

how programs may b^ structured to use many registers effectively. Further explanation may

be the difficulty of de ectin^ multi-instructicn loads., as described on page 49.

mm ^M tm*m. -

— -i-tm,n..,mm»t ,«i ■. jiKiiiijj|i||«^vn*v*aP7^«^«mp<i«r" "' - "'""i1 '■"■"■■i '•••! "■ " i MH mt^mmn^"^ '■■""■" -"■«"'»■""

REGISTER STRUCTURE 75

involved is small. Hence this is a relatively cheap measure to compute once we are doing the

simultaneity analysis.

Several criteria of usefulness can be used to select which R-lives to omit. The following

were tried:

The least used lives.

The least densely used lives {usages per lifelength).

The shortest lives.

The longest lives, (hight be better than omitting many short ones).

Of these, the "longest lives" never gave the lowest cost. The "shortest lives" criterion rarely

gave good results. Almost all the lowest results were obtained using the "least used" or

"least densely used" criteria. Furthermore the criterion giving the lowest cost often changed

with the number of available registers (i.e. M) even for the same program. It follows that, in

an analysis, several criteria should be used, including the 3 first ones above. The best cost

obtained in each cat should then be used as an upper bound.

We present a typical output in Figure 4-23, and a summary of the results from the whole

subject set in Figure 4-24. As is seen, thr cost of reducing the number of registers in most

cases is low, less than a percent in som; cases, and less than 152 in most, but running very

high in a few cases (707- - 1007 increase in cost). We investigate this further below.

Note that 3 of the programs which give extremely high costs are ALGOL programs, and just

those which have many procedure calls and parameter transmissions. Hence the arguments

presented above about the coroutine like structure of ALGOL programs, and also the error

discussed on page 49 in connection with undetected loads, apply with force to these results.

4.6.3 Some sources of error

We now discuss some sources of errors associated with this method.

The most significant is probably that the lives omitted are selected on basis of tneir average

properties. A better selection might have been made, had the local properties of lives been

known. We discuss below how this can be done.

PHÄU-Ii pmu i " n m^^rmmtsr^wm i. „11 IIIIIIMH 11,11 n JI

H > | >-<•

ii m ijini »-W-

REGISTER STRICTURE 76

FIGURE 4-23

Cost of reducing number of available registers.
Lives with lowest utility are omitted, 4 utility criteria are used.

Sample output from program PORTEN Hävie.

UTILITY: REFERENCES IN LIFE UTILITY: DENSITY OF REFERENCES

«OF OMITTED RELATIVE LIVES «OF OMITTED RELATIVE LIVES
REGS ACCESSES MAX COST OMITTED REGS ACCESSES MAX COST OMITTED

12 33 0.0036 17 12 7 0.0008 2
11 98 0.0108 42 11 27 0.0030 6
10 155 0.0170 66 10 58 0.0064 12
9 227 0.0249 92 9 2386 0.2621 19
8 409 0.0449 167 8 2500 0.2747 29
7 659 0.0724 256 7 2704 0.2971 39
6 1077 0.1183 361 6 2883 0.3167 51

UTILITY: LENGTH OF LIFE UTILITY: SHORTNESS OF LIFE

#OF OMITTED RELATIVE LIVES • OF OMITTED RELATIVE LIVES
REGS ACCESSES MAX COST OMITTED REGS ACCESSES MAX COS! OMITTED

12 33 0.0036 17 12 2410 0.2648 2
11 122 0.0134 45 11 2591 0.2847 4
10 206 0.0226 70 10 2713 0.2981 8
9 356 0.0391 108 9 2815 0.3093 12
8 700 0.0769 202 S 2888 0.3173 16
7 1014 0.1114 294 7 3009 0.3306 24
6 1342 0.1474 382 6 3170 0.3483 36

MM^MM ^mmm

■ ■■ ■■ ■■ ■ q I I • npiaai BW*i "■PWWr«""BT'WI>'l"W»»^" •PIP

REGISTER STRUCTURE 77

FIGURE 4-24

Upper bound for time cost of reducing the register block
to 10, 8 or 7 registers respectively,

given as relative increase in instruction count.

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN

Bairstow 10 rg 0.054 0 0 0.013 0.005

8rg 0.228 0.001 0.000 0.132 0.091

7rg 0.368 0.002 0.004 0.250 0.180

Crout 10 rg 0.076 0 0 0.440 0.000

Srg 0.384 0 0 0.757 0.006

7rg 0.772 0 0 1.046 0.081

Treesort 10 rg 0.002 0 0 0 0.000

8rg 0.005 0 0 0 0.001

7rg 0.007 0 0 0 0.001

PERT 10 rg 0.016 0 0 0 003 0.003

8rg 0.132 0.000 0 0.035 0.037

7rg 0.212 0.001 0 0.052 0.066

Hävie 10 rg 0.060 0 0 0 0.006

8rg 0.575 0.001 0.001 0.004 0.045

7rg 0.734 0.003 0.006 0.017 0.072

Ising 10 rg 0.067 . 0 0.000 0.004

8rg 0.437 - 0 0.008 0.051

7rg 0.997 - 0 0.029 0.105

Sectint 10 rg _ - . 0.001 0.002

8rg - - - 0.009 0.014

7rg - ' - 0.015 0.020

Algorithm\Programmer E B A G L

Aitken 10 rg 0 0 0 0 0

8 rg 0 c 0 0 0

7rg 0 0 0.011 0 0.003

Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN

Treesort 10 rg 0.018 0.001 0.000 0.003 0.001

8rg 0.068 0.037 0.002 0.062 0.009

7rg 0.121 0.082 0.010 0.215 0.023

_

I^^i^P""iP^W^^^w^—■"—'^•■•■IpmPPiUBiWPWWpw^-'''^" ■ ■-■ ii ■■«i I IIO^W^B itm

mumar^f*

REGISTER STRUCTURE 78

Furthermore a program written for an ISP with few registers will be quite different in its

local structure from a program written with a large register block in mind. Hence this method

can not be used to estimate the cost of large reductions in register blocK size. One would

also, a priori, believe this argument to hold for reduction to a relatively small number of

registers even if the program did not use many in the first place. This belief, however, is not

vindicated by our results.

For the same reason we would expect the upper bounds found by this algorithm, and by its

modified version described below, to be considerably higher than the actual cost obtained by

average to careful receding for the lower number of registers.

A third source of errors is that successive lives of the sa!r,e register may overlap by one

instruction», hence the simulation of two lives in one register may not be valid. We have

counted the number of such overlaps and found it mostly to be small (see Figure 4-25).

Hence this source of errors is insignificant.

Finally our simulation might be invalid because there were not enough registers available to

hold the necessary lives. Since at most 4 registers can be involved by any PDP-10

instruction, this error will not occur for M > 4. We never used M < 6.

4.6.4 Utilizing dormant periods

We now consider a way to take local behaviour of registers into account when computing the

cost of running with a smaller register block. This is done by assuming that a register is

dead whenever it has been dormani for some time K. If this assumption should be wrong, a

time cost of one STORE, LOAD pair applies for each R-life prematurely terminated based on

the assumption.

We can detect such dormant periods during the first stage of the analysis. Each time a

♦ As when loading a register using the same register in the address calculation

(MOVE RG,FLOP(RG)). If we had used a finer grain of time, as discussed in Section 4.2, this

problem could have been avoided.

-^»■■^^"•w^«" ^ —■ —-..— ■« i i^mt^mmmimi*mr*mwi^w* ^*^m*m^^*^*^0WH

REGISTER STRUCTURE 79

register is used, it is easily checked if its previous usage was more than K ago. If so, the

present usage is processed as a load, and a "prematurely killed" counter is updated.

The effect of this trick is tnat a register will appear to be dead whenever it has a long

dormant period. Hence during this apparently dead period, the number of live registers is

reduced by one. Non overlapping R-lives of other registers, occurring within this period, can

be accomodated in the apparently dead register at no cost beyond that of saving and

restoring the dormant life once (i.e. one STORE LOAD pair). This cost is at most half of the

cost of interleaving any two lives, ^nd independent of how many other lives are accomodated

in the dormant register. Since most R-lives are short, we would expect a considerable

decrease of cost to be obtained this way. However, since each choice of K requires a

separate intermediate file, at least logically, and the simultaneity determination has to be

done for each of these, it is a more costly analysis to apply.

An alternative approach is to use a hybrid method, - some reasonable K is chosen for phase

one, and the interleaving process is applied in phase 2. If the cost so obtained seems

unreasonably high, a new analysis can be run using a smaller K.

Fcr our experiments we used this hybrid method. Unless otherwise specified, K was chosen

to be 200 throughout all the experiments. The number of lives prematurely terminated by

this assumption is tabulated in Figure 4-26. Note that if the same life has several dormant

periods of length more than K, each non dormant period is counted as a life.

To see the effect of varying K, we performed some experiments with K=100, K=60, K=40 and

K«'25. For this purpose we chose programs that gave particularly high cost with K=200, in

the hope that cost could be reduced this way. The programs chosen were the ALGOL

versions of Ising, Hävie and Grout, and the FORFOR version of Grout. For comparison we also

included two programs where *he analysis algorithm performed well, i. e. where the results

for K=200 were regular and the costs low. These were the FORTEN versions of Hävie and

Crout. The results are displayed ;n Figure 4-27.

The overall trend of these results is that the upper bound of the cost can be reduced

considerably by using a small K. However, there is a point where the cost from storing and

restoring dormant lives becomes comparable to the cost of imcrlrnving lives, and the total

cost rises. This point is higher (larger K) the lower the cost of interleaving. We have at

present no mechanical way of guessing what K will be optimal for a given program without

performing a series of experiments. By choosing K as low as 25, the cost of reducing the

MM^M^MÜ

V^^mammm^^^^^mUKm^m^m^mw^m nil l . i in m wm ' ■■■" ' ' mmti imm I,,M

REGISTER STRUCTURE

FIGURE 4-25

Fraction of lives overlapping their successor

80

Algorithm\language ALGOL BASIC BLISS F0RF0R F0RTEN

Bairstow 0.275 0.101 0.005 0.066 0.071

Crout 0.190 0.135 0.028 0.113 0.136

Treesort 0.155 0.103 0.050 0.002 0.097

PERT 0.199 0.030 0 0.066 0.341

Hävie 0.110 0.0 20 0.000 0.132 0.010

Ising 0.106 - 0.022 0.074 0.013

Secant - - - 0.036 0.042

Algorithm\Programmer E B A G L

Aitken 0 0 0.004 0.001 0.002

Source progr.\Compiler ALGOL BASIC BLISS F0RF0R FQRTEN

Treesort 0.038 0.020 0.002 0.044 0.003

Computed as: (number of overlaps)/(number of lives).

FIGURE 4-26

Lives prematurely terminated by 200 instructions dormancy rule

Algorithm\language ALGOL BASIC BLISS FGRFOR FÜRTEN

Bairstow 45 8 64 39 35

Crout 37 15 126 16 156

Treesort 14 1 579 2 461

PERT 35 3 5 11 8

Hävie 15 11 21 17 8

Ising 54 - 66 24 13

Secant - - - 805 795

Algorithm\Programmer E B A G I

AitKen 63 63 72 99 135

Source progr.\Compiler ALGOL BASIC BLISS FGRFOR FQRTEN

Treesort 489 141 799 2819 1035

im j «■ in.« in. !■■■■ IUPB ■ijiini.gwww(PBp«^npw^^ww«Bpr—— j]i n.inijHiiji. i n HI unu ui. j . i ■pi-wmn HI- J n

REGISTER STRUCTURE 81

register block was dramatically reduced for those programs where this cost previously was

high. The increase in instruction count for reducing to 7 registers was in all cases but one

brought below 207.. We believe the cost for this program could be brought further down by

using even lower K.

The cost obtained by any of these methods is an upper bound, hence we may safely assume

the smallest of them to be a valid upper bound.

4.6.5 Summary

The maximal number of registers used simultaneously by any of our 41 subject programs is

16. For 17 programs it is 10 or less. 10 registers would suffice 907 of the time (instruction

count) for all the programs, 987. of the time for 36 of them. 8 registers would suffice 907. of

the time for 36 programs, 987- of the time for 29 programs.

BLISS programs use the fewest registers, BASIC programs also use few. Hence time efficient

programs do not necessarily use many registers. ALGOL programs use most registers, but

not more than maximally used by FORTRAN programs. The compilers use no more registers

than the small programs, and the reduction costs for the compilers are not significantly

higher than for the small programs. Hence the size and complexity of the program has little

influence on these results.

The results for the individual classes show that 907 of the time 2 floating point accumulators

would be sufficient for all the programs, 1 register with full fixpoint abilities would be

sufficient except for the F0RF0R version of Grout, and 5 registers with fixpoint addition and

subtraction would suffice for all programs. Similarly, 7 registers without arithmetic

capabilities and 9 indexing registers would be sufficient 907. of the time for all the programs.

All the above results are obtained on the assumption that a register is den., when it has

been dormant for 200 instructions. Ou; experiments using a reduced such period indicate

that lower results would be obtained that way.

If the register block were to be reduced to 8 registers, the increase in instruction count

would be less than 57. in 30 of the programs, less than 207 in 36 of them. Again the results

MMM—l

■ ' ■ ■"■■J |||i|Mi||i ~—«^ •■"■•"''■-"

REGISTER STRUCTURE 82

FIGURE 4-27

Relative increase o instruction count by interleaving R-lives
as a function of K and M, for selected subject programs.

Algorithm Maximal
dormancy

Lives added
by dormancy
saving

Dormancy part
of relative
increase

Total increase
for reduction
to 10 registers

Total increase
for reduction
to 8 registers

Total increase
for reduction
to 7 registers

200
100

60
40
25

200
100
60
40
25

200
100
60
40
25

200
100
60
40
25

200
100
60
40
25

ALGOL
Ising

ALGOL
Hävie

54
417
614

1055
5158

0.001
0.009
0.013
0.023
0.113

0.068
0.048
0.041
0.023
0.113

0.438
0.410
0.349
0.315
0.121

ALGOL FORFOR F0RTEIM PORTEN
Crout Grout Grout HJvie

15
65

129
1218
7663

0.993
0.527
0.577
0.522
0.190

0.000
0.001
0.002
0.014
0.091

0.060
0.054
0.054
0.015
0.091

0.575
0.558
0.555
0.269
0.094

0.734
0.714
0.710
0.574
0.149

37
320
334
509

5007

0.001
0.006
0.005
0009
0.087

0.077
0.009
0.008
0.009
0.087

0.385
0.270
0.259
0.254
0.088

0.773
0.411
0.410
0.377
0.144

16
224
255

3692
4931

0.000
0.004
0.005
0.067
0.090

0.440
0.402
0.403
0.082
0.090

0.757
0.731
0.732
0.277
0.179

1.045
0.999
1.000
0.494
0.269

156
324
602
611

2561

0.005
0.010
0.019
0.019
0.081

0.005
0.001
0.019
0.019
0.081

0.011
0.012
0.019
0.019
0.081

0.086
0.045
0.041
0.041
0.082

8
29
65

108
2299

0.000
0.002
0.004
0.006
0.126

0.006
0.004
0.004
0.006
0.126

0.045
0.026
0.011
0.010
0.126

0.072
0.042
0.030
0.015
0.127

* m

w** ' • ■■■>•■

REGISTER STRUCTURE 83

are based on maximal dormant periods of 200 instructions. Additional exper.ments, using 4

of the programs where reduction was most costly, show that by reducing this period to 25

instructions the costs were reduceo from 44/, 58/, 38/ and 76/ to 12/, 9.4/, 9/ and 18/

respectively, for these 4 programs. We aid not investigate if a further reduction to 20 or 15

wouid reduce the cost further.

The cost is particularly high for ALG01- programs. This is discussed in a footnote on page 74.

FORKOR Crout also has a high cost, and its cost was the hardest to reduce by decreasing the

maximal dormancy. For BLISS and BASIC programs the reduction was particularly cheap, less

than 1/ for each program, including the two compilers written in BLISS. The correlation

between the two FORTRAN versions is not particularly good.

4.7 Utilities of values

The methods just described are aimed at establishing the effect of reJL'rmg the register

block, and our experiments indicate that the registers on the whole are not used very

efficiently. However, there might be values in memory that could benefit by being kepi in

registers if the programmer or compiler had realized it. Hence it would be desirable to have

a utility measure which indicates what values are most important, locally in time, at each

point in the computation. Those values should be kept in registers which have the highest

utility at that point in time. Further if values of high utility can not be held in registers, we

have an indication that more registers should ^e mcluaed in the processor. The converse

holds if only a few values have high utility.

Such a measure must give greatest importance to values used by the current instruction, less

weight to values used further away in the instruction stream. The function w(s) below is

intended to express this. Furthermore to simplify computations, we might not want to

conside- all accesses to a value, only those within some interval of time containing the

current instruction execution. This is expressed by the function i(s).

A class of such measures can be defined as follows; Define the utility of a value V at time t

to be:

—- '*-' m»«1 '

REGISTER STRUCTURE 84

to
POM) - / w(T-t) » i(T-t; * u(V,T) dT

0
where

w(s) is a weighting function

i(s) is 1 in the interval considered, 0 elsewhere

i V,t) is 1 if V was used by an instruction executed at time t,

0 otherwise.

w(s) and i(s) can be chosen freely to obtain different measures of utility, whereas u(Vlt) is a

fornr.alization of the trace. In choosing w(s) ana i(s) one must take care that values used by

the current instruction get a higher utility than any other, regardless of how much they are

used in the surrounding interval.

It is reasonable to use the instruction count as the time measure rather than the computed

time. Some tentative choices for interval functions can then be cldssified as:

[n,m] : i(s) « 1 for the interval contamino the last n and next m uses of the valut,

0 otherwise.

(n,m) : i{s) - 1 for the '^st n and next m instructions,

0 otherwise.

One such measure could be defined as follows:

Let K be the next time value V will be used, i.e.:

u(V,T) - 0 for T m [t,K>,

u(V,k) - 1 for T - k,

u(V,k) is irrelevant otherwise.

Now let

i(s) - 0 for s < 0 (T < t)

i(s) - 1 for k > s > 0

i(s) - 0 for s > k

and let

w(s)- l/(|s| ♦ 1)

le. P(V,t) is inversely related to the time until the value will next be used. This interval

function is [0,1]. The same weighting function is naturally extended to any (n,m) or [n.m]

interval.

It is obviously impractical to perform such a calculation for ail memory locations at all times.

m mm

I
REG'STER STRUCTURE

It is sufficient, however, to consider those locations that are 'live" or "active" at each point

in time. Detection of such active periods of memory locations (M-hver.) can be done in a way

much similar to the detection of register lives. Some number K must be selected <«s the

maximal dormant period permitted within an M-life. This corresponds roushly to an interval

function of type (K,K). Since every location must be referenced a! least every Kth instruct: n

in order to stay live, at most K locations can be live simultaneously. A K chosen for this

purpose would hardly be larger than 256. Hence the data space required for detection of M-

lives is definitely manageable. A hashing scheme must be used to access the tables of M-life

data, rathe'- than the register address that was used for the R-life tables. Finally we must

keep track of values that migrate from memory to registers and back.

An appropriate weighting function would probably take into account only future usages of

the location. By using a lookahead of K instructions, the utilities of the live memory locations

could be calculated.

We did not do this, but propose it as a possible tool to use for assessing the utility of a

larger register block, or to assess the optimal size of a register block assuming a future more

intelligent compiler.

4.8 Register structure, Conclusions

We now conclude the presentation of our methods for register structures. We have shown

how to detect register lives, how to fmo the numoer of simultaneous lives and how to find an

upper bound on the time cost incurred if the number of registers were to be reduced. Our

results are summarized in sections 4.4.1, 4.5 1 and 4.5.5. On the whole, our experimental

results seem io indicate that the time cost incurred by having only 8 general registers on the

PDP-10 would not be excessive. (This assumes that instruction word space was needed for

other purposes).

This number depends, of course, on other architectural properties of the ISP. If the

registers were specialized, or if base registers were introduced, a larger number of registers

would be needea. This is clearly seen in the results of 'lexander [AleW72](4 or more

registers in the IBM 360 were kept busy as base registers. On the other hand, if the

registers were removed from the address space and no register to register operations were

introduced, memory would have to be used for temporaries, and fewer registers would be

needed.

*.»■ ■ "' ^WWSW^^' ""-^ "^»^«■iWPW WW!l^»W^P "■'■"A "■""

REGISTER STRUCTURE 86

It should also be noted that the results for a reduced register block, though they are upper

bounds in one sense, can not be attained unless the register allocation policy of the

compilers is sufficier My clever. In particular, dormant periods should be recognized, and no

registers should be allocated to a fixed purpose.

Finally we point out that a reduction in the number of registers, or a specialization of them,

is likely to imply a higher programming cost, since the programmer will have to spend more

thought to how he allocates them.

On the whole, register usage is determined more by t' ..nguage and its implementation than

by the algorithm. This is not surprising, since the programmer usually has no control over

register usage. The observation is particularly true for languages that use a run time

system, or otherwise impose a strong regimen on the structure of their object code. Thus

our ALGOL and BASIC programs distinguish themselves in most of the results in this chapter,

whereas systematic register use by BLISS and FORTRAN is lacking.

We have also presented a method for classifying register lives with the object of assessing

the need for generality of registers. Again our results indicate that register generality is not

extremely beneficial to program efficiency, and that little would be lost if the PDP-10 had,

say, 2 floating point accumulators, 2 fixed point accumulators and 8 index registers.

However, the other motivations for general registers have not been invalidated.

rf^ *.«MMMHM_*.

»^ t^^ammmmmmHiw '•• "■ ' • '"'U 'I"

87

CHAPTER 5

DATA TYPES AND OPERATORS

We now turn to the data types of the processor, and the operators to manipulate data of

these types. We look at two problems:

a) How to detect types and operators that are in the ISP, but are not sufficiently used

to justify their inclusion. This is done by frequency counts and various derivatives

thereof, as described in Section 5.1.

b) How to detect data types and operators that are not in the ISP, but could be included

at a benefit. This problem may be approached by studying instruction sequences and

operand valjes. We discuss this in Section 5.2 through Section 5.5.

Again, we will be mostly concerned with the time cost. Most of the methods described in this

section also apply to control operators and in part to address calculation methods, as will be

further discussed in Chapter 5 and Chapter 7. As an introduction we give some seneral

comments on data types and the associated costs.

A MA tvpe is an interpretation rule which assigns meaning to the contents of one (or more)

word(s), or parts of words. A data type is present in a computer if there are instructions

that manipulate it. We list some commonly occuring data types and in some cases the

associated operations or other characteristics.

Word (LOAD, STORE)

Arithmetic (Test of magnitude or sign)

Integer (Single, multiple or variable length)

Floating point (Single, multiple or variable length)

Address (LOAD, STORE)

Bit (Test, set)

Bit vector (One word, logical and other operators)

Character (Including 8-bit bytes as in the IBM 360 etc.)

Character string

Byte (Variable-length bit string «r field)

byte string

- ■- - ■■--■ WMMMkMMx

m*mm^******im*m«Sivm i ' i «I ..n^mtim m * i »mm'*'— ■ >>i* niuim IU«J« ininipiiMi <>i <MI-IU IIIIIII|UIJIIIJIW.«.IUIJU«III..IIIIII|IIP^I m»iii>i m

DATA TYPES AND OPERATORS

Byte pointer (Generalized address)

Word vector

Vector

Matrix

Array

List

Stack

Stack pointer

Instruction (Execution)

This list is not exhaustive, and the types hsted are neither weil defined nor disjoint. Some

exist only for transfer purposes, the data operations being subsumed under some other type.

Some are generalizations of others, i.e. the PDP-10 byte and byte pomter types general.ze

all partial word transfer operations (Address, bit. character, charade,- string etc). The

variable length arithmetic types will usually only ex.st en character or decimal based

machines, i.e. business oriented machines.

The cost Of including a data type in an ISP has several components:

Consumption of space for the opcodes in the instruction word.

Cost of hardware to implement it.

Possibly longer lime to decode the whole instruction set.

A data type included in the ISP should be used sufficiently to warrant these costs, as

discussed in Section 5.1.

On the other hand, a data type or 30me of its operators might not be present in the ISP

although it is much needed in applical.ons. This usually means that the necessary data

structures and operators have to be implemented (interpreted) in terms of the existing data

types and their operators. The cost shows up as:

Increased execution time

Increased space for program

Increased time for programming

Possibly increased space for data

Less readable programs, implying an increased programming cost.

This is discussed further in Section 5.2 through Section 5A

-"——- "■" ■ - -■-■'—- ..

r5W<<w!P"<PW»wpwi"T» wnwKww^wwwi^^p»««»" UHPIIIIIIPIPI ^^^^qir^iff.ii^ijiuiif^m^^iR iiiiimMP»

DATA TYPES AND OPERATORS

A missing but desirable 'lata type might also be a variant of an existing type where the

existing type is used instead. Examples of such types might be short integers* or Booleans

(i.e. true/false valued). Since such types are simulated by existing ones", their desirability

does not manifest itself as an instruction sequence. The costs of not having such data types

are:

Space cost of unnecessarily occupied memory.

Time cost of using the slower instructions.

We dccuss this further in Section 5.5.

5.1 Frequency counts

The obvious way to expose infrequently used data types and operators is to accumulate the

number of executions of each instruction. This table of execution counts, the mstruction

frequency table or IFT, is another compact data base which may be stored and used at a

later time to obtain additional information. For I given ISP, the IFT has a constant size,

hardly more than 512 words for any ISP.

Once it is built, the IFT can be printed out sorted by opcode, frequency of execution, or time

spent executing each instruction. From this we can immediately see which operators are

little used and might be candidates for omission. Similarly, instructions and instruction groups

where the fraction of time spent is significantly larger than the fraction of instruction

executions, are possible candidates for improved implementation. A variant of the IFT (see

below) is presented in Appendix D. In Figure 5-1 we tabulate the number of different

opcodes used by each subject program, and in Figure 5-2 we tabulate how many different

opcodes account for 757, 907 and 997 of the executed instructions for each subject program.

I

Clearly one can not omit instructions from the ISP on the strength of their non usage by one

program. Hence it is necessary to build IFTs that are the sum of IFTs for individual

programs. Summation can be over the whole subject set, or a subset thereof. When

computing such IFTs, the data for each program should probably be normalized to account

for the different program lengths, and also possibly weighed to account for the importance of

each subject program. We call such an IFT a SWIFT (Summed Weighed IFT).

♦ Partword loads and stores with fullword arithmetic is not in general sufficient because of

conventions for representing negative numbers, and overflow warnings.

•* Fullword integers and bit vectors for short integers and Booleans.

■MM

"■•• ' ^mmm^^mm^m^mn^mwwmm^^mmrm > • ' ■'■

DATA TYPES AND OPERATORS
90

Another form of summed IFTs .o the SMEI (Summed Normalized IFT); A SN1FT is reproduced

in Appendix D, including the printouts rorted by instruction count and computed time, as well

as the FGR function. It was computed by normalizing each subject program to one executed

instruction, summing the resulting IFTs, and renormalizmg to 1 million. This permitted the use

Of our existing program, usmg integer arithmetic, but caused a few rounding errors in the

type conversions. Hence the total counts given by the program are sometimes a few

instructions off the exact million. By scaling to a round number, the individual results are

easily interpreted as fractions. The FGR function and other results from this total SN1FT, and

the SNIFTs for the compiler set and the numeric and nonnumeric sets, are given at the

bottom of the respective tables in this section. Since we did not weigh our programs, some

instructions, particularly unrounded arithmetic, which are frequent in some special contexts in

our short programs, received counts that seem unreasonably high.

FIGURE 5-1

Number of different opcodes used by subject set.

Algorithm\language ALGOL BASIC BLISS F0RF0R F0RTEN

Bairstow 112 126 88 151 154

Grout 104 109 52 87 94

Treesort 100 95 33 58 73

PERT 109 109 60 126 129

Havie 113 122 85 140 145

Ising
Secant

104
-

44 121
149

125
152

Algorithm\Programmer E B A G L

AitKen 49 51 50 52 52

Source progr.\Compiler ALGOL BASIC BLISS F0RF0R F0RTEN

Treesort 158 129 130 153 162

Total subject set: 274 Compiler set: 227

Numeric set: 239 Nonnumeric set: 211

MM i» in in

■ ■ '■ ' •" ' »'-"'i ' ' - "" ' HI«,..» i \iimmm^*^mr'-~*mmwi-m>m. «HI«". . p IUI-MUI-»» I ■•■ III»»IJ.I. •pgua i

•,» .^^y,^ Mg mmmmm ' ■ ': f

DATA TYPES AND OPERATORS 91

FIGURE 5-2

- Number of opcodes accounting for
757., 907. and 997. of the executed instructions

Algcrithm\language
Bairstow 757.

90Z
997

ALGOL
15
37
77

BASIC
14
19
49

BLISS
16
31
66

FORFOR
25
55

112

FORTEN
24
53

111

Crout 757.
907
997.

22
34
60

13
19
39

7
14
28

11
21
47

12
19
37

Treesort 757.
907.

5
8

28

14
19
30

5
8

21

5
8

21

6
9

24

PERT 757.
907
997.

18
37
63

13
18
39

9
18
41

9
19
66

9
21
69

H^vie 757
907.
997.

28
42
57

19
34
55

18
26
61

18
23
74

18
23
82

king

t

757,
907.
997.

22
35
58

- 8
15
33

9
19
61

9
23
75

Secant 757 - - - 8 8
907, — - — 20 17
997. - - - 55 56

Algorithm\Programmer E B A G L
AitKen 757 11 12 10 8 7

907 21 22 18 14 12
997 37 40 38 35 34

Source progr.\Compiler i UG0L BASIC 3LISS FORFOR FORTEN
Treesort 757 26 22 15 20 18

907, 49 39 30 40 35
997 94 80 63 81 74

757. 907 99/
Total subject set: 29 67 133
Compiler set: 2? 53 114
Numeric set: 2a 60 129
Nonnumeric set: 17 44 103

^mt MMOIMHM

iiypiu. L HJilJlll^ii fiup(ip«"ii ■ l»l>lll.ail VNPiPPpnEDmimiP^ -^-""^»^BIppPIp^lW^nillWIW^WPWPiPHP lliuiwnmilii.jppinii

DATA TYPES AND OPERATORS
92

For some of the above results, as for the computed time in general, individual instruct.on

execution times are needed. They can be taKen from the manual of the processor m quest.on

or other available sources. In some cases assumptions have to be made about the average

propert.es of the operands. These assumptions may have critical importance in the case of

variable length operands (including bytes) but should otherwise be of little consequence by

the law of large numbers. If variable length operands are common, this source of error may

be reduced by including in the trace sufficient information that the correct execut.on t.me

can be computed during analysis.

Except for the possible dependence of instruction times on operands, tracing is too powerful

a tool to obtain the IFT. A counter in each straight line p.ece of code in the subject program

plus the necessary data on each such piece, or jump tracing, would be sufficient Trac.ng

does, however, have the advantage of general applicability as discussed in Chapter 1.

We now discuss some further measures computed from the IFT.

5.1.1 Instruction classification - Mixes

,„ order to bolter Soe the relation ol the mstroction executions to the MM types end other

protremmin, structures, we may e-oup our instructions into classes and pnnt the

distributions of instruction counts or computed lime over the classes. The cl.ss,l,cat,on may

be by data type, control function or other properties. In some cases several data types may

be 8rouped into one class, in other cases a data type may be split into several classes etc

depending on the ouestions to be asked. This may be viewed as mapping the instruction set

into a generalized and smaller instruction set.

Two such classes d in our work. One ol these was devised by Gibson tGibJ70] in

1959 and used to obtain the well known Gibson mi.. It has later been modihed to M more

„Odern computers by Gonter [GonRSS] and the present author. This i"^™

intended mostly for comparison of the internal processing power of ddferent centra

processors. Another classificahon, It* Etfgnim ItadKt <i*stom* (or ES classiücahon).

was deveioped by the present author. ,1 ,s .tended to reHect the ****"*"**

program in a better way than does the Qbson classification. The dehmhons of these

' - ^MBNMl^ - —- ■

ipppippiliipMPwniWip^OTwnWPIBpifpapwanv^ "■""•wmw" .HUI'WH

1

DATA TYPES AND OPERATORS 93

classifications are given briefly in Figure 5-3 and Figure 5-4. For the full definition of

the Gibson classification we refer to the papers by Gibson and Gonter.

We use the term distribution (Gibson distribution, PS distribution) to denote the observed

distributions for any (set of) program(s). By a mk we mean the observed distribution for a

set of programs believed to be representative cf some actual workload (i.e. the Gibson mix

[GibJ70], the UMASS mix [GonR69] etc.).

A classification is easily described by a table with one entry for each instruction in a

standard format, and with sorm further entries describing the number of classes etc., and

giving their print names. This table can be interpreted by the program computing (and

printing) the distribution over the classes and the same program can be used for all

distributions.

The original Gibson mix for the IBM 650 and 704, the UMASS mix for th: COG 3600, and the

Gibson distribution for our subject set from the PDP-10, are reproüuced in Figure 5-3.

Our program structure distribution for the subject set and its subsets is given in Figure

5-4. When studying such distributions one should keep in mind that the number of

instructions in each class is not the same. Hence a class of a few instructions averagely used

may have a low count compared to a class of maiy instructions that are little used.

5.1.2 The FGR function and similar measures

The most striking observation from a quick glance at an IFT is that a small number of

instructions account for a large fraction of the executed instructions. An abbreviated form of

our results is displayed in Figure 5-1 and 'i^ure 5-2. This suggests that one might reduce

the instruction set and set of data types at a low cost. Foster et. al. [FosC71a] have

propo ed two measures related to this, they were both defined in Section 1 4, but we repeat

the definitions here.

One of their measures .s the information-theoretic measure of information content:

T
1 = - Z p, * log2(p1)

where

-——MMa-———--■- ' IIIIWIWlll

^^mr^mtmii nj ■ > —••nw^^^^i II IIIMJ ■■l ■ "»ii I 11 in im. <vv ••*• i 11 ii< — ■ m» ■■■

DATA TYPES AND OPERATORS 94

Pi is the probability of using the i'th opcode

T is the total number of different opcodes

log2 is the logarithm base 2

Their other measure is a function computed as follows: Order the operation codes by

frequency of occurrence. The i'th opcode in this ordering occurs Cj times, i.e. Cj i. Cj.i for 1

i i < P-l, where P is the total number of instructions in the sample. The FGR function is then

defined as:

N
FORM" 1 - 1/P I Cj (1 <N<T)

i»i

FGR(N) is that fraction of the instructions which would have to be interpreted, were the

instruction set reduced to the N most frequent instructions. However, the function does not

guarantee that the implied recoding is possible or feasible.

Both of these measures are easily computed from the 1FT. They may be computed based on

the lumber of executions of each instruction, i.e. using the instruction count, or based on the

time spent executing each instruction, i.e. using the comp'/ed time. The exact instructions

"removed" depend, of course, upon this choice. In the latter case, C| should be the time used

by the i'th instruction when the instructions are ordered by the time spent executing them.

Both the information-theoretic measure and the FGR function may also be computed from

static data, and will then measure cost of repres. ntation rather than cost of execution.

We have computed the information-theoretic measure with respect to both instruction count

and computed time. Although the practical value of these measures k small, they give some

indication of the overall utilisation of the instruction set. The results are tabulated in Figure

5-5.

A much better measure is the FGR function, which gives an estimate of the time cost incurred

by reducing the instruction set. We compute this based on instruction count, and with a

simple extension. Assuming that each of the omitted instructions can be recoded in terms of

K of the N remaining instructions, one may easily compute the relative increase in instruction

count. If the instructions used for the recoding are of average time, the relative increase in

computed time will be the same as that in instruction count. The increase in space cost has

to be found by static methods, the FGR function computed using static instruction counts

gives the fraction of written instructions that have to be rewritten.

I IM—Ulli - - L— -n^M^i^M^III

mumm»! «u uu ||i||*pffpim(ii n». < i-mwi'Wim. 'W.iW mt'.VV" '*m ■ ^I,HIIIIU^II,H im n niimfKw.mw->vnm"f"t"y • i »i ■UMinji.pipiwiimi. """w ' BVAIIJI .HIIHIII.H ■ n

DATA TYPES AND OPERATORS 95

In Figure 5-6 we tabulate the extended FGR function for N=64, N=A8 and N=32, assuming

a recoding factor (K) of 4, i.e. on the average 4 instructions needed to interpret each omitted

instruction. This factor is the most significant source of error and is very hard to estimate,

since many of the infrequently executed instructions are such that would require many other

instructions to mimic exactly, but they are used where minimal changes of a larger context

would get the intended operation done at no or very little extra cost. Hence the choice of K

should be based on which instructions are candidates for omission. If, for instance, the

floating point instructions are in danger, a factor of 4 will certainly be too low.

Ideally one would want to compute these costs using actual recodings of each omitted

instruction. This might also give seme information on the possible increase in space cost for

data. This process is, however, not easily mechanized. Manual recoding is time consuming,

since for each N considered one must code the missing instructions in the most optimal way

using the N remaining instructions. Possibly the data representation must also be

reevaluated each time. The recoding may also depend on space and time constraints for the

particular application.

To properly see the costs of removing data types, results similar to those from the FGR

function should be computed by removing all instructions relevant to a data type rather than

the least frequently used ones. The results of such a calculation can usually be predicted

well by a glance at the Gibson or PS distribution in question. Also, we believe it may be

more relevant in many cases to omit certain of the operations of the data type rather than

the whole type.

5.1.3 Summary of frequency results

Our experimertal results indicate that a small number of instructions, at most 28, account for

757, of the executed instructions for any one of our subject programs, and that 112

instructions suffice for 99X of the instruction execuhons for any one program. No program

used more than 162 instructions. Assuming a recoding factor of 4, 30 of the 41 programs

could be run on a processor with 64 instructions at an increase of less than 57, in the

number of instruction executions. For 18 of the programs this increase is less than 27., but

in 3 cases it runs as high as 207. to 307. (ALGOL, FORTEN Bairstow, F0RF0R Bairstow).

The situation changes somewhat when we consider the need of the whole subject set. Based

 - I IIM^MI

""" mmt I. lULIIIIIIIlllip^JII ^p ■i-»u>«»mi..„wnu \,m^mim^m[imm..mmw L.

DATA TYPES AND OPERATORS 96

FIGURE 5-3

The modified Gibson classification.

Percentage of executed instructions in the Gibson classes.
Percentage of time included for our subject set.

Machine: 650/704 3600 KA-10

Gibsons UMAS3 Our results

Class results results Icount Time

Load,store 31.2 30.0 42.4 35.6

Fixpoirt add subtract 6.1 1.2 12.4 10.2

Compares 3.8 1.2 - -

Branches 16.6 38.3 28.2 19.0

Floating add subtract 6.9 0.5 4.9 8.5

Floating multiply 3.8 0.5 2.6 8.7

Floating divide 1.5 0.2 1.1 4.9

Fixpoint multiply 0.6 0.1 1.1 3.2

Fixpoint divide 0.2 0.1 0.5 2.4

Shifting 4.4 2.2 3.9 5.3

Logical 1.6 0.5 1.0 0.6

Miscellaneous 5.3 0.0 1.5 1.7

Indexing 18.0 13.4 - -

Fullword - 6.9 - ■

I/O control - 0.0 0.1 0.0

Inter reg. transfer - 5.0 - —

Monitor communic. — - 0.0 0.0

User UUOs - - 0.3 0.0

The classes are not equally applicable to all ISPs, as indicated by dashes. This applies in
particular to index register instructions.

In Gibsons original classification, use of indexing was counted as an extra instruction in the
"Indexing" class; the "Compare" class consisted of the 3 way skips in the 704.

In the UMASS version of the Gibson classification, the "Compares" class consists of all the
vector search operations, "Indexing" is all the index register instructions, "Fullword" is all the
48 bit instructions. The "Inter register transfer" class also includes other instructions that
only manipulate processor state.

Gibsons results were obtained using mostly scientific programs, but some business data
processing programs, coded in unspecified languages.

Thft UMASS results were obtained using assembly and FORTRAN coded programs, including
' e FORTRAN compiler and the assembler.

- - L—— MkMMaaaa^ -1^ ^^ ^^.^ _ . .,„-

mm»' <•< „.i—MW«...! ,„w.Jk,,.^™», |IIWIB|I.P«IIII —"•-■-" IPPP

NHMH

DATA TYPES AND OPERATORS 97

FIGURE 5-4

• The program structure distribution, part 1.

Percentage of instruction executions in each class
for the total subject set and its subsets.

Class Compilers Nonnumeric Numeric Total

Word to ace. 10.5 24.2 19.7 20.1
Word to memory 4.6 9.4 7.2 7.6
Immediate to ace. 3.4 4.5 4.1 4.1
Set to ace. 1.3 0.4 0.3 0.4
Set to memory 1.2 0.2 0.5 0.5
Partword to ace. 10.8 4.0 3.2 4.4
Ace. to partword 2.4 0.5 0.7 0.9
Block move 0.2 0.0 0.1 0.0
Set bits 0.9 0.6 0.8 0.7
Add or sub. 1 1.6 1.8 1.6 1.7
Fixp. add sub. 5.3 14.5 9.7 10.8
Fixp. mul. div. 0.4 1.2 2.1 1.6
Floating arith. 0.0 1.4 15.i 8.6
Shifts 1.0 4.6 4.1 3.9
Logic 2.1 0.7 0.9 1.0
I/O transfer 0.0 0.1 0.1 0.1
I/O administr. 0.0 0.0 0.0 0.0
Other monitor eomm. 0.0 0.0 0.0 0.0
User UUO 0 0.5 0.3 0.3
Subr. jumps 5.1 2.5 2.7 2.9
Subr. returns 3.9 2.2 2.2 2.4
Stackptr. manip. 5.5 3.3 4.9 4.4
Test ace. vs. immediate 7.7 1.7 1.0 2.1
Test ace. vs. 0 2.5 1.8 2.1 2.0
Test ace. vs. memory 3.0 4.9 4.5 4.5
Test memory vs. 0 2.3 1.7 0.9 1.3
Bit tests 7.4 1.2 1.4 2.0
Status tests 0.1 0.0 0.4 0.2
Loop jumps 3.9 3.3 3.6 3.6
Uncond. jumps 12.:' 8.2 5.8 7.4

•
No-ops 0.0 0.0 0.0 0.0
Executes 0.3 0.8 0.4 0.5

-
Miscellaneous 0.2 0.0 0.0 0.0

The "Set to ace." and "Set to mem." classes load their destination with all zeroes or al ones.
The "Set bits" group set individual bits in a word.

MHMHM^M -- —'

wmm^mmv ummmmmmmmmmf^ •■ i» "•"• ^m^nnvpwmiiwHiMff 11 « ■■

DATA TYPES AND OPERATORS 98

The program structure distribution, part 2.

Percentage of computed time in each class
for the total subject set and its subsets.

Class Compilers Nonnumeric Numeric Total

Word to ace. 9.4
Word to memory 4.4
Immediate to ace. 1.8
Set to ace. 0.7
Set to memory 1.1
Part word to ace. 17.2
Ace. to partword 5.4
Block move 2.9
Set bits 0.6
Add or sub. 1 1.7
Fixp. add sub. 5.1
Fixp. mul. div. 1.5
Floating arith, 0.1
Shifts 1.0
Logic 1-8
I/O transfer 0.0
I/O administr. 0.0
Other monitor comm. 0.0
User UU0 0
Subr. jumps 5.1
Subr. returns 4.6
Stackptr. manip. 8.2
Test ace. vs. immediate 5.0
Test aec. vs. 0 1-6
Test aec. vs. memory 3.0
Test memory vs. 0 2.2
Bit tests 5.3
Status tests 0.0
Loop jumps 2.9
Uneond. jumps 7.1
No-ops 0.0
Executes 0.1
Miscellaneous 0.2

22.1
9.1
2.5
0.2
0.2
4.7
0.8
0.5
0.4
1.9

14.4
7.2
3.4
4.5
0.5
0.0
0.0
0.0
0.0
2.6
2.6
5.1
1.1
1.2
5.0
1.6
0.1
0.0
2.4
4.6
0.0
0.4
0.0

13.1
5.1
1.7
0.1
0.3
2.8
0.8
0.6
0.4
1.1
6.8
5.5

34.5
6.5
0.5
0.0
0.0
0.0
0.0
2.0
1.9
5.4
0.5
1.0
3.4
0.6
0.8
0.2
1.8
2.4
0.0
0.2
0.0

15.3
6.1
1.9
0.2
0.3
4.8
1.3
0.8
0.5
1.4
8.8
5.6

22.1
5.4
0.5
0.0
0.0
0.0
0.0
2.5
2.4
5.6
1.1
1.1
3.8
1.1
1.3
0.1
2.1
3.5
0.0
0.2
0.0

MMM MMM ^^mmmtm —». ^ j —^ mt*m

rM' *•" ,j i" i ww^w^im^^mfimr » " !■" i ■iiipni i im i »mil 11 ■.!-■! ■i-iiw.wiH i mil. . ■« i ■ i i «H

WRWWI**'"1' ■ - - "«r^aMMMHHMHMMa**

DATA TYPES AND OPERATORS 99

FIGURE 5-5

Information theoretical measure of opcode utilization.
Computed based on instruction count (IC) and computed time (CT)

Theoretical maximum (all opcodes equally probable) is 8.7245

Algorithm\language
Bairstow

ALGOL
IC 4.64

CT 4.52

3ASIC
4.49
4.53

BLISS
4.85
4.55

FORFOR
5.38
5.00

F0RTEN
5.37
4.83

Crout IC
CT

5.10
5.15

4.44
4.51

3.75
3.57

4.46
4.45

4.35
4.39

Treesort IC
CT

3.21
3.03

4.40
4.51

3.17
3.16

2.93
2.94

3.36
2.95

PERT IC
CT

4.91
4.89

4.39
4.45

3.93
3.98

4.13
4.21

4.14
4.24

Hävie IC
CT

5.46
5.35

4.89
4.85

4.94
4.55

4.86
4.34

4.91
4.31

Ising IC
CT

5.19
5.19

- 3.88
3.77

4.18
4.29

4.30
4.42

Secant IC
CT

- - - 4.08
4.08

4.04
3.9?.

Algorithm\Programmer
Aitken IC

CT

E
4.25
4.02

B
4.27
3.97

A
4.09
4.12

G
3.76
3.99

L
3.56
3.94

Source progr.\Compiler
Treesort IC

CT

ALGOL
5.44
5.48

BASIC
5.37
5.20

BLISS
4.84
4.73

FORFOR
5.20
5.29

PORTEN
5.01
5.08

Total subject set:
Compiler set:
Numeric set:
Nonnumeric set:

IC
5.48
5.62
5.50
4.M

CT
5.53
5.62
5.44
4.92

M^a^ ^ ■■'■—-- > llll Illllll IMt^l

■■■■■■ -.-

---■ ■ -■ •■■"

^*i«i«niipri*m*inTCpiTC^n«iiwii..jiiiuw:iiiui.ii4i.jn>>>«<*:ni''i>i>>ii>ii i WWJI J"» " ■'niinf'"*umi'Mimmi\\. HU,I mmmmw!*f<livtw**i'*ii*^'>Ji>''*" u|ii»»i< ■ ■w.wiwuraf»^™«,

DATA TYPES AND OPERATORS

FIGURE 5-6

The extencied FGR tunction.
Relative increase in motruction count by reducing the instruction

set to 64, 48 or 32 instructions using a receding factor of 4.

