
AD/A-003 801

WIND MODELS FOR FLIGHT SIMULATOR CERTIFI-
CATION OF LANDING AND APPROACH GUIDANCE
AND CONTROL SYSTEMS

Neal M. Barr, et al

Boeing Commercial Airplane Company

II

Prepared for:

Federal Aviation Administration

jDecember 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

'_V.I



~L J

NOTICE

This document is disseminated under the sponsorship of

the Department of Transportation in the interest of infor-
mation exchange. The United States Government assumes no
liability for its contents or use thereof.

LI

ii

A$



- • 4 .... -.-- =1 _.*: - = , : .. .,=- , '% - .......... '

TECHNICAL REPORT STANDARD TITLE PAGE

IFRepoo4- 2206. Government Accession No. 3 R Jp ien t's Catalogo.

__AA-RD-74_ __206 AVIsAW 0011-O l
4 Title and Subtitle 5 Report Date
WIND MODELS FOR FLIGHT SIMULATOR December 1974
CERTIFICATION OF LANDING AND APPROACH 6. Performing Organization Code

GUIDANCE AND CONTROL SYSTEMS
7 Author(s) 8. Performing OrgAnization Report No.

Neal M. Barr, Dagfinn Gangsaas,.and Dwight R. Schaeffer
9. Performing Organization Name and Address 10, Work Unit No.
Boeing Commercial Airplane Company TRAIS- 45149
P.O. Box 3707 11. Contract or Grant No.
Seattle, Washington 98124 DOT-FA72WA-2934

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
U.S. Department of Transportation Final Report
Federal Aviation Administration

Systems Research and Development Service 14 Sponsoring Agency Code
Washington, D.C. 20590

15 Supplementary Notes

16. Abstract

Analytic and probabilistic descriptions of low-altitude mean wind and turbulence have been
investigated and a description selected. The effects of wind and iurbulence on aerodynamics
and aircraft motion have been analyzed. A model of wind and turbulence, suitable for the
certification of landing a; 4 approach guidance and control systems by flight simulations. has
been developed, and consideration has been given to implementation.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U S l)epartment of Commerce

Springfield VA 22151

17. Key Words 18. Distribution Statement

Approach and landing Turbulence Document is available to the public
Atmospheric boundary layer through the National Technical
Guidance and control systems Information Service, Springfield,
Mean wind Virginia 221UT0-
Simulation

19. Security Clanf. (of this raort) 20. Security Clusif. (of thispa ) 21. No. of Pages 22. Price

Unclassified Uclassified 622 1$15.25

Form DOT F 1700.7 (8 69) 4

A.V



PREFACE
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Schaeffer, flight dynamicist. Co-principal investigator responsible for Section 3, "Probabi-
listic Description of the Low Altitude Atmosphere," was Neal N.I. Barr, meteorologist.
Dagfinn Gangsaas, aerodynamicist, served as associate investigator and studied the variances
of low-altitude turbulence and simulation techniques for generating random noise.
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1.0 INTRODUCTION, SUMMARY, AND PROPOSED MODEL

1.1 INTRODUCTION

This document reports an investigation performed to provide the information for improved
accuracy of low-altitude wind and turbulence models to be used for the certification byf flight simulation of approach and landing guidance and control systems.

Historically, the structural designers were first to recognize the requirement for a
mathematical model and initially used only the discrete 1-cosine gust for the design limit
case. As airplanes became lighter and more flexible, fatigue life became more critical and the
need for a more accurate description became greater. This led to the application of the
statistical power spectra. Attempts to fit a mathematical model to measured data began
seriously in the late 1950s and has progressed to the point of "which model do I use?"

Automatic controls were used initially to provide modest improvements of airplane stability
and to provide guidance during noncritical flight phases (altitude, attitude, and heading
hold). Automatic control authority tended to be low. Hence, the interaction of the control
system with wind and turbulence was unimportant; it was not a concern for flight safety.

For typical flight controls analysis, such as handling qualities, ride qualities, and
controllability, concern was for a qualitative, rather than quantitative, answer: that is, does
a parameter variation (i:n the aircraft or control system) improve or degrade the particular
output? A forced change of this philosophy occurred when the autoland systems began to
appear in the early 1960s. The dependence upon an automatic landing system rather than
the highly adaptive pilot required analytic proof that the landing would be performed with
adequate safety. The problem is now quantitative rather than qualitative and a gross error in
the approach wind model could be very serious; parameters of the wind model have effects
comparable to parameters of the aircraft and guidance system. Certification of autoland
systems is dependent upon demonstration of very low oilers of risk of fatal accidents.
Obtaining adequate statistical data to validate remote probabilities of fatal accidents is
i, practical without heavy reliance upon simulation.

The search for a low-altitude wind model, providing a b.tter representation of low-altitude
wind phenomena than provided by existing certification wind models, was principally
concerned with the region from the surface to about 1000 feet. The model for this altitude
region tends to be the most general and complex due to the strong dependence of wind
characteristics upon altitude and surface terrain and the orientation dependence of
turbulence characteristics. Additionally, the landing approach task is the most difficult and
critical task for which relatively small changes of wind characteristics may result in large
changes in maneuver performance. The low airspeed during approach tends to couple
vertical motion with longitudinal wind components and longitudinal motion with vertical
wind components, increases the nonlinearity of aircraft respon"- to winds, and increases
the significance of the distribution of winds over the aircraft. Hence, the aerodynamic
modei incorporating the effects of winds tends also to be most general and complex.
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The main objective of the investigation was to define a model suitable for certific.tion. A
model for design must be simplified to reduce the wind model parameters to enable
evaluation of a large number of aircraft and control system design parameters.

The studies were concerned with the "average" airport, although it is recognized that the
"average" airport may not exist. It is both impractical and undesirable to represent unique
characteristics of any particular airport for the certification of an aircraft that will land at
many different airports. "Average" airport is used in regard to possible unique operating

procedures and terrain features and does not imply "average" winds at the "average"
airport.

Consideration is not for the wind alone, but for aircraft responses in wind environments, so
the investigation included the representation of aerodynamic forces due to winds and a brief
analysis of the effects of winds on aircraft motion.

No original work on the description of low-altitude winds is intended. The wind model is a
conbination of the work of others. The structure of the model has been parameterized to
eaable incorporation of new material and updating of parts without discarding the entire
model.

For virtually every aspect of low-altitude winds there are conflicting descriptions. Some
descriptions are based on undocumented data collection, analysis techniques. and test
conditions. Some general considerations used for selecting one among competion descrip-
tions are:

* Weight of evidence

• Physical and intuitive reasonableness

o Substantiation

* Existing specifications, when the choice appears arbitrary

* Compatibility with the description of other parameters

9 Validity of the asoumptions

• Avoidance of descriptions providing unreasonable discontinuities

Analytic descriptions of wind phenomena are presented. Where possible, a deterministic
description is preferred in the presumption that all physical processes have cause-and-effect
relationships. When relationships are too complex to permit quantitative understanding or
when deterministic descriptions are impractical, probabilistic descriptions are used, with the
statistical paramcters defined deterministically as much as possible.
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For those parameters defying analytic description, probabilistic descriptions have been
sought. Probabilistic descriptions were Girst sought from the literature. For those aspects not
well defined by the literature, descriptions have been sought by reducing and evaluating
tower data.

A brief analysis of the effects of' winds on aircraft motion has been conducted to gjin an
appreciation of what needs to be modeled. The axes translormations required between wind
and turbulence components in their inherent axis system and in the airplane's axis system
are shown. Techniques of providing a random process on computers for the representation
of turbulence are presented. A simulation model is presented that combines all the foregoing
components.

liach section has been designed to be relatively independent of the other sections. Each
section has its own nomenclature and reference list, and tables and figures are numbered by
section.

1.2 NOMENCLATURE

b Wing span

. Specili heat at constant pressure

c Mean chord

d Atmospheric boundary layer thickness

c Exponential function

I('oriolis parameter. f = 2w L sin X

Ith/Q~) Contribution of nonneutral atmospheric stability to the mean
wind

I10, 9(Vg Fundamental longitudinal and transverse correlation functions
for isotropic turbulence, respectively

Gu 'v (;w Filters for producing u. v. :nd w components of turbulence

g Acceleration due to gravity

g(h/1' Contribution of atmospheric stability to mean wind caused by
variation of shear stress

II fleat flux, positive upward

h1 Altitude

-- ~-I



-- r,,- I.. . i M 71,

hREF Reference altitude

Ih1 Altitude above which turhulencc is isotropic

k Von Karman constant, k = 0.4

L Longitudinal isotropic turbulence integral scale

LII, LV  Integral scales for horizontal and vertical turbulence
componef s

Lp. LN Longitudinal and transverse integral scales for turbulence con-
ponents parallel and normal to the displacement vector,
respectiv ly

Lu .L v, L% Integral scals corresponding to the longitudinal, transverse, and
vertical turbulence components, respectively

V. Q Nlonin-Obukov scaling length and Monin-Obukov scaling length
modified by r:tio o"eddy conductivity to eddy vicosity

,Distance fPont the wing-body aerodynamic cente to the tail
aerodynamic center along the x body axis, positive aft

M(W) Frequency response amplitude

p Inertial body axis roll rate

EfTective roll rate of the air mass due to turbulence relative to
the earth

q Inertial body axis pitch rate

q" Dynamic pressure

q-r Efl'ective body axis pitch rate due to turbulence with respect to
(lie earth

Ri.Ri20 Richardson's number and that at 20-foot altitude

Ri Correlation function for the i and j turbulence components

r Inertial body axis yaw rate

r I)isplacement vector

rA  Yaw rate rulative to the air mass
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rT Effective body axis yaw rate due to turbulence relative to the
earth

rW.FW Effective yaw rate dLve to the wind and mean wind relative to
the earth

s Laplace transform variable

Absolute temperature

t Time

U Inertial linear velocity along tie x body axis

.t*,0 Friction velocity (shear strnss/density) I 3nd that at the0 surl'ace

"A L.inear velocity with respect to the air mass along the x body
axis

Component of' airspeed along the x turbulence generation axis

1n1. uN Turbulence velocity parallel and normal to the displacement
vector

Linear turbulence velocity along the x body axis and the

aT"a'F x turbulence generation axis relative to the earth

TTAl .--at tile tail

UW. U-W  L.inear velocity ol' the wind and i',ean wind with respect to tile
ear.h along the x body axis

VW" V-10 Mean wind sced and that at 20-foot altitude

VA Total air speed

v Inertial linear veloity along tie .body axis relative to the eartl

vA  Linear velocity with respect to the air mass along thw y body
axis

v V.. Linear turbulence velocity along tile y body axis and the
VTT( y turbulence generation axis relative to the earth at the center of

gravity

Linear velocity of the wind and mean wind along the y body
axis relative to the earth



w Inertial linear velocity along the z body axis

WA Linear velocity along the z body axis relative to the air mass

wT Linear turbulence velocity along the z body axis relative to the
earth

wW, wW Linear velocity of the wind and the mean wind along the z body
axis relative to the earth

z0 Surface roughness length

Of Angle of attack

Sideslip angle

p Glide slope

0 Euler pitch angle

0ij() Three-dimensional spectrum function for the i and j turbulence
components

i, Latitude

), x) Turbulence wavelength along the x and y axes

Position displacement vector and magnitude

oi  Standard deviation for parameter i

0H oV Standard deviaticn of horizontal and vertical turbulence

Ou, av. ow Standard deviations of the u, v. and w components of
turbulence

'1

oij" Covariance between the i and j turbulence components

Time displacement

S' TO Shear stress and that measured at the surface

01, 0 Input and output power spectra

*i (121 ) One-dimensional power spectrum for parameter i

Oij(l One-dimensional spectrum function for the i and j turbulence
components
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fFN Random noise power spectrum

*NN(nI), *PP(12) Isotropic one-dimensional spectrum functions for uN and Up

4bu(lil), *v(Sll1), 4tw (f' 1) One-dimensional power spectra for components of turbulence
along the x, y, and z axes

*uw(12l) One-dimensional cospectrum for components of turbulence
along the x and z axes

00h/11) Univwrsal function of h/2' defining nondimensional wind shear:
kh avW

1.1*0~ We *h/')

* Euler baik angle

ijf1,"l2 )  Two-dimensional spectrum function for the i and j turbulence
components

Euler heading angle
"OW Heading to which the mean wind is blowing

F 1, 12 Spacial frequency vector and spacial frequency magnitude

12 Component of spacial frequen,.y along the x axis

II
W Temporal frequency, rad/sec

WaE Angular velocity of the earth

Note: Dotted terms refer to derivatives with respect to time. Overhar indicates an average.
Other terms defined where used.

1.3 SUMMARY

Wind phenomena are classified in Section 2.2 as being mean wind, turbulence, ind discrete
gusts.Mean wind and turbulence are statistical paran'-ters that appear together with
turbulence being a random deviation of wind velocity about the mean. Distinction between
the mean wind, which eventually is variable given enough time or space. is made on a
frequency basis using the Van der Hoven bimodal wind speed spectrum (Fig. I-I).

4

Discrete gusts are deterministic phenomena caused by localized terrain or atmospheric
inhomogeneities of which there are an infinite number of possibilities. So long as conditions
of reasonably homogeneous terrain and atmospheric f'eatures or restrictions on 'le
proximity to inhomogeneities are justified, consideration of discrete gusts is unnecessary.
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Mean wind - Turbulence
!

IT. N6

E

A. T

±3
42 01r

Cycles/hr 102  10-1  10 100 1000

Hours 100 10 1 0.1 0.01 0.001

FIGURE 1-1.- SCHEMA TIC SPECTRUM OF WIND SPEED NEAR THE GROUND
ES TIMA TED FROM A STUDY OF VAN DER HOVEN (1957)

1.3.1 Mean Wind

The mean wind is characterized by:

Zero vertical component

Zero wind speed at the surlace

o Invariant with altitude above the atmospheric boundary layer

The mean wind model having tCh greatest acceptance, both theoretically and empirically, is
that developed from dimensional analysis. The parameters involved are:

-- h =  
an wind shear

" = shear stress

p = atmospheric density

Cp= specific heat at constant pressure

h = altitude

8



M r

g = gravitational acceleration

H = heat flux

T absolute !emper ,ture

aTah lapse rate

This inclusive list assumes.

* Pressure gradients are invariant with altitude, at least over a sufficiently
constrained altitude region.

* Viscous forces domlinate pressure and Coriolis forces.

o The flow of air is fully rough so that molecular viscosity is not a significant
parameter.

The parameters appear in the combinations

ufriction velocity

- - = nondimensional shearu.

(k = 0.4 =Von KarmaJn's constant)

uCpPT

kgH

Dimensional analysis then predicts

kh aVW

where (h/9) is some specific function.

It is additionally assumed that shear stress and density are invariant with altitude for a
sufficiently constrained altitude region. Then

VW: dhk, f
" - ,N1[ ill Il~l II I I



where

z0 = the altitude at which the mean wind speed formally goes to zero

u. 0 = u(h = 0)

The scaling length, R, is difficult to measure due to the difficulty of measuring heat flux, so
an alternate scaling length, 2'. is introduced:

aVW
= u* T al

kG +acp

This alternate scaling length is equal to the dimensional analysis scaling length multiplied by

the ratio of eddy conductivity to eudy viscosity and is assumed to be a constant, implying
that there is a one-to-one relationship of the wind and temperature shears independent of
altitude.

The alternate scaling length can be related to a mort; conventional and still more easily
measured parameter reflecting atmospheric stability, Richardson's number:

+ 9

T p)
R:= T +

JaVw 2

I"I-)__

Ii ~ a + k _
I ' ~ - *0 h =vW Ri (/'

L (-"v'w- p

Richardson's number is a nrmdimensional ratio between the mechanical wind shear that
tends to displace air and the buoyancy force, which may damp or amplify this tendency
(See. 2.3.4). Richardson's number thus gives rise to the notion of atmospheric stability, a
dynamic concept:

Ri, h/2' > 0 L -: stable (weak lapse or inversion)
p
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Ri, h/ = aT = "" -- -0.00536* R/ft, neutral (adiabatic lapse)
all Cp

Ri, h/f ' = 0..- )' g

R- h/2' < < unstable (strong lapse)p'

Given the nature of O(h/'). the variat i )i o: Ri is known with altitude and Ri could be used
in place of h/2'. However, it is siii plcr to use h/f' as it varies linearly with altitud" The
greater ease involved in measuring Ri provides an indirect means of computing R.

Investigators have examined 0(h/V') for different regions of stability. For neutral stability
(h/Q') I and

Oh kh
aIa

VW kf inh (Sec. 2.3.2)

or, after an axis system shift to provide VW = 0 at h = 0,

VW =, lh + zO

For neutral stability, the shear is inversely proportional to altitude and the mean wind is
described by the logarithmic profile. The term z0 reflects surface roughnesi and is larger for
greater roughness. The relationship between z0 and roughness of tile terrain has been
investigated in Section 2.3.2.2. In Section 2.3.6, it is concluded that z0 = 0.15 foot, as
provided by the British specification, and is representative for autoland applications.

If the mean wind, VREF is known at some altitude, h1REF , the friction velocity, u* 0. may
be found from the equation for the mean wind profile:

kVRI" F

In I II( R F F + z0)]

For a given wind speed at hREF an increase in roughness length, zO. is related to an increas,
in friction velocity, which in turn provides an increase of the shear at every altitude, a
decrease in wind speed for h < hREF. and an increase in wind speed for h > hREF.
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For near neutral stability, 0(h/2') may be estimated from the first two terms of a Taylor
series expansion about neutral stability:

*(h00 ') = I +ct'h/Q', h/2'<< I

Ci = constant

Thus,

VW I - ln h0 + zo + n'h/ (Sec. 2.3.4.2)

which is the log-linear mean wind profile. For stable conditions (h/9>O), the effect of
stability appears to cause an increase in the mean wind speed and shear. Unstable conditions

appear to cause a decrease in the shear and mean wind speed.

For the log-linear profile, friction velocity can be determined from the mean wind speed at a
given altitude by

kWREF
Uo = h+z 0 \I; In/--- O + c'hREO'

Stable conditions result in a decrease and unstable conditions result in an increase of friction
velocity.

Combining the effects of stability on friction velocity and the nondimensional wind shear
gives

h l~REF + Zo) 'RFQIn( 'I+  hREF/R'

Stable conditions cause the shear to be greater than for neutral conditions above some
altitude, but less than the neutral stability shear below that altitude. The reverse is true for
unstable conditions.

For near neutral stability, the constant ' can be determined by knowing Richardson's
number at some altitude, hREF:

h/Q' = Ri*(h 0')= Ri(I + Wh/Q'), h/'<< I

12



'REF 'REF
I/' = hREF(l RiREF)-

hEREF

The general form of the mean wind profile may be reformulated to represent the
contribution of neutral conditions plus the increment due to nonneutral conditions:

*0 .L 111 O

V --- [In + lh/2'

where

WIN/') =f 0q)2 -d
h0

Different investigators have developed expressions for the mean wind shear for various
regions of stability (Sec. 2.3.4.3.). For unstable conditions,

00h/R) = small negative RiI -a'RiV

P = constant

W h"4 /3  
,strong instability.

A form that matches the logarithmic, log-linear, and the above two expressions is the
KEYPS equation:

(I -7'Ri) / i

7'=- 2P' = 4a' constant

This form has been adopted in Section 2.3.5 along with the V= 18. which implies a'= 4.5.
values in good agreement with measurements. The corresponding relatiu.i lin between

P nondimensional altitude and Richardson's number is

h/£' =

An explicit expression for the mean wind shear and, consequently, the mean wind speed in
terms of h/Q' .annot be found, but such a relationship can be determined numerically.

13



For stable conditions, the log-linear relationship has been found to hold for suprisingly large
values of h/2': for very stable conditions. knowledge is poor. The best expression found for
very stable conditions is

of(l/2') +a&)

which once again results in a shear inversely proportional to altitude. The corresponding
mean wind profile is

VW-,z0 InIll + , +D' I +ln h/2')] 1,h/'> I

For h/k'> I, Richardson's number and nondimensional altitude are related by

h/2'= 0 +a')Ri

Combining the descriptions of *(lCIV') adopted provides the noadimensional shear as a
function of h/2', as shown in ?'i,u~no I -2 and 1-3. The corresponding function fQh/V') ior
the mean wind equation is shown in Figures I4 and 1-5. The combined relationships
between h/' and Ri are shown in Figure 1-6.

The wind abovw the edge of the boundary layer (geostrophic wind) is that which remains
invariant with surface conditions anid atmospheric stability in the boundary layer. There are
little data on geostrophic winds, and relationships between winds near the surface and above
the boundary layer are poor. Rather than relating low-altitude wi'id conditions to the
geostrophic wind, the wind profile is extrapolated from low-altitude winds. The American
standard for airport wind measurements is 20 feet. The extrapolation of winds and shears
based on wind speeds at 20 feet is performed through the determination of friction velocity:

u* 0 /k = 20 (Fig. 1-7)In -2015)\ tNO.6 R5 fREF/R')

Fizure I-7 shows *riction velocity to continually decrease for increasing stability. The
nondimensionul shear, Figures 1-2 or 1-3, is constant for h/9' > 1. Thus. the shear, given by

~'~ _""2(L* 0 k\I khW I
- 1% -

must decrease for hi' > I.

The scaling length, R', may be determined for Richardson's number measured at another
altitude different from 20 feet. but since the choice appears arbitrary. I1(/' is determined
from Figure 14, for Richardson's number measured at 20 feet. The description provided

14
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thus far still suffers from a restriction: the dimensional analy:,s descriptions are valid only
over the altitude region for which shear stress differs insignificantly fro n that at the surface.
Insignificant variations of the shear stress have been variously estimated to occur LIp to 65 to
650 feet (sec. 2.3.2.4), significantly less than the objective of 1000 fcet. At progressively
higher altitudes, a progessively greater overestimation of the mean wind speed and shear
occur: the description of the mean wind never does provide a constant mean wind with
altitude above the boundary layer. A mechanism for adjusting the description has been
found through descriptions of shear stress (friction velocity) variations throughout the
boundary layei in Section 2.3.5. 1.

By expanding shear stress with altiude about conditions it the boundary layer (where shear
stress is zero) using a Taylor series, expressions for friction velocity variations with altitude
and for the boundary layer depth, d, are developed:
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to* = I - h/d.
0

d = U~o15.35f

where

f = Coriolis parameter

S 2WE sin )

(E= angular velocity of the earth

= latitude

Most of the United States and a majority of the world airport activity lies between 30ar.d
50* latitude, so a fixed latitude, A = 400, is adopted for determining the boundary layer
depth. Then,

d = 2000 u, 0

To incorporate the shear stress variation into the mean wind description, the assumption

that the shear is proportional to friction velocity at the surface is dropped, and it is assumed
that the shear is proportional to the local level of friction velocity. Then.

aVW11* 1*0 Ol! aVW

ofd h V o~, h

-7-1 7 hIQ \u 0 .Lt* -1)
'OIO 0 /k_ V

The shear now smoothly decreases to zero at the edge of the boundary layer with increasing
altitude. Near the surface, where h/d B 0, the constant shear stress model is unaffected.

The corresponding expression for Ihe mean wind speed. developed in Section 2.3.5.2, is

:~* h +w o h.oI" '.
0 In + MIA-+ f(h/'- h/)'

The function g(h/V') (Fig. 1-8) is derived from f(h/2'). It is always positive, is e ual to one
for neutral stability, and increases with increasing stability.
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The additional parameters required to complete the description of the mean wind speed and
mean wind shear are specifications for wind speed and Richardson's number at a 20-foot
altitude. Probabilistic descriptions are developed in Section 3.0.

Based on Weather Service reports at U.S. airports, a desci iption of airport wind speeds has
been developed in Section 3.2 that describes I0-minute averages measured each hour for 10
years. The data were taken prior to establishing 20 feet as a standard anemometer height, so
anemometer heights varied widely from airport to airport. From data for 132 U.S. airports.
data were selected from 24 sites where anemometer heights varied from 20 to 35 feet with
an average height of about 26 feet. The remaining sites have anemometers located from
above 35 to 120 feet above the ground and were considered to be too high to represent
wind speeds at 20 feet. In developing a composite description for all 24 airports, the
distributions from each site were weighted equally. The resulting descriptions. Figure 1-9.
provide for 8 knots exceeded 50%, of the time and 22.8 knots exceeded ', of the time. For
39 of the same 132 sites, data for the wind speed distribution when visibility was less than
0.5 mile (prepared by the Weather and Flight Service Station Branch of the FAA) are
presented. For low visibility, wind speeds are much lower than for clear conditions, for low
visibility, 4.5 knots is exceeded 50% or the time and 14 knots is exceeded I% of the time.

From the data ror the 24 U.S. airports, distribution of wind components along and across
runways were developed, assuming the runway is aligned to the prevailing wind (Sees.
3.2.1.3 and 3.2.1.4). Crosswinds from the left and right were found to be equally likely. The
distribution of crosswind magnitude, Figure 1-10, provides for exceeding a 5-knot crosswind
50% of the time and a 19-knot crosswind EX, of the time. When the distribution of
crosswinds are plotted for both positive and negative crosswinds, the distribution is closely
Gaussian (standard deviation equal to 6.5 knots), with deviations from a Gaussian
distribution occurring in the tails ( 1.65 standard deviations from zero crosbwind).

The distribution of down runway components is also closely Gaussian (Fig. 1-i1) with a
mean and standard deviation of I and 7 knots, respectively. The probability of a wind
component in the direction of the prevailing wind is 59'/,. The distribution for the
magnitude of the component of mean wind aligned to the runway (Fig. 1-1 2) provides for 5
knots exceeded 50% of the time and 19 knots exceeded M, of the time.

Distribution of mean wind shears were also investigated in Section 3.0. Distributions were
much broacier near the surface than at higher altitudes, conforming to the analytic
description The introduction of atmospheric stability into the mean wind description in

such a way that wind shears increase with increasing stability (up to a point), as well as with
wind speed and the finding that atmospheric stability is inversely related to wind speed,
introduce confusion as to whether maximum shears occur at high wind speeds where
stability is close to neutral or at low wind speeds where stability is high. Data from the
literature, presented in Section 3.2.3.1, show the greatest shears occur at the most stable
lapse rates and at low wind speeds (both average and maximum wind shears decrease
monotonically with increasing wind speeds at high wind speeds). conflicting with commonl'
employed wind models that assume neutral stability and increasing shears with wind speed.
thus emphasizing tl.h i:-.p,'rtince of atmospheric stabilitv .,t : n ., wind paramL ter.
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FIGURE 1-70.- TOTAL CROSSWIND INFORMA TION COMPILED FROM
24 U.S. AIRPORTS

The literature was not pi,'luctive for describing distributions of atmospheric stability, so
probability distributions were gencrat.d by reducing data from lowers located at Cedar
ltills, Texas, and ('ape Kennedy, Florida (See. 3.3.3.). The distributions for the two sites
differed substantially (Fig. 1-13), with the Cedar Hills data being more stable. Evaluation of
the climatology and wind characteristics of the two sites led to the conclusion that the Cape
Kennedy stability data were more repres-.ntative of average airport conditions. Conse-
quently, the ('ape Kennedy data were selected for use with the model. Although the Cape
Kennedy data reflected the lesser stability over 70, of the cases at the site were stable
(versus 90'/l of the cases at Cedar Hills).

Th ie -.tro..g interdependence between the distribution of atmospheric stability and

near-surace wind speed can be seen in Figure 1-14. Although the atmospheric stability
distribution narrows substantially about neutral conditions at ini:reasing wind speeds. the
distribution remains significantly broad at high wind speeds. The data in Figure 1-14 were
Iaired and extrapolated to account for the relatively small data sample (one site for 3 years
with near-cahn wind speed conditions excluded) and have been cross plotted at constant
20-foot-altitude wind speeds in Figures I-IS. 1- 16, and 1- 17.



I'm;JW0 PUIM v Paw p~ UIMPgoH

0 0?

0

00

cc

___ 0

P C?
(__08t_ _ _J _ _A )1p@ pII

26-



5-

10

Headwind/
tailwind, kt

15 -- -

20 -- -

- 330 - -- - --5 -- -

70 60 50 40 30 20 10 5 2' 1 0.5 0.2 0.1 0.05 0.01

Probability of exceedance, %

FIGURE 1-12.- TOTAL HEADWIND-TAILWIND MEAN 0F24 U.S. AIRPORTS

The mean wind speed and atmospheric stability distribution curves may be used by
(i) defining wind speed/stabili;y regions and assigning average values of wind speed and
Richardson's number to each region. (2) by simulating the aircraft for each wind
speed/Richardson's number combination: and (3) by combining the results of the simulation
according to the joint probabilities of each region. Alternatively, the simulation may be used
to define random combinations of mean wind speed and Richardson's number. A random
number generator, providing a uniform distribution between zero anti one, is used to
determine two random numbers. A mean wind speed at an exceedance probability equal to
one of the random number generators is f'ound. The Richardson's number associated with
the exceedance probability for the mean wind speed determined equal to the second
random number is found. The Richardson's number and mean wind speed then determine
the mean wind speed and shear profiles. When this process is repeated, the joint distribution
of wind speed and iichardson's number is reproduced. This procedure is defined in more
detail in Section 4.5.1.
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In order to determine the aerodynamic forces and moments, the mean wind must be
resolved into body axis components, an axis system attached to the airplane. Tne
transformation required is presented in Figure 1-18 and depends on the orientation of the
airplane's body axis with respect to the wind, defined by the Euler yaw, pitch, and roll
angles and the direction to which the wind is blowing (negative of conventinal wind
heading). The introduction of wind heading presents an additional mean wind parameter
that must be known at each altitude. As shown in Section 4.2.1.1.2, a variation of wind
heading with altiude (heading shear) has an effect on the shear that the airplane sees that is
added to the mean wind speed shear effect.

Analytic descriptions for the variation of wind heading with altitude are provided in
Sections 2.3.1 and 2.3.5.1, but these descriptions lack empirical support. A small amount of
heading shear probability distribution data was found in the literature and is reported in
Section 3.2.3. 1. The data indicate a majority of heading shears are within 13/ 100 feet and a
greater tendency to rotate counterclockwise while approaching the surface. The tower data
used to determine the atmospheric stability distibution were also evaluated for heading
shear information in Section 3.3.4. Distributions tended to be larger nea' the surface but
constant above about 150 feet. No consistent trend of the profile shapes could be found.
Heading shear was found to be uncorrelated with both wind speed and atmospheric stability
(See. 3.3.6). In order for the heading shear to be significant, the wind speed must also be
large (body axis shear components involve the combination VW d~w/dh only). The
probability of having a large heading shear and wind speed shear is sufficiently remote and
the information for specifying the variation of wind heading with altitude is su;ficiently
poor so that a representation of wind heading dependence upon altitude is not attempted;
the wind heading is assumed to remain constant and equal to that at the surface. The
distribution of wind heading at the surface was developed from wind roses for the same 24
sites used to determine the wind speed distribution (Sec. 3.2.1.3) and is presented in
Figure 1-19.

A major factor to which longitudinal touchdown dispersions are attribuW is the
longitudinal wind shear component. Considerable literature has been written on .. e subject,
but conflicting conclusions are provided. Some predict a headwind shear will cause an
oversLoot, while others predict an undershoot. The subject is evaluated in Section 4.2.2.
Some of the differences of opinion can be attributed to different trim and operation
procedures. However, it is concluded that one of two airplanes can overshoot while the
other undershoots due to a wind shear, even if both are operated in the same manner.

The effect of' a steady wind is to alter the pitch attitude (0) at which to trim to hold a given

glideslope (7):

O I + 7A3+ Of
V A

where = is tailwind. For a headwind and a negative glideslope, the pitch attitude
must be increa~,ed by (VW/VA)V' from that for still air and the thrust increased by
&(thrust) = W/4, or the airplane will touch down short.
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BODY AXIS MEAN WIND COMPONENTS
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FIGURE 1-18.- TRANSFORMATIONS
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If tile airpkne is trimmed for a headwind at a high altitude and the headwind decreases with
altitude, the pitch attitude must be dt,'reased throughout the approach and thrust
currespondingly decreased, or else the airplaile will touch down long due to the attitude
effect.

There is also a second effect of a wind shear. If the approach is to be performed at constant
airspeed, changes in the wind speed must be matched with changes in the inertial speed. To
provide inertial acceleration, thrust must be changed by

W(VA + VW) dVW
A(thrust) g A

For a headwind that diminishes during an approach

dVw 1>0

and thrust must be increased or the touchdown will be short.

The combination of the attitude and acceleration effects is

Ai1_W' (VA + VW) dVw

[ So long as the magnitude of the wind increases with altitude and the airplane is trimmed for

the high attitude wind, the two terms have opposite signs. For airplanes with low airspeeds,
the attitude effect tends to dominate. For a given airplane, the acceleration effect will be

t stronger at lower altitudes where the shear is relatively strong compar,:d to the total change
of wind speed. This evaluation presumes the airplane is controlled in an open-loop manner.
The ability to attain closed-loop control, either by the pilot or the autoland system, depends
in part upon the open-loop stability of the aircraft-autoland system.

Airplane stability is affected by the wind shear, as shown in Sections 4.2.1.1. and 4.2.1.2:
aerodynamic forces ant moments are dependent on the components of wind speed, motion
is dependent on aerodynamic forces and moments, and the components of wiiad speed are
dependent on airplane motion. If the aerodynamic characteristics can be considered to be
concentrated at the center of gravity, only longitudinal stability, principally phugoid or long
period stability, is affected by wind shears. A headwind shear can either stabilize or

destabilize the phugoid, depending on the characteristics of the airplane's stability
derivatives. If a headwind shear has stabilizing effects, a tailwind has destabilizing effects,
and vice-versa.

The effects of a wind shear may not be adequately represented by considering the
aerodynamic characteristics to be concentrated at the center of gravity. Due to the change
of wind speed with altitude, there is a d;stribution of wind speed over the vertical tail that
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introduces a rolling moment. When the airplane is disturbed from zero pitch attitude and
wings level, the different parts of the airplane in the plane of the wings will be at different
altitudes and there will be a distribution of wind speed about the airplane and a
corresponding change in the distribution of lift.

The distribution of wind about the airplane may well be represented as being linear in three
dimensions. Then the components of wind at some point (x,y,z) are represented by

a'WcwJa~i i

OW  WcG  + "x ay azz

=VW avw a+ w
VW WWCG + -X + -- y -z

WWa~ MWx + Wy + W= WCG +a x  a +a

The derivative of body axis wind components are expressible in terms of the mean wind
shear (Sec. 4.2.1.2) and can be interpreted as effective angular components of wind. For
example, the distribution of the lateral component of wind about the vertical dimensions of
the fin appears vs a roll rate, which generates a rolling moment proportional to the fin's
contribution to the roll rate derivative of rolling moment.

Linear analysis predicts that the distributed lift effects of the mean wind shear appear
primarily for lateral-directional motion. These effects are due to the headwind-tailwind
component of the shear. The wind shear alters all of the lateral-directional stability
characteristics, but the sensitivity of the characteristic roots to wind shear are configuration
dependent.

Representation of the distributed lift effects is the only reason for computing the mean
wind shear at each altitude. If the distributed lift effects can be shown to be insignificant,
the computation of the shear can be left out of the simulation.

1.3.2 Turbulence

For unstable atmospheric c-.%nd;tions, amplified displacement of air particles from their
initial positions due to buoyancy forces cannot increase without bound. Turbulence is the
mechanism by which the effects of instability are constrained through the mixing of hot and
cold air particles, which produces equilibrium locally. The appearance and disappearance of
turbulence with changing atmospheric stability involves a hysteresis effect, but it is
predicted to occur at the critical Richardson's number, related to the log-linear mean wind

profile constant:

R. = _ 0.222 for i, =4.5
'CRIT'a
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The equations of motion for turbulence have been developed from the Navier-Stokes
equations, but the severe nonlinearity of these equations has prevented their solution. Even
if they could be solved, it is questionable as to whether they could be practically applied.
From observations relating to these equations, some characteristics have been determined:,

Turbulence transports energy from large eddies, where it is generated mechani-
cally and thermally to smaller eddies until it is finally dissipated viscously.

* Turbulence can only occur nonlinearly in three dimensions.

e Turbulence is diffusive and far more efficient for the transport of mass,

momentum, and heat properties than molecular motion.

e Turbulence is a continuum having a smallest dynamically significant scale much
larger than molecular or intermolecular dimensions.

o Turbulence is approximately an equilibrium phenomenon for homogeneous
terrain having very low rates of change of kinetic energy.

* The diffusive, continuous, and equilibrium characteristics tend to produce
homogeneity for turbulence in a horizontal plane.

Using these properties of turbulence, a statistical description of turbulence is developed
(Sce. 2.4.1). The basic statistical function is the average product of two turbulence
components measured at two points of time and space, the correlation function:

Rij(t I,. ui(t IP )uj(t2, F0

When cl r., (measur d at the same point in space) and tI t,, (measured at the same
tiII.0, the correlation function becomes the covariance. When. in addition, i=j. the
correlation function is the variance.

B, invoking homogeneity (turbulence properties independent of absolute position in space)
and stationarity (turbulence properties independent of absolute time), the parameters
reduce to just th.' t;isplaceinents in position and time between the measured components:

Ri.[t 1!, t2 , rI, r-)) = R( ,, '

T" = -tI

By additionally applying Taylor's hypothesis (frozen field concept), which assumes airplanes
fly at speeds large compared to turbulent velocities and their rates of change, the time
displacement can be related to a component of the position aisplarement, leaviag statisticai
tuibulence properties defined only in terms of space.
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The correlation function can be transformed into the three-dimensional spectrum function

by applying the Fourier integral:
00

Oij(l) "- Wj e ol d
11r3fij

The parameter 1 is the spacial frequency vector having units of rad/ft and is related to
distance as temporal frequency in rad/sec is to time. The transformation can be reversed by
the inversion formula:

SRij(0) = f 8ij (I~ dal
-00

When t= 0, the correlation function becomes the covariance and the spectrum function can
be seen to be the distribution of the covariance with spacial frequency:

aij= fe(I-)d i
-00

Simulation of turbulence can be performed only by a temporal process, but only one
component of spacial frequency (that in the direction of flight) can be related to time or
temporal frequency through Taylor's hypothesis, w =521 VA . To obtain a spectrum function
in terms of the component associated with the coordinate in the direction of flight (41(11)
integration of the spectrum function over the other two components is performed. Then

oij2 =f4(92! )d !
-00

Important characteristics of the one-dimensional spectrum function, *ii~fl ), have been
derived by Batchelor for the special case of isotropic turbulence (See. 2.4.2).for which the
statistical properties of turbulence are invariant with coordinate system rotation or
translation. Batchelor showed that there were but two one-dimensional spectrum functions:
one for two parallel longitudinal turbulence components (components aligned to the vector
-uparating them), Opp(fl ! ), and one for parallel transverse components (components
normas to the vector separating them), *NN(2I ). All spectra for orthogonal components
are zero. The variances for all components are equal. The two spectra are related by

d 4,pp(fll)I
@NN( 1 . PP(Sl I "S21 dal

Determination of one of the isotropic spectrum functions provides the other.
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Corresponding to the two spectrum functions are two nondimensional (divided by variance)
scalar correlation functions: one, f(t), for two parallel longitudinal components, and the
other, g(V), for two parallel transverse components, which are also interrelated:

f( ) = u_

"2

UNIg(l) =

t df()

The fundamental correlation functions are analogous to serial correlation functions.

A measure of the average eddy size, the integral scale (Sec. 2.4.2.3) may be determined from
the fundamental correlation functions:

Lp = ff)dt
0

LN - f t)dt

For a separation distance, t. equal to the integral scale, the area under the corresponding
correlation function is divided into equal parts. Through the relationship between the
fundamental correlation functions, it can be shown

Lp = 2 LN

The integral scales provide means for normalizing distance. It is then l.Vstulated that f(Q/Lp)
and gQ/L N ) are universal functions. The one-dimensional spectrum functions must
correspondingly have the form

d, ~4ii(121l ) 0ii-G(Li, Li,'2I

That is, spacial frequency appears only in combination with the integral scales.

Theory and empirical investigation have led to additional requirements for the isotropic
one-dimensional spectra (Sec. 2.4.2.4):

* The high frequency asymptotes (excluding viscous dissipation) of the spectra are
of the form O)ii( 1I) ,,- 5 3 . This leads to a ratio of the transverse-to-
longitudinal spectrum equal to 4/3 at high frequencies.
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* The low-frequency asymptotes are frequency invariant. This leads to a ratio of the
transverse-to-longitudinal spectrum equal to 1/2.

* Isotropic spectra must be symmetric about $i = 0.

A number of isotropic spectra forms have been proposed. The best-known forms for
aeronautical applications are the Dryden and Von Karman forms, presented with related
functions in Figure 1-20.

The Dryden form is simpler and is based on an exponential shape of the fundamental
correlation functions. The Dryden function fails to meet the high-frequency requirement.

The Von Karman forms result from a curve fitting expression for the energy spectrum and
satisfy all isotropic requirements. In numerous investigations the Von Karman forns have
been shown to be superior to the Dryden forms. The Von Karman one-dimensional spectra
are those accepted for the model.

Although high-altitude turbulence is well represented by isotropy, low-altitude turbulence
(Sec. 2.4.3) is clearly nonisotropic. Specifically:

0 The statistical functions describing the field of turbulence are not invariant with
coordinate rotation; variances of turbulence components are not equal and the
longitudinal and transverse integral scales vary with coordinate rotations.

• Low-altitude turbulence exhibits a lack of homogeneity with altitude; the
variances and integral scales of turbulence vary with altitude.

* A non-zero correlation between turbulence in the direction of the mean wird and
vertical turbulence has been found. Isotropic turbulence requires zero correlation
between orthogonal components.

There are, however, limited conditions of isotropy found to hold for iow-altitude
turbulence:

e At sufficiently high spacial frequencies (short separation distances), low-altitude
turbulence is isotropic. This is referred to as "local isotropy" and requires the
high-frequency spectrum asymptotes to be invariant with coordinate rotations.

* The existence of a single non-zero correlation function between the downwind
and vertical components of turbulence is compatible with horizontdl isotropy
(invariance of the horizontal statistical functions with rotatioi, s of the axis system
in the horizontal plane). Horizontal isotropy must be viewed as an approximate
characteristic for low-altitude turbulence, for the variance of horizontal turbu-
lence perpendicular to the mean wind is frequently reported as being somewhatgreater than the variance of the component in the direction of the me'n wind.

The spectra that have been developed specifically for low altitude tend to be for small
regions of altitude near the surface and do not tend to full isotropy at higher altitudes. A

41



Von Karman Dryden

Longitudinal correlation function:
/3= 21/3 - L

Transverse correlation functions:

2 2/3 (1.) 1/3 2/3(Tt) I
7(0/3) aL[Vt(&-t ().*1

Longitudinal one-dimensional Iower spectrum:

02L1 O2 L

2(a oS1) ] 1

Transverse one-dimensional power spectrum: 2

OIL 1 + 8/3 (aLkI)2  "°2L +L
'4NN "2w11 +(a L1)2 ] 1'116  N )2 ]

Energy sp, "rum:

E (2) -55 02L (aLI2)4  E (a) =8 2L (L2)4

gff~ [I +(111)2176]

Definitions:

a 1.339

'I ppsnd 4NN suchthat 0 2 f - ppdfll -: *NNdS',

L-f f (t)d I- 2f Q) d j
0 0

1/13(k ;,nd K2/ 1 t \ore modified BselI functions of the second kind.

FIGURE 1.20.- VON KAFMAN AND L.7YDEN CORRELATION AND SPECTRA FUNCTIONS
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frequently employed technique that is employed in this report is to adopt isotropic spectra
for low altitude by permitting the variances and integral scales to be different for each
component. The Von Karman spectra are used. These low-altitude forms become:

OL2LU
0uLI ) uLu I__________

1 +(1.339 LuS21,215 /6

2Lv + 8/3 (1.339 Lv21 )2

11 +(I.339Lv il2i

ow-L w  I + 8/3(1.339 Lwal )2

[+ (.339LW12h/

These spectra were all originally written in terms of the longitudinal integral scale, which is
twice the transverse integral scale for isotropy. so L and L must be redefined as twice the
area under the corresponding correlation functions.

Although a cross spectrum, Ouw + has been found to exist and was modeled in Section
2.4.6.5. it has been concluded that the cross spectrum has a significant magnitude only at
frequencies too low to be important.

The spectra in terms of temporal frequency are obtained by substituting Q, W/VA
(Taylor s hypothesis) and by requiring the variance to be the same in either domain:

oi -= i(w)d w 2--f i(12 i )dSI i
-001 -00l

Then

V
A  I A )

When a random variable is modified by a transfer function, the output spectrum is given by

O(w)= M2(W)0N ) (Sec. 4.2.1.3.1)

where:

do) = output spectrum
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M(wJ) amplitude frequency response of the transfer function

4N(W) -- power spectrum of the random function or noise

Turbulence is represented by finding a transfer function such that

M( ) = VN(w)

where the output frequency response is equal to that desired. When white noise is used,

4N = I by definition. Then to match a desired power spectrum, it is only necessary to find
a transfer function with a frequency response equal to the square root of the spectrum.

It is not possible to exactly reproduce the Von Karman spectra with linear transfer
functions (filters) due to exponents of frequency that are noneven integers, so an
approximation is sought.

The significant criteria for evaluating an approximation to a power spectra is to require the
contribution of each incremental frequency range to the variance to be correct for the
frequency range in which the airplane's response is important. Directly plotting O(w) versus
t lacks resolution over the entire frequency range. Plots of wl(w) versus log (W) provide
the necessary resolution and the area under such a curve is also equal to the contributior to
the variance:

Log w.2
1 0 f i fg w wO(l )d(log w)

WiW
The validity of transfer functions representing spectra may be asse-sed by comparing plots
of this type for the transfer function frequency response squared and the power spectrum.

Filters exactly duplicating the Dryden spectra are often assumed to match the Von Karman
spectra well for rigid airplane responses even though it is conceded the Dryden spectra are
not substantiated by theory and empirical evidence. This is seen not to be true in Figure
1-21, for the Dryden spectra provide greater contributions to the variance than the Von
Karman spectra by as much as 25% at frequencies where con'tributions to the variance are
greatest. Approximate filters that do a much better job of matching the Von Karman
spectra are presented in Section 4.5.3.3 and in Figure 1-22 (where the corresponding
mechanizati,)n is also shown). Comparisons of the filters in Figure 1-22 with the Von
Karman spectra are shown in Figures 1-23 and 1-24.

The white noise may be generated by either hardware or software (digitally). There are
several methods available, as discussed in Section 4.4.2, each with different shortcomings.
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When the noise is generated digitally, it is only approximately random and the noise
spectrum is only approximately flat and equal to one. The digital generation of white noise
consists of three main steps:

I) Random numbers having a uniform distribution between 0 and I are generated.

2) From the uniform distribution, the distribution assumed to hold for turbulence is
generated.

3) The noise thus far produced will have a unit variance and a spectrum amplitude of
At/2r (At = frame time or sampling interval) no matter what distribution is used
in 2). To provide white noise for which the spectrum amplitude is one, the output
from 2) is multiplied by 5

Turbulence velocities within a single patch of turbulence are assumed to form a Gaussian
distribution (Sec. 2.4.1.2). Although the distribution of turbulence velocities for the sum of
all turbulence patches have been shown to be non-Gaussian, this is not inconsistent with a
Gaussian distribution for a single patch of turbulence.

The simulator model for turbulence in Figure 1-22 lacks definition of the variances and
integral scales. The measurements and theory for these statistical parameters of turbulence,
measured in an axis system aligned to the mean wind, are presented in Sections 2.4.4
and 2.4.5.

Dimensional analysis leads to a description of the vertical turbulence standard deviation for
unstable condition given in Section 2.4.4.2. 1:

Ow clk h8VW D )3h1/3

D and C are constants

For neutral conditions where the nondimensional shear at the surface (kh/u.)!8)Vw/8h) is i,

!-= 1.3=C
U

is well accepted. For extremely unstable conditions, the nondimensional shear is negligibleand the equation reduces to

-- = D - 11

= 49



The constant D is well represented by 1.7, hence

The nondimensional shear has been described as a function of h/R' only, ,o Ow/u* is also
completely described by h/R'. For near neutral conditions and slightly stable conditions, the
shape of ow/U, versus h/2' has been made to match that of measured data. The standard
deviation of vertical turbulence is reduced abruptly beginning at h/2' = I, above which the
nondimensional shear is constant, to Ow/u* = 0 at h/' = 1.22, which corresponds to the
critical Richardson's number (RicRIT = 0.222). The combined description for O..u* is
presented in Figure 1-25, The procedure for computing the rms level of turbulence vertical
to the earth is:

Uk (u* ITh)

0 uu*

V(0 0

where:

tudeteriined for the mean wind model

II,-h

* = I- as determined from the mean wind model

d = 2000 u ,0 as determined for the mean wind model

The standard deviation for vertical turbulence is describen as being proportional to the mean
wind speed at 20 feet, as decreasing and finally disappearing with increasing atmospheric
stability, and as tending :oward zero as altitude approaches the boundary layer. The
variatiot4 of ow with altitude !or dif'cent surface wind and atmospheric stability conditions
is shown in Figure 1-26.

)imensional analysis relationships for the variances of horizontal components of turbulence
have not had good empirical support. At the surface, the magnitudes of the horizontal
components are significantly greater than magnitude of the vertical component with the
compolncnt in the direction of the mean wind frequently reported as greater than the
horizon:i/oii con)jonelit normal to the mean winld. The data in Section 2.4.4.2.5 do not
indicat, any clear relationship between the variances for the horizontal turbulence
components but do show them to be approximately equal, so horizontal isotropy (ou = Or,
LU = Lv) is assumed. This enables describing turbulence characteristics according to whether
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FIGURE 1-25.- ow,/u VARIATION WITH STABILITY

turbulence components are vertical or horizontal. A corresponding change of nomenclature
is adopted: oV replaces Ow, Lv replaces Lw , 0 H replaces ou and or, and LH replaces Lu andLv (subscripts H and V refer to horizontal and vertical compo;aents).

The change in nomenclature aids in differentiating between turbulence components aligned
to the mean wind and turbulence components aligned to other axis systems.

It is assumed that the horizontal components of turbulence have variances that change
identically with stability. Qualitatively, this is not correct, but any other quantitative
descriptions based on the information in hand would be just as arbitrary but more complex.

I~ As a result, the standard deviation for horizontal turbulence may be described by

=1 0H

At the surface oll/o V = 2 is a good compromise of the data. Above a sufficiently high
altitude where complete isotropy begins, hl, OH/OV = I. There is little information to
describe the variation of OH/OV with altitude, so in Sections 2.4.6.3 and 2.4.6.4 an
interpolation equation,

f I={10 0.4 1 < <hI  (Fig. 1-27)

{ 1O i77+0.823
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FIGURE 1.27.- SELECTED DESCRIPTION FOR VARIANCES OF
HORIZONTAL TURBULENCE COMPONENTS
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was developed that is qualitatively similar to other variations proposed.

Implied estimates for the altitude above which isotropy exists (hl ) range from 300 to 2500
feet. The latter number is an extreme. A value of hI = 1000 feet is chosen, is adequately
supportable, and provides intetral scales comparable with other models.

The integral scale for vertical turbulence is predicted by dimensional analysis to have

the form

LV = [B(Ri)I h (Sec. 2.4.5)

That is, the vertical turbulence integral scale is linearly related to altitude with the
proportionality constant dependent upon stability.

The atmospheric stability dependence of the proportionality constant is apparently weak, at
least for a wide range of stability conditions, and is assumed to be constant. Estimates for B
range from 0.125 to greater than 4, with most estimates centered about 0.5 and I. Unit
proportionality is assumed. The estimates about 0.5 may be for the literal definition of
integral scale equal to the integral of the correlation function rather than the redefinition of
twice that area. Hence, the estimates of 0.5 may be consistent with the unit proportionality
assumed for the redefinition. In keeping with isotropy about 1000 feet, LV = 1000 feet for
h ;0l000 feet.

The integral scale for horizontal turbulence is the parameter for which knowledge is poorest.
It may be derived from the condition of local isotropy a, low altitudes, which can be shown
to require (Sec. 2.4.3.1):

LH = H LV  (Fig. 1-28)

This description prtvides a horizontal turbulence integral scale greater or equal to that
vertical turbulence. At the surface, LH = 8 LV . Above 1000 feet, where isotropy is assumed
to exist, the integral scales are equal. These characteristics are in agreement with
observations (Sec. 2.4.5.3).

There !Z an inconsistency in the turbulence model developed: the power spectra are for
turbulence components aligned to the airplane's velocity with respect to the air mass and
the standard deviations and integral scales are for turbulence components aligned with
respect to the plane of the earth and the mean wind heading. Both sets of components can,
in general, coincide only for an observer whose position with respect to the earth is fixed.
This inconsistency of axis systems is examined in Section 4.3.

One exact approach for resolving the differencs in axis systems consists of transforming the
variances and integral scales from the mean wind axis system to the axis system attached to
the relative wind where the spectra shapes are known. Turbulence components would then
be generated in dihe relative wind axis and transformed to the body axis. Transformations for
the integral scales and variances have been developed, but are quite complex. Complete
tensor transformations have been developed and reveal that when the airplane'., relative
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FIGURE 1-28.- SELECTED INTEGRAL SCALE DESCRIPTION
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velocity is not aligned to the mean wind and when wings are nonlevel, nonltgligible
cospectra exist in the body axis (components of body axis turbulence are correlated). Since
the power spectra shapes are in general not known in the mean wind axis system and the
cospectra forms are not known for a body axis system, the exact method cannot be
perforined.

Errors from approximate methods were examined. It was revealed that for low-altitude
turbulence, it is much more important to have the correct alignment for the variances and
integral scales than for the spectra shapes. The greatest error in the spectra magnitude at any
frequency for tuibulence normal to the airplane that can occur due to misalignment of the
spectra shape is a factor of 2, while the greatest error possible due to misalignment of the
statistical parameters is a factor of 64. The best compromise found was to generate
turbulence in an axis system that is in the plane of the earth but aligned to the heading of
the airplane's relative velocity vector with the filters in Figure 1-22 and the specified rms
levels and integral scales. The components of turbulence are then transformed to the body
axis system. The transformation required is presented in Figure 1-18.

When the aircraft can be adequately represented as though the aerodynamic forces and
moments were concentrated at the center of gravity, turbulence affects forces and moments
through the computation of body axis velocities relative to the air mass:

[ JLIA It t~w. Uw Cw+ UT

[ vA = W UW 
= W  T

vA  = v~ -v w . vw =W + "'T

wA - w-wW.ww w+wT

VA = uA + vA + wA

u, v, w = inertial velocity components along the x, y, and z body axis
coordinates

uA vA wA = components of airplane vvlocity relative to the air mass

uW vW wW = components of wind relativ,.c to the earth

5W. vW wW  = components of mean wind relative to the earth

uT vT wT  = components of turbulence velocities relative to the earth

The relative velocity components are used to determine the parameters, which in turn
determine the aerodynamics forces and moments:

ot = tan 1- = angle of attack
uA
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= ' sideslip angle
A

= VPVA2 = dynamic pressure

* uAw WAu

uA  + wA 2

2 2 _

VAVA + WA2

Note that for the point representation, CiW = W = W =-0.

