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1.  INTRODUCTION 

Let X , X«,...  be a sequence of independent, identically distributed 

random variables taking on values in some measurable space X .  Let Pij...,P 
i     K 

be a finite collection of probability measures on X ,  and let H  ,k  = 1,...,K , 
K, 

denote the hypothesis that the common distribution of the X 's is P, . 
n      k 

We wish to associate with the observed sequence X1, X_,...  a sequence of 

decisions d..,d„,... , d £ {H, , . . . .H,.}  about the true hypothesis H,  However, 
i  z       n   1     K 

the decision d  at time n is allowed to depend on X., , . . . ,X  only throueh 
n r        1     n    -^     6 

a finite-valued statistic T €  {!,....m) ,  which represents the current state 

of the memory.  This statistic is updated after each observation, i.e., 

Tn+1 = 
f(Tn'V '  n—2'--- ' 

where f : {!,...,m} x X ->- {l,...,m}  is a time-invariant updating rule.  The 

decision d is then given by 

dn = d(Tn) ,  n=l,2,... , 

where d : {!,...,m} ->■ {H,,...,H}     is a time-invariant decision rule. 

Let for a given f and d 

,(k) .  1 

e  (f'd) =iimN ^ ?(dn*H^ N-H»    n=l 
(1.1) 

be the asymptotic expected frequency of incorrect decisions if the true 

hypothesis is H^ .  Our goal is to find  (f,d) which minimizes 

P (f,d) =  max    P(k)(f,d) 
e e 

k=l,...,K 
(1.2) 

\. 
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(Thus we have  chosen  the ra^niraax criterion.     An alternate  approach would be 

to minimize 
K 

,00,. Po(jT;(f,d))  =    I    TT Pu;(f,d)   , 
e k=l    k 

where TT = (TT ,...,IT )  is a prior distribution on {H  , . . . ,H  ]   .  In this 
i     K. IK 

report we consider the former.) 

The pair (f,d) together with the domains and ranges of the two functions 

is formally equivalent to the definition of a finite automaton (see e.g. [1]). 

The automaton has S = {!,...,m} as its state space, X as its input space, 

{H,,....H  }    as its output space, and f and d as its state-transiti :ion 

function and state-output function respectively.  If the sequence X.. ,X ,.. 

of i.i.d. random variables is applied to the input of such ^n automaton the 

resulting sequence of states T ,T„,...  is then a time-homogeneous Markov 

chain with transition probabilities 

Pij = Pk({x€ X : f(i'x) = j}) '  i,j€ S ' (1'3) 

Hence the limit in (1.1) always exists.  If the state-transition function f 

is such that the resulting chain is regular then in fact 

P^k)(f,d) = Mk(d"
1(Hk)) , 

where p  is the stationary distribution on S .  Throughout this paper we 

assume that this is the case, i.e., we consider only transition functions which 

yield regular Markov chains under each hypothesis. 

Following Hellman and Cover [3] we would like to include the possibility 

that the transition function f can be randomized.  One way of defining such 

a randomization would be to introduce another input sequence Y..,Y„,...  of 
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i.i.d. random variables, independent of the sequence x
1
,x2 , ... , and uniformly 

distributed on the interval [0,1]. The transiti~n probabilities (1.3) would 

then be 

where (1.4) 

· pij(x) = A({yE [0,1] f(x,y , i) = j}) , (1.5) 

A being Lebesgue measure on [0,1]. 

However, we find it more convenient to express the randomized state transition 

function f as a pair (A, t::t.) as follows: 

A= {Aij : i=l, .•• ,m ; j=l, ... ,m 

where A .. are measurable subsets of X. 
l.J 

i=l, ..• ,m j=l, ... ,m 

where oij ~ 0 and 1 oij ~ 1 for all i,j 
j 

i#j } ' 

i#j} • 

The transition probabilities (1.5~ if X = x is observed are now defined by 

p ij (x) = oij whenever Aij ~X for i#j ' 

pii (x) 1 - L p ij (x) ' 
j#i 

and (1. 3) be comes 

pij Pk(Aij) oij if i1j ' 

} pii = 1 - L p 
j tii ij 

(1.6) 

We will refer to the triplet (A,t::t.., d) as randomized finite automaton (RFA) 

and to the set t::t. as randomization. 

