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by 
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1.  Introduction and Summary 

In this paper, we continue the investigation of response-surface methodology 

in simulation, begun in [2], [3], and [6]. In [2] we showed that if g is a 

linear output function of an input parameter X, over some range a < X < t, 

and if statistical confidence intervals for g(X) are obtained at measurement 

points X = A-, and X = X , with a < X.. < X < b, then a confidence band can 

be obtained for the entire function g over the interval a < X < b without 

making additional measurements.  In [3], this result was extended for the case 

where g is a quadratic function of one variable, and in [6], g was assumed 

to be a general order polynomial of several variables. 

One difficulty arising in the above methodology is that the width of the 

confidence band obtained is somewhat wider than would be necessary if one 

only required confidence intervals at individual points rather than a confidence 

band for the entire function. We are thus motivated to consider the problem of 

interval estimation, as opposed to band estimation and we take up this subject 

in this paper. We do so for the case of a linear function of one variable. 

Generalizations to other types of functions will be the subject of subsequent 

papers. 

The remainder of this paper is organized as follows. The basic result is 

derived in Section 2.  It is shown that if observations are taken at the points 

X, and Xp and if certain other conditions are satisfied, then a confidence 

interval may be obtained for g(X) at any point a < X < b.  In Section 3> 
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it is shown that the regenerative method for analyzing simulations provides a 

basis for applying the result of Section 2. An illustration is given of a 

simulation of an M/M/1 queue and the results obtained are compared to the 

results obtained using the confidence band methodology of [2], [3], and [6]. 

2.  The Result 

Suppose that X is an input parameter for a simulation and that we wish 

to estimate some output parameter g(X) which is a linear function of X 

over a range a < X < b. Independent simulation runs resulting in statistical 

observations are made at two particular parameter settings X = X-. and X = Xp 

where a < X, < Xp < b. (These observations might be, for example, sample 

variates from populations with means g(X,) and g(Xp). Alternatively, they 

might be observations based on random tours in an application of the regener- 

ative approach; see Section 3 for details in this latter case.) At the 

parameter setting X = X,, the simulation produces n.  statistical observations 

resulting in sample statistics r(X ,n ) and  T}(X ,n ). Similarly, at the 

parameter setting X = Xp, np observations result in statistics r(Xp,np) 

and T}(Xg,ng). 

The following proposition forms a basis for a method to compute confidence 

intervals for g(X), where a < X < b. 

PROPOSITION 1. Suppose that T|(X ,n..) —> T\(\)    in probability as n —> « 

and that i}(Xp,np) —> ^(Xp) in probability as np —> 00. Suppose further 

that 
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lim P{ny2[?(A1,n1) - g(\)]M\)  < x) = d>(x) ,     -« < x < « 
n,-»« 

and 

lim ?in^2lr(-K2,n2)  - gO^)]/^) < x] = d>(x) ,     — < x < - , 

vhere <& is the standard normal distribution function. Then for a < ~k < t, 

lim P([r(A,n;L,n2) - gOOl/vK^n^) < x] = 4>(x) , -o. < X < » . 

ni 

n2=[cn1] 

vhere c is an arbitrary positive constant, 

?(^ni,n2) = Og-^)"
1 [(A2-X).?(^1,n1) + (X-7^) ?(X2,n2)] 

and 

v(X,ni,n2) = [(^,-X)
2 T}

2
^,^)/^ + (A-A^ f^vO/n^1/2/^-^) 

Proof.  Let a double arrow denote convergence in distribution and let N(n,a) 

denote a normal random variable with mean u and standard deviation a. From 

the conditions of the proposition, we may write 

and 

nJ^trO^) - g(X1)] ==£> N(0, TJ^)) 

[cn1]
1/2[?(A2,n2)-g(X2)] =-> N(0, n(\>)) 

as n, —> «  and n2 = [en.]. Since [en ] ' /(en,) ' —> 1 we have 

(cni)
l/2 [?(X2,n2) - g(X2)] ==>N(0, T1(X2)) 

or 



nj/2[r(\,,n2) - g(\,)] ==> N(0, n(\>)/c1/2) • 

Since r(A, ,n ) and r(A ,n ) are independent, we have, by Theorem 3.2 

of [1], convergence of the vector process 

/ njA?^,^) - gO^)] 

===> 

\ 

n^/2[?(^,n2) - g(Xg)] 

N(0, T)(X1)) 

N(0, r1(X2)/c
1/2) 

where the limit random variables are independent. Using the Continuous Mapping 

Theorem, of. [1] Theorem 5-1, we have 

==^ N(O, [(V*)2 n2(\) + (^-\)2 nZl\)/c11/Z/(\-\)) 

or 

nj/2[?(X,ni,n2)  - g(X)] 
 P—p —*—5 T7P T    ===> N(°A)   - 
[<VX>    n2(Ax)  + (A-A^2 x1

2(Ap )/c]1/2 (A^) X 

Since    [cn1]/cn1  > 1,  fft^n  )  > TJ(A  ),  and    T^,^)  > r^)    in 

probability,  this implies 

[?(X,n ,^) - g(X)] 
 Ö—p Ö—ö T7Ö IT ===> Nf0»1) 
t(VX)    1  (VV^l  + (*-\)    n  Oa.n2

)/[cnl11 (W 

or 



r(A,n ,np) - g(A) 

v(X,Vng)  ===>N(0,1) 

which is the desired result. 

