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1.    Introduction. 

The bivariate delayed Poisson process is a particular type of bivariate 

point process,  that is a point process with two types ot event occurring along 

a time axis.    Bivariate point processes were first studied by Cox and Lewis 

(1972) in their Berkeley Symposium paper and here their analysis of the 

bivariate Poisson processes  (without Poisson noise) is carried further.     This 

bivariate point process is  formed by subjecting the events of a main Poisson 

process to independent pairs of delays;   t'.'e two types of delay for each main 

event produce the  two types of event in  the bivariate point process.     Since it 

is well known that a Poisson process whose events are independently and identi- 

cally displaced remains a Poisson process,   the events of each type considered 

separately  form two Poisson processes.     They cannot, however, be independent 

Poisson processes because their events are associated in pairs by the displace- 

ment centres  (the events of the original Poisson process).    The resulting 

bivariate point process is by definition a particular type of bivariate 

Poisson process because its marginal processes for events of each type are 

themselves   (univariate) Poisson processes.     Cox and Lewis  (1972) assumed a 

model In which the delays within pairs were independent and non-negative, and 

discussed the transient and asynchronous bivariate counting processes.    We shall 

mainly assume that the delays within pairs are dependent and two-sided and will 

first obtain the stationaly initial conditions.    These lead to the joint distri- 

bution of  the numbers of delays of each type in progress at an arbitrary time 

and a general form of the asynchronous bivariate counting distribution.    Finally, 

we obtain the semi-synchronous marginal interval distribution,  that is the 

distribution of  the time from an event of one type to the next event of  the 

opposite type;  such distributions are of obvious use in the statistical analysis 
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of blvarlate point processes, and have been studied in the context of the 

general theory by Wlsnlewskl  (1972).    Milne  (unpublished Ph.D.  thesis), has 

shown that the bivariate Poisson process studied here is the most general form 

for an Infinitely div    ^ble bivariate point process. 

2. Notation and Description of the Model. 

The bivariate delayed Poisson process is constructed frou a main Poisson 

process of rate    p.    Associated with each of its events is a pair of delays. 

Y      and    Y ;    thus an event at tine    t    in the main Poisson process produces 

an event at time    t + Y      in the    a-process    and an event at tine    t + Y.     in 

the   b-process.    We will assume that the random variables    Y      and    Y     with 

ranges    (-*,00)    bave finite means and a dependent Joint distribution without 

any atoms.    The pairs    (Y  ,Y. )    associated with different main events are 

assumed to be Independently and Identically distributed. 

The random variables    N (t,t+t ),    N. (t,t+t. )    denote the numbers of a a D b 

type-a and type-b events in the intervals    (t,t+t  ]    and    (t,t+t. ],    respectively; 

when there can be no confusion these will be abbreviated to    N (t )    and    N. (t. ). a    a D    b 

with joint probability generating function    (j .p.g.f .),(p(z.. ,z2;t »t, ). 

3. Stationary Initial Conditions. 

The purpose and methodology of stationary Initial conditions for uni- 

varlate point processes have been described in Lawrance (1972); they carry 

over quite obviously to bivariate processes and so will not be laboured here. 

We wish to study the behaviour of the process at an arbitrary tine, and this 

is defined as the time t as t + <». It is apparent for the bivariate delayed 

Poisson process that at any tine t there may be a (random) number of events 

of each type in the course of being delayed. The initial conditions nust 



therefore specify jointly the distribution of these numbers and the Individual 

residual delay times measured from t. We begin by dealing with the numbers 

and delay times which are associated with main events occurring before time 

t; however, when delays can oe negative (or advances), we have also to consider 

delays associated with main events after time t. 

The behaviour at time t yields to an analysis of the palrwlse behav- 

iour of (Y ,Y. ) for each main event In (Ott). There are four possibilities 

concerning the type-a and type-b events which terminate Y  and Y. : both 

occur after time t,    type-a occurs after time t and type-b before time t, 

vice-versa, and both occur before time t.  Let there be n main events In 

(0,t], with Z ,Z 0',Z^ ' and n - Z - Z^a) - Z^   main events giving pairs 

of type-a and type-b events of the above four types, respectively. Let 

{Y (1),Y. (1)} for 1 - 1,2 Z^ be the delay times past t associated ab t 

with main events coun?-ed by   Z ,    fnd similarly let    Y'U)    for    1 ■ 1,2,...,Z 

and   Y'(l)    for    1 > l,.1 Z^'    be the delay times past    t   asoclated with 

the other two situations. 

