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1. INTRODUCTION

Let Xl’ X2,... be a sequence of independent, identically distributed

random variables taking on values in some measurable space X . Let Pl,...,PK

be a finite collection of probability measures on X , and let Hk’k =1,...,K

denote the hypothesis that the common distribution of the Xn's is P

k

We wish to associate with the observed sequence Xl’ XZ"" a sequence of
decisions dl’d2"" s dne {Hl""’HK} about the true hypothesis H. However,
the decision d_ at time n 1is allowed to depend on Xl""’Xn only threcugh

a finite-valued statistic Tné {1,...,m} , which represents the current state

of the memory. This statistic is updated after each observation, i.e.,

T4 = f(Tn’Xn) , n=1.,2,... ,

where f : {l,...,m} x X > {1,...,m} 1is a time-invariant updating rule.

decision dn is then given by
dn = d(Tn) , n=1,2,... ,

where d : {1,...,m} » {H .,H } is a time-invariant decision rule.

177K

Let for a given f and d

N
(k) a1
E,  (f,d) = I:\[]lm 5 Zl P(d_ # H)

>0 n

be the asymptotic expected frequency of incorrect decisions if the true

hypothesis is Hy . Our goal is to find (f,d) which minimizes

P (£,d) = max Pék)(f,d)
K=1,...,K

ity il g o S ik b A i




(Thus we have chosen the minimax criterion. An alternate approach would be

to minimize

(k)

P (ms(E,d) = § mpl,q)

il t~10]

k=1

H'} . In this

where 1w = (ﬂl,...,nK) is a prior distribution on {Hl""’ K

report we consider the former.)
The pair (f,d) together with the domains and ranges of the two functions
is formally equivalent to the definition of a finite automaton (see e.g. [1]).
The automaton has S = {1,...,m} as its state space, X as its input space,
{Hl,...,HK} as its output space, and f and d as its state-transition
function and state-output function respectively. If the sequence X.,X

1

of i.i.d. randomvariables is applied to the input of such gn automaton the

g2

resulting sequence of states Tl’TZ"" is then a time-~homogeuneous Markov

chain with transition probabilities
pij = Pk({xe X: f(4,x) =3j}) , 1,j€S . (1.3) A

Hence the limit in (1.1) always exists. If the state-transition function f

is such that the resulting chain is regular then in fact

o ()

-1
S ) = (@)

where is the stationary distribution on § . Throughout this paper we

k
assume that this is the case, i.e., we consider only transition functions which
yield regular Markov chains under each hypothesis.

Following Hellman and Cover [3] we would like to include the possibility

that the transition function f can be randomized. One way of defining such

a randomization would be to introduce another input sequence Yl’YZ"" of



i.i.d. random variables, independent of the sequence xl,xz,..., and uniformly
distributed on the interval [0,1]. The transition probabilities (1.3) would
then be

pij = Ek{pij(x)} , where (1.4)

pij(x) - l({yé [0,1] : f(x,y,1) = j}) ’ (1.5)

A being Lebesgue measure on [0,1].
However, we find it more convenient to express the randomized state transition

function f as a pair (A,A) as follows:
I o R, O T | i R L - 1)

where Aij are measurable subsets of X .

A= {4, :i=1,...,m ; j

ij 1)"-1m H i#j} ’

0 and X
]

The transition probabilities (1.5) if X = x 1is observed are now defined by

where <1 for all i,j

dij z 61j

(x) =68 whenever A, 3x for i#j ,

Pi3 ij ij

pii(X) =1- {i pij(x) s

i#
and (1.3) becomes
Py -pk(Aij)aij if di#§ ,
E (1.6)
P =1 P s
ii 91 ij

We will refer to the triplet (A,A, d) as randomized finite automaton (RFA)

and to the set A as randomization.




s e

Notice the class of all randomization is closed with respect to multi-

plication of corresponding elements, that is if A = {6ij} and A'= {6'ij}

are randomization then A A' = {§, ,6',.} 1s again a randomization. Notice

ij° 13

also that the sets Aij need not be disjoint.

We now present a simple lemma to be used in the remaining sections.