The attenuation of the high-frequency response of forces and moments due to the fact that
lift cannot respond instantaneously to changes in angle of attack (unsteady aerodynamics)
can be handled approximately through use of the Kussner and Wagner lift growth functions
in the manner described in Section 4.2.1.3.4.

In general, it is not adequate to assume the aerodynamics m.y be represented by a point for
the purpose of simulating the effects of turbulence; there is a distribution of turbulence
about the airplane that causes a change in the distribution of lift. The point representation
has been estimated in Section 4.2.1.3.3 to be accurate only up to:

AI  > 20t T

W < 60Ffor tailless aircraft or for the wing only

or < 0.1 VA/VT
VA

< 0.05 -=- for tailless aircraft or for the wing only
c

A2  > xb

where:

A1,X2 =  wavelengths in the longitudinal and lateral directions, respectively

9 = tail length

b wing span

F mean chord

Only one method of representing all the distributed lift effects suit.ble for simulation has
been found. This method represents the distribution of turbulence linearly, just as was done
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for the distributed lift effects of the mean wind. The derivatives of turbulence with respect
to the coordinates are related to effective angular components of turbulence:

Effective Turbulence Angular Velocities

Wing Tail

awT 3v-r
PT ay PT = z

awT BwT(IqT x rT a=

T a UT aVT
rT  a-- rT ax

PT' qT' rT effective body axis roll, pitch,
and yaw rates due to turbulence
with respect to the earth

The effective angular velocities are generated through matching the spectra for the
turbulence derivatives and their cospectra with the linear velocities of tUrbulence in a manner
similar to that used for generating linear components of turbulence.

The effective angular velocities affect body axis forces and moments in the same way as did
the lir',ar components of turbulence. For example, the yaw rates of the airplane with
respect to the air mass are computed by

rA=r-rW, rW = 'W 
+ rT

Separate yaw rates for wing and tail are computed as the effective yaw rates of the wind are
different. A total force or moment due to yaw rate is the sum of the contribution of the
wing force or mnment derivative with respect to yaw rate times the wing yaw rate with
respect to the aih ma.s and the contribution of the tail to the force or moment derivative
with respect to yaw rate times the tail yaw rate with respect to the air mass.

At lower and lower turbulence frequencies, the linear representation of the distribution
becomes exact. The linear distribution becomes poor at high frequencies: relating effective
angular velocities to turbulence derivtives "oduces infinite variances of angular velocities
due to the error of the representation at high frequencies. The spectra for the angular
velocities must be attenuated at high frequencies or truncated.

A comparison of representing the distribution of turbulence in this manner with the point
representation is made in Section 4.2.1.3.3. It is cuncluded that a factor of 10 improvement
in the maximum frequency to which the representaltion is valid occurs for representing the
longitudinal distributions. However, no improvement over the point representation occurs
for representing the laicral and vertical distributions. This does not mean that the lateral ajhd
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vertical distributions of turbulence are insignificant just that they can't be accurately
modeled. However, from a simple analysis in Section 4.2.1.3.3, it is concluded that the
rolling moment due to turbulence roll rate will generally be insignifica|st compared to the
roll rate caused by the lateral component of turbulence.

The power spectra and cross spectra for turbulence pitch and yaw rates that provide
longitudinal distributions of turbulence are represented by simply filtering the vertical and
lateral components of turbulence by

SV 1+ - W.V

AI s;
rT = A  

4 qT VT

A

The terms I/VA s w1 and I/VA ,- v. represent the derivatives of turbulence with respect to
the longitudinal coordinate:

3 adt I
x atdx VAs

, = Laplace transform operator

The additional filter

4-1

attenuates the effectvce Ingular velocity at the maximum frequency to which the
representation is valid assuming eight straight line segments are tile minimum number that
can adequately represent a sine wave. That is, the effective angular velocities are attenuated
at a frequency corresponding to a wavelngth that is eight times the distance over which the
distribution of turbulence is provided. The power spectra that result are shown in Figure
1-29. There are also body axis accelerations due to distributed lift:

4
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auT dx % r s 1
" ax Lit i 4 T 

avT dx s
VT ax It VT

+ irVA J
awT dx _ s

-'x (I =  4T wT

IFAJ

To accommodate the linear accelerations due to turbulence, the equations for & and are
revised to

Ot = u A wA "WAuiA* UAWA2WA
I

V 2 . 2 "AVUA + vA

where

6A = Cl" (UW + l T)

;A = - (vW +  T)

WA= w-(w + T)

For the representation of' the longitudinal distribution of turbulence only (gust penetrd'-
tion), there is an alternate technique based on the frozen field hypothesis. The turhulence
velocities may be considered to be frozen with respect to the air mass as rates of change of
turbulence velocities are small compared to the speed and dimensions of an aircral't. The
turbulence velocities that strike the airplane at its center of gravity will occur at the tail a
thme At = Q/T/VA later. The turbulence at the tail may be represented on a digital simulator
by storing turbulence velocities occurring at the cg for the appropriatL time lag, then using
them for turbulence velocities at the tail. If digital noise generation is used, two identical
random number sequences displaced in time by At = QT!VA may be used. Additionally,
linear filter representations for a transport lag are provided in Section 4.2.1.3.3. Separate
buildups of aihgle of attack, sideslip angle, and dynamic pressure are provided for the tail.
and the forces and moments due to the tail are built up separately from those. due to the
wing-body. This method is described in more detail in Sections 4.2.1.3 3 anti 4.5.5.
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The highest frequency to which gust penetration is accurate using the transport lag
method is

0< A
c

which may not be as good as the restriction for the hnear distribution method of

< 0.5 VA

The two methods mey be combined by separate wing and tail representations using the
transport lag plus a linear distribution representation for the wing. The maximum frequency
then increases to

VA

The need to provide more and more accurate representations, or rather the sufficiency of
any approximation, depends on whether the variance of airplane motion parameters are
significantly altered. Some considerations involved for determining the sufficiency of an
aporoximation are provided in Sections 4.2.1 .3.1 and 4.2.1.3.2. Approximations that can be
shown to be conservative may be acceptable for certification but provide economic penalties
due to overdesign. Care must be taken to demonstrate the suitability of assumptions. As the
airplane descends, the frequency at which the greatest turbulent energy occurs changes by a
factor of 50. drastically altering the response of the airplane (See. 4.2. 1.3.5). Generally, the
lower the speed of an airplane, the more accurate the representation required and the
greater the coupling between forces and moments along one coordinate with wind and
turbulence zomponents along another coordinate (Sec. 4.2.1.3.5).

Finally, care must be taken with the way data are analyzed. Far fewer simulations than
conventionally performed may provide a more precise statement of results with fewer
assumptions (Sec. 4.6).

1.4 WIND MODEL FOR AUTOMATIC LANDING SYSTEM CERTIFICATION

The applicant should account for the aerodynamics of the airplane being evaluated including
aeroelasticity, plus the distributed lift effects of steady winds and the longitudinal
distribution of lift due to turbulence, unless it can be shown that these effects are
insignificant.

The surface mean wind is defined as that at 20 feet above the ground. The automatic
landing system need not be certiied for surface wind speeds exceeding 25 knots nor for
tailwind components exceeding 10 knots. The probability distribution of surface wind
speeds (V, 0 ) is presented in Figure 1-9. The probability distribution for the direction to
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which the wind is belowing, (jW 1, is presented in Figure 1-19 and is uncorrelated with the
surface wind speed. The probability distribution of atmospheric stability as defined in terms
of Richardson's number, (Ri 20 ), is correlated with wind speed and is presented in Figures
1-15 and I-l6. The stochastic combinations of surface wind speed and heading and
atmospheric stability may be generated by the modei in Figure 1-30.

Wind
heading
probability

Random
number
"Wmator,
uniform Windspe

distribution probbiliy

'20

probability
FIGURE O-30.- PROBABILITY MODEL SCHEMATIC

The mean wind at any altitude is computed from the equation:
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u*.)/k

d = 800 -I V 2 0

h < d no matter what the actual altitude

I/R' is given in Figure 1-31 as a function of Ri2 0

110/2'), g(h/£') are described in Figures 1-4, or 1I-5 and 1-8, respectively.

The mean wind shear at any altitude, needed only to define the distributed lift effects of the

inean wind, is given by

ah VT 20-1

where (h/1') is described in Figures 1-2 and 1-3, and where, once again h <d no matter
what the actual altitude.

The power spectra for uncorrelated components of turbulence in an axis system parallel to
the earth but aligned to the direction of the airplane's airspeed vector are given by

Oli 211-1 1(ft/sec)-
IrVA Il +(l.339LHwIVA)215 rAd/sec

I4

OHl-ltI I + 8!3 1.3 3 9Lll/V A)2  (•t/sec)-
2rVA "7V 2111/6 rad/sec

Il +(l.339LIiw/VA)- J

OV2LV I + 8/311.339LVw/VA) 2  (ft/sec)-
,i 2tTVA 1 3 (l.339Lvw/VAI)2 1/6

where the spectra are defined such that
CO a

~oo -00

= variance of a horizontal component of turbulence

Ow2 =f 4( w)dw = variance of the vertical component of turbulence and where
-00
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0y .4V o( ) (0 h) (5)
Ov
- elined on FIgure 1-25 is a function of h/Q'

, ll given as function of altitude on Figure 1-27.

LV= h h<1000ft

LV1
S1000Oft ,l > 1000 ft

The spectra art well represented by generating turbulence components equal to passing
un:orrelated (;aussian white noise through the filters in Figure 1-22.

Body axis :omponents of mean wind, mean wind shear, and turbulence are found by means
of t!e transformations in Figure 1-18.

The interrelationships between the comp6nents of the wind model and tile other elements
of the simulation are described in Figure 1-32.

This model is compared with the current British, FAA, and military models in Appendixes
I-A. I-B. and I-C.
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APPENDIX IA

COMPARISON OF PROPOSE0 MODEL WITH ARB MODEL

This appendix provides a comparison of the model proposed in Section 1.4 with tile Air
Registration Board (ARB) model defined in the following refcreace: "Air Registration
Requirements," Paper No. 367. Issue 3. June 1970.

MEAN WIND

The ARB mean wind model provides for a mean wind variation with altitude given by

Vw  =VE 0 .4 3 loglo 1) + 0.3 51:

VREI: = Vwh 0 meters)

which can be rewritten as

k k 0

0. 0. 15 uet

*. O = VREF7- T0In32.18/0.1IS)

'Fie proposed model. given by

VW 0 \I~ z'o- + f  h

k 7ijjjij7 j -i-f
Zo 0=O. 15 feet

"\' zoF +

1REI = 20 feet

Prec;tding page blank
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reduces to approximately the same form when ntiutr.i stability (h/9' = 0) and low altitudes
(hid 9! 0) are assumed:

LI* I +1.
REF 0 In( ZO)

The only other difference is that the ARB model uses a wind speed measured at 10 meters,
the British standard, while the proposed model uses a wind speed measured at 20 feet. the
American Standard.

The explanation for the ARB mouel assuming neutral conditions appears to be contained in
the following statement contained in the reference:

"Large wind shears can exist in stable conditions, which usually occur at night
with wind speeds less than 20 ft/sec. However, these will be less severe
circumstances overall, since the turbulence will then be less..."

The qualitative explanation of the effect of stability agrees with the proposed model. The
above statement implies that turbulence and wind shears have the same effect, which does
not agree with the analysis performed in Section 4.2. Even though the reference is
concerned with determining the risk of a fatal landing, the above statement implies that this
risk must be determined with the most severe wind conditions, an attitude that leads to
Overde:;ign. The use of atmospheric stability in the proposed model is an attempt to provide
wind conditions as they appear: since about 70'. of the cases for the proposed model are for
stable conditions, the proposed model will tend to be less s:vere than the %.RB model if the
above statement can be believed.

The term (hId) g(h/V) was provided in the proposed model to ensure the shear diminished
to zero at the edge of the boundary layer. Since no comparable term exists in tlhe ARB
model, the ARB model will provide greater shears and wind speeds at high altitudes. This
difference is unimportant it' tile wind and wind shear above tile a1!tiudes where (hi/d) g h/V')

is significant has no effect on touchdown performance. The parameters most likely to be
influenced by high-altitude wind conditions are the touchdown dispersion parameters.

Because the mean wind speed increases with altitude and the probabilistic distribution of'
reference wind speeds (VREF) for the ARB model is presumed to be measured at a higher
al.itude than is the data for the proposed model. it would bt expected that I-or a given
exceedance probability the ARB description would provide the higher re-fcrence wind
speeds. This relationship has been found to hold. as seen in Figure I A-I. The AR13 model
provides an average wind speed of 9.1 knots at 10 meter,. Using the neutral stability ARB
model, the average wind speed at 20 feet is

Vol)20)9.1 In( A~~
Vwh = 0 3= I= $,3 kt.
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which is reasonably close to tile 8-knot average wind sp-'ed at 20 feet provided by the
proposed model. The lack of precise agreement can be atiributed to the following.

I ) The average level of atmospheric stability is more stable at lower altitudes. Since
wind speed decreases with increasing stability, the average wind speed at 20 feet
would be less than would be predicted by a constant atmosphere stability model
such as the ARB model.

2) The data employed by the two models are different, measurea at different
locations.

The ARB wind speed exceedance probability data is said to be ... based on worldwide
in-service operations of U.K. airlines (sample size about 1,000)." 4

'fThe technique of taking data corresponding to in-service operations is superior to the
approach taken for the proposed model if the simpl,!s were random. for conditions at a
specific airport would tend to be weighted according to the activity at that airport. Whether
or not the samples were taken randomly is not known. Although the ARB model p,:sumes
the wind speeds were taken at 10 meters, anemometer heights vary widely from airport to
airport. Even if the average anemometer height were 10 meters, deviations of individual
anemometers from 10 meters would influence the tails of the distribution. The main
advantage of the probabilistic description of wind speeds in the proposed model are the
constraints of anemometer heights and the much larger data sample (about 170,000 data
points), which provides a better description for the more remote exceedance probabilities. S

For six-degrec-offreedom simulations, the distribution of wind heading is needed as well as
the distribution of wind speed in order to provide the combinations of down-runway and
cross-runway wind components in proportion to their joint probabilities. If" separate
down-runway aid cross-runway wind component distributions are provided, then the
correlation between the components must also be provided. If ,eparate longitudinal and
lateral-direction simulations can be justified, only the distributions for down-runway and
cross-runway wind components are needed.

The heading and wind speed distributions were provided in the proposed model.
Distributions for the components were also developed during tle study. The ARB model
provide.- a strange combination of data: the d:tributions of the total wind speed and for the

cross-runway component are provided. This information is incomplete for either six-degree-
of-freedom or separate longitudinal and lateral-directional simulations.

The ARB model does not explicitly provide an equation for the wi;'d shear at any altitude
nor does it mention accounting for the distribution of the mean wind over the airplane.
Hence, the ARB model implies the distributed lift effect,; due to the mean wind are
insignificant. From the analysis in Section 4.2.1.2, it can be concluded that the significance
of the distributed lift effects due to the mean wind are configuration dependent.
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TURBULENCE 

The ARB turbulnce model employs the same power spectr ,m form for all three
components:

2 2L I

- I + (Lf 1 )2

This form corresponds to the one-sided Dryden spectrum for the longitudinal component of
turbulence. By one-sided, it is meant that the spectrum is redefined to provide

02_ f c'i) d12 1
0

rather than the literal definition of the power sp,!ctrum, which provides

02 = f 40121) d121.

If a turbulence tilter operating on %,hire noise is made to match the one-sided spectrum,

iG IS) V I + LS/VA'

the resulting variance will be high by a factor of two.

The use of a single spectrum for all three turbulence components prevents turbulence from
nmeeting well-established requirements:

* Local isotropy f isotropy at high frequencies) will not result

* Turbulence will not tend toward isotropy for increasi g altitude

Failure to meet these requirements means the relationship between the transverse spectra to
the longitudinal spectrum is incorr..ct.

The Dryden longitudinal spectrum was found to be inferior to the Von Karman form in
Section 2.4.2.4 and was found to be a poor approximaticn to the Von Karman form in
Section 4.5.3.3.

!5The ARB model defines rms turbulence intensities and integral scales relative to the mean
wind, just as was done in the proposed model. However, the reference does not indicate how
to resolve the problem of spectra defined for components aligned to the relative wind and
turbulence parameters defined relative to the mean wind.

/
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Vertical rms turbulence in the ARB model is 9% of the mean wind speed ait 10 meters and
horizontal rms turbulence is twice the vertical turbulence level. Rms intensities are defined
as invariant with altitude and are said to be representative for neutral stability.

In the proposed model, vertical turbulence decreases slowly with altitude and horizontal
turbulence decreases more rapidly with altitude until it is equal to the level of vertical
turbulence at 1000 feet. All propoyed turbulence levels increase with decreasing stability in
the same manner. At the surface, horizontal rms turbulence i!. twice the level for vertical
turbulence. just as for the ARB model. For neutral conditions, !he proposed model provides
rms vertical turbulence equal to 10.6'/7 of the mean wind speed at 20 feet. For neutral
conditions, the wind speed at 20 feet is 91.3% of the wind speed at 10 meters. Hence, the
proposed model provides rms vertical turbulence equal to 9.77 of the man wind speed at
10 meters. which is close o the level specified in the ARB model. Near the surface for
neutral conditions, the two models provide for nearly equal rms intensities.

The failure of the ARB model to provide for the effects of atmospheric stability on
turbulence, the decrease 0f turbulence levels with increasing atmospheric stability, and the
evidence indicating the atmosphere is stable for a majority of the time mean the ARB model
is overpredicting he average level of turbulence. The invariance of ARB turbulence levels
with altitude means the ARB model tends to overpredict turbulence levels away from the
su rface.

The reference provides for turbulence generated by a Gaussian process, but qualifies the
acceptability of the Gaussian distribution with the following statement:

"Whilst giving an adequate description of measured wind decreases, the Gaussian
model underestimates the probability of large wind increases. In accepting the
Gau,.sian model the assumption has been made that critical touchdown
pt'rformance parameters are primarily influenced by wind decreases."

The quali;'ication is unnecessary. Although evidence shows that for the sum of' all patches of
turbulence the distribution of turbulence is non-Gaussian. there is nothing to indicate that
the distribution of turbulence velocities for a single patch of turbulence (that which is being
simulated, is anything but Gaussian (Sec. 2.4.1.2).

The ARB model specifies an integral scale for vertical turb,|lence equal to the altituld'-
except below 30 feet. where it is 15 feet. Why the vertical ttrbulen.,: integral scale is held
constant near the surface is unknown. Above 30 feet, the ARB vertical turbulence integral
scale is hall' that in tile proposed model. This causes the turbulence Ior the ARB model to be
greatest abuut a frequency that is twice that for the proposed mod:.l. The use of the
longitudinal turbulence spectra for vertical turbulence reduces this dif'ferenc%!.

The ARB model specifies 600 feet invariant with altitude for the horizontal integral scale.
The reference states that this wa' ',termined by approximating a "mean smoothed"
spectrum from six I-hour runs (Fig. iA-2). The use of' I-hour runs implies the mean wind
was the average of' a I-hour %ample of data, ant turbulence is taken as the deviation from
that mean. One hour is a very lony period for determining tile mean wind ( 10 minutes is
more common). Within I hour, "mean" conditions vary and char4n'es in tile mean wind are
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M ean smoothed spectra at 100 ft for six 1-hr runs
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interpreted as turbulence. The effect is to overpredict the spectrum at low frequencies and
to overpredict integral scales. However, the ARB spectrum model underpredicts tile "mean
smoothed" spectrum at low frequencies, as seen iti Figure I A-2, to compensate for this
error. At 100 feet, the proposed model predicts an integral scale of 500 feet. which is not
far different from the ARB specification.

Although the reference implies the integral scale for horizontal turbulence changes with
altitude through Figure IA-3, no provisions for varying the horizontal integral scale with

altitude were made. In contrast, the itegral scale for horizontal turbulence increases with
altitude for the proposed model.

The best comparison between the two models is a comparison of the complete spectra,
including the specified rms levels and integral scales. Comparisons of 9 are made for the
three components aligned to the miean wind in Figures I A-4, I A-5, and I A-6. The ARB
spectrum has been divided by two to provide the two-sided spectrum compatible with the
proposed model. The areas under these curves are proportional to the variances of the A

components. Hence, the curves define the distribution of turbulence variance with
frequency.

The proposed turbulence model and the ARB model do not agree well for any of the
components. For the horizontal components (Figs. IA-4 and IA-5), the maximum
contribution to the variance at low altitudes is at a lower frequency for the ARB model than
for the proposed model. The vertical turbulence spectra compare much better at low
altitudes (Fig. I A-6). This is due to a cancellation of' dif'frences:

e The use of' the Dryden spectra causes the maximum value of Slw for the ARB

model to be greater, but the use of the horizontal turbulence spectrum for vertical
turbulence causes the maximum of 1"4w to be less.

e The use of a smaller integral scv,,, shifts the ARB specti: to higher freq,.encies but
tile use of the Dryden horizontal turbulence sp-'tiun for vertical turbulenceshifts the ARB spectrum bacL to lower frequencies.

Even though the rns lewvls provided by each model arc comparable at low altitudes, the
ARB model provides greater maximum values for 114u and SIO v thus the ARB model
provides for a greater concentration of' turbulent energy about the freqvency for
maximum l0.

At high 'r altitudes, the airplane response to turbulence is clearly greater for the ARB model.
The ARB model will generally have more severe airplane responses at low altitudes, although
the conclusion as to which model is most severe at low altitudes is heavily dependent upon
airspeed and particular airplane-control system characteristics.
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Mean smoothed spectra at various heights for six 1-hr runs
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APPENDIX IB

COMPARISON OF PROPOSED MODEL WITH FAA MODEL

This appendix provides a comparison of the model proposed in Section 1.4 with the Federal
Aviation Administration model- defined in the fviiowing reference: Advisory Circular
20-57A, "Automatic Landing Systems," Federal Aviation Administration, 12-January 197 1.

MEAN WIND

The rference requires demonstrating adequate touchdown performance for "reasonable"
combinations of headwinds up to 25 knots, tailwinds up to 10 knots, crosswinds up to
15-knots, wind shear of 8 knots per 100 feet from 200 feet to touchdown, and moderate
-turbulence. Probability distributions are specified for- mean wind speeds identical to those
appearing -in the ARB model except the "total wind" speed distribution in the ARB model
has been redesignated- "downwind." Since-the reference is dated later than the reference-for
the ARB model, the probability distribution-has likely been taken from the ARB model.

Using the total wind distribution for the distribution of the downwind component
significantly overpredicts the downwind compownent associated with a given exceedance
-probability. For example, the average wind speed at 20 feet for the proposed model- is
8 knots, while the correspondingaverage downwind component is only 5 knots. Alternately,
a 5-knot downwind component-corresponds to an exceedance probability of 0.5, while an
8-knot downwind component corresponds to an exceedance probability of-0.25, twice-as
remote.

The altitude at which the probability distributions- of wind speeds are to apply are not
specified. Furthermore, it is not-clear how-variable levels of wind speed are to-be combined
with a fixed shear. Several interpretations are possible, as shown below.

I) The user may arbitrarily select the altitude at which-to apply the wind speeds.
The wind speed varies linearly with altitude about that point at- the rate of 8
knots/100 feet. This will result- in a finite wind speed at the surface or a wind
speed that decreases to zero with decreasing altitude, then reverses direction-and
increases with further decreases of altitude. Both of -these descriptions of -the
mean wind-are unreasonable.

2) The user is to evaluate the effects- of a steady wind and a shear separately, then
combine results.

A steady wind has little influence-on touchdown performance except through the
decrab maneuver, if' one is provided. It is possible to represent a wind shear
-without representing -the corresponding change in wind speed -through linear
equations. -However, as- discussed in Section -4.2.2, this-will cause-tie touchdown
dispersions to be overpredicted.
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To hold constant airspeed along a glideslope in a decreasing headwind requires an
acceleration to increase, the groundspeed. If throttles are not advanced, the
airplane will tend to tottch short, This is the effect of-the shear.

The decrease in headwind reqt.ires the pitch attitude to be decreased in order to
hold the glidcslope. Less thrust- is required to maintain lesser attitudes. Unless
throttles are retarded, the decrcasing wind-speed will cause the touchdown to be
long. This is the effect that would be ignored if only the wind shear were to be
-represented.

3) The kiser is to represent the mean wind by

VW 0.08 h

VW - knots

h -- feet

and the probability distribution of wind speeds is to-be used only for determining
turbulence levels. This would make the relationship between the mean wind-and
turbulence arbitrary. In contrast, the proposed model provides a definite
relationship between the level-of wind and the level of turbulence and the shear is
described as varying -inversely with altitude.

The proposed mean wind model cannot be well approximated by a constant
shear. To demonstrate that this is true, consider an-example where atmospheric
stability-is neutral. The wind profile for the proposed model is then

- - , [h + 0. !15).
VW = 0.204V 2 0 n 0.15)"

if tile shear in FAA model is -supposed to-correspond to the shear computed by
the difference in wind speeds at the surface and 200-feet, the wind speed-at 200

feet for the proposed-model should also be 16 knots.

Then,

- ) 10.9 knotsV20  16
-0 .n1200.15\-1.knt

lin+0.15 If Li+ 0.15

VW = (0,204)(10.9) It .2..1i n

dVw 2.224
di -+ 0. 15
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Tile FAA and proposed wind profiles and shears are compared on Figure I B-I.

To assess the relative -eftfects of -tile two- wind -profiles, an airplane approaching

into the- wind at a constant 120-knot airspeed along a 30 glideslope is considered.
In Setion 4.2.2, an approximate expression for the change o1' thrust required
from that used to -trim the airplane initially was dereloped for such a maneuver:r

/AT ~ VA + VW VW1

V-REQ. VA g

where

dVw
-Vw  < 0 and dVW >0

for an approach into a headwind. If the airplane -is trimmed for the glideslope at
200 feet

AN,9w = Vw(h). Vw(h = 200)

A(T/W) = Th) -T(h = 200).

The change-in thrust-to-weight ratio represents t Ii throttle activity required- to
maintain constant airspeed on a fixed -glideslope or, conversely, -it represents -t'e
airp~ane deceleration if the throttles are-not- moved.

As seen in-Figure I B-, the -FAA model requires only a single throtte correction,
while the- throttles for-the proposed model must be increased at-an increasing rate
as the ground is approached. II no throttle corrections are made. touchdown will

be far mre short of the glideslope -intercept-for the FAA model than for-the
p,ioposed model. Without a throttle adjustment, a high deceleration will occur-for
te FAA model from 200 feet while a high deceleration only -occurs near tle
ground for the proposed model, too late to cause a significant touchdown
'dispersion.

The differences between- the two models is even greater because- the shear for the
FAA nodel is always constant, while -that for the proposed model will change
substantially with changing atilospheric stability and wind levels. Figure lB-I
makes it clea, that a -wind shear -invariant with altitude cannot represent the
effects of the shear in the proposed model.
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TURBULENCE

The turbulence model-in the reference is similar to, and appears to be taken'from, the ARB
model-except for the following significant differences.

i) The integral scale -for vertical turbulence is a constant 30feet.

2) The rms level for- vertical. turblilence is-set at a constant 1.5 knots independent of
wind speed, atmospheric stability, and altitude.

3) The rms levels of the horizontal turbulence components are linearly related to
downwind ind crosswind components of the mean wind.

4) Components of turbulence are to be generated directly in am axis system attachedf
to the orientation-of the airplane (Fig. I B-2).

5) Undefined- concepts of"span averaging" and "area averaging" are shown to affect
longitudintland-vertical turbulence, respectively (Fig. 113-2).

The-explanation proVided-for item 2) in the reference is "The effect of vertical turbulence is
small and a constant level is -satisfactory." The reason-vertical turbulence has-been found to
have small effect is because of item I): the very small constant integral scale-of 30 feet for
vertical- turbulence shifts -the- power of turbulence to frequencies above those at which the
aircraft- can respond. For the power spectra provided in the reference, which-is-the same as
for the ARB model, the greatest verticairturbulence -energy is about a f'requcncy computed
from

Lw

Hence, for the FAA model and a 120-knot approach- speed, maximum turbulence energy
occurs at

Co-= ( 120)(1.688) = 6.752rad/sec.
20

This s far beyond the short-period natural frequencies-of most commercial aircraft. For the
proposed model, where the- integral scale for vertical turbulence is-equal to-altitude, the

4airplane will respond to vertical turbulence until -very- close to the ground. This is shown in
J Figure -IB-:). At higher altitudes, not only will the short period respond o--thei vertical

turbulence from the proposed- model, but the phugoid-will also respond.

Theidescriptikn of the rms-levels of the turbulence components provided by-items 2)-and 3)
-is: horizontal turbulence occurs only in the direction of the mean wind while vertical
turbulence occurs regardless of the wind level or even if there isn't any wind. This
description is contrary to the empirically substantiated theory-presented in-Section 2.4.4.
Turbulence can only occur in-three dimensions,- as can be observed from the -equations of
motion governing turbulent motion. Rms turbulence levels are proportional- to the mean
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LONGITUDINAL TURBULENCE

Gust
modil

1Wite j I Span Airspeed
genrator Tng.S, 1 averaging simulation

Tlong is L/V: where-L is-longitudinal,scale length .600 ft
V =-.pproach speed (ft/sec)

VERTICAL TURBULENCE

Gust
model

White 1 Area Incidence
noise Tvr:S,+ 7] averaging simulation

Tvert. is L/V: where L is vertical scale-length 5 30ft
V = approach speed (ft/sec)

LATERAL TURBULENCE

White - t Sideslip
noise Tiat: S + 1 simulation

Tlat. is L/V: where-L is lateral scale length = 600 ftV -approach-speed (ft/sec)

T represents time constant '"
S represents the Laplace operator X whore t denotes.a real variable

and S a complex variable:
00

.£ [f(t)] f e'Stf (t) dt
0'J

FIGURE 18.2.-FAA -TURBULENCE MODEL IMPLEMENTATION
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wind speed at a given altitude, with the constant of proportionality determined by the state
of atmospheric stability. It is possible to-have significant levels of~turbulence for low levels
of mean wind speed for very unstable conditions, but then turbulence levels would vary
strongly ,with altitude.

The constant level of vertical turbulence-does not even constitute a good average value. Near
the surface and/or during high mean wind conditions,,the proposed model defines the rms
v.,rtical turbulence level to be 10.6% of -the mean wind speed at a 20-foot altitude. Thus, a
1.5-knot rms vertical turbulence level would correspond to a mean wind speed of 14.2
knots. The probability of exceeding a 20-foot mean wind speed- of 14.2 knots is not 50%
but 12.5%.

The setting of rms levels of horizontal components of turbulence equal to 15% of the
respective components of mean wind corresponds to the 18% of the total mean-wind-speed
at 10 meters specified- by the ARB model for neutral atmospheric stability. Thus, :te
reference specifies a reduced percentage of a reducedwind speed.

Specifying turbulence to be generated directly in an axis system attached to the airplane,
iteib 4), implies the -rms levels of turbulence and the integral scales depend upon the
orientation of the airplane, The theory and empirical investigation presented in Sections
2.4.4 and 2.4.5 clearly define the statistical properties of turbulence to be aligned -to the
heading of the mean wind. Directly generating turbulence in an airplane referenced axis
system was found-in Section 4.3 to be a-poor approximation for vertical turbulence. Near
the sur.ice, for a 5" pitch attitude generating turbulence directly -in the airplane -body
axis will cause -the low-frequency portion of the vertical turbulence spectrum to be
underestinvated-by-a factor of two.

"Span averaging" and "area averaging" are apparently intended- to represent the distributed,
lift effects of turbulence. Although the reference does not specify -the nature of these
operations, Figure -B-2 implies that they are linear operations such as filtering. The

representation of the distribution of turbulence about an airplane is discussed in Sectlbn
4.2.1.3.3. No suitable method corresponding to Figure 113-2 was discovered. The only
suitable method found for simulating the-spanwise distribution-of tuirbulence was through
generating an effective roll rate due to turbulence by filtering the vertical body axis
component of turbulence. However, -the proponent of this method has found -that
representing an effective turbulence roll-rate does not improve the fidelity of the airplane
response to turbulence.

Two methods of representing the longitudinal distribution of turbulence (gust penetration)
were determined and- both may be used-in combinatin. One method consists ot' generating
effective pitch and yaw rates due to turbulencL by filtering the vertical and lateral body axis
components-of turbulence by:

-1o! S

1+ W. -- WT
ATV
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S S VT

where 2 = length from wing aerodynamic center to-tail aerodynamic center.

The turbulence pitch- and yaw rates aresubtracted from the inertial pitch and yaw rates to
form the airplane pitch and yaw rates with respect to the air mass, respectively, which in
turn are multiplied by the aerodynamic pitch rate derivatives and-yaw rate derivatives~due to
the longitudinal velocity distribution.

The second method employs the frozen field concept. Turbulence- velocities are assumed to
-be frozen in space. Turbulence at the tail is-the-same as that at the wing-occurring a time

*-r, increment earlier equal to -that required to traverse th, distance from the-wing aerodynamic

-center to the tail aerodynamic center. Upon computing turbulence velocities at the wing,
-* these velocities are stored for a time At = R/V and then are used- as the turbulence

velocities at the tail. Approximate methods -of- representing the -transport lag are also
discussed i1 Section 4.2.1.3.3. The transport -lag method or representing -distributed fift'
effects requires separate buildups of tail- angle of attack and tail aerodynamics but will
provide a better representation than using just- effective turbulence- argular velocities. An
even better representation-is provided by using -effective turbulence angular velocities with
the wing contributions to-yaw rate and pit6h-rate aerodynamic derivatives in addition to~the
transport lag method.

The-representation of the-distributed lift-due to turbulence is not an unmecessary luxury. lt
- is generally required for approach speeds to eliminate significant- errors-caused by usinga-

point lift representation of the airplane. As discussed in Section 4.2.1.2'andas provided for-
in the model in Section 1.4, it may be necessary -to represent the distributed lift effects of
the mean wind also.

ln-sumno .ry, the average turbulence condition provided by the FAA modelwili generally be
more severe than that provided by the proposed-model because the FAA model does not
account for the din inishing or disappearance 61" turbulence for stable atmospheric
co,-litions nor for increasing altitude, which occur -for a-majority of the-time. On the other
hand, the FAA model generally underpredicts the effects of the more severe turbulence

-conditions for the followi "easons.

- An unrealistically short integral scale for vertical turbulence causes the aircraft to
o not respond to vertical turbulence.

* Horizontal turbulence rms levels are too low of a percentage-of wind speed-and
are incorrectly based oif components-of the mean wind speed rather than the total
wind speed.

• The increase of turbulence levels for increasingly unstable atmospheric conditions
are not accounted-for.
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* The reference incorrectly implies turbulence components may be attenuated for
distributed lift effects.

0 The vertical body axis tutbulence tends to- be underpredicted because the
refeience incorrectly permits the generation of turbulence directly in the
airplane's body axis system.
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APPENDIX IC

COMPARISON OF PROPOSED MODEL WITH MILITARY MODEL

"rhis appendix provides a comparison of the-model proposed in Section 1.4 v, ah the military
model defined in the following reference: Chalk, C. R., Neal; T. P., Harris, F. E., and
Pritchard, F.E., "Background Information and User Guide for MIL-F-8785B(ASG), Military
Specification-Flying Qualities of Piloted Airplanes," Technical Report AFFDL-TR-69-72,
August, 1967.

MEAN WIND;

The most notable shortcoming- of the military model is the absence of a mean wind model
for low altitudes.

TURBULENCE

The refei'ence- recommends use-of the Von-Karman power spectra- forms, which are-identical
to the spectra approximated by the filters in Section 1.4 except- the reference employs the
one-sidedi redefinition of the spectra, which have twice the gain of the literal two-sided
spectra. That-is, the reference defines the spectra -such that

02 =f el,(C) da
0

rather than

0= f"* 00-(n) dil.02 -

The reference- also permits use- of the Dryden-spectra "... when -it i, not feasible to-use-the
Von Karman- form, .. ." The reference also provides filters which, when modifying white
noise, are to-represent the Dryden spectra. Howcver, in developing the filters, an -errorhas
occurred. The transformation -to the time domain from the frequency domain (Fourier
integral inversion) is:

x(t)= f 4(W)

flence, no matter if a spectrum is defined as one-sided, the time-simulation will-treat itsfilter representation as corresponding to a two-sided spectrum. The effect of the reference's
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filter representing a one-sided spectrum is to provide turbulcnCe with a variance thit is too
high by a factor of two.

The reference describes rms vertical turbulence leveic. ;_"babilistically in terms of tile
expected level as a function-of altitude, the probability Of encountering turbulence (also a
function of altitude), and the Rayleigh distribution. The reference notes that "._. The

:'i odel describ Cdlhere -n.glcc ts-any effects on the turbulence due to-terrain roughness, mean

wind magnitude, or any other meteorological factor except height (altitude). This means
that the model describes;an average of all conditions for clear air turbulence." If the mean
wind and mean wind shear are unimportant, the representation for rms vertical turbulence
levels-as provided bythe reference would be satisfactory provided -it could be ensured that
the weighted average conditions yielding the statistical- functions are representative for-the
applications to which the model is intended.L bthe reference 4hows-an expected rms vertical turbulence level that- is 6.7 ft/sec2 at the
surface and which declines slowly with altitude, similar to the variation provided by the

proposed model.

The reference provides-for determining horizontal turbulence levels from the condition- of
local isotropy,

_ u-2 1 /3 Lw2/JF 0u - v -

and the assumption of horizontal isotropy,

p. = O-.-

Lu Lv

These same assumptions were used to-develop the proposed model (Sec. 2.4.6). However,
rather =than specifying awl Lu = Lv, and Lw then determinint-anu  a, from the conditions
of local-isotropy as done in the reference, a = a , w and Lw were -specified and-Lu = Lv
were determined from the condition of='ocal isotropy in arriving at the-proposed model.

The variation- of the vertical turbulence integral scale with altitude -is the same in the
reference as in the proposed model (Lw = h) except the linear variation with altitude is
continued to 2500 feet in-the reference-as opposed to- 000 feet in the-proposed model. The
reference notes that it- chose 2500 feet because that value is currently being used in other
military specifications (for high altitudes). Additionally, the reference-notes that 1750-feet,
used as the altitude above which the integral scales are invariant with altitude with its
Dryden model, exceeds values commonly used in the--past. The 1000-foot-value used-in the
proposed model was found to agree more closely with low-altitude measurements.
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The reference provides for horizontal integral scales that vary With the cube -root of altitude.
This variation is qualified by:

"The variation of Lu and Lv at low altitudes according to the one-third power of
L altitude above ground level is simply a mechanism that forces the scales-of the

twc horizontal components to be larger than the vertical scale. Although these
f,,rnula produce the correct trends,-there are little data available that can be used
to substantiate the hI/3 as used in MIL-F-878513. It is merely a formula that
produces reasonable results."

One bad feature of h1/3 variation for L and Lv is that it causes rms horizontal turbulence
levels to go to zero near the ground; although this may be no practical problem as an
airplane's aerodynamic center is-always substantially abovethe ground. In orderzforzthere to
be a finiite rms horizontal turbulence level at the surface as indicated by theory and
measurenents- (Sec. 2.4.4), the variation of' ihe horizontal turbulence integral scale with
altitude must approach linear near the ground. This is a characteristic of the proposed
model.

The observation -in the reference that -there is little good- information concerning the
variation of the horizontal integral scale with altitude is agreed with, and the variation
-resulting from the proposed model- was also determined from a somewhat arbitrary
interpolation formula, which provides or horizontal integral scales greater than vertical
integral sc.lev. The ohj,,-f. onablc decrease-of the horizontal-rmns turbulence level near the
surface-was overcome in, the proposed-model. Additionally, observations providing ratios of
horizontal-to-vertical-turbulence levels and integral scales ofabout 2 and 8 near-the surface,
respectively (Secs.2.4.4 and2.4.5), were matched.

The reference permits- constant integral-scales and variances equal to those-at- 50zfeet to be
used for landings. This simplification is-not agreed with (Sec.-4.5.7).

The reference notes-that:

"Atmospheric turbulence should -be-described mathematically in an axis (coordi-
nate) system- related explicitly to the turbulence field itself; but instead, for
MIL-F-8785B, the turbulence is -described relative to the airplane body-axis
system. The implication of these; assumptions I isotropy in horizontal planes
only I is that flight- paths must be-within a degree or so of' being horizontal-near
the ground; otl'orwise speciai consideration should 1he given- to the non-isotropic
and non-lhomogeneour nature of-turbulence."

These , .,ii ',Ao "re i, rJrrcemnt with (he analys;s in Section 4.3, which shows that
ger-rating tuibuo,'"io; direetty In r.e -boil, axis system causes turbulence vertical to the
plane of the airpk:ne to be greatly underestimated at low frequencies due to-usingstatistical
parameters of turbulence known only -in an axis system attached to the mean wind, An
exact method for the generatiig turbulence for flight simulation cotuld not be -found in
Section 4.3, but- ratlerfr than resigning -to the airplane's body axis system as done in the
refemence, a better-approximation was found: Generate turbulence in 1the plane-of-the earth
but in an axis system aligned to the relative (to the air) velocity of the airplane. then
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transform the turbulence to tie body axis system. This method -correctly aligns the

statistical properties of turbtdence andprovides only a small error due:to the misalignment
-of the spectra forms.

The reference provides-a model to represent-the-disiributed lif't effects of turbulence, said to
be based on the work -of Etkin, which is reported in Sectioh 4.2.1.3.3. Etkin approximated
the turbulence field about- an airplane with the first- two terms of a Taylor series,,expanded
about the airplane's cg. For example, the vertical component of turbulence would be
represented in the plane of the airplane by:(awU \ awswg(x,y) 2 W! , +\ x +

+CG

The llst-order derivatives are 'equivalent to introducing angular velocity components of
turbulence:

(a9 q (8w
C"c- CG = q g' CG "

These expressions become exact as frequency approaches zero, but very seriously
overpredict the turbulent- velocities away from the cg at high frequencies.

Etkin recognized this. -In an attempt to alleviate the problem, he first formed the
-three-dimensional spectra-of the derivatives in terms-of the three-dimensional-spectra for the
cg turbulence velocities:

°aw g , y z - ww (1x, ny,

-Ox Ox

0OWg x, R y* 2z) = i 2x 0 Wg (w x, 9y9 y Z) "

The- three-dimensional spectra are the Fourier integrals of the turbulence-velocitiis described
in three-dimensional space. Only one of the spacial frequencies, corresponding to the
coordinate along the airplane's relative velocity vector, can be used to convert spacial
f1requency into time. To eliminate the other two coordinates, integrations are performed
with respect to the transverse coordinates to successively obtain- -the two- and one-
dimensional spectra;

y fOS ,2y&zd z
.0
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Etkin, rather than integrating from -oo to oo, performed the integration over the frequency
region- for which the Taylor series approximation was valid. The airplane's vertical
dimensions are generally small and the distribution of turbulence vertically are relatively

unimportant, so he performed truncated integrations only for the lateral component -of
spacial frequency:

I- Iy max

"Yinax

The integration from -Ymax to S2Ymax is analogous to truncating the two-dimensional

spectra at :tl2ymax , an arbitrary -but convenient method-of-modifying the two-dimensional
spectra. Using the Dryden spectral forms, oniy because of the simpler and more easily
determinable results, Etkin obtaiied the onc-dimensional-roll-rate spectra on Figure IC-i.

Etkin-reasoned that the truncation frequency, hYmax , could-be estimated-by assuming that
a sine wave could be adequately represented by no less than eight straight line
segments. Thus,

27r =7

Slymax = 8(b/2) 2b"

Substituting this expression into -the approximate roll-rate spectra from the reference yields

2 0.8(k9'/2) 1 3

g Lw l I +(2k 1 /k 2 ')7

k = Lwax.

k, = LwSYmax

Comparing the gain-at zero frequency to those from Etkin's work on Figure IC-2 shows that
the approximate spectra- seriously overestimates the Etkin low-frequency gain, being about
140% higher for large integral scales and/or high-spacial frequencies and orders of magnitude
too high for small integral scales-and/or low spacial frequencies. Additionally, the shape-of
the approximate spectrum djoes-- not compare well with- -Etkin's spectra, as seen on
Figure IC-I.

More significant than the poor -match of the approximate roll-rat. spectrum is the
conclusion from Etkin's latest book: The Taylor Series nethod for lateral distributions is
accurate to no higher lateral spacial frequencies than -is -the point -representation.
Repre,enting turbulence roll rates proiides -no better results than doe" the point
representation. Etkin reached this conclusion by comparing and examining complex
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amplitudes of force and moment components produced on a finite wing flying-through a
sinusoidal gust field. The Taylor series method was compared to an exact solution and the
maximum frequency was set where- the error reached 10%.

The Taylor series method increased the maximum frequency by a factor of 10 for the
longitudinal distribution. That is, representing qg and rg provides an improvement. As aconsequence, the spectra for turbulence pitch and yaw rates in the reference misses the

point. Attenuating these spectra should not be performed for lateral dimensions, but for
longitudinal dimensions. The one-dimensional spectra should be truncated for wavelengths
less than eight tissues the airplane's-tail arm.

Rather than truncating the spectra, the spectra were filtered at the maximum valid

frequency in Section 4.2.1.3.3. This 'is no less arbitrary and more realistic as wings areunlikely to -have a response to the effective angalar components equal to that at zero

frequency up to a given frequency and no response beyond. The filter forms for turbulence
pitch and yaw rates become:

__g 1 [ S -)(Fig. I C-3)
g VA +4 H S] Wg

1VAI4V

g S ] (Fig. IC-3)rg= A 1+4V W

where IH, RV = horizontal and vertical tail lengths-

An approach that is accurate to higher frequencies i. to provide separate wing and tail
representations. The turbulence at the tail is that at the wing delayed by a transport lag
equai- to the time required to traverse the distance from the wing to the tail (t/VA). The
distributions of turbulence over just the wing may then be represented by the Taylor series
approach.

Although there are-significant differences in application and modeling, the assumptions in
the proposed turbulence model are the same as in the reference and, except for the
dependence of turbulence upon the mean wing, the proposed turbulence model-agrees more
closely with the military specifications than with either the FAA or ARB models.
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2.0 ANALYTIC DESCRIPTION OF LOW ALTITUDE WIND PHENOMENA

This section presents a -review, comparison, and analysis of the descriptions of low altitude
wind phenomena provided by the-iteratuce. The emphasis is on an analytic description that
provides for continuity with respect to the parameters, as opposed to a qualitative
description.

The objective of the analytic description is to provide a standard for deyeloping, evaluating,
and comparing flight simulation models. Aithough the resulting composite description may
be unique, no new scientific work has been done. Rather, engineering judgment- was applie.
to provide analytic descriptions leading to a simulation based on information supplied by
the literature. The resulting description is a composite of work provided by many authors.
Selection of one of several alternate or conflicting descriptions for a particular subject was

A based on the weight of evidence, quality of substantiation, appropriateness, and engineering

judgment.

Much of the information presented is not-restricted-to any particular application. lowever,
to restrict the magnitude of the task, it has been found necessary to restrict- some of the
subject matter -to the application of interest. Thus, there are specializations to simulator
usage; application to aircraft, and- the performance of their autoland- systems during the
approach and landing phase, and low altitudes (below -1000 feet).

Additionally, the model is developed for the "average" airport. It is recognized- that such-an
average -probably does not exist, but-when-the distribution of airport characteristics and the
appropriate weighting of each airport according to its activity are noLavailable, "average"
characteristics are-selected.

Emphasis is on the more probable-events-(say, with excc.:dance probabilities less than 10 3 )

rather than the-extreme events (with probabilities- of exceedance as remote as 10-9). The
implication is that the following discussion is not- directed at- flight-critical control system
design. If an autoland system should fail, the pilot hias recourse to manual control. If more
remote and morc-severe levels of wind should occur, the pilot has recourse to landing at an
alternate airport. For Ifi,,at safety f'eatures that must be designed for extremely remote

occurrences, critical values rather than average values should be selected, or -perhaps a
description for a-single critical airport should be developed.

Analytic descriptions can be classified as either deterministic or stochastic. In actuality, all
physical-events are likely-to be deterministic. However, when the deterministic relationships
are unknown, are too ,omplex, or when the relevant differential equations have not been
solved, a stochastic description is-used. A deterministic description' enables parametric
evaluation and understanding of the problem but -generally has to .be simplified, either
merely -to avoid complexity or because not all of the parameters and 'their effects are
known. Stochastic descriptions have statistical parameters which, in ttiln, may be described
deterministically or stochastically. Stochastic descriptions suffer from the inability -to
measure data for all combinations of events, incompatibility of measurement and
application conditions, measurement inaccuracies, and data misinterpretations.

Praced p, page blank
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Stochastic descriptions-are often misapplied. For example, if exceedanc probability curves
are given for the steady wind and for turbulence, how are the data to be combined'? If the
engineer is given a design probability, he-might choose steady wind and-turbulence levels so
that the product of their -exceedance probabilities is equal to the design probability, or he
might choose levels so -that the:,probability of each is equal to the design probability. The
former approach implies-zero correlation-between the steady wind and turbulence while the
latter approach implies perfect correlation, neither. of which is likely to be valid. Even if he
weye given the correlation, he could not-be sure that the correlation given applies for the
cofiditionsof interest. Thus, -deterministic descriptions of stochastic processes are-required.

The approach taken is to describe deterministically the effects of the important parameters
to the greatest extelit possible, i.e, so far as the parameters are measurable. Then, all the
parameters are related to the smallest number of parameters possible so as to reduce the
amount-of'knowledge required by, the user. Ultimately, it-is desired to relate all parameters
to a single design probability, but this-section will deal only with the descripti6i -in -terms of
fbasic parameters.

It must be appreciated- that a,great number of simplifications are required-to arrive at even
the most complex description permitted by the state of -the art. Discontinuities are not
accounted for. To account- for such things as low level -inversion layers, inhomogeneous
terrain, low level squalls ar.d the like,!geometrically increases the magnitude-of the, task and
is generally-beyond the stnte of the art.

This section begins with definitions and interrelationship. -of different classes of \wind
phenomena and then discusses what is known about each- class. Although this section is,
intended -to be independent of other sections, the material within the section is-presented~i
building-block format whereby the description of a topic is-deperdent upon description of
previoustopics.

2.1 NOMENCLATURE

A(12), B(11) Scalar functions definih!g isotropic three-dimensional power spectrumi

Cp ., Specific heat at constant pressure
p[

d Atmospheric boundary-layer thickness

e Energy or exponentiallinction

E(11) Energy spvctrum function

f Coriolis-parameter, f = 2C E sin X

f(h/2') Universal- function of h/!' defining the-incremental clhange of mean wind-
due to nonadiabatic thermal conditions
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f(t), g(O) Fundamental longitudinal and transverse correlation functions for -iso-
tropic turbulence, respectivelyIF(t), G(Q) Scalar function defining isotropic turbulence correlation functions

g Acceleration due to gravity

G Geostrophic wind speed

li, hRE Altitude,-refercnce altitude

rhl, Altitude above which turbulence is isotropic

H! Heat flux, positive upward

k Von Karman constant, k = 0.4

k Ekmn-nspiral parameter, k = sIi/2km

kH. km- -Eddy conductivity and viscosity, respectively

K1 /3( ), K2/ 3 ( )Modified Bessel 'functions of the second kind orf orders i 13 and 2/3,
respectively

R, f'Monin-Obukov scaling, length and that- modified by ratio of eddy
condt evity to eddy viscosity,;R' = kH/kM 2 , respectively

Lp, LN Loiigitudinal and transverse integral scales forturbulence components
parallel and normal-to the displacenien tvector, respectively

11u, Lv,-Lw -Integral -scales corresponding -to the longitudinal,-itransverse, and vertical
-turbulence components, respectively

p -Pressure

Pt -Probability function

r -Position vector

R Gas constant

Ri -Gradient Richardson's number

RiI(.LT +- _L aV1l 2
T dh Cp) W )

R Correlation function-for the i-afid j turfulence components
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A
Rij Normalized correlation function, Rij R 2

S Entropy

s Nondimensional mean wind shear,;

s = Uh- "

tTime

Pi T Absolute temperature

u*, U* Friction velocity and friction velocity at the-surface, respectively; u* =
u

0

Up uN  Turbulence velocity components parallel and-normal to the displacement
vector

u, v, w Velocity components along the.,x, y, and z axis, respectively

VW, VREF Mean wind speed and mean wind speed at- a reference altitude,
respectively

VA Airspeed

x, y, z Position components

z0  Small-scale roughness-length of surface topography

C ,t0  lHeading angle between -the mean wind and the geostrophic wind and
-heading angle between -the surface wind and the geostrophic wind,
respectively

, ' Log-linear mean wind profile constant and -that constant modified by the
ratio of eddy conductivity to eddy viscosity;

kM

/3( ) Probability density function

01 Deacon wind profile exponent

7t. 7' Mean wind profile constant for KEYPS equation and that modified-by
-the-ratio of eddy conductivity to eddy viscosity;

3"- k" 7'

kM
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r() Gamma function

V Rate of-energy -dissipation

C ti ' Displacement vector, displacement magnitude and components -of the

i, t2, t3 displacement vector, respectively

0 Potential temperature

T
0constant xRCp

"oij(T) Three-dimensional spectr'm- function f( the i and j turbulence
components,

Latitude

P Density

2 2
Opp 2  NN Variances (square of standard deviation or root mean square) of

k - turbulence components parallel and normal tothe displacement vector,
respectively

au2 , av2 , w2 Variances of turbulence components along the x, y and z axis,
respectively

ij2  Covariance between the i and jurbulence-components

Ouw2 Covariance between turbulence components along the vxand z axis

_ Time displaicement

T, Shear stress vector, shear stress magnitudt-, and shear stress components
rxf ry, 'rz along-the x, y and z-axis, respectively

*(f'I f) Indicator function,-zero when f- f . one-when I> fl

00/2') Universal function of h/[' definin8 nondimensional wind shear;

kh aVw
u, 0  iah

! ij(z1) IOne-dimensional spectrum function for the i and j turbulence
components
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(21), -v(921), One-dimensional- spectrum functions for the u, v, and w turbulencejw (al) components, respectively

4 l )  One-dimensional cospectrum function for the u and w turbulence
components

Oij(121,9 2 )  Two-dimensional spectrum function for tile i and j turbulence
components

Temporall'requency

4)E Angular velocity of the earth

Spacial- frequency -vector, spacial frequency -magnitude, and components
n1, '2 3 of the spacial frequency vector, respectively

2.2 CLASSIFICATION,')F WIND PHENOMENA

By convention, wind phenomena are divided into three categories: discrete gusts,
turbulence, and mean winds. However, the distinction between the three is not always clear.