100

,Msorithm\language ALGOL BASIC BLISS 1 :0RF0R f •ORltiN

Bair-otow M 0.092 0.021 0.043 0.294 0.2^8

48 0.225 0.042 0.140 0.496 0.461

32 0.433 0.094 0.360 0.792 0.755

Crout 64 0.022 0.006 0 0.006 0.005

48 0.134 0.016 0.001 0.032 0.017

32 0.447 0.081 0.023 0.174 0.093

Treesort 64 0.003 0.001 0 0 0.000

48 0.006 0.004 0 r.ooo 0.002

32 0.026 0.018 0.000 0.003 0.007

PERT 64 0.027 0.004 0 0.042 0.051

48 0.184 0.019 0.012 0.081 0 103

32 0.249 0.069 0.098 0.167 0.203

Hävie 64 0.018 0.024 0.029 0.059 0.077

48 0.222 0.060 0.010 0.115 0.128

32 0.750 0.454 0.235 0.216 0.224

Ising 64 0.020 _ 0 0.035 0.078

48 0.100 - 0 0.073 0.163

32 0.476 - 0.041 0.157 0.288

Secant 64 _ . - 0.024 0.026

48 _ - - 0,060 0.058

32 - - - 0.184 0.160

Algorithm\Programrner E B A G L

Aitken 64 0 0 0 0 0

48 0.000 0.000 0.000 0.000 0.000

32 0.128 0.162 0.109 0.052 0.050

Source progt ■.\Compiler ALGOL BASIC BLISS F0RF0R FORTEN

Treesort 64 0.210 0.109 0.036 0.101 0.073

48 0.406 0.253 0.121 0.273 0.197

32 0.779 0.565 0.341 0.579 0.463

128 64 48 32

Total subjec set: 0.056 D.422 0.631 0.926

Compiler set . 0.019 3.271 0.462 0.807

Numeric set: 0.040 0.352 0.574 0.883

Nonnumeric set: 0.010 0.199 0.342 0.585

j

iMMMMMi

!■ ■' iii»"ii*(iiw*M^«iiHP»pw»i^^^pi^»wiil«i \ i\timmm*'~~' i "in w^^m^m MIH n i i^v^^mBrwtlMipmm^v^w^v •■■■■■-m» ■

DATA TYPES AND OPERATORS 101

on the SNIFT, the total number of instructions used is 274. 29 of these are sufficient to

account for 757. of the instruction executions, 133 of them cover 997. of the instruction

executions. The increase in time cost for receding in a 64 instruction set is 42.27.. This

recoding cost is well above the highest costs for individual subject programs. This shows

that altough each individual program uses only a small set of instructions, this set is not the

same for all the programs. Recoding into an 128 instruction set would increase the time by

5.67..
:- I

The results vary systematically with algorithm and language. BLISS programs generally use

fewest opcodes, and have the lowest recoding cost. This may in part be due to the total lack

of run time system in BLISS (no I/O initialization or timing unless explisitly requested). BLISS

programs are also as fast as, or faster than, the other programs for the same algorithm.

Except for Bairstow, ALGOL programs have the highest recoding cost for a 32 instruction set

but the FORTRAN programs, except for Grout, are the most expensive to recede in a 64

instruction set. The recoding cost of SEG is comparatively low, whereas it is consistently

high for the compilers, though not higher than for several of the short programs. Treesort

has the lowest recoding cost in all languages, Bairstow has the highest, except in BASIC.

Hence there seems to be a correlation between the recoding cost and the size and

complexity of the program. This is as one would expect. The difference between the results

from the two FORTRAN versions seems significantly less than the difference between the

results for the different languages.

When removing an instruction from an existing ISP, one should not only consider its

frequency of usage, but also the ease of coding it in the remaining instruction set, and the

degree of system in the allocation of opcodes. A breaK in such a system may cause

increased programming cost. This is particularly true for the PDP-10, which has a very

systematic instruction set.

The restricted selection of our subject set, and our use of SNIFTs instead of SWIFTs, casts

some doubt on our conclusions about the necessity of individual instructions in the PDP-10.

In particular, since all programs weigh equally, instructions used in special contexts in one of

the small programs will get high representations in the SNIFT. Furthermore, the omission of

I/O from the small algorithms leaves a timeconsuming and specialized aspect of most

programs uninvestigated. We do, however, give some indications based on the SNIFT, which

intuitively seem relatively independent of these deficiencies.

—

"' >"><>«< m^~*mmfnmmmmm*mimm I ■•! •«■ iilB|i.pii>|.lpp «IK ■•■ i k.ai mm, m ■ I . ■! I ■ «mj. -^i»

DATA TYPES AND OPERATORS
102

Large sections of the logic instructions (only 6 out of 64 are used significantly), the bit test

instructions (9 of 54) and the halfword instructions could be removed. The systematic

allocation of opcodes would not be unduly broken, and few instructions would need

interpretation. There are also unused sections of the loop control group and the arithmetic

group.

The UUOs are particularly little used. Their number could probably be reduced to 7 (3 user

+ 4 monitor) or 15 (3+12) by encoding information about function in the address field or in a

control block. UUOs are further discussed in Section 6.1, where the time cost cf using

them is shown to be high relative to using routine call instructions.

Finally there are many no-ops and duplicate instructions. Removal of these would, however,

break the systematic allocation of operations.

These remarks indicate that these results depend more on the algorithms than did those for

registers. Hence a subject set should be chosen to cover the application area in the widest

possible way. It should further contain as wide as possible a range of programming

constructs. Commonly used languages should also be well represented. Finally Ma should

not put too much significance into the results from one or a few analyses, particularly not

from a small program.

We finally point out that the Gibson and program structure distributions (Figure 5-3 and

Figure 5-4) indicate that there is also a great deal of commonality between the results from

the different programs, and also between different ISPs.

5.2 Collection of instruction sequences

We now turn to the problem of detecting data types and operators that might be added to

the ISP with benefit, and which represent data operations genuinely different from the

existing ones. As previously noted, one way of detecting such operators may be by

observing frequently occurring sequences of instructions, viz. those sequences used to

perform the data operations, representing encodings of the missing instructions in terms of

the existing instruction set.

„at* _ - - ""-""-'•- • n iianilinii^W .

"mPIWPWII'W«11»'! I'"'1'
11 ""•,l ■ i u IJI jpuTTf^vn^pm^nniin^

DATA TYPES AND OPERATORS 103

5.2.1 The program

We first describe our method for detecting frequently occurring sequences of instructions.

The major problems are due to the need for space and time efficiency in the analysis

program. This is clearly demonstrated by a glance at the intermediate results of a large

analysis': 1600 different pairs were found by our progr?™". If .•II of these were to be

extended to triples, quadruples etc., data space and processing time requirements would soon

become prohibitive. Hence some methods are needed to detect and omit insignificant

sequences.

The data structure where the information is collected is essentially a forest of binary trees

[KnuD69], each node represents a sequence, and each root corresponds to the first

instruction of the sequences represented in its tree. By a level (or level L) we mean all

nodes representing sequences of a given length L. The leader of a sequence of length L is

the L-l first instructions in it. Its trailer is its L-l last instructions. The descendants of each

node are:

a) The extension, i.e. the first of the nodes on the next higher level, representing an

extension of the sequence represented by this node.

b) The next, i.e. the next node on the same level having the same leader.

To facilitate pruning, as described below, we also chain all nodes on the same level, and in

order that we may reconstruct the sequence represented by a node, each node has a back

pointer to the node representing its leader. Finally each node contains the last opcode of

the sequence it represents, the occurrence count for that sequence, and its length (i.e. the

level number of the node).

For efficiency reasons we do not pack the nodes, hence 7 words are needed for eachm.

2000 nodes were sufficient for the analysis of all the subject programs except FORTEN.

About 2100 nodes were needed for the first pass of that analysis, the 1600 mentioned on

page 103 plus 512 for level 1.

♦ PORTEN, 295 000 instructions traced.
n Which were reduced to 61 after applying the pruning methods to be described.
m Easily reduced to 4 words per node if using a language that makes the halfword load and

store instructions available.

!

.J__^_^„. _—

U|IP if """IJJU'I" "JIM" 'UM I ii, -I M^ .JIIIJ. |.unillliVI«H L|i. I . i I»II» .-«HJII vymmmw^*iu i-"^" MxiPifMiM^jij«^ HIHI, «p

DATA TYPES AND OPERATORS
104

To keep the forest of limited acreage, we use a multi pass algorithm. The first pass

accumulates the pairs, each subsequent pass extends the sequences by one instruction, thus

adding one level to the forest. After each pass the forest is pruned. The pruning not only

discards insignificant sequences, but also attempts to recognize closed loops, several

representations of the same sequence, etc. If significant sequences remain after pruning, a

new pass will be performed.

This continues until either all sequences on the top level are pruned or until a predetermined

level (read as data) is reached. In the latter case, the user of the program may decide after

each pass whether to continue. His decision is based on a few simple data typed as each

pass is completed. Furthermore the current version of our program saves status after each

pass and is easily restarted if inspection of the output indicates that longer sequences would

be of interest, or in case of machine breakdown.

Maximal program capacity is sequences of length 20. This limit was arbitrarily set since we

believed that seqjences of this length neither would be found, nor would be of interest. This

turned out to be only partly true. Using the pruning algorithm outlined below, and cutting

each tree at the root when all its nodes at the top level are deleted, the algorithm is not

prohibitively expensive». Hence in the experiments we used a typed n limit of 20. About

half of the analyses reached this level, all of them reached level 10.

After about the tenth pass of our algorithm very few sequences remain, hence each could

probably be extended by 5 or more in each pass without undue consumption of space. Thii

would make the method significantly faster, and permit the analysis to run until all sequencis

terminated "naturally". It would, however, require some re programming

At the end of the run the counts of shorter sequences are Lfidutfid to account for the

extension of these sequences into longer significant sequences. That is: starting at the top

level we visit each sequence in turn: and generate all its subsequences. For each such

subsequence we reduce its count by the count of the main sequence. Hence the final count

for each sequence reflects the unextendable fraction of the total numbe of occurrences of

this sequence. The computed time for oach occurence of the sequence is easily obtained, as

are the fractions of the total instruction count and computed time consumed by all

occurrences of the sequence.

t With approximately 100 000 instructions traced, (subject program F0RTEN Treesort), the

run time was approximately 35 min. for sequences of length up to 20. Probably this could be

reduced considerably by coding the tree lookup routine in assembly code.

MM^ttMa^M mm*m ■aU^wlbftart^.

r*mt mm^Vrmf^Mmi mm ,i m i m,v mt^\w m "^^— 'i ■■ ■'■"l I.IUI i wn.wuiii fiui.vu«rwnw'^w«nni^R^sR«qp||pianpB(nfr'^Hqp|<j(

DATA TYPES AND OPERATORS 105

5.2.2 The pruning heuristics

The results presented in Section 5.3 were obtained using the following pruning algorithm:

After each level is built, each of thr new nodes is examined in turn and the heuristics about

to be described are applied to It. Since some of the heuristics involve more nodes than the

one thus examined, no nodes are deleted until a second pass down the level chain. The first

pass merely marks the nodes to be deleted, using the extension field which is otherwise

unused .t the top level.

In the examples below. A, B, ... denote instructions, J denotes a jump instruction. A sequence

and its count (the latter often omitted) are given as: <A 8 0 D E: 547>.

Rule K:

All sequences whose count is less than 107. of the maximum count at the same level are

marked for deletion.

Heuristic 0:

All sequences that are not a "significant" extension of their leader or trailer are marked

for deletion. Exceptions are made for sequences of all the same instruction and for

sequences whose count is at least 1/50 of the number of instructions in the subject

program. The meaning of "significant" depends on the level. A factor is defined by the

following table:

Level: 2 3 4 >4

Factor: 1/8 1/4 1/2 3/4

All sequences whose count is not at least factor times the count of both its leader and its

trailer are marked. (If the trailer does not exist, its count is taken to be 0). The intent

of this heuristic is to isolate the common part of partly overlapping sequences as the

more important. Given the sequences <A B C: 500>, <B C D: 150>, <C D E: 150> and

<D E F: 800>, <B C D> would not be marked, but <C D E> would be.

Heurisv ; 1:

The intent of this heuristic is to detect loops. It is applied at levels Z 4. It is first

checked whether the first and last pairs of instructions in the sequence are the same. If

so, it is checked whether the sequence contains a jump instruction. If so, we assume we

have found a loop of length 2 less than the present level. Finally it is checked if the

 ^i i i ßiiimwm . m "U i 11 iw iij^ppw^^wmiiw .a» ■■ PI J ■ i i i "«

DATA TYPES AND OPERATORS 106

same loop is represented elsewhere in the forest». Whenever such a representation is

detected, it is marked for removal. Thus <A B C D E F A B> and <A B C D J E F G> are

not loops by this heuristic, but <A B C D J E A B> is a loop.

Heuristic 2:

This heuristic is applied at level» > 4. It attempts to detect if there are several nodes

representing subsequences of the same longer sequence yet to be built. ANS the top level

nodes are examined, chains are built linking nodes that are believed to represent such

sequences. Let

SI - <C D E ... F G>

be the sequence of length L that is currently under examination. We .^cw examine all

sequences of form:

<X C D E ... F >

for some X. Let S2 be one of these. S2 and its chain become the chain of SI if:

a) Thei count differ by at most 3.

b) SI was not in this chain before.

a) will ensure that the sequences are equally significant; b) that we do not delete all

representations of a loop. Note that SI occurred later in the instruction stream than S2,

but is before it in the chain. Hence the sequence occurring earliest in the instruction

stream is the one which will have a null link, and ti erefore be kept. Thus for the

sequences of <A B C D E>, <B C D E F> and <C D E F G>, the chain would go from

<C D E F G> to <B C D E F> to <A B C D E>, and the latter would be kept. In the previous

notation, if the chain consisted of SI and S2, SI would be deleted.

Heuristic 3:

This heuristic is applied at level» > 6, and is designed to detect and mark all but the most

frequent of those sequences at the level which overlap by a significant number of

instructions, - at least 2/3 of the level number. For each sequence at level L > 6 (say

<A B C D E F G H>), we consider all extensions of its trailer to the level of L (such as

<B C D E F G H I>), and delete all but the one with the largest count. We then repeat the

process for the iraiicr of the trailer (i.e. <C D E F G H>). extending to level I again and

so on until we have reached the least overlap permitted.

Each of these heuristics is programmed as a routine, and called from one place in 'he

♦ A loop of length L may be represented at L places in level L+2, each starting with a

different instruction of the loop.

....- ^^■„^..

mmrwmiW" "■"""' ■' • ' ""miw.wmm^^rmm u..«.... iniip^i i.^iij^i ipi|ins^wt«i««P|pp«n^ •'■•i. ^u ll"l<'m>lniui'^niiu.wi|BinuiFiipii..ii n» "- uiiiiiiiiiijui. nnji

DATA TYPES AND OPERATORS 107

program, inside a pruning control routine. Hence it is easy to change the heuristics and the

order in which they are applied, or to add new heuristics.

5.2.3 Sources of errors

Thctre are some problems associated with this method. Some of these could be avoided by

adjusting the parameters to the heuristics, but this is not sufficient. We now present the

most significant of these problems, and propose some re'nedies.

Sequence overlap

Because of the heuristic nature of the pruning algorithm, we have no guarantee that the

sequences at any level are really disjoint. Hence the final reduced counts are not completely

reliable. In particular the counts for subsequences com,,ion to two overlapping longer

sequences will be too low. This is clearly seen in all programs analyzed, severe! examples

are shown in Section 5.3.

To remove this problem, the heuristics for detecting overlaps must be improved. At first

sight, the obviOL? way is to shift each sequence completely out of the sequence detection

mechanism once it has been recorded, rather than trying to detect new sequences starting

with instructions in its trailer. This assumes, however, that the sequence just recorded is

more significant than those omitted as a consequence of the shift. Hence this technique can

not be used at low levels, since that would prevent us from detecting which sequences are

significant in the first place. Changing to this technique at a higher level requires great care

lest we extend the wrong sequences of those now overlapping. Hence we reject this

approach, and we believe the way to go must be to improve our present heuristics and the

way they interact, and device new heuristics in the same spirit.

We believe that not even the best of heuristics can completely avoid this problem. Hence we

suggest two more ways to relieve it. Firstly, the counts at each level may be printed after

the level is built, immmediately before pruning, as well as at the end of the analysis. These

original counts may then be compared with the final reduced counts. We did this, and found

it a help in detecting significant sequences in general during the manual analysis described in

Section 5.3. In Section 5.3 we present both original and reduced results.

■MMMM

unjujiiij« I"^^^^^WIW»BWIP»«W" "■ "•"■» "■' BWCTPiP'^—i*m**impwmipmmim~^~~' tmw n"a.ivprm^ppii«m>,ii ■ iiinrtmjiiiiwiiij.M

DATA TYPES AND OPERATORS 108

Secondly, one may decide from one run as outlined above, which sequences are important

enough or which results are wrong enough that exact counts are desirable. A second run

can then be done, with a slightly different program, collecting statistics on these sequences

only. This can be done in one pass since we know what to look for. Such a program should

be written to look for classes of sequences as, for instance, variants of a calling sequence,

possibly defined by a regular expression. We wrote nc program for this.

Dominating loops

Another problem is that of domiruting loops. Our program tends to find long sequences,

sometimes representing whole loops of the subject program, rather than the shorter

sequences that are more frequent and which could reasonably be implemented as

instructions. This is particularly true for the short subject programs, where one or a few

loops dominate the results. The situation is improved when subject programs of a more

representative length and complexity are analyzed. Further improvement can most probably

be achieved by strengthening the definition of "significant" in heuristic 0. This can be done

either by increasing the "factor", particularly for the higher levels, or we may introduce new

criteria of "significance". One such could be to compare the total time consumed by the

sequences in question rather than their occurrence counts. Again a factor could be used in a

way similar to the present one.

Interacting heuristics

A third problem is the interaction of the heuristics, particularly heuristics 1 (loops) and 2

(subsequences of longer sequences). Probably the loop heuristic should be applied last, aftet

all deletions resulting from the other heuristics have been performed.

Semantics of sequences

Finally there is the problem of relating the sequences back to tho subject program in

question. This may be difficult because the semantics of the sequences is not always

obvious, and can only be found after a careful anc time consuming study of well commented

source and assembly listings. Also, the sequences found may not relate easily to intuitively

meaningful notions. This is related to the problem of dominating loops. The double length

arithmetic of Grout is a case in point. This occurs in a context such as

 - «Hill idmtk*

UPPIIPWIIV J.I JJIJIJIUIIIipnB ' ^^ JIJ* UIIH HPI^p^l^pill^UlU -i. a w. jpii,.aiuWiIWpin^nnmn>(qannh^^Bnppnvnpl|iM|U||ii. .11,

DATA TYPES AND OPERATORS 109

IflC kx «- low step 1 until high dfi sum *- sum+A[lx,kx]»B[kx];

where sum is the double length variable. The double length addition is easily spotted by the

occurrence of the UFA» instruction, but it is embedded in a sequence of length 20 which also

involves array accessing and the enclosing loop.

More intuitive program elements can be brought out by:

Looking for more specific sequences as indicated above.

Improving the heuristics, possibly to start and break sequences at jumps more easily than

now. However, an advantage of our present method is that it permits detection of

significant sequences, crossing transfers of control, that might not have been suspected

to be of importance". This property should not be lost.

Generate sequences longer than 20, and try to keep the "earliest" one as described

under heuristic 2.

5.3 Results from the sequence program

Each result produced by our program consists of a sequence of operation cMes, together

with its occurrence count and liming data computed from this count. Hence the results need

quite a bit of manual analysis to yield useful data. This analysis involves comparing with

assembly listings (possibly using interactive debugging systems to locate sequences),

comparing counts obtained before and atter reduction or on different level», etc. Good

knowledge of the subject program in question is an obvious advantage.

The deficiencies of our pruning heuristics and the way they interact, as described in Section

5.2.3, increase the difficulty of this analysis. We have, however, made an attempt, and

present the results below. Due to the manual processing, the selection of sequences

presented is necessarily subjective.

* Lbnormahzed floating add

M The BLISS calling sequences, the array access and UUO handling in BASIC programs, and

the thunk of ALGOL PERT are examples of this.

MMMfcl—M——TlfM ■<«■—<■!■—Kill -- - - 11 1——^Mli« 1 . "■- - ■ - —■ ■ -~Jl

■»WWW""1 "w^ptfüwwwp- ^WfWfpr—

DATA TYPES AND OPERATORS HO

The results are presented by algorithm. The characteristics of each algorithm, as described

in Figure 3-2, rarely occur frequently enough to show up, but when they do we comment on

it. For each program, the maximal sequence length reached during analysis is given. In some

cases all sequences on tht highest level reached were deleted by the pruning mechanism. In

those cases the highest level with significant sequences w£s one or two lower than the

highest level reached, as is indicated in parentheses. In some cases the sequences at the top

levcld) were rejected during the manual scan. This is not explisitly indicated.

Since this method of sequences is applicable to address calculation and control structures as

well as to data types and their operators, we have made no distinction between sequences of

these 3 types in the lists of sequences. For the same reason ve present them with the bare

minimum of identifying comment. Evaluation is postponed until later sections in the relevant

chapters: 5.4, 6.1 and 7.1.1.

The sequences are presented in a standard format, giving the occurrence count cf the

sequence, the percentage of the total computed time consumed by it, and a single letter (B or

A) designating if the results are from before or after count reduction. This is followed by

the sequence itself. Several versions of the same or largely overlapping sequences have

been included when it seemed to be of interest, either because of a much larger count for a

subsequence, because of a better correspondence with an intuitive program fragment, to

show the difference due to count reduction, or to show examples of bad pruning. Since the

sequences overlap, the percentages of time sometimes add up to more than 100.

Note that an XCT instruction is immediately followed by its target instruction. User UUOs»

are given m numeric (octal) form, followed by the code for the UUO interpreter, starting at

location 41. Monitor UUOs are given in their octal form, followed by the next instruction of

the program itself (see Section 1.3).

♦ A user UUO is an instruction (octal 01 through 37) which causes a trap to location 41 in the

users memory. Since the subroutine thus called is user defined, the UUOs do not have

common mnemonic names. Monitor UUOs (octal 40 through 77) cause a trap to absolute

location 41 and are used for monitor calls.

MM - ■

.^.,..,^-.-.—-.J4-~——>.-.. . —

DATA TYPES AND OPERATORS HI

5.3.1 The compi'ers

Since these programs are large and complex, and little Known to the present author, the

analysis of them is in some cases less thorough than desirable. This applies in particular to

the two FORTRAN compilers. In the other cases experts were available for consultation and

the results of the aralys ; are better.

ALGOL

Maximal sequence length: 11.

Seq. Count 1. Time B/A Sequence

(1) 170 2.9 A JRST
ILDB

LDB
AOS

MOVE
MOVE

CAIN
XCT

CAIE JRST JSP

(2) 117 2.0 A LDB
MOVEM

SKIPE
MOVE

MOVE
MOVE

IBP
MOVEM

AOS POPJ JRST

(3) 115 2.0 A MOVE
LDB

MOVE I
SKIPE

X0R3
MOVE

MOVEM
IBP

MOVEM PUSHJ SKIPE

(4) 216 3.5 A CAME
AOS

POPJ IMULI ADDI SOJG PUSHJ ILDB

(5) 295 2.8 A JRST CAIN ILDB AOS MOVE JRST

(6) 333 3.5 B AOBJN LSHC ILDB AOS SKIPL

(7) 541 5.6 A PUSHJ ILDB AOS CAME POPJ

(8) 1641 9.3 B ILDB AOS

(9) 176 2.4 A PUSHJ
CAME

ANDI
JRST

MOVE
HRLI

HRRM
MOVEM

MOVE MOVEM AOS

(10) 109 2.2 A MOVE
ANDI

PUSHJ
1DIVI

T3NN
ADDI

POPJ
TLNN

MOVE MOVE ADDI

(11) 1442 2.5 B TLNE JRST

(12) 1418 3.7 B MOVE MOVEM

(13) 917 2.7 B AOS CAME

Sequences (1) to (8) represent various for.ns of input of characters. (9) and (10) are

concerned with outputting relocatable code. (11) shows the need for test bit(s) and jump,

(12) may be a memory to memory move, (13) is loop control.

"-—"■*—J - ■;-1—-■'-■ - ^

■'■"" -^— miiKmm*im>ttt l .. II.U.-I Pll! "..»,1L l.,liHpWIP!"^»iWWfl»™»n^»^«»^"WI" iiip.^« »^wim i im»'m*mmm* '■" " '——^

DATA TYPES AND OPERATORS 112

BASIC

Maximal sequence length: 17.

Seq. Count 7. Time F",/A quence

(1) 1104 20.7 JRST
CAIN
AOJA

CAIE
CA1G

CAIN
CAIA

CAIN
CA1GE

CAIE
IDPB

\ Sr iPE ILDB
CAiN CAIE
SKIPL SOSLE

990 8.0 A ILDB CAIN IDPB JRST

456 2.9 A ILDB HLL TRNE TLNE JRST

402 2.1 A HLL TRNE HRL TLNE POPJ

517 5.7 B ILDB HLL TRNE TLNE PQPJ

521 2.9 A PUSHJ ILDB HLL

314 3.3 A MOVEI PUSHJ MOVE ADD CAIE
EXCH POPJ MOVEM

677 3.5 A CAIGE JRST MOVEI ADD ASH

(1) Is a loop to move text lines from the TTY Input buffer to the BASIC line buffer, character

by character. As the line is moved special characters, like VERTICAL TAB, LINE FEED,

RETURN, are removed or special action is taken on them. This loop could probably be

reduced to two instructions (ILDB JRST) at the space cost of a one word table entry per

character in the character set.

(2)

(3)

(4)

(5)

(6)

(7)

(8)

SKIPA CAMLE

CAMLE

Sequence (2) represents the loop that moves a line from the line buffer into the program

text area, stopping at a return. Further sequences, (3) to (6), are associated with the routine

that reads the next character, sets appropriate flags depending on its properties, and ignores

blanks.

The main data structure of BASIC is the cM, which essentially is a contiguous but dynamically

relocatable memory area. The compiler has a fixed number of rolls, which are packed to

conserve space and occasionally have to be relocated in order to let one of them expand.

The sequences (7) and (8) relate to this data structure. The first of these adds a data item

to the end of a roll, first checking if there is room. The second loop performs binary search

in an ordered roll.

— MMiBMaM^

pipp;iüinjH.m«p «nun wKwuMpinmnm ■■•"■"■' -"w i in i ji.iMnp^^pwiinapiiAJmtu n ■injaiifpwp^v^xnw'nwanpnp'^vpn^' ^iMH

DATA TYPES AND OPERATORS

BLISS

Maximal sequence length: 10 (8).

113

Seq. Count % Time B/A Sequence

(1) 15763 14.3 A PUSH PUSHJ JSP PUSH

(2) 10462 7.2 A JRST POP POPJ SUB

(3) 3724 3.5 A JRST POP POP POPJ

(4) 4897 3.5 A PUSH HRRZ PUSH JRST

(5) 4489 3.0 A PUSH PUSH PUSHJ

(6) 3264 2.4 A PUSH PUSH PUSH

(7) 18275 12.1 B PUSHJ JSP PUSH HRRZ

(8) 12256 6.9 B JSP PUSH HRRZ JRST

HRRZ

SUB

All these represent the routine entry and exit mechanism, which probably accounts for at

least 257. of the compilation time. Note that these sequences have considerable overlap, and

that (7) and (8) are from before reduction.

FORFOR

Maximal sequence length : 10 (8).

Seq. Count 7, Time B/A Sequence

(1) 17484 11.3 A AOJA MOVE HLRZ TRNN JRST

(2) 14555 9.9 A AOJA MOVE HLRZ TRNN TRZE

(3) 6390 5.9 A HLRZ TRNN TRZE JUMPN TRZE AOJA MOVE

(4) 5750 7.0 A HLRZ
SOJE

CAIN ADD HRRZM HRRZ ADD HRRZM

(5) 4411 5.1 A PUSHJ LDB ANDI MOVEI HLRZ CAIG

(6) 5635 5.0 A SOJGE HLRZ CAIN ADD HRRZM HRRZ

(7) 26907 5.9 B TRNN JRST

(8) 38569 10.8 B HLRZ TRNN

This compiler is highly interpretive, simulating a one or few register machine on the 16

register PDP-IO. Sequences (1) to (3) are associated with the "instruction fetch" cycle of

this interpreted machine.

(4) to (6) aie associated with roll maintenance. We believe that a roll in FORFOR is

approximately the same as in BASIC (see under BASIC above), but since no FORTRAN expert

is available, and the assembly listing is poorly commented, we have not been able to verify

this.

tmm m*mm -1 ■-

■ ^ " l,l, —"—^'^'^^•"■^'^^■^^^""^^■»■^■«"■ipuwwwuwpppiwiw^w^w^vii««»

DATA TYPES AND OPERATORS 114

Some further short sequences, (7) and (8), with large counts and time were spotted in the

output from before count reduction. They clearly demonstrate the need for a test bit and

jump instruction.

PORTEN

Maximal sequence length: 20.

Seq. Count 7. Time B/A Sequence

(1) 571 3.2 A CA1G POPJ CAIE JRST CAIE JRST MOVE

TRNE CAIE JRST CAIN AOS CAMG JRST

PUSHJ MOVE CAMGE JRST AOS MOVEM

(2) 949 3.2 A CAIG POPJ JUMPE MOVE TRNN JRST CAIE

JRST MOVE TRNN JRST SETZ POPJ

(3) 4960 4.7 B POP POPJ

(4) 2532 4.1 B PUSHJ JSP PUSH HRRZ JRST

(5) 2403 4.7 B PUSHJ JSP PUSH HRRZ PUSH

(6) 1936 5.5 A PUSHJ SOSG CAIA ILDB MOVE I CAIG POPJ

(1) and (2) show the need for good testing instructions. (3) to (6) are from the BLISS routine

entry and exit sequences (PORTEN is written in BLISS). From these results it is reasonable to

assume that the routine call administration consumes at least 157. of the time in PORTEN. (6)

represents re? ling a character from input, with some additional administration.

5.3.2 SEC

Most of the sequences of this program represent loops of considerable length. Usually

several matrix accesses can be observed in each loop, but these are not brought out

separately after count reduction.

PORPOR SEC

Maximal sequence length: 20.

Seq. Count 7. Time B/A Sequence

(1) 2987 11.9 A CAMGE AOJA MOVE MOVEI IMUL MOVE ADD

MOVE ADD PMPR MOVE ADD MOVE ADD

PMPR FADR MOVEM MOVE MOVEI IMUL

— - ..jl^^^^^.....^..^.. ...-^.^t—«d

wmmmm "■'•I"J ■"■- . I-L.I «»«I HI i«iiiiiiiV^pMp|iiL .. mmMmmmm.*""*i • i m.* i i" "'wii ■ -^immmmm^

DATA TYPES AND OPERATORS 115

(2) 2340 5.5 A CAMGE AOJA MOVEI IMUL ADD MOVE MOVE
ADD FMPR MOVE

CAMGE AOJA

ADD MOVE

IMUL MOVE

IMUL ADD

MOVE ADD

ADD FMPR

ADD FMPR

IMUL ADD

(1) and (2) are loops as mentioned, (3) to (5) are sections of such loops, with loop control and

matrix access showing. The original count for (2) was 2980, and 77. of the time was

consumed by it. The original time was 15.72 for (4), 10.77 for (5), 12.87. for (6). (6) is a load

of a matrix element. (7) to (10) are original results. The MOVE ADD OPERATE sequence is

access to formal vector, (10) is the matrix accessing sequence.

(3) 2987 3.0 A MOVEk

(4) 9390 9.6 A MOVE

(5) 8777 8.0 A MOVEI

(6) 11072 8.7 A MOVEI

(7) 15364 14.0 B ADD

(8) 12499 11.2 B MOVE

(9) 20181 15.7 B MOVE

(10) ?1i28 14.0 B MOVEI

IMUL ADD MOVE
ADD FADRM

MOVE MOVEI IMUL

ADD FMPR

ADD MOVE

MOVE

FMPR

MOVE

PORTEN SEC

Maximal sequence length: 20.

Seq. Count 7. Time B/A

(1) 2987 12.7 A

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

2980

4760

5940

21006

11523

10562

34831

26790

7758

5134

12337

22689

7.3

8.0

3.9

5.4

6.1

9.0

20.2

19.4

8.4

5.7

10.3

15.7

A

A

B

A

A

B

B

A

A

A

B

Sequence

ADD MOVN
MOVEI IMUL
AOJL MOVEI

FADRM ADDI
MOVEI IMUL

MOVE FMPR

MOVEM MOVE

MOVE MOVEM

MOVE ADD

MOVEI IMUL

MOVEI IMUL

MOVEI IMUL

FMPR FADRM

MOVE FMPR

ADD MOVE

MOVE FMPR

FMPR MOVE FMPR FADR MOVEM
ADD ADD MOVE MOVEM ADDI
IMUL MOVE ADD ADD

AOJL MOVE ADD
ADD MOVE FMPR

FADR MOVEM MOVEI IMUL

MOVEM MOVE MOVEM

MOVE ADD

ADD

ADD

MOVE

MOVE

ADD

ADDI AOJL

FADRM ADDI

FMPR

M^aa^MMUMa MkkM

■ i wnm *m ii ■ i ji.iiMWl.jl4gHiM«nMipw "t- 'nwwemmm^^^mm n.mm**'^^*''rnimmi mmitx'm

DATA TYPES AND OPERATORS
116

Sequence (1) here is obviously the same loop as (1) under SEC40. (2) to (4) represent

similar structures. The lattar may indicate ihe need for a memory to memory move, as

illustrated further by (5). (6) contains vector access. (7) is matrix element load. The

importance of the matrix data structure is further illustrated by (8) and (9), from before

reduction. (10) to (12) are of doubtful origin. (10) and (11) might represent some inner

product like loop, (12) consumed 12.8/. of the time using the values from before reduction.

(13) would be considerably more efficiently executed on a two address design. The MOVE

ADD OPERATE sequence represents the use of a 'ormal vector and is present in several of

the sequences.

5.3.3 Aitken

This algorithm consists of two phases, first a search in the vector of abscissae to locate the

interval where interpolation is to take place, then the interpolation itself which is somewhat

similar to successive calculations of two by two determinants, controlled by two nested loops.

Depending on implementation the local data are a two dimensical array or some number of

vectors. Also some implementations work directly on the parameter vectors defining the

abscissae and ordinates, others move the values needed to local vectors thereby saving

accessing code. Two implementations perform arithmetic on the values while so moved. All

these variations show up clearly in the results to be presented.

The surrounding program, which sets up the vectors of function (logarithm) values, and calls

AITKEN with different parameters, does not show up in the results from the most time

consuming implementations of Aitken, but is very conspicuous in the results from the more

efficient versions.

Aitken - E

Maximal sequence length: 20.

Seq. Count 7. Time B/A Sequence

(1) 200 8.2 A FAD
FMP

FDV
FAD

MOVE FMP MOVE

(2) 200 11.9

MOVE FAD
FAD FMP

MOVE FMP MOVE FMP FAD FMP FAD
FMP FAD MOVE FMPR JRST POP POP
POP POP POP POPJ SUB MOVEM

in—*——in i iiiamMtiMii II -__ ■■nd

mmmm wmmummmwn^^^iv • < ■ '.'"■■•>ii-l „mm m>mtfm >wm>n i] ii, |i . i .i|i|iijpiiaai M i.

DATA TYPES AND OPERATORS 117

(3) 198 6.1 A CAMG
MOVE
PUSH

JK^ST
CAML
PUSH

AOJA
PUSH
PUSH

CA1LE
PUSHJ
PUSH

MOVE
JSP
JRST

MOVEM
PUSH
MOVE

JUMPLE
HRRZ

(4) 196 6.7 A MOVEM
MOVE
JUMPLE

MOVE
CAMG
MOVE

FADRB
JRST
CAML

MOVE
AOJA
PUSH

FMPRB
CAILE
PUSH

GAMG
MOVE
JSP

JRST
MOVEM

(5) 1485 49.4 A MOVE
FDVR

FMPR
MOVEM

MOVE
SOJGE

FMPR FSBR MOVE FSBR

(6) 405 8.7 A MOVE
FSBR

SOJ JUMPL MOVE FMPR MOVE FMPR

(7) 324 4.7 A MOVEM
FMPR

SOJGE SOJG MOVE SOJ JUMPL MOVE

(8) 255 3.2 A ASH
GAMG

CAML
MOVE

JRST
ADD

MOVE JRST MOVE AOJ

(9) 405 5.4 A MOVE
AOJ

MOVEM
SOJGE

FSBR MOVEM MOVE MOVEM AOJ

Sequences (1) to (4) are from the contrclling program, and represent the internals of LOG, its

entry and exit, and the controlling loop. The two first and the two last overlap. As is seen,

the routine entry and exit sequences are dominant, particularly the saving and restoring of

local registers. There is also some indication of use of Horners rule.

Sequences (5) to (7) represent the determinant like loop, with the first being the inner loop,

the next two the outer loop and partly overlapping the inner. Binary search in the abscissae

vector is represented by (8), and vector move by (9). The original result for (9) was 6.47. of

the computed time. Addresses of the vector elements are used directly in the code, to save

address calculation.

Aitken - B

Maximal sequence length: 14 (12).

Seq. Count 7. Time B/A Sequence

(1) 1485 53.8 A MOVE FSBR FMPR MOVE FSBR FMPR FSBR
MOVE FSBR FDVR MOVEM SOJGE

(2) 405 6.9 A MOVE SOJ JUMPL MOVE FSBR FMPR MOVE
FSBR

!) 324 3.4 A MOVEM SOJG SOJG MOVE SOJ JUMPL MOVE
FSBR

(4) 630 6.4 A MOVE SUB CAIG MOVE ADD ASH MOVE
CAML

(5) 405 3.3 A AOJ AOJ SOJGE MOVE MOVEM MOVE MOVEM

MMW-rMMM»

»u «.iiHi|WJ""HW»WI^W« ^, ~-w-i —,,,m: mwm ~***mm**mmm*mmmmmm " .^«l . um. i ■(

DATA TYPES AND OPERATORS
118

(6) 282 3.9 A POP POP POP POP POP POPJ 8ÜM

(7) 444 3.7 A PUSH PUSH PUSH PUSH

(8) 400 6.4 A FMP FAD FMP FAD

The routine uses the addresses of the formal vectors directly, hence there is no extra

accessing code. The determinant loop, and the partly overlapping sequences from its

enclosing loop are almost as m the E version, as seen in (1) to (3). The binary search shows

up as (4). The vector move of formal to local is (5), its original time was 3.87.. Procedure

entry and exit is shown by (6) and (7). From the initialization we have (8), which is Homers

rule in unrounded arithmetic.

AitKen -A

Maximal sequence length :20.

Seq. Count 7. Time B/A Sequence

(1) 1320 38.4 A CAMLE
FSBR

MOVE
FDVR

FMPR
MOVEM

MOVE
AOJA

FMPR FSBR MOVE

(2) 432 3.3 A MOVE AOJ MOVE SOJ MOVEM CAMLE MOVE

(3) 288 11.0 A CAMLE
SOJ
FSBR

JRST
MOVEM
MOVE

AOJA
CAMLE
FSBR

CAMLE
MOVE
FDVR

MOVE
FMPR
MOVEM

AOJ
MOVE
AOJA

MOVE
FMPR

(4) 1920 8.6 A MOVE MOVEM AOJA CAMLE

(5) 261 5.3 A MOVE
JRST
CAME

CAMLE
MOVE
JRST

SKIPA
SUB
MOVE

MOVE
CAIG
ADD

ADD
MOVE

ASH
ADD

MOVE
MOVE

(6) 540 7.4 A MOVE
JRST

SUB
MOVE

CAIG
ADD

MOVE
MOVE

ADD
CAMLE

MOVE CAME

(7) 360 7.2 A CAMLE
ADD
MOVEM

AOJ
MOVE
AOJA

MOVE
MOVEM

ADD
MOVE

MOVE
ADD

MOVEM
MOVE

MOVE
FSBR

(8) 282 3.5 A POP POP POP POP POP POPJ SUB

(9) 400 7.2 A FMP FAD FMP FAD

(10) 3433 7.3 B AOJA CAMLE

(11) 3078 7.5 B MOVE ADD

(12) 2538 9.1 B MOVE ADD MOVE

The determinant loop is represented by (1) to (3); the two latter represent the outer loop

and also overlap the first, which is the inner loop. (4) is own to own vector move in the

outer loop. From the binary search we have (5) and (6). The formal to local vector move is

(7). The initialization phase shows up as routine exit and Homers rule, as shown by (8) and

(9). (10) to (12) show the original results for loop control and access to formal vectors.

■OHM M^MM

mmmmmmKmmmmmmtmmmmmmmmmmmmmmmmma^mmmmmmmmmmmmmmmmmmmmmmm-^mm

1 J.HII-ll ilH.Bl l 1

DATA TYPES AND OPERATORS 119

Aitken - G

Maximal sequence length: 14(12).

Seq. Count 7. Time B/A Sequence

(1) 6336 41.9 A MOVE ADD MOVE MOVEI CAML
CAMG AND TRNN AOS JRST

(2) 2970 17.0 A MOVE ADD MOVE MOVE ADD

(3) 18837 23.5 B MOVE ADD
(4) 11439 20.9 B MOVE ADD MOVE

(5) 2970 11.5 B MOVE ADD FMPR

(5) 1971 3.7 B MOVE ADD MOVEM

(7) 1485 3.9 B MOVE ADD FSBR

MOVE MOVEI

FMPR

The search in the vector is linear, and represented by (1). The determinant loop is not

represented significantly except for a short section which occurs twice in the loop and hence

overrides the accumulation of longer sequences. This is (2), which represents multiplication

of two vector elements. Other fractions of this loop are present but not significantly. The

access to a local vector is of the format MOVE, ADD, OPERATE. This is shown in (3) to (7),

from before reduction.

Aitken - L

Maximal sequence length: 18.

Seq. Count 7, Time B/A Sequence

(1) 1485 31.0 A MOVE SOJ IMULI ADD MOVE FSBR FMPR
MOVE FSBR ADD FMPR FSBR MOVE FSBR
FDVR MOVEM AOJA CAMLE

(2) 1485 17.0 A MOVE
ADD

IMULI
MOVE

MOVE
FSBR

ADD
FMPR

MOVE SOJ IMULI

(3) 6264 40.5 A CAMLE
ADD

MOVE
MOVE

ADD
CAMGE

MOVE
JRST

CAME
AOJA

JRST MOVE

(4) 9127 9.5 B AOJA CAMLE

(5) 15219 18.1 B MOVE ADD

(6) 14247 24.8 B MOVE ADD MOVE

(7) 1971 7.1 B MOVE IMULI MOVE ADD

The sequences (1) and (2) represent the determinant loop. The vector search (linear) is

shown by (3). The original results representing loop control and vector access are shown In

sequences (4) to (6). (7) represents access to a matrix.

»•adBMiMmaB iim^^iiiiiirii

irw- -— "'■" .■.mi« «ji muii n.,i«ii-»•^■^■w um i ■ in ■ i

120
DATA TYPES AND OPERATORS i cv

5.3.4 The CALGO algorithms, initial remarks

Before presenting the result for the CALGO algorithms, we make some general remarks about

the languages and their peculiarities: For matrix access the present ALGOL implementation

uses Iliffe vectors, whereas the other systems use multiplicative methods.

In ALGOL programs a complicated run time system is used to implement the parameter

mechanism (call by name), space allocation and block structure, and to check the legality of

operations. This is particularly noticeable in routine calls and parameter access. The run

time system sequences are easily detectable by the bit manipulating instructions they

contain.

BASIC uses a similar run time system. User UUOs are used to call the routines of this

system, this even holds for routines to do vector and matrix access. Furthermore all

arithmetic is in floating point, so the indexes must be truncated to integers. The routine to

do this also checks the result against the upper bound. The code to fetch and store vectors

is the same except for one MOVEI at the beginning which loads a register with a MOVE,

MOVEM or MOVNM instruction. This is XCT'd from that register at the end of the access

routine. The code for matrix access overlaps that of vector access to a large extent.

5.3.5 Bairstow

ALGOL Bairstow

Maximal sequence length: 11 (10).

Seq. Count 7, Time B/A Sequence

(1) 345 9.6 A JRST
ADD

AOS
MOVE

CAMLE
FMPR

MOVE ADD MOVE MOVE

(2) 1001 24.5 A MOVE ADD MOVE FMPR FSBR MOVE ADD

(3) 535 11.7 A MOVE ADD MOVE MOVE ADD MOVE FMPR

(4) 516 6.4 A MOVE ADD MOVE JRST AOS CAMLE

(5) 470 6.0 A ADD MOVEM MOVE ADD MOVE MOVE

(6) 518 5.8 A FSBR MOVE ADD MOVEM

(7) 3085 19.5 3 MOVE ADD MOVE

(8) 1025 6.6 B MOVE ADD MOVEM

- ill mi iimi^ii

,™W*?»^™*»ipj-T»ywr»wI>»j^»iiwmTI»P»»»T!^wwWCTn.^»^«J»»j^RiT ~™r**mmmif**^m*.,t*a»mi '^rmftmmrmm^'m\.«mmfu ßiiii,ni\. i —"

DATA TYPES AND OPERATORS 121

(9) 4710 20.3 B MOVE ADD

(10) 637 3.8 B JRST AOS CAMLE

Sequence (1) to (6) show mainly vector access (MOVE ADD OPERATE) and loop control (JRST

AOS CAMLE) with some other operations intermixed. The results for the vector access and

loop control before reduction are given as (7) to (10).

BASIC Bairstow

Maximal sequence length :20.

Seq. Count 7, Time B/A Sequence

(1) 3488 35.7 A MOVEI MOVE HRRZ TRNN JRST PUSHJ MOVE

AOS MOVE FAD TLZ CAMGE POPJ ADD
ADD XCT MOVE POPJ

(2) 1138 10.2 A MOVEI MOVE HRRZ TRNN JRST PUSHJ MOVE

AOS MOVE FAD TLZ CAMGE POPJ ADD
ADD XCT

(3) 1171 4.9 A JSR JRST PUSH LDB JRST JRST

(4) 4626 9.7 B MOVE FAD TLZ

Sequence (1) gives all of the code for vector fetch, except the initial MCVEI. (2) gi/es the

same for vector store, but truncated at the XCT instruction. The coums are correct, as can

be checked against the count for the appropriate UUOs. (3) is the general UUO handler. Its

original count was 4659, representing 19.57. of the time. (4) represents the conversion of

indices to fixed point.

