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CONFIDENCE INTERVAL ESTIMATION FOR SIMULATION RESPONSE SURFACES

by

Michael A. Crane

1. Introduction and Summary

In this paper, we continue the investigation of response-surface methodology
in simulation, begun in [2], [3], and [6]. In [2] we showed that if g is a
linear output function of an input parameter A, over some range a < A< b,
and if statistical confidence intervals for g(A) are obtained at measurement

points A = A, and A = %2, with a < Al < %2 < b, then a confidence band can

1
be obtained for the entire function g over the interval a < A< b without
making additional measurements. In [3], this result was extended for the case
where g 1is a quadratic function of one variable, and in [6], g was assumed
to be a general order polynomial of several variables.

One difficulty arising in the above methodology is that the width of the
confidence band obtained is somewhat wider than would be necessary if one
only required confidence intervals at individual points rather than a confidence
band for the entire function. We are thus motivated to consider the problem of
interval estimation, as opposed to band estimation and we take up this subject
in this paper. We do so for the case of a linear function of one variable.
Generalizations to other types of functions will be the subject of subsequent
papers.

The remainder of this paper is organized as follows. The basic result is
derived in Section 2. It is shown that if observations are taken at the points

A, and Ae and if certain other conditions are satisfied, then a confidence

1
interval may be obtained for g(A) at any point a < A< b. In Section 3,
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it is shown that the regenerative method for analyzing simulations provides a
basis for applying the result of Section 2. An illustration is given of a
simulation of an M/M/1 queue and the results obtained are compared to the

results obtained using the confidence band methodology of [2], [3], and [€].

2. The Result

Suppose that A 1is an input parameter for a simulation and that we wish
to estimate some output parameter g(A) which is a linear function of A
over a range & < A < b. Independent simulation runs resulting in statistical
observations are made at two particular parameter settings A = kl and A = AE
where a < Al < Aa <b. (These observations might be, for example, sample
variates from populations with means g(kl) and g(ke). Alternatively, they
might be observations based on random tours in an application of the regener-
ative approach; see Section 3 for details in this latter case.) At the
parameter setting A = Al, the simulation produces ny statistical observations
resulting in sample statistics ?(Al,nl) and ﬁ(kl,nl). Similarly, at the
parameter setting A = \,, n, observations result in statistics ?(%Q,na)
and ﬁ(hz,ne).

The following proposition forms a basis for a method to compute confidence

intervals for g(A), where a < A < b.

PROPOSITION 1. Suppose that ﬁ()\l,nl) —> n(xl) in probebility as n, —>

and that ﬁ(ke,n2) —_ n(ka) in probability as n, —> . Suppose further

that
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Um Pln)/"[8(An)) - 8(A))1/n(2)) < x) = o(x) , ~o < X < o
n,—
4
and _
1/2, 4
lim P[ne [r(7\2)n2) - 8(7\2)]/‘1(7\2) < x} = o(x) , -0 < X< o,
ne—am
vhere ¢ 1s the standard normal distribution function. Then for a < A < D,
lim P[[i'\()\)nl)na) - 8()\)]/0(7\:“1:32) < x} = o(x) , o < x<o ,
n. - o
i
Bp=®
n2=[cnl]
where c¢ 1is an arbitrary positive constant,
A 'l A ~n
r()\;nlJne) - (KQ }\1) [(M-A)'r(}\llnl) + (x-}\l) r()\e)ne)]
and
3unmy) = [u-N2 820 n,)/a, + (n, PR2Ow,n,) /12 /(00
Myt P S AR €y ARy 1/ 0 (pafa)/ng 1
Proof. Let a double arrow denote convergence in distribution and let N(u,c)

denote a normal random variable with mean 1 and standard deviation o. From

the conditions of the proposition, we may write

and

as n

or

1

021800 ,n,) - &(A))] == N(0, 7(r))
fen, 172 (800m,) - £(A,)] == N(0, n(A,))
—>® and n, = [cnl]. Since [cnl]1/2/(cnl)l/2 —> 1 we have

(en )72 [8(nymy) - &(A,)] ==> N(0, n(A,))




o2/2(200,m,) - &)1 => N0, n(A,)/cH?) .