Turbulence and mean wind are statistical quantities appearing in combination. A sample of
wind fluctuations is divided into-a constant bias about zero plus the deviations about the
bias. The bias-is the mean wind, assumed to-be invariant. Deviations about-the bias represent
turbulence. The -distribution of the fluctuations between mean wind and- turbulence will be
dependent upon the size -of the sample. In a sample of a single data point, all tile wind
would be mean-wind.if a-large sample were broken into~smaller-.amples,_it could riasonably
be expected that -the mean value -would vary between subsampies. In a sufficiently large
sample, nearly all- the -fluctuation- may be turbulence. This is;jthe implication of Figure 2-1,
where the widely quoted- (Refs. 2-1, -2, -3, and -4, among ot~iers) Van der-lioven estimates
of the intensity distribution (multiplied by frequency) widih -frequency are shown. The
presumed existence of the distinct peaks leads to the :itandard distinction -between

turbulence and mean wind: turbulen,.e is represented by the peak to the right and the mean-
wind-is made up of the distribution at all lower fhi'eqtncies. Technically, all the intensity of
the mean wind should occur at zero frequency.

The definition of the mean wind is also -relaxed to include- d)eterministic variations of
horizontal winds with altitude at low altitudes. Thus, to obtain a mean from a low-altitude
sample, the sample must-be collected at constant altitude.

By definition, -the term- "discrete gust" refers to a discontinuous. Ind;, dual,,and- distinct
sudden rush of air. In contrast with turbulence, it implies -a- deferministic,fluctuation of
wind. That is, a discrete gust has a specific physical shape definable in terms of certain
parameters. Local variations of the mean wind may also be classified as disc/rete gusts. Thus,
in a small sample of winds, there may be no distinction between amean wind and a
discrete gust.
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FIGURE 2- 1.-SCHEMA TIC SPECTRUM OF WIND SPEED NEAR THE GROUND
ESTIMA TED-FROM A STUDY 0, VAN DER HOVEN'(1957)

The distinction -between deterministic-discrcte gusts and randem turbulence may also -be
difficult. A wind fluctuation may be-deterministic in the~extremely small scale but random
on a much larger-scale. In fact, turbulence may be represented by the random-superposition
of a large number of discrete gusts with varying slhapes and nmagnitudes. In a-sufficiently
large sample, the contribution of a- single discrete gust, to the -statistical characteristics of
turbulence will- be negligible. In a small sample, the effects will not be -negligibleand are
difficult to separate out without prior -knowledge of-the-existence=of the discrete gust.

From the above- discussion, it may appear that the difficulty in distinguishing the character
of winds might be alleviated by using only large samples of winds. However, the wird
characteristics must be defined in terms of analytic -descriptions. -In- order to match time
assumptions inherent in the- analytic descriptions and- to constrain variations in,the large
-number of parameters, the sample size must be kept- relatively -small.

In-this report, the analytic description-of winds assumes the-distinction- between mean wind
and- turbulence provided byFigure 2-1. "Discrete-gusts" refers to wind -phenomena Which
are generated by local conditions not compatible with the assumptions of the analytic
description of mean wind and statistical characteristics-of turbulence.
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2.3 MEAN WIND

From the definition of mean wind, two additional characteristics are deduced:

* Time variations of-mean wind velocity relative to the earth are so slow that wind
accelerations may be-considered to be zero.

" Since winds due to -local conditions have been classified as discrete gusts, -the
mean wind is considered to be homogeneous in the horizoiital- plane over the
region of interest.

Definition- of tle mean wind, then, consists of defining the variation of the mean wind

vector- with altitude -under -various:atmospheric conditions and for different terrain features.

The significant classifications of atmospheric conditions are adiabatic (no vertical -heat
transfer) and nonadiabatic conditions. Under adiabatic conditions, the variation of mean
wind with altitude, or the -mean wind shear, -is generated only mechanically. For -the
nonadiabati, conditions there-is also a transfer of'momentum throughheat transfer.

Some general qualitative cha:acteristics-f mer" winds in the atmospheric boundary layer
cari be deduced. As mean winds are-either invariant with time,.or are very slowly changing,

Ithere must~be-an equilibrium-of forces acting on- an d-ement of airmass such that the time
derivative of wind vector withrespect to the earth is zero. T e principal forces involved-are:

, Coriolis

• Centrifugal

* Gravitational

- Pressure gradients

* Viscous

* Shear stresses

Coriolis and centrifugal- forces result from inertial accelerations. -If a particle of air is
unaccelerated with respect to the earth, it must be accelerated with respect toan inertial
reference system due to the angular velocity of the earth. These forces-are actually only-part
of the expression for the acceleration of a particle-in a rotating frame-of reference derived-ji
Reference 2-5 by:

+ -2r + j-O- Sr

a = a0  5 -1 x r +2 x + W x ( x r)
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where

a0 = acceleration of center of earth with respect to space

62 r
= mean wind acceleration =-O

6t-

2Wx - = Coriolis acceleration

W x (W x- ) = centrifugai acceleration

T angular velocity of earth

r radius of earth plus altitude -o the point in question

The acceleration of the earth with respect to space-is assumcdt6 be negligibly small.

C7 Centrifugal acceleration acts perpendicuiar to the axis of the ea.aii-and has a'compounent
L normal to -the earth thatyaries-with the cosine of -the latitude but -is small at all latitudes

compared -with- graviiy. The component at -constant altitude of the- centrifugal acceleration
varies with-ihe-sine of the latitude and is negligible near the equator.[4 Coriolis force is proportional to wind velocity. For constant velocity, it has a component
normal to the earth that varies with the cosine of the latitude but is small at alliatitudes
compared with gravity for reasonable wind velocities. Its component tangent to the earth
varies with the sine of the latitude.

To maintain homogeneous mean-wind conditions, -the latitude variation- must be restricted
so that changes- in horizontal centrifugal and Coriolis force components are small compared
to other forces.

Viscous forces:oppose the motion of the particle and-produce one type of shear stress. The
magnitude of-the-viscous forces depends on the scale of the problem considered. If the-scale
is very small, molecular motion and viscosity is relevant. For mean winds, the scale is large
and the relevant motion is the eddy motion, leading-to eddy viscosity, whi, h is on the order
of 104 greater than molecular -viscosity (Ref. 2-6). For the study- of mean winds, eddy
viscosity is relevant (Ref. 2-7).

Other shear stresses arise from the interaction- of winds with the earth's surface, the
influence of -which can be expected to diminish with increased altitude, and temperature
gradients which-provide different- levels of energy atdifferent altitudes.

At the boundary condition at the earth's surface, -there must be zero-wind velocity. Thus,
the wind must increase in some fashion, at least for-small distances from the earth. At high
altitudas away from the influence of the surface, the-wind can be expected-to tend toward a
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value equal to the-product of the earth's angular velocity and-tie distance from the earth
-due to the tendency of a mass to remain fixed in space in the absence-of forces. Such a-wind
would blow from east to west.

The mathematical relationships between the parameters-influencing the horizontal compo-
nents of the mean wind are provided by the equations of motion derived from the
Navier-Stokes equations and are, as taken from Reference 2-4:

d5 0= rp I

=T-0 fVi -
dV a

where f is the Coriolis parameter describing the variation of the force: f 2 WE sin X.
Horizontal components of centrifugal acceleration are neglected. The primary difficulty in
solving for the mean wind components is in describing the variation of the shear stress
components, rx and ry, with altitude (z).

Three major analytic descriptions of the mean wind in the earth's boundary layer for
adiabatic conditions will be discussed: the Ekman spiral, the -logarithmic profile, and the
-power law. Additionally, the theory of the logarithmic profile has been expanded to-include
nonadiabatic conditions.

2.3.1 Ekman Sniral

The Ekman spiral describes the variation of the components of mean wind with altitude
from the top of -the boundary layer to -the surface for the following rather -restrictive
assumptions:

" Motion is horizontal

* Flow is laminar (zero turbulent-stresses)

" Isobars are straight, parallel, and-constant with altitude

" Above the bounuary layer, the wind (geostrophic wind) is constant with altitude

" Eddy viscosity and density are-constat with altitude

• Temperature conditions are adiabatic

2.3. 1.1 Derivation

The assumptions-of coz:stant winds above-the boundary layer, the character of the-isobars,
and constant-density leads to constant shear stresses above the boundary layer through the
equations of motion-and defines the components of the geostrophic wind:
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G cos cot -7F

G sin 010 .of ax

where the axis system is aligned with the x axis along the direction of the surface wind and
o 0 is the angle between the geostrophic and surface winds. The equations of motion now
reduce-to

dr
x

-f(i"- Gcsn ) = -'

dz'I -G cosy components:

The assumption of laminar flow permits a simple relationship between shear stress and
velocity components:

ry = kM'

where kM is the coefficient of eddy viscosity, which has tbcen assumed to be constant with
altitude. Substitution into the equations of motion yields the differential equations

a2g +"f- V =4 G sin ao
azU2 -kM kM

[ u -7 -f--G cos 0

Assuming the form of the solution as

V = A+ B eXz

-yields a solution for zX of

4 (f) 2

I- -l
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fh(i +i)

km

' Only the roots which satisfy thle condition of a Iunite wind speed are retained. Applying thleL ' boundary condition of zero velocity at zero height leads to thesolution given in Reference
~2-6 for anl axis system rotated to align the x axis with thie geostrophic wind:

I
i=G II -ekzcos kz

T = G e- kz sin kz

where

k~~w = -/,° "siln X
F f kM~il

jkM

The resulting profiles of the wind vector -magnitude and- heading are shown on Figure 2-2.
The magnitude provides a shear that increases with decreasing altitude. The heading change
with altitude is near linear at low altitudes and rotates--counterclockwise with decreasing
altitude in the northern -hemisphere. The-solution -provides a heading that- approaches the
geostrophic wind heading-asympotically. The total heading change is 45*.

2.3.1.2 Description

This phenomenon is described in Reference 2-8 by a tendency of the wind "to align itself
with the-pressure gradient (from high to-low) near the ground, and to align itself with the
Coriolis-produced *cyclone swirls' (that are perpendicular to the pressuro, gradient) at higher
altitudes." This effect is described on Figure 2-3.

The "cyclone swirls" are-generated in part by the shear at- a constant altitude produced by
the reduction of the -Coriolis effect -toward the equator. The alignment of winds
perpendicular to the pressure gradient is caused by a balance between the pressure gradient
and the c/.itrifugal acceleration. As the altitude decreases, the viscous forces increase.
slowingzthe wind down, reducing the centrifugal forces, and-causing the wind-to turn toward
the pressure gradient.
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Wind direction near ground

Wind direction at high altitude

FIGURE 2-3.-IDEALIZA TION OF WIND DIRECTIONS NEAR THE GROUND AND A THIGH

ALTITUDE (NORTHERN HEMISPHERE)

The severity of a wind shear component will be dependent upon the magnitude of the
geostrophic wind and the depth of the boundary layer. From tile altitude scaling-factor oni
Figure 2-2, it can be deduced that the boundary Jayer 4thick i 'sS iust be ihOrsely
proportional to the latitude (or Coriolis factor, f). Thus, the thickness -would be infinite at
the equator, invalidating tile solution there. Reference 2-9 provides such an inverse
relationship (boundary layer thickness - F). For moderate latitudes,-(f = 1.14 x -10"4 /sec)
the thickness-is given at about 3500 feet for adiabatic conditions.

The conditions required for the solution of the Ekman spiral are seldom met. Reference 2-9
notes that a 45° turning angle exceeds any ohserved, and at moderate latitudes the angle
does not exceed 23*. It additionally notes that the solution for the Ekman spiral is
particularly poor for turbulent flow (assumed not to exist). The assumption of constant
eddy viscosity is probably quite poor near the ground as the eddy size, to which eddy
viscosity is proportional, is constrained by the presence of the ground. Finally, the
assumption of straight isobars would restrict the size of the field to which the -solution
would be applicable, depending on the distances-to the high and low pressure centers.

The idealized-Ekman spiral solu..-n:is valuable, however, for the qualitative description and
understanding of wind profiles in the-boundary layers. It shows the probable existence of
mean wind heading changes and increased change of wind magnitudes with lower:altitudes
that diminish in severity as the equator is approached.

2.3.2 Logarithmic Profile

The logarithmic wind profile is the most widely accepted form describing the altitude
variation of mean wind in the lower part of the boundary -layer. It is reported in References
2-1, -4, -6, -7, -9, and -10 through -14, among others. The derivation assumes that-near the
ground
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0 Shearing stress and pressure gradient are independent of height

e. Coriolis force is negligible compared to other forces
Pres,re force call be neglected with respect to viscous forces

* Th, flow is fully rough; thus, molecular viscosity is not a significant parameter

The assumptions of constant shearing stress and pressure gradient- are validated simply by
restricting the maximum height under consideration until the variations fall withio
tolerance. The assumption of-constant stress leads-to the consequence that near the ground
the heading must be constant, and permits the definition of a "friction velocity," u*
given by 0

u,0  (measuredat the surface)

that remains constant with height. The assumption that the flow is -fully roughlis validated
by not applying the law to extremely small heights, which is relative to the scale of the
surface roughness.

2.3.2.1 Development and Description

The only parameters in the equations of motion and in the identification of shear stress
remaining are wind shear, altitude, and friction velocity. Panofsky -(Ref. 2-7), who statesthat-there are many derivations of the law and that tihe solution is insensitive to the manner
of its derivation, uses dimensional analysis (similarity theory) to show that these parameters
mustzbe related by

aVw/az I
u* kz

where k is a constant of proportionality (Von Karman's constant, equal to 0.4). Integration
yields

u* 0 n(z

VW =-V n( )

or, if the axis system is translated to coincide with the ground,

VW _u*nz + zo\

The logarithmic profile is thus derived by asiuming that the wind- shear magnitude is
inversely proportional to altitude. Althoughthe profile formally goes-to zero at zero height.
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the equation, is theoretically -valid only when height is large compared to, the surface
roughness reflected by z0 , the roughness. length or height.

The logarithm coefficient need not be calculated directly, for modeling. Rather, a reference
height at which the mean wind isknown is used to extrapolate for all other altitudes:

hn + zo

IhREF +zO,

Using this form, the mean wind profile is plotted on Figures 2-4 and 2-5 and the
corresponding wind shear is plotted on Figure 2-6, all for a reference height selected at
20 feet. An increase in roughness length is seen to cause an increase in wind shear at all
altitudes. Small roughness lengths-tend to cause a nearly constant mean wind speed down to
low altitudes.

2.3.2.2 Roughness Length

Several authors have attempted toassociate'the roughness length-with types of topography.
A summary of the results of their studies-is provided on Figure h-7 . Reference 2-9 points
out that the roughness length may change with wind speed,-For example, higher wind levels
over water will introduce larger waves, causing an increase of roughness length.-On the other
hand, vegetation will bend ,thore-in high winds, reducing the roughness length, with the
effect more significant for taller crops.

For "average" conditions, -Reference 2-9 provides a rule of thumb that the roughness length-
is 15% of the crop height. Reference 2-13 disagrees, however, and recommends 3-1/3% of
-the "average dimension of the typical roughness particle on the surface," although "this
ratio of roughness length z0 to- the actual roughness may show a rather wide range of
values." The 3-1/3% relationship is supported by Reference 2-6, -but is only applied to very
small roughness particles.(sand).

The- mean wind profile is influenced not only by the terrain immediately below, but also by
upwind topography. Thus, for a specific landing field, the effective roughness length will be
a function of wind heading. Such is the manner that roughness- lengths are presented in
Reference 2-15 for the Kennedy Space Center. Perhaps it can be expected that roughness
lengths will be greater for winds across runways than down runways.

The special case of a sharp transition in surface roughness along-a line perpendicular to the
wind direction has been treated in- References 2-16, -17, and -18. An internal boundary layer
height- downwind of the transition is defined, below which the -mean wind profile is
influenced by the downwind topography. The internal boundary layer-height increases with
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the downwind -distance from- the transition. The solution, however, is too restrictive for
Sgeneral application, but future work may lead to significant analytic descriptions.

2.3.2.3 Minimum Valid Altitude

The altitude range for which the-logarithmic flow is valid is dependent on the error the userIl is willing to tolerate. The literature, however, does provide some guidelines. To maintain the
assumption of fully rough flow, the minimum altitude must be much greater than the
rotghness-length. Reference 2-9 states that + the minimum altitude should be twice the height
of the crops, or using the relationship that the roughniess, length is 1I5% of the crop height,
about 13 times the roughness length. Reference 2-14 states: "It is generally accepted that in
neutral conditions, the wind profile between 10feet and 300 feet may be given by [the
logarithmic profilel." The statement- is made without regard to any specific roughness
iepgti, but a roughness length of 0.15-feet is later recommended. Reference 2-13 states that
tHe logarithmic profile should be good to two or three tines-the roughhess length- (foia
roughness-length of 3 feet).

The relevant altitude to compare with the minimum altitude for:applying the-logarithmic
profile is that near the height of the-wing chord plane with-the -airplane on the-groifd. For
"average" airport conditions with the-roughness length at about 0.15-feet as used in'the Air
Registration Board model in Reference 2-14, there will normally be no problem., If the

4_1 roughness length is relatively large compared to the wing chord plane, there may still be no
problem -if the time spent below the-minimum-altitude of validity is small,,particularly since
the trend-provided (reduced mean-wind speed with reduced altitude) is correct. For-extreme
roughness, such as that occurring while- flying within an area influenced by building,% the
problem becomes that of a discrete gust.

4 , 2.3.2.4 Maximum Valid Altitude

As stated -in Reference 2-9, unambiguous evidence for establishing the upper altitude limit
for application-of the logarithmic profile is not available. Several authors have, however,
estimated -the -upper limits by testing the assumptions leading- to the derivation of the
profile.

It can-be recognized that when the altitude is very high with respect to the roughness length,
the surface roughness will have only a weak influence and should not be included as a
parameter. Thus, perhaps the maximum altitude is a multiple of-the roughness length, z0 .
Reference 2-13 state3 that the -logarithmic profile is accurate to altitudes of the order of
1000 times z0 1 50 feet for z0 = 0.15-as implied in the model of Rert 2-14).

More commonly, the tipper altitude limit is tied to atotal change-of the shearing stress (the
profile assumes constant shear stress). -Reference 2-4 estimates a 100-foot limit at mode-ate
latitudes for a 10% total change of shear stress. Reference 2-7 provides an upper limit range
of 65 to 650fect for a 20% change in shear stress.

Reference 2-9 adds the level of turbulence as an additional parameter for determining the
tipper limit -of validity. It is noted -that-the logarithmic law holds-for the lower 15% of the
boundary layer for flow over a flat- plate but to the center of -the pipe for pipe flow,
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analagous to the entire boundary layer. Thus, it is deduced that the upper limit increases
with the level of turbulence (pipe flow is more turbulent). As a consequence, the
logarithmic profile should extend to above 15% of the earth's boundary iayci or to above
525 feet for the 3500-foot boundary layer at moderate latitudes previously discussed. A
10% shear stress change criterion was applied.

Reference 2-15 applies the logarithmic profile to the first 100 feet, and Reference 2-14

specifies 300 feet without qualification. Tower data have been evaluated in Reference 2-19.
and the logarithmic profile is found to hold up to 100 feet, the highest level for data
measurement.

The effect of changing shear stress on the mean wind profile is not clear. It may be assumed
that some change of wind h-ading may occur. If, for small shear stress changes. the
logarithmic profile is accurate, then because the mean wind and the mean wind shear are
proportional to the square root of the shear stress (through the fiiction velocity), the error
in mean wind and mean wind shear would be approximately hlf the change in shear stress.
Thus, a 10% change in shear stress may be too restrictive, and the ,pper limit for application
of the logarithmic profile associated with a 10% change may be too low.

Application of the logarithmic profile at the extreme upper end of the boundary layer must
certainly be criticized, for zhc;e :t would generate the geostrophic wind from surface
conditions. The literature (Rc. . 2-4 and 2-9) has overcome this objection by dimensional
analysis in the "overlap" region, the region that is influenced by loth the surface winds and
the winds near the upper parc of the boundary layer. By equating dimensionless universal
functions for the mean wind above and below the overlap region, the logarithmic profile ;s
again found to be valid but. additionally, relationships between the components of the
geostrophic wind and the friction velocity, u*0 . are found. The implication is that the
logarithmic profile extends somewhat beyond the region of constant or nearly constant
shear stress, particularly if the constant heading restriction is not maintained.

An additional rationale can be made for extending the logarithmic profile beyond the

constant stress region very near the surface for approach and landing applications. If it can
be accepted that aircraft motion performance parameters are most important when
measured at or near touchdown, then it can be reasoned that the most important wind
characteristics -ire for altitudes near the surface and that errors in the wind description are
less important as the altitude at which they occur increases. This is particularly true since at
higher altitudes the adiabatic mean wind shear diminishes. Large errors in the description of
a small shear may be insignificant.

Combining the argument-. it appears reast-:able to extend the logarithmic mean wind
profile to 1000 feet altitude for approach and li -ding applications.

2.3.3 The Power Law

An empirical relationship for the wind profile over the entire boundary layer that is widely
used, particularly in meteorology, is the power law. It simply extrapolates the mean wind
measured at one altitude to all other altitudes by altitude raised to some power:
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This description is often preferred because of the simplicity of its form.

For adiabatic conditions, the exponent will depend strongly on the surface roughness and,
according to Reference 2-20. slightly on the magnitude of the mean wind. Surface roughness
may cause the exponent to vary from something greater than zero to unity. The shear
consequently increases less strongly with decreasing altitude than the inverse relationship for
the logarithmic profile.

2.3.3.1 Exponent Value

Average values of the exponent are often quoted for three classifications of surface
roughness: smooth, moderate, and rough. "Smooth" applies to water, open country, prairie
grassland, tundra, and the like. "Moderate" is used with respect to wooded countryside,
parkland, towns, and the outskirts of large cities. "Rough" denotes the centers of large
cities. The exponent is increased Ior increased surface roughness.

Panofsky, who has contributed greatly to the development of the logarithmic profile, is said
in Reference 2-1 to have recommended exponents of 0.12, 0.25, and 0.38 for the three

classifications. Davenport (Ref. 2-20) summarizes his more complete study (shown in 'fable
"I ) with exponents 3, 1/-. 1/3.5, and 1/2.5. Davenport's results are often quoted (Refs.
2-3 and 2-9).

The 1/7 exponent is the familiar value used for aircraft approach and landing, perhaps
because it is the aircraft design value specified in Reference 2-21 for civil operations.
Reference 2-22 also affirms that 1/7 is a "typical" value.

The influence of a magnitude increase of "'surface" winds on the exponents is described in
Reference 2-20 as an increase of 0.02 for each 10 miles per hour of wind. Reference 2-14
disagrees and prescribes an inverse relationship between the exponent and wind speed for
the extraoolation of winds with altitude at the Kennedy Space Center from winds at
18 meters:

I

P 18)3/4 
i8

(b is normally distributed: b = 0.52 ± 0.36)

By comparison, the wind level affects thc logarithmic profile only through the roughness
length. For winds over land, it is expected that increased winds reduce roughness (through
the bending of vegetation) and percentage changes of wind with altitude, -,nalogous to a

reduced exponent. Tie difference in the trends of exponents witl wind speed may be
explained by differences in the altitude range for which the winds are bing curve fitted.
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2.3.3.2 Relationship with Logarithmic Profile: Conditions for Validity

Skelton has shown (Ref. 2-1) that the power law can be derived from tile Iog;,, Attmic
profile. From the equations for the wind at any altitude and at a reference altitude,

u* 0 ih+

R I hRE + zVREF'._.k In\ ZO z)

A difference equation as a fraction of the wind speed at the reference altitude is formed:

/ h+zo \

VW- VREF I kn'-i;7z)1

nREF (hREF + zO)

or

VWxp[ VREF h+z

h REF + z

The exponential is represented by the first two terms of its power series:

S 2  a3

e I- +a for a <1

Thus, if

RE"

126RE-,- zol
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F3

or if, in addition, the roughness !,"ngth is always small compared to the reference altitude
and the altitude in question

Vw

where

I U*o/k

IIn (hREF + ZO) TREF\ Zo

iIIf the logarithmic profile is accepted as valid for low altitude, then the above derivation

leads to the following conditions for the validity of the power law:

* The Wind velo.ity must not differ excessively from that at the reference altitude.
An error of 20% of the wind speed would correspond to a deviation from the
wind speed at the reference altitude of ±44.7%, as estimated from the third term
in the exponential power series. This restriction most severely restricts the
altitude range for rough terrain.

The exponent for the power law varies approximately with the ratio of reference

altitude to roughness length. The reference wind speed must be evaluated at the
same altitude as the exponent.

* The altitude to which the wind speed is extrapolated and the reference altitude[ 1 must both be large with respect to the roughness length.

• All other restrictions applied to the logarthmic profile apply to tle power law.

As an example, if the wind speed is known at 20 feet altitude and the roughness length is
0.15 feet, the value used in Reference 2-14, the wind speed error will be less than 20% for
2 < h < 180 feet. A 20% error in the shear would occur above 490 feet or below 20 feet.
Thus. the shear provides a more restrictive lower altitude limit. An accurate altitude range
could be increased by selecting a higher reference altitude, but the penalty would be a
higher minimum altitude.

The derivation provides an analytic relationship between the exponent and the roughness
length. The 1/7 exponent corresponds to a roughness length of 0.046 feet when calculated
from the corresponding reference height of 50 feet specified in Reference 2-21. Spotting
this value in Figure 2-7 indicates that this corresponds to short grass in level land. Thus,
there is no compromise provided for the influence of the taller growth or greater roughness
often rounid around airports.
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2.3.4 Influence of Nonadiabatic Thermal Conditions

Up to this point, the mean wind profiles with altitude considered have been those for
"adiabatic" conditions, or for conditions of no vertical heat flux. Many authors ignore or
dismiss the more general case of nonadiabatic atmospheric conditions, arguing that the
critical design case occurs for high mean winds and, for high mean winds, conditions of near
ne'ztral sta' *ity exist. This argument cannot bt readily accepted at this point, because a
tradeoff b..ween turbulence levels and mean wind levels may appear with atmospheric
stability as a parameter. Turbulence and mean wind influence aircraft response in eren
ways, and a generalization as to which is more important for all aircraft and aircraft systems

V cannot be made, particularly without reference to the exceedance probabilities, the nearness
of "near neutral stability", and the associated levels of mean wind and turbulence.
Consequently, the more general case of unconstrained atmosphere stability will be
considered for the mean wind profiie.

The Ekman spiral is strictly an adiabatic profile. However, the literature provides theory and
empirical matching for an extension of the logarithmic profile to nonadiabatic conditions.
The power law, as an empirical law, is provided with empirical measures of its exponent for

I nonadiabatic conditions. First, however, it is appropriate to discuss atmospheric stability
and the corresponding atmospheric conditions, its implications, and the methods for its
classification.

2.3.4.1 Atmospheric Stability

Atmospheric stability is measured by the temperature profile with altitude (the temperature
shear). A decrease in temperature with altitude is referred to as a lapse rate or lapse
condition. An increase of temperature with altitude is called an inversion.

During daytime hours, solar radiation heats the earth more than it does the atmosphere.
Conduction from the earth causes the air near the earth to be warmer than that above, and a
hvpse rate results. At night, with clear skies, the earth cools by giving up radiant heat and the
ai, next to it cools by conduction, thus leading to inversions.

Thtse general associations of temperature gradients with time of day are noted in Reference
2-7, where it is additionally stated that near-adiabatic conditions occur at dawn and dusk on
clear days and on windy and overcast days and nights.

Atmos3heric stability is measured by the tendency of air displaced vertically from its
equilibium condition to return to its original position. Stability can thus be measured by
the sign and the magnitude of the "spring constant" of air, and is a dynamic concept.
Skelton, in Reference 2-1, has derived the expression for the restoring force, implying the
spring constant:
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The derivatives are evaluated at the equilibrium altitude hi (F (h1 ) O)where

Id
for negligible density and gravitational acceleration gradients.

There will be a restoring force (stable) when the force on the parcel of air is negative. This
leads to stability conditions based on the absolute temperature gradient:

dT >A. stable (weak lapse or inversion)

dh - , neutral (adiabatic lapse)

dT
-...table (strong lapse)

A lapse rate of about 0.00536" R/ft is required for dynamic stability. Howe.er, when the

equation of state,

p = PRT

is used in th, equation for the pressure gradient at equilibrium, the temperature gradient
required for hydrostatic equilibrium is given as

dT= (Ref. 2-1)

or a lapse rate of about 0.0188 ° R/ft In Reference 2-1 it is argued that the air on the
average will be in hydrostatic equilibrium: A greater lapse rate than that fur hydrostatic
equilibrium will cause the air to rise on its own accord and be added to cooler air, raising the
temperature above, ruducing the lapse rate, and reducing the forces on the rising parcels of
air. Similar results are obtained for a lesser lapse rate. If indeed hydrostatic equilibrium is
the average condition, then on the average there will be instability as the lapse rate for
hydrostatic equilibrium is greater than that for dynamic stability. Alternately, it could be
said that instability is more probable than stability.

An alternate parameter, potential temperature, is commonly defined to specify stability.
Potential temperature, 0, is defined from the equation for a change of entropy:

dS=+dT-RM r- (Ref. 2-7)

thus, 0 constant x (T/pRICp).
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Constant entropy (isentropic) coincides with adiabatic conditions. Thus, adiabatic condi-
tions are represented by constant potential temperature with altitude. The restoring force
may be written in terms of potential temperature:

F(h I + dh) ="dhg0 d (Ref. 2- )

The term (gI/) (dO/dz) is a measure of the restoring force, and d0/dz can replace the com-
parison of lapse rates as a measure of stability:

d > 0, stable
d7

dO - 0, neutral
dz

dO < 0, unstable

The potential temperature derivative by itself is not the final parameter used for measuring

stability. Rather, a nondimensional ratio of the buoyancy force (spring constant) to inertia
forc', called the gradient Richardson number, is formed:

_d0 . ____+g

= 0 dh _ T dh
0yV a h (avw /ah)2

Alternately, the gradient Richardson number may be thought of as a relationship between
the mechanical shear that tends to displace air and the buoyancy force that may damp (or
amplify) this tendency. Atmospheric instability, as applied to mean winds, is a measure of
tle efficiency by which heat and momentum may be transported to different altitudes by
mechanical means.

2.3.4.2 Log-Linear Profile

The most widely accepted description of the mean wind profile at low altitudes for various
stability conditions is that developed from similarity arguments (dimensional analysis), the
original development of which is attributed to Monin and Obukhov.

First, the conditions leading to the development of the logarithmic profile are applied
except for the requirement of adiabatic lapse rate. Similar to the assumption of constant
shear stress, the heat fiux is assumed to be constant with altitude, and ., scaling length
analogous to the friction velocity, u.O, is introduced:

-u*03 CpT

kgH
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(The use of a script -R" is a change from conventional nomenclature. The upper case "L" is
reserved to represent a turbulence parameter, used later.)

i1 the changes of absolute temperature are small for the altitude region of application, the
scaling length is essentially constant with altitude. For unstable conditions, the heat flux, II,
is positive and the scaling length, 2, is negative.

The introduction of the scaling length provides three parameters that are independernt of
height, the other two being friction velocity and surface roughness length. The surface
roughness length enters only through integration of the velocity profile from the surface
boundary condition, and need not be included for postulating the form of the mean wind
shear. Then, according to References 27 and 2-23, a nondimensional shear can be described
as sonic universal function of only the nondimensional altitude:

kh iVW

For adiabatic conditions, the universal function must reduce to unity and lead to the
logarithmic profile. Using this knowledge, the universal function is expanded into a Taylor
series about adiabatic thermal conditions. Retaining only the linear term of the series for
small li/R. the nondimensional shear becomes:

kh 3Vwu*0 ahl 2 +~

0 +f

or. after integrating,fW - U*0 [in (hi2 + 0+l

where the origin of the axis system has been shifted to coincide with the surface of the
earth. Tie characterist. )f this equation are the logarithmic portion of the mean wind,
representing the adi-ibatic contribution, and the nonadhA-batic (or diabatic) contribution that
provides anl incremental change of the mean wind that ir.,:reases lineai.y witI. altitude. These
parts are well described in the name of the profile, the "log-linear" profile.

This description is provided graphically on Figure 2-8. The nonadiabatic, or diabatic
increment to the wind shear is invariant with altitude. For instability, the scaling length is
negaive and reduces or even rcverses the shear. Stability provides for an increase of shear
and mean wind. Figure 2-8 provides trends that agree well with those of measured profiles
such as those found in Reference 2-24.

Application of this profile requires knowledge of the scaling length. 2. and the
proportionality constant.a. The scaling length is difficult to measure as it depends on the
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heat flux. Consequently, the Pterature (Refs. 2-1, -7, -23, and -25) introduces an alternate
scaling length, ', given by

=Ul*O(aVw/ah)

kg (80/8h)

The alternate scaling I-ngth differs from the fi-st one by the ratio of eddy conductivity to
eddy viscosity. This ratio of the scaling lengths is said by Reference 2-7 to be either constant
with stability near unity or at le:,t a function only of Richardson's number. Note that a
constant ratio with altitude, which Reference 2-7 argues is the conclusion of most
investigators, imp!ies a ratio between the mean wind and potential temperature that is
invariant with altitude. That is, the normalized mean wind and temperature profiles are
identical.

The nondimensional altitude may be written in terms of the more readily measurable
Richardson's ieumbcr using the log-linear mean wind profile:

0 -f kh- = Ri 0 + ehQ')

v(w2] u*Oah

where w' has been developed by multiplying o by the ratio of eddy conductivity to eddy
viscosi.y so as to make a'/' equal toa/f.

The resulting expressions for Richardson's number and nondimensional altitude are

-i It' hk

Rilhc/h/Q

I - c' Ri

The Richardson':' number equation predicts that stability or instability will increase with
increasing altitude. For very small Richardson's numbers (or small h/9', an adequate
approximation is

h/2' Ri  jR i very small

Using this approximation further restricts the region of validity. The resulting wind profile
becomes

Vy k \z 0  
R ' Rivery small
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Note that the nonliinar uquations restrict Richardson's number to

Ri< ,

The constant of proportionality, a', has had different estimates attributed to it. For
unstable conditions, Reference 2-7 argues for a value of 4.5 but notes that other
investigators have estimated 4 and 6. Reference 2-26 states that o' = 4.5 within a standard
error of 10%. An original estimate by Monin and Obukhov of 0.6 is discounted by
References 2-7 and 2-9, which argue that it was measured at sufficiently nonadia' 'tic
conditions that the nonlinear terms in the Taylor series expansion were significant.
Reference 2-9 quotes values of 3 and 4 obtained from different investigators.

For stable conditions, Reference 2-23 recommends a'= 7 but notes that other studies have
found values from 2 to 10, although the ranges for application were not qualified. Reference
2-26 has found a' = 5.2 for stable conditions but notes that this may not be sufficiently
different from the unstable estimate of 4.5 to warrant differentiating between them.

The restrictions for applying the linear part of the log-linear profile are measures of the
linearity of the universal function, 0(h/9). Restrictions appiy directly to h/9 and indirectly
to Richardson's number. There is a maximum altitude restriction that becomes more severe
as the deviation from an adiabatic lapse rate increases at a fixed altitude (l10l becomes
smaller).

Reference 2-7 restricts the log-linear profile to unstable Richardson's numbers more positive
than -0.03, a number agreed with in References 2-9 and 2-26.

For stable conditions, Reference 2-7 restricts positive h/2' to 0.3 or Richardson's number to
0.1. Reference 2-23 permits extension up to a Richardson's number of 0.14, only slightly
below his estimate of the critical Richardson's number (I/W'). Reference 2-7 states that
there is no simple relationship for the mean wind with h/k' for conditions more stable than
h/' = 0.3. A more recent study (Ref. 2-26) disagrees and finds the log-linear profile
accorate up to h/R' = I for a' 5 (Ri - 0.16).

2.3.4.3 Extension from the Log-Linear Profile

The data on Figure 2-9 indicate that a linear representation of the universal function 0(h/9)
is not a good one for moderately negative (unstable) h/9' (h/' < 0.03). Additional
solutions for the velocity profile at larger levels of instability but with minimum instability
restrictions are presented in References 2-7 and 2-9. Of more interest, however, is a solution
that can be applied within a wide range of stability and instability, allowing application to
relatively high altitudes.

References 2-7, -9, -15, and -25 present an interpolation formula which has shown good
results for matching characteristics over a very large range of instability. The interpolation
equation, called the "KEYPS" equation, is given by

4 . h s3
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where s is the tiondimensional wind shear,

kh aVW
Su. 0 all

As was shown for the IogarithmiL profile, the definition of the scaling length, R', permits an
identity between tile nondimensional altitude and Richardson's number:

h/£' =Ris

Substituting this identity into the interpolation formula provides the following equation
for shear:

avw  u*0

all kh(I -Y'Ri
)1/4

Using the same two equations but eliminating s instead provides

h = Ri

Both of these equations reduce to the log-linear forms for very small levels of instability
provided 7' = 4o'. Reference 2-7 also indicates good agreement with the form

S =

Il- 1 /
(0 -- Ri)'' 2

attributed to Holzman (Refs. 2-7, -9, and -25) for small Richardson's number and the law

i Vw ~ h14/3

alh

attributed to Priestly (Refs. 2-7. -9, and -25), for strong instability.

In keeping with its recommenuation for oi' = 4.5, Reference 2-7 recommends'Y" = 18.

In order to integrate the shear !o obtain the mean wind profile, Richardson's number must
be expiesed in terms of altitude, a relationship that requires the solution of a fourth order
equation. The mean wind profile must consequently be found by numerical integration.

The form of the resulting mean wind profile proposed in Reference 2-7 is given by:

V36 u 1 +z 0 + li\ I
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where the universal function f(h/Q') corresponds to the non-constant terms of the Taylor
series expansion of the universal function #(h/2') and can be found from the shear equation
by

f(h/') = fhQ ( .) d-
0

where

/lh\_ kh V

The function f(h/2') is shown graphically on Figure 2-10 for the representation

II
(I -')"Ri)!/

and is taken fron- Reference 2-7. This curve has been fitted by an equation in Reference
2-15 given by

j(h)( 0)"674 - 0 
6 78 In (-100 )

for R, < -0.01.

An extension to strong stability is provided by Webb in Reference 2-20. Webb first argues
that the log-linear profile holds for h/2' up to unity. For h/9' greater than unity up to

Uf Ri= I, Webb finds the mean wind shear to be given by

aVw . 0

W = h(I a' (I +a'>hl/2' >1)

for o' = 5. The corresponding expression for Richardson's number is given by

Ri=  +C! (+ ;I.h/"9'l).

The resulting mean wind is found by integrating from the altitude h1 where h /9' 1:
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Vw(h) -vw' 1i =- -(1 + ') [In(h)-In(h1) , h >>z0

u*0ok
k 0 + Y') In(h/V°)

Thus, the change of velocity from h I is a pure logatithmic function of altitude. Substituting
for Vw(h )

(hI+zo)f(4
Vw(hl) k n-

f ()=' f IorR ! >0, h/Q'< I

the mean wind equation becomes

0 +z, 1
VW = a (+i') ln(h/Q') +Ink Z + Of h/, >I

or

VW =  0 I n(hhzo))+ , h!/R 1 Il,>>zo

In terms of the universal function from Reference 2-7.

f(h/f') = C'+a'ln(h/2')

2.3.4.4 Deacon Wind Profile

There has been an attempt by Deacon to model the mean wind shear profile for all stability
conditions with a single explicit equation. The form of the equation is given by

aVw
wh = Ch "f (Ref. 2-27)

For low altitudes where C and are independent of height and depend on stability:

> 1, unstable (Ri < 0)

13!, neutral (Ri = 0)

< 1, stable (Ri > 0)
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The mean wind profiles are given by (Ref. 2-27).

VW 11*- Inh

forVW= Oat h = zo.

The assumptions of this profile, specifically the independence of 1 with height for
nonadiabatic conditions. have been tested in Reference 2-27 and have been found to be
invalid.

i An independent check on the dependence of with height is provided in Reference 2-25.
There it is said that Deacon's P is given by

h-I ah2

aVw

Using the interpolation formula,

s "'h s3 kh aVw]

LU-o anj

a relationship between Richardson's number and is derived:
R i = (I - )/(!_ - p)

Thus, if P were independent of height, so must be Richardson's number, in conflict with the
results of the interpolation formula and the log-linear profile.

2.3.4.5 Extension from the Power Law

Thc empirical power law.

Vw It P
REF = VhREF)

is extended to nonadiabatic conditions by altering the exponent with stability. Qualita-
tively, Reference 2-15 indicates that the exponent increases with increasing 3tability and
may approach zero for conditions of extreme instability.
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In Reference 2-25, the logarithmic of the power law equation is taken and derivatives are
performed to yield the expression:

a(n Vw)= _1._ aVw __Uo

i(linh) VW ah kVw

where

kh a-vW
5 u* 0  ah

By solving the interpolation equation, 4
s4 -_, hs 3 =!

for the nondimensional shear and integrating numerically for the mean wind, the exponent
that gives the same shear-mean wind relationslup at a given altitude can be found for various
roughness lengths and levels of stability. Generally, there will be a different exponent for
each altitude, but for a sufficiently small iltitude range the error from considering the
exponent invariant with altitude will be small. For 7' = 18 and altitudes from II to 46
meters, the exponents are shown as a function of the scaling length, 9', and the roughness
length, z0 , on Figure 2-1I, as taken from Reference 2-25. Contrary to that qualitatively
described in Reference 2-15, increasing instability (decreasing I/2') corresponds to an
increasing exponent, a difference that can be due to the altitude and altitude range
considered (see Fig. 2-8). The altitude and altitude range restrictions for applying the power
law to diabatic thermal conditions can generally be considered to be more severe than those
for applying the power law for adiabatic conditions.
2.3.5 Extension of the Mean Wind Profile to the Boundary Layer

The mean wind profiles investigated have been for the lower levels of the boundary layer

7 ~where accurate knowledge is most important. All the models presented, with the exception
of the Ekman spiral, continue to increase with increasing altitude, although at a decreasing
rate, so that the boundary condition of a constant wind at and above the boundary layer is
not met. If some estimate of the boundary layer thickness, d, could be made, then an
artificial restriction, Vw(h)4Vw(d), could be imposed. The artificial restriction would not
relieve the overprediction just below the boundary layer.

Overprediction of the mean wind and mean wind shear near the boundary layer may not
present any problem for most cases. However, sufficiently severe overestimates could
prevent attainment of a glidesiope in tailwinds due to inability to produce enough drag or
to reduce thrust sufficiently or could prevent the attainment of a positive groundspeed in a
headwind at an airplane's nominal approach airspeed.

More importantly, a significant overprediction of the mean wind at the boundary layer
implies the model becomes inaccurate at some lower altitude. When mean wind models at
nonneutral atmospheric conditions become inaccurate for large deviations from neutral
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stability (large h/f'), the altitude at which the model becomes inaccurate is lowered. When
the model is accurate to some hl/f', large deviations from neutral stability implies small ';
therefore, the limiting altitude becomes small. The position is taken that a model that
accurately describes the wind at low altitudes and satisfies the boundary conditions without
artificial constraints is more accurate at intermediate altitudes than a model that fails to
meet the boundJary condition.

A mechanism for correcting the mean wind in the upper part of the bourdary has been
found for the profiles developed from dimensional analysis: relaxation of the constant shear
stress assumption.

2.3.5.1 Boundary Layer Thickness and the Altitude Dependence of Friction Velocity

The Monin-Obukhov similarity iheory starts with the hypothesis that in the atmospheric
boundary layer the properties of the turbulent velocity fluctuations are uniquely
determined by the height h and the following three scaling parameters:

Friction velocity, u. \'('/

Scaling temperature, T* = - H
ku*CpP

u*3C PT
Scaling length, R

These parameters are implicitly independent of height. r is the horizontal surface stress in
the direction of the surface wind, P is the air density, H is the upward heat flux, C, is the
specific heat of air at constant pressure, T is the average air absolute temperature, g is the
earth's gravitational acceleration, and k = 0.4 is Von Karman's constant. Additionally, upon
in(egration of the equations of motion, the small scale roughness length z0 is introduced.
The roughness length is defined as the height at which the mean wind speed formally goes
to zero.

The thickness of the layer in which the Monin-Obukhov similarit theory applies is
determined by the height over which the fall in the shear stress and the chaage in the heat
flux remain negligible. This part of the atmospheric boundary layer is normally referred to
as the constant-stress layer. Reference 2-28 gives the thickness as approximately 30 feet,
while Reference 2-7 infers that the stress changes by less than 10% within a region having a
thickness varying from 30 to 300 feet, depending on the magnitude of the ground shear
stress. It was concluded that the heat flux is essentially constant with height near the surface
except when the flux is small.

Our interest extends beyond the constant stress layer up to about 1000 feet above the
surface. The atmospheric boundary layer may be regarded as the layer from which
momentum is extracted to overcome aerodynamic friction. Contrary to classical ideas, the
thickness of the boundary layer is not constant. The effective range of the turbulent
momentum transport is controlled by the thermal stratification of the atmosphere.
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Reference 2-4 states that during daytime over land, the top of the boundary layer is .sually
defined by the existence of a stable layer beginning in the range between 1500 and 6000
feet above ground. Further, at night the stable air generated by ground cooling may suppress
the turbulent motion except immediately above the ground, the boundary layer then being
very shallow.

In the boundary layer above the constant-stress layer, the semiempirical analysis becomes
extremely complex. The simplifying assumptions of the similarity theory are no longer
valid, partly due to the decrease in the stress with height and the increasing effect of Coriolis
force. Additional complications are introduced by the effect of variable terrain roughness
and large-scale horizontal variations of temperature.

For heights over which the decrease of u, may not be neglected, it is suggested that the
mean wind speed and shear remain proportional to the local value of friction velocity,
u.(h), which may be estimated by considering a simplified form of the Navier-Stokes
equations of motion.

If r(h) is the shear stress at the height h then let

2 [, l (h)

Assuming that the velocity vector and the shear stress vector are parallel at the elevation h,
then from Reference 2-9

a[u,(h)I 
2

-= - fG sin a

where u,(h) is the value of the friction velocity at the height 11, f is Coriolis parameter, G
is the geostrophic wind speed, and a is the angle between the geostrophic wind vector and
the wind vector at the height h. When the surface wind blows to the left of the geostrophic
wind, a is positive. At the surface a = a0 and at the top of the boundary layer 1 = 0. Near
the surface I u,(h)] 2 may be expanded in a Taylor series about h = 0 and o CI0 .

[u*(h)]2 u*(0)122hc dal
(u~~~(h)Jf = ufUFI sin ao- 2 fG cos ao~ 1

+ higher order terms.

According to References 2-4, -7, -9, and -29, the term Ido/dhl is small in the lower part of
the boundary layer, therefore neglecting second and higher order terms in the expansion

u(h)u,(0) I -lu,(O)l
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This expression is identical to those derived in References 2-4 and 2-29 and similar to the
one derived in Reference 2-9. The cross-isobar angle a0 varies between 5 for very unstable
conditions to 35* for very stable conditions. Reference 2-4 lists

sin a0 = 0.3

as a typical value and reports that observations give

SIG/u,(0)1 2 - 103

Selecting G = 60 feet/see and assuming 450 latitude, then

f 2! i04

and

u,(h)= u(O) 11- 0,5" lO'3h]A
II

where h is measured in feet. Given the specified conditions, this formula predicts the
following decrease in u, with height valid for the lower part of the boundary layer:

Height, ft lO0[u,(O) - u,(h)!u,(0)

50 1.0%
100 2.5%
300 8.0%

1000 29.0%
- 2000 100.0%

The variation of the cross-isobar angle a with height is assumed to be negligible in the layer
under consideration. However, as the height increases the formula will tend to overestimate
the decrease in the friction velocity, because the effect of the variation of a in decreasingA the shear correction is not considered in the formula.
A second derivation of the altitude dependence of friction velocity is obtained by a Taylor

& series expansion about conditions at the edge of the boundary layer.

At the edge of the boundary layer the distributions of velocity and shear stress smoothly
join the flow aloft, where r = 0, VW = G, and a = 0, everywhere independent of height. This
requires the first derivative of the shear stress to be zero. Thus, a simplified expression for
V* (h) may be obtained by expanding [u. (h)1 2 in Taylor series about h = d and a=0
where d is the thickness of the boundary layer.

[u(h)J2 =u(d)I2 -(h-d) fG sin a - hdd
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+ higher order terms. Thus

(1) u 2Uf 2 dh (h-d)2

Also

sin a (d - h)
iiId

Reference 2-9 reports that the quadratic dependency of the shear stress on height and the
linear distribution of sin a with height have been confirmed by observations. The quantities
[da/dhldl and d must be determined to complete the solution. Refeience 2-9 postulates
that the expressions may be obtained by assuming that the upper profile is everywhere
determined by the asymptotic form and thus in the overlap region of the lower and higher
profiles as well. From Reference 2-9

dtu,(O)
si dOt ] d =10.7 u

Thus

sin a 1.U*(O)
G d'

*and

u,(h) F df 1 h

Reference 2.9 makes this expression satisfy the boundary conditions at the surface, i.e., for
h = 0, u,(h)/u,(O) = I. Hence,

u,(h) h

u*(O) 1 jI-7

Since
df -5.35 u,("" = I

U*(O)

and

1u(O)
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then

d u (O)=5.35f

and

dh-Id G

Substituting for d

u *0h ) I 5 .3 5
u,(O ) u,(O)

Assuming

sin ao0 = 0.3

then
, GSu(O) =32.1

which is in good agreement with the value

quoted earlier

Selecting G = 60 feet/sec and assuming 45*latitude as before,

1" _- 10-4

and

u,(h) = u,(0) [I - 0.286 • 10-3h

where h is measured in feet. Given the spf-ci,ed conditions, .his formula predicts the
following decrease in u, with height valid for tile upper boundary layer:

Height. ft 00I[u,(0) - u,(h)I/u,(0)

50 1.511(
100 2.9%
300 8.6%

1000 28.6%
2000 57.2%
3500 100.0%
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The expn,'ssions for the asymptotic behavior of the shear strss near the ground and at the
upper edge of the boundary layer agree very well when both are extrapolated to the lower
midrange lev'1,; in the boundary layer. It appears that the high JNvel asymptotic expansion
will give good results over most of the boundary layer, except for perhaps at the extreme
lower part where the low level asymptotic expansion will give better results. The indicatioas
are that the latter method will overestimate the decrease in u, by a considerable amount at
levels higher than one-third the boundary layer thickness. It should be noted that for the
given geostrophic wind and relationship between the latter and the surface stress, this theory
predicts a boundary layer thickness of 3500 feet. This is in good agreement with
atmospheric measurements performed under similar conditions (Ref. 2-9).

2.3.5.2 Modification of the Mean Wind Profile From Similarity Theory

Mean wind profiles from dimensional analysis are obtained from

Formerly, it was assumed that

u, = u,(h = 0) = u,0

A zero wind shear at the boundary layer is obtained by recognizing the altitude dependence
of friction velocity that provides for zero friction velocity at the edge of the boundary layer.
Using the expression developed from the Taylor series expansion about conditions at the
edge of the boundary layer.

u* = u*0 (I ")

the expression for the mean wind shear becomes

h= (u) h kh

The corresponding equation for boundary layer depth, d, is

u*0
d = 5.35f

For a 40 latitude, the Coriolis parameter, f, is such that

d = 2000 u* 0 ~ ft

Accounting for the variation of shear stress with altitude ensures that the wind shear goes to
zero at the edge of the boundary layer, as it should to be compatible with the idealized
description. At low altitudes, where h/d is small, tile previous equation for the
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nondimensional shear is unaltered. Reducing the shear at altitudes where it is already small
is inconsequential, but reflecting the reduction of the shear on the wind speed can lead to a
substantial reduction in the high altitude wind speed.

No justification for incorporating the shear stress reduction in the shear profile has been
found in the literature. It is merely presumed that matching requirements at low altitudes
and at the boundary layer will provide better results at the intermediate altitudes than just
matching requirements at low altitudes and extrapolating to high altitudes.

The integration of the shear to provide the wind profile is performed in Appendix 2A and
provides:

*or111 + z0  h fh~kw =- [n-0 ) -Z+

The two parameters of the function f(h/k', hi/d), which represents the contribution of
nonreutral atmospheric stability to the profilc, are separable and the function may be
describable in terms of the constant shear stress functions:

= h 1 h h)

(hd)Q I - iJ , /2'< 0

f -~ IIfId W d,1/2>0

or

f( IV f-) v 11 of(Q) d, t.1/11'<0' I = 1 + h/d

_h/ f0= ' (-~- + o hQf~dlQ>

For stable conditions, explicit functions are derived in Appendix 2A. For unstable

conditions, the fun,.tinns are derived by numerical integration.

The mean wind equations may be alternately Jefined as

*( hh + h IVw -- [1 :o)-
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The function f(h/Q') is identical to that used for the constant friction velocity profile.

The function gh/k') describes the reduction of the wind due to the decre. se of shear stress
with increasing altitude. For neutral stability, g(O) = i. For lcw altitude-, where h/d is very
small, tile mean wind description reduces to that for constant shear stress.

Deriv:tiovs providing modified expressions for the particular conditions of neutral stability
(O(h/Q') = I) and near neutral stability (O(h/R') = I + a'h/f), are performed in Appendix 2A
and provide the following expressions:

Ni-utral stability: h/' = 0. O(h/')= I

For low altitudes, h/d 2! 0 and the logarithmic profile, is obtained.

Near neutral stability: ("') = +'h/'

vw = [lIn l+g-+a Ihm po s a

For low altitudes, h/d -0 and the log-linear profile is obtained.

Appendix 2A also provides a derivation for thc stable profile represented by O(h/V') = I + ,'
for h/R' > 1:

V- =~ - at [I + In (-].f alin * ° z '' "o
To prevent negative friction velocities froni occurring for h > d, an additional constraint is

all

4(1) = VW(d) for h * d

The effect of the altitude variation of shear stress is negligible fot unstable conditions but
can be appreciable for stable conditions, as shown on Figure 2-12.
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2.3.6 Selection of Mean Wind Description

The major analytic descriptions for low altitude have been provided: from these, a
description for specific application to the approach and landing maneuver is to be selected.

The critical area for the evaluation of aircraft motion during approach and landing is at anti
near touchdown. where success or failure of the maneuver is determined. Here, accura!t:
correlation of airspeed with ground speed Must be made to avoid large touchdown
disper,,ioas. This region requires very accurate control of rate of sink, airplane attitude, and
angular velocities to avoid structural damage. At higher altitudes, greater tolerances on
aircraft motion can be accepted as the consequences are less.

