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FOREWORD 

The 1974 Army Numerical Analysis Conference, sponsored by the Army 
Mathematics Steering Committee (AMSC), had as its host the U.S. Army 
Frankford Arsenal, Philadelphia, Pennsylvania, and was held on the dates 
of 13 and 14 February 1974. Mr. Sylvan Eisman, Chairman on Local Arrange- 
ments, shouldered the major share of the responsibility for the conduction 
of the conference. Those in attendance would like to thank him and other 
members of his committee for doing an outstanding job of arranging physical 
accommodations and handling the many problems that arose during the course 
of the meeting. 

No conference in this series was held in 1973. This fact may be just 
one of the reasons there was such a large number of papers submitted for 
this eleventh meeting. The theme of this conference was "Optimal Use of 
Computers in Army R&D," and many of the contributed papers that were 
accepted for the program emphasized t!ii< topic. A new feature in this 
conference was a concluding meeting where ?ach chairman presented a brief 
summary and a critique of the papers in his technical session. 

In addition to the above-mentioned speakers, three persons gave 
invited addresses. The first of these was delivered by Dr. Mel Pirtle, 
who described the large-scale centralized computer facility at the NASA 
Ames Research Center located at Moffett Field, California. Professor 
Magnus R. Hestenes of the University of California at Los Angeles and 
Thomas J. Watson Research Center, Yorktown Heights, New York, gave a 
survey of various optimization techniques. In particular, he described 
the steepest descent and conjugate direction algorithms and compared their 
relative advantages. Dr. J. M. Yohe, the third invited speaker, discussed 
the computer facilities at the Mathematics Research Center at the 
University of Wisconsin. He also described various computer routines and 
packages which have been developed and are available for use by Army 
scientists. 

Another important phase of this conference was the presentation of 
the citation noted below. 

DEPARTMENT OF THE ARMY 

CERTIFICATE OF ACHIEVEMENT 

Awarded to John H. Giese 

The Army Mathematics Steering Committee expresses its 
appreciation of and its gratitude for the valuable contribution 
made by Dr. John H. Giese as Chairman of the Computing and 
Numerical Analysis Subcommittee. His keen insight into the 
role of computers and numerical analysis in the business of 
Army research and development is best summarized by his statement 
to the subcommittee: "Ask not what mathematics can do for us, 
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but rather ask what new things it has done for us lately!' 
His missionary activity to bring the frontiers of 
computers ar.d numerical analysis to bear on the mission 
of the subcommittee, on his own laboratory, and on the 
entire community of the Army computer users is herewith 
recognized with great appreciation. 

The Army Mathematics Steering Committee expresses 
its gratitude for Dr. John H. Giese's contributions 
and looks forward to his continuing participation in 
the work of the committee and for his stimulating ideas. 

Lothrop Rittenthal 
12 February 1974 _ 

irop 
COL, AD 
Chairman, Army Mathematics 
Steering Committee 

In the photograph the gentleman on the right is Colonel Lothrop 
Mittenthal, Commander of the Army Research Office at Durham, North 
Carolina. He is seen presenting the certificate to Dr. John H. Giese. 
As chairman of the AMSC Subcommittee on Numerical Analysis and Digital 
Computers, Dr. Giese organized the first ten of this series of conferences. 
The chairmanship job has been taken over by Dr. R. P. Uhlig of the U. S. 
Army Materiel Command, Alexandria, Virginia. 

• 

p 

iv 

y 

S 



^:'ii'-.i.v;.^ V'*V:'~^  -v~ »V -^\V 

/ 



A 
I 

TABLE OF CONTENTS* 

Title Page 

Foreword iii 

Table of Contents   vii 

Agenda xi 

Program Integration for Optimal System Design 
Leonard F. Nichols and Ferdinand A. Scerbo         1 

Non-Linear and Mixed Integer Programming 
Byron 0. White 27 

Target Location Using an Array of Sensors Which Produce Closest 
Point of Approach and Multiple Range Alarms 

Raymond F. Coakley, Jr. 43 

Edgewood Arsenal Incineration Program 
William Shulman and William R. Brankowitz      57 

Edgewood Arsenal Pollution Abatement Scrubber Program 
William Shulman and William R. Brankowitz      63 

A Computer-Modeling Technique Applied To Priority Ranking of 
Development Programs 

E. H. Gamble 75 

Economic, Risk, and Systems Analysis of the Chemical Agent/ 
Munition Disposal System (CAMDS)" 

John Seigh and Lynn Davis 91 

Forecast of Schedule/Cost Status Utilizing Cost Performance 
Reports of the Cost/Schedule Control Systems Criteria:    A 
Bayesian Approach 

M. Zaki El-Sabban 105 

Computer Graphics Applied to Teaching of Math Principles 
at USMA 

Arthur G. Bonifas       117 

♦This Table of Contents lists only the papers that are published in this 
technical martual.    For a list of all the papers presented at the 1974 
Conference on Numerical Analysis see the copy of the Agenda. 

Preceding page blank 
Vll 

/ 

> 



1-, 

On the Numerical Convergence of Matrix Eigenvalue Problems 
Due to Constraint Conditions 

Julian J. Wu 133 

An Imbedding Method for Nonlinear Matrix Eigenvalue Problems of 
Staoility and Vibration 

R. E. Kalaba, M. k. Scott and E. Zagustin 145 

Numerical Solution Schemes for Highly Nonlinear Static Structural 
Response 

John F. McNamara 161 

Development of Numerical Methods for the Velocity and Temperature 
Distribution in Axisymmetric Solids Undergoing Large Plastic Deformation 

Taylan Al tan and Paul Gordon 179 

Conjugate Direction Methods in Optimization 
Magnus R. Hestenes 189 

Computergraphics Language For Your Design Equations (CLYDE) 
R. I.  Isakower and R. E. Barnas 211 

Hybrid Computer Solution Techniques for Laplace's Equation 
J. Thomas Broach and Robert M. McKechnie III 253 

Analysis Procedure for Optimizing Helium Refrigeration Cycles 
Russell  Eaton, III and Larry Amstutz      273 

Computer Aided X-Ray Analysis of Selected Ammunition Materials 
Fred Witt 233 

A Backyard Solution Computing Kiss Distance From Input Errors to Gun 
Air Defense Systems 

T. H. Slook 303 

Computer-Generation of Circular Graphical Firing Scales 
Diana Dadamo and Joseph Kaszupski    .....       337 

A Computational System for Numerical  Integration With Rigorous 
Error Estimation 

Julia H. Gray and L. B. Rail       341 

On the Effective Use of A Large Computer Program for Structural 
Calculations 

E. Cuthill and P. Matula 357 

Application of Nonlinear Analysis (Plastic) to Nastran (NASA Structural 
Analysis) Using Ring Elements Including Aspect Ration Effects 

Diana L. Frederick 379 

vin 

/ 



A Computerized Algorithm For Calculating The Dynamic Response 
of Continua 

Paul F. Gordon 401 

Computer Modeling in Determining Stability of a Mortar Repositioning 
Nonlinear Control System 

C. N. Shen and G. W. Woods 411 

Convergence Properties of Quasi-Newton Methods with Approximate 
Line Searches 

Melanie L. Lenard 447 

Adaptive Nonlinear Estimation Application for Temperature Forecasting 
N. B. Penrose 459 

A Method to Analyze Non-Linear Magnetic Systems 
Robert H. Haveson 475 

Perturbed Kuhn-Tucker Points and Rates of Convergence for a Class of 
Nonlinear-Programming Algorithms 

Stephen M. Robinson 489 

Modeling and Simulation of Cellulose/Tv Cellulase Hydrolysis 
Chul Kim 507 

Computed Energy Distributions of Double-Scattered Photons Obtained 
For Purposes of Mine Detector Design Analysis 

Fredrick L. Roder and Douglas G. Conley 533 

Computerized Procedure for Acquisition, Storage, and Manipulation of 
Topographic Data for Use in System Analysis Problems 

Phillip L. Doiron, Sr. and V. E. LaGarde 549 

Computation of Smooth Contours Over Arbitrary Planar Regions 
Richard J, Bair 563 

The Two-Stream Instability Studied with Four One-Dimensional Plasma 
Simulation Models 

David L. Brown 569 

A Calibration Procedure for a Ballistically Emplaced Acoustic Bearing 
Sensor Array 

Kenneth J. Dean 571 

1974 Army Numerical Analysis Conference Attendees List         597 

IX 

/ 
»>.-- 



AGENDA 

1974 ARMY NUMERICAL ANALYSIS CONFERENCE 
U. S. Army Frankford Arsenal, Philadelphia, Pennsylvania 

Wednesday. 13 February 1974 

0815-0845    REGISTRATION - Building 12 

0845-0900   OPENING OF THE CONFERENCE - Executive Conference Room 
Bullding 12A 

WELCOMING REMARKS - Colonel Rex C. Wing, Commanding 
Officer, U.S. Army, Frankford Arsenal 

0900-1000   GENERAL SESSION I - Executive Conference Room 

CHAIRMAN: Dr. Ronald P. ühlig, Chief, Scientific and 
and Management Information Division, Army Materiel 
Command, Alexandria, Va. 

LARGE SCALE CENTRALIZED COMPUTER FACILITY 
Dr. Mel Pirtle, Director, Institute for Advanced 
Computation, NASA Ames Research Center, Moffett 
Field, CA 94035 

1000-1020    BREAK 

1020-1200    TECHNICAL SESSION I - Room A 

CHAIRMAN: Dr. Walter Foster, U.S. Army Surgeon 
General, Washington, D.C. 

PROGRAM INTEGRATION TOR OPTIMAL SYSTEM DESIGN 
Dr. Leonard F. Nichols and Ferdinand Scerbo, 
Picatinny Arsenal, Dover, NJ 

NON LINEAR AND MIXED IN^GER PROGRAMMING 
Bruce D. Barnett and Byron 0. White, Picatinny 
Arsenal, Dover, NJ 

DEVELOPMENT OF A TARGET ALGORITHM FOR USE WITH UNATTENDED 
GROUND SENSORS 

Raymond Coakley, US Army Mobility Equipment Research 
and Development Center, Fort Belvoir, VA 
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Wednesday AM 

1020-1200   TECHNICAL SESSION I  (Continued) 

EDPWOD ARSENAL INCENKRATION PROGRAM 
William R. Brankowltz and William Shulman, 
Edgewood Arsenal, Aberdeen Proving Ground, MD 

EDGEWOOD ARSENAL POLLUTION ABATEMENT SCRUBBER PROGRAM 
William Shulman and William R. Braukowitz, 
Edgewood Arsenal, Aberdeen Proving Ground, MD 

1020-1200    TECHNICAL SESSION II - Executive Conference Room 

CHAIRMAN: Dr. Ralph Harris, U. S. Army Management 
Engineering Training Agency, Rock Island, IL 

A COMPUTER MODELING TECHNIQUE APPLIED TO PRIORITY 
RANKING OF DEVELOPMENT PROGRAMS 

Dr. Edward H. Gamble, US Army Test and Evaluation 
Command, Aberdeen Proving Ground, MD 

ECONOMIC, RISK AND SYSTEMS ANALYSIS OF THE CHEMICAL 
AGENT/MUNITION DISPOSAL SYSTEM (CAMDS) 

John Seigh and Lynn Davis, Edgewood Arsenal, 
Aberdeen Proving Ground, MD 

FORECAST OF SCHEDULE/COST STATUS UTILIZING PERFORMANCE 
REPORTS OF THE OOST/SCHETOILE CONTROL SYSTEMS CRITERIA: 
A BAYESIAN APPROACH 

Dr. M. Zaki El-Sabban, US Army Aviation Systems 
Command, St. Louis, MO 

COMPUTER GRAPHICS APPLIED TO TEACHING OF MATHEMATICAL 
PRINCIPLES AT THE UNITEE STATES MILITARY ACADEMY 

CPT Arthur G. Bonifas, Department of Mathematics, 
US Military Academy, West Point, NY 10996 

1020-1200   TECHNICAL SESSION III - Room B 

CHAIRMAN: Dr. John H. Giese, Chief, Applied 
Mathematics Laboratory, Ballistics Research 
Laboratories, Aberdeen, MD 

APPROXIMATIONS IN EVALUATING THE RADIATIVE TRANSFER EQUATION 
Dr. Louis D. Duncan, Atmospheric Sciences Laboratory, 
US Army Electronics Command, White Sands Missile 
Range, NM 88002 
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Wednesday AM and PM 

1020-1200   TECHNICAL SESSION III   (Continued) 

ON THE NUMERICAL CONVERGENCE OF MATRIX EIGENVALUE 
PROBLEMS DUE TO CONSTRAINT CONDITIONS 

Julian J. Wu, Benet Weapons Laboratory, 
WatervllJt Arsenal, Watervliet, NY 12189 

AN IMBEDDING METHOD FOR NONLINEAR MATRIX EIGENVALUE 
PROBLEMS OF STABILITY AND VIBRATION 

E. Zagustln, R. E. Kalaba, and M. R. Scott, 
California State University, Long Beach, CA 90840 

NUMERICAL SOLUTION SCHEMES FOR HIGHLY NONLINEAR 
STATIC STRUCTURAL BEHAVIOR 

John F. McNamara, Structural Mechanics Branch, CERL 
and University of Illinois, Champaign-Urbana, IL 61801 

DEVELOPMENT OF COMPUTERIZED NUMERICAL METHODS FOR 
APPROXIMATING THE VELOCITY AND TEMPERATURE DISTRIBUTION 
IN NONLINEAR, AXISYMMETRIC SOLIDS UNDERGOING LARGE 
PLASTIC DEFORMATION 

Paul Gordon, Pitman-Dunn Laboratory, Frankford 
Arsenal, Philadelphia, PA and Taylan Altan, Battelle 
Columbus Laboratories, Columbus, OH 

1200-1315   LUNCH 

1315-1415   GENERAL SESSION II - Executive Conference Room 

CHAIRMAN: Colonel Lothrop Mittenthal, Commanding 
Officer, U.S. Army Research Office, Durham 

CONJUGATE DIRECTIONS METHODS IN OPTIMIZATION 
Professor Magnus R. Hestenes, University of 
California, Los Angeles and Thomas J. Watson 
Research Center, Yorktown Heights, NY 10598 

1425-1640   TECHNICAL SESSION IV - Room A 

CHAIRMAN: Dr. Ronald P. Uhlig, Chief, Scientific and 
Management Information Division, Army Materiel 
Command, Alexandria, VA 
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r WcdntiHday I'M 

1425-1640 TECHNICAL SESSION IV      (Continued) 

AN ADVANCED HYBRID COMPUTER SYSTEM FOR SIMULATION AND 
DATA REDUCTION 

A. Gerald Edwards, Piccicinny Arsenal, Dover, NJ 
and Aldric Saucier, Army Materiel Command, 
Alexandria, VA 

COMPUTERGRAPHICS LANGUAGE FOR YOUR DESIGN EQUATIONS 
Robert I, Isakower and Robert E.  Barnas, Ticatinny 
Arsenal, Dover, NJ 

1525-1540 BREAK 

HYBRID COMPUTER SOLUTION TECHNIQUES FOR LAPLACE'S 
EQUATION 

J. Thotaas Broacu and Robert M. McKechnie III, 
US Army Mobility Equipment Research and Development 
Center, Fort Eelvoir, VA 

MINICOMPUTER VIRTUAL MEMORY TECHNIQUE FOR DATA 
Dr. Larry I, Amstutz, US Army Mobility Equipment 
Research and Development Center, Fort Bclvoir, VA 

ANALYSIS PROCEDURE FOR OPTIMIZING HELIUM REFRIGERATION 
CYCLES 

Dr. Larry I. Amstutz and Russell Eaton III, US Army 
Mobility Equipment Research and Development Canter, 
Fort Belvoir, VA 

COMPUTER AIDED X-RAY ANALYSIS OF SELECTED AMMUNITION 
MATERIALS 

F. Witt, Pitman-Dunn Laboratory, Frankford Arsenal, 
Philadelphia, PA 

1425-1640   TECHNICAL SESSION V - Executive Conference Room 

CHA JtMAN: Dr. Edmund Inselmann, Office of the Chief 
Mathematician,Army Materiel Command, Alexandria, VA 

MODULAR FORCE PLANNING SYSTEM (MFPS) 
CONSTRAINED FORCE MODEL (CONFORM) 

E, Pederson and S. Dix, USA Management Systems Support 
Agency, Operations Research Branch, Systems Development 
Division, Washington, D.C. 20310 
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Wednesday I'M 

1425-1640    TECHNICAL SESSION V  (Continued) 

THREE DIMENSIONAL AIR DEFENSE KINEMATIC LAUNCH AND 
INTERCEPT BOUNDARY COMPUTER PROGRAM 

J. L. Harris, Acroballistics Directorate, US Army 
Missile RD&E Laboratory, US Army Missile Command, 
Redstone Arsenal, AL 

1525-1540    BREAK 

A hACKWARD SOLUTION COMPUTING MISS DISTANCE RESULTING 
FROM INPUT ERRORS TO GUN AIR DEFENSE SYSTEMS 

T. H. Slook, Fire Control Development and Engineering 
Directorate, Frankford Arsenal, Philadelphia, PA 

ANALYSIS OF CLOSED LOOP FIRE CONTROL SYSTEMS FOR TANKS 
Louis R. Cerrato and Kenneth R. Pfleger, Fire Control 
Development and Engineering Directorate, Frankford 
Arsenr.l, Philadelphia, PA 

MATHEMATICAL MODEL FOR PREDICTION OF VISUAL RANGES 
ATTAINABLE WITH OPTICAL SIGHTS 

David L. Steinberg and Wright H. Scidmorc, Fire 
Control Development and Engineering Directorate, 
Frankford Arsenal, Philadelphia, PA 

COMPUTER AIDED DESIGN OF GRAPHICAL FIRING SCALES 
Diana T. Dadamo and Joseph W. Kaszupski, Fire Control 
Development and Engineering Directorate, Frankford 
Arsenal, Philadelphia, PA 

1425-1640    TECHNICAL SESSION VI - Room B 

CHAIRMAN: Professor Carl De Boor, Mathematics Research 
Center, University of Wisconsin, Madison, WI 

A COMPUTATIONAL SYSTEM FOR NUMERICAL INTEGRATION WITH 
RIGOROUS ERROR ESTIMATION 

Professors Louis B. Rail and Julia II. Gray, Mathematics 
Research Center, University of Wisconsin, Madison, 
WI 53706 

TOTALLY CONSER ATIVE METHODS FOR THE NUMERICAL INTEGRATION 
OF EQUATIONS OF MOTION 

Dr. Robert A. La Budde, Mathematics Research Center 
and Professor Donald Greenspan, Computer Sciences 
Department and Academic Computing Center, University 
of Wisconsin, Madison, WI 53706 
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1425-1640   TECHNICAL SESSION VI  (Continued) 

1525-1540    BREAK 

ON THE EFFECTIVE USE OF A LAkCI! COMPUTER PROGRAM FOR 
STRUCTURAL CALCULATIONS 

E. Cuthill and P. Matula, Naval Ship Research and 
Development Center, Bethesda, MD 20034 

APPLICATION OF NONLINEAR ANALYSIS (PLASTIC) TO NASTRAN 
USING RING ELEMENTS INCLUDING ASPECT RATIO EFFECTS 

Diana L. Frederick, Munitions Development and 
Engineering Directorate, Frankford Arsenal, 
Philadelphia, PA 

AN OPTIMAL COMPUTERIZED ALGORITHM FOR CALCULATING THE 
DYNAMIC RESPONSE OF CONTINUA 

Paul F. Gordon, Pitman-Dunn Laboratory, Frankford 
Arsenal, Philadelphia, PA 

HYDRODYNAMIC COMPUTER CODE SOLUTION OF EXPLOSIVE 
EXCAVATION DESIGN PROBLEMS 

J. E. Lattery, Explosive Excavation Research 
Laboratory, US Army Corps of Engineers Waterways 
Experiment Station, Vickburg, MS 
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Thursday» 14 February 1974 

0800        Bus Leaves Sheraton Motor Inn for the Conference. 

0830-0930   GENERAL SESSION III - Executive Conference Room 

CHAIRMAN: Dr. Sylvan Eisman, Pitman-Dunn Laboratory, 
U.S. Army Frankford Arsenal 

COMPUTER SOFTWARE DEVELOPMENT AT MRC 
Professor J. M. Yohe, Assistant Director, Mathematics 
Research Center, University of Wisconsin, Madison, 
WI 53706 

0930-0945    BREAK 

0945-1215    TECHNICAL SESSION VII - Room B 

CHAIRMAN: Professor Louis B. Rail, Mathematics Research 
Center, University of Wisconsin, Madison, WI 52706 
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Thursday AM 

0945-1215    TECHNICAL SESSION VII (Continued) 

COMPUTER MODELING IN DETERMINING STABILITY OF A MORTAR 
REPOSITIONING NONLINEAR CONTROL SYSTEM 

C. N. Shen and G. N. Woods, Bonct Weapons Laboratory, 
US Army Watervllet Arsenal, Watervllct, NY 12189 

CONVERGENCE PROPERTIES OF QUASI-NEWTON METHODS WITH 
APPROXIMATE LINE SEARCHES 

Professor Melanie L. Lenard, Mathematics Research 
Center, University of Wisconsin, Madison, WI 53706 

ADAPTIVE NONLINEAR ESTIMATION APPLICATION FOR TEMPERATURE 
FORECASTING 

Newton B. Penrose, Department of Electrical Engineering, 
US Military Academy, West Point, NY 

A METHOD TO ANALYZE NONLINEAR MAGNETIC SYSTEMS 
Robert H. Haveson, Picatinny Arsenal, Dover, NJ 

RATES OF CONVERGENCE FOR A CLASS OF NONLINEAR 
PROGRAMMING ALGORITHMS 

Professor Stephen M. Robinson, Mathematics Research 
Center, University of Wisconsin, Madison, WI 

0945-1215    TECHNICAL SESSION VTII - Room A 

CHAIRMAN: Dr. William J. Sacco, Chief Applied Mathematics 
and Statistics Group, Biomedical Laboratory, 
Edgewood Arsenal, MD 

MODERN LENS DESIGN ON LARGE SCALE COMPUTERS 
James W. Shean, Fire Control Development and 
Engineering Directorate, Frankford Arsenal, 
Philadelphia, PA 

DIAGNOSTIC FUNCTIONS FOR SEARCH AND RETRIEVAL FROM 
SPECTRAL DATA BANKS 

D. H. Robertson, C. Merritt, Jr., US Army Natick 
Laboratories, Natick, MA 

MATHEMATICAL MULLING AND SIMULATION OF THE CELLULOSE/ 
TV-C2LLULASE HYDROLYSIS 

Chul Kim, US Army Natick Laboratories, Natick, MA 
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Thursday AM 

0945-1215    TECHNICAL SESSION VIII  (Continued) 

GEOMETRY OF FOOD PREFERENCES 
T. J. Reed, H. R. Moskowitz, US Army Natick 
Laboratories, Natick, MA 

COMPUTED ENERGY DISTRIBUTIONS OF DOUBLE-SCATTERED 
PHOTONS OBTAINED FOR PURPOSES OF MINE DETECTOR 
DESIGN ANALYSIS 

Fredrick L. Roder, Douglas G. Conley, US Army 
Mobility Equipment Research and Development 
Center, Fort Belvoir, VA 

COMPUTERIZED EQUIVALENT CIRCUIT MODELS OF FLUID 
CAPILLARIES 

Joseph M. Iseman, Harry Diamond Laboratories, 
Washington, D.C. 20438 

0945-1215   TECHNICAL SESSION IX - Executive Conference Room 

CHAIRMAN: Dr. Lawrence A. Gambino, Director, Computer 
Science Laboratory, Engineering Topographic 
Laboratories, Fort Belvoir, VA 

AUTOMATED PROCEDURES FOR ACQUISITION, STORAGE, 
MANIPULATION, AND ANALYSIS OF TOPOGRAPHIC DATA 
FOR USE IN SYSTEMS ANALYSIS PROBLEMS 

Phillip L. Doiron, Sr., US Army Engineer Waterways 
Experiment Station, Vicksburg, MS 

OPTIMAL REPRESENTATION OF GEOGRAPHICAL MAPS FOR COMPUTERS 
Dr. Theodosios Pavlidis, Department of Electrical, 
Engineering, Princeton University, Princeton, NJ 
and Fire Control Development and Engineering Directorate, 
Frankford Arsenal, Philadelphia, PA 

COMPUTATION OF SMOOTH CONTOURS FROM NON-UNIFORM DATA 
Richard J. Blair, Benet Weapons Laboratory, Watervliet 
Arsenal, Watervliet, NY 

THE TWO-STREAM INSTABILITY STUDIED WITH FOUR ONE- 
DIMENSIONAL PLASMA SIMULATION MODELS 

David I. Brown, Fire Control Development and 
Engineering Directorate, Frankford Arsenal, 
Philadelphia, PA 
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Thursday AM and PK 

0945-1215    TECHNICAL SESSION IX   (Continued) 

COMPUTER SIMULATION OF SYMPATHETIC DETONATION 
Janes D. Hood, US Army Edgewood Arsenal, Aberdeen 
Proving Ground, MD 

A PSEUDO CALIBRATION PROCEDURE FOR AN ACOUSTIC BEARING 
SENSOR ARRAY 

Kenneth J. Dean, US Army Mobility Equipment Research 
and Development Center,, Fort Bclvoir, VA 

MONTE CARLO CALCULATION OF LASER INDUCED CHANGE IN 
OPTICAL DENSITY 

R. W. Anderson, Jr., R. E. Salomon, L. E. Harris, 
J. J. Mikula, Pitman-Dunn Laboratory, Frankford 
Arsenal, Philadelphia, PA 

1215-1330    LUNCH 

1330-1500    GENERAL SESSION IV - Executive Conference Room 

CHAIRMAN: Dr. Sidney Ross, Technical Director, 
U.S. Army Frankford Arsenal 

SUMMARY AND REVIEW OF TECHNICAL SESSIONS 
Dr. Halter Foster    -US Army Surgeon General 
Dr. Ralph Harris     -AMETA 
Dr. John H. Glesc    -Ballistics Research Laboratories 
Dr. Ronald P. Uhlig   -AMC HQ 
Dr. Edmund Inselmann  -AMC HQ 
Prof. Carl de Boor   -Mathematics Research Center 
Prof. Louis B. Rail   -Mathematics Research Center 
Dr. William J, Sacco  -Biomedical Laboratory 
Dr. Lawrence A. Gambino-Engineering Topographic Laboratories 
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PROGRAM INTEGRATION FOR OPTIMAL 
SYSTEM DESIGN 

Leonard F. Nichols 
Ferdinand A. Scerbo 

Concepts and Effectiveness Division 
Nuclear Development and Engineering Directorate 

U.S. Army Armaments Command 
Picatinny Arsenal, Dover, N.J. 

ABSTRACT. A generalized method for combining existing computer 
programs under the control of an executive program is presented. The 
system has been applied to integrate computer programs used in the 
design of projectile ammunition. The system is capable of defining 
key variables which may be modified under executive program control. 
The over-all system makes extensive use of permanent files to handle 
both data base and program storage as well as data analysis and opti- 
mization. Computations include interior and exterior ballistics, 
static shell property calculations, aerod/namic properties generation 
and lethal area effectiveness. The system can be operated in an inter- 
active teletype or batch mode. 

1. INTRODUCTION. Vugraph 1 - The purpose of this talk is to 
present progress associated with work related to the Army Materiel 
Command sponsored CAD-E Program titled: Integrated Projectile Systems 
Synthesis Model (IPSSM). I intend to discuss how the program operates, 
the applications programs it uses and how the data management aspects 
of the model are handled. I will also discuss tasks that have been 
accomplished since the program started and what we hope to accomplish 
in FI75. I will complete the talk by discussing some of the benefits 
that cam. be derived from such a system after full implementation is 
accomplished. The objective of the Integrated Projectile Systems Syn- 
thesis Model is to develop a complete computer model for use in the 
preliminary design of large caliber projectiles. 

2. BACKGROUND. Vugraph 2 - In May 1970, AMC initiated a feasi- 
bility study directed toward weapon system computer modeling which would 
provide preliminary design parameters for tactical missile weapon system 
concepts. After AMC had presented the concept and preliminary comments 
of subordinate commands to the CAD-E Council in October 1970, the IWSSM 
(Integrated Weapon System Synthesis Model) Ad Hoc Working Group of the 
Council was established to study the concept in more detail. After a 
six month effort the working group concluded that such a system was both 
feasible and desirable but initially it should be limited to the con- 
struction of a number of computer models, each addressing a particular 
military commodity. It was considered too large an undertaking to 
develop one model which would handle all commodity designs such as guns, 
projectiles, missiles, aircraft, vehicles, etc. 
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The recommendation of the IWS3M Working Group was that each command 
submit a Program Data Sheet outlining a proposed activity directed toward 
a specific commodity. The Integrated Projectile System Synthesis Model 
(IPSSM) program was established at Picatinny-ARMCOM to address the pre- 
liminary design of large caliber projectiles such as artillery and mortar 
rounds. The Picatinny IPSSM program was funded as a CAD-E task in March 1972. 

3. DESCRIPTION OFCOMPUTER SYSTEM. Vugraph 3 - describes the major 
characteristics of IPSSM. As shown, this system is being developed for use 
in large caliber shell design. The major effort is in the establishment 
of the executive computer program which controls the execution of appli- 
cation programs already developed. In addition the executive program pro- 
vides the data management necessary to manipulate information into and out 
of programs for use in other programs within the system. Graphics should 
play a major role in the final IPSSM model. However, at this time we are 
primarily working on an interactive teletype version of IPSSM. The execu- 
tive program is also capable of running in batch mode. The basic guide- 
line in the IPSSM development is to provide a useful and simple tool for 
the projectile design engineer. Use of this system will allow him time to 
analyze and compare many design innovations without the need for laborious 
computer set-ups and hand computations which are common in today's 
environment. 

Vugraph h - shows an overall flow diagram of the IPSSM system. This 
model is a set of computer programs and subroutines integrated by the 
executive program in 'such a manner as to provide a realistic, interactive, 
computational tool for engineers and designers ei^-iged in the development 
of preliminary design information for projectiles. The model is designed 
to perform all the calculations necessary to formulate projectile design 
concepts. The present IPSSM system can execute five applications programs 
from the batch or TTY mode. These programs perform the following computa- 
tions: (1) Static Properties Calculations (2) Generation of Aerodynamic 
Coefficients (3) Interior Ballistics (U) Exterior Ballistics and (5) Lethal 
Area Computations. 

The IPSSM executive program also contains options for examining and 
modifying common data base information. The system also permits data 
base changes to facilitate the execution of parametric analyses where 
selected variables are "linked" so that a restricted set of combination 
runs can be made. Special output can be stored automatically for later 
use. 

Vugraph 5 - Lists the significant accomplishments to date. The flow 
diagram shown on the previous vugraph was established and existing application 
programs were selected, tested and stored. Some programs were modified 
slightly to establish input and output interfaces. The initial executive 
program has been developed to operate in the teletype and batch modes. 
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Discussions with users have been made during the past six months and the 
system is now available for trial use. The next vugraph describes how 
the executive program is used. 

Vugraph 6 - The user begins by calling the executive program from 
the teletype. Once the user has attached the executive program, he selects 
the program and data to be used. The executive program will then auto- 
matically generate job control cards and data in the correct format to run 
the program selected. The mode of operation is then switched to batch. 
Following successful execution, the output data is stored in a specified 
data set for subsequent use or printed out on the users batch terminal. 
Selected lines of output may also be viewed on the teletype during the next 
run. 

The executive program can also be used directly in the batch mode. In 
this case, card input is used to modify key variable data and tables. 

Vugraph 7 - Describes the initial data file generation required prior 
to running the executive program. This is accomplished by an independent 
program called IPSDATA which uses input from an initi?l master file con- 
taining all available information pertinent to a particular initial shell 
design. This program sorts key variable data and generates permanent files 
which can later be called by executive program functions. 

Vugraph 8 - Describes the input-output interface that is created by 
the executive program when a particular applications program is called for. 
The executive program can examine auu modify stored data prior to executing 
the applications program. It also provides for the output options shown. 

The next series of vugraphs provide a general discussion of applications 
programs presently incorporated into the IPSSM System. 

Vugraphs 9 and 10 •» Describe the weight program which calculates static 
properties of a shell given the geometry of body items and their density. 
The program can also be used to compute whether or not the proposed shell is 
stable. 

Vugraphs 11 and 12 - Describe the use of the spinner program. This 
program calculates aerodynamic coefficients as a function of Mach number 
and also is capable of performing a stability analysis. 

Vugraphs 13 and Hi - Illustrate the essential features of the exterior 
ballistics program which is used to provide trajectory information as a 
function of time. It also is used in conjunction with a range error analysis 
which I will describe in a later vugraph. 
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Vugraph 1$ - Shows the data management scheme used to modify 
original data base information in such a way that the output from one 
program can generate input to a second program. For example, the spin- 
ner program which generates drag coefficients as a function of Mach 
number can be automatically transferred as input to the terminal ballis- 
tics program which I described in a previous vugraph. Modifications can 
be made on a permanent basis to the existing files or output data can be 
transferred to establish a new data base file. 

Vugraph 16 - Describes the interior ballistics program currently 
incorporated within the IPSSM System. It is based on simplified equations 
which require only the Items listed under input to have it function. It 
can be used to calculate muzzle velocity, propellant weight or maximum 
pressure depending on *iie option selected. 

Vugraph 17 and 18 - Describe the major features of the lethal area 
program which is used to calculate the anti-personnel effectiveness of 
fragmenting ammunition. Vugraph 18 lists all of the features available 
when using this program. It is a tri-service standard program for performing 
these computations. Vugraph 18 shows the input and output requirements 
and options capabilities. 

Vugraph 19 - Describes the error analysis which is controlled by the 
executive program and interfaces with the exterior ballistics program. Auto- 
matic operation for three selected variables is currently operational. This 
scheme illustrates the type of data analyses that can be incorporated into 
the IPSSM system. Multiple cases can be run with the executive program in 
an easy manner because of the way in which the key variable data is stored. 
Six values may be stored for each variable. Another feature of the execu- 
tive program is that it can "link" key variables together so that if one 
variable changes value, all other variables linked to it will also change 
value. This feature is useful in setting up run combinations where all com- 
binations are not required. 

Vugraph 20 - Lists the tasks planned for FYJ5,    Each item listed here 
can be accomplished by extending techniques described earlier. Although 
it appearo that no technical problems exist extensive effort is required 
to implement these features. Training, maintenance and documentation of 
the system are activities which require continued emphasis. The major task 
during FY7S> will be to provide interactive graphics capability to the maxi- 
mum extent possible. 

k,   CONCLUSIONS. Vugraph 21 - Lists the benefits of the IPSSM program. 
AU of these are generally self-explanatory in that such a system emphasizes 
the use of analytical techniques and minimizes the need for trial-and-error 
approaches. It also provides for the use of well documented and tested 
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computer programs applicable to the projectile design process. These 
programs are easily accessible and can be used to perform extensive 
parametric investigations. Data management routines provided by the 
IPSSH system also gives the design engineer the capability to readily 
examine, modify and store design information for specific projectile 
designs. Thus, ei^ineering time can be significantly reduced in per- 
forming projectile design calculations. 
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NON-LINEAR AND MIXED INTEGER PROGRAMMING 

Byron 0. White 
Management Information Systems Directorate 

Mathematical Analysis Division 
Picatinny Arsenal 
Dover, New Jersey 

ABSTRACT. The presentation will describe the experience 
which Picatinny Arsenal has in the field of linear programming 
and mixed integer programming. The talk will cover the nature 
of LP and MIP, application areas, and the use of computer codes 
at this Installation. Typical input/output and the description 
and handling of a rather large problem will be discussed. 

INTRODUCTION. Linear programming encompasses a wide spectrum 
of users from the mathematically rigorous to those that are 
management oriented. The present day mathematical program system, 
as it is referred to, is oriented to both types of users 
as amazing as this may seem. These systems contain a base 
of involved matrix routines surrounded by efficient matrix 

i and report generators. The efficiency obtained by these cen- 
* tral memory and time consuming monsters requires that every 

advantage obtainable from a given computer system be utilized. 

Recent developments allow the linear programming user to 
restrict some of the variables of a problem to take on only 
integer values - hence the name mixed integer programming. 
Although the number of integer variables allowed is small, 
the increased capability to the user is extraordinary. 

This presentation will neither elaborate on the mathe- 
matical aspects nor on the results, but rather deal with some 
of the applications and basic concepts generally used in solving 
problems. 

Mixed integer programming may be used in many different 
* application areas ranging from executive decision in the front 

office to efficient methods of packaging and handling in the 
shipping department. The engineer and scientist may also use 
mathematical programming systems to solve technical problems 
from control of nuclear reactors to solution of large matrices 
generated by PDE and other related problems. What then are 
some specific areas of application? 

Production scheduling problems dealing with multiple product 
assembly lines, changeover costs, and time phased assembly. 
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Investment tradeoff where the decision maker must choose 
between risk and payoff, or for stock market enthusiasts, the 
choice between portfolio buying or individual stock transaction 
and manipulation. 

Inventory control where the problem is a combination of 
knapsack problem and investment problem. 

Site selection deals with choices of raw material acquisition 
as well as building cost indices. This type of problem is 
related to a transportation problem. 

Transportation and distribution considers various modes of 
transportation, time relationships, and physical properties of 
products. 

Chemical blending such as in the operation of a refinery 
where there is a requirement and associated cost for every 
product. 

In the case of most Army problems as is the case of most 
industrial problems, it takes a combination of these methods 
to successfully solve most»problems. 

Not all problems due to their structure are solved the 
same way. Hence there is no one best algorithm to solve all 
problems. What then are some of these solution methods 
(Figure 2)? In the case of small problems, in other words 
where the numoer of integer variables are small, the methods 
of solution used are Cutting Plane and Enumeration. Enumeration 
solves the problem for all possible values for each of the 
integer variables and then manually or by some snazzy algorithm 
ranks the various alternatives. The Cutting Plane methods, of 
which Gomorey's algorithm is one, are geometric in form and 
usually difficult to control, although in some cases one can 
find rapid solutions to small problems. 

Bender's algorithm is a method used on medium-sized problem, 
medium-sized meaning problems where the Cutting Plane method 
runs into difficulties in obtaining a solution. In Bender's 
algorithm the problem is separated into two parts, an integer 
part and a continuous part. These two parts are solved 
separately and then solutions are obtained by putting the two 
parts back together. If this all sounds complicated, it is. 
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Most large scale mixed integer mathematical programming 
codes use the Branch and Bound algorithm. This is so because 
it has been found to be the most stable code for the solution 
of large problems. Each manufacturer adds his own specialties 
which again make the code very problem dependent but basically 
they are all the same. 

The Branch and Bound algorithm naturally lends itself to 
some very special variable types (Figure 3). The first type 
is the bivalent or decision variables. It can take on the 
integer values of 0 or 1. This variable allows the user to 
incur fixed costs or make decisions during solution of the 
problem. The second type is the integer or quantity variable. 
This variable indicates that in the solution only an integral 
quantity is allowed. Most codes require a range in which 
this integral value must lie which can effect running time. 
The last of these three types are known as special ordered sets. 
Special ordered sets are fancy ways of using bivalent variables. 
There are two types of special ordered sets. Type one is where 
only one member of the set may be set to one and all the rest 
set to zero. Type two is where two adjacent members must be 
set to one and all the rest set to zero. These sets may be 
used to handle non-linear relationships as well as discontinuous 
types of constraints. 

An example of a simple text-book type problem is shown in 
Figure 4. This problem has a non-linear constraint where the 
feasible region is bounded by the elliptical constraint and 
various values of the objective function are represented by 
the parabolic curves.  In separable programming, care must be 
taken that all functions be kept convex so that a solution may 
be obtained. However, by using type two special ordered sets, 
this need not be the case.  In order to solve a problem such 
as this, the user rewrites the equations in a linearized 
form represented in Figure 5 and solves the resulting LP 
problem.  In this formulation the top equation represents 
the constraint and the bottom equation represents the objective 
function. The X represents points on a linearized curve 
(Figure 6).  Formulation of this problem using bivalent 
variables or special ordered sets results in the solution shown 
in Figure 4. 

Next I would like to discuss a problem presently being 
solved. This problem is a combination of transportation, 
production, site selection, and investment problems encountered 
in modernization of the existing army production base (Figure 7). 
An integrated line is an assembly line which produces all the 
components for a given ammunition item, and a complex is 
defined to be a plant containing multiple item integrated 
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lines. It is important to note that the existing ammunition 
production Läse is structured such that a solution for only 
a single ammunition iteir is not sufficient for production 
planning purposes. Therefore the base restructure economic 
model solves the problem for multiple end items to determine 
the most economic mix of plant production. 

In Figure 8 it can be seen that a trade-off exists between 
a complex or integral plant versus an existing plant where 
component parts must be shipped in. Also a trade-off exists 
between in-plant storage versus shipping through a depot.  In 
this problem both a Pacific and European requirement were ustJ. 
All of the trade-offs are based on economic or cost considera- 
tions as shown in Figure 9. An example of the 105mm Ml production 
base along with a typical choice of plant and transportation 
configuration is shown in Figure 10. 

It would appear that although very large LP problems may 
be solved using mixed integer codes, the number of allowable 
integers is extremely limited. By careful formulation and 
choice, a few integer variables can be made to control many 
other variables. Figure 11 shows some specific details of 
how this was accomplished in the case of the base restructure 
economic model. 

The top of the chart represents some typical constraints 
and the bottom represents some typical results.  It is a 
bivalent variable representing when a plant is operating in 
time period t. Bt is a bounded continuous variable representing 
a time period in which a plant is built or modernized. Ot 
is a bounded continuous variable representing when a plant 
is opened. K^ is a bounded continuous variable representing 
when a plant is closed. From the possible results it can be 
seen how the integer variables It force the variables Bt 
0t , Kt to also be integers. Constraint 2 says once B^ 
is set to 1 it must remain 1. This allows (Ct-Ct+1) or the 
cost function to represent a cascaded building cost which in 
this case represents the discounted cost of building the 
plant in different time periods. CT in the cost function 
represents the cost cf the plant while in lay away and since 
it occurs in both the B^ and It variables» this cost is only 
incurred after the plant has been built but only when its 
not producing. CQ represents a cost of opening a plant or 
taking it out of lay away where CK represents the cost of 
putting a plant into lay away. Cj represents the fixed cost 
of operating a plant which in this case in strictly the over- 
head cost. Other factors such as minimum and maximum operating 
rates may also be controlled by the same 1^ variable. 
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Figure 12 represents parameters to be considered when 
formulating large LP problems. It should be remembered 
that modern LP codes really represent a small fast running 
algorithm surrounded by a huge data handling system. 

42 

/ 



I 

1l 

TARGET LO.CATION USING AN ARRAY OF SENSORS WHICH PRODUCE 
CLOSEST POINT OF APPROACH AND MULTIPLE RANGE ALARMS 

Raymond F. Coakley, Jr. 
Special Projects Division 

Countermine/Counter Intrusion Department 
Mobility Equipment Research and Development Center 

U. S. Army Troop Support Command 
Fort Belvoir, VA 22060 

ABSTRACT. The problem of target location by means of an array of 
sensors can be approached in many ways. Most ways require the processing 
of analog data at some central point. The objective of this approach is 
to use two distinct outputs of omnidirectional point sensors generated 
in response to (1) a target coming within range, and (2) passing at CPA 
(Closest Point of Approach). Each sensor is designed to emit a coded 
alarm indicating the time of passage at several range (gain) thresholds 
and another coded alarm indicating time at CPA, through processing of 
acoustic, seismic or other signals. The sensor alarms are rece* ;d and 
clocked at some central location (SRU) where a coded message is passed 
to a data processing computer. This method utilizes very low information 
bandwidths compared to the analog data, thus, it is suitable for use in a 
sophisticated electronic countermeasure environment. 

The author has developed a mathematical model by which the necessary 
target parameters of velocity and position can be calculated. Location 
accuracy depends on sensor position error, CPA alarm time error, and 
range ratio error. For the worst combinations of errors, the resultant 
target parameters are found to be marginally acceptable. However, in the 
typical case where the errors are randomly distributed, the target velocity 
and location are usually specified with sufficient accuracy for Army 
target location requirements. The combined effect of all errors on the 
specification of target position one minute after the target passes through 
the array produces an error of less than 75 meters in the average (randomly 
simulated) case. 

The use of a sensor producing a pair of range alarms such that the 
ratio of the two ranges is constant has not been previously reported as a 
method of avoiding the problem of unpredictable range. The variations 
caused by energy propagation, various source intensities, and different 
transducer implacements are greatly reduced as the need for knowing exact 
target ranges is eliminated by this range ratio technique. 

1. INTRODUCTION. The subject matter of this paper emerged from a 
program to develop ground sensors capable of producing information useful 
for locating and classifying military vehicles on and above the battle- 
field. The Special Projects Division is now building sensors which can 
locate wheeled and tracked vehicles when used in certain arrays and pro- 
cessing schemes. 
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2. APPROACHES. An array of unattended ground sensors is capable 
of providing target location information if their locations are known 
and if at least four non-redundant target determined alarms are pro- 
duced. The need for four independent data values can be seen in the 
expression for the target coordinates as a function of time. (Figure 
1.) The four alarms which provide sufficient data are identified with 
some distance relationship between the target and the sensor. Their 
times of arrival at a central location are the data values. Sensors 
producing alarms corresponding to three distinct target-to-sensor re- 
lationships are the object of this discussion. 

The most basic of these sensors activates only at a specified range 
to produce one kind of alarm. (Figure 2.) Four of these one-range 
sensor alarms produce data which can be used to solve four simultaneous 
second-order equations for the target parameters of velocity and time- 
dependent coordinates. The range of each of the sensors as well as 
their coordinates must be known. A computer solution was written for 
the set of equations which showed a very great sensitivity to incorrect 
range values. With present technology the unr liability of the range 
specification adds to the complexity of the equations and makes this ap- 
proach impractical. 

The second of these sensors, a more sophisticated one, activates 
with a unique alarm corresponding to the time when a target is at its 
closest point of approach (CPA) to the sensor. (Figure 3.) Three of 
these CPA sensor alarms provide sufficient data to calculate target 
velocity. (Figure 4.) Any pair of velocity equations can be solved for 
speed and bearing if the target motion is assumed linear. If one of 
these can also produce a fixed range alarm, then the complete target 
location can be calculated. (Figure 5.) The arctangent of the bearing 
can be found, then the speed ;and this speed value leads to the sensor- 
to-CPA distance which locates the target path. The equations are simpler 
and the minimum number of sensors is smaller; but the previously men- 
tioned unreliability of the range specification makes this approach de- 
fective in practice, too. 

Another type of sensor is being developed to reduce the range deter- 
mination problem». It appears that a sensor can be built which will pro- 
duce a pair of range alarms such that the ratio of the two ranges is 
reasonably constant even though the actual ranges vary greatly. (Figure 
6.) The range ratio replaces the range, and the coordinates of the CPA 
do not depend explicitly on this unreliable parameter. (Figure 7.) Thus 
the variations caused by energy propagation through the medium, by the 
various source intensities of different targets, by different transducer 
emplacement, etc. can be reduced. By increasing the minimum data points 
to five, the range parameter is not specifically needed. Such a multiple 
range sensor, now called a CPA/MR sensor, is an object of intense develop- 
ment. 
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3. DISCUSSION OF METHOD. The solution program for an array of eight 
or more CPA/MR sensors in a field array has been written and debugged. 
The target coordinates are expressed as a function of time and a straight- 
forward application of the Pythagorean Theorem and the trigonometric rela- 
tions yields enough equations to solve for the two components of velocity 
and some reference location from the input sensor locations, range ratios 
and activation times. (Figure 8.) Because a real system can not be ex- 
pected to produce all the appropriate alarms from all sensors, the program 
was written to take the alarm times available from an arbitrary number of 
sensors and use tnem in all possible combinations to compute average speed, 
average bearing and least-squares-fitting target path. 

The average target location is found as follows. Each of the CPAs is 
used to find the target coordinates at an arbitrary "reference" time. Since 
a CPA can be found for each sensor which activates with the full complement 
of Range 1, Range 2 and CPA alarms, a number of paths can be found. The 
target coordinates are calculated for the last CPA time, and the mean values 
of these coordinates is the equivalent of a least-squares fit of the target 
path. 

Several features of the target location program are worth noting. While 
the data and geometry provide a unique solution for the velocity from the 
sensor coordinates and CPA alarm times, the range ratio times provide an 
ambiguous CPA. The application of the Pythagorean Theorem in the calculation 
of the distance from sensor to CPA produces a square root value. The am- 
biguous polarity corresponds to the possibility o? the target's path being 
located on either side of the sensor. (Figure 9.) The resolution of this 
ambiguity constituted a major problem in the algorithm development. The 
method found to perform most consistently calculates the distances (D and D1) 
from the two possible CPAs [(X,Y) and (X',Y')] to the other sensor locations 
[e.g., (Xi.Y-j)], one after the other; then it determines which distance comes 
closest to the ideal hypoteneuse of the triangle formed by the other sensor's 
offset (Aj) and the target path length [V(t,;c - tjc)j. 

In the operational solution program some other finesse is introduced. 
The target locatiun which arises from the average values coming from various 
combinations of redundant data reflects certain arbitrary parameters. These 
are used to determine the acceptibility of intermediate values in the mathe- 
matical solution, for example, a minimum time difference or an individual 
bearing value's contribution to an average. These allow adjustment of the 
program to various levels of sensitivity to input variable deviations, as 
well as tu reasonable speeds of the expected targets. In addition, the 
counting parameters used in the averaging processes are retained as a measure 
of confidence in the input data and of "goodness of fit" of the target path. 
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4. TESTING BY SIMULATION. However, the target location program is 
only the first step in analyzing the performance of a sensor array in the 
real world. It must be tested against all reasonable target speeds and 
directions and in all expected configurations and dimensions. Then it 
must be tested for sensitivity to systematic and random errors in the in- 
put variables. This testing involved the largest portion of computer time 
and analyst energy. 

A data generating program was written to compute the activation times 
that would result from a constant velocity target passing through an array 
at a chosen offset from some arbitrary point. Then the amount of variation 
in the sensor coordinates, range ratios and activation times coulJ also 
be chosen. (Figure 10.) This error analysis was done in two stages, the 
first to determine what the worst case result could be and the second to 
determine what the average performance would be when the input variables 
were subject to random errors of specified deviations. 

To find the configuration of input deviations which caused the worst 
output errors, an iterative technique rather than a mathematical analysis 
was used, since the solution equations were quit3 involved. This involved 
varying each of the input variables in turn, by a fixed amount, in all 
possible wcys. Once the worst case was found, the deviations were increased 
systematically to plot the resultant errors in target velocity and coordinates. 

To find the average performance of the array, the input variables were 
calculated for a specified target approach, then were modified by a random 
error using a Monte larlo technique. The averages were found to Isettle 
down" after one or two hundred target passes, depending upon the size of the 
sigma assigned to the deviations. 

The data generating program also made possible a trade-off determination 
of the best choice for range ratio and sensor separation. For example, 
greater sensor separation improves velocity accuracy but degrades path loca- 
tion. In addition, the best values for the arbitrary constants governing 
sensitivity could be found frcm the simulation program. 

5. CONCLUSION. The net result of the development of the target location 
algorithm and the simulation program has been the determination of the accuracy 
which can be expected of an array of UGS as a function of sensor performance 
and the establishment of a working solution which can be incorporated in a 
remotely monitored battlefield sensor system. 
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EDGEWOOD ARSENAL INCINERATION PROGRAM 

William Shulman and William R. Brankowitz 
Manufacturing Technology Directorate 

US Army Materiel Command 
Edgewood Arsenal 

Aberdeen Proving Ground, Maryland 

ABSTRACT. The Edgewood Arsenal Incineration Program is used to 
simulate the incineration of military chemicals for process design of 
incinerator complexes. This computer program is a modified version of 
the NASA rocket engine performance program. The program minimizes Gibbs 
Free Energy for a species subject to stoichometrical constraints and 
yields the stack output. More than 100 chemical species have been con- 
sidered in some problems. The stack outputs, though in thermodynamic 
equilibrium, are used to predict actual outputs under real conditions. 
Specific problems of the newer applications of this program to the 
Molten Salt incinerator are presented. Statistical methods and estimation 
techniques of building up the background thermodynamic library are dis- 
cussed. Specific examples su«h as the incineration of chemical agent 
mustard and pesticides are presented. 

1. EDGEWOOD ARSENAL INCINERATION PROGRAM  The name of the program 
which we received early last year was "A Computer Program for the Cal- 
culation of Complex Chemical Equilibrium Compositions, Rocket Performance, 
Incident and Reflected Shocks and Chapman-Jougut Detonation". After 
noticing the program came from the Lewis Research Center of NASA, I was 
dubious as to what applications we might have for a program originally 
made for rocket research, since our group is concerned with the demil- 
itarization of chemical warfare agents. 

In the way of background, this program wos first developed in the 
early 60's specifically to get information on the combustion products 
and thermodynamic properties of rocket reactions. The program was built 
around a library which, by the late 60's, had increased to about 500 
fairly simple compounds you would expect to find in the temperature 
ranges of a rocket exhaust. As time passed, the program was rewritten 
to take advantage of the advances in computer languages such as the 
development of Fortran V. For example, the easier data input methods 
such as the Namelist option were employed. It also had written into it 
some additional applications such as the Shock routine. 

At Edgewood Arsenal in late 1972, we were pondering on how to put 
this high powered program to use for our purposes. The word combustion 
was the one which finally caught our eye. We have been charged with the 
mission of developing processes for the disposal of chemical munitions 
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which have been declared excess. For nany years, burning of certain of 
these agents has been a tried and true procedure. With the advent of 
pollution limits and the declaration to excess of certain agents which 
had never been disx>osed of in quantity, we were faced with a problem: 
Could a reasonable model be developed to give us -in idea of what to 
expect in the controlled incineration of a chemical agent? This program 
has' given us this capability. 

For a time, we worked on getting the program into shape. We re- 
named the routine BURN and put it into our program library. A few quick 
changes to the device numbers, since we use a Univac 1108, produced for 
us our working program dubbed BURN 2. And along came our first problem - 
How to get rid of X-S Mustard [s-(CH2CH?Cl)2~] • For quite some time, 
mustard has been burned. It is a fuel oil consistency liquid which has 
the enviable trait of supporting its own combustion; i.e., the obvious 
choice of disposal methods is incineration. However with the new 
pollution laws, we were stuck with a compound which was, in essence, a 
high sulfur fuel. Analysis had been done on the combustion products at 
some specific conditions, but our group wished to see what products came 
off at a variety of conditions of pressure, temperature and mix. The 
program, in its original form, allows this. Reactants are read in as 
fuels or oxidizers. Conditions of temperature, pressure and mix are input 
under one Kamelists option - mix being expressed in fuel percent, oxidant 
to fuel ratio, or two other format choices. Up to 25 combinations of 
temperature and pressure can be specified for each mix value. The mix 
values are only limited by the pages you are willing to expend. 

Our first runs indicated that we were getting good results, compatible 
to experimental findings in the known conditions. We soon ran off our runs 
for a multitude of other conditions to be used as a guide for possibly 
lowering concentrations of SO2 and scrubbing the product gasses. In 
addition, by using a trace routine, we could detect concentrations of 
out to 35 places past the decimal point mole fraction. 

Detecting possible compounds, however, is only as good as your data 
library. Our first efforts of modification on the BURN Program, then, 
were directed toward expanding this library. To make our mustard results 
more significant, we added principally sulphur compounds; at first, mustard 
itself, the mercaptans, and finally some thio-chlorides. 

To add compounds to the library, we found that a regular pattern was 
followed. First, we would make a literature search for heat capacity, 
enthalpy, and entropy data on our compound. These are the three building 
blocks from which the free energy minimization is derived. Here are the 
equations to which this library data is fitted in the program: 
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c. x = ajLnT + a2T + ^ T + _£ T^ + -£ TH + a? 

The library is, in fact, a repository of coefficients a-, to a„ for each 
compound in both a high temperature range (l,CX°K to 5,000°K; and low 
temperature range defined from 300°K to 1,000°K. Thus, Ik  coefficients 
are read in on 3 data cards. Other formula, temperature and prase data 
are stored on a preceding card, the identifying card. 

Next, we performed a regression analysis of this data to give us our 
necessary coefficients. To perform this analysis, we have used the 
National Bureau of Standards Ommitab II Program. The authors of the NA3\ 
Program have now made available a second program known as PAC 2 to process 
thermodynamic data into cards usable in the BURN library, but we have 
not yet received a working copy of this program. 

When using this program as a combustion routine, we have worked up 
a number of preliminary guide lines for engineers, which might be helpful 
to mention now before going further. First, we emphasize that this 
program should be used only as a guide - as any mathematical model should 
be. Not to represent firm solutions. Second, it is a thermodynamic 
guide and does not account for the kinetics of a reaction. This has a two- 
fold meaning. First, we must assume that the concentrations predicted 
are those of an absolute equilibrium. This asserts that the combustion 
reaction has gone thermodynamically to completion. Second, we assume 
that if the model operates, the reaction will work, though the pressure 
of some catalyzing force may be necessary to make it occur. We assume 
that if the model does not operate, the reaction does not occur. Using 
this last assumption, we have investigated the probabilities of agent 
reactions with certain chemicals under combustion conditions. 

The next problems which occurred forced revisions to the program 
itself. Under its NASA role, simple compounds had been used for reactants. 
Thus the reactant cards were formatted in such a way as to have only 5 
elements to a compound read. -This was fine for mustard, but had to be 
altered when we wished to simulate the incineration of a nerve agent VX 
£(CH3CH20)PO(CH3)(SCH2CH2lUC^H7)2)~l .  As a quick check of the compound 

shows, VX contains 6 elements. 

59 

/ 



Thus, to acconr -jdate the VX molecule, changes had to be made to the 
basic read and -wr ^  formats dealing with reactant cards. Dimensioning', 
which involved the storage cf the compounds basic data also had to be 
changed. Lastly, changes in the iteration scheme of the data search a\so 
had to be made. All total, this numbered slightly over 50 cards revised 
of the original 35331. This program was called BURN 3 and was used 
primarily in an investigation of a persistant phosphorous pollutant which 
we wished to'minimize in our product gasses. 

At about this time our library underwent yet another expansion. For 
the VX problem, several phosphorous compounds were added. A problem with 
burning a tear agent also added to our growing wealth of compounds. Before 
long we accounted for some fifty new compounds including organic chlorides, 
organophosphate, several alcohols and some acids as well. This expansion 
soon ran into a snag,however. The library, similar to the reactants 
cards, had been built basically to handle simple products. We were 
interested, however, in the possibility of any residue of agent which might 
be left for some thermodynamic reason. Thus compounds much like VX which 
we wished to add, were faced with a h element limit. 

We once again set to work to modify the program. On the initial 
formula-temperature-phase card - the identifying card which I spoke of 
before - there exists some "dead space" toward the end. Once again, 
some format, dimension and iteration changes were made. This presented 
us with a program version BURN h which will handle data library compounds 
of up to 6 elements, by using this available dead space as. additional 
formula data space. This modification has opened up the doors to check 
for residual molecules of up to six elements which include organophosphorous 
and pesticide compounds. Tnis version is the current one in use at 
Edgewood Arsenal by our Division. 

By this point in time, several interesting techniques specifically 
related to using this routine for incineration had been developed. The 
first of these was the development of sources of data for the compound 
library. The search for thermodynamic data, particularly if needed for 
higher temperatures, is frequently long and frustrating. Compounds which 
seem to be surprisingly simple at times, lack published data even at the 
lower more reasonable temperatures. The bast available collections of 
data we have found to this time come from the JANAF tables, the "Selected 
Values of Chemical Thermodynamic Properties" of the National Bureau of 
Standards, and an article from Chemical Reviews by S. W. Benson et al, 
entitled "Additivity Rules for Estimation of Thermodynamical Properties". 
This last mentioned article has data for at least five temperatures for 
a great many "haid-to-get" compounds. More importantly it contains a 
method for estimating properties which we have found to be astonishingly 
accurate. This estimating method is the only way to obtain thermodynamic 
data in some instances, especially when the compound is very complex 
or toxic.  , 
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Another technique we have developed in the course of using the 
program is a "simulated pyrolysis". Here, instead of providing a 
unique oxidant, we have specified the same compound vs  both fuel and 
oxidant. Another variation is to consider a compound for the oxidant 
which will not iend itself to that role. We then run the program as 
before, setting temperature and pressure at pyrolysis values. '.-Je have 
done this for tear agent and the results were close to those obtained 
in the laboratory. 

During the course of our experience, we have also built up certain 
typical simulated reactants. One of these was the use of 2 fuel cards 
in combination to represent Herbicide Orange, the fuel cards simply 
being representative portions of the compounds known a.r "2-k  P" and 
"2-U-5 T". TO simulate fuel oil, we have currently been using the 
formula-plus the thermodynamic values-of decane. In the past, we haver 
used methane alone or with ethane in the proper proportions, to represent 
natural gas. 

One last technique which we developed in using the BURN routine was 
directly related to the mechanics of the program. The iteration scheme 
for solving to the minimum free energy has 35 passes allowed. If bj 
the 35th pass convergence is not obtained the program kicks out indicating 
a reaction is not practical. We found that if we tried to set a temperature 
initially too high or particularly too low, this occured. ?y  trial and 
error, we discovered that we were not being thrown out on valid reasons, 
but that the complexity of our compounds combined with the extremity of 
our initial conditions caused this. Thus, by setting a normal or average 
initial condition and stepping down or up to an extremity, say in temperature, 
the program could be primed like a pump, and the true results could be 
calculated. Thus, when we want a list of products from 300° to 500°K, we 
start at 500° and step down to 300°. If a problem is still non-convergent, 
we assume it does not work thermodynamically. 

In the near future, we hope to add the proper compounds to the library 
to enable us to simulate molten salt incineration. This will simply 
entail the adding of the appropriate salt compounds to the data library 
and in working out a proper reactant cards combination to simulate the 
bed itself. These cards, used in conjunction with the compounds we wish 
to destroy, will hopefully give us an indication of the composition of 
the salt bed after the incineration reactions are completed. 

In summary, then, several types of incineration processes have been 
or can be simulated by the use of this program. These can be used to 
simulate the thermodynamic incineration reaction of nearly any substances, 
given the proper use of reactants cards and the proper product data for 
the library. Copies of this program are available by writing to Mrs. 
Bonnie McBride, its author at the Lewis Research Center. Copies of our 
library as well as our revisions are available on request from the 
Commander, Edgewocd ArsenaX, Attn: SAREA.-MT-CP, Aberdeen Proving Ground, 
MD 21010. 
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EDGFrfOOD ARSENAL POLLUTION ABATEMENT SCRUE3ER PROGRAM 

William ShuLman and William R. Brankowitz 
Manufacturing Technology Directorate 

US Army Materiel Command 
Edgewood Arsenal 

Aberdeen Proving Ground, Maryland 

ABSTRACT. The Edgewood Arsenal Pollution Abatement Scrubber Program 
simulates the scrubbing of r.tack gases for pollution abatement. Scrubbers, 
quench chambers, and other process equipment can be arranged in any order 
so as to optimize the process layout. The Algebraic mass balance equations 
(equation l) are jolved by conversion to differential equations (equation 2) 
with a convergence constant. The differential equations 

n-1 

Jn  i=1 ji ji (equation l) 

dX, = k "Ü/W " Xjn (equation 2) 

are integrated to get the results. A specific example of the use of this 
program to simulate the scrubbing of stack gases from the incineration of 
chemical agent mustard is demonstrated. The sample used 150 differential 
equations representing 15 chemical species output from ten different 
process units. The computer program is limited to the case of burning 
in excess air. 

EDGEWOOD ARSENAL POLLUTION ABATEMENT SCRUBBER PROGRAM. The Edgewood 
Arsenal Scrubber Computer Program was written to simulate a scrubbing operatic.! 
involving N pieces of equipment and M molecular moieties. This Computer 
Program has not matured to a generalized program, where a few streams can 
be identified and the Computer Program will setup the proper equation matrix, 
but its principles have to be tailored to apply from case to case. The 
mathematical model for the solution of this problem was designed with the 
following simplifying assumptions: 

a. That the material balance algebraic equations can be solved by a 
series of differential equations, letting the differentials go to zero by 

■successive iterations. UO'iterations were used on the Interdata Model 3 
Minicomputer and 100 iterations are used on the Univac 1108. 

b. That the various stages remove the same percentage of HC1, CO2, 
SCg, and SO-j in the reacting with caustic. The material balance corrects 
the water and caustic concentrations for these reactions. The material 

Preceding page blank 
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balance considers the equilibrium of C0^=, S0o=, and S%= with HCOÖ, HSOj, 
and HSOr respectively. Common ion effects are neglected; activity coefficients 
are assumed unity. 

c. That no energy balance need be considered. 

d. That all water leaves the various stages as a liquid and that none 
is in the vapor phase c'ue to humidity, and none is entrained in the gas 
stream. 

e. The caustic must always be in excess, otherwise the program will 
correct caustic to .GOU mole fraction. Tins was put in to correct caustic 
in the early iteration so that the equation will not diverge to minus 
infinity. 

f. That the product of the spray dryer is bone-dry material. This is 
simply accomplished by setting the water concentration to zero. 

g. That no consideration is given to the reaction of COp gas from 
the 'corning of natural gas with the residual caustic in the spray dryer. 

h. That water used is pure and has none of the impurities of industrial 
water. 

i. That caustic used is pure NaOH and does not have carbonate impurities. 

j . T'ndt O2 and N2 are not soluble in water. 

k. No solids are entrained in the gas portion. The precipitator of 
the real problem to be discussed vr.s ignored. 

1. That there is only one leaving stream for a particular piece of 
equipment of one molecular species. Where there are two streams, one must 
be specified. This must be in order not to have too many unknowns for the 
given number of equations. 

The material balance equation for a piece of equipment is: 

J»I :>2      3,3 0,1-1  j,i 

V.T-jere X represents the moles of the chemical under consideration; i represents 
the streams coming into the jth species« Then, converting to the differential: 

<^,i * X3,l + XJ,2 + Xü,3 •••• +Xj,i-1-Xö,i 

This equation can present problems diverging if the input numbers are not 
qu'.te the right values and there is a positive feedback element in the recycle 
stream, so a correction factor is placed in the equation: 
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«4 1 = k(X4 , +X.+X.  ...+X.    -X..) 
J»     3,1   0,2   j,3      0,1-1   j,i 

The dX^'s are integrated at each pass. Oar experience has indicated that 
if k = .7 or less the equations do not diverge, even if these are r~si+'ive 

feedback elements. It is obvious that a k greater than .7 would converge 
faster. An analysis of the feedback loops, a lengthy activity, was not 
accomplished. 

There is a chemical reaction of sodium hydroxide and hydrochloric 
acid, we simply put in a term in the HC1 and KaOH equation indicating a 
loss of material and in the sodium chloride and water a gain of material. 
In the formation of carbonate, bicarbonates, sulfites, bxsulfites, sulfates, 
and bisulfates the situation is different. 

An equilibrium constant is defined as:   (H ) (X ) _ ^ 

Where H is the hydrogen ion concentration; X" is the negative ion concentration; 
HX is the concentration of the combination. 

In the case of water:   (H ) (OH~*) _ ^g ^ 
(K20) 

Since the concentration of water is near enough to 100 mole percent 
so that the hydrogen ion would not change appreciably, the water term is 
left out. At each pass hydrogen ion is calculated; the (OH) is contributed 
in the main by sodium hydroxide so that:  (HJ) = lE-lU * TN/NaOH. 
Using an example of sodium carbonate-bicarbonate system, there are two 
equilibrium constants: 

(H+) (HC0Ö                (H+) (CO,") 
 1 = K,  i- = Ko 

(CO,)     l (HCO3) 

The reaction HgO + CO2 —¥  KgCOo was assumed complete for the carbonate- 
bicarbonate system calculation so that COg was equal to H2CO3. Therefore, 
given COg and H"1" and assuming HgO as 100 mole percent. 

HCO3 (as sodium ) = K  * C02/(H
+) and CO3 = K2 * HCO^/tH4). 

The program was written for a scrubber system that was the tail end of an 
incinerator. The incinerator was simulated by the Edgewood Arsenal Incinerator 
Simulation Program that was described by Mr. Brankowitz. Results from the 
incinerator program was used as input data to this program. A process flow 
sheet of the scrubber system is shown in Figure 1. The incinerator burns 
Mustard Agent. The off gas from the incinerator is quenched with a solution 
of fresh make-up caustic and a split stream from the liquid sump. This step 
essentially brings the temperature down and absorbs the heat from the 
reaction of caustic with KC1, SO3, SO2, and CO2. The gas stream leaves the 
quench chamber and is introduced into the scrubber where it is further 
scrubbed of its HC1, SOg, SO3, and CC^. The liquid used cones from the 
bottom of the quench chamber. The liquid from the scrubber goes to the i 
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liquid sump where it is pumped to the quench chamber and the spray drier. 

An example of the results is shown in Figure 2. 

The program was originally programed on the Interdata Model 3 Minicomputer 
in Interactive Fortran to be debugged and then converted to the Univac 1108. 

The technique which was used to solve the 150 material balance 
equations, was to convert them to differential equations. By using this 
technique, if the solution exists, the equations will converge to the 
solution. 

Thisa simulation proved the feasibility of the system. The results do 
not agree well with the real situation because of the following: 

a. The mustard was not pure. 

b. The impurities contained sulfur and iron. 

In conclusion, this simulation established the feasibility of the scrubbing 
system and indicated trat pollution can be controlled by scrubbing. A copy 
of the minicomputer program with comments follows. 
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STATION # 9 - GAS TO : STACK 
C OyjPOUND NO» LBS % 

1 °t 3. 37894 5.00314 
2 N\ 63.9677 9-J.7158 
3 CO, . 118564 .175556 
4 HC< •« 57 6908 F.- -01 . 55808 lF.-'ll 
5 50,. • 329725E- •01 .4882l7E-ül 
6 SOj • 587 336E- -03 .8 69657E-03 
7 tfzo 0 0 
8 0 0 
9 0 0 
10 }Jarfs°4 0 0 
11 Xa2 COb 0 1 
12 Na^SOs 0 0 
13 /Va,S04 0 0 
14 WA 0" 0 0 
15 Nft tl 0 0 

STATION   #   10 
COMPOUWt   NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

CO, 
HOL 
sot 

NtK. H CöS 

MatSOh 

A/a2 50» 
NaOH 

ftONE 

LBS 
0 

oey   son*   SAIT 

% 

u 
0 
0 
0 
0 
0 
•97623b 
»239245E- 
.9H6034E- 
SÜ.01C6 
7.90374 
.126933 
15^6187 
7.35513 

05 
11 

D 
0 
0 
0 
0 

90 
0 
1.71274 
./ll97 33F-0e> 
.17299E-in 
ö9.1559 
13.8f<S3 
•d2P692 
«2.1384 
1P..9038 

, 

FIGURE.   2   -   SAMPLE    Or    ^£ZVL7ß 
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1 SUBR AA 
2 DI WE CC15,10),DC:5,10),C.;7),rtC15> 
3 DIME IMC 10) 
4 GG=.95 
5 UU=0 
6 C 
7 C       THIS SECTION TAKES IN MOL. WT. 
8 C 
9 DO 1 1=1,15 

10 TYPE 'COKP ',1,' KOL WT* 
11 ACCE «CD 
12 1  CONT 
13 IR=0 
14 C 
15 C THIS  SECTION  DECIDES  IF ifiCIKR.   CHANGES 
16 C 
17 79  TYPE 'INCINR CHANGE? 
18 ACCE ZZ 
19 IF (ZZ) 5,5,92 
20 92  TYPE 'INPUT FROM INCINR* 
21 DO 95 1=1,15 
22 CCI,1)=0 
23 93 CONT 
24 C 
25 C       THIS SECTION TAKES IN THE DATA 
26 C 
27 DO 3 1=1,7 
28 TYPE 'MOLE FRAC. COMP  ,1 
29 ACCE C1C1) 
30 3 CONT 
31 TYPE 'AV. MOL WT,TOTAL LBS. 
32 ACCE MW,LB 
33 TMC1)=LB/MW 
34 C 
35 C       THIS SECTION CALCULATES THE NUMBER OF INPUT MOLES 
36 C 
37 DO 4 1=1,7 
38 CCI,1)=C1(I)*TM(i: 
39 4  CONT -. 
40 C 
41 C       THIS SECTION- ZEROS THE VARIABLES 
42 C 
43 5  DO 6 J=2,10 
44 TMCJ)=1 
45 DO 6 1=1,15 
46 CCI,J)=0 
47 DCI,J)=0 
48 6  CONT 
49 C 
50 C       THIS SECTION TRANSFERS VALUES FROM ST. 1 TO ST. 3 
51 C 
52 DO 44 1=1,2 
53 CCI,3)=C(I,1) 
54 CCI,5)=CCI,1) 
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55 
56 C 
57 C 
58 C 
59 
60 C 
61 C 
62 c 
63 c 
64 
65 
66 
67 
68 
69 
70 
71 c 
72 c 
73 c 
74 c 
75 c 
76 c 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 c 
98 c 
99 c 
100 
101 c 
102 c 
103 c 
104 c 
105 
106 
107 
108 

44  CONT 
i 

THIS INCREMENTS RUN NUMBER 

IR=IR+l 

THIS PART CALCULATES THE CAUSTIC INPUT 
FROM POUNDS OF CAUSTIC 

TYPE 'CAUSTIC* ( 
ACCE NA ' 
PP=NA/2 
PA=NA/M(14) 
DC 68 IP=l,17 
WRIT UU,' ' 

68 CONT 

THIS SECTION TYPES OUT ON TTY #2( KEY UU? fl 

ALL THE PERTINANT INFORMATION ABOUT THE 
RUN. NOTE: THIS FORTRAN DOES NOT RECOGNIZE 
INTEGER OR REAL VARIABLES. 