The key feature of the present model which makes it tractable Is that, 

given the n main events In (0,t], they are Independent and uniformly dis- 

tributed over this Interval.    Thus we can see that 

(a) 

Zt - k, Ya(i) * a^ Yb(l) St bi    for    1-1,2 k 

Zta) " ka' YI(i) ^ ai    for    i " 1'2 ka 

_Z^b) - 1^. Y^(l) Jtb|    for    1 - 1,2,....^ 

,-Wt (yt)1 nl 

a"k-Hta+kb 
nl        (n-k-k -1^)! k! kj 1^! 

_> 
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n-k-ka-k^ 

{t  j p(Vv'Yb<v)dv} 
v-0 

^jt    j    P(Ya>V+al' Yb>vrtl)dv} 
v-0 

t 
Wi   |    p(Ya>vfa.t Vv) dv| 

v-0 

(3.1) 

In (3.1) the variable v Is used to denote that the typical main event being 

considered Is located at time t - v, or a tlmv> point v before t. Letting 

t -► " In (3,1) we obtain after a little plmpllflcatlon, and dropping the 

suffix t, the arbitrary time Initial conditions as 

Z - k,Ya(l) i a1, YCl) i bi for 1 - 1,2,...,k 

Z(a) - ka, Y^(l) Ä a^ for 1 - l,2,...,ka 

_z(b) - 1^, YJ(1) ^ bj for 1-1,2 1^ 

00 

-• exp{- y  j  [l-P(Ya<v, Yb<v)]dv} 

v-0 

x  (kl)"1    ir    [y 
k-1 

P(Y >v+a., Y,>v+b.)dv] a        lb        1 
v-0 

i    k 

x (k  I)-1   iTaty 
a 1-1 

P(Ya>v+aJ, Yb<v)dv] 

v-0 

(l^I)"1    ^[v    j    P(Ya<v, Yfc>vH>')dv], 

v-0 

(3.2) 



Both  (3.1) and   (3.2) are valid for    k,k ,k,   ^ 0    subject to the interpretation 

that when any of    k,k ,k,     are zero the corresponding products are omitted. 

We next consider the behaviour at any particular time, which we take as 

zero, which is due to negative delays.    We must consider the behaviour at    0 

due to main events in    (0,t]    and then let    t -♦• 0D.    The situation is similar 

to that just considered except that we are interested in the 'overshoots*  of 

the delays past zero in the negative direction.    For each event in    (0,t]    we 

either have a double overshoot,  an overshoot of  type-a only,  an overshoot of 

type-b only,  or no overshoot at all.    Let these overshoots, measured as posi- 

tive quantities,  be denoted by    X  (i),  ^(i)     for    i - 1,2,...,k,    X'U)     for 
Si ij cL 

i = l,2,...,k      and    XjUi)    for    i » 1,2»...,k..    Here we have changed from 

Y    to    X    in our notation of the  'forward'   initial conditions, and will use 

C    instead of    Z    for counting the main events.    The  'backward'  initial condi- 

tions can now be obtained analogously to  the  forward ones, and yield after some 

reduction 

~e        = k,  Xa(i) i a^  Xb(i)  i bi    for    i •= 1,2,...,k" 

e(a) - ka, X^(i) i aj    for    i - 1,2 ka 

i_4(b) - l^, ^(i) ^b^    for    i - 1,2 ^ 

0 

exp{- \i [1-P(Y >v,  Y >v)]dv} 
a b 

Y=—CD 

x  (kJ) 

1 ^ 

•Iff 
i-1 J 

P(Y <v-a., Y.Kv-bjHv] 
a        lb        i 

i    k 

x  (k I)'1    ita [V 
a i-1 

V*—to 

0 

P(Y >v-a'     Y,<v)dv] 
a ID 

.-1    h 

\pB—CS 

0 

x (k^)"1    ?  [y    |   P( a>v, Yb<v-bpdv]  . (3.3) 

/«—CO 



A point to notice about both the forward and backward initial conditions is 

that they do not simplify appreciably when the delays within pairs are inde- 

pendent.    Even if   Y      and    Y.     are independent in the model,   the Initial 

pairwise delays,    X (1)    and    \(i)i    if there are any, will be dependent. 