- 3 -
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Notice  the  class of all  randomization  is  closed with respect  to multi- 

plication of  corresponding elements,   that  is  if    A= {6..}  and    A'=  {6'     ) 

are   randomization  then   A A'   =  {6..Ö'   .}     is  again a randomization.     Notice 
ij ij 

also that the sets A.,  need not be disioint. 

We now present a simple lemma to be used in the remaining sections. 

Lemma 1:  Let (A,A,d)  be a RFA, let  Mk . k = 1, .. . ,K ,  be stationary 

distributions of the resulting Markov chain of states.  Let R = [r ] be a 

K x K matrix with positive entries 

WP       -1 
Mk(d 

L(Hk)) 

let     o(A,A,d)     be   the maximal  eigenvalue  of     R 

Tli en 

P   (A,A ,d)   > 1  - -7-—T TV , 
e - p(A,A ,  d) 

and there exists a randomization A'  such that 

P (A,AA ', d) = 1  1  __ 
P(A,A ,d) * 

Proof: 

(1-P ) 1 = (1-max P (k))"1 
e e 

k 

= max (1-P (k))"1 = max (p. (d"1(H. )))"1 

k     e        k   k     k 

K 

= max I rko ^ P ' 
k  £=1 k 

since by Perron-Frobenius theorem the maximal eigenvalue of a positive matrix 

can never exceed the largest of the row-sums. 

- 4 
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To prove the second statement let v = (v. ,...,vv)  be an eigenvector 

corresponding to p(A,A ,d) and normalized such that 

vk > 0 ,  k = 1,...,K ,  vl + v2 + ''• + vK = a , 

where    0  <  a  <  1    is an arbitrary constant.     (This is always possible since  the 

matrix    R    is  positive.;     Define  the  randomization A' - (öl.)    by 

i5..   = -    ,       j^i ,       where    u    = v        whenever    i6d     (H.)   . 
1J U, 1 R K 

(k) (k) 
Let     p..       and    p!. be  transition probabilities and    p       and     p'     the  sta- 

ij 1J k k 

tionary distribution of     (A,A,d)     and     (A, A A ' ,d)     respectively.     Then by 

(1.6)   for any    k    and    i/j 

.(k)   _   1   n(k) 
P — P- •     > 
ij i       J 

and hence for any partition of the state space S into two subsets S1  and S. 

we must have 

.00 00, 
q  Ate       -LJ  "•       ifo       i£c      IJ  K 

i€S1 i€S2 i€S2  j€S1 

n(k) 
P_ii_ 

p(k) 

I     I^u'd) =   I      I-^-y/.d) 
i€S1 j€S2 

Ui  k u  Mk 
i€S2 j€S1 

Ui 

Thus  M^(i) = ^"i^K^^  for a11  ^^ ' k with Ck > 0 indePendent of i so that 

^"X» = ^w«1«^ 
for all k,£ = 1,...,K .  But then for all k i 

■I 

'1 
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since v is an eigenvector of p(A,A,d) 
Q.E.D. 

2. UPPER BOUND ON THE ERROR PROBABILITY FOR THE 3-HYPOTHESES 3-STATE PROBLEM 

Let K a 3 , m • 3 , and let 

P* = inf P (A,A ,d) , 
e e 

the infimum being taken over the class of all 3-state RFA. Let for i,j c 1,2 ~ 3 

let 

sup Pi (A) /Pj (A) 
ACX 

( ) 
-1 -1 -1 -1 -1 -1 G = 112 max{yl2 + Y23 ' Y12 + Y13 ' Y23 + Y13} 

In this sec tion we show that 

- 1/2 - -3/2 -l 
P: ~ 1 - (1 + 2g cosh(l/3 nrgcosh G g » . 