WRIT  UU,'RUN  NO.   ' ,IR 
WRIT UU,'   ' 
WRIT  UU,'CUBIC FT/MIN  NAT.   GAS' 
READ UU,ZZ 
WRIT  UU.'LB MUSTARD/MIN' 
READ  UU,ZZ 
WRIT  UU,'EXCESS  MOLAR AIR* 
READ  UU,ZZ 
WRIT  UU,'GAL OF FRESH 207.  CAUSTIC ADDED TO' 
WRIT  UU,'QUENCH  =   *,PP 
WRIT  UU,'GAL OF  MAKE  UP  WATER  = ' 
READ  Ul',WA 
WRIT  UU,'RECYCLE RATE OF RECIRC.   TANK  IN  GPM  = ' 
READ  UU,GM 
GQ=GM*8.33/10 
WRIT UU,'EFFICIENCY OF UUENCH AND SCRUBBER =' 
READ  UU,E1,E2 
DO  72  IP=1,33 
WRIT  UU,'   ' 

72     CONT 

NB IS THE AMOUNT OF WATER ENTERING THE PROCESS 

NB=<8.333*WA+NA*4)/18 

THIS SECTION SETS THE INITIAL VALUES FOR 
CAUSTIC AND WATER 

C(7,2)=GQ 
C(7,4)=GQ+NB J 
C(7,S)=GQ+NB m 

C(7,8)=NB 
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109 
HO 
111 
112 
113 
114 
115 C 
116 C 
117 C 
118 C 
119 C 
120 
121 
122 
123 
124 C 
125 C 
26 C 

. 7 C 
128 C 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 c 
141 c 
142 c 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 c 
153 c 
154 c 
155 
156 
157 
158 
159 
160 
161 
162 

C(7,10)=NB | 
C(14,2)=PA 
C(14,4)=2*PA 
CC14,6)=2*PA 
C(14,8)=PA r 
C(14,1U)=PA 

THE  Ml   TO  M7   VARIABLES ARE  HOLES  FORMED  IN  THE 
QUENCH  SECTION.   ThE ARE ADDED  TO  THEIR  RESPECTIVE i, 
DIFFERENTIAL AND SUBTRACTED FROM CAUSTIC. 1, 

M1 = E1*C<3,1> 
M2=E1*CC5,1> 
M3=El*CC6,l) 
M<« = E1*C<4,1) 

THIS SECTION TAKES CARE OF ALL DIFFERENTIALS I 
MM IS A DUMMY VARIABLE BECAUSE THIS INTERACTIVE 
FORTRAN HAS NO CARD CONTINUE PROVISION 

IA=0 
IArIA+i 
MM=C(11,2)-C(8,4)-C<11,4) 
DC11,4)=MM+M1 
MM=CC12,2)-C<9,4)-C(12,4> 
D(12,4)=MM+M2 
MM=C(13,2)-C(10,4)-C(13,4) 
D(13,4)=MM+M3 
D(7,4)=C(7,1)+NB-C(7,4)+C<7,2) 
D(7,4)=D(7t4>+El*C(4,l) 
D(15,4)=C(15,2)-C(15,4)+M4 

THIS TERM CALCULATES H+ IN STREAM 4 

H=1E-14*TM(4)/C(14,4) 
M5 = H*CUl,4)*.226EH 
D(S,4)=M5+C(8,2)-C(8,4) 
M6=H*C(12,4)*200000 
D(9,4)=M6-C(9,4)+C(9,2) 
M7=H*C(13,4)*50 
D(10,4)=M7+C(10,2)-CC10,4) 
MM=2*(M1 + M2+M3>+M7+M4+M5 
D(14,4)=C(14,2)+PA-MM-M6-C(14,4) 

THIS  SECTION CALCULATES  STREAMS 3  &  5 
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163 C 
164 C 
165 C 
166 C 
167 C 
168 C 
169 C 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 c 
181 c 
182 c 
183 c 
184 c 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 c 
195 c 
196 c 
197 c 
198 c 
199 c 
20Ü 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 c 
213 c 
214 c 
215 c 
216 c 

THIS SECTION CALCULATES THE DIFFERENTIALS 
FCR STREAM 6. PI TO P7 ARE THE MOLES OF 
MATERIALS FORMED IN THE SCRUBBER AND ADDED 
TO THEIR RESPECTIVE DIFFERENTIALS AND SUBTRACTED 
FROM CAUSTIC. 

P1=C(3,3)*E2 
P2=C(5,3)*E2 
P4=C(4,3)*E2 
P3=C(6,3)*E2 
DCll,6)=Pl-C(8,6)+CCll,4>-CCll,6> 
D(12,6)=P2-C(9,6)-C(12,6)+C<12,4) 
n'13,6>=P3-C(10,6)-C(13,6>+C(l3,4) 
D(7,6)=C(4,5)*E2-C(7,6>+C(7,4> 
D(15,6)=C(4,3)*E2-C(15,6)+CC15,4) 

THIS STATEMENT CALCULATES THE H+ 
CONCENTRATION IT IS USED IN CALCULATING 
P5.P6.P7.'THEY ARE CALCULATED USING 
EQUILIBRIUM CONSTANT FOR HC03-.HS03-.HS04- 

H:1E-14*TMC6)/C(14,6) 
P5=H*C(ll,6)*.226Ell 
D(8,6)=P5-C(8,6)+C(8,4) 
P6 = H*CU2,6)*200000 
D(9,6)=P6-C(9,6)+C(9,4) 
P7=H*C(15,6)*50 
D(10,6)=P7-C(10,6)+C(10,4) 
MM=2*(P1+P2+P3)+P4+P5+P6+P7 
D(14,6):C(14,4)-MM-C(14,6) 

THIS SECTION CALCULATES THE DIFFERENTIALS 
FOR STAT. 2 & 7 THRU 10 INCL. THE TOTAL WEIGHT 
OF STREAM 6 IS NECESSARY FOR THE RECYCLE 
STREAM 

QB=0 
DO 8 IQ=1,15 
QB=Q3+C(IQ,6)*M(IQ) 
CONT 
GA=10*GM/QB 
DO 9 IQ=1,15 
D(IQ,2)=C(IQ,6)*GA-C(IQ,2) 
D(IQ,8)=C(IQ,6)-C(IGl,2)-C(IQ,8) 
D(IQ,10)=C(Iti,8)-C(Iy,10) 
DQQ,7> = .2024*C(Iü,5)-CUQ,7) 
D(IQ,9)=C(IÜ,5)-C(IQ,7)-C(IQ,9) 
CONT 

THIS SECTION CORRECTS THE NUMBER OF MOLES 
OF THE INDIVIDUAL COMPOUNDS OF EACH STREAM 
BY THE DIFFERENTIAL TIMES GG A NUMBER 
LESS THEN ONE TO ENSURE CONVERGENCE 
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217 C 
218 DO 10 IQ=1,15 
219 I J=l 
220 62 IJ=IJH 
221 C(IU,IJ)=C(1W,IJ)+GG*D(IQ,1J) 
222 Ib=IJ-10 
225 IF (IB) 62,13,10 
224 10 CONT 
225 DO 22 10=1,10 
226 TM(IQ)=G 
227 22 CONT 
228 C 
229 C       THIS SECTION CALCULATES TOTAL MOLES 
230 C       IN EACH STREAM THE VARIABLE TM(IQ) 
231 C       IS THE TOTAL MOLES IN EACH STREAM 
232 C 
233 DO 23 JQ=1,15 
234 IQ=0 
235 52 Ik-IQ+1 
236 TM(ia)=TM(IÜ)+C(JQ,I(ä) 
237 IT=IÖ-10 
238 IF (IT) 52,23,23 
239 23  CONT 
240 C 
241 C       THIS SECTION SETS CAUSTIC AS A POSITIVE 
242 C       NUMBER. 
243 C 
244 DO 37 IW=1,10 
245 IQ=IQ+1 
246 IF (C(14,I£)) 36,36,37 
247 36  C(14,IQ)=.1E"03 
248 37 CONT 
249 C 
250 C       THIS SECTION COUNTS THE NUMBER OF ITERATIONS 
251 C       THE NUMBER WAS SET TO 40 TO MINIMIZE TIME 
252 C       BUT TO REACH-CLOSE TO ZERO DIFFERENTIAL 
253 C 
254 RT=lA-40 
255 IF (RT) 7,7,47 
256 C 
257 C       THIS ALLOWS TO TURN OFF PRINTING TTY 
258 C       AT THE ACCE ZZ THE COMPUTER WAITS 
259 C 
250 47  TYPE 'SET OTHER TT' 
251 C 
262 C       THIS TERM SETS PRODUCT WATER = 0 
263 C 
264 C(7,10)=0 
265 ACCE ZZ 
266 DO 45 1=1,10 
267 WRIT UU,'STATION # ',1 
268 QB=0 
269 DO 24 IQ=1,15 
270 QB=Q3+C(IQ,I)*M(IQ) 
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271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
83 

. 39 
290 
291 
292 
293 
294 

C 
C 
C 

c 
c 
c 

c 
c 
c 

24 CONT 

THIS SECTION PRINTS RESULTS 

WRIT UlVCOMPOUND NO.   LBS Z' 
DO 25 Iii=l,l5 
PC=CClQ,I)*i1U*t> 
PD-PC*100/QB 
WRIT UU,I<i,PC,PD 

25 CONT 

THIS-SECTION GOES TO THE NEXT PAGE 

DO 45 HJ =1,16 
w.JIT UU,' * 

45  CONT 

THIS SECTION CHECKS FOR MORE RUNS 

TYPE 'ANOTHER RUN?' 
ACCE ZZ 
IF (ZZ) 91,91,79 

91  CONT 
END 
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A COMPUTER-MODELING TECHNIQUE APPLIED TO 

PRIORITY RANKING OF DEVELOPMENT PROGRAMS 

E. H. GAMBLE 

US Army Test and Evaluation Command 
Aberdeen Proving Ground, Maryland   21005 

SUMMARY 

A novel application of the subjective Delphi method 
is found in the selection of the weighting/influence coef- 
ficients for a linear modeling study for multiple component 
development projects with multiple product system applica- 
tions.   The interesting features of the study are the desired 
individual project relative magnitudes for engineering applied 
effort treated as the system parameters and their companion 
best applied percentages of available funding and resources. 
From preliminary functional flow diagrams per product system, 
together with the knowledge of that system's required instal- 
lation/environmental and operational specifications, the 
weighting coefficients are computed as the linear sum of 
numbers.   Each number (zero to unity) is computed from an 
average-valued estimate, determined from rating selections 
for relative complexity for meeting each specification defined 
under each product system application.   The rating selections 
are made by experienced design/development engineers.   The 
implied importance for each product system is tied to the fore- 
cast of expected procurement in numbers and dollars.   In 
addition, a manufacturing and materials processing factor is 
indicated for each component project to define a relative ac- 
quisition difficulty. 

The computer results for the designed model are normalized 
to 10*0% for total funding allocation and the largest value of rank- 
ing effort parameter.   An assignment table for effort and fund % 
allocations results.   The sensitivity of the relative project 
assignments to any design specification may be found.   Com- 
parisons of the various product systems with regard to needed 
resources and complexity can be provided from the model and 
its study. 
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I.        INTRODUCTION. 

In the practical world of competition, a management 
committed to research and development "cannot pursue projects 
of marginal utility or payoff.   The decision to allocate an or- 
ganization's resources to a given task must be based upon a 
sound evaluation of the benefits that can result from that 
particular effort.   The decision must be made on the basis of 
the integrated judgments of the technical, operations, and 
marketing/user personnel.   In order to derive the full value 
from its investment in research and development, management 
seeks a position to accurately appraise these independent 
judgments. 

A method has been developed which appears to assist 
management to make such appraisals and tc implement its 
decisions rapidly and effectively.   This method is based on 
the exploitation and marriage of the optimization techniques 
used in engineering design; and the techniques used in opera- 
tions analysis, including the subjective opinion "Delphi" 
method,   it has already been successfully applied to at least 
one major program of research planning, product development, 
production, and deployment involving 20 individual development 
projects applied to somewhat fewer system product lines.   This 
is by no means the number limit for practical application of the 
systems method developed. 

The several methods of SA such as the "Delphi Technique" 
and the Algorithms of Linear Programming may be combined to 
solve this difficult problem in engineering planning:   the funding 
required and priority ranking assignments of potential component 
development projects. 

Observations of the numerous applications of the Delphi 
form for utilizing the subjective opinion of qualified and 
knowledgeable experts have led us to conclude the need for a 
careful structuring of the breadth or scope of each question and 
its numerically rated answer.   Good correlation appears to 
exist in the experts' numerical values for the weighting number 
for the same narrow scope question.   The statistical variance 
for each answer block may be greatly reduced by this structuring 
plan. 
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Us'ing this method, it is possible to assign research and 
development priorities on the basis of dollar potential within 
the constraints established by budget allocations, calendar 
timing, availability of physical resources, and variable de- 
ployment factors.   The influence of changes in selection 
criteria (i.e., minimum cost for minimum time; minimum re- 
quired resources or maximum utilization of a specific factor or 
group of factors) can be easily translated into terms of resultant 
changes in fund;i g, priority, and needed resources.   It is adapt- 
able for use with either multiproject research and development 
programs or individual technical operations for productive project 
planning and control. 

Essentially, the method is based on two principles: 

1. Recognition and proper weighting of the factors 
influencing individual judgements made by technical, operations, 
and user personnel (similar to the Army Delphi method), and 

2. Overall product planning with particular attention to 
how the end result of a given project would affect integrated 
product lines and their individual components in:   (a) a spe- 
cific business climate, or (b) Army commodity systems for use 
in a particular tactical field environment. 

Mathematical and guided decision-making techniques 
developed for improvement of component or systems design 
have proven quite effective.   Operations analysis is recog- 
nized as the cornerstone    of successful manufacturing today. 
Marketing techniques - particularly in the area of market 
studies and sales-data forecasts - are, in general, equally 
reliable and accurate.   When properly weighted, each of the 
influencing factors can be visualized and put in proper per- 
spective in regard to the whole project and defined research 
and development program. 

Each particular technique has been used successfully on 
many problems.   The only novel feature of this study is the 
viewpoint permitting the utilization of the several methods to- 
gether for planning purposes. 
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II.       DISCUSSION. 

A.     A Systems Technique for Engineering Planning. 

1.     Preparation for Component Definition: 

Preparation for the analytical study includes the 
hardware and software definition of a development project not 
new available as an "off-the-shelf" item.   The best set of 
design specifications will be determined by the study.   The 
important concern is the setting of a priority ranking and as- 
sociated % funding allocation consistent with the best estimate 
of engineering effort required for success in the development 
and timeliness with the real world constraints.   The product 
systems will apply the development end products as operational 
components.   Because the tactical field environment or instal- 
lation environment depends heavily on the particular product 
system, we would require   N   optimal designs for  N   systems. 
Reality forces us to consider a suboptimal design, giving a 
high adaptability for application.   To design to the worse set 
of specifications and time scales would probably require an 
excessive engineering effort and funding.   We have observed 
that to ask any creative designer the complexity for a total 
component development would bring forth an estimate with wide 
variance from that offered by another capable designer.   How- 
ever, the restriction of each question about the difficulty in 
meeting only one specification for one application reduces this 
variance.   The utility of the educated subjective opinions 
of the "Delphi" method is improved by careful structuring of 
the magnitude and extent of each question proposed. 

Let us choose a set of variables{x^} , where the sub- 
script i_ identifies the individual development project.   Each 
X} is a relative measure of engineering applied effort.   Nor- 
malization of the value set  Xj   to the largest of the set will 
then permit us to identify an ordering or ranking for the JN 
development projects by the descending magnitude of the^x^ 
(xi largest) values.   The funding allocations will be by the 
product of Ci Xi, where the Cj is a costing number.   A 
weighting or utility matrix with cell values of a^ describes 
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much more than a pure preference and serves as a guide to a 
practical optimized solution of our selection problem.   The 
subscript (j) identifies the cornplexity-criticality factor 
(specification) and k the application or ^product system.   We 
will describe how to select the {a^j, \, in detail later.   First, 
the Cj could be found several ways, since we are interested 

in setting   /, ci Xj = 100% of funds allocated.   The Cj for 
1=1 

computation purposes can be determined as the sum of the cell 
values of the weighting matrix for the i_th column. 

The suboptimal solution set we seek is the ranking from 
the largest to the smallest for the {Xj}0   found from a computer 
solution of our model.   The {Xj j° are to be normalized to the 
largest value.   The non-normnlized set became a measure of 
the applied engineering effor* to carry out the component de- 
velopment for the i_th project.   The product of Cj Xj is the 
companion fund allocation.   These \Cj xjnumbers are summed 
and each normalized to the sum magnitude times 100?'o to give 
the percent of recommended allocated funds. 

B.     Influence of Application Product Systems on Ranking 
Study. 

One philosophy for analysis has included the influence/ 
effect of the environment of the product system which includes 
the hardware or software as end product of our component develop- 
ments .   To include the multiplicity of each component type and 
its importance to the system, we must generate a feasible block 
diagram of each product system with each functional component 
identified and the representative environment! limits as they 
influence a given specification.   This approach will result in a 
different set of a^j- values fcr each K.   Also, the multiplicity 
should be included to properly reflect the importance of a given 
component development as a part of an overall mix of all Q. of 
the different types of to-be-fielded product systems. 

The particular application under study requires the 
definition of a weighting-influence matrix of N = 17 component 

79 



development programs and Q - 14 product systems.   A deficiency 
of N - Q = 3 exists in the number of product systems making use 
of all of the N different hardware end results of the development 
projects.   To permit the vise of the SA matrix technique, we must 
generate the detail block diagrams for each Kth product system 
application for the component hardware with care taken to identify 
any multiplicity of a given rth component. 

form of: 
The 14 constraint inequalities are recognizable in the 

17 
2 

i = 1 
a< ijk *i* w^   - product and investment priority 

or 
17 

z 
i = 1 

Mjk xi £wk system engineering complexity 

wherey = 1,2,.,.,   m)is the indicator of the particular 
specification or time constraint which is influencing the com- 
plexity for development of the ith component which must conform 
to that application requirement,   N^ is resources required factor. 

o.OO Where a^k = S^ 

(k) 

MJk N^ = Sik . Nik . Aijk 

% 

__ f   0) 
°t 
0) . 

C<(Xi)) 

The Pjxw symbol is the multiplicity of the ith compo- 
nents used in the K system and Sjj^ is a cost acquisition/marketing 

III St 
ratio.   The   «((tj) are criticality numbers in the range of (0 to 1.0) 
derived from Delphi opinions about development timing and the 
oi"' (x^ are complexity companion numbers, again in the range 

(0 to 1.0).   There are more than a dozen j_ hardware specifications, 
each requiring a j_th weighting value for the i_th   component when 
installed into the applicable environment of the kth product 
system. 
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The Specification Criteria as Criticality-Complexity Factors 

The set cf specification criteria used for this study 
were the following: 

(1) 
oiik        ^1^   "   A product system milestone.   The 

value will be near unity when the 
milestone is a short time away. 

(2) 
°{ ik        (f 2)   ~*   Timr is required for expected 

innovation in materials processing 
or manufacturing process. 

(3) 
°^ik        (xi)    "   Complexity because of a static 

design factor or specification (a 
military design point of operation). 

-   Because of a dynamic design factor 
(e.g., transient response^. 

«* ik 
(4) 

°<ik 
(5) 

**ik 
(6) 

*ik 

(7) 

(8) 

/ 

-  Static extreme environmental condition. 

-   Dynamic or rate of change of environ- 
mental conditions. 

-   RAM requirement. 

OCjk -   Development of an analysis technique 
prior to design/development, such as 
software modeling. 

(9) 
o( JJ, -   Potential hazard due to foreign 

materials or substances. 
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(10) 
ö( jk -   Excessive energy and power re- 

quirements when operational. 

(12) (13) 
°^ ik        ' °^ ik "   Other pertinent factors. 

C.    Example for Determination of Representative Matrix 
Cell Value. 

An example has been chosen to demonstrate the 
iteration-convergence process for finding the optimum convex 
set of design values. 

Let us consider the particular project i = 4 to be the 
design or development of a hydraulic component.   This compo- 
nent will be compatible with other existing components to form 
a larger subsystem.   It is capable (as visualized) of multiple 
use in a number of product systems.   These product systems 
will have widely different installation environment conditions 
and different dollar potential.   We must establish some arbi- 
trary selection rules which will provide a consistent set of 
relative values to show the engineering judgment of expected 
complexity.   The value for f ^ (product goal) will vary with the 
product.   To show an example of the technique, let us set the 
values for the individual <K's at 0, 0.25, 0.50, 0.75, and 
1.0.   For product K = 1, since our component is needed as a 
development prototype, we select <* \ \ ^'(tj) = 0.50.   The 
other applicable «K's and dominant reasons for the selected 
values are as follows: 

°^ 4    1      =0.75- Difficult specification for static 
accuracy, for example, position 
or high force level. 

<y( 4    j'4^ = 0.75 - Small transient time constant, 
high resonant frequency, and 
extended functional behavior. 
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^4 1^)   orc»<4 1(6) = 0.75 - Extended fluid operating 
temperature, high in- 
stallation ambient. 

°^ 4  1 (7) = 1.00 - Requirement for very low 
failure rate. 

0( 4  1 (9) = 0.75 - High susceptibility to contaminants 
at extended high and low ambients. 

Other  e< 's, such that /_, c{      (j) = 6.75. 
j     4/1 

P4(l) = 7. P4(l)   -2cK      (J) = 44.5-  NiKMiK= 0.0029 
j      4,1 J - c    /c - bik/ot 

For other K's the individual C<       (j) will be different.   The 
multiplicity-utilization coefficient, ?,(K), will be different 
also.   For our example, N^ M^ for the same K will be N^ M^, 
not varying with i_. 

The N=17, Q=14 Systems Planning Results 

The planning model is shown as Figure 1. The final 
complexity-criticality matrix of all values for our a^ is given 
as Table 1. 

Table   2 gives a summary of the results for the Delphi 
value search, the worst value set of summed o( coefficients, 
their normalized [ Z^ set by ranking for worst case, and cost 
coefficients.   The computer results for suboptimal {Xj} ° and 
recommended funding allocations are also included. 

Evaluation of the computer solution results confirms 
that the component program priority ranking is strongly influenced 
by those environmental system focors and the multiplicity of 
each component's use in the numerous systems.   To rank on the 
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basis of'the worst conditions or the equivalent largest value 
for Ajjfc would be giving extremely heavy influence to the engi- 
neering complexity without proper regard to the equally important 
expected utility of the component resulting from the development 
project.   An interesting comparison also can be made by w^ and 
Wjr for the numerous K systems.   To a large extent, w^ involves 
a utility number influenced by the total resources needed or 
product priority ranking.   Wjr is the engineer's ranking of the 
systems via the complexity label alone. 

The second table 3   summarizes the computer data 
from the proauct system and investment priority viewpoints. 

Two intermediate parts of the study are worth men- 
tioning.   One is the accompanying figure which attempts a 
simple engineering planning model to provide a road map of the 
computational process.   It will, hopefully, give a clearer ex- 
planation than the word of the text. 

Table 1 is the weighting matrix of cell values for 
the totalized complexity-criticality influence coefficients used 
in the linear programming analysis.   The Bj identify the column 
heads for the 17 component programs and the A^ the product 
system explication. 

The (x^l    value set are the suboptimal solution 
set for the non-normalized decimal percentage of individual 
applied efforts suggested by the study.   The resulting value 
set must be multiplied by the corresponding C, used in the 
programming study of the model.   Useful results should be a 
computed table of the model values for Xi divided by the largest 
value found, so that the resulting numbers can be placed in a 
largest to smallest order and can be referenced to a unity value 
for the highest priority program.   A second table of values for the 
CJXJ computed for the model divided by the sum of these Cp^ 
values times 100% forms   a new computed set giving the per- 
centage of allocated funds to be identified for the ith program. 

Table 2 summarized the results of the study with our 
observation centered upon the component programs.   The worst 
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case values for complexity are given as both maximum values 
and comparison values normalized to that program for which the 
maximum complexity-ciriticality was determined.   A study of 
the normalized { Zj] value set has major significance to the 
functional engineering manager.   The corresponding ranking 
value set gives an ordering to the {zi j value set.   In contrast 
to these worst case value set, the f X^0 normalized values 
show the heavy weighting influence of the product system appli- 
cations.   This table gives both the computational [cp^] funding 
values, and those values based upon a percentage of engineering 
effort.   Their ordering or ranking numbers may then be compared 
with the ranking of the Z^ value set. 

Table 3 provides the summary of data from the product 
system observation viewpoint.   It provides the data in a form 
to permit a contrast of the engineering system complexity, 
{WjJ  indicators with the management priority values}{ w^\ . 
The weighting influence of system acquisition numbers and as- 
sociated dollars causes the- differences in the two values sets 
found.   For the management review, comparison figures for the 
percentage of new development engineering effort based upon 
system complexity and the percentage based upon a command 
or business-oriented priority are identified. 

III.     CONCLUSIONS. 

The mixing of a controlled structure "Delphi" technique 
with a systems engineering design method does appear to be 
compatible and potentially capable of providing the basis for 
management decision-making at both the functional engineering 
and command or general management level.   Although such studies 
can only be viewed as a guide to the detail planning for a total 
program of development projects, it shows a potential pathway 
to the identification of the influence effect of resources needed, 
potential acquisition numbers and dollars for current product 
system applications of the physical results expected of new 
development engineering effort.   The planner has a broader base 
for making an analysis than his own limited experience.   An 
additional by-product is that some justification for the ordering 
and funding of the development projects can be given by the 
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engineer to the system project managers and financial officers. 
The potential allocation of each class of needed resources can 
be based upon an additional source of management information. 

IV.      RECOMMENDATION. 

That serious consideration be given to the utilization of 
the suggested techniques or some modification of them 3s a 
potentially valuable assist for management decision-making at 
both the functional and command/general management levels. 
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ECONOMIC, RISK, AND SYSTEMS ANALYSIS OF THE CHEMICAL AGENT/MUNITION 
DISPOSAL SYSTEM (CAMDS) 

John Seigh and Lynn Davis 
Plans Office 

Analysis Group 
Edgewood Arsenal, Maryland 

ABSTRACT. In reviewing disposal problems in 1969, the National Academy 
of Sciences made some general recommendations to the Department of the Army 
for all future chemical munitions disposal. These recommendations formed 
the basis of the requirement for a disposal system that could accommodate 
any of the chemical munitions in the current stockpile. A study was con- 
ducted to assess the costs (fixed capital investment, operational, and 
transportation1) associated with several alternative disposal system config- 
urations. These included: 

a. Disposal operations conducted at the various chemical storage 
locations utilizing, 

1. A few transportable disposal systems, capable of handling all 
types of munitions and agents at a given disposal rate, which would serve 
a given storage location and then, due to its modular construction, could 
be moved to serve a second or third storage location. 

2. A fixed disposal system at each storage location which would 
be tailored to dispose of the munitions/agents unique to that location and 
economically optimized in relation to the disposal rate at that location. 

3- A mix of fixed and movable disposal systems to serve the nine 
storagj locations. 

b. Disposal operations conducted at one, two, or three fixed disposal 
locations, economically optimized as to disposal rate, assuming that the 
munitions/agents could be transported to these central disposal locations. 

The paper will discuss the computerized model developed to assess the 
costs associated with the fixed disposal systems, considering the tailoring 
of the system to a specific stockpile of munitions and scaling up the 
movable system disposal rate to balance system acquisition costs with op- 
erations cost, to determine an optimum cost system. 

1. INTRODUCTION AND DESCRIPTION OF THE PROJECT. In reviewing disposal 
problems in 1969» the National Academy of Sciences~made some general recom- 
mendations to the Department of the Army for all future chemical munitions 
disposal. These recommendations formed the basis of the requirement for a 
disposal systfem that could accommodate any of the lethal chemical munitions 
in the current stockpile. -An economic, risk, and systems analysis was 
conducted to investigate alternate disposal system configurations. These 

included: 
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*. Disposal operations conducted at the various chemical storage 
locations utilizing, 

1. Four transportable disposal systems, capable of handling all 
types of munitions and agents at a given disposal rate, which would serve 
a given storage location and then, due :o its modular construction, could 
be moved to serve a second or third storage location. 

2. A fixed disposal system at each storage location which would be 
tailored to dispose of the munitions/agents unique to that location and 
economically optimized in relation to the disposal rate at that location. 

3. A mix of fixed and movable disposal systems to serve the nine 
storage locations. 

b. Disposal operations conducted at one, two, or three fixed disposal 
locations, economically optimized as to disposal rate, assuming that the 
munitions/agents could be transported to these central disposal locations. 

A computerized model was developed to assess the costs associated 
with the fixed disposal systems and the optimization of there costs. In 
addition, a second model developed to assess the transport of the chemical 
munitions or agents to optimized fixed disposal facilities will briefly be 
discussed. 

The Chemical Agent Munition Disposal System (CAMiJS) is presently being 
developed at Edgewood Arsenal. The CAMDS is a modular system made up of 
some kO building blocks or uni+^ and is capable of being moved to several 
locations for disposal activities. Only the concrete pads and utility 
supply are fixed at a disposal site. The components are technically complex 
and require extensive controls to meet the stringent containment, safety, 
and air quality requirements. It is envisioned that four such movable 
systems could be built to serve the nine chemical storage locations. Eacb 
system ie required to be "universal," i.e. capable of handling approximately 
11 munitions - rockets, land mines, boiTibs, spray tank, with a variety of 
agent fills - H, GB, VX, Some munitions contain explosive components and 
some do not. The various combinations of munition carriers, agents, and 
explosive containment represents some 30 different munition configurations, 
each with an associated disposal rate based on the capability of the movable 
system. These disposal rates are constrained due to the transportability 
requirement of the system and were subsequently found to be generally below 
those rates which would be economically optimum. That is, the subsequent 
operations costs associated with these four movable systems far outweighed the 
system acquisition costs. It was postulated that nine individual disposal 
systems, tailored to the ./~or8ge locations, i.e., munition stockpiles they 
were to serve, and operating at higher disposal rates, might be more economical 
than the four movable systems. Hence, efforts were initiated to develop a model 
which would scale up the capability of the movable disp^   system and determine 
an optimum cost system, i.e., the point where the sum of the system acquisition 
cost and system operations cost is a minimum, as shown in Figure 1. 
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The computerized model developed is capable of providing elements of 
cost associated with a system (acquisition, engineering, operations labor, 
replacement parts, materials and utilities required during operations, etc) 
for any predetermined stockpile composition, quantity, and disposal rate. 
The optimum disposal rates determined are those which exhibit the lowest 
total cost of the sum of the various cost elements. 

It was realized early that an infinite number of disposal rates for each 
of the 30 munition types existed, and the problem had to be constrained. 
Hence, the munitions were segregated into four broad categories, each having 
many common characteristics. 

These are: 

Category A - Rockets & Mines 
B - Projectiles with explosives 
C - Projectiles without explosives 
D - Bulk items (bombs, spray tanks, ton containers of agent, 

etc) 

Subcategories were then used to distinguish major differences among munitions 
within a category. 

A basic disposal rate was defined as the rate of disposal associated with 
the CAMDS or movable system. This basic rate is referred toasallll 
disposal rate combination system where each digit is associated to the 
A, B, C, and D munition categories respectively. In reality, the basic 
rate may represent UOO rockets, 575 mines, or 5 spray tanks per day. Varying 
the disposal rate, however, was limited to the four rate combinations 
associated with the munition categories and these rate categories were varied 
by integer multiples. 

The computer program is capable of providing a miriad of information 
relative to a system at any specified disposal rate. Included are the scaling 
and costs of individual building blocks, the labor required for operation in 
numbers cr people and their cost, the cost of materials and utilities during 
operation, an estimate of the cost of replacement equipments during operation, 
and the time of operation associated with portions of the stockpile or the 
total stockpile. 

As was mentioned previously, the CAMDS system is composed of k2 building 
blocks or modules. This system, and its associated costs and capabilities, 
served as the basis upon which the fixed systems were determined. Although 
the building blocks of the fixed systems were no longer required to be movable, 
the modular concept was retained. For the fixed system, a building block 
or module is related to a function rather than an operational unit. A listing 
of the building blocks which make up a universal system is shown in Table 1 
(next page). 
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TABLE 1 

BUILDING BLOCKS 

1. Unpack Area 22,, 
2. Explosive Containment Cubicle 23. 
3. Deactivation Furnace 2k. 
k. Deactivation Furnace Scrubber 25. 
5. Metal Parts Furnace 26. 
6. Punch, Drain & Saw 27- 
7. Dunnage Incinerator 28. 
8. Utilities 29. 
9. Utility Module 30. 

10. Control Module 31. 
11. Control Point 32. 
12. Personnel Support Complex 33- 
13. Agent Destruction System 3k. 
Ik. Explosive Treatment System 35. 
15. Saw, Dump & Probe 36. 
16. Burster Size Reduction 37. 
17. Thaw Station 38. 
18. Pull, Drain & Rinse 39. 
19- Central Decon Supply ko. 
20. Projectile Disassembly Facility kl. 
21. Bulk Item Facility 1+2. 

Materials Handling Equipment 
Filters 
k.2 In. Mortar 
M23 Land Mine 
Piping 
Electrical 
Scale Model 
Perimeter Monitoring 
Closed Circuit TV 
Communications 
Chemical Laboratory 
Detectors 
Technical Data Package 
Systemization 
Training 
Repair Parts 
Systems Management & Planning 
Other Edgewood Support 
Site Preparation 
Bulk Agent Facility 
Military Construction Army 
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The stockpile at a given disposal location may permit the omission of 
several of these building blocks from the system developed. For example, 
a location at which no mines or mortars are stored, woald not require 
building blocks 2U and 25 to be included in- that system. Likewise, the 
portion of cost associated with the transportability of the module need 
not be included in a fixed installation and these costs were eliminated 
from the basic cost data. 

2. THE COMPUTER MODEL. The program was written to reflect the ideas, 
opinions, and estimates of engineers familiar with the design of such a 
facility. There were frequent meetings and discussions resulting in rewrit- 
ing, adding, and eliminating portions of it. 

The objective sought was to provide some insight as to what size facility 
(or rate of munition-chemical agent disposal) would be most economical. 
Therefore, the model must generate a total cost of first acquiring or building 
a facility tailored to certain munition types found at a particular site, and, 
secondly, operating that facility for the time required to dispose of all of 
each type found at that site. This is a good point at which to emphasize that 
not all cost elements have been included in the model. Generally, only those 
whicli would be rela^ta -,o .Hspc^al rate were considered for the purpose of 
analysis. 

A flow chart of operations performed in the computerized model is 
illustrated in Figure 2. The »cmouter program is responsive to lh«rs 
site-related inputs: 

First it must be given the specific mun.+ ion types which must be pro- 
cessed through it, that is, those which are peculiar to the disposal location 
or site (the introduction specified some 30 different types or unique combin- 
ations of the carrier munitions with and without explosive components and 
their chemical agent fills). 

It also, quite naturally, requires the inventory of each of the types. 

The last input that requires any explanation is the rate multiples. A 
number of multiples is provided for each of the four munition categories, 
unless the particular site has no munitions of a category; then the number 
of multiples fcr that category is set to zero. Only integer multiples were 
used mainly because many of the engineers' estimates were based on the CAMDS 
batch processing components and little confidence could be taken in estimates 
for the cost of a component which would operate at some slower rate than the 
CAMDS. The multiples for the non-zero categories are chosen by making a 
cursory examination of the inventory. An example of this process is shown 
for an hypothetical storage site: 
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SITE: EAST FIGEONTOE ARMY DEPOT 

General Description of EPAD's inventory: 

Category A - large numbers of rocket and mines 
Category B - no items (explosive projectiles) 
Category C - a few items (non-explosive projectiles) 
Category D - significant uumbers of bulk items 

The analyst now might very well choose to examine the following 
rate multiples based upon the above information: 

Category A - 3,^b,6,7,8,9,10 (total of 8) 
Category B - (total of 0) 
Category C - 1,2,3,k (total of k) 
Category D - 3,5,6,(,8,9 (total of Z) 

With these inpats the program will examine the total cost for each of 192 
systems (the number of combinations of rate multiples for "non-zero" categories 
is the product of the number of multiples in each "non-zero" category; 8 x k x 
6 = 192). 

Inspection of the results should make it obvious whether or not the rate 
multi^las chosen include an inflection point for total cost when considering 
the trade-off between acquisition cost and operations cost. 

Other inputs include: Monthly depot storage cost; replacement parts 
rate, a percentage; average hourly wage rate; and the time, in days, for 
systemization which is a period for system checkout and operator training 
prior to full scale operation. 

The program next receives the so-called "basic data" from mass storage- 
this is all the data that is not site-related - it was updated as the engineers 
refined their ideas and estimates. The parameters include "Basic System" 
or CAMDS figures for: 

a. Building Block or actual hardware costs. 

b. Building Block Engineering Support Costs. 

c. Labor or staffing requirements for each munition type. 

Also included a±*e the cost-rate relationships, the required physical data for 
each munition type (mass of metal, of agent, and disposal rate in items/days), 
and linally, the "partial system" facours which will be explained next. 
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The munition types which were input in step 1 are now categorized. 
These categories then determine •which building blocks are required and also 
determine any basic adjustments to be made to those required. The basic 
adjustments are made by the assignment of factors ranging between 0 & 1 
for each category and for each building block resulting in a U2 x k matrix 
of factors. An example of the factors and how they are used for one of the 
building blocks is shown in Figure 3« 

The cost of BB#20, the Projectile Dissassembly Facility, to process all 
munition categories is estimated at $60K. To process just any cne category 
the factors in Figure 3 (.3» .85» .85» and .6) were developed to reflect 
the estimated savings in not having to build in the specifications for all 
categories. For a tite tailored to specific categories it was decided to 
sum the factors or fractional costs of all required categories until that 
sum exceeded 100$ of the basic system cost. Since the given stockpile 
consists of only categories A & D, the basic BB#20 costs 90$ of the CAMDS 
cost or $5^K. In our example, if category C munitions also required process- 
ing, the sums would exceed 100$ of $60K and would b« reduced to $60K. The 
assumption made is that the fractional portions for each category ave 
mutually exclusive; an assumption obviously not generally true; but, where 
it was felt the difference from true cost was significant, this general rule 
was not used. 

The above description is the general rule for tailoring the CAMDS system 
to specific munition types. There are several exceptions to this rule, of 
which BB#5j the Metal Parts Furnace, is an example. This is the system 
component that processes the munition hardware after it has been drained of 
chemical agent but retains a residual contamination. The basic or CAMDS 
cost varies not necessarily wi h category, but rather with munition size 
and agent type. The rate of metal through-put in lbs/day is interrelated 
with Kiinit'cn 3t:<>. ">nd agent type to influence the scaling up cost adjust- 
ment. The logic became so involved for both the basic and die scaling up 
adjustments that a separate sub-routine was written to accommodate the 
problem. So the metal parts furnace has provided us the extreme example 
of diversion from the general rule. 

The heart of the program begins in steps k  and 5 of the flow chart 
(Figure 2). A combination of rate multiples is selected and all costs for 
the tailored, scaled-up system and its operation to completion are found 
in the loop from step 5 through step 10. The tailored basic costs found 
in step 3 are now subjected to revision in step 6 so they will correspond 
to the rate multiple combination as follows: 

Generally, 

B. From step 3 each category associated with each building block is 
examined to determine whether or not it requires that building block (a 
zero factor indicates no need). 
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b. Now the rate multiples associated only with those categories requiring 
a building block are examines to find the largest. 

c. This largest required multiple is applied to that basic cost found in 
step 3 of the flow chart in one of the following three ways: 

1. Unchanged or fixed (cost is independent of rate). 

2. Linear (the largest required multiple is simply multiplied by the 
step 3 basic cost). 

3. Exponential (cost change with rate less sensitive than with linear- 
largest required multiple is raised to some i'jwer between 0 & 1 and then 
multiplied by step 3 basic cost. 

So returning to East Pigeontoe we can find the final cost of, say, BB#22 
using one of the 192 rate combinations, say, (k,  0, 3» 8). 

a. Vie first note that it follows the general rule; the basic data supplies 
that information to the program. 

b. Then, from the basic dat/i, we find that only categories A, B, 4 C 
require BB#22, i.e., bulk items, Category D, do not require it, and the 
combination of required rate multiples becomes {k,  0, 3» 0)« 

c. Now the maximum of the required rate multiples is isolated; MAX 
(fc. 0, 3, 0) = k. 

d. From the basic data the factors again for the required multiples 
only are summed; .? * 0 + .3 + 0 = .8. 

e. This factor is applied to the CAMDS cost and the basic system cost 
peculiar to East Pigeontoe is $15^K; (#193K) (.8) = $15^K. 

f. Finally, the basic data supplies the information that BB#22 is to 
be scaled exponentially with an exponent of .6. So, maximum required rate 
multiple found in c. above is raised to the .6 power, and the result is 
applied to the basic East Pigeontoe BB#22 cost for the final cost; (U)-° 
(15k)  = $355K. 

All building block costs which follow the general rule are found in this 
fashion. Some follow the rule with slight modifications and a few such as 
the Metal Parts Furnance discussed earlier, require a vastly different method. 

The other elements of acquisition cost is Engineering Support. Engineering 
Support costs were estimated for each building block in a way similar to, but 
less complicated than for the hardware. 

101 

►».- 



Moving on to step 7 of the flow chart (Figure 2), the second and final 
major cost element is found. The cost of operations is primarily the cost 
of the labor force required. The si-'e of the labor force is determined by 
beginning with engineering estimates of the total number required to operate 
a basic (GAMES) plant for each munition type. 

A stands. :& engineering practice used to scale up production is to fracture 
the total staff required for a known or basic system into components similar 
to the way building blocks costs were treated, i.e., fixed, linear, and 
exponential portions. 

Fi - fixed number (independent of rate) 
Li - linear portion 
Ei - exponential portion 

The three components are then subjected to the appropriate rate multiple, 
Mi> and summed to give the revised total for a munition being processed at a 
specific rate. 

Ti = 1.1 (Fi + (Li) (Mi) + (Ei) (Mi) *6) 

The result is a total staff, Ti, to operate the plant on a four shift/day, 
5 day/week, basis for munition type i at rate multiple, Mi- A 10$ factor is 
included to provide for scheduled and unscheduled absences such as leave, 
sickness, etc. A further refinement was necessary to provide a weekend 
non-operating staff. An estimated 1+7 positions are required for these two 
dayj - this number is independent of disposal rate. That is equivalent to 
19 men working a 5-day week. However, because of scheduling problems which 
occur it was decided to add 25 positions. 

Ti = Ti + 25 

Now that we have the size of the staff, 
separate activities; 

the cost of labor is found in two 

First, the cost of the actual operation of the plant at site j is found 
by examining each munition type i. 

1. Actual Demil/Disposal Process Munition i at site ^ 

Cij = ^° Vwj (1-25 1^) 
"  5RiMi 

where, 
cij " total disposal cost associated with munition i 

at j. 
kO   - number of working hours/employee/week. 
T^' - staff required for munition i at the disposal 

rate for the category of munition i. 
W« average hourly wage rate at site j. 
1.25- provides for 25$ unscheduled downtime. 
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Iji - the inventory of munition i at site j. 
5  - number of operating days/week. 
% - the basic disposal rate (items/day) for munition 

type i. 
Mi - the rate multiple being considered for the category 

containing munition type i. 

The total labor cost for operations at site j, then, is simply the sum of 
costs for each munition type. 

1=1 

where, 
NJ is the number of different munition types at site j. 

The second element of labor cost occurs during the changeover process 
when the facility has completed operation on one type and must prepare for 
the next - a period of 2, 3> or k weeks depending upon the two munition types 
involved in changeover m. For N munition types there are N-l changeovers. 
The cost of labor, then, for changeover m at site j is shown by this expression. 

2. Changeover labor cost 

for changeover m: 

m = 1, 2, •••, N-l 
"tjjj = time in weeks for changeover between munition types i 

and i + 1. 
TJH' = larger of staffs Tj* & T^ + x 

Summing over m gives the total cost of all changeovers at site j. 

N-l 
K« - 5" k 

Finally summing the operations and changeovev labor totals gives the total 
labor cost. 

Total Labor Cost at Site j = Cj + K. 

Similar procedures were used to get costs for materials and utilities 
and the depot storage costs. The final operations cost element is for 
replacement parts - this was estimated by ttking a percentage of the total 
hardware cost as an annual replacement parts rate. 
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Finally in step 8 of the flow chart (Figure 2) we sum the acquisition and 
operations costs to get a total cost for one specific combination of rate 
multiples. 

It is then ranked among the ten löwe* t cost rate combinations or rejected 
as higher "than the tenth lowest in step 9» 

The looping (steps 5 through 10) terminates when the final rate combination 
has been examined and the results can be printed in various detail using write 
options provided. 

Step 12 provides for stacking as many cases (sites) as needed. 

No results will be provided here, however, we will state that the program 
was used to perform limited sensitivity analysis on the basic building block 
costs and basic engineering support costs; also on average wage rates and 
replacement parts percentage. This proved useful not only in assessing their 
effect on total cost but also the optimum rate combination. 

A second program, written by Mr. Philip Robinson, p ovided results 
necessary in the phase III analysis mentioned previously; the relocation of 
the munitions to one or more of*the 9 sites. A preliminary decision was made 
to consider just 1, 2, or 3 predetermined disposal sites and the remaining 
8, 7> or 6 respectively would then contribute their stocks to the disposal 
site(s) and become "feeder" sites. A matrix of transportation costs for 
shipping all munitions from each feeder site to each disposal site was 
developed and used to get a total shipping cost for any distribution of the 
feeder sites to the disposal sites. There was no attempt made to divide the 
stock at one feeder site and send the parts to more than one disposal site. 
Optimizing the rate multiples for the single site case was a simple matter 
of combining all the inventories of the 9 sites, and subjecting this total to 
the optimization program. However, for the 2 and 3 disposal site cases, 
there are respectively, 128 and 729 ways to distribute the feeder sites to 
the disposal sites. For each of these combinations an optimization of rates 
was necessary. Mr. Robinson's program uses the first program with several 
required modifications to optimize the rates, then calculate the transportation 
costs, ranks that feeder site combination for lowest cost, establishes another 
feeder site combination and continues until all combinations have been examined 
and compared for lowest cost. It prints the five lowest cost configurations, 
the optimum rate multiples, and transportation costs broken down for each 
disposal site. 

Finally, it should be pointed out that the more standard O.R. techniques 
for optimization such as mathematical programming and network models were 
investigated for applicability before developing this specific model. 

ihe models discussed were developed to support an economic analysis 
of alternative chemical disposal options based on the assumption that all 
existing toxic stockpiles would be demilitarized over an extended period 
of time. It is expected that the analysis will be updated periodically 
as better cost estimates are available and studies relative to stockpile 
retention are completed. This ^aper was presented to illustrate a use 
of computerized methods in cost estimating and cost analysis. 
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FORECAST OF SCHEDULE/COST STATUS UTILIZING 

COST PERFORMANCE REPORTS OF THE COST/SCHEDULE CONTROL 

SYSTEMS CRITERIA: A BAYESIAN APPROACH 

M. ZaKi Fi-Sabban 
Directorate for Pl&rts and Analysis System Analysis Division 

U. S. Army Aviation Systems Command 
St. Louis, Missouri 

ABSTRACT 

This report presents a Bayesian approach to a forecasting technique 
useful in projecting the future cost and schedule OT work breakdown 
structure (WBS) items in Department of Defense contracts. The technique 
utilizes the data supplied in the cost performance reports (CPR) of the 
cost/schedule control systems criteria (C/SCSC). The forecast data 
are invaluable to the project manager supervising the contract, who 
might thereby avert costly schedule/cost program overruns. The advantages 
of this method are discussed in the present report and a solved example 
is hereby given. 

FOREWORD 

The present study was initiated by Mr. John W. Hoi I is. Chief, 
Systems Analysis Division, whose continued interest throughout this 
work is hereby acknowladged. 

This is Technical Report 73-1 of the U. S. Army Gystem CommanC 
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I.  INTRODUCTION 

The adoption of the Laird-Packard principle of closer ties with 
the contractor and more efficient supervision of the project operation 
throughout the life of the contract, created a new concept - that of 
establishing standards or criteria which enunciate the capabilities 
of a good cost/schedule management system, but leave the details of 
how to achieve these capabilities to the contractor. These standards 
are known as the cost/schedule control systems criteria (C/SCSC) and 
are contained in the Department of Defense Instruction 7000.2 
(DODI 7000.2) . Generally, the C/SCSC require that the contractor's 
activities be integrated and performed in a formal, disciplined 
fashion, which will allow a follow-up of his contractual progress. 
The contractor is also required to periodically provide the program 
manager with work breakdown structure (WBS) summary data that allows 
assessing the contractual adherence to the approved cost and 
schedule plan of action for each of the items in the WBS, especially 
the cost and schedule of the project at completion. The cost 
performance report (CPR), furnished about once a month by the 
contractor for this purpose, relates the costs incurred to date to 
the budgeted cost of the work actually performed, as well as to that 
of the work originally scheduled. Variance of the cost and schedule 
of each item from those originally planned, are also reported. The 
data reported in the CPR are very valuable to the project manager 
because it keeps him updated about the progress of the contract. 
What is more important, however, is to be able to use these data to 
gain insight in the future status of the program.  Stated otherwise, 
the project manager needs a forecasting tool. Such tool would enable 
him to predict cost/schedule problem areas that might require his 
immediate attention. Such vital information might be so valuable as 
to make it possible to avert costly schedule/cost program overruns. 
There are several possible forecasting techniques. Of these, two 
familiar ones are the discounted least squares technique and the 
time series. The former technique would involve extrapolation of 
the least squares equation, far beyond tha available data range, a very 
risky procedure that might well lead to erroneous conclusions.  The 
time series method is technically superior and dependable but much 
more elaborate. 

The continuous influx of the monthly status reports (CPR) 
prompted the investigation of the Bayesian sta istical approach, 

1 
Department of Defense Instruction DODI 7000.2, as Appendix E to 
Army Regualtion AR37-200, August 1968. 
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which calculates a posterior probability from an assumed prior 
probability. The present developed Bayes technique forecasts the 
expected cost/schedule at a future point in terms of the current data, 
as well as the variances to those forecast values. 
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II.  METHODOLOGY 

Bayes' theorem states that2: 

P( e\0o)    « 

o« 

p(fl) P(flplg: 
P(60) 

P(tf)p(6Ll0> 

(since P ( $Q )     is independent of $  and equals Jp tölpl^lfl) d0 ) 
P 16 | 6^)1 is the posterior pdf for the parameter vector $   , given the 
sample information 0O ; p ( $ )   is the prior pdf, for the parameter 
vector 0 ; and P(6L|0) » viewed as a function of $   is the likelihood 
function. The following is a possible manipulation of Bayes' theorem to 
apply tc the C/SCSC problem: 

Assume that an item cost/schedule at some point "o" along the project 
be normally distributed with mean (i   and variance <r0

2  . If the 
estimated cost/schedule at this «oint *s **o  » then the likelihood 
function is 

P(Jfclp) =—J   exp  -1 -       (MQ-IM2 

\G*\ "o 

Now we need to know the prior pdf for the parameter H   .  Let 
the estimated cost/schedule value of the same item at an earlier 
point "a" along the project be Ha   , where P0 = c(i'a     

Let Ma 
be the actual value of the cost/schedule of the item at this point as 
reported in the cost performance report (CPR). Now, we can reasonably 
construct the prior distribution for the parameter \L    , by assuming 
that it is a normal distribution with an expected value cf c(ta   , 
and a standard deviation of COL,        , where o_ is the standard deviation 
of the item distribution at point "o". Such distribution will thus have 

2 
Zellner, Arnold, An Introduction to Bayesian Inference in Econometrics, 
John Wiley & Sons, Inc., N. Y. 1971. 
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the form: 

v/TirOLC L   2C  oi J V2«raac »-   ««■ w
a 

prior pdf of H 

Combining this prior pdf with the likelihood function, the 
posterior pdf for the parameter   p becomes: 

P<M| Mo)  oc     P(MolM)  P(M) 

oc   exp[ i-j-  (fi-l^)2 i-r(M-M0)
a 

oC   exP [-i(^'-«'»',+ ^-"'-''.',|] 

After some manipulation of the right hand side, we get: 

P(M|»V oc exp 
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which shows that ft is normally distributed, a posteriori, with mean: 

ao +c °a 

and variance: 

<V+c2aa
2 

Note that the posterior mean and posterior variance could be 
written in the  forms: 

E(M)=    cfla0o2+lioc2aa7 c^a(cq,)   +M0(a0) ' 
Ob2+c2aa

2 (co^)-2+(a0)-
2 

and 

*o2 + c2ca
2  -   (caar

2+(a0)-
2 

which shows that the posterior mean is a weighted average of the prior 
mean c fia     and the sample mean M0. with weights being the reciprocals 
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of(coa)*      and    a*  respectively.    Ifvelet(cffa)    = ha 
and 

'o 
a'2 = hB then: 

and: 

v<""" XT* 

hQ and hfl being the corresponding precision parameters. Hence 
the precision parameter associated with the posterior mean is just 

I V(M) I =■ h + ^ > tne 8um °^ tne Pri°r an<* sample precision parameters. 
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III.  DISCUSSION 

This Bayesian approach to the problem of forecasting the cost and 
schedule of items involved in a Department of Defense contract, is 
simple and convenient. 

Two main assumptions have been made during the course of development 
of this method:  (1) that the cost and schedule at any point along the 
path of the project are normally distributed. Though not the most 
realistic, normal distributions are considered a fair approximation and 
are usually adopted for mathematical convenience; (2) that the prior 
distribution at point "o" has mean Cpa    and standard deviation caa      , 
c being the ratio between the planned cost/schedule at points "o" and 
"a", respectively. This is tantamount to assuming that the expected 
value of the cost/schedule at a particular point along the path of the 
project would relate proportionally with respect to the position of this 
point on the path.  Such assumption is reasonable and logical. 

To apply the formulas developed by the present method, it is needed 
to assign values to the standard deviations Oa   and a0     . Fair estimates 
of these v «J quantities may be obtained by one of two methods: 
(1) subjective estimates through personnel that are know]«"'^eable 
about the particular contract;  (2) using the cost/scheduL.   ;iances 
reported in earlier cost performance reports (CPR), which ;  indicative 
of the dispersion, e.g., assuming they loosely follow a nor   distribu- 
tion, then calculating a   in the usual manner. 

The advantages of this Bayesian Scheme are:  (1) easy closed 
formulas are used, which can readily be handled with a desk calculator; 
(2) the formulas are equally valid at any point along the path of the 
program, with no extrapolation involved;  (3) updating the forecast 
does not require a new elaborate smoothing or reiterative process, 
only a reapplication of the formulas by substituting the new data; 
(4) this is the only plausible method to use in the very early stage 
of the life of the contract, since then available information is too 
scanty for any other method to apply meaningfully. 
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APPENDIX: EXAMPLE 

The adjoining table presents an actual contract cost performance 
report (CPR) of a particular item. The Bayesian Statistical tech- 
nique will be used to forecast the cost at project completion of this 
item, projected from these reported data. For cost forecast, we 
need the following quantities: (1) Budgeted cost of work performed 
(BCWP), reported in column 8 in CPR; (2) Actual cost of work performed 
(ACWP) reported in column 9;  (3) Budgeted cost at completion reported 
in column 12. The ACWP is pa , and the bugeted cost at completion is 
P0 . The quantity c is  M0/BCWP and the estimated values of O  are, 
OQ« 0.1 Ma   and  <%= 0-05 MQ . Substituting the values of \ta    « 

2416.0, H0  - 6716.6, aa  -241.60, a0  »335.83, and c » 6716.6/2204.1 - 
3.047. Hence: 

E(»)- ««yyjv 
V+ c °a 

(3.047)(2416.0)(335.83)2K6716.6)(3 ^47)2(241.60)2 

(335.83)2+(3.047)2(241.60)2 

- 6827.70  (in $1000) 

and the statistical variance is 

V(<*)=C!°b2?ra2* -   93353.61 

O = ( V f2=   305.5  (in $1000) 
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Therefore, based on the CPR reported data at point "o"of the 
project, the expected cost at completion, point "o", is $6,827,700, 

with a standard deviation of $305,500. 

A similar procedure would be applied to the schedule problem. 
In this case, u,- 2,204.1, viz. the entry in column 8, whereas 
u0 will renain the same, i.e., 6716.6 of column 12, and 

l/c « 2,286.4/6716.6, where the numerator is the entry in column 7. 
A value for <fe will have to be estimated, and calculations will 

proceed as before. 
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COMPUTER GRAPHICS APPLIED TO 

TEACHING OF MATH PRINCIPLES AT USMA. 

CPT Arthur G. Bonifas 
Department of Mathematics 

United States Military Academy 
West Point, Hew York 

ABSTRACT.   This paper discusses the expanding role of computer graphics 

in teachinq mathematical principles at USMA.    Considered are the effects of 

the computer support facilities and the CAD-E (Computer Aided Design-Engineering) 

seminar held annually at West Point, New York.   A computer graphics demon- 

stration called IFUL which was developed for use in CAD-E, July 1973 by this 

author is covered in detail.    IFUL stands for Integral as a Function of its 

Upper Limit and shows graphically the limiting process of the derivative, 

lim I(x+h)'- I(x) 

where h-0 h 

Kx) = £XF(t)dt , 

thus demonstrating graphically that I*(x) = F(x). It also uses this process 

to convey an idea of the relative accuracy of the rectangle, trapezium and 

Simpson's methods of approximating the integral. In the program, the accuracy 

is compared numerically and graphically. Also, a videotape is discussed 

which demonstrates the concept of the definite integral as area under a curve. 

1. INTRODUCTION. The method of teaching mathematics at the United 

States Military Academy still bears a strong resemblance to the method used 

in 1802, when the Military Academy first began. The cadets attend their math 

classes in small sections of from 12 to 16 students with the emphasis placed 

on daily student participation. They attend class six mornings a week for 75 

minutes and receive a grade alsmost daily. The subject matter is treated as 

a self-study course wi*h the student preparing each lesson the night before 

and the instructor emphasizing important points and answering questions in 

class. 

Preceding page blank 
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Standing in a typical cadet classroom, the only visible training 

aid in days gone by would have been wall-to-wall blackboards. Here is 

whi- .. the resemblance ends. Today, in addition to hand-powered chalk, 

we have elcctron-po ^rcd color television sets in every classroom. With 

this modern day "window" a n:w dimension has been brc• ~'nt into th; 

traditional West Point mathematics class. The technology of timesharing 

computer graphics is one of the latest areas in which the Military 

Academy has attempted to be on the cutting edge of technological develop- 

ment and application to the educational process. Computer graphics allows 

massive arithmetic calculations to be transformed into simple picture form 

for quick theoretical analysis by the student and instructor. These 

abstract principles can actually be observed in action on the screen. 

2. VIDEOTAPE 1, (IFUL). The first project to be worked on was a 

videotape tieir.g together the geometrical and analytical interpretations 

of the derivative. We needed a program that would graphically portray 

taking the derivative of a function. If this function happened to be a 

definite integral, then we would also have the capability to demonstrate 

that the derivative of a definite integral is the function under the 

integral or in other words the integral is a function of its upper limit. 

2.1 PRINCIPLES. First the videotape illustrates the math principle 

involved: 

Let F(x) - x2 , then G(x) » ~  . 

x        x 
Kx) - 1 F(t)dt - j t2dt - G(x) - G(a) 

fit Ä 

Show that I'00 - F(x) 

vix)  = li» Ifr + h) - IQQ 
h-»0       h 

» llm [G(x + h).- C(a)1 - [GQ0 - G(a)l 
h-0 h 

m  lim G(x + h) - GQ0 + G(a) - G(y) 
* h-0 1> 

.lim G(x + h) - GOO ,G,(x) -F(x) 
ti-»v       n 
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Next the cadet: sees the geometrical interpretation of the slope 

of the secant becoming the slope of the tangent line as h in the difference 

ratio, 
G(x + h) - G(x) 

, goes to zero. 

In order to demonstrate this process graphically, 

G(x ±  h) ■ G(x) 
h 

is calculated with h fixed as x assumes successive values. See FIG 1. 

This gives us curve #1. h is then decreased to a smaller constant value 

and curve #2 is plotted as x varies, h is decreased five times and five 

curves are plotted. The last one is seen to converge on the solid curve 

which is a plot of F(x) ■ x2. This demonstration is used to generate a 

discussion of the limiting process of the definition of the derivative 

in addition to the concept of the integral as a function of its upper limit. 

2.2 APPROXIMATIONS. As this program was being written it was noted 

that with a slight modification we could demonstrate the relative accuracy 

of integral approximation methods.  Instead of using the antiderivative 

method to calculate I(x), we could use rectangle, trapezoid, or parabola 

(Simpson's) summation methods. See FIG 2. Thus a visual comparison of 

the four methods' success in placing the final dotted curve close to the 

function curve is shown. See FIG 3. 

2.3 COMPARISONS.  In numerical analysis, however, we're never happy 

unless we have some numbers to analyze. We needed a numerical measure of 

the closeness of the final dotted curve to the function curve.  If this 

measL—■ of absolute error is calculated uniformly for each of the four 

methods of evaluating the integral, we should be able to compare them. 

ERR= gives this calculation for each method and it is simply the sum of 

the distances between the final dotted curve and the solid function 

curve at each value of x. Notice the values in FIG 3. To make the 

comparison even easier to interpret, these individual absolute error 

distances are plotted on one set of axes called ERRPLOT.  See FIG 4. 

These final additions made the program general enough that it could 

also be used fcr more advanced study ir*  courses such as the numerical 
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arviljjis rlocri-o.  VI the variables In the program can be changed 

including the function. Thus as summation partitions are increased, the 

student can see the last dotted curve draw closer to the solid function 

curve and ehe absolute error value decrease. 

3. VIDEOTAPE 2 (TVTEK). Another videotape was produced to clarify 

one of the central concepts of integral calculus, the definite integral 

as area under a curve. The computer plots a function. Then 

it draws the N number of rectangles representing upper and lower Reimann 

sums and calculates their respective areas. As N increases, the upper sum 

decreases and the lower sum increases, until it is obvious to the student 

that the actual value of the area beneath the curve is bounded by 

them. See FIGS 5, 6, 7. Thus the role that limiting theory plays in the 

development of the definite integral as area is clarified. 

Computer graphics programs such as these have been found to be 

extremely helpful in maintaining a high level of academic interest in the 

lower sections of the basic math courses as well as being a departure 

point for more advanced sections. 

4. CAD-E, We are fortunate at the Academy to have faculty interest 

and the haruware and software to support an effective computer graphics 

program. Annually USMA hosts the Computer Aided Design-Engineering 

Seminar for attendees from Army Material Command Installations around 

the country. They are familiarized with the graphics system and participate 

•in the use of computer programs written by instructors of the various 

academic departments. The development of these programs provides a 

demonstration of the capabilities of graphics to the seminar members and 

also contributes an effective teaching tool in the form of a completed 

program to the academic department supplying the instructor. Both of 

the programs we discussed were written.by instructors while working with 

CAD-E. 

5. HARDWARE. The computer graphics hardware available at the 

Military Academy is extensive and varied. The CPU is a HoneywellH635 

with 160K core. The peripherals consist of: 

GE Terminet 300 - typewriter terminal 
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Datapoint 3300 - CRT interactive terminal plus TSP 212 - flatbed 

plotter 

I^kcrouix HG/0 - graphics terminal with hard copy unit 

Computek 400/15 terminal with a Computek CT50 Graphical Tablet 

Imlac PDS-1 - graphics terminal 

6. SOFTWARE.  In the area of software, we have the USMA-developed 

GCS, Graphics Compatibility System, which is a FORTRAN-based graphic system 

of subroutines designed for interactive use on a wide variety of terminals. 

Terminal compatibility is attained because the user need no longer be 

concerned about the problems of "tailoring" his program for a given graph- 

ical device. User compatibility is attained because Individuals who would 

normally dismiss graphics for their particular, application are provided 

with simple "black box" preset default options, but at the same time 

more sophisticated users can set tliese options themselves such as rectangular 

to polar coordinates, windowing, etc. 

7. PRODUCTION. To assist us in getting our computer graphics programs 

into a usable form, the Instruction Support Division at the Military 

Academy has a fully operational color television studio, control room and 

distribution center. Currently we have two graphics videotapes which can 

be aired in all math classrooms simultaneously at the appropriate course 

lesson. Also for additional instruction and individual viewing, a copy of 

each videotape is kept in the Mathematics Library for viewing over a Sony 

videocassette playback unit. 

8. CONCLUSION. So far the investment of time, manpower and materials 

in producing these computer graphics programs has paid dividends in the 

classroom. Acceptance by the cadets and instructors has been excellent 

and plans have been made to create programs for the demonstration of 

other .nath topics such as series and projectile motion.  See FIGS 8, 9. 
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INTEGRAL ATROTIMATIOH METHODS 
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(2) Rectangle summation aethod - where 

<*a ic=»l        K 
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I(x) - £ F(t)dt «   ^ck?   F(xk)  +^r (F(xo)   - F(xn)) 

(4) Parabola summation method (Simpson's Rule)   - where 

I(x) " £ F(t)dt   » ^Ax(F(xx) +F(x3) +...+F(xQ_1)) 

+ /SAX(F(XB)  +F(X4) +...+F(xn_2)) +—(F(xo)  +F(xn)) 
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ON THE NUMERICAL CONVERGENCE OF MATRIX EIGENVALUE 
PROBLEMS DUE TO CONSTRAINT CONDITIONS 

Julian J. Wu 
Benet Weapons Laboratory 

Watervliet Arsenal 
Watervliet, New York 12189 

ABSTRACT. In the structural analysis of vibrations and stability, the 
finite element formulations lead to matrix eigenvalue problems. The con- 
vergence of the solutions to these problems of linear elasticity has been 
established for coordinate functions which satisfy all_ given boundary condi- 
tions. This paper 1s concerned with a numerical convergence study due to 
approximations of the natural boundary condition. Since it is well known 
that all boundary conditions can be transformed into natural boundary 
conditions, this study also Includes the effect due to approximations to 
"geometric boundary conditions." 

Recently, the adjoint variatlonal technique has been introduced for the 
study of dynamic stability due to nonconservatlve forces. The theoretical 
basis of convergence has yet to be established. A numerical study of solu- 
tion convergence of some of these problems is also given in this paper. 

1. INTRODUCTION. In obtaining approximate solutions for structural 
vibrations and stability problems, variational methods are often used. This 
approach usually involves three steps: 

a. The establishment of a variational principle associated with a 
given boundary value problem — the differential equation and the boundary 
conditions. 

b. The selection of a class of functions with undetermined 
coefficients (the coordinate functions), from which the approximation 
to the actual solution 1s to be picked. 

c. Carrying out the extremization procedures so that the 
approximation is obtained. 

The class of coordinate functions are sometimes called admissible 
functions. Strictly admissible functions satisfy all the boundary condi- 
tions, while broadly admissible functions satisfy only the geometric 
boundary conditions. For the sake of completeness, we recall that the 
geometric (or imposed) boundary conditions are those imposed on the 
variations of-field variables; and the natural boundary conditions are 
due to the arbitrariness of the variations as results of the associated 
variational principles. 

The selection of admissible functions 1s expected to have Important 
effects on the convergence of the approximations and this study intends 
to evaluate such effects in numerical terms and in conjunction with the 
finite element analysis. 

Preceding page blank 
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The finite element method can be viewed as a Rayleigh-Ritz type of 
approximation using piecewise analytic coordinate functions. It is well 
established that its procedure will converge for problems of linear elas- 
ticity [1]. In using the Ritz method with analytic functions over the 
entire region of the problem, it is also known that broadly admissible 
functions will converge [2], Then it is conceivable that the broadl} 
admissible piecewise analytic functions used in tha finite element 
analysis will also lead to convergence. 

Furthermore, it has been shown in the literature that, through a 
limiting process, geometric boundary conditions can be transformed 
into natural boundary conditions [3J. Hence, in doing so, the class 
of admissible functions can be further broadened to include functions 
which do not satisfy any boundary conditions —we shall refer to this 
class of functions as the unconstrained field variables. 

Thus, in more specific terms, the purpose of this investigation 
1s to study the effects on the rate of convergence vlien the different 
classes of admls ble functions are used. 

# 
The importance of this information can be seen in two aspects. 

First, the rate of convergence has direct bearing on the computer 
time used. The best choice of admissible functions thus implies the 
optimal use of computers. 

Secondly, it is generally laborious to find strictly, or even 
broadly admissible functions. This »extra work must be justified 
by the economy of computer time saved if there should be any savings 
at all. 

2. STATEMENT OF THE PROBLEM. We shall consider a cantilevered 
column subject to a concentrated force as shown in Figure 1. The dif- 
ferential equation is 

EIuIV + P u" + PA ü = 0 (1) 

where 

A, I = area, second moment of the cross section 
p, E = mass per unit length, Young's modulus of the material 

P = the concentrated force applied at the free end 
u = lateral deflection of the column. 

A prime (') or a roman numerial denotes a differentiation with respect to 
the spatial coordinates x, and a dot (•) denotes a differentiation with 
respect to time t. 
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The boundary conditions at the fixed end are 

u(0) = u'(0) = 0. (2) 

At the free end, two different sets of boundary conditions will be 
considered: 

and 

El u"'(l) + P u(l) = 0 

u"(1) = 0 

u'"(l) = u"(l) = 0. 

(3) 

(4) 

Equations (3) pertain to the case of a force with constant direction 
parallel to the undeformed axis of the column, and equation (4), to that 
with a follower force which remains tangential to the column at the free 
end. These two sets of boundary conditions result in two quite different 
boundary value problems —one associated with a self adjoint system, the 
other, with a nonself-adjoint system. 

Using dimensionless variables, it is easy to see that the two problems 
can be written as the following: 

Problem I (Self-adjoint) 

.IV D.E. 

B.C. 

u-" + Q u" -xu = 0 

u(0) = u'(0) = 0 (imposed) 

u"(l) = u"'(l) + Q u(l) = 0  (natural) 

(5) 

(6) 

(7) 

Problem II (Monself-adjoint) 

D.E.     uIV + Q u" -xu   =   0 (8) 

u(0) = u'(0)   =   0 
B C 

u"(l) = u'"(l)   =   0 

(imposed) 

(natural) (10) 

Pi 
where Q = — is the dimensionless load parameter. Since we are seeking 

solutions periodic in time, ii is replaced by -xu without loss of generality. 
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The imposed boundary conditions of equations (6) or (9) can be 
transformed Into natural boundary conditions as the following: 

11m 
[u"'(0) + k-,u(0)3 = 0 

(11) 

Tin, 
[u"(0) + k2u'(0)] = 0 

We shall write down the variational principles associated with the 
above mentioned boundary value problems. They are the basis of our 
finite element analysis. 

In association with equations (5), (6) and (7), 

60-, = 0 

1 1 
w,        l  ! W)2 - Q(u')2 - xu2]dx. 1        2   0 

With equations (5), (11) and (7), we have 

602   =   0 

02   "   \  I   [u")2-Q(u')2 - xu
2]dx 

+ kl [u(0)]2 + k2[u'(0)]2. 

With equations (8), (9) and (10), we have 

6J*   =   0 
6 1 

J,   =   J   (u'V - q uV - xuv)dx 
6        0 

+ Qu'(l)v(l). 

And with equations (8), (11) and (10), we have 

604 = 0 
H    1 

0/. • J (u"v" - QuV - xuv)dx 
0 
+ Qu'(l)v(l),+ k!u(0)v(0) + k2H'(0)^COO) 

where v is the adjoint field variable. 

(12) 

(13) 

(14) 

(15) 
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Using the finite element method, this Investigation Intends to compare 
the rate of numerical convergence among the following cases: 

A. When the coordinate functions satisfy all the boundary conditions 
(equations (6), (7) and (12) for Problem I and equations (9), (10) and (14) 
for Problem II). 

B. When the coordinate functions satisfy only the geometric (Imposed) 
boundary conditions (equations (7) and (12) for Problem I and equations (10) 
and (14) for Problem II). 

C. When coordinate functions do not satisfy any boundary conditions 
(equation (13) for Problem I and equation (15) for Problem II). 

3. FINITE ELEMENT FORMULATIONS. For the finite element analysis, the 
column in question Is divided into several segments (elements) as shown in 
Figure 1(D). Only an outline of this formulation will be given here to 
Introduce some terminology. The details have been provided in a previous 
paper [4]. 

Let us consider Case A of Problem I described in the previous section: 
a self-adjoint problem with all boundary conditions satisfied. In discrete 
system, the variation*,  rinciple takes the following form: 

6^ = 0 (16) 

and 

Jl ■ Ä Ji1} (17) 

j{*>. I/1 [LV1,,,)2-QL(Mti),)2-^(ut1))2]de, (18) 
1    2 o L 

where L is the number of elements, 

e ■ L (x - M.) (19) 

u(i)   =   aT(?) uW (20) 

aTU) ■ {aTU)   a2(0   ^U)   a4(0> 

= (1-3c2+253  5-2«a+53  3c2-2s3  -52+C3}     (21) 

UWTMÜJ1) U^) UW Uj1)}, (22) 

and a superscript T denotes the transpose of a matrix. 
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Introducing the following matrices: 

A   =   J1 a(0 aT(C)dC 
K        0 

B   =   J1 a'(Oa,T(Od« 
0 

C   =   J1 a" (5) a"T(c)d£. 
0 

Equation (18) can be written as, 

where 

j/^luOJ^-QLB^ A 

k = L3C - QL B + ^- A 

AHld) 

is the "element stiffness matrix". 