Aircraft motion at or near touchdown is not solely dependent on the conditions in that
region. but is also a consequence of conditions experienced before that region is reached.
lloweve., it may be reasoned that the effect of' conditions at a given altitude on the
touchdown performance are inversely proportional to altittude: what happens high above the
ground has less effect on the touchdown than what happens at some altitude nearer the
ground. Thus. the first requirement for the description selected is accurate representation at
the altitude corresponding to that at touchdown (height of the aerodynamic center above

grouind at touchdown). Then the descriptions are weighted according to their accuracies at
increasing altitudes. This effectively rules out the P:,an spiral. whose validity at any
altitude ;s questionable but which is most descripti% I,,, wind conditions at the top of the
alnospheric boundary layer.

If thermal conditions were restricted to adiabatic conditions, the choice would be between
the logarithmic profile and the power law. The literature argues that the power law has the
simpler form, but this cannot be accepted for simulation applications. Either requires a
series approximation or a table lookup for digital simulation and a table lookup for analog
simlkiion. The power law has been seen to be an approximation to the logarithmic profile
and (leviatcs from the logarithmic profile significantly at higher altitudes. llowe,,er, the
logarith.-ic profile may be suspect at these altitudes. and the difference at higher altitudes
maVy have little impact.

A decision on whether or not to restrict thermal conditions to adiabatic conditions slall not
be made at this point. Rather. a description is sought which accounts for nonadiabatic
conditions so that their significance may be evaluated. Descriptions accounting for sich
effex provitle for an increase inI the magnitude of stability or instability with increasing
altitude (bt not i transition between stability and instability with changing altitude).
('onscqueuitly. a restriction on the range of' stable or unstable conditions results in
restrictions oni the maximum and minimnum altitudes to which the description may be
applied. An approach and landing fron 1000 feet in virtually any condition except for
adiabatic conditions will result in passing from strong stability to slight stability or stiong
instahility to slight instability I lence. the decription must be continuous over a wide range
of ::ability and instability. This eliminate% the log-linear profile for instability. as well as
pcrhaps for stability and other models rest' icted to small ranges of stability conditions, such
;is the law attributed to Priestly. Ilowever, it does not eliminate combinations of
descriptions. provided such combinations provide a total description that is continuous with
stability.
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The Deacon profile satisfies these requirements mathematically, but it implies constant
stability with altitude, a condition found empirically to be invalid. The power law by ilstf
does not have a well-defined description of the exponent for various stability conditions and
surface roughness. Such an exponent description can be obtained by comparison with oilier
wind descriptions, such as was done on Figure 2-I1, but the altitude range for accurate
application is too restrictive.

A description that best satisfies the requirement for neutral and unstable conditions is the
KEYPS equation, which apparently agrees well with restrictive models for regions of
instability. For stability, the log-linear profile is well accepted for limited Richardson's
number. The only model available for strong stability is that from Reference 2-26. which,
although admittedly fitted to data with considerable scatter, provides continuity with the
log-linear profile. The data scatter about the strong stability description is not a particular

concern as probable occurrences of strong stability are at higher altitudes.

The combination of descriptions just selected is summarized as follows, using tht. universal
function f(h/R') for each of the descriptions:

- [in f/h+ z0 \ + f 0/2'':'

For Ri < 0:

h/R' =
i~0 - 3"R) / 4

f(h/Q') is given by Figure 2- 10

For Ri > O. h/k'< I:

R
i

h/Q' -- a' R

fhl= ') h/Q'

For Ri > I/+ ah/Q' > I:

:' h/Q' =(I + a') Ri

Nf(h/') = a' + ot'ln(h/q')

For continuity, ^' = 4 a'
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The combined relationships for R, and h/' and for defining (h/2') are presented graphically
on Figures 2-13 and 2-14, respectively.

Low altitude winds are probably generated from the geostrophic winds, but tile relationship
is not clear --the geostrophic wind data are not well documented, and the geostrophic wind
has little physical significance. A more meaningful height from which to extrapolate winds,
and a height for which more wind data are available, is the tower height. There is a present
effort to standardize the tower height at 20 feet and this is tile height that will be used. Not
only shall the mean wind be specified at 20 feet, but also the Richardson's number, needed
to determine the scaling length, R', and, in conjunction with the mean wind at 20 feet, the
constant u* /k.

0
Given the Richardson's number and tile mean wind at 20 feet, the constants are found by:

11*0 -I (Fig. 2-15)~
20

0.05 R2 '20R. R0 < 0
( -7 R i 0 1 / 4  ",1

'20)

I X 0.05 RR O
- R20 '0 '

0.05 (1 +a ') Ri20 20/2' > I (Fig. 2-16)

Note that the constants are calculated before, not during, the simulation.

Still remaining are the specifications for roughness h.igth and a'. The roughness length
could b specified for each particular airport and would perhaps be a function of wind
direction, di.:tance, height. season, and wind speed. llowevei, the p,oblem at hand involves
"average" conditions for all ailportN. and a number representative for all the above factors
for the "average" airport is needed.

The roughness length selected is 0.15 feet. partly because that number appears to
qualitatively represent surface conditions in the vicinity of the "average" airport, as seen by
Figure 2-7, and partly because that number is used in an existing British Aeronautical
Review Board (ARB) autoland certification specification.

It is likely that tile "open airport" roughness length of' 0.01 feet from Reference 2-14 is too
small, since few airports qualify completely as being "open" due to tile presence of many
aircraft and structures on and around the airport. On tile other hand, it is unlikely that the
average roughness will correspond to that for the surrounding structurt.s. Airports tend to be
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afigned to the prevailing wind and, due to operation procedures, large down-runway
components will be headwinds. From a conversation with Dr. Panofsky (coauthor of Ref.
2-7), the internal boundary layer dissipates after about a mile. Since most runways tend to
open for more than a mile, and using a one-in-ten slope for the downwind rise of the
internal boundary layer from the terrain discontinuity, it may be concluded that pure
headwind approaches will have a roughness dominated by the airfield. Tailwinds, at lower
wind speeds, will have a greater roughness associated with the terrain along the approach
path. The greatest roughness affecting the wind is likely to be for pure crosswinds: The
lateral displacements of obstacles are likely to be within the I mile specified. Roughness
lengths for pure crosswinds are altitude dependent, with lower altitudes providing smaller
roughness lengths approaching that associated with the runway. Since, for aircraft operation
the lowest altitudes are generally the most important, there should be a weighting in favor
of the smaller lengths.

A qualitative averaging of the various considerations does not indicate that a roughness
length of 0.15 feet is out of line. For airports where the surrot.oding terrain is very rough,
the same arguments can be extended to support an effective roughness length substantially
lesb than that associated with the surrounding terrain.

The constant Ci' is selected as 4.5 for both stable and unstable conditions (to provide

continuity of the slope of f(h/V') at adiabatic conditions), resulting in 7'= 18. The main
reason for selecting 4.5 is the substantiation given by Reference 2-7. This number appears to
agree reasonably well with estimates by other investigators.

The mean wind profiles that result from this description are show i on Figure 2-17. Stable
conditions are seen to result in more severe shears and higher winds above 20 feet, for the
same reference mean wind. However, since the wind is propagated from the geostrophic
wind, it might be expected that greater stability at the reference height will be associated
with lower mean winds at the same height, and consequently, the differences in the shears
between stable and unstable conditions may not be so great.

In order to provide for a mean wind shear that disappears at the edge of the boundary layer
and an increase of the maximum altitude to which the model is accurate, a modification of
the wind and wind shear models incorporating friction velocity variation with altitude is
adopted.

Two models for the variation of friction velocity with altitude have been provided, both
derived using Taylor series expansions. One, providing a quadratic relationship, is most
accurate near the surface. The other, a linear relationship, is most accurate near the

boundary layer. Either is sufficiently accurate near the surface of the earth where the effect
is insignificant. Thus, the linear relationship is selected as it provides a more accurate
description at higher altitudes where the decrease in friction velocity is more significant.
That is

U* = *( ")

where d is depth of the boundary layer.
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The depth of the boundary layer has been given by

u*O
d =0.o E sin A

This equ-ation is undoubtedly incorrect at the equator where the boundary layer is predicted
to be infiwite. Since u,_ can be related to the surface wind, it provides for less decay of
friction velodity for higlhr surface wind conditions. Above the boundary layer, turbulence
due to the propagation of the geostrophic wind to the surface is zero. This does not account
for turbulence generated by convectional clouds, inversion layers, low level jetstreams, and
other phenomena that produce mean wind shears and heat convection at high altitudes.

The equation for the boundaiy layer thickness is more acceptable for larger latitudes. Most
of the United States and the majority of world airport activity lies between 30° and 50*
latitude. A latitude of 40 shall be assumed to be representative of United States operations.

Recognizing that wE = 7.2685 x 10-5 rad/sec.

d 2000 u,0 - ft

--O ft/sec

Richardson's numbers at 20 feet is expected tu fall within a small range and hence the effect

of stability on boundary layer thickness is small. However, the boundary layer is linearly
related to the mean wind at 20 feet. For a 10-knot wind at 20 feet, the boundary layer

thickness is computed to be 2750 feet for adiabatic conditions.

The final form for the mean wind and mean wind shear models becomes:

lu*o/k(
all 0.4V20-0 d] R'

-- given on Figure 2-18

- u*/k (hil + Z0\ (h) hW IhLv\
S - I In -- +-f- R# dI

Sd, h d

161



kh 3vW 54.5

6-kh av

0- W 6 hL.=+ 4 .5 h/R' -

U~Uo ah
3 /h

0

_________ ______Nondimensionat shear, _______

kh k( W

u, 0 h

101

U, 0 ah (1 - 18 R)Y

-2.0 -1.5 -1.0 - .5 0 0.5 1.0

Nondimonsional altitude, h/V'

'*IGURE 2-18.-SELECTED NONDIMENSIONA L SHEAR DESCRIPTION

The €unction g(h/Q ') has been obtained from f(h/2') and numerical integration according to:

(-/Q) f()dj < 0

(hQ' ff(Q)dt. -L > 0

0
and is shown on Figure 2-19.
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2.4 TURBULENCE

Wind shears will act to displace air particles vertically. If unstable atmospheric conditions

exist, buoyancy forces will tend to amplify the displacement. For physical systems, unstable
divergences cannot increase without bound. Produced by the wind shwar and buoyancy

_forces, turbulence is a mechanism by which increasing atmospheric instability is constrained.
According to Reference 2-1: "In turbulent air tile mixing of hotter and colder air parcels
will tend to produce thermal equilibrium locally." This does not mean that turbulent air
occurs only for negative Richardson's numbers, but rather that the buoyancy forces must be
large eniough to remove energy as fast as they are introduced by the shear forces for
turbulence not to exist on a self-sustaining basis. The ratio of buoyancy forces removing
energy (for stable atmospheric conditions) to the inertia (wind shear) energy production is
the Richardson's number, and a value of one might be expected to specify the existence of
turbulence. However, as stated in Reference 2-7, "This does not mean that a Richardson's
number of unity gives the criterion for the onset or disappearance of turbulence: an
instability or sume other source must first generate large disturbances; the value of
(Richardson's number) then determines when they can be self-supporting."

There apparently is a Richardson's number hysteresis effect determining the existence of
turbulence. This is explained in Reference 2-7: "Existing turbulence would not ordinarily be
expected to vanish at the same value [of Richardson's number associated with the
generation of turbulence from laminar motion.) since disturbances present are already large,

The production of turbulence from laminar flow has been predicted by lineal analysis to
occur t Ri = 0.25, as reported in Reference 2-7. The same reference also notes that
urbvlencc is seldom found above Ri = 0.2 in the atmosphere, and the existence of

turbuhnice is related to the "critical" Richardson's number, equal to I/a, where a is the
constant appearing in the log-linear mean wind profile. Reference 2-7 provides estimates of
c) itical Richards3n's number of from 0.14 to 0.22.

Since turbulence can oaly exist under conditions of atmospheric stability, its discussion is
not separable from stability considerations. limiting consideration of turbulence to adiabatic

conditions cannot be justified at this point. The classifications -stab:e" and "unstable" as
applied to turbulence (i.e., its absence or presence) are not the same as for mean wind. In
this connection. "stable" and "unstable" are related to a pusitive critical Richardson's
nunmber alther than to 0. 'he discussion of turbulence applies only for Richardson's
numbers less tahn the critical Rihardson's number.

[hc equations ol an oion for turbukence have been developed from the Navier-Stokes
equations and :re presented in References 2-7, -9, and -30, among others. From obst rvations
relating to these equations. some physical characteristics of turbulence have been
determined f Ref. 2-7).

L 0 Turbulence proides a transport olf c. ergy from the gmneration of energy
mechanicaii" and convectively to internal energy. The energy transport process
occurs through a cascade of eddies of d , inishing size, which finally ends in
viscois dissipation.
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* Furbulence is three-dimensional and nonlinear; the transfer of energy from one k
SizL eddy to another can only take place nonlinearly in three dimensions.

0 Turbulence is diffusive, much as the molecules in a gas. That is. a tagged point in a
turbulence field will wander farther and farther away from its original location, A
aLcotinting for the transport of mass, moment, and heat properties. Turbulence
transport of physical properties "is usually far more effective than the transport
ilue to molecular motion."

T he urbul.ice is a continuum phlenomelon with a smallest dynamically significant

scale being much larger than intt'ri-oecular distances or molecular dimensions.

0: Turbulence is approximately ar equilibrium phenomenon for homogeneous
terrain -"Except for transitional periods, the local rate of change of kinetic energy
is of tile order of' a few (m/see)- in several hours wnile the largest terms in the
energy equation are of [two o,'ders of magnitude larger] in the boundary layer."

The diffusive, continuous, and equilibrium characteristics of turbulence lead to the property
of homogeneity of turbulence in the horizontl plane over homogeneous terrain, the
condition that has been previously specified. Trhat is, the average properties of turbulent
motion are independent of horizontal position, so long as we constrain ourselves to
consideration of a region smaller than the entire turbulence field.

'he concept for the horizontal homogeneity of turbulence is not universally accepted, and
there has been considerable recent work based on turbulence consisting of local
concentrations of energy (Refs. 2-31. -32, and -33). However. the description of
inhomogeneous turbulence can be understood by relating it to homogeneous turbulence.

The nonlinearity of the equations of motion for turbulence has prevented unique solutions
for given sets of conditions. As stated in Reference 2-7. *'the uniqueness of the solution
seems likely: however, the solution appears (in the unstable regime) to be so sensitive to
minute changes in the conditions that we never know these finely enough to predict the
detailed structure of the flow." As a consequence, the too! of ignorance, the statistical
description, must be used.

The starting point for describing turbulence is the specification of th? stati.;tical tools and
deccription of their application. Even using statistics, a great number of asstmptions must
be madiL !o achieve a description that can be applied to practical problems.

Upon identifying the statistical characteristics, their vari:tions and the parameters causing
the variations need to be found. For example, it is intuitive that there is a magnitude of
turbulence and a scaltr relating to the size of the turbulence eddies. The question arises as to
whether tle statistical characteristics can be described deterministically or whether they, in
turn, must he described statistically.
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2.4.1 Statistice! Functions for Twbulence Description

Turbulence has been defined as the difference between the instantaneous wind velocity and
the mean wind velocity. We wish to deal with this difference on!y, which has thus far been
assumed to be a random process and to be homogeneous (the statistical properties are
invariant with the location at which they are measured).

The most fundamental statistical property is the arithmetic mean or average. However, the
mean may be taken with respect to many paramtters. As stated in Reference 2-7, "... in
measuring wind velocity, we can speak of the average of wind velocity at a number of
different times at the particular measuring station, or of the average of the wind velocity at
a number of different places at a particular instant, or of tile average of the wind velocity at
a particular place, at a particular time of day during a number of o/:currences of the same
weather conditions. This last is probably the most fundamental idea, the concept of an
'ensemble' of experiments."

For example, assume that for atmospheric conditions constrained to be the same, a

turbulence component, u, is a function of time and location, and that N samples have been
obtained for the samc conditions. Then, using < > to denote an ensemble average,

<u (rt, N)>= (I/N),[u (7 i, I) + u(, t, 2) - u, t, N)

To determine the ensemble average for tile entire population of samples, the limit as N- oo
is considered:

<u(-rt)>= lim <u(rtN)>
N --*

Two assumptions about the character of turbulence are introduced at this point. First, it
shall be assumed that the ensemble average is independent of the absolute time so thac

<u(? t0> = <u(-?>

Satisfaction of this assumption is called "stationarity." Stationarity is said to exist when the
mean and higher order averages (averages of products of turbulence components) are
independent of the absolute value of time, but not necessarily indepndent of time
differences. The second assumption is that time and ensemble averages ar the same. A
psocess exhibiting this property is said to be "ergodic." Reference 2-3 states that the ergodic
property follows when turbulence is both homogeneous and stationary. From the ergodic
property, we have

• , T/ 2

<it (r) > = i, (r) = lir / t) dt

whlr' f'o (ve-har implies a time average.
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By definition of turbulence,

0= 0

This can be automatically assured if turbulence is considered to be the total wind measured
with respect to an axis sysem attached to the mean wind.

The mean value of turbulence is trivial, but it is only one of mny averages that may be
taken. In general, averages may be taken of products of turbulence components and their

derivatives which may be displaced in time and space from each other. The averages of these
products are used to evaluate interrelationships or correlations, and results of the averaging
process are called "correlation" functions.

The mean is also but one description defining the probability densitsp function, a second
statistical function. Finally, the last statistical function of concern is the spectrum function,
which is simply the description of the correlation function in the frequency domain.I
2.4.1 .1 Correlation Functions

In general, a turbulence correlation function Rij(rl, F, tI, t2 ) may be defined as:

Rij(r I .F' , t I1, t-2 ) = < uifF I,' t I) Uj(r. t2))>

That is, the correlation function is the ensemble average of the product of the i and j

components of turbulence measured at positions rj and and at times tI and t,

respectively. The correlation function may more gener.lly involve a produci f any number

of turbulence components but, for the purposes of this report, only the pi.,duct of two
components will be considered. "Turbulence components" is used in a very general sense
and includes space and time derivatives of turbulent velocities.

The correlation function describes the average relationship between two Lomponerts. If two
components are "uncorrelated" for all time and space relatio:nships, their correlation
function will be zero. It' the two components are the same and are measured at the same
time and position, the correlation function becomes the "variance":

Rii(rl, t) = <u i (rI, t )>= oii-(r !. t1 )

Note that the attachment of the turbulence axis system to the mean wind alleviates the need
to subtract the mean from the total veocity to achieve the variance.

More generally, the correlation function of two different components evaluated at the same
time and point in space leads to the covariance:

-€,0 --+ 2 -t
Rij(rI' , t I =< uil71 , t I uj(rl, t I > =~ v-(rli IlI
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The correlation function can be simplified considerably by invoking the assumptions
previously made:

0 Homogeneity: The statistical properties of turbulence are independent of
position. Thus, if' =rl + t, where t is the displacement vector between the
components,

Ri,,(r-*• -r, t I1. t2)) - Rij( ,  t I , ti )

Stationarit.),: The statistical properties are independent of the absolute time.
Thus, if t, = tj + r, where r is the time displacement between two components,

Rij(f" t1, t-2 ) = Rj(r)

* Ergodiciuy: Ensemble and time averages are identical; therefore,

T/2

RijQ(, T) = lim f j(t + t t + r) dt

-T/2

This equation is equivalent to saying that for specific combinations of relative time and
space displacements of the two components. the correlation function is found by averaging
over .,l time. When time averages for all combinations of relative displacement and time
have been found, the :omposite of all the averages provides a correlation function as a
function of relative space and time displacement.!

If the two components for whose product the average is taken are the same, the correlation
function i. known as the "autocorrelaion." Otherwise, it is referred to as the "cross
correlation." The expressions for the variance and covariance reduce to:

i- = Rij(O, O)

and provide a means for normalizing the correlatior function:

A R., rRijQ. , r) .
oij"

A

Note that Rij(O, 0) i.

For the ap lication of turbulence to aircraft, an additional simplifiation may be made,
referred to as "Taylor's hypothesis." The essence of this hypothesis, as described in
Reference 2-3. is as follows: "Airplanes fly for the most part at speeds large compared to
the turbulence velities and to their rates of change. Thus the vehi,-l can traverse a
relatively large patch of turbulence in a time so short that the turbulence velocities have not
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had time to change very much. This amounts to neglecting t in the argument V(-r), i.e., to
treating the turbulence as a frozen pattern in space. This assumption is known as 'Taylor's
hypothesis'. Its consequence is that

Rij( , r) =Rij()

The application of Taylor's hypothesis is of im- ense importance for the ability to simulate
turbulence.

The correlation function has been presented perhaps abstractly without indicating its
relationship to the simulation of turbulence. Unfortunately, this relationship cannot be
described without completion of the turbulence description.

A considerable number of assumption, have been introduced to enable the correlation
function to be defined in terms of only the spacial separation between the two turbulence
components involved. These assumptions are not universally accepted and can be applied
only with restrictions.

Certainly, homogeneity at low altitudes is dependent upon homogeneous terrain. Homoge-
neity and stationarity require equilibrium of turbulence energy, which in turn is dependent
on the slow rate of change of atmospheric conditions.i
Perhaps most restrictive is the application of Taylor's hypothesis, which at least restricts the
minimum airspeed of aircraft to which it may be applied. Most certainly, it cannot apply at
zero airspeeds such as for near hover conditions. Reference 2-1 has concluded that the
Taylor hypothesis is valid for airspeeds greater than one-third the mean wind velocity in the
direction of flight, based on permitting a vertical turbulence standard deviation error of 20%
and a presumed "true" space-time relationship.

Reference 2-7 indicates qualitatively that the Taylor hypothesis must fail to some extent for
large eddy turbulence contributions, associated with large scale vertical motion during
uistable conditions, as these eddy motions must remain fixed with respect to the ground to
some ext,'nt. Taylor's hypothesis implies that turbulence eddies must move with respect to
the ground at the mean wind speed,

It shall be ass-imed that the conditions required to satisfy the assumptions made are met, for
the applications required, and that the correlation function is dependent on spacial
separations only.

2.4.1.2 Probability Functions

Such quantities as the variance obtained from the autocorrelation function provide a
measure of the average level of turbulence, but do not quantify the distribution of the
magnitude of turbulence velocities nor the likelihood of encountering a particular
turbulence level. The functions that provide stuch information shall be referred to as
probability functions.
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Probability is simply the number of specific occurrences divided by the total number of
observations. For example, the probability that a function g lies between the values gL and
gU is given by:

No. of observations where g lies in the region1

P gL < g < U - Total number of observations

When the lower limit gL is allowed to approach-**, the probability function is the
"cumulative probability," or the probability that g will not exceed gu. When the upper
limit, gu" is allowed to approach +- the probability function is the "exceedance
probability," or the probability that will not be less than gL. Note that a probability car,
never be less than zero nor greater than one. The exceedance probability is equal to one
minus the cumulative probability and vice versa.

When gu is allowed to approach gL, the probability function is the probability that g will
equal guL or the "probability of occurrence." When g is a discrete function that takes on
only specific values in the region, tie probability of occurrence may take on non-zero
values. If, however, g is a continuous function that may assume any of the values in the
region gL < g < gu the probability of occurrence is zero as there are an infinite number of
values that g may assume.

For a continuous analytic function, the above definitions are somewhat cumbersome. An
alternate approach is provided by Reference 2-7, in which an indicator function, O(gL, g), is
first defined.

1 t , g < L

(gL, g) >

That is, the indicator function is unity when the function g is less than or equal to g, and
zero otherwise. Thi.s is illustrated on Figure 2-20. Now, the average of the indicator finction
provides the rL ative portion of time that g is less than gL, which is precisely the climulativei probability:

T/2

r g gLl =I gL.g(t)j = lim I f jgg(t)J dt
T . oo -T/2

The probability that g lies in the region gL g gu can be found from the c'.mulative
probability:
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FIGURE 2.20.-PROBABILITY FUNCTIONS AND CHARACTERISTICS
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t ~ As previously stated, shrinking the region to iero (letting gu approach g ) will only provide
a probability of occurrence equal to zero for a continuous function. Rather, the ratio of the
probability to the width of the region, (guj-g L ) is considered as gu approaches gL. This
amounts to taking the derivative of the cumulative distribution, and the result is called the
"probability density" function, P,(g):

~P~g < ~ "PI < ~

M(ggL) = lim
~ ~ gjj g

gu gL
_d

d 9 L I

Conversely, the cumulative probability is found by integrating the probability density
function:

L9L

P Ig gL f j(g) dg

Typically, the probability density function approaches zero for increasing large positive and
negative g, as illustrated in Figure 2-20.

The probability density function can be used to determine ensemble averages for single
parameter functions, as shown in Reference 2-3, by:

g>= f g(Q)P()dt

This equation is referred to as the "theoiem of the mL..n," and can be used to quantify
many characteristics of the probability density function. By letting g(Q) take on various
powers of the parameter ,

g(i) =/in, 1, 2, 3, - --

the "mon,,,.ts"' of t'w d.ribution are obtained:
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00<t> = f (Q)d , I st moment

p -00

00

< t2 > = f t2p(t) dt ,2nd moment

<3 >= f 3(Q ) dt ,3rd moment
-00

and so on. The first moment is identified as the mean, which locates the distribution. The
second moment is the variance, which defines the b;eadth of the distribution. All
odd-number moments refer to the symmetry or lack of symmetry of the -;.... ility density
distribution about its mean, with zero values corresponding to symmetry. Specifically, the
third moment is used to measure skewness, a normalized measure of the separation between
the mean and the mode. The fourth moment is used to measure the "kurtosis" or flatness
factor. Higher moments measure other characteristics and generally have diminishing
importance. Some of the characteristics of the probability density function are illustrated
on Figure 2-20.

The concepts of probability functions can be extended to joint probability functions.
Consider two components of a vector, gl and g2. The indicator function is defined by:

Iand 92 l 92;J 1,gl < glL L
+ ' $01 (gl L' gl ) 0 2 (g2 L' 9g2) =

10 otherwise

The joint cumulative distribution and the joint probability density functions are given by

_ gi _L'92 <g92LI O! (gl L, gl02 (gi'g2)

- L aglLg2L t' LI

or

P~gl < g]= L'9 L f3(g1, g2 ) dg1 dg 2

-00 -00
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Now, invoking the theorem of the mean, the correlation functions may be determined from
the joint distribution:

R 12 =<g" g 2 > Jf g1 g2 0(g 1 , g 2 ) dg Idg 2

For the special vase when gl and g2 are independent finctions such that the probability
density distribution of one of them is not dependent upon the value of the other, the joint
probability density distribution is equal to the product of the individual probability density
distributions and the correlation function is equal to the product of the individual means:

P (gl, 92 ) = (gi ) P(g2 )

R 12 =<gl > < 92>

For two uncorrelated turbulence components, the correlation function is zero.

The most widely used description of the probability density distribution is the "Gaussian"
or "normal" distribution. This distribution has great theoretical importance. Many other
distributions will asymptotically ar.roach the normal distribution as iample sizes increase.
The distribution of sample means, no matter what the distribution of the population, is
normal, a characteristic provided by the "central limit theorem."

Assumption of a Gaussian probability density distribution is convenient for developing
simple expressions for other types of probability functions, such as for the number of
exceedances per mile (number of times a given turbulence level is exceeded in I mile of
flight), and joint distributions between many possible combinatons of turbulence
components and their derivatives.

For the simulation of turbulence, assumption of a Gaussian distribution pLrmits the use of
relatively simple techniques of generating random or pseudo-random noise needed for the
production of turbulence. Analog simulation is heavily dependent upon turbulence having a
distribution that is either Gaussian or can be generated from a Gaussian distribution,
particularly when time must be scaled by !arge factors. Techniques are availablC for
real-time digital simulation of tw ulence having virtually any distributions.

There is some evidence that turbulence probability density distributions are not Gaussian,
par!-cu!irly for very low and very high turbulence levels. Reference 2-34 states that
Reference 2-35 contains an analysis of all three gust components at both high and low
altitude show ng that atmospheric turbulence is definitely non-Gaussian. The results indicate
that low altitud:, turbulence is more nearly Gaussian than that at high altitudes, but at all
altitudes the prokbility density exceeds that of a Gaussian distribution for both small and
large values of gust ,elocities. Figure 2-21, from Reference 2-35, is presented ii, Reference
2-34 in support of these arguments. The line labeled "modified Bessel" is the distribution
presumed in Reference 2-34 and is obtained by multiplying two random samples of a
Gaussian distribution.
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Reference 2-35 states that although a probability distribution of all turbulence is
non-Gaussian, ... the observational results are in accord with a hypothesis that the
turbulence is patchy and that the velocities are distributed locally in a Gaussian manner." As
a consequence, a Gaussian representation of turbulence is justified if a patch of turbulence is
large in relation to the aircraft and the region covered during a simulation. The patch would
have a constant variance, all other factors remaining constant. The variance of turbulence
for all patches would be described by a separate probability density function. That is, a
Gaussian distribution of turbulence is justified for the simulation of a patch of turbulence
having a variance with a constant probability of exceedance. This is the standard procedure.

Even if turbulence patches are not sufficiently large, Figure 2-21 wovild appear to indicate
that a Gaussian distribution of turbulence is representative at low altitudes for all but the
very extreme levels. This, however, would require a variance for all of turbulence.

Modif ied
Modifie High altitude

0.55

Gaussian Low altitude

~0. -

II
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,, ~x/O

, ~FIGURE 2.221.- TURB UL ENCE PRO8A81L I T YDENSI TIES

( 1ROM REF. 2-34)
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It can be shown that a distribution of several patches of turbulence that is non-Gaussian, as
shown on Figure 2-21, actually supports the hypothesis that a patch of turbulence is
Gaussian. For simplicity, it is assumed that all the world's turbulence is divided into two
patches, one with a standard deviation of one and the other with a standard dviatio. of
two. The normal distributions for the two individual patches are p1 and P2 on Figure 2-22.
Also, assume that there is equal probability of being in either patch so that the probability
of being in one patch is 0.5. The two patches are mutually exclusive. That is, it is rot

possible to be in both patches at the same time. For mutually exclusive events, tne
combined probability density function is given by

P P! PI + P2P2

where

PI probability of being in patch I

P2= probability of being in patch 2

The combined probability density function is shown as (pl + P2)/2 on Figure 2-22.

The variance, for discrete samples, is given by

n 22nEx i 2 xi2

2  = if ; i= I

where xi = it" sample deviation from the mean. This may be expanded into the standard
deviation of patch I having nI samples and the standard deviation of patch 2 having n2
samples:

n!  n2
Xi2 + 2; x2j 2

02 i=l j=l
nIl + n-

nlai2 1 n2102 2

nI + n2

The term nl /(n I + n2) represents the probability of being in patch I and the term n2 /(n I +
i-,) represents the probability of being in patch 2.

2 = Pl2l'+
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For the example, the combined standard deviation is a =,JF2. Substituting the combined
standard deviation into the equation for the probability density function for a normal
distribution,

gives the distribution on Figure 2-22 labeled P3.

If the actual combined distribution [(P1 + P2 )/2) is compared to the Gaussian dist-ioution
having the same standard deviation (p3 ), it is seen that the Gaussian fit underestimates the
actual distribution at both small and large amplitudes and overestimates the acLwal
distribution at intermediate amplitudes, exactly the observation on Figure 2-21 made by
Reference 2-34.

The non-Gaussian nature of Figure 2-21 actually supports the hypothesis that the velocity
distribution of a single patch of turbulence is Gaussian as do the assumptions of
homogeneity, stationarity, and diffusiveness, characteristics of turbulence vigorously
supported by References 2-7 and 2-30. Perhaps a non-Gaussian description of a single patch
of turbulence is best suited for the conditions where these characteristics do not hold.

2.4.1.3 Spectrum Functions

The spectrum function is by definition the Fourier integral of the correlation function. If

the correlation function is described in terms of a time displacement, the spectrum function
is described in terms of radians/time. If the correlation function is described in terms of a

L spacial displacement, the spectrum function is in terms of radians/distance.

Consider a one-dimensional correlation function, Rij(). The spectrum function is given by:

~1 00i ( O '[

4 ij(12 -T Q) il dt

where , = radians/distance. The existence of the spectrum function is assured provided the

correlation function vanishes as "t ::.

By the inversion formula for Fourier integrals,

cc

RV1 f 78) e'n dr
.00
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When i = j, the spectrum function is called the "power spectral density," or the "power
spe',trum." When i #j the spectrum function is called the "cross-power spectral density" or
the "cospectrum."

When the correlation function is for two turbulence components measured at the same
location, the integral of the cospectrum yields the covariances.

i= Ri(O) = f , j(f2) dS2
-00

or, for i =j

00

oij = Rii(O) = f "ii() d92

Now, the physical significance of the power spectrum and cospectrum function is seen. The
power spectrum and cospectrum function provide the distribution of the variance (or
turbulence power) and covariance with frequency. The tits of tie one-dimensional
spectrum function is (velocity)"/rad/sec). The (velocity)- term is analogous to power for a
unit mass.
The spectrum function is defined fzr both positive and negative frequencies, is positive
everywhere, and is an even function so that ,(-52) = , These properties are often used
in loads and ride qualities analyses to enable the definition of the "one-sided power
spectrum."

OC,

2 = 1),ii(S 2) dS2

00

= 2f Fii(n) d2

00
= liP-(1) 62; 4, ii(S2) :2qii(S2)

That is, rather than integrating from -co to oo to obtain the variance, the integral is
performed from 0 to oc and doubled. Definition of the .,ectrum function in terms of the
one-sided spectrum for the purposes of simulation should be avoided since an erroneous
model may result, as is discussed later.

Reference 2-3 and others show that the application of the Fourier integral to a random
function results flor repr.;senting the function with a Fourier series over a finiite region, say
from -A to A (the function is zero outside this region), and then taking the limit as the region
the function is defin.d for becomes infitite (A - *). The need to consider an infinite
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region arises because representation over a finite region from -A to A will result in a periodic
Fourier series with period 2X, while the random function to be represented is not periodic.

Representation over .i finite region results in a "line spectrum" where the spectrum function
has non-zero values only Lt discrete f'equencies with the separation between the discrete
frequencies being inversely proportional to the size of the region. Use of the Fourier integral
will in general attribute a non-zero coatribution to the variance at wavelengths approaching
infinity. Although this is not physically appealing, a finite patch of turbulence sufficiently
large will cause the contributions due to the larger wavelengths to be insignificant and the
frequencies at which the disparity exists to be far below the lowest frequencies of interest.

The spectrum function could alternately be represented by the Fourier teansform. rather
than the Fourier integral. The power spectrum function and the corresponding inversion

;ormula would be:

F-ij = f Rij(V)eiat dt

Rij( ) = f bFTij, R) es td n

The Fourier transform and the Fourier integral spectrum functions are just related by 2,r:

i 4¢ ij z 2 1 4bq F T i

The Fourier transform is an acceptable means for producing a power spectrum, but the
Fourier integral is used by convention. To avoid possible misinterprelation, any form
specified for a spectrum function should be accompanied by the equation for the
correlation function or the variance/covariance.

Reference 2-7 discusses alternate techniques for the presentation of the one-dimensional
spectrum function. The most direct method is a linear plot of P(S2) vs fl. This plot also has
the advantage of graphically presenting the contribution of each frequency to the variance
or covariance. However, several decades of frequency and a corresponding range of power
may be of interest, thus dictating the form of log (4) vs log (12). The log-log plot has the
advantage of' permitting straight-line asymptotic approximations but also the disadvantage
of distorting the contribution of each frequency to the total variance or covariance. The
form used on Figure 2-1, f2€(2) vs log (12), combines most of the advantages of the other
two forms. Both axes are collapsed (assuming *(fl) decreases as 121 increases) and since
S24(12)d (log f)= 4S(12)dS. the contribution of each frequency range to the total
variance/covariance is represented. It may also be noted tMat a change in the units of
frequency (spacial frequency, ordinary frequency, circular frequency) leaves the quantity
S24b(12) unchanged.
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This far, only a one-dimensional spectrum has been considered, where the number of

dimensions iefers to the number of parameters for which the corielation function and the
spectrum function are defined. The number of dimensions does not refer to the number of
turbulence components assumed to exist-there are always three turbulence components.
The more general case is when the spacial displacement defining the correlation functions is
a vector and that has three dimensions. The Fourier transform defining the three-
dimensional spectrum function is:

00 4

0jJQ) f 3 e Q
(2w) .cc

or

0ij(I. D2a 3) f f R12 ' 3) ) - ( 1 I+222+3 3dt1 dt2 dbj

11

The inversion formula gives

Rij( l 2 6 3, fff oij(21, 22. '23 ) e " 1 + 2 2 + E23 df 1  di 2-, d 23

-00

This formulation is compatible with the results of the assumptions made, but is not suitable
for simulation. Simulation requires that turbulence be generated as a function of time.
Taylor's hypothesis provides a tool for converting only one spacial coordinate, that in the
direction of flight, into time. The disparity between the three-dimensional spectrum and
simulation requirement: and the corresponding solution have been observed in Reference
2-30: "Although three-dimensional Fourier transforms are appropriate to a function of a
vector argument, the experimenter can make a Fourier analysis (by passing an electronic
signal proportional to the velocity through a filter circuit, or wave analyses) with respect to
one space coordinate only. The resulting spectrum is a one-dimensional Fourier transform of
the velocity correlation sensor, and is obtained from the spectrum tensor 0ij(11) by
integrating overall values of the lateral components of A." That is, first the axis system of
the turbulence is oriented so that ti and ill are measured in the direction of flight, or the
"relative wind axis system." Then the three-dimensional spectrum function is integrated
successively over the other two components of spacial frequency (S12 and f23 ) to reduce the
three-dimensional spectrum to u one-directional spectrum:

R ,0 (aIdi+1 2 ! t1
Rij( t I'2) = ff 1ij(i21l S22 ) '(12 /I + S2 2) d22

'ij"2!, I,) = two-dimensional spectrum

00
f 0ij(1, $22, S23' 123
..00
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~,A,

Rij( 1) = f tlij(fl0e i 1 l d92,

(l~ij( Ill) f *~ij( il1, S2,) dMi

Thus, the three-dimensional spectrum is reduced to the oe-dimensional spectrum.

An additional spectrum of impo, tance is the "energy spectrum function" which distributes
khieti energy with spacial freque.1cy (also called "wave number") magnitude, £a wave

2.4.2 Isotropic Turbulence

The condition of isotropy means that the average functions des'ribing the field of
turbulence are independent of direction of the axis system. As a consequence, in the words

i of Reference 2-7, ".the spectrum functien homogeneous in three spacial directions,

which is also isotropic, cannot be a function of the servarate components of the wave
number vector, for a rotation to the new coordinate system would change those. It can be a
function only of the length of the vector, for that is the only quantity characterizing 1
which does not remain unchanged under a rotation." Isotropic turbulence exhibits spherical
symmetry, and the root mean square intensities for all velocity components must be equal.

It is generally agreed that turbulence at high altitudes is well represented by isotropy. It is
also generally agreed that low altitude turbulence is not isotropic. For example, in view of
the changes of wind shears and atmospheric stability with altitude at low altitudes, which
produce turbulence, it may be reasoned that averages taken normal to the earth will not be
the same as averages taken in a direction parallel to the earth. A justified question is: why,
when the concern is with low altitude turbulence only, is isotropic turbulence considered?
The answer is simply that theory for the general case of nonisotropic turbulence leading to
explicit forms of spectrum functions does not exist. Rather, low altitude turbulence spectra
are treated as extensions of isotropic turbulence.

2.4.2.1 Fundamental Correlation Functions

The fundamental concept for isotropic turbulence is the form of the correlation function.
Reference 2-30 shows that a,- isotropic second-order two-point tensor, Rj('), mvist have
the form:

RijQ--" F(Q)t-i j + GQ)ij
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where

lI,i=j

O, i*j

F(t), G(Q) = scalar functions.

A se,.ond condition for the correlation function is continuity, or conservation of mass. For
incompressible conditions, continuity is assured if the divergence of velocity vanishes. In
terms of the correlation functions, satisfaction of continuity requires:

3 aRi .. 3 aRi*
( = 0 i j 0 (Refs. 2-7, 2-30)

i=I 'i=l

or, simply

4F( F() + ,,( d0

Thus, the continuity equation relates the two scalar functions so that only one of them can
be independent.

The scalar functions F(Q) and G(Q) have been arbitrary, and as such have had little physical
significance. In an important step, two nondimensional correlation functions are introduced.
They are the nonLimensional correlation functions for paraliel turbulence components
separated by the displacement vector, t, along and normal to the direction of the
displacement vector. The geometry of these correlation functioas is shown on Figure 2-23.
The functions are defined by:

A Rpp() < uVr)lup(r + >

OpI) Opp-

A RNN(V) < uNjir) uN(r +)>

ONN- ONN-

The functions f(t) and g(e) are referred to as the "longitudimil" and "transverse"
correlation functions, respectively. It is important to note that f(Q) and g(Q) do not depend
on the orientation of the displace:. ent vector; it i.- only required that they be measured for
turbulence components parallel and normal to the displacement vector. The general shape of
the fundamental correlation finction is shown on Figure 2-23, as taken from
Reference 2-30.
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Solving for the relationship of the fundamental correlation functions with the scalar
functions using the general form of the correlation function yields:

Rii(Q) FM 2 + G()
f( ) . f -=o2  '( )Lo2+

I~t dG(jL GI ~I

() 02  02

f'(.) f(.) -G()/o2 _RD . - g(Q)

_--gq = 2gQ

S0 2 dt dt

Substituting these relationships into the continuity equation and solving for gQ) gives:

,- 9Q() -f(V) + - J

Substituting for the scalar function into the equation for the correlation function gives

RijQ()= u2 M )  + 7 Q)

where

= j
ii

Note that this equation specifies that cross correlatio;ns (Rij, i*j) are zero for isotropic
turbulence.

Now, once the longitudinal correlation function has been determined, the correlation
function for two turbulence velcdies at any relative displacement in an isotropic
turbulence field can be determined.

I2.4.2.2 Interrelationships of Spectrum Functions

Arguments similar to those used to dev(-iop the interrelationships between tie fundamental
correlation functions can be used to develop interrelationships between spectrum functions.
The following development is taken from Reference 2-30.

185



Ii

As the three-dimensional spectrum functions are a second-order two-point tensor, they may
be described in terms of scalar functions for isotropy:

Oijd) =A(n),in j + B(n)6ij

where nI
l ,i=jo,ikj6iJ 0. i i

Using thc relationship between the three-dimensional spectrum and tile correlation function.

Rij(V) f Oij(S2) ei 'i d92

the continuity equation

3 RR -

can be expressed in terms of the three-dimensional spectrum function as

3 3
n~i0 ij() = 2jij() = 0

i=l i=l :

This form of the contauity equation provides the relationship between the scalar functions:

B(2) = _S22 A(M)

Using expression for the three-dimensional power spectrum in terms of the scalar
functions

/AM)+ 3B in' B(n)

and the relationship between the energy spectrum and the three-dimensional power
spectrum provided in Reference 2-30.

E(n) : 4xnf2e(")
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a description for the three-dimensional spectrum function is found in terms of the energy
spectrum:

e()=E( l 2  5

92 -1 J

This equation now permits defining all the isotropic spectrum functions in terms of a single
scalar function, the energy spectrum, and is amilogous to defining all correlation functions
in terms of a single fundamental correlation function. In particular, the one-dimensional
longitudinal and transverse power spectra are given by (Ref. 2-30):

IlppOS21) I -- - d S2

f +

Subscripts P and N refer to directions parallel and normal to the separation vector, r The

kone-dimensional power spe.ctra may also be written in terms of each other:

1 4 d4pp( 1 ! )" .,--NN(I ) =7 .pp(Ml ) -7I2i  d 921

All cross spectra for velocity components parallel and norma) to the separation vector are

zero in isotropic turbulence.

2.4.2.3 Integral Scale

As stated in Reference 2-3: "There is an intuitive notion of the scale of turbulence. Clearly
there are significant differences of 'size' between the turbulence in the wing boundary layer,
in the wake of the airplane, and the atmosphere itself."

The parameters used to define the scale of turbulece are the "integral scales," of which

there are two for isotropic turbulence. The integral scales are the areas under the
fundamental correlation functions"

00

Lp = fQ) dt

LN = g(dt
0
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The implication of tile integral scales is tht when the separation distance is normalized by
the integral scale, the fundamental correlation functions become universal functions for all
scales of turbulence. That is, the functions f(/Lp) and g(/L N ) are not functions of t, Lp,
or LN alone.

The integral scales can also be seen to represent the average correlation distance as the lines
Lp and / LN divide the areas under the longitudinal and transverse correlation

functions into equal parts.

As seen on Figure 2-23, the transverse correlation function crosses zero. This crossover point
will be proportional to the transverse integral scale, and the transverse integral scale can be
thought of as a measure of the distance between transverse components for zero correlation.

If the fundamental correlation functions are expressable in terms of integral scales, then so
are the spectrum functions. The frequency-dependent characteristics of tile power spec- rum
functions will be inversely proportional to the integral scales. in particular. the peak to the
right on Figu' e 2-1 occurs at a frequency inversely proportional to the integral scale, and the
integral scale can be thought of as a measure of the dominant eddy size.

Just as the fundamental correlation functions are not independent, neither are tile
longitudinal and transverse integral scales. Integrating the relationship between the
corrclation functions,

from 0 to co yields the relationship between integral scales:

LN=LP+ f( )- [LU)

lim f() = 0

By convention, all isotropic turbulence functions are defined in terms of the longitudinal
integral scale. Although the integral scale is a parameter defined in terms of isotropic
functions, its use has been extended to nonisotropy.

2.4.2.4 Isotropic Turbulence Spectra Forms

Specification of c.mponents of turbulence requires knowledge of the one-dimensional
spectra, as previously discussed. Specification of two- or three-dimensional spctra, the
energy spectrum, or the correlation functions will lead to the description of ihe
one-dimensional spectra.
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As the integral of the one-dimeisional spectra provides the turbulence variance, which is the
same foi i11 three components of isotropic turbulence, the one-dimensional ,.,-.ctra can be
written as:

(P(S 1 ) 2 G(Sl I)

where

-00

This form separates out the magnitude of turbulence, allowing it to be independently
specifiable.

!f the fundamental correlation functions are universal when expressed in teris of the ratio
of separation distance to the integral scale, a universal description of the isotropic
one-dimensional spectra can be found to be

(n1 ) 2 -G(L, L92 1)

where by convention the longitudia! integral scale is used in all the one-dimes'sional
spectra.

The objective is to establish an analytic form for G(L, LS21 ), the one-dimensional ,pcctra u .
turbulence with unity root mean square amplitude. Theory has been a'Ile t( establish
asymptotic forms for different spacial frequency ranges.

At the lowest spacial freque,' es. where energy is being added 'o turbulencL. ihe
three-dimensional spectrum must he analytic and finite. Reference 2-3( states that it has
been shown with a power series expansion that thee restrictions lead to a S24

proportionality of the energy spectrum at low frequencies. That is,

lim E(S) - KS2 4 (K = constant)
S1--0

This relationship leads to the one-dimenslonal spectra being invariant with frequency at low
frequencies:

lim 4(.I ) = C (C = constant)
S1-0

For one-dimensional power spectra equal to a constant, the ratio between the longitudinal
and transverse power spectra must be 2 as seen by the relationship between these two
spectra:
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I I, d4 Jpp
4 ,NN I PP 1

where

Ci @~4pp= C, ONN =""

The constant variation of the one-dimensional power spectra is generally well acepted.
Rcft-rences 2-7 and 2-37 reject proposed analytic frms which do not contain this feature.

In the "inertia subrange" where turbulent energy is being transported to higher frequencies
without energy additions or losses, a variation of one-dimensional spectral energy with
S"-5/3 has been derived by Kolnogoroff from similarity theory. This variation of the energy
spectrum also leads to the same variation of the one-dimensional power spectra. The 1-/3
variation has been verified by numerous authors. Perhaps one of the most extensive
":.rifications has been performed in the LO-LOCAT study presented in Reference 2-37 from
which Figure 2-24 is taken.

A S5/3 variatiou of the one-dimensional spectra requires the longitudinal and transverse
components to be related asymptotically by the ratio of 3/4:

i l d121
4,NN = 

2 PP 1 "2 1

4 , P. cC-83PP+ -

4, PPTT  2 6-/3 P PP

At very high spacial frequencies, where viscous dissipation takes place, References 2-7 and
2.36 report a 127 variation of the energy spectrum predicted by Heiscnberg. Reference 2-7
states that available data provide an exponential variation. The discrepancy is of no concern,
as the frequency of onset is far beyond the highest of interest for simulation (Ref. 2-37
assigns this region to wavelengths of less than 0.01 foot). Few power spectrum models have! attempted to model tV,is ',Cgon,.

In addition to the low and high frequency asymptotes, a frequency of transition from one
asymptotic character to the other is needed. One technique is to observe the value of Lil1 ,

at which the peak of S1! (21 ) occurs.

As an example, the unity rrn.s one-dimensional power spectrum

GLLf) 1  A(L)
G(L. U20 I  + a i +aLl )5/3
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where a and A(L) are constants, satisfies the asymptotic characteristics. The constant A(L)

is found by requiring the rms to be unity:

00 dS1 _3Af A(L) d 2 (L) ()(I (i + aL21)5/3 0 IA

where

Thus,

3(1 + aLf 1)5 /3

The greatest density of variance with frequency occurs wtien d(R1 @)/dQ1  0, or Z1 Tax =

3/2aL. The above power spectrum form could then be written in terms of i2max:

=!o2-+1 [ 3 1 1513

If this form were accepted as that for the longitudinal spectrum, the transverse spectrum is
found from the previously discussed relationship,

-NN(ll) () OPP(IM) - d)

(I +§aLfli)13

'he transverse power spectrum also satisfies the asymptotic requirements, but the maximum
of *NN occurs at different frequenc-es (Rl = -0.244/aL, 2.3/aL). Hence, if the spectra are
written in terms of the frequency where the greatest variance density occurs, two
parameters (at least) must be used to replace the longitudinal integral scale.

The form postulated must be rejected on the basis that it does not provide power spectra
that are even functions, C(a) ,#(-$l).
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A much more satisfying form has been developed by Von Karman, who fitted the energy
spectrum with the equation:

E 11)~ + (a/fl0 )2 176

The one-dimensional power spectra and the corresponding fundamental correlation
functions that result are shown on Figure 2-25. That the Von Karmaii spectra satisfy the
asymptotic requirement fur the one-dimensional spectra is shown on Figure 2-26. The
relationship between the longitudinal integral scale and the dominant frequencies is shown
on Figure 2-27, where dominant frequencies refer to those having the greatest contributions
to total kinetic energy or variance. Finally, thc fundamental correlation functions, found
from the inverse Fourier integrals of the one-dimensional power spectra, are plotted on
Figure 2-28.

Reference 2-37 attributes an alternate form for the longitudinal spectrum to LumI-y and

Panofsky: ____[I This form, although meeting asymptotic requirements, does not ptovide symmetry about
12 = 0 and should at least be modified as follows:

41P 2 A 15/6T(BSI)-

The primary difference between this form and the Von Karman form are found in the
intermediate frequencies, but these differences are small. Thle same form has been attribute;d
to Busch and Panofsky for the transverse spectrum by Reference 2-38. However, using the
same form does not satisfy the interrelationships between the longitudinal and tihe
transverse isotropic spectra.

Another form presented in References 2-7 and 2-38 and attributed to Inoue is given by:

pp =aL 02A.

I3

P I + (BM) / )

Although tle S2-5 /3 asymptotic is satisfied, the spectrum goes to zero at zero spacial
frequency and has a maximum at o (4/7)S20. Due to the last characteristic, this form has

been discounted by both References 2-7 and 2-38.

A different approach to spectra modeling begins with fitting a fundamental correlation
function with an equation, then by deriving all the spectra from that equation. T le most
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Von Karmen Dryden

(From ref. 2-3) (From ref. 2-7)

Longitudinal correlation function:
f W = f(l/ L/ K,/ 3  f (Q) e-L

Transverse correlaticn functions:

2 2/3 lp 1/3[Kgq

Longitudinal one-dimensional power spectrum:

=p _ 2 L 1 2LW all

Transverse one-dimersional power spectrum:

NN o 2 L 1 + 8/3 (aL2 1)2  "-2L 1 +3(LS1)2i aI Z 1 )2]' N 4"" 7

Energy spectrum:

E(1) 2L (a La)4  
E (f2) 8 0 2L (L,)747 E(~~~) I + 41.92)2] 17/6 +(~

2

Definiticis:

a - 1.339
S2 I1 1 ,, + P's + 12Z

4'ppand (tNN such that a =. 0 pp d 2, 1 N d l l

L=f f(t)d e2f (Q) d t
0 0

Kandl K213 \~are modified Bessel functions of the second kind.

FIGURE 2-25.- VON KARMAN AND DRYDEN CORfP.ELA TION AND SPECTRA FUNCTIONS
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widely used spectrum models that result from this approach are the Dryden spectra. The
longitudinal correlaton function is assumed to have an exponential form given by:

AV( = e"- / L  .

Reference 2-7 argues that this form "is physically seriously unrealistic in tha. the curvatura

at the origin is infinite, and it almost surely decreases too rapidly at infinity; however, it
crudely resembles at least some data,..."

The one-dimensional power spectra and the energy spectrum equations for the Dryden
formulation are presented on Figure 2-25. As can be seen, they provide a considerable
simplification in form over the Von Karman forms.

The Dryden one-dimensional power spectra are seen to satisfy the low frequency asymptotic
on Figure 2-26 with the same aplitude as the Von Karman spectra. The Dryden spectra have
a greater bandwidth than the Von Karmarn spectra, exceed the Von Karman spectra at
intermediate values, and are progressively lower at increasing high frequencies. As is seen on
Figure 2-27, the domimmant frequencies for the Dryden spectra are greater than those for the
Von Karman spectra.

i Although the Ivoi- Karman and Dryden spectra are defined in terms of the longitudinal
integral scale, the longitudinal integral scales do not have the same values as the fundamental

rorrelation functions because ,he two forms are not identical, a: shown on Figure 2-28. The
Dryden is-odel provides higher correlations at small spacial separations and lower

7corre-uons at high separations. The Dry'en irodel provides uncocrelated parallel transverse
turbulence components at a separation d 'ance eqt'al to four times die transverse integral
scale (twice the longitudiral integral scale). The corrt-sponding separation distance for the
Von Karman mo'el is about five times the transverse i,,tegral scale.

O'her authors have also postulated models hav ng the same asymptotic characteristics as the I
Dryden model. A longitudinal spectrum presented in Reference 2-38 attributed to Zbrozek
has a form identical to the Dryden model. Reference 2-38 also presents an early longitudinal
slectrum attributed to Panofsky and a transverse spectrum Attributed to Pritchard having
identical forms:

02A
(i + BW)

This form lacks symmetry about SI = 0. The same form in Reference 2-37 is said to be
recommended by Lappe for both the longitudinal and transverse spectra, although using the
same form for both spectra does not satisfy the interrelationship between isotropic spectra.