We also establish a simpler but looser bound, namely 

p* :s 1 - (1 + 2c 113 > -
1 

e 

Notice tha t (2.3) implies that if y12 = y23 "" y13 "'+ oo * th~n P = 0 , 
e 

obtained by Sagalowicz in [4] and extended later by Yakowitz i n [5]. 
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Proof of (2.2) and (2.3); 

Let the letters i,j,k stand for a permutation of 1,2,3, let e > 0 

Let A  (e)  be measurable subsets of X such that 

P.(A  (E))       P.(A) 
i—i  < inf —TV + e , PjCAyCO) A Pj(« 

let 
P.(A  (e))  P.(A,,(e)) 

Y (£)    - _J L]  -J: li  yii(£)      P^A (e)) P^A (e)) 

so that Y..(E) "*• YJ.  as e ->■ 0   .     Consider a 3-state RFA  (A,A ,d) ,  where 

A - (A,.(e)} , ^ = (6  } such that 6  =6  = 0 , otherwise arbitrary, and 
IJ iJ ik   ki 

d(i) = H, , d(j) = H    ,  d(k) - H, . 
1 J K 

P(A..)Ö.. 

cr©. 
P(A. ^6.. 

P(A..)<S.. 
jk jk 

The stationary distribution of the resulting Markov chain of states are 

(see Appendix A) 

U(±)  = cP(A.i)6.iP(Ak.)6k. , 

U(j) = cP(Ai.)6i.P(Ak.)6kj , 

U(k) = cP(A.k)6jkP(A1.)6i. , 

where c is a normalizing constant. (The epsilon has been dropped temporarily 

to ease the notation.) The matrix R of Lemma 1 is given by 

- 7 - 
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R = 

Pi(Ali)6ii 
?i(A^h^ii)6^6ii 

'   ^n)^i   '   r^h^n^i 

P.(A,.)6.. 
J     ij     iJ 

P,(A,,)6.1 

P
j
(\j>6 

kj 

Pk(Aii)P
k
(\i)6il6ki 

^^jk^k^ij^j^lj 

Pk(Aki)6ki 

^^jk^Jk 

and  its  characteristic equation has  the  form 

(]-A)     -   (l-A)C    + D    - 0     , 

where 

-1 
C    =  Y,4   (e)  + Y., (e) 

1(  ) + Pi(A1k)Pi(Al.1)Pk(A.1l)Pk%) 

and 

ij      'jk- wwvvvv 

P.(A..)P.(A.. )P. (A..)P, (A   .) 
D    =    i    1.1     1     jk    k    ,ii    k    k.i 

E      P.(A..)P/A   .)?. (A.. )P, (A..) 
i    ji     j    Tcj     k    jk    k     ij 

(2.4) 

^l^ii^k^i^i^k^i^ij) wvvww 
Now    D      can be written as 

e 

c      Yjk(ejYij^;   P.(A..)P, (A..) 
j    ji    k    jk 

- 8 - 
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and hence 

Next writing C as 

D
e 

5 Yji(e)Yij(E)Yjk+ ^j^^jk^^ij 

c
e 

= Yi>) +•jk(e) + Yik(p)F
J^ • 

where 

*    ~ pi(A
ji

)pi(Akj^i(Aik)pk(A
Jk

)pk(Aij
)pk(Aik) ' 

it is  seen that by  setting    i,j,k    equal  to  the  three cyclic permutations of 

1,2,3    we must have 

F1(e)F2(e)F3(E)  = 1  . 

Hence     i,j,k     can be chosen such that 

C    < y~l(e) + Yoo(e)  + Y-.oCe)   • £ "   '12 !2rej   -r Y-l| 

Nov it is easily verified that the maximal root of the equation (2.4), vjhich is 

real and not smaller than 1, is an increasing and continuous function of both the 

coefficients  C  and D  .  Thus by Lemma 1 there is for every e > 0 a 3-state 

RFA for which the error probability 

P <l-r1+E;, 
e 

(2.5) 

where      r   is  the maximal  root  of the  equation 

(1-X)     -   (1-X)C0 + D0 = 0   , (2.6) 

with 

C0 = Y12 + Y23 + Y13  , 

- 9 - 
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and 

D0 = max{Y [I  + Y-J , y-l + Y^ , Y^ + y^}  . 

Clearly (1/3)C0 < (1/2)D0 and since (l/2)D0 < 1 we must have ((1/3)C0)
3 < ((1/2)D0)

2 

Hence the maximal root of the cubic equation (2.6) Is given by 

r = 1 + 2 ((1/3)C0)
1/2 cosh(l/3H , 

wh 
-3/2 

ere cosh $  = 1/2 D0((1/3)C0)    and the bound (2.2) follows from (2.5).  The 

simplified bound (2.3) can be obtained by increasing CQ    until ((1/3) Cj =((1/2)D0)
2 , 

the maximal root of (2.6) thus becoming 

r = 1 + 2((1/2)D0) 
1/3 

3.     COUNTEREXAMPLE TO TREE-CONJECTURE. 

Consider a K-hypotheses problem and assume ^or simplicity that the support 

of each of the distributions P is same. With each RFA (A,A,d) we can pow 

associate a graph r with vertices corresponding to states of the RFA and with 

an arc joining vertices     i    and    j     if arJ only  if     p..p..   / 0   .     (This property 

does not depend on  the hypothesis because of our assumption.) 