BLISS Bairstow

Maximal sequence length: 20.

Seq. Count 7. Time B/A Sequence

(1) 90 5.1 A TRNN JRST SKIPE PUSH PUSHJ JSP PUSH

HRRZ JRST 051 SETZ JRST POP POPJ
SUB JRST MOVEI SUB JRST POP

(2) 452 22.4 A MOVE
MOVEM

FMPR MOVE FSBR MOVE FMPR FSBR

(3) 370 9.1 A MOVE FMPR FADR MOVEM

(4) 329 7.8 A MOVEM AOJA CAMLE MOVE FMPR

(5) 263 6.6 A FSBR MOVEM MOVE FMPR

(6) 263 6.6 A FMPR FSBR MOVEM MOVE

(7) 276 5.3 B PUSH PUSHJ JSP PUSH HRRZ JRST

(8) 376 4.4 B POP POPJ SUB

•Ma MMMMMOi ...-—.-.^ „....■.■ ^- J

ii ■, .mwvmv^^WüKi'i«""' " i" IH.MIIIIHIMU"I""W.WI ii WJI -" i i im.mmf WJI"I ui nj i.iiii«iiu.fwiB«ww»^^'»^^"»»«WWHP»" «»mm i im ■ n iiiiiign

DATA TYPES AND OPERATORS 122

(9) 819 43 B AOJA CAMLE

Sequence (1) and several overlapping sequences not listed represent output to TTY. (2) is

synthetic division of a polynomial with a quadratic term. (3) is an expression of form D[j] ♦-

D[j]+R*D[j-l]. (4) to (6) are various parts of the important loops. (7) and (8) represent

routine calling overhead. (9) is loop control.

FORFOR Bairstow

Maximal sequence length: 18 (16).

Seq. Count 7. Time B/A Sequence

(1) 181 18.4 A FMPR FADR MOVIMM MOVE FMPR FSBR MOVE
FMPR FADR MOVNM CAMGE AOJA MOVE FMPR
FSBR MOVE

(2) 181 9.7 A FADR
MOVE

MOVNM
FMPR

CAMGE AOJA MOVE l-MPR FSBR

(3) 226 10.9 A MOVE FMPR FS3R MOVE FMPR FADR MOVNM

(4) 148 8.3 A FMPR
CAMGE

FADR
AOJA

MOVEM
MOVE

MOVE FMPR FADR MOVEM

(5) 492 2.6 B CAMGE AOJA

(6) 859 19.2 B MOVE FMPR FADR

(7) 581 13.1 B MOVE FMPR FSBR

Sequence (1) is the full loop of the synthetic division. (2) and (3) are probably sections of

this loop which remain thanKs to bad pruning. (4) is the same as (3) in BLISS Bairstow, but

the full loop. (5) is loop control, (6) and (7) are timeconsuming combinations of arithmetic

operations.

FORTEN Bairstow

Maximal sequence length :20.

Seq. Count % Time B/A Sequence

(1) 44 4.4 A MOVEM
ASHC
FAD

MOVEI
ADDI
MOVE

(2) 148 8.9 A FADR
AOJL

MOVEM
MOVE

(3) 222 6.1 A MOVE FMPR

(4) 452 23.7 A MOVN FMPR

(5) 181 5.9 A ADDI AOJL

(6) 226 6.6 A FMPR FADR

PUSHJ CAIA MOVF JUMPG CAMN
MOVSM MOVSI FADM ASH TLC
FAD FDV MOVEM FMP

MOVE FMPR FADR MOVEM ADDI
FMPR

FADR MOVEM

FADR MOVN FMPR FADR MOVEM

MOVN FMPR FADR MOVN

MOVEM ADDI AOJL

MMüMM^k^-^ — - - -i « II i iiiBifiiaiiMt''ülli . tääa*t ilia m

■«•I '■•■•I ■— ■ 1 ■ I I 111 ■■111 IP«»""™»» n «JIIII imtnnmiiapm« unii ttm n m miwimmmimmm -» -"■■""■

DATA TYPES AND OPERATORS 124

- BASIC Crout

Maximal sequence length :20.

Seq. Count 7. Time 9/A Sequence

(1) 2811 36.7 A FAD
PUSHJ
POPJ

TLZ
MOVE
ADD

CAMGE
AOS
ADO

POPJ
MOVE
XCT

HRRZ
FAD
MOVE

IMUL
TLZ
POPJ

HRRZ
CAMGE

(2) 2811 36.5 A JSR
MOVE
TLZ

JRST
HLRZ
CAMGE

PUSH
PUSHJ
POPJ

LDB
MOVE
HRRZ

JRST
AOS
IMUL

JRST
MOVE
HRRZ

MOVSI
FAD

(3) 1001 13.7 A MOVE
FADR
006

POPJ
JRST
JSR

FMPR
CAMLE
JRST

FADR
MOVEM
PUSH

MOVEM
MOVEI
LDB

MOVEI
MOVE
JRST

MOVE
MOVEM

(4) 1239 4.1 A MOVEI MOVE FADR JRST CAMLE MOVEM

(5) 918 3.5 A JSR JRST PUSH LDB JRST JRST

(6) 7126 13.7 B MOVE FAD TLZ

(7) 7126 34.7 B PUSHJ
POPJ

MOVE AOS MOVE FAD TLZ CAMGE

Sequences (1) and (2) are largely overlapping parts of the array accessing code. (3) contains

most of the general UUO handler in the context of one of the inner product loops, with

access to a matrix and some arithmetic. (4) is loop control. Its original time was 5.17. of the

total. (5) is the general UUO handler. Its original time wa» 15.37,. (6) is the abbreviated

truncation of indices to integer, (7) shows this in the context of the routine that also checks

for index overflow.

BLISS Crout

Maxima! sequence length :20.

Seq. Count 7. Time B/A Sequence

(1) 2109 47.9 A CAMLE
ADD

MOVE
ADD

IMULI
MOVE

ADD
FMPR

ADD
FADRB

(2) 361 11.0 A CAMLE
ADD
JRST

MOVE
ADD
MOVE

IMULI
MOVE
SUB

ADD
FMPR
JRST

ADD
FADRE
POP

(3) 2451 39.8 A ADD
IMULI

MOVE
ADD

FMPRB FADRB AOJA

(4) 865 4.2 A PUSH PUSH PUSH

(5) 424 2.8 B PUSH PUSH PUSH PUSH

(6) 6010 38.8 B MOVE IMULI ADD ADD

(7) 5530 41.1 B MOVE IMULI ADD ADD MOVE

(8) 400 3.0 B MOVE IMULI ADD ADD MOVN

MOVE IMULI
AOJA

MOVE IMULI
AOJA CAMLE
POP

CAMLE MOVE

- -■■ - - -

■ ■ i" *i^^mm**imm*'**^*ii^w*imrwmmmmmm^*mmmfr': >w>'''>''mw w*mmi*™mmm lyiimt^^v^mmimm'timfiimimr^'^' —•— —■

DATA TYPES AND OPERATORS
123

Sequence (1) is the call of ALOG in the beginning of the program, with some environment. (2)

is the same as (3) in BLISS Bairstow. (3) is part of the same and reflects bad pruning. (A) to

(6) are from the synthetic division and again reflect bad pruning.

5.3.6 Crout

ALGOL Crout

Maximal sequence length :20.

Seq.

(1)

Count

1282

7. Time

19.6

B/A

A

Sequence

AOPJ? MOVE
EXCH ROTO
LSH AND:

MOVE
ROT
LSH

ADDI
ANDI
CAIN

HLLZ
HLRZ
JRST

SETZB
HRRZ
HLRZ

ROTC
ANDI

(2) 1001 21.3 A ADD
PUSHJ
MOVEM

FMPR
UFA
JRST

MOVE
FAD1
AOS

JSP
UFA
CAMLE

MOVEI
FADI
MOVE

JRST
POPJ
ADD

MOVEI
MOVEK

(3) 819 14.3 A MOVEM
ADD
MOVE

JRST
MOVE
JSP

AOS
MOVE
MOVEI

CAMLE
ADD
JRST

MOVE
MOVE
MOVEI

ADD
ADD
PUSHJ

MOVE
FMPR

(4) 1585 3.5 B JRST AOS CAMLE

(5) 7351 12.0 A MOVE ADD

(6) 1225 6.2 A MOVE ADD FMPR

(7) 3532 11.5 A MOVE ADD MOVE ADD

(8) 1646 6.6 A MOVE ADD MOVE ADD MOVE

\9) 1015 6.8 A MOVE ADD MOVE ADD FMPR

The run time system shows up prominently, as in sequence (1) and others. The double

precision add or conversion is (2), part of an innerproduct loop with a call to a double

precision routine is shown in (3). (4) '* loop control. (5) to (9) are various representations of

the matrix and vector access code: (5) is the basic vector access, (7) the basic matrix access,

using Iliffe vectors. (6), (8) and (9) are common contexts for these accesses.

mmmm .MM^Ma^MiHaB_

j.i^miiPiPüPww^^PMiww WPPPWWPB m mm imr^mmm**^' w«i" ■« ^mirmm^m^^mm ■™*m T^fwow^^mm

DATA TYPES AND OPERATORS
125

(S) 3460 6.3 B AOJA CAMLE

Sequence (1) shows the inner product loop {two matrixes). (2) shows the same loop with its

exit, and exit from the routine. (3) is unknown, maybe part of both inner product loops. (4)

and (5) show parts of routine entry, (6) to (8) are forms of the matrix access, (9) is loop

control.

FORFOR Grout

Maximal sequence length: 20.

Seq. Count 7. Time B/A

(1)

(2)

(3)

1225 24.2 A

1015

2466

15.3

18.7 B

JFCL UFA
POP POP
PUSH PUSH

MOVEM MOVE
ADD MOVN

JFCL
POPJ
UFA

1MUL
ADD

FMPI J' CL
MOVEM MOVEM
FAD!

Sequence

JFCL FMPR
UFA FADI
MOVEI PUSHJ

MOVE MOVEI
ADD MOVE
MOVEI MOVEM MOVEM MOVEM PUSHJ

MOVE IMUL MOVE 1MUL ADD

The double precision arithmetic is shown in (1). the inner product loop in (2). (3) is access to

a formal matrix.

IMUL
MOVEI

MOVE
MOVE
PUSH

MOVE ADD

PORTEN Crout

Maximal sequence length: 20.

Seq. Count X Time B/A

(1)

(2)

(3)

(4)

(5)

(6)

(7)

819 29.4

511

256

735

2390

2796

1345

3.3

1.7

4.9

21.2

21.8

2.1

A

B

B

B

B

B

Sequence

ADDI AOJL MOVE
IMUL ADD ADO
PUSHJ PUSH PUSH

MOVE MOVE MOVE

IMUL
MOVE
PUSH

MOVE

ADD
FMPR
UFA

MOVE

ADD
MOVEI
FADI

MOVE

MOVE
MOVEI

MOVEM MOVEM MOVEM MOVEM MOVEM MOVEM

MOVEM MOVE MOVEM MOVE MOVEM MOVE

MOVE IMUL ADD ADD MOVE

MOVE IMUL ADD ADD

... ... _ ADDI AOJL

(1) is an innerproduct loop with loop control, access to two matrixes and entry to the double

precision routine. (2) to (4) indicate the need for a vider variety of rn^ves. (2) and (3) are

from routine entry and exit sequences. (5) and (6) are matrix access. (7) is loop control.

mmamm I ■■! 1- ■■ - -- -— Jto.:..— - . .■■■- .*.:... . ..^. _

,f j, un in i • L. 11 ■.. 11 ■,).»i i^nanppgpm iiiu.ini UVIII*WJ . ■■■ i^n^Mpmmin ■r iiimi. uji.giinq^mT»|ii|i|pi i P,PI»II*IIIII»JIJI

DATA TYPES AND OPERATORS 126

5.3.7 Treesort

This algorithm was chosen beceuse it contains packed data and linked structures. It is the.

shortest of our subject programs, and the WHILE loop dominates all the results. The only

intersting feature is the different way the five s,stems use to pack information into words.

In each case we tried to write the program ir a way that the system in question was known

to handle efficiently. In the case of FORFOR, therefore, we used division by an octal constant

that is a power of 2 to unpack, since this was known to generate a shift. Similarly in the

BLISS version we used the bytepointer construct, which generates halfword instructions.

The BASIC result is not compatible with the others for two reasons: A shorter vector was

sorted, to reduce execution time, and the vector fetch is very different from in the other

systems, as stated elsewhere.

The results were:

ALGOL Treesort:

(1) 8574 18.23 B MOVE IDIVI

BASIC Treesort:

(2) 2514 6.5 B FDVR

BLISS Treesort:

(3) 8174 7.5 B HLRZ

FORFOR Treesort:

(4) 8974 16.0 B MOVE LSH

PORTEN Treesort:

(5) 8174 45.0 B MOVE IDIV

^MM .. ■ -- A ^ • ■* *"

mi ■ wii i nwai i w^mmmt^mmnmir^m^-' i < *« \\ u u wm^^^^mmf^^mm^n^m^^mmm^^^^

DATA TYPES AND OPERATORS 127

5.3.8 PERT

ALGOL PERT

Maximal sequence length: 20.

Seq. Count 7. Time B/A Sequence

555 20.0 A (1)

(2)

(3)

(4)

(5)

(6)

411 13.6

487

1461

3415

622

6.7 B

9.5

16.3

2.8

P

B

B

XCT
PUSH
POP

MOVE
POPJ
SOS

JRST
MOVE

MOVE

MOVE

JRST

PUSHJ PUSHJ MOVE
HLRZ PUSHJ MOVE
POP TLNE POPJ

POPJ POP POP
MOVE MOVE ADD
CA1GE XCT PUSHJ

CAMLE MOVE AOS
CAIG

ADD

ADD

AOS

PUSH MOVEI MOVE
ADD MOVE POPJ
MOVE POPJ

TLNE POPJ MOVE
CAME JRST JRST
PUSHJ MOVE

ADD MOVE ADD

MOVE

MOVE

CAMLE

ADD

Sequence (1) is the complete thunk for the parameter to SCAN, including its call by XCT in

SCAN, its excursions into the run time support routines, and its return to SCAN. (2) is the

loop in SCAN, when the test in the enclosed conditional is false. It overlaps the thunk in (1),

but not completely. (3) is the beginning of the loop enclosing the first case statement

(switch usage), including loop control. (4) is access code for two level indexing, (5) is the

access code for one level indexing in vectors. (6) is loop control.

BASIC PERT

Maximal seque nee length : 20.

Seq. Count 7, Time B/A Sequence

(1) 874 10.5 A JRST CAMLE MOVEM MOVEI
PUSH LDB JRST JRST
HRRZ TRNN JRST PUSHJ

(2) 3989 44.8 A MOVEI MOVE HRRZ TRNN
AOS MOVE FAD TLZ
ADD XCT MOVE POPJ

(3) 874 8.6 A MOVEI MOVE HRRZ TRNN
AOS MOVE FAD TLZ
ADD XCT

(4) 3989 35.7 A PUSH LDB JRST JRST
HRRZ TRNN JRST PUSHJ

005 JSR JRST
MOVS1 MOVEI MOVE
MOVE AOS

JRST PUSHJ MOVE
CAMGE POPJ ADD

JRST PUSHJ MOVE
CAMGE POPJ ADD

MOVSI MOVEI MOVE
MOVE AOS MOVE

MMMIiteMMil

ramMPWPmOTWIWR*«**1«! m^*mmmmi^mmmnmiii.n ■ ' ' ■—" "> ■»" ' ■"■■ ' ■ ii- ■ mmm<mn\ nt mimm.tmtmwi miw' • ' n immtt

DATA TYPES AND OPERATORS 128

(5) 3115 17.2 A 005 JSR JRST PUSH LDB JRST JRST
MOVSI

<6) 1002 4.6 A JSR JRST PUSH LDB JRST JRST

(7) 926 3.3 B MOVE FADR JRST CAMLE MOVEM

(1) is probably the SCAN loop, showing loop control and entry into the vector fetch UUO. (2)

is the body of the vector fetch UUO. (3) overlaps (2) and represents the vector store

operations. (4) and (5) are included as examples of bad pruning. (4) overlaps the general

UUO mechanism but does not complete the vector fetch sequence of which it is a part. The

same holds for (5), which contains the complete UUO mechanism but continues into the fetch.

(6) is the UUO mechanism as it should be with good pruning. Its original count was 4991,

with 22.97. of the time consumed by it. (7) is loop control.

BLISS PERT

Maximal sequence length: 13 (12).

Seq. Count 7. Time B/A Sequence

(1) 437 12.1 A ADD MOVE CAME JRST SOJG MOVE MOVE
MOVE

(2) 487 12.8 A AOJA CAMLE MOVE ADD MOVE ADD SKIPG

(3) 399 6.2 A MOVE ADD MOVE ADD

(4) 527 8.2 B MOVE ADD MOVE CAME

(5) 202 3.1 B MOVE ADD MOVE MOVEM

(6) 1716 19.6 B MOVE ADD MOVE

(7) 996 6.8 B AOJA CAMLE

(1) is the loop in SCAN, when the test is not equal. (2) is the loop control and test of the

loop enclosing the first CASE statement. (3) is addition of vector element, or two level

indexing. It consumed 14.57. of the time before reduction. (4) to (6) show further variants of

vector access, with one or two level indexing. (7) is loop control.

iaJimit~tBm*m*mmämi**il***Ummtim**m*mmimmmiMttmmaii*tl^^^^

imm wm mm »•—•-. nipi«P«iiiitiippipHppfwiHMiipp>M nwjnt\.\ummAimwww*mtm*mr*mmmmimi>*?**v^*^mm*F**~mmiim*r ■mmam*mw^

DATA TYPES AND OPERATORS 129

FORFOR PERT

Maximal sequence length: 14 (12).

Seq. Count 7. Time B/A Sequence

(1) 411 14.6 A ADD
ADD

CAME
SUB

JRST
MOVEM

CAMGE
MOVE

AOJA
MOVE

MOVEM MOVEI

(2) 227 6.8 A MOVt
MOVE

JUMPLE
ADD

MOVE
ADD

CAMGE AOJA MOVEM MOVE

(3) 536 12.5 A ADD ADD MOVEI HRRM JSA MOVM JRA

(4) 625 10.3 B MOVEI HRRM JSA MOVM JRA

(5) 545 8.8 A MOVEM MOVE MOVE ADD ADD

(6) 1170 15.1 B MOVE MOVE ADD ADD

(7) 1725 16.4 B MOVE MOVE ADD

(8) 481 7.2 A MOVE CAMGE AOJA MOVEM MOVE

(9) 1228 10.9 B CAMGE AOJA MOVEM

(1) is the loop in SCAN, (2) is the beginning of the loop surrounding the first case (computed

GO TO). (3) shows a rather inefficient way of obtaining absolute values, it is shown in its full

glory as (4). (5) indicates that vector access with two level indexing may be of importance,

this is verified by (6) and (7). (8) shows loop control in context, (9) on its own.

FORTEN PERT

Maximal seque nee length : 13(12).

Seq. Count 7. Time B/A Sequence

(1) 268 11.8 A ADD
MOVE

SKIPG
ADD

SKIPLE
MOVE

CAILE
ADD

JRST
MOVM

MOVE ADD

(2) 227 6.1 A ADD
MOVE

SKIPG JRST AD1I AOJL MOVE ADD

(3) 487 12.1 A ADDI AOJL MOVE ADD MOVE ADD SKIPG

(4) 411 16.3 A MOVE
ADD

CAME
SUB

JRST
MOVEM

AOS
ADD

AOSGE JRST MOVEI

(5) 477 7.4 A MOVE ADD MOVE ADD

(6) 1986 22.6 B MOVE ADD MOVE

(7) 268 4.0 A MOVE MOVEM MOVE MOVEM

(8) 913 4.9 B ADDI AOJL

(1) is the body of the CASE statement (computed GO TO), including the preceeding test and

the computation of absolute value. (2) is the loop enclosing (1), as seen when the initial test

is false. (3) is the same when the test is true and calculation is to proceed as in (1). (4) is

- ———>-»'——— u. ■

PIPmMPppnpqHfnvnBPVWMMW«'-!«' M l i.njp^n-j^wj^^p^^pp^™ | ..i-i. iv qpi lunill i|l.Ui. II . UUIVJII mi •K^nnMpiWWIia Hilliilliill •^^»»■■»-^w^

DATA TYPES AND OPERATORS 130

the loop in SCAN. (5) and (6) show the vector accessing code, <7) indicates the need for

memory to memory move, (8) is loop control.

5.3.9 HSvie

All the results from this algorithm are dominated by the loop which calls on the integrand,

and by the computation of the integrand. The only interesting feature is the use of

unrounded an other ur usuai arithmetic in the mathematical library routines computing SQRT

and EXP. We give a few examples Of this.

ALGOL Hävie:

Normal arithmeti c used.

BASIC Hivie:

(1) 1024 11.6 B FAD MOVE FDV FAD

(2) 1024 9.9 B rDV FADR XCT FSC

BLISS Hävie:

(3) 512 13.4 B FSC MOVEM FMP FAD

(4) 512 21.2 B FDV FAD FSC FDV

(5) 512 10.5 B FSC JRST POP POP

FSC

MOVE

FADR

POP

These are believed to be conesecutive sequences during execution.

FORFOR H4vie:

(6) 1024 21.5 B FAD MOVE FDV FAD FSC

(7) 1024 20.8 B FDV FADR FSC SKIPA JRA

These are believed to be consecutive. The BLISS mathematical routines were "borrowed"

from the FORTRAN library, this explains the similarity of results for these two languages.

PORTEN Hävie:

(8) 1024 17.7 B MOVE FDV FAD FSC MOVE

(9) 1024 22.3 B MOVE FDV FADR FSC POPJ

MMMH >^^HHaHaBaiaaMtana, — —

DATA TYPES AND OPERATORS 131

5.3.10 Ising

ALGOL Ising

Maximal sequence length : 17.

Seq. Count 7. Time B/A Sequence

(1) 983 18.9 A AOBJP MOVE MOVE ADDI HLLZ SETZB ROTC
EXCH ROTC ROT ANDI HLRZ HRRZ ANDI
LSH ANDI LSH

(2) 438 7.8 A LSH JUMPN AND JFFO SKIPN PUSH HRRZ
ADD1 MOVE CAIG MOVEI SUB HRLI MOVN
HRLZI HRRI ADDI

(3) 438 8.4 A SOJL PUSH HLRZ ANDI LSH HRLZ HLRZ
ANDI LSH JUMPN AND JFFO SKIPN PUSH
HRRZ ADDI MOVE

(4) 414 8.3 * K/IOVE HRRZ ADDM HRRZ XCT CAIE PUSH
PUSH HLLZ PUSH MOVEI EXCH HLRZ SOJL
PUSH AOJA SOJL

(5) 381 7.2 A EXCH HLRZ SOJL PUSH AOJA SOJL PUSH
AQJA SOJL PUSH HLRZ ANDI LSH HRLZ
HLRZ ANDI LSH

(6) 360 7.1 A HRRZ TLNE JUMPN MOVE MOVE MOVEM MOVEM
AOJA AOBJP MOVE MOVE ADDI HLLZ SETZB
ROTC EXCH ROTC

(7) 396 5.5 A CAIN HLRZ ANDI ADD ADD HRRZ TLNE
JUMPN MOVE MOVE MOVEM MOVEM AOJA AOBJP

(8) 381 6.6 A PUSH PUSH HLLZ PUSH MOVEI EXCH HLRZ
SOJL PUSH AOJA SOJL PUSH AOJA SOJL

(9) 1044 9.3 A CAMLE MOVE MOVE ADD MOVE MOVEM JRST
AOS

(10) 574 5.1 A JRST AOS MOVE CAMLE MOVE MOVE ADD
MOVE

Sequences (1) through (8) all represent parts of the run time support routines, particularly

those used at routine calls and name parameter access. These functions probably account

for around 50^ of the execution time. (9) and (10) represent parts of some some program

loop or loops, possibly the assignment to nonlocal vectors m SORT.

 —

. win i"im**w^*mi^^mm* '>i .t*imttwftr^*mmi^tKm'*'*i** ■■ »IKWHIJ i.n» iviimmufmmimfr- -^mmim

(2) 784 19.3 A

(3) 296 6.9 A

(4) 381 13.6 A

(5) 378 5.7 B

(6) 281 5.4 B

(7) 1163 8.0 B

(8) 1999 15.6 B

MOVE ADD MOVE ADD
MOVE CAMG JRST

ADD MOVE MOVEM AUJA

MOVE MOVE ADD

PUSH HRRZ SUBI PUSH

DATA TYPES AND OPERATORS 132

BLISS Ising

Maximal sequence length: 14 (13).

Seq. Count 7. Time B/A Sequence

(1) 184 8.4 A AOJA CAMLE JRST
AOJ MOVEM AOS

CAMLE MOVE MOVE

LOVE MOVEM CAMLE MOVE

PUSHJ PUSH PUSH

POP POPJ SUB

SUB POP POPJ SUB

AOJA CAMLE

MOVE ADD

Here (1) is a piece of the SORT routine, containing the end of one loop, an assignment

statement involving a formal vector, and a test ending an outer loop. (2) is from the loops

that initialize formal vectors. (3) is probably the initialization of one of these loops and some

of the loop. The function entry and exit sequences are represented by (4) through (6), loop

control by (7) and formal vector access by (8).

FORFOR Ising

Maximal sequence length: 14.

Seq. Count 7. Time B/A Sequence

(1) 112 7.2 A SUB MOVEM MOVNI ADD MOVE ADD ADD
MOVEM MOVE MOVEM MOVE MOVEM CAMGE

(2) 184 10.6 A MOVEM CAMGE MOVEI ADD MOVE ADD ADD
MOVEM AOS MOVE CAMG JRST

(3) 860 15.9 A MOVE MOVEM CAMGE AOJA

(4) 245 10.3 A JSA MOVEM MOVEM MOVEI PUSH PUSH PUSH

(5) 248 5.3 A JRST MOVE MOVE HRROI JRA

(6) 414 6.5 B JSA MOVEM MOVEM

(7) 657 6.6 B MOVE ADD

The sequence (1) was not identified. (2) is the same loop as (1) for BLISS Ising, (3) is the

vector initialize loops, the vectore in the FORTRAN version being held in COMMON. (4) to (6)

represent the calling and exit sequences, (7) gives an idea of the cost of formal vector

access.

toal***^*^^,^^**^*^^^. ^. ^^■■^ ■iiiiimi- in |

-

"■"■ mwvntiAiMvm p^P^V f.<|. .u ■H^l! ^^>W^ II ..I. «»■ ■■■■Bl||l ^■RliimiMnUJ. ,iiu..ai»ii

DATA TYPES AND OPERATORS

FÜRTEN Ising

Maximal sequence length: 16 (15).

Seq. Count 7. Time B/A Sequence

133

(1) 184 13.4 A MOVE
ADD
MOVE

ADD
SUB

MOVNI
MOVE

ADD
MOVE

ADD
MOVEM

MOVEM
ADDI

MOVNI
AOJL

(2) 184 9.2 A MOVE
CAMG

ADD
JRST

MOVEI
MOVE

ADD ADD MOVEM AOS

(3) 860 15.2 A MOVE MOVEM ADDI AOJL

(4) 360 6.0 A M0VE1 MOVEM MOVEI MOVEM

(5) 657 7.0 B MOVE ADD

(6) 381 4.4 B MOVE POPJ

(7) 414 6.1 B MOVEI PUSHJ MOVEM

(8) 381 5.5 B JRST MOVE POPJ

(9) 1144 8.4 B ADDI AOJL

<1) is unknown, but probably in SORT. (2) is the same sequence as (1) in BLISS Ising, (3) is

the initialization of the COMMON vectors in SORT, (4) is unknown, (5) is at least in part formal

vector access, (5) to (8) is routine entry and exit, and (9) is loop control.

5.4 Sequences applied to data types

Sequences (1) to (6) of the BASIC compiler consume about 307 of the total time of

compilation. Much of this could be saved by receding (1), as previously described. An even

larger gain in time would be achieved, however, if the PDP-10 had an instruction to move

text (byte strings), with the action to be taken on each byte defined by a table. By a

suitable set of options defined by each table antry, this instruction could replace all of the

constructs pointed to by sequences (1) to (6). Such an instruction would also reduce space

cost compared to the recoded form of (1), and programming cost in any case.

Character handling also shows up in the results from ALGOL, sequences (1) to (8), where it

may be assumed to consume well above 107. of the time, and in PORTEN, sequence (6), where

It consumes at least 5.57. of the time. We know thai all compilers have to perform this kind

of processing, the reason it does not show up in the others may be that it is more

distributed over the program, and that text lines are not processed as an entity. If an

instruction as indicated were provided, compilers would be written to make use of it at a

in..

■ww^wi iKiii .ipnmpimnRinpaipmi'iJiiii i ■». !■.« ■■■■«»-»FW ■wi ■WI,III«U n» i ■» — ■•> <M< »<> ■ ■ ^mi^pmpnnHP^n üHKIIII •^•ppmppvwwüippp' '^»»■(W^W"'»""^"«

DATA TYPES AND OPERATORS l34

benefit. It can further be safely assumed that it would find application in I/O routines, the

importance of such routines is vindicated by our introductory experiments as related on page

37. The need for this type of instruction was also pointed out by Alexander [AleW72].

Another observation we can maKe from this material is that vector operations are important

in many different contexts, and occur to a significant degree in many of our programs: Vector

moves consume 47. to 147. of the time in AitKen, 67. to 207. in Ising. Searches in ordered

vectors consume 37. to 407. in Aitken, innerproduct consumes 207 to 607. of the time in Grout.

Access to vector elements consumes from 57. to 507. in many programs, most in the BASIC

programs where they are done through run time system routines.

Hence instructions for vector operators could be introduced to advantage. The least that cßn

be done is to make the vector move operation already existing in the hardware easily

available in higher level languages. This is only a first step, however. We propose a vector

type along the following lines:

The concept of vectors with a compile time determined address should be unified with

that of dynamically located vectors. They should be given a common formal descriptor

and representation.

The descriptor should allow for vectors stored in non consecutive but equidistant

locations. Zero should be a legal value for this distance. This would facilitate operations

on both coloumns and rows of matrixes; vector moves would perform initialization of a

vector with a single value, vector addition would compute the sum of a vector, and so on.

Further, the vectors should be easily combineable into matrixes and access to individual

elaments of vectors and matrixes should be no more difficult than in common

implementations in present systems.

The operators could include moves, searches (possibly binary), vector addition, and inner

product, the latter accumulated in double precision.

Possibly this vector type could further be unified with the character string type discussed

above.

Other data instructions that might be useful are memory to memory move, and conversion

between fixed and floating point numbers. Both of these contribute significantly to the

■■a>—^—*—^^°,M***^-^-~—-^^—— - - -———^^-—

■ «iwi^--•<»—•• ■■" . JIJIIII|IJIJUIIIU«IIIBIIIIIIJPIIIIII lw9l>•^^■<^||^--''■^p9«3«Hnnn«7■p'wl-l.m, w*1 ■i.*><> 11.1 ^ iiummmmmmmmmumv'^r'^W^' TWBPi

DATA TYPES AND OPERATORS 135

execution time in more than one of our programs. The type conversions have in fact been

included in the KI10 processor for the DECsystem 10. This saves 4 to 5 instuctions on each

use in a general context, 1 or 2 in the restricted context of BASIC matrix access. For some

BASIC programs, this could amount to 3t or 47 of the execution time.

Finally we remark that instructions for packing can save considerable time where they exist

in the ISP and are made available by the compiler used. The language PASCAL [WirIM71]

shows how this can be integrated into a rigid type mechanism.

Two objections against some of these instructions are that they do not easily fit into the

PDP-10 instruction format, and the difficulty of accessing them from current higher level

languages. The latter problem can, in part at least, be solved by giving them the syntactic

status uf subroutines. This is already commonly done for operations like negate and absolute

value.

5.4.1 Summary

In the previous section we proposed several data types and instructions for inclusion in the

PDP-10. For each of these, evidence of its usefulness was found in several algoritms and

across most languages. The sequences used to perform these operations were different from

language to language, but the underlying operations were the same. This convinced us that

our results are valid descriptions of the needs of algorithms. For subject set selection it

indicates that the intended area of application should be covered reasonably well, but that

the choice of language is less important.

5.5 Properties of operands

As mentioned in the introduction to this chapter, data types desi-able for inclusion in the ISP

are not only such that are expensive to simulate using existing operators. Other data types

might be desirable in order to reduce the space cost of data storage, and to some extent the

time cost of the operators.

Examples arc given by Wortman [WorD72] and Alexander [AleW72]. They have observed the

MMMMMta ■ - i.-■

i<«.. ,mmu ■ ■ m^m a iti^^mm^mmtWftmm M -"■ "••» a IIWUMPIHIlll«

DATA TYPES AND OPER/ TORS 136

distribution of written constants in source programs, and found that a large fraction of the

integer constants can be held in very few bits. (93/ and 567 respectively in A bits. The

discrepancy may be caused by Wortman's use of student programs, whereas Alexander used

larger programs). One would expect a similar observation to hold for dynamic occurrences of

integers.

If the operands of each instruction are written on the trace, this dynamic distribution can

easily be observed. To relate these observations back to specific storage locations and

variables, and to find the maximum space needed for each variable, would require an array

equal to the whole data area of the subject program, hence this is a relatively expensive

analysis. Furthermore several variables might share the same physical storage location,

adding further complication. Hence the utility of a hardware subrange type is not easily

determined exactly, although a good indication could be found. We do not do this at present.

To do a similar analysis for floating point types is even harder, since there is no way of

telling how much of the accuracy provided is really necessary. This must be left to numerical

analysts. A weak indication is provided by observing the usage of immediate type floating

point instructions.

Non-uniform distribution of values is not a phenomenon restricted to written integer

constants. It has been observed, as reported by Hamming [HamR70] and Pmkham [PinR61],

that "naturally occurring numbers" do not have uniformly distributed mantissae. Rather, the

mantissae seem to be distributed according to the density function:

r(x) - l/(x * ln(b)) (l/b<x<l)

where b is the base of the number system. For a binary computer with mantissae in [0.5, 1>,

this seems to imply that about 587. of the mantissae would be in [0.5, 0.75>. The essential

property of this distribution seems to be its invariance to scale ti ansformations.

Tracing methods can be used to obtain more »«penmental verification of this, and to evaluate

methods designed to exploit it. Other observations of operand values could have relevance

for:

Variable length data types

Representation of control and addressing information

Rounding procedures in floating arithmetic

MMMM .-^ _. . .„..£. . J

ppftj iim.iWW'im***'^* UIMBWH»-11"' »1"l■■■", H'""' ■"»"^■«■■^■■«lir^fWip-W' l,ipii,<J«H(WJ»»|WWW«» |™™r»»i»B!5!»n»wnP!>npn»»»(f>lP« wpn

|MM|^K^BMnBBnMm|

DATA TYPES AND OPERATORS 137

5.6 Data types, Conclusions

In this chapter we have piesented various methods for detecting unnecessary data types and

operators in existing ISPs, and for detecting non existing but desirable ones.

The former methods are based on frequency counts of instructions, and most of them have

also been presented by other workers in the field. Our conclusions about these methods

were presented in Section 5.1.3. We pointed out that the results are sensitive to changes

both in programming language and algorithm, and hence that a subject set should be well

distributed over the area of application and over the languages used.

For the latter problem, we presented a heuristic algorithm for detecting significant dynamic

sequences of instructions. This algorithm, including the heuristics, is our work. The algorithm

is structured so that the heurstics are easily changed, and new heuristics may be easily

added. This method is also applicable to control operators and address calculation.

The results were presented in Section 5.4. They are less dependent on language and

algorithms than the frequency results, and properties common to the programs are brought

out strongly. This led us to propose several types and operators for inclusion in the ISP

that we worked on. A subject set for this method need not represent many languages, but

should cover most concepts of the intended area of application.

Finally we propose that desirable data types may also be suggested by a study of the

operand values from existing data types. No experimental results from this method are

presented.

MMMHWM ■■■^—iM ii -' —

jH^mmmmmr'^'immrs**"''m " >mi mm««'» '•jijnmiy i9n*"inm-vmii*mw ' t^i>i'v^mr*lmmnmif*mmmfmr~'rnmmiv*>'imwnii.*'VKi,wn"w m" «pi ■^nmmmm^mm'

138

CHAPTER 6

CONTROL OPERATORS

Our major methods for studying control operators are the same as for data operators, i. e.

frequency counts in its various disguises, and instruction sequences. The results of the

sequence studies are presented in Section 6.1. We give no comments on the frequency

results above those given in Section 5.1.3. We also propose some new methods for use in

particular situations. These are discussed in Section 6.2.

Frequency counts indicate that control operators, as defined below, account for a large

fraction of the total number of instructions executed (33Z by our SNIFT, Figure 5-4).

Furthermore, control structures are among the most important means of structuring

programs. It follows that efficient implementation of control operators contributes to

reduced programming cost as well as time and space cost.

Further motivation for studying control structures and operators is found in the difficulties of

compiler writing, particularly in code optimization. A great deal of effort at both compile and

run time goes into maintaining (setting and restoring) state .nformation. This applies on

subroutine and coroutine calls as well as in more local control contexts where several

program branches merge. The inability of compilers to cope with this problem is one of the

major reasons for generation of inefficient code. An alternative approach to the problem

would be to design ISPs such that the amount of state to be maintained is less, or where it

can be saved and restored more efficiently.

Control operators are primarily those which may change the contents of the program counter

to a value different from the default value (Old value + 1, n+Tth address etc). Since almost

all programs are written in higher level languages, it is reasonable to extend this definition to

include instructions used for implementing higher level control structures. Such control

structures may be grouped as:

Statement level:

Unconditional jumps

Conditionals

Case selection

Loops

■^toM——M—'i'^—^M^M***^"-.-—~. — - ■....■-..—^/^-^—^i**^~±~..^^.- „„.^w -.... ^..^.^..ji^»-!*^—^-«-. -■■ ■ - J- "■•

urnwua iPii.wi.wj »mmmi.j.v. " »■■p^pipra^wi,. u.. iiiimii T ■■!iul ■"■■■•4" WSJTO- ■nnvp^iun imimpwi. in i_iwm^i^fmiimmvm

CONTROL OPERATORS 139

Program level:

Subroutines

Coroutines

Parallel processes (tasks)

On the program level, program context changes and program communication are most

important. Communication ranges from oarameter and result passing for subroutines to

synchronization for processes.

Our methods are not suited to analysis of programs with processes, since such programs, and

certainly the most important ones, have to execute at full speed m order to adequately

handle the real time situation they are designed for. The slowdown caused by the tracing

interpreter would therefore perturb the results.

There may also be more or less control associated with the ope-ators of the language, ie. the

programmer may or may not have to supply explicitly the control necessary for, say, matrix

operations, depending on the language {FORTRAN vs. APL). If the control is supplied wittl the

operator, the compiler can in general generate more efficient code, since the context is

better defined.

The most important classes of con'

Unconditional jumps

Simple tests (implying jumps or skips)

Loop jumps (count, test and jump)

Subroutine and return jumps

Stack manipulating instructions

Execute instructions

Some monitor calls

Other instructions in special contexts

itors on the ISP level may now be described as:

6.1 Sequences applied to control

In this section we discuss those sequences from Section rj.3 that are relevant to control

operators.

Most noticeable is the cost of the run-time system for ALGOL programs. This consumes 507.

--■—'— ■

—--r—. w^mmmmmt^'^irmmmim^'" ">■ ' wmmmmmmmmnim n ,1.1 w. imii . nt\\.Mimmmm*m<mm**** —^1

CONTROL OPERATORS 140

of the execution time for Ising, 207, for Crout. To achieve a reasonable efficiency for ALGOL

programs with many routine calls and name parameters, special instructions and descriptor

formats should be introduced. This observation is not new; it has influenced several ISP

designs, in particular those of the Burroughs B5000 and its descendants and siblings.

A related feature, more common to all the languages, is the cost of subroutine calls. This is

most easily spotted in BLISS programs, since the BLISS calling sequences include .lack

instructions that are never used in other contexts. In the BLISS compiler calling sequt ices

consume at least 257, of the time, in the PORTEN compiler at least 157.. Both of these

compilers were written in BLISS*. In the other programs where we have observations, the

time consumed varies between 57, and 207. of the total; 57. in PORTEN Crout, 127. in PORTEN

Ising, and over 157, in P0RP0R Ising.

The functions performed by these sequences are transmission of parameterr and result,

manipulation of return linkage, and state setting. The latter includes setting up system

registers as well as saving and restoring user registers. The exact constructs needed

depend heavily on the language. We present one example:

BLISS programs would execute considerably more efficiently if the PUSHJ and POPJ

instructions could manipulate the P register", and remove the parameters from the stack

after exit. The address field of the POPJ instruction, presently unused, could be used to hold

the number of parameters, so there would be no space cost at the call site, and the change

would fit cleanly into the existing structure. This would reduce the instruction count by 4 in

each call, more in some cases. Por the BLISS compiler 1/8 of the instruction cou'.t would be

saved this way; this is about half H .he instructions executed in calling sequences. If one

were able to specify which registers to save on entry and restore on exit, two further

instructions could be saved on each call for each such register. There is, however, no room

in the instruction word to specify this. This is a problem common to all calling sequences.

A variant of the subroutine call is the UUO. In our material this is used almost only to call

the BASIC run time system. Since this includes vector and array accessing, UUOs are

frequently used by BASIC programs, and the central UUO handler of BASIC contributes 157.

to 237. of the total execution time. This UUO handler, which consists of 6 instructions,

♦ Two reasons for the difference may be that parameters of PORTEN are passed in registers,

or that there are fewer small routines.

" The P register points to the activation record of the most recently entered routine.

M^M mm—

ißipmmmir^mmmmim'^'^~m^~*mmm~mmmm' 1 ■•" Mwm^w^^m^i^mm^mwm^mwtmmmm^K^^'^' -^»pppwi^WÄ^n

CONTROL OPERATORS Ul

:

processes the return linkage and selects the right run time routine. Parameters and state

are processed at the call site and in the individual routines. Hence the cost of UUOs is

extremely high compared to using one of the subroutine call instructions. An exception is

when only one UUO is used. In that case the central DUO handler reduces to one instruction.

The advantage of UUOs over other subroutine calls is that they allow a memory address

(subjected to the standard effective address calculation) and an accumulator address to be

transmitted to the routine at no extra cost in space or time at the call site. It also permits

linkage to subroutines through a table defined at load time and with no name

correspondence. This is of small importance, however. From this we conclude that UUOs

should be used only in very special circumstances where the extra time cost is justified.

UUOs are also discussed in Section 5.1.3.

Another common construct is loop control. This often consumes no more than 2t to 57. of the

execution time, but may consume as much as 9/ (Aitken-L) or 107. (FORFOR PERT). It

appeared in at least 15 programs, consuming at least 2Z of the time in each. In spite of the

looping instructions provid d in the PDP-10, most loop control sequences consist of two or

more instructions. This is primarily due to the fact that most loops count upward to a non

zero limit, hence loop control r. eds to address both the limit and the branch target (assuming

the counter to be in a register and the increment to be 1). Contributing are the facts that

languages often require ihe test to be performed at the beginning of the loop but the

stepping of the counter at its end, and the need to store the loop counter in memory.

Results reported by Knuth [KnuD70], Shaw [ShaM71], and Alexander [AleW72], for FORTRAN,

ALGOL and XPL, show that 937 to 957 of all wri ten counting loops have an increment of one.

This form of loop could be done more efficiently in the PDP-10 if the AOBJN (Add one to

both, jump if negative) were used. This instruction keeps the loop counter in the right half

of a register, the left half is initialized to the negative of the desired number of traversals of

the loop. F.dch tine the AOBJN is executed, both halves of the register are incremented by

one, and the jump is taken if the result (i.e. the left half) is negative.

This instruction is rarely used in our subject set: 709 times in our 1 million instruction SNIFT.

The reason is that extra tests must be performed to make sure that the bound and counter

will not overflow the halfword allocated to them. This suggests that two registers should be

used, one to hold the upper bound and one for the counter. Our results in Chapter 4 show

that there are sufficiently many registers to permit this. Downwards count to a nonzero limit

can be handled by a similar instruction.

-- -

nimm, nnM'wii.ii >.>II]| i ■ iii^wmnwmuiiiiiijw i 'W wwm " '•'•• " I ■■■■■-■ •■ H« i ■—•—■-

CONTROL OPERATORS 142

Commonly used sequences for loop control consist of a AOJXX CAMXX pair. Our instruction

will execute in less time than the CAMXX, since no memory operand is needed. Hence these

instructions would reduce the time cost of loop control by 407, to 507, or up to 57. of the

execution time of some programs. For very short loops, such as initialization of vectors, this

saving could be a significant fraction of the time of the loop. The prologue may imply a

larger space cost than for most present loop controls. The hardware cost is that of adding

the new instruction(s). The instructions integrate reasonably well into the PDP-10 ISP

structure, hence the programming cost will probably be reduced.

We finally draw attention to various forms of testing that are prominent in some of our

subject programs. This is seen in the ALGOL run time system and in the compilers, and

consumes 27. to 117. of the time. The ALGOL run time system also does a great deal of bit

manipulation. We can not suggest any improvements on these operations without further

Knowledge of their semantics.

6.2 Some special problems

In this section we discuss some problems associated with control operators in general, or

with special control operators, which are not easily solved using the more general methods.

6.2.1 Control information

An important aspect of control operations is the control information, i.e. that information

which is processed by the normal data operators, but whose main raison d'etre is its use for

control purposes. This includes loop counters, stack pointers, return addresses and other

addresses, parameter descriptors, displays, etc. Ideas for improved control operators might

come from studying how such information is processed.

We make the simplifying assumption that we may disregard information stored in primary

memory, and consider only register contents. The information in a register is used for

control purposes at the cflnkfli Bfliüli '.*• whenever the register is addressed by a control

operator. We are interested in the history of control information accumulated at control

points.

mmmmm III^UMI in ii ^a

■PÜWFWP^W ■pvnmnnimnmHm.^ i ii iiimi"«")" < 'knrnnwmm"^"^"^^'' HI. i..iiimiJ|ji^^m^MWMi|

CONTROL OPERATORS 1A3

'

The sequences of sections 5.2 and 6.1 tell us something about this, but they have several

deficiencies: They are not accumulated at control points, they contain instructions irrelevant

to the control information, and they cover a too short span of time.

Another form of history which we already have is the register usage classes of Section 4.5.

These classes are also inadequate for the present purpose, since only the kinds of events in

the life of the register are known, their order and number is unknown.