An empirical form prescntcd in Reference 2-39 for low altitude horizontal spectra is: 3

1u*9AiBih! Oi( l I  5 5/3ri
/l11+ 1.5(Bihn, )i
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This form generalizes several other fornis, including the Von Karman for the longitudinal

spectrum (ru = 2). Reference 2-40 used this form with ru = rv = I, rw = 5/3. Althuugh the
resulting spectra lack symmetry about 12 = 0 and fail to provide complete isotropy at high
altitudes, the differences between the spectra shapes in Reference 2-39 and those of the Von
Karman forms appear at low frequencies when data scatter is large.

A comparison between the 1-2 asymptote as represented by the Drydcn model and the
1-513 asymptote as measured by the Von Karman model was made, using measured data, in
Reference 2-37 and is shown on Figure 2-29. The Von Karman model is seen to be clearly
superior. Additional comparisons between specific models were performed in the same
reference and are shown on Figure 2-30. Comparisons are between the Von Karman and
Lumley-Panofsky forms, having fr 5/3 asymptotes, and the Dryden and Lappe forms, having
11-2 asymptotes. Again, it must be concluded that the 1- 5/3 asymptote is superior.

2.4.3 Low Altitude Turbulence

Thus far, the development of turbulence description has been oriented to the definition of
isotropic turbulence. Howevtr, there is overwhelming evidence that low altitude turbulence
is nonisotropic. Specifically:

I) The average functions describing the field of turbulence are not invariant with
rotations of the turbulence axis system. That is, the variances of turbulence
components are not necessarily equal, and the longitudinal and transverse integral
scales may vary with orientation.

2) Low altitude turbulence exhibits a lack of horogeneity widi altitude. That is, the
turbulence components and the integral scales tcnd to vary with altitude.

3) A non-zero correlation has been found to exist between turbulence in tile
direction of the mean wind and turbulence in tile vertical direction. Isotropic
turbulence requires zero corielation between orthogonal components.

The evidence of a nonisoropic character of low altitude turbulence at first suggests that the
theory developed for the specia! case of isotropy be abandoned and more general theory
developed instead. Re-.rerie 2-30 provides some of the required fundamental relationships.
For the next most ie irictive cLse, that for invariance for rotation about an axis
(axisymmetry), the correlation fL'-itions are deined in terms of five scalar functions as
opposed to two for isotropy. T'; most general case of no symmetry requires that the
correlation functions be defintJ ir. terms of 31 scalar functions. The different scalar
functions must still be interrelated by tht continuity equations, which are much more
numerous and complex for norisotropic conditions.

For nonisotropic conditions, a concept as simple as tile fundamental correlation functions is
probably not possible, and the isotropic one-dimensional power spectra derived from this
concept are not applicable.

The great complexity of the nonisotropic case has prevented solutions comparable to those-9for the isotropic case. There is, however, considerable evidence that limited conditions of
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isotropy exist for low altitudes. This evidence has been used to rationalize adaptations of
isotropic models for low altitude turbulence. This is fortunate, for as stated in Reference
2-41: ... there would seem to be no recourse, in the present state of the subject, but to
use the isotropic model of the one-dimensional power spectra for the low level case as well
as for high altitudes. The complexity of the problem is even then quite sufficient." .1

The majority of statistical data available for low altitude turbulence are for a turbulence axis
system aligned to the mean wind, Rather thaa having longitudinal and transverse turbulence
components, with no preferred orientation of the transverse components, a specific
orientation of the low altitude turbulence axis system is employed, as shown on
Figure 2-3!.

r r +

x u (r) U r + w

Vw(r) w (r+ t)

r IY

u, v, and w are components of turbulence along x, y, and z axis.

x axis; spacial separation vector, At, and mean wind vector, .W are aligned on x-y plane parallel to earth.
downward normal to earth.

FIGURE 2-31.--AXIS SYSTEM FOR LOW AL TITUDE TURBULENCE

2.4.3.1 Conditions of Limited Isotropy

The form of the correlation function for axisymmetric turbulence (invariance of turbulence
for rotations in the plane parallel to the earth, also cal!ed "horizontal isotropy") from
Reference 2-30 leads to a single non-zero correlation function between the u and w
turbulence components measured at [he same point for the system shown on Figure 2-31.
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Reference 2-7 reports that: "Attempts to find non-zero cospectra between different velocity
components recorded at the same points on the surface layers have been successful only for
the longitudinal and vertical components." Disagreement with this statement has not been
found in any of the other literature.

Isotropy in the horizontal plane is not assured by the existence of only the single
cross-correlation function; the %ariance of turbulence components in the plan., must be
found to be equal (ou2 = Ov2 ) and the integral scales must obey the isotropic relationship
(Lu = 2 Lv). Reference 2-41 implies that these conditions are met: "If the terrain is
homogeneous and isotropic, then thw turbulence will be closely axisymmetric....
Acceptance of this conclusion shall not be immediately made, but shall be dependent upoin
examination of the data for variances and integral scales.

Reference 2-7 argues that at sufficiently high spacial frequencies, the turbulence is
completely i-otinpic. The implication is that the cross spectrum exists only at the low
spacial frequei,:ies and falls off more rapidly with increasing frequency than do the power
spectra. Isotropy at high spacial frequetzcies leads to the "hypothesis of lo.3l isotropy"
presented in Reference 2-7: "Small eddies may have considerable ei 'rgy but do not
contribute to the correlation between u and w." Specifically, the region ut '-ca! is:'tropy is
given to be in the inertial subrange.

2.4.3.2 Low Altitude Power Spectra

The constant low frequency asymptote of the power spectra is not dependent upon
isotropy. Even if the fi-5/3 asymptote in the inertial subrange were dependent upon

isotropy, there would be no change of that asymptote if isotropy exists at high spaciz.
frequencies. Hence, low altitude turbulence could be expected to have the same asymptot.c~character. Whether or not the curvc-fittirng equation that results in the isotropic spectra

shape is the saane for low altitudes is a matter of conjecture, for even the spectra shapes for
isotropy are not known with -ertainty. The assumption that the shapes of the spectra for
low and high altitudes are the same (with frequency suitably normalized) is probably as
good as any other.

With the orientations of axis defined on Figurn 2-31. the longitudinal power spectrum
becomes the u power spectrum (tu), and the transverse power spectrum becomes the v and
w power spectra (4, tw). To account for possible unequal variances of the components,

in 02 m the isotropic forms is replaced by au-, 0v , and (I for the u, v, and w power~spectra, respectively.

Adaptation of' the concept of integral scales for low altitude turbulence is much more
troublesome as the concept is defined in terms of the fundamental correlation functions,
which no longer apply at low altitudes, at least not for al; ....e turbulence c.mponents. A

instead and is rcLr..inended by some authors. Alternately. the integral c:ales coul-be

redefined to mean the art -, under the normalized aittocorr,'lation functions, even though tle

autocorrelation functions may not all be uncorrelated. The integral scales are perhaps

20
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prefer:ed, as they provide better physical interpretation of the eddy sizes and a means for
normalizing the autocorrelation arguments. Integral scales dctermined from the autocorrela-
tion are deterinhicd independent of the bpectr i forms.

There is an alternate procedure used for defining integral scales when specific spectra forms
are presumed. The scale lengths are defined to be simply those which enable the presumed
spectra to fit the data. In isotropiL turbulence, if the spectra forms are valid, determining
integral scales from correlation functions and from the spectra forms should provide the
same answers, except that the practice for the latter technique is to simply replace the
longitudinal integral scale in the transverse spectrum with Lv and Lw. In isotropic
turbulence, Lv and Lw would be twice the area under the transverse correlation function.
That is, transverse integral scales are substituted for the isotropic longitudinal integral scale.

As an example, the Von Karman isotropic spectra from Figure 2-25 would be adapted for
low altitudes as fol!ows:

Isotropic Low altitudes

p _ 2L I °u2Lu I

r -i + 1.339 L 1)2I5 6  =11 + (13.39LuI 2I 6

o7v2 Lv l+(l3Lvl 1,)

SI + (1.339LVfll)2

L 1 +(.339L42 1)2  +1339Lv1)2]

(N 21rf !l(33L 21 11/ 2L l+8( 9L 1211+(1.3 S IW) a" Lw 3139 12]1 1

(b w 27r I + (1 .339 Lw1 ) ]111

When applying isotropic spectra to low altitudes, the significant matters are lo use integral
scales in the manner for which their values are defined and to temember ti.ja: the variances
and integral scales are generally defined for the spectra oriented to the mean wind.

Th condition of local isotropy leads to an interrelationship of the varia-ces and integral scales.
Reference 2-7 argues that the nonisotropy of low altitude turbulence occurs only for large
eddies. Then. the 121' 5/ 3 asymptote holds for low altitude turbulence, and turbulence is
isotropic at lea-t above some frequency in the inertial subrange, requiring that the v, and
w spectra be greater than the u spectrum by the ratio of 4/3. Equal variances and the two-
to-one integral scale relationships that hold for isotropic turbulence cannot be expected to
hold as isotropy at all frequencies is required. However, using the interrelationship between
isotropic one-dimensional spectra, the ft llowing asymptotic ratios between spectra should
hold:
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V2  W2L2/4)4 vLu 4
Hl~X im w=4Uv2 u _40W

2 LU2!
S-+00 4)U S21 -00* 4)U3 u- 2v 3 u?2 Lw2/3 3

or

2 2ou- Ov Ow
=1 Lv2/ 3  Lw2/3

where the isotropic form for the transverse spectra has bect adapted for low altitude 4v and
4 w by replacing Lpp with Lv and Lw , respectively. These relationships are the same as

those prov;ded for the low altitude turbulence model in Reference 2.42.

2.4.3.3 Low Altitude Cross Spectrum

A non-zero cross spectrum has been said to exist at low altitudes only between the u and w
components at low frequencies. Reference 2-7 defines an "isotropic limit" which defines the
maximum spacial frequency at which the cross spectrum is significant, although the level of
significance is not specified.

The frequency for the isotropic limit is said to be inversely proportional to altitude, based
on studies by Corsin and Priestly. In fact, Priestly is said to define a wavelength of 1.7 times
the height as the maximum where the cross spectrum is significant.

Reference 2-7 argues that empirical data and similarity theory suggest a form for the rea;
part (amplitude relationship) of the u-w cross spectrum given by:

Where F is a univers! runction and w is frequcncy in rad/sec. The square of friction velocity
(equal to the ratio of shear stress to density) is identically the covariance. Hence. the

i universal function F must satisfy the relationship

f 12
Reference 2-7 also combines the two parameters of F to provide an alternate form:

ca ! i
0uwG
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where G is an alternate universal function. Expanding G about zero argument (infinite
frequency, where G must be zero) with a first order Taylor series gives:

af- 1 aVw
, uw(w) =

where A is a positive constant.

At infinite frequency, the cospectrum is zero, agreeing with local isotropy. The positive
correlation (for the axis system defined), or the correlation of downwind turbulence with
turbulence moving vertically downward, is explained in Reference 2-7 as follows: ". . the
wind in the surface layer increases upward so that downward moving air tends to have large
velocity components in the direction of the mean wind, no matter how large the eddies that
produce the vertical exchange."

The first order Taylor series can be expected to be accurate only at high frequencies. At
these irequencies, the u and w power spectra differ only by a constant, and the high
frequency cospectrum equation can be written as:

l aVw
-uw()=A' 0w 3V

Generally speaking, it would be expected that this would hold only for

I avw <

but Reference 2-7 provides data presented in Figure 2-32 showing good agreement up to
(1/w) OVw/h) = 2, with the constant A' = 1/2.

1.5

0 uw

0.5 -

:-- e ee,

X i I 1 1 I.JL-
0 I 2 3 4 5

11V
wah

FIGURE 2-32.--CROSS SPECR UM TO VERTICAL POWER SPECTRUM RATIO,
EFFECT OF WIND SHEAR (FROM REF. 2-7)
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Reference 2-7 notes that the last cospectrum expression cannot be realistic at low
frequencies, since the (.ospectrum would approach infinity as the frequency approaches
zero. Furthermore, at low frequencies, the u and w power spectra can no longer be expected
to differ only by a constant. Figure 2-32 indicates that the cospectrum may have a constant
low frequency asymptote.

An alternate form for the low altitude cospectrum is recommended by Reference 2-3:

• uw = [, 2

It is presumed that the use of the v power'spectrum rather than the w power spectrum is
simply an error. The term L is not defined. A representative value of the constant 7'0 is given
as 0.5. The formulation is interesting in that it does provide a constant low frequency
asymptote and a break frequency dependent on spacial frequency, in line with the
"isotropic limit" concept.

j A third formulation of the cospectrum is found in Reference 2-34:

2a
L 10

where a is a constant.

This formeation provides the same high frequency vara ion as for the power spectra
recommended in the same refence, in contrast with the preceding formulations. If the
constant were equal to 2Lw/VW, the expression in terms of the w powerspectra would be:

B

4)uw(ljwL w ) I U\@

where B is a constant.

That is, the cospectrum would differ from the w power spectrum only by a constant at a

' given speed.

in general, the cross spectrum should also contain phase information as well as amplitude
information. That is, it should have an imaginary part, called the "quadrature spectr um."
Even less is known about the quadrature spectrum, but its magnitude and effects are

generally considered to be negligible.
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2.4.4 Magnitude of Turbulence

In the evaluation of the stability and control requirements of an aircraft flying through a
turbulent atmosphere, the magnitude of the random wind fluctuations and the associated
spectral compositions are of foremost concern. The mean square values of the three wind
components are a measure of the magnitude of the wind fluctuations and represent the
kinetic energy in the turbulence. The corresponding three power spectra describe the
frequency distributions of this energy, but these will not be discussed in this section.

However, Reference 2-7 states in the discussion of the magnitude of turbulent fluctuations
that in order to conduct experimental obervations and the associated analysis in a
meaningful manner, it was necessary to assume at least a qualitative description of the
spectra.

In the formulation of a turbulence model, it is necessary to establish the mean square value
of each of the three wind components in a statistical sense, asid to relate these statistics to
easily measured parameters such as:

* Atmospheric stability
* Wid shear (or wind speed at a gven height)
* Ground roughness
• Height above ground

Although the three fluctuating velocity components have different characteristics, it is

convenient to begin the study of the magnitude of turbulent fluctuations by considering the
properties of the total kinetic tnergy in turbulence.

2.4.4. I Kinetic Energy in Turbulence Near the Ground

The following discussion relies heavily on the work reported in Reference 2-7. The balance
of the kinetic energy for horizontally homogeneous turbulence in equilibrium is best
described by the energy equaticn. which is given by Reference 2-7 as

t a Vw gH_ a w. awP/P0
ah+CpPT h + al

where the bars denote averages and

: iaVw
u,- !-W production of mechanical energy through wind shear

production of convective energy through heating

loss of energy through kinetic energy transport
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8WP- loss of energy through pressure transport I
ah

e local dissipation of energy

According to Reference 2-7, the local rate of change of kinetic energy and the advection of

energy over reasonably homogeneous terrain in several hours is two orders of magnitude lessthan the larger terms iln the energy equation, except during periods of transition of tihe

turbulent regime. In view of this, the assumption of equilibrium is justified. I
In the neutrally stable atmosphere, the term

34
2 !Vw u*
S ah kh

and since

VW =-" In [-1

the production of mechanical energy is given by

,2 aVw k2 V3

SIn h

where VW is the mean wind velocity at the height h, k is the Von Karman constant
approximately equal to 0.4, and z0 is the small scale ground roughness length, which is small
compared to h so that h -t zo w h. Thus, in neutral air the production of mechanical energy

is proportirnai to the cube of the wind speed, inversely proportional to height, and increases
with increasing surface roughness.
In an unstable atmosphere the term producing mechanical energy is given by

u3u,2 'VW u,

where s is found from
s4 " s"h 3

Since R' is negative in unstable air it can be shown that s will decrease from its value of. nity
at low levels toward smaller values with increasing height. Thus. the production of
mechanical energy will decrease even more rapidly with height in unstable air than in
neutral air.
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Reference 2-7 assumes that the heat flux, H, variej little with height near the ground except
when the heat flux is small. However, in the latter case, the convective energy may be
neglected provided that the wind is sufficiently strong. Therefore, an assumption of
invariance of the term gH/CpPT with height near the ground, producing convective energy,
is essentially valid, except for conditions of near neutral atmospheric stability combined
with light wind. The determination of this term directly, which involves the measurement of
the heat flux. H, is not very practical. Reference 2-7 describes a method where an
approximate v~luc may be obtained by multiplying the term for mechanical energy
production, u*-(aVw/ah), by Richardson's number, Ri. From the definition of Ri it is
possible to write the following expression

gH/CpPT = -(kH/kM) R iu *2 (aVW/ah)

where (kH/kM) is the ratio between the turbulent transport coefticients for heat and
mechanical energy, respectively.

Close to the ground the mechanical energy term is usually much larger than the convective

energy term. Higher up the two contributions can become of the same order of magnitude,
particularly in light wind conditions.

Reference 2-7 lists four methods used to estimate the energy dissipation term E. Close to the
ground all the terms in the energy equation can be neglects-d except the ccrm representing
the production of mechanical energy and the energy dissipation term, giving the following
relationship

a

The energy dissipation may be determned by integrating the turbulence spectrum over the
dissipation range. By determining the correlation function of a turbulence component for
small separations corresponding to the inertial subrange, the energy dissipation may be
determined from the following relation

Rxx(x) = Ae2/3x2/3

In the same manner, the spectrum in the inertial subrange may also be used to determine
efrom

Oxx(k) = ae2/3 K-5/3

where K is the wave number.

Finally. the energy dissipation may be obtained by measuring the time after which the size
of a diffusing cluster becomes proportional to the cube of the elapsed time. The following
expression for the time at which the diffusion law changes from a square law to a cube law
has been suggested

t S y02/3c 2/ 3
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where yo is the initial size of the cluster. Combined estimates using various nethods show
that the energy dissipation decreases rapidly with height except for large values in
convective clouds (Fig. 2-33).
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*For details, see original paper. Large cross in lower
right gives dissipation calculated for strong convection.

FIGURE 2.33.- VA RIA TION OF ENERG Y DISSIPA TION WITH HEIGHT,
ACCORDING TO BALL (1961) * (FROM REF. 2-7)

According to Reference 2-7, the measurements of the pressure spectra show little energy ill
the small scale meteorological range. Thus, the teim )(w-'PF0)/ah is normally neglected near
fie ground.

Reference 2-7 reports that early attempts at estimating the various terms in the energy
equation close to the ground indicated that the divergence of energy flux. a"W/8h, was
small. However, at higher levels this divergence may be significant. Several investigators, as
reported in Reference 2-7, presume that more energy is produced at low levels than is being
dissipated locally and thus there is a net energy flux upwards, this energy being dissipated at
higher levels. Cross-spectral analysis has revealed that only the low-frequency components of
the vertical wind fluctuations contributed to the energy flux. This indicates that the flux is
produced by the larger eddies which are prevalent in thermal turbulece. Thus. it may be
concluded that the energy flux divergence is oily significant unde: instable atmospheric
conditions. Table 2-2, reproduced from Referenc'. 2-7, shows that the flux divergence ma)
be a significant part of the energy balance. The table also suggests that the rate of elergy
production by heating is approximately balanced by the energy flux divergence, and
therefore the production of mechanical energy is balanced by the local dissipation, even in
unstable atmospheric conditions.

ft is reasonable to assume that turbulence will be strong where the rate of production of
kinetic energy is large. Thus, horizontal and vertical wind shears, and atmospheric instability
will contribute significantly to the level of turbulence. Restricting considrations to the
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TABLE 2.2.-ENERGYa BUDGET BETWEEN 1iM AND 125MATBROOKHAVEN, NEW YORK

2aV gH

Richardson's u - z gH Net Flux Dissipation Net loss
number roduction divergence

-.03 211 14 225 -24 360 336
-.12 291 3 294 50 188 238

-.60 123 62 185 79 102 181
-.33 177 62 239 119 185 304

-.52 145 96 241 106 147 253

-.53 43 26 69 29 87 116

-.46 280 129 409 108

.03 612 -1e 593 37

.04 290 -12 278 15

aAtl entries in ergs gm 1 sec- 1 (from Ref. 7)

atmospheric layer extending from the surface to 1000 feet above the ground, it may be
concluded that strong turbulence is likely to occur in the following areas:

. Over rough terrain and in the lee of large physical obstructions, i.e., mountains,
hills, buildings, trees, etc., where large wind shears may be present.

9 in and near conective clouds and dry thermals where buoyancy effects
predominate.

The energy production ty wind shear mainly adds directly to the longitudinal turbulence
component, which through redistributing action feeds energy into the lateral and vertical
turbulence components. In an unstable and a neutrally stable atmosphere, the turbulence
level increases until the mechanical energy production is balanced by dissipation. In a stable
atmosphere the mechanical energy production is alanced by the combined actions of
dissipation and negative buoyancy. Thus. for a giv.r. wind level increasing atmospheric
stability will tend to reduce the turbulence level.

With increasing atmospheric instability and i'creasing height from the ground, turbuleitce
due to wind shear decreases untii at some height the turbulence will become driven entirely
by free convection. However, even under strongly unstable atmospheric conditions, there
will always exist in shear flow a layer close to the ground where the mechanical energy
production predominates.

The toal kinetic energy in turbulence is a functiop of wind shear, temperature lapse rate,
height above ground, and large and small scale terrain roughness. Similarly, theory predicts
that the total kinetic energy of turbulence near the ground has the following func-
tional form

jI
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where f(h/2') is a universal function. Under neutral atmospheric conditions, the preceding
equation reduces to

Vw

tIn h~)

where VW is the mean wind speed at the height h. Therefore, for a given location the kinetic
energy will be proportional to the square of the wind speed at a given height. Figures 2-34
and 2-35, from Reference 2-7, show that this conclusion is confirmed by observations.
Figure 2-34 contains observations in unstable air and indicates that any effect of
atmospheric stability is indiscernible over relatively rough terrain. However, Figure 2-35
clearly shows that over smooth terrain there is a marked ncrease in the turbulence level
with decreasing atmospheric stability. The effect of increasing atmospheric instability is to
increase the production of convective energy, whkh decreases the wind shear and therewith
the production of mechanical energy. Over relatively rough terrain, the turbulence due to
wind shear predominates, and the convective energy is not a significant part of the energy
balance: an increase in the convective energy may be ofro, by the resulting decrease in the
energy produced by wind shear. Over smooth terrain te convective energy is a more
significant part of the energy balance, and the level of turbulence is therefore more sensitive
to changes in atmospheric stability.

Reference 2-7 concludes that the variation of kinetic energy with small scale roughness, as
suggested by the preceding equation, is in disagreement with experimental observations. It
has beet, shown that for a given wind level there is stronger turbulence over rough terrain
(Fig. 2-34) than over smooth terrain (Fig. 2-35). but the difference is not as great as would
be expected from the respective small scale roughness lengths. This is demonstrated by the
best-fit expressions for the energy under neutral atmospheric conditions for two roughness
lengths, as reproduced from Reference 2-7:

For z0  100 cm:

For z0 = 0.7 cm:

2/ h

where VW is the mean wind speed at the height h. The roughness length, 70, is primarily a
measure of the vertical dimensions of the small scale surface features. However, the surface
is characterized by irregularities of all sizes, and it is reasonable to assume that the total
kiretic energy is a function of all of these. Reference 2-7 suggests that the properties of the
vertical component of the turbulent velocity fluctuations are primarily related to the
vertical small scale roughness characteristics, while the longitudinal and lateral components
are also influenced by the presence of large obstructions, i.e., mountains, hills, buildings,
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FIGURE 2-34.- THREE-DIMENSIONAL TURBULENT KINETIC ENERGY
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O'NEILL, NEBR.-.SMOOTH TERRAIN (FROM REF. 2-7)
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trees, etc. Thus, the turbulence level will be less in generally flat terrain than in hilly tt. rain
for the same small scale roughness factor z0 .

The preceding discussion suggests that in neutral air the kinetic energy is independent of
height. Based on observations, Reference 2-7 concludes that this appears to be true. Within
the experimental accuracy, Table 2-3 suggests a remarkable invariance of the kinetic energy
with height.

C, TABLE 2.3.-KINETIC ENERGY, M2 SEC 2

O'Neill Brookhaven
Height (m)

Night Day Night Day

1.5 0.58 1.41

3.0 0.58 1.51
6.0 0.56 1.62

12.0 0.64 1.82
23 0.20 4.0
46 0.18 4.3
91 0.20 3.4

A good analytic description of the variations of the total kinetic energy with wind speed and
height has been given. lowever, a constant must be determined by experiment to account
for the influence of the large scale surface features at each particular location being
considered. Due to relatively few available observations and the complexity of the problem,
there are few qualitative estimites of the effect of atmospheric stability on the total kinetic
energy in turbulence. As puinted out earlier, the effect of temperature lapse rate is
considerable over smooth terrain, while over rough terrain mechanical turbulence
predominates and very little deperpdence on atmospheric stability can be observed.
According to Reference 2-7, since

then

k k2VW2 f(FV)
2

where VW is the wind level at the height h, and if ih/R'I is iignificant the function f(h/9').

which is negative in unstable air, is not negligible. This equation suggests the dependence of
the total kinetic energy in turbulence on atmospheric stability.

215



2.4.4.2 Magnitude of the Turbulence Components

Many experimental investigations, notably References 2-37, 2-43, and several reported in

Refere nce 2-7, have performed measurements of the mean square values of the three

turbulence velocity components. These observations have covered a wide range of
atmospheric conditions, heights and topographies. Due to the complexity of the
experimental conditions and measurement inaccuracies, any functional relationships
between the turbulence intensities and parameters such as season, tim, of day, altitude,
terrain, and the small and large scale meteorological conditions are difficult "o extract. The
data from these observations are generally presented as statistics and are used to establish
trends rather than direct functional dependence. However, the analyses of experimenatal (:ta
have revealed that the following categories or parameters exert tile primary influence ,.,n lie .
mean square values of the gust velocities.

* Terrain characteristics
V Height above ground
* Wind speed at a given height
* Atmospheric stability

The degree .of correlation betweev the turbulence itensities and any one of tese
parameters is a function of the state of the other parameters.

Turbulence is more severe over rough terrain than over smooth terrain. The vertical gust

component is primarily a function of the small scale roughness features of the ground.
whereas the lateral and longitudinal component is also influenced by large scale surface
fe..ures. The vari:'tions of the gust intensities with height depend upon surface roughness
and atmo:spheric stability. Over smooth terrain and under unstable conditions, the
turbulence level tends to increase with height due to an increasing effect of convective
turbulence. Under stable atmospheric conditions, the turbulence level decreases with height.
Over rough terrain where mechanical turbulence predominates, the variation of turbulence
with height shows the least correlation with atmospheric stability.

Increasing wind increases the intensity of turbulence, more severely over rough terrain than
over smooth terrain. The correlation between the magnitu le of turbulence and the wind
speed increases with decreasing height. The vertical gust velocity component 3hows less~cor'relation with wind speed, as do the longitudinal and lateral components.

I OW turbulence levels are generally associated with stable atmospheric conditions. The
intensity of the gusts normally increases with decrcasing atmospheric stability. This effect is
more predominant at the higher altitudes and over smooth terrain. There is a high
probability of encountering turbulence at Richardson's numbers less than 1.0, and the
probability of increased turbuience becomes significantly highet when the Richardson's
number is less than the critical Richardson's number, about 0.2.

To deiermine the appropriate turbulence level for a given wind shear, atmospheric stability,

and terrain roughness, it is necessary to de'ine a relationship between these variables and the
standaid deviation of each of the turbulence components.
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2.4.4. 2.1 Variance of the Vertical Component-An analytical description of the characteris-
tics of the standard deviation of th(- 'ertical velocity fltctuations has been developed and
substantiated by Reference 2-7. The following analysis largely follows this work except for a
few changes in notation.

The standard deviation of the vertical turbulence component ow is a function of
atmospheric stability and wind shear near the ground, height, and ground roughness.
Monin-Obukhov similarity theory predicts that the standard deviation is defined by an
expression of the form

0w = u~f L)

where u* is the friction velocity, f(h/Q) is a universal function of' h/R, h is height above
ground, and £ is a scaling length defined by similarity theory as

3
u, CpPT

kgh

The standard deviation can also be , :pressed as a function of the height h1, the rate of
production of mechanical energy by w, nd shear u, 2 a Vw/ah, and the rate of supply at
convective energy by heating gH/CpPT. Dimensional analysis predicts the following general
equations,

= (hu*2 a W) / 3 F [(gH/C IPT)/u 2 a w ]

In the particu!ar case of free convection

0 w = A(gHh/CpPT) 
1/3

where A is a cnnstant. Hence the general function must have the form

a = B 1h u2 !VW6h 113~\

where B and 6 are constants.

The nondimetisional wind shear, s, is defined as

_ kh bvw

Hence

Ow = Cu* - )l
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where
SC= Bi(k) 1/3

Since in practice only tile quantity R' is available, the transformation

9 = R'(kM/kH)

must be used. kM/kH is the ratio between the turbulent transport coefficients foi
mechanical and heat energy, respectively.

Substituting for 2 gives

ow = Cu* s-5 1

For neutral and unstable atmospheric conditions, this equation defines the relationship
between the standard deviation of the vertical velocity fluctuations and wind shear, small
scale surface roughness, atmospheric stability near the ground, and height. Reference 2-7
shows that with the proper selection of th constants C and 6, this theoret"cal relation
agrees well with observations. It is argued that two of the reasons for this igreement are that
the presence of the ground surface preven:s low frequency components from forming, and
the small scale surface roughness length z0 serves sufficiently well to acc,!.nt for the terrain
effect.

Since s is a uniqu.:e functic-n of h/', a general function G(h/2') may be defined as

kH 11 113G 01/9 ') = -

lHence

ow/U* CG(h/')

In the casc of a neutral atmosphere, G(h/2') is a constant equal to one, and

Ow/U , = C

Therefore, under adiabatic conditions the standard deviation of the vertical velocity
fluctuations is proportional to the friction velocity. This implies that it is proportional to
the mean wind speed at a given height, increases iith incicasing small scale roughness, and is
invaria,:t with height. The statidard deviation may be expressed in terms of the mean wind
speed VW at a height h, and the roughness length zo:

=0.4 CV WI ln(h/zo)
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The literature lists several 'values for the constant C. Atmospheric observations have
produced valu'-s ranging from 0.7 to 1.37, as shown on Table 2-4. There is evidence that the
value of 0.7 is too low for a factor of 1.5 (Ref. 2-7). On the other hand, the value of 1.33
also reported in Reference 2-7 may be an overestimate since this value was obtained by
equating the standard deviation of the vertical velocity fluctuations to the product of the
standard deviation of the vertical angle fluctuations and the mean wind. This is known to
produce an overestimate due to the correlation between the vertical angle and mean wind
speed. Wind tunnel measurements have consistently produced values close to approximately
1.05, which Reference 2-7 assumes to be a good compromise between the divergent
atmospheric observations, the reasoning being that C must be a universal constant.

_TABLE 2-4.-VALUES OF THE CONSTANT OF
PROPORTIONALITY C BETWEEN ow AND u*

Ow/U *  Source Comments

1.37 Reference 44 Based on u* at 30 m, from TO LCAT data

1.33 Reference 7 Based on measurements of standard deviation of the
vertical angle fluctuations

1.30 References 1, 29,
and 34

1.29 Reference 38 Assumed valid within 50 ft of the ground for a
wide range of atmospheric stability

1.25 Reference, 7, 4 Based on fitting of oLservations in neutral and unstable
conditions

1.2 Reference 40

1.05 Reference 7 Based on measurements in pipe flow
1.05 Reference 7 Based on wind tunnel measurements in boundary layer

0.99 Reference 45

0.87 Reference 7

0.70 Reference 7 There is evidence that C was underestimated by a factor
of 1.5 (0.70 x 1.5 = 1.05)

An additional arguient presented in Reference 2-7 for C = 1.05 is provided on Figure 2-36:
For C > 1.05 aOw/U* initially decreases for small decreases of stability from neutral, a
characteristic regarded a:; physically unlikely.

Dr. lanofsky (coauthor with Lumley of Ref. 2-7) has indicated in a conversation that he no
longer supports C = 1.05 because of substantial recent evidence, such as the survey on Table
2-5 taken from Reference 2-46, but that he now accepts C = 1.3.

Selecting uw/U ,  for adial)aic conditions, straight lines representing the theoretical
relationship between o,, and the mean wind speed at a given height were added to Figures
2-37, -38, anti -39, which are reproduced from Reference 2-7. Considering the data scatter
v)rmally associated with atnil:upheric observations, there seems to be good agreement
between the theoretical estimation; an' the observed values. This supports the supposition
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FIGURE 2-36.-THEORETICAL AND OBSERVED VARIA TION OF o w /u
WITH INSTABILITY (FROM REF. 2-7)
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TABLE 2-5.-SUMMA RY OF ESTIMATES OF VERTICAL TURBULENCE IN NEUTRAL CONDITIONS

Reference
Height of Instruments for estimates

Site measurement used for ow  Source of u. Ow/u o  of ow/U.
(m)

Brookhaven, U.S. 91 Vane (a)
O'Neill, U.S. 12 Sonic anemometer (a) 1.25 Panofsky and

Edithvale, Hot-wire| McCormick (1960)
Australia 2, 12, 29 in.linometer (a) I
Porton 1/2-16 Hot-wire

inclinometer (a) 1 * 332 Pasquill (1962)
O'Neill, U.S. 1 * L-12 Vane (b! 1 2 Koug (1965)
Various in U.S. 1-55 Various (a) and (b) 1 * 2 Panofsky and

Prasad (1965)
Rostov, USSR 4 Sonic

anemometer (b) 1 ,2 Mordukhovich
and Tsvang (1966)

Hay, Australia 4 Sonic
anemometer (a) 1 * 33 Ftuiinger et al. (1967)

Hanford, U.S. 3 & 6. 1 Heated thermo- (b)
couple wires Busch and Panofsky (1968)

Kansas 5-7,22-6 Sonic
anemometer (h) 1•35 Haugenetal. (1971)

British Columbia 2 Sonic
anemometer (b) 1 "4 McBean (1971)

Notes:
1. (a) Wind profile (b) eddy correlation.
2. An estimate of the correction required for the approximate use of angular inclination in deriving ow

reduces this to 1" 25.
3. This value is stated by the authors to be low, possibly by as much as 15%, On 3ccount of omission

of high-frequancy contributions to ow .

4. Information from Reference 46.

that the theoretical expression represents I he variation of ow, with the small scale roughness
length and the mean wind speed at a given level. Further, it is borne out that for neutral

atmospheric conditions ow is invaria.t with height, which is consistent with the theory.

Selecting the roughness length

zo = 0.15 feet

as typical for airports, the vertical component of turbulence may be expressed in 'terms of

the mean wind speed at 20 and 33 fett, respectively, for neutral atmospheric conditions.

For C 1.3

ow  = 0.0964 V3 3

ow 0. 106 V20
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For comparison, the proposed ARB model (Ref. 2-14) specifies for neutral atmospheric
conditions

Ow= 0.0)9 V33%

where z0 = 0.15 feet has been selected. This is based on the assumption that

w 0.5 ou

where

Ou = ov =0.18 V33

which is specified as typical for airports under neutral atmospheric conditions. The ARB
model further assumes that these relationships are valid for heights between 10 and
300 feet.

In free convection, equivalent to very unstable conditions where the nondimensional shear is
negligible, ow is given by:

aw = A(gHh/CpPT) 113

Ow=

Therefore, the vertical turbulence componeht varies as (h) 1 / 3 under conditions of free
convection. Independent observations reported in Reference 2-7 establish a value of D equal
to 1.7. Assuming that the ratio (kH/kM) is close to unity the equation for Ow/u* becomes

That is, 6 = (D/C) 3

or, for-C = 1.3 and D = !.7,

OWu '1'"26r[/3

The fact tMat 6 is 1:irger than unity implies that the convective forces are more efficient in
producing vertical velocity fluctuations than the wind shear forces. Reference 2-7 lists two
possible explanations. Convection directly causes vertical motions, while wind shear first
produces horizontal motions. The vertical velocity fluctuations due to wind shear are caused
by redistribution of the energy contained in the horizontal fluctuations. The second
hypothesis postulates that the convective portion of the vertical velocity fluctuations is
characterized by larger eddy sizes than the mechanical portion. For this reason, the effect of

I convection is relatively more efficient.
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The preceding discussions have shown that for a given wind level at a fixed height the
standard deviation of the vertical velocity fluctuations is invariant with height in neutral air
and increases with height in unstable air. This is in general agreement with most
observations. Experimental observations reported in the literature show that in a stable
atmosphere ow decreases with increasing altitude. However, Ref6eence 2-7 maintains that
tile function G(hi£') is not valid for positive values of h/2'. Figure 2-40 indicates the
variation of Ow/U, with h/Q' in stable air. For a given level of stability the figure implies a~reduction in o,, with height. Tihe decrease in the value of u, through tihe function f(h/R1)

accounts for a general decrease in ow at all levels with increasing atmospheric stability.

Valuas corrected by
a factor of 1.5

-1.0 -0.5 0 0.5 1.0

h/2'

FIGURE 2-40.-OBSER VED uw/U, AS A FUNCTION OF hIR' (FROM REF. 2-7)

h- summary, the standard deviations of the vertical velocity fluctuations ow are primarily
controlled by the wind speed, atmospheric stability, and small scale surface roughness. In
neutral air aw is invariant with height, increases with height in unstable air, and decreases
with height in stable air. For a given wind shear near the ground the value of ow at all levels
increases with decreasing atmospheric stability. The effect of varying atmospheric stability is
small at lower levels and over rough terrain, but increases with height and becomes
considerable at higher levels, especially over smooth terrain. The analytical descriptions
presented agree well with experimental observations.

2.4.4.22 Variance of the Lateral Component-Consider the standard deviation of the lateral
velocity fluctuations, ov , as a function of wind speed and roughness in a neutrally stable
atmosphere. Similarity theory predicts that ov is proportional to the friction velocity
u,, i.e.,

Ov =CU,

226



or

qkW

where Vw is the mean wind speed at the height It, z0 is the small scale roughness length, and
C is a constant of proportionality. Again this implies that the standard deviation is
proportional to the wind speed at a given height, increases with itcreasing surface roughness,
and is invariant with altitude. Experimental observations at a n location confirm this
hypothesis. Figures 2-41, -42, and -43, which have been reproduc%.d from the literature,
indicate that ov is proportional to the wind speed at a given height and appears to be
invariant with height. The straight lines giving the least squares fit to the experimental
points in both figures have almost identical slopes, although the roughness lengths associated
with the two locations are different by a factor of ten. This implies that the constant C is
different for the two locations, a result which is typical when the observed relations
between a and u. for various places are compared. The large spread in the values of C
shown in Table 2-6 is sufficient to indicate a systematic difference. As a result, it may be
postulated that the small scale roughness length z0 alone will not account for .he effect of
terrain roughness on the standard deviation of the lateral velocity tluctuaticas. Reference
2-7 maintains that z0 must be replaced by a measure of large scale roughness that depends
on large scale surface features such as hills. Actually, the ground is characterized by
irregularities of all sizes, ranging from grains of sand and blades of grass, to buildings. hills,
and mountains. Sonic investigators have suggested that the intensity of turbilence should be
related to the whole surface spectrum. On the other hand, it appears that for a given
location the proportionality between ov and u. holds, and by determining the constant of
proportionality C for each location being considered, the effect of large scale roughness may
be taken into account.

TABLE 2-6.-VALUES OF THE CONSTANT OF B . )RTIONALITY C BETWEEN av AND u.

av/U. = C Source Height Comments

a) 2.6 Reference / 2 m Sime location as d)
b) 2.2 Reference 7 12 m

c) 2.2 Reference 44 30 m
d) 2.0 Reference 7 2 m Same location as b)
e) 3.0 Reference 7 300 ft
f) 2.0 Reference 38 50 ft C'aimed to be valid for a wide range

o! stabilities within 50 ft of the ground
g) 2.0 References 1 and 34
h) 1.5 Refererce 7 Wind tunnel, boundarv.layer measurements
i) 1.5 Reference 7 Pipa flow measurements
j) 1.3 Reference 7 All levels
k) 1.64 Reference 40 5.06, 11.3, 22.6 m
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FIGURE 2-41.-STANDARD DEVIATION OF LATERAL VELOCITY

A T BROOKHA VEN, N. Y. AS A FUNCTION OF WIND
SPEED A T 11 M (FROM REF. 2-7)
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FIGURE 2-42.-S7ANDARD DEVIATION OF LATERAL VELOCITY
AT SOUTH DARTMOUTH, MASS., ASA FUNCTION

OF WIND SPEED A T 11 M (FROM F, EF. 2-7)
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FIGURE 2.43.- VARIANCE OF LA TERA L WIND COMPONENTS A T 18M AS A FUNCTION OF
FRITION VELOCITY AT 18M (FROM REF. 2-47)
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Selecting the roughness length

z= 0. 15 feet

and

ov - 2.6 u*

as representative of a typical airport, the lateral component of turbulence may be expressed
in terms of the mean wind speed at 20 and 33 feet, respectively, for neutral atmospheric
conditions.

ov = 0,193 V33

0 0.2 12 /2 0

For comparison, the proposed ARB model (Ref. 2-14) specifies for neutral atmospheric
conditions

av = 0. 1 8 V33

where z0 = 0.15 feet h-.s been selected. The ARB model further assumes that this
relationship is valid for heights between 10 and 300 feet.

The standard deviation of the lateral velocity fluctuations av at a given location in neutral
air is proportional to the friction velocity u.. The constant of proportionality may differ
from one location to another. As in the case of the vertical velocity fluctuations, it may be
hypothesized that

a, Z.Cu~f(h/)

for stable and unstable atmospheric conditions. However, Reference 2-7 maintains that this
formulation is incorrect. Observations show that ov is insensitive to changes in height but is
very sensitive to changes in atmospheric lapse rate, especially at lower wind speeds. At the
higher wind speeds when mechanical energy predominates, lapse rate seems to be of less
significance.

Observations of ov in very unstable air are characterized by considerable data scatter,
showing that even hourly avera-es are influenced by random variations. This indicates that
the lateral ve!ocity fluctuations are dominated by heat convection, which is characterized by
large eddy sizes, and are controlled by the lapse rate. For a given wind speed the effect of
decreasing atmospheric stability is a significant incre-ase in the intensity of the lateral
velocity fluctuations. This is borne out well by Figures 2-44, -45, and 46, which have been
reproduced from the literature. For the unstable lapse rates the correlation between wiid
speed and ov is weak, especially over smooth terrain, and the effect of surface roughness is
small up to moderate wind speeds.
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FIGURE 2.44.-STANDARD DEVIATION OF LATERAL VELOCITY AT SOUTH DARTMOUTH,
MASS. AS FUNCTION OF WIND SPEED A T 11 M (FROM REF. 2-7)
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FIGURE 2-45.-STANDARD DEVIATION OF LATERAL VELOCITYAT O'NEILL, NEBR. AS
-FUNCT:ON OF WIND SPEED AT 11 M (FROM REF. 2-7)
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In contrast io ow . vvry little vertical variation of ov with height has been observed from the
surface up to a height of 300 feet. Reference 2-7 concludes that ov probably increases with

height by a small amount near tie surface in unstable air. This is based on observations

tak'o at heights less thani 300 fe,t above the ground. References 2-37 and 2-43 present

observations which indicate that o decreases from 250 to 750 feet over both rough and

smooth terrain in tmst,!bke air. This decrease in ov is more pronounced over rough terrain
than over smooth terrain.

The two main results of increasing atmospheric stability are a marked reduction in the

magnitude of the lateral velocity fluctuations and an increasing correlation between ov and

wind speed. and surface roughness. The observations oresented in Figures 2-47 and 2-48
indicate that ov is approximately proportional to (Vw)I 5 ins table air:

Le.,;tsquares fit in Figure 2-47:

Least squares fit in Figure 2-48:

ov  0.07 l I

Where V, 1 is the wind speed at I I m and ov is given in m/sec. Reference 2-7 qualitatively

explains the 1.5 power as a linear variation, with a decreased effect of the inversion imposed

at the higher speeds. The difference in the constants of proportionality again reflects the
difference in the large scale surface features between the two locations associated with thefigures. Reference 2-7 reports gradual but large azimuth fluctuations in light wind
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conditions and stable air. For sufficiently long sampling periods this will give rise to
considerable data scatter as well as unexpectedly large values of the observed standard
deviation. This gradual shift in wind direction cannot be associated with mechanical
turbulence, which is small in light winds, nor can it be associated with heat convection,
which is absent ii' stable air. The literature fails to give a satisfactory explanation of this
phenomenon.

In contrast to ow, observations show little vertical variation of ov in stable air. Reference
2-7 notes that the high frequency component of a. decreases with altitude. Therefore, some
observations may have underestimated ov close to the surface through neglect of the high
frequency portion of the lateral wind fluctuations. Reference 2-7 concludes that some
decrease of ov with height in stable air may be anticipated. Observations presented in
Reference 2-37 show that the average ov decreases from 250 to 750 feet in stable air both
over rough and smooth terrain, whereas observations presented in Reference 2-43 show little
variation of ov in the same altitude range and under the same atmospheric stability
conditions.

To summarize, in neutrally stable conditions the standard deviation of the lateral velocity
fluctuations ov may be assumed to be proportional to the friction velocity u,, where the
constant of proportionality is a function of the large scale surface roughness. The magnitude
of the standard deviation increases with decrbasing atmospheric instability, and at low wind
speeds the lapse rate has the dominant influence on the turbulence strength. The correlation
between ov and wind speed, and surface roughness is small in unstable air but becomes
considerably stronger in stable air. For the latter condition,ov increases with increasing wind
speed and surface roughness. The vertical variation of ov is small in both stable and unstable
air. The analytic description presented agrees well with experimental observations in neutral
air, provided the constant of proportionality C is adjusted to account for the large scale
surface roughness at various locations. No satisfactory analytical relationships for ov under
unstable and stable atmospheric conditions have been developed.

2. 4.4.2. 3 Vaiance of the Longitudinal Component-As in the case of the vertical and lateral
velocity fluc:uations, experimental observations indicate that the standard deviation of the
horizontal velocity fluctions, ou, is proportional to the friction velocity u, in a neutrally
stable air mass.

ou = Cu.

This implies that ou is proportional to the wind speed at a given height and is more or less
invariant with height (see Fig. 2-49).

CkVw
0u -ln(h/z 0)

As in the case of ov , it turns out that the value for the constant of proportionality C varies
with terrain as indicated in Table 2-7. Reference 2-7 notes that the values for C are different
enough to suggest that a real discrenancy exists, and attributes this to the difference in the
large scale surface features from one location to another. By selecting the proper value for C
for each location being considered, the effect of large scale roughness may be taken into
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TABLE 2.7.-VAL;,iS OF THE CONSTANTOF PROPORTIONALITY C BETWEEN ouAND u

Ou/U* = C Source Comments

2.90 Reference 7
2.80 Reference 24
2.75 Reference 34
2.50 Reference 38 Recoroimended for first 50 ft for a wide

range of stabilities

2.50 Reference 7
2.45 Reference 7 Averaged for various types of terrain
2.30 Reference 7

2.20 Reference 7 Pipe flow measurements
2.20 Reference 44 Measured at 30 m
2.19 Reference 40
2.10 Reference 7

account. The conclusions reached by Reference 2-7 are prirarily based on atmospheric data
taken near the ground up to approximately 300 feet. References 2-37 and 2-43 present
observations which indicate that ou decreases from 250 to 750 feet over both rough and
smooth terrain in neutral air.

Selecting the roughness length

z3 = 0.15 feet

and

ou = 2.6 u*

as representative of a typical airport, the longitudinal component of turbulence may be
expressed in terms of the mean wind speed at 20 and 33 feet, respectively, for neutral
atmospheric conditions.

= 0.193 V3 3

= 0.212 V2 0

For comparison, the proposed ARB model (Ref. 2-14) specifies for neutral atmospheric
condjtioa

= ). = 8 V3 3

where z0 = 0.15 feet has been selected. The ARB model fur(her assumes that this
relationship is valid for heights between 10 and 300 feet.
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For nonadiabatic atmospheric conditions the properties of a are in good agreement with

what would be expected from similarity theory, whereas the properties of ov are not.

Reference 2-7 states that in general, the properties of ou are intermediate. The variation of
the magnitude of the longitudinal velocity fluctuations with atmospheric stability for a
fixed u. is significant, but is not as strong as that of the lateral velocity fluctuations.
Reference 2-7 states that for unstable atmospheric conditions ou is invariant with height.
but is sensitive to changes in atmospheric lapse rate, particularly at :ow wind speeds.
However, in unstable air the effect of wind is more predominant than in the case of the
lateral component, particularly over rough terrain and at low heights. The effect of

increasing wind speed or decreasing atmospheric stability is to increase the magnitude of the
longitudinal velocity fluctuations. Observations presented in References 2-37 and 2-43 show
this to be true in the range between 250 and 750 feet, except that ou decreased with
increasing height over both rough and smooth terrain in unstable air.

increasing atmospheric stability always decreases the magnitude of au at all heights.
Reference 2-7 maintains that in stable air it appears that the standard deviation remains
nearly constant with height, but there is a shift from high frequency flucthations near the
ground to slower wind speed variations at greater heights. Observations presented in
Reference 2-37 indicate that au decreases from 250 to 750 feet over both smooth and rough
ground in stable air. The same general trends are borne out by observations presented in
Reference 2-43, except that there is negligible variation in the average ou over rough terrain.

Reference 2-7 refers to Figure 2-50 as an illustration of the variation of ou with atmospheric
stability at fixed u,. However, if ou/u* is a function of h/R' it is implied that ou will vary
with height in nonadiabatic conditions. This contradicts the earlier supposition of tile
invariance of ou with height. This contradiction may be resolved in Figure 2-50. This figure
is interpreted as describing the relation between Ou/U* and h]£' at a given height, i.e., h is
considered a constant and 1/9' is the independent variable. On the other hand Figure 2-51
does not exhibit any strong dependence of ou/u* upon stability.

To summarize, the standard deviation of the longitudinal velocity fluctuations ou is
proportional to the friction velocity u. in neutrally stable air. The constant of
proportionality is a function of the large scale surface roughness. The magnitude of the

standard deviation increases with decreasing atmospheric stability, and increasing wind
speed and surface roughness. The vertical variation of ou is small in both stable and unstable
:ir. The analytic description presented agrees well with the experimental observations in
neutral air, provided that the constant of proportionality is adjusted to account for the large
scale surface roughness at various locations. No satisfactory analytic relationships for O.
under unstable and stable atmospheric conditions have been developed.

2.4.4.24 '.Jfect of Altitude Dependence of Friction Velocity-The similarity theory
predicts that the standard deviations ou' 0v, and o are invariant with height in neutrally
stable air. This is implied from the assumption of the constancy of u. with height. For
heights over which the decrease of u, may not be neglected it has been suggested that the
standard deviations remain proportional to the local value of the friction velocity (Refs. 2-4
and 2-29):
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u u* /[ u*0

Assuming that the standard deviations of the velocity fluctuations remain proportional to
the local shear stress, the low level asymptotic expansion implies that tile change in the o2 's
between two levels at a given location should be proportional to the wind speed at a given
height. Reference 2-4 quotes the data presented in Reference 2-47 in support of this.
Figures 2-52 and 2-53 reproduced from Reference 2-47 show how au and ov vary from one
level to another as a function of the wind speed at a given level. The high level asymptotic
expansion implies that the change in the u's between two levels at a given location remain
constant, i.e., the slope au,(h)/ah is not a function of the wind level. Reference 2-47
supports this hypothesis by stating that the ratio G sin r/u, is theoretically a constant, not
only in neutral air but in unstable air as well.
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FIGURE 2-52.-DIFFERENCE OF VARIANCE OF LA TERAL WIND COMPONENT AT 18 M AND 150 M
-AS A FUNCTION OF MEAN WIND A T 18 Y (FROM REF. 2-47)
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It has been shown that

~ hIu, (h1) --u(0) I -.h]

and

d - u,(O)/f5.35

then

au,(h) u*(0)
a" d _ 5.35f

and

G sina _ 10.7
u,(h)

It can be seen that the slope of u, versus h is only a function of Coriolis parameters.

Based on the pieceding discussion, the intensity of turbulence may be expected to decrease
with increasing height under neutral atmospheric conditions. Indeed, all the experimental
data presented in References 2-37 and 2-43 consistently show the expected turbulence levels
to decrease in going from 250 to 750 feet abovw the ground under unstable, stable, and
neutral atmospheric conditions.

2.4.4.2.5 Ratios Between the Standard Deviations of the Turbulence Components-For an
isotropic turbulence field the standard deviations of the turbulent velocity fluctuations are
related as follows

Ou = V = Ow

Although these relations are very attractive because of the inherent simplicity, they
certainly cannot be recommend ( as being realistic for low altitude turbulence. Table 2-8
lists a wide range of estimates for the a rat;.%s in low altitude turbulence. The large variations
between the estimates may be attributed to differences in meteorological conditions,
topography, height, and experimental techniques. With reference to the latter, it should be
noted that all measured standard deviations lack contributions from both the high and low"
frequency ends of the power spectra. The former is due to limited frequency response of the
instrumentation and the latter is due to finite sampling times. At the lower levels, the
frequency contents of the three turbulence components are different, and therefore the
truncation of the standard deviations will affect the ratio between them as well as their
absolute value.

Selecting u fixed ratio between the standard deviations may appear a crude approximation.
It is obvious that changing terrain features, atmospheric conditions, and height do not affect
the three turbulence components in the same way. However, except for the establishment of
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TABLE 2.8.-RATIOS BETWEEN au, ov ,,AND uw

a u/Or /ow Source Comments

2.4/1.9/1 References 1 and 7

2/1.6/1 Reference 2 Valid for below 300 ft

2.2/1.5/1 References 1 and 34
1.3/1.6/1 References 1 and 34

1.9/1.6/1 Reference 38 Valid for below 50 ft at a wide
range of stabilities

1/1.2/1 Reference 48
3/2/1 Reference 49 Valid for below 50 ft
1.82/1.37/1 Reference 51

OU/0w = Ov/Uw/OW
= 1.2 - 1.7"10 - 4 h Reference 49 Stable and neutral conditions

50 ft<h <1 100 ft
Gu/a w = ov/0 w

= 1.3 - 5.8.10-4 h Reference 49 Unstable conditions
50 ft<h <l1100 ft

1/1/1 Reference 49 Above 1100 ft in stable and
neutral conditions

2/2/1 Reference 14 Near neutral conditions

O°u = Qv h -2/9
S... .) Reference 42 Dryden ] Based on isotropy

w w spectra at high frequencies

1/6 Reference 42 Von Karman and presumed

u- 10 >1 spectra integral scale profiles

trends, the literature fails to provide any practical functional relationships which woule
enable accurate predictions of the ratios between the magnitude of the turbulence
components for a given set of conditions.