4.    The Numbers of Events in the Course of Being Delayed. 

One aspect of the blvariate delayed Foisson process,  considered at an 

arbitrary time    t,    is   the number of events in the main process generated 

before time    t    which are delayed until after time    t,    and conversely the 

number of events generated after time    t    which are advanced to before time 

t.    Now the bivariate delayed Poisson process can be regarded as a simple 

bivariate case of Lewis's branching Poisson process  (Lewis,  1964), where a 

main event generates  two subsidiary processes each of one event.    In this 

terminology we will be obtaining the joint distribution of the numbers of each 

type of subsidiary process running at an arbitrary time.    It is shown in Lewis 

(1964) for positive Independent delays that marginally the distribution will 

be Poisson with means    E(Y ),    E(Y, );    and also,   for positive independent 
a D 

delays, the joint Poisson distribution is stated in Cox and Lewis (1972). 

The result of two-sided dependent delays is derived here, and perhaps places 

the earlier results In a wider perspective. 

The required joint distribution is obtained from the torward and back- 

ward initial conditions by first setting the a.,a! and b.,b' i (3.2) and 

(3.3) equal zero. The backward and forward contributions will be independent 

because of the main Poisson process, and we require the joint distribution of 

{Z+Z(a), Z+Z(b)} + U+5(a),e+C(b)}. Let the probability generating functions 

(p.g.f.'s) of the two pairs be (p..(z..,z2) and (p?(z ,z_). Frow (3.2) we thus 

have 



00 00 CO 

(P1(Z1'Z2)  "    ^      ^        ^    exp{" 
k-0 k -0 k,-0 a        D v=0 

[l-P(Ya<v,  Yb<v)]dv 

x   Ocl)*1 {y z^ P(Y >v, Y, >v)dv} a b 
v»0 

i r k 

x   (kal)"-l{y z1       P(Ya>v, Yb<v)dv} a 

v-0 

w-l V^l) *{v z2 PO  <v, Y >v)dv} 
3 D 

•s 
v-0 

exp{y(z1-l)     |    P(Ya>v)dv + (z^Du      j     P(Yb>v)dv 

v-0 v=0 

+ y(z1-l)(z2-l) P(Y >v, Y, >v)dv}  . a    '    b (A.l) 

v=0 

This Is the p.g.f. of a bivariate Polsson distribution X and Is essentially 

the result stated by Cox and Lewis (1972, equation (A.34)). For the negative 

delays  (or advances) we have  from (3.3) 

0 

(p^CZpZj  ■ exp{y(z1-l) P(Y <v)dv + y(2_-l) a 2 
P(Yu<v)dv 

b 
V=—w \/=—oo 

0 

+ W(z1-l)(z2-l)     J     P(Ya<v,  Yb<v)dv}  . (4.2) 

V=-oo 

The product of  (4.1)  and (4.2)  gives    \p(z  ,z.),   the required p.g.f., and 

remains of the well known infinitely divisible bivariate Poisson form.    The 

sum of the first integrals in  (4.1) and (4.2) shows  that the marginal means 

are    E{ |Y   |}    and    E{JYh|},    respectively.    We now show that the covariance 

term 

»^_- 



u 

y{ I P(Ya<v, Y. <v)dv + 
D 

?(Ya>v, Yb>v)dv}, (A.3) 