A third form of history is the sequence of instructions that operated on the specific register

before the control point was reached. Such Legister sequences can be collected by a

process somewhat similar to that described in Section 5.2, but in many ways simpler. Its

main properties are:

a) Sequences are accumulated separately for each register, and only instructions

affectir.i;, ii at register are mcluded.

b) Each sequence is restricted to one R-life of that register. (R-life defined in Section

4.2). This might cause some sequences (particularly those representing the history of

a loop counter) to become very long. A Kleene star kind of concept would be useful

in such cases, or the sequences may be truncated at the old end.

c) Sequences are tabulated each time the register is used for a control purpose.

d) The collection takes place in one pass. If space is scarce, some kind of pruning might

be necessary.

In such histories, the time order of the events is preserved, but only events affecting the

particular register is recorded. If parts of the computation have taken place in other

registers, this information is lost. We do not believe this to be a serious problem, however.

If it is, one may build the expression trees for the information instead of the sequences.

Techniques for doing this are constantly used in compilers, though with the opposite goal. In

such trees the exact order of operations is lost, and only those aspects of it are preserved

which are relevant to the arithmetic value of the result.

We propose register sequences as the method for study of control information, most likely to

give useful results at a reasonable cost. We have, however, not programmed this method,

and hence have no experimental results to support this contention.

HteMM -- ■

^mw 11111111111 •■ i i IMI««,-^ ■I ill 1 |liali«v^i|l i }\ uimiiw wmm'wrmmmn' "W'« ■WiPlpppwW

CONTROL OPERATORS 144

6.2.2 Test.instructions

To perform a test, 3 addresses are needed: two for the values to compare and one for the

instruction that is to be executed it the test succeeds. On the other hand, most ISPs have at

most 2 addresses in each instruction (memory address and register or 2 memory addresses).

Three techniques are commonly in use to solve this problem:

a) An implicit operand, usually 0, is used for the test. This method is adequate when the

value tested either does not have to be computed, or is used for other purposes than

testing. This can be studied by regiticr toquoneet, possibly extended beyond the

control point.

b) An implicit change (SKIP), usually 1, 2 or 3, is made in the value of PC depending on

the result of the test (succeeds or fails; >, - or <). This may require another 1 or 2

jump instructions to follow the skip instruction, but at most one of these is executed,

often none. This method is adequate when the false path is exactly one instruction

long, and continues into the true path. Sequences may be used to study the relative

frequencies of SKIP JUMP and SKIP NO-JUMP pairs. This requires a modification to

the sequence program so that these combinations are always printed before they are

pruned. Many SKIP NO-JUMP pairs indicate that this construct is used to advantage.

c) A condition code (CO is used to store the resuU of the test. This is subsequently

tested by an instruction which specifies the conditional new value of PC in its address

field and the desired state of CO in its opcode or register address field. If CO is set

by the arithmetic instructions, the first instruction of this pair is not always

necessary and thic scheme may or may not be more economical in space and time

costs than the ones previously described. This method is adequate if the value

tested is that most recently computed and it is also used for other purposes.

If the ISP under study does not use CC's, a few lines of code in the program that

accumulates IFT's will simulate a CO. The tables that describe the instructions in

terms of the program structure distribution must be available. In this way we may

estimate how frequently the introduction of condition codes would have simplified the

program.

None of the above methods were implemented; some of the other results, however, have

some bearing on these problems.

MMMMMi

IW^"»'-'1« • 1' ' ■Ill»» H1U--I1 I Kll^l III •■ M mn »nw Mil • llll I IUIIMIIIMIM • ■ «■ l"l.ll

CONTROL OPERATORS 145

The program structure distribution, presented in Figure 5-4, indicates that the accumulator is

most often tested against memory. The compilers form an exception; here the bit tests and

the tests against an immediate operand are more used. The importance of testing against

memory may in part be due to the use of these instructions in the loop control. Bit testing

and testing against immediate operands are second in importance; tests against 0 are least

important. However, testing memory against 0 is as important as the analogous test for the

accumulators. Taken together, the tests against zero are almost as important as the

accumulator versus memory tests. These results refer to instruction count. In computed

time, the tests involving mamory tacreaM in relative importance.

We conclude that programmers prefer b) to a), and that they rarely need to test values

genuinely for zero, at least not recently computed ones. The memory against zero tests are

most common in compilers, this rnay indicate tests of 'ong lasting status indicators, table

entries, etc..

6.3 Control operators. Conclusions

This concludes our discussion of control operators. We have presented the results from the

sequence method as applied to control structures, and also suggested some other methods

for obtaining additional information. The latter methods, however, have not been

implemented.

The detailed implementatio; of control varies more from language to language than does the

use of data operators. This> is particularly so for languages that use a run time system for

their space allocation and parameter transmission. There is also some variation from

algorithm to algorithm due to the different degrees to which the algorithms use certain

control structures, and in particular those that involve the run time system. Differences are

also inherent in the forms of processing that the algorithms do, as is evident from the

program structure distributions in Figure 5-4. We also found significant similarities across

languages and algorithms. This is clearly seen in the program structure distribution, and

even more clearly in the sequences. In the latter case, though the sequences differ in detail,

they reflect common underlying control concepts, and can in many cases be unified. This led

us to propose a modification of an existing instruction foi loop control, and to point out a

basic flaw of the routine call instructions. We also pointed out the inefficiency of the UUO

concept of the PDP-10.

■'»-'''''*■'■*'—'—■-——-—" -- - ■■ ■'•'-"■'""•*•*-—Um 11 , - ■■ ■

W"IWWW1«H ■ IWWWT^WMBMH»! i» l>. ■•■ill IKII^ mail, linn u.a. '■ -■"P«|i II IM l.niiiUJ. iiB.iv.PliiaiK I«WW,II mu»! .niunvJH »i»-«.' »™«?^ww» "I »I l

CONTROL OPERATORS U6

If the goal is to detect which control structures are common, the subject set need not

represent many languages, but it should be well distributed over all control concepts used in

the area of application. However, the detailed implementation of these control concepts is

highly language dependent, particularly where a run time system is used. Hence a thorough

analysis of programs from the particular language should be done if detailed implementation

is the goal.

Our results do in fact suggest that the ISP should have separate control operators, possibly

microprogrammed, for each commonly used language.

For the same reasons as when we discussed data types, the generality and consistency of

our results lead us to believe in our methods. Our remark in the introduction to this chapter

about compilers and state maintenance correlates well with our findings about routine calls.

Finally we remark that our results agree well with experience, intuition and afterthought.

«MHMMU MMMUHHIÜi

■ P. .11. .p. P.M.. ,.„..._. , .^ " *' ■-<•■. - —-^—- '- '- '■-■'" — -"T——r-l P .1 ■■ I ■ «IPP.PW,!!..!, •^-- ' " «"' "" II I ■■

147

CHAPTER 7

ADDRESS CALCULATION

By address calculation (in a wide sense) we mean the calculation of an effective address to

operands or instructions in physical memory, based on information provided in the instruction

word, in memories addressed by the instruction word, and on other information held in the

processor state. Within the problem area so outlined, there are 3 subproblems:

a) Address calculation for data structuring and control operations, which is discussed in

Section 7.1. Some ».f our sequence results are relevant to this problem. These

are discussed in Section 7.1.1. We also propose some other methods for special

problems in Section 7.1.3. Some of these are closely related to those proposed

for control operators in Section 5.2.

b) The problem of mapping a larp.e virtual memory into a small real one. This problem

has been addressed by many authors, hence we do not discuss it here, but refer the

reader to work mentioned in Section 1.4. The basic idea of these methods is to study

the stream of effective addresses, and observe how locality in time implies locality in

space.

c) Uniting the need for a large name space with a short address field. We propose no

method for this problem; it can be studied by methods similar to those used for b).

7.1 Data structuring

The most common tools in address calculation are indexing, indirection, and base registers.

We discuss our methods and results for indirection and indexing. The use of base registers

is closely tied to problem c) above. Since we present no methods for this problem, we only

mention base registers in passing.

Following a terminology proposed by Foster [FosC70] we will mean by nominator a cell

.*^-—.;

■mi .i «HI *w ■■ m i i iiuni, I„J irwtmi^iirnm^wmmm^tifiFr^- > ■ .ui iW-mngpiampHqpip«!«.. II i i. ill Uli inimwwmH

ADDRESS CALCULATION 1^8

containing an (indirect) address, and by nominee the cell thus addressed. Our other

terminology is standard.

7.1.1 Sequences appliea to addressing

In this section we discuss those of the sequences in Section 5.2 which are relevant to data

structuring, and which indicate the need for more specialized address calculating techniques.

Our results reveal two related such structures, namely vectors and matrices.

Vector access consumes 57, or more of the time of al least 14 of our programs, much more in

two special cases: 537 in BASIC PERT, and 467 in ALGOL PERT which has a vector element as

a name parameter. It consumes more than 107. of the time in Aitken-G, Aitken-L, ALGOL

Bairstow, BLISS PERT, FORFOR PERT, FORTEN PERT and BLISS Ising, where more conventional

accessing methods are used. In many accesses in PERT the index is itself an indexed

variable, a fact which contributes to the cost for that algorithm.

Vector access is particularly time consuming when the base address of the vector is not

known to the compiler, that is when the vector is passed as a parameter or when dynamic

space allocation is used. The problem could be reduced by addressing vector elements

indirectly through a nominator whose written address is the base of the vector. This would

require that the same index register was used for all accesses to the vector. The compilers

that we used do not seem willing to accept this restriction.

In Section 5.4 we proposed the introduction of a vector type to handle vector operations as

well as access. Alternatively some other solution, such as the introduction of base registers,

should be found to reduce the accessing cost.

The other data structure giving rise to significant sequences is matrices. Matrices are used

in Crout, SEC, and Aitken-L. The time cost of accessing was 77 of the total computed time in

Aitken-L, and 157 to 207 in SEC. The costs for the versions of Crout are not comparable,

due to the special use of UUOs in BASIC, and the non-uniform use of double precision

arithmeti which consumes much of the time where used. They were: 11.57 for ALGOL Crout,

607. for BASIC Crout, 397 for BLISS Crout and approximately 207 for the FORTRAN versions.

The time advantage of using Iliffe vectors ;s clearly seen in the ALGOL Crout result.

>«M^Mhfjfc^»«^»^—■Mfcai»«^-^-^ .- ..^-^-.^i^^-^-..^ - . --■■ , -...-■. - — ^- ^-■. - - ■■■jüi,,». ■ ^. - —

•^***mim*m*figm**^^mf^m**m*i^r***P ..vwuuitmin, i ^n^n^ntrnfm'tv f» ' "■■• MI IUIJII m in» i utwpi

ADDRESS CALCULATION 149

In many algorithms, such as Crout, the matrix elements are accessed in a systematic manner

as row or coloumn vectors. Hence this cost could be reduced by introducing the vector type

proposed in Section 5.4 or by adequate language constructs. To speed up genuine random

access to matrices, a matrix type with special descriptors and operators could be devised.

This should be integrated with the vector type. A step in this direction has been taken in

the Burroughs B5000 and related computers. A vector is described by a one word

descriptor, the vector so described may itself consist of vector descriptors (i.e. it is an Iliffe

vector) and so on.

7.1.2 Indexing and indirection

By observing the frequencies of use of indirection and indexing, we may assess the utility of

those features. Thinking the utility of indexing to be above doubt, we did not actually count

the number of instructions using it. We did, however, count the number of register lives

used for indexing, and we also observed what other kinds of operations those lives were

subject to. These are the register usage classes of Section 4.5. Our observations are

reported in Figure 4-17 and Section 4.5.

We did observe the frequency of use of indirection, and also to how many levels indirection

was carried, whether the ittmfiwttr was in a register, and whether pre indexing or post

indexing or both were used*.

Two level indirection was observed in all the ALGOL programs, and in PORTEN Crout and

PORTEN Ising, the level 2 nominators comprising from about 1/10 to 2/3 of the total number

of nominators in these cases. Indirection off byte pointers was found in F0RP0R, PORPOR

Bairstow, PORPOR PERT and PORPOR SEC, probably associated with I/O, and comprising about

2.67- of the total number of indirect accesses.

Post indexing, was found in the ALGOL programs and in the ALGOL, BASIC and PORPOR

compilers. In PORPOR 6.77. of the iiominaton were indexed, in ALGOL PERT 63.81 Por the

other programs the percentage ranged between 20 and 50. Our other results are displayed

in figures 7-1 through 7-3.

* By pre indexing we mean indexing used in the instruction word to access the (first)

nominator By post indexing we mean indexing in the nominator to access the data or the

next nominator.

 ^ i n Mm '■■•- ■

WWmiimmm*mmi**'*l'l*Wm* : mjii uniwi»« pn™ i »m • mw - •> "^•^^^m^m^^m^'mnm*!*t>«nm,uua li.nnnn^nOT^inmpn^Piwfw^ -um

ADDRESS CALCULATION 150

The low number of indirections through registers indicates that indirection could not be

replaced by indexing except at the cost of extra LOAD instructions.

The results for the ALGOL programs indicate that two level indexing may be useful in certain

circumstances, for instance where the access path is computed and has a relatively long

lifetime, or where it depends on more than one index. Indirection to one level is justified by

being used in most programs; one instruction execution is saved on each indirection not

through a register. The instruction count of PORTEN Crout would increase by over 77. if

indirection were removed, and by 37. or more for 14 of the 41 subject programs.

7.1.3 Addressing information

By addressing information we mean computed information used in address calculation, such as

indexes or nominators. The analogy with control information is obvious, and information

about them may be collected in the same way, except that addressing information is

collected at addressing points, defined by analogy to control points. The reader is referred

to Section 6.2.1, which applies mutatis mutandis to addressing information.

A study of addressing information might reveal important manipulation of such information,

that could lead to new address calculation algorithms in the ISP. Analysis of addressing

information should be correlated well with that of control information, particularly loop

counts and case selectors, which from other experience might be expected to play a double

role.

It may also be of interest to study the context of indexed data accesses. Indexing may be

used in several contexts, and the following can probably be distinguished mechanically:

Record access, with constant offset and computed base.

Array access, with computed offset and constant base.

Array access, with computed base and computed offset.

Immediate operands.

 —

luwiiiii •■■nun ««<■■ i. 4i i IIIIIIII^ pmww«^PW»pilllpp"P"W«pp UJI,JII»II]<^WW^WI»<III. IU«PHII II ^^w^^»^^»

HmnBHMHBHMW1"''

ADDRESS CALCULATION 151

FIGURE 7-1

Fraction of instructions using indirection

Algorithm\language ALGOL BASIC BLISS F0RF0R FORTEN
Bairstow 0.006 0.030 0 0.024 0.010
Crout 0.017 0.047 0 0,040 0.073
Treesort 0.000 0.031 0 0.000 0.000
PERT 0.025 0.034 0 0.048 0.034
Hävie 0.019 0.036 0 0.060 0.060
Ising 0.018 - 0 0.032 0.053
Secant - - - 0.034 0.022

Algorithm\Programmer
Aitken

Source progr.\Compiler
Treesort

E
0

ALGOL
0.026

B
0

A
0

G
0

L
0

BASIC
0.015

BLISS F0RF0R FORTEN
0.000 0.003 0.000

FIGURE 7-2

Fraction of nominators in a register

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN
Bairstow 0.021 0.007 0 0.02^ 0.005
Crout 0 0.001 0 0 0.000
Treesort 0 0.001 0 0 0.167
PERT 0.002 0.003 0 0.003 0.001
HW\e 0.001 0.003 0 0.001 0.000
Ismg 0.001 - 0 0.048 0.001
Secant - - - 0.171 0.000

Algorithm\Programme
Aitken

Source progr.\Compiler
Treesort

E
0

B
0

A
0

G
0

L
0

ALGOL BASIC BLISS F0RF0R FORTEN
0.127 0.999 0.059 0.069 0

MMMM»« ^_

W- ' ' ■nii.j.iiijiaiuiij iiiiiiiiuq^ptp^!M«PMnpn^pr^,~^^nnmM»f«fpnaRpiiRppn>n>i IIIIIIJ iini .mi i« un w \ t lummt^irmm''^ TWPPOWWBIWSP

ADDRESS CALCULATION

FIGURE 7-3

Fraction of indirections pre inde-

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN
Bairstow 0.359 0.985 0 0.953 0.990
Crout 0.854 0.933 0 1.000 1.000
Treesort 0.600 0.999 0 0.500 0.667
PERT 0.719 0.951 0 0.993 0.998
Hävie 0.661 0.435 0 0.534 0.526
Ising 0.690 - 0 0.737 0.875
Secant - - - 0.828 1.000

Algorithm\Programmer E B A G L
Aitken 0 0 0 0 0

Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN
Treesort 0.615 0.001 0.937 0.008 0.175

7.1.4 Operand and result modes

Related to addresss calculation is the choice of destination for the result of data operations,

and of the order of the operand for non-commutative operators (Examples: Add accumulator

to memory, result to memory; Subtract accumulator from memory; etc.). These variants of the

operators may be expressed as part of the opcode, or by special addressing modes. If such

modes exist on the ISP in question, their utility can be assessed by frequency counts. If

such modes do not exist, sequences do not suffice to establish the need for them, since

information about the identity of operands is needed. The "result to memory" mode is

indicated by the occurrence of OPERATE STORE pairs with the same address. If the

accumulator contents is used after such a pair, the indication is for a "result to both" mode.

The "inverse order of operand" mode is needed if a large number of LOAD OPERATE pairs

exist, where both specify the same accumulator, and the OPERATE is noncommutative and

addresses a register for its memory operand.

We did not implement detection of such sequences, and hence have no indications for or

against the need for "inverse order of operand" instructions in the PDP-10. The frequency

 -^ --,.. . -.'...— -

i^mmmmimmmmmmmmmuimwummi iiimiw». -^'t^'aiwiuw ■ — — ■■■■■■■—

ADDRESS CALCULATION 153

counts in the SN1FT indicate that both the "result to memory" and the "result to both" modes

are used, particularly for the commutative operators. Thus FADRB represents 147, and

FADRM 217 of all the occurrences of FADRX instructions* in our SNIFT, r ^rjRB

represents 2.47. of all the FMPRXs. Similarly the immediate mode for floating arithmetic point

is justified, with 6.47. of the FADRXs and 5.47 of the FMPRXs.

7.2 Addressing, Conclurions

The most important part of this chapter discussed those results of our sequence method

which applied to address calculation. These results indicated a need for improved accessing

methods fo- matrices, and for vectors with a dynamically determined base address, such a',

vectors passed as parameters.

We further presented some results from our bNIFT, throwing light on the ust; of different

result destinations for arithmetic operators. Due to our restricted subject set, these latter

results are considered inconclusive, but they do suggest a need for the "result to memory"

and the "result to both" modes on the POP-10.

There is nothing in these results to contradict our earlier conclusions about the validity of

our methods. We refer the reader to the conclusion sections of chapters 5 and 6, which also

apply here, but with some less weight on the dependency of operator implementation on

language.

Finally we presented some results on the use of indirection. These show that one level of

indirection is certainly useful for our subject set, possibly two. Both pre and post indexing

was used.

♦ FADR is floating add with rounding, FMPR is floating multiply with rounding. The suffix X

indicates the special mode: Both, Memory or Immediate.

-^"-^— ^ -^U-M--^-^, 111 imiMiMiüwiiiniMH -- —^—^^t^.^^^ .-...

■»^iPWgFW^w^"»" i ''I- .»I..! wp-ij» y^niwBtwpp i. mi - i. i vpiii p.H.iiMPi^^p^Hw^vmna«i^^mi^wnaiP«piiim«-i i " « u i ■ n mu\.w

154

CHAPTER 8

CONCLUSION

In this thesis we have developed some methods for evaluation of the architecture of

instruction set processors. The methods are based on analyzing traces of program execution,

the traces contain information about every instruction executed by the program. The traces

are written as the program is executed on an interpreter for the ISP under investigation. A

set of programs, the subject set, is used to represent the workload of the ISP.

The main advantages of these methods are:

a) The level of detail to which they permit us to go. In general every instruction

executed, as well as any desirable information from the processor state between

instructions, is easily recorded on the trace. If desired, parts of the instruction

interpretation may be simulated, and information from this traced. In our case we

recorded the instruction word, effective address, program counter, indirect chains,

byte pointers and final operands.

b) The general applicability of the methods. The subject set can usually be chosen

among any programs that can be compiled into the standard relocatable format used

on the processor. The methods are not restricted to a single language or set of

languages.

c) The ease of programming of the methods. Other methods could conceiveably provide

some of the same information, but w'Jd imply a cons derable analysis of relocatable

programs or core images to reconstruct instruction sequences and register usage.

The subject programs have to be brought into a format acceptable ro the interpreter.

Usually the standard relocatable format is convenient. For an ISP inder design it may

therefore be difficult or impossible to obtain a representative subject stt. However, in these

days of microprogramming, it is not improbable that compilers may be written for an ISP

before the ISP itself is frozen. For existing ISPs, as in our experimental work, the

interpreter may run on its own ISP. In such cases the relocatable form of the subject

programs may be used, and no restrictions are posed on the selection of the subjsct set.

rUamtmitgmBtBtB*mmamima**mm*miiamimnmmmma — ■■■na^MM—MMMM tüiinii - ■ -* -

ri - ^ "■ : ■"■"■"■ ' "" ^—.-^^-^-—--^ , , ., , . , -~, . - ^,—T, """-■'" — ■ ' ■«■,. m,m j^.. , ,„..,.„,.. L i w iwwm^.w.i,.»MMP« m

■

CONCLUSION 155

8.1 Overview of the methods

In chapters 4 through 7 we presented various issues of ISP architecture, viz. register

structure, data types and operators, control operators and address calculation. In each

chapter we presented methods to deal with these issues, together with experimental results

obtained using our subject set.

Some of the methods were the same, or analogous, for several ISP problems. We now review

the methods m a methodologically systematic manner. They fall in five categories:

Instruction sequences, with the variant register sequences. Sequences are used to

assess the need for new data types and data operators, control operators, and

addressing modes. Register sequences (i.e. instruction sequences restricted to

instructions affecting one register) can be jsed for studying control and addressing

information in more detail and with greater accuracy than is permitted by the general

se ;uences.

Frequency counts of instruction usage. The instruction frequency table can be displayed

in different formats, sorted by execution frequency or by time consumed, grouped into

distributions/mixes. Or output in the form of the FGR function. From these results we can

see which operators were not used, and can be omitted. We can also estimate the cost

incurred by having to recode some of the instructions if the instruction set L reduced,

and we can see which instructions are candidates for improved implementation.

Register life classification. We showed how to detect register lives (R-lives), and how

they could be classified according to the use made of the registers during the lives. This

information can be used to assess the need for generality of registers.

Simultaneity of register lives. We presented algorithms to detect how many registers are

used simultaneously, and to calculate upper bounds for the time cost incurred if the

number of registers were to be reduced while preserving the rest of the ISP structure.

These calculations may be done for each of a number of classes of registers, as defined

above, as well as for the total set of registers.

Miscellaneous methods. We proposed several special methods for special problems.

These can be used to investigate indirection, the utility of condition codes and other

solutions to the addressing problem for test instructions, distribution of operand values

— -"•**—"**•**"--"- .-^_»^ .»■^_-J^— ___, _ . . . ^^^^^^t^L^t^i

H ..Uippui^BPIJPIB^ww <mm*^**m "-*" '-",""—'"«•' BW>»^WWP»P

CONCLUSION
156

with partword operands in mind, and so on. One may also implement methods for special

properties of the ISP, such as byte pointers on the PDP-10.

The methods have different needs for data space and tables of der.cnpt.ons. They also use

different parts of the trace input. These factors, and also the forms of analysis performeo.

have some implications for the programming of the methods:

The instruction sequence algorithm makes many passes over the trace, and needs a large

data space, but only the mstruct.on word is needed from the trace, and no tables of

descriptors are needed. Hence this program should be preceeded by a program that

condenses the trace. This latter program can also accumulate the IFT and print its var.ous

forms. This latter process requires several tables of descriptors but a moderate amount of

data space.

The algorithm for simultaneity of register lives has two phases, the former writing a special

file for use by 'he latter. Neither phase uses much data space, but the first needs some

table space. These tables are the same as are used for R-life classification. The latter

algorithm needs some data space, but not overly much. Hence it may be programmed w.th

the first phase of the simultaneity algorithm.

In this first phase all register usage, including mdexing and indirection through registers,

must be detected. For this the effective address .s needed. Hence the indirection statistics

is best accumulated m this program, and also the special sequences for operand and result

modes, if space permits.

To accumulate rwtir.r ***** we need information about the addresses, to see which

registers are used, so that the instruction can be associated with the proper register(s).

Also, some data space is needed to store the sequences. These sequences can furthermore

be collected m one pass. Hence this algorithm does not blend as well with the general

sequence algorithm as n.ght be believed at first sight. Many of the same routines and

structures can be used, but the mam control .s different. Hence this method is best

programmed separately.

The same holds for operand analysis. For th.s methods the tables of descriptions used for

the Gibson or Program Structure d.stnbutions are needed. From the trace, we need the

instruction word and the operand words.

HMHi^M MMH

puiiM uiiimwumiipwii« w i JIWLI ip^H^wpnpiMMIIpanilpjllp JIH.U unp^i i«.)!...».!«» t, , i i UIIIIIIJII i •• "u«* »utm i"«i •'^^mmrmsmw^^^

157

8.2 Validity of the methods

In Section 1.2.1 we discussed various methods for collecting dynamic data. It is at th1«; point

evident that we could not have obtained our major results without using traces. Both the

methods for register structure and the sequence method require the exact sequence of

instructions executed. The register results also require the indirect chains and bytepointers

as well as the effective rather than the written address of most instructions. This amount of

detail, and the preservation of sequentiahty which is inherent in tracing, could not be

obtained by any of the other methods discussed in Section 1.2.1. Jump tracing could not be

used, since we could not have recorded indirect chains or effective addresses that way.

Many of the methods are exact. This applies in particular to the instruction frequency

results, the register results up to simultaneity, the register classification results, and the

miscellaneous small methods. Hence for these method; the validity of the results depend

mostly on the selection of the subject set.

The sequence method is particularly inexact, due to its use of heuristic methods, and to the

need for manual analysis. However, the results from this method showed very general

results, and many of the sequences found represented general concepts not particular to the

language or algorithm where they were found. This supports our contention that these

results are valid and useful.

The cost of reducing the number of registers is also inexact, being an upper bound. Our

intention was to check these results for some of our BLISS programs. In theory and manuals

the BLISS compiler permits the programmer to reserve a number of registers, so that they

are not used by the object program except where explicitly named in the source program.

However, the compiler refused to generate code for such unwholesome conditions, and the

verification could not be done.

Our experimental results show good internal consistency. Many of the results are in general

trend independent of both the algorithm and the programming language in which it was

coded, and the details often show systematic variation with langucoe and with algorithm.

Examples .ire the register results for ALGOL and BASIC programs, ;jnd the use of floating

point arit imetic in Bairstow, Crout and Hävie. This is a strong support for their validity.

Some if the results also agree well with previous knowledge - tht state maintenance

problem for compilers as discussed in Chapter 6 is one example, another is the good

agreement of our Gibson distribution with those of Gibson and Gonter.

CONCLUSION , = 7

pippin™^ HI]| ii iiiuiwiww"""!» w« n .'•■■ mm'\ rmmem^ «■ WMI •■i^»^w»"^wi»wii«i«"pB«wi»nw mm ••*^v**w*~*™^nm!m'iw**^*** nm'mßmmiwu

CONCLUSION 158

The dependence on language is most imDOrtant for those languages that use a run time

system for significant parts of their control and accessing functions. In the case of ALGOL,

both the sequence results and the register lives were clearly influenced by this. BASIC also

influenced the results more than did FORTRAN and BLISS. This is because BASIC uses only

one type, because no information is kept in registers between statements, and because a run

time system is frequently used. Hence languages with such special properties should be

represented in the subject set if they are used. Also, register usage in general depends on

language.

Our Aitken results show that the variation due to programmer habits can be large. Analysis

of the source programs show that the variation is due mostly to the selection of strategies

for subproblems, but that application of coding tricks also plays a part. Our sample is too

small to show more than this. The variation is mostly in the sequence results, less in register

usage. This suggests that register usage is r ore a function of the language and compiler

used than of the programmer or algorithm.

The register results are not particularly dependent on algorithm. This is natural, since higher

level languages hide register usage from the programmer. The choice of algorithm has a

strong influence on the use of data operators and data structures.

The results from the FORTRAN programs show good correlation between the two compilers.

This may indicate that language has more influence on the object program structure than do

compilers. The observation may be peculiar to FORTRAN, which is a well understood

language.

A deficiency of the methods in general is that to a large extent they depend on the compilers

available for the machine analyzed. A particularly bad or unusual implementation of a

commonly used language may flavour a whole analysis, and in no case do the results of an

analysis reflect usage of ISP features beyond those that can be made available to programs

within the state of the art of compiler writing. On the other hand, the results do indicate

what is needed to generate good code for existing langujges using existing compiler

techniques.

Similarly, if an analysis indicates the need for a new operator or other feature in the ISP, it

«s not sufficient to implement it in the processor. It must also be made available to the users

through the languages they use. This may cause compiler-technical and linguistic problems.

mtm MMfl ■- .u^ ■ ' ■ .. -^

pptp^n^lMMPM^Wm^OT^qnaiiimiijii ii inIWJ>m^w">wi ■i«w^mr*~«HP«miiPHMiVMPWnpnn i ' ■' mi -l" ■ ■ IIMIHWJWPIW» I

CONCLUSION 159

When selecting a subject set for a full scale analysis, care should be taken so that the area

Of applications is wei! represented. In particular, all important data structuring methods and

special Operations should be included. The matrix access of Crout, and the unnormalized

arithmetic in certain contexts clearly show this; they are significant where they occur. The

individual subject programs should be large enough that the problem of dominating loops is

reduced to its right proportions. Good representation of languages is important for register

analysis, and particularly for details of control structures and access methods for data

structures.. It is less important for data operators.

Another problem occurs when analyzing large programs. How can one represent all aspects

M the program within a trace of at most about one million instructions? The obvious solution

is a slight modification to the tracer, and possibly the operating system, so that the tracer

can be "turned on" for maybe 5000 instructions*, then off for a period of time in which the

program executes at full speed, and then on again. Each time the tracer is turned on

computation in the subject program has progressed significantly, and different sections of it

will be traced. We do not, with this method, have any guarantee that the resulting trace

represents a cross section of the program, but our hope is better than by tracing a

consecutive tape-full.

8.3 Specific results

We now repeat some of the specific results obtained using our subject set on the PDP-10.

We believe most of them generalize to similar ISPs.

Register utilization was low. The average number of live registers was 7 or less for all

programs, the number of registers used was 10 or less 90/- of the time for all programs,

and 8 or less 987 of the time for 29 of the 41 programs. Time here is the instruction

count. If the ISP had only 8 registers, the instruction count of the programs would

increase by less than 201 for all programs.

The instruction count of calling sequences can be as high as 25t of the total instruction

count. This is particularly noteworthy in view of the common assumption that well

structured programs will have many subroutines.

* It should be long enough that transients caused by the endpoints are insignificant

mmm

|<*-"V i ■ii"^i»pwmB»HW«pp!Pil«^w^™"«-»»i«^."»ww«^WB«wp^^iWii,ilpi -' m.wwmimw****™*.*'*' mfmimrwrnm «MM. i-nmvm*mi*mm^m*:.i i«v*i ■^jm^**'*^*

CONCLUSION 160

The utilization of the opcodes was low. Our subject set used only 27the 4 out of 421

different user instructions. One set of 128 instructions would suffice for 98.87. of the

computed time, and a slightly different set of 128 instructions would suffice for 98.67 of

the executed instructions. We nott in passing that an instruction set of 128 instructions

is twice the size of that of the CDC 6000 Central Processor ISP, and about the same size

as tnat of the IBM 360.

Much time was consumed by vector operations or in operations that could be subsumed

under a general vector type. This is also true for programs that do not use the

mathematical concepts of vectors or matrices. A vector type with sufficiently general

operators could be used to advantage by most of our programs. Possibly as much as 307.

to 407 of the execution time could be saved in some cases.

We also mention the need for character string operations, and 'he high cost of using

UUOs.

The PDP-10 has a very spacious instruction word, hence both a rich instruction set and a

large addressing space. Several of the results above indicate a reduction of the functions in

a capability, thus freeing instruction word space. Our suggestions for addition of functions

do not nearly consume this space In fact, the additions indicated could probably be done

using the instruction word space which already is available. For an ISP where space is

scarce, microprogrammirg could provide one way of using it efficiently for a given class of

applications (See our discussion of the Burroughs B1700, page 15).

8.4 Improvements to the methods

Our present programs could be improved in several ways:

The pruning heuristics used for the sequence collection are not adequate, as discussed in

Section 5.2.2. We would expect improved heuristics to significantly reduce the amount of

insignificant output from this algorithm, with correspondingly simplified manual analysis.

The results of Figure 4-27 show that we would have achieved a lower cost for reduction of

the number of registers if we had pronounced the registers to be dead after a dormancy of

only 100 or 60 instructions, instead of 200. An even lower number should be used if the

cost is high when using 60.

f^iPJW^n'^lU ■.•.umuil.lipmiWHJ' • VJIWJPVI -II. :P»IP iWliifJiia —"'W' w • jw^Bpppw»B>w>!T™wap>'ww«p"«"iWiWf*"wiwwwwwi^»rT'"'r— i" i ■II.»«II»»,Pü «■■

- ■

CONCLUSION 161

All of our analysis programs are fairly slow. We believe worthwile reductions in the cost of

analysis could be achieved by coding critical routines in machine code, and by cleaning up

certain inefficiencies causing extra parameter transmissions.

What is most needed, however, is to try the methods out in a large scale analysis using a

significantly larger subject set, where the individual programs also are larger. Only when

such an analysis has been successfully completed can we claim that our methods have really

proved their worth.

8.A.1 New methods

Some new methods could be implemented. These include the operand analysis, register

sequences and other methods outlined in previous chapters, but also one more general one:

Each instruction could be mapped into its generalization in the Program Structure

classification, and sequences of such general instructions accumulated. This would bring

certain control operations out more clearly, as for example SKIP JUMP sequence.;, since the

conditions on the tests would be suppressed. Also, we could hope to obtain information on

common expression forms, generalized calling sequences and loop control, etc.

If the results of such analyses show that the number of sequences found in each analysis is

low, and that commonality between algorithms is significant, results of such analyses might be

combined to represent the whole subject set, in a way analogous to our present SNIFT.

mwmM-m . .< 1 ■»■■I—» i tmi^^^mmmmmwmw i .■U-LI-OWUI »i i

A-1

APPENDIX A

Bibliography

AleW72 Alexander, W. G. How a programming language is used. University of Toronto,

Computei Research Group, report CSRG-10, Feb 1972.

AndJ71 Anderson, J. P. Programming language directed machine design - problems and

prospects. Proc. symp. on programming and machine organization, IEEE Computer

Society, 1971.

ArbR66 Arbuckle, R. A. Computer analysis and thruput evaluation. Computers and

automation (Jan 1966), pp. 12-15, 10

BarG68 Barnes, G. K, Brown, R. M., Kato, M., Kuck, D. J., Slotnick, D. L. and Stokes, R. A.

The ILLIAC IV computer. IEEE trans. C-17 vol. 8 pp. 746-757 (Aug. 1968). Also

in [BelC71].

BelC71 ' Bell, C. G. and Newell, A. Computer Structures: Readings and examples. Mc Graw-

Hill, N.Y., 1971.

CheP69 Cheng, P. S. Trace-driven system modelling. IBMSJ 8, 4 (1969), 280-289.

CofESS Coffman, E. G and Varian, L. C. Further experimental data on the behavior of

programs in a paging environment. CACM 11, 7 (July 1968), 471-474.

ConW70 Connors, W. D., Mercer, V. S. and Sorlini, T. A. S/360 Instruction usage

distribution. Report IBM-SDS TR 00.2025, May 8, 1970.

DEC71 DECsystemlO Assembly language handbook, second edition. (DEC-10-NRZBD);

Digital Equipment Corp., Maynard, Mass. 01754, 1971.

FosC70 Foster, C. C. Computer architecture. Van Noslrand Reinhold Co., New York, N. Y.,

1970.

"■■'■■■■ • ■■■ I " upp1 ■!> IJI IHI.I mmmm*W!Hm mm* IWWPIJIIII IJUIIMII '«HPI'MllH« I

Bibliography A-2

FosC71a Foster, C. C, Center, R. H and Riseman, E. M. Measures of op-code utilisation.

IEEE transactions on computers 20, 5 (May 1971), 582-584.

FosC71b Foster, C. C and Center, R. Conditional interpretation of operation codes. IEEE

transactions on computers 20, 1 (Jan 1971), 108-111.

FosC72 Foster, C. C. and Riseman, E. M. Percolation of code to enhance parallel

dispatching and execution. IEEE trans. C-21, pp. 1411-1415, Dec. 1972.

GibD67 Gibson, D. H. Considerations in block oriented systems design. AFIPS Conference

proceedings vol. 31 (SXC 1967), Thompson book co., Washington D. C, 1967, pp.

75-80.

GibJ70 Gibson, J. C. The Gibson mix. Report TR 00.2043, IBM Systems Development Div,

Poughkeepsie, N.Y., 1970. Research done in 1959.

GonR69 Gonter, R. H. Comparison of the Gibson mix with UMASS mix. Publication no.

TN/RCC/004, University of Massachusetts, Research Computing Center.

HamR70 Hamming, R. On the distribution of numbers. Bell systems tecnical journal 49 (Oct

1970), 1609-1625.

HatD72 Hatfield, D. J. Experiments on page-size, program access patterns and virtual

memory performance. IBMJRD 16, 1 (Jan 1972), 58-66.

HerE55 Herbst, E. H, Metropolis, N and Wells, M. B. Analysis of problem codes on the

MANIAC. MTOAC 9 (Jan 1955), 14-20.

HolS71 Holland, S. A. and Purcell, C. J. The CDC STAR-100: A large scale network

oriented computer system. Proc 1971 IEEE Conference, pp. 55-56.

IBM56 The FORTRAN automatic coding system for the IBM 704 EDPM, (Programmers

Reference Manual), IBM Corp. 32-7026, Oct. 1956.

KapK71 Kaplan, K. R. Cache system studies. RCA reprint PE-518., RCA David Sarno**

Research Ctr., 1971.

■MMMMMMflMHilM« - - UK-—- Mm ■■iii ■ ■ ■-- ■ -— ■

mm**"*^ "■*"■"■ > -"!,. i« i < ■ i«.] pHmpuMqii^iin 11IIi«uijitm^mmm^^i

Bibliography A-3
^

KemJ61 Kemeny, J. G. and Kurtz, T. E. BASIC Dartmouth College computation center, June

1961.

KnüD69 Knuth, D. E. The Art of Computer Programming Vol. 1: Fundamental Algorithms..

Addison-Wesley, Reading, Mass., 1969.

KnuD70 Knuth, D. E. An empirical study of FORTRAN programs. Report CS-186, Stanford

University, Computer Science Dept., Stanford, Calif., 1970. Also AD 715 513

LewP71 Lewis, P. A. W and Yue, P. C. Statistical analysis of program reference patterns in

a paging environment. IEEE Computer Conference digest. Sept 1971. Also IBM

report.

McKW67 McKeeman, W. M. Language directed computer design. AFIPS FJCC Proc. vol. 31,

pp. 413-417, 1967.

McKW70 Mc Keeman, W. M., Horning, J. J. and Wortman, D. B. A compiler generator.

Prentice-Hall, Englewood Cliffs, N.J. 1970.

MilW49 Milne, W. E. Numerical calculus. Princeton University Press, 1949.

MurJ70 Murphey, J. 0. and Wade, R. M. The IBM 360/195 in a world of mixed job

streams. DAT AM (Apr. 1970), 72-79.

NauP63 Naur, P. (Ed.) Revisea Report on the Algorithmic language ALGOL 60, CACM 6.1

(Jan 1963), pp. 1-17.

PinR61 Pinkham, R. S. On the distribution of first significant digits. Ann. math. stat. vol.

32, pp. 1223-1230, 1961.

RaiE66 Raichelson, E and Collins, G. A method for comparing the internal operating

speeds U computers. CACM 7, 5 (May 1966), 309-310.

RisE72 Riseman, E. M. and Foster, C. C. The inhibition of potential parallelism by

conditional jumps. IEEE trans C-21, pp. 1405-1411, Dec. 1972.

SaaH72 Saal, H. J. and ShusteK, L L Microprogrammed implementation of computer

- ' - ^■.- ■- -^-^..'.■^^a.u-.:-^ _J

Pwiivv^'rai^nninBPPn^mi!" •■■jiui^,^v«i«pipv«ai<i^in^>«wiip><n i iwi.i ip^^wfpp^pfi^n^p^mHinK^PKn^^iMP mimimnmif MMHIII.II - -^mmtm

Bibliography

measurement techniques. 5th. ann. workshop on microprogramming preprints,

ACM and IEEE 1972.

SelLnd Seligman, L Experimental data for the working set model. Memo «39, MIT

project MAC, Computation Structures Group.

SheM71 Shaw, M. M Language structures for contractible compilers. Ph.D. thes's,

Carnegie-Mellon University, Computer Science Dept., Pittsburgh, Pa. 15213, Dec

1971.

'»teJ.nd Stewart, J. A, Selecting and evaluating a medium scale computer systrm.

Louisiana state university at New Orleans, LUNSO computer research center.

Date approximately 1969.

ThoJ64 Thornton, J. E. Parallel operation in the Control Data 6600. AFIPS FXC Proc.

1964, vol. 26, part 2, pp. 33-40.

TjaG70 Tjaden, G. S. and Flynn, M. J. Detection and parallel execution of independent

instructions. IEEE trans. C-19, pp. 889-895, Oct. 1970.

USAS66 USA Standard FORTRAN, United States of America Standards Institute, USAS

X3.9-1966, New York, N. Y. Mar 1966.

WicB69 Wichmann, 8. A. A comparison of ALGOL-60 execution speeds. CCU report no. 3,

National F'hysral Laboratories, Central Computer Unit, Teddington, Middlesex,

England, Jan 1969.

WicB70 Wichmann, B. A. Some statistics from ALGOL programs. CCU report no. 11,

National Physical Laboratories, Central Computer Unit, Teddington, Middlesex,

England, Aug 1970.

WilW72a Wilner, W. T. Design of the Burroughs B1700. AFIPS FJCC Proc, vol. 41, pp.

489-497, 1972.

WilW72b Wilner, W. T. Burroughs B1700 memory utilization. AFIPS FXC Proc, vol. 41,

pp. 579-586, 1972.

- - ■ '" -.^-.^-.■- ^— g-au

in!«fPMnpMM|iii,iiiwnPMnniNiifnuiuL .«u in.. 11. nmmm*m*f >I^J,.-I>IJIII. mn »iniiiu^ppnim» ipj^p^B^^ipywwwmpiiwi i "MWII.II ^*mmmmimi'.

warn

Bibliography A-5

WinR71 Winder, R. 0. Data base for computer performance evaluation. RCA-reprint PE-

517, RCA David Sarnoff Research Ctr., 1971.

WinR73 Winder, R. 0. A data base for computer evaluation. Computer vol. 6 no. 3, pp.

25-29, March 1973.

WirN71 Wirth, N. The Programming language Pascal. Acta Informalica, vol. 1, pp. 35-68,

1971.

WirN72 Wirth, N. On PASCAL, code generation, and the CDC 6000 computer. Stanford

University, Computer Science dept., STAN-CS-72-257, Feb. 1972.

WorD72 Wortman, D. B. A study of language directed machine design. Ph.D. thesis,

Stanford University, Computer Science dept. 1971. University of Toronto,

Computer research group, report CSRG - 20, Dec 1972.

WulW70 Wulf, W. A. et. al. BLISS reference manual. Carnegie-Mellon University, Computer

Science Dept., Pittsburgh, Pa. 15213, Jan 1970.

WulW72 Wulf, W. A. and Bell, C. G. C.mmp-A multi-mini processor. AFIPS FJCC Proc. vol.

41, part 2, pp. 765-777, 1972.

■•^ ii ii«iii>fii"fcMiiiii ' I'ain ii ■Mini

pjp.niMkWUllviWIM »WWWBWIUBBM^^^^WÜlflPWTWHPi im^ppr^ IW«M»W*..II ■.»■uwii^w»iPiTP«"" PiPjimJJ^Pt.» ^ ,-J ™,U~T

•-I

«mwm B

Th» itgitlcr •.»•<* cl«ti'n:«lion

■'

EW:H INSTRUCTION IS KSCPIBEO B» a TWO UWO THBLE DM». c.«oo.c
THE WLUES OF THESE ENTRIES «PE DEFINED BV COt«IN..I10NS Of THE rOLLOWlNG SVHBaS.

; OfFSETS FOR FIELDS. HOPU 1

HCC0fF..li
INX0FF..HCC0rF»?9i
MfiOFF.-INXOFF'iei
«ftPOfF».nAOfF«iei
rwofF=.(¥*orF«iei

IrtST Bit Df HCCUMULrtlOP USMCE FIEIO.
LHST BIT OF INOE« USH&E FIELD
L«SI BIT Of EFF.BOOP USSCC FltLO
LftST BIT Of rtCC-«RITHHETIC flELO.
LftST BIT OF n-nBIIHIIEUC CODE.

i OFFSETS FOR FIELDS. HOPD

PCOfF"li
ncoFF»>iee

LfiST BIT OF SUB-OP OESCP FOR REGISTER.
L«ST BIT Of SU8-0P OESCR KOR ncnORr.