Lemma 1: Let (A, A,d) be a RFA, let by k=1,...,,K, be stationary

distributions of the resulting Markov chain of states. Let R = [rkll] be a

K x K matrix wicth positive entries

-1
INCICIY
r = -

k&

-1 ’

b (47 (H )

let o(4,A,d) be the maximal eigenvalue of R
Then

1
Poholod) 2 1 - ST ey

and there exists a randomization A' such that
P (A,LAA',d) =1 - ST
e ’ p(A,8 ,d)
Proof:

(l-Pe)-l - (1_m§x Pe(k))_l

B e St g

3 _ _ -
: = max (1-p_ N7 = ey (o @)t
: e k k
:.? k k
!G = max T 2P,

k=1 <

since by Perron-Frobenius theorem the maximal eigenvalue of a positive matrix

P e e e

can never exceed the largest of the row-sums.
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To prove the second statement let v = (vl,...,vK) be an eigenvector

corresponding to p(A,A ,d) and normalized such that

Vi >0, k=1,...,K, v1 + v2 + o+ Vg = a,

where 0 < a <1 1is an arbitrary constant. (This is always possible since the

3 matrix R is positive.) Define the randomization A'= {éij} by
“: =& j#i where u, = v whenever 1€ d-l(H ) .
ij uy i ’ i k k
(k) v (k) . . '
A Let pij and pij be transition probabilities and Hye and the sta-

e k
- tionary distribution of (A,A,d) and (A,AA"',d) respectively. Then hy

44 (1.6) for any k and 1i#j

e and hence for any partition of the state space S into two subsets S, and §

Sy

we must have

P "‘__G?'n'

RS o ek Z O
i PP T R g, N

k . k .
iei ' ) pij)”k(l) = ) . ) Pij)uk(l)
S1 JGS2 1682 JéSl

) o ()

L - ' y

% ] I-tw@=] [Slhw@ .
i€S, jes, i 1€s, jes, "

E Thus ué(i) = Ckuipk(i) for all i , k with €, > 0 independent of 1 so that

it _ -1
wd THD) =€ von (d (H,))

2 for all k,2 = 1,...,K . But then for all k

'yﬂ- £
!

w
[
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L, - r e D(A.A »d)
=1 Kb ga K Y

since v 1s an eigenvector of p(A,A,d)
Q.E.D.

2. UPPER BOUND ON THE ERROR PROBABILITY FOR THE 3-HYPOTHESES 3-STATE PROBLEM

Let K=3, m=3, and let
P: = inf P_(A,4,d) ,
the infimum being taken over the class of all 3-state RFA. Let for i,j =1,2,3

sup Pi(A)/P (A)

ACX 3
Yij T inf P, (A /P (A) (2.1)
AX J

let

= e ot -1 -1 -1
g = (1/3) (le + Y23 + 713) ’

y T . T N
G =(/2luan{yly + Vo5 » Yyo * ¥p3 5 Va3 * Vi3,

In this section we show that

-1
P: <1-(1+2g 1/2 cosh(1/3 argcosh G g 3/2)) . (2.2)
We also establish a simpler but looser bound, namely
= -1
Pre1-qa+28t/?)T . (2.3)

Notice that (23) implies that 1f v , = Y,y = = + « then P: =0, a result

13
obtained by Sagalowicz in [4] and extended later by Yakowitz in [5].



Proof of (2.2) and (2.3):

- Let the letters 1,j,k stand for a permutation of 1,2,3, let € > O .

Let Aij(E) be measurable subsets of X such that

P (4, (e)) P, (A)
A S Em e
3843 A b

let
fijij(E)) Pi(Aji(s))

PGy (@) PR )

Yij(E) =

so that yij(s) > Yij as € + 0 . Consider a 3-state RFA (A,A ,d) , where

A= {aA,, }, ={8,.} such that 8§ =8 =0, otherwise arbitrar d
(A1 s a iy’ °HC ik ki ’ rhrary, an

d(i) = Hi , d(j) = Hj , d(k) = Hk .
P(Aij)dij P(Ajk)djk
#ﬂ’“-____*‘*hﬁi T
C® ® o

‘hxhﬁ______ﬂff’ E!Lﬁ‘_______,,ff
P(Ajl\éji P{ﬁkjjakj

The stationary distribution of the resulting Markov chain of states are

(see Appendix A)

u(i) cP(Aji)GjiP(Akj)Gkj >

cP(Aij)GijP(Akj)ij 5

u(3)

where ¢ 1is a normalizing constant. (The epsilon has been dropped temporarily

% to ease the notation.) The matrix R of Lemma 1 is given by

P A R AR DT




TR,

R

b B

o

St e A

" R Y " SO -.._e_v--;;‘(ﬁ.;..;‘k..A,~A
[ —
) Py(Aj )8, Py (AP (A 0840844
Pi(Ay )8y, Py (AP (A D840
P.(A.,)6, P,(A,)S,
55 = P (A i)a - ’ 1 ’ fQYALEYS X
jUUije 4] 3k k]
Py (AP (A 8,58, P A1) 8 )
Py (AP (A 085,845 P (B )85

and 1its characteristic equation has the form
(-0 - (@-x)c +D =0
€ £ ’

where

) P (AP (A VP (AP (A )