Is, apart from the factor u,  the expectation of M(Y ,Y, ) where 
a D 

!0 for Y Y, i 0 
a b 

Min{|Y |, |Y, |} for Y Y. > 0. (4.4) 
3D 3 D 

This may be seen from the successive equalities 

E{M(Y ,Y )} - F,{min(Y  ,Y ) |Y >0, Y >0}P(Y >0,Y >0) 
3      C' 3      D 3 D 3D 

+ E{mln(-Y  ,-Y, )IY <0, Y.<0}P(Y <0, Y,<0) a'    b   '  a    '    b a     '    b 

P(Y >v,  Y  >v|Y >0, Y. >0)dv x  p(Y >0,   Y,.^) a'n'a'b a'b 
v=0 

+        P(-Y >v,  -Y, >v|Y <0, Y. <0)dv x p(Y <0, Yu<0) } aoa D ab 
v-0 

0 

j P<Ya>v. Yb>v>dv + . 
v»0 v» 

P(Y <v, Y, <v)dv. (4.5) 
a    b 

The Interpretation of M(Y ,Y, ) Is that It Is the absolute length of the over- a    D 

lap of a pair    (Y  ,Y. );     If    Y      and    Y,     are of opposite sign there Is no 

overlap and    M(Y  ,Y. )    is zero.    The joint distribution of the numbers of 

events which are In the  course of being delayed at an arbitrary time thus has 

joint p.g.f. 

cpv'^.z^  - exp{(z1-l)uE(|Ya|) + (z2-l)uE(|Yb|) + (Zj-1) (z^DpEWY^ ) ]}.       (4.6) 

When delays are non-negative,     |Y   |  = Y , |Y   |  « Y ,  M(Y Y )  ** min(Y ,Y )    and 
3L 3   U      D      3D 3D 

(4.6) reduces the result stated by Cox and Lewis (1972). We may also note 
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that  (4.6) applies to a bivariate generalized branching Poisson process, 

Lewis (1969),  If    Y      and    Y,     are understood as the durations of subsidiary 
a b 

processes.    Further to Cox and Lewis's remarks In section 4.6 of their 

Berkeley paper.  It Is Interesting to note that the Initial conditions cannot 

be constructed from the joint probabilities In (4.6)  and the marginal forward 

recurrence time distributions of    Y     and   Y. ;    this Is because the dependency 

structure requires the joint distribution of  these quantities. 

5.    The Stationary Bivariate Counting Process. 

In this section we obtain the joint p.g.f. of    N  (t )    and    N. (t. ), 

the number of events of type-a and type-b which occur In the Intervals    (0,t  ] 

and    (0,tK]    of the stationary process.    We know marginally that    N (t )    and 
D a     SL 

N. (t, )    are Poisson random variables of means    ut      and    pt. ,    so Interest 

concerns their joint behaviour.    Cox and Lewis (1972,  Sections 4.3 and 4.4) 

obtained the joint distribution of    N (t )    and    NuCt,)    for palrwlse Independ- 

ent and non-negative delays, and we present here the corresponding result for 

palrwlse dependent and two-sided delays; this more general case Is shown to 

produce a rather simpler result. 

The type-a and type-b events In    (0,t]    arise from three sources:     (1) 

those from main events In    (-«sO]    which have been delayed Into    (0,t ]    or 
a 

(0,t. ]; (2) those from main events In (0,max(t ,t. )] which have been delayed 
b ab. 

or advanced and are still in (0,t ] or (0,t. ]; (3) those from main events 
3 D 

in    (max(t ,t.),,l    which have been advanced into     (0,t  ]    or    (0,t, ].    The 

contributions from these three sources are Independently distributed In virtue 

of the Poisson main process, and we shall let their bivariate p.g.f's be denoted 

by   (p^.Zj;-«^),    (p(z1,z2;0,ta,tb)    and   (pU^z^t^t^,»),    respectively. 