The literature indicates that close to the ground turbulence is strongly anisotropic with
respect to the ratios Ou/Ow and ov/ow. The height at which this becomes significant will
depend upon the predominant eddy size in the turbulence field. Table 1-8 indicates that
below 50 feet measurements consistently confirm that au and o are larger tihan ow.
Reference 2-49 maintains that below 50 feet as the effect of the ground becomes more
important the ratios au/Ow and ov/Ow change rather drastically and as height decreases to
within a foot or so of the ground, these ratios must increase rapidly because the vertical
turbulence is restricted by the close presence of the ground. However, this argument is
subject to criticism. Reference 2-7 maintains that for a small range of altitudes above the
ground where shear stress is essentially constant, the rms levels of the turbulence
components are invariant with altitude. The effect of the proximity of the ground restricts
the eddy sizes, causing turbulence power to occur at higher frequencies. In the limit at the
ground, the ;ms level would be finite, but would be spread over an infinite frequency range,
with the power spectral density at any frequency being zero. Most likely, any description
within inches of the ground will be inadequate, but this is of no consequence as the vertical
aerodynamic centers of aircraft are substantially away from the surface when the aircraft is
on the ground.
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Table 2-8 indicates that a is generally larger than a at the lower heights, indicating
anisotropy in the horizontal plane. However, this tendency is not so strong as that exhibited
in the vertical plane, and it is common for models to assume equal variances for horizontal
components. The models of References 2-42 and 2-49 provide for horizontal isotropy, but
permit the ratios of horizontal to vertical turbulence rms levels to decrease to one at a
sufficiently high altitude, presumably at an estimate o" the boundary layer thickness.
Reference 2-49 provides for a linear decrease of the ratio unti ai isotropic ratio is achieved
at 1100 feet. Reference 2-42, however, derives its altitude-varying ratio by requiring
isotropy at high frequencies. Then, from presumed models of the vertical turbulence
variance and the integral sale% the horizontal turbulence rms levels are found by

, / Lu\ 1/3 = h \2/9
= O .w (T5-. ,Von Karman spectra

flu = 
OV =

ILu 1/2 1/
0= OwIi-" , Dryden spectia

These relationships are plotted on Figure 2-54. At the surface, the ratios go to infinity, but
this effect is not necessarily important as such low altitudes are not achieved by aircraft.
Reference 2-42 recommends the Von Karman spectra; hence, the representation for the
Dryden spectra may be viewed as providing an approximation to the Von Karman spectra.
Certainly, the variance, integral scales, and the boundary layer thickness are not dependent
on the spectral form assumed, but perhaps the combination of parameters meets some
criteria for matching the two power spectra models.

It is not clear whether the use of 2500 feet is based on measured data or whether it was used
to provide compatibili.y with existing military specifications.

The rapid reduction of difference between horizontal and vertical turbulence levels provided
by Figure 2-54 may permit using an isotropic relationship at an altitude below that specified
for isotropy.

2.4.5 The Scale of Low Altitude Turbulence

At low altitudes the eddy sizes, as reflected by the integral scales, are constrained by the
presence of the ground. The integral scale for the vertical component of turbulence is
constrained directly by the distance to the ground. The scales for the horizontal
components are affected indirectly, presumably through the breakdown of the eddies as the
eddies are flattened. As the ground is approached, the eddy sizes and the integral scales can
be expected to go to zero. As altitude increases, the turbulence becomes isotropic and,
redefining Lv and Lw to be twice the areas under the v and w autocorrelation runctions, the
integral scales are equal. In between, it can be assumed (as is done in Refs. 2-32 and 2-49)
that the integral scale for the vertical component of turbulence will be less than thuse for
the horizontal components because the influence of the ground is greater for the vertical
components. These conditions are summarized by:
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Von Karman spectra: { h)-2/9

Ou/Ow = Ov/ w  2M , h <2500 ft
w 1.0 ,' !2500 ft

Dryden spectra: h) -1/6 h<1760ft

1.0 ,h .1750ft

a w invariant with altitude and same for both models
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For Dryden spectra, H 1750 ft
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FIGURE 2-54.--R.M.S. TURBULENCE INTERRELAtIONSHIP, MILITARY MODELS
(FROM REF. 2.42)

244



h 0, Lu = Lw-0

h oo, Lu/Lv/L w - I/I/l

Lw 4 Lu , Lw  < Lv

Specific questions about low altitude integral scales are:

0 What are the magnitudes of integral scales?
What are the variations ol the integral scales with altitude?

* At what altitude does isotropy exist?
* What interrelationships exist between the integral scales?

Before the evidence is examined, it is appropriate to qualify the data by noting that
measurement of the integral scales involves several assumptions and small measurement
errors result in large distortions of measured values, and by examining measurement
techniques and their effects on the resultant data.

2.4.5.1 Measurement of Turbulence and Integral Scales a

Atmospheric turbulece is usually measured either by a probe on an airplane or by
anemometers mounted on towers. Because aircraft can cover a large distance in a shor!.
period of time, aircraft turbulence measurements enable extensions to low spacial
frequencies without l.rge changes in the mean wind and atmospheric conditions. However,
it is difficult to accurately measure the wind heading magnitude from an aircraft, making
difficult the association between turbulence characteristics and the mean wind. At low
frequencies, the "rigid" aircraft motion interferes with the measurements, and at high
frequencies the data are distorted by structural motion. When covering larger distances, it is
quite difficult to maintaih homogeneous terrain. The effect of inhomogeneous terrain is to
increase the apparent integral scale over that for the mean conditions, as shown on Figure
2-55. Finally, flight safety prevents measurements near the ground.

Inability to separate mean wind from turbulence (Fig. 2-1) by proper selection of t;:z
averaging time can also cause an overestimation of the integral scale. If the sample time is
held constant while airspeed is increased, more and more of the power due to the mean
wind will be included as turbulence, and the low frequency turbulence power and integral
scale estimates will increase.

Tower data permit measurements from homogeneous terrain, ')nd the corre!ation of
turbulence with mean wind eliminates the influtnce of aircraft response on measurements at
low frequencies and permits very low altitude measurements. However, it also introduces
other problems. Anemometers are characteristically sluggish and attenuate high frequency
responses. Low frequency data can be measured accurately, but now the mean airspeed is
just the mean wind speed, and very long time periods are required for measurements at low
spacial frequencies, enabling significant changes of the mean conditions.

For either method of measurement, the power spectrum is known accurately for only a
certain range of spacial frequencies, usually in the inertial subrange. The area under the
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segment of the power spectrum can be computed to give a truncated variance. If only tile
variance is desired, the spectral form and an almost arbitrary integral scale may be assumed
to relate the total variance to the truncated variance. Alternately, the contribution of
frequencies below and above the region of measurement may be ignored or assumed
negligible.

Knowing the amplitude of the power spectrum at some spacial frequencies, or, as in
References 2-37 and 2-43, the truncated variance between some spacial frequencies and
assuming the asymptotic form of some presumed spectrum permits writing the integral scale
in terms of the total variance. For the Von Karman and Dryden spectra, these
relationships are:

Von Karman Li CvKi Oi3

Dryden Li =CD oi2

where

i = u, v, w

C = known constant in terms of spacial frequencies and the power spectrum at
that frequency or truncated variance between spacial frequencies

The first observation from 'hese equation is: Given a measured spectrum segment and the
total variance for the spectrum, the computed integral scale is quite dependent on the
spectrum assumed; quoted values of integral scales must be qualified by the spectral form
assumed in deriving them.

A second observation is: If an error is introduced by calculating the total rms from a
truncated rms (which is difficult to avoid), computing the integral scale from the total rrns

aedawill magnify the error, in addition to any error introduced by assuming asymptotic forms.

"be errors from computing total variance and integral scale are in addition to the errors
inherent in the measurement technique. As a consequence, quoted integral scales exhibit a
wide variation, undoubtedly in addition to their natural variations. John Houbolt has
discussed measurement problems and alternative techniques more extensively in several of
his publications.

2.4.5.2 The Scale of Vertical Turbulence

At high altitudes, where isotropy exists, all the integral scales are assumed to be invariant
with altitude, and various values from 200 to 5000 feet havc been prescribed (Ref. 2-50). At
low altitudes, however, there is considerable evidence thlt the integral scales for three
components are not equal and that they are not invariant with altitude.
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Reference 2-7 states that the nondimensional form of the one-dimensional spectrum for the
vertical component of turbulence is predicted by similarity theory (assuming Taylor's
hypothesis) as:

lc, w(S21) o 2 f(S21h, R i)

where f is a universal function. Since the integral scale and spacial frequency only app:'. . in
combination for this form of the spectra, this is equivalent to

Lw  C(Ri)h

That is. the integr"! scale for the vertical component is linearly proportional to altitude, and
the constant of proportionality may be dependent on atmospheric stability. The linear
altitude dependence is further said to apply to heights "of perhaps a few 100 m., above
which the scale approaches a constant."

Reference 2-7 states that the qualitative effect of decreasing stability is to shift the spectrum
to lower frequencies, equivalent to increasing the integral scale, and that this is explained by
convective turbulence occurring at lower frequencies than mechanical turbulence.

Large scale terrain roughness is introduced as an additional parameter in Reference 2-5 1.
The integral scale for the vertical turbulence spectrum, assuming a vertical tLrbulknce
spectrum identical to the longitudinal Dryden spectrum, is recommended as

Lw h0 + Lhh

where h0 and Lh, are given as follows:

Terrain class LI h.0

Farmlands 0.75 50

Woodlands 0.625 175

C Low mountain 0.5 300

High mountain 0.125 675

For this mode!, the integral scale does not go to zero at the surface. The model provides for
greater scale lengths that are less sensitive to altitude for greater large scale roughness. At
1000 feet, variations with large scle roughness disappear.

References 2-37 and 2-43 verify that large scale terrain roughness is a very strong influence
on the integral scale for vertical turbulence for measurements taken at 250 feet but a weak
influence for measurements at 750 feet.

An attempt to combine the effects of stability and altitude with a quantitative model for
tile Dryden spectrum is presented on Figure 2-56, taken from Reference 2-49. The nonlinear
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variation of the constant of proportionality would seem tu indicate that the integral scale is
not linearly related with altitude. However, when the integral scale is plotted against
altitude, as on Figure 2-57, a linear variation at low altitudes and an invariance with altitude
at higher altitudes is seen to be a good approximation. The use of lapse rate for a measure of
stability does not agree with the use of Richardson's number in similarity theory. The same
author has recommended, in Reference 2-42, integral scales for average conditions given by

Sh, h < 1750 feet
Dryden spectrum: Lw 1750 ft, h > 1750 feet

( i, h < 2500 feet
Von Karman spectrum: Lw =

12500 ft, hi > 2500 feet

References 2-1 and 2-13 support Lw = h.

The data in Reference 2-40 provides spectra shapes at vaiious levels of stability that tend tu
support the stability trends of Figures 2-56 and 2-57. For stable conditions, a marku.
decrease of the proportionality constant with increasing stability occurs but, for unstable
conditions, the trend is not clear.

Reference 2-41 recommends a linear variation but with a constant of proportionality of 0.9
for the Dryden spectrum. An altitude above which the integral scale is invariant with
altitude is not specified. The same author has later recommended, in Reference 2-3, integral
scales for the Von Karman spectrum given as follows:

" For the boundary layer as a whele, Lw = 0.4 h

" For h > 200 feet, better values given by Lw = 2.1 h0 73

The final model presented is taken from Reference 2-14. For a vertical turbulence spectrum
having the same shape as the Dryden longitudinal spectrum, an integral scale equal to 50%
of the altitude for altitudes from 30 to 1000 feet is recommended. A constant value of 15
feet is recommended for altitudes less than 30 feet.

Several other models of the vertical spectrum using a constant integral scale based on an
"average" altitude exist. The validity of the use of the integral scale at an "average" altitude
will be examined later.

As noted, most of the models that do attempt to account for the effect of altitude do not
account for stability or large scale roughness. Large scale roughness can be constrained by
restricting consideration to a certain type of terrain. Ignoring the effects of stability may
not be very reasonable for, although the theory predicts stability effects, the effect may be
small. and Reference 2-7 states that ". . . the shape of the vertical velocity spectrum at low
levels is essentially independent of stability ... .
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2.4.5.3 The Scale of Horizontal Turbulence

The integral scales for the three components are differentiated in Reference 2-7 according to
the sensitivity of their shapes to atmospheric stability. The effect on the vertical (w)
turbulence spectrum is said to be weak, the effect on the lateral (v) velocity spectrum
drastic, and the effect on the longitudinal (u) velocity spectrum intermediat,. Furthermore,
the sensitivity of the horizontal components of wind velocity spectra is differ,-'tiated
according to high and low frequency. However, in Reference 2-7, the discussion on spectra
is not limited to just turbulence, but is for all of the wind velocity (i.e., Fig. 2-1) and the
distinction for high and low frequencies is not clear. (That is, low frequencies may refer to
what. has been termed in this report as mean wind.) As the spectra of the entire velocity
components are being examined, the spectra of "mean wind" hrading are reflected at low
frequencies.

With this qualification in mind, the effect of atmospheric stability is said to occur primarily
at the low frequencies for the horizontal components. Mechanical turbulence is said to have
an influence on the low frequency portion of the longitudinal turbulence spectrum, but not
the lateral spectrum. If indeed there are separate mechanical and thermal effects on the
longitudinal spectrum shape, as implied, then it may be inappropriate to use a single

parameter as the integral scale from isotropic turbulence to represent their combined
effects.

Reference 2-7 states that applications of similarity theory to the lateral spectrum have been
unsuccessful. However, height is concluded to be cnly a minor factor.

Similarity theory predicts the same spectral lorm for the longitudinal component as fo the
vertical component, with integral scale linearly related to altitude. However, Reference 2-7
cites studies supporting not only a linear relationship, but invariance and a square root
variation with altitude. A particular difficulty in assessing the scale of longitudinal
turbulence occurs and is described in Reference 2-7: "The difficulty lies in the fact that the
'peak' in the frequency-weighted spectrum, which determines the scale, lies at frequencies
usually at the low end of the frequency domain analyzed; in this region the resolving power
of spectrum analysis is poor and the results unprecise."

Reference 2-7 argues that because the longitudinal spectrum has more energy at the low
frequencies and because the law of the inertial subrange extends to lower frequencies, "The
larger eddies in neutral and utistable air are elongated in the wind direction." Of course,
even isotropic turbulence provides a longitudinal component with twice the low frequency
power as in the transverse components (Fig. 2-20).

Quantitative measures of horizontal integral scales that provide Lu and Lv equal, implying
horizontal isotropy, and invariant with altitude are found in the model of Reference 2-14
and the two models of Reference 2-52:
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Reference Lu = L Spectra

G2 L
2-14 600 ft 4 u 41v = (+ 2L 2

2-50 500 ft Dryden

2-50 600 ft 4Lu = Ov =  2

(I +S1L)1
.8

Reference 2-14 presents data showing variations of the integral scale with altitude for the
hori7ontal components but has apparently used some kind of average integral scale. The
values from Reference 2-52 are acknowledged to be average values for the first 1000 feet.
Hence, none of these models are necessarily implying support for invariance of horizontal
scales with altitude.

Another model resulting in a linear variation with altitude for the horizontal turbulence
integral scales is that of Reference 2-13. The proportionality constants have been found by
requiring all the spectra to be equal in the inertial subrange. By employing the same
spectrum for each component equal to the longitudinal Dryden spectrum, the horizontal
components are given in terms of ratios of the variances.

Lu  
= - 2

LV- I h

Presumed valies of Ou/ow = 2.5 and av/Ow = 1.75 give Lu = 6.25 h and Lv = 3 h.

Equal integral scales for horizontal turbulence components having a cube root variation with
altitude are found in Reference 2-42:

)184 11/3, h 4 2500 ft
Von Karman spectra: Lu = Lv =

2500 ft, h > 2500 ft

145h I 2 , h%1750ft
Dryden spectra: Lu =L v 1750 ft, h > 1750 ft

The author concedes that "although these formulas oroduce correct trends, there are little
data available that can be used to substantiate the h as used in MIL-F-8785B. It is merely
a formula that produces reasonable results." These formulas are designed to produce zero

253

.N.,trmm',-



integral scales at zero altitude, greater integral scales for the horizontal turbulence
components than for the vertical component, and a value corresponding to that specified in
the military specification at high altitudes.

Unpublished piloted flight simulations a, The Boeing Company using the Von Karman form
produced pilot comments indicating the cube root variations were unrealistically long at low
altitudes. A brief test comparing Lu = Lv = h, Lu= Lv = 50 h 1 '2 , and Lu = Lv = 184 h1/ 3 ,
produced a marked qualitative preference for the square root form, a form satisfying the

same requirements as the cube root form. The three alternate forms tested are presented on
Figure 2-58.

Reference 2-3 provides integral scales with implications that differ from other models. The
lateral and vertical turbulence integral scales are set equal and are differentiated from that
for longitudinal turbulence, implying isotropy in a vertical plane normal to the mean wind.
Furthermore, for altitudes above 200 feet, integral scales for all components are given about
a 3/4 power of altitude variation. Although the integral scales recommended are for the
adaptation of the isotropic Von Karman spectral form, implying that the integral scales for
the transverse components are defined as twice the areas under the corresponding
autocorrelatiorn functions, the integial scale for the longitudinal component is recommended
as twice those foi the transverse components for altitudes above 200 feet. The boundary
layer thickness is not defined. The integral scales recommended in Reference 2-3 are as
follows:

"For the boundary layer as a whole,

Lu  20 h1/ 2

Lv  Lw = 0.4 h

above about 200 feet, slightly better values Lre given by

Lu 4.2 h0 7 3

Lv Lw = 2.1 h0 73 ''

These equations are plotted on Figure 2-59.

One attempt to relate the integral scales for the horizontal components with atmospheric
stability was found in Reference 2-49. The Dryden spectra and the integral scale for the
vertical component on Figures 2-56 and 2-57 are employed. The integral scales for the
horizontal conponents are set equal to each other, and both are defined in terms of that for
the vertical component, which in turn is defined in terms of lapse rate:

(1.3 "0.0006 h) Lw' 50< h <500ft
Lu=Lv =

L v h >500 ft
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The author qualifies this formula as follows: "This formula should provide acceptable
results since it suggests the correct trends, but the formula should be looked upon for what
it is-a guess." Combining this equation and Figure 2-57 provides the model on Figure 2-60.

Reference 2-40 provides horizontal turbulence spectra shapes at various levels of stability
that indicate the horizontal turbulence integral scales decrease with stability for stable
conditions. The trend with stability for unstable conditions is unclear. Reference 2-39
reports similar findings: "The valie of the dimensionless integral scale is significantly less
(- 45%) than the ones... for the neutral case. However, for the unstable case, the integral
scales ... depart from the ones [for the neutral case]I by only - 20%." Reference 2-39 also
reports a change in integral scales' dependence upon altitude with atmospheric stability:

Unstable Neutral

Variation of 11-0. 13 Invariant
Lu with altitude

Variation of h0 28  h0 42

Lv with altitude

In general, there has been little direct measure of the integral scales for horizontal
turbulence components. Rather, they have been specified in terms of other parameters. The
dominant provisien for horizontally isotropic integral scale relationships may not necessarily
be support for that assumption but may rather be for the convenience of avoiding scale
transformations from the mean wind axis system to the airplane's relative wind axis system.

A test of a different sort on horizontal isotropy is reported in Reference 2-7. An aircraft was
flown in various directions relative to the mean wind in unstable air at about 100 meters.
The one-dimensional vertical velocity spectrum was found to be essentially independent of

direction of fight, indicating that "turbulence in such situations is more or less horizontally
isotropic."

2.4.6 Selection of a Low Altitude Turbulence Description

Analytic descriptions of low altitude turbulence and their assumptions have been presented.

From these, a description for specific application to the approach and landing maneuver will
now be selected.

The most fundamental assumption concerning the description of turbulence is that it is a

random process superimposed upon a "mean wind" which, though also having frequency-
dependent characteristics, occurs at lower and distinct frequencies. This assumption is
technically incorrect, as the differential equations governing turbulent motion have been
developed, implying a deterministic de.scription. However, the differential equations have
not been solved and a stochastic representation must be used. Fortunately, turbulence meets
most statistical requirements for a stochastic process. The spectral functions are then
selected as the best and most descriptive tools for the particular application to describe the
stochastic process.
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Other assumptions that are either necessary or extremely helpful for developing a
quantitative description, and which have been reasonably well substantiated and accepted,
are as follows:

1. A patch of turbulence exhibits three-dimensional hc'rlogencity ,t high altitudes
and horizontal homogeneity near the ground. That is, the statistical properties of
turbulence within a patch of turbulence are independent of absolute horizontal
position at low altitudes and are additionally independent of altitude at high
altitudes. The application of the low altitude assumption requires restriction to
bomogeneous terrain. Homogeneity permits elimination o" the absolute displace-
ment coordinates as independent arguments.

2. Turbulence exhibits stitionarity. The statistical properties of turbulence are
independent of absolute time, leaving relative time or time displacement between
two components of turbulence as an independent argument for describing the
combined statistical properties of the two components.

3. Turbulence exhibits ergodicity. That is, ensemble and time averages are identical,permitting application of measured data taken by feasible means.

4. The amplitude distribution of a patch of turbulence is Gaussian. lFvidence has
been presented showing that, for the whole of all turbulence and turbulence
patches, the distribution is not Gaussian, but no evidence against the normality of
the distribution for a patch of turbulence was discovered. A normal distribution
has the geatest theoretical support.

5. A patch of turbulence is sufficiently large to permit sustained flight within the
patch of duration that is long with respect to the minimum irequency of interest.

6. For airspeeds sufficiently high, Taylor's hypothesis is applicable. Rates of change
of turbulent velocities at a point are assumed to be small comparvd to the speed
of tile aircraft so that the field of turbulence velocities may be regarded as frozen.
This assumption enables the interchangeability of the time and position
displacements along the direction of relative wind, reducing the independent
variables to just the position displacement vector. One estimate permits use of this
assumption for airspeeds greater than one-third the "mean wind" speed.

7. At a sufficiently high altitude, turbulence exhibits isotropy. That is, the average

functions describing the field of turbulence are independent of the orientation of
the axis system describing the field of turbulence.

8. At all altitudes, turbulence is isotropic above a sufficiently high spacial frequency.

9. The one-dimensional turbulence power s pctra are invariant with frequency at
low spacial frequencies ard vary with !'/ at high spacial frequencies.
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The most descriptive isotropic spectral form that meets the assumptions was found to be the
Von Karman models. In keeping with common practice, it shall be assumed that the shapes
of the spectra tor isotropy hold for the nonisotropic conditions at low altitudes, Integral
scales for the transverse (normal to the direction of the relative wind) components of
turbulence are redefined to mean twice the area under the respective autocorrelation
functions. It remains to establish the integral scales and variances for each of the turbulence
components and the cross spectra.

An additional assumption frequently made is that low altittde turbulence is horizontally
isotropic (statistical properties invariant with rotations of the axis system about the vertical
axis), which would require equal variances and integral scales for the horizontal components
of turbulence and definition of only a single cross spectrum.

Only a single non-zero cross spectrum has been found, and the power spectrum for a vertical
turbulence has been found to be invariant with measurements at different orientations
relative to the mean wind, supporting horizontal isotropy. On the other hand, a greater
variance is attributed to the component along the mean wind, eddies are said to stretch in
the direction of the mean wind, arid atmospheric stability is said to influence each
horizontal component differently. However, the nonisotropic character of the horizontal
components appears to occur at very low frequencies. perhaps below the minimumSfrequency of interest. Further, quantitative estimates of the statistical properties of the
horizontal components vary widely and are subject to large measurement errors. Thus, the
assumption of horizontal isotropy is probably not much worse than ary quantitativedescription for a nonhorizontally isotropic model, and will be accepted.

What little informaion there is concerning the cross spectrum deals with the amplitude
relationship (for the u and w t'zrbt'lence components). Theory predicts, and is supported,
that the cross spectrum is proportional to the mean wind shear and the square root of the
product of the u and w power specaa, and is additionally inversely proportional to
frequency at high frequencies, combining to cause an ili "8 /3 variation at high Ir,.quencies.

.As a conseqpiente, the cross spectrum is most significant at the lower spacial frequencies.
There is little alternative but to "Iccept this description.

2.4.6.2 Requirements for Statistical Functions

Acceptance of the Von Karman spectral forms and isotropy at high frequencies for all
altitudes leads to

u 2 v2 Ow2

L 2 i3  L 2 /3  Lw2/3
u w

as shown p'eviously.
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Acceptance of the horizontal isotropy requires

ku = 0v

Lu = Lv

At high altitudes turbulence is required to be isotropic. Thus, as h11 hi- U L L

au v Lu  Lv

At the surface, the proxiniity of the ground inhibits the edldy sizes. Thus, as hi - 0,
Lu -,0. Lv -*0, Lw -*0. it is generally agreed that the proximity of the ground has aI
greater influence on the vertical dimensions of the eddies than the horizontal dimensions.
Thus, Lu = Lv  Lw. Since the effect of the proximity of .he ground is to decre~ase the eddy
sizes, the integral scales must not be larger than the isotropic values, and

dLv/dsi ; 0

The effect of stability upon turbulence variances is to increase the variance with decreasing

stabi~ity. At sufficiently high stability, turbulence must disappear. Thus,

~do/dR i  < 0

limoa = 0

~It is within this framework that the statistical properties of turbulence are to be spccified.

2.4.6.3 Selected Turbulence Variance DescriptionI

; Of the thee.' components. the vertical component of turbulence has received the mostI' scrutiny. Similarity theory predicts

w-Cu, -w(hQ')I

i The value of the proportionality constant, C, that receives the most agreement and which
* " +shall be adopted is 1 .3.

v
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The friction vwocity at the surface, U may be calculated from a surface wind
measured at the s,-me height by

k VRE F

h*E lREF + z 0) + ( h N:InREF In\ z

as shown in the discussion on mean wind. Hence, o w is altered by small scale roughness. In
keeping with the selected mean wind description, measurements shall be assumed to be
taken at 20 feet, a value of z0 = 0. 15 feet is accepted as typical of airports, and the function
f(hREF/2') is as was defined for the mean wind. The Von Karman constant, k, is 0.4.

The universal fanction, (w/u*)Ci/R). is specified by

uwh\ [kh av
*j -.- j~ 2 .23 6 3L<0', 7" u*'-o" all7

Where 2' has replaced R assuming a constant proportionality between eddy viscosity and
ctndy conductivity.

At some ifficiently large Richardson's number (or h/2), turbulence must disappear. There
is apparently a hysteresis effect. but a critical Richardson's number of 1/4.5, corresponding
to that implied for the selected mean wind description, shall be used.

The function combining the proportionality constant and the universal function for both
stable and unstable conditions is presented on Figures 2-61 and 2-62. The shape of the curve
up to moderate stable conditions was made to match that of Figure 2-40 and was
extrapolated to ow = 0 at 1/2' 1.22, which, using the relationships provided for the I

selected mean wind description, is equivalent to the critical Richardson's number. Artistic
license was used to remove the objectionable slope reversal at h/k' = 0. The abrupt chatge of
the curve at h/R' = I was made to correspond to the point where the nondimensional shear
changes abruptly.

The complete equation selectid to define the rms level of vertical turbulence is given by
3

[w[(h) " 0  1J u *O

wl

where (ow/u,)(h/R') is given by Figures 2-61 and 2-62.
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Resulting profiles of ow with altitude for neutral, stable, and unstable conditions are shown
on Figure 2-63.

Specification of the variances of the horizontal components is more troublesome since
theory, supported by empirical evidence, is not as well developed. The theory does suggest
that the rms levels of horizontal turbulence are linearly related to the friction velocity.
Thus, the effect of the reduction of friction velocity with altitude is the same for all three
components. Additionally, turbulence for all three coaponents must disappear at the samestable condition and must increase with decreasing stability, although the variances of the
horizontal turbulence components are not well established. Although there is some
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qualitative evidence to the contrary, it shall be assumed that the shapes of the variations

with stability for all three components are the same. Thus, it remains only to es:ablish ratios
between the rmis levels of the horizontal components to the vertical components.

In keeping with horizontal isotropy, ou = Or" To assure isotropy at sufficiently high
altitudes, ou/o w and ov/o w must go to unity with increasing altitude.

The literature does not provide a justification for any variation of the ratios. A linear change
of the ratio from a reference altitude, hREF, to a ratio of one at the altitude where isotropy
exists, h1, is provided by

REF 0° 1 h,hIi 1
[ " °w REF

Gvou

u REF + hI hREF hh h

Ow 1.0 ,h h

or, if hREF is sufficiently close to the surface so that it is small compaied to the boundary
layer thickness

R F=L REF , hh

Ott 1.0 >, I

i OV allU

Such a linear model is similar to that proposed in Reference 2-49. However, a linear model
does not necessarily enable meeting all the requirements, particularly those for the
variance-integral scale interrelationships and those for the integral scales alone. For the time
being, the variation of the rms ratios will be considered to be of nth order:

1/n

Ou ua EP + [ ~ REF) I /i]l 11
ott 1.0 

. h>h I
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This form satisfies the requirements

S- u forT 0

w w REF

o Wl OI for-~

< LI < u

"U< 0 U

l.O REF

d( u

dh

What is additionally needed is a ratio of rms's for a horizontal component to tile vertical
component at some altitude (hREF). A review of the data for ou/u, or/U,, and au/av/a w
indicates that for very low altitudes Ou/u w = ov/o w = 2 is a reasonable compromise. It shall
be assumed that this ratio holds at :,e surface as the measurement altitudes are very small
compared to the boundary layer thickness. Thus,

Ow [2 I1/ n1 + 21h< I

ual = OV

>. I>
w!

It should be recalled that these specifications hold for an axis system aligned to the mean
wind, not to the airplane.

2.4.6.4 Selected Integral Scale Description

The integral scale for vertical turbulence is that which has been best defined, particularly
because it is more easily measured. It shall be accepted that the vertical integral sca!,e is
proportional to altitude at low altitudes, as predicted by theory and as is most strongly
supported by empirical measurements.

The constant of proportionality has been variously estimated to be from 0.4 to ,
independent of stability and surface roughness, and to be a function of both stability and
terrain. A value of unity is selected, even though this is on the high side of tile estimates,
because it is the value most strongly supported. Trends of variations with large scale
roughness also indicate a value near unity for "typical" airport terrain.
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The estimates of the proportionality constant near 0.5 might well be due to differences in
definition; if the 0.5 estimates were made for defining the vertical turbulence integral scale
as the area under the autocorrelation function as opposed to twice the area under the
autocorrelation function, the 0.5 estimates would be consistent with a proportionality
constant of I for the second definition.

Atmospheric stability shall be assumed not to influence the integral scale for vertical
turbulence, in keeping with the observation of Reference 2-7 that there is no evidence of
systematic variations of the proportionality between the vertical turbulence integral scale
and altitude. This is in contradiction to the model of ,.eference 2-49. However, the latter
model uses lapse rate as the stability parameter which, although most easily understood, is
not well accepted as the independent parameter. For neutral conditions, the model of
Reference 2-49, as indicated on Figure 2-57, shows good agreement with a proportional.ty
constant of one.

Measurements of integral scales for horizontal components are poor &.nd estimates vary
widely. They can, however, be derived from the requirements for isotropy at high
frequencies 4nd the assumption of tne Von Karman spectra using the other parameters
already specified:

Lu= Lv-=L w Vow) Lw ow1
~jI (n )I(

[ 2 /1 + (I - 2/n 3n for low
altitudes.

As ou = o w, the integral scales for the horizontal components are greater than that for
the vertical component. Furthermore, thif equation satisfies the requirement that the
integral scales be equal (and turbulence isotropic) at h1. However, Uu/Ow and av/Ow
decrease with altitude, indicating that above some altitude the changes of horizontal integral
scales with increasirg altitude will be negative.

By setting the differential of the equation to zero, the requirement that the integral scales
increase with altitude up to the boundary layer is expressed by

3n(2l/n - !) 1

The inequality can be replaced by an equality if the maximum is required at the altitude
above which turbulence is isot.opy (hi), a mathematical nicelty providing for a continuity
of slope. A graphical solution provides a value of n nearly equal to -0.4. Thus,

2
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0.44

0. 177 + 0.823

11._ 4.,.
v

°w °w It~ > h III

foh < III

These equtions on1.2 sae

These equations are presented on Figures 2-64 and 2-65, and meet all the stated
requirements. These figures represent a model that is similar to that of Reference 2-42

(Figures 2-54 and 2-58) and is derived for similar requirements. The mode! also agrees with
invariance, a linear variation, a square root variation, and a cube root variation for different
ranges of altitude. However, it is but one of several representations that meet the stated
requirements.

It remains to define hl, the altitude above which isotropy effectively exists. Estimates exist
from about the 300 feet implied by Figure 2-57 (which also implies weak effect of stability
on hi) to the 2500 fee" useu in the model of Reference 2-42. The value selected is 1000
feet, a number appearing in severai aircraft design criteria. The comment in Reference 2-7
referring to the linear altitude dependence of Lw up to a few hundred meters is not
incompatible with 1000 feet. The use of an isotropic altitude independent of stability
appears to be intuitively justifiable, since the dominant factor for reducing tht integral
scal-s at low altitudes is tile physical restriction on eddy size caused by the presence of the
ground.

Fixing lII = 1000 feet and Lw = h for low altitudes independent of stability causes auOw =

O/Ow and Lu = L. to be independent of stability, while qualitative trends with stability
have been explained. However, the successful attempts to model the dependency of these
parameters on stability rather than qualitatively are few and are very restrictive as to the
conditions to which they apply. Considering the great diversity of opinion on neutral
stability values, any attempt to model effects of stability would be arbitrary and would
imply more knowledge than is available.

2.4.6.5 Selected Cospectrum Description

From a Taylor series expans~on of a universal expression for the one-dimensional
cospectrum developed from similarity theory, Reference 2-7 has postulated and substan-
tiated with empirical data the form
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which is valid at high frequencies and where the u and w power spectra are proportional to
each other. The more general expression was given as

aw /
eDuw(C°)- u G (-l

At low frequencies, it is argued that the cospectrum must be invarant or increase witl
increasing frequency. Presumably, the arguments that require the one-dimensional power
spectra to have a constant low frequency asymptote also apply to the cospectrum.

The data on Figure 2-32 suggest a transition from the low frequency to the high frequency
region for 4Puw/bw similar to the frequency response of a i"st order lag. Such a form is
represe.nted by

Duw. C
4)w 11 + (T)21/ 2

I-

Where the time constant, T. would be proportional to I/(8Vw/ah) to satisfy the high
frequency requirement. This is the form recommended by Reference 2-3. Using the data of
Figure 2-32, a good fit is found for

4) 2 1/2

4)w2 I

/ahj]

LI
H a! shown on Figure 2-66: The break frequency occurs at

16 k h W h
T blI[V 20] *,

where u, /k f(Ri2 0 ) Figure 2-15

V20

kh 3Vw
UL __h = f(h/2') Figure 2-18

1W = t~'(io Figure 2-16
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Thus, the break frequency decreases with altitude and increases with surface wind level and
stability, as shown on Figure 2-67.

The curve flit of Figure 2-66 implies that the cospectrum is proportional to the vertical
turbulence power spectrum, but this is true only when the longitudinal and vertical
turbulence power spectra differ only by a constant (at the relatively low and high spacial
frequencies). To satisfy the more general expression, the cospectrum must be multiplied by
the square root of the ratio of the longitudinal turbulence spectrum to the vertical
turbulence spectrum:

A 1 A- _q24_u4_ w

+ [ 2. w(2 ])1I/2 + [ +2.5 \2] 1/2

The correction factor is resented on Figure 2-68 and has high and low frequency
asymptotes ofV'/1 andV2(ou/aw)5, using the power spectra description selected.

From Figures 2-66 and 2-68 the b-eak frequency of the cospectrum relative to those for the
power spectra may be found. Figure 2-66 indicates that the cospectrum assumes its low
frequency asymptote below about 2.5 wo/(aVw/3h)= 0.1. The ratio of the power spectra is
constant below about h 1 ' = 0.1 for all cases (h = 0 is critical), as indicated on Figure 2-68.
Using Taylor's hypothesis, 0 I = .o/VA, where VA is total airspeed (equal to the mean wind
speed for an observer stationed at the ground), spacial and temporal frequencies can be
related. Equating temporal frequencies from the two expressions provides

0.i(avW/ah) O.OIVA
2.5 h

as the condition where the cospectrum break frequency is as high as that for the
longitudinal power spectrum. For neutral atmospheric stability,

a 0' 1 2  0.0816 V20

- 4-I - h (From Figure 2-15)

and the requirement becomes

VA/V 20 = 0.3264

For ratios below this value, the cospectrum break frequency will occur below those for the
power spectra. Unless an aircraft flies with a negative airspeed, this ratio will always be
exceeded, even for hover. This ratio is very nuar that specified in Reference 2-1 for applying
Taylor's hypothesis. Increased stability will shift the cospectrum break frequency higher,
but it is reasonable to assume that for all airspeeds at which Taylor's hypothesis holds, the
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The cospectrum may be rewritten to recognize the low frequency gain (Von Karman power
spectra):

1 Owl. Lw Ljg 4)021 q w IS2[ u ( 2)JDuw (E2 = a i2 I[ 2Ir, lw 2

or using Lu/Lw = (ou/[w)3,

2'/u w5/ J[ i lt a 2 r
\ !w) 'cu2L

u

=w [r1-5 VA) 2]1/

which is the form

4)uw(ll ) =u,2AKF(1 I )

The form presented in Reference 2-7 did not contain functions dependent upon airspeed,
VA, nor of h/d, inherent in this form. However, the form of Reference 2-7 was developed
for an observer fixed in an inertial reference system, for which airspeed is not a separate
parameter, for the constant shear stress layer where u, is assumed invariant with h/d, and
for the inertial subrange where ou/ow is not a separate parameter.

Yet to be determined is the "constant," A, a term that has only been specified to be a
constant for larger (aVw/ah)/w. Its value may be determined by noting that the covariance is
identical to the square of friction velocity. Hence,

2u, = bu,,v (IIIl) d121

AK- CO
fF(11I) d12 !

The use of the Von Karman power spectra com'.)ounds the difficulty of solving the integral.
Furthermore, the normalized function, F(ill), contains the independert parameters of S2I ,
h, h/V', h/hl, and V20/VA. However, the function may be approximated by

F(11 1 )~ I -211/2II)-I+(TVA )2J]/2 [I +(Lufll)21/2
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cospectrum break frequency will be substantially below those of the power spectra. Using
this conclusion, the qualitative shape of the cospectrum is expected to be as shown on
Figure 2-69.

The area underfiI 4uw(121) when plotted against log (S2) represents the covariance. The
logarithm of 1l4uw(1!I) is plotted on Figure 2-69 to show the asymptotic behavior, but
Figure 2-69 does demonstrate that the contribution of spacial frequencies above the break
frequency for the longitudinal power spectrum (approximately I/L u ) to the cwvariance
diminishes rapidly with increasing frequency.

It may be noted that the cospectrum has been presented as a function of tempo3a
frequency, while the power spectra are defined in terms of spacial frequency. The two may
be interchanged using Taylor's hypothesis and by requiring the variances and covariance to
be the same in either domain:

00

o2 = f ,)(62 1 d

02 1 (W (w) dw
-0

Thus,

'9(w) = [-

VA (VA/

In the temporal frequency domain, the cospectrum is given by

4)uw (CO) =AV

I 1 2.5 &j\21 1/2 [A 1+2.5w \2 1/2
rVw/ah! I rVW/ahJ

In the spacial frequency domain, the expres-ion is

A Fr2 J Fu 02 1) -+,,(SII )

4luw (S2) + (2.S2VA 2 1/2
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This form ignores the vertical turbulence power spectrum break fr'equency and provides for
a 921 variation beyond the longitudinal turbulence power spectrum break frequency,
which has been approximated by I/Lu. However, this is acceptable since it is known that
the vertical turbulence break frequency (approximately 2/Lw) is always greater than that
for the longitt,.dinal spectrum and that frequencies beyond I/Lu have a rapidly diminishing
contribution to the covariances.

A further approximation is possible by recalling that the cospectrum break frequency is
much less than I/Lu. Thus, the contribution of frequencies below and about the cospectrum

break frequency will also have a small contribution to the covariance, and the normalized
function may be approximated by its asymptotic form in this region:

I. ,I 11TVA

F(a 1 I
> I2 1 11+ (Lufl)2i AaII>TVA

This form is readily integrable:

2 l i

R92 l d. i 1 2f FtE2 I ) Ma 5- TV A_ I
0 L TVA

or, again recognizing .- A< LT-

7F021) , + In ( )

This expression has been checkcd by numerically integrating the exact expression and has
been found to be very accurate. It may be substituted into the cospectrum equation to give:

A j[2Lu( ] W O, I

2 1+ I20I + (TVASI2]
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This cospectrum provides for a linearly decreasing covariance, with altitude, but because I/Tdecreases with altitude, the low fiequency portion increases with altitude. It may reasonably

be expected that the cuspectrum will have significant effects only at the very low
frequencies.

2.4.6.6 Composite Turbulence Description Selected

The selection of a turbulence description has been complex. In an effort to provide an
overview of the description, a composite of the description is presented as follows:
Power spectra:

oUu °u2Lu_!

[ " l!~ + (1.339 Luf )21/

i v Ov2L v 1 + (1.339 LvS2 1) 2

21 I + (1.339 LvS21)2Jl/

W =
2L" ! +(l.339 Lw9 )16

w 10w \ U, Uo

w f(h/V'), Figure 2-61
u *

d =,2000u

[0 /k1
u =0.4- V2 0*0 [V 2 0]

u /k
V20 f(R 2 0) Figure 2-15:( )

" 20v =  f(Ri2) , iue21

0 u = 0 w

,v au
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hl[ ' _.0.4 111,<
Uu = 0.177+ 0.823hi

°w h
(Figure 2-62) ! 1

Uw

=h

}:?Lu Lw( w3 Figure 2-65

Lv =L u
,!:111 1000 ft

Cospectrum:

____ [; uwFu~ a I ) )]=

where T 2v4 0L U 2 f W 12j

kh3 
wVw

kh = ffh/Q') , Figure 2-18
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1/'=f(Ri 20  Figure 2-16

uI, v, w refer to turbulence components along the x, y, and z axes of a system aligned to the
mean wind such that x is downwind and w is vertically downward.
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APPENDIX 2A

EXTENSION OF MEAN WIND MODEL. TO BOUNDARY LAYER

General expressior for nondimensional shear:

Friction velocity:

u, =Uo [1- h/dJ

Therefore,

*0 ah \

or

Logarithmic profile (neutral stability)

Vw~~ aiF gh I v * h )_h h-z0 )
' ah'f k o d

Displace origin so that i 0 coincides with earth's surface:

Replace h with h +z

* 0 'Ih hzo,,
Vw -k In h

Preceding page blank
289



For low altitudes,

VW !!DOln (h+zo)
- = k \N--O

Log-linear profile (h/q' small)

cD(h/') - I + ' hlQ'
k -l I-W [ I.1f+ ai]=1i+hl[ ±.

-__ _-_fOl+( ,'_)_
kh +. 1

:vw= (-hh=-.2 -tT-f(h-o

Shift origin so that h = 0 coincides with the surface:

Replace h with h +

h __ Zuh ha'h ,

The term Wx'h/2' zo/d may be ignored as being negligibly small: thus,

VW = -h-k In(± - + (- Io 'h

Z 0'

The increment for nonnautral stability is recognized as ' - At low altitudes this
equation reduces to that for u =U constant: 2

VW * [I n (h zO+a h' O
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General profile

Ud 1  " -O -(I - ad
The term (1 - h/d) is recognized as the neutral stability term. The contribution of the
nonneutral term is denoted as fj(h/Q'), (h/d)]. For constant friction velocity, eq(livalent to
h/d = 0, f(h, 2', hd) , = 10:I h/d: = 0"

f ho dh, (d j o )

f (h)If [@(h _J dh1

~The remaining integral may be written as
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and integrated by parts:

fudv = uv - fvdu!h)
u = h dv = h-dh

du= dh v = f goh

h h h

go() i dh=f& p_.(h)dh,

if h/'<

f'd= f (.')-d' + hdf______

(()[I h/d h fd

if h i' 0

-h/9'

h/d f f(Pi) dt

f i lh h = f ( ht ) [ i h ] + J h / d = h )