Applying equation (16) and using the continuity requirement, 

ud-i) . up 

M(1-D S „(1) u4     u2 
1  —  I }Lf » • t }L» 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

We can arrive at the following equation 

6U1 K U = 0 

where 

UT = (U 

(29) 

^Uf U<2>U<2> uM)uM)}    (30) 

P 

and K Is obtained by assembling k properly. 

It 1s Important to note here that 1n obtaining equation (29), boundary 
conditions, (equations (6) and {7)\, also have been applied, since the 
coordinate functions are required to satisfy constraint conditions. These 
conditions can be written as: 
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u'1' = 0 

4» = 0 

3U<L> ♦ U<L> - 3U3  + 2uJL) = 0 

2U«
L) ♦ U<L> - (I - f) ^ ♦ U<L> 

(31) 

= 0. 

The process of using equations (31) in obtaining equation (29) can be 
quite complicated» especially for the case of nonself-adjoint problems. 
This constitutes one advantage when the unconstrained field variables 
are used with the proper varlational principles. 

Since 6U in equation (29) is now arbitrary, we have the matrix 
eigenvalue equation 

K(ui2)U = 0. (32) 

Equation (32) will be used for the eigenvalue calculations. Similar 
procedures will also lead to equations as equation (32) for other 
cases. 

4. CONVERGENCE DATA AND DISCUSSIONS. The data obtained in this 
study are from a computer system IBM 360, Model 44 and the associated 
Operating System. 

Problem I- Free Vibrations of a Cantilevered Column (Figure 1(A)) 
A Self-Adjoint Problem. 

In Tables 1 through 3, approximate eigenvalues are given for the first 
six modes of vibrations and with the number of elements used increasing 
from two (2) to eight (8). The percentage of error compared with the exact 
values are given in parentheses. In Table 1, results are for the case when 
all constraint conditions are satisfied. Tables 2 and 3 are for the cases 
when the geometric conditions only are satisfied, and, when none of the 
boundary conditions are satisfied, respectively. 

A close examination of these results shows clearly that for the free 
vibrations of a cantilevered column, the frequencies can most efficiently 
be obtained by using the unconstrained field variables in conjunction with 
a properly chosen varlational principle. This means: although the 
coordinate functions need not satisfy any_ constraint conditions, the 
"energy" terms contributed by these constraints must be included in the 
variational statement. 
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As Indicated in the previous section, the selection of a class of 
coordinate functions which satisfy the natural boundary conditions can 
be a complicated task. This additional labor must be justified by 
savings 1n computer time. However, results in Tables 1 and 2 show 
that this requirement actually Impede the rate of convergence of the 
eigenvalue calculations. The effect due to the requirements on the 
geometric boundary conditions is not so pronounced as can be seen in 
Tables 2 and 3. These results have demonstrated, nevertheless, that 
such requirements are unnecessary to obtain better convergent 
solutions. 

Problem II. A Cantilevered Column Under a Concentrated Load 

With Fixed Direction (Euler's Column, Figure 1(B)) 
A Self-Adjoint Problem. 

Here the critical load 1s obtained for Euler's problem using the 
dynamic method. In Figure 2, results are shown for the approximations 
using three (3) elements. Again, better approximation to the exact 
value of the critical load (Q//= 0.250) is given by using the uncon- 
strained coordinate functions (Q/nZ = 0.251); the error is less than 
one percent. When the coordinate functions satisfy all the constraint 
conditions, three elements approximation gives a solution (Q/n2 = 0.265) 
which 1s about six percent in error. Same conclusion holds when five 
elements are used. This is shown in Figure 3. The solid curve in 
Figure 3 coincides quite well with the exact solution curve. 

Problem III. A Cantilevered Column Under a Concentrated Follower 
Force at the Free End (Beck's Problem, Figure 1(C)) - 
A Nonself-Adjoint Problem. 

Since this is a nonself-adjoint problem, coordinate functions for the 
adjoint problem must be included in the formulations. Consequently, the 
task to satisfy the constraint conditions 1s twice more complicated. Once 
again as shown in Figure' 4 and 5, better rate of convergence is achieved 
by the use of the unconstrained coordinate functions. 
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(0.755) 

61.911 
(0.340) 

61.K2 
(0.164) 

0.79 
(0.0S4) 

61.734 

(0.053) 

0.701 

211.09 

(10.374: 

140.0 
(11.310: 

122.0 
(1.423) 

122.29 
(1.141) 

121.0 
(0.612) 

121.35 

(0.30) 

121.17 

(0.213) 

120.91 

2(23.2 
(1212.6: 

2(4.0 
(32.4091 

221.» 
(14.100 

202,0 
(1.551) 

20.71 
(1.40) 

201.70 

(0.9«) 

20.0 
(0.5«) 

1«.« 

7*ja. 
(2*01.1 

527.70 
(71.74C 

10.14 
(22.01) 

07.« 
(B.9C) 

30.9 
(1.611) 

30.0 
(1.70) 

30.« 
(1.10) 

2«.« 
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Summary 

In many engineering problems in the theory of stability 

and vibrations we must find the roots of an equation of the 

form     det B(x) =0       where  B(A)     is a nonlinear 

matrix of x .  In this paper we show how this problem may 

be reduced to integrating a system of ordinary differential 

equations subject to initial conditions.  The method covers 

the case of complex roots, and, when specialized to the case 

of  B(x)  being linear in   *   provides an approach to the 

usual eigenvalue problem. 

This work was supported by the U.S. Atorcic Energy Ccrri; 
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1. Reduction of Nonlinear Eigenvalue Problem to an 
Initial Value Problem. 

Consider the square matrix B(x)   ,  where x  is a 

certain parameter which can enter in a linear or nonlinear 

form.  This type of matrix occurs in the determination of 

eigenfrequencies (either in buckling or in vibration 

problems). 

In order to find the eigenvalues   \       , the following 

condition must be satisfied 

a) 
A = det B(x). 

In order to reduce £his problem to an initial value 

problem,  i.e.,  to a system of differential equations with 

given initial conditions   (which is easily solved compu- 

tationally) ,   let us  introduce the matrix M,  which is the 

adjoint of the matrix B and whose elements are the co- 

factors of the i        and j element of B,   i.e. 

M = adj B(x) 

where 
adj B = (bji) 

12) 

(3) 

fc 
and B; •    is the cofactor of  the i,   j element. 

Then the  inverse of the matrix B is given 

D-i .    adj B 
"   "det B    > (4) 

»-'■sV 
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Now,  premultiplying both sides of   (4)   by the matrix B 

we get: 

BB     " B deO (6) 

Recalling that        gg-1 _ j (7) 

where I is a unit matrix, and postmultiplying both sides 

of (6) by the det B, we have 

I det S = B adj B, (8) 

by postmultiplying both sues of (4) by B.det (B) we have 

I det B = (adj B) B. (9) 

In order to obtain a Cauchy system, let us differenti- 

ate both sides of equation (8) with respect to the para- 

meter. X , which yields 

BX adj 6 + B(adj B)A = I (det B)x> (10) 

By premultiplying both sides of equation (10) by adj B we 

get 

(adj B) Bxadj B + (aaj B) B (adj B)x = (adj B)xi (det B)x.    (11) 

By making use of equation (9), i.e., 

(12) 
(adj B) B » (det B) I, 

in the second term of equation (11) we obtain 

(adj B) B^(adj B) + (det B) (adj B) = (adj B) (det B)x     (13) 

Since det B is a scalar, from equation (13) we find 

(adj B)x = 
(adj B) (det B) - (adj B) Bx (adj B) 

det B 

(14) 
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Let us call b;'  the element of the i-th row and 
6 

j-th column of the matrix B. Then differentiating the 

det B with respect to ^ we obtain 

But 

N          3(det B) 
(det B)    = l          

db.. 

dx 

3         (det 3) = Bijf 

(15) 

3 bi 
(16) 

where B .. is the cofactor of the element in the i ~  row 

and j —   column. 

Now, substitution of equation (16) into (15) yields 

(det B) 
N 

I-   *   Bij -air 
Let us now evaluate tne product of 

(adj B) BA. 
1 

Let us denote by b..   the elements of B 

(adj B) 8. = 

/Bll    B21   ' 

B12   B22 . 

. B. nl 

. B n2 

■;„ B0„  .... B„„ 2n nn 

bll    b12 

b2)    b22 

\ bn!    bn2 

(17) 

Then we have 

U 
1 

(18) 

nn 

The terms on the principal diagonal of  this product will be 
i 

(adj B) Bx = 

(B11bll+B21b21+- • Bnlbnl > 

(B12bj2+B22bJ2+ Bn2bn2 > 

( B. b! + B„ b\   + In In  2n 2n B b' ) nn nn 
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The trace of  the product   (adj  B).BA is by definition the 

sum of all the terms on the principal  diagonal,  i.e. 

trace [(adj B) Bxj = (B^b^ + B^bJ, + Bn]bJ1) 

t <B12b21 + B22b22 +   B„2bl2> 
+ <Vln + B2nb2n + Bnnbln>. 

or N 
[n   r» db-i-! (19) 
(adj B) SA] .£       B.. -^ • 

i, j = 1 
By comparing equation (17) and (19) we can readily 

see 

(det B). = trace [ (adj B) Bx]. (20) 

By substituting equation (20) into the right hand side of 

(14) we have 

(21) 

(adj B)x = 
(adj B) trace [ (adj B) BA] - (adj B) Qx  (adj B) 

det B 

2. Summary or the Initial Value Problem. 

The problem has been reduced to the solution of the 

system of ordinary differential equations for the adjoint 

of B and the determinant of B 

(det B) = trace [ (adj B) Bx]. (20) 

,  (adj B) trace [ (adj B) BA] - (adj B) B,. (adj B) 
(adj B) = (2D 

x dot B ' 
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The initial conditions for the system of nonlinear 

ordinary differential equations (20,21) are obtained by 

evaluating the determinant of B and the adjoint of B for 

X = 0  »or for any arbitrary initial value of \ = \\   , 

Let us denote the initial conditions by 

adJ B<0) - B0, (22) 

det B(0) = b0. <23> 

3. Numerical Integration. 

The digital computer due to its iterative nature is 

the most effective means available for the solution of 

differential equations whose data are all specified at one 

point, a so called an initial value problem.  The computer 

program is written in such a way that the Runge-Kutta 

method is used to determine the first few points and the 

rest of the points are evaluated by using the Adams-Moulton 

predictor-corrector formula, which cuts down considerably 

on the computer time. 

Since the Runge-Kutta method of integration is written 

for the case when the left side of the differential equations 

is a column vector, and since the left side of our equation 

(21) is a matrix equation, we have to transform it into a 
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column vector form.  This is accomplished by putting 

either all the columns or all the rows of the matrix in 

a consecutive column form (this means that if B is an 

n matrix, then the column vector for (adj B) will have n 

elements). 

For example, if we have a square matrix 

'  -   -      B_.   \ 

adj B = 

Bll B21 • 

B12 B22 • 
» 
• 
• 
Bln B2n ' 

nl 

B n2 (24) 

. B nn 

its elements can be written in the following column iorm 

'11 '21 'n+1 

B12 = Y2 B22 = Yn+2 

Bln=Yn    • B2n = Y2n •B"n = V) 
The differential equation   (20)   is a  scalar and equation 

(21)   is a  square matrix B of order n * n.     Therefore equation 

(20)  and the matrix differential equation   (21)   will yield us 
2 

a system of   (1 + n  )   ordinary differential equations,  which 

are readily solved with speed and accuracy on the computer. 

4. Special Case of  a Linear Eigenvalue Problem. 

In many engineering problems one deals with the matrix 

given bv 

A - XI, (25) 
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# 

1 

where X is the eigenvalue and I is a unit matrix.  By 

introducing the notation 

1 
v =   (26) 

X 

in the above equation we deal with the following matrix 

B(y) - I - p A (27) 

by differentiating (27) with respect to y we obtain 

Bw(v) ■ - A (28) 

The roots of the 

A = det tf(u) = 0 

or 
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(29) 

det ( I-yA) = 0, 

give the reciprocals of the eigenvalues  x • 

Recalling equation (2), the system of the differential 

equations (20,21) become 

f- -- trace (MA), (30) 

dM „ -M trace (MA) + MAM , (T±) 

3y" 1  {      } 

From equations (30,31) we see that it is convenient to 

introduce a new matrix C such that 

MA = C (32) 

■MM« 



/' 

Then,  equation   (30)   becomes 

dA 
^7= - trace C. (33) 

By post-multiplying both sides of equation   (31)   by A we 

have 
(34) 

d     (MA) = -MA trace {MA) + MAMA 

using notation   (32),  equation   (34)  becomes 

dC   _    -C trace C + C2 (35) 
3Ü A 

The initial conditions, from equation (29), for y =0 

are seen to be 
A(o) = det (I) = 1. (36) 

From equation (27) we have 

M(o) = adj I = I. (37) 

Then equation   (32)  gives 

C(o) = AI = A    , l38) 
C(o) = A. 

In summary, the system of ordinary differential equations 

for determining y  are 

-A = - trace C, 
'29} 

dC s - C trace C + C2 (40> 
37      A 

with initial conditions 

A(o) = 1, (41) 

C(0) = A. (42) 
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5. Methods for Locating the Eigenvalues. 

We now will discuss three ways of employing the 

above relations. 

If we know that the root is real (which is frequently 

the case) we may simply integrate along the real axis 

until the determinant becomes zero. 

In the event that the roots are complex we may use 

some results from the theory of complex variables.  The 

number N of zero of det.B( X ), assuming no poles, contained 

within a closed contour C is \_5j t 

i        .    af £ det B(A> 3 ■ •~rL  I    -&    dx. 
,c det B(x) HiJ 

This may be evaluated numerically since we can integrate the 

differential equations ( 20, 21  ) around the contour C to 

produce values of the numerator and denominator of equation 

(43    ) and then use a numerical quadrature formula. 

In the event that there is only one root \l   , contained 

within the contour C, so that N=l, we may further use the 

formula 

,         1 f ^CdetBU)] 
X} «         I     x   .      dx> (44) 

2iri Jr det B(x) 

co precisely locate the root.  The advantage of this is that 

we only require values on C -nd do not have to integrate 
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near a point for which the determinant      A      is near zero. 

The formula   (20)  also suggests the use of Newton's 

method for finding the roots of equation 

A « del   B(x) ■ 0. 

Let \\ , real or complex, be an approximate value of a 

root.     Have the computer evaluate numerically the 

det  B(X1),   adj B{\})   and   Bx{\}) . 

T^en,  the next approximation    X2   is according to Newton's 

method 

X- » X, 
det BfXj) 

*2 " A\ - "  (45) 
gx C det B(x,) ] 

But,  since from equation   (20)  we have 

^[ det  B{\}) ] = trace   {MU,) B^x,)} <46) 

then, using equation (46) in (45),  we obtain 

det B(x,) 
A2  *1 ~       

trace {«(x,) B^)} 
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6.  Numerical Example. 

To illustrate this method on a nonlinear eigenvalue 

problem, consider the case of buckling of the frame shown 

in Fig. 1.  By writing out the slope deflection equations 

for each member, taking into account the axial force in the 

columns and neglecting the axial force effect in the beams 

we obtain the folxowing determinant for evaluation of the 

eigenvalues, where  X   enters nonlinearly. The equations 

for the angles of rotation must satisfy the following, [ 1 ] 

B(X) = 

where 

4.5 X(X2) + 1 1 

0.5 

X2 = k2t2 = £2 v—      v- 

0.5 

4.5 X^) + 1 

V-Vis*iVn~ = °-5hVn~ 

£ = v/2A, 

ana 

X (X) f(D [„. $. j] 

156 

**- . 

mäammm^^^m 



The problem consists in determining the critical 

value of  A  (i.e. P ), for which the buckling of the 
cr 

frame occurs first. 

Solving the Cauchy system using the Runge-Kutta method 

of integration, the numerical result obtained by M. Scott by 

this method is 

X2 = 4.11 . 

This result is in perfect agreement with the solution ob- 

tained for this frame by the method of successive approxi- 

mations as described in reference [2]. This example has 

been chosen in order to check the efficacy of the new method 

and to compare the obtained result against the existing ap- 

proximate solution. 

7. Conclusions. 

An advantage of this method over other techniques is 

that it can readily be applied to solve nonlinear eigenvalue 

problems without the need of even expanding the determinant. 

The computer does all the matrix multiplications to evaluate 

the right hand side of equations (20,21) and then straight- 

forward Runge-Kutta integration is done with known initial 

conditions.  The values of A for which the determinant 

becomes zero are the eigenvalues of the problem. We can 

determine'the nonlinear eigenvalues for vibration problems 

as well as for problems of static and dynamic stability, 

which will be discussed in future papers. 
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Figure I 

„ir,   nroblem   for   buckling   of   a   frame xNcnlinear   eigenvalue   proDiem 
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NUMERICAL SOLUTION SCHEMES FOR HIGHLY 
NONLINEAR STATIC STRUCTURAL RESPONSE 

John F. McNamara 
University of Illinois, Urbana, 

and U. S. Army Construction Engineering Research Laboratory, 
Champaign, Illinois 

ABSTRACT. The feasibility and accuracy of a number of solution 
schemes for problems of static nonlinear structural response are studied. 
The structure is modeled by the finite element method, and the non- 
linearities are mainly those of material behavior, but large displacement 
effects are also considered. It is shown that accepted solution approaches 
do not work as expected in the case of cyclic behavior of the structure 
around its limit load level. Results from two different finite element 
structural models are compared with those of an experiment for a simply 
supported beam undergoing load reversals at its midpoint. This simple 
example serves to illustrate the numerical problems encountered in analyzing 
engineering structures under severe lateral loads which initiate failure 
modes in the structure. 

I. INTRODUCTI ON. The general problem under discussion is the 
analysis of framed structures under large reversals of applied loading. 
For the present the study is restricted to mild steel structures and to 
the effects of cyclic loading into the plastic range. The usual approach 
to this problem is called a second-order elastic-plastic analysis [I, 2, 3] 
where yielding occurs as a plastic hinge of zero length at points of 
maximum moment such as joints between beams and columns and concentrated 
load points. A bilinear or multilinear elastic-plastic moment-rotation 
relation is assumed for these points, and one can proceed within the 
usual assumption of the stiffness approach where the formation of a plastic 
hinge means a new stiffness matrix is assembled and the results form a 
series of multilinear responses. More refined results may be obtained 
by continuously updating the stiffness matrix. The complexity of the 
solution depends upon the material behavior model, and numerical solutions 
for load reversals appear feasible. Experimental results given in Q3] for 
a simple frame structure under cyclic loading show a 40 percent increase 
in maximum lateral load capacity over the load predicted jy second-order 
elastic-plastic analysis. This difference indicates the necessity of 
performing a more complete cyclic analysis in order to determine the energy 
absorption capacity of the frame more accurately. An overview of the 
variety of load-displacement hysteresis loops for frame type structures, 
where buckling, plastic straining, large displacements and joint slip 
are active is given in [4], 

Preceding page blank 
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The drawback with an analysis based on the plastic hinge concept is 
that the moment-rotation curve must be known for an indefinite number of 
cycles and plastic strain amplitudes. In all cases known to the writer, 
cyclic material behavior has been deduced from monotonic test curves and 
is, therefore, skew-symmetric about the origin of the moment and rotation 
axes [1]. On the other hand, refined material models, expressed as 
stress-strain relations and incorporating cyclic effects in a highly 
accurate manner, are available [5, 6]. 

Since these relations depend on stresses and strains at a point rather 
than generalized variables, a finite element rather than a stiffness 
approach is used to discretiza the structure. A start in this direction 
has already been accomplished in [7] where a plane stress finite element 
beam model is used to obtain the cyclic behavior of a simply supported mild 
steel beam loaded at its center. This work and experimental values for 
the above problem will be discussed later in this report. 

A surprisingly minute amount of finite element literature, germane to 
the problem at hand, can be found by the writer. A vast body of work, 
relating to elastic-plastic solutions of one and two dimensional stress 
systems, exists, but only for the case of monotonic loading up to the 
limit or collapse load. An excellent survey of this research area is 
given in [8] where all the standard solution procedures are developed anJ 

commented on. One of the preferred schemes is defined as a first-order 
self-correcting method. In this case, linear incremental forms of the 
governing set of nonlinear equations arc uced with the unbalance in 
equilibrium forces, computed at the end of every increment, being applied 
as a corrective load on the following increment. Convergence with solution 
schemes such as the above is usually obtained by relative comparisons of 
responses with diminishing sizes of load increments. Such methods appear 
to be highly accurate for establishing monotonic load-displacement 
relationships, but it can be stated that the solution error builds rapidly 
as the limit load of the structure Is approached. For cyclic loading into 
and out of the limit load range, the error control has to be more rigorous, 
and equilibrium must be satisfied at all steps if possible. 

With the exception of [7] only one other group has included cyclic 
loading conditions in solving general nonlinear problems using the finite 
element method. This work has been carried on over a number of years and 
is summarized in [9]. The load reversals considered are at levels below 
the limit load for the example problems, and no numerical difficulties 
were encountered except in one case with the largest absolute value of 
load. No computation is made on the equilibrium of forces at any stage 
of the solution with reversals, but the results look very reasonable for 
the problems attempted. All solutions were load controlled as opposed 
to specifying displacement increments. 

In summary, no real test has yet been carried out in order to extend 
many accepted*solution procedures for nonlinear structural equations to 
the more general problems of reversed loading over an indefinite number 
cycles. Preliminary results of the writer's work in this regard are 
presented in the following, and comparisons are made with similar work 
given in [7]. 
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2. FUNDAMENTAL EQUATIONS. The finite element formulation of 
equilibrium equations for problems of nonlinear structural mechanics has 
been detailed at length in many publications of which [8, 10, 11] are 
pertinent to the present study. For the.purposes of identifying the 
basis of a particular solution scheme, the equations will be reviewed 
briefly here. The presentation is also simplified by assuming that strains 
remain snail and that only moderately large rotations of numbers occur. 

The general equation of equilibrium in a Lagrangian reference frame is 
obtained as 

/v[B]
T{a}dV = {P} (1) 

where {a} is a vector of generalized Kirchoff stresses, [B] transforms 
generalized displacement increments at the nodes to generalized strain 
increments in the body, and {p} includes load contributions from nodal 
loads and distributed pressures on an element. 

The matrix [B] contains nonlinear terms of quadratic order in the 
displacement increments. For the one dimensiclal beam problems to be 
considered here, it is based on the expression 

2 
AE = d(Au) + du d(Au) + 1 d(Au) 
X  dx    dx dx    2(dx  } 

2   .2 
+ dv d(Av) + l,d(üv)> 

dx dx    2Mx    ~   2 
d v (2) 

2 
dx 

where u is along, and v perpendicular to, the beam axis x, and z is the 
distance of the beam fiber from the neutral axis. In the above AE is a 

x 

Lagrangian strain measure, and nonlinear terms for both u and v deformations 
have been included although the former could be discarded since their 
influence is minimal. Nonlinear terms ar« not included for the curvature 
strain. The quadratic terms in (2) insure, for a nonlinear elastic system 
at least, that stresses calculated as the sum of successive incremental 
values during the solution process will equal the stress calculated from 
the total displacement at any state of the solution. This refinement is 
important when it becomes necessary to make equilibrium checks on the 
solution [12]. 

The elastic-plastic constitutive equation is introduced through the 
linear incremental relation 

{to)  » [D] {Ae} (3) 

where {e} is a vector of generalized strains and [D] is constructed in the 
manner outlined in [13]. 

In order to set uh a basis for the commonly used solution schemes, a 
first-order expansion of (1) is made about some known equilibrium state 
giving 
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/y [AB]
T{o} dV + / [B]T{Aa}dV - {AP} 

+ ({P} - /v tB]
T(o} dV)       (4) 

Following techniques outlined in [14], one can form a stiffness matrix with 
the terms on the left hand side of (4) and rewrite it as 

[K]T {Aq} - {AP} + {1} (5) 

where {Aq} is the vector of generalized or nodal displacements, {i} is 
the vector of forces found from the terms in parentheses in (4) and is 
zero if equilibrium is exactly satisfied at the beginning of the current 
increment. The matrix [K] is a nonlinear tangential stiffness matrix 

defined for the elastic-plastic case as 

[K]T - /v[B]
T[D][B]dV (6) 

3. SOLUTION PROCEDURES. Historically, the basli  for solving nonlinear 
structural problems was equation (5) without the vector {i} o£ unbalanced 
forces. This is a simple linear lucreraental, or inarching, process and while 
it is the most economical of all methods, it is also the least accurate. 
When (5) is used as presented, the process is named "load-correction," or 
"first-order self-correction.'' It is unlikely that either of these methods 
will be suitable for use where load cycling occurs since there is no error 
control. Monotonie loading is well represented by (5) although very small 
increments are required for any but the simplest problems [8], Both methods 
may give reasonably approximate values for limit or collapse loads within a 
relatively small number of increments. 

It appears necessary to use some iterative process where the order of 
the error can be specified to any desired degree. The most accurate, 
approach for any general case is the Newton-Raphson process, and we again 
use (5) as a starting point, For the first iteration one solves (5) which 
is now rewritten as 

[K]T{Aq>1 = (AP} + (I}0 (7) 

where {i} is calculated at the beginning of the increment and is usually 
o 

zero, or very close to zero. Using {Aq} , one can now calculate {l} , or 

the unbalanced or "residual" force, at the end of the increment. Then, 
changes in the displacement increment can be calculated as follows: 

[K]T{A(Aq)}i = {I)lwl    i = 2, 3,  , n (8) 

where i indicates the number of iterations. The displacement over the 
increment at any stage is found from the relation 

n 
{Aq} = {Aq}. + E{A(Aq)} (9) 

i«2 
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and can be used to find a current value for {i}. ,. If the nonlinear 

stiffness matrix [K] is  updated for every solution of (8), the process 

becomes an iterative incremental Newton-Raphson solution of the equation 
of equilibrium (1), i. e., 

{l}i-l = °* (10) 

The iterations are continued until (i) . is arbitrarily close to zero, or 

insignificant changes in displacement increments are found. 

The continual apaating of the tangert stiffness can become very 
expensive in computer tine, and many modified forms of the full Newton- 
Raphson process have been proposed [10, 11], The simplest approach is 
to use the linear elastic tangent stiffness matrix [K]„ in (7) and (8) 

throughout the solution. This method is called the "constant stiffness," 
or "initial stress," method and examples of its use are given in [11, 15]. 
It is shown in [16] that the process is convergent except in some large 
displacement problems and near failure, or limit loads, in plasticity 
problems. In _ases involving a high degree of mnlinearity, the convergence 
is very slow and time consuming. An advantage of the "constant stiffness" 
method is its ability to follow a softening load displacement response. 
This is due to the positive definite character of the linear elastic 
coefficient matrix used throughout the solution. 

An alternative, but very similar approach, to the "initial stress" 
method is the method of "initial strain," or "thermal strain." This 
approach preceeded the "initial stress" method and has been applied to 
many engineering problems [8, 18], but is not considered in the present 
study. 

Variations on the complete Newtcn-Raphson approach are also obtained 
by selective updating of Che stiffness matrix. Procedures in common use 
are to update in each incremen' for he first iteration only or after two 
or three iteration cycles [10, 11].  In all cases the stiffness is reassembled 
once per increment only, and the purpose is to obtain a reasonably accurate 
and economical solution. This approach is very suitable for all but the 
highly nonlinear problems. 

As a postscript to this discussion of solution schemes, it is pointed 
out that, in the general case, there is no guarantee of convergence or 
uniqueness with any of the methods. 

4. APPLICATION TO CYCLIC LOADING.  It is reasonable to state that 
no one solution scheme for general nonlinear structural problems will be 
completely satisfactory. A balance must always be maintained between 
the competing constraints of cost and accuracy since they are usuall> 
directly related to each other. The order of the solution scheme required 
is a function of tt'_ degree of nonlinearity in the response, and numerical 
experiments must be made in order to select a suitable scheme for the 
class of problem under consideration. The elements of the current 
problem are shown in Fig. 1 where a simply supported beam of A36 steel is 
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loaded through one complete cycle with displacements large enough to cause 
substantial alternating plastic strains in the beam fibers. The 
experimental load-displacement curve is characteristic of the hysteresis 
loops obtained by testing framed structures under lateral loads applied at 
the floor levels. There is a steep elastic first stage followed by a very 
flat portion once a mechanism forms. In this particular case, since the 
beam is statically determinate, the mechanism stage begins as soon as 
plastic yielding extends through the midspan section and forms a plastic 
hinge. In more highly statically indeterminate framed structures, the 
change from elastic to mechanism behavior is less abrupt due to the 
successive development of plastic hinges throughout the structure.  In any 
case, the initial response can be divided into an elastic section, a 
transition section, ana a flat mechanism section. The latter two sections 
create numerical difficulties and demand a refined, rather than an 
approximate, solution method. 

The unloading from the first mechanism stage and subsequent cycles 
appear smoother than the initial phase, and this is due to the work-hardening 
of A36 structural steel. For idealized material behavior the reloading 
curves will have the same appearance as the initial branch, and in fact 
could be constructed frcm knowledge of the initial branch alone [9]. 

The finite element models which are used in this study are illustrated 
in Fig 2. The plane stress element formed the basis of the structural 
model in [7]. The element is parabolic in order of displacements and 
belongs to the "Serendipity" element family [19]. The stiffness was 
assembled by numerical integration based on a 3 x 3 Gaussian quadrature 
rule. In the interest of converting from a continuum model to a structural 
model of the beam, the simple beam bending element was incorporated into 
the study. There are three degrees of freedom per nodal point, two 
tr nslations, and one rotation. The displacement approximation is cubic in 
the transverse direction and linear in the axial direction. Numerical 
integration along the length of an element is carried out at three Gauss 
points, and the integration through the depth is obtained by Simpson's Rule 
using 6 intervals or layers. 

5. CHARACTERISTICS OF SOLUTION SCHEMES. The performance of the various 
solution schemes were investigated by attempting to simulate numerically the 
initial branch of the load-displacement curve shown in Fig. 1. It was 
decided to carry the solution just beyond the first elastic unloading with 
the assumption that numerical problems typical of a complete cyclic analysis 
would be encountered therein. 

The beam was descritized by using 10 beam elements for the half-span. 
For this test problem the material model is that shown in Fig. 1 with the 
further assumptions of isotropic hardening and von Mises' yield criterion. 

Numerical results for the solution schemes under consideration are 
given in Fig. 3. The loading program for solutions A, B, and C was the 
same and required a certain amount of trial and error before stable 
results were obtained. Twenty load increments of magnitudes varying from 
200.0 (elastic) to 5.0 lbs. were used to reach the 570 lb. level, and 2.5 lb. 
increments were used for the remainder of the response. For the iterative 
solutions, convergence was assumed to'have occurred when the following 
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inequality was satisfied: 

IKA(Aq)} .11 (10) 
- < 0.001 

I KM) 11 

The above tolerance was deduced from observing typical values 
associated with essentially zero residual, or unbalanced, equilibrium 
forces in the beam. 

The Newton-Raphson process was by far the most efficient of the three 
load controlled schemes. The "initial stress" approach followed the 
Newton-Raphson curve until it had to be terminated due to excessive cost. 
As the plastic collapse load was approached, the number of iterations in 
an increment began to increase rapidly as shown in Fig. 3. The direct self- 
correcting method is the least costly, but the internal reaction at 
midspan was computed as -241.42 lbs., which incicates an error of 66.5 
P'.rcent with respect to the applied half-span load of 720.0 lbs. The 
midspan displacement value is also noted to have substantial errors at 
the time of unloading. A buildup of.errors of this order in successive 
cycles would render meaningless results. The initial elastic unloading 
is also not cc-rect. due to the large residual error in forces. When 
computer running times are normalized with respect to the Newton-Raphson 
solution, the cost for solution A was 0.475, and solution C had already cost 
1.1 units at termination. 

For the loading program selected, the Newton-Raphson solution satisfied 
equilibrium exactly at all steps, and the average number of iterations per 
increment was four. A problem noted with this method is its inability to 
remain stable for perfectly-plastic material behavior or small values of 
the hardening modulus. As an example, the current beam problem was attempted 
with a hardening modulus of 100,000 p.s.i., and a stable solution beyond 
the collapse load was not obtainable. Convergence failures of this type 
were also noted in [8, 9, 20], For this reason, and in anticipation of 
the fact that load control fails for load displacement curves with negative 
slopes, it was decided to attempt a displacement controlled Newton-Raph&on 
solution. 

The convergence of this latter solution is shown for half of one 
complete cycle in Fig. A. The sensitivity of the solution to displacement 
increment size is indicated by the uneven, and sometimes unstable, responses 
obtained with the trial values. The subscripts 1, 2, and 3 on the 
displacement increment values distinguish the successive attempts made to 
compute a particular section of the response curve with diminishing 
increment sizes. The part of the response up to the first elastic unloading 
in Fig. 3 is superimposed on Fig. 2 as plot D.  In actual fact, D was 
obtained initially and indicated a suitable lor.d program for the other 
curves. Although equilibrium was satisfied to the same tolerance with 
solutions D and B, a difference in the response occurs at the knee due to 
the larger displacement increments used. This difference is carried forward 
after the displacement controlled solution stabilizes. 
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However, a somewhat more important feature of these solutions is their 
rate of convergence characteristics as given by the values listed in 
Table 1. The results shown apply to the final points on the curves before 
elastic unloading. The comparison is also fair to both solutions in that 
increment sizes were equivalent in load and displacement over the response 
after the knee section. It is apparent that the load controlled solution 
converges more than twice as fast as the displacement controlled version, 
and this was found to be consistently true over the complete response. With 
load control the value of the applied load is fixed, and this fixes the 
reaction at the support point so that only the internal force at the midspan 
must be equalized with the externally applied load. Wien a displacement 
increment is specified, both the support reaction and midspan force vary 
with each iteration, and this possibly creates a more difficult situation 
for obtaining an equilibrium set of forces. However, this convergence 
phenonenum is diametrically opposite to the behavior noted in [10] for 
nonlinear elastic systems. 

An odd feature with solution D is the recurring equilibrium of the 
boundary forces on the beam as shown by the underlined values in Table 
1. Internal forces are not in equilibrium, however, so the iteration 
continues. This behavior indicates the necessity of checking global 
equilibrium of forces or using a displacement convergence criterion instead. 
The cost factor for solution D was 1.3, and a total of 34 increments were 
used as opposed to 46 with solution B. 

The nonlinear geometric stiffness contribution from the higher order 
terms in equation (2) were included in the analysis using the approach 
already described for curve A of Fig. 3. As expected, the maximum beam 
displacement of 0.025 inches is too small for any large displacement 
effects to be evident.  In fact, the results are, practically speaking, 
exactly equal to those of curve A. The rate of convergence changes, 
however, and many redundant iterations were performed since equilibrium 
was satisfied at tolerances ranging between values of 0.02 to 0.005 for 
inequality (10). 

6. COMPARISONS WITH PREVIOUS RESULTS. The numerical results, derived 
in [7] for the same problem using the plane stress element of Fig. 2, and 
experimental results' [7] are compared with those of the writer from Fig. 4. 
It should be pointed out that the beam dimensions made it more suitable for 
a plane stress rather than a bending analysis. The dimensions were dictated 
by the fact that large plastic strains were required without large 
displacements since the influence of change in geometry was not included in 
[7], An interesting feature of the plane stress analysis is that only six 
load increments were used to reach the first unloading stage. The method 
was a modified Newton-Raphson process where the stiffness is updated at 
every third iteration in any one increment. The average number of 
iterations was 6, but the final point before the first unloading required 
15 iterations. The tolerance specified that the ratio of the norm of the 
residual force vector to that of the applied load vector be less than 0.01. 
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Also, the cost factor with respect to solution A of Fig. 3 is 0.25 
approximately. This is explained by the fact th?t the simpler beam model 
has 210 (7x3x10) stress points as compared with only 135 (3x3x15) for the 
plane stress element. The relative ease with which this solution was 
obtained is explained by the fact that a continual redistribution of the 
two-dimensional stress system is taking place resulting in an increasing 
load capacity, and a limit load, as with axial stresses only, is not 
reached. However, bending alone is more typical of structural components 
such as I-beams. 

Since the problem under study is a thick beam under a point load, one 
can expect the lower load levels as shown for the bending analysis in Fig. 
5. The writer's results were not continued beyond those shown since they 
are based on isotropic, rather than kinematic, hardening. This leads to 
the greater elastic unloading range over the plane stress analysis and 
also, of course, to lower load values on the reyielded portion of the 
response. It is apparent that agreement is such that one can have 
confidence in the solution schemes which is the primary goal of the 
current study. 

7.  CONCLUSIONS.  A contribution of this study is that it effectively 
eliminates the "initial stress" and the "first-order self-correcting 
schemes for future consideration in problems r>£ cyclic loading. Cost and 
accuracy are the deciding factors, respectively, with these two methods. 

The Newton-Raphson process with load control appears best, but its 
limited applicability must be considered a serious drawback.  Subsequent 
to the calculations shown in the figures and in Table 1, it was noted 
that the tangent stiffness was only reassembled in an increment after 
the first two steps. This explains the jump in error measure between the 
first and second iterations in Table 1 (from 0.327 to 0.942) and the 
equilibrium of forces in iteration 2.  In other words, there is a superfluous 
iteration in the load control results whose removal will even further 
improve the efficiency of this approach. The same will not hold true for 
the displacement controlled Newton-Raphson since its convergence rate 
appears somewhat arbitrary. 

In investigating the effect of geometry changes on the response of 
solution A, it was noted that their inclusion changed the convergence 
rate in a favorable manner by allowing an increase in the error tolerance 
from 0.001 to 0.005 approximately. The same has not, as yet, been 
attempted with the displacement controlled solution, but a beneficial 
effect on solution convergence can be expected. 

Wniie the numerical techniques tested in this study indicate that 
convergent solutions can be obtained, in the long run, no one of the 
methods is fully satisfactory. Newton-Raphson with load control will 
fail for structures with a flat or softening load-displacement response, 
and displacement control is only suitable for fundamental investigations 
of experimental structures since, in reality, a structure is specified 
as acting under a set of loads. The basis for an alternative approach, 
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which is general in all respects, is given in [21]. The features of 
the method are that the constant elastic stiffness is used in solving 
the equations and the correction for nonlinear effects is made to the 
displacement increments in an external fashion. The method could be 
classified as the "initial stress" method with a higher order 
correction. A further improvement in convergence rate may be possible 
by adopting a new formulation for the elastic-plastic constitutive 
relations which is given in [22].  Thermal strain cycling of pressure 
vessel components was treated successfully in [22] using a finite 
difference structural model. These latter refinements will be applied 
to cyclic loading of fraire structures in the near future. 
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TABLE I 

CONVERGENCE CHARACTERISTICS OF LOAD AND 

DISPLACEMENT CONTROLLED NEWTON-RAPHSON METHODS 

LOAD CONTROL DISPLACEMENT CONTROL 

RATI ON   INTERNAL FORCE ERROR INTERNAL FORCE ERROR 

IMBER SUPPORT   MIDSPAN MEASURE SUPPORT MIDSPAN MEASURE 

0 647.5    -645.03 - 673.3404 -643.7756 - 

1 6A7.5    -645.05 0.327 661.6573 -643.9652 0.05360 

2 6A7.5    -6A7.5 0.942 645.5255 -645.5255 0.21220 

3 647.5    -647.5 0.27xlO~7 644.4235 -541.5684 0.13035 

A 631.3242 -631.3242 0.13593 

5 625.0382 -593.7156 0.05251 

6 617.7793 -oi7.7993 0.04786 

7 616.5497 -616.5497 0.00568 

8 616.5497 -616.5497 0.88xl0~ 
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DEVELOPMENT OF NUMERICAL METHODS FOB. THE VELOCITY 
AND TEMPERATURE DISTRIBUTION IN AXISYMMETRIC 
SOLIDS UNDERGOING LARGE PLASTIC DEFORMATION 

layIan Altan 
Battelle - Columbus Laboratc rles 

Columbus, Ohio 

and 

Paul Gordon 
Materials Engineering Division 

Pitman-Dunn Laboratory 
Frankford Arsenal 

Philadelphia, Pennsylvania 

ABSTRACT. Metal forming technology plays an important role in 
the manufacture of much of the Army's materiel. At Frankford Arsenal, 
for example, a major emphasis in current development programs for 
improved material artillery shell and cartridge cases is in developing 
new or improved forming processes. It is the purpose of this paper to 
present some recent advances in the development of computerized methods 
which provide consistent, approximate solutions to the field equations 
governing metal forming processes. Applications to extrusion, drawing 
and compression are given. 

Part of this work was performed at Frankford Arsenal under the 
task for Mathematical Modeling of Forming Processes and part was 
performed at Battelle Columbus Laboratories under internal research 
funding. The authors have collaborated on the preparation of this 
presentation. 

The plastic deformation of metals involves large irrecoverable 
strains. The work of deformation appears essentially in the form of 
heat energy. The determination of temperatures in a plastically 
deforming metal is basically a problem of time dependent heat flow in 
an incompressible moving medium with heat generation in the medium. 
In axially symmetric flow the equations governing the velocity and 
temperature distributions are found to be a set of coupled, severely 
nonlinear partial differential equations. In this study a combination 
of a numerical extremum method and a finite difference procedure were 
simultaneously employed to solve these equations. A velocity field, 
with undetermined coefficients, was constructed to identically 
satisfy certain of the field equations (incompressibility and continuity) 
anl auxiliary conditions. Based on this field, the deformation energy 
functional was calculated. The undetermined velocity coefficients were 
determined by requiring the energy functional to be a minimum. Minimi- 
zation was performed numerically. A finite difference approximation 
was applied iteratively to calculate the resultant temperature 
distribution. 
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This overell numerical algorithm was found to be relatively simple 
and efficient. These numerical techniques were applied to predict 
temperature distributions in axisymmetric deformation problems such as 
extrusion, wire drawing, and compression. 

1. INTRODUCTION. The purpose of this paper is to describe the 
principles and the results of a numerical, computerized method of 
analysis for predicting metal flow and temperature distributions in 
axisymmetric extrusion, compression and drawing. 

In extrusion and drawing, both plastic deformation and friction 
contribute to heat generation. Approximately SO to 95 percent of the 
mechanical energy involved in the process is transformed into heat.") 
For commerical reductions and speeds in extruding and drawing today's 
materials, temperature increases of several hundred degrees may be 
involved. A part of the generated heat remains, in the deformed material, 
another flows into tooling while still an additional part may flow into 
the undeformed portion of the material. The temperatures developed in 
the process influence the lubrication conditions, the tool life, the 
properties of the final product, and most significantly, they determine 
the maximum deformation speed which can be used for producing sound 
products without excessive tool damage. Thus, temperatures greatly 
influence the productivity of extrusion, compression (or upsetting) and 
drawing processes. 

During extrusion, compression and drawls, heat is generated by 
deformation in the material and by friction et  the tool-material 
interface. Heat is transported with the deformed material and conduc- 
tion takes place simultaneously. Some of the generated heat remains 
in the product, some is transmitted to the tooling, and some may even 
increase the temperature of the material coming into the deformation 
zone. 

The general problem to be examined is that of time-dependent heat 
flow in an incompressible moving medium with heat generation in the 
medium. In plane strain deformation with two dimensional heat flow, 
the governing equation is: 

2    2 
.30  39,   ,   30 30 .   SW   39 

a(-T+—5-)-(u—+V — )+  = — (1) 
3X   3y        3X 3y    JpC  3t 

where 

ß = friction of deformation energy transformed into heat 

« = thermal diffusivity (constant) 

0 = temperature rise 
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X,y -  coordinates in x and y directions, respectively 

U,V - velocities in x and y directions, respectively 

w = rate of energy dissipation 

v = mechanical equivalent of heat 

** = specific gravity 

c = heat capacity 

= time 

The problem, described by Equation 1, involves the determination 
of simultaneous heat generation, transportation, and conduction. It 
is impossible to solve this complex problem analytically. Therefore, 
a numerical method of solution has- been developed. This method, 
originally suggested by Bishop(2)s approximates the heat generation 
and the simultaneous heat conduction in two steps which take place 
consecutively during equal time increments,,At. The repetition of 
these cwo steps simulates numerically the deformation process and 
gives the temperature distribution as a function of time. 

2. THEORETICAL DETERMINATION OF THE VELOCITY FIELD IN CYLINDER 
UPSETTING. For problems in metal forming, there are no exact solutions 
that can be used for practical purposes. Therefore, methods of analysis 
giving results with various degrees of approximations must be used. 
Among various theoretical methods available for analyzing metalforming 
problems, the upper-bound method is the most practical technique for 
theoretical analysis of metal flow. For describing the metal flow, 
this method considers an admissible velocity field that satisfies the 
incompressibility, continuity, and the velocity boundary conditions. 
Based on this velocity field, the deformation, the shear (if velocity 
discontinuities are present), and the friction energies are computed 
to give the total forming energy and also the forming load. Based on 
limit theorems, this calculated forming load is necessarily higher than 
the actual load and it, therefore, represents an upper bound to the 
actual forming load. Thus, the lower this upper-bound load, the better 
is the prediction. Often the velocity field considered includes one 
or more parameters that are determined by minimizing the total forming 
energy with respect to those parameters. Thus, the determined values 
of the parameters give a somewhat better upper-bound velocity field. 
In general, with an increasing number of parameters in the velocity 
field, the solution improves while the computations become more complex. 
Consequently, for practical use of the upper-bound method, practical 
compromises are made in selecting an admissible velocity field. 

When applying the upper-bound method, the following assumptions 
are usually made: 
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1. The deforming material is isotropic and incompressible. 

2. The elastic deformations are neglected. 

3. The inertial forces are small and neglected (i.e., high- 
energy-rate forming is not considered). 

4. The friction shear stress, x , is constant at the die- 
material interface and is related to a constant shear factor, f, or 
to a friction factor, m, whose definitions are 

T = f a -  m a /yß~ 

where o is the flow stress of the material. 

5. The material flows according to von Wises' flow rule. 

6. The flow stress, ö , is constant. 

In upsetting (or compressing) a cylinder symmetric about the z 
axis, for example, the velocity components in cylindrical coordinates 
(r,z) can be expressed in terms of an unknown parameter ßj O) 

&1  2, 
v = 2Az (1 z ) 

3 

where v is the axial velocity component, the constant A is 

A a Vo/2H (1- ii H2) (4) 

(3) 

and H is the height of the cylinder. 

2 
u ■ A(i-ßjZ )r (5) 

r7[3(i.M
2)2MW ]1/2 (6) 

Also where u is the radial velocity component, and £" the effective». 
rate of strain. 

An expression for energy rate is now formed.^3' The parameter ßj 
is then found from the condition of minimizing the energy rate with 
respect to ßi . 
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As an example of results, predicted and measured deformations of 
upsst (or compressed) aluminum samples are shown in Figure 1 for two 
different friction conditions. 

3. VELOCITIES AND TEMPERATURES IN EXTRUSION AND DRAWING. For 
estimating a realistic velocity field in extrusion and drawing, Iambert 
and Kobayashi(4) introduced a method for obtaining upper-bound velocity 
fields without discontinuities. In axisymmetric flow, this method uses 
the flow function and the superposition of an infinite number of flow 
patterns. The calculations are performed numerically using a digital 
computer. The original method as suggested by Lambert and KobayashiW 
required considerable amount of compuce.' time for execution. Therefore, 
in the present study, a simplified version has been derived and programmed 
in Fortran IV as a system of subprograms called EXTVEL. The program 
EXTVEL calculates the axial and radial velocities, the strain-rate, and 
the strain, in the deformation zone, at meshpoints of the grid system 
as illustrated in Figures 2 and 3. Figures 2 and 3 are taken from 
Reference 5. 

As an example, metal flow in drawing and heat transfer between a 
volume element and its vicinity are illustrated in Figure 2. The volume 
element moves by following the flow line and deformation takes place 
under the die in the deformation zone. In wire drawing, friction takes 
place only at die-material interface while in extrusion, friction or 
internal shear occurs at the die as well as at the container surface. 
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FIGURE 2» Metal Flow and Configuration of Volume Elements Used In 
Numerical Prediction of Temperatures in Wire Drawing, 

FIGURE 3. Representation of Cylindrical Grid System and Volume Elements 
for Deriving »he Difference Equations of Heat Conduction 

184 

/ 

»^ _*-•-■ 



For a volume element, the temperature increase due to deformation, 9 . , 
in a time interval, At , is given by: 

8 = 0 e Atp2 / JPC (7) 

where 

®d = temperature increase due to deformation 

At ■ time interval 

C = specific heat of the drawn material 

P = specific weight of the drawn material 

02 s fraction of deformation energy transformed into heat. 

The temperature increase due to friction is given by: 

0* - f 0 vF A t / J e p V 1 o  ct a 

where, in addition to the symbols already described, 

°f   = temperature increase due to friction 

* ■ friction factor at the interface 

V   * velocity at the interface 

F   = surface area at the interface 

= volume element 

(8) 

V. 

C ,p   • average specific heat and specific weight at the interface. 

During a time interval,  At, conduction heat transfer takes place 
between the volume element "0", seen in Figure 2, and between the 
adjacent volume elements "1", "2", "3", and "4". The temperature 
change in volume element "0" after conducting during the time element, 
At, is calculated by solving the difference equations of heat transfer. 
The maximum value of (A t is determined from a stability criterion. 

Figure 3 illustrates the notation used in deriving the finite 
difference equation of heat transfer in its general form. Because of 
axial symmetry the volume element "i,j" is considered over a rotational 
angle n * 1 radian. Considering heat flow in only the axial and radial 
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directions, a heat balance is found by equating the sum of the amounts 
of heat conducted from adjacent elements into element "i,j" to the 
heat stored in this element: 

BMkl.H &t S ~  + Vlki,j+1 At S    U^      1,J    + 

+ Wl+lJ AijAt (6H1J " 61J) Sq~i * a1-lki-1JAijÄt (9T-U -;.) ^r + 
1 ,J J 

♦ 8,hc (eo - efjj)R1AijAt+ ßjhf (eo- eu) s At = 

Y S AZ.pC (e-  - 9. .) . 
J   i, j  1 ,J 

(9) 

where, in addition to the dimensions given in Figure 3, 

1*1 ,j   • heat conductivity between the elements, (i,j) and (L+l,j) 

&i»*j     = factor indicating the portion of the element (i,j) sub- 
ject to convection and radiation heat transfer in radial 
and axial directions, respectively. 

i,j»(*''i J = temperatures of element (i,j) before and after time 
'    element A t, respectively . 

At    * tisae  element during which heat transfer takes place 

c   ■ surface area of element (i,j) in axial projection 

h_,hr    " heat transfer coefficient (convection and radiation) 
*      at the free surfaces of a cylinder in radial and axial 

directions, respectively 

8Q   = temperature of environment 

Y   ■ portion of the element (i,j) subject to temperature 
variation 
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ai»°i    =    fac.or indicating the portion of the element (i,j) subject 
to heat conduction in radial and axial directions, respectively 

P»c    = specific gravity and specific heat of volume element (i,j), 

respectively. 

Equation 9 is in very general form and can be used for all 
boundary conditions which occur in the present problem. According to 
each boundary condition, the thermal constants and the factors, <* , $  , 
and Y must be modified. For example, at the interior of the P™^^» 
0=0=]  t $^=6^=0   ,  Y

=l    and all kt jis are equal to the heat 

conductivity of billet material at the temperature e^j. Similarily, 
at the free cylindrical surface of the product,  0^ .'= ot+1  =0.5, 

"i-isl» °i+i=0 * ei=1, ßr°* YS°-5- 
Using the above numerical procedures the extrusion of an aluminum 

billet (rod) through a flat die was simulated. Figure 4 shows the 
isotherms when the ram displacement is 3.7 inches. 

Container 
440C 

460*480 490 
470 

FIGURE 4. Temperature Distributions in Extrusion ot Al 5052 
Alloy Rod Through a Flat Die 

Reduction = 5:1, Kam Speed = 74.4 in/min, Billet 
Diameter = 2.8 in, Billet Length - 5.6 in, Initial 
Billet and Tcjling Temperatures = 440 C, Ram 
Displacement =3.7 in;h. 

4. CONCLUSIONS AND FUTURE WORK 

1. Based on the above and related studies, it is concluded 
that the various bounding theorems of plasticity, when combined with 
numerical heat conduction/convection, provide an excell-nt approach to 
predicting practical metalforming characteristics. 

2. Continued future efforts »ill include the modeling of drawing 
and nosing of hot shell and cartridge cases. 
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ABSTRACT.   The present paper is concerned with iterative methods 
for finding the minimum of a function of  n   variables.    We begin by a 
discussion of the gradient method and of Newton's method.    It is pointed 
out that effective methods for minimizing a quadratic function can be ex- 
tended so as to obtain the minimum of a nonquadratic function.    Accordingly 
several algorithms for minimizing a quadratic function are given together 
with their extensions.    These algorithms are based upon a concept of con- 
jugacy and are called methods of conjugate directions.    In particular we 
discuss the conjugate gradient algorithm, the method of parallel planes, 
the method of parallel displacements and the conjugate Gram Schmidt 
process.    We conclude with a description of matrix forms of these al- 
gorithms. 

1. INTRODUCTION.    One of the basic problems in optimization is 
the determination of efficient algorithms for finding the minimum of a 
function   f (x)   on a set   S.    In the present paper we shall be concerned 
with the vmconstrained case, that is, to the case in which the minimum 
point   x     of  f    is an interior point of   S.    Algorithms of this type also 
can be used for solving constrained minimum problems.    This is because 
for a large class of constrained problems the minimum point is also the 
solution of an equivalent unconstrained minimum problem.    In general 
these equivalent unconstrained problems are the limits of sequences of 
easily   constructed unconstrained minimum problems. 

2. PRELIMINARY REMARKS.    In the present paper we shall be 
concerned mainly with the problem of minimizing a function   f(x)   of   n 
real variables   x = (x', . .., xn)   on an open set   S.    This is the so-called 
unconstrained minimum problem. 

Much of our analysis will be based on the concept of directional 
derivatives.    Given a point   x   and a vector   p/0   the derivatives of the 
function 
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<p(a ) = f(x+ap) 

with respect to   a    at   a= 0   are called the directional derivatives of   f 
in the direction   p.    In particular the derivative 

(1) *'(()) = f'(x,p) = J 1ffr)Pi 

is the directional derivative of   f   in the direction   p   of the first order. 
The second order directional derivative is given by the formula 

i -.1 »,n,     r"i \        ■£    £    9   f(x)      i   i 
(2) * (0) = f (x'p)=iiljii9~x^xJpp   • 

The second order Taylor's formula for   f  takes the form 

(3) f(x+p)=f(x) + f'(x,p)+if"(x,p)+R2{x,p) 

where   R?(x, p)   is the remainder.    For the functions with which we will 
be concerned we have 

R2(x,p) 

p— 0    |p| 

Here    |p|    is the length of  p. 
jj r\ et       \ 

The vector i      ^ -     is called the gradient of   f   at   x   and will be 
\ 0x 

denoted by yf (x) or by f*(x).    It is in the direction of steepest ascent of f. 
The matrix <    2        \ 

f..(x) = | L^l 
9x3x 

is called the Hessian of   f   at   x   and will be denoted by   f"(x).    In vector 
and matrix notations we have 

(4) f,{x,p) = p*vf(x)=T7f(x)*p,  f"(x,p) = p*f(x)p 

where   p   and yf   are column vectors and   p*,yf*   are the corresponding 
row vectors.    In this notation   p*q   denotes the innerproduct of two vec- 
tors   p   and   q.    By a quadratic function   F(x)   will be meant one that is 
expressible in the form 

(5) F(x) = f x*Ax - k*x +   corstant 

where   A   is a symmetric constant matrix and   k   is a constant vector. 
Its gradient is 

(6) vF(x) = F'(x) = Ax-k   . 
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We shall restrict ourselves to quadratic functions for which   A   is a posi- 
tive definite matrix.    In this event the level surfaces   F(x) = constant are 
similar ellipsoids whose common center   xQ   is the minimum point of   F. 
At a minimum point   x     of a general function   f  we have 

yf(xo) = 0   ,     f"(xo, p) ^ 0 

for all   p/ 0.    If det   iM/xo)/0,    as we shall assume, we have 

f"(x0,p) = p>'f»(xo)p>0 

unless p = 0. In the neighborhood of xQ the level surfaces of f are 
ellipsoidal in character, as indicated schematically in Figure 1. At a 
point 

Figure 1 

x = x     select a direction   p   such that   f'(xj,p)< 0.    Tnen   p   is a direction 
of descent.    At the minimum point   x.^   of   f   on the line   x=x.+cp   the 
gradient  vf(x?)   is orthogonal to this line.    It follows that this line .s 
tangent to the level surface   f(x) = f(x2)   at   x^.    If   f   is quadratic the 
point   x?   is the midpoint o   the chord   xjic,    shown in the diagram.    If   f 
is nearly quadratic the point   x2   will be near the midpoint of this chord. 

In some instances one must be very close to the minimum point be- 
fore the level surfaces are elliptical in character.    For example in the two 
dimensional case the level surface of the function 

f(x,y) = (x-1)2 +100(y - x2)2 

is shape more like a banana than an ellipse and is accordingly called a 
banana function.    This function is used to illustrate difficulties that may 
arise in finding the minimum of a function by iterative procedur« Its 
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minimum point is obviously at the point   (1,1). 

In this paper we shall be concerned with linear iterations of the 
fnr-nn 

(7) "k+rVVk* 
Here   p     is a direction of correction ana   a,    is a scalar.    We normally 
choose   pk   in a direction of descent,  that is,  a direction   p.    such that 
f'(*k> p.) < 0.    If  f'(xkF Pk) > 0   we can replace   p,    by   -pk   to obtain a 
direction of descent.    This is equivalent to changing the sign of   a, .    For 
directions of descent the scalar   a.    is chosen to be positive.    If 
f'(xk> Pv) = 0   we set   ak=^   an<* Procee<i to tne next step.    This is equiva- 
lent to disregarding the direction   p..    If   f'(x,, p) = 0   for all   p,    then 
Vf'(xk) = 0   and   x.    is a critical point of   f.    It is a local minimum point 
if   f"(x,p)>0   for all   p/0. 

Perhaps the most obvious choice of   pk   is the direction   Pit="Vf(x, ) 
of steepest descent.    An iteration in which this choice is made at each 
step is called a gradient method.  As we shall see later, we can modify 
the gradient method in various ways so as to obtain more efficient al- 
gorithms. 

Having chosen the vector   pk   various rules can be given for choosing 
the scalar   ak   in the iteration (7).    Typical choices are the following 

(i)   Choose   a = a.    so as to minimize   f   along the line   x = xk+ap,. 
This involves some type of search routine unless a formula for   ak   can 
be given as in the quadratic case.    This value of  a    is called the optimal 
a.    Fortunately in most instances all that is n  eded is a rough estimate 
or the optimal   a. 

(ii)   Guess the value of  a.    If   f(x,+apk) > f(x,+2apk)   choose 
ak = 2a.    If on the other hand   f(xk+? p, ) < f(x, +aa)   choose   a. = a/2. 
Otherwise set   a, =a.    A judicious program of this type is usually effective. 

(iii)   Choose    ak=ck/dk,    where   ck=f'(xk,pk)   and   dk=f"(xk> pfc). 
This represents one linear Newton step for   f(xk+apk)   as a function of  a. 
In the quadratic case this choice o    a.    is optimal.    In order to avoid 
computation of second derivatives one may use the difference formula 

d, = 
£,(Wk'Pk,'f(VPk 

k *k 

for   dk.    If one restricts one-self to evaluations of functional values only 
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one can use the central differences. 

Ck = 
«VVk> - VjA)    ,    H-Vk'^H'^VVk»     , d^  -2  

2<rk ak 

Here   <r = J~t  ,    where   o-    is a small constant.    Near the minimum 

point   a,    should be of the same order of magnitude as   a, . 

3.    GRADIENT METHODS.    Recall the   a   solution the differential 
equations 

__=-vf(*) 
dt 

is a path of steepest descent.    It normally terminates at the minimum 
point of   f.    If we Ufa the Euler method for estimating a solution to this 
equation we obtain    ie iteration 

ViBV^'  Axk*-Atkvf(xk}- 

This iteration is the form 

with   a,= At .    This algorithm is called the gradient algorithm.    This 
derivation of the gradient algorithm suggests that we can select 
ak= constant in the iteration (8).    This choice is of the type   (ii)   given 
in the last section.    On the other hand we may choose   a^   optimally in 
the sense that   a=ajc   minimizes the function   f   on the line 
x=xk-ayf(xk).    This choice is excellent if the level surfaces of   f   are 
nearly spherical.    However if its level surfaces are elongated ellipsoids 
convergence will be very slow.    This fact is illustrated by the following 
two dimensional example, in which we minimize the function 

f(x,y) = i(x2+yy2) (v=.001). 

Starting with   (x ,y ) = (l,v)   we choose   a   = ßa  ,    where   afc   is optimal. 
This yields the iteration 

VrV^A- yk+rVßQkvyk 
where   a     minimizes   f  on the line   x= x, -ax, , y = y, - a \y,. 

x£+vy2 
A formula for   a,    is   a,  = -5 7-7- The number   N   of iterations 
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needed to obtain 
table. 

\+ tl<10 
-6 K+fn is given in the following 

ß .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 j 

N 2272 1843 1227 862 504 565 435 357 246 6908| 

This table shows that for this example the optimal choice   ß= 1   is the 
poorest of the   values of   ß    considered.    One should not conclude 
from this example that a = .9   is the best choice.    Examples can be 
constructed for which the choice   ß = .7   is preferable to    ß = .9. 
If conjugate gradients are used the solution can be obtained in two 
ste^s. 

The concept of the gradient is dependent in the metric used. 
If we change the metric as is the case when we transform coordinates 
the gradient is altered.    Analytically the gradient of   f   is a vector   g 
such that the directional derivate   f*(x, h)   of   f   at   x   is expressible 
in the form 

f»(x,h)= <g,h> 

where   <x, y>   is the inner product.    If we choose as our inner product 

< x, y > = x*K    y , 

where   H   is a positive definite symmetric matrix, then 

f»(x,h) *?f(x)*h = g*H_1h 

for all vectors   k.    In this event   H     g=yf(x)   and   g = Hyf(x)   is our 
gradient.    It follows that the algorithm 

(9) *k+. = vakHvf<x) 

is also a gradient algorithm.    In order to see a connection between 
the algorithms (8) and (9) select a matrix   M   such that   H = MM*. 
Under the transformation   x=My   the function   f(x)   becomes 
F(y) = f(My).    The gradient of   F   with respect to   y   is 

VF(y) = M*Vf(My) . 

Consequently the standard gradient algorithm for   y   is 

Inasmuch as   x = My   we have 

\U-U\n - Myk-akMM*Vf(Myk) = xk-akHvf(xk). 
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It follows that the generalized gradient algorithm (9) is the usual gradient 
algorithm in another coordinate system.   If we select  H   to be the inverse 
of the Hessian   f"(x0)   a* the minimum point   x ,    the level surfaces for 
F(y)= f(My)   with  MM* = f"(x )"*   become spherical in form near y = Mx   and 
the algorithm 

with  a  = 1   converges rapidly.   In fact it is normally quadratic.    Since 
x     is unknown this algorithm cannot be used.   However as an alternate 
procedure we can select a new   H   at each step giving us an algorithm of 
the form 

do) \H = V VV^V • 
The case   H    = f"(x. )    ,  a, = 1   is Newton's    algorithm as will be seen in 
the next section. 

4.    NEWTON'S ALGORITHM.    In discussing Newton's method it will 
be convenient at times to use the alternative symbol   f'(x)   for   Vf(x).   At 
a minimum point   x     of   f  we have   f'(x )= 0.    The problem at hand is 
therefore to find a solution of   f'(x) = 0.    If  x,    is an estimate of  x     our 
problem is therefore to solve for  h   in the equation 

f'(xk+h)=f'(xk)+f"(xk)h+rk(x,h) = 0 . 

This cannot be done exactly.   If we are near the solution the remainder 
term   r,    is small and we can obtain a good    stimate   h^  by disregarding 
r.    and solving the equation 

(11) ffx^ + f'(xk)h=0 

The  solution       is   h, = - f"(x, )    f (x, ).    This yields the iteration 

This algorithm is known as Newton's algorithm. It is of the form (10) with 
aj= 1   and  H, = f'(x, )"•'•   and is accordingly a generalized gradient method. 
It can be shown to have superlinear convergence if   f   is of class C"   and 
quadratic convergence if   f   is of class C". 

Newton' s method can be viewed as a minimization procedure as 
follows.    Given an estimate   x,    of our solution consider the Taylor ex- 
pansion 

f(xk+h) = flx^ + f(xk)*h +ih*f"(xk)h+Rk(h>. 
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Disregard the remainder   R^   and find the minimum   h,   of the quadratic 
function 

(13) Fk(h) = ffx^ + ffx^h +| h+f^h . 

Ac the minimum point the gradient of   F, (h)   with respect to   h   must 
vanish.    Hence   h     is a solution of the equation 

F^(h) = f«(xk)+f"(xk)h=0. 

Thiü equation is identical with equation (11).    In view of this result the 
Nekton algorithm (12) can be viewed as follows.    Select an initial point 
x..    Having obtained an estimate   x     of  x     select the next estimate 
xkrl = xk + ^k   kv choosing   h     to be the minimum of the second order 
approximation   Fj^h)   of   ffx^iFh)   given by equation (13).    Consequently 
Newton's method is determined by a sequence of minimizations of suitably 
chosen quadratic functions.    Accordingly it is appropriate to study ef- 
fective methods for minimizing quadratic functions.    This will be done 
in the sections that follow. 

As remarked above Newtons iteration is of the form 

xkti = Vhk'f,(xk)+Hklhk-ü 

with  H     = f"(x, ).    It can be shown that superlinear convergence is pre- 
served if we replace   H,    by any positive definite n.atrix such that   H. 
converges to   f"(x0)     .    One choice of   H,    is the inverse of the matrix 
A whose column vectors are 

f:(xk+<rkUiH'(xk) 
 £ !U L_ (j = 1 n) 

°k 

where   u ,.. . , u     are linearly independent unit vectors and   <r    converges 
to zero as   k   becomes infinite.    This yields a version of the secant method 
for solving the equation   f'(x) = 0. 

5.    MINIMIZATION OF QUADRATIC FUNCTIONS.   Our discussion 
of Newton's method suggests that efficient methods for obtaining the mini- 
mum of quadratic functions can be modified so as to obtain efficient 
methods for minimizing a nonquadratic function.    In order to apply this 
principle it is essential to develop methods for minimizing a quadratic 
function 

(13) F(x)= |x*Ax~ k*x +   constant. 

Here   A   is a positive definite symmetric matrix and   k   is a fixed vector. 
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The constant term is of no consequence.    Inasmuch as the gradient of   F 
is   F'(x)= Ax-k.    The problem of minimizing   F   is equivalent to the 
problem of solving the linear equation 

Ax = k. 

Of course this can be done by an elimination method.    There are various 
types of elimination methods, most of which can be viewed as special 
cases of the method of conjugate directions which we shall describe 
presently. 

The level surfaces   F(x)= constant form as one parameter family 
of similar ellipsoids whose common center is the minimum point   xQ   of 
F.   Accordingly the problem of minimizing   F   is equivalent to the geo- 
metric problem of finding the center of an ellipsoid. 

We have the following basic proper y of positive definite quadratic 
functions   F. 

The minimum points of   F   on parallel lines lie on an (n-1) plane 
irn„j   through the minimum point   xQ   of   F. 

This fact is shown schematically in the following diagram 

L 

Figure 2 
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Let   iui   x = x. rup   ue a line through   x     in the direction   p.    At the mini- 
mum point   x     the gradient   F'(x2) = Ax^-k   of   F   must be orthogonal to 
L   and hence to the vector   p.    The equation 

p*(Ax-k) = 0 

therefore holds when   x = x^.    This is the equation of an   (n-l)-plane v       through 
x,   having   Ap   is its normal.    Since   Ax = k   the minimum point   x     of F 
lies ir.   '     j.    If   L:   x = x tap   is a line parallel to   L,    the minimum 
point   x-   of   FonL    also lies in   irn_j   in view of the fact that 
F'(x2) = Ax^-k   is orthogonal to the direction   p   of   £.    From the equations 

p*(Ax2~k) r 0, p*(Ax -k) 

it is seen that   p*A(x2-x2) = 0«    It follows that the vector   q=x.~-x-?   satis- 
fies the equation 

(14) p*Aq = 0   . 

This relation expresses a geometrical phenomenon called "conjugacy". 
Accordingly we say that two vectors   p   and   q   are conjugate if the 
A-orthogonality relation (14) holds.    More generally a   k-plane   it,    is 
said to be conjugate to   p   if Ap   is normal to   ir, .    In particular the 
(n-1) - plane   ir    i   shown in Figure 2 is conjugate to   p. 

A set of vectors   p ,... , p     are said to be mutually conjugate if 

(15) p.*Apk=0(j^k)   ,    dk=p*Apk>0. 

The fact that   d> 0   excludes the vector   p   = l).   It is clear that vectors 
p. ,».., p     are linearly independent and hence form a basis for our 
Euclidean n-space.    The vectors   Ap.,... ,Ap,    also form a basis called 
the conjugate basis of the basis   p,,...,p . 

Suppose that we have given a set of mutually conjugate vectors 
p.,...,p .    Given a point  x.,    the vectors   p ,...,p     determine a 
, 1   , n 1 Ik 
k-plane 

V    x = xi+Qipi+-"+\pk 

where   a   ,. . . , a      are arbitrary parameters.    It wiU be convenient to 
call the direction 

r = - F'(x) = k-Ak 

of steepest descent the residual of   F   at   x.    At the minimum point 

(i6) VfVaiV-+Vk 
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of   F   on   ir,    the direction of steepest descent is 

a?) rk+i=k-Ax
k+i=rraiApr •••" akApk- 

It is perpendicular to   ir,    and hence to each of the vectors   p , . . ., p  . 
Hence, by (15) l k 

0 = P* ri _L, = P*r, -a.p* Ap.. 
3    k+1       3   1    3 3      3 

The scalars   a , . . . , a     are given by the formula 

(18) a. = c7d. ,  c.rp^r^d.rp+Ap.. 
3      J   3       3      J   1    J     3       J 

Observe further that if we set 

Xk=Xl + alPl+—+VlPk-l 

the   (k-h)-plane 

X=X,+Q, p.   + +a   p, 
n     h h K. A 

is a subplane of   ir   .    Hence 

*k+isVVh+"-+Vk 
minimizes   F   on this subplane it follows that (18)   holds with   c.= p*r 
(j = h,. .. ,p).    We have accordingly the relations 

(19) c.= p*r, (h = l,...,r) 
3       3   h 

Consequently equations (18) are equivalent to the equations 

(20) a.= c./d. ,    c.= p*r.   ,    d.= p*Ap.. 

We normally use equations (20) to determine the scalar   a.   in equation (16). 

We are now in a position to establish the following proposition. 

Let mutually conjugate vectors   p.,,.., p     be given.    Starting with 
an initial point   x.   the minimum point of   F   is obtained by minimizing   F 
successively in the direction   p , .. . , p . 

This situation is shown schematically in Figure 3.    At the 
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Figure 3 

k-th step we minimize   F    *>n the line   x = x^+ap, .    The minimum point 
x,     = x+a p     of   F   on the line is oLLained when   a     is given by the 
formula (20) with j = k.    In view of the results given above the point x 
obtained by these successive minimizations is the minimum point of  F   on 
the k-plane   ir, .    Consequently point   x obtained on the n-th step is the 
minimum point x     of   F   on our n-space, 

o 

The proposition given above ran be formalized as an algorithm as 
follows 

(a) select an initial point   x     and an initial 
direction   p 

(b) Given   x,    and   p     find the minimum point 

xk+i
=V\pk 

on the line   x = x, tap .    Here   a     is given by 

vW VPJV 
dk=pkApk 

(c)   Select   p conjugate to   p ,.. ., p . 
KT x i K 

This algorithm terminates at the   m-th step if   r = 0.    We call 
an algorithm of this type a method of conjugate directions.    Various al- 
gorithms of this type will be obtained by specifying formulas for computing 
the conjugate directions   p ,. .., p . 