> REFERENCE «TTRI9UTES

i ACCUnuLATOR FIELD

«:CNUS'«««:COFF i
ftCCNZL-l'HCCOFFi
«CCLOO'Z'MCCOFFi
hCCMOOO'hCCOFFi
hCCHM'-I'MCOFFi
ftCCUSE-S'fiCCOFFi
(iCCUUi ^«cCOFFi
«CCUNO'?-fCCOFFi
«CCULZ"ie>HCCOFFi
«cm.z-ii'ficcorFi

ftCCUMUlftTOR NOT UStD
«ccunartTOR PELOHDED IF NOT HCC e.
HCCUMUIATOR W-UHYS PELOMOEO
ACCUMULBTÜP nOOIflEO.
«cc. «cc'i BOTH nnoiFun
«CC WLUE USED. NOT CUHNCEO.
«C. «CCM BOTH USED
UNDEFINED irtS IN CHLL. ErtlLI ETC)
HCC UIED. ACCM LOADED
«CC nOOIFIED. «CM LOtiOED

EFFECTIUE MCnORY «ORESS FIELD

HNUSED'9'MHOFFI
nuS£0-i«rw)FFi
nLOftO-j'iKWFi
MHOUIF'VMMOFFI
nSPECL'S'MflOFFi
HF lL0«>6«rlH0FF l
MNZ«US=7»f1HOFFi

n NOT USED
n USED BUT NOT CHHNOEO
n LOHOED H. NEU VHLUE
n nooiFiEO
H NEEDS SPECIHI TPEMTMEM.
n USED FOR FILE DESCRIPTOR
M USED IF HCC NOT «CC «

«CCESS «TTPIBUTE1;;

: INOE» REGISTER USftCE

INKNUS'O'INKOFF'
INXOHT.|»1N)IOFFI
INXJMP=2«INK0Ff i
INXIMTMMNXOFFJ

INDEX NOT USED
INDt« USID FOP OrtlH INDUING
INOE« USED FOP JUflP INOtxINC. INCL- XCT.
INOE« USED FOP intlEDlBIE 0PEP«NO.

i fiRITHMETIC UHtN RESULT TO «CCU"UL«IOR

«WNONE'O'MtiPOFFi
«WCOUM'hMPOFFi
h^pf III.2«HMR0FFI
W«FLQ = 1'HHPOFFJ

NO flRIIMMETIC
FI»P W1D/SUB iCOUNUP PIGISTERI
FI^P. MUL/DIV
FLOi'lINC POINT OPEPrtllONS

HRITHMETIC WHEN RESai TO MfMORx

rwPNON-i)»n«POFFi
t1«RCOU»l«f"WOFFi
MflRFII.Z«m>POFFl
M«RFL0'4«WlR0FF .

tO .PltuntllC PESULI TO nEHORY
COUNTER OPERnMONS IFIXP. •-)
FI.POINT OPEPSIIONS
FLOflTING OPERrtllONS

1 NON-HRITHMETIC «CCUnULrtTOP OPEPHIION?,

PCNONE'kl'RCOFFi
PCSTOPM'PCOFF;
PCHUHO=c«RCOrF:
PCBTTE'I'RCOFF:
RCLOGIM9»PCOFF:
PC5HIF.20»PCOFFi
PCSTW MO»PCOFF i
PCHOOP»lW»RCOFFi
RCTESWOO'RCOFFI

NOT USED
VMIUE IN ., . ST'IPI 0
ONT HrtLFUl- P 1 rtOEC 1U«.P UNCHtA,-*0.
B(TE L0M0E0/;\ot.b|TLr
LOGIC«. OPf^rtU&xb
BCC SHIFTED
rtCC. USED HS SI«> POINIEP
K.C USED FOR fiDOPtSS IMS IN BLl).
«CC. TESTED UPON

 ■

-■■ — ^^.-^ i i^ M' ■- : ^ J

rill II IJJ ^^l ■!i v«!!, la. mm>>i mmmm mm«' ■wnnvnfnmnmi "■ "»■'" ipMvmpw !■ i

Th« rt^iitcr uta^e cia^ .iftcMlipn

i NOI« MPiiHntnc mnom DKMIIOM

B ?

nCNONt"j«ntnf ; nn NOI i«o.
nCSTOP'l'MLDfF i M IS SHWfD iPUSKOi.
ncHunO':»ritOFr i «M HMfunro hooif ito.
MCBvTEti.firnf r : IH p,if ncoiriEo.
nCLOCl'lO'HCOff: IM nODIUfO BY lOClCN. «'ICMIION.
ncTFST.?no.MCorF: r..i itsiro
fCnONl'-KKfncntfi *M uwo TOP nnN^r>■ p-p-mup, POSSIBU HOOK no
nc9PiP"ioof<"nrn'Fj «H u'.^o TOP Biir POiNiff
nriNOö-rnon»m-0ff^ "H U'JEO FDP INOIPFCI MOOf'lSS
nCEXECliHM'MCOffi tVi EIECUIEO uonP OR f »in

S«f1PU INSTPUCIION OESr.PIPTIONi.

rcwei iFioHTiNC cwioi • PESuLi io HcanjiHiop MNO ntnopvi
UOPD |l MCCnOO<lN«DMl>nriOOIM(»iPriO'l1i«FLO
UOPD Zi PCSIOP

naii rtlUiTIPir lnn(DI"ili
wopo i: «ccMi.r»ii««im«nNusto*wiPri«
uopo ti e

«OJXi cfcOO ONE TO ftCCUfUOTOP. JUMP V III
WOPO |i F«:CM0O»IN<JMP»noSE0«MflPC0U
UOPO :■■ HCE»EC'PCIE5T

mamm»i*mn t^-JM

mi iiii|JLinp^^^«i^||HqipiHg^if^wni.i!iiiu«ii«qn««|i|«fa!pnnwiin>«i ii.pi.ji.iii HMi w in» imivmm'i muwmftmmmm' •*•'■

C-l

üijlpul fr o* rtMittf cl«»*i f n r*t ion progr #■

Fi«ppinl addition »nd »>jb1r«c(ion arc Tifttrtd to «> LOgnlcr rfir dt ions

The non obvious •ncodin'j* of If»« usaa« M^MTltri *fe:

COflX Counter and fi>rciirl jr 11tunet iL

rxFLO Fi.rd and ItsMtH« (»inl
CO* I 0 Crunttr and tlojtinq pmnt
C'XFL Counter, fi-ed and Moating
ll[WTrt Ind'-'inc^ data acreises
<JUMP Indf-inq lumps
KlfWIt IndC'tng lamcdiatr opera*'l-

fVtS* retrrs to the ciass definition given tn the output procedure-

UNION C'.rtSS is tha union of all clashes listtil atovt it

tDlllM
»irjn
»Onjfl

Indc-mq >i-4ta access
Indexing iniiirdiate and lunps
Ir,i. - i'i data areaä'. and juwps
Inde-iiici data accesses' iu«ps and iMicdiat«

IHC KUIL UCI

HHS» «NO ITS COftPltnlNf
777777 CF<ri «njin sioet MHtrw BVIOP IXIC snifi SIHC» «OOPI IISIS MONIT BYIPI inoct EXECI

ClftSS

•MIM
ftOunni
fttuHini)
Ofinoi«
nnnioo
(irnfinft
C(»il30

MOtlZ
iK n io 11
ormn
or« ii ft i
O.-nOil.)

or MOO
ft:: loi
ww
or« UM
ooono
004000
orolol
omoi
01 »si n
nriiioo
orotoo
or"003
oroio«
OOOHJO
tetum
OCIIM;

o?3i04
ooo j03
or:103
oo:104
oorcos
oroisi
Ot'OlO?

ojdoor
0:3100
0:0010
004100
1V106113
010000
010300
000400
0:1300
0:0401
•MM
00:610
o:i170
OliWOI
OOOOO:

o::o:i
3:o3SO
0:1500
691293
401:0(1
•MUZ
r.-ocn
0:71:1
0:3107
000430
oe.iee

FRHC cimuL. tutet
COUNT I10N FPHCI LtW.lh HntRNtlllTKM

1349
71:
61B
Ml

48 '
ztt
IB:
110
IM
MB
109
10B
fi4

M
SB
39
3^
3fi
:z
:i)
IB
IB
IB
IB
IS
Ii
13
13
II
12
1:
1:
It
12
12
11
9

o.::ii
0.116
0. Ml
0.091)
0.0B9
P.(C9
0 0(6
0,030
0.0:4
O.iVl
0.019
P.01B
0.01B
0.014
0.010
0.11119
•.Ml
•.Mt
I.Mt
1.0114
0.003
0.0113

0. 1W3
O.0113
O.O113
O.oo:
0. M2
O.OO:
0 00:
0.00:
O.oo:
o.o.i:
H on:
0.00:
0.00,-
0. on:

•.M2
0. M i
I.MI
O.Olll
0.001
0.001
O.oni
I.MI
O.oiil
0 Ml
0.001
•.Ml
0 »ml
0 Ml
0.001
0.001
o.oni
0.001
n. tin 1

•.Ml
o.oni
•.Ml
n 11111
O.1101
O.oni
0.001
O.eni

o.::ii

0 33b
0.43"•
o.s:?
0.616

•■Ml
0.741
0.770
0 rg'j
>< Bis
0. IM
0 Bs-r
HBO
1 8B4
0.893
n.9ii:
11.9119
0.91S
I 9:i
o,g:4
II.9:B
i.m
o.gjT
0936
0.939
• 94 1
0.9-14
0 946
•.Ml
0.9'.,ii
o.9s:
0.9^4
0.91.6
0.9S8
n 960
0.96:
0.91.3
0.96!,
0.96h
0.%7

0 96'.
o.9;'ii

0.9.'l
097,-
0 9'3
0.9.4
0 976
0977
O.g.'B
•.|7|
0980
0.9B1
0.98-
0 983
n.9Bi
0.986
• 986
0 967
• 908
0.989
0 990
0 991
0 997

5.S(>
3 63
1 31
3:6
7 98
:.46
9.:i

14 S9

' 49
S3 Si
4.70

12.«
".Oil
9 FO

6:i
t »iS
4. M

14 44
68 -3
:6 On
15 1111
4. no
7.94
S 76

16 6n
:9 4n
: 46

:n.S4
11 on
79 n
::.s'i

B.Sn
19 33
in (m
s:.4:
: 00

14 11
:7.n.i

7:5
3B n1

8 'HI

HOMI

finni

COUNT
FIU'l
cauti
COl/M
cam

SlOPt

5I0PE

«o.ijM SIOPE

>0H1H

■MM
VDOtO SIOPl

iTon
SIOPl

".IUHP

COUNI

CUUNI

fLOnt
(.nuNi
COUNT

1 |<P1
F L n.i 1
era 1 >
en'1.
1 mm
Cllfl.O
COUNT
run
tlxri

»imi

<lm>i

CU) i>
:. no
7.00

90. no

93 On
8.'"•

:3 ar,
IB I'i
66 79
I.M
.-43

13 nn
76. on
14 nn
39."n
5. 00

S: nn
6. nil

b: n"
17. on
I.M
6 00

COUNI

C 01 INI
Finni

CJONI

COM«

f l»pr
COilN!
cnoM
cfuri

<OHIM

»Ojin

SIOPl

SlOt'C
SIOPl

SIJPE

SIOPl

SI9PE

SIOPE
5; OPE
siot
51 OPE

51ÜPE
S'OPE

SIOPl

SIQPE

SIOPE

SIOPl

siat'i

SlOPf

HiIOP
BiIOP
BflOP LOClC

LOGIC
SMUI

ItHO

BlIOP LOGir
BY TOP

LOGIC
BY I OP

llnLFW

10C1C
10CIC StilFI

SHIFT
Stilt I

1D6IC SH1H

USIS

IESIS

IESIS

ItSIS

USIS
IESIS

IESIS

IESIS
TESTS

USIS
IESIS
IESIS
IESIS

TESIS
TESIS

ifSI<;

TESTS

TESTS
IESIS
TESTS

EKECI

SIOCl
Hut • - 61IOP

HHiru
OYIOP

l"i: i » LOGIC
BY I OP

HHtru

imfw B>IOP SHIM
HKilC

Mt 5
.4)0.S

USIS
IESIS

MOUPS

"jon"
• iiion tlOPC HHiru

^lOPF O'lOP LOI.IC
'»«in ionic
HMIIU I061C

«Oiilii SWE

SHUT

■ JullP SIOPl
SUlPf

«on.m
SIOPl

stun
LOCII son 1

USIS
IESIS
IESIS

IFSIS
USIS
USIS

usis

BYIPI INDPK

f»lCI

I NOP!

'««■M MHHMi

iW,il«IU|WPJ«l uJiPDinillLi wv«-»' >■!,.■ ■)>■ ii-j A ii ii i., i inanpiiiUKi u «in mm .1..■■■■. m.*.m.~ --»^W-^PW-

Output fro« rcsiBtcr cla< ^'l ical ion provon C-?

004010
o:iz:8
o?3ioe
0:3102
BHA'lll

801001
O::OII
onom
0iVW30
e;ooi3
«V'SOC
ooooro
ooozoo
OO4110
0O0703
oocioi

ojosni
0001S1
OCOOll
OlOZOO
400000
400600

0.OO1
O.OHl
0.001
0.001
0.000
O.OfiO
OOiW
0.0<1O

I. OiXi
0.0OO
0.000
0.000
0.000
o.e<w
0. Ol iO
B 441TO

O.OuO
0 ono
O.OoO
O.OilO
0.000
e.ooo

0,903
0 9'J4
>.M
0 ■)%
0.0%
0.99'
"OS.'
OOO;
n.90B
n.90P
0900
0 000
0 098
0.999
0 909
0009
0999
0.999
0900
1000
1000
1.000
1 000

11. IV
14.U
14.00
CO i'O
10. B;
3.00

83 50
14 10
6 00
|,M

31.00
4b 00

:B oii
44.00
13 00
5 00
6.00

57.00
16.00
4;. 00
9.00

19 00
I? HO

rxno
ri>pi
COUNT
COUNI
C0UN1
C0UN1

«OAIO
«JUMP HM.ru

SIO»t

STOCK
LOGIC TESTS
LKIC SHIFT TESTS
11.101C SHIFT TESTS

SACK
OMT*.

OHIO SIO«
"Dtijn

Coria «OHIH
HHLFU B'lOP

'DJIM
HMFU

ii0.tlM SICE
COfl« 51 OPE HOIFH BYTOP
ClIUMT SIOPl

«inoo
COUM 5I0PE BVTOP
COUNT »inoo 5T0PE
COUNT >DHTH

HHlFU

HHUM B»TOP

SHIFT

SHIFT

STHCk

SHIFT

HOOPS

TESTS

TESTS

TESTS

TESTS

EHECT
EKECT

UNION CIOSS «NO US COnPlEHtNT
737777

6133 HFETinES. 86 DIFFEPENT CLASSES

CF>FL »OJItl STOPE mm BTIÜP LOCK SHIFT S'OCK HOOPS TESTS BVTPT INOPK UICI
WNIT

CLOSSES USED FOP INDEXING

tlOSl'. 'NO ITS COHPLEMENI
eoof 0
77'7e7 CFXFL SIDPE HlllFU BTIOP LOGIC SHIFT SIHC» HOOPS TESTS tttNIT BYTPT INOPK E«ECT

CLASS COUNT
FPHC- CUMUL.

T1DN PPKCI.

000010
000130
000«ll2
000011
0:0111
0004:0
800118
000411
0000:0
8?1842
o:oisi
0:0010
08:610
e:ii78
8::o:i
i:0358
00011:
8:.'i:i
0O0430
004010
o:i::8
e::oii
8<.i011)
OOoOSe
8:0013
000870
804110
80OOS0
800151
8:0011

511
:BO

ISA
i:6
119

B4
36
18
13
12
i:
8
7
7
6
6
6
I
6
6
6
:
:
:
:
1
1
1
1
1

0.090
0.046
0.0:4
0.0:i
0.019
0.014
0.0O6
0.003
OOO:
o.on:
O.OO:
O.OOI
O.OOl
8.001
O.OOl
0.001
0.001
0.001
0.001
0.001
0.001
0.30i.i
0.000
eooo
0. OOO
0000
0.000
0. OOO
0.000
8.000

0. OOO
0. 1J5
0 160
0.1B0
0. :oo
o.:i3
o.:i9
0.:::
o.::4
O.:.-G
o.:rB
o.rao
0:31
0:3:
0:33
0:34
a.:3s
0.:36
o.:37
0 :38
o.:3o
0:39
0:39
0 :4fl
0.:4G
e.:4o
o.:4o
0 :4i
8.:4i
e.:4i

Oi'PGE
LENGTH

3 :G

9:1
rs:
4.49

53.51
r.oo

14.44
4.00
2 46

11.00
5: 4:
r.n

IS.14
66 :9
13 00
76.00
52.00
R;.oo
4.00

11.17
14.17
83 SO
14.50
6 00
6 00

45.00
4« 00
6. i.K

16 00
4:.00

INUPPPETHTION

Fl.PI
COUNT
COUNT

COUNT

FUPT
COUNT

COUNT

FUPT
COUNT

COUNT
COUNI

cor 111

r.i,JNT
OUNT

■ DMTH

.Oojn
XDHTH

«BHTH

XOMTM

xjunp
XOHTH

XDOTA

XJUHP
XIMME
»inno
«O11TA
IOHTH

xojin
»junp
xmoo
XDOTH
«JUMP
xoojn
«OHIH

XJUNP
XOMTH

KDHTH

»DnJfl
»Inl't
xOJin
XDHTH
xinoo
xinoo
XOHTH

STOPE

5I0PE

STOPE

STOPE

BYTOP

BYTOP

LOGIC

HHLFU BYTOP SHIFT
STOPE LOGIC

SHIFT

STOPE HALFM
SI OPE
STOPE SHirT

BYTOP
STHCr.

HOLFU LX1C
SHin

STOPE

STOPE

STOPE

S1ACI

TESTS

TESTS
TESTS
TESTS

TESTS
TESTS
TESTS

TESTS

TESTS
TESTS

TESTS

TESTS

BYTPT INOPt.

1477 LIFETIMES. 30 01. EPENT CLHSSES.

UNION CLASS ANO ITS COnPLEHEMT
327773 COr.
450084 rcoo

XOJin STOPE HAtru BYTOP LOGIC SHIFT STHCr TESTS BYTPT INOPK
AOOPS MONIT EJECT

MM ■ - ■ - ■'.

p,..,... . ,..,.,!.,.,.,. lunpaii,^« iiimpiii i np.MiiiJii.iwpnqpicipr^'- i. - iiiii«».(,Mim*niiiMi?apnm*wvni>liiR««!^,^iBMv*iP

Output fro» rtf<il«r clciof >cal ion troar —

m «PITHfCTIC CLUSStS

C-l

CLASS' NO «RUHfUUC

W.5lf ft«) IIS COi-aEWKT

77777«
crxrL

«OJIN S10« HHIFM B<I0P LKIC StUfT SlftO «OORS IES1S MONII 9YIPI IM»K £«CT

FPrtC- CUMU.. ftVP&l
CIHSS COUNT TION FPMCI LENÖ1H iNIEPPRETAIIOt.

Ntm El« «.Ml 0.101 131
BWKlie sr.i 0.09.1 0 191 3.rB «UATA
nmilHil StS «.089 0.?79 7.98 SIQPE
eenoen id.' 0.079 0.3S9 ME TESTS

(W130 ?80 0.01E 0105 9 CI «DAJN SIOPE
«zosee 1«« 0018 e.irz ir.no SIOPE BYIOP TE'.TS

eoo^zo 81 0.011 0 136 2 00 »junp BMOP
e:M9e 60 0.010 0 11E 9 60 BTTOP LOGIC TESTS

IftlWO 39 O.OOE o.is: l.ns LOGIC
«ton lie ■ O.O'E 0.1S8 H 11 »DAIA SIOPE
«Hwe Z2 0.001 0 1EI E8 SI STACK
oneue IE «003 0.1E1 7.91 LOGIC ItSIS
6?e^iM IB 0.003 0.1E7 5 7S BVIOP TESTS

or«100 IS o.onr 0.1E9 29 10 SIOPE TESTS

oooo^O 13 o.oo: 0.1^1 :.i6 XJUW
oooseo 13 o.oor 0.173 :n.si STOP» BYIOP
ocsioo 1 0.001 0.17S 27.00 SIP". LOGIC SH1FI TESTS

orooio 8 0.0«! 0.1 TB Mi XDAIA TESIS

W4IM 8 «001 0.177 30 im SIOPJ SIACK
OlOOOO 7 o.ooi 0.1^8 I.« HOOPS

«10300 7 0.001 e.ieo 7 00 SIOPE HHLFU AOOPS

eoiiioe 7 0.001 0.181 90.00 BTTOP
e^l3oo 7 o.ooi 0.18." 93 no SWl HALFU LOCir IESTS
000 3«0 7 O.OOl 0.183 D Bf. SIOPE HALFU

OOJ610 7 0.001 0.181 IB.11 XOHIA HOLFH BTTOP SHIFT

on 170 7 o.ooi 0.18S BE.:9 xojin si . LOGIC TESTS

3:i13S0 G 0.001 0.18B 7B 0« mnoA SIL'E HALFU ItSIS BTIPT INOPK

onseo E «.ooi 0.107 h.« SIOPE BTTOP LOGIC TESTS

teizoo E 0.001 0 188 5.00 HHLFU LOGIC
ooo<30 E e.ooi 0189 I.M «DM .in BTIOP
oruee B e.eoi 0 19« B M SIOPE LOGIC TESTS

00101« E O.OOl 0.191 1117 «D'ITA STACK

O:i270 E 8.001 0.19: 11.17 'JUMP HHLFU LOGIC TESIS

000030 2 e.ooo o.i9: 6 «o «nojn
oorsoo 1 8.000 0 193 31.00 HALFU BTTOP 5HIF1

eof'«7o 1 CO«« 0.193 15.no «OJIH
oo'iroo 1 O.ni'O 0.193 :B oo HHLFU

001110 1 01-00 0 193 11.00 xOtl.'A SIOPE S AC»

e<i«o50 1 «.«00 0 193 E on XIMO^'
otoroe 1 «000 0.193 9.00 MMM HOOPS

(MM* 1 e.ooo 0191 1900
idoseo 1 e.ooo 0191 12.00 HHLFU BVTOP

30ZB LIFETIHES . 12 01FFEPEM CLASSES.

UNION CLASS ANO US COnPLEnENT
737770 «OJin SIOPE HHLFU BTIOP LOGIC SHIFT S1AO AOOPS TESIS BTTPI 1N0PK

010007 CFXFL MONII

EXECI

EXECT

EXECT
EXECT

MMMaHHBII

i!fnnm>*,«pi.ii mwmtimiMOT NIL i iwip^nvaam^«^ mmm 11 ii i.mvmii<.\wnM.iM'mi'^^mmmmmmimm^m^^m'^^mmf^> nmmimm

1

•

Output fro» r«9i»t»r clntificatisn program

CLWSi f KPOINT A00 ««0 SUeilftCT • • ••

C-1

W»S» UNO IIS COMPLtntM
eoeoni
77777S

rouNi
FXfLO «OJin SIO« HMiru BYTOP LOGIC SHIFT SIAC> «OOW TESTS flONlt BriPI INOPt tXECI

f»«C- CUIUJL. nWCE
CLSSS COUNT I ION FPrtCT. LINCTH INIEPPSf TdTION

fjzeoni 18" 0.030 0 030 10.S9 COUNT TESTS MWI i in »Ml O.OSO t.4| COUNT tDxTA
or« in 118 O 019 0.069 S3.SI COUNT \0H\0 STOPt TESTS
WOlOl IN 0 016 O.OB? 1.70 COUNT STOPt
Kzm 66 0 («19 0 096 6.-1 COUNT STOPC SHIFT TESTS
o?eiei 37 0 «I« Oio: 1.01> COUNT S'OPE TESTS
ezMoi IB 0.003 0105 IS 00 COUNT BMOP LOGIC TESTS i**» 11 le 0 0" 3 0.10B 1.00 COUNT «DATA BrlOP
«001)3 IS (.ME 0.111 16.60 con« TESTS
000103 II O.iXV 0113 ::.so COM« STOPE
oreio3 r 0.00; OUS Bb" con. 5I0PE SHIFT TESTS
oonros 11 o.oiir 0117 10.00 COfLO HHLFU
omisi 12 0.00: 0.119 s:.i: COUNT «IIWM STOPE TESTS
000603 1 0.001 O.ICO BOO con» HALFU BYTOP
e?o<oi ? 0 001 o.in B. Oi" COUNT BYTOP TESTS
eiooai ? 0001 o.ir? 3.00 COUNT «OOPS
orzoct B 0.001 0 1:3 13 00 CUUNT «junp SHIFT TESTS
001:03 6 O.oni OICI 39.00 con» HAEFW LOGIC ZZnooi 6 0.001 o.izs B.00 COI,;JT TESTS
0ZZ1Z1 6 0.001 0.1:6 s: 00 COUNT «JUMP STOP«" SHIFT TESTS 0Z31O7 6 0.0111 o.ir? 17.00 curt STOPE LOGIC SHIFT TESTS
(KHWOl 3 O.OiKi 0 1:7 10.67 (II .N.
004001 1 0.000 O.I:B 3.CK' COUNT SIACt orzon t 0.000 0.1 ro B3.S0 COUNT >DATH SHIFT TESTS 0001 u 1 0 O1.1O O.I:B M.SO COUNT «DATA STORE
0Zi1013 7 0. »too 01:9 6 00 conx «DHTN TESTS
000703 1 0.000 01:9 13.011 COf 1« STOPE NALFU BYTOP
«<i?iei 1 O.oon 0.1:9 5 00 COUNT STOPE SHIFT
0ZO501 1 o.oon •.in 57.00 COUNT STOPE BYTOP TESTS
00CIS1 1 0.000 0.1:9 IB OO COUNT »I«OH STOPE
9?0«tll 1 e.000 0 1Z9 «.00 COUNT «DATA TESTS

791 LlFEIIntS 31 oirrcPENT CLASSES.

UNION CLHSS HNO MS COMPLEHtNT
Z37777
sieooo

CfXFL KDJIN STOPE HALfH BTIOP LOGIC SHIFT STACK «OOPS TESTS

INOPIt

INOPK
nONIT BYTPT EXECT

CLASSi FULL FIKPOINT APITHI1ETIC

HAST ANO ITS COHPLEMENT

ooooo:
777775

NMI2
0:0003
0:10-.:
0*YO1O3
o::io3
000IO:
0:000;
000603
001100:
001:03
00011:
0:3107
0:3106
0:3107
orofjis
600783

F I»PT

COf 10 <OJln STOPE HALFU BYTOP LOGIC SHIFT STACk A00PS TESTS MONIT BYTPT INOPT E»ECT

CLASS COUNT

ISO

IS
IT
12
12
11
9
7
7
E
I
6
6
I
2

FPAC CUIKIL. A'TO
TION FPHCT. LENGTH IMEPPPETAT ION

0.0:t 0.0:i f.K fI>PI XDMTA
o.on: 0.0:7 16.60 COf I«
0.00: 0.0:9 n.no FUPT «innc
000? 0.031 zr.so con» STOPE
ooti.- 0.033 6.50 con« STOPE
0.00: o.03s :.oo fi»pT SIOPF

001 n.036 11.11 r|«pi
o.iioi 0,03? BOO con«
O.0.11 0.038 :.13 FI'PT
•.Ml 0.039 39.00 COT I»
O.ooi o.nio s; 00 FIIPT «DMTM STOPE
0.001 0.011 17(10 CF»F1 SlOPf
•.Ml 0 Oi: 11.00 F«FLO STOPf
•.Ml •.Ml :9.oo n«PT sicPE
0.000 fl.oiri 6.00 con« «atsiA
0.0110 n.011 13.00 COf I« STOPE MALFW BIIUP

:67 LIFETIflES. 16 OIFFEPLNI CLASSES.

LOGIC

SHIFT

HMLFH BYIOP

MHIIU LOGIC

LOGIC SHIFT
LOGIC SHIFT
LOGIC SHIM

UNION CLOSS ANO ITS COMPLEMENT
0:3757
751O:0

TESTS
TESTS

TESTS

TESTS

TESTS
TESTS
TESTS
TESTS

CMFL »IHDH STOPE HMLFH BlIOP LOGIC SHIFT TESTS

«JUW STAC» AOOPS MONIT BYTPT 1N0PT' E«ECT

■MMMi jmm ■ — '' - • ■ ■ ■ -

■^^F>*1 ..im winnp^^^p^^lP IH ' 1 ' «'WIJI •■..Wll 11 ll.l.,«PI iLAiuun^WFI^TiMnP i.<J'J. " w« !■ ii'"— ■Willi .,i ,1.1 ii.ini..ij.imiwi

Output fro« r«9<itcr classification prosra«

CL«5Si fLOHTIHC «RIlHHEtlC ••

c-s

tttST AND MS COHPIEMCNT
eeooei
777773

FLOrtI
cofi« «OJin siost m.fu Bit»' LKIC SMIFI stack HOORS rests noun BYIPI INORK OECI

CLASS COUNT TION HKiCT. LENGTH INTEPPKTATION

W«1M 13« 0220 0220 SSS fLOA, STOPt

«KlOOl 711 • .HE 0 336 3 63 FLOAT

tcmei :0 0.003 0339 2600 FLOAT STOPt TESTS

e?3ie< i? 0.002 0.3HI 79 B3 FLOAT STOPt LXIC SHIFT TESTS

eeriet 12 0.002 0 3t3 19 33 FLOAT STOPt SHIFT

eoojes 12 0.B02 0 34S IBM COFLO NALFU

ezai;"" 6 0.001 0.346 17.00 CC«FL STOPt LDCIC SHIFT TtSTS

e;3iM 1 0.001 0347 14.00 F«FLO STQKt LX1C SHIFT TISTS

2129 LirtTintS. B DIFffKNT CLASSES.

UNION CLASS ANC lib COnPLEftNT
023307 CFXFL STORt HALFU LX1C SHIFT TESTS

754170 «OJlfl BYIOP STACK AOOPS tWNIT BYTPT INOPT CXECT

cunuLATivc STATISTIC: FOR THE PHYSICAL REGISTERS

TOTAL TOTAL FRACTION AUPG USES PP. USES PR. USES PP.
REG LIWES L1YE USES LIVE lENCIH LIFE LlUt INSTP TOTAL INSTP

00 882 5299. 3084. 0254 6.01 3.50 O.SB 0.15
Ol 2B3 6630. 1634. 0.318 2343 5.77 025 0.08
02 2217 I1S98. 7940. 0 556 5.23 3.58 0.6B 038
03 1368 5092 4199. 0 244 3.72 3.0? 0.82 020
04 298 1262. 793. 0.060 4.23 2.63 0.62 0.04

OS 21 4B5B. 231. 0 233 231.33 11.00 O.OS 0.01
06 4B 684. 72. 0.033 14.25 1.50 O.II 0.00
07 8 369. 0.242 632.25 46.12 0.07 (1.02
10 O 0. 0. A.OOO 0.00 0.00 O.OO 000
11 B 5691 517. 0.273 711.37 64.62 O.M 002
12 9 e. 0. 0.000 0.00 o.oo 0. On 0.00
13 12 3462 34B. 0.168 288. SO 29.00 O.IP 002
14 12 1044. 48 O.OSO 87.00 4.00 0.05 0.00
IS 316 11376. 5122. 0545 36.00 16.21 0.15 0.25
16 626 9346. 2705. 0.448 14.93 4.32 0.29 013
17 34 7427. 1168. 0.356 21844 34.35 0.16 0.06

SUFI OR AUERAGESi
6133 3.779 12.BS 4.60 036 009 1 35

UNION OF USAGE CLASSES FOR THE PHYSICAL REGISTERS^

00
01
02
03
04
05
06
07
18
11
12
13
14
IS
16
17

637707
033757
023537
023537
021557
021310
020100
002610
oooooo
021320
€KV:W*W
320350
020001
020351
021170
01411«

CFUFL STOPt HALFU BYIOP LOGIC SHIM STAC! AOOPS TESTS
CFifL «IHOM SIOPE HALFU BtlOP LOGIC SHIFT
CF«FL <00jn STOPt BYTOP LOGIC SHIFT
CFKFL »DAjn STORE BYIOP LOGIC SHIFT
CF«FL XIHOA SIOPE BYTOP LOGIC

«DATA STOPt HALFU LOGIC
SIORt

XOATH HALFU BYTOP SHIFT

«JUMP SIQRt HALFU LKIC

XinOA SIORt HALFU
COUNT
COUNT XIHOA SIORt HALFU

xDJin STOPt LOGIC
XOATA STORE

AOOPS TESTS
TESTS
TESTS
TESTS
TtSTS
TESTS

TESTS

STACK AOOPS

TESTS
TESTS
TtSTS
ItSTS

INORK EXECT

BYTPT INORK

UNION Of CLASSES ANO COnPLtntNI
737777

«40000
CFXfL XDJin SIORt HALFU BYTOP LOGIC SHIFT STACK AOORS TESTS BYTPT INORK EXECT

MONII

■MMM II IMOII lllll II —^idl

mtpvw** '! v *<■■;> 'Mil miiimi ■ »muiiii. u.upu ^^p«ippm«pnPi*p«BmCT wpnpwiBw^» i.i.pipii.»1.*1' ""•l^-1 (

UPPtNOl» 0

1h* total SMI I

0 1

lOTflt EKECUTED INSIPUCHONS «NO IHCi M «Ob

r;i OlfFEPENI INSIPUCIIONS USED

THE SNIfl OPOfPEO BY NUMEP1C 0PC0OE
U1TH 1NSIPUC11CW COUNI HW) COtlPuTED 11ttE

3:il8B9 S9 U5£C

«0 • 0
e eo

Ml • 0
0 00 «

■
0.110

00 3
• 0.00

urn
• M

0.011
mis • 1868

0.00
nub
• 122

0.00
wiv
« 119

0 00

01 010 56
0.00

Oil
■

89
0 00

Ml • 31
0.W1

013 • 0
0 00

I'M • 0
0.00

01s •
1

0 00
nlB
1 0.00

017 • 11
o.oe

02 M 3
eo«

021 • 1
0.00 • 0

0.00
023 • 0

0 00
0.-1 • 0

o.oo
02s • 0

0.00
026 * 0

0.00 • 0
0.00

03 030 e
e oo

IM • 0
0.00

032 • 0
0. M

0
0 00

Oil • 0
O.DO

IM
■

2
0.00

036 • 0
0.00

037 • 0
0.00

»t MO 6
0.00

on
■

1
0.00

Ml 0
0 00

• H3
■

0
e 00

1111
■

0
0.110

01s
t

0
000

016
■

0
0.00 • 137

0.06

OS IM -1
0.00

m • 576
o.eo

Ob: • 0
0.00

053
■

0
0.00

n'ji • 0
0.00

Hi
■

0
0.00

055 •
2

o.oo
057 • 1

0.00

06 060 0
o.oo

061 • 3
e oo • 0.00

063 • 1
000

nbl | 3
0.00

obS
■

3
000

5
e 00

067 • 10
0.00

07 070 15
0.00

071
• M

e oo *
0

0.00
073 • 1

0.00
»71
• 0

000
HI • 0

0.00
Mi
• 1

8.00 « 0
0.00

10 100 0
0 (O

101 • 0
o.w

10.-
■

0
0,00

103 • 0
0.00

IM
• 0

0.00
MS •

0
0 00

106 • 0
0.00

107
■

1
0 00

11 lie 0
0.00

111 • 0
0 00

111 • 0
0.1 Hi

113 • 0
0 00

IM 0
0.00

IIS •
0

0.00
us
•

0
0.00

117
• 0

0.00

If m 0
0.00

in • 0
o.oo

1::
1

0
0 00

123 • 0
0 00

in • 0
0.00

125 «
0

0.00
126
I

1
000

127 | 0
000

13 ur« 2558
1Z761.42

OfK • 3
10.62

F5C 7BB(\
• BS611.96

I HP
■

211
730.23

ILOB •
3601

;BS19.32
I OB
■

6212
17521.80

IDPB
•

ISM
6958.01

V| • 821
6978.50

11 F^-n 10706
S«t3.6B

FHOI • 2286
13SS5 98

roon
■

516
3303.30

FMOB B6
520.30

FHOP

■
11353

61907 38
FHOPI 1250

5737.50
FODPn 3982
• 25601.26

(HOPH

•
2722

7502.16

15 FSB 287
1509.62

F5B1 • 0
0 00

Fsan • 0
0 00

FSÜB
I

0
0 00

FSB* • 12876
72620.61

FSBPI 162
2203.71

FSBPn 236
1559.96

F50PB • 0
0.00

16 FflP 4173
t3BSB.23 • 3089'92

Fnp»
■

8
e.io

fnpe • 0
0.00

Fni'R 19386
13052.H

rnppi
1

1113
10229 85

rnppn
»

158
18B9.6B

Fnppa • 512
6123.52

17 m 503*
71986 20

FDVI • 1
15.80

fD'-IM • BB
nis.Bo

FO'.S 0
0 00

FOUP
■

5533
79121.90

FDüPI • 321
1301 10

Fovpn 5
76 SO

FDOPB • 33
501.90

JO MOVE 191789
166017.27

NMI • 36075
53030 25

NOKM 72293
• 1B6SI5.91

novts • 0
0.00

nojs • 919
2306.07

WS I • 32911
1836 30

nousn • 556
1131 IB

novss • 12
31 11

?1 no^ 5097
13303 17 • 2013

33:1.15
nouNi • 1138

3110.OB
MOUNS

a
107

121135
noun • 2519

6571.59
noun 1 0

O.OO
noynn *

0
O.O.i

nouns • 315
960.75

zz muL 6513
63892 S3

inu.1 • 338 3
32660 50

mm • 220
2371 60

IMULO 25
269 SO

Ml • 117
1265 91

nut!
■

17S
1520.75

nui"
■

0
0.00

nuiB • 0
0.00

23 IOW 2182
36139.40

IOW • 2581
10779.80

IDlUtl • 0
0.00

1DIV8 0
0.00

D1U • 0
0.00 * 0

0.00
oion • 0

0.00
OIUB • 0

0.80

et «SM 15230
36552 00

POT
• 331S

8028 00
L5M
■

7630
18312 no

JFfO « 1208
1711.20

«SI«
t

2070
9956.'0

ROTC • 1 752
8127.12

LSMC • 1111
5313 91

NULL • 0
o.oo

2S EKCH 1737
5228 37

ÖL1 570
26125 2"

M18JP •
1277

tsm.u
H08JN • 709

IM.il
JPS1
•

AM BO
03161 60

JFCL • 2390
3SI3 30

C1 • 5168
7596 96

NU I • 0
0 00

26 PUSMJ IBCCS
• 56804. li.

PUSH

•
30236

23>160 52
POP
■

139<.1
S7909.10

POPJ 210SO
• 66939.00

j<.p
■

3251
9070 29

JSP • 1759
699S 73

JSM
■

2812
8239 16

JPM

1
2836

8905.01

27 ADO • 79290
218017.50

HOOi • 11391
20395 25

Hoon • 1180
3761 20

«Doe
1

287
915 53

M • 11316
31201 SO

SUBl
■

1337
7763.23

SUBn • 11
35.09

51)08 • 0
0.00

30 COi
1

71
132 16

CftiL • 726
1299 Si

CMS • 1216
760(i 31

CrtliE
■

2825
S0S6.75 ■

1501
2692.16

CfllGE • 18i,-
3213 18 • 7IB6

12862 91
CHIC • 3706

6633.71

31 • 0
0.00

CHHL
■

6BB9
18911 75

EM • 1627
12721 25 • 11166

397BI SO
riiriH 0

O.Ol
turn
•

11210
30910. («1

THHtt
1

1SI6
1169 0.)

CHHG 5783
15903.25

MM 11 11 —11

"•"■' > "■« J""1 " i »inimiiHmmmmwamimmii nun j I in in. n ip ii i n^w nvm.m"

U., total SNin 0-2

3Z • 11
ZS 06

JUnPL 3827
• 6811 38

.um sole
• 10111.22

JUMPLE 1178
. 717862

JUHPA • 0
0.00

JUWCE
■

1131
2561.19

JUMPN • 3703
5628.3?

JUflPC • 111?
2053.13

33 SKIP • 0
0.00

StlPL
■

1222
9189.12

St 1« 2701
• 7057.11

SI IPLE
«

S3B
101.18

SMPo • 1761
1601 01

SilPCE • 3111
8119.71

StlPH
■

3185
931285

SUPC • 2301
6005.61

31 AOJ • 2131
1356.86

AOJl.
I

S3S6
3587.21

HOJE • 223. 7S
MOJIE • 21

S.'.SS
AOJO 18297
• 32 75163

HOJGE
a

1
179

hOJN • 11
73.39

AOJG • 29
51.91

35 "OS 10531
• 3:il9.SS

AOSL
■

0
000

A05C • IS
15.7S

HOSIE

■
171

S.-l. 55

HOSO • 122
372.10

HOSCE • 919
2891.15

AOSN • 6
18.30

AOSG • 236
719.80

36 SOJ • 2293
1181.17

SOJL • 986
1761 91

SOJE • 261
167 19

SOJLE • 223
399.17

SOJA • 233
117.07

SOJCE | 2850
5101.50

SOJN
1

158
282.82

SOJC
a

1811
3295.39

37 SOS • 1279
3980.95

SOSL
■

S
IS. 25

sose • 1
21 M

SOStE • 610
860 SO

SOSrt
a

1
12 20

SOSCE 11
131.20

SOS* • 156
1390 8o

sosc
a

125
1296.25

IB • 3773

5516.31
SCT2I 66

9,. 82
Stl2n 2110
• 595360

SCT2B
■

1760
1291.10

..no • 2901
7661 17

HNDI 1908
7901.88

MNon
t

13
39 13

woe 2
6.02

«1 ANOCA • 19
55 18

HNOCHI

1
0

(1.00
AMXon
«

19
177.87

MWX.IB • 0

0.00
SEIN 0

0.00
sEim • 0

0.00
SETfin
1

0
0.00

sfine • 0
e.oo

« ANKM • 55
111 35

ANDCni • 87
HO.07

AN0CW1 1
0.00

HNoena
■

e
o.oo

SEIH
■

0
000

SEIAI • 0
0.00

SEIHTI • 0
0 00

StlMD
■

0
0.00

13 ><0P • 137
352. 09

XORI « 30
18. 30

KQpn
i

1
12 01

>OPB • 72
215.72

m • 702
1801.H

IOHI • 16
71.06

lopn • 117
352.I?

I OPS
■

66
190.66

11 ftNOCB 3
8.76

WOCBI 0
0.00 ■

1
0.00

(iNOCOG 0
ooo

tm
■

171
117.18

n

0.00
MM
■

0
0.00

EOVO
a

0
0.00

IS SETCA • 3
1.83 * 0

000
SETCAfl
■

11
105 78

SETCrt8 0
ooo

OPCA • 20
58.10

OPcm 0
0.00

OPCrtn
t

0
0.00

OPCAB
a

0
6.00

16 SUCH • 270
656.10

stTcm |
0.00

SEicnn • 5
11. 35

SEiCr« « i
2.87

oecn
■

173
111.61

ORCMl • 11.2?

OPcnn • 0
0.00

OPCHB
a

0
0.00

17 0PC8 • 0
8.00

0PC9I
1

0
0.00

OPcen • 0
0.00

nPCB8
■

0
o oo

SEID
t

319
168.93

5EI01 11
20.58

SETOH
a

305
711.20

SEI08 12
29.28

59 HLL • 738
<896.66

HLLI • 0
0.00

HLin • 33
99.33

HllS 0
0.00 • 717

2191 ..1

HPI.I 2181
1271.76

HPtn • 581
1718.81

MPLS
a

17
18. 79

SI HLL2 • 1186
3610.98

NUJI
■

0
0 00

HU2n
i

11

36 12
HU2S
■

20
p.«

HPL2
■

1191
3630.12

HPL?I • 1279
1880 13

MUN • 76
196 08

HPUS
■

1
11 18

Sc- HLLO 10
21.30

0
eon

HLLOn • 1
O.on

HI LOS • 3
0 00

MPIO 0
0.00

HP101
a 111.12

HPLOM 0
0.00

MPLOS • 0
0.00

53 HUE • 8
0.00

HtLEI »
0

ooo
MUEn • 0

0.00
HLUS
1

0
p. 00

HPLE
■

8
0.00

HPIEI
■

0
0.00

HPLEU • 0
0.00

HPLES
a

0
0.00

51 MKR • 719
192193

HPPI • 1210
1918 1C

HPPtl
• 1

1198
2635.98

HPPS • 0
o.oo

MLP • 21
61.32

HIPI
■

0
000

HIPM
a

11
33.11

HLP5
■

32
91.81

55 12307
29906.01

HPP?1
■

1081
159318

HW»2n • 782
2017.56

HPR2S • 367
105329

HLP2
■

92 .'1
22528.53

MMI 0
0.00

HI.P2M
a

20
51.60

UM
■

6
17.22

So MPPO • 16
38 88

HPR01
■

561
829.08

HPPOH • S
12.30

HPPOS • 3
8.61

aRO
■

0
0 00

HlPOl 0

0.00
I:LPO«
a

0
0 00

HL POS • 0
000

S7 * 23
55.89

HPRE1 • 13
19.11

HPPEH • 1

10.32
HRPES
I

5
11.3S

HLPE 367

891.81
HLPEI
■

0
0.00

MlPffl
1

1
2 SB

HLPES
■

0
0.00

60 TPN 0
8.00

TIN
>

0
0.00

IP« 1211
2132.36

1LNE 5110
• 10662.10

IPNM • 1
0 00

Mm « 0
0.00

IPNN • 7112
11586.32

TL*M
a

2965
5811 10

61 TON 0
000 ■

0
0.00

TONE • 129
376 68

ISNE 0
0.00

IDNH

■
0

0 00
ISNA
t

0
8.00

TOW* • 9
26.28

15NN
■

0
O.OO

SZ TP? • 288
561.18

TL^ • 1311
8511.21

TP2E
■

1117
2777.32

Mil
m

1.'"
361.5b

TR?H • 8
O.OO

Mid
1

9
17.61

MM • 59
115.61

7LZN
1

21?
125.32

63 101 • 9
26.28

0
0.00

TDK
I

0
000

1S2E
1

0
0.00

I02A
■

BOO
2569 60

TS2rt 0
0.00

TD2ti • 0
0.00

TS2N 8
0.00

Gl TPC
■

280
518.80

TLC • 1S30
2998.8.1

TPCE • 0
O.OO

ILCE • E
11.76

TPCrt
O.bi

TLCA • 0
0.00

IPCN • 0
0.00

, TLCN • IB
91.06

65 TOC • 0
0.00

ISC
■

97
283.21

IOCE
I

0
o oo

15CE • 8
0 00

TOCA • 0
0.00

TSCft • 0
0.00

IOCN
a

0
0.00

TSCN > 0
0.80

66 TRO
■

28
SI.88

ILO • 720
1111.20

I POE • 0
ooo

ILOE • 37
72.52

TPOH

■ 392
TLOA * 22

13.12

TPON
a

0
0.00

TLON 13
25.18

67 TOO
■

0
8.00

ISO
> 5 81

IOOE
■

0
0.00

TSOE • 0
0.00

TOGO
t

18
52.56

TSOA
t

0
0 80

TOON • 0.00
TSON
a

8
o.ee

mm ■■

■ '■■'• 11 -—- •^mmrmmrm*'** • HI. >>• ■>• m ■■ '■ '■

J

The total SNIF1
0-3

1HC tlBSON DISIPIBU'ION

CthSS COIIM FPHCI. 101ML UW FKHCI.