^..^ 



Derivations of all three are similar; particular cases of the first two appear 

in Cox and Lewis (1972), and so we limit ourselves to the derivation of 

cp(z..,z2;t »t^»
00) which arises from negative delays. We first state for 

future reference, 

00 00 

(p(z1,z2;-»,0) - expiuUj-l)   I P(v<Ya<v+ta)dv + y(22-l)  I P(v<Yb<v+tb)dv 

v-0 v-0 

+ uUj-lHzj-l) 

OS 

r 
P(v<Y <v+t , v<Y. <v+t. )dv}   (5.1) 

a   a    D   D 

v=0 

and 

max(ta,tb) Y(W 
(p(z1,z2;0,ta,tb) - exp{u(z1-l) I P(-v<Ya<ta-v)dv + u(z2-l) I P^-^Y^t^^dv 

v-0 v=0 

max(ta,tb) 

+ li(z1-l)(z2-l) I P(-v<Ya<ta-v, -^Y^t^^dv).  (5.2) 

v-0 

For (p(z1,22;t »t, »•) consider events which are advanced from (max(t ,t, ),T] 

into  (0,t ] or (0,t, ], and ultimately let 7 + *,    For a main event at 

time max(t ,t, ) + v, its contribution to ^(z-^z-jt »t, ,0,) is 

1 + (21-l)P(-v-t0<Ya<-v-t1) + (z2-l)P(-v-t0<Yb<-v-t2) 

+ (z1-l)(z2-l)P(-v-t0<Ya<.v-t1, -v-t0<Yb<-v-t2)    (5.3) 

where t0 - max(ta,tb), t1  = max(tb-ta,0), t2 « max(ta-tb,0). 

Conditional on the number of events in    (t-,!],    the terms  (5.3) are independ- 

ently and uniformly distributed over    (t-.T],    Hence,  following the argument 

in section 3 to obtain the initial conditions, we obtain 

10 



q)(z1,z2;ta,tb,») - expIyCz^l)   I P(-v-t0^Ya<-v-t1)dv + y(z2-l) j P(-v-t0<Vb<-v-t2)dv 

v»0 v^O 

oa 

+ W(z1-l)(z2-l) j P(-v-t0<Ya<-v-tr-v-t0<Yb<-v-t2)dv}  . (5.4) 

v-0 

We observe that (5.1),   (5.2) and (5.4) are all of the Infinitely divisible 

bivariate Poisson form, and thus it remains only to obtain expressions for the 

parameters in their product; this is the required bivariate p.g.f.     Simple 

changes of variables in the integral coefficients of    (z.-l)    shov that their 

sum may be written 

V P(v<Y <v+t )dv. (5.5) a        a 

If we assume that   Y     has a density then this integral evaluates to    yt 
a a 

straight away; generally we will make this assumption. However, if Y  Is 

restricted to non-negative values this may easily be proved without the assump- 

tion of a density. We thus have that N (t ) and N^Ct. ) have marginal 

Poisson distributions of means yt  and ut, . Similarly, adding together the 

coefficients of (z -l)(z2-l) from (5.1), (5.2) and (5.4) gives 

r 
V 

v 

P(v<Y <v+t , v<Y <v+tb)dv (5.6) 

as    Cov{N. (t ), N. (t. )},    a quantity which is always non-negative. 

Thus,   the general result for the bivariate p.g.f. of    N (t )    and    NuCO    i8 

<p(z1,z2;ta,tb) - exp{(z1-l)yta + (z^Dyt^ 

+ (z -l)(z--l)y        P(v<Y <v+t  , v<Y. <v+t, )dv}  .       (5.7) i z I a       a D        D 
V=—a> 

11 
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When Y      and    Y.     are non-negative,  the covariance becomes a o 

min 

v-0 

(VV 0<Y <t -v a    a 
a 

dv + y      P 
v<Y <v+t a        a 

P^b^-J v*0 L^b^v 
dv. (5.8) 

and this makes   (5.7) correspond to Cox and Lewis  (1972, equation  (4.25)). 

Setting    z.  ■ z- ■ 0    in (5.7)  gives the bivariate exponential forward 

recurrence times;  further details are given by Cox and Lewis. 