Since ?(Al,Ll) and ?(K2,n2) are independent, we have, by Theorem 3.2

of [1], convergence of the vector process

2P0 ny) - &) %0, n(A;))

0/ 2 [800m,) - £(\y)] ¥(0, n(ry)/e/%)

where the limit random variables are independent. Using the Continuous Mapping

Theorem, cf. [1] Theorem 5.1, we have

020271 T0p-A) 88 ,ny) - (-A) &(A) + (A-h)) Bhgimy) + (A1) &(0)]

1/2

—== N(0, [(X2°x)2 ne(xl) + (%-%1)2 ne(Kg)/c] /(32‘%1))

or

31/2[?(X,n1,n2) - g(\)]

[(A-N? 12(A) + (A-A))® 72 (0, /e]

75 -==> N(0,1) .

-1
since [en l/en; —> 1, f(A;,n) —> n(A}), and A(A,m,) —> q(A,) in
probability, this implies

[£(A\;n ,n,) - &(N)]
[(kg-K)e ﬁe(kl,nl)/n1 + (k-%l)g ﬁe(kg,ne)/[cnl]]

173 T ===> N(0,1)

(A,-A,)




£(A,n,5n,) - g(A)

- ===> N(0,1)
v(%,nl.ne)

which is the desired result.

The above proposition allows one to obtain a (100)(1-r)% confidence

interval for g(A) as follows. For ny and n2 sufficiently large,

~

"l Y A A 'l
P(-0 (1 - 5) < [F(A\ny,n,) - &(M)1/¥(Asny,m,) < @ (1 - %)] =1-71.
This may be rewritten as

A ~ -1 A A "l
P(#(A,ny50,) - 3(Nny,m,) ¢ 7(2- g) < &(N) < #(Mny,n,) + (A0 ,0,)0 T(1- g)]

2,

=1-r,

glving the desired confidence interval.

Note that the confidence interval obtained at A = kl reduces to

-1/2

A a -1
r(xl’nl) + nl “(Al’nl) ¢ (l - ) ’

=

which is exactly the same confidence interval which could be obtained based on

the ny observations at A = %l. Similarly, the confidence interval obtained

at A = %2 is

2 -1/2 . -1 T
r(%e,ne) o, q(%e,nz) o (1 - 5) .




Letting £(A,nl,n2) denote the length of the confidence interval obtained

at A\, we see that

‘B(}\)nl)ne)

A 'l r.
2v(?\,nl,n2) (1 - 2)

H

]

2[(n, N #(homy )/ (hghy 1Pay + (AR B0my) /Oy -n )2 07k - 1)

(N2 O on) )/ OA)P + (B B0 m,) /(0,0 P12

"

) are the lengths obtained at A, and %2

where E(Xl,nl) and f(%z,ne 1

respectively. Hence E(k,nl,nz) is the square root of a quadratic function

~2 2
which passes through (Al, £ (Kl,nl)) and (ke, y) (%2,n2)).

3. Applications Using the Regenerative Method

In this section, we give examples illustrating the use of Proposition 1
for a specific class of simulations, namely, those simulations where the
regenerative method is applicable. (References [2], [3], [4], [5], and [7]
may be consulted for more details of the regenerative method.) A basic
problem in statistical inference in simulations is to estimate the constant
g(A) = E(£(X(A))} where f 1is a general real-valued function, A 1is an input
parameter, and X(A) is the stationary random vector associated with
(X(s,A\):s > 0), the process being simulated. In the regenerative method, we
observe the process {X(s,A):s > 0} in random cycles of lengths al(R),
oé(%), B an(x) and record in each cycle the values Yl(A), YQ(R),...,Yn(K)

where Yi()) is the area under the curve f£(X(s,2)) in the ith cycle.