-1 1
C =1v,. (e) +v. (e)+
1j ik Pi(Aji)Pi(Akj)Pk(Ajk)Pk(Aij)

and
i Pi(Aij)Pi(Aik)Pk(Aji)Pk(Akj)
£ Pi(Aji)Pj(Akj)Pk(Ajk)Pk(Aij)

Pj(Aji)Pk(Akj)Pi(Ajk)P (A, )

1749
By (A, IR (AP, (AL OF, (A )

-+

Now De can be written as

D =YL (e)Yii(e) e Tl
£ jk ij Pj (Aji)Pk(Ajk)
1 Pj(Akj)Pi(Aik)

-1 -

-8 -

(2.4)

i
o




and hence
€

-1, . -1 -1, | -1

Next writing C as

-1 il -1
.= Yij(E) + .jk(E) + Yik(F)Fj(E) 5

where

Pi(Aij)Pi(Ajk)Pi(Aki)Pk(Akj)Pk(Aji)Pk(Aik)
Pi(Aji)Pi(Akj)Pi(Aik)Pk(Ajk)Pk(Aij)Pk(Aik)

F.(e) =
J(e

it is seen that by setting i,j,k equal to the three cyclic permutations of

1,2,3 we must have

Fl(e)Fz(e)F3(s) =1.

Hence 1i,j,k can be chosen such that
-1, | -1 -1
C. s vpp(ed +yy5(e) + Y13(€) .

Nov it is easily verified that the maximal root of the equation (2.4), which is
reél and not smaller than 1, is an increasing and continuous function of both the
coefficients Ce and De . Thus by Lemma 1 there is for every e > 0 a 3-state

RFA fcr which the error probability

Posl- r s, (2.5)

where 1r is the maximal roct of the equation

(1-1)° - (1-M)Cy + Dy = 0 (2.6)

0
with

S
C = Yio t Y3 Y3

b




_ -1, -1 -1 -1 -1 -1
Do = maxly 15 + o3 5 Y35 ¥ Y93 » Vo3 * ¥yl

Clearly (1/3)Cy = (1/2)Dy and since (1/2)D0 < 1 we must have ((1/3)C0)3 & ((1/2)D0)2 .

Hence the maximal root of the cubic equation (2.6) 1is given by

/2

r=1+2 ((1/3)(:0)l cosh(1/3)¢ ,

-3/2
where cosh ¢ = 1/2 Dy ((1/3)CO) / and the bound (2.2) follows from (2.5). The

simplified bound (2.3) can be ohtained by increasing Co ur\til((l/3)CO)3 =((l/2)DO)2 ,

the maximal root of (2.6) thus becoming

r=1+ 2((1/2)D0)1/3.

3. COUNTEREXAMPLE TO TREE-CONJECTURE.

Consider a K-hypotheses problem and assume for simplicity that the support
of each of the distributions Pk is same. With each RFA (A,A,d) we can now

associate a graph T with vertices corresponding to states of the RFA and with

an arc joining vertices i and j if arl only if p, # 0 . (This property

1jpji
does not depend on the hypothesis because of our assumption.)
*
Let ¢ >0, CE be the class of all e-optimal RFA, i.e., all m—state RFA

(A,A ,d) such that
Pe(A,A ,d) < inf Pe(A,A,d) +€e .

It has been conjectured by Cover [2] that for every € > 0 the class C: always
contains a RFA wiose graph T is a tree. This is indeed true for K =2 ([3])
and a plausible heuristic argument can be given for such a structure even for

K > 2 . Unfortunately, as wve are going to show in this section, the conjecture

is false already for K =3 . We do this by exhibiting a nontrivial 3-hypotheses

- 10 -~
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problem and a 3-state RFA with a triangular graph T , which is strictly
better than any 3-state RFA whose graph is a tree.