6.    The Semi-Synchronous Interval Distributions. 

Finally,  in this paper we consider the distributions of intervals 

between events in the bivariate delayed Poisson process;  the intervals between 

events of the same type have trivially,  exponential distributions of parameter 

p.    Consequently, we shall be interested in the distribution of intervals 

between consecutive events of opposite type;  these have been called by Cox 

and Lewis   (1972)  the semi-synchrorous intervals.    We take an arbitrary event 

of type-a,  say,  and require the distribution of the interval to the first 

subsequent event of type-b;  this interval will be denoted by    X      .    Some 
s 

general theory relating synchronous, semi-synchronous and asynchronous interval 

distributions is given in Wisniewski (1972). We shall, however, develop our 

result from the definition in Cox and Lewis (1972), 

P(X(b)>x) - lim P{N. (t,t+x) - OlN (0,t) ^ 1} , 
a      t+0  ^ 

(6.1) 

which is analogous to the definition in Khintchine (1960, Section 9) of Palm 

functions for synchronous interval distributions. Taking (6.1) we write it as 

P(X(b)>x) 
a 

lim 
t+0 

P{K (t,t+x) = 0} - P{Na(0,t) - 0, Nj^^t+x) 0}" 

P{N (0,t) * 1} 
s 

(6.2) 

12 

•».-.■ 



Dividing both the numerator and denominator by t, and assuming that the 

individual limits exist, as will be evident in a moment for the present 

process, we have the general result 

P(X^b)>x) - -y'1D^P{Na(0,t) = 0, Nbft.t+x) - 0jt-0). (6.3) 

Here D  denotes a right hand derivative and y is the value of 

t" P{N (0,t) ^ 1} as t + 0;  the latter is trivially true from Khintchine's 

work since N (0,t) counts events in a Poisson process of rate y. 

Our main concern now is thus to evaluate P{(N (0,t) • 0, N. (t,t+x) ■ 0) 

for the blvariate delayed Poisson process, f^ince N (0,t) and N. (t,t+x) 

i^fer to the stationary process we must consider main events which have occurred 

in the Intervals (-1 ,0], (O.t] and (t.t+T»], eventually letting T^ and 

T- ->• «o. A main event which occurs at -v in (-T^O] does not lead to an a- 

event in (0,t] or a b-event in (t,t+x] when its delays are such that 

Y € [v,t+v]', Y. € [t+v.t+v+xl', where prime denotes the complementary 
a D 

interval; similarly for a main event at v in (0,t] the condition on the 

delays is Y € [-v^-v]', Y, € [t-v.t-v+x]', and finally for an event at 
3, D 

t +v in (t,t+T0] the condition is Y ( [-(t+v),^]', Y. ^ [-v.x-v]1. 
/ a D 

Use of the conditional property of the main Poisson process for each of the 

intervals  (-^,0], (0,t] and (t,t+T2], leads to the result 

i      fY €[v,t+vr i 
P{Na(0,t) - 0, ^(t.t-hc) - 0} - exp{y J  [-l+p[Y%[t+v,t+xl'JldV 

f f^ €t-v,t-vr      N f rY €[-(t+v),-v]S 
+ W J   ^^iVft-v.t-v+xl'Jl^ + * J   1-

1+P
[Y^[-V.X-V]'       Jldv}  •        *'V 
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Slight changes of variable in the second and third terms then give 

r fY   Uu.t+U]'        \ 
P{Na(0.t) - 0. lyt.t+x) - 0} . exp{y ["^ v € [t+,.t+u+x]p">  • (6.5) 

u"—» 

When the delays    Y      and    Y,     are non-negative,  the corresponding result is 
a D 

00 

f 

P{N  (0,t) - 0,  N. (t,t+x) » 0)  = exp{y 
a D 

[-1+P 

+ y [-1+P 

u«0 

u«0 

rY >u 
a 

.Yb€[u,u4«rj 

rYa5[u,t+u]' 

Y^tt+u.t+u+xl'J 
]du 

Idu - V      P(Y <u)du}   . 

u»0 

(6.6) 

We can now use  (6.3)  for the semi-synchronous interval distribution and have 

P{X(b)>x} 
a [■>: r *-* 

fY €[u,t+u]' 
a 

I'l'^U-O Y, «[ufu.t+u+xl'J J   j; Ur0) 
D 

fY ^tu.t+u]' 
a 

Y.^[t+u,t+u+x]' 
D 

x exp{u  [     l-l+P Idu) (t-O)' (6.7) 