6.    METHOD OF CONJUGATE GRADIENTS.   Perhaps the simplest 
conjugate direction method is the method of conjugate gradients.    It can bf 
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described as follows:   select an initial point   x     and compute its negative 
gradient   p   = -F'(x ).    Find the minimum point   x     of   F   on the line 
x = x ■tup .    Let   ir be the (n-l)-plane through   x     conjugate to the 
vector   p .    It contains the minimum point   x     of   F.    Next compute the 
negative gradient   p     of   F   at   x     in the conjugate (n-l)-plane   ir   _.. 
Presently a formula for   p     will be given.    For the moment it suffices 
to describe   p     as determining the direction of steepest descent of   F   at 
x     in   IT        .    We now minimize   F   along the line   x = x +a p?   to obtain 
a next estimate   x     of our solution.    The (n-2)-plane   ir    ?   through   x 
and conjugate to   p     and   p     contains the minimum point   x     of   F.  Re- 
peat this process.    Having obtained the point   x^   select the direction   p 
of steepest descent of   F   at   x     in the (n-k+l)-plane   ir through 
x^   conjugate to   p , ...,p      .    The next estimate   x,        minimizes   F 
on the line   x = x tap .    Since each of these planes contain the minimum 
point   x     of   F   and their dimensionality is decreased by one at each step 
the solution   x     is obtained in at most   n   steps. o r 

The algorithm just stated is somewhat involved.    Fortunately,  in 
its application one doest not need to determine the planes ir    ., ir    ?,  
explicitly.    All that is needed are the recursion formulas 

|F'(x'+l)|2 

Pi = -F'<xi>' pk+i - -F">w+ V(t) |p* 
for the negative conjugate gradients of   F.    The justification for these 
formulas can be found in the references given below. 

According to these remarks th"» conjugate gradient algorithm 
(cg-algorithm) can be pu.. > *l*e following form:   select an initial point   x 
and set   p=- F'(x ).    For   k= 1,2,3...    perform the iteration 

(i)   Find the minimum point   x of   F on th? 
line x = x  +ap . l 

(ii)   Set   Pktl5-F^+])t    LliW|Pk. 
lF'(xk)| 

If no roundoff errors are encountered the solution is obtained in   m < n 
steps.    In fact the number of steps needed cannot exceed the number of 
distinct eigenvalues of the Hessian   F"(x) = A   of   F.    If the eigenvalues 
of  A   are clustered good estimates of the minimum are obtained in a 
number of steps equal to the number of clusters. 

Since   F   is quadratic the minimum of   F(x +    ap )   is given by the 
formula   a = a, ,    where k 
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V   F-»(VPk)    -    p*Apk    '    V"FtV- 

Using this formula the   cg-algorithm (21) is defined by the following formulas 

(22a) xl arbitrary,    r^ -F'fXj) ,  p^ r    ,  s1 = Ap1 

(22b)      xk+r Wk' rk+i= Wk • Pk+i= Vi+Vk 
r 2 

(22c) sk = Apk,  V^VV^k'  VVVV      |7p!    * 

These and other equivalent formulas were given by Hestenes and Stiefel. 

The cg-algorithm (21) is applicable at once to the nonquadratic ca.'se 
if one introduces a linear search routine for minimizing   F(x +ap, ).    This 
variation was introduced by Fletcher and Reeves and accordingly is known 
as the Fletcher-Reeves algorithm.    After n- steps the algorithm is to be 
restarted.    One can also modify the algorithm (22) so as to be applicable 
to nonquadratic functions without the computations of second derivatives. 
This can be done by using the difference formula 

r-(VVl|-F.(*,) 
(23) sk= .   V<r/|Pkl 

k 

for   s     in place of the formula   s   = Ap .    Here   a    is a small positive 
constant.    The value   <r = 10 "^   has been used effectively by the author 
on standard test problems. 

There is an alternative version of the   cg-algorithm which we shall 
call the method of alternate minimization.   In this version we introduce 
the auxiliary function 

F(x) = | |F'(x)f\ 

Clearly   F(x)   has the same minimum point as   F   starting with an initial 
pointy x .    Set   *, = x     and   p =-F'(x ).    We find the minimum points   x 
and   x?   of   F   and   F on the line   x = x +ap ,    Setting   p   = -F'(x )   we 
minimize   F   on the line   x = x^ap,   to obtain   x,.    We next minimize 
F   on the line joining   x     to   x     to obtain   x  .    Setting   p = -F'(x^) we 
find the minimum point   x.   of   F   on the line   x = x^+ap,   and determine 

' •»4 - 3        3 the minimum point   x     on the line joi- ing   x     to   x .     Continuing this 
procedure    of alternate minimizations of   F   on   x = x, -hi p,    with 
p = - F'(x )   and of  F   on the line joining   x   to   x,        we reach a 
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Situation in which   x,       = JC      .    Then the point   x, ,.    is the common mini- 
mum point of  F   and    F. 

The extension of alternate minimizations to nonquadratic functions is 
immediate. 

7.   METHOD OF PARALLEL PLANES.    The conjugate gradient 
method can be viewed as a special case of a general method which we 
shall call the method of parallel planes.    It can bo described as follows. 
Select an initial point   x1    and find the minimum point   x?   of   F   on a line 
iTi.    Next obtain the minimum point   x?   of   F   on a line     ir,    parallel to 
and distinct from   ir..    Then minimize     F   on the line through the point 
x     and  x?.    The minimum point   x     on this line minimizes   F   on the 
2-plane   ir?   spanning   ir,    and  H■..    We now proceed to find the minimum 
point   x,   on a 2-plane   t^.    We then determine the minimum point   x^   of 
F   on the 3-plane   ir,   spanning   v^   and   ir2 by minimizing   F   on the line 
through   x,   and  x?. Proceeding in this manner we obtain the point.» 

x2»x3' * * *' xn+ 1    on 8uccessible planes   ifi, *>,..., ir.    Since   tr     is 
the whole space the minimum point   xR+ ,    of   F   on   ir     is the desired 
minimum point of   F. 

The method of parallel planes  can be formalized as follows: 

(i)   Select an initial point   x,   and an initial direction 
p. = u..    Find the minimum point 

(24a) x2 = x] + a1p1 

of   F   on the 1-plane ir.:   x = x,+cup, . 

(ii)   Having obtained the minimum point 

(24b) xk = x1 + a,p] + ... + ak_1pk_1 

of   F   on the   (k-1)- plane 

(24c) Vl:   x«x1 + Q1P1+...+ ak.1Pk.J 

choose a vector   u     not in   ir and a point   x 
in   ir,_1.    On the (k-1)-plane 

(24d) i^:   x^+u^a^j + .^+a^jP^j 

parallel to   w find the minimum point 
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(24c) 

(24f) 

xk=VVaklPl+— + \,k-lPk-l 
of   F   and set 

k-' 

VVW jEi(VVpj+V*r 
Finally obtain the minimum point 

(24g) \+l
=Xk+akPk=Xl+alPl+ —+akPk 

of   F   on the line   x = x,+a,p,    and hence on the k-plane 

Vx=Vaipi+—+akpk- 
The vectors   p ,..., p     generated by this algorithm are mutually 

conjugate.    The conjugacy 01   p   = x -x     to   p.(j<k)   follows from the fact 
that   x%    and   x,   respectively minimize   F   on the parallel lines x=x,+ap. 
and  x = x,+ap..   In as much as the vectors   p , , .., p  _     are mutually 
conjugate the minimum point   x,    of   F   on   if can be obtained by a 
cd-process with   x    = x_+u     as the initial point.    In the event   x, = x    , 
where   x    , ;..,x       are generated by the cd-algorithm 

(2. 5) x,    . ,    = x, . + a, .p.   minimizes   F(x  . + ap.)   . 
k,j+l       kj        kjrj xj       j 

When this algorithm for computing   x   in (24e) is used, the method 
(24) of parallel r>lane is carried out by successive minimization along 
suitably ci.ocen lines. 

The method algorithm (24) combined with (25) can be used for finding 
the minimum of a nonquadratic function of class C".     In this case one 
restarts after the point   x   ,,   has been obtained.    The point   x   ,,    as the 

„j-i ,n+l. 
new initial point   x .    In this manner one can obtain an algorithm based 
on the computation of functional values only.    Methods of this nature have 
been used by Powell,   Zangwill and Chazan and Miranker. 

8.    METHOD OF PARALLEL DISPLACEMENTS.    If in the algorithm 
(24) combined with (25j.we select the point   x,   to be the initial point   x 
the computation can be carried out in parallel so as to yield the following 
algorithm.    Select (n+l)-independent points   x ,x    ,x    , ...,x    ,  that is, 
points such that the vectors   u = x    -x     (k= 1,..., n)   are linearly inde- 
pendent.    Select   p   = x    -x     and compute the minimum points 
x.= x, _, x.,,, x„ ,,..., x      of F   on the   n   parallel lines 

£      \L     Lc     5c x\.C 

x = x    +apt (j = 1,. ..,n). 
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Observe that the points x , x ?, x .,..., x are independent points which 
determine the (n-l)-plane ir _ conjugate to p passing through the mini- 
mum point   x0   of   F.    We now repeat our procedure in   ir     .   and set 
p7= x    -x     and compute the minimum points   x = x    , x    , x    , . 

the n-" on 1 parallel lines 
'Xn3   °f 

x=x.2+ap2 (j= 2,. . . ,n). 

The (n-1) points   x , x    ,..., x       are independent and determine the 
(n-2)-plane    ir conjugate to   p   and   p .    Again the minimum point of 
F   lies in   ir    ?.    Continuing in this manner we obtain the minimum point 

ofT   in n-steps.    The iteration is illustrated schematically for = x 
the case   n= 3. 

Figure 4 

If 

It is clear that this algorithm can be modified so as to be applicable 
to nonquadratic functions. 

9.    CONJUGATE GRAM-SCHMIDT PROCESSES.  The parallel plane 
algorithm (24) described above is not in the most convenient computational 
form.   In order to outain a more convenient form observe that by virtue of 
(24f) with   x- = x     the vectors   p , p ,..., are given by the algorithm 

(26a) prui'pk=ukiV"- +\k-ipk-r 
where   b      is chosen so that   p     is conjugate to   p..    We have accordingly 3                                          uW            =                 3 

(26b) bk. = . JLp)  t    d.,-p.*Ap.   (j=l k-1). 

The equations (26) define a conjugate Gram Schmidt Process for transforming 
a set of  n   linearly independent vectors   u , . . . , u     into a set of   n   mutually 
conjugate vectors   p., . . ., p .  Using this procedure to generate the mutually 

In 
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conjugate vectors appearing in the conjugate direction algorithm we obtain 
the following algorithm which we shall call the conjugate Gram Schmidt 
process (CGS-process). 

(i)   Starting with an initial point   x     and an initial direction 
p   = u     compute 

(27a) ri=^F«(x1) ,  s^ Ap^ Cj = pfr^ d^pij^ ,  aJ= cl/d1 

and obtain the point 

(27b) x2 = x1 + aJpi 

(ii)   For   k = 2, 3, . . .   choose   u     such that   u , . . . , u    are 
linearly independent.    Compute 

(27c) bk. = -u*s./d. (j= l,...,k-l) 

(27d) pk=V f=i VJ ' sk = Apk 
(2?/l    ,   x. •% = P'*ri'  ^ = Pk Sk '  \ = Ck/dk and find the next point 

(27f) xk+i=VW 
The point   x    ,  obtained in this manner is the minimum point of our 

n+1 ^ quadratic function       F. 

Observe that the vector   s     appearing in this algorithm can be com- 
puted by the L> mala 

F'<vvy-F,|*i> <28> v ;-  • %-T^I 
where   cr     is constar t.    When this formula   for   s,    is used the CGS-algorithm 
is applicable to nonquadratic functions.    As in the cg-algorithm we restart 
after   n   steps..    One can modify the algorithm still further so as to express 
c, , d, . a, , b, .   in terms of functional values only.    When this is done one ob- 

K.        K        k        K'l tains an effective algorithm for minimizing a function without computation 
of derivatives.    This algorithm has been used effectively by Dennemeyer 
and Maskini. 

10.    MATRICES ASSOCIATED WITH MUTUALLY CONJUGATE VECTORS. 
Lei   A   be the positive definite matrix associated with ^he quadratic function F. 
Let   H   be a second positive matrix.    We begin with the following result. 
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Lemma.    If   p   is a nonnull vector,    s = Ap,  q = Hs,d = p*s, 
5 = q*s   and  a = d/6,    then the vector 

p = p-aq 

is conjugate to   p.    Moreover if   cr>0   the matrix 

qq*      pp* pp* 
(29) H = H -  ^- + *jp +   o- *jp- 

is a positive definite matrix such that 

(30) Hs = HAp = p . 

Since   p*Ap = s*(p-aq) = d-a& = 0   it follows that   p   is conjugate to 
p   and orthogonal to   s.    By the computations 

Hs = Hs - SäfS +   EEl£+E£i£= q-q+p = p 
6 da 

it is seen that (30) holds.    Observe that the matrix 

M - H - ^- 
o 

has the rank n-1  inasmuch as   Ms = q-q= 0.    Hence   v*Mv > 0   unless   v 
is a multiple of s.  From this result we see that 

(v*pr      (v*p) 
v*Hv = v*Mv + ^-r^ + or —r& 

d Q 

is positive when   v   is not a multiple of   s.    If  v = ßs   (ß^O)   it has the 
value   ß^d> 0.    Hence   H   is positive definite and the lemma is established, 

It is clear that if   p = 0,    then   H   is positive definite for all values 
of   cr.    If  p/  0   there is a least numbe:    <rQ   such that   H   is positive 
definite whenever   cr > a .    However v,e shall restrict oursel-, es to the case 
in which   <r>0.    Observe that the matrix  H   is unaltered if we replace   p 
by   pp»    where   p   is a nonnull scale factor. 

Of special interest is the case   cr=0   and   cr = 6/d. In these cases 
H   is given by the formulas 

(31) H = H - 9jL  +   EL (case cr = 0) 

(32) 

6 d 

H = H - E2Ü2L% £p (case <r =6/0) 
d 

Given a set of mutually conjugate vectors   p ,..., Pn>    a set of 
nonnegative numbers   cr ,... , cr     and a positive definite matrix   H   the 
algorithm 
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^k^k      Pk^k ^k + l^k + 1 
,33a, V^^rVf'f'' ■JS

TT
11 

k k k 
with 

(33b) sk= Apk, qk= Hk sk ,  dk=p* sk ,  6*= % sk . ak= d^ 

(33C) Pk+l=Pk-Qkqk 

defines a sequence of positive definite matrices   H = H,H  ,... ,H 
such that 

(34, H^yE^Ap.-p. (3 = l.-.k, 

and hence such that   H       = A    .    The fact that   H »s positive definite 
follows from the last lemma.    This lemma also tells us that (34) holds 
when j = k.    Hence (34) holds when k = 1.    If it holds when   k < m   we 
have for   j < m 

q*  s.= s* H    s. = s* p. = 0,  p*  s. = p*  s.-a    q*  s. = 0 
m j      m   m j        m j m   j      m   j    m   m j 

q    q* s.      p    p* s. p    p* s. 
TT mmimmi m m j 

H s.= H    s. *■ +   - i+o-      - L= p. , 
m+1  j      m j 6 d. m       d. j J n j j J 

Hence (34) holds,  as stated.   As a consequence of (34) we have 

05) 8i\+i
=o'8rik«=o(^k)' 

(36) s*H, , ,v = 0   whenever   p*v = 0. 
J    k+1 rj 

In addition if v, is a vector such that   p   = H v     then   v     is orthogonal to 
Pi» ...»p,    ,,    as one readily verifies. 

X is.m' X 

An interesting special case of the algorithm (33) is the case in which 
o\ = 0   and   p,    ,    coincides with   p, ,,.   In this event we have 

k k+1 k+1 

<37a) pk+i= pk"Qk\ ' Qk= V6k' \+i = Apk+i 

s*Hi 
(37b) \+i=Hk+isk+r H8k+i+Pkqk» V" ~T 

tHsk+i 

k 
with 
algor 
p = Hr     and   r , r , are generated by the formulas 

q,= Hs = HAp     initiallv.    This is ->ne form of the conjugate gradient 
rithm for generating mutually conjugate vectors. If   r = - F'(x ), 

208 

/ 



^ rk+rW vW ck=pkrk 
then  p,    ,    is given by the alternative formula 

k+1 

(39) Pk+l = Hk+<rk+l. 

This can be seen by induction with the help of equations (33), (37) 
and (38).    From these results we obtain the following form of the conjugate 
gradient algorithm. 

Given an initial point   x     and a positive definite matrix   H   set 
r = - F'(x ), p=Hr , H =H   proceed in the k-th step as follows 

(40a) Choose   x, ,    = x, +a, p,    so as wO 
...        ~, »        ]F+1 .     K     krk minimize   F(x +ap )   and set 

(40b) s    =  
k ak 

(40C) \ = Hk8k'  V^W^'k 
qkqk    Pkpk 

(40d> Hk+i
=IVv + "*5r ' pk+rV

F,(xk+i»- k k 

This form of the cg-algorithm is applicable at once to nonquadratic case 
by introducing method for minimizing   F(x +a p ).    In the quadratic case 
this minimum can be obtained by a formula.    This algorithm is known as 
the Davidon-Fletcher-Poweli algorithm.   It was suggested originally by 
Davidon.    If we use the formula (33a) for   H with   <r > 0   we obtain 
the same directions   p , p ,....    However their lengths have been al- 
i 3 1 ^ terea. 

An alternate form is obtained by replacing (40a) and (40b)   by the 
computations 

F'<VVk» - F,(v 
v —_ , v ^ 

Cks-PJF'(X1)' dk=pk\'   \-cv/\ 

xk+l = \ + akpk- 

Here   <r   is a small positive constant.    In this modification the 
point   x, ,.= \+\Pw   minimizes   F(x +ap )   in the quadratic case and is 
an estimate of the minimum point in the nonquadratic case.    This 
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procedure avoids search routines .    Various rules can be given for the 
chcce of   <r. 

In a similar manner the conjugate Gram Schmidt routine can be put 
in matrix form so as to obtain alternative algorithms for minimizing 
quadratic and nonquadratic functions.    All these algorithms can be viewed 
as modifications of Newton's method and the secant method, and have 
similar convergence properties. 
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(CLYDE) 

R. I. ISAKOWER and R. E. BARNAS 

Scientific and Engineering Application Division 
Management information Systems Directorate 

Picatinny Arsenal, Dover, New Jersey 

ABSTRACT 

CLYDE is a computergraphics language for y_our design equations. 
It is the aftermath of the PDQ series, providing an interactive graphics 
solution to an important group of second and fourth order partial diff- 
erential equations. These equations appear in almost every branch of 
applied mathematics: governing the solutions to design problems in heat 
transfer, stress analysis, and potential fields (electric, magnetic, 
electrostatic, gravitation, velocity in irrotational flow, etc . . .). 
This document is intended as a press release - to pictorially reveal the 
diverse engineering applications available. CLYDE was written for a CDC 
6500/1700/274 facility operating under SCOPE 3.3, IGS V.2 employing 32 
overlays and 50K bytes of storage. 
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THE PROBLEM 

a.  Background and Capabilities^ 

Most munitions design is governed by the 
classical ideas and equations of continuum mechan- 
ics.  Through the descriptive differential equations 
of elasticity, classical mechanics, electromagnetic 
theory, fluid mechanics, etc., the working state 
of munition items may be accurately studied.  Phys- 
ical phenomena in continous systems - elastic bodies, 
fluids - are usually described by partial differen- 
tial equations with their associated boundary or 
initial conditions.  Closed form solutions to these 
PDE's are rarely available in the design room with 
its configurations that perversely do not conform 
to classical text book illustrations.  Therefore, 
in the harsh work of reality, recourse to numerical 
solutions is an absolute necessity.  This document 
describes the latest interactive graphics implementa- 
tion of a numerical solution (finite differences) 
to an important class of boundary value problems 
involving the second order equations 

v
2
f . ALL + B34- = D(x, y) 

ax 3y" 

c 2 

V f = ALJ- + ü'ti- + £ -i£- =  D(r, z) 
3z 3r r   sr 

and the  fourth order equation. 

/f.LL ♦2&lT+^-g(*.y) 
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Finite difference approximations are made 
of the derivatives, in either cartesian or cylin- 
drical coordinates, employing a generalized irregular 
star for the "computation stencil".  Program options 
include variable grid size, curved boundaries, vari- 
able boundary conditions, and domain loading (stress 
analysis), generalized equation coefficients, 
"mirror" boundary edges for repeating sections 
punched deck and print-out of results, and hard copy 
(plotter) of problem domain with contour maps of 
selected values of the solved variable.  In addition, 
the user may specify a finer mesh size in critical 
regions, modify the scale of the problem picture, 
change the boundary of the problem area (or redraw 
it completely), and change boundary conditions and 
problem loading.  It is possible to pass a plane 
(shown as a straight line) through the picture of 
the problem. The variation or plot of the solved 
variable along that plane is displayed on the screen. 

Use of the program is illustrated with problems 
in steady state temperature distribution and stress 
analysis of laterally loaded flat plates. Addition 
examples are shown in the Appendix - of particular 
interest is the membrane or soap film analogy of 
the torsion of bars and shafts. 

b. General Method of Solutions; 

The physical description of the problem to be 
solved is (generally) inputted to the computer pro- 
gram on punched cards. The picture of the problem 
then appears on the screen and the interactive 
graphics solution is airborne. 

The computer program overlays the domain of the 
problem with a rectangular net of vertical and horizon- 
tal grid lines. To conserve the graphics screen 
refresh memory these grid lines are not displayed 
on the CRT, only their intersections.  (Again to 
conserve refresh memory, only a "repeating section" 
is displayed, thus taking advantage of any symmetry 
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of the problem).  The intersections of the grid lines 
with the boundaries of the problem are called bound- 
ary nodes and are shown as little circles. The inter- 
sections of ehe vertical and horizontal grid lines 
are called domain nodes and are shown as little 
crosses.  It is at these little crosses, within 
the problem area, that the finite difference approxi- 
mations (algebraic expressions) are applied.  But 
first, the domain nodes (crosses) that are not with- 
in the problem area must be eliminated. A graphics 
cor"nand on the CRT is used to automatically elimin- 
ate most of the crosses outside the area. The light 
pen is then used to selectively eliminate those crosses 
inside holes in the problem and within overhanging 
portions of the problem area. 

When the designer is satisfied that only the 
relevant domain nodes (crosses) are left, he then 
instructs the progam to solve the set of algebraic 
equations (one per node) that was used to approximate 
the original partial differential equation. The 
range of values of the parameter (just solved 
for) is flashed on the screen and the designer can 
display contour maps of desired values.  A Calcomp 
plot of the full area is optionally available. 

If desired, the graphics designer may redesign 
the problem at the screen (problem contour, boundary 
conditions, equation coefficients, etc), and re- 
solve the "new" design problem. 

Step-by-step illustrations of the abcve procedure 
to solve relevant design problems follov-. 
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HEAT TRANSFER 

The steady state temperature distribution in 
a circular plate with irr^qular perforations is 
studied on the following tages. The outer circum- 
ference of the plate is maintained at 0 degrees, 
the contours of the two inner circular perforations 
at 50 degrees, while the contour of the double-hole- 
slot perforation is constant at 100 degrees. The 
problem is to determine the temperature distribution 
throughout the plate. 
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PLATE IS SYMMETRICAL.  ONLY 
ONE QUADRANT NJ1ED BE EXAMINED. 

k-4-f—t 
4 ^ 4 

OVERLAY PROBLEM AREA WITH 
RECTANGULAR NET OP GRID LINES, 
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ONLY INTERSECTIONS OF 
VERTICAL AND HORIZONTAL GRID 
LINES ARE SHOWN ( AS CROSSES) 
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GAIN RESOLUTION WITH FINER 
MESH OVER CRITICAL AREA. 

1 
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AUTOMATIC ELIMATION OF MOST 
INNER DOMAIN NODES (CROSSES) 
OUTSIDE OF PROBLEil AREA. 
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LIGHT PEN ELIMINATION OF 
CROSSES IN HOLES & CREVICES. 
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0 0 0 0 0 0 0 

i0.00000 
20.00000 
30.00000 
40.00000 
50.00000 
60.00000 
70.00000 
80.00000 
90.00000 

PROBLEM SOLVED, FOLLOWPn RV 
CONTOUR MAPPING DISPLAY OF 
SELECTED VALUES. 

ff 
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CONTOUR MAP OF ENTIRE PLATE 
WITH NODES DISPLAYED. 
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Steady State Temperature dis- 
tribution within a circular "holed" 
plate with varying boundary temper- 
atures, showing contour maps of 
lines of constant temperature. 

10-00000 
80.00000 
30.00000 
40.00000 
60.00000 
604X1000 
10.00000 
00.00000 
90.00000 

MTmS°SP
UR ^P 0F ENTIRE PLAT* 

WITH NODES SUPPRESSED. 
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2.  Plate Stress Analysis 

The deflection (w) of a thin plate loaded normal 
to its plane is described by the fourth order partial 
differential equation: 

3x4 9x2SY2    3Y4 0 

Unfortunately, because of the many configurations 
possible, a generalized finite difference operator 
for an irregular boundary problem perversely resists 
formulation.  But despair ye not - no copout is 
forthcoming  

It is possible to replace the fourth order equa- 
tion with two equations of the second order which 
represent the deflections of a membrane: 

92M     ,  92M   u 

9x2        9Y2 

a2w     32W + 
9xz      3Y 

The two equations are solved sequentially (not 
simultaneously). 

An arbitrarily contoured plate, simply supported 
at the edges, is loaded (at the Graphics screen) with 
three different valued loads.  The hard copy output 
of the solution procedure follow. 
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IRREGULAR FLAT  PLATE 
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-200.0000 

200.0000 

-150.0000 

LOADING IS COMPLETE. 
UP TO 26 DIFFERENT LOAD 
VALUES ARE POSSIBLE. 
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CONTOUR MAP OF SELECTED 
RESULTANT PLATE MOMENTS. 
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VIEWING PLANE PASSED THROUGH 
PLATE. MOMENT DISTRIBUTION 
ALONG THAT PLANE IS "SCALED 
UP" FOR VIEWING PURPOSES. 
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CONTOUR  MAP  OF  RESULTANT 
PLATE  DEFLECTION. 
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AGAIN A VIEWING PLANE IS 
PASSED THROUGH THE PLATE... 
AND NOW THE DEFLECTION IS DIS- 
PLAYED "SCALED UP". 
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THE DEPENDENT VARIABLE IN 
THIS SHAFT TORSION EXAMPLE IS THE 
AIRY STRESS FUNCTION if).     THE 
RATE OF CHANGE OF THIS STRESS 
FUNCTION IS DIRECTLY PROPORTION- 
AL TO THE TWIST-INDUCED SHEAR 
STRESS.  CONTOUR LINES OF SOLVED 
CONSTANT STRESS FUNCTION VALUES 
WFRE PLOTTED AT EQUALLY SPACED 
VA JUES OF THE AIRY STRESS 
FUNCTION.  THEREFORE, THE SPAC- 
INGS OF THE LINES ARE INVERSELY 
PORPORTIONAL TO THE SHEAR 
STRESSES.  IN OTHER WORDS, THE 
CLOSER THE LINES - THE HIGHER 
THE SHEAR STRESS. 

TORSION OF PRISMATIC BAR 
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IN THE FIRST MAP IT MAY 
BE SEEN THAT THE INTERIOR RE- 
ENTRANT CORNERS OF THE KEYWAYS 
ARE STRESS RAISERS.  THE SECOND 
MAP SHOWS A MODIFICATION OF THE 
SHAFT CONTOUR AND THE RESULTING 
(IMPROVED) STRESS FLOW.  THE 
CONTOUR MODIFICATION WAS EFFEC- 
TUATED AT THE CONSOLE BY IN- 
SERTING FILLETS INTO THE KEY- 
WAYS* CORNERS. 

REDESIGNED SHAFT OUTPUT 1 
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The intersection of the grid lines with the 
boundaries of the domain are called boundary nodes. 
The intersections of the grid lines with each other 
within the problem domain are called inner domain nodes. 
It is at these inner domain nodes that the finite 
difference approximations are applied.  The approximation 
of the partial differential equation with the proper 
finite difference operators replaces the PDE with a 
set of subsidiary linear algebraic equations - one at 
each inner domain node.  For the practical application 
of the method, it must be capable of solving problems 
whose boundaries may be curved.  In such cases, 
boundary nodes are not all exactly h units away from 
an inner node as is the case between adjacent inner 
nodes.  The finite difference approximation (of the 
harmonic operator) at each inner node involves not 
only the variable value at that node and at the four 
surrounding nodes (above, below, left and right) but 
also the distance between these four surrounding nodes 
and the inner node - and at the boundaries these dis- 
tances, quite likely, vary unpredictably.  Compensation 
for the variation of these distances must be included 
in the finite difference solution.  CLYDE represents 
the problem variable by a second degree polynomial m 
two variables, and employs a generalized irregular star 
in all directions for each inner node.  In practice, 
one should not select such a coarse grid that more than 
(or even) two arms of the star are irregular (or less 
than h units in length).  The generalized star permits 
(and automatically compensates for) a variation in length 
of any of the four arms radiating from a node.  For no 
variation in any arm, the algorithm reduces exactly to 
the standard harmonic "computation stencil". 
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MATHEMATICAL MODEL 

As the term implies, boundary value problems are 
those for which conditions are known at the boundaries. 
These conditions may be the value of the problem 
variable itself (temperature, for example), the normal 
gradient (or variable slope), or higher derivatives of 
the problem variable.  For some problems, mixed boundary 
conditions may have to be specified:  different 
conditions at different parts of the boundary. CLYDE 
solves those problems for which the problem variable, 
itself, is known at the boundary. 

Given sets of equally spaced arguments and 
corresponding tables of function values the finite 
difference analyst may employ forward, central, and 
backward difference operators. CLYDE is based upon 
the central difference operators~Eo approximate each 
differential operator in the equation. 

The problem domain is overlaid with an appropriately 
selected grid. There are many shapes (and sizes) of 
overlaying cartesian and polar coordinate grids: 

rectangular.. 
square.. 
equilateral - triangular.. 
equilangular - hexagonal.. 
oblique.. 

CLYDE uses a constant size (throughout the area of 
the problem) square grid for which the percentage errors 
are of the grid size squared (h* ) .  This grid or net 
consists of parallel vertical lines (spaced h units 
apart) and parallel horizontal lines (h units apart) which 
blanket the problem area from left-to-right and bottom- 
to -top. 
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CONSIDER THE GENERAL EXPRESSION: 

IN THE7?.£.X COORDINATE SYSTEM, 

WHERE A,B,C,D ARE ARBITRARY CONSTANTS. 

WHEN C*0, V2f REDUCES TO A TWO COORDINATE 

SYSTEM, SAY IN X ANDY: 

V2f«A^2+ B^2«D     ..EQ(2) 

USING CENTRAL DIFFERENCES .THE FINITE 

DIFFERENCE APPROXIMATIONS TO THE PARTIAL 

DIFFERENTIAL OPERATORS, OF THE FUNCTION 

f, AT REPRESENTATIVE 

NODE 0 ARE • 

d*     2hx 
1    (f.-fJ 'T7-2R7 (f«-« 

4!Ls-JL-(f(-2f0+f5) 
ox2     ht 

dy2" h« (f,-2f0tf4) 
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hy ■ h COMPUTATION   STENCIL 
AT NODE 0 

I.HARMONIC OPERATOR FOR SQUARE GRID 

„?..   A ö f   IIBöf      ^ 
Vf'Aäx* + Bd~*D 
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FOR A SQUARE GRID,hx= hy = h , AND THE HARMONIC 

OPERATOR V*f BECOMES : 

h2V2f0«[A(f(+fa) + B(f2+f4)-(A+B)2f0J«h2D 
..EQ(3) 

SEE FIG.I 

THE NUMERICAL TREATMENT OF AN IRREGULAR 

STAR (h,*h2*h3?fch4) REPRESENTS THE FUNCTION f, 

NEAR THF REPRESENTATIVE   NODE 0, BY A SECOND 

DEGREE POLYNOMIAL IN X AND Y 

f (X ,Y) »f0+ a,X*a2Y t a5 X*+ a4YVa9XY 

EVALUATING THIS POLYNOMIAL AT THE NEIGHBORING 

NODES (1,2,3,4) PRODUCE THE FOLLOWING SET OF 

EQUATIONS: 

f, sf0 + a, h, + a3K2 

f2
a fo + a2h2+ a4h2 

f5« f0-Qi h5 + a3h3 

2 
Us fo■"• Q2 h« + cuh* 
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WHICH ARE THEN SOLVED FOR d3 AND d4,WHICH 

ARE NECESSARY TO SATISFY THE HARMONIC 

OPERATOR V*f, SINCE • 

|f-a1+2a3X + a5Y,-|^-2«2a3 

4L.a2+2a4Y + a9X, -^f2» 2a4 

AND 

V*f* A (2a3)+B (2a4) 

PERFORMING THE NECESSARY ALGEBRAIC OPER 

ATIONS, SUBSTITUTING RESULTS, COLLECTING 

TERMS »AND USING THE FOLLOWING RATIOS 

P|     h 
b2 « hi_ 

h b4- 
h4 

9 
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IRREGULAR STAR AT NODE 0 
a 

NEIGHBORING NODES (1,2,3,4,) 

COMPUTATION STENCIL 
AT NODE 0 

2. HARMONIC OPERATOR FOR IR REGULAR GR ID 

V2f.A-§* +8-^.D 
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THE HARMONIC OPERATOR BECOMES: 

+ 5Jbf*E5f* + b4(bf*b4)
f4* 

)fo] -( 
2A 2B 

b I b 2       b2b4 
«h2D ..EQ(4) 

SEE FIG.2 
WHEN C *0,V2f CAN BE APPLIED TO A (AXISYMMETRIC) 

CYLINDRICAL COORDINATE SYSTEM, 

SAY IN R AND Z : 

■ D     ..EQ(5) -4 
R 

AL 
OR 

FOR A REGULAR STAR, THE HARMONIC OPERATOR 

BECOMES (IN A SIMILAR MANNER TO EG (3)): 

hVfos[A(f, + f3)+B(f24f4)+|^(f2-f4) 

- (A + B)2f0l» h*D ..EQ(6) 

SEE FIG 3 
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h, 

3. HARMONIC   OPERATOR FOR SQUARE GRID 

„a,   A d2f   ^£1+^-^-1 *D 
äTz2*-DöR2    R    OR 

245 

fcw _, . 



FOR AN IRREGULAR STAR { h,# ha# h3*h4) 

THE HARMONIC OPERATOR BECOMES (IN A MANNER 

SIMILAR TO EQ(4)): 

2A      ,        2B 
b3(b,4b3)

f3+Wb2+b4) 
Ch 

U + 

J b4 m bz m 

\b2(b? + bJT2     b4(b2+b4) 
4 

2B 
b2b4 

..EQ(7) 

Ch 
Ro 

/b2"b4 
v b2b ?}••] 

SEE FIG. 4 

EQS (4) AND (7) ARE EMPLOYED IN THE 

PROGRAMMED SOLUTIONS FOR CARTESIAN 

AND CYLINDRICAL COORDINATES,RESPECTIVELY. 
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bi =hi /h 

4. HARMONIC OPERATOR FOR IRREGULAR GRID 
art , QaM , c   aj_s «-»*»     «    v   '    j.  O w      -   4. -   ■■       - = D 
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GRADED MESH 

THE MESH SIZE MAY BE REDUCED IN CRITICAL 

REGIONS, YIELDING A HIGHER RESOLUTION WHERE RE- 

QUIRED, WITHOUT THE COST OF AN EXCESSIVE NUMBER 

OF NODES OVER THE ENTIRE DOMAIN OF THE PROBLEM. 

THE FINER MESH IS TREATED WITH THE SAME EQUATIONS 

(EQS.(4) & (7) AS THE ORIGINAL, BUT WITH THE NEW 

SPACING, h. 

BETWEEN THE ORIGINAL (COARSE) AND NEW (FINER) 

MESH.- HOWEVER, THERE EXISTS AN INTERMEDIATE MESH 

OR NET THAT REQUIRES SPECIAL TREATMENT.  THIS 

INTERMEDIATE MESH WILL NOW BE CONSIDERED FOR BOTH 

CARTESIAN (EQ (4)) AND CYLINDRICAL (EQ (7)) COOR- 

DINATE SYSTEMS.  NOTE THAT INTERMEDIATE MESH GRIDS 

ARE "SQUARE".  THAT IS, ALL ARMS OF THE STAR ARE 

EQUAL (hi=h2=h3=h4=h). 
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Hrk- 

□       ORIGINAL MESH (OR NET) NODE 

O        FINER MESH NODE 

O        INTERMEDIATE MESH NODE 

Y ▲ R 

> X -►Z 

USING ABOVE NOTATION FOR INTERMEDIATE NODES 
8 USING "AVERAGINGI,DIFFERENCES". 
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^Vä»+B^'D/' 
A+B 

BECOMES 
(^)[f,+f«*f3^-4f0]sD/2 

«DlL2 ..EQ(8) 
2 

yVf - äö!L * B -aft 4. -C di c ny
2 

* v f*z A a? + B dR1 +d)T   OR*  D* 
BECOMES 

2    'o   ■"*'—2— 
WHERE •§*- is f^-VT 

4R 
• • EQ(9) 
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THE BIHARMONIC OPERATOR 

V4W*.a^. + 2 94W + 94W   8 1 
9x4 9x29Y*    9Y4 D 

EQ (10) 

CAN BE REPLACED BY TWO SECOND ORDER EQUATIONS 

V9x*      9Y2'V9x2       9Y2'      D 

SINCE 
Mx «-D(4^T-+^4^- )     AND dxz dY 

^-«xS-^^) 
Mx +My -_[)(| + /I)( 92w     a!w 

9x2       9Y2 

INTRODUCING A NEW NOTATION 

M 
I + /A 

^-Dl 9
2w . a2w 

9xs 9Y1 

EQ (II) MAY BE REPRESENTED BY 

EQO20) 9'M     .  92M   .       n  — +  r- « — q 
9x4 9Y 

92W      32W 
9x: 9Y 

s — M EQ (12b) 
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HYBRID COMPUTER SOLUTION TECHNIQUES FOR LAPLACE'S EQUATION 

J. Thomas Broach and Robert M. McKechnie HI 
U. S. Army Mobility Equipment Re&earch and Development Center 

Fort Belvoir, Virginia 

ABSTRACT. The techniques for hybrid computer graphics solution of Laplace's 
equation are discussed. This describes two approaches, problem setup requirements, and 
compares the hybrid solution of an electromagnetic field problem to the exact solution. 
The hybrid system being used is an AD-4 analog computer/PDP-15 digital minicomputer 
coupled to a Tektronix 4010 graphics system. 

This effort is the forerunner to the development of an interactive graphics program- 
ming lang'age for the hybrid computer solution of partial differential equations. 

The discussion will present the general philosophy and details of the solution tech- 
niques being used for hybrid computer solution of Laplace's equations with an example 
being used for method demonstration. This approach will eventually lead to a compari- 
son between the pure digital and hybrid solutions and should verify the general feeling 
that the hybrid computer can provide a faster and lower cost solution. 

1. INTRODUCTION. The Electrical Equipment Division is involved in the solu- 
tion of partial differencial equations for heat transfer and magnetic flux in electric and 
electronic machinery. The subject of this paper is the solution of an electromagnetic 
field problem, similar to those encountered in the design of electric machines. This 
problem is being solved on the MERDC Computer Aided Design and Engineering 
(CAD-E) facility located in the Electrical Equipment Division. 

2. SYSTEM DESCRIPTION. The CAD-E facility presently consists of a graphics 
terminal, hybrid computer, and communications to outside computers as shown in 
Figure 1. 

The interactive graphics terminal consists of a Varian 620 minicomputer processor 
with 32K of core (16 bit words) memory, four magnetic tape devices (COI link tapes), 
high speed (200 characters/second) paper tape I/O, 400 line per minute Vogue line 
printer, Infoton alphanumeric CRT I/O, ARDS 100A graphics unit with joystick, Tek- 
tronix 4010 graphics unit with hardcopy unit, KSR 35 teletype and a highspeed disk. 

The hybrid computer is an AD4/PDP15 hybrid system. It consists of an Applied 
Dynamics AD4 analog processor (Figure 2), which has two quadrants of integrators, 
amplifiers, servo-set pots (1 quadrant), iiand set pots, digital coefficient units (DCU) 
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(1 quadrant), multipliers, DAC's digital logic large screen oscilloscope, and XY plotter. 
Autopatch hardware ha;, been installed in one quadrant, also the PDP15 digital processor 
(Figure 3) consists of 16K of core (18 bit words) memory, 3 DEC (magnetic) tape units, 
a disk, and a KSR-33 teletype. The Tektronix 4010 graphics unit (Figure 4) can be con- 
nected directly to the PDP15 digital processor with 12,000 Baud link. The hybrid system 
and the graphics terminal are connected through a 9600 Baud link between the Varian 
620 and the PDP15 digital processors. 

The communications link ties this facility to outside computers. One such tie is 
accomplished through a MODEM to outside contracts, commercial time-sharing computers, 
and the MERDC CDC 6600 digital computer facility. At present 300 Baud is the maximum 
rate in this link but a 2000 Baud rate is planned for the tie to the MERDC 6600 digital 
computer. This link also contain1- an ASR 33 teletype, TSP plotter controller with Tek- 
tronix 601 storage CRT and XY plotter. 

3. PROBLEM DESCRIPTION. The problem to be solved is an application of 
Laplace's equation (Figure 5) for the solution of a magnetic field involving rectangular 
boundaries. This is the first step in developing a method of solving for magnetic fields in 
complicated machine geometries as shown in Figure 6. The corresponding hardware is 
shown in Figure 7. Since Laplace's equation has derivatives with respect to more than 
one independent variable, we usually convert it to a different form. On the digital com- 
puter, this results in a large set of equations which require a lot of computer time and 
memory. For the analog, the solutions require a lot of computing equipment. Through 
hybrid computing techniques, we retain the convenient man-machine interface with the 
digital computer, take advantage of the integration capability of the analog computer, 
and use the digital computer to control the analog allowing for equipment reduction. 

During the early 1%0's. a lot of work was accomplished for solution of partial dif- 
ferential equations on analog computers. With the expected use of hybrid computers, 
the emphasis was shifted to utilization of hybrid computers. However, the efforts since 
then have been small with little to show but theory. In the digital area, work has pro- 
gressed, mainly due to the easier man-machine interface and through the efforts of 
universities and the large computer companies. 

4. PROBLEM GEOMETRY. Now consider a rectangular geometry in which the 
potential on all four boundaries is defined, as shown by Figure 8. As shown, the potential 

is zero on three boundaries and is defined as a function of X, ^ (X) = Sin 7rX , on the 

other boundary. For this type of problem, there are three common techniques of solution: 
(1) separation of variables, (2) finite difference, (3) Monte Carlo. Generally, we will use 
the finite difference technique because it can easily handle non-linearities. For a digital 
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solution, one reduces the partial differential equation to a set of algebraic equations 
using the finite difference technique. This means that iterative techniques must be em- 
ployed to obtain solutions. For the hybrid, one obtains a set of ordinary differential 
equations using the finite difference technique. 

5.     SOLUTION TECHNIQUE. Normally the digital finite difference solution uses 
a two dimensional grid: however, since the analog computer solves continuously in one 
dimension, it uses a one dimensional grid as shown in Figure 9. For this problem we have 
taken advantage of the problem symmetry (normally, this is true for all electric machine 
problems) to provide additional grid lines and associated solutions. In this manner, we 
have judiciously chosen a non-linear grid spacing which provides a large amount of data 
with minimum of computation equipment. 

One important factor is that we can use non-linear spacing and retain considerable 
accuracy. For this problem we need only four grid stations (excluding the two boundaries) 
Three stations are held in fixed locations (X = .167, .333, .5) while the fourth is moved in 
predefined increments in the space to the right of center, thus with symmetry obtaining a 
large number of solutions. The differential equations for each station are ordinary 2nd 
order differential equations with a finite difference term, as shown in Figure 10. Mechan- 
ization on the analog subsection of the hybrid is simple and requires no more than 8 inte- 
grators as shown in Figure 11. The digital subsection of the hybrid controls the scanning 
proces. described above. 

The problem control Flow Chart, Figure 12. shows how the hybrid computer is 
used to solve the problem. The user enters data for the problem at the Tektronix 4010 
Graphics Terminal. From this point the digital computer subsection scales the problem, 
rets the pots and controls the analog subsection operate and hold functions. The analog 
subsection is used as a computation module to provide differential equation solutions at 
each grid station. The digital samples the analog output, operates on the data, and pro- 
vides data to the Tektronix 4010 for a graphics solution. A listing of the data is also 
available. 

Figure 13 is a picture of the analog patchboard required to solve this problem. The 
solution results are shown in Figure 14 in the form of an equipotential plot on the Tek- 
tronix 4010. The grid and labeling are performed as a substask on the digital computer. 

6^ CONCLUSIONS. This method of solving partial differential equations is being 
used on two special classes of problems: electric machinery and semiconductor heat 
transfer. The simplicity of this approach has made it easy to mechanize; however, two 
questions come to mind. First, is it accurate enough to be useful. For one problem, we 
utilized the exai:t analytical solution and compared the results to those obtained from 
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the grid solution on the hybrid. The close agreement is shown by Figure 15, proving 
that the accuracy is adequate. Secondly, do we save time? Using a comparison to the 
digital computer finite-difference equation solution, the digital took 3 hours and our 
hybrid took 15 minutes to provide the equipotential plots. This time comparison will 
be made in more depth as we increase problem complexity. 
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FIG. 6.   TYPICAL ELECTROMAGNETIC MACHINE GEOMETRY. 
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ANALYSIS PROCEDURE FOR OPTIMIZING  HELTUM REFRIGERATION CYCLES 

RUSSELL EATON,Til 
and 

LARRY AMSTUTZ 

U.S. ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT CENTER 
FORT BELVOIR,  VIRGINIA 

ABSTRACT.    An analysis procedure for optimizing helium refrig- 
eration cycles has been developed as part of the Army's cryogenic 
refrigerator and CAD-E programs.    The analysis procedure has been 
converted into a digital computer program consisting of f.ubroutines 
which represent the basic components,  such as heat exchangers and 
expansion engines,  of a refrigerator.    A cycle is built up by suc- 
cessively calling these "building block"subroutines starting at the 
lowest temperature and pressure and proceeding to ambient conditions. 
The minimum amount of information needed to specify each cycle 
was used as input,  and the computer program supplied the resulting 
thermoHynamic state points anH component characteristics.    Cycles 
were optimized for minimum input power by systematic trial and 
error method.    Because the program is highly interactive,  the min- 
imum input power for any particular cycle cculd be found quickly. 
A graphical subroutine enable^ the results of an optimized cycle to 
be displayed on Tektronix 4010 graphics system (Fig 1) as a sche- 
matic drawing of the refrigerator cycle with the state points and 
the important component characteristics labelled. 

1.     INTRODUCTION.    The authors became interested in design- 
ing optimized thermodynamic cycles for cryogenic refrigerators as 
part of an Army program to develop reliable cryogenic refrigerators 
suitable for integrating with electrical power devices using super- 
conductors.     The techniques for designing and optimizing a thermo- 
dynamic cycle are straight forward,  but these techniques lead to 
extremely tedious calculations,  making it practically impossible to 
optimize cycles by hand.     Typical relationships to be evaluated are 
conservation of energy,  conservation of mass, and component effi- 
ciencies.     The preceding    relationships depend upon the following 
thermodynamic functions 

Preceding page blank 
273 

». • •■ 



Enthaply;    H=h (P,T,m) 

"Inverted1 Form:    T=t (H.P.m) 

ft) 
Enthropy:    S=s (P,T,m) 

"Inverted" Form:    T=t (S,P,m) 

where P is pressure,   T temperature,  an^ m mass flow rate.     The 
thermo^ynamic functions,  enthalpy an^ entropy,  are well tabulated, 
but in any cycle calculation,   specific values of these functions 
usually have to be obtained by interpolation of either or both the 
thermo^ynamic variables,  pressure and temperature. 

At least three significant figures are nee^e"* for these inter- 
polation calculations.     In actual practice,  the authors found that 
it took about one man^ay for a typical cycle to be analyze^ ex- 
cluding any optimization calculations. 

The need to optimize refrigeration cycles with respect to 
design parameters,   such as pressure ratio or heat exchanger 
effectiveness,  provide^ the impetus for developing a computer aid- 
e^ refrigeration cycle analysis co^e.    Additional benefits from 
using a computer approach are the saving in engineering time 
and the increased productivity,   i.e.,  many more cycles options 
can be considered in a given time.     Of course,  the major point 
is that the emphasis of the cryogenic design engineer is shifted 
from arithmetic to engineering. 

2      APPROACH.    The authors have written an interactive pro- 
gram to analyze Clause cycle refrigerators.    A schematic diagram 
of a Claude cycle with two expansion engines and a total thermal 
load consisting of a fixed load at the lowest temperature stage 
(4.5K) and the load due to a pair of 6000A current leads is shown 
in Fig 2      The thermal loads shown represent a typical load profile 
for some cryogenic electrical power devices.    The analysis of such 
a cycle can be handled conveniently by starting from the lowest 
temperature (4.5K),  adding components and loads until ambient 
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tempeiature is reached.    During the analysis, design decisions 
are made by selecting component characteristics,   such as heat 
exchanger effectiveness and expansion engine efficiency,  or temp- 
erature stages of the cycle.    The user may select one of several 
parameters available.    For example,  he may choose either a stage 
temperature or a heat exchanger effectiveness.    The analysis pro- 
ceeds with the engineer supplying the minimum number of inputs 
necessary to uniquely specify the refrigerator and the computer re- 
porting the results of each decision immediately. 

Overall cycle parameters are strongly dependent upon these 
design decisions,  which are themselves strongly interrelated•    For 
example,  the choice of stage temperatures and mass flow rates 
both have very non-linear effects on any cycle's compressor input 
power. 

Since many of the design trade-offs cannot be recognized a 
priori,  a fully automatic design procedure is,  if not impossible, 
a difficult and costly approach.    The interactive computer aided 
design proved to be particularly well suited for this type of problem, 
This approach shifts the mass of conceptually simple but tedious 
work tc the computer leaving the engineer with the problem of 
recognizing and making trade-off decisions. 

There are a number of other advantages in the interactive 
cycle design approach where the designer makes decisions and 
the computer provides rapid analysis based upon these decisions. 
Design decisions are made one at a time and can be changed as 
their effects become apparent.    At each step of the process, the 
designer has the option of either proceeding with another design 
decision or revising his design decision and then proceeding. 
Finally,  the designer can go back to an earlier decision point, 
revise it,  and proceed with the new decision.     Fig.2 is an example 
of the flow of the analysis.    Note that the designer must respond 
to the interactive questions in order to proceed through the analysis 
of a refrigeiution cycle.     In the figure the user supplies inputs 
following a  $ sign,  and the computer program then provides outputs 

3.    COMPUTER PROCEDURE.    The analysis procedure was 
implemented using a structured programming approach.    The code 
consists of a main program and several layers of subroutines.    The 
main program controls the cycle design process by executing the 
decisions made by the designer. 
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The highest level of subroutines consists of the basic 
building blocks of a refrigerator.    Referring to Fig.2,building 
blocks of a typical cycle are Joule-Thomson block,  expansion 
engine block,  and compressor block.    A building block subroutine I 
contains the thermodynamic relations that describe the individual 
components of the block.    For example,  the Joule-Thomson block 
has two components:    the Joule-Thomson valve and the load heat 
exchanger at 4.5K.    In the analysis the Joule-Thomson valve is 
treated ideally as a constant enthaply device,i.e.,  fluid passing 
through a J-T valve neither gains nor losses energy.    The 4.5K 
load is modeled as a device which absorbs energy at a specified 
pressure drop.    In a similar fashion, the other building block sub- 
routines are built up from the relationships that describes their 
components. 

A list of the thermodynamic state points specifying the cycle 
is built up in memory.    The building block subroutines,  when call- 
ed, add to this list,  but they do not alter the previously complet- 
ed parts of the design.    This feature permits the designer to 
easily repeat a particular step until he is satisfied. 

The building block subroutines determine thermodynamic state 
points by analyzing the relationships, adequate to characterize 
the block, from the terminal inputs and from the next level of sub- 
routines.    This level of subroutines consists of component character- 
istics and stored thermodynamic functions.     The component, character- 
istics subroutines are table look-up routines that return expansion 
engine efficiencies as a function of the inlet flow conditions.    The 
stored thermodynamic functions subroutines consist of the functions 
given in Eq(l); these subroutines are also table look-up routines. 
Currently the thermodynamic properties of helium are used in the 
thermodynamic subroutines; but the algorithims of the subroutines 
are sufficiently general that the thermodynamic properties of any 
other refrigerants could be used instead of helium.    The flexibility 
of the structured approach permits refrigeration cycles employing 
a refrigerant other than helium to be analyzed by chanc "ng only 
the thermodynamic data. 

As an example of output,  an optimized Claude cycle consist- 
ing of one expansion engine is shown graphically in Fig.4.    A 
summary table of the state points is also available from an optimi- 
zation run.    This particular cycle was optimized by varying the 
cycle mass flow rates for constant heat exchanger effectiveness 
and compressor pressure ratio until the minimum power tc the 
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compressor was obtained. 

4.    CONCLUSIONS.   Optimized theimodynamic cycles for 
cryogenic refrigerators can be designed by a procedure based upon 
rapid computer analysis of design decision trade-offs.    An inter- 
active computer program has been written for this procedure, and 
it has proven to be useful for designing optimized helium refrigera- 
tors.    The optimization procedure appears to be completely general. 
Refrigerator cycles employing refrigerants other than helium can be 
analyzed by replacing the thermodynamic properties of helium with 
thore of the desired refrigerant.    (Anyone interested in the details 
of the computer code may obtain a listing by writing to the authors.) 
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COMPUTER AIDED X-RAY ANALYSIS 
OF SELECTED AMMUNITION MATERIALS 

Fred Witt 
Materials Engineering Division 

Pitman-Dunn Laboratory 
Frankford Arsenal 

Philadelphia, PA 19137 

ABSTRACT. The mathematics underlying two computer aided deter- 
minations of crystallographic anisotropy will be discussed, namely: 
(1) metal deformation texture, as depicted in computer-generated pole 
figures of copper shaped charge liners, and (2) the R-value index of 
metal drawability, as determined from automated pole figure analysis 
of cartridge brass. The armor penetrating ability of the shaped 
charge jet is considered to be critically dependent upon the annular 
symmetry of the metallurgical properties of the cone from which the 
jet is formed. The cartridge brass studies entail a comprehensive 
characterization of crystallographic texture to correlate formability 
with the anisotropy of strength of sheet materials. In both instances, 
the computer is used   determine the location and concentration of 
those metallic grains which experience the maximum critical resolved 
shear stress under loading conditions. The predictive ability of the 
computer in assessing sheet metal formability will be demonstrated by 
comparing both x-ray and tensile test results for cartridge brass. 

INTRODUCTION. Hard sphere models are a convenient means of 
illustrating the mechanism of plastic deformatior in metals. An 
example is shown in Figure 1, where the atoms are represented as 
spheres stacked to form the face centered cubic (i.e., fee) lattice. 
Copper, aluminum, and cartridge brass are some well known metals 
having this structure. The (111) plane is called the close packed 
plane since it contains the"~largest number of atoms per unit area. 
Similarly, the [110] direction is called the close packed direction 
because the packing density is greatest along that direction. From 
a microscopic point of view plastic deformation consists of a consecu- 
tive movement of the atom layers over one another by "sliding" in 
discrete crystallographic directions. This slip process proceeds 
from the movement of crystalline defects called dislocations. The 
Peierls (1) and Nabarro(2) equation predicts the shear stress (?) 
required to move dislocations and is shown in Figure 2.  It can be 
seen readily that T is strongl} affected by Poisson's ratio (v) and 
the quantity D/S. Here D is the distance between adjacent slip 
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planes and S is the distance between atoms in the slip direction. 
Plastic flow proceeds most easily in those atomic planes and directions 
having a minimum value of T, For a particular metal, Poisson's ratio 
is fixed; this means that slip occurs on those slip systems having 
maximum D and minimum S. In other words, slip occurs on {ill} planes 
in <110> directions for fee metals. 

SCHKLD'S LAW. The tensile behavior of crystals of different 
orientations can be compared by resolving the tensile stress into a 
component which lies along the slip direction in the slip plane. An 
examination of the equilateral hyperbola plot of Figure 3 reveals 
that the tensile yield stress varies greatly with the orientation of 
the slip plane and slip direction. Experience has shown that crystals 
plastically deform when the resolved shear stress reaches a critical 
value, TC, which is a constant for a particular metal. It is inter- 
esting to note that T becomes zero when the tension axis is parallel 
or perpendicular to the slip plane. More important, the maximum shear 
stress is reached when the slip plane and slip direction are tilted 45° 
to the tension axis. For this case the value of cos \ cosf  is 0.5. 
Constant TC therefore represents a fundamental mechanical property of 
a metal and gives information on the mode of plastic deformation. 

THE EQUIPMENT. To predict the behavior of metals under loading 
it was necessary to fabricate suitable x-ray counting and plotting 
equipment in order to determine the orientation of the slip planes 
and slip directions of the million or so grains which comprise typical 
test samples. This grain orientation data is usually plotted by means 
of the stereographic projection. Its development is shown in Figure 4. 

In practice, the sample is rotated in the x-ray beam about tue 
position labeled 0. When Bragg's Law is satisfied the radiation 
comprising the diffractad x-ray beam 0Q "flashes out" to the detector 
located on the reflection sphere at the longitude and latitude position 
defined by Q. From the direction of the vector 0Q one can compute the 
orientation of the vector ON. The latter describes the pole of the 
atomic plane which produces the radiation registered by the detector. 
The colatitude and longitude positions of N are described by the angles 
ß and 6 respectively. The stereographic projection of N is first 
accomplished by connecting N with S. The intersection of the line NS 
with the equatorial plane is called the stereographic projection of 
the pole N, and is labeled P. By synchronizing the rotation speeds 
of the test specimen and the radiation detector it is possible to 
insure that the detector is sequentially positioned at the 5100 posi- 
tions on the reflection sphere to receive the x-ray intensity diffracted 
fror the tes* specimen. The X and Y coordinates of P are given by 
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X - 99 * tan (ßn/2) * cos (6n/2) 

Y - 59 * tan (0n/2) * sin (5n/2) 

where ß and 5 are the angles defined previously. The numbers 99 and 
59 are needed because the plotting symbols on the teletype are two 
thirds as wide as they are high. The recursion relationships for the 
5100 values of ß and 6 are given by 

ßn - ßn_i - k^ * n * At and 

6n * 6n-l + k2 * n * At, 

where kj and k» are determined by the rotating speed of the test speci- 
men and At is the time between successive data points. The x-ray 
intensities recorded at the 5100 positions of Q are placed in a two 
dimensional array whose indices are determined by the X and Y values of 
P. The array and its indices are defined as 

JC « X + 101 

JD « 61 - Y 

Array (JD, JC) ■ x-ray intensity at Q. 

The instrumentation to rapidly acquire, analyza, and plot the 
x-ray information describing the orientation relationships among the 
grains which comprise the test specimen is shown in Figure 5. As the 
coupon is rotated in the x-ray beam for 85 minutes, the intensity 
readings are taken "on-the-fly" by the output interface which can 
take and store the measured values of the diffracted intensity. The 
dead time of this module is 10"' seconds per data point. The intensity 
values are converted to the required output code and fed in bit-serial- 
form, at 300 baud, to a "cassette" magnetic tape unit that records the 
data at 800 bpi on a standard 70,000 character Philips tape. The high 
speed teletype provides a printed copy of the x-ray data as it is 
recorded on the magnetic tape unit. Both are capable of accessing a 
remote digital computer through the model. 

THE COMPUTER PROGRAM. The Fortran SOURCE program which is used 
to analyze the data and plot the finished pole figure is an improved 
version of one kindly provided by Dr. Glen A. Stone of the South Dakota 
School of Mines and Technology. The program requires an octal field 
length of 153600 and runs in about 30 seconds on a CDC 6500. The 
finished output consists of three pole figure plots. Each plot contains 

285 



the same information but is presented in a different form. Plot #1 
contains the reduced input data without any attempt at smoothing. 
Plot #2 treats the input data of plot #1 by filling the matrix and 
smoothing the data. In making plot #2, the computer program allows 
the preselection of up to twenty specific iso-random values with 
selected tolerances. Plot #3 is probably the most useful one for 
drawing highly detailed iso-random level contour lines.  It allows 
any one of 64 single alphanumeric symbols to be placed in each posi- 
tion of the 120 by 200 plot matrix, in 64 half-random level steps. 

An example of these three plots for a shaped charge ammunition 
component is shown in Figures 6-8, respectively. The 'spiral' pattern 
of Figure 6 corresponds to simultaneous rotation of $ and 6. The 
positions of the R's on the plot are true positions of the recorded 
x-ray intensity val^-js. Figure 7 illustrates the case where plots of 
the 0.5, 1.0, 2.0, 3.0, and 4.0 random levels are desired. Turning 
now to Figure 8, the interface between X and 1 is exactly the 0.5 
random level of Figure 7; between 1 and / exactly 1.0 random; between 
/ and 2 exactly 1.5 random; and between 2 and / exactly 2.0 random, etc. 

Representative {ill} and {220} stereographically projected pole 
figures for a shaped charge liner are shown in Figures 9 and 10. The 
plotted x-ray intensity readings specify the ratio of the volume of 
material in the liner to the volume of material with the same orienta- 
tion in a randomly oriented sample. 

While {220} pole figures provide information on the "directions" 
available for plastic deformation, it is actually the {ill} planes 
which undergo the plastic flow. The circle shown in Figure 9 repre- 
sents the locus of points describing the {ill} planes tilted 45 degrees 
to the surface of the liner's outside wall. As the detonation waves 
move down the surface of such a liner, it is reasonable to expect that 
those {ill} planes tilted 45 degrees to the liner's surface feel the 
effect of the pressure and proceed to move in < 110 > directions. If 
the {ill} planes are in non-optimum orientations, then ehe overall 
effectiveness of a preferred collapse direction in the liner wall is 
reduced. 

FORMABILITY STUDIES. The press formability of a metal is decribed 
in terms of its drawability and stretchability. Drawability is related 
to crystallographic texture and is a measure of the metal's resistance 
to thinning in the short transverse direction. It is described by the 
plastic strain ratio R, defined as R = ew/et, where ew and et are true 
width and thickness strains respectively. For most metals, R varies 
with test direction in the plane of the sheet. Stretchability, how- 
ever, describes the ability of a metal to be stretched, under biaxial 
tension, to conform to the contours of the punch. 
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A good deep drawing material exhibits a high resistance to 
thinning coinciding with easy plastic fj.ow in the plane of the sheet. 
The differences in width and thickness strains observed during plastic 
flow are related to the orientations of the slip directions and slip 
planes of the grains which comprise the sheet material. Since unit 
slip along any of the slip directions can be resolved into components 
of width strain and thickness strain one can calculate the plastic 
strain ratio from an examination of the (220) quantitative pole figure, 
which describes the position of all < 110 > slip directions. If a 
tensile specimen from sheet copper is loaded in tension along its 
longitudinal axis, the directions of the maximum resolved shear stress 
generate a cone whose axis lies along the tension axis and whose semi- 
apex angle is 45 degrees. For small plastic deformations, the opera- 
tive crystallographic planes are those lying closest to the cone of 
maximum shear stress. With increasing strain, deformation occurs in 
those grains less favorably oriented. The intersection of the cone 
of maximum shear stress is shown in Figures 11 and 12a, for the cases 
where the tension axis is oriented 0°, 45°, and 90° to the rolling 
direction of sheet material. In Figure 12b, the shaped charge liner 
case is shown where the intersection of the cone of maximum shear 
stress describes a circle centered on the pcle figure. 

To compute the p'. .as tic strain ratio R from the pole fig are data 
the Fortran Source pre gram described earlier is expanded so that the 
940 x-ray intensities of the {220} reflection lying within a + 10° 
band of the cone of iiaximum shear stress are weighted in accordance 
with the formulas given in Table I. The formulas listed above the 
pole figures describe the circular arc produced by the intersecting 
cone of maximum shear stress. Beta and delta are the colatitude 
and longitude of the {220} poles respectively. 

Table I -   Weighting Factors for Computing Average Anisotropy 
Contributions From Different Crystallographic Orientations 

Angle Between Tension Axis 
and Rolling Direction Weighting Factor 

0° tan uu = tan 0 cos 6 

1 

7? 
45° '.:an ID = -L. tan 0 (sin 6 - cos 6) 

90° tan uu = tan 0 sin 6 

Shaped charge liner case       tan ID ■ cot 6 
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It can be si n that th ■. absolute value of the weighting factors < 
range from zero to infinity. An inspection of the pole figure plots 
reveals that the weighting factor is zero when the component of unit 
slip lies totally in the short transverse direction; it approaches 
infinity when slip occurs entirely in the plane of the sheet material. 
As a test of the validity of this approach, in-situ determinations of 
R obtained from standard tensile tests on cartridge brass were compared 
with R predicted from the quantitative {220} pole figures. The results, 
taken from reference (4), do establish the validity of this approach 
and are shown in Table II. 

Table II - A Comparison of R* Values from Tension Tests and Values 
Derived from Pole Figures i 

Pole Figure Results 

Alloy   Tension Test   R g tan tu Criterion   R = tan^ u) Criterion 

.94 .94 

.90 .90 

.93 .94 

.97 .99 

.97 1.00 
1.00 1.03 
1.02 1.07 
1.02 1.08 

Ro + 2R45 + Rgo 
R 1  

The column titled R = tan uu criterion contains R predictions for 
the case where the width and thickness strains are assumed to depend 
only on the slip directions and not on the orientation of the active 
slip plane. The column R = tan^ u) criterion treats the more general 
case, i.e., where plastic flow occurs on the [ill} planes in < 110 > 
directions. 

To provide an index of the textural asymmetry for the shaped 
charge liner case, the {220} pole figure in Figure lib is first 
divided in half by a vertical line. Two R values ace computed; one 
for the left side of the pole figure (R^) and another for the right 
side (Rr). By letting AR - Rj -. Rr, it is readily seen that AR 
approaches zero for symmetrical pole figures. AR can take on positive 
or negative values depending on the sense of the textural asymmetry 
of the grains comprising the liner. 

G .93 
H 1.10 

0-1 .90 
P-l 1.06 
0-2 .97 
P-2 1.12 
U-2 .84 
V-2 .92 
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SUMMARY. Evidence is presented for the existence of preferred 
slip planes and slip directions in fee metals. 

Equipment is described which affords an approach to shaped charge 
liner improvement through texture control. This approach recognizes 
those textural components useful for providing efficient and continuous 
jets. 

Quantitative pole figures may be used to describe preferred orien- 
tation in deep drawn ammunition components and shaped charge liners. 

Metal formability may be assessed with precision and speed by 
computing the plastic strain ratio from the pole figure data by 
averaging the anisotropic contributions from grains of various crystal- 
lographic orientations. 

The effects of changes in mechanical and thermal processing on 
the R value may be used as a tool to assess material drawability, 
both for research and production quality control purposes. 
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sin/9 sin f 
+ «° §   =  -   coß 45 sin ß sin O    + sin &  cos &   =  -JT1 cos 45 

tan w = tanfl cos o 
tan w = ^ tan 6 ( sin S - cos & ) 

Figure 11.    Intersection of the cone of maxium shear stress 
for 0 and 45 degree case. 
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A BACKWARD SOLUTION COMPUTING MISS DISTANCE FROM 

INPUT ERRORS TO GUN AIR DEFENSE SYSTEMS 

T. H. Slook 
Fire Control Development and Eigineering Directorate 

Frankford Arsenal, Philadelphia, Pennsylvania 

IKIRODUCTION 

The operation of the conventional gun air defense system can be described 

with reference to Figure - I. In the conventional system, the gunner tracks 

the target with some form of sighting system. This tracking system provides 

•one or all of the following target data as a function of time: 

Do - present position slant range 

$o - present position slant range rate 

Ao - present position azimuth 
• 
Ao - present position azimuth rate 

Eo - present position elevation, and 
• 

Eo " present position elevation rate 

The tracking data collected are fed tn seme form of computer where they are 

processed to account for target velocity and the exterior ballistics of the 

projectile. This computer can be as simple as a man's gross estimate of 

the target motion and the required ballistics or it can be a full fledged 

digital solution, employing a myriad of sensor inputs. In any cas.v. by  some 

means, sophisticated or unsophisticated, a predicated weapon line is established 

and by means of a movable gun turret the projectile is fired along this 

established line. 

Figure I gives a pictorial representation of the anti-aircraft problem of 

level flight and constant speed. It also explains the symbols used in the 

mathematical discussion found in the sequel. 

Preceding page blank 
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Let the number triple (s, H, Dm), «here 

g • ground speed of aircraft, 

R - height of aircraft above gun plane, and 

Dn - cross-over slant range, 

describe a level flight, constant speed target path with respect to the gun 

vhich is the origin of the coordinate system. Observe that to hit a moving 

target from a fixed gun position, one must le^d the target. Thus, the gun 

is positioned in azimuth and elevation so that the projectile Impacts with 

the target at the predicted point Pp. To find the predicted point, one must 

determine: 

1« the speed of the target 

2« the path of the target, and 

3. the trajectory of the projectile during the time interval from 

point Po to point Pp. 

The tracking data is used to estimate 1. and 2. and BRL supplies the 

projectile trajectories as ballistic tables, ballistic differential equations, 

or ballistic algorithms. The computer operates on the tracking data and 

ballistic data by solving a non linear system of equations and generates, in 

real time, information which positions the gun (or the sight) so that the 

projectile should impact the target at Pp. 

Many of the projectiles will miss the target by some amount« This 

miss will occur because of errors in the tracking data, errors in the projectile 

ballistic fit, prediction algorithm in the computer, etc. Thus, one measure 

of effectiveness for gun air defense systems is projectile - target miss 

distance MD resulting from error in the system. In our case, the MD 
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remits only from errors In tracking data.   For the present, It will suffice 

to think of MD as the minimum distance between projectile and target. 

Instead of inputing tracking data, ballistics and errors in the inpufs 

then solving a system of non linear equations for MD, we compute MD by 

inputing Dp, Ap, Ep, a ballistic fit and errors in tracking data.   This 

computation avoids the long and tedious solution of the system of non linear 

equations.   This backward solution is presentf^in the following section. 

A FORTRAN program is presented listing tables and discrete 

graphs of MD for equal intervals of T0, DQ, and Dp as functions of 

AD0 - error in present position slant range, 

af>0 - error in present position slant range rate, 

AAQ - error in present position azimuth, 

AA0 - «rror in present position azimuth rate. 

BE0 •- error in present position elevation, 

a£0 - error in present position elevation rate, 

Cg - cant of gun trunnion, and 

T_ > weapon bore tilt, 

for different ballistics trajectories.   Since ballistic effects change the 

time of flight of the projectile, a second FORTRAN program is given 

relating MD to Atp, the error in time of flight, for equal intervals of 

Ta, D0 *nd Dp. 

The above miss distance information exhibits the optimum errors 

in the outputs of an antiaircraft fire control system for expected errors 

in the inputs.   In other words, these programs provide information 

which is of value in measuring the effectiveness of a fire control 
system. 

MISS DISTANCE 

AS A FUNCTION OF PRESENT POSITION DATA ERRORS 

Let (s, Dm, H) describe a target with respect to the gun as center 
of the coordinate system (see Figure 1).      306 
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The FORTRAN program - Mist Distance as a Function of Unit 

Input Errors - does not accept the ballistic data in tabular form. 

The data must be entered in function form; i. e., t-sf (Dp, Ep). 

The "fan" fit to ballistic data (described in Appendix B) generates 

t. as a function of Dp and Ep, and has the form 

tp * at + a2Dp + a3Dp
2 + a4Ep + a5EpDp + a6EpDp

2 (1) 

where afc  (k = 1, 2, 3, 4, 5, 6), depends on the projectile used and the 

units of measure for tp, Dp, Ep.   When the given standard ballistic 

data indicates that tp is a function of Dp (Ep has little effect on tp), 

a least square polynomial fit has the form 

m+1 
k-1 

ak Dp (2) •>-s P 
**1 

where the a^ again depends on the projectile and the units of measure 

used.   In the FORTRAN example of the sequel, the 35 mm Oerlikon 

projectile was fit by the latter method, using a polynomial of degree 

five.   For a given partition of the Dp interval and the corresponding 

value of Ep, determined by the equation 

sin Ep * -JL. (3) 
P 

one computes the variable tp using Equation 1 or 2. 

Time (T), measured in seconds, is assumed negative before cross« 

over and positive after cross-over.   Times Tp and T0,  corresponding 

to predicted position point Pp and present position point PQ, respectively, 

are given by equations: 
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TP** i V -  Dm2 
(4) 

T« = T„ - p-tp (5) 

For the given target path and each selected predicted position 

point (Dp, A-, E_), where A- was computed from 

cos .. J •>„>■& 
D   cos Ep 

the following present position data D0, D0, A0, A0, E0, EQ were 

computed using equations 

(6) 

Do  H Dm2 + <" To>2 (7) 

I|D0
2 . H2 (8) 

sin E0 = H/D, (9) 

cos A0 
= 

Ro 

H2 

Do « »2 T0/D0 

• 
E s 

• •2HT0 cos A 0 
*0 

•Wm'-H* 

(10) 

HD 

(12) 
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Ao = 
8 COB 2 A. 