* 
Let     r.  > 0   ,     C      be  the  class  of all  e-optimal   RFA,   i.e.,   all m-state  RFA 

(A,A ,d)  such that 

P (A, A ,d)  <: inf P  (A,A , d)  + e   . 

It has been conjectured by Cover [2] that for every  e > 0 the class C  always 

contains a RFA wi.ose graph r is a tree. This is indeed true for K = 2  ([3]) 

and s plausible heuristic argument can be given for such a structure even for 

K > 2 . Unfortunately, as v.'e are going to show in this section, the conjecture 

is false already for K = 3 .  We do this by exhibiting a nontrivial 3-hypotheses 

10 
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problem and  a  3-state  RFA with a triangular  graph     T  ,    which  is strictly 

better  than any  3-state RFA whose graph is  a  tree. 

Let    X =   {1,2,3,A,5,6}   ,   let    p,q,r,s     be positive numbers such  that 

and 

2p+2q+r+s=l   , 

1  < — <<-'- 
s q 

Define  the three distributions     P|)P~,p.,    as  follows: 

Pk(x) 
X 

1 2 3 4 5 6 

1 P q P q s r 

k 2 q p r s P q 

3 s r q p q p 

Consider now a  RFA   (A,A,d)    with the  state  space     S =  {1,2,3}   ,  d(i)  = H.   ,   i€S 

and  the  graph     T    the  tree     (l)—(2)—(3)    .     The matrix    R    for this RFA is  the  same 

as  that on page  8 with   (i,j,k)   =   (1,2,3)   .     Since by Lemma ]   the error probability 

is determined by  the maximal eigenvalue    p     of    R    and    p    is always at  least  as 

large  as  the  smallest   row-sum,   in order  to minimize    p    we are forced  to  choose 

A    as  follows: 

12 
f2} , A21 = {1} , A23 = {6} , A32 = {5} . 

- 11  - 
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The matrix R then becomes 

R = q621 
P 6 12 

' p 621 '  ps 621 632 

q 623 
P ö 32 

qs  621 &32 q 632 
pr 623 <S12 P623 ' 

Writing its characteristic equation again as 

(1-X)J - (l-X)C + D = 0 

J 

we have 

C = 3(^)2,D= (J)J(f + f) (3.1) 

There are two other 3-state RFA whose graph F is a tree, one with the graph 

(2) Q) Q)   and one with the graph Q) (5) (2)   .     By the same reasoning 

as before we are forced tc choose 

12 (2} , A21 = {1} , A13 = {A} , A31 = {3} 

for the former, and 

A^ = {4} , A,. = {3} , A0Q ^ {6} , A,0 = {5} 13 31 23 32 

for the latter. The matrices R are 

1 . q 
P 

q   i   qs 
P '    ' pF 

ps 

- 12 - 
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and 

qs 

ps 

P 

P 

£ 
P 

£ 
P 

respectively, where we omitted the 6's for the sake of simplicity. Hence 

the coefficient of their characteristic equations are again given by (3.1). 

Now consider a 3-state RFA (A,^ ,d) with 

A12 = {2} , A21 = {1} , A13 = {4} , A31 = {3} , A^ = {6} , A^ = {5} , 

6. . = 1/2  for all  i^j  and d(i) 

is a triangle. The matrix R is 

H. , i = 1,2,3 .  The graph T    of this RFA 

H   P+2s    ^ p+2r 
p p+r+s  '  p p+r+s 

3.   P+2r 
p p+r+s  ' 

(^ p+2s 
p p+r+s 

_q p+2s    £ p+2r 
p p+r+s  ' p p+r+s  ' 

and ehe coefficients of its characteristic equation 

c = 3(£)2 P+2r p+2s  = 3^2. _ ( r-s .2 
L  Hp)     p+r+s p+r+s   ^V U   {v+r+s)   )   ' 

and 

D = 03[(^&)3+ ^>31 • p   p+r+s     p+r+s 
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Comparing these expressions with (3.1) we see that C  .  ,  < C    and 
triangle   tree 

with r and s    suitably chosen also D .  ,  < D    .  (Choose, fo • 
triangle   tree 