1 LOOST ^rs.'fii O.I:3B inrcs c t.we LOMOS "NO SIOPIS

: n»«- I:I3B: •.1244 KMM.H 0.1017 T I»FO PoiNi HOO SUBIBHCI

3 COMPrt
1 ;I"HNC ZBIBM n ;ai8 61VJ1H.4 51 0 IB1« BPHNCHIS

S fLT»- 49113 t.tw ^-3^:3 os n.oo'j: IIOHIING WO 5 .tilPOCI

I ftrtUL :S6M tv«:sG r7B:t3 34 O.ODOe FIOMIING nmiiPiY

1 FLOW lini3 e.»lin is.-3:r 'vt 0."49'1 ILMIINC OMM

n rxfitx. 11033 0 Oil" 101 Miv 9: 0.0318 fi>fo naiiPLT

i f»DIV ^63 e <'Mt ?;:ig r# (>. O.-O' FUfD OlVIOt

II SHIFT 3an:i 0.03»' irr.'Sl 69 0 i'S36 SHIFTS

II LOGIC 9673 (<.i»i9r roiro si O.0ii63 10GIC

12 HISCL I&3&I 0.015* 5:97: 61 0 0165 nlSCEUMNCOUS

13 INOC»

M ruLUO
IS I/O.. 7ii: O.nno? 0 no 0. MM 1/0 1N51PUCIION5

If. CPU..
1,' nONU 113 •.«Ml 0. CO P.iMlO MNIIOP CHILS

IB uuuo. 3ZS6 0 0033 O.lH.1 O.(i0i") USfP UU05

THt PPOGPMM SIPUCIUPC OIS'PIBOTION

CLOSS COUM FPMCI. TOIftL IIW FPHCI.

1 mo» :010B9 |i.2eil 4904711.5: (1.15:7 root wan 10 »r.c
1 MTOM 76035 o,ti76ii 19'001 55 0 i'6l1 MM net. io mwt
3 into« 41378 0.0114 GllHfl.110 0.11191 nu"t tmOlMll to ..ct.
4 Stl« 417: R.MNf 613: 84 1.1.11.119 sri 0 OP 1 10 "Cc

5 SETPI 4517 o.iyi45 110:1 48 0.0.134 sti 0 OP -1 TU won
6 PUTOA 439:3 0 04 39 154 781.45 O.I.IB: noui PHPIUOPO IB nfC

7 OTOPH 646« I.ACH 40'B'V93 0.01:7 rwc HCC. TO PHPIHOPD

B attw S'O II.OMIIG :64:5 :o o.iv«: BLOD «OMt

9 STBIT 7:00 (1.0073 14407 76 o.oms SET 8115

10 JNUSO
UNU50
HSONE

11
16537 fl.oi65 444BI B3 0.11138 "BO OP SUBIPnCI GNf

13 ru" 1078*5 0.IO7B :B:I::.3I o.i'n-H Fl«fO MOO SUHIPHCI

14 f IX«/ 15796 O.OISB 179:00.1: 0 O'.'.B FI»tO MULIIPLY niUIOt

15 FLOHT 8610n O.11B6I 709:89.70 O.:.-.IB FLDMIING oPiiMniuc
16 SHIFT 390:4 0.0390 i7::6i 69 0.0536 SHI» IS

17 LOGIC 9673 0 onv 20170.55 O.o..i63 LOCICHL 0P(PMI10NS

IB UNUSD
19 ■JNLI50
ro IO«FP 5:4 O.Oi'iiG 0 00 O.on.'.i I/Q IPHNSFIPS

^1 lOnOfl 4^, ll.Otuitl 0..10 O.O.ii'.l I.a MOniNlsiPHiinN
"^ lIUOTH 143 O.Oiii'l 0.00 O.O.i.'.i niHfP noNiioP uufls

21 UUUO 3:56 0 11033 0.00 e. 0.1.10 U5tP UUOS

W UNUr.O

21 UNU'>0
:6 UNUSD
Z7 SP.mP :9"87 S.9J9I 01109. 33 o..i:53 MMUtM JUMPS

:B 5PPET :3nHG o.i\ 39 75814.'14 (...i,-3G SUMUIIM PMliChS

.-9 5KPT 411911 0.044: lB'i9ü9.t: 0 i'y.3 SUtlPOINKP Of'IPMllONS

311 il'JSIM cosoi 0.0.-115 IK9G ;i 11..11I4 T15T .CC UIPSU5 IMWOIHK

31 •lyso 20099 0 iCOl 35977 :i 0 ni: U5I MX. UPS05 /IPO

3: Hiisnc 445:i 0.0445 l"43,-. 75 0,.'3B1 I [ST .CC WP5U5 WnOPT

33 «VM 13061 0 0131 31iiB9 :i 0 01,16 iisi man VIPSUS BM
34 ait 15
35 BITST :o4i7 (1.11:04 4:493 3: 0.1113: BIT 11515

35 STHT5 :4:3 0.011:4 3513 3" (ViiOil 51..105 11515

37 LOOPJ 35459 9.9KS 67315 0- ».one I OOP JUMPS

38 UNCJP 74379 0,0744 11314- 64 (1,035: uNC0SDinnN.il JUMPS

33 NUQPS 88 P.MiOl 157 5: 0. Oil. 10 NO O^Pi-MDNS

40 >CT 5160 0 oos: 7596.96 11.00.-4 t-CCUU LFMC1WC ODOPtSS

41 MISCL :4i o.ooo: 730 :3 «.(im': MiSCEUHWOUS

I

mmm

ppp wmmmwm1* •* '. 1 " ' "■ •" ■ ' ■ ' ■ ' ■ -■■•- '■ — ■■ "•■

The telal SNIFT CM

HOST tinecoNsuniNC INSTRUCTIONS EXCLUDING noNUW CALLS

Rtlttiv« ftcution itwm i» Mi*h re«p«cl lo Ih« •verigc tnjtruction for thif progr«».

NAK HD FR«CT10N CUMUL. PELfillWE «Tims FROCII0N
USEC. or TOT. TIME FPOCTION EXEC. TIHE EXECUTED Of E>ECNS.

i nt)W£ 466047.27 0.1451 0 1451 8.7566 191789 0,1918
2 «00 218i)47.5« 0.0679 U.2130 0.8L62 79200 00793
3 rnpp 213052.14 0.P663 0 2793 3.4217 1930B 00191
♦ nrjcn 18551594 0.0581 0.3374 0.8033 72:93 0.0723
5 PUSH 123060.52 P.03B3 0 3757 12672 30.-36 O.030:

E JPST 103164.60 0.0321 04078 ».«77 70180 O.(i70:
7 fSC 85641.96 00267 0.4345 3.3012 7806 P.0O79
a royp 79121.90 O.P246 0.4591 4.4522 5533 (LOSS
9 fSBR 72620.64 (1.0226 0.4B17 1.7560 128-6 0.0i:3

19 fDV 719(16.20 o.o::4 O.Si'H 4 '522 5034 0.0050

11 POPJ 66939.00 0,0208 0.5.-50 0 9901 :\m 0.0:10

12 I'M. 63632.53 0.0199 0 5449 3.0513 6513 O.01'65
13 fW 61987.38 0 0193 0.5G12 1.6999 11353 0.0114
14 POP ITM'M o.oiao 0.58.-2 12921 13951 O.OHO
15 PUSHJ 56804.15 0.0177 05999 0.968 Iü:G5 0.0183
16 rma 51843.68 0.0171 0617. 1.5018 1073G O.o108
17 MOVtl 53030.25 0.0155 0.6335 0.4577 36075 0.0361
18 LOS 4 7521 BiJ 0 014B 0 6183 2.3818 621: 0.OO62
19 rnp 43B5B.23 0.0137 0.6K19 3.2722 4173 0.0042
20 IOIVI 40779.80 0.0127 0.6746 4.9192 2581 0.0026
21 CrtflLE 39781.50 00124 0.6870 0.6562 141B6 0.0145
22 «SH 3G552.00 0 0114 05981 0.7472 15:30 0.0152
23 IOIW 36439 40 0.0113 0. W 5.1995 :i82 0.0022
2« flOJ« 32751.6J 0.0102 07199 0.5573 1829.' 0 0183
25 IIUCl 3:660.6« o.oio: 0.7301 2.5530 3993 ti.nmo

26 «OS 3211155 0.01O0 0 7401 0,9196 10531 0.0105
27 SUB 31201 50 0,0097 0,7498 0 B562 1131B 0.0113
28 C«nGE 30910.00 0 0096 0,7591 0.8562 11210 0.0112
29 MPR2 29WG.01 0.0093 0.76BB 0.7566 123117 0.0123
30 HOB 2B5I9.92 t.MH 0.7776 2.4G59 36i>l 0.iir.36
31 BLT 26425.20 O.0HB2 0.7B53 14.4339 670 0.0006
32 fftOPH 25604.25 0, MM 0.7938 2.0019 3992 0.0040
33 HLP2 22528.53 0.0070 0 BOOB 0.7566 9.-71 0.1.1133
31 «001 20395.2S n,0O63 0.8072 0.5573 11331 0..1114
3S CHtlt 18944.^5 0.f059 0,8;31 08562 KM O.o,i69
36 LSH 18312.00 O.OOS? o,BI80 0.747.- 763« 0,0076
37 F.iOPB 175«:.46 0.0051 O,B:42 2.0019 2722 0.00,-7
38 1DPB 15958 04 0.0O53 0.0:95 2,75B5 nn ».WH
39 CiMG 15903 25 O.OnSO 0 B315 0,8562 5783 0,nit5B
49 TPNN 145B6.32 0.0015 0,63911 fl.BHC 7442 0,00 74

41 F«OI 13S55 98 8, «MJ 084 32 1 6163 "OB 0.0073
42 nwN 13303.17 0.0011 O.B4 74 O,BI:B 5097 0.1.051
43 C«IN 12BG2 94 0.0010 8.WH 0.55.-J 'IM 0.0.17:
44 UF« 12764.42 0 0040 0 Bri54 1.5536 .-558 0.0076

45 CM 12724.25 00040 0.8S93 0.8bR2 4627 o.i.oiG
46 HPPH 12635 IB 0,0039 O.BS33 09371 1198 (1 "04,-

47 TLN£ IPGb.'.IO 0.0033 0,0(.b6 o.bio: bim 0.01.51
48 JUMPE 10414.22 0.0032 8. KM 0.5573 50 IB O.OniB
49 friPRI 10229 85 0.0032 0.8730 2.7BG5 1113 O.OHll

50 «SHC 9956.70 0.0031 0.0761 1.49-B 20-11 0,0o:i

51 «OJL 9587 24 0.0030 11 8791 0.5573 5356 0.0054

52 JSP 9070.29 o.oore 0.8019 0.B667 3751 0.0O33
53 JP« 8905.04 O.OiVB 0.8Bt7 0,9776 ,'836 O.ni.JB
54 TL2 8514.24 0,00,-7 o,on-3 0 Gio: 1311 0. in H 3
55 POTC 8427.12 000,-6 O.B900 1 1976 1752 0.0018
56 S»IPN 8312.B5 o.oo:6 0.89:5 ».»in 3IB5 O.o. o,:
57 JS« 8239.16 (1.00:6 O.B951 0,91:: :8i: (1.00:8
58 SKIPCE 8119.71 O.0O2S 0.89'5 0.8126 3111 0,0031
59 ROT 8028 W 0.0025 0,9001 0.74 72 3315 a.ouu
60 «NOI 790 IBB o o.i25 11.90:6 (I.5"I3 l'j"8 0.0013
61 SUSI 7763.23 o. 0024 0.9OS0 0.5573 1337 0.004 3

62 «NO 7651.17 0.00:4 0,9ii7' 0 800: :9U1 0 0030

63 CHIE 7600,31 0^0:4 t.vm 0.5573 i:i6 ...0012
64 XCT 75% 96 00024 0.917! 1 4577 5169 .1.0.is:

65 JUWU 74 78.62 0.0o:3 0.9115 (1.5573 1178 0.0O42
66 SURE 7057 44 0.00:2 OOIB-1 OBI.-« :704 o.o..;?

67 JSP G995 73 0.0O22 0,9188 0.4577 1759 0.0048
68 DPB 6978.50 0.0022 0.3210 2.6464 821 0. On. 18
69 Mm. 6041.38 0.0021 0.9.-31 0.55 .'3 3027 0.1.030
70 C«IC 6633.71 0,0021 o.a.v- 0.5573 17« 0.OO37
?| JUhPN 6628 37 0 00-1 0 9.-73 0 5573 3703 O.0037

72 MOWfl 6574.59 •.W028 0 9293 0.81,-6 7519 fl. 00,-5
73 FWPB 6123.52 0.0019 0,931; 3.7:37 5i: 0,00115
74 SMPC 6005.61 0.0019 0 9331 O.BI:6 :301 0,o.C3
75 SEI2»1 5953 BO 0 0019 0 9319 0.7597 .-410 B.0O74

76 TLNN 5811.40 0 001B 0.9368 0.6102 :9G5 0.01130
77 FMOPI 5737.50 O.OOiB 8. mi 1.1.-91 1:50 0.0012
78 SET? 5546 31 0.0017 0.9103 0.4577 3773 0 0.'38
79 LSHC 5343.91 0 0017 0 9119 1.4976 mi 0.0011
00 EXCH 5228 37 0.0O16 0 94 36 0.9371 1737 0.0017

81 SOJCE 5101 50 0 0016 11 9451 05573 7650 0.0028
82 C'.ILE 5056 75 0 0016 0.9167 05573 28:5 0 00:9

83 WSI 4836.30 0.0015 0.9182 0.457? 3:90 0.0033
84 JFFO 4711 20 0 0015 0 9137 i.n« i:.io ».»•II
85 5>IP« 4604.04 «01114 0.9511 0.61.-6 1 .bi t.a»ll
86 AOJ 43S6 B6 0 0014 095,-5 8.5573 ;i.' 0.0021
87 FDVPI 4301.40 0 0013 0 9538 4.1720 321 0.0003

88 SET2B 4291.10 ».mi 0.9552 0.7597 1760 0.P018
89 HPII 4274.76 0,0013 0.9565 O.BIO: 7181 0.0022
90 C*1N 4169 00 «0013 0.9578 0.8562 1516 0 0015

:

:

1

mttmai^ ^■^■^■■MaB^Mu».

' •■■ ' ■ ■ ■•■■«■PfflWWPWUPWBW ■ M IHiUPIWB^PPBilW^^^^^P^pi ' ' ■~'1

Uw total SNIFT D-S

91 SOJ 1101.17 n 0013 0 9591 0 5573 2293 0.9i>23
sr sos . oo % (1 0012 0.9G03 0 9496 12 73 «.Mil
93 '.3Dn 3^61.t» 9.0012 0.9615 09932 1180 9.9012

94 MPLZ HIM: 9.0011 0.9626 0.7566 1494 0.0015

95 MLLZ 3610.98 P.0011 0.9637 P. 755b 1486 P.OOIS

96 JFCL 351330 9.0011 0 9640 P 457? 2390 O.P021

97 HOW I 3321.45 0.0,110 0 9658 0.5137 2013 9.9929
98 F.KW 33"3.')0 0 On 10 0.9669 1 0836 516 0.0005

99 50JC 3:95.39 P OHIO 0.9679 O.SS73 1041 9. Mil
104 C.It.f 3213.18 0 0"10 0 9689 0.5573 1812 0.00 IB

191 S» IPL 3189.i: 9.0U10 0 9699 0 8126 1222 9.91)12

192 tmrn 3110 flB O.otiin 09709 0.8593 1138 0,0011

193 Frvi 3089 9: n i'0|0 'V97IB 3 5369 -72 0.01103

IM tic 2998 M p,0009 0.9-28 P 6102 153" 0.0015

19S *0SGC 289115 p.'.009 P.9737 0 949b 949 0 OpiiB

196 1P?E 2777.32 P.Oi'09 0.9-45 P 6102 1417 0.PPI1
197 C«Irt 263: 16 P.iv.'B 9.9754 0.5573 1504 P. 0015
198 tOcrt .-569 60 0 00'18 0.9762 9. MM 880 0.0009
199 JU«PC£ 2561 49 P.OHOB O.97'0 P.5573 ■ 431 0.0011
119 TPNt 2132.36 P. OH'19 0.9777 0 6102 124 1 0.0012
ill inan .-371.60 O.01107 0.9785 3.3563 229 O.ooo:
III nous 2306.07 p 0007 0.9-92 0. 7506 949 p.0009

113 90BJP 22B5 83 P.OOlV 0.9-99 9,5573 1277 R.MII
IM rSBPI 2293.71 P.0I-H17 0.9IM6 14851 462 O.OO'iS

IIS HPL 2181.24 9,0007 0 9013 0.9091 74- P. POP:

116 JUttPC 2053 13 O.000B (i,9019 0.55-3 1117 0.0011

117 HPP2I1 2017.56 P. 0006 0.9025 9.Km 782 0.0008

118 HPPI 1948.10 P.Oi'06 0,9031 O.S"13 1210 0.OP12

119 hPR 1924.93 P.Pi" 6 0 9037 0.B.'02 749 (1.0007

120 MLL 1896.66 P.0.106 0 984 3 t,BOO: 7iB p. 0007

1(1 FflPPfl 1889 88 O.OOOB 0 9049 3.7237 IH p. 01102

12c HPUI 18B0.13 O.oi.l'B 0.9BS5 0.4577 1279 O.OO13

123 SnSLE 1860.SO P. OOi« p.9061 P.9496 610 0.9006

121 IOP 1804.14 p 00,16 0.90G6 P.8002 702 O.P007

12S SOJL 1 764 . 34 9.0005 0.9B72 9.1171 906 0.0010

126 '»in 1748.81 P Oi"'S II.M77 P.9371 5H1 9.9MI
127 HPP2I 1593 48 r PiVS o.ooo: 0.4577 1P84 9. Mil
128 FSBRO 1 SSO 96 P.0005 0.908- 2.('5B'i rib 0,0002

129 MULl 1520.75 P.0005 0 9092 2.7056 ITS 0.01102

139 FSB 1509.62 0.PO05 0,9097 16377 :H.- 0.0003

131 nousn 1434.48 O.P004 0.5901 0,B"31 IH p.OoOG

132 TLO mi:' P. 11004 O.9905 9.91«: 729 O.OOP:

133 S'IPIE 1101.18 9,9004 0.9910 0,8126 SIB 0.0005

131 SdSN 1390 (10 9.(0,14 P.9914 0.9496 (U o.P"05

135 fO'.'n 1315.80 p. 01104 0.9318 4,7636 111, P.OOOI

136 C-iU 1299.51 (1 pool •.99:: 0,5573 726 0.0O07

137 SOSG 1236 25 P.0004 P.9926 0,9496 125 0.POO4

138 *ODM 1269.11 9.C"io4 0.9930 0.5573 7o9 P.POO7

139 m. 1265.91 P.P004 0.9934 3 3688 117 0 OOOI

M9 nOVNS 1211 35 P.P004 P. 9938 0 9496 407 9.0004

Ml HPP2S 1053.29 n 0003 0.9941 0.B93G 36 ■ 0,0001

M2 nouns 960.-S 0.0003 0,9944 P.9196 III 0,0003

113 (-MB 915.53 0,0003 0994 7 0.9932 .-87 0.0003

111 HLPE 891 81 p.0003 0,99SO 0.,'5bG K7 0.0004

IM HPPOI 829.08 0.0003 0,9953 9.4577 HI ('.0006

116 SEIOM 714.20 90002 P.gast P.7597 id o.('('03

117 IBP 730.23 9.P0"2 0.9:157 0,9(34 24 1 0.0002

118 HOSG 719.80 P.0002 0.5959 0,3496 :JG 9.0007
119 SETCM 656 10 P.OO112 0.99GI 0.756G 2-0 P. ("'03

159 1P2 564 48 9.0002 o,9l)61 0.5102 288 9.0091
151 TPC 548.80 9,0902 0,9965 0.6102 280 p.01103

152 M)5LE 521 55 0 Or 102 0 99SB 0.9496 n O.Ooo:

153 FMOB 520.30 p.00112 0.9960 1 6036 86 0.0001

151 FOUPB 504.90 0.poo: 0.9970 4,7636 33 O.OO'iO

155 sno 468.93 0.0001 0.99"1 P.4577 119 00003

156 SOJE 467 19 0.0001 O.9973 0.5573 ,-1,1 t 0003

157 EW 447.18 9 Oooi P. 9'.r4 P.B0O2 174 0,0002

1SB open 444 61 0 Pool 0.3975 0 B002 171 O.oi'o2

159 IL2N 4,-5.3: O.I'Ol.tl 0.9977 0 6102 217 0.0002

150 SOJ« 417 0- O.OoOl O.9970 0.5573 .ii o.(uio2

161 SOJLE 393 17 0,0001 0 99 9 P.5573 Kl 0.0002

162 TONE 37B 68 n 0001 0 99HO 0 9091 129 O.Oool

163 W3SA 372.10 9,9991 o,99n; 0.9495 122 0.0001

1S1 KK 364.SB 0.0001 09903 9.119: IH 0,oö02

165 inpn 352.7 0 0001 0,9994 0.9371 117 0.11(101

166 »OP 352 '19 0 OOP 1 O'JIIRS P,B"0,- 137 0,0001

1F7 TSC 283.-4 P.00OI p ynor. 0,9o91 97 9.9901

16« SOJN 282 82 ■.«Ml 0 SM7 0 5573 ISO O.poo:

16<J inULB 269 SM 0.0001 0 MOB 3 3563 2S o.oooo

179 f.OJE 22375 p.Ol'OI 9. MM 0 5573 in 0.9991

171 »OPB 21672 p 0001 0,9909 11 9371 72 0.0001

172 IOPB i98 6S o.oooi 0,9909 0.9371 H 9,9001
173 HPL2n 196 OB p.oooi n.sMH 0,8033 76 O.oooi

171 (WDC«n 177.87 O.oooi 0,9991 1.1302 4« 9.OOOO

175 (iNDCn 14 1 35 n 00, »i 0.9991 0.999: SS 0.0001

176 HPLOl 141.12 0.9000 09992 0.4577 96 0.0001

177 HNDCMI 140,07 p.0000 P. 9992 ('5013 17 9 Pool

178 sosa 134 20 (I.PPOP 9.909: 0.9496 44 O.oi'OO

179 CHI 13,-46 0.OOOO 0.9993 0,5573 74 0 011OI

180 TP?N 115 64 0 pooo 0.9993 0.9IK 59 o.oooi

161 SETCftfl 105 78 e.0000 0 9993 0 B033 41 0.00,10

182 nan 99 33 0 0000 0,9194 0 9371 33 0,0000

1B3 SET2I 97 02 p.OOi'O 0.9994 0.4577 H 9.0901

1B1 tLCN 94 08 0,0000 0.9994 9610: 40 0. Pi« 1

185 MIPS 91.84 0,0000 0 999S P 8935 32 O.OOoO

186 FOVPH 76.50 0,00110 0.9995 4,7636 5 (1.1 0

187 IOPI 74.06 P. POOP 0,9995 0.5013 4b 0.ooop

18£ HOJN 73 39 ••MM 0,9995 0.5573 41 9.99M

■ -

»■I 1 I I I II ■■•.l«! HIM — i . vm^mtwm.'.- mnifvm^nin^K^uuiiJ II.IIIIUIIII mm 11. iinmimm^tm.i nnmun. „..*.,... „w.

Ih. tot.I Mirr D-6

189 TLQC
194 HLP
191 o»c«
192 HLLZS
193 HPPE
19t UHOCK
195 1R0
196 TOW
197 AOJC
196 HL»zn
199 HOLS
zeo ICWI
zei «.osc
ZK LOA
ZM «NW1
zei HPPO
zes WO.ILE
ZÖ6 HLLZM
207 suen
Z08 MOVSS
zeg HLPH
Z1Q SCtOB
zu TOZ
Z1Z TONN
Z13 TLON
ZM JUMP
Z15 S05E
ZIE HLLO
Z17 SETOI
218 HPPE I

Z19 BOSN
ZZO TLZrt

ZZ1 HLP3S
:zz roui
2.-3 S05L
221 SETCMH
225 HPPE 5
226 HPPOM
a? SOSH

228 xoPn
229 TICE
230 HPIZS
231 opcm
232 OrN
233 H"PErt
,-3-t hNOCB
235 H'POS
236 HNDB
237 TSO
238 . SETCrt
239 TPO«
210 SETens
211 KPEtl
Z12 «OJCE

72. SZ
61.32
58.10
57.10
55.89
55.18
51 88
52.56
51 91
U.M
iB.rg
IB. 30
1575
13.1Z
39 13
38 88
37.59
36.12
35.09
31.11
33.11
29.28
26.28
26.28
25.18
25.06
21.10
21.30
20.58
19.11
18. 30
17.61
17.22
15 80
15 25
11.35
11 35
12.90
12.20
iz.oi
11.76
II. 18
11.27
10.62
10.32
8.76
8.61
6.f'2
S.B'I
1.83
3.92
2.87
2.SB
1.79

0.00(10
O.OOcM
oeooo
o.oooo
0. oono
O.OMV
O.OOIHI
0.1801
o.oooo
o.oooo
fl.O'liK)
8, MM
|. KM
O.OOtKl
0. Oi mo
0 OOiiO
0.0000
0.OMO
O.OOilO
0.0000
0.0000
n.onoo
0.0000
O.OOOO
0. Ofu'lO
O.OW'O
O.OOOO
0.0000
0. OOi »I
0.0000
O.oooo
0.0000
O.pooo
0.0000
0,0008
o.oooo
(1 (lo.io

0.0080
0.0800
0.0000
O.OOilO

0,0880
0,0000
0.0000
O.OOflO

(i. OO('i)

0.0000
0.0000
0,0000
O.OOOO
O.OOOO
O.oooo
0.0IHIO

O.OOM

MEON EHECUTIQN TIME 3.21 niCPOSEC
WHICH nEANS 03113 niPS.

099%
O.MM
0,nK
0.9996
09916
0.9997
0.9997
0.9997
0.9997
0 9997
0.IH7
0 9997
0.9998
0.999B
09998
09998
0.9998
0.9998
0.9998
0 9998
0.9999
09999
0.9999
0.9999
0.9999
09999
0.9999
0.9999
0.9999
09999
0.9999
0.9999
o 9999
•).9999
0.9999
I. Oi IOO

1.8000
1. OOOO
I. Oi 100
1.0000
1.oooo
1.oooo
1.OOOO
1. OOOti
I.oooo
1.OOOO
1. OOOO
1.0000
1.0000
1.0000
1.0000
I. oooo
1.oooo

i. oooo

) 6102
0.9091
0.9.-91
0.8936
,i.75r.5
0.9. .91
0 6102
0 9'i91
(1.5573
0.8033
0 8916
0.5013
09196
0,610:
0.9371
0.71,66
0.5573
.1 a.'3)
0.9937
0.8936
0.9371
»7597
0.9091
0.9'191
0.610:
0.5i.73
0.9196
0. TbBfi
0.i57r
O.157-
0.919B
0.6102
O.B93G
1 9197
0.9<96
0.D93G
0.89.16
0.8O33
0 919G
•.9371
O.6I11:
0. 89 3f.
0.5013
1.10"
0,8033
0,1091
0.8936
0.9371
0.9091
0.5013
0.6IOC
06936
0 8033
0.5573

37
Zl
M
zo
23
19

J
18
29
20
17
M
lb

II
lb
21
M
II
12
II
12

9
9

13
11

fl
1"
li
13

G
9
G
1
i
5
5

O.OOOO
0.0000

0.oooo
0.0000

o.o{i(io
0.oooo
0.0000
0.0 WO
0,0000
0.0000
0.0000
e.oooo
0.oooo
0.oooo
0.00110
O.OOO11
0.0000
0,0000
0. woo
O.OIIIJO

0.0000
0.0000
0.OOOO
0.0000
0,0000
O.OoOO
0.0000
0.0000
O.OOilO
0.0000
O.OOOO
0.0000
o.oooo
0.0000
0.0000
0.0000
0.0000
O.O11OO
0.0000
0.0000
0.0000

0,0000
0.0000
0.0000

0. OOOO
0.00.10
0.0(100
o.oooo
0.0000
0.oooo
0.0000
0,8000
0.0000

0.0000

mM kMa mtmmmmm^Mmi umtmm^

I I. ■■■■Ill« l lUIIM I ■ lOTpiltl IIHW I II "■ "I"1 • "ll « "I' I **••... -W«MM

I 1
1K< total SNIFI D-7

nOSt "«tCUIEO INSIPUCHONS;

NMt. a TIMES E1ECUUD. FPNCUON. LUna IPMCIION

1 nowt 191783 0.1918 0.1919
: ftDO 79:90 0.0793 o.:7ii
3 novtn 72.-93 0.07:3 0.3131
4 JRSI 7« 180 0.0702 0.1135
5 novtl 360 75 0.0361 0.1196
I PUSH 30:36 0 0302 0.1799
7 POPJ :i"50 0.02111 •.MM
B Fnpp 19386 0.0191 0.5:03
9 AOJA 18:97 0.0183 6.5386

10 PII5HJ IÄ76S 0.0183 0.5569

11 ASH 15<:30 o.ois: •.»TTI
u CHHLE 11166 o.dits 0.5B6B
13 POP 13951 O.OHO O.Bi.iS
M rsep 12976 0.0129 0.61J1
IS HPP2 123«:i7 0 0123 0.6:57
16 ftOOI 11391 0.0111 0.6371
17 TrtOP 11353 O.0111 0 6181
ia sue 11316 0.0113 0.6598
19 CMHCE li:i8 00112 0.6710

zo KO 10796 0.0108 OBBIB
21 »05 10531 0.0105 0.69:i
22 HLPi 9271 0. (1(193 0.7016

23 FSC 7886 0.0079 0.7095

2* LSH 7630 0.0076 0.7171

rs TPNN 7112 0.0071 0.7216

2E CHIN 7186 0.0072 0.7318
27 CoflL 6889 •.MM 0.7307

H mm 6513 •■MM 0.7152

29 LN 6:i: I.MK 0.7511

30 JjnPE 5BI8 0.O058 0.75."
31 C«1C 5783 •.MM 0.7630

32 FD>« 5533 0.11055 0.76Bb
33 UNE 5110 0.0051 0.7710

St OOJL 5356 0.0051 0.7793

3S XCT 5168 o.oos: 0 7815
36 nouN 51197 0.0051 0 7B9B
37 Foy 5031 O.ooso 0.7916

38 MNOI 1908 0.0019 0.7995

39 JSP 1759 O.0018 0.B013

19 C«1E 1627 0.0016 0 B0B9

11 TL/ 1311 0.0013 0813:

<2 SUB1 133" 0.(1013 08176

13 C":E 1:1b O.Odi: 09:18
11 HPPM 1198 0.0012 0.8:60

IS JUtlPLE 1170 0.0012 0 83ii:

16 Fnp 1173 o.om: 0.8311
17 inuui 3983 0.0010 08301

18 FHOPM 398: 0.H0in O.Bi:3

19 JUMPL 38" O.003B 0.816:

50 SET,; 3773 00039 09199

SI C^IG 3706 0.0037 0.B&36

S2 JJMPN 3703 O.0037 0 8573
S3 IIDB 3601 0.0036 •.MM
SI POT 3345 0.0,133 0.8613
5b novsi 3:90 (1.01133 0 Bh76
S6 JSP 3251 t.Mtn O.fliVB
57 S> IPN 3105 t.OMZ 08710
58 S' IPCE 3111 0.0031 0.8771
59 HNO :901 O.0030 8 BOiM
Bn TlNN :%5 0. 1030 0.8B31
61 50JGC :n5o 0.00:9 o.BOM
R: JP« 2036 o.(.,':8 08808
53 CHILE :B:5 O.O'CB O.B9lb
G1 J58 :8i2 0.00:0 •.«HI
65 FHDPB t.1 Li. 0.00:7 0.69-1
6fi S> 1PE :?M 0.011.-7 0 8938

6? ID1UI :58i t.KH 0.9o:i

68 uc« :558 0. 0.1:6 0.905.1

69 noun rsi9 O.O.CS 0.9..7',

70 5ET2H :-HO OmCI •.MM
nl MJ 2131 o.i'i':i 0.91:1
1- JFCL :MO 0.10:1 0 9117

^3 S>1PG :3"i ii.oi.:3 0.91M
71 S3J .-:o3 11.00:3 0 9193

75 FHOI ::86 0 00:3 O.9:IB
76 IOW 218,- o.on:: 0.9:38
77 HPLI :i8i 0.00:,- 0 9:60

78 hSHC :o7o 0.00,-1 O.'J:UI
70 noi.'Nl :on o.iuv-n •.HOI
80 IDPB 1911 0.0019 0.91:0
81 MS 186B o.ortig 0 9339
8r SOJC 1811 0. on IB 0.9357
83 MICE ifli: 0 no is 0.9375
84 V IPO 1761 .1.0019 o,93'.rj
85 SET 28 1760 O.O'ilB 0.9110
86 paic 1752 •.Mil 0.91:8
87 E»CH 1737 0.11.117 0.9115
08 TLC 1530 0.00is 0 9161

01 CHMN 1516 0.0015 0.9176

9" coio ism 0.0015 0.n191

9. HP1.2 1191 O.ooib 0.95.16

a: HI.L2 1186 0.O015 n.95:i
93 JUMPCE 1131 0.0011 0.9S35
91 TP2E 1117 00011 0 9519

— „^_

-~**^mmi i 'i^^m^mnmmmmm^m^i ~*mim*^^m*

Th. U ., SMf

98 HPLZl
98 sns
97 t-OBJP
9B rwi
99 IK«

100 S'IPL
101 HPRl
lor jrro
103 «Don
10< junpc
108 FUPPI

106 nouNfi
107 ISMC
106 HPP?!
109 SOJL
110 HUV8
111 hOSCE
ii? TO;H

113 0"B
IH HP9?n
115 HP»
116 HPL
117 HI.L
118 CAU
119
W.< «08 JN
1:1 lop
\:z sastc
ir3 HPIM
1C4 051
1:5 Bit
ire MCPOI
127 novsn
I;B FHDM
\H 5* IPLE
130 FiPPB
131 FiflPI
132 50SN
133 01?
134 50SC
135 »MB

' 36 mm
13? MPP^s
138 HLPE
139 fCMM
MO 5ET0
141 nnws
142 004
143 SUOn
144 IP?
145 «008
146 FSB
147 IPC
148 FdPI
149 SEICH
150 SOJE

I UP
FSBPH

151
15?
153 «OSG
154 StlJH
155 SOJLE
156 imJLII
157 TL?N
158 II.2E
159 nu.1
160 EQV
161 OPCfl
IB: «OSLE
163 fflPPM
164 SOJN
165 0)7
IbB «OP
167 IONE
168 «CUE
169 «05«
170 nuL
171 lOPH

ISC
173 HPLOI
174 Oil
175 «Norm
i re FHüB
177 FDUM
178 Hi»L?n
179 C«I
180 »OPB
IBI IOPB
IB." SET?I
183 l-'N
184 »'I"
185 «NOCn
186 «Nocnn
187 IICN
188 H)PI
189 SQSOE
190 5ElC«n
191 «OJN
19? «F,7

1:79
1.-79
IZ77
1?50
1241 as
1:10
i:oe
1180
1147
1143
1138
1111
1084
986
9<9
949
00"
e:i
re:
749
747
738
7:6
7?n
709
MS
610
SRI
576
S.'o
56*
SbG
54 B
S38
si:
46:
456
449
425
4?:
407
ST. 7
367
3:i
319
315
3'<e
305
:eB
:87
:87
:8"
"7?
:7o
:6i
?41
:36
:36
:33
?:3
?:o
?17
186
175
174
173
171
158
ISO
137
137
i:9
1?5
1::
117
117
97
96
89
87
86
86
76
74
7:
66
66
59
56
55
49
48
46
44
41
41
40

8. Oil
0,. 13
O.1W13
o.noi:
o.o^i:

0.001:
0.001:
t.tOtf
0 on u
o.omi
0 00 n
O.O'MI
0.0011
O.'OlO
0.0009
U 1'in 19

IV."9
o.OtiOB
o.iiivis
O.l'OiV
H. niii>r
0.0i>"<7
O.niW
O.i'« »07
o.iimo
0.01107
O.1MO6
O.oi'HB
0.011116
0 1I1I1I6
U.I10116
t.l 6
O.i 10^5
O.o.if'5
O.OOiiS

. Öl« '5
..«15

. 01104

.0iiO4

. MM
. Oil04

• nil 14
. Oiiili

n r«'n3
8.0083
O.i'i'i'l
OlniOS
0,i'I'O 3
0 ili'i"i3
0. ill »13
0. Oi'03
0.0i">3
0.00'13
0.1111113
(1. ill 1113

0. M(C
0 oin':
0. Oi Hi?
o.oim:

0. oini:
0 Him:
0 rnii c
o.oiio:
(1,1'Oll^
o.nniv
o.oi-o:
I.OMZ
0. Oi ni:
o.ni'n:
11 m mi
0.0001
0. in nl I
O.Oi'.M
0,0001
O.di'ill
0 Oi iO I

0.0001
0.0001
O.lHllll
O.O'iOl
0.0001
0.0001
0. lino I
0,0001
0,0001
0.0001
0.0001
0*0001
0.1« nil
0.0001
O.oooo
0. Oi nlfl
0. 0000
fl.0000
o. iwio
0.0000
e.oooo

0.956:
0.95-5
09587
0.9600
0.961.
o.%:4
0 9637
0.9G49
0 9660
0 %-:
0 %B3
0.9695
0.9.oe
0.9717
0.97:7
0.9736
09746
0.9754
0.9763
o.97.,o
0.9778
0.3-85
0 5 ''I
0.90""
o.9flo7
0.91114
0.90:1
0 91177
U 9(133
0.9033
0.3045
11 3(150
O.OO'.fi
0.501.1
0 98(i.-

0.907:
0.9H'6
O.MBI
I.I.SURS
0.9090
0.3094
o.nnsB
0.99":
0.99"S
0.93113
0.991:
0 9915
0.9318
il.99:i
0.99:4
0.93.-7
0.9310
0393.-
0.9935
"9338
0 9910
0 9943
0.994b
0.9348
II.93'IO

0.395:
0.3954
1I.93S7
li.395fl
0.9360
o.m:
0 9364
0.9965
0 996'
0.3'!BB
0.9'J-O
0,99-1
li.99,3
0.9974
0.93.'S
0.93'6
o.93:'7
0 99 .'8
0.3379
0.998'>
0.99B1
0.938:
0.9903
0.9383
0.9381
0.9985
0.9305
0.99BG
0.99B-
0.9987
0.9308
0 9988
09989
0.99B9
0.999"
0.9390
0.9991
0.3891

Reproduced From
best available copy.

- -" — —"-- ■■ -" - —

The total SNIFT
D-9

193 TLOE 37 0.0000 0.9991
13H 012 31 Ö.QOOO 0.999:
19') Han 33 0.0000 0.9992
13G TO'JPB 33 0.ooon 0.999:
197 KP5 32 0. n. too 0 99Q3
198 XQPI 3.1 O.C'OOO 0.9993
199 HO.IC 29 0,0000 0.9993
20'3 IPO 2B o oooo 0.9991
JOI 0G2 27 Q.COOO 11.9.191
262 inuiB 25 0.0000 0.9991
203 HPPE 23 0,0000 0.9991
201 no« i-L 0 0000 0.9995
Z05 «OJLE 21 0,0000 0.9995
206 HLR 21 0.0000 0.999'.!
207 OPCfi 20 0.0000 0.9995 mo HuL2S 20 0.0000 0.9995
?<i3 Hi.P?n 20 0.0000 0.9996
210 H\OCH 19 O.OOnrj 0.999S
?11 TOQH IB 0.0000 0.999G
212 HPLS 17 9.0000 0.9396
Z13 HPPQ 16 0.0000 8.9996
211 870 15 O.oiioo 0.999G
CIS finsE 15 o.oooo 0.9997
Z16 071 11 0.0000 0.9997
Zl? HLL2M 11 0,0000 0.9937
:IB SETOI 11 0.0000 0.9997
219 JUMP 11 0.0000 0.9997
220 HPPE I 13 0.0000 0.9997
221 TLON 13 0.0000 0.9997
222 HNDU 13 0.0000 0.999D
223 Maygs 12 O.oooo 0.9999
224 SflOB 12 0.0000 0.9999
225 SUflM 11 0.oooo 0.3998
22b HLUM 11 0,0000 0.9990
227 017 11 O.OOOO 0.999R
229 HLLO 10 0.00(10 0.9991)
229 TONN 9 0.0000 0.93911
231 TDZ 3 0,0000 0.9990
231 TLZrt D O.OOOO 0.9990
232 SQSE 9 0.OOOO 0.D399
233 OPCfll 7 0.oooo 0.9999
231 mm 6 O.oooo 0.9999
23S TICE 6 0.oooo 0.9999
236 eio 6 0.0000 0.9999
237 HLPES 6 O.OOOO 0.9999
239 uppon 5 o.oooo 0.9999
233 SOSL 3 0.oooo 0.9939
240 056 0. Oi IOO 0.9999
211 HPPES 0.0000 0.3999
212 SETCm 0.0000 0.9993
213 FO'JRM 0.0000 0.9999
211 en O.i'000 09999
215 SOS»» 0.0000 0.9999
246 o:i o.oooo 0.9999
217 015 O.OOOO 0.9999
219 050 0.OOOO 0.9999
213 Hi-'PEM 6■oooo 0.9999
250 HOPM O.oooo 0.9999
251 MfLZS 0. oooo 0.9993
252 HPPOS 0.oooo 1.OOOO
253 OFN 0.0000 1.OOOO
251 061 0.oooo 1.oooo
255 6NDCB o.oooo 1.oooo
25B ^61 O.OOOO 1. OOOO
257 020 0.Oooo 1.oooo
259 0G5 O.oooo 1. OOOO
259 SETCA O.OOOO 1.oooo
260 063 o.oooo 1.0000
261 076 0.0000 1.oooo
262 602 0.0000 1.oooo
263 035 0.0000 1. OOOO
261 «NOB 0.oooo 1 .0,10.1
265 Ob6 O.oooo 1, OOOll
266 016 0.0000 1. OOOO
267 003 0.000(1 1,0000
269 TPOfl o. OOOO 1,0000
253 TSD O.oooo I.Oono
270 FD'vlI O.OOOO 1.0000
271 HLPEM 0.0000 1.oooo
272 hOJGE O.OOOO 1. Oooo
273 SEICHB o.oooo 1 .000(1
271 057 0.0000 1.0000

Mi —- i MUM- - ■ ■ V -li* W- >l£ k'U&W

iiaij,-i,uiiijj,ij,ijiij,ii.i<i;jriipipjii i:iii!«iiii4.i<iM<i!JWf.i mi . Miiu»(i,^iyii«i»uiji»(Miwi,'Wl'j-mwwi»JWi IP ^ «.j.mmtiij'.-MJ. .i.tfmmwm

The tola! SNIfT D-10

INS1PUCII0N SEI UIIL1S«II0N

INrOPWIION IHEOPEIICftL;

BY « EKECUIED INStPUCTlDNS. (CIl)iil; 5.1BI6
er EKECuTiGN TIMES. MCTUiUi s.srao
THEOPfTIC«. MHXItlUd! 8.?215

FOSTER CONTER-PISEnuN FUNCTION

"OPCODES • OPCODES «OPCODES FPMCIION I 1NCP. IN « («IClllED IN5IP. .' Tim

USED PECOOED INTEPP. INUPP. "fCOOING roCIOPS OPE 2.4. 8. IB.