^m2-H2 
(13) 

Next, the necessary partial derivatives of the predicted position 

equations: 

(14) 

Ep s  Eo   + al• (15) 

where  6j,  a. are the azimuth and elevation leads, 

and kinematic lead equations (derived from Figure 1): 

sin <Ti = 
E0D 

£-2-  - (1 - cos tx) sin E0 cos Ep  (16) 

sin 6j s 
A0 Dp tp  cos E0 

Dp cos Ep 

(17) 

DP  = 
Do +Do i. 

cos 0j - (1 - cos 6}) cos E   cos Ep 
(18) 

tp  =  F (Dp, Ep) (19) 

were determined and algebraically solved for   06. and o a j   in terms 

of th* known present position and predicted position data.    The algebraic 

solution results in the following matrix equation: 

AX   =   DC (20) 
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where: 

X      »  (Affj,   A6r   A Dp)* (21) 

C      =  (AD0.   AD0,  AE0,   AE0,   A A«,)* 

A      *   (ay)   i, j,  =1.2,3 

(22) 

(23) 

with: 
E« Da *u   *  co« Ol -       g     8 V*EJ 

-   (1 - cos   *j) sin E0 tin Ep (24) 

l21 
A0 D0 cos E0 \» E J  " sin 6 j  sin Ep (25) 

=   (I - cos öj) cos E0 sin Ep -   —&     (    ■ ■*>*   ) sin 6j 
¥Ä ^ ö 

(26) 

»12 »»«in 6j sinE0 cos E (27) 

»22 s   co8 Ep cos  61 (28) 

*32 ~   ' "k*  *1 cos Eo cos Ep 

E0D0 
l13 K VDp      »Dp/ 

l23 s 
1 A„ D0 cos E. 

TT 8in 6i co8 EP " -"-J ° Ov 

(29) 

(30) 

(31) 
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t[ a     = -J—    co» 6l - (1 - COB 6j) co§ EQ cos E P-^T^J (32) 

and D = (dij);i=   1.2.3; j = 1.2.3.4.5; 

with: 

lll 
(33) 

d12 = 

d13  * 

0 

* 
E, hJ!°   (Hi) - (l-cos Si) co. ( E   + E0) 

Dp       \ & E
p
/ 

(34) 

(35) 

d14  s 

'15 

(36) 

(37) 

*21   = 

x22 

isJt    •     co.E0 D„ ° 

>23 

l24 

Ä0D0 cos E (m o V ITFTJ 
+ Bin 61 8in Eo 

p v 

A„D 

(38) 

(39) 

&&  einErt(40) 
Dp 

(41) 

d25  ■     Tf-    C0'  Eo (42) 
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d « "   "DI 
J_ (43) 

d 

(45) 

=    Jp_ (44) 

d34   =     0 <46) 

d35   «     « (47) 

Next, solve the matrix equations for X.   Observe that X,  in particular 

A 6.   and  A o\ ,   is determined for points along a given target path and 

errors in present position data.    The equations 

A Ap *   A A0 + A 6 i (48) 

AEp *    AE0 + Aaj (49) 

are now used to compute the errors in predicted position azimuth and 

elevation.   Finallyt IAD is computed by the equation 

MD   =   Dp  I   (A Ap cos Ep)     +   (A Ep)    J (50) 

Observe that MD is the distance between P   and the point where the 

projectile pierces the plane drawn through P_ and perpendicular to line 

GP_.   Although MD is not the minimum distance between projectile and 

target, it is an excellent approximation to the cor:,* ct answer. 

F015B is the FORTRAN program of the above miss distance method. 

To repeat, it provides MD tables and discrete graphs as a function of 

present position errors for equal increments in T , DQ and D   for the 

XM246 ballistics, XM220 ballistics, and Oerlikon ballistics. 
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MISS DISTANCE AS A 

FUNCTION OF GUN PLATFORM OUT-OF-LEVEL 

In the previous miss distance analysis, the mathematical develop- 

ment assumed that the gun platform (or deck plane) was level.   Now 

assume that the deck plane makes an angle (D) with the level plane 

and that the line MN, the intersection of these planes, makes an angle 

(A) with the cross-over line projected into the level plane.   Although 

the ant, es A and D completely describe the gun platform out-of-level 

condition, many people prefer to use the cant of the trunnion (Cg) and 

the weapon bore tilt (Tg) in such an  analysis.   The FORTRAN program 

(page 15) includes both out-of-level descriptions. 

Figure 2 pictures that portion of a sphere which represents the 

antiaircraft problem with respect to the gun pivot point (G).   Observe 

that the figure depicts the level plane of the earth in a neighborhood 

of G, the deck plane of the gun, the angles A, D, C»,  Tg and the pro- 

jections onto the spheres surface of the predicted point, weapon bore 

line point, etc.   The spherical triangles   so formed suggest the 

following mathematical technique to determine mips distance. 

For given values of A and D and any predicted point (Dp, Ap, Ep), 

compute the cant of the trunnion, the weapon bore tilt, and the miss 

distance due to the given out-of-level condition.    The right spherical 

triangles MN4Mj   and PN2N3   produce the equations: 

tan  Cg = tan D cos (A - Ap) (51) 

tan   A-A'p  s  tan Ep tan Cg (52) 

which permit one to compute Cg and A A'p   under the restriction that 

A A'p   i   0.   To compute Tg and E1 , use the right spherical triangles 
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Figure 2.    Platform Out-of-Level Fire Control Prediction Geometry 

of Level Flight Constant Velocity Targets 
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N N3 K*2 and N N3 M3 to obtain 

ten T g*.in J|A-(AP+  O A'p)|J  tenD 

•in E» = sin D sin      | A -   (Ap + A Ap )|| 

(53) 

(54) 

Observe that C» and T.  have now been computed. 

To compute the projectile-target miss distance determined by the 

out-of-level condition given by A and D or C~ and T_, proceed as follows. 

In the right spherical triangle PN2N3, determine E*    by first com- 

puting E'    +  E' using equations: 

cos (Ep  + E")   s  cos   &Ap cos E 

EL   *  (E'    + E«)   -   E' 

(55) 

(56) 

Since superelevation <pB  is a function of D- and E_, that is, 

<pB - i (Dp, Ep), the superelevation <p's   relative to the deck plane may 

be computed using the given predicted slant range  D     and the predicted 

elevation angle sensed by the gun, denoted E_.    Observe that E'   is the 

elevation of point P relative to the deck plane.   Along the E'   arc, the 

superelevation p'g   is appended to obtain the projected point P".    The 

line GP" (not shown in the figure) represents the gun line due to the 

out-of-level condition determined by A and D. 

Since the drop of a projectile is normal to the level plane (ground 

plane), the spherical right triangle P'T^Ng is used to derive the 

equation: 

sin 0* a cos Cg sin (<p'8   + Ep + E>) (57) 

which is used to compute the quadrant elevation tp* of the point P". 

For the ballistics under consideration,  superelevation may be expressed 
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as a second degree polynomial in predicted slant range and predicted 

elevation.   Using this polynomial equation in the form 

H>t     B  * Pp.  <p* - 9*   ) (5«) 

one may solve for tp\ , the superelevation associated with the point 

P'.   The angle E* , the elevation of P' with respect to the level plane, 

is computed from 

E*     * <p* -  o*B     . (59) 

Next, use the right spherical triangle PnNjN2 to determine the 

equation 

tan   (4A*p<  +  A A'p ) = sin Cg tan (<pg   + E'p  + E').   (60) 

After computing   A Al     +  o Af
p ,  solve for   o A*    using the equation. 

o A*   *   |(AAp   +  o A'p)   - o Ap| (61) 

The azimuth of point P' is found by solving 

A*     * Ap   -   & A* (62) 

Assuming  that the sphere has radius D   ,  compute the miss 

distance (which is approximately equal to the distance from P to ?') 

by the formula: 

MD=   ^| (X! - x2)2 + (yi  -y2)2 +(*i -»2>2 

where: 
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*1 

«1 

Dp cos Ep cot Ap 

Dp co« Ep sin Ap 

Dp sin Ep 

x2 

n 
D„ cos E* cos A* p             r P 
Dp cos E* sin A*p 

Dp «in Ep (64) 

MISS DISTANCE AS A FUNCTION OF BALLISTIC EFFECTS 

Since ballistic effects (air density change, muzzle velocity change, 

etc.) produce a change in tp, the corresponding change made in A_ and 

Ep can be computed.   That is, for each point on a given target path, 

compute its corresponding   61  and  ffj   by using equations (16 and 17). 

P.ecall that all of the data concerning points P_ and PQ are known.   For 

a given ballistic effect,   A t- is known and a new value of  6j (call it 

t\ ), corresponding to the ballistic effect is determined by 

sin 6*1     = 
Ap D0 (tp +  A tp) cos Ec 

Dp cos Ep 
(65) 

For this ballistic effect, a new value of CTj (call It 0^ ) is found using 

.la aj     *    Ep Dp (tp + A tp)   m (1 m cos ^ } 

sin E0 cos Ep .      (66) 

The  errors in Ap and E   due to this ballistic effect are given by 

A A.   *   (öl   - 6i) 

A Ep.  ■   ( cj    - a i) 

(67) 

(68) 

and the miss distance is 

MD nDp   ^ ( A Ap cos Ep)2 + (A Ep)2 
(69) 
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FORTRAN   PROGRAM 

Mist Distance as a Function of Unit Input Errors 

Program Miss Distance (Primary) is an extended FORTRAN pro- 

gram utilizing the CDC 6600 computer.   Input data consists of altitude, 

speed, and slant cross-over range (which are constant); and maximum 

predicted slant range, variable to be incremented (i. e., predicted slant 

range, present position slant range, or time along target path), magni- 

tude of incremental value, and ballistics being used. 

The ballistics currently incorporated in the program are: 20 mm 

XM220,  20 mm XM246, and 35 mm Oerlikon.    The program considers 

unit errors in present position slant range (1 meter); present position 

slant range rate (1 mil/set);  sightline azimuth (i mil); sightline azimuth 

late (1 mil/sec). 

The program considers a unit ertjr in one of the above variables 

and generates a corresponding miss distance in meters.   Since the miss 

distance is a function of present and predicted slant range, time along 

target path, and time of flight of projectile, the values are displayed in 

the output. 

The program also considers platform out-of-level conditions and 

generates a .tilt and cant and the miss distance due to tilt and cant. 

Tables I, II, and III contain computer program symbology, com- 

pilation, and output,  respectively, and Figure 3 if t ^screte graph of 

the computer output. 
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TABLE I. 
MUi Distance Computer Program Symbology 

Unit 

Input 
Height 
Speed 
Cross-over range 
Predicted slant range (initial) 
Incremental value* 
Dummy variable1* 
Dummy variable0 

Deck plane out-of-level 
Angle between cross-over and where 
level and deck planes intersect Radian 

Meter 
Knot 
Meter 
Meter 
Meter or second 

Radian 

Output 
Present position slant range Meter 
Predicted slant range Meter 
Aircraft time of flight from slant 
range to cross-over Second 
Projectile time of flight Second 

Miss distance 
With respect to unit errors in: 

Delta Do Meter 
Delta D0 Meter 
Delta Eo Meter 
Delta E0 Meter 
Delta A0 Meter 

With respect to: 
Tilt and cant Meter 
Cant bf trunnion Radian 
Weapon bore tiltd Radian 

Symbol 

H 
S 
DM 
DP 
T 
LQ 
LW 
GD 

OS 

DO 
DP 

TO 
TTP 

DEL DO 
DELDOD 
DELEO 
DEL EOD 
DEL AOD 

T + C 
CANT 
TILT 

Output graphs 
T0 (independent variable vs. 

Del Do (dependent variable) 
Del D0<j (dependent variable» 
Del E0 (dependent variable) 
Del E0(j (dependent variable) 
Del A0d (dependent variable) 

•Present position slant range (D0). time along target path (T0), or pre- 
dicted slant range lDp) may be evenly incremented.   T is the incremental 
value. 

"LQ tells program what variable to increment evenly; i. e., LQ - 0/Do, 
1/T0. 2/Dp. 

CLW tells program what projectile ballistics are to be used; i.e., 
LW = l/20mmXM246, 2/20,mm XM220,  3/35 mm Oerlikon. 

dTilt of deck for a particular point. 
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TABLE II. 
Miss Distance Computer Program as a Function of 

Present -Position Data Errors and 
Gun Platform Out-of-Level 

PROGRAM MISSOIS(INPUT.OUTPUT.rAPEl»INPUT..TAPE3=0UTPUT.TAPEfc=0UTPUT 
1) 
OINENSION AA(3.3),BB«3.b).R(b).Y(S),TRl(2ClO).TR2(200)»TR3(200>.TR<» 
l(20Ci*IRS (200). TIME (200) 

1 F0RMAT(1H1,«0 ATA G I V t N *.«HEIGHT » «.F5.0.5X.«SPEED « 
1 ««FH.O.SX.«CROSSOVER = «.F5.0-.SX»«GO *  «.F9.6«5X.«GA * «.F9.6) 

2 FORMAT(25X.«(MET)«*15X*»(KTS)«*ISX.«(MET)*.13X.«(RAO)«.13X.«(RAD)• 
1) 

3 FORMAT(/.2SX,«PROJECTILC  HEING  USEO  IS  THE  XM2*6 - 20MM«) 
4 FORMAT«/.25X.«PROJECTILE  BEING  USEO  IS  THE  XM22Ö - 20PM«) 

<»1 FORMAT«/.25X.«PROJECTILE  BEING  USEO  IS  THE  OERLIKON - 35MM«) 
5 FORMAT (/////.35X.« MISS DISTANCE KITH «ESPE 

1 C T   TO«) 
6 F0RMAT(3X.«OO«.5X.«DP«.7X.«TO«.7X.*TTP«.6X,«0EL DO«.3X.«DEL 000*.3 
IX.«DEL E0«.3X.«DEL E00«.3X.«0EL AO0«.SA»«T ♦ C«»5X.«TILT«.7X»«CANT 
2«) 

7 FORMAT(]X,•(MET)«,2X.«(MET)«.*X.«(SEC)««5X.«(SEC)«.6X.«(MET)«.4X.« 
1(MET)«.5X.«(MET)«,4X.«(MET)«.5X,«(MET)«.6X.«(MET)«.4X.«(RA0)«.6X.« 
2(RA0)«.////) 

tt FORMAT(F6.0.2X.FS.0.2X»Fd.3'.2X.F7.4,2X*6(F8.4.2X).?(F9.6.2X).//) 
¥ FORMATJ5F10.0.211) 

^  1C READU.9) h.S,DM,DP,T,LQ,L» 
IFIH.EÜ.69.) STOP 

C HEIGHT.SPEEO.CROSSOVER.INITIAL PREDICTED SLANT RANGE 
C iNCHtMENTAL VALUE.TELLS PROGRAM «HAT TU INCREMENT I.E. Ld=0/00.1/T0.2/0P 
C PROJECTILE 3EING USEO LW=l/XM2<»b-20MM,2/XM220-20MM,3/OERLlKON-3SMM 

READU.9) GD.GA 
C «EAPON STATION OUT OF LEVEL CONDITIONS - USEO TO GENERATE TILT AND CANT 

«RIT£(3.1> H.S.DM.GD.GA 
«RITE(3.2) 
oO TO .(101. 102. Ill), L* 

101 HRIT£(3.3> 
GO TO 103 

102 «RIT£(3.4) 
GO TO 103 

111 hRITE(3.*l) 
103 *RlTt(3»5) 

tiRITr.(3,b) 
«KITE(3.7> 
AZ=0. 
b#*0. 
IJK=0 
UP=DP 
:>=S«.51<»«»<»1<» 
GO TO (11*12.13).Lk 

11 A=-.3b0<»05l78 
O=.2o3020363t-U2 
C»-.318S3*ö39E-05 
C«.3050«»026E-oe 
E*-.i05«»61794E-ll 
F*.1379y853'»E-lS 
GO TO 16 

12 AS-.S265571H6 
d=.jDi994«»<»4E-02 
C*-.««36896<.5bE-05 
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•08 7 
-11 > 

D«.39*7B3*»59E- 
£»-.13527887E- 
F«.l7*334879E-i5 \ 
60 TO 16 

13 A».U*67173lE-02 
U«.B«0<»701S3E-03 
C*.1398S685*»E-06 
0»-.195025201E-10 
£>.6692S0001E-i* 
F*-.331920159E-18 

16 TTP*A»8»DP*C«0P*0P*0#üP»O»E«0P«'«»*«F»DP»«»5 
TT»A»6»0M»C#0H«OM»O*0M»«3»E«OH»»««F«OH»»S 
OOsSüRT(OM*ÜM»S*S*TT*TTa 
lP*-S0B7(DP»0P-0rt-»0MJ/S 
TO«TP-TTP 
XHIN'TO 
PIP«-TP 
PTO*PTP-TTP 
XMAX'PTO 
CP'SUHT <OM«OM*S»S«PTO*PTO> 
Ü0«SQHT <0M*0M«S*S*TO*rO» 
IFtLU.EO.O   )   60  TO  H6 
60 TO   <17»l9ltL0 

116  100*00/100. 
00*100*100. 
TO*-SQRT(00*00-OM«DM)/S 
CALL RANGE<AZ.OP.A,9»CtDtE»Ft**tOM.$.TO»DO.OP.TP#TTP> 
60 TO 19 

17 ITO*TO 
T0*1T0 
00*SUHT(OM*OM»S«S*TO<TO) 
CALL RANGE(AZ«OP«Atä*C*0«EtF*MHtOHtS«TOtUOtOP*TPtTTP) 

19 F0P*B*2.«C«0P«3.«0»0P»0P»«.»E#ÜH«#3»5.»F*0P»«A 
FEP*Ü. 
UK« UK* I 
TIME (UK) «TO 
RH=SdRt(OM«ÜM-H»H) 
RP*SURT<DP«DP-h«H) 
RO«SURTJDO«DO-h«H) 
£P*ASIN(H/pP) 
EO*ACOS(RO/00> 
AP*-ACOS<R«/RP) 
IFlAZ.EO.l.) APs-AP 
AO«-ACOS<RM/RO) 
17(A^.EO.-l.) AO*-AO 
AO0*(S*C0S(A0)«C0S(A0))/RM 
000*(S«S«TO)/00 
£00*- <S»S«h«TO<»C0S(AO))/<RM«OÜ«DO» 
DEL1*AP-A0 
SI61*EP-E0 
AAU.nsCOSJSIGll-lEOO'OO^FEPJ/UP-U.-COSlUELin^SlNlECM'SINCEPI 
AA«2,l)=(-AOO»0O«COS(E0)»FEP»/ÜP-SlN(0ELl)«SIN<EP» 
AA(3»1J=(1.-C0S«0EL1))*C0S«E0)«SIN<EP»-0Ü0»FEP/0P-SINJSI61J 
AA<1«2)=SIN(OEL1)«SIN(EO)#COS(LP) 
AA(2t2)*C0S(tP)»C0S«ÜELl) 
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AA(3t2)«-SIN(DELl>«»C0S(E0>#C0S(EP> 
AAC1.3)»EO0#(D0/OP>«(TTP/DP-FUP> 
AA (2 • 3»aS I lx C OEL1»»COS (EP»/OP-AOO» < OO/OP > »COS < EO > «FDP 
AA(3t3)»(COS(SIGl>-(l.-COS(DEHI>«COS(EO»«COS(EP>-000*FDP>/DP 
B6(ltl>sE00*TTP/0P 
88(2.1IaAOO*TTP*COS(EO)/OP 
BB(3.1)«1./0P 
B8(l*2)>0. 
88(2.2>*0. 
BB(3t2)sTTH/DP 
B8 (1. 3 >«(EOD»DO«»FEP > /OP- (1. -COS I OEL 1) > «COS (EP «EO) 
b8(2O>«(A0D#00»C0S(E0»«FEP>/DP»SIN(0ELll*SIN(EP>-A00*(D0/0P»«TTP» 
lSlN(EO) 
b3(3»j>»00«FEP/DP-(1.-COS(DELI» »•SIMEP.EO) 
B8(l.<») «OO/OP 
B8(2*4>«0. 
88(3.<O*0. 
88(1.5>*0. 
88(2.5)*00«TTP*COS(EO>/OP 
88(3.5X0. 
M*0 

20 00 21 Ksl,5 
21 Y<K>=0.0 

Y(M»1)=1. 
RD«.001 
Y(3)«Y(3)»WD 
YU)«Y («♦)•«> 
Y(5)*Y(S)»RD 

C INPUT ERKORS GIVEN AS UNIT ONE - TO CHANGE VALUE OF INPUT ERRORS 
C CHANGE Y(M.J|=x 
C  Y(l)»ODO.Y(2)sD000.Y(3)»0EO.VU>*OE00.Y(S)xOA00 
C  V(l)»MEr.YC2>=MET,Y<3>=MiL.Y<<0*HIL.Y<5>»MIL 

M»M»1 
0AO*0. 
Vl*BB(l.l>«Y(l>«B8(1.2>*Y(2>«d8(1.3)*Y(3>«BB(1.4)«Y(4>«BB(L5)*Y(S 

1) 
Y2*8d(2»l>*Y(l>«BB(2.2>*Y(2>«ÖB(2<J>*Y(3>»B8<2»4)*Y(4>»BB(2.5>4»Y(5 

1) 
Y3=ad(3,l)«Y(l)*BB(3.2)«Y(2)*8B(3.3)«Y<3)*B8(3.4)<»YC4)*BB(3.5)«Y(5 

1) 
U"AA(l.l>«(AA(2,2>oAA(3.3)-AA(2»3>*AA<3»2))-AA<l*2)<MAA(2.1)*AA(3. 
13>-AA(2.3)*AA(3.1>).A4(l,3)*<AA(2.1>*AA(3.2)-AA(2»2)*AA(3.1>) 

C XlsOELTA SIGMA(l) AND X2=DELTA<1» 
Xi=(tl*(AA(i.2»»AA(3.3l-AA{2.3»*AA(3.2))-AA(l«2>««Y2»AA(3.3)-AA(2. 

13)«Y3»»AA<1.3)*(Y2»AA(3,2)-AA(2.2I*Y3))/Ü 
A2-(AA(1.1)*(Y<:*AA(3.3)-AA(2.3I*Y3)-Y1*(AA(2.1>#AA(3.3)-AA(2*3)*AA 

1(3.1))*AA(1*3)*(AA(2.1)*Y3-Y2*AA(3.1)))/U 
0APaOAO»X2 
0EP=Y(3)*Xl 
P*0P#SQRT((0AP«COS(EP)»*»?»OEP«OEP) 
1F(YI1).E0.1.)   KKsO 
KKsKK*l. 
ft(KK)=P 
IF(K*.NE.5>   GO  TO  20 
IF(GO.EQ.0.0)   GO  TO  22 
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CALL TILT <60.6AtAPtEPtDP.LMtC6tT6tR6)tRETURhS(2?» 
22 TG»0.0 

C6»0.0 
R(6)*0.b 
60 TO 122 

23 R(6I"R6 .„. ., 
122 *RITE(3t6> 00t0P.T0tTTP««RUItJ»l»6I.TGtCG 

TRl(IJK)-RO) 
TR2(lJK}sRl2) 
TR3(IJKI>R(3) 
TR*UJK)*Rf»> 
TR5(IJKI«R(5t 
IFUJK.EO.l» YHAX«R(*> 
IFtLQ.EQ.C.) 60 TO 123 
60 T0(24t2S)tL0 

123 IFiMa.EQ.l.) 60 TO 2« 
00»DO-T 
IF(00.LT.00) AZ»1. 
IF(OO.LT.OM) 60 TO 27 
T0«-SORTJOO»00-OM»OM1/S 
CALL RAN6E<AZ.QP«A,BtCtD.EtF.««t0M.S.T0.00.DP.TPtTTP> 
60 TO 19 

24 T0»T0^T 
00>SORTIOM»OM»S«S«TO«TO» 
IF«00.LT.00) AZ>1. 
1F(T0.6E.Q.> HH«1. 
IFtWM.EO.l.) GO TO 29 
60 TO 30 

29 1F<D0.GT.CP> 60 TO 31 __ 
3C CALL RAN6EIAZ»0P»AtBtCtO.E«Fftl».0H»StT0tOOt0PtTP.TTP» 

60 TO 19 
25 IF(AZ.EQ.l) 60 TO 26 

OP»OP-T 
1F(0P.6E.0M> 60 TO 127 
AZ>1. 

26 OP*OP»T 
127 TTP*A*B»0P*C#0P»0P*0*0P»«3«E#0P«»<»*F»0P»«5 

TPs-SQRT < 0P#0P-0M«0M)/S 
IFUZ.EG.l.» TP«-TP 
TO»TP-TTP 
00«SORTJOM«OM«S«S»TO*TO» 
1F4AZ.NE.1*) GO TO 19 

1FCD0.GT.CP> 60 TO 31 
60 TO 19 

27 M»l. 
28 00*00«T 

1FI00.6T.CP>   GO  TO  31 
TO«SQRTCDOM>0-DM«DM»/S 
CALL RANGE<AZ,OP,AtB»CtOt£tF.HW.OM»S.TO.OOtDPtTP»TTP> 
60 TO 19 

31 CALLNANCYL<*HTlME.5H(SEC).9HMlbS 0IST.5H<MET>> 
CALL NANCY5«TIMEtTRltIJK.TIMEtTR2tIJK.TIME.TR3tIJKtTlMEtTR*»WK»TI 
lME«THS«UKtXMAXtXHIN*YNAX*0.*l»l> 
60 TO 10 
END 
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SUBROUTINE TILT IGO.GA.AP.EP.DP.L*»CG.TG.R>»RETURNS(XI» 
A«GA 
0«GO 
CG«ATAN<TAN(0)*COS(A-APM 
OAPP*ATAN(TAMEP)*TAN(CG>> 
»G«ABSIA-AP-C4PP» 
TGaATANtSlN <B6» *TAN(0)> 
P£«A$IMSIMO>«SIN(BG>> 
£PP>ACOS(COS(OAPPI*COS(EP))-PE 
GO TO (201.202)tlW 

201 Al«-.14101S931E»01 
A2«.ll6*b035lE-0l 
A3— .930808903E-OS 
A««.77*2««66oE-08 
A5«-.76*050957E-12 
AA«.100126567E*01 
BB»-.199919697E-04 
CO-.O1901&1SE-Q6 
60 TO 203 

202 A1«-.2139<»81«1E*01 
A2«.i39796979E-01 
A3»-.l3I7G0929E-0* 
A«>.967J10O*E-08 
AS»-.107226552E-U 
AA*.10227*E*01 
BBs-.489510S7E-04 
CC»-.425*75 UE-06 

203 EEPsEPPMOOO. 
AK*A1*A2»0P*A3*0P*DP*A4«0P##3*A5*0P»** 
BK»AA»BB»EEP»CC«EEP«EEP 
CK«AK»<2.«CC*EEP*8B)-1. 
PHISP«(-CK-SQRT(CK»CK-*.»AK«AK»BK»CC>)/(2.*AK«CC> 
PHISP«PHISP/1000. 
PHISTA«sASIN(COS(CG)»SIN(PHISP»EPP»PEI> 
PHISST*AK*(AA«BB*PHISTAR«CC*PHISTAH*PHISTAR) 
PHISST»PHISST/1000. 
EPST»PHISTAR-PHISST 
0APST*ATAN(STN(CG)*TAN(PH1SP»EP»'«PE>}-PE 
APST*AP-DAPST 
X*DP«COS(EP)«COS(AP> 
V^DP*COS(EP)*SIN(AP) 
2«0P*SIN(EP) 
XP«DP*COS(EPST)«COS< APST) 
»P»OP«COS «EPST > »SIN fAPST) 
tt>>OP«SIN(EPST) 
R«S0RT(<X-XP)*«2^(Y-YP)«x»2MZ-ZP)*«2> 
RETURN XI 
fNO 
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SUBROUTINE RANGE«AZ.OPtAtBtCtO.EtFtK¥.ON*S.TO«DO»PD»P.»PTT> 
POHAA«00 
PONINBOM 
IFUZ.EO.l.) POMAX«OP 
IFUZ.EO.l.» POMINsOM 
IFiW4.E0.ll POMIN'OO 
PO>POMAX 

300 PT«-SORT|PD#PD-DM»OMI/S 
1F(AZ.EQ.1.I PT»-PT 
PTT»A»B»P0^C#P0«P0»0#P0«»3»E«P0««*»F»P0»»S 
0T«PT-P1T 
6»T0-0T 
IF(ABS(G).(.T..001> GO TO 304 
IFUZ.EO.l) GO TO 301 
IF(G)302»304.303 

301 IF(G)303»30*t302 
302 PCMINsPO 

P0«(P0»POMAX)/2. 
GO TO 300 

303 POMAlsPD 
P0>(P0*P0HlN)/2. 
GO TO 300 

304 «ETUKN 
ENO 
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TABLE  III. 

Miss Distance Computer Output  For 
Unit Input Errors 

Date given:   Height,  1000 meters; Speed,   400 kts; 
Cross-over,   1200 meters;     GD,   -0.000000 radian; 
GA,   -0.000000 radian; 
Projectile used,   35 mm Oerlikon 

00 an 
0» 

IWttl 
TO 

IUCI 
it* 

•*££» 
UL 60 

«mTi 

IW. *>n. -U.000 2.T01S .ItM 

MM. 23SI. •I2.SM 2.MTI .its* 

»•%. »01. •12.«M 2.ST»T .ltTt 

M41. Hit. -ll.SM *.»Til .11*2 

not. «»•*. -11.M« 2.3TTS .HIT 

KM. 1*1*. -it.sn i.Uii .IIS« 

2301. 2«»». •i«.«t« 2. UM .ins 

tm. 1*1». -«.st« t.ttt* .Uli 

220T. 1*11, •«.Mt i.tlii .1»] 

21*1. IMt. -t.SM 1.42*0 .It*?. 

M3T. 1»*«. >-«.M« l.tMl .1131 

)W, |M). -T.Stt I.TtTt • I3T*. 

im. 10». -T.OO0 I.»»« .1*2* 

IWT. 1*4». -t.SM l.tllt .I*«] 

IT». lit«. •t.ttt I.SSU .1S*1 

its«.   I»M.      -s.stt    W»M* 

 »111    DllfUtt      » ITM      HtlMtl      TO      
Tt? litVoo—mrSSB—DEC lo "otriöo"- on. too       fi e'      Tar 

<»*TI      IKT»        um      mm        iwii» iBUi.     JfJBL '■»■" 

.M*S 2.4ITS 2.MS3 T.M*T t.tttt t.tMttt t.tttttt 

.MIS 2.3*T| ».MIT T.IM2 t.MM t.tMttt t.tttttt 

.tMT 2.2M0 4.TM« t.MM t.MM t.ttttM t.tttttt 

.Mtl 2.2«TS *.«MT t.MM t.MM t.tttttt t.tttttt 

.HIS I.IMt 2.STM S.M** O.Mtt t.tMttt t.tttttt 

.Hl< 2.MM «.MS« S.ITSt t.MM t.tttttt t.tttttt 

.MM i.ttlS 2.3M* «.TSt4 t.MM t.tttttt t.tttttt 

.MM l.«3»t 2.3«T» *.3SM t.tttt t.tttttt t.MMM 

• t*»T l.«M3 2.IIH 3.«T3« «.KM t.tttttt t.tttttt 

• Ml» 1.M3S 2.13*« J.»21t «.MM t.tttttt t.tttttt 

«Mil I.TJtt 2. tStt 1.2*1» «.MM t.tttttt t.ttttM 

.tl*S l.tTT« l.«M« 2.«M3 «.MM t.tttttt t.ttttM 

.t3M l.tIT* l.MM 2.tttt t.MM t.tttttt t.MMOt 

.tMT l.SMt I.«IM «.»>•* t.tttt t.ttttM t.tttM* 

.t3SS I.SMt I.T3S2 2.1*1» t.MM t.tMttt 0.000900 

.t3»S I.»SI* I.M2« l.MM t.tOM t.tttttt 0.000100 
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1MI. !••». -•.Mt l.«M» .MM .•MS I.MIl l.MM l.MM •.MM t.MtMt *.*••••• 

»U. IM1. -*.SM W)M» .5»«» .*«• l.MM l.MM l.S»J» •.MM *.M*M* • •••MM 

l*M. I3M. -*.*« l.M«) IMt .*M> t.)IM l.MM I.»IM ••«v.» t.MMM t.MMM 

KM. IM*. •l.M* l.M*) .IM* .•Hl I.MI) l.*IM i.int ».MM t.tttttt •••••••• 

I)**. IM). -1.M* I.0H .IM* .•H* l.»M I.M»1 I.IMJ •.MM t.MMM *.*••••• 

IM». IM«. -I.Mt I.UM .MTT •Mt) I.MIT l.MM l.***3 •.MM t.MMM *.*••••• 

IM«. Uli. -».*•• l.MM •Utt .•MS l.MM I.M«T .MT* •.MM t.MMM «.•••••• 

in*. IMt. •I.Mt I.IM« .»MT .MM l.tIM I.MIl .«MC •.MM t.tttttt *.**•••• 

121«. IMI. •l .Mt 1.1*1) .MM .IM« I.UM I.JIM .•MJ •.MM t.tttttt *.*•**•« 

IM*. IM«. -.Mt l.M«) •MM .•MS 1.2M1 I.MM .MM •.•••• t.tttttt •••••••• 

IM*. UM. t.ttt I.UII .2*»S .•M) I.MIS l.MM .•UM ••••»• I.Mtttt •.«••••• 

IM*. IMI. .Mt I.MI* .•TM .IMT I.MIl l.MM .MM «.MM *.*••••• • •••MM 

III«. IM*. l.M* l.MM .IM) .*M* I.IM) l.MM .MM •.•••• *.•••••• •.00000* 

Ml*. IM*. I.Mi l.M») .MM .MM l.»S)l l.M«) .•TM ••MM • •••MM *.*MM* 

IM«. litt. IM* l.«l*t .Mt* .♦»SS .«Tlt I.MT! .M** • .MM • •••MM «.0**000 

IM«. I*S). t.Ht l.*«*l .»T|* l.l«T) .MT* !.*)•» ,T*M •.MM *.*•(••• *.*••«•• 

11*«. II». l.M* l.STtt .»IM I.MSS .«M« I.MM .«TM • .MM *.M**M •.000*00 

1»«*. !••). I.Mt ).»*•■ .«»• !.»••) l.*MT l.»M* .*«TZ •.MM V.MMIt •.000*00 

I*W. IM*. ».Mt l.TTM • *M» I.T*M I.UM I.*)** .IT» •••••• t.ttt'ltt 0.000000 

ISl». IMl. ».Mt \.«*<t» I.tM) l.»MI I.tM« *.*•** .MTS «.•••• *.M«*«* •.00*000 

IS*l. MM. t.ttt <r.»l«» l.tltT 2.MS) l.)T»* *.l»*l .•112 • .MM t.•••••* 0.000000 

MS». 1*«*. S.Mt i.MST .»TM 2. MIT l.Sli'1 ».MI« l.MM «.MM *.**«*0* «.0*0000 

1TII. *••*. *.••» «.MM .•IM l.*W« liMI 2.*S*2 l.MI* *.*••• 0.000000 0.000000 

IT»T. 12«*. ».Mt ä.«S«7 •MS» I.MSI I.TTST 2.SM« I.M** *.*••• 0.M00M 0.000000 

I»TS. MI». T.M* 2.«M* .TM* l.«»)S I.MT« 2.»SM ).2T»S • ••Mt «.•900*0 O.MOOOO 

ins. toil. .TUt I.MM I.»*l* 2.»2t« liWI t.MM •.»•0000 0.0*0000 
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Figure 3.   Discrete Graph of Computer Output 
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1> 

FORTRAN  PROGRAM 

Miss Distance a a a Function of Ballistic Effects 

Program Miss Distance (secondary) is an extended FORTRAN 

program utilizing the CDC 6600 computer.   Input data consists of alti« 

tude, speed, and slant cross-over range (which are constant); and 

maximum predicted slant range, percent error in time of flight, and 

ballistics being used. 

The ballistics currently incorporated in the program are: 20 mm 

XM220, 20 mm XM246, and 35 mm Oerlikon.   The program considers 

a fixed (percentage) error in time of flight which is a function of ballis- 

tic effects and which generates a corresponding miss distance in meters. 

Since the miss distance is a function of present and predicted slant range, 

time along target path   and time of flight of projectile, their values are 
displayed in the output. 

Tables IVand V contain computer program compilation and output, 
respectively. 
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TABLE   IV. 
Miss Distance Computer Program as 

A Function of Ballistic Effects 

•••HEIGHT s ».F5.0.5X.»SPEED » 

XM246 - 20PM«) 
XH220 - 20PM») 
OERLIKON - 3SMM») 

PROGRAM MOE CINPUT »OUTPUT * TAPE1>INPUT »TAPE3»0UTPUT) 
1 FORNAT(5F10.0*U) 
2 FORMAT OKI,»0 ATA   GIVEN 
1 •.F<».0»5X,»CROSSOVER » ».F5.0) 

3 FORMAT(25X.»(MET>».15X.»(KTS>»*15X.»(MET)•) 
4 FORMAT(/.25X.«PROJECTILE  BEING USED  IS  THE 
5 FORMAT(/.25X.»PROJECTILE  BEING USED  IS  THE 

SI FORMAT(/.2SX.»PROJECTILE  BEING USED  IS  THE »I«LI»»>I - jann-i 
6 FORMAT(/«25Xt•ASSUMING BALLISTIC EFFECTS. TTP CHANGE « «.F4.2.1X. 
i«PERCENT») 

7 FORMAT(////.3X.»0P».SX.»0Q#.7X.»TO*,7X.»TTP«,8X.»MISS DISTANCE») 
8 FORMAT (IX.• (MET >»,2X.• (MET > ».4X.• (SEC) »»SX.MSEO^X.» (MET )•.//) 
9 FORMAT(F6.0»2X.F5.0*2X.F6.3.2X.F7.4,9X.F7.4./) 

REAO(l.l) H.S.OM.OP.CTTP.LW 
O«100.»CTTP 
•RITE«3.2> H.StOM 
»RITE(3.3) 
S*S*.5144414 
GO TO UO.11.21).IN 

10 MRITE(i«t) 
GO TO It 

11 nRITE(3.S) 
GO TO 12 

21 «RITEI3.51) 
12 »RITE(3.6)Q 

MRITE(3.7) 
»RITtO.8) 
GO TO (13.1*.16).LW 

13 A« 
b> 
Ci 
0< 
t' 
F» 
GO 

c» 
Oi 
E> 
F« 

«-.360*05170 
».2B3020363E-02 
■-.318534839E-05 
».30504026E-08 
«-.'105s6179<.E-ll 
«.13799853<»E-15 

TO 15 
«-»5265571<»6 
».35199444<»E-02 
»-.«»38896456E-05 
«.394783*59E-08 
«-.13527887E-11 
■•17433*879E-15 

GO TO 15 
«.124671731E-02 
«.8«»0470153E-03 
«.l3985b85BE-06 
»-.195025201E-10 
».6b9250001E-l<» 

.»-.33i<»20159E-18 
15 TTP«A»8»0P*C» }P»*DP»0»OP»» J*E»0P»»<»*F»DP»»5 

UTTP=CTTP»TTP 
TPs-SQRT «OP»OP-OM»0M»/S 
TO*TP-TTP 
UOsSüRT(OM»DM»S»S»TO»TO) 
NMxSURT(OM»OM-H»H) 
RPsSURT(OP»DP-H»H) 

16 A« 
B» 
C« 
0> 
E' 
F« 
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»0«SÜRT(00*DO-h«H> 
AP»-ACOS(RM/«P) 
A0»-ACOS(RM/R0| 
EP«ASIMH/DP> 
EO»ACOS(RO/00> 
AOO* t S«COS (AO) »COS (AO)) /RM 
EOO*-«S»S»h»TO«COS«AO)»/(KM»Oü»00> 
DELI»AP-AO 
SlGl*EP-EO 
OEUS»ASlN(AOO«00»<TTP*DTTP)«COS<EO)/<DP»COS<EP>>> 
SiGISsASIN(£00*00 'TTP«OTTPi/OP-(l.-C0SlOEtlS)>*SIN(EO)*C0S(EPn 
OAPsOELlS-OELl 
0EP>SIG1S-SI61 
OX=DP«(SORT ((OAP«COS (EP)) ••2»l)EP«ÜEp) I 
*RITEO.9>DPtD0.T0.TTP.DX 
OPsOP-100. 
1F(DP.LT.DM)ST0P 
GO TO  15 
END 
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TABLE   V. 

Miss Distance Computer Output For 
Ballistic Effects 

Data given:    Height,     1000'meters; Speed,     400 kts; 
Cross-over,     1200  meters; 
Projectile used,    35 mm Oerlikon. 

Assuming ballistic effects, ttp change = 1.00 percent. 

OP 
(MET) 

00 
(MET) 

TO 
(SEC> 

TTP 
(SEC) 

2500» 3037. -13.559 2.9008 

2400. 2904. -12.851 2.7500 

2300. 2771. -12.138 2.O028 

2200. 2639. -11.420 2.«»592 

2100. 2506. -1C.694 2.3190 

2000. 2375. -9.957 2.1821 

1900« 2243. -9,207 2.0483 

1800. 2J11. -8.437 1.9175 

1700. 1978. -7.641 1.7896 

1600. 18*5. -6.807 1.6645 

1500. J709. -5.916 1.5422 

1400. 1571. -4.927 1.4224 

1300. 1425. -3.735 1.3053 

1200. 1225. -1.191 1.1906 

332 

/ 

HISS DISTANCE 
(MET)  

2.3421 

2.3204 

2.2994 

2.2791 

2.2594 

2.2404 

2.2221 

2.2045 

2.1875 

2.1713 

2.1560 

2.1427 

2.1407 

2.4516 
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CONCLUSIONS 

The FORTRAN programs developed in this report provide a useable 

method of evaluating the effectiveness of a gun air defense system.   The 

projectile-target miss distance (defined on page 9) evaluated by the 

programs is tabulated and graphed as a function of errors in: 

1. Slant range, 

2. Slant range rate, 

3. Azimuth, 

4. Azimuth rate, 

5. Elevation, 

6. Elevation rate, 

7     Projectile time of flight, 

8.   Gun platform out-of-level 

for targets having level flight, constant target speed, and any ballistic data. 

These FORTRAN programs apply to any gun air defense system as 

they are based on a theoretical study of the problem.    Thus, a gun system's 

component errors are not an input to these programs. 
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APPENDIX A 

DETERMINATION OF 

MISS DISTANCE TABLES FOR EQUAL INCREMENTS OF D0,  T0. or Dp 

The Miss Distance program provides miss distance tables as a 

function of present position errors for increments in D0,  T0, or Dp. 

To increment DQ,   T0, or D_,  use the procedure described below. 

1. Incremental Procedure 

a. If it is desired to increment D0, assign to variable   T  the 

value of the increment and set dummy variable LQ equal to 0.    Program 

proceeds to take DQ to the next lower hundredth (i.e., D    = 3722 implies 

3700) and calculates  TQ for this value of D0; then calls subroutine RANGE, 

which uses an iterative process to generate Dp. 

b. If it is desired tu     crement TQ, assign to variable   T   the 

value of the increment and set dummy variable LQ equal to 1.    Program 

proceeds to take T0 to the next higher integer (i. e,,  T0 = - 7. 35 implies 

• 7. 00) and calculates D0 for this value of TQ; then calls subroutine 

RANGE, which uses an iterative process to generate D_. 

c. M it is desired to increment D_, assign to variable   T   the 

value of the increment and set dummy variable LQ equal to 2.    Program 

proceeds to automatically increment D_. 

2. Subroutine range RANGE 

The iterative method employed is the bisection method.    Suppose 

the limits of Dp (i. e., Dm   sD. s   DQ before crossover ) are known. 

Initially set D_ = DQ and generate T^ and compare it with TQ.    If   T0  - 

T0' is negative,  set Dp s previous Dp + DQ divided by 2 and set previous 

Dm s   Dpi D0.    If   T0 - T0' is positive,   set D    = previous   D_ +   Dm 

divided by 2 and set previous   Dm   £   Dp   £   previous Dp.    Continue 

to generate TQ" until TQ - TQ' reachss the desired accuracy. 
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I APPENDIX B 

LEAST SQUARE POLYNOMIAL 

"FAN" FIT TO DATA OF THREE VARIABLES 

For data involving three variables, say x, y, and z, a least square 

polynomial fit can be quickly and easily found when the data describes a 

fan (Figure B-l) In two dimensions. 

' 

Figure B-l.   Graph of Discrete Data for Functions 
Possessing a "Fan" Sh    e 

Observe that the curves /}, y^,  ..... yn   spread out like a fan.   Al- 

though the curves need not be straight lines,  it is assumed that each curve 

has the same degree polynomial fit as a function of x  in domain defined 

by table. 

Using the tabular data for y = yj, the smallest value of y, determine 

a least square polynomial fit   z = Pj (x, yj).   In like manner determine 

z = Pn (x, yn), where yn is the largest value of y in table. 
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Let xm be the value of x that maximizes   Pn (x,  yn) - Pj (x,  yj). 

Now graph 7 at a function of y (Figure B-2) when x = xm and determine 

Figure B-2.   Graph of Discrete Data for   z = f(y) 

the least square polynomial fit > = Qfx^ y).   Because the curves of 

Figure B-l spread out uniformly, determine the least square polynomial 

fit to the three variables using the proportion 

P(x,y)   -   Pt (x,yi) 

pn(*.yn> - pl (*» Yl) 

pfrm. y) - pl (*m» 71) 

Pn ("m- yn
J   "   pl<*m^yi) 

Solving for P(x, y), we obtain 

z    =   P(x,y)   = 
pn^' yn> -P 

!^f^(pn^yn)-pl(x.yi)) 
1 '"m* y* ' 

+ Pl(x,y1) 

the desired least square polynomial fit to the given tabular data in three 
variables. 
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COMPUTER-GENERATION OF CIRCULAR GRAPHICAL FIRING SCALES 

Diana Dadamo, Joseph Kaszupski 
Fire Control Development and Engineering Directorate 

U.S. Army Frankford Arsenal 
Philadelphia, Pa. 19137 

ABSTRACT. Tha use of firing tables for the prediction of mortar fire 
is «ell-established; a four-inch circular firing scale was developed to 
provide a convenient and inexpensive adaption of these tables for use in 
the field. The generation of this scale was done originally by hand, but 
because the nature of these scales required a significant revision of the 
layout for a minor change in the data, a more practical approach (i.e., 
computer-generated) was attempted. This paper explains the development and 
content of the computer program and a description of the scale while providing 
an explicit comparison between hand drawn and computer-generated plots. 

1. INTRODUCTION. The use of tabular firing tables for prediction of 
mortar fire is an established practice; in the field, the graphical firing 
fan remains the basic form of calculation although there have been advances 
in automating this process. The linear representation of the firing tables 
was a major step in presenting the tabular firing tables in a more convenient 
form for use in Fire Direction Center. The computer has been utilized to 
provide advances for this grid method of calculation without disturbing the 
general form of operation as is now present in the mortar team. 

Two separate efforts to computerize the paraphernalia of the FDC are 
as follows: computer generation of linear scales for use with the graphical 
firing fan, and a computer-generated disc that would replace the linear 
scale (in some situations). The manual creation of masters for geometric 
firing scales is tedious and involves human error; generation of these scales 
by computer eliminates most of this error and also provides a means to easily 
produce a new scale due to modification of ballistic data.  Since the data 
for the scale is produced by a computer, program out efforts are ultimately 
intended to be used as an alternate form of output for the ballistic programs. 

Generation of the linear scale by computer for the 4.2 inch mortar was 
done successfully by Frances Edelman of Frankford Arsenal, who showed that 
computer generation of linear scales could be done, within the necessary 
tolerances.  Subsequently, Frankford is now working on a more general plotting 
program for the generation of all linear scales presently in use, which 
provides for direct modification of the scale. 

The original use of the graphical firing scales was for the prediction 
of artillery fire; the adaption of these graphical firing fans for the mortar 
is actually not ideal because of the mobility of that weapon. With the 
development of the new lightweight company mortar, it became essential to 
provide an extremely portable representation of the ballistic data.  Studies 
in the reduction of tabular data resulted in the development of a compact 
circular firing scale. 
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It is a four inch disc consisting of an outer range scale and internal 
curves which each represent a separate charge of the ammunition. These 
curves are used as base lines to display data of elevation, maximum ordinate 
of the trajectory at certain elevations and time of flight of the projectile. 
A cursor is used to align the desired range on the outer range scale with 
the elevation of these charges which have that range capability. Above the 
elevations, there is miscellaneous data that is needed for illumination or 
smoke rounds. 

These curves are functions of the maximum and minimum ranges of the 
charges, and although they are not ballistically representative (but are 
constructed with a human engineering viewpoint) they are constructed 
uniquely for each set of data so that the maximum amount of space inside 
the range scale may be used for the plotting. A change in the maximum 
range of the weapon or certain charges would obviously require a complete 
new scale. Hand plotting of a scale that would be invalidated by such a 
minor change in data is impractical. 

2.  EXPLANATION OF THE COMPUTER PROGRAM 

A computer-generated plotting program for the circular firing scale 
has been developed at Frankford which produces a plot directly from ballisti- 
cal data. 

The program operates in the batch mode under two options externally 
controlled by a switch; a more complete program that calculates the 
constants for a set of data or tests if modified data is compatible with 
a previous run; and also produces the equations and points used in the 
plotting of the curves themselves; and an actual plotting program. The 
use of an external indicator for the choice of run eliminates the need 
for program modification as a result of a changa in data. 

An important calculation is the angle increments needed to correlate 
the angle of the range and the angle needed to locate the point at which 
the cursor positioned at that range will intersect the curves. The position 
of the cursor, however, is not from the center of the disc but is constructed 
so that it is parallel to the Y-axis at some point in its rotation, with the 
displacement on the X-axis from the center equal to the minimum plotting 
radius. The angle formed by the intersection of the cursor and a radius of 
the curve defines a constant angle differential for each curve—which is 
then used to locate and position the tic marks. 

In order to use a maximum amount of the space within the center of the 
disc, the curves are constructed so that the cursor and at least one curve 
intersect the inner circle at the 800 mil elevation point; and the minimum 
radius of the innermost charge is a specified distance from the center of 
the disc. Each curve starts at a different angle; the range is a function 
of the angle of rotation from this starting angle. The latter maintains a 
constant distance between any two curves which is a desirable quality from 
a human engineering viewpoint. 
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According to a report on the French Curve Program developed by Lemont 
Blake, the appearance of a point-to-point plotted curve will be smooth if 
the increment used in the plottirg of the curve is .1 the curvature of the 
curve. This fact is used in the calculation of the points for the curve 
on which the points are to be plotted, keeping in mind the resolution of 
the plotter and the fact that these curves do not affect the accuracy of 
the data plotted on them. 

Generation of the curves and the previous constants are done in the 
calculation part of the program; the plotting program requires this data 
before the plotting of the actual ballistic data may be done. Each charge 
is plotted separately to minimize the amount of core-memory needed for the 
program and also to produce a tentative output even if one charge's data 
is inaccurately read in. The plotting program tests for readability for 
every point that is plotted on the curves. 

At parts on the curves, the increments between the points to be plotted 
may be below the comfortable resolution of the eye. At every interval of 
100 mils on the lower scale that marks elevation, tests are made of the 
distances between the calculated positions of data in 10 mil increments. 
If any of these distances between the tic marks is below a minimum value, 
the values of the elevations at those points that are not multiples of 50 
will not be plotted.  Instead, the distance be-ween the two 50 mil increments 
in that interval will be tested.  If those points can be plotted with the 
given resolutions, they will be; if not, that interval will be omitted from 
the plotting array and the next 100 mil interval will be examined.  At these 
points which have been accepted for actual plotting, tic marks are drawn 
at tha angle at which the cursor passes through the curve. 

Next the data of time of flight and maximum ordinate are examined. 
These points will be plotted on the upper scale if they are sufficiently 
distant from each other; initially the time of flight points take precedence 
over the M.O. points and are formed into arrays with the maxium ordinate 
points interspaced, if they meet the resolution test.  Some further conventions 
have been established for the plotting at these points concerning the priority 
so that the density of the maximum ordinate and TOF points are comparative. 
However, there is more freedom with the plotting of the maximum ordinate 
points since the numbers labeling these points are encased with a box to 
distinguish them from the time of flight points.  The point on the curve 
which the maximum ordinate represents is indicated by the apex of a triangle 
so that the box may be shifted one-half its length in either direction if 
that is necessary to meet the resolution test. 

Use of these tests will produce a readable scale for each charge. 
While the calculation program tests for possible interaction between the 
curves, certain sets of data may produce interference at some points. Also, 
the appearance of a scale may be improved by the manipulation of some points 
that do not follow the patterns of the program.  For this purpose, an editing 
program that exists in a timeshare environment was designed (which is based 
on the program used in the generation of the linear scale).  This program allows 
the user to change the position of points from the array of points to be 
plotted, after an initial run of the batch-program. 
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This provides a quick method of editing a plot that could still be 
computer generated. The existence of a fiber-optics light head for 
plotters could be used, finally, to make a photo master directly, thus 
eliminating the intermediate steps in the present method. 

Generation of these scales by computer would then eliminate much of 
the errors and reduce the time involved in the creation of masters, and 
would provide a general ability for the generation of future scales. 
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A COMPUTATIONAL SYSTEM FOR NUMERICAL INTEGRATION 

WITH RIGOROUS ERROR ESTIMATION 

Julia H. Gray and L. B. Rail 

Mathematics Research Center 

University of Wisconsin-Madison 

ABSTRACT 

By use of the concepts of interval analysis, it is pos- 
sible to construct methods for numerical integration which 
makes possible rigorous estimates of errors due to imprecise 
data, round-off, and truncation,  and also makes it possible 
to detect the use of incorrect formulas.   On the basis of 
parameters obtained from interval integration formulas, the 
calculation of numerical integrals can be optimized with re- 
spect to time and accuracy.   It is also often possible to im- 
prove the accuracy by intersection of interval results.   This 
paper describes a computational system of this type which 
has been implemented as a computer program for the UNIVAC 
1108/1110, using available software for interval analysis and 
automatic differentiation. 

1.    Numerical integration.     One of the classical problems of numerical 
analysis is to obtain accurate values of definite integrals of the form 

b 
(1.1) z = /   y(x)dx 

in case the integration cannot be carried out explicitly.   Methods for this 
process of numerical integration (or quadrature) have been developed since 
the first days of the calculus, and there is a vast literature devoted to them. 
A treatment of the basic concepts of numerical integration may be found in the 
book by Davis and Rabinowitz (1967), as well as in standard texts on numer- 
ical analysis,  such as the ones by Milne (1949) or Mysovskih (1969). 

In what follows, it will be assumed that the limits of integration  a, b 
in (1.1) are finite, and that  y(x)   is a Riemann integrable function (Davis 
and Rabinowitz (1967), pp. 4-6).   If the numerical integration method under 
discussion explicitly requires derivatives of y(x)   of ^rtain orders, then 
these will be assumed to exist without further ado. 

Sponsored by the U.S. Army under Contract No. DA-31-124-ARO-D-462 and by 
National Science Foundation Grant No. GP-40381. 
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Attention will be devoted for the most part to the use of expressions «. 
the form 

b n 
(1. 2) /   y(x) = YJ y(x.)w. + e(y) 

a i=l 

for the numerical integration.   In (1. 2), the term 

n 
(1. 3) r(y) = V y(x )w 

i=l       l    1 

is called the rule of numerical integration,  it being assumed that the nodes 
x.   are such that  a < x, < x, < ... < x   < b,    and the weights  w,, w_, .. ., w 

l _ =iliu^u-      t n =   \     c      12' n are given.    For example, the choice for  n = 3   of 

r _ a+b _ , 
Xl " a'    X2 " ~2~ '    X3 "       ' 

(1.4) b-a 2(b-a) b-a 
^W1 = T<    W2 = ~T"'    W3 = "6~   ' 

gives the familiar and useful Simpson's rule. 

Assuming that all indicated calculations can be performed exactly, the 
term  e(y)   in (1. 2) is the error in taking 

n 
(1. 5) z   = r(y) = y   y(x )w 

i=l 

as an approximation to the true value   z   of the integral (1.1).   Consequently, 
e(y)   is frequently called the (truncation) error term in (1. 2).    For most of the 
numerical integration methods used in practice, expressions for  e(y)   may 
be given in terms of derivatives of y .   In the case of Simpson's rule (1.4), 
one has 

•w-^A», 

where   £   is an (unknown) point in the open interval   a < £ < b,    and it is 
assumed that the fourth derivative  yiv(x)   of y(x)   is continuous (Davis and 
Rabinowitz (1967),  p. 19). 
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The operator   f defined by 

f(y) = r(y) + e(y) 

is called an integration formula for the functions in its domain.   A typical 
example is Simpson's formula 

(1.8) f(y) = ^[y(a)+4y(Ä+y(b)]-^iyiv(a   , 

obtained from (1.4) and (1.6).   The methods of numerical integration to be 
considered below are based for the most part on the use cf integration for- 
mulas, the truncation error term being brought into the computation along with 
the rule. 

2.   Error ef'.Imation.   In actual calculation of integrals, one obtains an ap- 
proximation  z *  to the true value   z  of the integral (1.1).   The error,   or 
difference between  z   and   z ,    arises from one or more of the following 
sources: 

(i)   Imprecise data.    The function  y(x)   to be integrated depends on 
coefficients which can be specified to a certain precision, as, for exariole, 
the results of measurements. 

(ii)   Round -off error.    This occurs in almost every calculation because 
only a finite number of digits can be used.   In fact, one has to deal with this 
type of error even if the integral is defined explicitly.   In mosi computing 
machines, one has round-off in the conversion of decimal numbers to and 
from binary,  from the fact that many constants,  such as L, w,   the nodes 
and weights of Gaussian integration rules (Milne (1949),   pp. 285-288), etc., 
cannot be represented exactly as machine numbers, and in the arithmetic 
operations required in the numerical evaluation of the integral. 

(iii)   Truncation error.    This type of error is introduced by the neglect or 
approximation of the term  e(y)   in the integration formula (1. 7), as in (1. 5). 

(iv)   Incorrect integration formula.    In theory, an integration formula   f 
gives the exact value 

b 
(2.1) z = f(y) = /   y(x)dx 

a 

of the integral (1.1) of each function y(x)   for which it is defined.   The use 
of an incorrect formula, while rare, has been observed in practice. 

While it is usually impossible to eliminate errors of types (i)-(iii) 
completely, one would hope to be able to minimize their effect on the ac- 
curacy of the final results, and to obtain reliable estimates of the resulting 
error.   Errors of type   (iv)   are best described as blunders, and can be 
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avoided by careful checking t-   see if the integration formula is correctly 
derived, and is suitable for application to the function being integrated.   In 
a properly designed computational system, it is often possible to detect 
errors of type   (iv) . 

The approach to error estimation taken here will be rigorous, that is, 
the computation will yield a positive number   e   such that the inequality 

(2.2) |z - z   | < e 

is guaranteed to hold.   Inequality (2.2) is, of course, a bound for the ab- 
solute error of  z*   as an approximation to   z .   In certain applications, one 
may want a positive bound   p for the relative error, that is, 

(2.3) \Z± 

it being assumed that   zz   > 0 .   Rigorous error bounds are usually considered 
to be costly in terms of analytical effort, and to yield pessimistic results in 
that the bounds obtained are often much larger than the actual errors in test 
cases.   The amount of computational time devoted to obtaining the error 
bound may also greatly exceed the time required to calculate the approxi- 
mation  z* .   The system described here estimates the effects of errors of 
types   (i)-(iii) automatically, and obtains   z'f   and   e   (or  p)   as the results 
of the same computation.   Experience indicates that the error bounds given 
are usually fairly realistic.   The machine time (and storage) required, how- 
ever, is large compared to straightforward evaluation of numerical integra- 
tion rules without error estimation,  so certain features for optimization have 
been included, and information relative to cost is provided . 

As an alternative to rigorous error estimation, there are ways to obtain 
indicative error estimates, which are easy to compute and are ordinarily of 
the same order of magnitude as the actual errors.   For example, one may note 
the dependence of the truncation error term  e(y)   on the length of the interval 
of integration,  as in (1.6), and deduce an estimate for the error based on 
comparison of values obtained from the integration rule for two or more differ- 
ent subdivisions of the total interval of integration (see Noble (1964), 
pp. 231-237).   While useful in practice, this type of error estimation still 
requires additional machine time, and does not provide the rigorously guaran- 
teed estimates of error which may be required in certain applications. 

3.   Interval analysis.     The system for numerical integration presented here 
is based on the computation of a (closed) interval  Z = [c, d]  which is known 
to contain the value   z  of the integral (1.1).   If z e Z,   then one may take 
the midpoint     n(Z)   of  Z , 
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* c+d (3.1) z   =mz) = — 

as an approximation to  z,   with absolute error bounded by 

(3.2) e* j(d-c)= j 6(Z)   , 

where   6(2) = d - c  denotes the width of the interval  Z . 

If one is concerned with relative (or percentage) error, then one may 
take the harmonic point    v(Z)   of  Z, 

* 2cd 
(3.3) z   =v(Z)=^ 

as the corresponding approximation to   z.   provided that  0 / Z,   with the 
relative error bounded by 

and thus   lOOp bounds the percentage error. 

The methods of interval analysis (Moore, 1966) will be used to obtain 
the required intervals.   The basic ideas needed for this purpose are those 
of interval extensions of real numbers and function.   An interval X = [a, b] 
is said to be an extension of the real number x  if x e X  .   In dealing with 
the theoretical foundations of interval analysis, one may identify real 
numbers  x with the degenerate interval  [x, x] .   In actual computation, 
however, only a finite set of numbers (the so-called machine numbers) are 
available, and one deals with non-degenerate extensions.   For example, if 
machine numbers conöibi of five decimal digits, then the number  *   would 
have to be represented by an interval extension such as   [0. 33333,  0. 33334]. 
In this case, the given extension is minimal, as it is contained in all other 
interval extensions of ~ on the same machine. 

In the same way, a real function  ^(x., x , ..., x  )   of n real vari- 
ables   x, x ,  ..., x    can be extended to an interval function    $(X.,X , 

1 Cä II " " "        """ ' J. Ct 

...,X )   of n   intervals  X„X0,...,X    .   The requirement that $   bean '   rv 1'   V       '   n 
extension of  ^  is, of course, 

(3.5) t(*vxz,..,,xn)t $(XpX2,...,Xn) 



provided   x. e i = 1, 2, The rules for mathematical operations 
on intervals may be derived from this definition.    For example, 

(3.6) X + Z = [a, b] + [c, d] = [a+c, b+d] 

is the (minimal) interval extension of the function ^(x, z) = x + z   . 

The use of interval analysis in error estimation is immediate.   For 
example,  suppose that the integrand in (1.1) contains the polynomial 

(3.7) p(x) = 0.20x   + 1. 33x - 4.69   , 

in which the coefficients are known to be accurate only to two decimal 
places.   The effects of uncertainty in these coefficients may be taken into 
account by computing with the interval extension 

(3.8) 

of (3.7). 

P(X) = [0.195, 0.205]X   + [1.325,1. 335]X - [4.685,4.695] 

Round-off error can also be taken into account by interval analysis. 
For example, in (3.6), even though   a, b, c,d   are machine numbers, this 
may not be true of one or both of the sums   a + c,   b + d .   By proper rounding, 
however, one may compute an interval extension of a given function which 
always contains the true value.   In order to minimize round-off error, the 
computations should be programmed so that the extensions obtained are as 
close to minimal as possible.    Software for the automatic implementation 
cf calculation of interval extensions of arithmetic operations and a number 
of frequently encountered functions is available for the UNIVAC 1108/1110 
(Ladner and Yohe, 1970).   It is also important to insure that the conversion 
between the decimal and binary number systems during input and output also 
lead to correct interval extensions of the quantities involved (Binstock, 
Hawkes, and Hsu, 1973). 

4.   Interval integrals.     In order to calculate an interval  Z  which contains 
the value   z   of a given integral (1.1), one may use Riemann sums (Rail, 
1965) or Riemann-Stieltjes sums (Decell and Lea, 1966).    These methods of 
numerical integration tend to be time-consuming, and turn out to be special 
cases of the idea of interval integrals, introduced by R. E.  Moore (1965, 
pp. 76-88; 1966, Chap. 8).   For example, the interval version of (1.1) 
corresponding to the use of Riemann sums is 

n 
(4.1) Z= £ Y(X) 6(X)   , 

i=l 
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where 

(4.2) [a,b]  C   U X. 
i=l 

and  Y(X)   is an interval extension of y(x)   (As a notational convention,  a 
capital letter will denote an interval extension of the quantity indicated by 
the corresponding lower case symbol.)  The interval  Z given by (4.1) con- 
tains the upper and lower Riemann sums for the integral (1.1),  and hence its 
value   z „ 

More generally, one may obtain an interval containing (1.1) by simply 
calculating an interval extension 

(4.3) F(Y) = R(Y) 4 E(Y) 

of any integration formula (1. 7) which is valid for the given integrand.    For 
example,  Newton's three-eights formula is 

(4.4) 
3 5 

/    y(x)dx = f (y0 + 3Yl + sy2 + y3) ~ ylv(e) , 
xo 

(Milne (1949),  p.  123), where 

(4.5) x. = xQ + ih,   y. = y(x.),      i = 0, 1, 2, 3   , 

and  x.  < £ < x_,   assuming that the function   y(x)  has a continuous iourth 
0 iv 3 

derivative  y   (x) .   The interval version of (4.4)   is 

(4.6) 
3 5 

/      y(x)dx , 2jL (Y0 + 3Y1 + 3Y2 + Y3) - ^L Y
1V

(X)   , 
xo 

where 

(4.7) Y. = Y(X.)   , i = 0, 1, 2, 3   , 

and 
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(4. 8) [x0, x3] C 

In order to apply the methods of interval analysis to the computation 
of (4. 6), it appears that the program must be given the formula for  ylv(x) 
in addition to the integrand  y(x) .   However, it is possible to program the 
differentiation of functions by computers, based on a philosophy very similar 
to translation of formulas into machine language routines (see Moore (1965), 
pp. 103-112).   A number of programs of this type are available, including 
two for the UNIVAC 1108/1110,   one based on the generation of code lists as 
described by Gray and Reiter (1968), and another which is based on the re- 
cursive generation of Taylor coefficients (Knapp and Wanner,  1970). 

In case that the required derivative does not exist on the interval  X 
of integration, a suitable error message will be generated by the program 
for interval evaluation (Gray and Reiter, 1968).   This assists in the detection 
of errors of type   (iv>,   that is, the use of inappropriate or incorrect inte- 
gration formulas. 

5.   Optimization.     The goal of optimization of the performance of a numerical 
integration program may be to obtain a result of specified accuracy in minimum 
time, or else to attain the highest feasible accuracy.   A common approach 
may be made to these problems.   It will be assumed that the integration 
formula (4. 3) to be used has the form 

(S-1) R(Y) = y  Y(X)W.   , 
i=l        1      l 

corresponding to (1. 5), and that the truncation error term has the form 

k+1       (k^ 
(5.2) E(Y) = C • H       * YV  '(X)   , 

where   k   is a positive integer and   C   is an (interval)constant.   The ab- 
solute error of the approximation 

(5.3) z* = u[F(Y)] 

will be bounded by 

(5. 4) e = l6[F(Y)] = l6[R(Y)] + |6[E(Y)] 
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(Only optimization with respect to absolute error will be considered here; 
similar results for the percentage error follow from (3.4).) 

Experience has shown that  6[R(Y)],   which is proportional to a weighted 
averaoe of the quantities   6[Y(X.)],   tends to be relatively constant for a 
fairly wide range of choices of rules for numerical integration.   This quantity 
thus sets an effective lower bound for the error estimate   E .   Thus, one is 
lead to consider varying the quantity  6[E(Y)]   as the means to optimize the 
error bound (5.4).   This can be done in one of two ways, either by sub- 
dividing the interval of integration and applying the given integration formula 
to each subinterval, or by choosing a different formula which will alter one 
or both of the values   k, C  in (5.2).   In the first case,  suppose that the 
interval of integration X  is divided into  I   subintervals  X ., X   , ...,X 
each of width   6(X)/l   .   This corresponds to replacing   H   in (5.2) by 
H/L,   and one obtains 

(5.5) E(Y) = (i-)k+1- C  •  Hk+1   Y   Y(k)(X.   .    )   . 
L i=l 1'1'1 

1   k+1 
The coefficient   (—)        in this expression may be made as small as desired 

simply by taking   L  large enough.   As  C • H        is constant, the behavior 
of   6[E(Y)]  can be determined if one can estimate the quantity 

I I 
(5.6) 6(2) = 6[T   Y(k)(X )]=£  6[Y(k)(X       .)]   . 

i=l ' i=l ' 

In theory, there are two extreme cases, assuming that successive 
subintervals  X.  ,   .   and  X   ,   ,   have onl" an endpoint in common.   First, 

(k) 1_1>1 i,i+l 
if  y     (x)   is monotone,  then 

I 
(5.7) I  6[Y(k)(X.      .)] = 6[Y(k)(X)]   , 

i=l ' 

at least approximately,  as the maximum (or minimum) of  y(x)   in the sub- 
interval  X.  .   .   is its minimum (or maximum) in the subsequent subinterval 

1-1,1 (M 
X. .    On the other hand,  if  y     (x)   is oscillatory,  and attains its maxi- 
mum and minimum in  X   in each of the subintervals   X,  ,   .,    then 

  i-l,i' 

(5. 8) 6[Y(k)(X        )] = 6[Y(k)(X)],     i = 1, 2, . . . , I   , 
1-1-   1 
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and thus 

(5.9) V    6[Y(k)(X        )] = !6[Y(k)(X)]   . 
i=l l   ' 

(k) 
Of course, equality holds in general in (5.7) and (5. 9) only if Y    (X)   is 
the exact interval extension of yM(x);   however, one always has 

(5.10) YJ  6[Y(k)(X   .   .)]<i6[Y(k)(X)]   , 
i=l l    ' 

which will be used for estimation.   It follows from (5. 5) that 

(5.11) 6[E(Y)] < (j)k  6[C •   Hk+1 • Y(k)(X)]   . 

Thus, in order to estimate the optimum number of times to apply a 
given numerical integration formula to obtain a specified accuracy  e,   the 
formula may be applied once to the entire interval  X to obtain the quantities 

k+1       (k) 
(5.12) r = 6[R(Y)],    t = 6[C •   H       ■ Yl  '(X)]   . 

If 2 e - r > 0,   then the smallest integer   i   such that 

k/ 
(5.13) 7" 

2e-r 

will give the desired estimate.   Also, if  0  is the time taken for the single 
application of the numerical integration formula, then 

(5.14) T = !8 

estimates the total time required for the entire computation. 

To obtain optimal accuracy, the above estimates may be modified 
slightly to provide the necessary information.   Suppose that   p  is that 
largest positive integer such that 
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(5.15) 10"P>r   . 

Setting  2e = 10       in (5.13) will then give an estimate for the number of 
repetitions required to obtain   p decimal places of accuracy, that is, 

(5.16) e = 5 • 10 
-p-1 

The optimization parameters obtained from a single application of the 
numerical integrction formula agree well with the results of numerical ex- 
periments.   For example, Newton's three-eights formula (4.6) applied to 
the example 

(5.17) z = f (si l+4x    + sin 17 x)dx 
0 

gives    I = 54,    T = 3. 834  sec. for optimal accuracy of   e = 5 • 10 
Actual calculation gives 

-5 

(5.18) F(Y) = 4.442072809 ± 0.000010789   , 

-5 
with   e=1.08-10    ,T= 3.787 sec 

The same parameters may be used to compare one integration formula 
with another.    For example, the trapezoidal formula 

(5.19) 
1 3 

/     y(x)dx€  jrO^ + Yj) "§" Y"(X) 

may be applied to example (5.17) to obtain the estimates   I =1980 , 
T = 65.736 sec,        e = 5 • 10~5.   The results actually obtained are 

(5.19) F(Y) =4.4420724215 ± 0.0000206535 , 

-5 
and   6=2.07-10      ,    T = 67.045 sec.    This shows that 
Newton's three-eights formula would be preferable for this application. 

6.   Intersection methods.   If it is known that  z e Z,   and   z e Z,,   then 
— ■ 1 L 
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(6.i) z« z{ n z2 

This gives a way of improving the accuracy of interval integral, as 

(6.2) 6(Z2  f) Z2) <   min{6(Z),  6(Z2)} 

One way to obtain intervals  Z., Z    containing the value of a giv^n integral 
without much additional computation is based on an observation of Milne 
(1926) concerning pairs of open and closed Newton-Cotes integration 
formulas.   For example, the use of Simpson's formula twice gives 

r*4 
(6. 3) /      y(x)dx € Zc = - (YQ + 4Yj + 2Y., + 4Y3 + YJ - 

0 5 
. H     yiv 

45 v  04' 

where  [x., x ] C X..,   and the corresponding open formula (Milne (1949), 

p. 127, formula (2)) is 

X4 5 
(6.4) /     y(x)dx c Zo = *f- (2Yj - Y2 + 2Y3) + iS. Y1^) 

xo 

The difference in sign tends to separate these intervals.    For 

2 

0 
(6. 5) f   »J1+4X   dx = ^ , 

one has 

(6.6) Z    =  4.4139288665   ± 0.083Z954055 

and 

(6.7) Z    =  3.1791572275 ± 1.1661335535 

Neither result being very accurate.    However, 
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(6.8) Z=Z     PZ    = 4. 337962121 ± JO. 007328660 v        ' CO 

is accurate to almost two decimal places,  and was obtained without 
additional evaluations of the integrand or its derivatives. 

Pairs of open and closed integration formulas can be used to con- 
struct interval versions of predictor-corrector methods for initial value 
problems for ordinary differential equations.   Repetition of corresponding 
open and closed numerical integration formulas often leads to the situation 
Z   C Z   .   Consequently, the parameters for the closed formula  Z    are 
used for optimization. 

The use a intersection of interval integrals can also lead to the 
detection of incorrect integration formulas.   For example, formula (1) on 
p. 127 of Milne (1949) should be 

X3 3 
(6.9) /     y(x)dx = ^-(y]+y2)+^-y"(|)   . 