Let X = {1,2,3,4,5,6} , let p,q,r,s be positive numbers such that

2p+2q+r+s=1,
and

1 < I << B—.
S q

Define the three distributions P|»PysPy @S follows:

P, (%)

Consider now a RFA (A,A ,d) with the state space S = {1,2,3} , d(i) = Hi , 1€S8S

and the graph T the tree ()——C)-—() . The matrix R for this RFA is the same
as thaton page 8 with (i,j,k) = (1,2,3) . Since by Lemma 1 the error probability
is determined by the maximal eigenvalue p of R and p is always at least as
large as the smallest row-sum, in order to minimize p we are forced to choose

A as follows:

Ay = "2}, Ay = {1}, Byy = {6} , Ay, = {5} .



T e 4/;..‘:'1’:‘\%‘.’.‘&'-_;»;‘ S o e L

R

The matrix R then becomes

e

81

812
qs
PT 693 89,

?

Writing its characteristic equation again as

(1-2)3 - @-Mc+ D =0

2 3
=34 = (E 4L
c=3@ o= ¢+DH .

There are two other 3-state RFA whose graph T 4is a tree, one with the graph

@——@——@ and one with the graph @——@-—@ . By the same reasoning

as before we are forced tc choose

= {2} . A21 =

for the former, and

A13 = {4} ’ A3l = {3} ’ A23

for the latter. The matrices R are




and "’ -~
S

1, 38 04

pPr P

& 9

ps p

i, 3
P P

= J

respectively, where we omitted the &'s for the sake of simplicity. Hence
the coefficient of their characteristic equa:tions are again given by (3.1).

Now consider a 3-state RFA (A,d ,d) with

] Ay = {20, Ay = {1}, Ay = {4}, Ay = {3}, Ayq = (6}, Ay = {5},
‘ 65 = 1/2 forall i#j and d(1) =H; , i=1,2,3 . The graph T of this RFA
is a triangle. The matrix R 1is
1 q pt2s .4 pt+2r

B p ptrt+s p ptr+s
g
4 q pt2r 1 q pt2s
A p ptrts ’ p ptrts

q pt2s g ptr 1

p ptrts p ptrts

- |

and che coefficients of its characteristic equation

- 3(9y2 pt2r pt2s _ 5942, _ I=s |2
; ¢ 3( ) ptr+s ptr+s 3(p) $& (p+r+s) )
and
qy3;,pt2r \3 pt2s |3
( ) [(p+r+s + (p+r+s) ]

- 13 -
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Comparing these expressions with (3.1) we see that Ctriangle < Ctree and

with r and s suitably chosen also D . (Choose, for

triangle < Dtree
. I | _ a3 4

instance r =10 p, s =10 'p . Then Dtree/Dtriangle 107). Since the
maximal eigenvalue increases with both C and D we conclude from Lemma 1

that the best "tree'" RFA has an error probability strictly larger than this

"triangular" RFA.

4. MINIMAX THEOREM FOR FINITE~MEMORY PROBLEMS.

Let m = (ﬂl,...,ﬂK) be a probability distribution on the set of hypotheses,
let (A,A ,d) be RFA, and let this time the error probability be
K

P (15 (A,8,d)) = [n

(k)
P (A,a ,d) .
kel ke

Looking now at the problem as a two-person zero-sum game, where the lst player
(Nature) chooses T and the 2nd player (Statistician) chooses (A,A ,d) it

is natural to ask whether

inf sup P _(m;(A,A ,d)) = sup inf P (m;(A,A ,d)) (4.1)
(A,a,d) 1 ¢ T (A, ,d) ©

Now if K = 2 then it is known (3] that

_1.1/2
2(n)7,¥15)
inf P (w,(A,A ,d)) = (4.2)
e — m-1 1
Y12
where Y12 is given by (2.1) . tlence
-1.1/2
(YI]I.IZ ) " l \/_1— -1
sup inf Pe = = . =1- (1 + = )
Y12 Y12
- 14 -
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On the other hand by Lemma 1,
inf sup I (sup p(A,A,d))—l

and for K =2 it is easily seen that

-1 -1 1/2

by (AT CH) b,y (a7 (Hy))

p(A,A,d) =1 +(

However it has also been shown in [3] that

-1 -1
@ H)) pE@THD))

m=1
Y12

sup 1 =1 =
by (A (H)D)uy(d ™ (Hy))
and hence (4.1) is indeed true for K = 2 .
Conjecture: (4.1) is also true for K > 2 .
Comment: Since an analog of (4.2) for K > 2 is not available at present the
above reasoning cannot be applied to prove the conjecture. However, since the
number of hypotheses is finite (4.1) would follow if one could show that the

set of all vectors
(Pil)(A’A ’d)i""PiK) (A,A )d)) )

where (A,A ,d) runs through all m-state RFA, is convex. This is indeed so for

K = 2 , unfortunately we have not been able to prove this even for K = 3 .