The  above proposition allows one to obtain a (lOO)(l-r)# confidence 

interval for g(A) as follows. For n, and n  sufficiently large, 

Pt-fl'V - §) < [H^nvn2)  - g(A)]/v(A,n1,n2) < <b'\l  - |)} Z  1 - y . 

This may be rewritten as 

P{?(X,ni,n2) - v(A,n1,n2) *"
1(i- I) < g(A) < S^n^) + v^ryn^'V- §)} 

- 1 - TJ 

giving the desired confidence interval. 

Note that the confidence interval obtained at A = A-,  reduces to 

r(A1,n1) + n"
1/2 ^X^) «"V - \)  > 

which is exactly the same confidence interval which could be obtained based on 

the n, observations at A = A.. . Similarly, the confidence interval obtained 

at A = Ap is 

?(A2,n2) + n'
1/2 fj(A2,n2) lT\l -  |) . 
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Letting i(A,n..,n ) denote the length of the confidence interval obtained 

at X, we see that 

i(Ä,nx,n2) 

= 2v(A,nx,n2) §T\l  - |) 

= 2[(A2-A)
2 fj2(X1,n1)/(^.>v1)

2n1 ♦ (A-A^2 ^(A^V^-A^]1/2 ^(l - |) 

= [Og-X)2 ?(A1,n1)/(A2-A1)
2 + (A-A^2 ?(A2,n2)/(A2>A1)

2]1/2 

where i(A ,n ) and i(Ap,n ) are the lengths obtained at A.,  and Ap 

respectively. Hence i(A,n ,n ) is the square root of a quadratic function 

which passes through (A.^ £  (A^n^) and (Ag, I  (A2,n2)). 

Applications Using the Regenerative Method 

In this section, we give examples illustrating the use of Proposition 1 

for a specific class of simulations, namely, those simulations where the 

regenerative method is applicable.  (References [2], [3], [k],   [5],  and [7] 

may be consulted for more details of the regenerative method.) A basic 

problem in statistical inference in simulations is to estimate the constant 

g(A) = E(f(x(A))} where f is a general real-valued function, A is an input 

parameter, and X(A) is the stationary random vector associated with 

(X(s,A):s > 0), the process being simulated. In the regenerative method, we 

observe the process {x(s,A):s > 0} in random cycles of lengths a (A), 

QL(A), ... , a (A) and record in each cycle the values Y (A), Y2(A),...,Y (A) 

where Y.(A) is the area under the curve f(X(s,A)) in the i  cycle. 
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The crucial conditions required for the regenerative method to be used are 

that the n pairs {(Y.(A), a (A)), i = 1, 2, ..., n) are independent and 

identically distributed and that g(A) = ECY^Ajl/Efa±M). Now define the 

column vector U (A) = (Y.(A), a.(A)) and let 

E(A) = 

alx(A)   a^M 

^(A)   a
22(*) 

denote the covariance matrix for U.(A). Denote the sample mean by 

Y(A,n) 
U(X,n) : . i E Ul(X) 

ä(A,n) 

and the sample covariance by 

si;L(A,ri)  8^(^,11) 

s(A,n) : UJL. Z    [U1(A)-Ü(A,n)][U.(A)-Ü(A,n)]' 
1 s21(A,n)  s22(A,n) /      i=l 

where the prime denotes transpose.  Next, define point estimates for g(A) 

as follows: 

(l) Classical estimator 

a(A,n) 

(2) Beale estimator 

,      Y(\ n\       [1 + s1P(^>n)/n Y(A,n) ä(A,n)] 
rb(A,n)  = tlhiILL .   h£ _  ; 

ä(A,n) [1  + s_(A,n)/n a (A,n)] 
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(3)    Tin estimator 

1 + 
s^Ajii) 

Y(X,n) a(A,n)      a (*,n) 

522(A>n)   I     -1 
-5 I   n 

(k)    Jackknife estimator 

8JX,n)  -i   Z    0.(A,n) J n i=1    i 

where    0,U,n)  = n[Y(A,n)/ä(^,n)]   -  (n-l)   [ Z    Y.U)/ Z   a (*)] 
1 j£     J JA     J 

Finally, define 

fi(X,n) = [s^^n) - 2r (A,n) s_.(n) + rf(A,n) s (A,n)]/a(X,n) 11 12N J22v 

and 

f}T(*,n) = ( Z [0.(A,n) - r_(A,n)]2/(n-l))l/2  . 