X0 

(Davis and Rabinowitz (1967), p. 32) .   This error was discovered when 
the incorrect formula produced an interval which was disjoint with one 
obtained by using the trapezoidal formula. 

7.   Description of the computer program .   A computer program has been 
written for the  UNIVAC 1108/1110  to carry out the numerical integration 
methods presented in this paper.   A detailed description may be found in 
the report by Gray and Rail (1974).   Briefly, provisions are made for oper- 
ation in interactive or batch mode.    The interactive mode may be used from 
a terminal to calculate a few integrals, investigate optimization, etc.   In 
the batch mode, this program may be used for large scale computations, 
such as the tabulation of functions defined by definite integrals, and 
could also be used as a subroutine by another program.    Provisions are 
made in each version for repeated application of formulas, optimization, 
and intersection of results. 

The present program makes the following integration formulas avail- 
able to the user, where   n  denotes the number of nodes: 

1. Riemann sums. 
2. Extended Trapezoidal formula,    2 <   n < 25 . 
3. Extended Simpson formula,    3 < n™< 2 5~" . 
4. Closed Newton-Cotes formulas^   2~< n < 9   , 
5. Open Newton-Cotes formulas  4 < n~< 10" 
6. Gaussian formulas   2 < n < 10   .~     ~ 

Other formulas may be added as desired. 
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ON THE EFFECTIVE USE OF A LARGE COMPUTER PROGRAM FOR 

STRUCTURAL CALCULATIONS 

E. CuthilI and P. Matula 
Naval Ship Research and Development Center 

Bethesda, Maryland 

ABSTRACT 

The general applicability of the finite element method as a numerical 

method for solving a wide variety of structural analysis problems has 

made possible the development of several large computer program systems of 

wide applicability. One of these, the NASTRAN structural analysis 

program, and its impact on the effective use of computers for structural 

analysis is discussed. 

Part of the discussion centers on the sense in which a given program 

system such as NASTRAN permits effective use of computers for structural 

work. The effective use of such large computer programs relates to many 

factors such as the applicability to the problem at hand, the ease of 

use, the soundness of the numerical methods used, the provisions made 

for error checking, the maintenance, consultation and training services 

available, the wide user groups who share experiences and costs of further 

improvements and developments. 

A brief discussion of some aspects of the numerical methods used 

in finite element program is included. 

The work sponsored by the Office of the Director of Navy Laboratories 

(DNL) through the Navy NASTRAN Systems Office, Code 1844, Naval Ship Research 

& Development Center, was carried out under Task Area ZF 099 01 01, 

Work Unit 1-1844-007. 
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A.  INTRODUCTION 

The conference theme, "Optimal Use of Computers in Army R&D", has 

been a stimulating one for us. We are responding with some thoughts 

and observations on "The Effective Use of a Large Computer Program for 

Structural Calculations." Our presentation is in three parts under the 

following topics: 

The finite element method makes possible computer programs for 

analysis of structural problems. 

Such programs can be used effectively. 

Large systems of equations can sometimes be solved efficiently 

with proper sequencing of equations and unknowns. 

The first topic involves definition of the finite element method 

in a general way. The existence of such a method, plus efficient 

techniques for solving the large, sparse systems of equations it leads 

to, has made possible the development of general purpose structural 

analysis programs such as NASTRAN. Such programs for static and dynamic 

analysis can be applied to a wide range of structures, to almost 

every type of construction, and to a great variety of loading conditions. 

Secondly, the question "Is it possible to use such large, general 

purpose programs effectively?" is addressed. We note some of the con- 

ditions which, if fulfilled, contribute in vital ways to the effective 

use of such large, general purpose computer programs. 

Finally, at the heart of such programs are time-consuming routines 

for manipulating large sparse matrices and for solving the large equation 

systems that arise. One aspect of the solution process, vital if these 

large equation systems are to be solved effectively, is the sequencing 

of equations and unknowns. 
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B. THE FINITE ELEMENT METHOD MAKES POSSIBLE COMPUTER PROGRAMS FOR 

ANALYSIS OF STRUCTURAL PROBLEMS. 

Figure 1 addresses the origin of the finite element method in 

structural analysis. For example, for each beam element in a structure 

made up of beams (shown at the left side of the figure), simple beam 

theory readily piotfides a farce displacement relation. Writing for each 

joint a force displacement relation that satisfies the boundary con- 

ditions generates a set of algebraic equations. Depending on the way 

they are set up, these equations can be solved for displacements and/or 

force boundary values and hence for stresses. This suggests that a 

continuous structure can be modelled with elements assumed connected 

at a discrete set of points. In this case the function form assumed 

for the displacements, for example, could be such that, when displacements 

and their appropriate derivatives are matched at the discrete set of 

points, appropriate smoothness conditions would be satisfied at all 

points. Zienkiewicz provides a good description of the finite element 

method from an engineering point of view. 

Figure 2 briefly outlines the finite element method from a mathem- 

matical point of view. Mathematically, the finite element method can be 

interpreted as the Rayleigh-Ritz-Galerkin method in which the trial 

functions are from a space of piecewise polynomials.  For example, for 

problems involving the beam equations in one dimension, these trial functions 

could be spline functions. Martin Schultz's recent book entitled "Spline 
3 

Analyzis" can be interpreted as a book on the finite elements method. 
2 

A second excellent recent reference is that of Strang and Fix. 

1. Zienkiewicz, O.C., The Finite Element Method iu " ,aPeering Science, 
2nd Ed., McGraw-Hill, New York, 1971. 

2. Strang, G., and G. J. Fix, An Analysis of the Finite Element Method, 
Prentice-Hall, Englewood Cliffs, New Jersey, 1973. 

3. Schultz, M. H., Spline Analysis, Prentice-Hall, Englewood Cliffs, 
Now Jersey, 1973. 
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On the basis of these numeric;1 methods, general computer programs for 

analyzing .vide ranges of structures under general loading conditions 

have been developed.  Major parts of such a finite element program are 

shown in Figure 3. Of course, this is oversimplified, but it is clear 

that provision for a wide range of elements and element loading con- 

ditions plus a full range of matrix manipulation capabilities can make 

for a very powerful and general system if a good executive routine is 

available to facilitcte accessing the full range of capabilities. 

C.  FACTORS THAT INFLUENCE THE EFFECTIVE USE OF LARGE COMPUTER PROGRAMS. 

Figure 4 addresses our second topic - "What factors influence 

the effective use of large computer programs?" 

Any large computer program (in a rapidly developing field) requiring 

several years of development will probably be obsolete in some ways 

by the time it becomes available. If it is well designed, however, 

providing modularity and privision for maintenance and upgrading, the 

threat of obsolescence should be no problem. Modules can be replaced 

and upgraded as required. When we first expressed an interest in NASTRAN 

eight years ago, as the development contract was let, many of our 

colleagues were skeptical of its projected utility. It would be so 

large and unwieldly, they said, that we would not be able to work with 

it, to maintain it, or upgrade it. They have baen proven wrong because 

the program system was well designed and did not "grow like Topsy". 

The fact that NASTRAN does well on all the xtems listed in Figure 4 

has made possible its effective use among a large, community of engineers. 

NASA maintains a NASTRAN Systems Management Office at NASA Langley to 

maintain and upgrade the NASTRAN program; the Navy has a NASTRAN Systems 

Office at NSRDC which ..maintains close liairon with the NASA Langley Office 

and provides many essential supplemental services, (e.g., training and 

consultation) for the Navy and the much larger DOI) community. At 

4. MacNeal, R. H. (Editor), The NASTRAN Theoretical Manual, NASA SP-221(01), 
Dec 1972. " ----- 
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present, the DOD community of NASTRAN users includes nearly every Navy 

Laboratory as well as many Army and Air Force Laboratories. 

Figures 5-7 show a few finite element models that have been analyzed 

with NASTRAN. Figure 5 shows a submarine model for which some dynamic 

analyses were run. It gives a picture of the physical model, a NASTRAN 

plot of the finite element model, and the first flexural mode of 

vibration calculated and plotted by NASTRAN. 

Figures 6 and 7 are from a presentation at our last Navy NASTRAN 

Colloquium on NASTRAN applications to Army gun components by Frank John 

of the Benet Weapons Laboratory. Figure 6 shows the modeling with 

plate elements used for analysis of a muzzle brake. Figure 7 shows 

the modeling of a breach ring and screw block with NASTRAN solid elements. 

A major advantage of working jwith a widely used program is that one 

can afford to put much more effort into improving its accessibility to 

the user and into improving the efficiency of the mathematical and 

numerical methods used, since the cost of such major improvements are 

more readily justified when benefits to a large user community are 

considered. For example, both a general data generation program for 
6 7 

NASTRAN and an interactive graphics program (Figure 8) for use in 

checking NASTRAN input data were developed at NSRDC. The latter permits 

the finite element model of the structure or any portion of the model 

to be viewed from any angle. This program has considerably reduced 

the engineer's time as well as the elapsed time required for data verifi- 

cation for many complex structures. 

5. Proceedings of the Fourth Navy-NASTRAN Colloquium, Mar 1973, DDC AD764508. 

6-. McKee, J. and E. T. Marcus, A General Purpose Data Generator for 
Finite Element Analysis, Naval Ship Research & Development Center 
Report //4066, Apr 1973. 

7. Kelly, B. M., IDEAL - An Interactive Graphics Aid in the Idealization 
of a Structural Model, Naval Ship Research & Development Center 
Report //4014, in~preparation. 
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STRUCTURAL VIBRATIONS 
(NASTRAN) 

Figure 5 - Submarine Model - Structural Vibrations   (NASTRAiN) 
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The initial effective design of NASTRAN, the ease of using it, the 

soundness of the numerical methods used, the maintenance, consultation 

and training services available, the growing NASTRAN user communities 

which are sharing and building upon each other's experiences, and the 

continued upgrading of the system have all contributed to its increas- 

ingly effective use. Solutions to man/ structural problems, which only 

a few years ago were considered to be research problems, can now be 

considered routine. 

D. EFFICIENT SOLUTION OF LARGE SPARSE SYSTEMS OF EQUATIONS 

The last topic of this overview relates to the proper sequencing of 

both equations and unknowns for efficient solution of the large systems 

of equations arising when finite element methods are used. One of the 

major advantages of the use of piecewise polynomial trial functions 

which characterizes finite element methods is that the equations to be 

solved have sparse coefficient matrices, i.e., matrices with relatively 

few non-zero elements. For our problems these matrices are also 

symmetric and positive definite. 

Figure 9 shows the relation of the pattern of zero and non-zero 

elements (which may be submatrices depending on the number of degrees 

of freedom per grid point) in the stiffness matrix for our set of 

equations and the grid point labelling scheme used in the finite element 

model. 

The number of non-zero elements introduced to replace zero elements 

during a Cholesky factorization is called the fill. Figure 10 shows 

fill patterns that can occur when the equation systems arising are 

solved. If the matrix A has the sparsity structure shown and a Cholesky 

factorization into triangular factors is made, the lower triangular 

factor is full. All zero elements in the lower triangle of the original 

matrix become non-zero. If we reorder equations and unknowns with the 
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appropriate permutations, in this particular case, no non-zero elements 

need be introduced.  For the matrix factorization shown in Figure 10, 

there is a fill of 6 in the first case and 0 in the second. Such 

considerations can have significant repercussions on the amounts of 

storage and calculation required when such systems, which can involve 

hundreds and thousands of unknowns, are solved directly. 

Several observations should be made. First, it can be shown that 

all fill will occur in a band about the main diagonal which extends to 

the element farthest from the diagonal. In this case, since the upper 

right hand corner element is non-zero, this is no help. However, for 

the matrix shown in Figure 9 it does help, since the matrix has a 

"banded" structure. In that case all elements within the band are 

non-zero, so that we can predict a fill of zero in this case. Many 

equation solvers have been written to take advantage of banded matrix 

structure. Matrix storage schemes used by such solvers are simple and 

involve little overhead ' ' 

It can also be shown that all fill occurs between the first 

non-zero element of any column and the diagonal for any upper factor 

or, equivalently, between the first non-zero element of any row and the 

diagonal for the lower factor. One might provide storage for just 

these elements and set up an equation solver to take advantage of the 

reduced computation needed.  Such a program requires more overhead, 

but clearly such a scheme will handle sparsity structures such as that 

in Figure 10 much more effectively.  Such schemes are often called 

8. Cuthill, E. H., "Several strategies for reducing the bandwidth of 
matrices", in Rose, Willoughby, eds., Sparse Matrices and Their 
Applications, Plenum Press, New York, 1972. 

9. Gignac, D., Comparative Study of Several Core Storage Schemes for 
Large Sparse Positive Definite Matrices with Reference to the Cholesky Al- 
gorithm, Naval Ship Research and Developmt Cntr. Rept #4017, Nov. 1972. 

10. Gignac, D., SOLVEDG, An Out-of-Core System Solver for Large Order 
Positive Definite Systems of Linear Equations, Naval Ship Research 
and Development Center Report #4235, Aug. 1973. 
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8 11 12 
frontal or profile schemes, '  ' 

We can also work toward minimizing fill directly. The overhead here 

will be greater still, but the benefits from such an approach ' ' 

can be significant. 

Figure 11 shows an actual structure with the corresponding pattern 

of non-zero elements generated as a result of the original grid point 

labeling. The pattern on the right shows the results obtained when 

the grid point labels were resequenced using a very fast resequencing 

scheme developed at the Center. This scheme was incorporated into a 

computer program called BANDIT . Note that the pattern of non-zero 

elements clusters much more closely about the diagonal, producing a 

narrower bandwidth after resequencing. An equation solver such as 

that in NASTRAN which takes advantage of narrowed bandwidth can generate 

a solution much faster, in this case in roughly 10% of the computing 

tim<» which would be required for solution of the system of equations 

without resequencing. 

11. Gignac, D., CSKYDG: An Out-of-Core Cholesky Algorithm Equation 
Solver for Large Positive Definite Systems of Linear Equations, 
Naval Ship Research and Development Center Report #4377, Feb. 1974. 

12. Ceorge, J. A., Computer Implementation of the Finite Element Method, 
Ph.D. Thesis, Computer Sei. Department, Stanford Univ., Stanford, 
California, 1971. 

13. Birkhoff, G., and A. George, "Elimination by nested dissection", 
in Complexity of Sequential and Parallel Numerical Algorithms, 
Academic Press, N. Y., 1973. 

14. Rheinboldt, W. C., and C, K. Meztenyl, Arc Graphs and Their 
Possible Application to Sparse Matrix Problems, Technical Report 
TR-238, University of Maryland Computer Science Center, College 
Park, Maryland, Apr. 1973. 
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APPLICATION OF NOKLINEAR ANALYSIS (PLASTIC) TO NASTRAN 
(NASA STRUCTURAL ANALYSIS) 

USING RING ELEMENTS INCLUDING ASPECT RATIO EFFECTS 

Diana L. Frederick 
Munitions Development & Engineering Directorate 
U.S. Army 
Frankford Arsenal 
Philadelphia, Penna. 19137 

ABSTRACT. NASTRAN is a general-purpose digital computer developed by 
NASA for application to almost any type of linear and some nonlinear structures 
that can be represented by combinations of elements contained in the NASTRAN 
library, such as beams, rods, shells, etc. 

A wide range of analysis capability has been built into NASTRAN. 
Hie capability for solving nonlinear problems is limited because it doss 
not include ring elements. In order to mod»»l ammunition problems, this 
is a requirement. 

A useful and practical exercise of nonlinear analysis using ring 
elements In the field of ammunition structural analysis is the interaction 
between the cartridge case and gun barrel chamber. In particular, the 
model enables the effects of changing tolerances, material mechanic 
properties, and geometrical variations on the distribution of stresses 
to be conveniently estimated. 

Three studies were performed to test the applicability of NASTRAN. 
Study I modified NASTRAN to perform a nonlinear analysis (plastic) and 
include RING elements. Study II demonstrated that large Aspect Ratios 
in RING elements can be safely ignored. Study III shoved that varying 
element sizes within :• model does not effect deformation of stresses. 

1. INTRODUCTION. The NASA structural analysis (NASTRAN) digital 
computer program, a general purpose digital computer developed by the National 
Aeronautics and Space Adminstration, is designed to, analyze the. behavior 
of elastic structures under a range of loading conditions, using a finite- 
element displacement method approach. The program is applicable to almost 
any type of linear and some nonlinear structures that can be represented 
by combinations of elements contained in the NASTRAN library, such -is 
beams, rods, shear and twist pcnels, triangular and quadrilateral plates, 
conical and toroidal shells, solids of revolution;, scalar elements, general 
elements, and constraint elements. 

A wide range ot analysis capability has been built into NASTRAN, 
including static response to concentrated and distributed loads, co thermal 
expansion, and to enforced daformation; dynamic response to transient 
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loads, to steady-state sinusoidal loads, and to random excitations; 
determination of real and complex eigenvalues for use in vibration analysis, 
dynamic stability analysis, and elastic stability analysis.  In addition, 
there is a limited capability for solving nonlinear problems, including 
piece-wise linear analysis of nonlinear static response and transient 
analysis of nonline dynamic response. 

The piece-wise linear analysis option of NASTRAN is used to solve 
problems on material plasticity. The load is applied in increments such 
that the stiffness properties can be assumed to be constant over each 
increment. The stiffness matrix for each increment is dependent on the 
current state of stress in the structural elements. The increments in 
displacements and stresses are accumulated to produce the final nonlinear 
results. 

The nonlinearity of a structural element is defined by the material 
characteristics of the material elements. Any Isotropie material may be 
made nonlinear by including a stress-strain table, defining its extension 
test characteristics. The stress-strain table must define a nondecreasing 
sequence of both stresses and strains. Because the stiffness matrix for 
the first load increment uses the elastic material coefficients, the initial 
slope should correspond to the defined modulus of elasticity, E. Linear 
elements and materials may be used*in any combination with the nonlinear 
elements.  Linear elements are used in a more efficient manner than the 
nonlinear elements since there are not extrapolations. The nonlinear effects 
depend on the element type.  The elements which utilize the plastic material 
properties are ROD, TUBE, BAR and PLATE elements. 

2. DISCUSSION. A useful and practical exercise of nonlinear analysis 
in the field of ammunition structural analysis, using RING elements, is the 
interaction between the cartridge case and gun barrel chamber.  In particular, 
the model enables the effects of changing dimensional tolerances, material 
mechanical properties, and geometrical variations on the distribution of 
stresses to be conveniently estimated. 

A characteristic problem is a case neck separation (CNS) malfunction 
explanation. Specifically of interest is the ruptnre or separation which 
occurs at the neck-shoulder section. This is not to be confused with 
separations that occur at the crimp between the case and projectile. This 
section is potentially a future candidate for an exercise example. 

Ao background, all reported CNS have occurred in M61 (6 barrel) or 
M197 (3 barrel) type Gattung guns. No CNS have been reported from firings 
in the M39 type revolver gun; no CNS have been reported from case and 
cartridge acceptance firing tests at either Lake City Army Ammunition Plant 
(LCAAP) or at Aberdeen Proving Ground (PAG); no CNS have been reported with 
the firing of M56 (HEI) ammunition. All CNS have occurred with M55 (TP) ana 
M220 (TPT) cartridges, and all have occurred with cases manufactured by a 
particular contractor. 

CNS present serious problems in double ended linkless feed systems, 
i.e., system in which the fired cases and released rounds are returned to 
the storage drum. Round control of cases with partially or completely 
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separated necks' is lost by the hand-off sprockets, resulting in a system 
jam. In systems where the fired cases are dumped overboard, CNS present 
no problem unless the separated case neck remains in the gun barrel chamber, 
which can result in a jam when a subsequent round is fed into the same 
barrel. 

CNS were initially reported in early 1972 in A7D aircraft, which 
have an internally mounted M61A1 gun with a double ended linkless feed 
system. Results of the malfunction investigation indicated that the CNS 
were caused by the neck-shoulder blend radius in the gun barrel chamber 
being out of drawing tolerance on the low side. The barrel drawing calls 
for a 0.250 + 0.125 in. blend radius; barrels from guns where CNS occurred 
measured from 0.040 + 0.125 in. However, in subsequent malfunction 
investigations, CNS occurred in barrels within specification neck-shoulder 
blend radius. Results of numerous firing tests indicate that a sharp or 
under specification blend radius can increase the frequency of CNS but 
is not the cause. The NASTRAN model exercise is designed to include both 
material properties and geometry variations. 

When a round is fired,the powder pressure builds up and the sidewall 
expands elastically to its yield point and then completes its expansion 
plastically. Although the sidewall may or may not enter the plastic 
range before taking up the initial clearance between the case and the 
chamber, it will be completely plastic when the pressure reaches its maximum 
value. At this instant of maximum pressure, both the case outside diameter 
and chamber inside diameter will have expanded together to a common maximum 
value. Here the cartridge case, ^.dewall will be acted upon on the inside 
by the internal pressure and on the outside by the chamber-cartridge case 
interface friction and pressure. The chamber wall will be acted upon by 
equal and opposite friction and pressure. Knowing the radial loads on the 
cartridge case at this instant of maximum pressure, the associated state of 
stress in the sidewall can be determined for various assumed values of 
axial (longitudinal) stress in the sidewall. This is done by applying either 
the Von Mises or the Tresca law of yielding, together with its associated 
flow rule. 

In the problem of expansion of the wall of cartridge case and barrel 
chamber by the pressure of propellant gases and the stress analysis of the 
structure, it is desired that the axi-symmetric solid of revolution RING 
element be utilized. This element offers both simplicity and accuracy over 
other elements. An explanation of this structure element is given in 
Section 3, and a demonstration problem is given in Reference 3 . Since 
the piece-wise linear analysis has not been developed for this element, a 
study was initiated to perform the piece-wise linear analysis manually. 
A summary flow diagram is given in Figure 1. 

The various steps, following similar operations used in Rigid Format f> 
(see References 2 and 3), are given numbers corresponding to the explanation 
below. 
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1. The normal statics analysis Is used to generate the grid point and 
element. The stiffness matrix is generated in the normal manner, using the 
modulus of elasticity given with the materials. 

2. The linear elements are used to generate a lower stiffness matrix, (R) 
(see Reference 2). This matrix will not change with loading changes. 

3. The load vector for the whole structure, (F), Is generated by the 
normal methods (see Reference 2). The constrained points are also identified 
in this stage. 

4. The incremental displacements are generated using the current 
stiffness matrix and the current load vector increment. The dependent 
displacements are recovered.in the normal manner and merged to produce 
the increments for all degrees of freedom, (AUi)(see Reference 2). The 
increments are added to the previous vectors to produce the current vectors. 

{Ui} = {ui-l}+{AUi} 
5. Incremental element stresses are calculated. The increments are 

added to the previous vectors to produce the current vectors. 

6. The Tresca yield criterion and its associated flow rule are used. 

7. Based on the calculated stresses, the modulus of elasticity for the 
nonlinear elements are calculated from the stress-strain curves and replaces 
the original modulus. The new stiffness matrix is generated. 

8. For linear elements, keep everything the same. 

9. Select next load increment and rerun the problem. 

Three sample cases provided data for verifying the validity of 
this piece-wise linear manual approach. The first case consisted of a 
static analysis of a five-element truss with an applied force of 100,000 
pounds. Each element has its own elastic-plastic material property. 
Comparisons are made with the piece-wise linear analysis, using Rigid 
Format 6. The second and third cases dealt with the elastic-plastic 
analysis of an open ended thick wall and an open ended thin wall cylinder, 
exposed to a high internal pressure. Comparisons are made with known 
mathematical solutions. The effect of different aspect ratio, using the 
axi-symmetric solid of revolution RING element was also investigated. 
The accuracies of the results are again checked by comparing with known 
mathematical solutions. 
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3. STRUCTURE ELEMENT - RING. The triangular RING element is defined 
with a CTRIARG card. No property card is used for this element. The material 
property reference is given on the connection card. The integers 1, 2, and 
3 on Figure 2 refer to the order of the connected grid points on the CTRIARG 
card. This order must be counterclockwise around the element. The grid 
points must lie in the r-z plane of the basic cylindrical coordinate system, 
and they must lie to the right of the axis symmetry. 

The radial and axial forces at each connected grid point are output on 
request. The positive directions for these forces are shown in Figure 2. 
These are apparent element forces, and they include any equivalent thermal 
loads. The stresses at the centroid of an element are output on request. 
The available quantities are the normal stresses in the radial, circumferential, 
and axial directions and the shear stress on the radial face in the axial 
direction. Positive stresses are in the positive direction on the positive 
face. 

The coordinate system for the trapezoidal ring element is shown in 
Figure 2. This element is similar to the triangular RING element. This 
element has the additional restriction that the element numbering must begin 
at the lower left-hand corner of the element. Also, the parallel faces of 
the trapezoid must be perpendicular to the axis of symmetry. This element 
can be used in the limiting case where the r coordinates associated with 
grid points 1 and 4 are zero. In this special case, the element is referred 
to as a core element. 

The trapezoidal RING element is defined with a CTRIARG card in a manner 
similar to that for a triangular element. The forces at the four connected 
grid points are provided on request in a manner similar to that for a 
triangular element. In addition to providing the stresses at the centroid 
of <he trapezoid, similar stresses are provided at the four connected grid 
points. 

4. ALTERED RIGID FORMAT AND SAMPLE RUN.  In order to perform the piece- 
wise linear analysis manually« the rigid format must be altered to enable 
the user to store data output from one run to use as data input for the 
next run. To use files rather than tapes for data, storage, the following 
card must be inserted before the Executive Control Deck, (see Reference 1). 

NASTRAN - SYSTEM (45)_ - _ 384  $ 

For Run 1 the following cards are inserted in Executive Control Deck in 
order to change the rigid format. 
ALTER - 110 

0UTPUT1 ,,,,//C,N, i/C,N, 0/C.N.USERPLA § 

End Alter 

For Run 2 
ALTER_ 110 

/ INPUT! -/UGPREV,,,,/C,N,-1/C,N,1/C,N,USERPLA_$ 

) 
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t 

ADD_ ÜGPREV, UGV/ÜGW $ 

OlT.TUTl, ,,,,//C,N,-l/C,N,0/C,N,USERPLA__ _$ 
OUTPUT1 ÜGyy,,,,//C,N,0/,C,N,0/C,N, USERPLA $ 

ALTER_121 

SDR2_CASE CC, CSTM, MPT, DIT, EOEXIN, SIL, GPTT, EDT, BGPDT, PGG,0G, ÜGW, 
EST,/ 

 0PG2, O0G2, OUGV2, OES2, OEF2,/C,N,STATICS _$ 

0FP_0UGV2, OPG2, O0G2, OEF2, OES2,//v,n, CARDNO/V.Y, OPTION__$ 

END ALTER 

The following control caros are needed for Scope 3.4.1 on CDC 6500. 

Run 1 

Rewind,  DIPT 

NASTRAN.    ATTACH 

Rewind,  IHPT 

Catalog, INPT, Cylinder def, cy«l, ID - Frederick 

Run 2 

Attach, INP1, cylinder def, cy-1 

Rewind, IMPT, INP1. 

NASTRAN.  Attach 

Rewind, INPT 

Catalog, INPT, Cylinder def, cy»2, ID - Frederick 

With Run 1, the user has cataloged the output in order to be used for 
input to Run 2. In Run 2 it can be observed that the "ALTER 110" uses .he 
input fro« Run 1 USERPLA and creates output USERPLB. There are also 
"ALTER 121!' cards. These cards allow the incremental stresses, for.es, 
and displacement to be printed out. For Run 3, only three cards will be 
changed:  change USERPLA to USERPLB on INPUTTI and change USERPLB to 
USERPLC on both OUTPUT 1 Cards. 
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5. ASPECT RATIO ANALYSIS.  During the course of the investigation it 
was realized that the aspect ratio would be very large for the finite 
elements to be used in the NASTRAN model of ths cartridge case. The aspect 
ratio is defined as the ratio of the elemen v .length to its height, from 
past experience in using NASTRAN and from consultation with NASTRAN experts, 
it was more or less understood that the aspect ratio for PLATE elements should 
not exceed three, and this is most likely true for the RING elements. How- 
ever, since RING elements are seldom used, no basic study on the applicability 
of the RING elements as a function of aspect ratio has been made; therefore, 
a study was required to determine if the problem of aspect ratio in RING 
elements could be Ignored. 

The finite elements used in synthesizing the NASTRAN models of the 
thick (steel) and thin (brass) wall cylinders are shown in Figures 3 and A. 
The tube was assumed to be free at both ends, with internal pressure applied. 
The materials for the thick and thin wall models werp steel and brass, with 
the sane Poisson's ratio of 0.3. Only elastic analysis was considered. 

A list of all the cases investigated for various aspect ratios and the 
total number of elemeuts is given in Figure 5. The results from the 
NASTRAN analysis for displacements and radial and circumferential stresses 
are compared with the theoretical results, using the classical equations 
for the solution of elastic analysis in thick and thin walled cylinders . 

U* 

From :theresults, the problem of aspect ratio that existed in the PLATE 
elements can be safely ignored with respect to RING elements. 

6. NASTRAN PIECE-WISE LINEAR ANALYSIS. Case I. Open Ended Thick Wall 
Cylinder - The finite elements used in synthesizing the NASTRAN model of 
the thick wall cylinder is shown in Figure 3. The tube was assumed to 
be free at both ends, with internal pressure applied. Rigid Format 1 and 
RING elements were used. The overall model had 85 RINGS (or grid circles) 
and 64 elements, yielding a total of 151 degrees of freedom. Tht material 
for the model is steel, with a Poisson's ratio of 0.3. A bilinear stress- 
strain curv^ was selected for the elastic-plastic material property. 

A total of 17 runs was made manually for the 16-layer tub°. This is 
the minimum n-mber of runs since each load increment was precalculated to 
make the material in the subsequent ?.ayer plastic. In this problem, 
elements along the same layer were assumed to behave the same. Although 
this isn't necessarily true in actual problems, it can still be handled 
by checking each element and making more runs. 

The incremental displacements and stresses were cataloged and filed after 
each run. These were then added to the previous results to obtain the 
total displacements and stresses. After each run the stresses were 
tested with the Tresca yield condition. The elastic material properties 
of those elements that satified the yield criterion are changed into plastic 
material properties . 
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Case II Open Ended Thin Wall Cylinder - In order to gain additional 
confidence on the manual piece-wise linear approach, a thin wall cylinder 
was considered sine«: the wall of a cartridge case is very thin with respect 
to its diameter. The finite elements uned in synthesizing the NASTRAN model 
of the thin wall cylinder are shown in Figure 4. The shell was assumed to 
be free at both ends, with internal pressure applied. Rigid Format 1 and 
RING elements were used. The overall model has 25 RINGS (or grid circles) 
and 16 elements, yielding a total of 45 degrees of freedom. The material 
selected for this model is brass, with a Poisson's ratio of 0.3 in the 
elastic range and 0.45 in the plastic range. A bilinear stress-strain 
curve was selected for the elastic-plastic material property. Only a total 
of 5 runs was needed since there were only 4 layers through the thickness 
of the wall. The same procedures were followed as in the thick wall cylinder 
case. 

The significant results from the NASTRAN analysis are presented in 
Figures 6, 7 and 8. The theoretical elastic-plastic analysis in the thick 
wall cylinder is used, together with a thin shell analysis, for comparison 
with the NASTRAN results. Figure 6 shows the comparison cf the radial 
displacement. Figure 7 and 8 show the comparison of the radial and circum- 
ferential stresses, respectively, for an internally applied pressure load 
of 22,069 psi. Reasonable agreements were obtained. This could definitely 
be improved by increasing the number of elements. 

7. ELEMENT SIZE STUDY. In modeling the cartridge case, the elanents 
around the neck are small in size. If all the elements are kept the same 
size, the number of elements in the cartridge case model is very large. In 
turn, the run time for the job is long and, thus, expensive. The number of 
elements is reduced by increasing the aspect ratio of the elements other 
than those in the cartridge case neck. 

The finite elements used in synthesizing the NASTRAN models of the thin 
cylinders are shown in Figure 9. The tube was assumed to be free at both 
ends, with internal pressure applied. The material for the thin wall model 
was brass, with a Poisson's ratio of 0.3. Only elastic analysis was 
considered. 

The results for displacement, and radial and circumferential stresses 
from the NASTRAN analysis are compared with the theoretical results, using 
the classic equations for the solution of elastic analysis in cylindrical 
shells. Similarly the results show that we can decrease the number of 
elements in our model by increasing the element size in the areas other than 
those in the cartridge case neck area. 

a.  SPECIAL APPLICATIONS. Based on the results obtaincu using the RING 
element, the manual piece-wise linear analysis appears to give accurate 
results. We can now proceed to investigate the design of the cartridge 
case neck and barrel chamber Interface section of a high pressure ballistice 
system. The model can be observed in Figure 10. 
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In addition to being able to model the exact configuration of the cartridge 
case and barrel chamber, we are able to include, in this manual piece-wise 
linear analysis, varying material properties along the wall of the cast 
and chamber. A step by step procedure is described below as the powder pressure 
builds up and the sidewall expands when a round is fired.  (Also shown in 
Figure 11) 

1. Loads are applied incrementally. 

2. The sidewall expands elastically to its yield condition. This is 
done by applying the Von Mises or the Tresca law of yielding, together with 
its associated flow rule. 

3. Every element is being checked after each run to insure that the 
yield condition has not been exceed. 

4. The material properties of those elements which exceeded the yield 
condition are to be changed appropriately according to the stress-strain 
curve. 

5. This continues until the entire sidewall of the cartridge case 
becomes plastic. Although the sidewall may or may not enter the plastic 
range before taking up the initial clearance between the case and the 
chamber, it will be completely plastic when the pressure reaches its maximum 
value. 

6. The displacement of the outer wall of the cartridge case will be 
observed very closely for every element. When the value of the displacement 
of any point reaches the value of the clearance between the case and the 
chamber, the points will be connected. This will continue until all points 
on the case are connected to the chamber. 

7. From here on the case outside diameter and chamber inside diameter 
will expand together to a common maximum value at the instant of maximum 
pressure. Here the cartridge case sidewall will be acted upon on the 
inside by the internal pressure and on the outside by the chauiDer-cartridge 
case interface friction and pressure. 

8. A failure criterion will have been set up such that each element 
will be tested after each run. 

9. CONCLUSIONS. 

1. Elastic-plastic problems with static loading can be solved using 
the manual piece-wise linear analysis. 

2. The manual piece-wise linear analysis is more accurate than the 
automated piece-wise linear analysis, Rigid Format 6. 

3. RING elements, which are convenient to use for axi-symmetric bodies, 
appear to give accurate results. 
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4. With respect to the problems of aspect ratio that existed in the 
PLATE elements, this can be safely ignored with respect to RING elements. 

10. RECOMMENDATIONS. 

1. Apply the described procedure to a specific problem as a means 
for evaluating potential for broad application to ammunition problems. 

2. Provide subroutine for eliminating manual computations. 

11. REFERENCES. 

1. The NASTRAN user's Manual, NASA SP-222, Section 3, September 1970. 

2.. The NASTRAN Theoretical Manual, NASA SP-221, Section 3, September 1970. 

3. NASTRAN Demonstration Problem Manual, NASA SP-224, pp6. 1-1 
through 6, 1-12, September 1970. 

4. Brcphy, J. M., Computer Aided Cartridge Case Design Using Finite 
Element Stress Analysis; The Automation of Finite Element Configuration, 
Frankford Arsenal Report R-2054, September 1972 
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A COMPUTERIZED ALGORITHM FOR CALCUIATING 

THE DYNAMIC RESPONSE OF CONTINUA 

Paul F. Gordon 
Materials Engineering Division 

Pitman-Dunn Laboratory 
U.S. Army, Frankford Arsenal 
Philadelphia, Pa 19137 

ABSTRACT. The capability to calculate the dynamic response of 
contirua to highly transient loading environments is an Important 
need in the development and characterization of materials for Army use.  In 
order to meet this need a computer program, HEMP, developed tinder AEC 
auspices, has been made operational at Frankford Arsenal. It is the 
purpose of this paper to present the'sequential HEMP-type algorithm 
which numerically solves the nonlinear partial differential equations 
relevant to the dynamic response of materials of interest to the Army. 
The algorithm is a first order accurate finite difference scheme in 
two space variables and time. The spacial gridwork is fixed in a 
Lagrangian framework and the time step is determined by explicit satis- 
faction of a generalized stability criterion for descritized hyperbolic 
systems. 

This algorithm was shown to represent optimal trade-oft between: 
the increased accuracy available from other schemes, generality of 
material models and simplicity of coding necessary to model real multi- 
material systems. This result was determined by a comparison between 
the modular computation scheme and experience with the numerical method 
of characteristics and other higher order differencing schemes. Modifi- 
cation of the algorithm to include static equilibrium problems is 
presented. 

1. INTRODUCTION. The objectives or topics to be covered in this 
presentation are shown below (Slide 1) 

OBJECTIVES 

HEMP'S EXPLICIT INTEGRATION SCHEME 

APPLICATION TO PROJECTILE IMPACT PROBLEMS 

QUASI-STATIC EQUILIBRIUM PROBLEMS 

NONLINEAR CONSTITUTIVE BEHAVIOR 
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A brief description of the HEMP'1'' code is shown below (Slide 2) 

HEMP IS: 

A CODE TO IMPLEMENT FINITE DIFFERENCE APPROXIMATIONS TO THE 
CONSERVATION RULES (MASS, MOMENTUM, ENERGY) FORA CONTINUUM 
IN MOTION 

USED TO ESTIMATE THE STATES OF STRESS, STRAIN, DISPLACEMENT 
AND VELOCITY IN A BODY (SOLID, GAS, LIQUID) WHOSE MOTION TS 
INHERENTLY TOW-DIMENSIONAL AND INERTIA DEPENDENT 

HEMP HAS: 

A LAGRANGIAN GRIDWORK (FOLLOWS DEFORMING MATERIAL) 

A DIFFERENCE SCHEME WHICH IS EXPLICIT AND USES FICTIVE VISCOSITY 
TO DAMPEN SHOCK FORMATION 

A MULTI-MATERIAL, MULTI-STATE CAPABILITY 

SPECIAL ROUTINES FOR EXPLOSIVE DETONATION BURNING 

BEEN USED AT FRANKFORD ARSENAL FOR PROJECTILE IMPACT SIMULATION 

Because of the versatility of the integration scheme and coding, 
the HEMP code has a large range of potential application to Frankford 
Arsenal's missions. A few of these are (Slide 3) 

POTENTIAL APPLICATIONS 

DYNAMIC SIMULATION 

BURSTING/FRAGMENTATION OF SHELL 

OONTAINra EXPLOSIONS (NUCLEAR/NON-NUCLEAR) 

CHARACTERIZING EXPLOSIVE/BURNING CAPABILITY OF PROPELLANT 
CHARGES IN CARTRIDGE CASES 

SIMULATING TESTING TECHNIQUES FOR METALS AT HIGH STRAIN RATES 

METAL FORMING OPERATIONS: EXPLOSIVE FORGING, WELDING, EXTRUDING, 
TOOL CUTTING, CHIP FORMATION 

SHAPED-CHARGE FORMATION 

f) 
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II. DYNAMIC STRESS ANALYSIS 

. PROJECTILE/TARGET IMPACT AND PENETRATION 

. TRANSIENT LOADING OF STRUCTURES 

. ENERGY DEPOSITION ON MATERIALS: LASER, X-RAY 

. FUSED PROJECTILES 

2. INTEGRATION SCHEME. A graphical representation shewing the 
temporal portion of the integration scheme is given below (Slide 4) 

TVTTI T (N-t-l) 

,(N) 

AT*/ 

TIME INTEGRATION SCHEME.   ALL QUANTITIES ARE KNOWN 
__t,H-l)_.(Ml 

AT    T      ,     I .   WE WISH TO CALCULATE ALL 

QUANTITIES »I     T 

In this figure, TW, T(N + *■) and AT are, respectively, the times at 
steps N, N + 1, and the time step. The coordinates J and K are labels 
used to identify points on a given time plane (e.g., T^ " 1) plane). 
Information has been previously computed and is stored at each of these 
points on the time planes TOO and T(N - 1). The integration scheme 
then allows information at T(N + 1) to be calculated using the informa- 
tion available from planes TW and T(N - 1). 
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A detailed diagram showing the sequence of calculations is shown 

below (Slide 5) 

t   «VVAfc- 

ALL QUANTITIES (STRESSES. POSITIONS. VELOCITIES  ETC ) 

$5Ä&rSr " T*"T~ «» «*c» F«NT 

CALCULATE MEW VELOCITBI FROM MOMENTUM AT PREVIOUS 
TIME «TIM. 

(xf»=(»f* +   [j«,K»<^.v]V 

CALCULATE NEW POSITIONS FROM fEFINITION OF VELOCITY. 

(xr» x" ♦urfet" 

CALCULATE (TRAIN RATES FROM KINEMATICS. 

^»     [«-"I 
IV» VI 

CALCULATE TIME STEP. 

(Atr   *•    L/CO' 

CALCULATE SOUND SPEED FROM DEnNITION. 

r    r     ></lln*i 

CALCULATE INTERNAL ENERGY FROM ENERGY EQ. 

E=E^ir[vs,£,.-] ,rv»¥* 

CALCULATE STRESS RATES FROM CONSTITUTIVE RULES 
(STRESS-STRAIN LAW). 

StSj^GBTM*--! 
«HV!| 

/ 

CURRENT SEQUENCE OF CALCULATDM IT TIME STB PS 
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The most important, and crucial, conclusion to be drawn is that 
only two of the blocks rely on a specific constitutive description, 
the others rely on continuum definitions valid for any material. Thus, 
if the two material blocks (stress rate and energy calculations), which 
currently are for elastic-plastic, non heat and conducting materials, are 
replaced by any other valid description, the code is still operational. 
Some examples are presented in Section 5. Verification of the code for 
a wide range of problems is presented in Reference (2). 

3. APPLICATION TO IMPACT PROBLEMS. One of the applications of 
HEMP has been to impact problems. Shown below in Slide 6 a post mortem 
of the normal impact of a composite projectile traveling with a velocity 
of 731 ft/sec with a thick (rigid) steel targe -O) Shown also is the 
comparison with a HEMP calculation. The initit  gridwork (marked t = 0) 
is also shown. 

BEFORE 
JMPACT 

t My>: SEC 

AFTER 
IMPACT 

EXPERIMENT 

COMPARISON OF HEMP PREDICTION VS. EXPERIMENT FOR 
COMPOSITE PROJECTILE IMPACT ON RIGID TARGET AT 731 
FT/SEC. 

0 
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The comparison illustrates two points:  the code performed an excellent 
simulation of the overall deformation process, and the code is applicable 
for some types of composite materials. 

4. QUASI-STATIC EQUILIBRIUM PROBLEMS. In addition to truly dynamic 
calculations, HEMP-like codes have been modified to do quasi-static 
problems S3 well.^»5^ Shown below (Slide 7) is the stress diffusion 
or quasi-static concept of Reference (4). 

STRESS DIFFUSION CONCEPT 

IN DYNAMICS, WE EQUATE THE UNBALANCED FORCE,   P, 
FROM ÜTRES? £QUILISRIUM * 

TO THE ACCELERATION (INERTIA) OF THE uTEDIUM 

F -   % ^ 

AT THE END OF EACH TIME STEP.  THE RESULTING EQUATIONS 
ARE PRINCIPALLY HYPERBOLIC.   (STRESS WAVES PROPAGATE 
AND ARE REFLECTED FROM BOUNDARIES). 

FOR QUASI-8TATICS INTRODUCE A STRESS DIFFUSION TERM 

F.-»%. 
IN PLACE OF THE INERTIA TERM. 

THE GOVERNING EQUATIONS BECOME PARABOLIC.   SUCCESSIVE 
DISPLACEMENTS TEND TOWARD EQUILIBRIUM. 

For dynamic problems the unbalanced force on a grid element, Fx, is 
equated according to Newton's law to acceleration. The result is a 
hyperbolic system exhibiting wave propagation. If, however, the force 
is (unrealistically) equated instead to a certain velocity or stress 
diffusion term, then, as time progresses, Fx tends toward zero. This 
has the net result of; enforcing static equilibrium, and rendering the 
equations parabolic. The quantity, T*, in Slide 7 is an artificial 
time variable. 

Some luasi-static problems to which the above procedure may be 
amenable are shown below (Slide 8) 

406 

/ 

■tifcwr- ■ ■ ., .  ■ n  _**   *-  ■  ■ -tfl 



V 

PROBLEMS IN WHICH INERTIA TERMS, PX, ARE NEGLIGIBLE 

TIME, HOWEVER, IS STILL IMPORTANT FOR PROBLEMS SUCH AS: 

PIASTIC CREEP OF METALS AT ELEVATED TEMPERATURES IN WEAPONS 
COMPONENTS 

. TRANSIENT THERMAL LOADS ON WEAPON STRUCTURES (CARTRIDGE CASES) 

. INTERNALLY VISCOUS STRUCTURES SUCH AS PLASTICS OR POLYMERS 

5. NONLINEAR CONSTITUTIVE EQUATIONS. Because of the versatility 
of the HEMP integration scheme (Section 2), constitutive relations 
other than elasto-plastic can be proposed. Andrews, et. al.(4,5) and 
Cristescu(6) have »resented these in detail. The ;iext two slides (9 
and 10) show two examples, in order of increasing complexity, of consti- 
tutive equations whose final descritized form are acceptable to HEMP 

EXAMPLE "ALMOST EXPLICIT" CONSTITUTIVE 
EQUATIONS 

I. VBCOELASTIC MATERIAL (MAXWELL):PLASTICS, POLY- 
MERS, METALS 

iv.j = 2Or &l\x - Jit Sij f? 

«C       = RELAXATION TIME 

A SECOND ORDER DIFFERENCE ANALOG SS 

OR 

WHICH IS EXPLICIT AND LINEAR. 

H . VISCOPLASTIC MATERIALS (PERZYNA)tMETALS 

dv.j s  2&e„3  +   d&-y§CF)*;j/yif 
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It can be seen that the Maxwell material leads to a simple explicit 
formula between the stress at T(N + 1) and the stresses and strain 
rates at T(N) and T(N + 1/2). (Slide 10) 

It •» V        * MATERIAL CONSTANTS 
It» 

I* « INVARIANT *     SiJ Sij 

F        - VifA -1 
$CF) ■  MATERIAL FUNCTIONAL) 

A SECOND ORDER DIFFERENCE ANALOG E 

OR 

WHICH IS NONLINEAR BUT "ALMOST EXPLICIT" IF WE 
ITERATE FOR    Ta> USING THE AVERAGE 

In the next example, a viscoplastic solid, the stress at T^- + 1) requires 
a similar knowledge of two previous time plane calculations. However, 
because of the non-linearity in Ig ' and $„ an iteration is required. 
In both examples above, the equations must be supplemented by elastic 
laws, yield criteria, etc. 
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6. CONCLUSIONS. Based on the above study it can be concluded 
that: 

a. HEMP is adequate for some Impact problems involving 
composite penetrators. 

b. The HEMP-type integration scheme is flexible enough to 
allow vi8coela8tic and nonlinear viscoplastic material modeling. 

c. It is possible with Lagrangian codes to solve some types 
of quasi-static problems with time dependent boundary conditions. 
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COMPUTER MODELING IN DETERMINING STABILITY OF A MORTAR 
REPOSITIONING NONLINEAR CONTROL SYSTEM 

C. N. Shen and G. W. Woods 
Benet Weapons Laboratory 

U. S. Army Armament Command 
Watervllet Arsena? 

Watervllet, New York 

ABSTRACT« The mortar repositioning device 1s a nonlinear on-off 
control system with hysteresis, deadzone and dry friction. Stability 
of the system depends on the existence of a limit cycle with sustained 
oscillation. This paper gives the plecewlse-linear analytic solutions 
of a mathematical model for the mortar repositioning system with arbi- 
trary starting conditions. The limit cycle sustained oscillation 1s 
determined by using a digital computer for the various non-dimensional 
physical parameters. From the computer results, one can calculate the 
amount of necessary deadzone 1n compensating the effects of hysteresis 
and dry friction to avoid sustained oscillations. The optimal design 
of deadzone In stabilizing this nonlinear control system is also discussed. 

1. INTRODUCTION. A p1ece-w1se linear system behaves like a non- 
linear system 1f the magnitude of the Input is a function of the state, 
such as an on-off system with hysteresis, deadzone and dry friction. 
The hysteresis 1s a multiple value function depending on the error 
signal magnitude and Its directions. The dry friction has a constant 
magnitude and a polarity against the direction of motion. Since all 
these Inputs are state variable dependent 1t is reasonable to determine 
the Inputs of these piece-wise linear systems by locating them in a 
phase plane. The phase plane has the error signal as its abscissa and 
the error rate as Its ordlnate. One may start a linear computation and 
end at the boundary of one region 1n the phase plane. Then the input of 
the next region 1s determined before the computation carries on in the 
second region. In this paper the analytic linear solutions are given 
with different inputs for various regions. The computer selects the cor- 
rect Inputs 1n these regions and carries on the computation from region 
to region, with particular attention to the boundaries values of these 
regions. 

An unstable linear system 1s unbounded with increase of time while 
an asymptotic stable linear system approaches * constant. However, the 
piece-wise linear system, similar to a nonlinear system, may exhibit a 
sustained oscillation with a limit cycle, which does not exist in a 
linear system. This limit cycle 1s not desirable for many engineering 
applications. To eliminate this limit cycle one can Introduce a nonlinear 
device such as deadzone, to compensate the effect due to hysteresis. The 
amount of deadzone must be as small as possible because 1t affects the 
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the resolution of the output. This paper synthesizes the minimum amount 
of deadzone required to compensate the effect due to hysteresis and dry 
friction for the system stability, by means of the results from a digital 
computer. 

2. PIECE-WISE LINEAR ANALYSIS. The nonlinear elements, such as 
hysteresis and deadzone for a fluldlc mortar repositioning control system 
are given 1n Appendix A. The mortar dynamics and dry friction, together 
with the control by pneumatic piston and cylinder are shown 1n Appendix B. 

2.1 System Dynamics. Equations (B-l)through (B-26) give the physical 
eng*neerlng system whlch 1eads to the following condensed mathematic form 
in equations (1) to (9) 

or 

djx + dx + s_» o 
d? do  KM 

1* 

(1) 

(2) 

where 

= dx (3) 

with the Initial conditions x0 and xQ. The values of q/KM 1n equation (1) 
and Its regions 1n the phase plane are given as follows: 

Reg|on 
of x 1n   Time Non- Equation 
phase plane dimensional Number 

Region 
number q/KM 

Region 
of x 1n 

phase plane 

(1) 1l " 
KM 

1 + F 

KM 

A+h   <x 
W 

(2) q2 = 1-F 

191 
A-h < x 
2P 

(3) %* 0 - F -A-h < x < A-h 

KM W 2P             EP 

(4) q4 = 
KM 

-1 -F 
KM 

x <"A"h 

2P 

(5) 
-1 +F 

Kff 

x <-A+h 

0 < x 

x   < 0 

< 0 

< 0 

0 < x 

0 < a < o 
1 

(4) 

al < a < a. —     —   a (5) 

°a 1° Iab (6) 

- (7) 

wm (8) 
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Region     Regjon 
Region of x 1n   of x 1n   Time Non-  Equation 
number     q/KM   phase plane phase plane dimensional  Number 

(6)  q6 = 0 + F  -A+h < x < A+h   0 < x'      -      (9) 
W M    IT W 

The above relationship 1s shown by the phase plane 1n Figure 1. N^te 
that equation (1) 1s non-dimensional 1zed and the values of q/KM become 
either 1, 0, or -1 if there is no dry friction (F = 0) in equations (4) - (9), 

2.2 The Analytic Solution for Trajectories In Phase-Plane. For any 
starting conditions x and x^ In region (1) when 0 ta La-\   *F* analytic 
solution for equation (1) 1s 

x' = x;e-° + qi (e"° -1) (10) 
W 

x - x0 - q10 + (x0 + q^ (1 - e"a) (11) 
KM"      W 

0 

When a =o^ the region ends at 

x* - x{ « 0 (12) 

Thus 

0 = xö e"°l + qj_(e_°l - 1) (13) 
KM 

from which one obtains 

°1 -«»[(xj + q, ) / (q,)] (14) 
KM    W 

From equation (11) we have 

xi ■ x0 - (q^ 0}  + x0 (15) 

m 
where q-j/KM 1s given in equation (4). 

The end conditions (12) and (15) for region (1) become the Initial 
conditions of equation (1) 1n region (2) when o-\  <, o <_aa. Thus 

x^ e-(°-°l) + q2 [e-(°-°l) - 1] 

KM 
(16) 
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x  = X1 - S2 (a - 0l) ♦ (Xi +^2) [1 - e'{a'^h (17) 
KM KM 

When 0-0.  the region ends at 

xa = (&-h)/(2p) (18) 

Let the initial condition of x at region (1) be 

x0 = (A+h)/(2P) (19) 

By using equations (17) - (19) we can determine aa - a-j by 

-h = (x, - xj - ?2 (a. - 0,) ♦ &) [1 - e-(aa"°lJ]     (20) 
P   '   °   KM  a   '   KM 

From equations (12) and (16) the final condition of x' becomes 

where x-| - xQ is given 1n equation (15) 

equations (12) and (16) the fi 

xi = 52 [e"(°a - °l) -1] (21) 
KM 

where qg/KM is given in equation (5). 

The end conditions (18) and (21) for region (2) become the initial 
conditions of equation (1) in region (3) when o^ o±a^ .   Thus 

x' = xa e-(°"
aa) +<13 [e-(°-°a) -1] (22) 

KM 

x - x. - q3 (o-oj + (x! + q3) [1 - e"(o"0«)] (23) 
W        a    a W 

When o = °b the region ends at 

xb = (-A-h)/(2P) (24) 

From equations (18), (23) and (24) we can determine o^ - oa by 

- A - - <13 (ob - oa) + (x' ♦ <13 ) [1 - e"(ab " °aj (25) 
P KM KM 

after which the final condition of x£ becomes 

xb = xa e-(°b " ^   + q3 [e-(°b " Ga}-1] (26) 
KM 

where q3/KM is given in equation (6). 
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V 
I 

Equations (24) and (26) are the final conditions of region (3). 

Since the system 1s symmetric about the origin 1n Figure 1, the 
analytic solution for regions (4), (5) and (6) 1s similar to the regions 
(1), (2) and (3). One can derive these equations without difficulty. 

From these non-dimensional equations, a similarity among equations 
(10), (16], and (22) and among (11), (17), and (23) exists. Equations 
(10), (IS), and (22) can be written 1n the general form 

x' = x£ exp (oa - o) + Q[exp (oa - o)-l] (27) 

and equations (11), (17), and (23) 1n the general form 

x = xA -Q(o - oa) + (xÄ + Q) [1- exp (oa - a)] (28) 

where xA are Initial starting velocities XQ, xf, and xa for the regions 
1, 2, and 3 respectively, x^ are Initial starting positions XQ, X-J, and 

xa for the regions 1, 2, and 3 respectively, and Q are q-j/KM, q2/KM, and 
q-r/KM for the regions 1, 2, and 3 respectively. 

3. COMPUTER PROGRAMMING FOR THE PIECE-WISE LINEAR ANALYTICAL SOLUTIONS 

3.1 Generalizing the Non-dimensional Equations for use 1n the Computer. 
Equations (27) and (28) are transformed Into the computer software 

language of Fortran IV as seen below 1n equations (29) and (30). 

Y(I) = YA*Z + Q*(Z-1). (29) 

X(I) = XA - Q*(S-SA) + (YA+Q)*(1-Z) (30) 

The variables as set up 1n the computer equations (29) and (30) 
relate to the non-dimensional equations as follows: 

1) The time variable o becomes S, and o-j, oa, etc. become SA 
where SA takes on new values for each new region of the phase 
plane. 

2j The quantity Z ■ exp (SA-S), where SA = 0 in region 1. 
3) The quantity XA 1s xQ, x1 or xa 1n regions 1, 2, or 3 

respectively, where xQ 1S the Initial starting condition in 
the X plane for region V. The quantities xj, xa, etc. are 
the last values of X(I) in the previous regions which are used 
as initial conditions in the following regions. 

4) The quantity YA 1s xj, xf or xa, 1n regions 1, 2 or 3, re- 
spectively, where XQ 1S the Initial starting condition in the 
Y plane for region 1. The quantity xf, xa, etc. are the last 
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values of Y(I) in the previous regions which are used as Initial 
conditions in the following regions. 

5) The quantity Q 1s qi/KM, q2/KM or q3/KM. The solutions to the 
equations (29) and (30) are piece-wise linear because Q takes 
on new values for each of the six regions of the phase plane as 
shown 1n equations (4) - (9). These changing values of Q are 
due to the driving force and the frictlonal force changing 
throughout the system. Because of these changes of Q, the dif- 
ferential equations are only linear 1n each region. At the 
boundaries of each region in the phase plane the trajectories 
are continuous in their positions and velocities. 

3.2 Critical Points of the Phase Plane Diagram. In the phase plane 
of figure 1, the critical points at the boundary of two neighboring 
regions are as follows: 

Boundary Region Critical Point at 

and 1 
and 2 
and 3 
and 4 
and 5 
and 6 

XQ = (A+h)/2P, XQ B arbitrary positive 
xi = arbitrary xf = 0 
xa 

a (A-h)/2P Xg - arbitrary negative 
xb = (-A-h)/2P xS = arbitrary negative 
X2 * arbitrary X2'= 0 
X3 = (-A +h)/2P X3'= arbitrary positive 

The parameters A/2P and h/2P are known quantities from design and 
testing of the system and will be discussed further in Chapters 4 and 5. 

3.3 The Programming Scheme. The function of this computer program 
is to generate a phase plane plot when the various parameters A/2P, h/2P, 
Q for each region, and the initial conditions, XQ. xg'are given. The 
program starts at time (o or S) s 0 and solves equations (29) and (30) for 
small, increasing steps of time. The computation of equations (29) and 
(30) halts when the value of X(I) or Y(I) is within a tolerance of the 
correct critical boundary point for the region. The program then resumes 
computing values of X(I) and Y(I) but at a time interval 1/10 of the 
original time Interval until X(I) or Y(I) is within 1/10 of the original 
tolerance of the critical boundary point. These last calculated values 
X(I), Y(I), and S are now the new values for XA, YA, and SA respectively. 
Solving for X(I) and Y(I) at the original time step resumes with the new 
values 1n XA, YA, SA and Q for the new region. If the system is unstable, 
sustained oscillations will result 1n the phase plane plot. 

The program continually checks the value of Y(I) in regions 3 and 6 
to see if Y(I) approaches zero from a negative value 1n region 3, or 
approaches zero from a positive value 1n region 6. If Y(I) approaches 
zero within a given tolerance in either region 3 or 6 before X(I) reaches 
a critical boundary point, the system is stable At this point the 
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program halts further computation and plots the stable phase plane diagram. 
The computer program and f!ow chart are given in Appendix C. 

4. THE EXISTENCE OF A LIMIT CYCLE FROM COMPUTER SOLUTIONS. 

4.1 Definition. The term limit cycle in nonlinear systems refers 
to limiting values of closed curve trajectories in the phase space cor- 
responding to periodic motion. Limit cycles may be stable or unstable. 
In figure (2a) all close trajectories approach the limit cycle as time 
approaches infinity. In figure (2b) all the close trajectories move away 
from the limit cycle as time goes on, making for an unstable limit cycle. 

4.2 The Role of the Computer. The computer is a valuable tool to 
the engineer who is trying to establish the existence or non-existence of 
a limit cycle for a system. In this nonlinear control system, the main 
objective is to obtain a final settling point within a reasonable period 
of time. Therefore, it 1s desirable not to have < limit cycle or sustained 
oscillations 1n this systam since these correspond to stable periodic 
motion. 

4.3 Description of the Computer Plot. Phase plane plots of the 
variables X(I) and Y(I) as calculated m equations (29) and (30) are 
shov:n in figures (3), (4), and (5) with the values of h/2P = 0.10 and 
F/KM ■ 0.50. A limit cycle or sustained oscillation is shown 1n figure 
(3). In figure (3), the boundary regions between regions 2 and 3 and 
between regions 5 and 6 are on the opposite side of the ordinate as com- 
pared 1n figure (1). The reason for this 1s, if A/2P<h/2P, these bound- 
aries are as shown 1n figure (1), but if h/2P<A/2P, the boundaries are as 
shown in figure (3). In figure (3), regions 3 and 6 are narrow due to 
tne small value for deadzone, A/2P ■ 0.028. 

If A/2P is increased to 0.038 as shown 1n figure (4), the phase plane 
changes from sustained oscillations, to a trajectory with a final settling 
point because Y(I) approaches zero in region 3 before X(I) reaches the 
boundary point (-A-h)/2P. This boundary point value is -0.138 whereas the 
computer value for X(I) = -0.1368 when Y(I) approaches zero. Comparing 
the closeness of these two numerical values, indicates that the system is 
just at the margin of stability. 

Increasing A/2P still further to 0.040 brings stability to the system, 
and is shown by the plot in figure (5). Regions 3 and 6 1n figure (5) are 
wider than these regions in figures (3) or (4). Stability is reached sooner 
1n time 1n figure (5) than in figure (4) when comparing 10.740 seconds in 
figure (4) to 5.355 seconds 1n figure (5). A further increase in deadzone 
would bring about a settling point sooner in time but the final settling 
point may fall anywhere within the deadzone depending upon the original 
arbitrary starting conditions of X0 and Y0. 
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5. THE NECESSARY DEADZONE IN COMPENSATING THE EFFECT OF HYSTERESIS 
AND DRTFRTCTIW: 

5.1 The System's Deadzone, Hysteresis and Dry Friction. The computer 
reads in values for the three parameters deadzone (A/2P), hysteresis (h/2P), 
and dry friction (F/KM) along with the initial arbitrary starting point XO 
and YO 1n order to compute values for X(I) and Y(I). The term F/KM is the 
only parameter of the three that is present 1n equations (29) and (30) and 
is contained 1n the Q term. The Q term takes on the value of q-j/KM as seen 
1n equations (4) through (9) where, 1 = 1,2,3* "6 and corresponds to each 
of the six phase plane regions. The deadzone and hysteresis form the 
boundary point values to which X(I) is compared 1n four of the six regions 
as shown 1n the table in action (3.2), 

The hysteresis 1n the system 1s the Inherent property of certain 
components and very little can be done to alter It's value. Whereas, the 
value of the dry friction 1n the system 1s more subject to change through 
design and lubrication. 

The deadzone 1s the main adjustable parameter in the system. If, 
for a given set of system parameters, it is found that the system is un- 
stable, the deadzone may be increased in an attempt to bring about sta- 
bility. 

5.2 Varying the Parameters. The three parameters have systematically 
been varied to snow the effect each parameter has on the system. The fol- 
lowing is a 11st of the twelve cases shown in the phase plane plots of 
figures (3) through (14). 

TABLE I 

Figure Number h/2P F/KM A/2P (A+h)/(2P) 

3 
4 
5 

0.10 
0.10 
0.10 

0.50 
0.50 
0.50 

0.028 
0.038 
0.048 

0.138 

6 
7 
8 

0.10 
0.10 
0.10 

0.25 
0.25 
0.25 

0.075 
0.087 
0.098 

0.187 

9 
10 
11 

0.027 
0.027 
0.027 

0.50 
0.50 
0.50 

0.010 
0.016 
0.025 

0.043 

12 
13 
14 

0.027 
0.027 
0.027 

0.25 
0.25 
0.25 

0.028 
0.038 
0.048 

0.065 
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In the following discussion of Table I, refer to the table for 
the numerical values of the parameters discussed 1n each figure. 
Figures (3), (4) and (5) have h/2P and F/KM fixed, and vary A/2P. 
These three figures were discussed In detail In section (4.3). 

In figures (6), (7) and (8) the hysteresis 1s maintained at its 
previous value but the dry friction was reduced and the deadzone varies 
to yield the results of sustained oscillations for figures (6) and (7) 
and stability or a final settling point for figure (8). Although 
fiqure (7) has a sustained oscillation, 1t 1s close to the margin of 
stability since a small Increase 1n deadzone produced stability. 

The hysteresis has been decreased for figures (9) through (14). 
A sustained oscillation resulted from the values of the parameters 1n 
figure (9), while figures (10) and (11) show stability. The stability 
of figure (10) 1s again marginal while tto.t if figure (11) is definite. 

The smaller values for hysteresis and dry friction are shown in 
figures (12), (13) and (14). Figure (12) shows a sustained oscillation. 
F-'gure (13) is a wery good example of marginal stability because: upon 
cose examination a final settling point can be seen. Again, a final 
settling point is reached in figure (14). 

5.3 Determining the Margin of Stability. The margin of stability 
as discussed 1n section (4.3) is when X(I) approaches (A+h)/2P, or its 
negative value, at the same time that Y(I) is approaching zero. The 
computer can print out these values of X(I) as Y(I) approaches zero for 
comparison. 

Figures (4), (7), (10) and (13) were stated as being marginally 
stible. Table II compares the last and next to last values of X(I) when 
Y(I) approaches zero, to the calculated value of (A+h)/2P or its nega- 
tive value. The last column of Table II is repeated from the last column 
of Table I. 

Figure Number 

TABLE 

Value of X(I) as 
Next to Last Value 

II 

Y(I) « 0 
Last Value (&+h)/2P 

4 
7 

10 
13 

0.1388 
-0.1872 
-0.0432 
-0.0651 

-0.1368 
0.1869 
0.0410 
0.0637 

0.1380 
0.1870 
0.043 
0.065 

From this table it can be seen that the last and next to last values 
of X(I) are very close to the value of (A+h)/2P or Its negative. Since 
the Initial starting conditions are arbitrary, a convenient starting 
point when looking for the margin of stability is at the point Y0 = 0, 
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XO = U+h)/2P. Within a half cycle, the nearness of X(I) to (-A-h)/2P 
as Y(I) approaches zero can be observed and a judgment made as to whether 
the system 1s unstable, marginally stable or stable. 

5.4 Necessary Deadzone for Marginal Stability. From these twelve 
cases and twelve other cases not shown, a table of marginal stability cen 
be constructed for this system. The dry friction values of 0.0, 0.25, 
0.50 and 0.75 are read 1n the columns, while the two values of hysteresis, 
0.10 and 0.027, are read across the rows. The deadzone value for marginal 
stability 1s read at the Intersection of the rows and columns. For example: 
1f the system has a dry friction value of 0.25 and a hysteresis value of 
0.10, the deadzone value at the point of marginal stability 1s 0.087. If 
a final settling point 1s desired, the deadzone value has to be greater 
than 0.087. If a value less than 0.087 1s chosen, the system will have 
sustained oscillations. 

TABLE III 

F/KM    0.00    0.25   0.50    0.75 

h/2P 
0.100 0.250   0.087  0.038    0.0105 
0.027 0.150   0.038  0.016    0.0055 

If from a set of system parameters, the hysteresis or dry friction 
1s changed and the system becomes unstable, the chart above can give the 
engineer an Idea of how much deadzone 1s needed to compensate for the 
effect of the changing parameter. 

6. CONCLUSION. This report shows how equations of motion for non- 
d1mens1ona1, piece-wisa linear equations behave like a nonlinear system. 
The computer calculates the solutions for these equations and plots the 
phase plane trajectory for each set of system parameters chosen. 

In some cases when writing the equations to plot the phase plane 
trajectory, time can be eliminated as the Independent variable. However, 
time has remained as the Independent variable 1n this system while cal- 
culating the variables X(I) and Y(I). The reason for this 1s that the 
response time of the system 1s Important and can be easily recorded. 

The computer phase plane plots are valuable in locating the margin of 
stability. If the initial conditions are chosen at X0 - + (A+n)/2P) and 
Y0 = 0.0, within half a cycle 1t can be determined 1f the trajectory 1s 
near the margin of stability. If X(I) approaches + (A+h)/(2P) before Y(I 
approaches zero, the system will have a sustained oscillation, but 1f Y(I 
approaches zero first, the system 1s stable upon reaching a final settling 
pülnt. The margin of stability can be established when X(I) approaches 
+(A+h)/(2P) and Y(I) approaches zero simultaneously. A table for marginal 
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stability was constructed from the computer output, and from Table I, 
the effect of changing the deadzone to stabilize the system can be 
determined. 

The resolution of the system must be kept 1n mind when varying the 
parameters. Increased deadzone may give a stable system, but too much 
deadzone will decrease the resolution of the system. 

In this paper It 1s seen that the computer plays a large role in 
determining how the parameters of a system can be varied to establish a 
stable system especially at the margin of stability. 

APPENDIX A. The Nonlinear Elements. A sensor 1s used to measure 
the relative angular position e of the mortar barrel with reference to 
the axis of a cylinder which 1s mounted on the tripod of the mortar. In 
the sensor there are two orifices through which the air may pass to the 
Input of the back pressure switch. A deadzone can be created by adjusting 
the angular position of these orifices in the cam. Thus the two orifices 
can be arranged such that they are either normally blocked or normally open. 

The back pressure switch exhibits the characteristic of a hysteresis. 
The output of the switch turns on at a high threshold of the input while it 
turns off at a low threshold. 

The output of the back pressure switch 1s connected to an on-off 
fluidlc amplifier which has practically no hysteresis. The compressed 
air from the power amplifier pushes the piston of the cylinder for control- 
ling the angular position of the mortar. 

For each Input angle of rotation e of the mortar barrel two pressure 
outputs can be obtained, one on each side of the piston Inside the cylinder. 
This 1s a push-pull arrangement for an on-off fluidlc system. The output- 
input relationship indicates that a combined hysteresis and deadzone exist 
as shown in figure (Al). 

Figure (Al) plots m, the net output force on piston by gas pressure vs. 
e, the relative angle of rotation of the input. The total hysteresis 1s h 
and the total deadzone 1s A. At point "a" where e 1s l(A+h) the output 

1 
jumps from zero to M. As the input e increases to point "b" the output is 
kept at the same amplitude M until the input drops to point "c". The Input 
e at point "c" is (l/2)(A-h) and the output drops to zero again. As the 
Input further decreases to point "d" at the amount -(l/2)(A+h), the output 
becomes -M. The second half cycle repeats the same scheme. These are 
shown as points "d.e.f, and a". 

In order to facilitate analysis the phase plane drawinq of E and e 1s 
desirable. This can be achieved by transforming figure (Al) into figure (A2), 
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There are four threshold values of e in figure (Al). These values are 
l/2(A+h), l/2(A-h), -l/2(A-h), and -l/2(A+h), corresponding to four points 
1n figure (Al) and four vertical lines in figure (A2). The output m = M 
for points "a,b and c" in figure (Al) is the shaded region which is marked 
m = M in figure (A2). The output m is zero for points "c and d" and 1s so 
Indicated in an unshaded region in figure (A2), which gives the output at 
any region in the phase plane for a nonlinear element with both hysteresis 
and deadzone. 

APPENDIX B. The Dynamics and Dry Friction. The mortar barrel is 
rotating while the piston is set in motion by the pressure on one or both 
sides of the p'ston as shown in figure (Bl). Let the equivalent mass of 
the piston and Its connected part be mg, the coefficient of viscous damping 
be u» the displacement of the piston be c, the net pneumatic pressure on 
the piston be p, the area of the piston be A and the dry friction be G. 
The equation of motion becomes for net pneumatic pressure p on the left of 
the piston. 

mpd2c = - u dc + pA - 6   if dc > 0 (Bl) 
dF    dt dt 

med
2c = - y dc + pA + G   if dc < 0 (B2) 

d?    dt dt 

For zero net pressure on the piston 
2 

med_c = -udc-G      if dc > 0 (B3) 

dt2    dt dt 

mc d
2c * - u dc + G      if dc < 0 (B4) 

dt2    dt dt 

For net pneumatic pressure p on the right of the piston 
2 

medc = -udc-pA-G  if dc > 0 (B5) 

d?    dt dt 
2 

med_c = -udc-pA + G  if dc < 0 (B6) 

dt2    dt dt 

where the quantities me, v, p, A and G are all positive real parameters. 
The above equations indicate that the pneumatic force pA depends on which 
side of the piston 1s pressurized and that the dry friction is a function 
of the direction of the velocity of the piston. Let the error rate of the 
system be 

422 



de_ = - p de 
dt     dt 

substituting equation (B7) Into equation (B1) one obtains 

- me d e = y de + pA - G 

~dt* JTdt 

which 1s equivalent to 
2 

T d e + de + q = 0 
~~7    — 
dr dt 

(B7) 

(B8) 

(B9) 

where 

q 
K 
T 

ms 
m„ 

mc 

= Km« 

f = 

f = 

P/M. 
mg/y 

M = pA 
0 

-M = -pA 
F =P! 

y 

-F = -£6 
v 

(BIO) 

(BID 
(B12) 

if pressure applies on the left (B13) 
1f net pressure on the piston is 
zero (B14) 

if pressure applies on the right (B15) 
if de < 0 (B16) 

if de > 0 
BT 

(B17) 

Equations (B13) to (B17) are derived based on equations (Bl) to (B4). 

To summarize the above formulations there are six regions in the 
phase plane plot 1n figure B2. The force function q in equation (B9) 
takes the following values: 

Value of 
q ■ Kms - 

KM 
KM 

0 
KM 
KM 

0 

Net Pressure 
on Piston 

on left 
on left 
none 
on right 
on right 
none 

Mortar 
Position 

Relative 
Mortar 
Velocity 

(A+h)/2<e 
(A-h)/2<e 
(-A-h)/2<e<U-h)/2 

e< -A-h)/2 
e<(-A-h)/2 

(-A+h)/2<e<(A+h)/2 

0 
0 
0 
0 
0 
0 

Equation 
Number 

B-18) 
B-19) 
(B-20) 
B-21) 
B-22) 
(B-23) 

It has been shown that the quantity q = Kms - f is a function of 

both the force on the piston and the dry friction. Thus this quantity q 
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can be considered as the Input of the linear element. However the force 
Kms on the piston depends on the hysteresis and deadzone of the nonlinear 
element, while the dry friction f relies on the velocity of the output of 
the linear element. Equation (BIO) gives the junction point between the 
nonlinear and linear elements. 