The crucial conditions required for the regenerative method to be used are

that the n pairs [(Yi(h), O&(X)), i=1,2, ..., n}] are independent and
identically distributed and that g(A) = E{YJ(X)}/Ffu (A)}. Now define the
column vector gi(%) = (Yi(k), Oi(k)) and let

) 0, ,(A)

7 12

ll(

) )
a,,(N) 022()\

12

denote the covariance matrix for y&(%). Denote the sample mean by

B Y(A,n) L D
U(,n) = == L u(n)
- |
a(A,n)
and the sample covariance by
sll(-)\)n) SE(}')D) l n ) B
s(A,n) = =— % [U,(\)-0(n,n)1[U, (A)-U(A,n)]"
~ 3 n-1 =5t =4,
Sel(x}n) 522(?\,11) i:l

where the prime denotes transpose. Next, define point estimates for g(A)

as follows:

(1) Classical estimator

£ (An) = Y(\,n) .

a(A,n) ’

(2) Beale estimator

2 () - L0un) 127 Sapom)/o ¥(m) aOyn)]

a(A,n) [1+ see(k,n)/n aQ(K,n)]




(3) Tin estimator

Y 8 (-Aln) 8.~(A,n) ~
?t(x,n) = M 1+ = 12 = - _32 n . H
a(};n) Y()\)n) a()x,n) a (7\,“)

(4) Jackknife estimator

1 n
§J(‘A)n) = ; Z

where Gi(K,H) = n[¥(A,n)/(A,n)] - (n-1) [ L YJ())/ Z Qi(K)]
Jf JfL ¢

Finally, define

A, (An) = [s),(0n) - 28 (A,n) s 5(n) + 22(0,n) s,,(2,0)1/&(A,n)
and

fyom) = (T [0,0um) - 50um)%/(ne1) 2

Now let

z,(N) =Y, () - g(n) o (M)

and note that E[Zi(%)] = 0 and define oz(k) = var{Zi())]. Since the vectors
(g, (A), 1 > 1) are i.i.4. it follows that (Z;(A), 1 > 1] are 1.i.d. By the
central limit theorem for partial sums of i.i.d. random variables, it follows

that

lim P{E zi(x)/nl/e

n —o Pl

a(n) < x} = o(x) , -o < X <« ,

which may be rewritten




/
lim P[nl/2

n —=o

[?c(%,n) - g(\)] a(l,n)/dfk) < x) = o(x) , c0 < X < » ,

Since A,n) —> E(al(l)} a.e., it follows that

Um P[ﬂl/g

L, == 00

[?C(k.r) - g(M)1/a(n) < x} = o(x) , o< x< o,
where n(A) = c(h)/ELOi(%\]. Now it may be shown tha

1/2 . .
n/7[# (\,n) - rb(k,n)] —> 0 a.e.,

12/\ A
n / [F (A,n) - rt(k,n)] > O .e.,

(D

lEA N
n / [rc(%~1) - rJ(%,n)] —> (

and that ﬁc(%,n) —> n(A) and ﬁJ(K,n‘ —> n(N\) is probability as n —> .
Hence, the conditions of Proposition 1 are satisfied with any of the following

substitutions:

£ Oprm)s H0m)s 0y m ) or 8,0y

no

substituted for ?(Ak,nkJ, k 1,

n

ﬁc(%k”x) or ﬁJ(A&,nkﬁ substituted for I’\k’"k , k=1,

To illustrate the application of Proposition 1, consider a simulation of
the customer waiting time process rWn, n> 1} in an M/M/1 queue. Suppos

we wish to study the sensitivity of the mean stationary waiting time




g(A) = E{W(A))} to the arrival rate N over the range 3 < A< 5, with
the service rate p = 10. In what follows, we shall illustrate the proposition
for this simulation using the "classical" estimetors *, and ﬁ:’ though we
could have chosen any of the estimators given above.