= 15 =
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APPENDIX A

A Formula For A Stationary Distribution
Of A Finite Markov Chain.
Let P = [pij] be an m x m stochastic matrix, let g = (S,E) be an
oriented graph with the set of vertices S = {1,...,m} and the set of arcs

EC S x S defined by

(i,j)€ E&itj  and Pyj 0

Let 1€S be a vertex of g. Then a vartex j€S such that (i,j)€E
is called a successor of 1 . A sequence of vertices (il,iz,...,in) such
that each ik+1 is a successor of ik , k=1,...,n-1 , 1is called a path.
If i1 is also a successor of in the path (il,...,in) is called a cycle.

Consider now a subgraph f = (S,F) , where FC E with the following

properties.
1) each vertex 1€ S has at most one successor.
2) { has no cycles.
3) f is maximal, i.e., no further arcs can be added without violating

1) or 2).

We will call such a subgraph a confluence. Notice that each confluence

has exactly one vertex with no successor. We will refer to this vertex as a

sink.

With each confluence f = (S,F) we associate a positive number

p(f) = n P, .
(1,j)€F 1

We now have the following theorem:

- 16 -




Theorem: Let P be a transition probability matrix of a homogeneous Markov
chain, g be the graph defined above, let ¢i be the set of all confluences
with sink 1 €S .

If P has an invariant distribution (My,...,u ) = (ul.---,um)P then

u,=C ) p(f), ie€s, (A.1)
fE€o,

+ eow B =],

where C > 0 1is a normalizing constant determined from My = L.

Remark: Notice that the formula (A.1l) gives as a sum of products of the

g
off-diagonal entries of P , each product contains exactly m - 1 different
entries and no two products contain the same set of pij's . In this sense,

the representation of u is unique. Notice also, that if all off-diagonal

i
entries of P are positive then Wy is a sum of exactly mm“2 products.
Thus, although the formula is certainly of theoretical interest, its application

for computing the stationary distribution is likely to be limited to cases,

where a majority of pij's are zero.

Example: Let

«5 wl .3
-3 o | -l .
P =]. .7 .
0 .5 .
The graph g is
3

M
O=0=0

and the confluences together with the number p(f) are as follows:

- 17 -



Sink Confluences f€ ¢, ) p(f)
i
3 3 3
1
1 2 4 1 2 4 1 2 4
.015 .105 .010 .130
3 3 3
, 2
1 2 4 1 2. 4 12 4
.010 .070 .105 .185
3 3 3
3
12 4 1 2 4 I 2 4
045 .030 .020 .095
3 3 3
:
: 1 2 4 1 2 4 1 2 4
: .008 .056 .084 .148
r Total: .558
3
i
: . e 130 185 95 148
Hence the stationary distribution is p = ( 558 * 558 ’ 558 ’ 558 ) .
é
1
c,
3 - 18 -
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Proof of the Theorem: We will show that (A.l) satisfy the equations

| ;
H, = H.P.. » j=1, s,

: or equivalently

: m m
b b ) Pe. = ) HiPi. > F=l,...,m . (A.2)
i jamp 3 g PH

i#] i#]

-

4 Let h = (S,H) be an arbitrary subgraph of g , let

& p(h) = I P.. »

1 (i,7)€n

%

Tl and let h + (i,j) denote a subgraph obtained from h by adding or removing
12 the arc (i,j). Next let

o Aj = {f + (j,1) : f€¢j,iés—{j}} 5

B, = (£ + (1,5) @ f€0,,1€5 - {3}) .
1

3 If HyseeosHp is given by (A.1l) then for any je€ S

n

. u. z p.. = z p(h) and

: Ji=1 M hea,

-f i#] !
E\;'T m
) w.p.. = ) ph)

4 i=1 * M hes
i#j ]
i Thus (A.2) will follow if we show that A, =B, . To this end let
' h€A, , h=f+(5,1),
E

1 T

(R e iy SRy e e m N Sk e e f e il




GO T By e S kah e
dabalics Rt T

y let k be a vertex contained in the path (i,...,j) whose successor is j. ;

If the arc (k,j) is removed then h becomes a conluence with sink k

since (k,j) was an arc of confluence f and thus could not have any other
successor than j . Hence h can be written as f' + (k,j) , '€ ¢k and

therefore h €B Conversly, if he€B, , say h = f' + (k,j) , then

i 3
f'e (bk and by removing the arc (j,i) with i being a successor of j con-

tained in the path (j,...,k) we conclude that h - (j,i)€¢j. Hence hGAj

and the proof is complete,
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APPENDIX B

A Generalization of a Lemma of Yakowitz ([5]).