The key equation 1n our analysis 1s equation (B9) where T 1s given 
1n equation (18) and q 1s shown 1n equations (BIO) to (B23) for the non- 
linear elements. This equation can be further simplified by multiplying 
through by t and by using the following transformation: 

P = K Mr 

X s e = e 
P" KMT 

o = t/r 

The result 1s given by equations (1) - (3) In the text. 

(B24) 

(B25) 

(B26) 
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APPENDIX C 

THE FLOW CHART AND PROGRAM 

CREAD \ 
D2P. H2P. XO. YO. DEL   J 

W 
flRITE Headings"! 

\ I«O.J"O.K»O.L»O.S«o7sTEP«DEL.DEL2«DEL/10 | 

< U Vfco.o > 
yes 

no 

Start Region 2 1 

| Select Region Variables | 

X(I)«XA-Q*(S-SA)+(YA*Q)*(1-Z) 
Y(I)sYA«Z*Q«(Z- 

S S«S*STEP | 

no Is x(l) or Y(ü within    ^ 
boundary point tolerance Jy^ 

,yes 
< ts STEP^DETTVl0-»! STEP»DEL2 I 

yes 

1XA«X(I), YA-Y(I),  SA^TI 

no -< Has all regions been completed "*> 
yes 

WRIYE l(l),T(I) and S 1 

\ Plot graph of each case"! 

(   STOP ) 
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DIMENSION IBUF (2000), X(1500), Y(1500) 
CALL PLOTS (IBUF, 2000, 6 ) 
READ (5,23,END=22) D2P,H2P,XO,YO,DEL,FKM 
DEL2 = DEL/10.0 
X2 = D2P-H2P 
X3 =-(D2P+M2P) 
X5 = -D2D+H2P 
X6 = D2P+H2P 
STEP = DFL 
S = 0.0 
1 = 0 
J = 0 
K=0 
L=0 
WRITE (6,24) XO,YO,D2P,H2P,DEL,FKM 
WRITE (6,27) 
L=L+1 
GO TO Ü, 19, 19, 21), L 
IF (YO.EO. 0.0) 00 TO 18 
K=K+1 
GO TO (12,13,1«+,15,16,17,2),K 
J=d + 1 
GO TO (6,10,11),J 
KCHECK=0.0 
1 = 1 + 1 
Z=EXP(SA-S) 
X(I)=XA-0»(S-SA) + (YA+n)J:(l-Z) 
IF (K.EO. 1 .OR. K .EO. «♦) GO TO 9 
IF (K .EO. 2 .OR. K .EO. 3) XC=X(I) 
IF (K .En. 5 .OR. Y   .EO. 6) XB=X(I) 
IF (XB-XC .OT. 0.0) 00 TO 5 
Y(I) = YA"Z+0"(Z-1) 
IF (K .EO. 1 .AND. Y(I) .LE. 0.0) OO TO 5 
IF (K .EO. 3 .AND. Y(I) .O-E. -0.0005) 0,0 TO 2 
IF (K • EO. li   .AND. Y(I) .OE. 0.0) GO TO 5 
IF (K .EO. C> .AND. v(i) .LE. 0.0005) OO TO 20 
XSAVE=X(I) 
YSAVE = Y(I) 
KCHECK=1.0 
WRITE (6,28) I,S,X(I),Y(I) 
S = S + STFP 
IF (J .OT. 1) 
GO TO 7 

10 V.'RITE (6,25) 
S=S-STEP 
STEP = DEL2 
S = S + STEP 
KCHECK=0.0 
GO TO 8 

11 IF (KCHECK .EO. 

GO TO 8 

0.0) 1=1-1 
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X(0 = /5AVE 
Y(I)=Y^AVE 
V/RITE (6,29) I,S,X(I),Y(1) 
WRITE (6,26) 
S=S-STEP 
YA = YSAVE 
XA=XSAVE 
SA=S 
STEP = DEL 
S=S+STEP 
J = 0 
GO TO 4 

12 0=1+FKM 
SA=0.0 
XA=XO 
YA=YO 
GO TO 5 

13 0=1-FKM 
XB=X2 
GO TO 5 

14 n=-FKH 
XB=X3 
GO TO 5 

15 o=-l-FKM 
GO TO 5 

16 Or-l+FKM 
XC = X5 
GO TO 5 

17 0=FK.M 
XC=X6 
GO TO 5 

18 0=1-FKM 
SA=0.0 
XA-XO 
YA=YO 
XB=X2 
K=2 
GO TO 5 

19 n=l+FKM 
K=l 
GO TO 5 

20 WRITE (6,30) 
21 Kl = I + 1 

K2 = I + 2 
CALL PLOT (15.0,-30.0,-3) 
CALL PLOT (0.5, 0.5, -3) 
CALL SCALE (X,  6.0,  I, 1) 
CALL SCALE (Y, 8.0,  I, 1) 
YM = (0.0-Y(Kl))/Y(K2) 
XM = (0.0-X(Kl))/X(K2>> 
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22 
23 
24 

25 
26 
27 
28 
29 
30 

IF (Y(K1) 
IF (X(K1) 
CALL AXIS 
CALL AXIS 
CALL LINE 
CO TO 1 
CALL PLOT 
FORMAT 
FORMAT 

.GT. 0.0) YM=0.0 

.ST. 0.0) XM=0.0 
(0.0,YM ,16H 
(XM ,0.0,16H 
(X, Y, I, 1, 0, 0) 

X PLANE,-16, 6.0,0.0,X(K1),X(K2)) 
Y PLANE,16, 8.0,90.0,Y(K1),Y(K2)) 

(12.0, 0.0, 999) 
(6F10.<O 
Cl',//,28X,'PHASE PLANE VALUES',3X,*XO=',F6.3,3X,'Yf: 

X F6.3,3X,lD2P=,,F6.4,3X,lH2P=,,F5.U,3X,,DEL=,,F6.3,3X,,FICM=,,F5.'t) 
FORMAT (4X, 'START OF SMALL STEPS') 
FORMAT (4X, 'END OF SMALL STEPS') 
FORMAT («*X,*I',UX,'S',12X,'X(I)',10X,'Y(I)') 
FORMAT (2X,I«+,4X,F10.3,t»X,F10.<t,«*X,F10.'O 
FORMAT (2X,m,4X,F10.3,4X,F10.'t, '=XA', 2X,F10.4, '=YA') 
FORMAT (UX,'v(I) IS APPROXIMATELY E^UAL TO ZERO') 
CALL EXIT 
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CONVERGENCE PROPERTIES OF QUASI-NEWTON METHODS 
WITH APPROXIMATE LINE SEARCHES 

Melanie L. Lenard 
Mathematics Research Center 

University of Wisconsin-Madison 
Madison, Wisconsin   53706 

ABSTRACT.   A typical iteration of a quasi-Newton method for 
unconstrained minimization consists of choosing a suitable direction and 
then searching for the minimum of the function along a line in that direc- 
tion.   Theoretical convergence properties of these methods usually require 
that the line search be exact, a condition which can never be satisfied 
in practice.   Extensions of convergence theory to the case where 
approximate line searches are permitted will be presented, and computa- 
tional experience with the approximate algorithms will be discussed. 

Introduction 

A number of recently developed techniques for finding the unconstrained 
minimum of   F(x) ,    a differentiable function of several variables, may 
be described as  quasi-Newton methods.   These methods are iterative 
procedures, which, given a starting point   x,    search along a line from 
x   in a direction   d   to a new point   x*   with a decreased function value. 
The search direction is chosen to be 

d = - Hg , (1) 

where   g = 7F(x)    and    H   is a positive definite matrix which in some 
sense approximates the inverse of the Hessian, that is, 

H*  [72F(x)]_1 . 

Typically a quasi-Newton method begins by setting   H   equal to 
the identity matrix on the first iteration and then improves the approxima- 
tion to the inverse Hessian matrix by updating   H   at each subsequent 
iteration.   The various methods differ from one another chiefly in the 
formula used for the updating process.   Broyden [ 1967] has described a 
class of quasi-Newton methods where the following formula is used to 
calculate a new matrix   H* : 

T T 
TT     Hyy H      ss        a      T ,_. 

H* = II -   ~Y  + — + ßww (2) 
y Hy        s y 

Sponsored by the United States Army under Contract No.  DA-31-124-ARO-D-462. 
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where   y = g* - g = 7F(x*) - VF(x), s = x* - x ,     and 

_s_        Hy 
w = 

T T s y      y Hy 

By appropriate choice of the parameter   ß   one can obtain any of 
the important symmetric updating formulas.   For example,    ß = 0   gives 
the Davidon [19 59]-Fletcher-Powell [1963] formula.   Also in this class 
is the rank-one correction formula [ Broyden (1967), Murtagh and Sargent 
(1969)] 

H* a H + ts-Hy)(s-Hy)T 

(s - Hy)Ts 

and the Broyden [ 1970]-Fletcher [ I970]-Shanno [ 1969] formula: 

T T T T 

s y s  y s y 

Theoretical convergence properties of quasi-Newton methods 
usually depend on taking   x*   to be such that 

F(x*) - min{F(x * td) It > 0} . (3) 

Thus, a one-dimensional minimization problem must be solved at each 
iteration.   Since this problem can consume a great deal of computational 
time, and since an "exact" solution can never be obtained, implementations 
often use approximate line searches. 

In what follows, we will review what is known about convergence 
properties of quasi-Newton methods with exact line searches.   We will 
then consider extensions of convergence theory to cover the practical 
situation where only an approximate solution to the problem (3) is obtained. 

Convergence Properties with .Exact Line Searches 

One property shared by all quasi-Newton methods is that they 
will locate the minimum of a quadratic function of   n   variables in   n 
iterations.   This fact has led to the development of "restarted" versions 
[ McCormick and Pearson (1969)] of quasi-Newton methods:  at intervals 
of   n H    iterations, the formula (2) is ignored and instead   H   is set 
equal to the identity matrix. 
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Before we discuss the behavior of quasi-Newton algorithms on 
non-quadratic functions, we need to define some terms. 

If   {x }   converges to    | ,    then the order of convergence is 
the largest number   p   for which 

, k+1     t 
lim    JLi- *-"- < K (4) 

k^oo  ||xk-ellp 

for some positive constant   K . 

If the oHer of convergence is one   (p = l),    we usually say that 
the rate of convergence is "linear. "If   p = 2,    we say that the rate of 
convergence is "quadratic."  If   p > 1,    or if   K - 0   when   p = 1,    we 
say that the rate of convergence is "superlinear. " 

Now, it was proved by Powell [ 1971 ] that the Davidon-Fletcher- 
Powell (D-F-P) method is superlineariy convergent, provided that   F(x) 
is twice continuously differentiate, strongly convex, and satisfies a 
Lipschitz condition on the second derivatives at the solution. 

McCormick [ 1969] has shown that, under the same conditions on 
the objective function, the restarted version of the D-F-P method is n-step 
quadratic [that is, if each group of n-steps is considered as one step, 
then   p = 2   in formula (4)]. 

Further, Dixon [ 1972] has shown that all formulas belonging to 
Broyden's family of quasi-Newton methods generate identical points when 
applied to the minimization of quite general functions.   Thus, the 
convergence properties of the D-F-P method given above apply to all 
methods in the class described by equation (2). 

Approximate Line Searches 

Many techniques for dealing with approximate line searches have 
been proposed. 

One of the oldest is subrelaxation, where the step-size is taken 
to be some fraction of the optimal step-size: 

t - pt* ,       0 < p < 1 . 
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Goldstein and Price [ 1962] suggested that the step-size   t 
should satisfy 

t<?{x+to)-Tix)<l_t 

tVFT(x)d 

where   0 < i < 1 . 

Armijo [ 1966] proposed letting 

t = ßj t 

where   t > 0   is au initial guess for the step-size and   j   is the smallest 
integer for which 

F(x + td) - F(x) 

tVFT(x)d 
<!-€', 0   <   €'   <   ^   . 

Wolfe [ 1969 ] discussed convergence properties with many types 
of step-sizes, including 

VFVtd)d<*-<>      0<.<1. 
VF (x)d 

(5) 

In his book, Polak [ 1971 ] gives convergence and convergence 
rate proofs for a number of algorithm using step-size rules of the Goldstein-Price 
or Armijo type.   Results for step-size rules of type (5) have been obtained 
for conjugate gradient methods [ Lenard (1972a),  (1972b)]. 

In the next section, we will describe convergence results for a 
quasi-Newton method using the inequality (5) to define a step-size. 

D-F-P Method - Approximate Line Searches 

We will let 

e(t) = VF (x + td)d 

VFT(x)d 

We note that an exact line search is described by 

e(t) = o . 
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We will require throughout that 

o < e(t) < l - n ,       o < Ti < i . 

It has been shown [Lenard (197 3)] that if at each iteration, we 
require that the error satisfy the following conditions: 

9 <SgTHg/||gl2 

*T     * ,ii   ii2 
9 <Tg  'Hg /llgll 

■A, j- 

0   < (l-c)g Hg /gHg,     0 < c < 1 

where   S   and   T   are arbitrary positive constants, then convergence 
is linear.   The rate of convergence is superlinear if one replaces condi- 
tion (9) with the more stringent condition 

6 < (l-c)g Hg /gHg,     0 < c < 1. 

For the above results, the assumptions about the objective functions 
were the same as those used by Powell [ 1971 ] for the case of exact 
line searches. 

(6) 

(7) 

(8) 

(9) 

(9') 

For the restarted version of the D-F-P method, the rate of convergence 
is n-step quadratic provided that in each cycle of n-steps (beginning at 

x    and terminating at   x      ),    we require, in addition to conditions (7), 
(8), and (9), that 

9k <K||VF(X
1
)||, k = l,2,...,n 

where   K   is an arbitrary positive constant. 

Thus, we have described conditions on 0(t) which are sufficient 
to establish the same order of convergence as that known to apply when 
line searches are exact. 

Computational Experience 

As a demonstration of the use of approximate line searches, such 
as those described in the previous section, some computational experiments 
were performed.   The results will be reported in this section. 

The Davidon-Fletcher-Powell method was used to find the minimum 
of three classic test problems:  Rosenbrock's [i960] banana-shaped 
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valley, the helical valley [Fletcher and Powell (1963)], and a 5-dimensional 
trigonometric problem [Fletcher and Powell (1963)].   We considered a 

problem solved if    l|VF(x) || < 10~    . 

The one-dimensional minimization problem was solved by a method 
which uses function values only.   The technique begins by finding three 
points bracketing the minimum and then uses quadratic interpolation to 
get successively better estimates of the minimum.   This is continued until 
the value of the directional derivative (estimated by differences in function 
values) at the approximate minimum meets the chosen error criteria. 

As the error tolerances were reduced, we expected an increase in 
the number cf funciion evaluations per iteration.    However, we wished to 
investigate the effect of varying the error tolerances on the total amount 
of computational effort required to solve a problem.   Therefore, we have 
recorded the total number of function evaluations and the number of gradient 
evaluations required to solve each problem.   (The number of iterations is 
one less than the number of gradient evaluations.)   It should be noted that 
one gradient evaluation is usually considered to be the equivalent of   n 
function evaluations. 

In the experiments we performed, we tested condition (6) by letting 
T]   take on values of 0.99, 0.9, 0.5, and 0.1.     Further, conditions (7) 

6 
and (8) were tested with   S   taking on values of 10,  100,  1000, and 10 , 
and   T = 0.9 S.   Finally, we used condition (9) with   c = 0.1. 

The results of these experiments are displayed in Table I (D-F-P with 
restart) and Table II (D-F-P continued).   Although there is no obvious 
pattern, we can make several observations based on this data. 

First, the number of iterations did not change dramatically with 
changes in error criteria.   Second, the value cf   S   seems to have little 
effect.   Also, we note that checking conditions (8) and (9) requires a 
gradient evaluation at the end of the line search.   If they are satisfied, 
calculations proceed in the normal way.   If they are not satisfied, the 
solution to the line search must be refined and the gradient re-evaluated. 
In the few cases where this occurred, these "extra" gradient evaluations 
are indicated in parentheses in the tables. 

Finally, it is interesting to see that D-F-P continued (super-linear 
convergence) performs better than D-F-P restarted (n-step quadratic 
convergence) on these test problems. 
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The major result, however, is that the error tolerance in the line 
search does not seem to be of great importuice in the overall performance 
of the algorithm.   Based on the data reported here, we expect that setting 
T) = 0.9   in condition (6) and ignoring the other conditions would give 
satisfactory results. 

Summary 

In this paper, we have reviewed existing convergence theory for 
quasi-Newton methods, most of which is dependent on exact line searches. 
We have extended the theory to cover the practical situation where line 
searches are not exact.   In particular, we have stated conditions on line 
search error under which the Davidon-Fletcher-Powell method has the 
usual order of convergence.   Further, we have reported some computational 
experience which shows that the D-F-P method retains good performance 
when approximate line searches are permitted. 
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ADAPTIVE NONLINEAR ESTIMATION APPLICATION 

FOR TEMPERATURE FORECASTING 

LTC N. B. PENROSE 

Department of Electrical Engineering 

U. S. Military Academy 

West Point, New York 

ABSTRACT 

This work is an application of adaptive estimation theory to temp- 

erature forecasting.   It is presented as a feasibility study demonstrating 

the efficacy of the adaptive approach.   The local station temperature fore- 

casting problem is chosen to focus the discussion on the efficacy of the 

filtering algorithm by using only surface level, single geographic location 

data.   The feasibility of the adaptive approach is established by comparison 

with the persistence forecast and other statistical methods. 

While this paper is specific in discussing an adaptive estimation 

technique to predict the temperature process, the method and techniques 

are of general interest since they may be applied with equal ease to the 

prediction of any Gauss-Markov process. 

Preceding page blank 
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I.   Introduction 

1.1        The Problem and General Approach to Solution 

This paner discusses the application of adaptive nonlinear estimation 

theory to temperature forecasting.   The techniques and results are intended 

to establish the feasibility of the method applied in order to form a basis 

upon which subsequent work may be extended.   For this reason the local 

station, surface level temperature forecasting problem is chosen, i. e., 

only surface level, single station dry bulb temperature data is utilized for 

prediction purposes.   It is recognized from the outset that correlating 

information of distant weather stations as well as atmospheric and other 

weather data are necessary to proviae a statistically well supported temp- 

erature forecast.   However, the method employed may be extended to 

include this additional information as required. 

The approach taken is described as phenomenalistic: i. e., to drive 

the temperature forecasting model from the surface data available from a 

single geographic location.   The techniques of adaptive nonlinear estimation 

are utilized to choose the particular functional form of the model to contain 

a finite set of parameters.   These parameters are then learned, or optimized, 

such that the model best fits the measured output data (Lainiotis,  1971a). 
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To perform the model identification process, a training set of 

temperature data is u ilized.   The relatively small size of the training 

set demonstrates the economic efficacy of the adaptive filtering approach. 

The class of nonlinear prediction problems where explicit solutions are 

available is that in which the system dynamical equations are specified 

within a finite set of unknown constant parameters in the form of linear 

differential or difference equations.   One approach to this problem utilizes 

Bayes' rule (Bucy,  1965) as extended by Magill (1965) and Lainiotis (1971b) 

in the form of the Partition Theorem which asserts that the optimal estima- 

tion of the system states can be "partitioned" into a linear non-adaptive 

part consisting of ordinary Kaiman filters matched to each admissible value 

of a parameter, 9, and a nonlinear part, consisting of likelihood ratios, 

it.it incorporates the adaptive, learning or system-identifying nature of the 

estimator.   The application of this theorem results in the Adaptive Kaiman 

filter which is depicted in Figure 1. 

1.2       The Dpta 

The temper'ature process results from a random nonlinear, periodic 

nonstationary system (Jones, 1971).   The temperature process is assumed 

statistically to be sufficiently Gauss-Markov to satisfy the requirements of 

the Kaiman filter within reasonable bounds (Crawford,  1971; Bingham,  19? 1). 

The temperature data utilized in this study was obtained from the official 
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U. S. Department of Commerce Local Climatological Data Reports for 

the winter months of December, January» February 1960-1969 for 

Austin, Texas.   The data was recorded at three hour intervals measured 

at the Municipal Airport, Austin, Texas. 

II.   The Problem Statement and Modeling Analysis 

2.1 The Problem Objective 

The specific objective of this study is to develop a model to fore- 

cast local station dry bulb temperature through the technique of adaptive 

estimation.   The statistical evaluation of the modeling is to be the min- 

imization of the mean-square-error (MSE) estimates of the system states 

(Jazwinski,  1970).    The overall performance evaluation is to be a ratio 

comparison between the MSE of the system states and the local station 

persistence variance, where persistence is defined as a forecast that the 

future temperature state will be the same as the present state. 

2.2 The Filter Algorithm 

The Adaptive Kaiman filter is utilized for model identification, 

classification, and process prediction.    The model identification and 

classification utilizes a training set of data of approximately 360 samples, 

and process prediction,  a test set of the same length. 
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State variable model representation is used throughout in that 

state variable modeling encompasses the concept of the state of a system. 

The state of a system separates the future from the past such that the 

state contains all the relevant information concerning the past history 

of the system required to determine the response for any input (DeRusso, 

1967). 

The model in the Adaptive filter (Figure 1), which specifies each 

Kaiman filter (matched to each admissible value of 0) for filtering the 

state of a Gauss-Markov process with unknown parameters, is characterized 

by two difference equations (Sims,  1969): 

x(k) = C (k/k-1/0.) x(k-l) + D(k-l/0.) u(k-l) (2.1) 

z(k) = H(k/0.) x(k) + v(k) (2.2) 

where x(*) is the n x 1 state vector; z(«) is the r x 1 output data vector; 

$(•) is the n x n state transition matrix, conditioned on 0-; D(«) is the 

n x m input matrix, conditioned on 9.; H(*) is the r x n measurement matrix, 

conditioned on 0-; and u(*) and v(«) are the n x 1 input excitation and r x 1 

measurement error vectors, respectively, of Gaussian zero mean white 

noise processes. 

The modeling of the random process in Eqs. (2.1) and (2. 2) assumes 

that E [x(0) vT (k) ] = 0, E [x(0) uT (k) ] = 0, for all k and that x(0) is Gaussian. 
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The parameter value,  0., is a point of a finite dimensional vector space 

having a dimension equal to the number of unknown model parameters, 

which will prevent the precise characterization of the Kaiman filtering 

process (Hilborn,  1968, and Sims,  1969). 

The notation X,   represents all observations through time k.   The 

"weighting" probabilities p(0./X.) are given recursively by: 

P(ej\) 
|P(k/k-l;0.)!"*exp[-|z'T(k/k-l;0.)P"1(k/k-l;e.)z'(k/k-l;0.)]P(0./X]    ,) 

i l    z l ii     k-1 
i   V    L I- T 1 ~ 

1 |P(k/k-lj0..)|   "expC-K   (k/k-l;0.)P~   (k/k-l;0.)z(k/k-l;0.)]P(0./X    ,) 
j=1 1 J       Z J J J      «"I 

(2.3) 

where 

P (k/k-l;0.) = H(k/0.)P(k/k-l;0.) HT(k/0.) + R(k/0.), (2.4) 
Z 1 1 111 

z(k/k-l;6.) = z(k) - z(k/k-l;0.),  and (2.5) 

z(k/k-l;0.) = H(k/0.) *(k,k-l/0.) x (k-l/k-l;0.). (2.6) 

The terms R(k/0.) and P  (k/k-l;0.) are the measurement noise 
1 z 1 

covariance and error covariance of z respectively (Sims,  1969).    The 

terms P(0./XJ = P (0 ) for i = 1,  2,  ,..., L, are known constants which 
l     0 i 

represent the a-priori confidence in the 0. parameter values (Sims,  1969). 
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The error covariance of z is obtained recursively fi  m the discrete version 

of the Riccati equation (Meditch, 1969). 

P = F(t)P + PFT(t) - PHT(t) R"1(t)H(t)P 

+ K(t)Q(t)KT(t) (2.7) 

and is given by (Sims, 1969) 

P(k/k-l;0.) = *(k.k-l/0.) P(k-l/k-l;0.) 0T (k.k-l/e.) 

+ D(k-l/0.)DT(k-l/0.) (2.8) 

P (k/k-l;0.) = H(k/0.) P(k/k-l;0.)HT(k/0.)+ R(k/0.) (2.9) 
Z 1 1 111 

P(k/k;0.) = P(k/k-l;0.)-K(k>k/0.)P (k/k-l;0.)KT(k,k/0.) (2.10) 
1 1 12 1 1 

K(k,k/0.) = P(k/k-l;0.)HT(k/0.)P-1(k/k-l;0.) (2.11) 
1 1 1        z 1 

x(k/k;0.)=*(k.k-l/0.)x(k-l/k-l;0.)+K(k,k/0.)z(k/k-l;0.) (2.12) 
l l ill 

The adaptive prediction of the system state is formed by summing 

elemental conditional state predictions which are weighted by the conditional 

probabilities of the parameter values given the data.   That is, 

x(k/k-l) =/£    x(k/k-l;0.)p (0./X.) (2.13) 
j=l J 3     k 

where 

x(k/k-l;0.) = *(k/k-l;0.) x (k-l/k-l;0.) (2.14) 
J J J 
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Three initial conditions are required: p(0./XJ» x (0 / 0), and 

P (0/0) to perform the structural algorithm.   The probability, p (0. / \ ) 

is chosen to be 1/L so as not to establish an initial model bias for 0..   The 
l 

initial filter conditions x (0 / 0) and P (0 / 0) may be chosen arbitrarily to 

be the zero vector and identity matrix of proper dimension, respectively. 

The Adaptive filter provides optimal mean-square-error estimates 

of the system states when the state transition matrix, the measurement 

matrix, the measurement noise covariance matrix, and the initial con- 

ditions are not completely known.   That is, the above listed parameters 

are known to within a finite set of known parameter vectors. 

The optimal estimate of the system states is obtained by minimi- 

zation of the error covariance matrix, P (k / k) = E [x* (k / k) x    (k / k) ] 

in Eq. (2.10).    The Adaptive filter is an improvement upon the ordinary 

Kalman-Bucy filter in that it allows incomplete specification of the system 

model.   When a Kaiman filter processes data which is generated from a 

system model that is adequately characterized by a set of dynamical and 

statistical parameters different from those used in the filter,  suboptimal 

estimation of the system state occurs.   In this case, th<? degraded perform- 

ance of the Kaiman filter must be accepted or techniques must be employed 

which permit the filter to adapt to the unknown parameters.    The Adaptive 

Kaiman filter is ideally suited for this purpose. 
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Thus, Magill (1965) and Lainiotis (1971a. b. 1968) have provided a 

theoretical tool which satisfies the salient statistical requirements of the 

temperature process; i.e., the Adaptive Kaiman filter provides optimal 

estimates of the system states for a nonlinear, nonstationary, Gauss- 

Markov process with unknown model parameter values.   Additionally, the 

Adaptive filter, through state variable vector modeling, allows non-scalar 

state implementation; hence, the order of the system need not be specified 

a-priori.   This latter point is extremely important if the temperature process 

is Markov-2 or greater. 

2. 3       Model Identification and Classification 

The model identification and classification method on the training 

set employes the technique outlined by Sengbush (1969) which is to: 

a. Choose, arbitrarily, a coarse model (single Kaiman filter). 

b. Search with one parameter element while holding all the model 

values constant. 

c. Obtain a local minimum (utilizing the Adaptive filter) with the 

first element, fix this value and choose a second, repeating the method 

until all model elements are exhausted.   This completes one repetition of 

the model search. 

d. Store the parameter values in memory and use this for the next 

search. 

t 467 
> 



The classification of the system model (classification dimension 

of the state vector x (•) ) utilizes the prediction results on the training set 

for models obtained by the technique outlined above for specific dimensions 

of the state vector x(').   That is, start with n = 1 (scalar state vector), 

search for the model element values, predict the training set utilizing the 

Adaptive filter (Eq. 2.13), and observe the MSE, increase n to n + 1, and 

repeat the process.   The order of the system model is obtained when the 

prediction MSE reaches a minimum level value. 

The application of the above procedure for the temperature process 

utilizing three hour sampled data was: 

Dimension Training Persistence Variance 
of x (•). Set MSE MSE Ratio 
n = 

1 65.6 44.7 1.470 

2 16.8 44.7 0.375 

3 17.0 44.7 0.380 

4 16.9 44.7 0.378 

The variance ratio is the ratio of the training set MSE to the persistence 

MSE.    This result indicates that the temperature process is adequately 

modeled by a state vector of dimensionality n = 2. 
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In addition to the comparison of prediction results of the Adaptive 

filter to the persistence forecast, two additional filtering schemes were 

applied.   These were standard Least-Square and straight line projection 

predictions (Robinson, 1967) on the same training set.   The results were: 

Method Training Set Variance 
MSE Ratio 

Least-Square 26.4 0.590 

Straight-Line 26.0 0.582 

It is interesting to note that the above two methods significantly reduced 

the error below the persistence forecast but did not perform as well as 

the Adaptive filter. 

Verification of the model parameter identification was done by 

checking the statistics of the "innovation process", z (•); i.e., the error 

process of the prediction: z  (•) = z (•) - z (•).   The error process,  z (•), 

for a correctly fitted model is a zero mean, white noise process (Astrom, 

1965; Frost,  1971).   Checking the "innovation" of the n = 2 Adaptive filter 

model indicates that the mean value of z (•) was approximately zero 

(equals - 0.02) and had an autocorrelation shown in Figure 2, which very 

nearly approximates an impulse function.    Figure 3 is autocorrelation of 

a computer simulated white noise process which is used for comparison 

purposes. 
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The identified model (n = 2) for the Adaptive filter is (maximum 

aposteriori probability criterion): 

"0.3205 0.5357" 

.0.5357 0.5521- 
* H   =[10] 

*  4.0737-1 
D    = 

Ll3.7199J 
R =    [0.9089] 

Transferring the above result from a three hour (one step) to a 

Y step prediction (for example: twenty-four hour prediction, v = 8), is 

easily accomplished by the relationship (DeRusso,  1967): 

x(k+ Y/k) = * (k + y/k) x (k/k) (2.15) 

where 

* (k+ Y/k)  5=   [$ (k + l)/k] (2.16) 

III.    Test Set Prediction 

Quantizing about the element values for * (•)»  D (•), H(«)» and 

R(*) and using Eq.  (2.15) for the n = 2 model with Y =   8, a MSE result 

of 118. 2 on the test-set was obtained with a corresponding persistence 

MSE of 162. 2.    This result was obtained utilizing thirty filters in the bank 

of Kaiman filters of Figure 1.    This twenty-four hour prediction gives 

a variance ratio of 0. 725. 
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IV.   Conclusions and Recommended Extensions 

The prediction results on the test set, while not competitive for 

immediate operational use, do establish the feasibility and efficacy of the 

adaptive nonlinear estimation approach with the Adaptive Kaiman filter. 

It is anticipated that the incorporation of correlating information from other 

geographic stations, atmospheric, and other surface data (dew point, 

relative humidity, etc.) will significantly improve the prediction perform- 

ance of the Adaptive filter.   These extensions are to be incorporated as 

additional elements inrxl output data vector,  z (•); and.hence, require 

no new theoretical development in the filtering theory.   Computer programs 

are found in Penrose (1973). 
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MAGNETIC SYSTEMS 

ROBERT H. HAVESON 
AMMUNITION DEVELOPMENT AND ENGINEERING DIRECTORATE 

ARMAMENT COMMAND 
PICATINNY ARSENAL 
DOVER, NEW JERSEY 

INTRODUCTION 

Magnetic circuits have been analyzed using methods which depend heavily 

on engineering judgment and empirical data. These methods have used elemen- 

tary formulae and basic principles and have resulted in relatively good ap- 

proximations. However, due to the solutions'great dependence on the engi- 

neer's practical guesses, these methods are limited when used to predict ef- 

fects caused by design changes. 

The problem that this technique was applied to is the modelling of 

an electromagnetic generator (Figure I) used in the Advanced Beehive Electronic 

Fuze. The generator produces a voltage output when exposed to high acceleration 

forces. The generator contains a magnetic circuit which consists of a cylin- 

drical magnet, soft iron top and bottom plates with a movable soft iron armature 

through the center. The armature has a coil of wire surrounding it. When 

acceleration is experieivced, the armature is moved, an air gap developed, and 

due to a change in flux, a voltage is induced into the coil. The goal of this 

analysis is to determine magnitudes and patterns of the developed flux. The 

approach chosen was to develop the model of the configuration where the gen- 

erator had no gap. If the model would handle this situation, it is safe to 

assume that the technique handles different gaps as well as reasonable changes 

in the. geometry. 

This report describes a computer method which solves the partial dif- 

ferential equation which is derived from Maxwell's equation for an electro- 

magnetic generator. 
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-4r(v jjy ^4. !&-) (1) 

• ~^+^ in its finite difference form. The differential equation is stated in its rimxe a 

(Figure II). 
Where V is the reluctivity of the naterial A is the noetic vector 

potentialand h is the distance between the points. 

THE PROCEDURE 

Since the equation is in cylindrical coordinates and there is symmetry 

about the center vertical line, the system is dependent on r and Z only. The 

system can be described by a two coordinate grid of I ordinate and J abscissa 

(Figure III). 

Instead of the right-hand side of the difference equation being set to 

zero, it is set equal to R where R is the residue in «xcess of zero. For 
^     o     o 

the first iteration as good a guess as possible is made for the V and A. After 

'each residue is calculated during one iteration a new value for each magnetic 

vector potential (A(I,J)> is determined from the formula for relaxation. 

Rft 
° (3) 

A(I,J)K+1 = A(I,J)K ♦ a-^ 

where K is the iteration number, a is the factor of overrelaxation and XD is 

a function of the reluctivities surrounding A(I,J). 

The magnetic flux density is determined from the relationships 

Br ■(- 

3A\ 

B7. 

1 
r 

8<rA) 
9r 

00 

(5) 
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The difference form 

Ao + \ "   \~ 

2h~ 

(6) 

B   =   fi 

2(1*1^/ 2)^ 

'Br   +   B\ 

(7) 

(8) 

The reluctivities, V, are calculated from 

v  B 
(9) 

where H is the field intensity of the region being considered. In this problem 

the magnet material is Alnico V and H was determined frcn an. equation.  The 

newly calculated potentials and reluctivities are substituted into the difference 

equation and the cycle is repeated. 

This procedure is continued until the residues fall below a prespecified 

epsilon, in which case the solution is obtained. To determine if the grid size 

is optimum, the number of points are increased and the iterative process is 

repeated until there is little difference between adjacent solutions. 

FLUX PATTERNS 

It can be shown that the curves EQ = rA = constant are the lines of flux. 

If these equipotentials are plotted, the resulting curves describe the flux 

pattern of the magnetic system. The points of EQ are determined simply from the 
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product of each grid point (A(I,J) and its radial distance r from the vertical 

axis of symmetry (Figure IV). 

ACCURACY 

Accuracy is limited by the closeness of the difference equation to the 

actual partial differential equation. It is also affected by the algorithm 

and most significantly by the number of points which define the system. When 

it is necessary to increase the number of points to improve the accuracy, the 

most efficient method would be to do so only where necessary. Generally this 

would be along boundaries. One useful method to determine where problem areas 

lie would be to take advantage of the problem's symmetry. Consider changing 

the problem as a test in order to create new symmetry and again eliminate points 

which must be iterated. 

In this problem, the case where there was no air gap was considered, thereby 

including top and bottom symmetry as well as side by side symmetry (Figure III). 

BOUNDARY CONDITIONS 

The difference Equation will satisfy the boundary conditions everywhere 

such that H tan and B norm are continuous at the boundaries (Figure V). Tlach 

cell is a region of reluctivity bounded on four sides by other reluctivities. 

At boundaries where large changes in the path of the flux lines occur, 

it is necessary to employra-finer grid. A finer grid consists of increasing the 

number of points uniformly in the required regions. This procedure adds complexity 
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to the algorithm, however. An appreciable computer cost saving will be achieved 

when selectively increasing only the number of point* which are located on the 

boundaries. 

EQUATION TEST 

In order to develop confidence in the correctness of a finite difference 

solution it is imperative that a test should be devised. This test should re- 

sult in a one to one comparison between an analytic solution and the iterative 

method. Any test should include as many as possible of the complexities which 

are to be found in the actual problem. Since rore often than not, real world 

problems cannot be complete]/ tested by this method a certain amount of trial 

and error procedures must be resorted to. 

TEST n 

The first comparison test was with an exact solution derived from equation 

(1) where 

CI(T) 

(10) 
A(r,Z) =  -± _ sxn T 

where I, refers to a bessel function. 

The iterative method compared favorably with the exact solution. 
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THE COMPUTER PROGRM 

The flow chart of Figure VII describes the FORTRAN IV program. The most 

significant steps are: 

(1) Read geometry dimensions. 

(2) Read data which is necessary in order to determine approximate mag- 
netic vector potential values for the initial iteration. 

(3) Determine the initial matrix for the reluctivities V. 

OO Begin the iteration process and calculate new potential values A. 

(5) Calculate values for the flux density B. 

(4) Calculate values for the reluctivities V. 

(7) Return to step H and repeat process until residues have been 
reduced to acceptable values. 

i 
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CONCLUSION 

The program has obviously shown its capability to solve problems such as 

that of Test 1 and the magnetic generator problem. However, in the generator 

problem the residues converged close to the solution but for no immediately 

obvious reason proceeded to diverge. At the critical point where this 

divergence occurred, the values of the parameters were meaningful when consid- 

ering engineering judgment. Closer examination has shown that while the 

boundary conditions have been satisfied by equation (1) the flux lines upon 

crossing the soft iron-magnet boundary have a sharp change in direction. In 

order for the program to correctly resolve this condition, the number of 

points on this boundary rust be increased. 

This technique described above shows promise for solutions to physical 

problems which at times are considered impossible or impractical to attempt. 

REFERENCES 

(1) P. Lorrain and Dale Carson, "Electromagnetic Fields and WavesV, 
San Francisco: Freeman, pp. 400-414, 1970. 

(2) C. A. Holt, 'Introduction to Electromagnetic Fields and Waves", 
New York: Wiley, 1967. 

(3) K. J. Binns arri P. J. Lawrenson, Analysis and Computation of Electric 
and Magnetic Field Problems", New York: Pergamon Press, 1963. 

(4) P. Silvester, "Modtm Electromagnetic Fields", Englewood Cliffs: 
Prentice Hall, 1968. 

(5) S. V. Ahamed and E. A. Erdelyi, "Nonlinear Theory of Salient Pole 
Machines", IEEE Trans, on Power Apparatus and Systens, Vol. PAS-85, 
pp. 61-70, January 1966. 

487 

/ 



PERTURBED KUHN-TUCKER POINTS AND RATES OF CONVERGENCE FOR 
A CLASS OF NONLINEAR-PROGRAMMING ALGORITHMS 

Stephen M. Robinson 
Mathematics Research Center 

University of Wisconsin-Madison 

ABSTRACT.     This paper establishes quantitative bounds for the 
variation of an isolated local minimizer for a general nonlinear program 
under pertmbations in the objective function and constraints.   These bounds 
are then applied to establish rates of convergence for a class of recursive 
nonlinear-piogramming algorithms. 

1. INTRODUCTION.    In recent years a considerable amount of effort 
has been expended in analysis of the behavior of the optimal set of a mathe- 
matical program under perturbations in the objective function and/or the con- 
straints.   A general treatment of this question is given in [1, pp. 115-117], 
and other works in the same area include [ 2, 5, 1'5].   These analyses all 
investigate the question of continuity; they do not give any quantitative bounds 
for changes in the solu-ion set.   For a general nonlinear program, obtaining 
such quantitative bounds for the entire solution set appears to be a very difficult 
problem.   In Section 2 of this paper we take a different point of view,  instead 
of considering the entire solution set, we investigate the behavior of an isolated 
local minimizer of a not-necessarily-convex nonlinear program when the objective 
function and the constraints are perturbed.   An approach due to Fiacco and 
McCormick [7] shows that under reasonable conditions the study of such a 
minimizer reduces to the study of the locally unique zero of a certain system 
of nonlinear equations.   An immediate conseouence of this fact is that one may 
apply the implicit-function theorem to obtain, not only a proof of the existence 
and local uniqueness of the minimizer for slightly perturbed problems, but also 
quantitative bounds on its variation, and on the variation of the associated 
Lagrange multipliers, in terms of quantities   ssociated with the problem functions 
(objective and constraints).   These quantitative bounds are then applied in 
Section 3 to derive convergence rates for a class of nonlinear-programming 
algorithms which compute successive approximations to Kuhn-Tucker points by 
replacing the original problem by a sequence of approximate problems, each 
having a simpler structure than the original problem. 

2. PERTURBATION OF KUHN-TUCKEK POINTS.     In [ 7 , §2.4, Th. 6], 
Fiacco and McCormick gave an excellent discussion of the behavior of Kuhn- 
Tucker points when the data of t! i problem contain linear perturbations.   We 
extend their results here to show that quite general perturbations can be treated 
by the same technique; In addition, we obtain the quantitative bounds mentioned 
in Section 1. 

Sponsored by the United States Army under Contract No. DA-31-124-ARO-D-462. 
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f> 

We assume knowledge of the first-order Kuhn-Tucker conditions of 
lonlinear programming; we shall require also a knowledge of the second- 
order sufficiency conditions [7, §2.3].   For the program 

minimize {6(x) | g(x) < 0,   h(x) = 0} 
x 

(i) 

these are said to hold at a point  (x, u, v),   where  u  and  v  are vectors 
of multipliers for g  and  h  respectively, if  (x, ü, v)  is a first-order Kuhn- 
Tuoker point of (1) and if in addition, for each   x * x  such that 

g!(x)(x - x) = 0   for all  i with  u  > 0, 

g!(x)(x - x) < 0   for all  i  with  g.(x) = 0   and ü  = 0, 

and 

h'(x)(x - x) = 0   for all  j, 

we have 

where 

«£(x, u, v)(x - x)2 >0, 

T T 
£(x, u, v) := 6(x) + u g(x) + v h(x) 

Here and later in the paper, we use primes to indicate (Frechei) derivatives, 
with subscripts on partial derivatives to indicate the arguments with respect 
to which the differentiation is to be performed. 

The conditions just given are sufficient for x to be an isolated local 
minimizer for  (1)  [7, §2.3, Th. 4],   We shall also require_the concept of 
strict complementary slackness, which is said to hold at  (x, u, v)   if for 
each  i  either U, > 0  or  g (x) < 0. 

The theorem stated below employs functions   0, g and h whose 
arguments are   (x, p)  rather than  (x)  as in (1).   The quantity  p  is to be 
interpreted as 'a perturbation.   It will be permitted to vary around a fixed 
value  p;  the arguments   (x, p)   can be thought of as those of the "unperturbed" 
problem.   We introduce the perturbed nonlinear program 
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minimize {6(x, p) \ g(x, p) < 0,   h(x, p) = 0}, (l{p}) 
x 

the perturbed Lagrangian 

T T Z(x, u, v, p) := 6(x, p) + u g(x, p) + v h(x, p), 

and a function f defined by 

T f(x,u,v,p) :=UJ(x,u,v,p), \x1ql(xfp)t...tnmgTti{xtp)f h^p),... ,h (x,p)] 

wi *, which we shall be concerned in what follows. Note that f comprises 
the equalities of the Kuhn-Tucker conditions for (l{p}). The norm used on 
Rn x Fm x RS is arbitrary, but is fixed throughout the paper. 

THEOREM 1:  Let P be a Banach space, let   re Rn   and   II C P 
be open sets, and let e(x, p),   g{x, p),   and h(x, p)  be functions from 
rxn   into  R.   Rm,   and  R**  respectively, all having second partial 
derivatives with respect to x which are jointly continuous on rxn. 
Let p* n,   and suppose that xe r   and some ü« Rm  and  V€ Rq  form a 
Kuhn-Tucker triple of  (l{p})  at which the second-order sufficiency 
conditions are satisfied with strict complementary slackness and linear 
independence of the gradients tot the active constraints. 

Then there exist open neighborhoods   M(p) C n   and 
N(x, üT v) C r X Rm X wfl.   and a continuous function    Z : M - N, 
such that     Z(p) = (x, ü, v)  and for each   p« M,   Z(p)  is both the unique 
Kuhn-Tucker triple of  (l{p})   in  N  and the unique zero in  N  of the function 
f(*, •, •, p).   Further, if     Z(p) =: (x(p), u(p), v(p))  then for each  p« M, 
x(p)   is an isolated local minimizer of  (l{p})  at which the second-order 
sufficiency conditions are satisfied with strict complementary slackness 
and linear independence of the gradients to the active constraints. 

PROOF:   We write  z  for  (x, u, v)eRn m q,   z  for  (x, u, v), 
f(z, p)  for f(x, u, v, p),   etc.   The conditions placed upon  (x, u, v) 
and  p are sufficient to ensure that the matrix  fjfz, p)   is nonsingular 
[10, p. 231];  here the subscript 1 denotes partial differentiation with respect 
to the argument  z.   Since  f(z, p) = 0  because  z  is a Kuhn-Tucker triple 
of (l{p}),   the implicit-function theorem [8, Ths. 1-2 (4. XVII)]   guarantees 
the existence of open neighborhoods   MQ(p) C n   and  N (z) C r x Rm x R3 
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and a continuous function  Z : M   ■* N ,   such that Z(p) = z  and for each 
pe M ,   Z(p)   Is the unique zero of f(», p)  in  NQ.   In addition, there are 
some open neighborhoods   Nj(z)  and  Mi(p)   such that for  (x, u, v)cNj 
and  pe Mj  we have for 1 < i < m, 

g^x,?) <0 implies  g^x, p) < 0  j 

and > (2) 

u. > 0 implies  u  > 0 .        J 

Let   N := N   H N.;  then since  Z _is continuous and Z(p) = z,   it is possible 
to find an open neighborhood  M,(p) CM, H MQ   such that  pe M_   implies 
Z(p)e N.   For any  pe M2,   the point Z(p)   satisfies the equalities of the Kuhn- 
Tucker conditions for  (f{p}} because  f(Z(p),p) = 0.   Let  i  be chosen with 
1 < i < m,   and let Z(p) = (x, u, v).   If ü"j > 0  then since  Z(p)e N.  we have 
also ~u  > 0,   so  gJXjP) = 0;   on the other hand, if gA(x, p) < 0  then 
g<(x, p) < 0,   so  u. = 0.   Since strict complementary slackness holds at 
(x, ü, v)  one of these two cases is applicable for each 1.   Hence  u > 0 
and  g(x, p) < 0,   so Z(p)   is a Kuhn-Tucker point of (l{p});  it is the only 
such point in  N  because it is the only zero cf  f(*, p)  there. 

To prove the final assertion of the theorem, we note that (2) implies 
that prtcisely the same inequality constraints will be active at x(p),   for sach 
pe M2,   as were active at x(p),   and that strict complementary slackness will 
hold for the triple Z(p).   Since the gradients to the constraints active at x(p) 
were assumed to be linearly independent, and since by the continuity of Z, 
gi\X(p),p)  and hj(x(p),p)  will be continuous as functions of  p  for pe M2,   it 
follows that there is an open neighborhood  M3(p) C M2 within which they 
remain a linearly independent set.   But we observed just previously that these 
are also the gradients to the constraints active at x(p)  for any  pe M2  (they 
will subsequently be called simply the "active gradients"), and this remains 
true for the smaller neighborhood  M,.   Thus the only thing left to be shown is 
that the second-order sufficiency conditions remain valid.   To prove this, we 
observe iirst that the first-order Kuhn-Tucker conditions are satisfied by each 
triple  Z(p).   Also, if the set of active gradients contains   n  vectors, the second- 
order sufficiency conditions are trivially satisfied by  Z(p)   for each  pe M3,   and 
there is nothing more to prove.   We may therefore assume with no loss of generality 
that there are fewer than  n active gradients.   For each  pe M3,   let  G(p)  be a 
matrix whose rows are those gradients evaluated at  (x(p), p),   and consider 
the multivalued function 

T(p) := {we Fn  I G(p)w = 0}. 
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It is easy to show that the graph of r   is closed; thus, if we let S  be the 
set of vectors in ]Rn having Euclidean length  1,   the function r(p) fl  S   is 
upper semicontinuous on  M3.   It is also nonempty there, because of our 
assumption about the number of active gradients.   Now consider the functional 

6(p) := min{wT* j'jMp), u(p), v(p), p)w | we T(p) fl S}. 
w 

Since the quantity being minimized is jointly continuous in w and  p,   and 
since the constraint set I*(p) fl S   is upper semicontinuous in  p,   it follows 
from [1, Th. 2, p. 116] that  6   is lower semicontinuous in  p for pc M3. _But 
since the second-order sufficiency conditions hold for Z(p),   we have  6(p) > 0; 
hence for ail  p  In some open neighborhood  M(p) C Mj,   we also have  6(p) > 0, 
and so for every  pc M  the triple Z(p)   satisfies the second-order sufficiency 
conditions.   This completes the proof of Theorem 1.. 

In an independent but essentially simultaneous paper, Fiacco [6] has 
proved a result similar to Theorem 1.   He makes stronger assumptions than we do 
(viZcf that  6, g  and h  are each twice continuously differentiable in  (x, p}), 
and consequently is able to prove stronger results.   In particular, bs proves 
that the function which we call Z(p)   is (under his assumptions) - Jtually 
continuously differentiable, and he uses this fact to prove several useful and 
interesting results about sensitivity analysis.   We prefer to avoid these stronger 
assumptions, but even so it is possible to find a quantitative bound on the varia- 
tion of Z(p).   This is so because  Z(p)   is a trajectory of zeros of the function 
f(», p),   and one can therefore use a well-known contraction technique to 
estimate its variation.   We state this result as Theorem 2. 

THEOREM 2: Assume the hypotheses and notation of Theorem 1.   Then 
for any  e   with   0 < « < 1  there exist open neighborhoods   Mc (p) C M  and 
N€ (x, n, v) C N  such that for any   p e M€   and any  z« N€   we have 

||z - Z(p) I < (I - e f1 ||fj(z, p)"11|  ||f(z, p) ||. 

PROOF:  Let  t   be chosen with  0<« < 1.   Denote   ||fj(z, p)"  || 
by  p.   The hypotheses ensure that the function  i[(z, p)   is jointly contiin. 'us 
on   N x M;  hence we can find an open neighbo-hood  M.{p) C M   and a 
sufficiently smalljpositive   v   such that if  B(z, v)  denotes the open ball of 
radius   v  about  z,   we have  B(z, v) C N  and for each  p« M4  and each 
ze B(z, v), 

|fj(z, p) - fj(z, P)||<€ß -i 
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Also, there is some  X.  with  0<X<iv  and some open neighborhood 
M (p) C M4  such that for each  zc B(z", X) =: N£   and each  pc M , 

l|f(z, p)|| <~{l-*W~lv ', 

this follows from the continuity of  f and the fact that f(z, p) = 0.   Now 
let   Z€ N€   and  p € M£,   and consider the function    *  defined by 

*(z) :=z - f|(z, p)_1f(z, p) . 

 1 ~    1 For any zc B(z, ^ v)   (the closure of  B(z, — v))f   we have since 

B(z,-|v)CB(I, v), 

*'(z) = I - f|(z, p)_1q(z, p) 

= fj(z, P)_1[f;(z, P) - fj(z, 5)] 

thus 

Il*'(z>il<ß||f;ü, P) - f[(z, 5)11 

<ß(« ß_1) = «, 

— l so that  *   is a contraction on  B(zf^v).   Also, 

ll*(z) - z|| < iifjd, 5_1li lif(z, 5)11 

<ß[^d   -Oß"^]   =  (1  -  €)(£*)   . 

By the^coritractipn mapping theorem [8, Th. 1 (1. XVI)],   there is then some 
z'«B(z,-|")   suchthat  z' = *(z')  and 
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|z' -zII ■a-i)'lh{z) - z 

<(1- e )_1p ||f(z, J)|| . 

However,   *(z') = z'   implies  £(z', p) = 0,   and since   z' e B(z, — v 
B(z, v) C N,   we have  z' = Z(p).   Hence 

;") c 

|z -Z(p)|| < (1 - c flp ||f(z, 5)11, 

which completes the proof.   We remark that the contraction technique 
used in this proof is essentially that of [8, Th. 3 (1. XVI)]. 

Note that if in Theorem 2 we had taken  z - Z(p)  for some  pc M 
with Z(p) e N€ ,   we should have obtained 

•1 
IIZ(p) - 7(P)|| <(1 - e)   Pllf(Z(P), P) - f(Z(p), p) ||, 

since  f{Z(p), p) = 0.   This implies that the behavior of the Kuhn-Tucker 
triple Z(p)  for p near p may be determined by studying the behavior 
of f as its second argument varies.   We use this fact in the next section 
to derive asymptotic convergence rates for a class of nonlinear-programming 
algorithms. 

3.   CONVERGENCE RATES FOR A CLASS OF ALGORITHMS.      Several 
algorithms for nonlinear programming, including the constrained Newton method 
of Levitin and Polyak [9], the reverse-convex programming algorithms of 
Rosen [16] and of Meyer [ 11, 12], the method of Rosen and Kreuser [17], the 
algorithm of Wilson [ 18], and the method given by the author in [ 14], can be 
formulated as particular cases of the following procedure, which we call the 
general recursive algorithm after the "recursive programs" formulated and 
studied by Day [3, 4],   In this case, we let  P = pn+m+q  in Theorem 1, so 
that the perturbations lie in the  (x, u, v)-space.   We assume that the functions 
9(x, p),   g(x, p)  and   h(x, p)  are given;' these will, of course, vary with the 
different concrete realizations of the algorithm.   The method can be stated af 
follows: 
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1. Start with  z0 := (xQ, uQ, VQ);   set  k := 0 . 

2. Having  z.,   let  Zjc+,   be a Kuhn-Tucker triple of the program 
(1^});   if there is more than one such triple, choose  z^j  to be closest 
in norm to  z^ among all such triples (note that  z^+j  need not be uniquely 
defined by this procedure). 

3. Test  z^+j  for convergence;  either stop or set  k := k+1  and 
tfo'to step 2. 

Note that this formulation is general enough to cover many one-point iterative 
algorithms: that is, algorithms which use only information at the current point, 
as opposed to trial and error, memory, random searches, etc. 

The idea which we shall use to analyze the behavior of fhis algorithm 
is basically quite simple.   Consider the first step of the algorithm:   if  zQ    is 
close to  z,   then since  Zj  is the Kuhn-Tucker triple of  (l{z0})   closest to 
ZQ,   it must in fact be  Z(ZQ).   Similarly, if we can show that  z^  is close 
enough to  z,   then we must have  ^+^ - Zfz^).   It follows that the general 
recursive algorithm amounts to a simple successive-substitution iteration on 
the implicit function Z.   Obviously, we do not have an explicit expression for 
Z.   However, to analyze this type of iteration we do not really need such an 
expression; we require only certain bounds on the variation of Z.   Recall that 
for  z  near  z  we have from Theorem 2 (with  z = p = Z(z))  the bound 

||Z2(z) - Z(z)|| < (l-«)_1Hq(z, z)"1!!  ||f(Z(z), Z(z)) - f(Ziz), z) ||, 

2 
whore  Z (z)   denotes the composition Z(Z(z)).   If we now impose upon the 
algorithm the conditions that for some    at E  and for each  z   in a given 
neighborhood of  z  we have 

||f(Ziz), Z(z)) - ,:(Z(z), z) || < or ||Z(z) - z ||X,   X > 1, (HI) 

then we obtain 

|Z*(z) - Z(z) || < v£ IIZ(z) - z ||X 
> 

where  ^£  := (l-O    «."^(z, z)    ||,   and this bound permits us to prove the 
existence and convergence of   {zk}.   To identify the limit of rhis sequence 
with a Kuhn-Tucker triple of (1), it is necessary to require some relationship 
between the problems (1) and (l{z}).   Appropriate conditions to ensure this 
relationship are that 
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f(z) = f(z, z)  and  f'(z) = f^(z, z), (H2) 

for each z  in some open neighborhood of z,   where 

T 
f(z) := [£j(x,u,v), u^x) u

m9mM> VX)' •••»hq
1[x)l 

is defined for (1) in the same way as  f(z, p)  was defined for  (l{p}). 
Note that (H2) is required to hold only for p = z;  its verification for a 
particular algorithm is usually a very simple matter. 

We now state these convergence results in precise form in the 
following theorem. 

THEOREM 3:  Let z  be a Kuhn-Tucker triple of (1) at which the 
second-order sufficiency conditions are satisfied with strict complementary 
slackness and linear independence of the gradients to the active constraints. 
Suppose that the general recursive algorithm is applied to (1) in a form for 
which the functions  6(x, z),   g(x, z)  and h(x, z)   satisfy the differentiability 
and continuity hypotheses of Theorem lt and that both  (HI)  and (H2)  are 
satisfied in some open neighborhood of z.   Then the following results hold: 

a. (Linear Convergence):     If X = 1 and  £, := a||f!(z, z)    || < 1, 
then there is an open neighborhood  W^(z)   such that if the algorithm is started 
at any  z  e Wj.   the sequence   {z^}  exists and converges to  z.   with 

IÜ - zk || < 2(1 - *)~l\\zr z0l|[|(l+U]k 

for each k > 0. 

b. (Superlinear Convergence):     If   X. > 1}   then there exists an open 
neighborhood   W^(z)   such that if the algorithm is started at any  ZQCW^, 
the sequence   {z^}  exists and converges to  z,   with R-order at least \; 
specifically, for all k > 0  we have 

Hz - *k II < ^ ) , 

where   <r = (2Ul/(X_1) 1^ - zQ\\ < 1 and   » = (2Ul/(1"X)(l-/"1)"1 . 
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PROOF:    We shall first show that  z   is a Kuhn-Tucker triple of 
(l{z})  which satisfies the hypotheses of Theorem 1, and then apply Theorem 
2 together with   (HI)  and known results from numerical analysis to investigate 
the existence and behavior of  {z^}. 

The assumption that  f(z) = f(z, z)  means, for  z = z,_that z 
satisfies the equalities of the Kuhn-Tucker conditionsJor_ (l{z}|.   The_  _ 
equality oi_ t'Jz)  and  fi(z, z)_implies that  g(x)_=jr(x, z),   g'(x) = gj(x, z), 
h'(x) = hj(x^ z),   and    ^(x, ü, v) = tftfx, u, v, z).   The first equation shows 
that g(x, z) < 0,   and we know already that ü ^ 0,   so  z  is a Kuhn-Tucker 
triple for  (l{z});  the last three equations permit us to conclude that the second- 
order sufficiency conditions hold .there.   Strict complementary slackness follows 
from the equality of g(x)  and  g(x, z)   and linear independence of the gradients 
to the active constraints is immediate.   The conclusions of Theorems 1 and 2 
are therefore valid with  p = z,   and we may with no loss of generality take 
M(z)  to be contained in the open neighborhood of z  inwhich (HI) and (H2) hold. 
Let  B(z, i\)  be an open ball contained in  N,   and let  B(z,_p.)  be a closed ball 
contained in  M.   with  p£ < -^ T^   and such that for any  ZEB(Z, p()  we have 
Z(z)c M€  P N£ (I B(z, -|TI),   where  Mc   and   N£   are the neighborhoods in 
Theorem 2; of course they, and hence alr.o p£ ,   depend on c.   Using the fact 
that z  is an isolated Kuhn-Tucker triple of (1) (because  f'(z)  is nonsingular; 
see [10, p. 231]),    we may also assume that  p    has been chosen to be so 
small that there is no Kuhn-Tucker triple of (1), other than  z,   in  B(z, pc). 
Applying Theorem 2 with    p  = z = Z(z),   we have that for  ze l(z, p€), 

||Z2(z) - Z(z) || < (1-e f1 ||fj(z, z)"11|  ||f(Z(z), Z(z)) - f(Z(z), z) i| . 

Invoking (HI), we find that for some fixed  \ > 1  and each  z<- i(z, p  ), 

||Z2(z) - Z(z) || < Y£ IIZ(z) - z t . 

Finally, if z« B(z, p£)   then both  z  and Z(z)  belong to  B(z, 3T1),   so 
||Z(z) - z || < 2^/3.    But any Kuhn-Tucker triple  z of  (l{z}),   other than 

Z(z),   must lie outside  N,   so we must have    ||z-z || > 2n/3.   Thus  Z(z) 
is the unique Kuhn-Tucker triple of  (l{z})  closest to  z;   hence if the 
general recursive algorithm is applied to any   zke B(z, p  )  we shall have 
2k+i ■ Z(v- 

Now let   <p4(t) := \et    for t>0?   and denote by  ?£(t),   n>l, 
the n-fold composition of <p£; ^(t) := t.   The funjtion <p   \s a simple kind of 
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nonlinear ma] or ant   [13, §12.4] for the iterative process we are considering, 
and it will aid us in the analysis.   For tn = 0  and sons fixed  tj > 0,   we 
consider the scalar iterative process 

tk+l-
tk:=^{tk"Vl)'    k = 1> 2' '•• * 

The behavior of this process will enable us to draw conclusions about the 
behavior of the sequence   {"]<;}.   In fact, it follows frorr JT13, Ths. 12.4.3, 
12.4.4] that if tj ^ ||Z(z0) -_zQ ||   and if tk -* t^  with   f|z-z0 || + t* < pe, 
then (1) all the  z^  lie in B(z, p€),   so that the sequence   {z. }   is well 
defined, (2) the  z^  converge to some  z*  with   ||z# - z^ II <t* - tk  for 
each  k,   and (3) we have  Zfz*) = z*.   Hence   z*   is a Kuhn-Tucker triple 
of  (l{z+}),   and applying (H2) we see that it is also a Kuhn-Tucker triple 
of (l)j but  z#€ B(z, pe),   and from the local uniqueness of z  it follows that 
we must have  z^ = z. 

Z<     i 
.   <p (t,-tn),   and that    t*   is a contJn-«^, 

. 'n   e   1   0 * 
X.-1 

increasing function of tj  on any interval   [0, T]   for which  -y£T      < 1; 
we may write  t* = t#(t,)   for emphasis.   If we now choose  W^(z)  to be the 
open neighborhood_{z€ B(z, p€) |y£   ÜZ(z)-z ||x_1 <1,   |z-z H+t^dlzCzJ-z ||)<p£}, 
then with  zQ€ Wjjz)  and tj := ||Z(z0)-z0 ||  we see that the conditions of 
the previous paragraph are satisfied. 

Now, if X = 1  and t, < 1,   we choose  £ := (l-C,)/<l+£,),   so that 

1 n <n k_1   i 
V£ = 7 (1+£) < *•   Then since  ?n(tj -1 ) =Yntj»  we find that t, =t. £   y  ,   so 

-1 
** = (I""Y )   V   In tWs case, the error bound is 

^"2kll=t*-tk = tl[(1-\)"1-(1"^)a-Y€
)i] = 2(l-c,)"1!|z1-z0 ||[-|(l+t>)]

k, 

so the result of part (a) holds. 

For part (b.), assume   X. > 1  and choose  c = 1/2.   The error bound 
becomes 

oo 

(\ -1)X 

i=k 

y<i-M v    (O _... Vd-x) _<*") y  Jk "^x 

€ 

1/d-M  y     (X1)       l/a-xi/lj   X 
i=k ü € i=o 
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1/0-1) Where o- :=   <y ,{ "    ||z.-zj<l. But using  \ -1 >i(\-l),   we have 

y   (^-DX*     r?      i(\-l)\k \-l -1 

i=0 i=0 

so 

k. 
< v1/a"M a-/-'.-V(X», Hz " 2

k » = Y 

which completes the proof. 

4.   EXAMPLES.     We give here the forms of   9, g  and  h,   and the 
values of X.,   for three concrete realizations of the general recursive algorithm. 

a.   Constrained Newton Method (Levitin-Polyak [9]): 

e(x,zk) = e(xk) + e'(xk)(x-xk) +^e"(xk)(x-xk)2 

g(x, zk) = g(x) 

h(x, zk) = h(x) 

X = 2 . 

b-   Wilson's Method (Wilson [16 1); 

e(x,zk) = e(xk) + e^Xj^Kx^) +-e"(xk)(x-xk) 

.   m - 

+i J/'kW^"-^ 
q 

J' 

g(x,zk) = Lg(xk,x) := g(xk) + g'Cx^x-x^ 

h(x,zk) = Lhfx^x) := h(xR) + h'(xk)(x-xk) 

X = 2 . 
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c.   Method of fl4l: 

e(x,zk) = 6(x) + ujlg(x)- Lg(xJc,x)] + v£[ h(x) - Lh(xk, x)] 

g(x,zk) = Lg(xk,x) 

h(x,zk) = Lhfx^x) 

k = 2 . 

A consequence of the analysis given above is that if 9, g   and  h 
have the smoothness property required in Theorem 1, and if z  is a Kuhn- 
Tucker triple of (1) satisfying the second-ofder sufficiency conditions, strict 
complementary slackness, and linear independence of the gradients to the 
active constraints, then z  is a point of attraction for any of the three 
algorithms specified above; further, each algorithm is R-quadratically con- 
vergent in the sense of [13].   To illustrate hew easy it is to prrve this using 
Theorem 3, we shall go through the verification of  (HI)   for the method of 
[14], _In fact, we shall establish the stronger result that for any  z ,   z^ 
near  z,   we have 

||f(z . z) - f(z . z.)l<<*l|za - z. a'    a (3) 

From the specification of the algorithm, we find that 

e'(xj + u3g'(xj + V]W j 
a a       a a       a 

f(za, za) = 

(uaWV 

(u )  g  (x ) 
a m m   a 

w 

h (x ) 
q   a' 

= f(za) , 

while 
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f(Vzb) = 

A..   ,.     »      _i/..  \i   i  .. rv»i* e'(x ) + u.[g'(x ) - g'ixj] + vb[h'(xa) - h'(xb)] 

+ V'^ + vIh'(xb) 

(uaWV V 

Lhl<V V 

Lhq(xa> Xb) 

Subtracting, we obtain 

K - «K>T[9'(xa) " g'(xb)] 
a      b 

f<2a'za,"f(za'zb) = 

^ W " **1(V V^ 

(u )   [g   (x ) - Lg  (x     x )] 
am    m   a m   a'    D 

W • Lhl(V Xb} 

h (x ) - Lh (x     x J qv a q   a'    b 

(4) 

/ 

/ 
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The expression on the right-hand side of (4) is clearly of second order in 
(z   - Zjj),   so in a neighborhood of z  the bound in (3) will be valid with 
X = 2.   The verification of (H2) for this method is easy, and these two 
simple steps are all that is necessary to infer from Theorem 3 the implement- 
ability, convergence, and quadratic rate of convergence of this algorithm. 

The results of Theorem 3 provide a framework for analyzing the local 
behavior of a class of methods of a certain recursive type.   The nature of the 
hypotheses required for the application of this theorem shows clearly that the 
convergence rate of the general recursive algorithm does not depend directly 
upon how well the individual objective and constraint functions are approximated 
by the modified functions used in the algorithm, but rather upon how well the 
function  f,   constructed from  6, g, h  and their derivatives as well as from 
u  and  v,   is approximated near the Kuhn-Tucker triple  z.   It would thus appear 
that if new recursive algorithms are constructed in such a way as to yield good 
approximations of  f near z,   they can be expected to possess favorable rates 
of convergence. 

The general approach taken in Section 3 was to show that the general 
(one-point) recursive algorithm amounted to a successive-substitution iteration 
on the implicit function  Z,   that the variation of Z  near  z  could be bounded 
in terms of functions appearing explicitly in the algorithm, and that these bounds 
could, then be used to infer the existence, convergence and convergence rate of 
the sequence of approximate solutions   {z^}.   It is evident that nothing in this 
approach inherently limits its use to the class of one-point methods; this was 
simply the most convenient class to use in illustrating the general approach. 
One could just as easily consider two-point or multipoint methods for the solution 
of nonlinear proqrsm, analogous to those analyzed extensively in [13] for solving 
systems of nonlinear equations.   Anal} ;es for these methods, paralleling that of 
Section 3 for one-point algorithms, could be constructed by selectfangcdifferent 
^ncrete realizations of the perturbation space  P  appearing in Theorems 1 and" 2. 
lc would -fate useful-andJintefesting tohave computational experience available 
for some of these methods. 
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MODELING AND SIMULATION OF CELLULOSE/Tv CELLULASE HYDROLYSIS 

Chul Kim 

Pioneering Research Laboratory 
U.S. Army Natick Laboratories 
Natick, Massachusetts   01760 

ABSTRACT 

The kinetics of the hydrolysis of cellulose by Tv-cellulase was investigated. A kinetic 
scheme based on experimental observations and theoretical hypotheses was proposed and 
simulated by using IBM S/360 CSMP and MiVilC simulators. Due to the complicated 
nature of the cellulose/cellulase system, a simple Michaelis-Menton type kinetics did not 
apply and the usually sought steady state solution was found inadequate. A user supplied 
subprogram and an IBM S.S.P. were of help to find the best estimates of the system 
paran eters. 

The results in comparison to the experimental data were satisfactory. 

MATHEMATICAL MODELING 

Developing the models of chemical kinetics consists of solving the following problems: 

(1) formulation of reaction pathways and deriving kinetic rate equations. 
(2) testing the significance of the postulated model variables and reaction steps to 

find the maximum number of variables and/or reaction steps. 

Befors the rate of a reaction can be meaningfully discussed, the reaction system must 
be defined as precise as possible. In practice, experiments involve the determination of 
an average rate of reaction of a large number of molecules resulting in proposed pathways 
or mechanisms which usually present a sequence of reaction steps. Starting with simple 
experimental results (e.g., end products or reactants reaction rates), a diverse experimental 
design and reliable analysis techniques are desirable to provide maximum information. Once 
the information is available, models can be established. In many cases more than one 
reaction mechanism can describe the observed experimental results. Screening and testing 
are required of the models for validity of each element and reaction steps to support 
the experimental observations (Fig 1). 

The rate constants and system parameters must be determined for the kinetic model 
thus proposed. Many methods have been suggested (1) to obtain the best estimates of 
the constant's from experimental data. 

Preceding page blank 
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In general the more complex the mathematical model description of a system is, 
the more difficult is its handling to obtain the solution. Therefore, the art of modeling 
is based on the policy to treat the system in just enough detail so that the solution will 
provide information about the essential features of its behavior to within desired accuracy. 
However, the model should retain certain process elements that are physiologically 
reasonable. This often results in a high degree of complexity which is inevitable. The 
analyst thus, should carefully diagnose the problem and represent it by a proper 
compromise between the necessary detail, the availability of experimental information and 
the required mathematical tools. 

In making simplifying assumptions which are remote from the physics of the process, 
the experimental observations or the mathematical compatibility, purely to make the 
mathematics tractable, there always exists danger to overlook certain important aspects. 
Also there is little merit to attempt an analytical solution, however elegant it may be, 
if there is a high degree of complexity so that it is difficult to obtain numbers from 
the solution. 

Cellulose/Cellulase System 

(a)   Mass transfer limitations 

The cellulose/cellulase biochemical system is very complex because cellulose is an 
insoluble polymer which contains a range of substrate varying from amorphous and reactive 
to crystalline and highly resistant parts and cellulase is a mixture of several enzyme 
components. It forms a mixture of solid cellulose particles suspended in liquid enzyme 
solution. The enzyme is catalytic. Unlike many heterogeneous catalytic systems, the 
enzyme (catalyst) molecules migrate to the cellulose (reactant) and the product released 
after digestion. 

Due to the heterogeneity, it is conceivable that various mass transfer resistances may 
play significant roles in overall reaction rate. The bulk phase and film mass transfer rates 
depend on the size of cellulose particles, the cellulose concentration and the degree of 
agitation or the Reynolds' number of the mixture being stirred. Experiments have been 
carried out to study the mass transfer limitations. When the agitation speed exceeded 
100 r.p.m. in a batch reactor using pure cellulose (SFBW 200) as a substrate with 
concentration levels of 2 ^ 10 wt. %, it was observed that the mass transfer resistances 
were negligible. This is an indication that the bulk and film resistances can be made 
negligible with proper experimental conditions. Thus, with considerable size reduction 
of cellulose and an adequate mixing so that the cellulose particles are maintained in good 
suspension in the slurry mixture, it is safe to assume that there is negligible enzyme 
concentration gradient in the solution. This considerably simplifies the mathematical 
handling.    However, further investigation may be proper since there is energy demand 
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to meet the forementioned experimental conditions. No experiments were conducted 
regarding the pore diffusion of enzyme, however, it is assumed that the pore diffusion 
resistance is likewise insignificant due to the macromolecular nature of enzyme molecules. 

(b)   Cellulase Modes of Action 

The adsorption of cellulase in contact with the cellulose particles provides the only 
mass transfer resistance and it is important to establish a relation which describes the 
adsorption characteristics. Since the cellulose and the cellulase consist of more than one 
component, the modes of action of cellulase on different portions of cellulose are of 
fundamental significance in the elucidation of cellulase adsorption and the understanding 
of overall kinetic process. 

At present there are two distinct theoretical populations, attributed largely to Reese 
and Mandels (2) and Wood et al. (3) to explain the modes of action (Fig 2). 