-1        -3 A 
instance r = 10 p , s = 10 p . Then Dt  /D ,  .  = 10 ). Since the 

tree triangle 

maximal eigenvalue increases with both C and D we conclude from Lemma 1 

that the best "tree" RFA has an error probability strictly larger than this 

"triangular" RFA. 

4. MINIMAX THEOREM FOR FINITE-MEMORY PROBLEMS. 

Let JL = t71, , • • •, O  be a probability distribution on the set of hypotheses, 

let  (A, A ,d) be RFA, and let this time the error probability be 

PO(JT;(A,A ,d)) = I  7TkP^
k)(A,A ,d) . 

e - k=l 

Looking now at the problem as a two-person zero-sum game, where the 1st player 

(Nature) chooses TI_ and the 2nd player (Statistician) chooses (A,A ,d) it 

is natural to ask whether 

inf  sup P On; (A,A ,d)) = sup   inf  P (jr;(A,A ,d)) 
(A,A ,d) JT  

e * (A.A ,d) e 
(4.1) 

Now if K = 2 then it is known [3]  that 

m-1 i/2 

inf P (TT,(A,A ,d)) =  X      i/1  
e •— m-1  , 

Y12  - 1 
(4.2) 

where    Y.p    is given by  (2.1)   .    tlence 

, m-1 1/2 
(Yi2)    "1 n~   -1 sup  inf  P„  = -i^ = 1 -   (1 +/^I ) e m-1      . 

Y12    - 1 '12 

- 14 - 
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On thP. other hand by Lemma 1, 

inf sup P e 
-1 1 - (sup p(A, A ,d)) 

~nd for K = 2 tt is easily seen that 

However it has also been shown in [3] that 

1 sup =--

and hence (4.1) is indeed true for K = 2 

Conjecture : (4 . 1) is also true for K > 2 • 

Comment: Since an analog of (4.2) for K > 2 is not available at present the 

above reasoning cannot be applied to prove the conjecture. However, since the 

number of hypotheses is finite (4.1) would follow if one could show that the 

set of all vectors 

(1) (K) 
(P (A,A ,d), ... ,P (A,A ,d)) , 

e e 

where (A,A ,d) runs through all m-state RFA, is convex. This is indeed so for 

K = 2 , unfortunately we have not been able to prove this even for K = 3 . 

- 15 -
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APPENDIX A 

A Formula For A Stationary Distribution 

Of A Finite Markov Chain. 

Let P = [p..] be an ra x m stochastic matrix, let g = (S,E) be an 

oriented graph with the set of vertices S = {1 m} and the set of arcs 

EC S x S defined by 

(i,j)6 E4=>i^j and pi. > 0 . 

Let i6S be a vertex of g. Then a vertex jfS such that (i,j)€E 

is called a successor of i . A sequence of vertices (i-,!_,...,i ) such 

that each i,   is a successor of i  , k = l,...,n-l ,  is called a path. 

If in  is also a successor of i  the path (i, .....1 )  is called a cycle. 
1 n     r     1    n —*  

Consider now a subgraph f = (S,F) , where FC E with the following 

properties. 

1) each vertex i€ S has at most one successor. 

2) f has no cycles. 

3) f is maximal, i.e., no further arcs can be added without violating 

1) or 2). 

We will call such a subgraph a confluence. Notice that each confluence 

has exactly one vertex with no successor. We will refer to this vertex as a 

sink. 

With each confluence f = (S,F) we associate a positive number 

P(f) = 
"   Pii (i.j)€F ^ 

We now have  the  following  theorem: 

.  •   .•   -;      ■'■..' 

- 16 
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Theorem: Let P be a transition probability matrix of a homogeneous Markov 

chain, g be the graph defined above, let ~i be the s~t of all confluences 

with sink i E S 

If P has an invariant distribution ( lJ 1 , · · ·, urn) 

lJ = c i I p<f> • 
f E ~i 

i E S , (A.l) 

where C > 0 i3 a nrJrmalizing constant detennined from lJ 1 + ... + um = 1. 