Now let 

Zt(A) = Y1(X) - g(70 a.(A) 

and note that E{Z (A)} = 0 and define a (?0 = var{Z.M) .    Since the vectors 

(y.(A), i > i) are i.i.d. it follows that (Z.(X), i > 1) are i.i.d. By the 

central limit theorem for partial sums of i.i.d. random variables, it follows 

that 

lim P{ Z Zi(A)/n
l/2 o(\)  < x) = *(x) , 

n -> oo  i=l 
-oo < X < oo y 

which may be rewritten 



lim    P{n1//2[r (A,n) - g(A)] ä(A,n)/a(X) < x]  = 4>(x)  , 

9. 

-»  <   X  <   oo 

n -» « 

Since    ä(A,n) —> E{a (?0)    a.e.,   it follows that 

Um    Ptn^t^C^n)  - g(A)]/T)(>0 < x}   = <fr(x)   , -» < x < « , 
n -»oo 

where TJ(A) = a(A)/E(QL(A)}. Now it may he shown that 

nl/2[rc(X,n) - yA,n)] —> 0  a.e., 

n^D^foft) - rt(A,n)] —> 0  a.e., 

n ' [rc(A,n) - r (A,n)]  > 0  a.e., 

and that TJ (A,n) —> r\{l\) and r\,(A,n) —> T}(A) is probability as n —> «. 

Hence, the conditions of Proposition 1 are satisfied with any of the following 

substitutions: 

*c(V"k>' %(\'\]> VVk5 or WV 

substituted for r(\ ,n ), k = 1, 2 

\^\,nk^ °r V\'\^   substituted for n(\»\)> k = 1, 2. 

To illustrate the application of Proposition 1, consider a simulation of 

the customer waiting time process  {W , n > 1} in an M/M/1 queue. Suppose 

we wish to study the sensitivity of the mean stationary waiting time 
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g(A) = E(W(A)} to the arrival rate A over the range 3 < ^ < 5> with 

the service rate u = 10. In what follows, we shall illustrate the proposition 

for this simulation using the "classical" estimators r  and T\  , though we 

could have chosen any of the estimators given above. 

In the queueing simulation, we say that the i  busy cycle is initiated 

with the arrival of the i  customer to find an empty queue. Suppose that 

simulation runs consisting of n, = n = 10,000 busy cycles are made at 

parameter settings A = A, =3 and A = A = 5. Let a(A) denote the number 

of customers served in the i  busy cycle, and let Y. (A) be the sum of the 

waiting times for those customers. Then it may be shown, cf. [2], that 

((Y.(A), a.(A), i > 1] are independent and identically distributed, and 

E(W(A)) = E{Y1(A))/E(OL(A)). Hence, it is appropriate to apply the regenerative 

method as discussed above. In particular, we can compute, for k = 1, 2, 

^\'\^ «(\^\)> sii(\^\)> s12^\,nk^ and S22^\'\^ and from these 

we can compute r (\>\) and fi (\>\) as defined above. 

Suppose that, as the result of these computations, 

rc(A1,n1) = .Ote 

Olien 

rc(A2,n2) = .098 

%(\>*1)  = -172 

W1^ = A5° 

r(A,ni,n2) = (Ag-A^"
1 [(T^-X) ^Oy^) + (X-\) ^V1^1 

= .028A - .042 

and 
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v(?v,n1,n2) = [(TV,-*)
2 ^(\>n1)/n1 

+ (*-\f \(\>^)/^1X/Z/(\-\) 

= [(5-X)2 (.0296) + (X-3)2 (.lSs)]1/2^^ . 

Now assume that E(W(A)) is approximately linear for 3 < A < 5 and 

suppose that we desire a 98$ confidence interval for E(W(A)) for each A 

such that 3 < A < 5- From Proposition 1, such a confidence interval is given 

by 

r(A,nx,n2) + v(A,n1,n2) $"" (l - |) , 

where r(A,n, ,np) and v(A,n..,np) are computed as above and y -   .02. These 

confidence intervals are illustrated in Figure 1. Thus, for example, a 98$ 

confidence interval for E{W(U)} is .070 + .005^. 

It is of interest to compare the confidence intervals shown in Figure 1 

to a confidence band obtained for the function E{W(A)} using the method of 

[2], Figure 2 shows such a comparison. A 96$ confidence band for E(W(A)) 

over 3 < A < 5 consists of two straight lines intersecting the 98$ confidence 

intervals at A = 3 and A = 5 and everywhere containing the 98$ confidence 

intervals at 3 < A < 5-  Uius, if one desires confidence bands rather than 

confidence intervals, it is apparent that such confidence bands are obtained 

at a cost of lower levels of confidence in addition to wider intervals. 

Suppose that after running simulations at A = 3 and A = 5, we are 

interested in estimating E(W(A)) for 2 < A < 5- If we assume that 

E[W(A)} is approximately linear over 2 < A < 5, then the above expression 

for the confidence intervals remains valid. See Figure 3 for an illustration 

of the confidence intervals so obtained. 
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