ZM 0 0 o. roiio (1.0, Will 0.oono 0.0000 O.i moo

2?3 11 O.lVvCi P.Oi'i'ii 0.OOOO (1.(11100 (1.1,,100

I'll 2 z O.i'OOO 0. OOOO O.OOOO O.lVOO 0.0000

271 3 3 0.0.'00 0, ..'Oi „.i (1. oooo o.oooo O.Oooii

;7o 4 4 O.liOOO O.M.iOO O.Ol'OO 0. oi»1(1 O.liO.il

zss s 5 O.oooo 0. oooo 11.11000 0.0000 OOiiiil

;R9 6 7 O.i'OHO O.o,,oo (i.nooo 0.0001 11.011,11

?&? 9 o.oooo O.OOHO 11.00011 O.Ollill P.Oi uil

rse B 11 O.ooon p. OOOO 0,0060 O.IIOOI 11.00112

:bs 9 13 fl. fill 10 0.0000 O.OOOI O.ooil 0.0",C

-B1 10 IS 11,0000 o oono O.OOOI (i.OOO I 11.0002

263 11 17 O.OOOO O.pooo O.OOOI O.OOOI (1.0063

rs; 12 19 O.OOOO 0.0000 0.0001 0.0002 0.0003

:si 13 21 O.oooo (1.0000 O.OOOI 0.00112 0.1111113

zso H 23 0.0000 0. Oi '00 O.OOOI 0.1111112 0.0001

2S9 15 26 O.oooO P. pool (1.0001 O.O0112 (1.11004

:3B IB 29 0. Oi 100 O.oooi O.POOl 0.0002 O.OOiiS

25? 17 32 0.0000 n.ooo; O.OOOI O.0003 n. ,1,1,15

r^s IB 3S O.OOHO O.OnOl 11.0001 00003 ii.oiiiin
A 19 3B o.oooo O.OOOI (1.110,12 0.0003 0 1111O6

251 20 41 0.0000 o.oooj 0.001.12 0.0003 0.0007

253 21 44 0,0000 P. 0001 0.00(t2 O.OOOI (1.0(1(17

252 •»•1
It- 47 0.oooo O.oooi 0.0002 O.POOl 0.0,100

251 23 50 o.oooo O.OOOI 0.0OO2 O.OnOl 0.000(1

:5o 2-4 54 O.oooi o.oooi 11.00112 0.0004 0.1.111119

2-.9 25 SB O.oooI O.OOOI 0.0002 0.0005 0.0009

:<B 2G 62 0.0001 0.0001 0.0002 0.onus 0.0010

Zl? 27 6B 0.0,11)1 O.OOOI 0.0003 O.OOOS 0.01111

^^6 28 70 O.oooi O.oooi 0.00,13 .1.0006 n.oiiu

Z15 .-9 "4 0.0001 0,0001 0.0,1,13 d.OOOR 0.0012

2« 30 •B 0. ooii i 0.0002 0.0,103 o.oooB 0,01112

:H3 31 s: O.i'OOl 0.0002 0.0003 0.0007 11,(1013

2« 32 B; O.OOOI (i.0O'i2 0.0003 0.01107 0.0014

2'tl 33 92 O.OOOI (i. 0002 0.001:14 0.00(17 0.0015

210 34 97 0. POO 1 0.0002 0.0004 o.ooon O.oii IB

239 35 io: 0.0001 o.ooo: 0.0004 O.Ooofl 0.0016

730 36 107 0.0001 0.0002 0.01104 0.000a 0.01117

:3r 37 112 O.OnOl 0.0002 0 0004 0.0009 O.Onin

736 30 MB O.OOOI 0 ■ 0(iO2 0,0005 O.oong O.OnlU

J35 39 124 O.OOOI O.O1102 0,0005 0.0010 ii.OiCO

Z3t 40 130 0.oooi O.0003 O.OOOS 0.0010 0.111121

:33 41 136 0.0001 0.0003 0.0005 (1.0011 0.0(122

232 42 143 O.OnOl 0.0003 0.0,1,16 O.dOll 0.0023

231 43 IS1 P. 0002 0.0003 0.000G 0.0,112 0.00:4

7301 44 160 0.0002 0.0OI13 O.oooB 0.0013 0.0O26

2:9 45 160 0.0002 0.00,13 0.0007 0.0014 0.110:7

228 46 178 0.0002 0.0004 ll. ill ill 7 0.11014 O.Oi'.-B

227 47 18tl 0.0002 n.1100.1 0.0000 0.0,115 il.nnao

226 4B 199 0.0002 0.0,1114 O.oooo 11.00 IB 0.0113:

225 49 210 0.0002 0.0004 O.OOOB 0.0017 11.0031

2;t SO 221 0.0002 (1.1 „104 O.ooog (i.oniB 0.0035

223 51 233 o. pOPZ 0,0005 0.0,109 0.0013 0.0037

222 S2 245 0. oi vi2 o.ooos O.l'OlO 0.0020 11.0,139

221 53 259 0.0003 O.OOOS 0.0010 0.0021 (1.1'OU

220 54 271 0.0003 O.0O05 P.0011 0.0022 (1.0043

219 55 "84 0.0003 0.0006 0.0011 0.0023 (1.0045

21B 56 298 0.0003 0.0006 0.11012 0.0024 0.0,110

217 57 312 0.0003 O.oiiOG 0.0012 0.0025 O.OOliO

216 SB 326 0.0003 0.0007 0.11013 0.01J2B 0 005:

215 59 340 0.0003 0.0007 00014 0.0027 0.O1151

2H BO 35S (l. 0004 0.0007 0.01-14 O.OOZB 0.0057

213 51 370 0.00O4 0.0007 O.0015 0.0030 0.(11159

212 52 386 P. ('001 O.dofB 0.0015 (1.01131 ti.0062

211 63 403 P.oooI 0.0000 0.0016 0.0032 O.O11R4

210 64 421 0.0004 O.OOi'fl 0.0OI7 0.0034 0.0067

209 6S 440 0.0004 o.ooog 0.00 IB 0.0035 0.11070

2.10 66 460 O.ooos ('.0,109 P.0018 0.01137 0.0071

207 67 4H0 O.0005 0.0010 0.0019 0.003B 0.OO77

2^6 GO 500 O.O0O5 0.0010 n.0020 0.0040 O.O11BO

205 69 521 0.O0O5 0. On 10 0.00:1 0.0042 0.0'103

2.11 70 542 o.ooos P.n"ll 0.0022 0.0043 0,OII07

203 71 564 n. niii IB n.fioii 0.01123 0.0045 (1,11090

202 •%•% 587 P.OOOo 0.P0I7 0.0023 11.111147 0,Oii94

201 73 612 0■0006 0.0012 0.0021 0.0019 (i,0ii9B

200 74 63'J (i. 0006 0.0013 0.0026 0.0051 0.0102

199 75 667 0.0007 0.0013 0.0027 0.0053 0.OI07

19B 76 596 p. 0007 poo 14 0.00:8 (i. 0056 o.om
IB" 77 7,-S 0.0007 0.0015 0.0029 0.0058 0.0116

196 7B 75B p.OOna 0.0015 0.0030 0.0061 11.0121

195 79 791 O.OnOB 0.0016 0.0032 0.01163 0.0127

ist 80 824 0.0008 0.0016 0.0033 0.0066 o.ois:
193 81 858 o. firms 0.0017 0.0034 ii.0"B9 0.0137

192 92 895 0.0009 P.00 IB 0.0036 0,pii72 P.OI43

111 83 935 O.Oiiog 0.0019 0.0037 (1.P075 0.P1S0

•«. a^MM '"■■t'-''L';'J"^-' AaafcÜtÄI iiÜte^Jfek5a*w*v^^. l-„,-^

•«««"JW"""*""1«-1 .I"-""« i).i.-i j u\itmiwMwimH*»i,'mn\ifm' "■" ''''''"'»••maimwwi,-^ imm>»<-'i"'""*J*mv"mmim*.*"<••"*••'■>*■ vmmvwMW" -Tl

I
;;..-'::-;^.^1'-'.t:,..-' ■

Thr total SN1FT 0-11

f- v

i \

130 81 975 0.0010 0.0020 0.0O39 0.0078 0.0156
103 05 1017 0.0010 0.0.Co 0.0011 00081 00163
IBB B6 1061 o.ooii 0.0021 0.0012 0.0OBS 0.0170
IB? 87 1107 o.oou 0.0022 0.0011 0.0089 0.0177
IB6 08 1155 0.0012 0.O023 0.0015 0.0092 0.O185
185 89 1201 00012 0.0021 0.0018 00006 0.0193
181 30 1259 0.0013 0.0025 0,0.-150 0.0101 0.0201
183 91 1315 0.0013 0.0026 0.0053 O.01O5 0.O210
IB: 92 1371 0.0011 0.0027 0.0055 O.01in 0.0220
181 93 1110 0.C0I1 0.0029 0.OO5O 0.0115 0.0230
ifln 91 1505 0.0015 O.OOJII 0,0060 0.0120 0.0211
1?9 95 1578 0.0016 0.0032 0.0063 0.0126 0.11252
1?8 96 1552 0.0O|7 0.0033 0.0066 0.0132 0.0251
1?7 97 1728 0.0017 0.0035 0.0069 0,0138 0.0275
176 38 1811 0.0018 O.O.OC. 0,0073 0.0115 0.0290
ITS 99 inno O.o.iig O.on30 o.M.1,'6 0.0152 0.0301
\7i K'O 1387 0.0020 o.aoio 0 0079 0.0150 0.0318
173 101 2075 0.0021 0.0012 0.0003 0.0155 0.0332
172 102 2172 0.0022 0.0013 0.01107 0.0171 0.0318
171 103 2263 0.0023 0.0016 0.0091 0.0182 0.0.153
170 101 2386 0.0021 0.0010 0.01195 0.0191 0.0382
169 10b 2503 0.0025 0.01150 0.0100 0.02110 0.11100
158 106 2625 O.0O26 O.OOS2 0.0105 0.0210 0.1H2O
167 107 2750 00027 0.0O55 0.0110 0.0220 0.0110
1R6 108 2B79 O.0023 0.0058 0.0115 0.0230 0.0161
1S5 109 3015 0.0030 o.pnc.i 0.0121 0.0211 O.01B3
151 110 3153 0,0032 0.0063 0.0125 0.0252 0.0501
163 111 3311 0.0033 0.0066 0.0132 0.0265 0.0530
16J 112 3169 0.0035 0.0069 0.0139 0.0278 0.0555
1G1 113 3610 0.0036 0.0073 0.0116 0.0291 0.0582
160 111 3B13 0.0038 0.0076 0.0153 0.0305 0.O61P
153 115 3387 0.0010 0.0080 0.0153 0.0319 0.0538
lr.8 116 1162 o.ooir 0.0003 0.0165 0.0333 P.0566
IS? 117 1318 0.0013 (1.0087 0.0171 0.0318 p.0635
IS6 118 1565 0.0016 0.0091 0.01E3 0.0355 0.0730
155 119 1785 0.0018 0.0095 0.0191 0.0383 0.0755
151 120 5008 0.0050 0.0 H'O 0.0200 0.0101 0.0801
153 121 5211 0.0052 0.0105 00210 0.0119 0.0839
152 122 5177 0.0055 0.0110 0.0219 0.0138 0.0076
151 123 5713 o.(io57 O.OIH 0.0229 0.0157 0.0311
15P 121 5951 0.0050 0.0119 0.0230 0.0176 0.0953
119 125 6215 0.0052 0.0121 0.0219 0.0197 0.0331
11B 126 6185 0.0065 0.0130 0.0259 0.0519 0.103B
117 127 6757 0.P0B8 0.0135 0.0-70 0.0511 O.IOBI
116 128 7037 O.0070 0.0111 0.0281 0.0553 0.1126
115 129 7321 0.0073 0.0116 0.0293 0.0585 0.1172
HI 130 7611 0.0O75 0.0152 0.0301 0.0609 0.I21B
113 131 7839 0.0079 0.0158 0.0315 0.0632 0.1251
1« 132 8201 0.0002 0.0161 0.0328 0.0555 0.1313
111 133 8512 0.0085 0.0170 0.0310 0.0681 0.1362
HO 131 BB27 0.0088 0.0177 O.0353 0.0705 O.Hl?
139 135 9115 0.0091 0.010? 0.0365 0.0732 0.1153
138 136 9167 0.O09S 0.0189 0.0379 0.0"S7 P.1515
137 137 9BJ1 0.0098 0.0197 0.0393 0.0787 0.1573
136 138 10201 0.0102 0.0201 0.01110 0.0818 P. 1532
135 139 10608 0.0106 0.0212 0.0121 O.O019 0.1697
131 110 11030 0.0110 0.0221 P.0111 0.0882 0.1765
133 HI 1 H5S 0.0115 0.0229 0.0158 0.0915 0.1833
132 112 11901 0.0119 0.0210 0.0176 0.0952 01905
131 113 123GO 0.0121 0.0217 0.0101 0.0909 0.I97B
130 111 12822 0.0128 0.0256 0.0513 0.1026 0.2052
129 115 13331 0.0133 0.026? 0.0533 0.1057 0.2133
129 116 13872 0.0139 0.0277 0.0555 0.1110 0.2220
127 117 HUB 0.0111 00288 0.0577 0.1153 0.2307
126 118 H971 0.0150 0.0299 0.0599 0.1198 0.239G
125 119 15530 0,0155 0.0311 0.0522 0.1213 0.2185
121 150 16108 0.P161 0.0322 0.0611 0.1289 0.257?
123 151 165BI 0.01S7 0.0331 0.0657 0.1335 0.2563
122 152 17265 0.0173 0 03(5 0.0691 0.1381 0.2752
121 153 17B75 0.0179 0.0357 0.i..nl5 0.1130 0.2850
120 151 18577 0.P186 6.0372 0.0713 P.1186 0.2372
119 155 19286 0.0193 0 0386 0.0771 01513 0.3086
118 156 20005 0.0200 0.0100 0,0800 0.1600 0.3201
117 157 20732 0.0207 0.0115 0.0829 0.1659 0.3317
116 158 21170 0.0215 0.0123 0.0859 01718 0.3135
115 159 22217 0.0222 0.0111 0.0BB9 0.1777 0.3555
111 160 22956 0.02 30 0.O159 0.0919 P.1837 0.3575
113 161 23718 O.0237 0.0175 00950 0.1900 0.3800
112 152 21569 0.0216 0.0191 0.09B3 0.1966 0.3331
111 163 25H9 0.0251 0.0503 0.1018 02036 P.1072
110 161 2533Ü 0.0251 O.052B 0.1055 0.2112 0.1221
103 165 27317 0.0273 0.0517 O.IO'JI 0.2188 0.1375
10B 166 26333 0.0283 0. i'567 01133 0.2267 0.1533
107 167 29117 0.0291 0.0588 0.1177 0.2353 0.1707
106 158 30528 0.0305 0.0611 0.1221 0.2112 P.1B81
105 159 31566 0.031? 0.0633 0.1267 0.2533 0.5057
m 170 32809 0.03:0 0.ii656 0.1312 0.2625 0.5219
103 171 33355 0.0310 0.0679 0.1358 0.2715 0.5133
102 172 35135 0.0351 0.0703 0.1105 0.2811 0.5622
101 173 35311 0.0363 0.0727 0.1151 0.29iiB 0.5B15
10,) 171 37551 0.0376 00751 0.1502 0.3001 O.GO09
99 175 38776 0.0308 0.0775 0.1551 0.3102 0.5201
98 176 111017 0.0100 0.0800 0.1601 0.3201 0.6103
37 177 11267 O.oin 0.0025 0.1651 0.3301 0.6503
35 178 12511 0.0125 0.0051 0.1702 0.3101 P.60O7
35 173 13823 0.0138 0.0875 0.1753 0.3505 0.7012
31 180 15102 0.0151 0.0302 0.1801 0.3608 0.7216
93 181 1G519 0.01B5 0.0930 0.1851 P. 3722 07113

— ■-'-■ - - — - —-■■ -'-'"'■"'■""•laiiitfriiiii

pviiikji,!. ,P)MW«.IIP wpiMmi mmiwm m*.*™**.mmm»mießil<.immmm>M. v-'JH«^'S^P<(lW«4JllWtlfSlJ«ip^!l».W|!|4WIJ!lt«^

Th. total SNIFT
D-12

3r 18Z 4 7350 0.0479 0.i'95Q .1.1918 0.3fl3B 0.76.':

31 183 494 36 0.0491 0.11399 11. 1977 0.3955 0. 7910

30 IB4 5093" 0.0509 0.1.119 0..-1137 0.4074 0.11119

83 185 5Z4 34 0.05:4 0.1049 0.2097 04195 O.B389

08 IBB 53950 0.0539 0 1079 0.:i5B 0.4316 0.8632

87 187 55400 0.0555 11 1110 0.7:19 0.443B 0.887?

B6 IBS 5.717 0.0572 (1.1114 (i.;:B9 0.4577 0.9155

as 189 5GJG9 O..'590 0.11-9 0.Z359 0.4717 0,9135

84 190 G07Z9 O.O&i? 0.1.-15 0.2429 0.1B5B 0.9717
83 191 BZ493 0.06.-5 0.1:5.1 0.2500 0.4999 0.9999

o: 19: 64 3H5 0.0643 0.1286 0.2572 0.5144 1 ii.-fl'J

01 193 65146 0.0651 0.13:3 0.2646 0.6292 1.0583

8i> 194 6B014 0 GOO 0| 360 02771 0.5441 1.ooo:
73 195 699:B ■ ..0699 01399 0.279? 0,5594 11100

78 196 71941 0.0719 0 1439 0.2878 0.5755 1.1511
77 197 74011 0.0740 O HOO o.zgso 0.59.-1 i.1842
7o 198 7613Z 0.0762 0.15Z4 0.3018 O.61195 1,2191

75 199 70374 0.0704 0 1567 0.3135 0.6270 1,2510
'1 ZOO B"5GO 0.0807 0.1613 o.3::6 0.6153 1.2906
73 201 0:953 0.00311 0.1659 11.3118 0.6635 1.3:72
72 ZO.- 85.-54 0.0853 0.17.15 0,3410 0.6B7O 1 31,41
71 r"3 87644 0.0876 0.1753 0.15.16 0.7011 I.I11.-3

70 .-04 9.1078 0.0901 0.1602 0.31.O3 0.7.-06 1.4412

G9 Zns 9:51fl o.P9:'5 0.1850 0.3 ••ot 0. 71111 1.10.1.1

68 Z06 95037 0.0950 0.1901 0.3801 P.-603 1.5206
S7 207 g'sgs 0.0975 0.1952 O.39.1I 0. ?Biia 1.5515

66 :I<B 100176 o.1002 0.2001 0.400? (1.8014 lün.'O

S5 :o9 102800 0.10:9 0.2058 0.1115 0.B230 1.6461
SH 210 IO!iG02 0.1056 0.2112 (i.IZM 0.8448 1.(1096

63 ZU 100114 0. 11'04 0 :IGII 0.1337 O.0G73 1. 7346

s; Z1Z 111.-39 0.111Z 0.2225 0.4150 0.6899 1.7790

61 Z13 II l.>-5 0.1141 0 :.-BI 0.1563 0.9126 1.8252

60 Z14 llf.9-S 0.11G9 0.2338 0.4677 0.9.i5-l IO'IO

S3 Z15 119090 0.1199 o.:3n8 0,4 795 0.9591 1.3182
SB :i6 122871 0 1.-79 0 2457 0,4915 0.90.11' 1.9559
57 Z|7 irsin: 0.1ZGO 0.252**1 0,5.139 1,0079 2..1157

56 ZIB 123167 11 1232 0 :5ii3 0.516? 1.11333 2.ii667

55 Z19 i3:4i8 0.13:4 0 7610 o,5.-97 1.0593 2.1107

54 220 I357..0 0.1357 0.2714 0.51,-0 1.0(157 ;M7I3

53 t.L 1 13').'5 3 0.1391 0..-701 0.556: 1. 11Z4 2.2218
5: t i c 14:554 0.142? 0 Z053 0.5706 1.1412 Z,.-B.-5

51 ZZ3 145357 0 1464 0:9,-7 0.5054 I,17ii9 .-.3117

50 ::4 I5i.'63 11.1501 0.3001 O.61 H'- 1..-.105 2.4OI0
43 zzs 151036 n.1510 0.3077 il. 5151 1,2307 7.1611

48 ZZB 157650 0.1577 ■1.3153 0.6306 1.2KI3 2.5225
47 161640 0.1G15 0.3733 0.6466 1 7931 2.5862

46 zro 1B56Z3 0.1656 0.3312 ii.65:5 1.3250 Z.(.5.io

45 zr9 IGT-96 0.1690 0.3396 U.679: 1,3501 2.7167

44 230 173374 0.IV40 0.3179 0.6959 1.3910 2.7836

43 Z31 KB 177 0 17HZ 0. 3561 0.7127 I.I.-51 2.8507

4? Z3Z 10.-410 0.1824 0.3510 0.7797 1.1593 .".9107
4 Z33 105755 0 1058 0.3735 11.7170 1.4910 2.9001

40 Z34 1911 "19 0.1911 0.3822 0 -544 1.5288 3.115-6

39 236 195 7.-6 0.1957 0.3915 0,70:9 1.5550 3 1116

36 Z3G 2*3405 0..-005 0.4010 0.0ili9 1.6039 3.21177

37 :37 205393 n..-ii54 0. MOB 0.8216 1.6431 3.2BG3

36 ,-30 210427 0.2104 0.4:.19 O.OU" 1.61111 3.3550

35 Z39 Zl 55.-4 0.Z1S5 0.43IO 0.8621 1.7242 3.1101

34 :40 220632 0.2207 0.4111 .i.BOZO 1.7655 3.5111

33 241 22B048 0.2260 0.I5ZI 11.9114; l.O'iOl 3.6167
s: 242 ZSMHO 0:315 O.151.1 11.9.-59 1.0519 3.7.130

31 :4 3 2370Z1 0..-3.-0 0.4740 0.9481 1.8362 3.79-3
30 .-4 4 Z4:B.I4 o.:4.-fl 0.1050 0.9712 1 9424 J.OHIO

:g 245 Z4os."z o.,-4Hi; 0.4972 .1.9915 1 .90911 3.9 ■■79

:B ZH6 Z54B34 0..-548 0.5.'97 1 11191 2.039." 4.0773
,-7 ."4 7 Z6I317 o,n;i3 0.5227 1.0454 Z.oDiia 4.10:5

:G 248 zr.o:3b 0.2582 0.5366 1.117Z9 2.1459 1.2918
:5 .-49 27542Z 0.7754 0.5508 1.1017 2.2034 4.1.'67

24 250 292804 .v."fl:9 P 5657 1.1315 2..-5.-9 1.5750

:3 Z51 Z9"191 0.2305 0.5810 1.1620 2.3.-39 4.6479
7-1 Z5Z 29B3flo ii.:904 0.5950 1.1935 2,307.1 4.7.'41

z\ Z53 307651 0.3075 0.6153 IZIiiG 2.1612 4 9.'.-4

2n ."54 31010" O.3IB: 0.6161 1.2727 2.5451 5.i",l"9

19 Z55 328378 n,3290 0.650.1 1.3159 2.6318 5.2836

18 ZSfi 340Z1B 11.3107 0.6BO4 1.16119 2. "17 5.1115

17 257 351564 0.3516 0.7i)31 1.4062 2.8125 5.6250

IB :5B 36,"9|7 0 ;)n:9 0. 7.-58 1,1517 2.91.33 5. Oi'66

15 Z59 3-4311 0.3743 0.7486 1197; 2.9915 5.9009

14 260 301,510 0.3066 0.773.- I.5465 3.0929 6.1059

13 ZG1 399494 0 3995 0.75911 I.5900 3.1959 6.1919

1? ZGZ 413140 0 4134 0 B769 I 6510 3.3076 6.6151

11 Z63 4Z7914 ii.4:79 0 0550 1.7115 3.42J3 6.0165

10 :B4 44 3144 0.1131 00063 1. 7726 3.5451 7.0903

9 :fi5 461409 0.4614 0.9.-.'8 1.0456 3,6913 7,30:5

0 Z6G 4'971« 0 1797 11.9594 I.91B0 3,8376 7.6753
7 rB7 49909: 0.4991 0.9982 1.9961 3.9927 ,'.9851
6 ZGfl 5Z0I4: 0.5201 1.11101 2.0806 1.1611 B..r,-2
5 ZG9 550378 0.5501 1.1008 2.2015 4.403.1 BOiilm

4 Z70 500(53 0.5065 1.1729 7.3150 1.691G 9,30.i.-
3 Z71 655633 0.6SGG 13133 :,G:65 5.2530 10.5"6I
2 Z7Z 728326 0.7209 1.4570 2.9157 5.B3I1 11.65.-6

1 273 808ZI6 0 80BZ 1.6164 3,23:8 6.4G57 12.9114

Reprod need From i W%k
best available copy. % vw

.... ^.— J^...-^^....„.-.. , J*. < ^„j „.^^■ L

IMBBBBMMIiMrilBWWWWiriiWWMWiwriiMiiiiii««»« i

E-l

APPENDIX I

Listins of (he «horl «ubicct »l9orith«5

ALGOL PROGPHMS

BHIPSIOU

BEGIN
COMflENI IHI5 IS mCOPITHn 30 rPOH THE CMCM HLGOPUHMS SECTION
TYPE-IN HND CHLLINC PPOGPHH BY d. LUNDEi

ftPPH» COCFFSI'lrl^l.PPEHLIliini.RlniiClliiri.CONCONIlilZll
INTEGEP I0EG.ITEP.NDICS.1X.1SET:

PPOCEDUPE PUTOUTdOi:
UMLUE IOI INTEGEP IDi
BEGIN

WPIIEl'IZClDHTrt SET 'I: PP1NTI10.3.PI1
TOP IX • I STEP 1 UNTIL IDEG DO
BEGIN

HBITEl'ICI'H
PPINTIPPEHLIIXI.G.?!! PRINTlPinrtGIIXI.B.?.-

PPlNTiCONCONIIxl.ia.tii
END; ! OUTPUT LOOP:

PETUPN:
ENOi ' PPOCEDUPE PUIOUTi

PPOCEDUPE POOTPOLiNDEC.UCOF.LITEP.NriGS.PPE.PIfl.CONVli

UHLUE NDEG.LITEP.NrlGGi
INTEGtP LIIEP.NriGS.NDEGi
HPPH» «TCOf.PPE.PIM.COWi
BEGIN

INTEGER I.J.ni
BRPH» CDF.B.C.O.EI-JiNOEGIi
PErtL IST.OCCUP.PS.OS.PT.QT.SCL.P.PEU.P.Oi

PPOCeDUfiE PtWERSEi
BEGIN

TST ' -TSTl
n ' ENTIEPMNDEG-li/Oi
FOP J > 0 ST;P 1 UNTIL n DO
BEGIN

SCL • LOFUli C0FIJ1 - COFINDEC-Jl;
COFINDEG-JI •■ SCL;

ENOi I SHIPPING LOOP;
ENDi ! REL'EPSEi

INTEGER PPOCEDUPE LINEAR;
BEGIN

IF TST ■ n.O THEN P » l.n/R;
PPEIN0EG1 >■ Pi PIWNOEGl - P.O;
CON'.MNDEGl - ^CCUP;
NDEG - NDCG-li
FOP J - n STEP I UNTIL NOEG DO

IF «nS'Coriji/Dun < BCCUR THEN COFUI - oui
EISE enru) . o.o:

LINtftP > NDEC;
END; I PPOCEDUPE LINEAR;

Bi-n ' BI-:I • ci-n ► ci-zi • DI-U •■ EI-II •
C0F(-11 > 0.0;
FOR J ' P STEP 1 UNTIL NDEG DO CDFIJ1 - XTC0FIJ1;
TST - 1.0; HCCUP - IP.O'NFICS;

COnrCNT WHILE C0FINDEC1 = P.P DO;
ZPOTESI;

IF CHFINDEGl = e.O THEN
BEGIN

PPCINOEGI - 0.9; PiniNDECl » 0.0; CONWINDECl ► ACCU«;
NDEG • NDEG-I;
GO TO 2R0TEST;

END;

COnnCNT UNTIL NDEG • 0 00;
BEGIN

INIT;
IF NDEG • P THEN GO TO RETURN;
PS <■ 0.0; Q5 • 0.0; PT • 00: OT - 0.0;
SCL •■ 0.0;
REV - l.Oi ftCCUR - 100 t NFIGS;

IF NDEG - 1 THEN
BEGIN

R . -COFIll/COFiei;
LINEAR:
GO TO RETURN:

END;

FOP J » 0 STEP 1 UNTIL NDEC DO
BEGIN

IF COFUI " 00
THEN SCL • LNiH3S(C0FIJlntSCL;

END;
SCL • EXPiSCL/iNOCGMII.

FOP J - 0 STEP 1 UNTIL NDEC DO COFUI - COFUI/SCL;
IF ABS(COFI1I/COF10)) < ADSiCOFINOEG-11/C0FINOEC1)

THEN REVERSE:

COMMENT WHILE TRUE DO I FIND LIN OR OUAD FACTOR;
BEGIN

REVStO:
IF QS "0.0 THEN
BEGIN

P . PS; 0 - QS;
END ELSE
BEGIN

IF COFINDEG-;i = 0.0 THEN
BEGIN Q - 1.0; P • -Z-0 END
ELSE
BEGIN

0 • COflNOEGl/COFINOEG-21;
R - (COF1NDEC-11-0«CDFINDEC-31)/COF(NOEG-21

END:
IF NDEG = 2 THEN GO TO QADPTIC;
R ► 00;

END;

COMMENT WHILE TRUE DO < LOOP FOP LINEAR FACTOR;
BEGIN

ITERATE:
FOR I • I STEP 1 UNTIL LITER 00
BEGIN

BAIRSTOU:
BEGIN

FOR J ► 0 STEP 1 UNTIL NDEG DO
BEGIN

BUI ► COrUl-P«BU-ll-0'BU-Zl;
CIJ1 - aUl-P»CU-ll-<3»CIJ-2I;

END;
IF COFINDEC-11 a 0.0 THEN
BEGIN

IF BINDEGII " 0.0 THEN
BEGIN

IF AOSrCOFlNDEG-ll/BINDEG-m < ACCUR
THEN GO TO NEWTON;

HINOEGI - C0FINDEG)-0>BINDEC-21;
END;

END;
BNTEST.

IF BINDEGI = 0.0 THEN GD TO QADPTIC1
IF ABSiCOFINOEGI/BINDECll > ACCUR

THEN GD TO OMDPTIC;
END;

NEWTON:

LIN-.

FOP J •■ 0 STEP 1 UNTIL NDEG DO
BEGIN

OUI - C0MJ1*R'DU-I1;
EU) * DU1»R'EU-11;

END;

IF 01NDEGI ■ 0.0 THEN GO TO LIN:
IE ACCUR (ABSICOFINDEGI/DINDEGD THEN

BEGIN

IF LINLAR x 0 THEN GO TO RETURN
EISC CD TD ITERATE

END;

CINDtG-11 ■■ -P«CINDEC-JlCl«CINDEG-31;
SCL • CIN0EG-2l»CINDEC-:i-ClNDEG-n>CCNDEG-3I;

IF SCL = 0.0 THEN
BEGIN P • P-:.0; 13 . 0'iOM.OU END

ELSE
til ft 1N

P > P»(B|NDFr,-n«CINDEG-ZI-BINDEGI«CINDEG-31)/SCH
O . g.(-BINnEG-ll«CINDEG-lMBINDEGI»CIN0EG-2Il/SCL

END:

IF EINDLG-ll • 00 THEN R • R-l
ELSE P ' R OINDECI/LINDEG-U;

END ITERATE LOOP;
END LINEAR FACTOR LOOP:

PS • PT: OS - OT; PT
IF BEV ' 0.0 THEN ACCUP
REV » -PEV;
REVERSE;
GO TO PEV5E0;

END FHCIOP FOUND;

• P; OT • IJ;
ACCUP/10.0;

Reproduced from
Jest available copy.

ilMIIMIIidMtKiM(l 1 ■, „.■f..^'--'"'---''^-^^"--"'..-.".---- '- ■tir,|-i,ili<«iiiyiiiBif~...-- ...„^.a>.,.;..-,._„-.^

f»HilwHiwwiwiH!l-H«"WJiJlw«W.i|iuu]iuii".(»lllwmipi.*u.iwin.iii,iiJ. aj.:\i'^w^iMiv¥-.^*^^^y!imi.wi'(!mi^»-**^ wv '"m^nmrn;*

Liitma of (he short »ubjeel sl<»crilhmi

OMWTICi
IF IST < «.0 THEN

BEGIN P > P/Q; Q • 1/Qi ENO.-
IF fi)-IP/2.ai«CP,7.8ll s 9.0 IHtN
BEGIN

PPSIN0EC1 * PPEINDfC-11 • -P/:0:
5CL «■ SOP1IO-lP/2.0i»(P/2.oni
PiniNOCGi - sa.
PIt11N0£G-ll • -SCLi

ENO ELSE
BEGIN

SCL •■ SQPTi(P/r.O)«iP/?.ai-Qli
IF P < fi.O IHEN PPflNOEGI • -P/J.CK'JCL

ELSE »PEINOEGI - -P/Z.O-SCLi
PPEINOEC-11 • iJ/PPtlNDtGh
PimNOEGl - PiniNOEG-ll •■ B.Ol

ENO i
C0W1N0EG1 <■ HCCUPI C0W(N0CG-I1 - HCCUPI
NDtG •- NDfC-:^
FOP J >■ 0 STEP 1 UNIIL NDEG 00
BEGIN

IF BUI ■ 0.0 THEN COflJl "• O.fl
ELSE IF f«S(C0F(Jl/8IJ|l <. ftCCUP THEN COflJl - BUI
ELSE C0FIJ1 • 9.01

ENO i
CO TO INITi

ENOi I UNTIL NDEG -- f> DO LOOPi
RETURN:
ENOi ! PR0CE01FE POOTPOL i

ISET - 1:
IOEC •• 4i ITEP - IB: NOIGS • T:
COEFFSini . ipnaonnn.oi COErFSIll • -iin3l3ii.|i!
COEFFSI") * -109900.61 COEFFSO) ' K"WOO.Oi
COEFFSIil - 1.81

POOTPOi (IOEC.COEFFS.ITEP.NDICS.PREHL.Rin.iG.CÜNCONii
PUTOUTIISETIi

ISET - 2i
IOEC * <: HEP - 10: NOIGS - 7:
C0EFFS19) - 1.0> COrFfSIll ' -3.11:
COEFFSm - 20.Oi C0EFFSI31 - M.O:
COEFFSUl - SI.Oi

POOIPOLUOEG.CDtFFS.lUR.NOIGS.RPEHI.RIMHG.CONCONII

PUlOUTlISETli

ISET - 3i
IOEC -6: ITEP » Hl: N01G5 •• 7l
COEFFSIPil ► 1.0' COEFFSIll - -2.Öl
CDEFF5I21 - 2.0: E0EFFSI3) - 1.0:
COEFFSUl - B.O: C0EFF5I5I • -6«:
CDEFFSI6I ► 8.0:

RDQTPOLI IOEC.COEFFS. HER.NOIGS.RPlHL.RimiG.CDNCON)!
PUTOUTHSETi:

ISET • II
IOLG • 5: ITEP » 10: NOIGS • ?:
COEFFSI«! - 10: COEFFSUl • 1.0:
COEFFSUl - -B.O: CHErrs(31 • 16.0:
COEFFSUl - 7.0: COEfFSISl • 15.0:

ROOTPOLI IOEC.COEFFS.IUR.NOIGS.PPEMI.RIMHG.CONCONI:

PUTOUTIISETII

ISEI - 5:
IOEC - 11 ITEP ' Ifl: NDIG5 - 7:
COEFfSIOl • 1.0: COEFFSUl • 50:
COIFFS 121 - 3.0: COEFFSUl - -50:
COEFFSUl - -9.0:

POOTPOL I IOEC.COEFFS. ITEP.NDIGS.RPChL.RItlFtG.CONCONr:
PUTOUTIISETIi

ISET - 6i
IDEG ► 3: ITEP » 1": NOIGS * 7:
C0EFFSI01 » 1.0: COEFFSI1i • -B Ol
COEFFS 121 •■ 17.0i COEFFSUl - -10.0:

RnOTPOLHOEC.COEFFS.nEP.NDlGS.RPEfiL.PIIInG.CONCONIi
PUTOUTIISETIi

ENO

E 2

CPÜUI

COWINT liUS IS CWCO «.COPITHtl 13. CROUT LINEhR EOUNS.
«.CORniHI BY HINPV C THHCHER JR. .
NEW I^rPPPOOUCI ROUTINE «NO OTHER DRESSINGS B» ft. LUNGE
C-mj 13".:

MPPM(IC/UMTI 11 IS• 1:151 .RIGHT11 ■ 151 .SOL 1111511
INIlfifP IIPPHY LOIrtGI l:15li
Phil OIPMN:
FOPUHPD LHBEL SINCULWi
INIIG1P I.Ji

PEnl. PPOCEOUPF INPPRllftL.fiR.lIN.LOW.IlHXIi
I/.IUL LlN.lOM.fWK:
IMCGEP LIN.LOU.miXi
HPPHY dl.M:

UEGIN
LONG PEil SUfti
IMF KP K«l

SUM -O.O:
FOP 1.« ' 10W STEP 1 UNTIL IK« DO

Sllrt > SUn<W.ILlN.Ml»HRIUl:
INPI'Pl • SUn:

END:

RErtl PPOCFOUPE INPPPnuiPPY.LlN.IOL.LOM.nftXll
llnlUF LIN.tOl. .LOH.rirtXl
INTfGEP LlN.>OL.lDM.tlHXi
rtPPlVF KPPYi

BEGIN
LOW. PEfll sum
INIIMP IX:

sun ► 9.0i
FOP M • LON STEP 1 UNTIL Hll« DO

5Un . SUH'flPPYILlN.m.ftPPYIKX.i:OLl'
INPPP: • SUM:

ENO:

PPOCEOUPt CPOUiriHPP.RHS.NBYN.PES.IVOTP.OEI.PEPEftTli
WllUE NFIYN.PFPFMT:
„I'PMY HPP.PHS.PES:

INTEGER NOYNi
IMtr.FP MPPilY 1V0TP:
PI nl DEI I
noni f HN PI PEHT :

BCCIN
INUTifP IX.J/i.lX.imX.IPl
PLHI UMP.OUOI:

OF I • 10:
IF RIPtftI THIN CO TO LdBLRi
FOP l< ■ 1 STEP 1 UNIIL NIIIN DU
BEGIN

IIMP . 0.0:
FOP I» • I' 5IEP 1 UNIIL NIHN DO
III r,IN

MPPUX.FXI • fiPPI|X.F«l-INPPP:ihPP.IX>'X.l.F.<-lli
II ..BSUiPPIIX.KXIl > TEMP IHN
01 GIN

IIMP - HOSHIPRIIX.FXIU

IIIMX • IX:
EM):

ENOi
IWlll'IFXl - iniK:

IF mux » F« IllfN
uiniN

Of! • - Oil:
ri)'' J- ' 1 STEP 1 UNTIL NHlN DO
BEGIN

IMP • hPPIIX.JXl:
Hf'IFX.JXl - rtPPliniu.Jxli
H I IMlW.Jld » TEMP:

END:

ilf.l' • RHSlmll
Htisiixi . piisiinrixii
PHSimHXi . imp

END:

IF HPPIkX.kXI - O.P IIIIN GO 10 SINGUlilRi

gilOT • l.O/HPPIlX.FXli
FOP IX - ix»l STEP 1 UNIIL NOFN 00

MPPUX.FXI > IJUOI'liPPIU.FXl:
FOP J« • FXM STEP 1 UNTIL NBYN 00

MPPIM.JXI • ftPPUX.JXl - |NPPP2lftPR.KX.JX.l.KX-l)l
PH51MI ' PHSIt-Xl - INPPPUfiPR.RHS.FX.l.rX-ll:

END:
CO TO IBL71

i

 •—' - ■ ■■ -
,-__ UM ^. .. , ,.

II Müll I u ill ..« wjHwei" "I.I.WWJIW'.III.HI . i" W li .IWUIIUl|14l.l«imJ«WI».» «i».!™!!.!.!!»!!. miUl.JIPHJIJIJHIlpilJIWÄlHIIl.l II. Jl 'I- -.ui,„M........ .. ,

■P^f^^WK^m^V^S'gmv^nsssT^r-rt'fK

Liltina of th« short »ubject «IsonthM E-3

LRBLBi COnnENT NEU RIGHT SIDE ONLY.)
FOR KX > 1 STEP 1 UNTIL N8YN 00
BEGIN

TEMP » PHSlIUOTPIfXIli
RHSIIVOTPIKXII - PHSIKXI:
PHSIKX1 ► TEMPI
PHSIKX) > RHSIKX1 - INPPPIIMR.RHS.KX.I .KX-I li

END I

LBL7i
FOP KX * NBVN STEP -1 UNTIL I 00
BEGIN

IF NOT REPEAT THEN OET » ARPIKX.KXI'DEI i
PESIKXI - (RH5IKX1

- INPPRHftRR.PES.M.KXM.NaVNH/HRPlKX.KXIi
ENOi

ENOi ! THAT HAS CROUT 2.)

FOP I - I STEP 1 UNTIL IS 00
BEGIN

FOP J • I STEP 1 UNTIL 15 00
EQUATII.JI - II«J)/Z.ei

PICHTII1 ► LN(I/3.9>i
EQUATII.ll - EQUATII.IIMS-Ii

ENDi

CR0UT2(EQUAT,RICHT.IS.S0L.IDIM;.DTRMN.rHL5E)i

GO TO EXIT;
HPITECMCl'li
PPINTIOTPMN.10.6)1
UPITECICl'li

FOP I •■ 1 STEP t UNTIL 15 00
BEGIN

HPITE'MCl-K
FOP J • 1 STEP I UNTIL IS 00

PPINT(E0UHT(I,JM0.61I

ENOI
MRITEClCl'll
FOR I - 1 STEP 1 UNTIL 15 00
PPINT(LOIM>III.ie.eii
wPiTEi'icru

FOP I - 1 STEP 1 UNTIL IS 00
PPINTIPIGHTIII.ie.Gli
UPITECICl'li

FOP I - 1 STEP 1 UNTIL IS DO
PPINT(50L[IMe.B)i
GO TO EXIT I

SINCULARi
MBITElMCJSINGULflPlCI'li

EXITi
ENOi! ENO OF MAIN PPKPAM. i

IPttSOPT

BEGIN
COWIENT ALCOPITHM 113 fPDM THE COLLECTED ALCOPITHMS COLOUMN

OF THE MM. ALCOPITHM AUTHOR IS ROBERT U FLOYD.
MHlN PPOGPrtM U. CALLING SEQUENCE SUPPLIED BY A. LUNOEl

ARRAY BEF0PEI1I401I.AFIERI1>100|I

INTEGER INFINIW.Ki

PROCEDURE TPEE50PTIUNS0PTED.'J.SORTED.KlI
VWLUE N.IC;
INIEGER N.» >
APPAY UNSORIEO.SDPIEDi

BEGIN
INTEGER I.Ji
INTEGER APPAY niii2*N-l)l

FOP I » 1 STEP 1 UNTIL N 00 MIN*I-ll •• HIBOOB^N»!-! i
FOP I • N-l STEP -I UNTIL 1 00

Mill » IF UNSDRIEDIMU«!) D1V 100001
< UNS0RTEDIMI2MMI DW 180001 TICN MIZ'Il

ELSE MIZ'IMIi

FOP I • 1 STEP 1 UNTIL K DO
BEGIN

S0PTEDIJ1 - UNSÜPTEOinil) DIV lOOOOli
1 - MI1MMI11 DIU lOOOOXieOOOi
Mill - INFINITY < IrtOOO:
FOR I • I OIV 2 WHILE I > 0 00

Mill ■> IF UNSORTEOIMIZ'll DIV 100001
< UNS0PIE0IMIZ«I*11 DIV 109001 THEN MIZ"!!

ELSE MIZMMli

ENO J LOOPi

ENR IREESOPTJ

INFINITY • •1011
FOP 1^ • 1 STEP 1 UNTIL 100 00 BEFOREIKl - 401.e-Ki
BEF0PEI1011 •• UWOO.Oi

TPEESDPKHtFOPE.IOO.AFTER.'tOCil;

FOP K ► I STEP 1 UNTIL 339 00
IF MFTEPIU > AFTEPIK'll THEN
BEGIN

WPITEi'lCl'M
PPINTiK.E.OH
WRITEl- OUT OF OROEPICDi

ENOi

ENO MAIN PROGRAMi

mmmmä^aiM -- ■ - iimiir'^ n.im i imnlnni—■'—: ,.,..,, r. L_^ ^

PHWI!HipW|lWHt<MUI',i,lipp!lB!iPAH^^,')»J'^»'W ^"Wl^P^JJWtlWWIWPJW^ÄW*1' '-^••.T*f't»-^wipm.>ii!M..iii(i«w>i.»;jw'f^.jvwi<w.^iys^iBiM,w.,fl^wj^*i

E-4

Luting of lh« »hort lubjtct •Igonlh»»

PtHT

BEGIN
INTEGER NEWS.IXi . ,. „.,
INTECE» «Pf»«» INlttlftST.tlMKtllSeOll
hPPftY ESTiri£.E«L»S.L«TEFlli3901i
REW. TSTflRTi

PROCEDURE P£RT(NI«l<.lBEG.JENO.IE,ST.l'«X.LNt..ES.«TI.

IN1ECER Nmx.EWi«!
PEHL ST:
INTEGER flRR«lf IBEG.JENO.LNKi
REM. «PR«'' TE.ES.ftTi
WLUE NtWX.STi
BEGIN

INTEGER li .. „„
INTEGER NX.IEX.ISX.ITX.kXi
REAL «XX.XXXi
SWITCH SM - Gl.GZi

PPOCEOUPE SCfWITOBJH
INTEGER TOBJi
BEGIN

INTEGER KXi
IF 1EX » 1 THEN

^FOP M - 1EX-1 STEP -1 UNTIL 1 DO
IF TOOJ - LNKim THEN
BEGIN TOBJ » KXi CO TO RETURNi END

LNK1IEX1 * TOBJi TOBJ ► lEXi IEX > IEXM.
RETURN.

END SCAN I

FOR NX '- 1 STEP 1 UNTIL NtlAX 00
BEGIN SCANCJENDINXl). SCANMBEGINK1U ENOi

EHAX . lEX-li ISX - II AXX . STi
MHILETRUEDOi

FOR* IEX - I STEP 1 UNTIL EtIAX DO ATI IEX 1 ► AXXi

S2
FOP NX ► 1 STEP 1 UNTIL NtlAX 00
BEGIN

IF LNMIBECINX!) > 0 THEN
BEGIN

SWITCH SHI • 01.B:i
GO TO SW1I1SX)!

91 =

BZi

XXX . ABSIATIIBEGINXIP • 'EINXli
IF XXX > ABSIATIJENDINXIP THEN AllJEND1NX1)
GO TO ESACli

KX ► kX»li

JEN0INX1 • ITXl

INIECER APPAT LFi
APPHY EAS.Xl.Fl
BEGIN

WRIIEC EUENTStCl'U

^VxxT^iÄiiiilV^NATUENOlNxn.-XXX,
ESACli

END)

FOR'IEX ► 1 STEP 1 UNTIL EUAX 00
BEGIN

IF LNKIIEXK 8 THEN
BEGIN

IF ATIIEXI < 0 THEN
BEGIN

LNK1IEX1 - ABSlLNMirxlli
ATIIEXI - ABSIATlIEXlli

END:
END ELSE

'^ÄIlExr-LNinEXl. KX^X-I. END
ELSE ATIIEXI - AB5IATI IEXDI

END)

IF KX ■ 8 THEN GOTO SZ>
GOTO SUZIlSXIi

61t
isx * zi
FOP NX . 1 STEP 1 UNTIL NtlAX DO

Knx . IBEGINX1) IBEGINXI . JENDINXI.
ENOi
AXX •■ 0;
FOP IEX » I STEP 1 UNTIL EflAX DO

BEEs7lEXl . ATIIEXI. LNUIEX1 > ABSaNHlEXDi
IF ATIIEXI ■> A« THEN AXX • HTIIEXIi

ENOi
GO TO MH1L£TRUED0>

"FOR IEX ♦ 1 STEP 1 UNTIL EUAX 00 LNU1EX1 • AÖS.LNKIIEX1):

END PERTi

PROCEDURE PUTOUTINEU.LK.EAS.XLF):

UALUE NEWi
INTEGER NEU■

WPIUVICl'li PRINTINEW.^.Oli
CO TO PriURNi
FOR IX • 1 STEP 1 UNIIL NEW 00
HEG IN

URIlECltlMl PRlNTILtllXl.1.011
PPN1.EASIIX1.10.1)1 PR1NT1XLFIIX1,10.411
IF HOSiiEHSIlxl-XLFIlXin < 9-001

IHENWPITEl* CPIllCAL'li
EWl
MRIIECICIMi

RITUPN-.
END i

PROCEOUPE UDRMNACIS)!
WALUE NMCTSI INIECfR NtCTSi
BEGIN

INITIli • li
INITI:I •■ ll
1N1TI3I - 11
IN1TM1 - ll
1N1TISI > :■■

INlllEl - 2i
INITI71 ► 2i
INITIBl • 3:
INIllOl • 3i
INI II UM ii
INITIllI 6;
INITIICI > b.
1NITI13I . 7i
INITim . 7i
INlTllbl ► ?;
IN1TIIG1 - Si
INUIWl • Bi
INI1I1B1 . 9i
INlllllll . IOi
IN1II.-01 ' Si
INITICII . B
INITI:.-! ► fli

iNinrai . Uli
IMTItH - \Z>
INITICSl - Ill
iNinrBi ► 111
INIUZ^l - bi
INITITBI . 7i
iNinrai • 111
1NI1I3»! . 31
IN1TI3II ► Ml
iNni3:i • 4i

LASTI1I •
LH5TI21 ►
LMSTI31 -
LHSTI41 ►
LASTIS1 *
LHSHBI ►
LA5TI7I -
LHSTIBI •
IA51I9I ►
LASTI10I •
LASTIUI •
LAST 1121 ►
LAST1131 •
LASTIUI «
LAST 1151 •
LAST 1161 •
LHSTI171 •
LASH IB I ■

LASH 191
LASH 201 •
LAST1211 '
LAST 1221 '

1 ASH.'SI
LAST 1211
LASH2SI
LAST 1261

LASH 271
LAST 1281
IHSTI29I

LAST 1301
LASTI31I

LAST 1321

3;
li
lOi
&l
bi
7i
6i
7i

- 7;
. 5i
- Bi
. Bi
> 9i
. 101
- Hi
. Ill
• Hi

Hi
12i
12i
Hi
Hi
13i

■ 13i
■ Hi

13i
Si

► 12i
► 12i

I3i
18i

ES1II1EI11 ► Z.5i
ESTIMEIZl ► l-Bi
ESTIHEISI - 3.0i
fSHW.IIl ► 18-41
E51IMEIS1 - 4.2i
tSTintlBl ► 3-81
E5TmEI71 . B.7i
ESTinEIBl - l-li
ESimEI91 •■ l-3i
ESIIHEIIOI - «.Zi
ESTIMEIllI * B-Si
ES1II1EII21 - 2 Zi
ESTmEll3l •• 1-9i
tSTltlEIHl • 3.Zi
ESIinFIISl ► l-li
ESTIHEIIBl - 6.0i
ESTinEll71 • 6.0i
EST1I1EI1B1 ► B-li

ESTIMEI191 - 0.71
ESIinEIZOl •• 4 Bi
ESTinEIZIl - 0.7i
ESTIMEIZZl •■ 6.4i

FSI1I1EIZ31 •• 3-8i
ESIII1EI241 •• O.Zi
tSVIIEUbl • Z.Si
ESTIMEIZBl - 0-9i

ESTIIEIZ?! • tl-H
ESTmEI2Bl - 6.01

ESTIf1EI291 - 731
csTinciaai - S-BI
ESIin£l3ll ► 0-7,

ESIIi1EI3Zl ► IZ-61

151APT • O.Oi
PCRnNHCIS.INIl.LAST.ESTinE.TSlHPT.NEWNTS.LINII.EARLTS.LATEF).