Remark: Notice that the formula (A.l) gives lJi as a sum of products of the 

off-diagonal entries of P , each product contains exactly m - 1 dif ferent 

entries and no two products contain the same set of In this sense, 

the representation of lJi is unique. Notice also, that if all off-diagonal 

entries of p are positive then is a sum of exactly m-2 
m products. 

Thus, although the formula is certainly of theoretical interest, its application 

for computing the stationary distribution is likely to be limited to cases, 

where a majority of are zero. 

Example: Let 

.5 .2 .3 0 

.3 .1 .2 .4 
p = .1 .7 .2 0 

0 .s 0 .s 

The graph g is 

and the confluences together with the number p(f) are as follows: 

- 17 -
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Sink 

i 

Confluences  f€<t), I  P(f) 

2 
.015 

2 
105 

2 
,010 .130 

1   2   4 

.010 

1    2    4 

.070 

1   2 

.105 ,185 

3   2   4 

.045 

12    4 

.030 

1   2 

.020 ,095 

12   4 

.008 

1    2    4 

.056 

1   2 

.084 148 

Total; ,558 

Hence the stationary distribution is u .  130  185  _95  148 , 
( 558 ' 558 ' 558 * 558 ; 
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Proof of   the Theorem:     We will  show that   (A.l)   satisfy  the  equations 

m 
M,   =     I     P.p..   ,       1=1,... 

J        1=1 J 
,m  , 

or  equivalently 

i.     I    PH  =    I    M.p      ,      j=l,...,m 
J   1=1    ^      1=1    1 1J 

i/j i^j 

(A.2) 

Let  h = (S,H) be an arbitrary subgraph of g ,  let 

P(h) = P,^ 
(i,j)€H 1J 

and  let    h +  (i,j)     denote  a  subgraph obtained  from    h    by adding or  removing 

the  arc   (i,j).    Next  let 

If     ly- 

Aj   =  {f +  (j,i)   :   f€ ^,16 S -  {j}}   , 

B.   =  (f +  (i,j)   :   f€ ^,168 -  {j}}   . 

. ,\i      is given by   (A.l)   then  for any    j£ S 

m 

^     I     P.-i   = I   P(h) and 
J   1=1       J     h€A. 

J 

m 

.1     ^P..   =     I      P(h)   . 
1=1 h€B. 

Thus (A, 2) will follow if we show that A. = B. .  To this end let 
J   J 

h£Aj , h = f + (j,i) , 

- 19 - 
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let    k    be a vertex contained in the path     (i,..,,j) whose successor is    j. 

If the arc     (k,j)     is removed  then    h    becomes a conluence with sink    k 

since     (k,j)  was  an arc of confluence     f    and  thus could not have any other 

successor than    j   .    Hence    h    can be written as    f + (k,j)   ,  ff (J).     and 

therefore    h€B.   .     Conversly,   if    h 6 B,   ,   say    h • f' + (k,j)   ,     then 

f'f ({).      and  by removing the arc     (j,i)     with    i    being a successor of    j     con- 

tained  in  the path    (j k)    we conclude  that    h -  (j,i)C<j)   .    Hence    h€A 

and the proof  is complete. 

-  20 - 

^i^j^i^^tinfe.^^^ 



wm-#Bipg|f^^ .+-r:.. .■: i. ^y.^Tp^rrt^: $%$ wffg f »rnm^mmmmmmm 

APPENDIX B 

A Generalization of a Lemma of Yakowitz  ([5]). 

Lemma:     Consider    K    finite  regular Markov chains with state spaces    S.    , 

transition probabilities     [P. (i->-j)]   ,     and  stationary distributions    y,    , 

k = 1,...,K   .     Link these chains  together by allowing  transition between    S. 

and    Sk+1   ,   k = l....,K - 1   .     via  a  pair of  states    ekjk+1 €   Sk   ,  e^^f S k+1 

with probabilities 

P(ek,k+1 * ^1,^       \,k+l  ' 

P(ek+l,k ^ ek,k+l)   = \+l,k  ' 

and changing  the  original  transition probabilities    P^.^6!, u+i   ^ eu v+i ^     an^ 

Pk+l
(ek+l,k " Vl.k)    a^rdin&ly. 