: \ £ " /h / 2 ' 'o

~~~When 0~/21)= 'h£) the general form must reduce to the log-linear equation:

If ffh/If) = ,(]),then
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L,~- *±l1 - h + dli1*
~~R' dd ( I U) R

11 M12  h Ih
T TR Fda2 I 2d)

= \'I 2 2'd'

This is the same as obtained for the log-linear profile. The log-linear profile has been
described as applicable for 1,he stable region of 0 < h/R' < 1.

For the regin h/2' > 1, fth/V) has been described as

Thus, f(.~ 4~) a~jif(h1/2') Ot' 11 + IWO' 4h) i~IW

f (L~ 1.) =o f( dh4flli.~ )

(L 1 l +1 1

RO ddI h 1I

In
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In summary, the effect of linearly decreasing friction velocity is to change the wind
profile from

V/W =- [- In\ Z +f

to

___ h+z
Vw=-In (ZO d

where the function f(h/2', h/d) is expressed as:

f ,) d f(h) -Ulf (4_l)dh

where 4= (kh[U*0 (aVw/ah), or

f(h ,h) = f(h) (I h)+ I h fRi dlh

For stable conditions, f(h/2%'), (h/d)I is given by

0 <--<1 I f R '

'd =f 2 T' d

> I f Rip = ca' I + In!!

f(. ,# .d f(h) d. I2h'
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3.0 PROBABILISTIC DESCRIPTION OF THE LOW ALTITUDE ATMOSPHERE

Jn this se,;tion are presented descriptions of atmospheric conditions in the !3wer atmosphere
as obtained from I) airports around the U.S., (2) a literature survey of tower measure-
ments, and (3) analysis of measurements from two U.S. towers.

Simulation of atmospheric conditions shoulk be based on knowledge of the real atmosphere
and its interactions. While a complete simulation of the lower atmosphere would be a very
large task indeed, it is possible to describe in some detail the conditions one might expect
and the general form of the relationships between variables of interest.

Perhaps the primary variables of interest to low altitude simulation are wind speed and
direction, together called "wind velocity." These are described in some detail, first by a
general description obtained by averaging the conditions at 24 U.S. airports for one height,
and then by descriptions of the vertical changes (shears) as determined by a literature survey
and by actual measurements from two towers.

Another variable of interest is tile Richardson's number, Ri, which is a measure of the
stability of the atmosphere and is determined by the vertical wind and temperature
gradients. Using the two sets of tower observations the interrelationships between wind
speed, speed and directioo shears, and Richardson's numbers are obtained. This information
is analyzed and a descriptiun given which is applicable to the simulaticn portions of this
study.

3.1 LIST OF SYMBOLS

h Height above ground surface, feet (unless otherwise noted)

V W Mean speed in knots

# Direction from which the wind is blowing

Ri  Richardson's numberI aVw8 Wind speed shear

A Wind direction shear

3.2 NEAR-SURFACE WIND AND WIND SHEAR INFORMATION

This section discusses three atmospheric properties: (1)wind speed, direction, and
crosswind near the surface, (2) mean wind profiles near the surface, and (3) wind speed and
direction shears. Discussion of the first leads to ,. new model for wind speed, direction, and
crosswind at 20 feet elevation, the standard for Weather Service anemometer height at
airports.
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The second discussion briefly outlines the mean wind speed at several levels in the lower
layers of the atmosphere. Three locations are studied indicating the variability between
locations and providing an introduction to the wind shears of importance as far as aircraft
are concerned. (Mean profiles are seldom realized - nature.)

The third part of this section outlines nLar-suriace ,viad shear information obtained from
the literature for a variety of locations and topographic conditions. This last part provides
background infurmation for the analysis of tower data processed for this study and
described in Section 3.3.

3.2.1 Evaluation of Surface (20-Foot) Wind Descriptions

3.2.1.1 Wind Speed

This part of the study is the development of a realistic description of the distribution of
annual mean wind speed at the local airport anemometer height (approximately 20 feet).
Wind speed and its probability distribution at an airport vary with a number of parameters,
including, but not limited to:

* Local climate

* Topography and roughness of the surrounding area

9 Geographical location

* Frequency and severity of large and small scale storms

* Height of the anemometer

• Peculiarities unique to the site (for example, on-shore and off-shore winds during
the summer)

• Types of instruments and location with respect to supporting equipment, wind
direction, and method of recording

Thus, a wide variance between airports is to be expected, and any model can only be some
average of a number of locations.

Historically, airport anemometer height has varied from less than 20 feet to more than 120
feet above the ground and has been a function not only of the airport but of the period of
record at some airports. There has been an attempt to standardize the U.S. Weather Service
anemometer height of 20 feet and location between or near the runways since
approximately 193,:. Unfortunately. Weather Service climatological normals were estab-
lished before this procedure could be implemented at most airports. Thus, the climatological
wind data in the literature (usually Weather Service documents) are given for various heights
above the ground. Often 10 year averages and distributions at a particular station were
computed from wind speeds at two or three heights because the instrument location and
height had been changed during the period of record.
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Real izing these difficulties, a representative wind speed distribution description was
established from data obtained for all 24 airports across the U.S. where the anemometer
height during the period of record was between 20 and 35. feet, as listed in Reference 3-1.

Figure 3-1 is a chart indicarijig the percent probability of exceedance of wind speeds equal
to or greater than the speeds indicated for a composite of the 24 airports. This is assumed to
be representative of a greater number of airports nationwide. Figure 3-2 is a histogram of
the same information.

A total of approximately 170,000 hourly wind speeds (10 minute averages on the hour)
were used in the analysis and description. The ARB model, identical to the present FAA
model, Reference 3-2, was also developed from 10 minute averages, but the sample size was
about 1000 "worldwide in-service operations of U.K. airlines," and the anemometer heights
were assumed to be at 33 feet, or some 6 or 7 feet higher than the averuee height in our
study, Reference 3-3. Some may have been much higher. The descriptions are compared in
Figure 3-3.

Another description was derived from all 132 airports provided in Reference 3-1. The The
average anemometer height is approximately 55 feet. This height difference is reflected in a
wider distribution of wind speeds; for instance, at 1% probability the 24 airport composite
speed is 22.3 knots and for all 132 cases it is 24.5 knots.

Watson, in a paper presented to the World Meteorological Organization, produces another
description, Reference 3-4. The spread of speed values is much greater. His information was
compiled from several world locations, the total number of observations is unknown,
anemometer heights varied from the "surface level" to 130 feet, and the estimated curve
was derived by weighting the data at each airport by the number of BOAC operations there.
Such a single-airline description is not appropriate for this study.

It is apparent that the 24 airport description contains speeds slightly less than the ARB and
other models for percent probability of exceedance values less than 50%. However, this is to
be expected of a discription designed for an anemometer height of 20 feet, the lowest of all
the studies.

Recently Marut, et al., of the Weather and Fli.ght Service Station Branch of the FAA,
prepared a study in which a composite wind speed table was developed from the wind
speeds at 39 U.S. airports during periods of fog with visibility of one-half mile or less and no
precipitation, Reference 3-5. These conditions and strong wind shears could be excep-
tionally dangerous for landing or departing airplanes. Therefore, Marut, et al., data are
shown in Figure 3-3 for comparison with the all-weather speed probabilities. It is apparent
that wind speeds are light during fog conditions; for iistance. less than 1% of the speeds
equal or exceed 14 knots. (This may be lower still if the speeds were reduced to the 20 foot
height because of the normal decrease in wind speed with decrease in elevation.)

3.2.1.2 Wind Direction

The preceding section describes wind speed. This section will describe wind direction related
to runway orientation. One may ascertain from this information the frequency of
occurrence of crosswinds.
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Wind direction (direction frown which the wind is coming) is related to the controlling
parameters described in the previous discussion concerning wind speed, and no single
desciption will be appropriate at a particular airport. Therefore, the description is only the
"general case," an average of directional frequencies from the 24 airports used for the wind
speed description.

The general case was developed from the airport wind roses and a knowledge of the major
runway orientations at these airports. The wind direction along the runway having the
greater frequency of occurrence was given the 00 orientation. (Obviously, the other wind
direction along the runway became 180.) Having orienled all the wind roses in this manner,
the average frequencies of occurrence of wind directions relative to the 0 orientation were
obtained. These are shown in Figure 3-4. The result indicates that 50% of the time annually
the surface wind is either from ±350 of the runway orientation or calm.

A composite runway wind rose, including speed, was also compiled and is shown in
Table 3-1.

3.2.1.3 Crosswinds

The probability distribution of crosswinds was comr)uted using a graphical method
described by Harold L. Crutcher, of the National Climatic Center, Reference 3-6. The
resulting crosswind speed distribution, provided in Figure 3-5, indicates the percentage
probabilities from each side of the runway; negative values indicate crosswinds from the left
side of the runway in the upwind direction, positive values from the right side of the runway
in the same direction. Probabilities f--om both sides may be addea to obtain percent
frequencies of crosswinds regardless of direction, Figure 3-6. Comparing this last figure with
the ARB crosswind model indicates a definite similarity but with slightly lower probabilities
for speeds greater than 5 knots. The total probabilities of crosswinds from the right and left
are very nearly equal, 0.501 to 0.499, respectively, ignoring calm conditions.

3.2.1.4 Headwind-Tailwind Description

A headwind-tailwind description was computed for directions oriented 900 to those in the
crosswind description, and using the same technique, Figure 3-7.. Winds from 0* are
arbitrarily designated headwinds; those from 180* are designated tailwinds (although they
would bwe-?headwinds to an airplane landing toward 180*). The total probabilities of
headwinds and tailwinds are 0.59 versus 0.41, respectively, ignoring calm conditions. Total
headwind-tailwind percent frequencies are shown in Figure 3-8.

3.2.2 Mean Profiles From Instrumented Towers

Mean wind profiles are indicativw of average conditions at particular heights. A curve is often
drawn through these average values and to some readers this curve indicates an average curve
-,r set of shears to be found at a particular site at a particular time. This is not the case, and
the shears indicated in this manner may occur infrequently at any interval and seldom at all
tower intervals simultaneously. The important, to aviation, true wind shears for various
tower intervals are discussed in Section 3.2.3.
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TABLE 3-I.-WIND ROSE MODEL RELATIVE TO RUNWAY ORIENTATION

Median Heading Average
direction frequency speed

(deg) 1-3 4-6 7-10 11.16 17-21 22-27 28-33 34.40 41 (%) (kn)

0 0.8 2.4 3.5 2.6 0.8 0.2 + + + 10.3 9.0
22.5 0.6 2.1 3.3 2.9 0.6 0.1 + + + 9.7 9.2
45.0 0.6 1.8 2.6 1.8 0.3 + + + + 7.2 8.6
67.5 0.4 1.3 1.6 1.1 0.2 + + + + 4.6 8.5
90.0 0.5 1.3 1.4 0.8 0.2 + + + + 4.2 7.8

112.5 0.4 1.1 1.3 0.8 0.2 + + + + 3.8 7.8

135.0 0.6 1.4 1.5 0.9 0.2 + + + + 4.6 7.8
157.5 0.5 1.4 1.6 1.0 0.2 + + + + 4.7 8.3
180.0 0.7 1.8 1.9 1.1 0.2 + + + + 5.7 8.1
202.5 0.5 1.6 1.8 1.0 0.2 + + + + 5.3 8.4
225.0 0.6 1.4 1.6 1.0 + + + + 4.9 8.1
247.5 0.5 1.3 1.4 1.0 0.3 + + + + 4.5 8.1
270.0 0.6 1.4 1.6 1.0 0.3 + + + + 4.9 7.7

292.5 0.5 1.4 1.7 1.1 0.2 + + + + 4.9 7.9

31.5.1 0.8 1.8 2.1 1.3 0.3 0.1 . + + 6.4 7.9
337.5 0.6 1.1 2.7 2.1 0.6 0.1 + + + 8.0 8.7
Calm 6.3

100.0
Wind
speed
frequency 9.2 25.4 31.6 21.5 5.0 1.0 + + +

Exceedance
probability 93.7 84.5 59.1 27.5 6.0 1.0 + + +

+ = i0.05

The curves of Figure 3-9 are provided to indicate the average wind speeds to be expected at
heights in the lowest few hundred feet and to show the general increase of speed with
height. Examples are provided for three locations.

In the figilre is shown the mean annual speed profile for Hanford, Washington, with values
given fur the 50, 200, and 400 foot levels, Reference 3-7, pages 10.59, 10.63, and 10.67.
The difference in average conditions between 400 and 50 feet is 3.2 knots. Composite wind
shear data provided on page 10.55 indicate an average shear of 6.1 knots between the 400
and 50 foot heights, or nearly twice that indicated by the mean profile. Thus, the profile of
the means is not the same as the mean of the profiles.

Similar annual profiles for Oklahoma City and Cape Kennedy are also shown in the figure,
References 3-8 and 3-9. It may be seen that in the lower layers the differences in mean
speeds over given height intervals increase as the mean speeds increase.
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3.2.3 Evaluation of Near-Surface Wind Shear Information From the Literature

The literature search disclosed observations of vertical shears of horizontal mean winds at
only a few locations. Few tall towers are instrumented for meteorological purposes, and
wind shear frequency information in the open literature is not available even for all of these.

The Wor:d Meteorological Org -?i. Ation in 1964 requested member countries to "carry out
studies relating to the occurrence of vertical wind shear in the layer between 10 and 100
meters above ground level at appropriate locations, preferably at international aerodromes
(airports) on a worldwide basis." Responses to this request have been published in
Reference 3-10. Other reports on this subject by these and other investigators were
uncovered by the literature search. Results are in widely differing formats, measurement
units, an, conditions. This handicap has been overcome to some degree, and the results are
given huer in similar format and units where possible, along with comments on the
conclusions of the authors.
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While "wind shear" is defined mathematically as a vector quantity, often only the
magnitude aVw/ah or dVW/dh is used, for instance, in the Richardson's number. The
quantity given indicates either the scalar or vector magnitude, as the case may be, at a point
in the vertical. In actual studies of observations the term has been used interchangeably with
a difference term, usually (VW 2 - VWI )/(h 2 - hI ).Thus, what is shown is an "average wind
shear for an interval." Most authors using tower data at height intervals ranging fAom 10 feet
or so to at least 150 feet use the term "wind shear" and the mathemat'cal symbol aVw/ah
even though the data are not related to a point. That is, they assume a linear relationship
between observational levels, This loses its accuracy near the ground where the wind profile
is least linear.

In the following discussion, therefore, the term "wind shear" is referred to a finite height
interval dependent upon instrument locations and given in knots/l00 feet ior consistency.
Of:en the vector shear is described in terms of its orthogonal components or magnitude and
direction shears separately. This often makes difficult the comparison of "shears" studied
by different investigators.
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Possibly the greatest criticism which might be leveled at the following results obtained from I
the literature is that they do not represent the true shear conditions to be encountered by
arriving or departing airplanes. Muller and Mushkat mention these in their paper, Reference
3-11. Most of the tower shear data given below are for averaging periods of 10 minutes to I
hour, whereas an airplane takes only a minute or so to pass through the shear height

interval. Secondly, the airplane will move horizontally a distance of a mile or so in this time
interval, while the shear data are observed vertically at one location. Ideally, nearly
instantaneous observations should be taken at different levels on two towers a mile or so
apart and separated a minute or so in time. Observations of this nature will be discussed
later along with the representativeness of the tower data.

3.2.3.1 Survey of World Locations

The response of various investigators to the WMO call for studies of wind shear in the lowest
100 meters or so resulted in a broad range of replies. These replies are summarized here with
similar information gathered from additional sources for other locations.

Pettit and Root studied the 200- to 20-foot wind shear at Montreal and Whiteshell. Canada,
for cases when the 200-foot wind speed exceeded 20 mph (17.4 kn), Reference 3-12. The
Montreal tower site is in an urban residential area, while Whiteshell is on a relatively flat
plane with exposure more typical of an airport. Shears at the two sites are compared in the
following table.

Montreal Whiteshell

Period of record 12 mo 20 mo
Time that 200 ft speed > 17.4 kn 1200 hr 3000 hr
Most probable scalar shear 4.2 kn/ i 00 ft 4.8 kn/100 ft
Extreme scalar shear 10 kn/100 ft 13.5 kn/100 ft
Other probabilities 0.9% > 8.4 kn/100 ft 2.0% hr > 8.7 kn/100 ft

0.9% hr > 9.6 kr/ 100 ftH0.75% hr > Q.7 kn/ 100 ft

There is a larger variation of shear magnitude at Whiteshell, the location with the higher
mean wind speed and fewer obstructions to the wind. The probabilities of exceedance of
wind shear magnitude are compared for the two locations in Figure 3-10.

In addition to the shears of speed magnitude, the distribution of direction shears is given for
Whiteshell, Figure 3-1 i. Only 1.9% of these cases had directional shear greater than 4
17/ 100 ft (30"/ 180 ft). At Montreal the directional shear was 4 27"/ 100 ft (45"/165 ft) in

nearly all cases. The authors conclude that a scalar treatment of speed shears is valid: that is,
the speed shear may be obtained in nearly all cases by simply subtracting the wind speed :it
one level from the speed at the other level, ignoring the directional shear.

Directional shear information is alsn available for the Hanford, Washington tower located on
nearly level desert terrair, Referepp.: 1-7. Data are given for the 400 -50 foot interval in the
reference, and these have been reduced to a common 100 foot interval for comparison with
the Whiteshell information, Figure 3-12. This linear interval reduction may not be entirely
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legitimate for the more extreme shears; however, the implication is clear that large
directional shears are the exception. Direction:,. shears are investigated further under the
computer study of accumulated tower wind records, Section 3.3.

The following paper in Reference 3-11 by Muller and Mushkat also contains information for
Whiteshell but in addition contains I-hour mean shears for towers at Ottawa and Sarnia.
Ottawa's tower is about a mile from an urban area and Sarnia's is in flat, open country.
Whereas in the previous paper the data were limited to those observations where the
200-foot wind speed exceeded 17.4 knots, no such limitation was used in this reference. In
addition, the period of record was approximately 3 years as versus I year in Reference 3-12.
An additional ditfernce was that a vector shear was determined for each observation and
from this the downwind, crosswind, and vector magnitudes were determined and
summarized. "Downwind" was defined as the component of the shear in the direction of
the upper-wind vector. No directional shear summaries similar to the previous reference are
provided in this reference. The shear magnitudes are compared in Figure 3-13 for the three
sites. Whiteshell again has the larger variation; no doubt due, in part, to the shorter wind
averaging period (10 vs. 60 minutes for the other two sites). In Figure 3-14 the effect of
limiting the cases to 200 foot speeds of greater than 17.4 knots is sh( vn by comparing the
Whiteshell shear magnitude from the two papers. It must be recognized that a true
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comparison is not possible because of the differences between tte definition of shear in the
two cases and the dissimilarity in periods of record. It is assumed that these differences are
minor compared to the speed limitation.

The mean (50%) shear magicitudes for the three locations from Figure 3-12 are:

Whiteshell 3.8 kn/ 100 ft

Sarnia 2.9 kn/ 100 ft

Of tawa 2.3 kn/100 ft

In another paper a study of winj shears observed on a 200-foot tower on the coastline near
Thumba, India, is discussed, Reference 3-13. Tower intervals studied were small compared
to other studies and only two layers near the ground, 32-8 and 58-33 feet, had sufficiently
long periods of record for our study. The probability of exceedance distributions for these
two intervals are included in this report, Figure 3-15. However, the site is believed not to be
representative of airports (shoreline site with trees cleared only within 250 feet of the
tower). Observations were at 3-hour intervals between 0000 and 1500 iocal ;tandard time
(LST) and the observational averaging period is not known precisely but is assumed to be
I hour. Other reservations covering the location and instrumentation cotid be enumerated-
however, the results are piovided here because at few other locations are data available for
such small height intervais. Care should be exei¢csed in any application of the results

"- to airports.

The sur.marized shears are provided in component form (North-South and East-West).
Assuming that the 50% shear magnitudes in Figure 3-15 can be determined directly from the
50% components, the 50% shezr magnitudes are 5.9 kn/ 100 ft for the 58-33 foot interval

and 1.1 kn/l00 ft for the 33-8 foot interval. The 50% and I% component shear values for
both intervals are:

50 . %

58-33 ft

N-S 4.5 kn/lO0 ft 25.0 kn/100 ft
E-W 3.8 23.5

33-8 ft

N-S 6.5 31.5
E-W 9.0 38.5

Much shorter periods of record are available for height intervals higher on the tower, but
they are not included here because of the uncertainties concerning them. However, it
appears that the shears become less extreme with altitude, as would be expected.

As contrast to the previous paper, a study by Kusano, Suzuki, and Takei from an 830-foot
tower near the Tokyo International Airport provides S-N and W-E component shear
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K '! information for large height intervals, Reference 3-14. The averaging time interval of thie
:: hourly observations is not given explicitly in the paper but is assumed to be ! hour. T1he

p~~nriod t'd :.:ord is 1 year.

I The most noticeable feature of the curves in Figure 3-16 is the lower values and the
non-Gaussian distri'.ution of the shears compared with similar information from other

~~locations. Fifty percent component values are given in the following table. [

550%

::380-350 ft S-N 1.5 kn/100 ft1E-W 1.4350-85 ft S-N 1.5

E-W 1.3

The 50% shear vector magnitudes computed as before both equal 2.0 kn/l 00 ft.

An interesting aspect of this Japanese study is a section discussing wind shear duration. The

annual distributions of occurrences are shown for two cases (vector shear magnitude ; 2.0

; 31b
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and > 3.2 kn/ 100 ft) for the 830-350 foot hel-ht interval in Table 3-2. Information of this
nature for grtitei shears and sh.rter time interv,:!s (less than 1 hour) would be more
valuable for rur study.

TABLE 3-2.-FREQUENCIES OF OCCURRENCE OF VECTOR WIND SHEAR MAGNITUDE
DURA TIONS FOR 830 TO 350-FT INTER VAL

eDuration (hr)i Shear

magnitude Total % of total

(kt/100 ft) 1-2 3-5 6-8 911 12.14 15-17 18-20 21-24 24' occurrences observations
Frequencies of occurrence

2.0 403 103 41 12 6 5 2 3 2 577 8.45

3.2 172 33 8 2 2 217 3.18

P. J. Rijkoort reports on an interesting and different stud:, of wind shears obtained at
Lopik, Netherlands, with fast response instruments, Reference 3-15. "Momentaneous"
speed observations wo're obtained at 175 and 49 feet at 3-second intervals for 32 ! 4-m' nute
time series spaced ov,or a total of 5 days. These 8960 observations were then statistically

analyzed for 3-, 6-, 9- 12-, and 30-second, as well as 14-minute time averages. For example,
the average of three successive observations becomes a 9-second observation. The 1'-.,,inute
mean and extreme shears were also determined. All these data are summarized in i:igure
3-17, a semilogarithmic plot of shear versu time for the various stat;stics. As may be seen,
the average shear for the entire record is 3.34 kn/100 ft, approximately the same as other
studies. (Shear in this case is defined as a speed shear only, and any directional shear is

ignored.) The average maximum and minimum shears for the 32 series are plotted, as are the
extreme shear: for the entire record. Only the average and extreme shears are available for
the 14-minute periods. It is obvious that a positive shear (speed increasing with height) is
most common; however, negative shears certainly occurred and with surprising magnitude
tor the shorter averaging times. Qualitatively these results are valuable to our study since
they indicate the problem that results from simulating, for landing conditions, wind shears
obtained from 10 minut,.- or longer averages. There is no indication in the reference that the
observa-tions were taken wnen severe shearing was present. Therefore, the extremes obtained
in that relatively short study should not be understood to be the extremes that might be
found with shear-producing weather situations. For itistance, the extrene 10-minute shear
indicated in Figure 3-17 is about 7.5 kn/100 ft over the 175 to 49 foot height interval.
Other studies for roughly the same height interval indicate 10-minute extreme shears of at
least 10 kn/ 100 ft. More observational studies are required for this facet of the problem.

A Russian paper by Abramovic and Glazunov presents information from both tower and
pilot-balloon observations at various locations in the Soviet Union, Reference 3-16. At the
tower location, Obinsk, 7-minute average vector wind shear magnitudes were obtained at
several levels and are repeated here in Table 3-3.

Extreme vector wi, d shear magnitudes of 12 kn'100 ft over intervals of approximately 80
feet in the. lowest 250 feet were obtained near Moscow during cloudy winter days by using
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TABLE 3.3.- VECTOR WIND SHEAR MAGNITUDES AT OBLINSK, RUSSIA

Layer Vector shear magnitude (kt/100 ft)
interval

(ft) Average Extreme

3-82 3.7 11
82-161 2.2 10

161-240 2.2 10
240-318 2.2 Not given
318-397 2.0 Not given

captive balloons. Average shears were less than 3.3 kn/100 ft and decreased with increasing
altitude.

A 5-year period of pilot-balloon observations at I I airports in the Uzbekistan Republic of
the Soviet Union were analyzed for wind shear. Only 1.6% of the shears from various
300-foot height intervals below 1000 meters (3280 feet) provided shears of 3 kn/100 ft or
greater. Only seven cases out of 38,092 (or 0.2%) exceeded 9 kn/ 100 ft. The applicability of
these data to our study are questionable because of the large height iniervals involved.

Roberts has performed analyses of wind shear in the lower layers of the atmosphere 'or
application to the control of aircraft on approach, Reference 3-17. His conclusions are that
characteristic shears (speed only) are 3-5 kn/100 ft in the lowest 100 feet with extreme
values of 10 kn/100 ft. Ten minute wind averages were used and the directional shear was
ignored since it never exceeded 45* during his selection of 50 days out of the year when
shears were favored.

As to a question we raised earlier concerning the usefulness of shears observed vertically,
Roberts states, "In surface layers of the atmosphere, the change in the mean wind flow with
distance is about two orders of magnitude greater in the vertical direction than in the
horizontal. Consequently, it is permissible to neglect these horizontal changes for distances
representative of the approach zone of an airport and consider cnly the vertical change of
the wind."

No probability distribution similar to Figures 3-13 through 3-16 was available from the
referenced paper; however, for the 110-10 foot interval the average speed shear and the
extreme shear are 3.2 and 9.3 kn/l00 ft, respectively, and for the 210-110 foot inierval the
average and extreme shears are 4.4 and .0.0 knil00 ft.

Roberts provides a chart of the average and maximum wind shears versus surface wind
speed, Figure 3-18. It is apparent that the greatest average and extremes occur with surface
speeds of 3-4 knots. He also includes a diagram from Raitsey, Reference 3-18, depicting the
variation of wind shear with temperature gradient at L.opi', Netherlands, Figure 3-19. It is
noticeable that shear increases with a positive temperature gradient but that the highest
percentage occurs with a shear of approximately 3 kn/l00 ft and an adiabatic temperature
gradient.
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One of the interesting conclusions is that there is little difference between the results from
his Damascus, Maryland results and the Lopik, Netherlands and Cedar iHills, Texas results.

Watson, Reference 3-4, studying 2-minute-averaged shears from Cardington, England and
Lopik, Netherlands as well as other models suggests the following speed shear models for
landings:

During glideslope (down to 100 ft elevation)
Mean shear = 2.5 kn/100 ft
Standard deviation = 2.0 kn/103 ft

During attitude hold and autoflare (less than 100 ft elevathei)
Mean shear = 3.5 kn/100 ft
Standard deviation = 2.0 kn/100 ft
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In the latter case, the mean plus three standard deviations (he found the distribution of
shears to be normal) equals nearly 10 kn/100 ft, which is approximately the same as the
extreme shears found by other investigators.

Watson includes an appendix to his paper entitled "Wind Shear in the Lower Layers of the
Atmosphere, Observations from a Tethered Balloon at Cardington- 1949 to 1954," in which

F_ are speed shear frequencies and stability conditions. These are reproduced in probability of
exceedance form in Figure 3-20 along wit.I the curve representing the total number of
observations. Observations were conducted thrice daily except when strong winds or

lightning prevailed. Numbers noted after the stability condition are tile percentages of tile
total observations included in that condition. The range of values is not as great as in other
studies, possibly because of the large height interval between observation heights (220 feet).

In a paper by Dubov, Reference 3-19, additionai w:-d shear information from Russia is
reviewed. The observations were obtained primarily by balloons and no averaging times are
given. One of his figures is interesting in that the dependence of shear and the boundary
layer height upon stability is indicated in a general way, Figure 3-2 1. The top of each curve
indicates the geostrophic height. The abscissa is the ratio of the wind speed at height h to
that at 10 meters. Other interesting features of wind shear are to be noted in Tables 3-4 and
3-5, developed from radiosorde data. it is uncertain whether the numbers in the tables are
vector shear magnitudes or speed shears but it is believed that they are speed shears.

Dubov writes that low level jet ;treams have been noted in Russia and that jet cores are
i found just below the inversion height and have speeds sometimes 2-3 times as large as tihe

geostrophic wind. These jets are rare but can occur over various types of terrain. He cites

one Russian investigator as observing a jet for 4 days.

Clodman, Muller, and Morrissey, Reference 3-20, in a subseqatent paper to Reference 3-I 1,
present additional and more detailed information. The paper .; ,,parated into two sections,
the first providing shear probabilities from several years ol i0-minute or 1-hour average
winds. In addition to the data presented earlier they provide important mean and standard
deviation information for shear components relative to either the surface or upper wind.
Relevant portions of their tables are reproduced here, Tables 3-6 and 3-7. They note, as
others have, the Gaussian 'istribution of the shears for the bulk of the observations but they
also present data indicating that the extremes (number of cases with return period of 10,000
hours) are not Gaussian but occur tens (for downwinds) and hundreds (for crosswinds) of
times more frequently than predicted by the Gaussian distribution. Perhaps some of these
cases are rare low level jet streams. It should be noted that the Whitesliell data with
10-minute mean observations are generally closer to the Gaussian predictions than the
i-hour mean observations at the other locations. The positive crosswind shear is the greatest
departure from Gaussian at Whiteshell.

A second section of their paper discusses a short term study of observations from two
towers about I mile apart in a semideveloped area in the Toronto suburbs. They studied
both 60-second and 10-second mean wind shears and components from the 300-foot tower
and a smaller 30-foot tower. They reported three shear siti'-tions: ( I ) 300-foot level on the
high tower to 30-foot level on the small tower, no time lag; (2) 300-foot level on the high
tower to 30-foot leve! on the small tower, 20-second time lag; (3) 300-foot level to the
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Goostrophic wind, 20 kt

1.1 0 Unstable

I

I Neutral

Stable

/ I

Height, meters

I,500 /

0
1.0 2.0 3.0

FIGURE 3-21.-WIND SHEAR AND STABILITY FROM RUSSIAN BALLOON DATA
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TABLE 3-4.- VAR/A TION OF WIND SHEAR WITH WINOSPEED AND HEIGHT
INTERVAL DURING NEUTRAL CONDITIONS-RUSSIA

Wind 328tond Height intervals (ft)Sspeed 328 to 30 656 to Z0 1640 to 30

(kt) Wind shear

5.8 1.2 0.8 0.4
7.8 1.5 1.0 0.5
9.7 1.8 1.2 0.7

11.7 2.3 1.6 0.9
13.6 2.8 1.8 1.0

TA BLE 3-5. - VA RIA TION OF WIND SHEAR WI TH HEIGHT INTER VA L AND
STABILITY-RUSSIA

47

Atmospheric Height intervals (ft)
stabilitya 328 to 30 656 to 30 1640 to 30

Wind shear
Unstable 0.7 0.4 0.2
Neutral 1.2 0.8 0.4
Unstable 2.4 1.6 0.7

a'- 3 5.8 kta 30

30-foot lev! on the high tower. Their Tables 6 and 7 are reproduced here as Tables 3-8 and
3-9 with the shears converted to kn/ 100 ft and the wind speeds to knots. The "shear
components were calculated relative to the lower wind (crosswind shear being positive when
the wind veered with height)."

Their conclusion to this section of their study is that the space and time required for landing
an airplane should result in 1-3 kn/ 100 ft higher shears than detected by single tower data.
Thesr. results are sonic of the most appropriate for our study of airplane landing conditions,
although the period of record is short and more extreme conditions should be expected for
lenger observational periods and other locations. It must also be realized that the above
conclusions were based on observations from two towers in a particular line which might be
assumed to be the same as the runway orientation. Therefore, they may not be entirely valid
for some portions of their study where a runway was at some other angle to the tower's
orientation. This would be especially true for the study with the 20-second time lag. The
effect is probably minor and too detailed for our purpose, considering the other
uncertainties (site similarity to airports, differences in roughness and climatology between
airports).
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TABLE 3-6.-MEANS AND STANDARD DEVIATIONS FOR 20- TO 200-FT SHEARS

Item Mean Standard deviation
(kt/lO0 ft) (kt/lO0 ft)

Ottawa: (4-year, 9-month record of 1-hr mean winds)
Downwind shear component 2.07 1.31
Crosswind shear component 0.46 0.93

Whitesheli: (3-year, 2-month recort' of 10-min mean
winds)

Downwind shear component 3.38 1.96
Crosswind shear componen1t 0.46 0.63

Sarnia: (5-year, 7-month record of 1-hr iean wvindsi
Downwind shear component 2.60 1.38

Crosswind shear component 0.38 0.77

All relevant to upper wind

R. R. Brook has written what he terms a preliminary study of boundary layer wind shear at

the Melbourne, Australia airport, Reference 3-21. He ha st,,died several aspects of the wind
shear problem. One conclusion is that the dcwnwind component of shear exceeds the
crosswind component by 3 to more inan 10 times. This is borne out by other studies

reviewed above. He also tentatively concludes that the variability of the downwind
component of shear is related to the mean upper level (150 feet in his case) wind speed and
the gustiness. He has developed a table indicating this relationship for wind spoad shears
exceeding 6 kn/ 100 ft, which he assumes may present a problem to aviation, Table 3-10. In
the table he combines the study data from Melbourne Airport (Tullamarine) with wind and
gustiness data from Essendon to obtain the percentage of time during a year that the wind
speed and gustiness combinations occur, and the annual number of hours that speed shears
greater than 6 kn/100 ft exist for 10 seconds or more. The total number of hours that the
shears occurred is approximately 81 per year. (The gustiness classifications are defined in
Table 3-1 1.)

Crawford and Hudson have analyzed wind observations acc imulated from a television tower
near Oklahoma City in a recent report, Reference 3-8. Their paper discusses various wind
facets, the last being shear.

The tower location generally is typical of airport locations; thus, the study results are
applicable to this work. The shear values represent 5-minute mean conditions obtained
hourly over a I-year period, June 1966 through May 1967. Several tables and figures from
this section of their study are repeated here. Figures 3-22 and 3-23 are histograms and
probability of exceedance charts, respectively, of the vector wind shear speeds for six layers
on the tower. Only the probabilities for layers I, 2, and 3 are shown in Figure 3-23 because
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TABLE 3-8.-MEAN SHi.A T" VALUES-TWO- TOWER EXPERIMENT

SgShear measurements (kt/100 tt)Shear Averaging period -____
(min) (a) (b) (c)

Downwind 4u 1.4 1.5 1.1
Crosswind 40 -2.6 -2.7 0.3
Magnitude from averagecomponents 40 3.0 3.1 1.2

Downwind 10 1.4 1.4 1.8

Crosswind 10 -2.7 -2.7 0.5
Total magnitude 10 3.0 3.0 1.9

Average of shear magnitudes:
40-min runs 40 3.4 3.4 1.7
10-min runs 10 3.1 3.1 2.3

(a) From simultaneously measured data on tall tower and short tower
(b) From data on tall tower and short tower measurements-

20-sec lag
(c) Data from two measurements from tall tuw_.- udken simultaneously

TABLE 3-9.-PROBABILITIES OF SHEAR *

Shear intervals Shear probabilities (%)
(kt( vertical ft)(C)Downwind Crosswind Downwind Crosswind Downwind Crosswind

-3.2 to -2.9
.-2.9 to -2.6 0.2
.-2.6 to -2.3 C.3

-- 2.3 to -1.9 0.1 0.1 0.6 0.1
-.9 ic -1.6 0.7 0.1 0.6 0.1 0.1 0.2
-1.6 to -1.3 1.5 0.4 1.8 0.4 0.6 0.4
-1.3 to -1.0 3.6 17 3.6 1.6 1.9 1.4
-1.0 to -0.6 6.2 5.1 6.8 5.0 5.2 6.0
-0.6 to -0.3 13.8 14.6 12.0 14.0 16.0 13.2
-0.3 to 0 22.7 29.8 23.2 28.6 26.9 27.0
0 to 0.3 23.1 26.5 22.7 28.8 25.8 29.9
0.3 to 0.6 14.1 14.7 13.7 14.3 14.2 14.7
0.6 to 1.0 8.1 5.3 7.6 4.9 6.6 4.9
1.0 to 1.3 4.2 1.2 4.4 1.2 1.7 1.5
1.3 to 1.6 1.0 0.3 1.9 3.7 0.8 0.6
1.6 to 1.9 0.8 0.2 0.4 0.3 0.2 01
1.9 to 2.3 0.1 0.1 0.1
2.3 to 2.6 0.1
2.6 to 2.9
2.9 to 3.2

Std deviation
(kt/lO0 vertical ft) 0.62 0.46 0.67 0.47 0.50 0.47

(a) From simultaneously measured data on tall tower and short tower
(b) From data on tall tower and short tower me.surements-20sec lag
(c) Data from two measurements from tall tower taken simultaneously
*From I0-min average
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TABLE 3- 1O.-WINDSPEED RELA TIONSHIP TO GUSTINESS A T ESSENDON, ENGLAND

Gustiness Windspeed
classification Le., ;an 20 kt 10 to 20 kt Greater than 10 kt

Fluctuations of wind direction
exceeding 900 1.0% ND 0.0% ND 0.0% ND

F!uctuations confined to 150
to 450 limits 23.3% (10.0 hr) 19.9% (32.5 hr) 0.6% (3.83 hr)

Fluctuations of wind direction
between 450 and 900 4.9% (1.3 hr) 1.2% (0.0 hr) 0.0% ND

Unbroken solid core through
which a straight line can be
drawn 3.1% ND 12.1% (28.5 hr) 1.3% (4.5 hr)

Approximates a straight line;
short term fluctuations do
not exceed 150 31.3% (0.0 hr) 1.3% (0.0 hr) 0.0% ND

( ) Denotes hours the windspeed difference is greater than 60 kt/100 ft (±50 ft) for 10 sec or more
ND No data

TABLE 3-1 1.-MEAN LAPSE RATES IN THE BOUNDARY LA YER DEFINED BY
SINGER AND SMITH

Gustiness classification Lapse rate Standard Stability
( 0 C/100 m) error

Fluctuations of wind directi' n exceeding 900 -1.1 ±0.6 Unstable
Fluctuations of wind direction between 450
and 900 -1.4 ±0.4 Very unstable

Fluctiations confined to 150 to 450 limits -1.1 -0.6 Unstable

Unbroken solid core through which a
straight line can be drawn -0.6 ±0.5 Neutral
Approximates a straight line; short term
fluctuations do not exceed 150 +1.8 ±2.3 Stable

aSinger, I. A. and M. E. Smith, "Relation of Gustiness to Other Meteorological Parameters,"

Journal of Meteorology, vol. 10, p. 121, 1953.
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Oklahoma City

Based on June 1966-May 1967 data
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the curves for layers 3 and higher are virtually identical. This certainly indicates thL greater
average and variation of shear at the lower layers. The results agree reasonably well with
those of other investigators. In the lowest layer there were 17 cases or 0.2% with shears
equal to or greater than 10 kn/lO0 ft. The layer I probabilities of exceedance compare very
favorably to the curve for the 200-20 foot layer at Whiteshell, Canada in Figure 3-13, From
this little evidence it is suggested that shear probabilities ai various airports are very similar
over the same height intervals; however, more evidence would be desirable.

These authors also found that in the lowest thVse iayers the whnd shear is mostly speed shear

and the directional shear becomes .nore important in the upper three layers.

3.2.3.2 Summary

Additional wind shear information is available in a Boeing internal memo for Cedar Hills,
Texas and Cape Kennedy, Florida (Ref. 3-22). These data were obtained from the same
computer tapes analyzed in greater detail in Se',ion 3.3 of this report. Some of the
information from the previous report is presetited in Table 3-12, a summary compilation of
the shear information discussed in this section. it is obvious that direct comparison between
locations is difficult, as was discussed earlier- however, it appears that wind shear
magnitudes in the lowest 200 feet or so average 3-5 kn/l00 ft and extremes for 100 foot or
greater intervals are 13-15 kn/100 ft. However, extremes of 30 kn/100 ft might be expected
for short intervals (see Cape Kennedy in Table 3-12). (Data for Thumba, India probably are
not appropriate for airport locations.) The extreme shears may be associated with the low
level jet stream which has been discussed by various authors (see Izumi, Ref. 3-23). Such jets
generally appear within the lowest 2000 feet over specific locations during the late night and
early morning hours with particular weather conditions. It is not the purpose of the present
study to discuss 'he low level jet, per se, only the shears that might be expected.

3.3 EVALUATION OF TOWER DATA

Computer tape records of wind and temperature information observed at four tall tower
sites (Cape Kennedy, Florida: Cedar Hills, Texas; Oklahoma City, Oklahoma; and
Philadelphia, Pennsylvania) were obtained by Boeing at various times. These records have
been made available to this study. They have been programmed separately to provide
answers to the same set of basic questions, although the tape formats and the observations
themselves are quite different. Data from the Philadelphia tower were not analyzed because
the lowest observational level is 100 feet, too high for the study of properties beloi that
level. The Oklahoma City data also were found to be deficient in several respects, primarily
in that wind and temperature records overlapped for a period of only 6 months.

The tower levels with usaful data at the other two locations are:

Cape Kennedy Cedar Hills

10 feet 30 feet
33 70
59 I50
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Cape Kennedy Cedar Hills

98 feet 300 feet
197 450
295 600
394 750

900
1050
1200
1300
1420

The tapes were evaluated for wind velocity (speed and direction), Richardson's number (Ri),
and wind diretion and speed shears. Following is a description of the analysis methods and

the results from the two sites.

3.3.1 General Description

3.3.1.1 Cape Kennedy

Magnetic tape records containing 3 years (1966 through 1968) of hourly obserations of

10-mintite average wind velocities and temperatures at approximately 10, 33, and 59 feet (3,

10, and 18 meters) on one tower and 59, 98, 197, 295, 394, and 492 feet (18, 30, 60, 90,

120, and 150 meters) on a second tower displaced 18 meters from the first were in Boeing

files. A program was written to extract these records and to determine the desired quantities

discussed below. Since no records were available for 20 feet, the standard level for Weather

Service instruments, a program was written to fit a curve to the data from which the 20-foot

values could be extracted.

The most important winds in determining the 20-foot winds are those closest to the 20-foot

height; therefore, in the development of a regression equation the speed data first were

weighted inversely with distance from the 20-foot height. Then the weighted speeds were

assumed to bc related to In h by a second order regression equation, i.e., VW = CI + C2

In h + C3 (In h) 2. The constants C1, C2, C3 were determined from a second order least

squares fit of the weighted daLa.
; 1000

100 Least heavily weighted

nh

20 . . Most heavily weighted
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Then the 20-foot values were determined, in each case, by interpolation from the curve. A
f~w cases were chosen at random and actual data plotted along with the derived curves. It
vias noted that in each case the 20-foot value so determined appeared, by eye, to be a very
reasonable estimate and any unknown errors probably were within a small percentage
(< 20%) of the true value. Another "spot" check of the data was made by determining for a
few cases the 10-foot speed from the known speeds at the other levels and comparing this
value to the known 10-foot value. Again, the errors were small and noticeable only whun the
speeds were light (1-7 knots) at the lowest levels. Then, some slightly negative 10-foot
speeds were computed.

This method was not used for determining wind direction shear. Directional shears were
determined for the geometric altitude of - 18 feet from the wind directions at 10 and
33 feet.

There were 21,056 records read into the computations; another 2529 were not used because
some data were missing. Another 291 records were dropped because of low wind speeds at
all levels which caused the model to give erroneous negative speeds. The following
process/nonprocess criteria were applied:

If any speed on the tower is above this line, the entire
case is processed.

7

If all poin's are below this line, and if W/3h2 0
Speed, VW, kt is > 0.02 kt/ft, the entire case is processed.

All other cases are not processed.

3

I I I
510 200 300 400 500

Height, ft

One additioaal criterion was used in the initial procedure. That entailed not processing those
observational periods when the Riwas less than -20 or greater than +20. This included 2282
cases, and was caused by a nearly zero wind speed shear, or very large positive temperature
gradient, or both. Another five were dropped because of "out-of-range" dta. This was due
to one or more data points in an observation being so extreme that it appeared to be

, 'in error.

3.3.1.2 Cedar Hills

Magnetic tape records from December 1960 to December 1962 for Cedar Hills contain
10-minute average wind velocities and temperatures from the 12 levels, previously
mentioned, on a single 1434-foot-high television tower. As at Cape Kennedy, a computer
program was written to extract and analyze the data. Again no records were available for the
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20-foot height nor were any available for less than 20 feet, so a progiam analogous to the
Cape Kennedy program was written to obtain estimates for that level (see 3.3. 1. 1).

Since wind directions were not determined for levels below the lowest tower level (30 feet),
wind shear was computed for a geometric altitude of 46 feet from th. directions at 30 and
70 feet. This shear was used as an estimate of the true shear at 20 feet. The frequency
distribution of shears at 20 and 44 feet at Cape Kennedy are quite similar, Figure 3-54, and
it is assumed that holds true for Cedar Hills as well.

There were 39,046 points read into the program out of a total of 66,567, no points dropped
because of missing records, 2171 dropped because of low speeds (see previous section),
24,147 dropped because of excessive Ri, and another 1203 dropped because of out-of-range
data. Note that a far greater number of points were dropped because of excessive Ri for
Cedar Hills than Cape Kennedy.

3.3.2 Wind Speed

3.3.2.1 Evaluation Methods

Wind speed at 20 feet for each hourly observation was determined by the log linear method
described in Section 3.3. 1. 1. The method was adapted to the various formats and

observation levels provided by the tapes. Wind speed information for the observing levels
were processed directly to histograms.

3.3.2.2 Distribution at 20 Feet Elevation

Ile distribution of wind speeds at 20 feet is shown in Figures 3-24 and 3-25 for the two
locations. Both distributions indicate lighter winds than the descriptions given in Section
3.2.1.1, Figures 3-26 and 3-27. Also note that the Cedar Hills wind speeds are lighter than
the Cape Kennedy wind speeds.

3.3.2.3 Di.-tribution with Height

Wind speed distribution at the given tower levels was also determined and the probabilities
of exceedance are shown in Figures 3-28 and 3-29 at the individual sites. The Cape Kennedy
data are shown also in Table 3-13. This indicates the smooth transition between the 10- and
33-foot levels through the interpolated 20-foot level. A smooth increase in speed with
altitude exists through all but the top level, where an unexplained decrease in speed is noted
at Cape Kennedy.

3.3.3 Richardson's Number

3.3.3.1 Evaluation Methods

The Ri at 20 feet was determined for all wind speeds and by 2-knot intervals from 2 to 30

knots. Cases processed are the same is for wind speed, and the computer program used for
extrapolating to 20 feet is analogous to that used for wind speed.
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TABLE 3.13.-PERCENT FREQUENCY OF EXCEEDANCE OF WINDSPEED- a
CAPE KENNEDY 1966-68

Probability d e.ceedance (%)
Height 95 90 1 50 F-107 5 1

(ft) Frequency of exceedance of windspeed (%)

492 2.0 4.5 5.8 12.3 21.5 24.3 30.5
394 2.7 5.3 7.0 13.5 22.5 2'3.2 32.4
295 3.3 5.7 7.0 13.1 21.2 24.0 30.6
197 3.5 5.7 7.0 12.3 20.0 22.8 28.8

98 2.6 4.5 5.8 10.9 17.0 20.2 26.0
59 1.8 3.4 4.4 9.0 15.6 17.7 22.5
33 2.0 2.8 3.7 8.0 14.2 16.3 21.0
20 2.0 2.0 2.0 6.3 12.3 14.1 17.8

10 2.0 2.0 1.8 5.8 11.4 13.2 16.5

3.3.3.2 Distribution at 20 Feet Elevation

Probability of exceedance curves for Ri at 20 feet were drawn from the compuiter printout
and are shown in Figure 3-30 as V-shaped curves with negative values to the left and positive
values to the right ol log-probability paper. The Cape Kennedy distributions between
Ri = -1.5 and +1.5 are quasi-linear on this paper. The same data are presented in a different
form on linear paper in Figures 3-31 to 3-46. The '.,er sections of these later figures are
expanded versions of the lower sections for Ri near zero. It is to be noted that there is a
difference between the results from the two locations, with Cedar Hills results indicating a
larger percentage of high Richardson's numbers and Cape Kennedy results being more
log-normally distributed. The former implies a greater frequency of stable conditions at
Cedar Hills.

Although no complete answer is available to describe the difference without a rigorous
investigation, it may be due in part to lighter wind speeds at Cedar Hills and the consequent
greater frequency of inversions. A larger probable factor is the difference in climate and
weather conditions between the two sites.

In addition to the Ri difference between the two sites, the speed shears differ in two
ways-Cedar Hills has a higher mean shear and a greater spread of shears as noted in .he
following table.

Cumulative probability 10% 50% 90%

aVw/ah at Cape Kennedy (kn/100 ft) 1.4 6.5 13.0
Vw/1 at Cedar Itills (kn/100 ft) -3.8 10.0 26.8

Since larger speed shears should result in lower Richardson's numbers it is obvious that the
other terms, noticeably the temperature gradient, are influencing the results. Apparently,
there are a large number of inversions or at least stable conditions at Cedar Hills. Future
investigations should determine the reasons for the differences. However, Cedar Hills has a
drier climate with a greater range of surface temperatures and intuitively a greater range of
temperature gradients. Printouts of the Cape Kennedy results for the 1966-67 and ,ac 1968
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periods were compared to ascertain whether tile distribution of Ri varied with time. There
were differences between the two periods, but not as gre:.t as those between sites. The
median Ri varied from 0.016 for 1968 to 0.165 for 1966-67-an order of magnitude
difference; however, the distribution of values about the median remained about the same.
Noting these intra- and inter-site differences, it appears that the distribution of Ri is greatly
influenced by the local weather and climate and no sirgle distribution will be representative
of all airports. Information from a greater sample of stations is required to ascertain which
set of curves, Cape Kennedy or Cedar Hills, is more representative of a large number of
airports.

3.3.3.3 Richardson's Number and Speed at 20 Feet Elevation

The distributions of Ri at 20 feet were computed for 2-knot speed intervals as well as for all
wind speeds described in the previous section. Percent frequency of occurrenice diagrams
were determined for each speed interval and plotted at the midpoint of each interval in
Figures 3-47 and 3-48. As wind speed increases the spread of R, decreases at Cape Kennedy.
The greater spread of Ri values at Cedar Hills as compared to Cape Kennedy is again seen.
At Cedar Hills there is an obvious increase in spread of Ri as wind speed increases above 12
knots. This may be partially due to a rapid decrease in the number of cases of high wind
speeds, a larger decrease than at Cape Kennedy, and thus, there is less confidence in the
higher speed figures at Cedar Hills.

l)ath, from a larger sampling of stations are required to develop curves representative of a
number of airports nationwide, and more data for Cedar Hills are needed to determine
whether the results which show an increase in spread of Ri with an increase in wind speed at
Cedar Hills are correct.

3.3.4 Wid Direction Shear

3.3.4.1 Evaluation Methods

Wind dir 'ction shear was determined for each hourly case by subtracting the wind direction
at the lowest given level from that at the next lowest given level and assuming this to be
equivalent to the directional shelar at the geometric height (111112)1/2 and further assuming
that this was a good estInate of the directional shear at 20 feet. The geometric heights
computed for each tower -is representative of 20 feet are Cape Kennedy- 18 feet, and Cedar
Hills-46 feet. Information from Cape Kennedy indicates that there is not much difference
in snear distributions over the interval 18 to 44 feet at a given location, Figure 3-53.

3.3.4.2 Distribution With Speed at 20 Feet Elevation

Distributions of directional shears at 20 feet in degrees per 100 vertical feet by 2-knot speed
intervals at 20 feet are shown in Figures 3-49 to 3-52. The first two figures depict the
percent probability of not being exceeded and the second two figures indicate the variation
of specific probabilities with wind speed. There is a .yarently a small variation with speed
except at the extreme probabilites. This is borne out in the correlation coefficients
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described in Section 3.3.6. There is less direction shear variability at Cedar Hills than at

Cape Kennedy. The middle 80% of the shears are -10 to +10*per 100 feet and -30*to +30*
per 100 feet, respectively.

3.3.4.3 Distribution With Height

Cumulative probability charts showing wind shears at various heights for all wind speeds are
provided in Figures 3-53 and 3-54, and the variations of specific probabiliti-s are shown in
Figures 3-55 and 3-56. There is a definite decrease in spread of directional shear values with
altitude; the smaller range of direction shear variability at Cedar Hills is noticeable in bothF sets of figures. At Cape Kennedy 89% of the shears at all but the lower two heights are
within ±10" per 100 feet; at the lower two heights 80% are within ±30* per 100 feet. By
contrast, 80% of the shears -t all heights at Cedar Hills are within ±100 per 100 feet, and
except for the lowest level 93% of the shears are less than ±20* per 100 feet.

In addition to the differences noted between locations there is also a difference in the shape
of the distributions from year to year at the same location. Therefore, establishing long
period mean curves is difficult.

Several 10-minute average profiles were selected 2t random from the records to provide an
indication of the magnitudes of directional shears at any time. Four of these are shown in
Figure 3-57. In the figures, the AO from the lowest level are shown by the curves and the
speeds at each height are given numerically. In general, the largest shears occur near the
surface and with the lowest wind speeds. As mentioned in Section 3.2.3, many investigators
ignore the directional shears in their investigations. This is because directional shears affect
the total velocity shears nu, rierically the most at the higher wind speeds. This investigation
as well as others (see Fig. 3-11) indicate that in most cases direction shears are low (0-20*
per 100 feet) at high speeds. This is especially true when shears are measured over large
height differences.

3.3.5 Wind Speed Shear

3.3.5.1 Evaluation Methods

Wind speed shear was determined using the same procedure as wind speed and Ric~.ardson's
number but only for heights of 20, 100, 200, and 500 feet.

3.3.5.2 Distribution With Speed at 20 Feet Elevation

Wind speed shear at 20 feet by 2-knot intervals is shown in Figures 3-58 and 3-59. At Cape
Kennedy there is an obvious normal distribution at all speed intervals between 5% and 95%
of the observations. Fewer observations at the extremes may accentuate the lack of
normality there.

The curves for Cedar Hills are more normally distributed than those for Cape Kennedy.
Ai. o, there is a greater spread between the curves with the higher speeds being associated
with a shift to smaller (less positive and more negative) values of shear at constant
probabilities. For example, the 50% values at Cape Kennedy are clustered randomly about a
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FIGURE 3.55.-DISTRIBUTION OF WIND DIRECTION SHEAR WITH HEIGHT,

CAPE KENNEDY

shear of 7 kt/100 ft while the 50% Cedar Hills shears range from 7-17 kt/100 ft with the
higher values at lowest wind speeds. This effect may be related to the site location,
climatology, and weather. Comparison with information from other locations would be
valuable in resolving the differences.

Selected probability percent frequencies for the range of wind speeds are related in Figures
3-60 and 3-61. Values of shear vary little with wind speeds at Cape Kennedy, but the Cedar
Hills values indicate a decrease in spread with increasing wind speed and then an increase in
spread at still greater speeds. A similar shape was found by Roberts with tower data from
the Washington, D.C. area, Figure 3-18. He also included some Cedar Hills data with his
report which indicated the same shape of the 50% curve as our analysis. This increase of
shear at the higher wind speeds is not obvious in the Cape Kennedy data, although it may
occur at wind speeds greater than 12 knots.
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3.3.5.3 Distribution With Height for Two Speed Intervals at 20 Feet Elevation

There is a definite decline in the spread of shear values with height as shown in Figures 3-62
to 3-67. The first two figures depict the probability of not being exceeded for the 2-4 knot
speed inter al. The second and third sets of two figures each compare the spread of specific
percent frequencies with height for two speed intervals. Ncd that the spiead of values is
very dependent upon height in the lower heights.

Intersite differences are apparent at low heights. The Cedar Hills 20-foot shear curve is more
normally distributed than its counterpart at Cape Kennedy, and there is a greater spread to
the values at Cedar Hills at low heights, especially at the lower wind speed.
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3.3.6 Regression Equations and Correlation Coefficients

3.3.6.1 Evaluation Methods

Regression equations and correlation coefficients were determined for four relationships
t_ between Richardson's number, wind speed, wind direction shear, and wind speed shear at

the 20-foot height by standard statitistical techniques. The equations were fit by a least
squares fit that makes the sum of the squares of the Y residuals a minimum in the equation
Y =AX +B.

3.3.6.2 Richardson's Number and Speed

Regression equations and correlation coefficients of Ri 20 vs V20 for the separate sites are:
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Cape Kennedy Cedar Hills

0= 6.91 Ri2 0" 0.08 V20 = 7.25 Ri20 "0.0008
r 0.86 r = 0.90

It is apparent that there is very little Jifference between, sites and the correlations are high,
and therefore the variables are dependent.

3.3.6.3 Sr,;ed and Direction Shear

Regression equations and corre!ation coefficients of a/8h20 versus V20 for the separate
sites are:

Cape Kennedy Ct,*. Hills

Not available 80/8h 20 = 0.0036 V20 0.003
r = 0.036 r = 0.025
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Although the regression equation for Cape Kennedy was not obtained the correlation
coefficients are similar-very low-and the two variables are essentially independent.

3.3.6.4 Richardson's Number and Direction Shear

Regression equations and correlation coefficients of ao/ah2 0 versus Ri2 0 ")r the two sites
are:

Cape Kennedy Cedar Hills

Not available a/ah2 0 = -0.018 Ri + 0.001
r = 0.036 r = 0.023

Again in this case the conelation is very low and the regression equation for Cape Kennedy
not available. Apparently, there is little dependence between these variables.

3.3.6.5 Speed and Speed Shear

Regression equations and correlation coefficients of aVw/ah 2 0 versus V20 for the two
sites are:

Cape Kennedy Cedar Hills

V w/3h2 0 =0.13 V20 -0.0074 avw/ah2 =0.18V 2 0 -0.01
r 0.57 r 0.69As with Ri20 and V20 in Section 3.3.6.2, the regression equations are very similar and the

correlation coefficients high, although not as high as in the former case.ii 3.3.7 Comparison With Literature, Section 3.23

The work accomplished in this section differs in many respects from the literature.
However, it is possible to compare the wind speed shears described in the two sections. For
instance, it may be seen that the ive-ige and extreme speed shears are of similar magnitude
(see Table 3-12 and Figs. 3-59 to 3-64). Notice particularly column 4 in Table 3-12, which
shows a mean shear of 3.6 knots 1,:r 1100 feet at Whiteshell. These data were taken from
S0-minute records for all wind speeds, the nearest conditions to the data processed from
Cape Kennedy and Cedar Hills. The Whiteshell records are for a height interval of 20-200
feet. w.wz derived shears are at given tower levels. Although the results cannot be compared
explicitly, it appears by visual comparison of the diagrams and tables that the results
obtained in both sections are comparable.

Directional sheai comparisons are difficult because of differences in the height intervals andI1  othe.r conditions, and only a cursory comparison is possible with the Whiteshell, Canada and

Hanford, Wasnington data (see Figs. 3-! 1, -12, -53, and -54). It appears that the shears are of
the some order of magnitude. The higher shears are near the ground.
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3.4 SELECTED DESCRIPTION

Results of a literature search, description of airport winds, and evaluation of winds and
stability conditions obtained from two tall towers have been discussed in previous
subsections. Now it is possible to select tiihct results or descriptions, either directly or in
amended form, applicable to other secto's of this !,tudy. These include wind speed and
direction distributions, wind shear versus altitude, and the Richardson's number distribution
at different wind speeds.

3.4.1 Airport Wind Speed Description

A comparison of wind speed descriptions is provided in Figure 3-3. Slightly lower wind
speeds are found in the 24 airport descriptions than are presenty found in the ARB model.
This difference, in part, may be due to the lower height (20 feet) of the observing
instruments throughout the 24 airport network. The 24 airport description is selected as
being most representative of conditions at a height of 20 feet and for use in other sections
of this study.

3.4.2 Airport Wind Direction Description

A wind direction description was obtained from the 24 airport network as being
representative of the "average" U.S. airport. This has been selected for use with the speed
description of subsection 3.4.1. The description, Figure 3-4, depicts the direction relative to
the major runway direction of the composite airport. Crosswinds and headwinds at the