The second term in (6.7) becomes   exp(-vix)    when    t « 0    since the exponent 

is then of the form (5.5); the first term may be alternatively written as 

/■u<Y <t+u        "i     -Ti 
[P(u<Ya<t+u) + P(t+u<Yb<t+ufx) - P[t+u:Yb<t^+xJdu]J(t.0)  . 

which then simplifies to 

r+ai> 

1 - D. 
u<Y <t+u 

a 

^l=-oo 

t+u<Yh<t+u+x, 
du (t-0) 

(6.8) 
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After writing the derivative in the Incremental way and examining the expression 

at  t = 0,  it is found that (6.8) becomes P(Y -Y [O.x]'). Thus from '6,7), b a 

we have the main result of this section as 

P{X(b)>x} = P(Y -Y ttO.xDexpMJx), (6.9) a D a 

and it is clear that this is a proper survivor function.    One particular case 

of  (6.9)  is when   Y      and    Y,     have exponential distributions of parameters ab 

X      and    X  ;     then the p.d.f. of    X has the mixed-exponential form 

,,. \ -(p+X. )x    X, 
-(b)- .    a • ., x    b  ,   b   -yx ,, 1ft. fa (x) = r+r (lJ+xb)e +r+r e   • (6-10) 

ab ab 

The distribution of Y. - Y  appearing in (6.9) also features in other 
b   a 

aspects of the bivariate delayed Poisson process, as mentioned by Cox and Lewis 

(1972), and the reason is fairly evident. For some purposes, the main Poisson 

process can be eliminated from the model by concentrating on (say) just the 

type-a events; a type-b event occurs at a distance Y, - Y  from its type-a 

event, and these follow a Poisson process anyway. Such reasoning leads to a 

quicker derivation of (6.9), but our aim here has been to apply, for the first 

time it is believed, the semi-synchronous definition (6.1).  It should be noted 

however, that the univariate process with displacements Y, - Y  is not iden- 
D     a 

tlcal to our delayed Poisson process in all respects;  for instance,  in terms 

of initial conditions and numbers of events in the course of being delayed. 

Some joint counting distributions for the univariate delayed Poisson process 

have been obtained by Milne  (1970) when pursuing identiflability questions. 

Finally, we note that a joint distribution of interest Is that of    X 

(a) together with that of    X      ,    the interval from the arbitrary  type-a event  to 
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the next  type-a evenc    We can define generally the required joint distribution 

as 

P{X(a)>x,  X(b)>y}  =  lim P{N (t,t+x)  = 0,   N, (t,t+y)  = 0 |   N  (0,t)  ^ l},       (6.11) a a t+0        a b a 

or use the univariate delayed Poisson process with    Y =  Y    - Y      as  the dis- 

placements.    We follow the latter course.    Taking our origin as an event in the 

Poisson process of type-a events, we require  that there be no  type-a events in 

(0,x]    and no  type-b  events  in    (0,y].    We consider type-a events which have 

been generated in    (-T ,0]     and    (x,T  ]    and  then let    T      and    T2    tend to 

infinity;  thus 

P(X(a)>x,  X(b)>y)  = 

lim    y e      1  f 
T -H» r=o 

1 v=0 
LT1 

PCY^tv.v+yJ^dv      x e KA * ? -yx 

»   -uT0 (yT„)' 

s-0 s! -T2 

-is 
P(,/€[-v-x,y-v-x],)dv     POfCIO.yD       (6.12) 

v=0 

which may be simplified to 

P(X^a^>x X(b^>y) = exp{-yx-py+u 
3.       fl 

F(u<Yu-Y <u+y)du} *P(Y -Y €[0^]').  (6.13) b a Da 
u=-x 

This joint distribution has the marginal distributions already discussed.  From 

a statistical analysis point of view it would be useful to obtain the correla- 

tion between X    and X  ; however, it appears from (6.13) that no simple 
3 3 

general expression will be available,  although  (6.13)  should yield the result 

with particular assumptions on the delay structure. 
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