In the queueing simulation, we say that the iﬁh busy cycle is initiated

with the arrival of the 1th customer to find an empty queue. Suppose that

simulation runs consisting of ny =n, = 10,000 busy cycles ere made at
parameter settings A\ = %1 =3 and A = Xe = 5. Let ai(‘) denote the number

of customers served in the i busy cycle, and let Yi(K) be the sum of the
waiting times for those customers. Then it may be shown, cf. [2], that

{(Yi(l), O&(K), i > 1) are independent and identically distributed, and

E(W(A)) = E{Yl(k)]/E{Oi(%)}. Hence, it is appropriate to apply the regenerative
method as discussed above. In particular, we can compute, for k =1, 2,
?(kk,nk), &(Ak,nk), sll(}k,nk), slg(xk,nk), and sge(lk,nk) and from these

we can compute ?C(%k,nk) and ﬁc(xk,nk) as defined above.

Suppose that, as the result of these computations,

I
3
@

rc(AQ’HQ) -
ﬁc(xl,nl) = .172

. (Asny) = 430
Then

[}

B(0np,my) = (AA) ™ TO0) 8.0 ,ny) + (AA)) £ (h,n,)]

.028\ - .ok2

t

and




il

A 2 A2 2 A2 172
B(hnyomy) = (002 2 ) ey + (A2 32000, /g1

/OgA)

[(5-N)2 (.0296) + (A-3)° (.185)]1/2/200 :

Now assume that E{W(A)} is approximately linear for 3 <AL 5 and
suppose that we desire a 98% confidence interval for E{W(A)} for each A

such that 3 < A < 5. From Proposition 1, such a confidence interval is given

by
~ ~ 'l
I’()\;nl)ne) + V()\Jnlyne) ¢ (1 - ’g‘) ’
where ?(k,nl,ne) and Q(X,nl,ng) are computed as above and y = .02. These

confidence intervals are illustrated in Figure 1. Thus, for example, a 98%
confidence interval for E{W(4)} is .070 + .005L.

It is of interest to compare the confidence intervals shown in Figure 1
to a confidence band obtained for the function E(W(A)} using the method of
[2]. Figure 2 shows such a comparison. A 96% confidence band for E(W(A))
over 3 < A< 5 consists of two straight lines intersecting the 98% confidence
intervals at AN =3 and A = 5 and everywhere containing the 98% confidence
intervals at 3 < A< 5. Thus, if one desires confidence bands rather than
confidence intervals, it is apparent that such confidence bands are obtained
at a cost of lower levels of confidence in addition to wider intervals.

Suppose that after running simulastions at A =3 and A = 5, we are
interested in estimating E{W(A)} for 2 < A< 5. If we assume thet
E(W(A)} 1is approximately linear over 2 < A < 5, then the above expression
for the confidence intervals remains valid. See Figure 3 for an illustration

of the confidence intervals so obtained.
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(M/M/1 Queue with Service Rate

u = 10.)




Mean Waeiting Time, E(W(A))

.00 =

07 o

.ol’—

.01+

Upper and Lower Limite

for 98%
Confidence Intervals

Upper and Lower Limits
for a 96%
Confidence Band

13.

L

i 5
Arrival Rate, A

o

Figure 2. Comparison of Confidence Intervals vs. Confidence Band for

the Mean Waiting Time, as a Function of the Arrival Rate A
Over 3< A< 5.




Mean Waiting Time, E{W(A))

1k,

Function of the Arrival Rate A Over 2 < A < 5.

e 11
Theoretical Values
.10
.09
Lower Limits of |
Confidence Intervals i
.08"' I
|
Upper Limits of |
Confidence Intervals |
077 \
|
I
, |
. 06— |
|
:
I
.05'1 I
[
|
. 04+ '
|
|
|
.03+ |
|
|
.02 :
|
|
.01+ '
|
|
|
|
0 | L
l# 5
Arrival Rate, A
Fig. 3. 98% Confidence Intervals for the Mean Waiting Time as a




(1]

(2]

(6]

A5

References

BILLINGSLEY, P. (1968). Convergence of Probability Measures.