PUI0UT1NEWNTS.LIN»..EARLYS.LATEFI1

ENOi

UDPM32I1
W0Ri:i27)i

ENDi

äMMMM «MM MMiM ■ ■
—.^MMMMMHilliM«

fJ-,;"ft-""—' : -■' -- li^^ftM

■'■•ai/mimiKsfim ^«■■■■■»■■■■■■■■■■■■■I^IIIIWWlilll Hi l -i .1

Listing of ihr short fubjtct slsorithms

HMWIE

BEGIN
COMMENT THIS IS O'L&D ALCOPITHn NO. Z57. HAAV1E NIEGPhllON.
ALGOPITHtl B¥ POBEPT N. tUHIl . PUBLISHED CHCII I9ES,
TYPED BY ft. LUNOE. C-MU 1972.1

REfL ft.B.EPS.tlHSK.Y.rtNSUERi

REAL PROCEDURE HftVIElA.B.EPS.CRrtND.H)!
WLUf n.B.EPS.tli
1NTEKP til
REftL fl.E.EPSi
REAL PROCEDURE CRHNDI

BEGIN
REAL H.rilOPTS.SUm.SUtlU.O.Xi
INTEGER l.J.K.N;
APPAY TI1>1Z1.U11I1Z).TPREUII<IZ).UPKEV(1I|ZII

ENDPTS • GPAND(A)i
ENOPTS • e.SXCRANDiBHENOPTSI.'
SUrtT •■ I).di
I . N ► 1>
H •. B-A:

ESTIMATEi
Till • H«1EN0PTS»SUMT)I
SUMU - O.Bi

K » ft-H/Z.0i
FOP J » 1 STEP I UNTIL N 00
BEGIN

* . X«Ht
sum - sunu>CRANO(xii

END)
Ulli •■ H'SUMUi
K - li

TEST>
IF ABSITIKl-UlKl) <■ EPS THEN
BEGIN

HHUIE •. e.S«(TIKl«U(Klll
GO TO EXITi

END i

IF K ■ I THEN
BEGIN

D * D t (2*IOi
TIK'II - (D«Tlf.l-TPREVlKl)/(0-l.e)i
TPPEVIK'll - TIKli
UIKM1 . rO«UIKl-UPREWIKll/{0-l.e)i
UPREVIK1 . UIKli
K •. It<li
IF (C . tl THEN
BEGIN

HAUIE > nftSKi
GO TO EXITi

END i
CO TO TESTi

END i

H » H/Z.Bi
sum ► SUHT * SUtlUi
TPPEVIK1 •. TtKli
UPPEWIK1 >■ UlKli
I ■. IMi
N * 2"Ni
GO TO ESTItlATEi

EXITi
ENOi ' END OF HAAVIE INTECPHTOR. i

REAL PPOCEDUPE EKPZm I
VALUE X;
REAL X:
EXPZ ♦ EXP(-X»Xl!

A » B.Oi
6 . l.Oi
EPS » o.eooosi
tlASI. <• 9.39:
ANSWER » HAUIEIA.B.EPS.SQRT.IZX
UPITEi'ICl'li PPINTihNSMEP,1,10)1 WRITEl'ICl'lr
EPS - o.eooeAD
A - 0.01
B - V3i
ANShER - HAUIE'A.B.EPS.EXPZ.IZ)!
URITEI'ICDi PR1NTIANSWER.4.10)1 HRITECICl'li

END) 'END OF tlHlN PROGPAM.

E-S

ISING

BEGIN
COI-WNI THIS IS HLCOPIH« 3S5 OF IHE EACH ALGORITHM SECTION.

PUBllSHtD IN EHCM 12.10 (OCT 19B9I P.562.
OUTER BLOCI WITH 1/0 HND 01HER STATEMENTS INTRODUCED
MW) IMUE PARIS ANU REMMINDEP OPERATOR HOOED BY A. LUNOE.
CHPNECIE-MELLÜN UNIVERSITY. JULY 197Z.i

INTEGER APPAV SEQUIlilOOli
INTEGER MHX.ONES.SH1FIS.1.UPPER.HAXMI,mil

PkOCEOUrE ISlNGiN.X.I.Sli VALUE N.K.Ti
INTEGER N.X.Ii INTEGER APPAY Si

BEGIN
INTEGER t,:
INTEGER APPAy L.niltt OIV ZMh

PPOLTDUPr SORKL.M.ZIi VALUE Z>
INTEGER ARRAY L.Ml INTEGER Zl

BEGIN
1NTEGEP R.I.J.ML.ZBi
FOR Ml. - 1 STEP 1 UNTIL N 00 SIML1 - Zl
R . 1 ► li ZB • 1-Zi

AAi J ■. R«Llll-li
FOR ML - P STEP 1 UNTIL J 00 SIML1 » ZBl
IF I»l <• k THEN

BEGIN R » J«M(llMi 1 • IM l GO TO AA ENOi
GO TO EXITi
MPUEl'ICrii
FOP r* - 1 STEP 1 UNTIL N DO

BEGIN
IF 'ML PEM ZU = 0 THEN WRITEIMC1—')i
PPlNTISIMLl.Z.eii

ENDi
EXIT:

END SOPTl

PPOCEDUPE BISORTIL.MH INTEGER ARRAY L.Ml
BEGIN

SOPTIL.M.Oli SORTiH.L.ll
ENO BISOPTi

PPnrEDUPE CDMPOSEiX.k.L.Pn VALUE X.Ki INTEGER X,Ki
INTEGER ARRAY Li PROCEUURE Pi

BEGIN
INTEGER I.Ai
.' X ■ > THEN GO TO CCi
LI II * X-Mli
FOP I*: STEP 1 UNTIL K DO LIII • li
Pi
IF k <= 1 THEN GO TO CCi
A - li
IF LlAi > 1 THEN

BEGIN
IIAI - LIAl-li LIA'l) • LIA^llMi Pi
IF A • K-l THEN A . AMi
GO TO ÜB

ENDI connrNT LIAI > i LOOPI

LIA1
IF A

LIAMll LIAMI
■ I THEN GO TO BBi

li A-ll

CC;
END COMPOSEi

L - T OIV ZMi
IF H PEM Zl ' 1 THEN

BEGIN
PPOCEDUPE Pll BISHPTiUMli
PPOCEDUPE PZi COMi'TCEiN-x.K.M.Plli

CDMPDSEiX.K.L.PZ)
END

ELSE
BEGIN

PPOCIOUPE P3i SOPTU. .M.M)
PRQCEDDPE Pit COI1l'05EiN-X.»;-l.M.P3Jl
PPOCEDUPE PSi SOPTiM.L.Di
PROCEDURE PBi COMPOSEiN-X.f.M.PS)i

COMPOSEiX.k'.L.P'tli
CDMP05EiX.t.M.L.rGl

ENOi

END ISlNGi

-. . - ■

**—~- , UM* u . i .liaMMMMtMaaillMr

|^pipi(Apil^'u*«|WWJ,M^lH!4W|!l«-,lllM)^ ^«WWWBESBWWpimS^wiWi^WM^ir^'^-HS^^^^ ^mmmmM^^m^-^w^.ut^imv Mi(M'»,|»!»-i».iw4tf'"

Lilting of tht Short subject ■Isonthas

HRITCl'IClTYPE UPPER BOUND FOR rWX(Cl«-)i
REMXUPPERIi MRlTECICI'li
FOR tWX > 3 STEP I UNTIL UPPER 00
BEGIN

rvixm » mx-11
FOP ONES > 1 STEP 1 UNTIL tWXNl DO
BEGIN

mi • imwoNes.MUX-ONES)i
FOR SHIFTS - 1 STEP 1 UNTIL IMI 00

IS1NGIW»;.ONES.SHIFTS.SEOUI •
ENOl

END i

ENO rWINPMCRMIi

E-8

B«5IC VEPSION OF PERT

300 DIM Ii30Cn.L(3O(li.m3O0)
100 DIM Ei3O0).fl3OO>.Xl3OOI
110 Nl > 3:
1?0 CD5UB V00
130 N - 27
110 GOSUD .MO
150 S10P
700 PEM SUBPOUTINE WORK
BOO III) ■ li
900 Ltn • z
1000 nn ' 2.5
1100 ICi • 1
uoo U21 ■ 3
1300 Et2) ■ 1.6
Hoo 113) • 1
1500 LI31 ■ 1
1600 EI3) = 3.0
1700 Id) • 1
1800 LID « 10
1300 EID • 1B.1
:ooo lISi ' 2
21O0 Ll^l • 5
2:00 EI5) • 1.2
J300 116) ■ 2
:ioo LI61 • 6
JSOO E16) • 3.8
:6oo 117) • 2
J700 LI7) . 7
JBOO E(7) • 5.7
:goo 118) • 3
3000 LIB) • P
3100 EI8) ■ I.I
3:uo 119) • 3
3300 Ll9) = 7
3100 EI9) ■ 1.3
3500 IUOI 1 1
3600 LI 10) = 7
3700 EHO) ■ 0.2
3800 HID -■ 6
3900 LHP = 5
1000 Ellll ■ 6.6
1100 11121 ■ 6
iroo L(IZ1 » 8
1300 El ID • 2.2
1100 |I|3) • 7
1500 LII31 • a
1600 Ei|3) . 1.9
1700 1111) - 7
1B00 DID ■ 9
1900 EIID ■ 3.2
5000 HIS) ■ 7
5100 LII5) = 10
sroo E(15i > 1.1
5300 HIS) « 5
5100 LUG) • 11
5500 Eit6) » 6.0
5600 III?) > B
5700 LII7) > 11
5B00 EI17I r B.e
5900 HIB) « 9
60O0 LI iöi ■ 11
6100 Eiiei ' 8.1
s:oo IMS) . 10
6300 LI19) • 11
6100 EII9I = 0.7
6500 1(201 • 5
6600 LI:O) • 12
670O El.TO) . 1.8
6800 UJII = B
6900 Lirn ■ 12
7000 Ein) • 0.7
7100 1122) • B
7:00 LI;2) ' 11
7300 EI::) - 6.1
7100 11:3) ■ 18
7500 Lirsi ' 11
7600 EI:3) = 3.8
7700 11:11 • 12
7B00 L(."l • 13
7900 EI:D ■ 0.2
8000 1(25) ■ 11
B100 H25) • 13
BJOO E12S1 • 2.5
8300 1126) • 11
8100 L12G) • M
85O0 El 26 . 0.9
8600 1127 ■ 6
8700 LI27 ■ 13
8800 EI27 • 11.1
8900 II2B . 7
9001 LI28 • 5
91O0 Ei2e . 6.0
9:0l 1129 • 11
9301 LI29 ■ 12

 mit üaniiMMMi . _
■■■.'—-—--■ 1 i-r-vi ■iiwa;-:-''-"-''"-'''''i"''--':"'--|«ta»ii«r.iriii- _ . ^d

mm*"i« p^n^n«««iTCpn9i«HMi in i. . in ..iuiiHiwimqi^ni^P«^Milu< w-'wwwwiijiiiiiu.,4iiii,Ji»"¥«'wwi"uug. UIU.JI «.III» i.nu nigi"««« ■

-r> iiiMlill—MWI^WWW»

Lilting of th« fhorl fubjtcl ■Igorithat E-7

3ioe ties) • 7.3
9509 1138) • 9
9600 U301 ■ 12
9700 E(301 ■ 39
9600 1(311 • 11
9900 L(31) > 13
10000 EOll - 0.7
10100 1(32) • 4
10200 Li32» • 10
10300 E(32) • 12.6
10500 Tl « 0.0
10700 PI» CfiLL PE»I(N1.U,L.E1.T1.N2.L2.E2.X1)
10000 COSUO 13300
10805 KM COLL PUT0UI
108)0 G0SU8 10910
10830 RETURN
IOSOO
10910 REH SUBROUTINE PUTOUT
UOOO PRINT «.• EVENTS'
11100 RETURN
11200 FOR 12 » 1 TO N2 STEP 1
11300 IF 0.001 > A85IIF(I2)-XI|Z))) THEN 11700
11100 PR.NT 11(12).FII2I.X(I2I
11600 GO TO 11900
11700 PRINT M(I2).F(12).»(12).- CRlTICilL'
11900 NEXT 12
11990 RETURN
11998 REM
11999 REfl
12000 REM SCHN(I2.I1.L2)
12010 REP1
12200 IF 12 ■ 1 THEN 13000
12100 FOR Kl = 12-1 TO) STEP -1
12B00 IF II • (KKl) THEN 12700
17B50 CO TO 12900
12700 11 ■ Kl
12800 RETURN
12900 NEXT Kl
13000 Ml 12) • II
13100 II • 12
13200 12 ■ 12*1
13290 RETURN
13298 PEM
13299 PEM
13300 PEM PERT(NI.I1.L.E1,T1.N2.L2.E2.X1)
13100 REM
13608 12 ■ 1
13700 FOR N3 • 1 TO Nl STEP 1
13780 II • LIN3I
13790 G0SU8 12000
13800 REM COLL SCnN(IZ.L(N3).LZ)
13810 L(N3) • II
13880 II • I(N3I
13890 GOSUB 12000
13900 REM COLL SCAN(I2.1(N3).L2)
13910 I(N3) ■ II
11000 NEXT N3
11100 N2 - 12-1
11200 IS - 1
11300 01 ■ Tl
11500 REM WHILE TRUE 00
11800 n ■ NZ
11900 FOR 13 • 1 TO N2 STEP 1
15000 >(I3I > 01
15050 NEXT 13
15200 PEM DO <B00Y> WHILE KZ X 0
15500 FOR N3 • 1 TO Nl STEP 1
15S00 IF 0 ■ M(I(N3I) THEN 16900
15800 REM CftSE 15 OF
16000 ON IS GO TO 16200.16600
16200 «2 • nBSixiIiN3))HEiN3)
16300 IF (ieSIXILIN3)n V. X2 1HEN 16900
16350 X(L(N3)) ■ -X2
16100 GO TO 16900
16S00 XZ • 0nSiX(I(N3)l)-tlN3)
16700 IF X2 >• 0BS(X(LIN3))I THEN 16900
15750 X(L(N3)) ' -XZ
16900 NEXT N3
17100 FOP 13 - 1 TO N2 STEP 1
17200 IF M(I3I >• 0 THEN 17BO0
17300 IF X(I3) - 00 THIN 18300
17100 M(I3) = ftB5(MiI3))
17500 KZ ' KI»I
17600 *l]2} = ftBSIXII3ll
17700 CO TO 18300
17900 IF O.O > XI131 THEN 1B200
17900 MlI3i « -MII3I
18000 t:2 • «-1
18100 GO TO 18300
18200 K(I3) • RBS(XII3)I
18300 NEXT 13
18100 IF K2 - 0.0 THEN 1B700
18150 GO TO I'xOO
18700 ON 15 CO TO 19000.Z05Q0
18000 REM CASE I
13000 15 • Z
19100 FOR N3 • 1 TONI STEP 1
19200 16 • 1IN3)

mm IIN3) ■ LIN3I
19-1110 LIN3) » IS
lü&on NEXT N3
19600 ftl • 0.0
107W.I FOR 13 • 1 TO N2 STEP 1
19000 FII3) • K(I3)
19900 Mi 13) » 0B5IM(I3I)
ZOOOO IF HI >' X(I3) THEN Z01OO
Z60S0 01 ' XI13)
Crtino NEXT 13
20200 CO 10 20900
ZOIOO REM CtlSE Z
Z0500 FOR 13 « 1 TO N2 STEP 1
ZOGOO Ml 13) ■ ABSIMIIS))
20ES0 NEXT 13
20700 RETURN
200« CO TO 11500
21000 END

 , ,. - ^^^-^. IIIMIMI aiiMiiiiMiiiiiMiMiiMiah«^iMMiir...iil.i.l.MMtif^M^^

wßtyHi>wfiijim***m feg^ffSIftft&fttBmifl^^

Listing of th« short subject ■laorithos

BLISS WERSION W PERI

MODULE BLlllSISTACKdOCd)) •
BEGIN
MhCPO («SIX) • (IF IX) CEO 0.9 THEN IKi ELSE FNEC l«))«i
MKCPO lABSrxi > (IF IX) CEO 0 THEN (X) ELSE -IXDti

F.XTEPNAL OUTdSG.OECOUT.FLOUTi
KOPWflPO PUTOUTi

OUN NEWTSi
OWN INni3O0).L*iSTI3OP)LlNH3001i
OUN ESTinCIMOI.EARLYSOOOI.LATErOOOli

STRUCTURE WECTUIl ■ l,«ECtl«,l-l><0.38M
rw WECT1 INlTiLftSTiLlNkiESTIMEiEASLYSil.rtTEFj

FUNCTION f>£RT(NI1«X.lBEG.JEND.TE.5T,Erw«.LNk.ES.HTTl .
BEGIN

STRUCTURE RrtR^ECdl • If.PrtRWEC». I-U<6.3G'i
NAP PrtPVEC IBCGiJENQiLNKiTEiESiMTi

LOCHL lEX.ISX.ITX.kXi
L0CM. AXX.XXXl

FUNCTION SCBNiTOOJl •
BEGIN

IF .IEX NEQ 1 THEN
BEGIN

OECR KX FPOtl .IEX-1 TO 1 BY 1 DO
IF ».TOBJ EOL .LNKl.KXl THEN
BEGIN I.T0BJi<0,3G> ► .»Xi RETURN END

END i
LNM.IEX1 - i.TOBJi (.T0BJ1<0.3B> - .lEXi IE» • IEXMI

END) I SCANi

IEX ► li
1NCP NX FPOn 1 TO .Nn»< BY 1 DO

BEGIN BCAN(JEM>l>NXI<e-0>1l SCrtNdBEGI.NXKO.OMi ENOi
(.Et1flXK0.3G> - .lEX-li ISX •• Oi ftXX • .STi

WHILE 1 DO ! WHILE TRUE DO
(KX . ».EMAKi

INCR IEX2 FROII I TO ».EmX BY 1 DO rtTTl.lEXZl ► .mil

00 >. DO <BODY> WHILE .KX NEO 0.
(INCR NX FROfl I TO NtWX BY 1 00

BEGIN
IF .LNK1.1BEGI.NX11 GTR 0 THEN
BEGIN

CASE .ISX OF
SET

I CASE 1
BEGIN

XXX » ADSi.ATII.IBECI.NXIll FrtDR .TEINXI)
IF .XXX CTR fiBS'.ATTt.JENOI.N<in

THEN ATTI.JEN0I.NX1I •■ FNEGl.XXXH
ENOi

! CASE 2
BEGIN

XXX - ABSI.HTTI.IBEGI.NIcllI F5DR .TEI.NXli
IF .*'* LSS HDSI.ATTI.JENDI.NX1I)

THEN ATTI.JENOl.NXll ■• FNEGi.XXXH
ENOi

TESi
END)

END)

INCR IEX2 FROM 1 TO ».EMHX BY 1 DO
BEGIN

IF .LNM.IEX21 LSS 0 THEN
BEGIN

IF .ATTMEXZl LSS 0 THEN
BEGIN

LNFl.lEXZ) • IfcflSi.LNI I.IEX21): KX • KXMi
ATTI.IEX21 - hOSCATTI.IEXZl))

END i
END ELSE
IF .ATTMEXZl GEO 0 THEN
BEGIN LNKI.IEX2I • -.LNKl.IExei! KX..KX-1) END
ELSE AITI.IEX?! • HBS(.AITt.IE«?li;

ENOi
) WHILE .KX NEO 0;

CASE .ISX OF
SET

E-B

ISO

ENOi
MXX • Pi
INCR 1EXZ FROH 1 TO «.EHAX BY 1 DO
BEGIN

tSIIEXZI • .ATTl.IEXZIl
LNKI.IEX2) • lAOSILNKI.IEXZDi
IF .AITI.lEXZl GTR .AXX THEN AXX

END)
END) ! OF CASE 1

! CrtSE Z
BEGIN

INCR 1EX2 FROM 1 TO ».EIWX BY 1 DO
LNII.IEX2I • lABSI.LNKI.IEXZIIi

RETURN
END) ! Of CHSE 2

TESi
i END OF WHILE TRUE DO LOOP.

I PERTi

.ATTI.IEXZli

FUNCTION WOPMNACTS) »
BEGIN

LOCAL 1SIAR1I

INIT1II • ti LASTI11 • 2i
INlllZI - li LASTIZl • 3i
INITI3I ► li LA51I3I - li
INIH4I ► li LASKII •■ 1«)
IN1T151 • 2i LAST151 ' Si
INITI61 ► 2i LASIIG1 > Ei
1N1I171 •• 2i LAST(71 • 7i
INITIBI - 3i LA51IB1 - Ei
INITI91 - 3i LASTI91 > 7i
INIIIIOI ► it LAStllOl •• 7i
INITilll • Bi LH51II1I > Si
IMTIIZI ► Ei lrtSTI12l • Bi
INIIim - 7i I.ASTI131 • Oi
INIIIHI • 7i LA5T1MI - 9i
INIMSl > 7l LhSlllSl ' I8l
INIKIBI • Si LASTIIBI - 111
INITll?) • Bi LA5II17I •■ 111
1NITI1B1 • 9i LA5I11B1 - III
INITIISI - Id 11)511191 • ID
INITIZO) ► Si LA5T(201 ► 12)
INIimi • Bi LASU2II - I2i
INITI::I • BI LASTI221 • Ml
INIIIZSI • lOi Lrt5I(Z3l ► Mi
INITIZHl • I2i inr.TIZd •• 13)
INUCSl * 11) LASIirSl •• 13i
iNiTirsi ► li) LASII26I • Ml
IN1TI271 •. Ei LA5T1271 - I3i
INIII2B1 •■ 7) LASIL-Bl ' Si
INITICSI ► 11) LASII29I • 12i
INlIISOl • 9) LASH 301 • 12i
1N1T131I • M) iHsinn » i3i
INIIISZI • 1) LAST1321 • IPi

ISIHPT • O.Oi

ESTIMEIll ► Z.S)
ESIIMEI2I ' I.Bi
ISTIHE13I - 3.0i
fSIIMCm » IB.1i
E5IIMEI5I ' I.Zl
ES1IMEIEI - 3.BI
E5IIMEI7I - B.7i
EST1MEIBI - Ml
ESTIMEI9I • 1.3i
ESTIMEI101 •■ 0.2i
ESTIMEIIII • E.Ei
E5TIMEI12I <• 2.2)
ESIIMEmi • 1.9l
ESIIMEIld ► 3.Zi
[S1IMEI1SI ► J.ll
ESIlMEIIEI - E.Oi
fSUMEim - BOi
ESTIMEI1B1 - B.li

EST1MEII9) > 0.71
ESTIMEIZOI • I.Bi
E5IIMEI2I1 ► 0.7)
FSI|nEI22l - B.li
E5imn23l - 3.8i

ESTIMEIZII •■ O.Zi
ESTIME1ZS1 •■ 2.5i
ESTIMEI26I - 6.91

r5TIMEI27l - II.H
EST1HEI2BI -. G.3i

E5TIME1291 - 7.3)
ESTIt1£l3ni • 381

ESTIMEI311 » 0.71
ESTIMEI32I • IZ.G)

PtRTi.NhCT5.INlI<0.0>,LA5T'0.0>.E5nME'0.0>..TSTART.
NCUNI5n.i".llNK<H.O>.EAPL>'J'.0.0.'.lATEF<0.0>))

PUTOUTI,NEUNIS.LINI<0.0'.EARLYS'-O.OJ.LATEF<0.0>1I

ENOI ' ROUTINE UCIPI -

ROUTINF PUTOUIINtl'.D .FAS.XIF) ■
ffiCIN

SU'lir.IUPE PrtPVtCIII • I».PHPUEC<.I-11-.0.3B>I
MHP PuPWr. I.Ki[fi5:«lF i

DUTMSGlO-PLlT "WJ'I) DF.COUHO.I. .NEVn
OUTMSGIO'PLtl ' EUCNTSII'J'li
PEIUPNi
1NCP IX FPDM 1 ID .NEV BY 1 Du
BEGIN

nuinscio.PLH •'H'J'II ofcouno.i,.LKi.ixni
FL0UTiB>.CnSt.IXI.|0<4)i fLOUT in, .XIFl. IX1.10.111
IF ABSIf.EASl.IXI F5BP .X1.F1.KI)) LSS 0.001

1MFN DUlnSCiO.PLIT ' CPIIICAL')!
ENOi
OUTMSCIO.PLIT ■■wr)i

ENDi I ROUTINE PUTOUI

WOPt 13? 11
wDPii:7)i

END
ELUOOM

CASE I
BEGIN

ISX .. li
IhCP NX FROM I TO .NMHX BY 1 00
BCCIN

ITX . .IBECI.NXIi IBECINXl
JENDI.NXI • .ITXi

.JENOI.NXIi

 - ■ - - ^..i.k^^iw...^,,......... .. nliiifri-'iliiMltfMMSlrtiiilittlliriiilBiiflli i 11 I i _

Lilting of <h« short subject «Igonthnt

rORTPfN VERSION Of PERT

CHLL WOPnS:)
CHLL H0PK1J7)
END
SUBPOUriNE UOPKiNnCISl
INlTIIiLIZE Dfilrt rtNO C«LL THE PROPER SIUTf.
DIMENSION 1NIT(3WI .LAST 1309).LINt 13001
DIMENSION ESTIMEISOai.EOPlVSiatKO.XLiiUFiaOOi

E-3

r.s

l.B

3.0
1
10
IBM

1.2

3.8

B.7

1.1

1.3

INITd) '
LflSTUI »
ESTIMEIH
INITiJi •
LHS112) •
ESTIMEiCi
INIT13I =
LhSTISi =
ESTIMEI3)
INITdi =
LASTIIl •
ESTIMEH)
INIT(5i '
LHSTI5) >
ESTIME(S1
INITIE) =
L«ST(6) = 6
ESTII1EC6I ■
INITI?! = ;
LHST'7) = '
ESIIMEin
INUIB) • ;
LHSTIB' • I
ESTIMEfBI
INITiOl ■
L«STi3) •
EST1MEI9I
INITHOI ■
LHSTIIOI =
tSTiMEdei
1NIT11II < S
LHSTIIII • 5
ESTIMEdll • 6.6
INITIiri • E
LrtSTIlZi ■.
ESTIMEMZ)
INIT(13l • 7
LASH 13) - 8
tSnMEll3l ' 1.9
INITUIl ■ 7
LftSTIlD ■=
ESTIHE(ll)
INIKIS) -
LHSTdS) •
ESTIMEHS)
INITI16I •
LrtSTUB) =
ESTIMEI16) = 6.0
INITU?) r 8
Lfi5Til7) =
ESTinE(17)
IN1TI18) '
LHSTI18) •
ESTiMEUB)
INITII9) •
LrtSTUBI • II
ESTiMEngi • e.7
INITiee)
LftSTiCO)
ESTIMEIZO)
iNHCli
LHSTIZD •
ESTIMECl)
INITCZ) > 8
LASTfZJ) • 14
ESTIME122) ■ 6.1

0..

2.2

3.2
7
10

1.1
5
II

II
6.0

9
II

10

5
12

l.B
B
12

0.7

INITI23) •
L«5TIZ3) -
ESTIMEI23)
INIT(21) •
LHSTI21) '
ESTIME(21)
INIT(75I •
LAST'25) •
ESTIMEI2S)
INIT126I =
LASTi26) ■
E5TIMEI26)
INIT127) «
LftSt'27) =
ESIIMEI27)
INIT1291 «
L0S1(2B1 •
ESTIME'ZB)
INIti-S) •
LftSl.:3) '
ESTIMEI29)

10
11
. 38
12
13
= 0.2

2.S

0.9

11.1
7
5
• 6.0
11
12
• 7.3

INITOOI ' 9
III5II30I = 12
tStir,ti30i - 3.8
IN1TI3II < M
LH5TI31I - 13
ESIIMEUl) - 0.7
INITI3?) ' 1
L«Ti3.:i = 10
Esir,£i3:) • 12.6

isioRi = on
CftLL PtPllNHCIS.lNU.LrtST.ESnME.TSTftRT.

1 NEVNIS.UW .EOPDS.XLflTEF)
COLL PUTÜUKNEW.IS.LIN) EhRLYS.XLftlEF)
PL TURN

END
SUflPOUTINL PUIOUIlNEU.U.EfiS.XLF)
DIMENSION Uin.EHSill.ninil

irPE 1000.NEV
lOOil FOPMHl 11».II.711 EUENTSl

RETUPN
00 I I» = l.NEU.I

IF (hnSilEhSiIXI-XLFU»))) .LT. 0.001) GO 10 2
TYPE lOOl.U.im.EASIIXI.XLFUX)

1001 F0PMH1 IU.I1.2Ft1.11
CO TO 1

2 TYPE 1002.IMIXI,E(«iIXl.XLFiIxi
1002 fOPMOT (1X.11.2F11.1.9H CRITICftL)
1 CONTINUE

K TURN
END
SUflPOUTINE SCMNiIEX.ITOBJ.LNK)

DIMENSION INI ID
IF iIE» .EU. II CO TO 1
LUCY • IEX-1
00 2 m = l.LUCY.l

*.X = LUCY-IX2*I
IF IITQBJ .NE. LNIIt:» i) CO TO 2
ITOBJ • M
RETURN

2 CONTINUE
1 LNlllEXi ■ ITOBJ

ITOBJ « IEX
IEX = IEX-1
END
SUBROUTINE PERTiNMHX.IBEC.JtNO.TE.ST.mxE.LNr.ES.fll)
DIMINSION IfltCi I). JENOI1).LNt(11,TE(11.ES(1).AT 11)

IEX ' 1
00 1 N» = 1 .NMHX.1

CHLL SCONiIEX.JENOiNxi.l.Nl.i
CHLL SCHNIIEX.IUECiNXl.LNf)

1 CONTINUE
MOXE • IEX-1
ISX = 1
AXX = ST

C WHILE TRUE DO

2 CONTINUE
LX • MOXE
00 3 IEX.'' . l.M.ixE.l

3 MT11EX2) • ftXX

C DO <D0DO WHILE)» NE. 0

6 CONTINUE
DO 1 NX = l.NniiX.l

IF ILN) II1IECINX1) .LE. 0) CO TO 4

C COSE ISX OF

CO TO 1101.102).ISX

101

102

XXX * HBSiftTHBECiNXDXTElNX)
IF ixxx .01. MIS'AIIJENOINXU)) flT(JtNO(NX)i - -XXX

CO TO 1

XXX = ABSiHllIHEGiNXMi-TElNXi
IF IXXX .LT. ABSI0TIJENDINX)))) ATUENDINX)» • -XXX

CONTINUE

00 7 IEX2 - l.MHXE.l
IF ILN) MI »2) CE. 0) CO TO 8
IF I «I i lEXD CE. p n) CO TO 7
LN) ilE>2) ' IHBSUNI IIEX21I
IX = tXM
ATHEX.-i = HB5IOTIIEX21)
GO TO 7
IF 1HTIIE»2I .LT. 0.0) CO TO 9
LNU1EX2I * -LNk(IEX2)
»X ■ I.X-1
CO TO 7
0IMEX2I ' fiOSiBTIlEX2l)

CONTINUE

n „„^aa^Mi

'iWW ß^^W&Xi^*-'cl*'*!*-J .^wmtTTWWWr- ■ f HHW«J,.JuA VSV'Vy-*?*Rfi^^HM^Vi^WS*!WPJM,iyjl*jpw,r fW^WSPSP^'f^TOWF T i -^iiyHH;', (■- f"^T-BT'"'' ^^rw

1
Lutini of the ihort >ubj«ct •Isontha«

IF (KK .NE. 01 CO TO E

C END OF DO <B00Y> UHlt.t KX - 0.

CO TO (2«l.l'0:i.ISX

C CASE 1
zei isx • z

DO 12 NX • I.WIHX.1
ITX • IBEC(NXI
1BEC(NXI ■ JENOINXI
JENQINXI > ITX

12 CONTINUE
iwx ■ e.e
DO 11 IEX2 • l.MHXE.l

ESIIEX2I ' ATdtXZI
LNKI1EX2I • lABSHNKiIEXZn
IF IATIIEX2) 01. AXX) AXX • ATIIEX2)

11 CONTINUE
GO TO zoe

C CASE 2
292 DO 16 IEX2 • l.WtXE.l
10 LNKIEK2I • U'ieS(LNK(IEX2>l

RETURN
zee CONTINUE

CO TO 2
C END OF UHILE TRUE DO LOOP.

END

E-ie

THE 5 YtPSIONS Of Will EN. Ml. IN ONE PPOCPWI.
VERSION SELECTED BV CHGE INDEX.

nooaE iNiEPPaisi(:iCi..iin£P=ExTEPNHLisixi2ii •
BEGIN

GLOEMl
nnxc.
HSTfP.
IPhCECrtSEi

BIND
NMHX ' le.
IHBSI2 • ZOli

DUN
X.
xRscisi'Hnsm.
OPOINMHBSI^II

EXIEPNHL

LOCI

I UHPIHOLES INITIALLED BY DDT
i UPPEP Linn FOP LOOP
I STEP LENGTH DUPING INTERPOLATION LOOP
! SELECTS ROUTINE TO BE TRACED

I tlAXHIAL NUMBER Of POINTS.
! SI2E OF ruNCTION TABLE-

'ABSCISSAE Of FUNCTION TABLE
!fUNCTION UHLUES.

V)
VERSION A
 <\

ROUTINE (WITIENiXl.TT.XX.N.LI '
BEGIN

REG15IER HI. LO. Ii

DUN
MNtlinl. I ABSCISSAE
OXINMiiXl. i ABSCISSAE DlfTEPENCE.
YINM.lVl, I DID FUNCMON VALUES.
CINHMXII ' NEW FUNCTION VALUES.

SIPUC1URC PHPVECIII
HUP PIIPVEC XT.YTi

(■.PARVEC<.II<0.36>i

IF .XX CiJL .XTI.LI THEN RETURN .YTI.Lli

! RPEPHRE AND PERFORM BINARY SEARCH FOR RIGHT INTERVAL.

LO • 0; HI - .Li I • .L/2:

WHILE i.Hi-.LDi GTP 1 DO
(< LOOP INVARIANT ISi

! .XTI.IO) LE'J .XX LSS .XTI.HIl

IF .»X EQL .XII.LOl 1H1N REIURN VTI.LOli
IF .XX LSS .XI I. II THEN HI » .1 ELSE LO •• .Ii
I ' I.HI«.L0i/2

li
I NOW .XII.LOl LEO XX LSS .XTI.L0«1I

IF ILO - .LO-.N/JM) LSS 0 THEN LO • Oi
IF LO • .N - I CTR .L THEN LO ' .L-.N»li

I NUN READY TO INTtRPOLAlE.
! U5IW. POINTS .LO. .1.0*1 LD».N-1.
I FIR5I INIUALIZE LOCAL TABLE.

LO » .10-11
INCP J IROM 0 TO .N-l 00
I XI.J| - .XTILO - .LOM!i

YI.J1 •. .YIMOU
0X1.Jl - .XII.LOl FSBf »Xr

lOUTINII.Jli'OUIINTi.JT: JUIFLS'.XI.JIH
'OUIFlSi.YI.JIu !Oli' i Oi .0X1 .J1U iCRLFIli

li

1 NOW COMPUTE SUCCESSIVE APPPOilMAIIONS
I USING SUCCESSIVELY HOPE POINTS

INCR J FROM 0 TO .N T DO
(INCR I IROM ..I'l TO N-l DO

(21.tl ► K.YI.Jl FMRR .0X1,Kll FSBR t.VI.KI FHPR .0X1.JIM
FDVR I.XI.U FSBR .XI.Jlli

'OUIFLBI.ZIFlli ICRlFOi
t:

INCP I FROM JM TO N-l 00 YI.CI - .2I.K1

! NOW READY ID DELIVER VALUE:

.2I.N-11
END: < ROUTINE AAITFEN.

.

- ' ^<M^^tt"liflä*'at^iMaaa"^^ ■ —, ^..■^--.;.-.».^.l.. ^_.

iwipiBsrpipaiBWipwpwiw*^«^ ■muniw.mjippwp^wnwipii ii J IJ.I iipRjRp(piiwiij1pwi4ifj.iiivii»iHiiuna.p«MM»iqiiuLWJuw.pwi

,.*„, .■:--.-'t: 0-...v ■ r* i

Litting of th* short »ubnot alsorithnt
E-1J

\>
VIFSION I a

\i

POUTINE INOExii(lf.B.L.N.K' •
BEGIN
*>

FIND THE INDEX OF THE ELErENI IN XThB WHICH IS IME FIRST
Of THE N ELEMENTS CLOSEST TO X

<X

STPUCTUPE IVECII1 « (i. 1VEC». I K0.36>:
MHP IV£C KTrtBi

LOCM. K.S.Ti

I FIND K S.T. .XTftBI.M LEQ .XTABl.t.'!!

INCP I FPOn I TO L DO
(IF .X EQC .XTftBI.Il THEN (t. •■ .li EXITLOOPi:

If .X LEO .XTABI.l) THEN CK - .l-li EXITLOOPU
II

! FIND START AND FINISH ELEMENTS DISRECMRDING XTHB rtRRHV BOUNDS.

S - A-.N/2MI T - .l'».N/2i
IF (,N MOO :i EUL 1 THIN

IF i.X FSBP .XIABI.» 1) LSS I.XTAOI.KMI F5BR Xl
THEN S • .5-1 ELSE T - .TM;

! ADJUST START ELEMENT TO CONFORM TO ARRAY BOUNDS.

If .S LSS 0 THEN S * 0 ELSE IF T GTR .L THEN S • .S-.T«.Li

RETURN .S

ENO> ' ROUTINE INDEX.

ROUTINE LAITIENIXTAB.YTAB.X.N.LI ■
BEGIN
! N POINT INTERPOLATION.

STRUCTURE IUCCII1 • («.IWEC«.IK0.3G>i
STPUCTUPE MAIRIXCI.J) = IJ'JI I.IWTBIX«.J«J«.II<0.36>I

MACRO OEIlA.B.C.Ol = HA FMPP 01 F5DR IB fMPR Cll»l

DUN MAIR1X INI 10.IO)i
OWN xcmii
LOCAL Ji
MAP IUEC XTABiYTABi

J •. INDEX!.XTAB..L..N..Xii

! INITIALIZE XCIOi.N-ll TO .XIABI.Ji .J».N-l 1
INCP I FROM 0 TO N-l 00 XCI.II - .XTrtfll. l«.Jll

! INITIALIZE INI0i.N-l.«l TO TTABI.Ji.J».N-1)
INCR I FROM 8 TO .N-l DO INI.1.91 - .«TABI. I». Jl i

! GO
INCR i FROM 1 TO N-l DO

INCP K FROM 1 TO .J DO
INI.J..K1 • DETM.1NI.I.-1..K-I1I.(.XCI.K-11 FSDR .Xl.

|.INI.J..K-I|1.(.XC1.J) FSBP .XII
FOVR I.XCIJI FSBP .XCl.K-llli

RETURN .INI.N-l..N-l1
ENOi I ROUTINE LAIUEN.

VERSION C a

AND

FUNCTION GAIUENUTAB.VTAB.X.N.LI =
BEGIN LOCAL XX.MllOl.LB I BIND NI = .N-1 I

• X« MILL MOID «III-» FOP Tilt DATA POINTS CHOSEN
' r« THE INUPI'OIAUD UALUES.

BIND XT = .«TAO . YT..TTAB ; MAP XT.YT 1
LB-I LOCAL l.i. i

|.(i i
UHILE .» GTR XTI.II AND .1 LSS L DO I-.I«! 1

■ I Win IIDL05 THE INDEX OF THE FIRST XI.. I
1 THAT IS GEO X.

K..I-.N/: i
IF F LSS 0 THEN S

ELSE IF .K GTR .L-.NM THEN .L-.NM
ELSE .F: 1I

i LB NUH HOLDS THE INDEX OF OUR SMALLEST BASE POINT.
! INlllHLItE XX AND YY.

INCR I FPOM 0 TO Nl DO
(MI.IN.XTI.LB'.ll FSBP X :

IY|.ll-.<T|.l.B».ll H
i INIERPOIAIION EXACTLY ACCORDING TO
! SCHEME Of GIVEN PEFEPENCt.
i EHCH l-IIERATION GIVES VALUES OF l-IM DEGREE.

INCR 1 FPOM I TO Nl DO
(MHCPO ll=.l-l« !
INCR J FPOM .1 TO Nl DO

YYI.JI- I .YYIII1 FMPR .XXI.J1
FSBP .YYI.JI FMPR .XX1I1I I

FOVR (.XXI.JI FSBP .XXIIII) li
YYINI)

END: ! Grtlll: I

VERSION B
 <\

PUIJ1IM B.1ITFENIXT1.B.YIAB.X.N.LI •
DFG IN

SIPUCIvPt IVECIII * l«.lWEC».|Kn.36>i
HAP |V£C »TAniYlAB;
OWN «mop ci 101.xxi 1011
PEGI51ER B.Ei

B •• XTABIOh E • XTABI.L-II:
»HIE l.E-.Bl GTR I DO _ r ,,

IF •il.B'.Ei/:i GTR .X THFN i" - I.B'.El/J ELSE B - I.B».El/2;

IF ID • .D-.N/ZMI LSS XIADHIl .HFN B ' XTAOIDl
ELSE IF .0 GIP XIABI.L-.N>I1 THEN B > XIABI .L-.NM 11

E > YIHHI.B-XTHBIOII;

DECP I FPOM .N-l TO 0 DO
(XX|.I) - *.i> Cl.ll - ».Ei B • .B»li E • .EMU

DFCR I FROM .N-l 10 1 DO
DECP J FROM I-1 TO 0 DO

CI.J1 • K.CIIl FMPR 1.xxl.JI F5BR .XII F5BR
I.CI.J1 FMPR I.XXI.II FSBP .XIII FOVR

I.XXI.JI FSOR .XXI.Illi

.ciei
[NO: I ROUTINE BAITI.EN

.

. . ^_.. -^
^a^u^L^^^ü^itmiättiääi^ltä «j&iuiiai^tf^toti,it;a.ji)iJ*"Ä.i.tj--ri>.j,-'i.

^j-f'mmm$mimn*t* ';'■*'• ^üW,!.M')!W^*'I«P^^™!'»W*W-^ E^fssfR-■ -TT'W'-^»»,'^mv*~vw*K?mwj>rj!iwrF'- ^virvyMrvvmrmn^v''- *jm

Lilting of the »hart »ubicct ■l^crithaü

»>
VERSION C
 <\

POUTINE CAITKENIXTAB.VTAB.XP.N.LI •
BEC1N

OWN uecTOf» ciiei-xxnoi.xxKiioi:
BEGIN I THIS BLOCIf SAVES ONE INSTR. IN THE ENTRY COOE HND ONE

! IN THE EXIT COOE SINCE WE NOW ONLY USE 1 REGISTERS.
REGISTER B.E.Xi

8 - .XTABi E • .XTAB»2».L-.Ni X • .XP;
WHILE .E CTR i.BM) 00

If •l(.B«.E)/ZI GTR X THEN E ► I.B*.EI/r ELSE B « I.B».EI/:i

IF (B ► .B-.N/Z*!) L5S .XTftB THEN B •• .XTHB:
E •■ .YTrtB'.B-.XTflB;

DECK 1 FROM .N-l TO 0 DO
(XXXI.II . (XXI.li . ».Bi F5BR .Xi Clll •■ •.£!

B ► BMi E « .£•!
)i
ENOi ! OF THE BLOCK WA\ SAVES US ENTRY/EXIT CODE.

OECR I FROM .N-t TO 1 DO
DECR J FROH .1-1 TO 0 Dl

CI.JI • K.CI.II FMPR .XXXI.J)) FSBP
(.CI.J1 FMPR XXXI.ID) FDVR

I.XXI.JI FSl'R .XXI.Ill;

.ciei
END; I ROUTINE EAITKEN

POUTINE TEST(IRO.HO)
BEGIN

LOCAL
J.
H. HMAX, HtllN.
X,
Y.
OY.
FACT i

E-1Z

H » .HOi FACT ► l.OSi X
HMAX - .HO FMPR 3.91 HMIN

l.Ol
.HO r^R o.zi

INCR I FRWI 8 TO TABSIZ-I BY 1 00
I ABSCISMI - .Xi

IF .1 CTR 9 THEN I IF .ABSCI5l.il LEQ .HBSCISI. 1-11 THEN tl
0P0INI.I1 - LOGI.Xii
X » .X FAOP .Hi H » .H FMPR .TACTi
IF .H GTR .HflAX THEN (X . .X FHOR .H FOVR 3.HI

FACT • 0.9511
IF .H LSS .HMIN THEN FACT • 1.65:

li

INCR COUNT FROM 1 TO MAXC DO
(X ► 1.01 H > .HSTEPi

WHILE .X LEQ .AB5C1SITAB5IZ-11 DO
(INCR I FROM Z TO NMAX DO

(.IPO)IABSCI5':O,O>.OPDIN':0.0>..X..I.TABSIZ-ni
X » .X FADR .H

ll
li ! END OF TIMING LOOP
ENOi t OF ROUTINE TEST.

CASE .TRACECASE OF
SET
X0t TEST(AAITKEN'.0.0>.0.1)i
MX TESTaAITfEN'O.O.P.Hi
XZ\ TESTIGAITFEN'O.e.'.O.Di
\3X TEST(BAITKEN<?.0>.O.IH
\H\ TEST(EAITKEN<.O.0>.O.lli
TESi

END
ELUOOn

dtiMMaifei ^■.<--:.-..-,:. .^' ;„..__,_ r, ...J... imaMtKliMiiaai^ami^tT.-^ j , _ _. . ,i__^_, _ ,_ .v. üjAüä