If   the  new chain with state space    S  = S    U  • • • U S,.    is  regular  then  its 
i K 

stationary distribution    JJ     is given by 

k-1 
s€  S, =^y(s)  = Cy. (s)   n    IT,   ....   Me.   ..) 

3=1 j.j+l    J     j,j+l 

K 
n       TT.   .   ,IJ .(e.   .     )   , 

j=k+l    J'J"1  J     J'J"1 
k =  1,...,K  , 

where     C  >  0     is  a normalizing constant. 

Proof     (by induction on    K) 

(i)     Let    K =  2   .     We have  for the  original  two chains 

s€   S  =^u   (s)   =     I    P   (r^s)y   (s)   , 
r£S1 

-  21 - 
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se   S9=^y9(s)   =     I      P9(r->s)y0(s)   , 
32 

^^^ 2'"' ^^   *2V'   "'"Z' 
r€ S, 

and for the new chain    S      = S U S?  , 

.r*,n~*mrWi 

s€S1,s t e12=^M12(s)   =     I      P1(r->s)p12(s)   , 
r6S, 

s€ S   ,s ^ e    —>M     (s)   =»    I      P  (r->s)y    (s)   , '21-^12 
r€S, 12 

P12(e12)  • I P1(r>s)u12(s)  + [P(e12^12)  - ^l^Ce^) 
r€b1   ie12l 

+^21M12(e21)  =    I     Px(r^)y12(s) 

since    7T
2i ^i o ^e21^   ~  Tri2lJ12<'Sl2^    by equat:Ln8  flows.     Similarly 

y12(e21)=    ^c   P2(r"s>^i2(s)     • 
r€S2 

Hence if    s € S,     then    y, (s)    and    W-ioCs)     satisfy the same system of linear 

equations  and  consequently 

seS1^>u19(s)   = a1M1(s)   , 

s€S2=>M12(s)   = a2y2(s)  . 

In particular 

li12(e12)  = allJl(e12)   '   ,J12(e21)  = a2y2(e21) 

and since    ^i o^i?^6! ?^  = 1T2l,Jl2^e?1 ^     we must have 

V21 M2(e21) 

^12 ,Jl(e12) 
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Since    a1 + a2  =  1     this  implies     a1 = c',^i2^2l')   '  ar> = C 7i21Jl(e12)   ' 

(ii)     Let  the  lemma be  true for    S = S    U-.-U S and form new chain     SUS 
J. K-l K 

Denoting     u       the  stat.   distribution  of     S     and     ]i    that  of     SUS       we  have 
K 

by part (i) 

S6S^1J(S) ^^^(e^VCs) 

s6SK^u(s) =C \.1>Kv'(eK.l}K)vKis) 

By induction hypothesis 

K-2 

K-.l,K      k-l  K-1,K      j,]+l j  J,J+1 

(B.l) 

and if s £ S, C S 
k 

k-l 
u' (s) = C'u, (s) II  n 

K-l 
1J^e-i !4.i)  n 7r- • i M-(e. • J <    i=1   jJ+i   j   .u+i ^k+1 jj-i   j   j,j-r 

Substitution into (B.l) gives the. desired formula (with the proportionality 

cons tant  CC'). 

23  - 

4-   -» 

Wstäit&tä&Wvtä^'*''*****^1'®*^ 
daaiüa.aMi^.:,   tfiitfiteliiiiliiTliiiffirlil 



[11 

[2] 

[3] 

14] 

REFERENCES 

Arbib,   M.   A.,   Theories  of AbsLracL   AuLomat:a,   Prentice-Hall,   (1969). 

Cuver,   T.   M. ,   personal   communication   (1974). 

Hel.lman,   M.   E.,   and Cover,   T.   M. ,   "Learning  with  Finite Memory," Ann.   Math, 
Statist.   41,   (1970),  pp.   765-782. '       ' "  

Sagalowicz,   D.,   "Hypothesis  Testing with   Finite. Memory,"  Ph.D.   thesis. 
Electrical   Engr.   Dept.   Stanford  University,   0970). 

Yakowitz,   S.,   "Multiple Hypothesis Testing by  Finite Memory Algorithms," 
Ann._ Statist. ,   2,   (1974),   pp.   323-336. 

< // 