John Wiley, New York.
CRANE, M.A. and IGLEHART, D.L. (1974). Simulating stable stochastic

systems, I: General multi-server queues. J. Assoc. Comput.

Mach. 21, 103-113.
CRANE, M.A. and IGLEHART, D.L. (1974). Simulating stable stochastic

systems, II: Markov chains. J. Assoc. Comput. Mach. 21, 114-123.

CRANE, M.A. and IGLEHART, D.L. (1974). Simulating stable stochastic

systems, III: Regenerative processes and discrete-event simulations.

To appear in Operations Res.

CRANE, M.A. and IGLEHART, D.L. (1974). Simulating stable stochastic
systems, IV: Approximation techniques. To appear in

Management Sci.

CRANE, M.A. and MOREY, R.C. (1973). Response surface estimation in
simulation experiments. Technical Report No. 86-12, Control
Analysis Corporation.

IGLEHART, D.L. (1974). Simulating stable stochastic systems, V:

Comparison of ratio estimators. To appear in Naval Research

Logistics Quarterly.




INCLASSIFEIED

Secunty Classificstion

DOCUMENT CONTROL DATA-R& D .

(Sacurity cleaailication of title, bedy of adetract and indening annotation musi be enlered when the oversll report ls claseilfied)

1 OMIGINATING ACTIVITY (Corporete suther) 28. REPORYT SECUNITY CLASSIFICATION

Control Analysis Corporation Unelassified

800 Welch Road 25, GROUP
Palo Alto, California

1 MEPORY TITLE

CONFIDENCE INTERVAL ESTIMATION FOR SIMULATION RESPONSE SURFACES

4 DESCRIPTIVE NOTES (Type of roper: and Inclusive dates)

4 AU THORS) (Fical nome, middle Initial, 188l neow)

Crane, Michael A.

& MEPOAT DATEK 78. TOTAL NO. OF PAGES 7. NO. OF REFS
December 1974 15 ) 7
fe, CONTRACYTY OR GRANT MO. P8, ORIGINATOR'S REPORT NUMBR R(S)
NOOO1k-T72-C-0086 Technical Report No. 86-16
b PROJECT NO.
NR-OL7-106
c. ob. g"v-n:':.:':ronf NO(S) (Any other numbere hat may be secsligned
d.

10 DISTRIBUTION STATEMENT

Distribution of this document is unlimited.

1Y SUPPLEMENTARY NOTES 12. SPONBSORING MILITARY ACTIVITY
Operations Research Program
Office of Naval Research
Arlington, Virginia 22217

1) AGSTRACT

In this paper, we continue the investigation of response surface
methodology in simulation, begun in references [2], [3], and [6). Suppose
that g 1is a linear output function of an input parameter A, over some
range a < A < b, and that observations are taken at two parameter settings
A and . "It is shown that if certain conditions are satisfied, then a
confidence interval may be cbtained for g(A) at any point a < A<D
without making any additional observations. An illustration is provided
which makes use of the regenerative approach for analyzing simulations.

DD 201473 Sttlire saatan Ul oo o mmen e UNCLASSIFIED
Security Clessificetion




e

ta. o AR ‘LL"!K A LiINR B LiNg €
ReLE LAd ROLE LA g ROLEK wy

Simulation
Statistical analysis of simulations
Confidence intervals in simulation
Response surface estimation
Linear approximation
Regenerative approach

———— e

UNCLASSIFIED

Secwrity Classificetion







- - - ar G T A G U A & S S ) G B = e =
Y

6619

s-'
U ]
e