Postulate 1: 

Ci is an enzyme that reduces bonds between cellulase chains by opening up the 
crystalline structure to convert the crystalline cellulose to amorphous and/or reactive 
cellulose. Cx (endo- and exo-glucanases) hydrolyzes the more susceptible amorphous and/or 
reactive cellulose by removing glucose units endwise from the nonreducir.g ends (exo-) 
and by primarily random fission of longer chain length (endo-). 

Postulate 2: 

Cx acts on the crystalline cellulose to generate free ends which are more susceptible 
to enzymic attack and C, is an enzyme which hydrolyzes the reactive ends of the cellulose 
produced by Cx action. 

The postulated theories are based on the specific experimental observations and offer 
similar qualitative explanations for the separate and distinctive actions of the cellulase 
components. In either case, it is an essential requirement that both components are needed 
in order to achieve saccharificatic.n of cellulose material to a significant extent. The 
catalytic actions by these components are Synergist' c,. The rate of degradation of the 
crystalline cellulose is shown to be very slow in comparison to the hydrolysis rate of 
the amorphous and/or reactive cellulose. It is thus, difficult to determine a meaningful 
concentration ratio of C, to Cx or vice versa. The postulations are not affirmative and 
leave room for further intensive investigation. 

Current study assumes somewhat different enzymic action. The solution enzyme 
is considered as a single component enzyme and distinctive catalytic actions appear only 
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when enzyme is adsorbed on different portions of cellulose matrix. The crystalline bonds 
breaking enzyme is postulated as having C, + Cx complex form and C, or Cx separately 
acts on the hydrolysis step to produce the reducing sugars. This scheme not only maintains 
basic similarity to above-mentioned theories but also eliminates difficulties in determining 
the concentrations of C, and Cx separately. The initial conditions for the cellulase can 
readily be defined in terms of total enzyme concentration in the rate equations. 

(c) Cellulase Adsorption 

Cellulase is strongly adsorbed by cellulose. The amount of cellulase adsorbed depends 
on the available sorption site which is a function of cellulose particle size and concentration 
of cellulose 3* fixed experimental conditions (50°C, phi 4.8). The initial adsorption is 
fast and the adsorption is continued at a slower rate for a short time period. The rapid 
initial uptake is due to high cellulose-cellulase concentration ratio. More than 90% of 
initial adsorption took place by 10% cellulose (SFBW 200) at prescribed experimental 
conditions in a batch reactor. Before an appreciable production of glucose (initial 3 ^ 
4 hrs) the adsorption continuously takes place until the cellulase concentration reaches 
a state of "pseudosaturation". Once the ceilulose is pseudosaturated with cellulase, 
negligible amount of uptake is observed, thus bulk solution cellulase concentration 
remaining almost at a constant level. The cellulase adsorbed fonns cellulose-cellulase 
complex and digestion starts. As digestion continues to produce glucose on a conversion 
level of 40%, the cellulase concentration in the solution increases indicating the release 
of cellulase from cellulose. Typical digestion curves are shown in Fig (3). After an hour 
of reaction, 15% volume of sample was taken and supernate separated from the centrifuged 
sample. Added with fresh buffer solution into precipitate and let the reaction continue 
in an shaker-incubator. As shown (Fig 3B), glucose production rate is nearly equal as 
in continued reaction in the original batch reactor (Fig 3A). A slight lagging of curve B 
compared with curve A is believed to be due to continued adsorption for a short initial 
time. At about 8 hrs of reaction curve B overtakes curve A indicating a possible effect 
of product inhibition. These data were reproducible leading to a conclusion that most 
of the adsorbed enzyme is held by cellulose and is primarily responsible for the cellulose 
degradation. The enzyme is released when digestion is continued for a prolonged time 
and the cellulose is depleted. 

(d) Product Inhibition 

The hydrolysis takes place fast for the initial time period (1^8 hrs) and levels 
off considerably for a prolonged reaction time (Fig 3). This is believed to be due to 
the inhibitory action by product or changes of cellulose susceptibility or both. In modeling 
standpoint the effect of susceptibility change can be depicted in the reaction step for 
the degradation of the crystalline cellulose.   The retardness of the hydrolysis rate which 
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becomes ipparent when the product concentration builds up is mainly attributable to 
the inhibition by the reaction product. The most common type of oroduct inhibition, 
i.e., a reaction between the solution enzyme and the product is not likely to affect the 
productivity since this system is heterogeneous and the enzyme adsorbed on the cellulose 
matrix for the short initial time period is primarily responsible for the reaction. The 
most probable inhibitory step is due to side reactions between the enzyme-substrate 
complexes and the product. These reactions usually are reversible processes whose 
equilibria maintain the resulting reaction velocities to a certain constant level at specified 
initial conditions. 

These experimental observations along with theoretical considerations lead one to 
establish the modeling policy (111 1) and a proposal kinetic scheme (Fig 4,111 2,111 3). 
This kinetic model thus, represents one of the most probable reaction path for this system. 

II.JTIAL CONDITIONS 

(a)   The cellulose concentration 

Before an actual simulation is performed, it is required to specify initial conditions 
to integrate the system differential equations. To assign initial values to each cellulose 
component and the cellulase is one of the difficulties encountered since there exist 
numerous factors by which the cellulose structure can be altered. The cellulose is pretreated 
for the size reduction to fine particles before it enters the digestion vessel. Experimental 
observation shows significant differences in the reactivities of cellulose which are pretreated 
by various mechanical means under different physical conditions (4). 

Even though it appears rather crude the current method to determine the composition 
(the ratio of crystalline to noncrystalline) is by hydrolyzing the specific substrate sample 
by P.w.* cellulase culture for an extended long time period. P.w. cellulase contains an 
enzyme component capable of digesting noncrystalline part of cellulose only. 
Approximately 12% of the cellulose used in this study (SFBW 200, 200 mesh) can be 
hydrolyzed by P.w. cellulase in 48 hrs and thereafter almost negligible digestion takes 
place for prolonged time. This indicates only 12% of total SFBW 200 cellulose is of 
readily reactive form leaving 88% crystalline, resistant part. 

At present there is not any decisive way to estimate the compositions of various 
forms of cellulose thus forcing the use of forementioned experimental determinations. 

It is enhanced, however, that further investigation to be carried out in regard to 
the development of any deterministic relations between the cellulose compositions and 
various physical and mechanical factors involved in processes of celijlose pretreatment. 

"Pestalotiopsis westerdijkii 
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Added significance for the extended study in this regard can be attributed to the fact 
that there are energy and cost demands in these processes to increase the cellulose 
accessibility and reactivity. 

(b)   The Enzyme Concentration (Activity or Strength) 

The interesting and important feature of adsorbed enzymes is their mixed function 
catalytic action. The bulk solution enzyme is homogeneous, while the catalytic action 
of enzyme adsorbed on the substrate matrix is heterogeneous. 

In cellulose/cellulase system the catalytic action of adsorbed enzyme is of particular 
significance, for the enzyme adsorbed in initial short period of reaction appears to be 
primarily responsible in its catalytic action. The requirement of information on the 
adsorbed enzyme activity is essential in the kinetics study of this system. 

Currently utilized information on cellulase activity and concentration provides: 

1) Total Protein Content (Pr) 
2) Filter Paper Activity (FPA) 
3) IUB Unit 

Total protein content is a physical entity that can be measured in definite quantity. 
It is algebraically aditive in the amount present in bulk solution and on substrate matrix. 
Not all the proteins possess the catalytic action of enzyme and it is difficult to make 
any presumption that; 

a) the concentration ratio of enzyme-protein (EPr) iind nonenzyme-protein (NPr) 
might be proportional to total protein concentration 

b) regardless whether a) is true or not the ratio EPr/NPr in adsorbed state may 
have a defined correlation with total adsorbed protein. Neither total protein content 
nor total protein adsorbed thus appears to measure proper enzyme action. 

The FPA determined by a standard assay procedure in this lab is in general acceptable 
and is being used as the "effective" catalytic action of cellulase. FPA is expressed in 
the amount of sugar produced from 50 mg of standard substrate (Whatman #1 filter paper) 
in % ml of enzyme preparation and 1 ml of buffer (Na citrate) mixture after an hour 
of "reaction" under certain optimal conditions (50°C, pH 4.8). 

A typical FPA vs. dilution (or total protein content) curves are shown in Fig 5. 

The enzyme preparation from QM9414 mutant of T.v. fungus was diluted from 1/10 
to full strength (therefore protein concentrations were also diluted). The FPA obtained 
measures the catalytic action of enzyme adsorbed on the filter paper. As shown the 
activities of enzyme are not linearly proportional with the dilution factors. 
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A simple hyperbolic relation {Sq. A) between the FPA and Pr was tested and was 
found to fit the observed FPA vs. dilution data within the accuracy of possible experimental 
error. In all cases the Lineweaver-Burke type plots (Fig 6) show reasonably good linearities 
between the variables plotted. The significance of the constants, B, and B2 are not 
immediately clear. The B, values were very close (approximately 5.0) in four different 
enzyme preparations when 50 mg of filter paper was used, and they differ but slightly 
when 100 mg and 25 mg of filter paper was used. This indicates the dependency of 
B, on the amount of substrate, hence its adsorption capacity. B2 values, however, varied 
with the amount of substrate as well as with the different enzyme preparations (different 
batches) thus, showing the dependency on the adsorption capacity and the ratio of NPr/EPr 
(TABLE A, B). 

In the hydrolysis system, if the initial adsorption of the total protein is determined, 
the corresponding FPA could be estimated. 

FPA    =    B|Pr (A) 
B2   + Pr 

Using this relation, the FPA, or the enzyme concentration can be estimated once 
the total protein content of the cellulase being used is known. 

For the initial cellulase concentration adsorbed, Eq. (A) is modified to give 

B,   (a Pr) 
(FPA) ad 

B2  + (o Pr) 

here a =    total P1"016'" adsorbed 
total protein 

SIMULATION 

(a)   The CSMP (111 5) and MIMIC 

Continuous system simulation languages are extremely useful tools in modeling 
continuous systems as well as in finding optimal parameters in the system differential 
equations. 

In developing mathematical models of chemical reaction systems, it is well recognized 
that the system differential equations are large and nonlinear. One method of attacking 
the general problem to obtain the solutions of these rate equations as well as to determine 
parameters, is to program the model equations on an analogue computer and fit the 
generated curves to the experimental data. This could be achieved by simply changing 
the settings of potentiometer.   The difficulties in using analogue machine are: 
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(1) it becomes impossible to keep track of the response to one of many parameters 
as the number of dependent variables and/or parameters increases. 

(2) as the ranges of variations of dependent variables and/or parameters are widely 
spread (in complex kinetic systems this often is true), the scaling of variables into reasonable 
voltage levels becomes intractable. 

The use of analogue computer, thus, sometimes makes it difficult to handle 
complicated problems in spite of easy accessibility due to its parallel nature. 

On the other hand, the serial nature of the digital computer along with its lack of 
hardware integrator requires a skilled programming to solve these problems. The coding 
of integration routines to handle large and complicated system equations can also be 
extremely tedious and time consuming. 

The simulation languages used in this investigation are digital programs which blend 
the best of both analogue and digital computers; the parallel nature of the analogue with 
the large dynamic range of digital. 

With these languages the model can simply be written down either in the form of 
block diagrams or in the differential equations. All the variational equations are written 
in a structural statement form. The complexities of the integrations are carried out in 
the translation of the structural statements to Fortran. They are also very flexible to 
provide various use-oriented input, output control statements as well as to accept Fortran 
statements and subprograms. The ability to accept any Fortran statements and user-written 
Fortran programs allows the user to readily implement the use of these Nnguages in 
parameter determinations. 

(b) The GELG 

The Gauss-Newton iterative technique is being used to determine optimal parameters 
in the system. The use of I.B.M. S.S.P. GELG is of great help in minimizing sequence 
of the least square step* and in checking convergence criterion. 

(c) Parameter Determinations 

The kinetic rate equations form a system of differential equations, (1) a,b. 

Cj = fj (t,C,,C, ...,Cn; P,, P2...Pm) (j = 1,2 J) (Da 

Cj(o) = Cj0 (j =  1,2 J) (1)b 

where the C:'s are the dependent variables (concentrations, Pr's are the rate constants 
and system parameters, and the f:'s represent the desired functional relations of C and t. 
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Equation (1)b gives the known initial conditions. 'I he rate equations are in general, 
nonlinear in C:'s but more ofte i linear with respect to related parameters (rate constants). 
Often they are highly interacting one another thus, overall nonlinearity increases. When 
tirn« anoears explicity in f:'s, the system is nonautonomous. 

The existence and uniqueness of the solutions of (1) are guaranteed if f:'s possess 
continuously uniformly bounded partial derivatives «Tith respect to C:'s in the region of 
interest. This condition is usually met with the rate equations that describe any physical 
systems. 

If Cj and Cjj ire denoted as the predicted and the experimental values measured 
at times tj, respectively, one criterion that can be used for the estimation of the best 
values of Pr's is to minimize the sum of the squares of the weighted deviations. 

In the following equations the summation convention for the repeated indices is used. 

The expression of the function,  ^/  , to be minimized is 

V> , [Q.. ,Cji _ cj>]2 
(2) 

where Q:J is the weighting factor associated with each deviation.   Most frequently used 
weighting factors are: 

(1) 0,,-1 

<2) Qji = i/Cji 

(3) Q« - [^ 

equal weighting for each deviation 

relative deviation 

(1/R) i w] 
1 

weighting to the varience of C:J 

The solution C:(t; P) can be expanded in Taylor series about the initial guesses of 
the parameter values, 

Cj(t; ?*) = C;(t; P°)   y C; p (t; P°) PR 

+ Cj,p. <t; P°> P"k
2 + (3)' 

(k = 1, 2, 

(J - 1, 2, 

\ m) 

•'V 
where JQ = number of the variables C: which the experimental data are available. Eq. (3)' 
can be simplified by the following considerations; 
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(1) through the initial rate study it is possible to obtain close estimates of the 
constants, k1( k_,, k- 
(2) since the parameters are expressed relative to k,, the forward reaction rate 
constant in the fast reaction step, the values are less than one and the rough estimates 
within the accuracy of the order of magnitudes can be made. 

The Eq. (3)' can now be truncated to give 

Cj(t; PM = Cj(t; P°) + CjPk(t; P°) Pk (3) 

C|(ti; P') = Cj(t;; P°) + CJP|r(tj; P°) Pk 

where P* ~- opJmal parameter vector 

and Pk = Pk* - Pg 

The equations (2) and (3) are combined to obtain 

(4) V*= I" Q.. (Cjj - Cj (P°) - CJfpk(PO) Pk)J 

This is a quadratic function of Pk,s with only one minimum in N-dimensional space. 
By setting all the first partial derivatives of y* w'th respect to Pk,s equal to zero, a system 
of algebraic equations is obtained 

vfv -k = 0 (k = 1, 2,    •■•, m) (5) 

which, given equal weighting, lead to 

(6) [ Si - cj<p°) ]   ciPi<pO) = ciPk(pO) c[Pi(P°) ?k 

The integration was performed by 4tn order Runge-Kutta routine in the dynamic 
section of the CSMP (5) and the Gauss-Newton method was programmed to solve Eq. 
(6) for Pk,s in the terminal segment. Fifteen iterations were required to obtain the 
parameter values within the deviations of 5 to 7%. 

INITIAL RATE, STEADY STATE KINETICS 

The concept of steady state in chemical kinetics has been a useful notion itself was 
justified as a physical reality by reliable experimental techniques. Whereas the notion 
has also been purely conceptual without good reasoning, and used for the convenience 
of mathematical simplification.   In complicated kinetic systems, it is virtually impossible 
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to obtain the analytical solution for any species of interest without simplification. Steady 
states assumption on certain intermediates sometimes greatly siinpiify the mathematical 
procedure by reducing the number of differential equations thus leading one to a closed 
form of analytical solution. Yet, not to mention of mathematically nonsensical assumptions 
or of the incompatibility in initial conditions, the solution obtained by the assumption 
of steady has its limited application. The question is then whether the criteria for time 
after which the steady-state hypothesis is tolerable is satisfactory. 

With modern computer technology there is no doubt that more reliable solution can 
be obtained by using computers without the risk of inaccuracy. Approximate solution 
under S.S. assumption can be useful to provide a quick estimate of the system variables 
and/or parameters. 

In Fig 8 a comparison is made between exact and approximate solutions, the initial 
rates (I N I) and the steady state kinetics (S S). 

A comparison between predictions by the proposed model and the experimental data 
is shown in Fig 7 with a good agreement. For a chemical reacting system alternative 
kinetic schemes may sometimes serve to estimate approximate rates. It should be point 
out however, that a siight difference in rate estimation may often cause a considerable 
production cost change in an optimization sequence for a large scale plant operation. 
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MODELING POLICY 

(1) BI-CGMPOSITION OF CELLULOSE 

(2) CELLULASE MODES OF ACTION 

(3) NEGLIGIBLE MASS TRANSFER RESISTANCES 

(ft) CELLULASE ADSORPTION, COMPLEX FORMATION 

6) DECOMPOSITION OF THE COMPLEX 

(6) PRODUCT INHIBITION 

(7) CELLULASE DEACTIVATION 

HYPOTHESES, ASSUMPTIONS 

(1) CELLULOSE FIBRE IS OF LONG CYLINDRICAL FORM 

(2) THE AMOUNT CELLULASE ADSORBED ON EACH PORTION OF 

CELLULOSE IS PROPORTIONAL TO ITS CONCENTRATION 

6)  EXPONENTIAL DECAY OF THE ADSORBED CELLULASE 

111 1 
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OVERALL KINETIC SCHEME 

(A) COMPLEX FORMATION, DECOMPOSITION 

CA+E*   _*|  XA ^2  GX   + Eg 

k"-l 

Cc + E%     *Z    Xc   kJ    CA   + E° 

7-3 
(B) INHIBITION 

R5                                              ! 
xA + Gx   r    YA 

k-5 

*6 
Xc + Gx   X     Yc 

k-6 

(O ENZYME DEACTIVATION 

^    kJ   4 

EA   kJ   4 

III. 2 
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RATE EQUATIONS 

CA = - PA + a Xc 

Cc =  -PC 

6X = V^A ~ QA - QC 

*A = r*A + PA - QA 

Xc ■ a Xc + PC - QC 

YA = QA 

Yc = QC 

where 

EAo        C2
A   exp(-er) - XA/Pk| 

" C0
,/2      C,/2 

PC = ß 
EA0         C    C     exp(-fr}- Xc/P^ 

Co"2    c"2 

QA= 8(XA6?-VA/Pk5) 

QC= ^(XC 6T -Yc'pk6) 

• = —   T = kit       t s time 
dT            ' 

M   0      k3         - k2    8 .  IS 

k,                 k, 

III. 3 
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C SMP 

INITIAL 
PARAM ET Initial parameter values 

INCON C-i0 Initial conditions 

AFGEN C44 Experimente! data 

DYTWIIC 

C3 =  Yi 

vk0 
TERMINAL 

FORTRAN SUBPROGRAMS (IBM SSP) 

TlfER 

PRIMT   C., ff 

111 5  Continuous System Modeling Program 
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TABLE A 

Effect of the amount of filter paper on B. and B~ in Eq. A 

Filter Paper (rog) h B2 

25 5.0 0.89 

50 5.3 0.63 

100 7.1 0.44 

Cellulase Batch §24 (QM 9414, SW 40) 
Pr = 1.4 mg/ml      at full strength 
FPA = 3.68 mg sugar/ml at full strength 

TABLE B 

B^ and Bj for different culture batches of cellulase 

Batch # 
** 

FPA(mg sugar/ml) Pr(mg/faL) *1 *2 

24 3.68 1.4 5.3 0.63 

26 3.67 1.5 4.9 0.61 

15* 3.39 1.5 4.9 0.76 

17* (NP) 4.60 2.72 5.0 0.92 

* concentrated 
** at full strength 
Ctf 9414 = second generation of TV fungus mutant Qi 9123 
SW 40 = pure cellulose, NP = news paper used as growth medium 

The FPA and Pr data were obtained from Dr. M. Mandels of this lab. 
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COMPUTED ENERGY DISTRIBUTIONS OF DOUBLE-SCATTERED PHOTONS 
OBTAINED FOR PURPOSES OF MINE DETECTOR DESIGN ANALYSIS 

Fredrick L. Roder and Douglas G. Conley 
Mine Detection Division, Countermine/Counter Intrusion Department 

U. S. Army Mobility Equipment Research and Development Center 
Fort Belvoir, Virginia 

ABSTRACT. The backscatter of low-energy x and gamma photons has received con- 
siderable attention over the past several years as a possible technique for the detection of 
shallowly buried nonmetallic land mines. In the course of this work it was established ex- 
perimentally that the sensitivity of a backscatter mine detector increased as the fraction 
of singly scattered photons in the total backscatter radiation field decreased. Although 
not experimentally verifiable, it was presumed, based on the literature, that (excluding 
single scatter) double scatter constituted the major portion of the backscatter field. In 
attempting to verify this presumption, use was made of a HP 2100 computer. By mathe- 
matically modelling th*" case of a monoenergetic collimated gamma-ray source and colli- 
mated detector, the energy distribution of doubly scattered photons was computed for 
several incident energies and scattering angles, by comparison of these results with exper- 
imentally obtained data, it was concluded that double scatter did not represent an appre- 
ciable component of the backscatter radiation field. 

1.     INTRODUCTION. The spectrum of x and gamma radiation backscattered from 
a scattering medium is a function of the chemical composition of that medium. Photon 
backscatter has therefore received considerable attention over the past several years (in both 
applied research and advanced development) as a possible technique for detecting sh?Uowly 
buried non-metallic mines. The present paper concerns one aspect of this investigation. 

Figure 1 depicts the experimental set up utilized in the early phases of the prugram. 
The source and detector were both highly collimated and coplanar. The collimator axes 
were positioned to intersect within or below the mine t'rget. The angle included at the 
intersection of the collimator axes we shall call A. 

137 
Figure 2 shows typical pulse-height spectra obtained in tnis manner, utilizing a     Cs 

(662-keV) gamma source and setting A =: 140°. The simulated mine (solid curve) was in 
this case a 1 lb. block of DNB, a substance chemically similar to TNT, buried at a depth 
of 1 in. The peak which may be discerned in these spectra at ~200 keV is due to the pre- 
sence of back-scattered photons which have scattered only once in the medium. The en- 
ergy of such photons is uniquely determined by the energy of the incident gamma and the 
included angle A. However, no such simple relationship exists to predict the energy distri- 
bution of photons scattered two or more times in the medium. 
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On the basis of experiments of this type, it was determined that when a target was 
encountered, the change in the backscatter spectrum increased as A (the angle included 
between the collimator axes) decreased. This is equivalent to saying that sensitivity to 
the presence of a target increased as the ratio of single-scattered photons to the total 
photon backscatter decreased. It was therefore considered desirable to learn something 
about the origin of these other-than-single-scattered photons. 

A logical tact for such an investigation to take would be to presume that a sizable 
portion of these photons had undergone two scattering events within the medium. This 
presumption was reinforced by the reported results of E. Hay ward and J. Hubbell1 of 
NBS, who had performed similar experiments and had concluded that the large number 
of photons to be found at energies below the single-scatter peak were primarily the result 
of double scatter. 

The approach which we chose to verify this presumption was comDutational and was 
executed with the aid of a Hewlett-Packard 2100A computer. 

2.    CALCULATION. Figure 3 illustrates the sequence of events modelled by our 
program. Two parameters were initially specified: The energy Eo of the photons emitted 
by the source, and 0, the Compton single-scatter angle, defined at the intersection of the 
source and detector collimator axes. We have assumed the collimation of the source and 
detector to be sufficiently tight as to neglect angular dispersion of the collimator accept- 
ance cones in the vicinity of their crossover point. For the given input conditions, a num- 
ber of photon histories were compiled. This number was twice the number of first-scatter 
angles 0! considered, since, as can be seen from the figure, for each value of 0,, there are 
two alternate paths to acceptable second-scatter points. Values of 0, were selected by 
taking equal increments of cos 0, along the interval +1 to -1. The point of the first scatter 
remained arbitrary, as the factors which would require its specification, i.e., mass attenua- 
tion and the solid angle subtended by the detector collimator cone, were neglected in this 
calculation. Similarly, while the point of second scatter remained arbitrary, the second- 
scatter angle for each of the two photon paths shown was obtained from the condition 
that 0, +02 =0. Using these paired values of 0, and 02, together with the incident photon 
energy Eo, the spectral distribution for double scattered photons was then calculated. 

The cross section in barns for a photon of energy E scattering through an angle 0 is 
given by the Klein-Nishina formula: 

1 Evans Hayward and John H. Hubbell, "An Experiment on Gamma-Ray Backscattering,' 
NBS Report No. 2264(1953); J. Appl. Phys. 25,506(1954). 
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~ ro [l+a(l-cos0)j     ^     2       /   [l-Kl+co^fl) {l+a(lK:osö)j]' 

where OFE/ITIQC
2
 , rQ is the classical radius of the electron, and m0 is the mass oi me elec- 

tron. The energy of the scattered photon E' is related to its incident energy E and the 
angle of scatter by :he Compton formula: 

E' =  (2) 
l+a(l-cos0) 

Utilizing these expressions, the spectral distribution of double-scattered photons was com- 
puted by a program conforming to the block diagram shown in Fig. 4. 

a. Initially, the single-scatter angle 0, incident photon energy E0, and cos0, step 
size were inputted. 

b. For each cos 0 j value, two values for 02 were determined. 

c. The Compton and Klein-Nishina formulas were employed to determine the cross 
section oc, for scattering through an angle 0, and to determine the energy E, of the scat- 
tered photon. E, and 02 were then substituted in the same formulas to obtain oC2 and E2. 

d. The energy bin corresponding to E2 was then incremented by the product of 
ocl and oC2. Two hundred fifty such energy bins were available, each 2.5-keV wide, and 
spanning the interval from 0 to 625 keV. 

e. Blocks 2, 3, and 4 were repeated for all values of dx. The accumulated value of 
°ci x °C2 m eacn energy bin was then a measure of the relative probability of a photon of 
energy EQ scattering twice in the medium and arriving at the detector with an energy falling 
within that bin. 

f. The final step was to output in both graphical and tabular formats the accumu- 
lated values for oCl x oC2 as a function of the lower energy limit of each bin. 

3.     RESULTS. The spectra of double-scattered photons were computed by means 
of the above-discussed program for the set of input parameters shown in Fig. 5. 1.25 Me V 
is the average energy of the 1.17 and 1.33 MeV gammas produced in equal numbers by 
60Co; 0.662 MeV is the energy of a 137Cs gamma; and 0.122 MeV is the energy of the 
87% yield gamma from 57 Co. The double-scatter spectra for 60Cofor 0=60° and 30° 
were not obtained, as the energy maximum for these spectra exceeded the 625 keV limit 
incorporated into the program. 
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Figure 6 shows the spectrum obtained for E0=l .25 MeV and 0=90°. Most notable 
in this spectrum is the unexpected presence of sharp maxima at the maximum and mini- 
mum possible energies, energies which correspond to angle pairs wherein 0, = 02. The 
presence of these maxima is not due to exceptional values of oCl x oC2 for 0, =02 • but is 
rather due to the slow change of E with cos 0, about these two points. As an illustration, 
in Fig. 7 we have plotted E as a function of cos dt for 1 < cos0i < 0 and 0 < cos02 < 1, 
again setting E0=1.25 MeV and 0=90°. Note that E values fall within the narrow range 
from 512.5 to 513.78 keV (corresponding to the highest energy bin of the spectrum 
shown in Fig 6) for approximately 8% of all cos 0, values, whereas only approximately 
1.25% of E values fall within a 2.5-keV-wide bin for lower E values. Figure 8 depicts the 
double-scatter spectra for EQ=1.25 MeV and 0=90°, 120°, and 150°. Note that as 0 in- 
creases the total energy bandwidth of the spectrum decreases. In the limit of 0= 180° all 
double-scattered photons would be found a*, a single energy, in this case 212 keV. 

Figures 9 and 10 depict, respectively the double-scatter spectra obtained for EQ= 
0.662 and 0.122 MeV for 0 values of 30°, 50°, 90°, 120°, and 150°. From these it may 
be observed that as EQ decreases, so does the energy bandwidth and median energy of 
the double-scatter spectrum. 

4. CONCLUSIONS. The one salient result of the present effort is the predicted 
existence of a well-defined maximum in the double-scatter spectrum at an energy well 
above the single-scatter energy. As such, it should be observable in a portion of the back- 
scatter energy spectrum which would otherwise be clean, and consequently it should be 
readily observable even with conventional scintillation detectors.2 

Since such a maximum is absent in experimentally obtained backscatter spectra, 
such as those shown in Fig. 2, we must conclude that double scatter does not contribute 
appreciably to these spectra. The portion of these spectra below the single-scatter peak 
we therefore conclude must arise from multiple-scattered photons. 

In practical terms, this conclusion frees the designer of the mine detector search- 
head from the requirement that source and detector collimators be coplanar, since while 
all double scatters occur within a plane, multiple scatters do not. 

5. ACKNOWLEDGMENTS. The authors wish to express their appreciation to 
Charles Eisenhauer and Louis Spencer of the National Bureau of Standards for their 
invaluable guidance throughout the course of this effort, to Louis Mittelman for his aid 
in the programming, and to Robert L. Brooke and Karl H. Steinbach, under whose 
supervision this work was accomplished. 
2The lower-energy maximum occurs in an energy region partly populated by multiple 
scattered photons and obscured by the low-energy (Compton) tail of the single-scatter 
peak. As such, it might realistically be expected to be obscured. 

1 536 

1 

JL«. 



537 

/ 



LLf 
™2 Lü s a: 
Qd =D 
UJ o 
j— CO I— 
<c CO 
CD O 
CO r* 
V? CO 

CO 

CC    UJ 

«i tu 
2 a 
S 
CD 

-§ 

CM 

a» 

«—» >- 
CM CJ3 

QZ 
UJ 
U* 
UJ 
>» 

O oc 

C3 

O 
in 

o o o a o 
CM 

SIN/303 

538 

/ 

^ JL 



o 

539 

/ 



' 

m CO 

er 
o 
u- 

CD 
u- 
O 

CO 

^> GO CO 
O UJ UJ 
z =) cc 
«s UJ 

- > 2C 
CO H- 

Q 
CM UJ »— 

CO 
Q_ 2 

o 
—J 
Q_ 

li .1 «£ 
h— Ci O 
CO C3 z 

O " «5 

«I O ►— 
UJ </> Z 
Q. _J O c: 
UJ 
cr 

O a. 

CM 

"—    CM 

CO CD CD 
ex u_ <£ 
UJ 
►— 
UJ 

o 
UJ 

CO *— 

S UJ  < 

<c —J :r> 
a: «=c o 
«=: > _J 
a. -^. ** 
 i 
 >- 3C 0 s*" 

<£ £ CD 
•—■ o -■ 

z 
r—  .  

r— a. CD 
r3 UJ 
c:_ t- 2 z oo p 

o 

CO 

D 
a 

CQ 

>- 
* <fc* C3 

< 
a. 

UJ 
UJ 1 

UJ 
;>j UJ z 

CD ffM 
r— 

—J 
CM UJ 

„. UÜ D C3 
CD • ;»■ Z3 z 

^ 2 *•*• 

O 
<t 
UJ 

UJ 

UJ 

z=> 

O 
D 
UJ 

o 
z 
CD 
a. 
CO 

oc  i  i UJ 
o ZD <i ex 
u- O 

<£ 
CO 

> 

CD 

c; 

540 

/ 

»^- 

M M 



J     , 

^-OO 
ßiuj 
üJUJ 
)—ce 
b«J 
^UJ 
OQ 
00—• 

ÜJ© 
-Jua 
C3-J 
zcs 

*§ 

in 

CM 
in 

CM 

en 

in 

CM 

CD 
en 

o 
CD 

o 
CO 

o 
CO 

o 
CO 

ui 
CD a* 

O. — 

2: ca 
Sec 

OUJ 

CM CM in CD CM 
CM CD 

a. 

00 
co to 

0 CO 
0 O 
0 r^ 
cr> CO 

o 
o 

in IT) 

O 

r> 

/ 



>• 
C3 
DC 

US 

a 

AilllSVBGHd 3AUV13H 

542 

/ 



<o 
o 

o 

«I 
k. 
a» 

oo 

CO 

CM 

c\i 
to 
co 

543 

/ 

^,- 

.■* 



unravaoüd 3AIIVI» 

e s u z 

Ainiavao»d IAIIVUU 

CO 

c 

uniavsoHd lAtirra 

544 

/ 



JI 
it 
li 

u 
Bi- 

ll 

H 

Si 

ss 

\i 
»s 

U 

uimWM wun 

umnew «inn» 4=1 

uunuu mm« 

o\ 

umiHu i'-''1" 

545 

/ 



E 

ii 

I» 

U 
E3 

u 

I*» 

1 

is 

unrniou Murm 

0) 
s- 

CD 

546 

A 



Z 
© 

< 
u 
M 
a 
z 
a u 

> 
uJ 
X 

■A 

«X 
S 
o 

< u 

o 
cc 

z 

cc 
—   Ä fM 

£*: = 
* c — 
■■    I       Hi 
3 l u 

•2 • < :r- —   i =» 

SSSi 
Uil Ui UJ ( 
CC CC CC 

. crt u_ S | 
IOUJ Ui 
t a -j cc , 

• r<i M m co 
I  W W  H  3 

.  h_   u.  *_   M 
IUJ ui tu C 
i -i -J w O 

uj 
w 
-J rsi o 

X X < 
►- o GO a. 

u» o a. %/i 
o > 
UJ ul «N« UJ 

o 
UJ 

*N C/1 z 
f-l o 

U~ 
O 

UJ 
X 

fjw. 

an 

UJ X 

3 
o 
X 
C3 

►— 

n 
rsi 

as 

< in a. 

UJ «W 2 h- UJ *" CJ (O 3 
c/i en 2 ^ z t/> A ^ cs •L r*» Z 

O 

CN X X 
W3 -» X 3 < 00 u a C/i 3 
w 2 *» H- £ H- i_ w- H- H- ►- £ 
UJ    **" UJ UJ UJ UJ Uj UJ UJ UJ UJ UJ UJ 

«I CC —1 ~J X X -J -J -J -J -J X X 

o 
cc 

—       X 
Ifc      I- 

St-    <c s 

;        2s     ?S        is 

.UuiO       uuuCCCXIt 

OS; 

^S^ 
O a. 
u. oo 

X _ 
CC l- 
t- X 

= cZ OZ 

* ° -. I- _, o z a. z 
O CO UJ 

s 
ec 
»- 
C9 
Ui a. 
CO 

>- 
a: 
ui z 
Ui 
ec 

oo<"^^^^NNN<siNnnooctoa^*-oooar>*-^^*(MNr4Nr^nr)nnnw9<r 
>OC30CDOOOOC3C30000'--~^^**-»-  — tseMfMrs4(M**<CMPsl*NJfM**4<M*>jr>jrjCMrM<MINeN|C>iOjr>J 

o 

CO 
> 

> X 

s < s 
S 

Ui 
■tal 

c z 

c 

z u. 

U. 

Z 

u < z C -J z ^ I u> '*£ < n < ■A 

v. a e C 
z 

u. 
-J 

Mj 

> z < u. 
u> 

< 
ä - 

I— 

< Z < 
U. 

Ui 
Z u. 

0-1 z = 
& 3 > u. 

X 
»- X 

u. 

w Q 
z < 

< 

«J 
3. 
< 

Z 

< 
irt < u. 
u. i* 

u> 
I ►- 3 z 3 z 

< 
-1 ui 

t- " s Z IT 
u> 

< 

-1 

5 
g 

i-^ X 
Ui 
X 

2 
U. 

5 5 
u. s z < 

1/5 

3 - < 
3 

< Q < -* u- > w 

c 
u. Z < 

z 
< 

- 
> 

< 
X 

X 
0. 

C 
x o z Z IT < 

£2 

t— 

-1 < 
> 
c 
X 

iz 
< 5 

1« 
X 

< 
5 

Ui a. a. 
Ui < 

33 C I 
>- yi Ui < o Ui 5 >~ 

Ui < l- (_> X 2 => Ä rr X U» i/l a. ui </) O 

s E r- s s 5 S 5 s s 555 
UJ  LU   Ui  UJ Ul UJ Ui UJ UJ UJ UJ  uJ  UJ 
X CC CC CC CC X X X CC X sex 

CC 

o 
cc 

< > 
a 
z < 
H- 
Z < 
I- 
CJ5 
Z 
o 
(J 

ec 

u 
z 

< 
u 
en 

u 
Z 

> 
UJ 

s 
z 
> 
13 
X 

CO 

UJ 
Z 
o 
< 

o 
o 

t- „o o 
en i_ 

«r X 
r«j 

X 

_    z i =: 

x 
b0 

— t- 5 < 
trt X 

X 

-" X 
= u. 
ÜJ ul UJ uJ UJ rr 

xxKcccaau.-izx_io. 

3 

15 

. v—  OP* —■* 

UJ;      "- _   •-  —    ii  

IK c —. a O «T oo 
*?►- 

z < 
rfl x 

UJ X 

"- j-OO 

X     [M    _^    X    i    f- 
^UE^uio-.Ou.,. 
ijittcu-iiu.- !_■ 

*~ - - ;° - 
' >~ l- O I- _ o 
I X X H- t- I- I— 
'uiuiüui,, C3 
I S Z O -i = O 

0-Nn«UIOl«OOIO<-NB»iniONeD9N»IOON«l»OON»ll)»ONON»ON»»«ON|JON» 

547 

/ 



COMPUTERIZED PROCEDURE FOR ACQUISITION, STORAGE, 
AND MANIPULATION OF TOPOGRAPHIC DATA FOR 

USE IN SYSTEM ANALYSIS PROBLEMS 

Phillip L. Doiron, Sr. 
V. E. LaGarde 

Mobility and Environmental Systems Laboratory 
U. S. Army Engineer Waterways Experiment Station 

VIcksburg, Mississinoi 

ABSTRACT. TI.e U. S. Army Engineer Waterways Experiment Station has 
developed procedures for obtaining topographic data in a form suitable for 
use in general system analysis problems. Topographic data are considered 
at two levels of detail: mlcrogeometry and macrogeometry. Mlcrogeometry 
deals with the portion of the ground surface that occurs between the ele- 
vation contours and must be acquired by conducting on-site topographic 
surveys; whereas, macrogeometry deals with the topographic data as defined 
by the contours as shown on U. S. Geological Survey (USGS) maps. 

The first step in the automated procedure Is to obtain a data array 
(grid) of equally spaced discrete elevations from either a set of randomly 
located (i.e. field-measured) elevation points or the USGS map (I.e. con- 
tour data) for the particular site or area of interest. This gridded array 
of elevation points is referred to as a digital topographic model (DTM). 
Once the model has been established, it is used as input to various general 
computer programs to provide data in various forms for use. The type of 
data that can be generated from the DTM include elevation profiles, two- 
dimensional perspectives, contour maps, intervisibility maps (i.e. regions 
visible and in defilade from a point observer), and slopes. Parameter 
data in various forms can be specified on an areal basis or along a line 
or direction, such as the slope of the ground along a prescribed azimuth. 

An example is presented for applying the model to a system analysis 
problem related to the determination of the effects of ground surface 
terrains on the vulnerability of different types of military targets. 

1 INTRODUCTION. A computerized procedure, developed at the U. S. 
Army Engineer Waterways Experiment Station (WES) for generating topograpuxc 
data in a form that is useful for a wide class of system analysis problems, 
has emerged from research sponsored by various Department of Defense agencies. 
The development motivation came primarily from the need for quantitative 
topographic data to be used in mathematical descriptions of materiel-terrain 
interactions for designers, test engineers, and tacticians; and in describing 
operations-terrain interactions for tactical and strategic planners and 
construction engineers. The procedure, known as the digital topographic 
model, embodies well-known, tested mathematical methods, and has been used 
by various researchers in studies at the WES over the past several years. 

2. THE DIGITAL TOPOGRAPHIC MODEL PROCEDURE. A flow chart for the 
digital topographic model procedure is shown in fig. 1. Only three of the 
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many uses of the digital topographic model are shown in this figure, since 
they are the outputs needed for the example of its use to be presented later 
in this paper. 

The digital topographic model procedure was designed to handle any 
level of detail in the input data and to produce output of corresponding 
detail. Its results can also be used as input to other more comprehensive 
models. The topographic model procedure can accept Input data from a 
variety of sources, such as contour maps, field surveys, and aerial stereo- 
photo interpretations. Of these, data from contour maps have been used 
most extensively, chiefly because contour maps are available covering wide 
areas of the world. Attention will be focused herein only on field survey 
data and contour maps. The procedures for using the model are described 
in the following paragraphs. 

3. MICROGEOMETRY AND MACROGEOMETRY. The difference between micro- 
geometry and macrogeometry is bne of spatial resolution in defining the 
ground surface. Whether the elevation data for a surface are described 
as "micro" or "macro" is almost entirely arbitrary. 

Microgeometry data must be acquired by on-site surveys. A stylized 
presentation of one method of surveying microgeometry data in the field 
is given in fig. 2. When the survey is performed in a grid format, as 
illustrated, elevations are read at the positions of a regular grid cast 
on the terrain. The data can also be surveyed in a non-gridded fashion. 
In this procedure the elevations are measured at topographic breaks in 
slope, which tends to produce a more-or-less randomized pattern of points. 

Field survey data are placed on data forms in the field, the forms 
go directly to card punch operators, and the data are placed on computer 
punch-cards and computer processed. When the data are obtained by the 
grid method, the only function of computer processing is to convert the 
field record into an appropriately structured computer file of xyz 
coordinates. However, when the field data are obtained by a non-grid 
method, the random data points are processed by means of an elevation 
grid array program that yields xyz coordinates located on a regular grid. 
The program is described later in tnis paper. 

For this paper, macrogeometry is defined as measurements taken from 
contour maps with a contour interval of 5 meters or greater. According to 
this definition, the topographic data as expressed by elevation contours 
on U. S. Geological Survey maps yield macrogeometry data. 

The input data for the macrogeometry portion ot tne system is extracted 
fröre the maps by the use of the digitizer equipment shown in fig. 3. The 
positions of elevation data points, namely the contour lines, are entered 
automatically onto the magnetic tape by depressing a button on the digitizing 
"tracker" or "cursor". Other data are entered onto the tape through the 
keyboard. The magnetic tape containing the data is then immediately avail- 
able for computer operations, or it can be stored for later use. Since 
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contour map data are analogous to ungridded data, these data are transformed, 
as the mlcrogeometry ungridded data are, into grid data format through the 
use of the elevation grid array program. 

A. ELEVATION GRID ARRAY PROGRAM. The elevation grid array program is 
used to convert the data obtained in the field or form topographic maps into 
a digital format for use on the computers. There are three interpolative 
procedures in the program. The topographic structure and spatial distribu- 
tion of data points define which procedure should be used in a specific 
situation. These three procedures are: (a) inverse distance squared fit; 
(b) modified inverse distance squared fit; and (c) linear fit. 

For the inverse distance squared fit (see fig. 4), the closest data 
point to the grid position in each of the four quadrants about the position 
is used in determining the elevation at that grid position. The procedure 
applies an inverse distance squared weighting factor to each of these four 
data points. The weighting factor has the property of giving the most 
weight to that data point closest to the grid position. Wj is the weight- 
ing factor associated with the jta data point, dj is the distance 
measured from the grid position, k is the number of data points used in 
the fit procedure, Zj is the elevation value of the jtn data point, 
and Z is the interpolated elevation value at the grid position. 

The modified inverse distance squared fit is sina ir to the inverse 
distance squared fit. However, instead of using one point per quadrant to 
determine the elevation, it uses a constant number of data points that are 
closest to the grid position. The number of data points, while not restricted, 
is normally between 4 and 40. This procedure has the capability of giving 
more weight to a cluster of data points near the grid position, and provides 
a smoother, more average surface than does the inverse distance squared fit, 
because all points chosen are used regardless of the quadrant in which they 
are located. 

For the linear fit (see fig. 5), the closest data point to the grid 
position in each of the four quadrants about the position is used in deter- 
mining the elevation at that grid position. However, unlike the two previous 
fits, the linear fit does not use a weighting factor. Rather it involves 
three linear interpolations to finally produce the elevation value at 
the grid position. The first interpolation is performed to calculate an 
elevation value along a line segment connecting the data point in the first 
quadrant with the data point in the fourth quadrant. Xj.,4 is the inter- 
polated elevation value along the line segment at the point when it inter- 
sects the X axis. Y4 is the Y coordinate of the data point in the 
fourth quadrant, Z4 is the elevation value of the data point in the 
fourth quadrant, Y^ is the Y coordinate of the data point in the first 
quadrant, and Z\    is the elevation value of the data point in the first 
quadrant. The location of the interpolated elevation values along the 

line segment is denoted by X].^, and Xj and X4 are the X coordinates 

of the data points in the first and fourth quadrants, respectively. The 
second step Involves interpolating an elevation value along a line segment 

551 

*w 



connecting the data point in the second quadrant with the data point in 
the third quadrant. The values in these two equations are the same as 
for the previous equations, except tbat Che data points in the second and 
third quadrants are connected by a line segment with a second interpolated 
elevation value located on the segment at X2,3* The final step involves 
a line segment connecting Xif4 with X2 3, and a final interpolation of 

elevation at the grid position. 

The output of the three surface fitting procedures is an elevation 
grid array. This array consists of interpolated elevation values located 
at all »rid positions within the data site. 

5. APPLICATION TO A SYSTEM ANALYSIS PROBLEM. As stated previously, 
the digital topographic model can be used for many types of computer calcu- 
lations. One recently completed WES study in which results of the model 
were required as input is presented to illustrate its flexibility. 

This stuay was concerned with the natural shielding provided by the 
terrain to targets on a road, such as vehicles and personnel, from frag- 
menting munitions bursting at various distances from the road and at 
various heights above ground. A set of analytical procedures was developed 
for calculating the amount of shielding that the topographic surface provided. 

A grid was compiled for each data site as discussed above, and various 
automated techniques were used to portray and analyze the site. 

Perspectives drawn by the computer (see fig. 6 for an example) were 
produced with the digital topographic model to give an overall view of the 
site. This technique is also very useful in the detection of errors in 
the model. 

Profiles were extracted from the topographic model to shew the shape 
of the terrain along particular paths. A comparison of a profile extracted 
from the model and a profile surveyed in the field (fig. 7) illustrates 
how closely the model depicts the terrain. 

Contour maps were produced (fig. 8)  to show a conventional view of the 
site. This is also another technique to find errors in the model. 

A further computation was made with the model for this particular 
study. A 90-cm-tall target was located at the center of a site. Visibility 
was calculated and converted into a computer plot (fig. 9) that shows the 
portions of the site from which the 90-cm-height region of the target would 
be exposed and vulnerable to ground-bursting munitions. 

The actual model developed to calculate the shielding places a target 
on the road at specified coordinates. Munition bursts are then placed at 
various ranges and various heights above the ground from the target, and 
the rays from the burst to the target are checked against the ground-surface 
configuration to see if the rays reach the target. 
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I 
6. CONCLUSION. The digital topographic model developed by the pro- 

cedures described has shown great flexibility In meeting requirements imposed 
by different project.- over the past several years. These projects have 
ranged from fish population studies, where output of the model was used 
as input to a calculation of water depths, water surface area, and the amount 
of terrain covered by the water at different stages, to tank-antitank warfare, 
when the model was used as input to calculations of areas where tanks would 
be visible in the study areas. 
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Fig.  8.    Contour map of a data site 
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COMPUTATION OF SMOOTH CONTOURS OVER ARBITRARY PLANAR REGIONS 

Richard J. Bair 
Benet Weapons Laboratory 

Watervliet Arsenal 
Watervliet, New York 12189 

ABSTRACT. A procedure has been developed to generate smooth labelled 
contours from discrete data points of the form Z=Z(X,Y). The procedure 
implements a piecewise doubly cubic spline approximation to generate a 
smooth surface from the data points and uses traditional root-finding tech- 
niques to track the desired contour across the surface in small increments 
in the X and Y directions. The process, implemented in a FORTRAN program, 
can be used to track contours defined on regions which are arbitrary poly- 
gons. The technique uses boundary information and a "directed ray" to 
determine if a particular point is interior or exterior to the region. If 
interior, the contour is tracked. 

The ability to track contours on regions defined as arbitrary polygons 
makes the technique particularly well suited to the output from finite 
element analyses. 

METHOD. Frequently, the need arises, in scientific and engineering 
applications to make an orderly assessment of the data produced from a 
problem with large amounts of output. It would be desirable to provide 
the scientist or engineer with a tool whereby he could rapidly determine 
the form of the region. Contour lines for the region when outputted to 
a graphics device, provide such a tool. 

There are two principal steps in the process of generating smooth con- 
tours from discrete data points. First, it is necessary to generate a 
representative surface from the data. Second, the value of the contour 
in question must be tracked across the surface. 

Several methods exist for handling the surface generation problem. 
Linear interpolation, quadric interpolation and bicubic splines are three 
types of methods in use. The smoothness of the contours is directly related 
to the surface generation technique used. Since the contour tracking rou- 
tine is implemented in a FORTRAN computer program, all that is required is 
that the surface be computed by a FORTRAN FUNCTION subprogram. 

Contours may be tracked across regions approximated as arbitrary poly- 
gons. The approximation of all planar regions by some polygon or union of 
polygons allows for the most general of cases. The problem of tracking the 
contour in question is facilitated by overlaying a rectangular grid of cells 
on the region of interest. 

563 

•^ - 



xlov xhigh' Ylow» Yhigh define the area of in rest« 

This area is subdivided into a grid as in Figure 1. 

high 

low 

"{ 
AX 

1 
1 
1 

xlow 

i 

X high 
Figure 1.  Grid Generation 

If the contour value falls within the range cf the maximum and 
minimum functional values at the corners of a cell, each of the cell 
sides is checked to determine which one it intersects. 

Yi+1 

® 

® 

(2) 

® 

i 

xj + l 

Figure 2.  Cell Numbering 
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Once the cell sides have been checked, it is necessary to actually 
track the contour across the cell in small increments. The process is 
illustrated in Figure T 

(R^S^ 

ys,   ♦ 6y 

" (R2.S2) 

Figure 3. Tracking Within a Cell 

Points (Rl.Si) and (R2.S2) are found via the preliminary root- 
finding process. Starting at (Ri,Sj) advance in the positive X direction 
a distance 6X. Along the line 

X=Ri + 5 X examine for roots of the function: 

Zy(y)=C   where y (sx- 6y,S! + 6y) 

If no root is found check in two other directions for a root. First, along 
the line  Y=si + 6y examine for roots of: 

Zh(X)=C 

Second, along the line y^Sj - fy for roots of: 

ZhfX)=C 

The distances 6 x and 6 y are a function of the distance between 
consecutive points found on the cell sides. 

ox = |R2 - Ril 6y 
10. 

So 
10. 
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These increments could be made smaller, though computation time would 
then increase. 

An important advantage in the reduction of the problem to a root- 
finding problem is that each of the points on the contour is obtained 
within the same relative error. 

Once a root is found a line is drawn on the graphics device to the 
new point from the former one. The tracking procedure continues to per- 
form a local exploration of the cell until the newest point is within a 
small distance e>0 of (It,^). Then a line is drawn between those two 
points and the process repeated in the next cell. Depending upon whether 
the last contour line was obtained via a move to the west, east, north or 
south, the next attempted move will be in the same direction. 

In cases where all rectangular grids are not interior to the region 
of interest, as in the arbitrary regions, it is necessary to determine 
whether a particular polygonal pair of (X,Y) coordinates is interior to 
the region of interest. If it is, a bright vector is drawn on the graphics 
device from the last interior point to the current one. If not, a dark 
vector is drawn until an interior point is found. This particular technique 
makes use of a "directed ray".* 

From the point in question, examine the intersections of some directed 
ray from that point with the sides of the approximating polygon. If there 
are an even number of side intersections, the point is exterior to the re- 
gion; if odd, it is interior to the region. 

Figures 4 and 5 show representative results of contours tracked on ir- 
regularly shaped regions obtained through i'inite element analyses. In each 
case, the approximating surface was obtained through the use of piecewise 
doubly cubic splines. Figure 4 is a plot of circumferential stresses ob- 
tained from a NASTRAN analysis of the spindle in the XM199E8 design of the 
155mm howitzer. The plot reveals the smoothness of contours tracked over 
a region with a polygonal boundary. Figure 5 depicts stresses obtained in 
the static simulation of tooling during operation of high pressure equip- 
ment. This plot shows a nonrectangular region with multiple interior bound- 
aries defining areas of differing element densities and material properties. 

Since this paper is intended to be an extension to an earlier report^ 
dealing with tracking contours on rectangular regions, additional details 
of the process and a listing of the computer program may be found in that 
source. 
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Figure 4.  Circumferential spindle stresses 

^.00 0.21 0.H2 0.62 0.83 1.0«* 
X-flXIS 

Figure  5.     Tooling  equipment  stresses 
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THE TWO-STREAM INSTABILITY STUDIED WITH 

FOUR ONE-DIMENSIONAL PLASMA SIMULATION MODELS 

David L. Brown 
Fire Control and Engineering Directorate 

Frankford Arsenal 
Philadelphia, Pennsylvania 

ABSTRACT 

Four one-dimensional plasma simulation models have been compared with regard 

to the electrostatic two-stream instability.   The primary reason for making these 

comparisons was to determine the extent to which physical results depend on 

numerical method for a problem in which collective effects dominate.   Previously, 

Lewis, Sykes and Wesson compared these four simulation models using a stable 

double-streaming situation as a test problem.    In that case the comparisons were 

with regard to collisional effects, energy conservation, and momentun conservation; 

however, because a stable test problem was used, only tentative conclusions could 

be drawn as to the comparison among the models when they are applied to a problem 

in which collective effects dominate.   We have applied the «odeIs to compute the 
evolution of a two-steam instability, and compared the time-dependence of the 

"electric energy as determined by each of the models.    The models are characterized 

by the representation of the electric potential, and by how the electric field 

is computed from the potential; both linear and quadratic splines are used to 

represent the potential or field     The major result of our comparisons is that the 

evolution of the electric energy 01 <* two-strew unstable plasma does not depend 

strongly on the choice of model.   There is a much stronger dependence on the random 

numbers that are chosen to represent the initial distribution function in phase 
space. 

This naper is to appear in full in the Journal of Computational Physics, 
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A CALIBRATION PROCEDURE FOR A BALLISTICALLY 
EMPLACED ACOUSTIC BEARING SENSOR ARRAY 

Kenneth J. Dean 
Systems Division 

Countermine/Counter Intrusion Department 
n. S. Army Mobility Equipment Research 

and Development Center 
Fort Belvoir, Virginia 

ABSTRACT. A nou-linear multiple regression model is developed 
as a calibration procedure for a ballistically emplaced acoustic 
bearing sensor array. The calibrated baseline values are used as an 
intermediate step in predicting relative target position location. 
The tracking accuracy obtained from the calibrated array is sufficient 
to adjust artillery fire on moving targets. Sensor position adjust- 
ments are determined by resectioning based on the geometrical variations 
observed in the triangulated intercepts about an estimated target path. 
Simultaneous target bearings and the approximate size of the array about 
which the sensors are assumed to be randomly placed are required as 
input data. Constraints on target motion are not imposed except as 
required to provide simultaneous bearings by numerical interpolation 
techniques. Validation of the mathematical model and computer code is 
based on a linear target path through a 500 meter array. The accuracy 
of the regression and its zone of convergence is investigated for selected 
parameters. 

FOREWORD. The methods and techniques used in this report were adopted 
from procedures employed by the USAF and NASA in the calibration of range 
tracking stations and the calculation of trajectory data for vehicles 
launched at the Atlantic Missile Range. The book edited by Dr. Ernest 
H. Ehling "Range Instrumentation", Prentice-Hall, 1967 was most helpful. 
Without the guidance and confidence provided by chapters written by 
Dr. Ehling "Optical Instrumentation" and Dr. Rudolf ßurns "Doppler Systems", 
it is doubtful that the numerical verification of this model would have 
been attempted. 

Appreciation is also extended to Mr. Herb Thompson, Special Projects 
Division, who originally described the problem and developed the technique 
by which the absolute location of the array can be determined. 

1. INTRODUCTION. A target is assumed to be tracked by acoustic 
bearing sensors as it moves through a rectangular array. If its relative 
motion along the path is smooth and continuous, such that simultaneous 

Preceding page blank 
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bearings can be determined by interpolation, its relative position 
to the array can be computed by triangulation between sensor pairs. 
Unless the bearings and geometry of the array are precisely known, 
the six values (four items taken two at a time yield six combinations 
corresponding to the sides and diagonals of the array) will disagree. 

Geometrical distortions in the array, caused by sensor placement 
errors, introduce systematic shifts in computed target positions that 
are dependent upon the relative target sensor geometry. This is 
illustrated in Figure 1 by taking bearings measured from the sensor 
and projecting them from their assumed locations. Random noise in the 
bearing data compounds the problem. Since the geometry is constantly 
changing for a moving target, errors in predicted target position will 
also vary at different points along the path. This variation in the 
ambiguity of the solutions then implieIty contain the baseline errors. 

Describing this relationship mathematically by the partial deriva- 
tives of target position with respect to the baselines, a set of linear 
equations can be written in terms of sensor position errors. The par- 
tials are sometimes referred to as the GEDOP numbers (geometrical dilution 
of position) and relate the variation in triangulated position due to a 
unit change in baseline. Since the baseline errors are fixed at the 
time of sensor placement, the set of unique equations existing at each 
simultaneous bearing can be combined and solved by the least squares 
method. This yields the "best" set of baseline corrections required to 
minimize the squared sum of deviations between predicted target locations. 
Geometrically, this corresponds to adusting sensor position.0 o their 
triangulated intercepts at various points across the array re coincident. 
In a similar fashion, the effect of random noise in the tracking data can 
be reduced by regressing on the individual bearings. A mathematical 
derivation of these procedures are presented in Appendix A. 

Althougn cne intercepts or predicted target points can be forced 
to converge, the position that this convergence occurs about is not 
necessarily the spatial location of the actual target path. The dis- 
crepancy between the two occurs because distance is not measured dir- 
ectly by the sensor and must be estimated on the basis of the initial 
dimensions of the array. Some of the parameters affecting the accuracy 
of this approximation are investigated in the following section. 

Assuming new that simultaneous bearings can be provided by data 
pre-processing, the relative target position can be determined by re- 
gression. The absolute location of the array is still limited by the 
basic accuracy of the delivery system. Thompson has proposed an inno- 
vative approach by which this uncertainty can be eliminated. In essence, 
the sensor array is used in lieu of a forward observer to adjust artillery 

Thompson, Herbert H., "Ubiquitous Target Position Location," CM/CI 
Technical Note, Draft. 
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Figure 1, Position by Triangulation From a 500 Meter Baseline 
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fire. The calibration compliments this approach by improving the 
relative accuracy of the array, thereby reducing the number of rounds 
required to arrive on target. Once registration is achieve, the pro- 
cedure need not be repeated, except for periodic updating and compensa- 
tion of secondary effects. 

2. DISCUSSION. H test caso representing a 500 meter array was 
constructed to verify the regression model and to conduct a sensitivity 
analysis of selected parameters. The sensors were randomly placed about 
the aimpoints with a 25 meter CEP delivery accuracy. Actual placement 
errors are shown below and in Figure II with the sensors numbered counter- 
clockwise 

SENSOR PLACEMENT ERRORS (METERS^ 

Sensor I 40, - 10     Sensor III -30. -10 

Sensor II 10, - 10     Sensor IV -20, -60 

beginning at the upper right hand corner. Data point spacing along the 
track approximates a 10 mile per hour target velocity and a 10 second 
samoie interval. 

Simultaneous bearings were measured directly from the figure to 
an accuracy of 0.2 degrees. This is considered representative of 
typical smoothiig-interpolation techniques and avoids the added complexities 
ties involved with data pre-processing that would otherwise be required. 
Likewise, a curvilinear path and varying target velocity was not modeled 
since their effects can only be introduced through the pre-processinR 
and are highly technique dependent. 

The ambiguity in predicted target position is shown in Figure III 
for sensor pairs 1-4 and 2-3 at their initial positions where the origin 
of the reference coordinate system has been translated to the stationary 
sensor. Geometrical variation in tracking accuracy in this illustration 
is most pronounced for the 1-4 sensor pair.  Initially, the error is 
minor due to the 4th intercept vector passing very near the sensor's true 
position; as the target orientation deviates from this axis, an increasingly 
larger component of the placement error is added to the intercept. This 
can Lest be described in terms of parallax where the orientation to a 
fixed object is changed by a displacement in the point of observation. 
Similar variations also exist in the other sensor pairs. Extremely large 
errors can be observed if the bearings are by chance taken near the base- 
line crossings where the intercept equations become degenerate. 

Approximating the target path by the average of sensor pairs 1-4 
and 2-3, correction components of (-25.1, 2.1), (-55.4, -25.1) and (-42.8, 
48.4) were computed for the 2nd, 3rd, and 4th sensors respectively. 

. 
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Figure III, Predicted Target Track Before Adjustment 
kT.k Meter RMS Sensor Location Error 
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Comparing to the original errors of (-30,0), (-50,0) and -50,-60), the 
corrections effectively reduce the initial 47.43 meter RMS sensor error 
to 10.4 meters. The Improvement provided by this iteration is shown 
in Figure IV. Variations between the two predicted tracks which had 
previously averaged 32 meters have been reduced to 4 meters. Also, the 
misalignment between predicted and actual target heading has improved 
from 4.5 to 0.1 degrees although the value eventually settles out at 
-0.5 degrees. 

Results of subsequent interations are given in Table I, in terms of 
goodness of fit criteria and tracking accuracy in position, velocity 
and azimuth. These are self explanatory with the possible exception of 
the geometrical ratio which expresses the similarity between the shapes 
of the computed and actual arrays. It is defined by the ratio of the 
quotient of the diagonals in the computed array, to the quotient of the 
actual diagonals. As the sides of the two arrays become parallel, the 
ralue of the geometrical ratio approaches one. 

It is noted in Table 1, that the second iteration provided the 
best fit in terms of the position tracking error; however, since the 
standard deviation of the regression residuals is the only criteria 
available in actual practice to judge goodness of fit, the regression 
was continued until the differential threshold value (0.0005) was 
reached at the 7th iteration. By the completion of the 3rd Iteration, 
99% of the adjustment to sensor positions had been achieved. Sensor 
position continued to improve during the subsequent iterations. The 
remaining parameters remained unchanged or degraded slightly. An 
acceptable threshold level at which the regression should be terminated 
will require additional study. 

Sensor placement error was selected as a primary parameter for 
sensitivity analysis since it was considered to be a principal error 
source. The evaluation was conducted with the base case presented in 
Figure II by moving the assumed senior locations at which the regression 
was initiated. Irregular arrays and incremental baseline changes to 
the original 500 meter array were considered; i.e., 510, 490, 480, etc. 
Individual bearings were corrected to 0.01 degrees to minimize the 
influence of other error sources. 

A total of 15 cases were run representing placement errors varying 
from 20 to 69.9 meters RMS, Figure V. Mean position tracking error? 
ranged from 0.3 meters to 11,5 meters for the irregular shaped arrays 
with little apparent relationship to initial sensor placement error; 
however, a definite trend is epparent for the incremental baselines. 

Jince the magnitude of the original placement accuracy must be dis- 
counted, the variations in incremental baselines suggest random bias as 
a possible error source in the regression. 
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Figure IV, Predicted Target Track at 1st Iteration 
JO.** Meter RMS Sensor Location Error 
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Computing random bias as the arithmetic sum of the differential 
bast    errors, Table III, and plotting it versus the mean tracking 
error confirms this as the primary error. Values deviating from the 
straight line function shown in Figure VI correspond to the irregular 
arrays. A specific cause for this secondary effect was not isolated. 
It probably represents a variation in the.model's resolution as the 
criticality of individual sensor errors change in the initial geometry. 
The dependency of the regression model to random bias is inherent to the 
basic input data; i.e., target distance in not measured directly. 
Consequently, any array with the appropriate geometrical shape, regardless 
of its size, is sufficient to meet the angular requirements presented 
by the bearings. Since an infinite number of such arrays exists, the 
regression moves to the one nearest the Initial starting point. 

The effect of random bias on tracking accuracy is shown graphically 
in Figure VIII for the six incremental baselines evaluated. Basically, 
the predicated target locations are shifted to the left and downward 
for negative biases and to the right and upward for positive biases. 
Since this effect results in a constant offset, it must be distinguished 
from a random error in that subsequent predictions based on the same 
calibrated values will contain an equal or approximate bias. 

Take the 460 meter calibrated ^rrav for example and suppose that 
an artillery shell lands 120 meters from the 7th target location as 
shown in Figure VIII, the calibrated array gives a value of 110 meters. 
A difference that is comparable to the standard deviation about the 
mean position error. 

Three averaging functions were evaluated to determine the best in 
terms of position tracking accuracy: 1) the two condition case des- 
cribed above where the baseline of the sensor pairs parallel the target 
tracks; 2) an alternate 2 condition case where the baseline switches 
from a parallel to a transverse configuration relative to the target 
track between successive iterations; and 3) a 6 condition set using all 
possible pairs. The comparative results in position tracking accuracy, 
Table IV, indicated that the 2 condition case is generally preferred. 
This conclusion can also be inferred geometrically since the second two 
cases both involve one or more situations where the target may lie near 
the transverse baseline at which point the intercept equations become 
degenerate. 

Additonal precision in the target approximation funcclon can 
be provided by more sophisticated techniques if required. One such 
possible approach is commonly referred to as "Triangulation by In- 
tersection".   It parallels the basic non-linear regression technique 

aEhling, Ernest H., "Range Instrumentation", Prentice-Hale, Inc., 1967, 
Pg 98. 
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Figure VI.    Position Track:i.n.3 Errors vs. Random Bias 
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Figure VII, Calibrated Configurations For 
Incremental Baseline Arrays 
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Figure VIII, Cancellation of Random Bias Effects 
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used here» except that the bearings at a single target point are adjusted 
by an iterative least squares until the intercepts are coincident. Its 
use here would entail a two stage non-linear regression: first an 
iterative regression about each point along the target path to obtain the 
"best"estimate of position, followed by an iteration of the resection 
calibration regression to adjust sensor position, whereby the whole pro- 
cess would be repeated. 

The number of bearings required to obtain a reasonable regression 
was evaluated for the 500 meter base case using a number of smoothed 
bearings from 10 to 2, Table V. Although the six point case did not 
suffer appreciable degradation, it is doubtful that this number would be 
sufficient to support field operations, especially in view of the need 
to perform pre-processing to obtain simultaneous bearings. If moving arc 
polynomials are used, a seven point arc would probably be required as a 
minimum, which increases the size of the set by six to a total of 12. 
Considerable reduction in the' random noise present in the bearings can be 
expected from the inherent smoothing characteristic of this technique, 
and would partially offset the burden of additional data. 

The effect of random noise in the angular data was evaluated for 
various one si^ma values up to 3.0 degrees. A 494 meter array with 
relatively small random bias and a sensor placement error of 51.43 meters 
RMS was used. The set of bearings from the base  case was modified by 
the appropriate one sigma value. A set of fixed random numbers were used 
to avoid large scale replications. Results are presented in Table VI and 
Figure IX. Based on this limited test, the effect on tracking accruacy 
behave in a relatively linear manner increasing the position error from 
approximately 1.5 meters to 15 meters for a one sigma value of 3 degrees. 
Applying the "Triangulation by Intersection" method described above, the 
effect of the bearing random noise is reduced to approximately 6 meters 
position error for the 3 degree one sigma case. The linear behavior 
however is no longer observed. 

3. SUMMARY. Based on a limited evaluation of a linear target path 
through a 500 meter array, it appears that this calibration procedure 
can substantially improve the relative accuracy of an acoustic bearing 
sensor array. Mean position tracking errors of less than one percent 
of the array's basic size were obtained for sensor placement errors up 
to 50 meters RMS. Target velocity and azimuth headings to an equal or 
better accuracy were also obtained. This appears adequate to support 
target acquisition requirements for moving targets. It is expected that 
this performance could be improve' by combining data from different target 
passes and including the impact points of ordnance items aimed at tl'° 
tsvgets. 

Parametric analysis indicated that the procedure is sensitive to 
random noise in the angular data and random bias in sensor delivery errors. 
A somewhat shorter sample time than the 10 seconds used in this analysis 
Fay be required for numerical interpolation techniques. 
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APPENDIX A - MODEL DERIVATION 

The coordinates of the intercept points can be determined by the 

simultaneous solution of 2 linear point-slope equations. 

(Y2 - Y^ + (Mn Xx - M21 X2)]     (1) 

< V2 - 
MaV + V21 (xrx2)] 

X
121 = C

12i 

Y121 " C121 

X3Ul = C3Ul 

Y3Ul = C3M 

X... = c 

Yijk = Cijk 

for 

(YU - Y3) + (M31X3- MUl Xu)] 

(M31Y^V3
)+M3Al(X3-\)] 

(Y.-Y.) + (M. X. - M, X )] 
J 1     ik 1   jk j 

(MY - M Y ) + M M (X -X )] 
lk J   Jk i    ikjk i j 

i, J = 1, 2, 3, 1» and i t  .1 

vhere 

, th 
X  Y.„ - predicted target location at k  point. 
iJK» ijk 

by sensors i and J 

X., Y - assumed position i  sensor 
i  i 

M  - tangent of bearing measured by sensor i in the k set 
ik 

ci3k * 1/(Mi - MJ'- 

A set of 12 equations exists for every point along the path for 

which simultaneous bearings can be obtained. These equations consist 

of six pairs in X and Y corresponding to each side and diagonal of a 

quadrangle. Since any pair is sufficient to calculate target position, 

the set is over-determined, and the X , Y  points will vary unless the 
* J     i J 
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data are error free. 

Expanding Equations 1 about the initial sensor locations by 

Taylor's series, and dropping higher order terms, 

\ ' W * ai *i + aJ ai + »1* "i + *3« "j ■• (2) 

?or 

i, J « 1, 2, 3, &; i i J; and AX - AY - 0 

vhere 

AX,, AY are sensor position corrections 

F and F are given by Equations 1 at X and Y 

a* s 3FxiJ 
"C,,M< i 

a'   « 

3Xi 

8F 
yij 

ij * 

= C   MM 
i 3XA 

ij i J 

o 0 

a.  i   s *FxiJ 
= c,-< i+U 

3Yi 
ij 

a*             S 
3FyiJ 

= CiJM
t1 V* 3Yi 

a set of linear equations is obtained for each target position as a 

function of sensor position corrections. The partial derivates are 

interpreted as the GEDOP numbers relating triangulation errors to 

baseline variations. For this to be completely valid, one of the sensor's 

position must be constant such that the variations in x and y correspond 

to a change in the magnitude of the baseline rather than a translation. 

Otherwise, the partials must be taken with respect to the baselines 

rather than the x, y sensor coordinates. Also, since three vectors 

with common origin are sufficient to describe a quadrangle, only three sensor 

locations relative to the fourth can be determined. 
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Expressing the target position given by Equations 2 in terms of an 

estimated value, such as the arithmetic average of two sensor pairs, and 

a residual error term, 

\-\- "iijk h ' \ - V*   (3> 

the total set of 12k intercept equations can be vritten as 

R + AS + F = 0 (It) 

where 

xl21 

yl21 

y3*»k 

4XX 

»x2 

"3 

"l 

«2 

"3 

A = 

3F     3F 
xl21   xl21 

3X, ax. 

3Fyl21 3Fyl21 

3X, 3X2 

"*F i   3F 
y3Uk   y2hk 

ax. axe 

f - X rxl21  *1 

F    - Y 
yi2i  i 

Fy3M " Yi 

Fy3l«k - Yk 

3F 
xl21 

3Y- 

3F 
yl21 

3Y, 

3F 
y3»*k 

3Y„ 
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The normal equation for least squares adjustment is 

s * (A^O'VF - 0.   15) 

The predicted target locations can now be forced to converge, by solving 

the normal equation for the solution vector S, adjusting the sensor 

positions by ^»^Y (Components of the S vector), recomputing F vhich 

nov includes a revised target estimate, and repeating the process until 

the correction components of S go to zero or become sufficiently small. 

The convergence achieved by the regression is expressed in terms of the 

standard deviation of the residuals which can be determined by solving 

equation *», R = -F. 

The effect of random noise in the bearing data can also be reduced 

by minimizing the sum of the squared intercept deviations about some point. 

Expanding the intercept equations given in 1 about the slope by Taylor's 

sero.es ana dropping higher order terras, 

for 

i, J - 1, 2, 3, fc, and i t  J, 

where 

Fxijk "ld Fyijk are 6iVen by E*uation X at Xo» Yo*9o 

A0.,A0    are bearing corrections 
w 

b    - JüsiÜL.        • C...   (X    - F J   (1 + M.2) 
i        30 lJ*     i       xiJk i 

k-k 
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3F.. 2, 
V =  -_I^       = CiJk [Y, + M. (Xj - Xi) - Fyijk] (1 + Uf) 

39 
J 

a aet of linear equations is obtained for each of the fours sensor locations 

in terms of bearing corrections. 

Utilizing the estimated target position given in Equation 3, the set 

of eight intersection equations can be written in the form of Equation h 

R + BAG + F = 0.       (7) 

Solving in the manner previously used for Equation 5, the X , Y values 

determined by intersect!  can now be substituted for the estimated 

target values, Equation 3, used in the resection regression. 
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