Lemma: Consider K finite regular Markov chains with state spaces Sk ,

transition probabilities [Pk(i+j)] , and statlonary distributions By o

k=1,...,K . Link these chains together by allowing transition between Sk

and Sk+l , k=1,...,K -1, via a pair of states ek,k+le Sk R ek+l,k6 Sk+l ;
with probabilities i
Pl 1t 7 G, i) = Mkl
Plerin,k ™ 8k ik’ = Mtk

and changing the original transition probabilities Pk(e ) and

+> e
k,ktl k,kt+l

( ) accordingly.

“)rl,k 7 CklLk
If the new chain with state space S = S1 (T L)SK is regular then its

Pk+l

stationary distribution p 1is given by

k-1
S =C n m, . .le. .
s € S, =>u(s) uk(s)j=l 5,41 uJ( J,J+l)
1 ( )
I T, . (e, . k=1,...,K
j=k+l 3,3-1%3%3,3-17 Tt
where C > 0 1is a normalizing constant.
Proof (by induction on K)
[
(i) Let K =2 . We have for the oriyinal two chains i ;f
= A
s € S;=pu (s) ) P, (rrs)u (s)

resl




and for the new chain § = SlU S

(

H12'¢12

)

since My, (e,

Hence if s 681

equations and consequently

In particular

and since

) -

= ﬂlzulz(elz) by equating flows. Similarly

then ul(s) and

T1gH1g(ey0) = Myqhy (eyy

s€ Sy=>h,(s) = ) P, (r8) 1, (s) ,
‘r682

12 2°

SES s F e ,m=pu,(s) = ) P (ros)u,(s) ,

r€Sl

SE€S,,s 7 ey =y ,(8) = | Py(ras)up,(s) ,
r652

y P, (r+8)u;,(s) + [P(e

1
réSl-{elz}

1278120 7 Tplvpp(egy)
Hpupplep) = L B0y, (8)

reS1

u12(82)= ) Pz(r+5)u12(5) S '
reS2

12(s) satisfy the same system of linear

s € Sl=>u12(s) = alul(s) a

s682=$u12(s) = azuz(s),

Hipleyn) = ajuyle,) 5 wp,(eyn) = aju,(ey)

) we must have

3 Ty Baleyy)
8y Ty Hylegy)
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Since a1 + a, = 1 this implies a = CTblUZ(e21) > a, = (‘1&211 (e .

(ii) Let the lemma be true for § = S] U...u SK—l and form new chain SUSK .

Denoting E' the stat. distribution of S and p that of SUSK we have

by part (i)

s€S =>u(s) = C e k1" (L}\ Ke 1)u'(s)
(B.1)

368K=>11(5) = C '”K~1,K“ (e K-1,K K(b)

By induction hypothesis

K-2
(e i) = Cligag (e ) ,2] "Lk M8y, e
and if se€ Sl CSs
6
k-1 K-1

1 = 1 g
u'(s) =¢C uk(S)'H n, ... u, (e J,J+1) mow, . . w.(e )

3531 73 jok4p J0d71 I35

Substitution into (B.1) gives the desired formula (with the proportionality

constant CC').




LT T AN TR PR RET T T O,

AR RN T (AT TS

REFERENCES

Arbib, M. A., Theories of Abstract Automata, Prentice-Hall, (196%).

Cover, T. M., personal communication (1974).

Hellman, M. E., and Cover, T. M., "Learning with Finite Memwory,"

Statist. 41, (1970), pp. 765-782.

Ann. Math.

Sagalowicz, D., "Hypothesis Testing with Finite Memory," Ph.D. thesis,
Electrical Engr. Dept. Stanford University, (i970).

Yakowitz, S., "Multiple Hypothesis Testing Dby Finite Memory Algorithms,"
Ann. Statist., 2, (1974), pp. 323-336.

sl

3
4
5
3
A
K
j
i
b
o
; i
B -
a
4 8
¢ W
3 &
|
)y
H
3
b
RER - |
L
Pt
£l
I
;
1
1A