composite airport are obtained from the speed and direction descriptions (Figs. 3-6 to 3-8).

3.4.3 Description of Wind Direction Variation With Height

Information outlined in Section 3.3.4 :,d the literature search, Sec'ion 3.2.3.1, indicate&
that shears greater than ± 20* per 100 ft. .t are unusual and that the majority of these occur
at the lower heights, small height intervals, and with small wind speeds. Shears vary from
airport to airport and with time at any airport. The great variability in wind shear profiles is
shown in Figure 3-57 and no one "average profile" will be indicative of simultaneous
conditions at all tower heights. That is, the combined means of the shears at given heights
do not indicate the average shear profile. (The average shear at one height does not mean
that an average shear at another height occurs simultaneously.) Therefore, no general case
description of wind directio- variation with height is proposed except to assume zero
variation. ]he errors introduced by this assumptior should be small; rare occurrences of
combined strong speed and direction shears may occur at some airports.

3.4.4 Richardson's Number-Wind Speed Description

Two descriptions of the Richardson's number-wind speed relationship have been obtained
from towers at Cape Kennedy and Cedar Hills, Figures 3-31 through 3-48. These were
determined for -20 < Ri < 20 at each site. Many other cases with high (< -20 and > 20) Ri
at Cedar Hills were not studied because of the limiting Ri's. It is apparent that Cedar Hills
has a greater frequency of large temperature gradients and/or very small wind speed shears
than Cape Kennedy. In addition to the differences between sites there are annual differences
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Bit
in the relationship. It is difficult therefore to establish on all-encompassing description from
short period records at two sites. By examining the results, however, those for Cape
Kennedy appear to behave more rationally (Figs. 3-47 and 3-48), and a far greater
percentage of the total observations are included in the study. Therefore, while the Cape
Kennedy results are not all-inclusive, they do appear to be more appropriate for this study.
Ideally, similar tower information from the 24 U.S. airports, for which surface data were
studied in Section 3.2, would be the most valuable in the establishment of an all-inclusive
description, if this infonnation existed. Until information is obtained from additional
towers as well as Cape Kennedy avr Cedar Hills, the Cape Kennedy desciAption in Figures
3-32 through 3-38 is suggested fcor use in the simulation program. As better descriptions
become available they can be substituted for this description.

The information in these figures does not include the distributions for 2-knot speed intervals
greater than 12-14 knots because of the paucity of observations at the higher wind speeds. It
is evident from Figure 3-47 thlat the spread of Ri values is rapidly diminishing as the wind
speed increases. Additionally, it may be noted that the 50% probability Ri is becoming
constant above approximately 14 knots. The other percent frequencies apparently are
becoming less variant as well.

T n order to establish the distr :t'l.As for higher wind speeds it is assumed that at high windspeeds ( > 19 kt) Ri is inversely proportional to the square of the speed. From the analytic

description given previously

it may be argued that variability of the product of all terms except V2 0 is not -i strong
function of V20 when V20 is large and the subsequvut R. distribution is small. Therefore

3VW/3h ~V20

and

q (IT + Y.)

'i20 'VF ) 2 -

Thus,_to extrapolate the distribution we assume that the distribution for large V20 with
Ri2 0V2 0

2 is invariant with V20.

Then

Ri60V20
2 = constant Rij 0(l9) 2
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where

Ri& - Ri 2o at any speed greater than 19 kt

Ri20  = Ri2 0 at 19kt

19 kt = the highest speed available ou Figure 3-47.

The distributions at higher wind speeds can then be obtained, and these are shown in Figure
3-68 as extensions to the lines in Figure 3-47. In addition to these extensions, the 10% and
90% curves have been smoothed in order that they be more representative of a possible
distribution which might result from the averaging of data from a number of stations and
more years of data from Cape Kennedy. The same method a used for extending the curves
to higher winds cannot be used at lower speeds, and therefore the curves were smoothed
visually. The largest change in the 10% curve is about 5% at 9 knots as computed using
Figure 3-36. This is due to the flatness of the distributions at other than very low
Richardson's numbers. The revised exceedance curves are shown in Figures 3-69 to 3-71
with probabilities reversed from those of the Cape Kennedy curves in order that the
cumulative probability in,;rease from negative to positive R.
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4.0 ANALYSIS AND SINIULATIONt MODELING

Having de. cribed phenomena of wind in its own natural axis system, it remains to define

wind phenomena in the airplane's axis system and the effects of winds on aircraft motion.
Then, with some qualitative understanding of the effects of the input on the output, a
model, representing all the significant parameters and effects for approach and landing, is
developed for flight simulation.

Although a number oi assumptions and value judgments were involved in the development
of the descriptions and wind and turbulence, the descriptions will be accepted as fact and
emphasis will be placed on applications.

A qualitative ana!ysis of the effects of winds is first provided to develop an understanding of
what effects need to b. represented. Criteria are established for evaluating approximate
techniques. The more specific subjects of distributed lift effecs, unsteady aerodynamics,
and the effects of speed and altitude are considered. An attempt :q made to provide the
means of transforming tii'bulence from the axis system of the mean wind to that of the
airplane. Specific techniques of generating the random noise needed for the production of
turbulence are reviewed.

Finally, the model is developed. The model begins with the probabilistic combinations of
environmental data and ends with the generation of the eff,-cts of the winds on aerodynamic
forces and moments.

4.1 NOMENCLATURE

ax, ay, az Components of linear body axis acceleration along the x, y, and z
body axes

b Wing span

c Mean chord

CD, CD0  Drag coefficient and that at an initial condition

CDQ aCD/8ac

CLwB Wing-body contribution to the lift coefficient

CL , CL0 Lift coefficient and that at an initial condition

CLo , (CL)ss Lift curve slope (aCL!aa) and that at steady state conditions

CLOac,/a (u/uo)
! CL~otH  Horizontal stabilizer lift curve slope (aCLH/M H )
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Ck Rolling moment coefficient

Cli, C1., C1. aCl/ai and that due to the wing and vertical stabilizer
1W IV

(i-0=pD, v, P)

(C rw) x  Contributions of wing-body forces along the x artd z axes to C1r

(CrwB )z

Cm, CmWB Pitching moment coefficient and that due to the wing-body

Cmi, (Cmi)WB aCm/ai and that due to the wing-body

(i=c, c,q)

Cy Side force coefficient

(Cyp)V aCy/ap due to vertical tail

CN Yawing moment coefficient

(CNp)V aCN/ap due to vertical tail

CZH z force coefficient due to horizontal stabilizer

d Atmospheric bourdiary layer depth or derivative

e Exponential function

K f(h/f') Universal function of h/9' defining contribution of nonneutralJ atmos-heric conditions to the mean wind

j iBody axis aerodynamic force vector

I Fx , Fy, Fz  x, y, and z components of it

g Acceleration due to gravity

g(h/R') Universal function of h/1' defining contribution of nonneutral
atmospheric stability to the mean wind

j 1Body axis aerodynamic moment vctor

Gx, Gy, Gz  x, y, and z components of
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G(s) Transfer function

G(ico), G* (iOw) Frequency response and its complex conjugate

Gu, Gv , Gw  Filters for producing u, v, and w components of turbutence

h, hCG, hw Altitude, altitude at the airplane's center of gravity, and altitude used
in wind model

I Unit vector along x axis

Ixx, Iyy, Izz Roll, pitch, and yaw body axis moments of inertia

Ixz Product of inertia

Unit vector along y axis

k Von Karman'. constant, 0.4

Unit vector along z axis

K(s) Kiissner lift growth function .

R Length

Monin-Obukov scaling length
i 2T Distance from the wing-body aerodynamic center to the tail aero- "dynamic center along the x body axis, positive aft

L Aerodynamic roll acceleration, (GxIz + GzI. )/(Ixxlzz. Iz2)

Lu , I- L Integral scales for u, v, and w components of turbulence

LH, LV  Integral scales for horizontal and vertical compo.ents of turbulence

Li, Liw, Liv Roll acceleration derivative, KL/ai, that due to the wing, and that
due to the vertical stabilizer(i = p, r, €, z,

P3, 0, 0p, 6j, fO)

LL, LR Lift on left and right wings
In Airplane mass
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M Aerodynamic pitch acc, lcration, Gz/l yy

M(W) Frequency response amplitude

Mi 0 = q, U, w, , Pitch acceleration derivative, Mi = 3M/ai
, z, & ,j, 0,0, fO,

Mi,  Mi - Zi MASc/Z6c

nz  Normal applied acceleration, Fz/W

N Aerodynamic yaw acceleration, (GxIxz + GzIxx)/(Ixxlzz - Ixz 2)

N- (i=h, p, r, u, w, Yaw acceleration derivative, 3N/a;, or transfer function numerator
P3, 8j, 0, f, 0) for response parameter i

Niw , Niv Contributions of wing and vertical tail to yaw acceleration derivative

Altitude to column transfer function numerator for zero mean vind
speed

p. Inertial body axis roll rate

A
p Nondimensional body axis roll rate, pb/2u0

PA, PACG' PATAIL Effective body axis roll rate relative to the air mass, that at the center
of gravity, and that at the tail

PT Effectiie roll rate of the air mass due to turbulence relative to the
earth

PWPWCG'PWTAIL Effective roll rate of the air mass due to wind relative to the earth
and that at the center of gravity and the tail

PW, WG PEffective roll rate of the air mass due to the mean wind relative to

PTAIL the earth and that at the center of gravity and the tail

q Inertial body axis pitch rate

q, WB, qH Dynamic pressure and that for the wing-body, the tail, and the
horizontal tail

qCG Dynamko pressure at the center of'gravity
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A, q G Effective body axis pitch rate relative to the air mass and that at the
center of gravity

qT Effective body axis pitch rate due to turbulence with respect to the
earth

qw, qfw Effective body axis pitch rate due to the wind and the mean wind
relative to the earth

r Inertial body axis yaw rate

r Displacement vector

rA, (rAWB)x, Effcctive body axis yaw rate relative to the air mass and that for the
wing body x and z force contributions to yaw rate derivatives

~(rAwB)
Z

rT Effective body axis yaw rate due to turbulence relative to the earth

rw, (rWG)x, Effective body axis yaw rate due to wind relative to the earth and
X that used with x and z force contributions to yaw rate dorivatives

(rWCG)z

FW, " ) Effective body axis yaw rate due to the mean wind relative to the
W (rWCG)X earth and that used with x and z force contributions to yaw rate

(rWcG)z derivaiives

Ri, Ri Richardson's number and that at 20 feet altitude

120

Rii Autocorrelation function for variable i

s Laplace transform variable

S Wing area

=SH Horizontal tail area

t Time

t* Nondimensional time, /2 VA

T Time constant

TR, TS Roll mode and spiral mode time constants
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Thl, Th2, Th3  Altitude to column numerator time constants

Th0  Th I for zero wind speed

TO  Pitch attitude to column numerator time constant

TREQ, (T/W)REQ Thrust and thrust to weight required for unaccelerated trim

u, u0  Inertial linear velocity along the x body axis and that at the initial
condition

uM , uR Linear velocity along the x mean wind and relative wind axes

uTAIL Inertial velocity along the x body axis at the tail relative to the earth,
including angular velocity effects

u,, u, 0  Friction velocity (shear stress/density)l/ 2 an,, that at the surface

uA, uA 0  Linear velocity with respect to the air mass along the x body axis and&tat at the initial condition

uACG , UATAIL uA at the center of gravity and the tail

uE Inertial linear velocity along the x earth axis

uT, UTTG Linear turbulence velocity along the x body axis and the x turbulence
generation axis, relative to the earth

uW, Linear wind velocity along the x body axis relative to the earth and
uw' cG' UWTAIL that at the center of gravity and the tail

UW, uW0  linear mean wind velocity along the x body axis relative to the earth

and that at the initial c:ndition

v Inertial linear velocity along the y body axis relative to the earth

vA, VAc G VATAI L  Linear velocity along the y body axis relative to the air mass and that
at the center of gravity and the tail

vE Inertial linear velocity along y earth axis

vM , R Linear velocity along the y mean wind and relative wind axes

vT, vTTG Linear turbulence velocity along the y body axis and the y turbulence
generation axis relative to the earth



VTAIL Inertial velocity along the y body axis at the tail relative to the earth,
including angular velocity effects

VW Linear mean wind velocity along the y body axis relative to the earth

vw , vWCG , VWTAIL Linear wind velocity along the y body axis relative to the earth and
tha t at the center of gravity and the tail

V Speed

V Linear velocity vector

VA, VA0 Total airspeed and that at the initial condition

Ac , VATAIL Total air speed at the center of gravity and the tail
VET Total ground track speed

VH Horizontal tail volune coefficient, (SH/S)(RH/c)

VW, VW 0 Mean wind speed and that at the initial condition

w Inertial linear velocity along the z body axis

wWA, wACG, WATAIL Linear velocity along the z body axis relative to the air mass and that
at the center of gravity and the tail

W,, wR Linear velocity along the z mean wind and relative wind axe'

WT, WTCG , WTH Linear turbulence velocity along the z body axis relative to the earth
and that at the center of gravity and the horizontal stabilizer

WTAIL Inertial velocity along the z body axis at the tail relative to the earth,
including angular velocity effects

(WT) 0 , WTCG wT at the origin and the center of gravity

WTe Effective wT

ww, WWC G , WWTAL Linear wind velocity along the z body axis relative to the earth and
that at the center of gravity and the tail

;W, WWCG Mean wind velocity along the z body axis relative to the earth

W Airplane weight
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X Linear aerodynamic acceleration along the x body axis, Fx/m; amplitude

X(i=q, u, w, z, a, OX/ai
01, 8, 0, Ao 0p )

Y Linear aerodynamic acceleration along the y body axis, Fy/m

Yi (i --p, r, v, z, 6j, 3)Y/ai

f, o)

z0  Surface roughness length

zT Distance from the wing-body aerodynamic center to the tail aero-
dynamic center atong the z body axis, positive down

Z Linear aerod""amic acceleration along the y body axis, Fz/m

Zj (i = q, u, w, z, o, Z/3i

Greek:

a Log-linear mean wind profile constant = 4.5

a, aWB, aTAIL, aH Angle of attack and that used for wing-body, tail, and horizontal

~ I stabilier aerodynamics

a1 , '1w Angles of attack due to inertial and wind velocities

aWcG  Rate of change of angle of attack due to the wind at the center of
gravity

0, PCG, PTAI L Sideslip angle and that at the center of gravity and the tail

f, -to Flight path angle relative to the earth and that at the initial condition

6 Perturbation

6j jth controller or control surface deflectiou

A Increment

A(s), ALONG(S), Characteristic equation and that for longitudinal, lateral-directional,
SALD(S) ' Asp(S) and short period motion

e Downwash

'ph,' d, [' Damping ratio for the phugoid, short period, Dutch roll, and bank angle
to control input transfer function numerator
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Z7777- -7

0, 00  Euler pitch angle and that at the initi~d condition

fo Intugral of 0

o Sidewnh or standard deviation

Gi  Standard deviation of the ith component of turbulence

OH, UV Standard deviation of horizontal and vertical turbulence

oij 2  Covariance of the ith and jth components of turbulence

" Transport lag delay time

0 Euler bank angle

0(h/f') Universal function of h/!' defining the nondimensional mean wind
shear

0i Power spectrum for parameter i

Cospectrum for parameters i and j

0 0 Input and output power spectra

, 0Euler heading angle and that at the initial condition

W, OW 0  Heading to which the mean wind is blowing and that at the initial
condition

Temporal frequency (rad/sec)

Angular velocity vector

wN, 'd' Wph Natural frequency and that of the Dutch roil, phugoid,
short period, and the numerator of the bank angle to control
transfer function

fl1, 12, 923  Components of the spatial frequency vector along the x, y, and z axes

-Q1'2, f'3 Maximum values of the lateral and vertical components of spatial
frequency at which the first order Taylor-series method of repre-
santing distributed lift effects of turbulence is accurate

Dotted terms refer to derivatives with respect to time.

YOther nomenclature defined where used.
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II Schematic Symbology:

Node: 0 1021

02

+0 Summing junction: 0=I 1-12

0 Multiplier: 0 = 1 12

L-I G(s) -- o Linear operation: 0 = G(s) I

Input-output function (table lookup)

_0 1

0 Nonlinear function: 0= f (1)
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4.2 EFFECTS OF WINDS ON AIRCRAFT MOTION

The influence of mean winds and mean wind shears is generally considered in terms of
control power requirements (i.e., rudder power for decrab), control actuation rates (i.e.,
autothrottle and autopilot thrust and control surface rate authority), guidance, and speed
margins. Additionally, there are stability considerations that are much less straightforward.

At high altitudes and speeds, the influence of winds and wind shears is generally not
considered to be so important because wind speeds are small compared to airspeeds,
aerodynamic forces and moments are large compared to inertial effects, speed margins are
high, and wind shears are less frequent. In addition, at large distances froni the ground there
is less need for accurate guidance.

At low altiti-des, particularly for approach and landing, the effect of winds is much more
critical. The accuracy requirements for simulation modeling are dependent upon the
sensitivity of aircraft response to winds and wind shears. An analysis and discussion of these
effects is provided in the following for the effects that are less straightforward. The analysis
may be divided into linear and nonlinear analysis, depending on what may be determined
from the linearized equations of motion.

4.2.1 Small Disturbance Analysis

As is conventional, the linear equations of motion are defined for an axis system attached to
the aircraft, or a body axis system. Aircraft symmetry is assumed and the x-y plane
coincides with the plane of symmetry. The x axis is oriented forward and is aligned to the
airspeed vector in the x-y plane (stability axis), some geometric characteristic (i.e., wind
chord plane, waterline, etc.) or some inertial axis (i.e., principal axis). The y axis is oriented
toward the right wing and the z axis downward. The equations of motion are the same for
.ny such body axis system, but the forces and moment characteristics are unique to a
particular axis system and the orientation in space of the axis system, defined in terms of
Euler angles, is dependent upon the axis system selected. Gyroscopic couples, produced by
masses rotating with respect to the body axis system, (i.e., rotating engine parts), and
Coriolis forces are considered to be negligible. Atmospheric density is assumed to change so
slowly with altitude that it may be represented as a constant.

The lineari;ed equations of motion for these assumptions, for a rigid airframe and still
az:, are presented on Figure 4-1 and are similar to tlhos. presented in Reference 4-I.
Uncoupling of the longitudinal and lateral-directional sets requires level wings initially as
well as uncoupled aerodynamics. If the body axis system selected is the stability axis
system, the initial Euler pitch angle is identical to the flight path angle. The equations on
Figu'e 4-1 are written for uncoupled accelerations. Thus, the normalized aerodynamic
rolling and yawing moments are written to exclude the appearance of the product of inertia
from the equations.
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LONGITUDINAL SET

Longitudinal acceleration:

(s -X X )u- (Xiis+ Xw )W + - q S - q = X i

Vertical acceleration:

-Zuu + (s - Z V$ - zw)w + Z0]
/ ~s q= Z i

7 Pitch acceleration:
-Muu - impv + Mw)w + Is -Mqq= Mai 6

LATERAL-DIRECTIONAL SET
Side acceleration:

Y s+gcoSo p[(u 0 -Yrs -g sin 00I Roll acceleration:

-Lvv + (s -Lp)P- Lrr=L 6 6

Yaw cceleration:

-(Ns + Nv)v -NpP + (s -Nrr ,N 6 i 6i

Linear velocity vector, V ul + vi + w
Angular veiocity vector, W pt+cql + rR
Applied force vector, F =Fx+ ryI + F
Applied moment vector, G G Tx + Gy t+ Gz

Gxlz + Gzxz
X = F/m L

ixxizz -1

Y F y/m M G GyAy

Z =  FZ/m N = IO O MS

xxzz -6
_i ith control surface deflection

s - Laplace trsnsform variable
3AAW -a x A -X ,Y ,Z.,.LM N

?, a u , v.w ,p .q r, 6i

FIGURE 4- 1. -LINEARIZED EQUA "[IONS OF MOTION FOR STILL AIR
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To generalize the equations for flight in winds, the inertial velocity terms that are multiplied
by the dimensional derivatives are changed to airspeed component perturbations, which
represent the differences between inertial velocity components and wind velocity
components. The wind velocity components are in turn the sum uf the turbulence
components and the mean wind components. That is,

W= (W + tT

where t u, v, w, p, q, r.

It is common to see the airspeed defined as the sum of inertial and wind velocities, but this
is merely a change in convention where the axis system defining wind motion in space is
reversed from that for airplane motion.

It is common to assume that certain derivatives are insignificant or negligible. The
derivatives that shall be dropped or ignored and which are dropped in Reference 4-1 are X.,
Xq. Zw, Zq, Yp and Yr" The stability axis is selected and the initial Euler pitch angle is
assumed to be zero, corresponding to level flight. For non-still-air conditions, the pitch
attitude and flight path are equal only in level flight. That is, the relitionship e = 7+ a holds
only for still air. Restricting consideration to level flight permits dropping gravity terms in
the vertical and side acceleration equations and enables simplified relationships between the
body axi.s angular velocities and the Euler angles: p = so, q = s8, r = so. The linearized
equations considered are presented on Figure 4-2.

LONGITUDINAL SET

Is - Xulu - X wW + go + XuU w + Xww w = X~i bi

-Zuu + (s- Zw)w- uosO + Zuuw + Zwww = B

-MuU - (M'ks + M)w + (s2 - Mq SO + MUUW+[M s + MW] WW

+ MqQW = i Si

LATERAL DIRECTIONAL SET
"(S - Y v)v - go+uor +Yvvw -i X6i 6i

-Lvv + (s2 _ Lps)- Lrr + LvvW + LpPw + LrrW =  L6i 8i

-Nvv - NoSo + (s - Illr)r + Nvvw + NpP + NrrW i NS Si
i i

FIGURE 4-2.-LINEARIZED EQUATIONS OF MOTION FOR LEVEL FLIGHT IN WIND
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That part of the wind terms associated with turbulence is generally placed on the right side
of the equations and treated as a forcing function independent of the motion of the
airplane. However, the mean wind has been described deterministically as a function of
altitude. Thus, the mean wind alters the uncontrolled stability of the airplane as the airplane
motion is dependent on the mean wind and the mean wind is dependent upon the airplane
motion. Consequently, the mean wind alters the aircraft's characteristic motion or stability.

4.2.1.1 Effects of Mean Wind, Point Lift

The angular components of the mean wind shown on Figure 4-2 are approximate
representations of distributed lift effects. If the changes of mean wind heading and
magnitude are sufficiently small with respect to the size of the aircraft, the effective angular
components may be ignored, resulting in representing all the aerodynamics as if they were
concentrated at the center c, gravity.

The body axis components of mean wind are found by first transforming from the mean
wind axis system to the earth axis system, a rotation in the plane of the earth through "W, and
then by transforming from the earth axis through the Euler angles of the body axis. The
resulting nonlinear expressions are shown on Figure 4-3. The small perturbation body axis
wind components are computed from first order Taylor series expansions about tne initial
conditiors (equivalent to derivatives) and are shown on Figure 4-3 for wings level, level
flight. The mean wind is considered to have both variable heading and magnitude witn
altitude. Substituting these expressions into the equations of motion (after dropping the 6's
with the understanding that all motion variables are small perturbations) results in the
equations on Figure 4-4.

From Figure 4-4, some conclusions concerning the effects of winds may be reached:

9 Longitudinal and lateral-directional motion appear to be coupled in the presence
of a wind although they are not in still air. If the wind is aligned to the flight
path, lateral-directional motion wili not influence ihe longitudinal motion, but
longitudinal motion will continue to influence lateral-directional motion so long
as a mean wind heading shear exists.

* The presence of a meai wind introduces new aerodynamic stiffness derivatives
(derivatives with respect to Euler angles and vertical translation) and derivatives
proportional to the integral of pitch attitude and which augment the pitch damping
derivatives.

S All the derivatives due to the presence of the mean wind are asymmetric with
respect to mean wind heading. That is, a derivative that appears statically to be
stabilizing for one wind heading will be destabilizing for the wind heading
changed by 90.

If gradlients of the mean wind in the horizontal planes or if nonlevel fliht were permitted,
additional stiffness derivatives caused by the gradients of the mean wind and with respect to
horizontal displacements would be introduced. Nonlevel flight also alters the attitude
stiffness derivatives.
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LARGE DISTURBANCE BODY AXIS COMPONENTS OF MEAN WIND

Uw Cos (o- o)Cos 0

VW cos( o -W ) sin 0 sin -;n ( o - W) cos VW

cos (o - OW) sin 0 cos 0 + sin (o - OW) sin 0

SMALL DISTURBANCE BODY AXIS COMPONENTS OF MEAN WIND

0o =_ 00 =

6 6 uw 0 0

8 vw  = , o Cos( o - 4 o) WoO 0+ 0Vw° so

WW 11 1s(in ( 0o- wo

- i = 0 - W o 0C o s l (o -S OW o 0

+ -Cos 0-tWo) (60-8W) + -sin (00-sOWo) W+w

0 0

6 -id W6h 6 -W 6h h
W dh w dh sh[uA+Vwo )8o0W]

6uw  _sin (4/0_T -4 W6 [Cos (00_ -W0) d~w

- .1±[(uA+ W5e..w]
0 dh

+:;o N 0 o € - w)  wo  dh j s[ , (u'o + w ) "" -

- r dVw

-Co (0,o- JW) Vwo L sinL(UA+ -Wo )  - w

=v +

6Wvq Cos (00 - 4 Wo ) VWoO + sin (o - 4W0 ) Vwo 0

FIGURE 4-3.-80DY AXIS MEAN WIND COMPONENTS
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LONGITUDINAL SET

I-Xu (- -+ !1-Li ##-X4

- (Z M + Is, + [.2 -M + M& - 9  - 9- f-s + - *0 -Z*

LATERAL DIRECTIONAL SET

is - Y,,v - go (uo - - w - - o

-Lvv + s2 y) -Lr + )r - w .08 -

-Nv NpOIs - Nr )r 2

Wind-induced derivatives:

z u dh VLO uL (UA+ OW0 )

-z = m~f M* -muM9wVo njA o

uM '4hw MfO -M -MuVw

NZ0 NvdhN -N 'W No0~w - 0 -IN (eAO+)

FIGUR 4-CHRCERS/ EQATON, EFFCT aF MA WIND
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The effects of the mean wind sheer and magnitude on stability will now be e.xamined
separately.

4.2.1.1.1 Effects of Mean Wind Magnitude-The loritudinal and lateral-directional
equatioos may be uncoupled if it is assumed that the mean wind is in the direction of flight
(00 = jW 0 ) and the heading and magnitude are zero. Now, the mean Nind magnitude may
be permitted t take on positive and negative values where a positive value corresponds to a

S tailwind and a negativv value corresponds to a headwind. The effects of the mean wind
magnitude on the characteristic roots can be examined by performing a root locus for mean
wind magnitude. If it is assumed that the airspeed remains unchanged no matter what the
mean wind speed, a realistic assumption, the aerodynamics remain unchanged. The inertial
velocity appearing in the vertical and side acceleration equations may be rewritten as the
sum of the initial airspeed plus the initial mean wind speed. The equations that result are
shown on Figure 4-5.

When the determinants for c'aracteristic longitudinal or lateral-directional motion are
expanded, all terms containing the mean wind magnitude cancel out and the mean wind is
seen not to affect characteristic motion (Fig. 4-5). The same result can be obtained no
matter what the relative airplane and mean wind headings. In fact, the nonlinear equations
of motion may be written completely in terms of airspeed components without the
additional appearance of inertial velocity or wind velocity terms. 1 his is to be expected as
the motion in one axis system is the same as the motion in another moving at a constant
linear velocity with respect to the first axis system.

So long as transfer functions are for parameters measured relative to the air mass, the zeros
of the transfer functions will also be invariant with wind speed at constant airspeed. When
transfer functions measure an earth-referenced parameter, invariance with mean wind speed is
not necessarily true.

The numerators for the longitudinal inertial speed anu pitch attitude to control transfer
functions can be seen to be inaependent of wind speed. However, the airplane's inertial
vertical velocity is affected.

The vertical velocity response by itself is usually of little importance. However, the altitude
response is important and is affected by the vertical velo.ity response:

-h w Nh(S) r6 ( c c s)I ON~c°"- u=-6-l0 (s) - c(~ = SALON(S)

For a tail aft aircraft, the zeros of the altitude to control transfer form a cubic made of

three real roots (Reference I):

h))

N h (s), (s + (s+(TI1
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LATE RAL-DI RECTIONAL
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LNV -N, s2 -Nrs NVw0
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f FLI)(s) a 0

* #W (wind in direction of flight)

d*w w 0 (no r nwind sar)dh "dh "

VV,; > 0, tailwind; VW0 < 0, headwind

Conclusion: Mean wind magnitude does not affect characteristic motion

FIGURE 4f-5.-EFFECT OF MEAN WIND MAGNITUDE, NO CROSSWIND
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'rwo of the zeros will be approximately equal in magnitude and opposite in sign. The third

zero will be much smaller than the other two, and, in still air, will be negative for frontside
of the thrust required curve operation (aTREQ/8VA > 0) and positive for backside of thrust
required curve operation (3TREQ/aVA< 0), as shown in Reference 4-2.

The altitude to control transfer function zero that receives the most attention is 1/Thl, the
low frequency zero. The significance of this zero may qualitatively be explairl.d in the
following. A pilot normally controls altitude through pitch attitude. When he controls pitch
attitude, stable, low frequency, closed loop roots exist. When altitude is controlled through
attitude, these roots will tend to become less stable until, when the pilot attempts
sufficiently tight control. the new closed loop roots become unstable.

The level of tightness of control, or pilot altitude to attitude gain, at which instability occurs
is dependent upon the location of l/Th 1, with more unstable values providing a greater
tendency toward instability. This does not mean, however, that if, after closing on altitude.
the roots are unstable the aircraft will be uncontrollable, for tihe pilot can restablize
these rooto with throttle activity. However, the more unstable l/Th, the more throttle
activity is required, the more pilot attention is required, and the closer one is to approaching
the physical limitations of the pilot.

Much more rigorous and comprehensive descriptions are provided in several pubihcatioPs by
Systems Technology, Inc., such as References 4-3 and 4-4. A parallel between the pilot and
the autoland system can be drawn. The location of I/Th has a strong impact on the design
of the attitude, altitude, and airspeed control systems.

To return to the analysis, the effect of mean wind speed on the numerator of the altitude to
control transfer function is derived from the equations on Figure 4-6. The numerator is seen
to be expressible approximately as

Nh = Nh0 - VW0 (Zac M, + Mac)s 2 + Z6 M,

+Z6 (X M - X M)

where Nh0 represents the altitude transfer function zeros in still air. Using the approximate

expression for Nh 0 and the approximate cubic rooting employed in Reference 4-1, the zero
l/Thl may be expressed as

I gM [ VWo/uA 0 1
T4 ho + VW0 /uA0
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Nh(S) , N%() - VW0 F(s)

Nho0 = Nh at 9Wo 0

FIGURE 4-6.-EFFECT OF MEAN WIND MAGNITUDE ON AL TITUDE TRANSFER
FUNCTION ZEROS-NO CROSSWIND

The relevant parameter is the ratio of mean win~d speed to airspeed. A tailwind will tend to

destabilize the zero and a headwind will tend to stabilize it. However, the term gMu/Ma may
be approximated as

gM 2gCL 0

This term is quite small, except for STOL aircraft, andi is on the order of 0.1 for
conventional aircraft during landing approach. Hence, it may be concluded that the effect of
the mean wind speed on altitude control is negligible for conventional aircraft and possibly
moderate for STOL aircraft.
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This apparent change of the point of operation on the thrust required curve is quite real and
can perhaps be explained better physically with the aid of Figure 4-7. As the flight path
with respect to the air mass (B -d) is decreased, the speed at which the change of thrust
required with respect to airspeed is zero shifts to lower speed. More generally, as (8-of) is
decreased, the change of thrust required with respect to airspeed at a given airspeed
increases. The relationship between the flight path with respect to the earth and 0 -cc for
small angles is

O-af= I f-WCos( -W ) 7

(0- a) I > (0- a)l2

(0 -a),

(6-a) 2

(T/W) REQ a(T/W)REQ

VA

FIGURE 4-7.-CHANGE QF a(T/W')REQ/8 VA WITH FLIGHT PATH

This relationship is derived in Appeadix 4A and is plotted on Figure 4-8. If the same
negative glideslope with respect to the earth is maintained, such as for tracking a glideslope
beam, an increasing tailwind decreases the glidesiope (more negative) with respect to the air
and shifts operation to a lower thrust required curve, having a more positive slope at the

Ifsame airspeed. The increase in a(TREQ/W0I 8 VA corresponds to the increase of l/Thl for
the same taiiwind increase.

415



0 required Increasing 7/

Headwind W Taiwind

Decreasingy

FIGURE 4-8.-PITCH A TTITUDE REQUIRED TO HOLD A GLIDESLOPE

4.2.1.1.2 Effects of Mean Wind Shear-The small perturbation body axis components of the

mean wind shear are given by

dii cs( 0.w 0 dVW -

- -= Cos (;0 f0--t + sin (00 - VW0 dh

dW -sin - d'h-dVW Cos ( d -Wo V W( w0) d + - 0) VW0

The shear components are made up of contributions from the variation of mean wind
magnitude with altitude and the variation of mean wind heading with altitude. The latter
effect will cause a component of shear even if the mean wind magnitude is invariar.t with
altitude. Nothing can be said about the relative contribution of the two sources of shear
without specifying wind heading relative to airplane heading. However, if the heading shear
effect dominates, the absolute magnitudes of the shear components are likely to be small.

The mean wind shear introduces effective aerodynamic derivatives proportional to vertical
displacement and the integral of pitch attitude. In general, all six degrees of freedom will be
coupled in the presence of a shear, even though the longitudinal and lateral-directional
degrees of freedom are uncoupled in still air.
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Longitudinal motion is uncoupled froin lateral-directional motion by assuming a wind
heading relative to airplane heading that causes the lateral component of shear to be zero.
For reasonable values of the heading shear, this will mean the wind heading is nearly aligned
to the flight path. Positive values of the longitudinal shear component now correspond to an
increase in tailwin ir a decrease of headwind with increasing altitude. The effects of the
longitudinal shear will be considered in the ;'bsence of a mean wind magnitude. Thus, the
condition considered is near the transition from a tailwind to a headwind or from a
headwind to a tailwind for changes of altitude. The separate effects of mean wind
magnitud,.- and shear can then be considered to be approximately additive.

Th: longitudinal equations and characteristic equation for the assumptions made are
provided on Figure 4-9. Similar to that done for the mean wind magnitude, the

- I characteristic equation can be expressed in terms of the characteristic equation for still air
plus a term proportional to the longitudinal component of shear.

The first observation that can be made is that the shear introduces a new, fifth longitudinc.
root. Unless the aircraft is capable of high L/D at very low speeds (such as for STOL

~alrraft),

Xu Zo- Xa Zu < 0

and the stability of the new root is governed by thr product of the change in pitch
acceleration with speed and the longitudinal wind shear. If the airplane is dynamically stable
in still air, then, for small components of wind shear,

M < 0 stable fifth root

d -W Mu > 0 ,unstable fifth root

For STOL aircraft, where

Xu Zet- Xuj Zu > 0

the reverse it true.

At low Mach numbers, the rigid aerodynamic contribution to M.u is generally negligible. The
primary effects are from the moment arm of the center of gravity to the engines, the
variation of thnust with speed, and aeroelastic effects. The moment arm effect will cause
non-zero Mu without thrust changes with speed at constant throttle setting. F.)r engines
mounted below the (enter of gravity, the moment arm effect by itself is positive. If,
additionally, thrust decreases with increasing speed, as for high bypass ratio engines, there
will be a second negative increment. Positive Mu is considered to be statically stabilizing,
since when an airplane speeds up, it will pitch up and cause the airplane to slow down due
to the gravity component. At very low speeds, the propulsion effect us,ially dominates. For
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I FIGURE 4-9. -EFFECT OF WINiD SHEAR, NO CROSSWIND
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STOL aircraft employing propulsive lift concepts, strong propulsion-system-induced
aerodynamic effects may occur. For aircraft without irreversible controls, additionai effects
are introduced by hinge movements and mass balancing. Airciaft with propellers have
stabilizing effects due to propeller wash. Due to the difficI;lty in determining the sign of Mu ,
many authors assume that it is zero, but rarely is this the case. If Mu should happen to be
zero, the fifth root appears at the origin.

More general information, involving fewer restrictions, can be obtained through root locus
analysis. That part of the characteristic equation proportional to the wind shear component
represents the root locus zeros for variations of the wiid shear component. Some
information on the nature of these zeros can be obtained from a short period approximation
to the equations. When the speed degree of freedom and the ' :igtudinal acceleration
equation are dropped for the short period approximation, the characteristic equation is
expai ,ed as shown on Figure 4-9. For the wind shear roi locus there are two zeros,
given by:

Some parameters inside the radical may be rewritlqn in terms of the airplane's still air
characteristics:

2 2
Mu uo__sp0 ___ 0

2 2 2

u0 Wsp 0 ph0

2g
2

Thus, the short period zeros are given by

Mq + M hUa0 2 2s 0  h
s2,3 2 1± - g2 (Mq+M&) 2
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The quantity ws2 + M&)2is greater than one. A crude approximation to the phugoid

natural frequency is given by

" -gZu-K Uph0 - uO

for small Mu and sufficient static stability. Hence, the quantity inside the radical is
approximated 1-y

w2

(Mq + Maf) 2

which will be negative for aircraft with stable maneuver margins. The short period zeros for
the wind shear root locus are complex with stable real parts. The root locus is shown on
Figure 4-10. An increasing tailwind (or decreasing headwind) with altitude will cause an
unstable real root. An increasing headwind with altitude will cause a lowly damped
oscillatory pair having a positive damping ratio provided

9CLo>0

The short period approximation generally predicts the behavior of the root locus away from
the origin. To determine the root locus near the origin, and thus the effects of wi" ' ;hear on
the phugoid, three-degree-of-freedom analysis must be used. It may be noticed Figure
4-9 that the coefficients for the polynomial representing the short period zeros art the same
as the first three coefficients 'or the coefficient representing the three-degree-of-freedom
zeros. This indicates that the third zero is much smaller than the short period zeros and that
the short period expression for the high frequency zeros is accurate for the three
degree-of-freedom case. I he location of the third zero may be approximated by:

- M + Mu Z

zu

gMu (XaZu - XuZa)
u 2 W2
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O >0,tailwind
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FIGURE 4-la-WIND SHEAR ROOT LOCUS, SHORTPERIOD

* APPROXIMATION, NO CROSSWIND
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There are many possible relative locations of the phugoid roots and the low frequency zero.
The wind shear root loci for some of these combinations are shown on Figure 4-11. Some
conclusions that can be drawn from Figure 4-11 are:

" The primary effect of the wind shear on the phugoid roots is to alter the phugoid
frequency.

" The effect of the wind shear depends on whether the zero _s in a stable or
unstable location. For a stable location, increasing dUw/dh (from zero) increases
phugoid natural frequency and stabilizes the fifth root and decreasing df'w/dh
reduces phugoid natural frequency and destabilizes the fifth root. An unstable
zero locaton reverses the effect.

• Unstable oscillatory roots may form from the joining of one phugoid root and the
fifth root.

o The stability of the phugoid roots for high I dw/dh when phugoid natural
frequency is increased is determined by whether the asymptote is in a stable or
unstable location. The location of the asymptote is given by:

s - Mq + M&] + E{(phugoid roots) - Mu  -

The first term, a measure of the relative locations of the short period roots and
zeros, will generally dominate.

For all conditions, an unstable root or roots due to a wind shear is pcssible. However, there
are stability parameters which will maximize the airplane's tolerance to shears:

• Stable still air phugoid roots and

gMu (XaZu - XuZa )
2 2UOCA)sPo(APh 0

positive and small (unstable zero). This minimizes the instability due to negative
dfW/dh and maximizes the gain margin for positive df'w/dh.

o Large (M&+ Mq)--This assures a stable location for the ±90asymptote.

The sensitivity of the root locations to wind shear has been assessed in Reference 4-5 by
employing the phugoid approximation. The angle of attack is assumed to be unaffected bv
the phugoid and changes of pitching moment are assumed to be negligible. After dropping
the vertical velocity degree of freedom and the pitch acceleration equation, the equations
reduce to those shown on Figure 4-9. The resulting characteristi: equation fo phugoid
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motion on Figure 4-9 is identical to that derived in Reference 4-5. The phugoid damping

('tph W h) is seen. to be unaffected by the shear. The phugoid natural frequency can be
expressea as

* mo wpho +2uO d hW

where Wpho 2 is the phugoid natural frequency in still air. The change in the square u" the
phugoid natural frequency with wind shear is seen to be independent of the aircraft
configuration (except when strong aerodynamic contributions to Zu and Xu exist, such as
for powered lift STOL aircraft) and is most sensitive at the lowest speeds. For example, for
a still air phugoid natural frequency of 0.1 and an approach speed 120 knots, an increasing
headwind with increasing altitude of 18.7 kt/100 ft is predicted to drive one phugoid root
unstable. The phugoid root loci for this simplified analysis are shown on Figure 4-12.

A d.-creasing talwind (or increasing h.a .vind) with increasing altitude is seen to always
tend to cause an unstable or more unstable reai root, and the fifth root from the
three-degree-of-freeuom analysis is missing.

Tle phugoid approximation leads to a root loevs at low frequencies similar to that which
would be obtained by the three-degree-of-freedom analysis with Mu = 0 (which is anassumption of the phugoid approximation) except that the location of the asymptote for

oscillatory phugoid roots is deteimined by the still air phugoid roots using the phugoid
approximation rather than by the short period poles and zeros for the three-degree-of-
freedom analysis. The three-degree-of-freedom analysis piedicts that the effects of increasing
headwind and tailwind with altitude are reversed with the low frequency zero in an unstable
position. Additionally, te location of the low frequency zero relative to the still air
phugoid roots affects the sensitivity of root locations to a wind shear. In general, the
movement of the roots will be less sensitive to wind shears than is predicted by the phugoid
approximation.

; IAn analysis on the effects of wind shears has also been conducted in Reference 4-6, using a
substantially different set of equations. There, it is implied that wind shears have no effect
on the short period for level flight, However, the equations in Reference 4-6 do not provide
for the existence of the z or vertical translation derivatives provided on Figure 4-4. and the
existence of which is acknowledged in Reference 4-7. The root locus for wind shear is the
same as that for the phugoid approximation on Figure 4-11 even though Mu is not assumed
to be zero.

For the case where the longitudinal component of shear is zer ) but the lateral component
r.. ,-zero, longitudinal motion will be unaffected by the shear, but lateral-directional
mruton, from Figure 4-4, appears to be dependent upon both the shear and longitudinal
mot ion. However, when the deteininant of the characteristic equations is expanded, all
terms containing the lateral component of sheft cancel, leaving lateral-directional
characteristic motion invariant wit!, shears. The sw-ae conclusion cyn be :-ached for any
heading of the mean wind for the assumptions specified (particular dependence is on the
assumption of wings init'illy level).
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The longitudinal component of wind shear alsc alters the numerators of the longitudinal
responses to control input transfer functions. If the control input is considered to be
column (or elevator), the speed transfer function has a free s in the numerator as before,
but the attitude and vertical velocity numerators are altered.

As shown on Figure 4-13, a positive shear decreases the high frequency zero (liTe2 ),
commonly called "L&," and is actually approximated by the change of lift with vertical
velocity (Lw), but increases the low frequency zero. The former effect is the same as a
reduction of the lift curve slope. The high frequency zero governs the amplitude of the pitch
attitude response at frequencies near the short period, and too low a value can give the
appearance of the airplane being excessively sensitive. The high frequency zero is also the
inverse of the flight path to pitch attitude lag time constant, and low values can cause
difficult altitude control. However, the change in the 0/,y lag ;s due solely to the quic.kening
of the attitude response for, as shown on Figure 4-13, the altitude response to control input
is unaffected by the longitudinal component of shear.

The low frequency zero influences the ability of the pilot to stabilize the phugoid using
pitch attitude feedback. Negative shears can cause closed loop phugoid instability.

Altering the high frequency zero also has the effect of changing the short period attitude to
column gain. A positive shear component will provide an apparent increase in stick force per
g. Pilots will prefer a higher optimum stick fcace per g in negative shears (increasing
headwind with increasing altitude) than for sti.i air.

The longitudinal component of shear does not affect lateral-directional motion. When the
wind heading is such that the longitudinal component is zero ana the lateral component is
non-zero, the equations, developed from those on Figure 4-4, appear to have lateral-
directional motion affected by longitudinal motion (through the z and $0 derivatives
proportional to the lateral component of the shear). However, when the determinants for
the characteristic motion and the numerators of the control transfer functions are
expanded, all terms containing the shear cancel and lateral-directional motion is left
unaffected.

4.2.1.2 Effects of Mean Wind, Distributed Lift

If an airplane is at a non-zero bank angle in the presence of a wind shear, the airspeed on
one wing will be greater than that on the other. If the airplane is at a pitch attitude, the
airspeeds at the wing and tail will be different. These distributed lift effects introduce forces
and moments proportional to the wind shear.

Reference 4-7 has classified the distributed lift effects of a mean wind shear according to
those which produce a change in the conventional stability derivatives and those which
introduce new effective aerodynamic derivatives. In the former classification fall corrections
to the angle of attack, sideslip, and control power derivatives caused primarily by a dynamic
pressure at the tail different from that at the center of gravity.
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New derivatives introduced are such as rolling and yawing moment derivatives with respect to
bank angle proportional to the shear, and the wing contributions to derivatives with respect
to yaw rate (Lr and Nr). Thus, the new terms are equivalent to introducing angular
components of wind, as shown on Figure 4-14. When the change of the shear with respect to

F altitude is small compared to the dimensions of the aircraft, the distribution of the wind
across the airplane is well approximated by a linear distribution with a slope computed at
the center of gravity. The effect is the sare as the airplane rolling in the opposite direction
in a uniform wind field. That is,

+(
LpPW 25(Lp)WN -ay

W

Wind shear

Slop

Wind velocity at left wing tip-

9WCO 2k &W 2L W b sinqCcGG "h ay CG ah
Wind velocity at right wing tip =

%w+ +-,, .sin

FIGURE 4-14.-WIND SHEAR DISTRIBUTION ACROSS AN AIRPLANE WING
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There will also be a contribution to L pW from a vertical dircibution of the lateral
component of wind over the vertical tat. Thus, the ;'"-oe complete expression is

LpPW = (Lp)wING (- " + (Lp)VERTICAL (Gz)

In general, all thiee components of angular velocity will be generated from the body axis
gradint of wind velocity. The components of the gradient can be expressed by

aw AW 61, X =u,v,w
-' =7h ,- x, y, z (body axis)

The derivatives of the body axis wind components are developed from the mean wind axis
to body axis transformation, and are shown on Figure 4-15. The change of altitude from the
center of gravity to any point on the airplane is expressed using the body axis dimensions
and the body axis to earth axis transformation.

For linear analysis of stability, the perturbations of the effective angular wind components,
or the perturbations of the body axis gradient of wind, are of interest. These are shown on
Figure 4-15. For the initial conditions of wings level and level flif.gt (0) = 0 for the stability
axis cystem), the non-zero terms can be expressed in terms of the longitudinal and lateral
components of shear and the perturbations of pitch attitude, heading, and bank angle. When
these terms are combined to form the effective wind angular vc!ocity perturbances, only the
effective yaw and roll raies are non-zero. In general, for arbitrary airplane attitudes, all the
terms in the wind angular velocities will be non-zero, but the other terms will be
negligibly small.

The perturbation yawing and rolling moments due to wind yaw and roll rates may be
written as:

NrFW Nrw -ax) rW a5y2)

-NrV T  0 -NrW -d h

= - N O0 -N

LF L x 'f + LrW \-af'
r7 V (- lw

dlW rWl=- Lrv ---1 0 - Lrw -j -j

= - L00 - LOOb
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NP 1 w = NpV~ a(
dGw

PVdw

LPF w  =Lpv z

dr1w
= _Lpv-- --)

L

(V and W subscripts on aerodynamic derivatives refer to vertical tail and wing coniributions,
respectively). The 6 prefixes have been dropped with the recognition that variables are small
perturbations.

The effective bank angle derivatives are as described in Reference 4-7- The pitch attitude
derivatives provide an apparent dependence of lateral-directional motion upon longitudinal
motion, but when the determinants of the six simultaneous equations are expanded these
derivati-es are found to affect neither characteristic motion nor numerators of control
transfei functions and can be ignored. The remaining distributed lift derivatives are all
proportional to the longitudinal component of the mean wind shear.

The distributed lift effect is the only mean wind effect predicted to alter lateral-directional
motion. Substituting the expressions for the effective angular wind velocities into the
equations on Figure 4-2 yields the characteristic equations on Figure 4-16. The first effect
that may be noted is that the distributed lift effect in a wind shear produces a new,
fifth root.
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For small values of the longitudinal component of wiad shear, the terms proportional to the
square of the longitudinal component of shear may be ignored. The terms proportional to
the shear form a cubic and the signs of the coefficient are given by:

F1 (s)=a(s 3 +hs.2+-s+a-)a d

where

>0
a

c > 0 , L small negative or positive
a <0 , Lp large negative

d<0
a

The roots of the polynomial multiplying the longitudinal shear component form the zeros
of the root locus for variations of the wind shear. There must be at least one of these zeros
on the real axis in an unstable location.

To gain more uidC.tanding of the root locus characteristics, a roll mode approximation is
made. The heading and b&,, velocity terms are dropped and only the roll equation is
retained. The resulting equation on rig,,re 4-16 provides for the roll mode and a second root
near the origin. The wind shear root locus 2-r the roll mode approximation is shown on
Figure 4-17. There it is seen that a positive shear ,cTiponent reduces the roil mode time
constant and provides for an unstable real root. A negative shear component provides real
roots that eventually join ard form an oscillatory pair.

A second approximation that can be made is the lateral oscillation or Dutch roll
approximation. For the Dutch roll mode, sideslip and heading are nearly equa,' and opposite.
An approximation to the product of the Dutch roll mode end the roll mode time constant
can be made by assuming 0 = -P and by dropping the side acceleration equation. The
equations for this approximation are shown on Figure 4-16. An investigation of the
quadratic for the root locus zeros for the lateral oscillation approximation indicates that the
zeros are a stable oscillatory pair for small negative or positive Lp or two real roots, one
unstable. for large negative Lp. The root locus for the Dutch roll approximation is shown on
Figure 4-17. When Lp is small, the character of the roll mode time constant and the fifth

Yroot are as predicted by the root locus for roll mode time constant approximation. A
positive shear component decreases Dutch roll natural frequency and may drive the Dutch

L roll unstable. A negative shear increases Dutch roll natural frequency and damping. When Lp
is large negative, the effect of the she.r on the Dutch roll mode is reversed. Sufficient!y large
values of negative shears will drive the Dutch roll niode unstable.

t
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Neither of the approximations predicted the third root locus zero. The third zero location
may be approximated from the ratio of the constant root locus terms for the
three-degree-of-freedom equation and the lateral oscillation approximation equation:

s~g (LpNpv + LpvNp)
u0 (Nrw"p -TN

For small negative or positive Lp, the location will be unstable. For large negative Lp, the
location is unstable. Combined with the zeros from the Dutch roll approximation, there will
always be one unstable real zero. Now, the root locus for the three-degree-of-freedom case
may be drawn and is shown en Figure 4-17.

For the three-degree-of-freedom analysis, the wind shear root locus exhibits the following
characteristics:

A positive longitudinal shear component increases the Dutch roll natural
frequency and damping, increases the roll mode time constant, stabilizes the spiral
mode, and provides for an unstable fifth root no matter what the size of La. The
instability of the fifth root is less than predicted by the lateral oscillation
approximation.

. A negative longitudinal shear component decreases Dutch roll natural frequency
and damping, decreases the roll mode time constant, and causes the spiral mode and
the fifth root to form an oscillatory pair. For small Lp the low frequency
oscillatory pair may be unstable and the Dutch roll stable. For large negative Lp
the low frequency oscillatory pair will be unstable for a sufficiently large negative
shear component.

Clearly, the important parameter governing the stability of the Dutch roll mode is L8 , the
dihedral effect. Small Lp stabilizes the still air Dutch roll mode and ensures that the Dutch
roll will be stable in wind shears. However, there is a tradeoff between the Dutch roll and
the spiral/fifth root, Small Lp destabilizes the spiral in still air and causes an unstable
oscillatory pair, formed by the spiral and fifth root, in the presence of a wind shear. The
optimum value of Lp for operation in shears is likely to be a compromise, just as it normally
is for still air.

The distributed lift effects have not introduced any new explicit terms describing aircraft
size. The effects of size are contained within the aerodynamic derivatives.

Perhaps the most important lateral-directional transfer function is the bank angle to control
input (wheel) transfer function. The numerator of this transfer function is second order. As
shown on Figure 4-18, the distributed lift effects of wind shear introduce a new real root.
Positive shears reduce the frequency of the still air oscillatory pair zeros. A fundamental
handling qualities requirement for these zeros is that their natural frequency be less than or
equal to that 'or the Dutch roll iaode to ensure that closed loop control on bank angle do
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not result in high frequency unstable roots but that the difference not be so large as to cause
a roll rate reversal (Ref. 4-4). Figures 4-17 and 4-18 show that a headwind increasing with
increasing altitude dereau.es Dutch roll natural frequency and increases the frequency of the
zeros. Thus, for a sufficientiy large value of Idffw/dhl, wO Ad > I and there will be a
tendency towards closed loop instability, equivalent to pilot-induced instability.

The distributed lift effects of the longitudinal wind shear component affeut the numerators
of all the lateral-directional transfer functions and may need to be considered for the design
of feedback systems, eithei automatic or through the pilot.

4.2.1.3 Effects of Turbulence

Turbulence velocities, unlike the mean wind, are not described uniquely with time or space.
Rather, the description is stochastic and affects the linear equations as forcing functions. If
once again, a component of wind is equated to the sum of mean wind and turbulence,

AW = W +;kT

where X = u, v, w.

The turbulence terms on Figure 4-2 are placed on the right-hand s-de of the equation. When
turbulence and mean wind are both present, the effective aerodynamic derivatives due to
the rmean wind are included on the left side of the equation.

Assuming the mean wind shear to be zero and representing the airplane at a point (no
distributed lift effects), the relevant linear equations for analyzing the effects of turbulence
are those on Figure 4-19. From these equations, transfer functions of aircraft motion with
respect to turbulence components are computed.

The transfer functions define aircraft motien for arbitrary turbulence input. Together with
the turbulence spectra, the airplane motion due to turbulence is defined. The mechanism for
relating the two is the "output spectrum."

The transfer functions and the turbulence spectra combine characteristics to permit
consideration to a frequency range, outside of which characteristics of turbulence or the
transfer functions are less important. This "frequency range oi interest" is important for
permitting the simplification of models and simulation techniques. Two important
parameters which influence airplane response within the frequency range of interest are
speed, used to transform ipacial to temporal frequency, and altitude, upon which
turbulence characteristics are dependent.

The final effects of turbulence considered are the distributed lift effects and their
representation. That is, because the aerodynamic characteristics do not exist at a point and
because the spacial distribution of turbulence is not uniform over the airplane at a given
point of time; representing thre , linear components of turbulence at the airplane center of

* gravity, implied in the equations of Figure 4-19, may not be sufficient.
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4.2.1.3.1 The Output Spectra-The variance of airplane motion due to turbulence may be
determined from the area under the output power spectra in the same manner as the

l variance of turbulence is determined by the input spectra. When there is a single random
input, the output power spectrum is defined (Ref. 4-7) as:

@I0(wo =-- (w) 01 (w)

where M(co) is the amplitude frequency response of the output to input transfer function
and 0i(w) is the input power spectrum. That is, simp!l,' multiply the square of the
frequency response by the input power spectrum.

j If there are more than one uncoirelated random inputs,

n
O= Mi2 (w) ,bI(w)

i=!I

For example, if the power spectrum of normal load factor is desired and there are three
uncorreiated linear components of turbulence,

S2 n 2 2), Lz o I ( +~I , ' o w ) .(-w- I WT( W

If, in addition, the random inputs are not uncorrelated, the output spectra must include the
effects of the cross-spectra. According to Reference 4-7:

n n
0(W)= Gk*(iwo) 4 'lk( ) G2(ico)

k=l =!

Were G (iw) is th' complex frequency response and G*(ici) is its complex conjugate. For
three correlated components of turbulence, the normal load factor power spectrum is
definedI by:
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The output spectra provide the means for analytically estimating the effects due to
turbulence. In particular, the normal load factor spectrum is used in loads analysis. It is
generally assumed that all the turbulence cospectra terris are negligible (not necessarily true
at low altitudes), that the load factor to lateral turbulence transfer function is zero (not true
when spoilers are used for lateral-directional stability augmentation), and that the load
factor due to the longitudinal turbulence component is relatively small (not true at very low
speeds where it will dominate).

There is no simple rule relating output variance to input variance. If a turbulence spectrum
were a constant with all frequencies, thus providing an infinite turbulence variance, the
output variance would be finite so long as the outrut to turbulence frequency response has
a high frequency asymptote that decreases with increasing frequency. Furthermore, it is
insufficient to use the magnitude of the input variance or covariance to determine whether
or not that input has a significant effect. If the input had a large variance but one which was
concentrated at a frequency where the appropriate transfer function had a negligible
frequency response, the effect of the input may be negligibe. To be significant, large
contributions to the input variances must occur at the sante frequencies where the transfer
function frequency response is large. In effect, the input spectrum and the frequency
response provide mutual filtering.

4.2.1.3.2 Frequency Range of Interest-The concept of the output spectrt'm can be used to
show that there is a frequency range of interest above and below which accurate
representation of the airplane and turbulence is not important.

First, it may be recalled that the contribution of a frequency range to the turbulence
variance is the area under the spectrum multiplied by frequency when plotted against the
logarithm of frequency. Such plots for the Von Karman spectra are presented on
Figure 4-20.

440



S 0

'4

co

Co

0 0

z I

c; c;

441



At high and increasing frequencies, the contribution of successive frequency octaves to the
total turbulence variance decreases until, above some frequency, the contribution of all
higher frequencies is negligible. Similarly, the contribution of successively lower frequencies
at low frequencies diminished until at some low frequency the contribution of all lower
frequencies is negligible.

If a transfer function between an output parameter and an input turbulence component
were a constant (invariant with frequency), the output spectrum shape would be the same as
the input spectrum shape and once again there would be frequencies above and below which
the contribution to the output spectrum would be negligible. This argument can be
generalized. If, at high frequencies, a transfer function has an asymptote that is constant or
decreases with frequency, the output spectrum will decrease with frequency at high
frequencies and there will be some frequency above which the contributions of higher
frequencies to the output variance will be negligible. Similarly, if the transfcr function is
constant or increases with frequency at low frequencies, there will be a lower frequency
limit below which variance contributions are negligible. The intermediate frequency region
in which contributions to the output variance are not negligible constitutes the frequency
range of interest for that particular output parameter.

The frequency range of interest for a particular output parameter will, in general, depend on
the entire output spectrum shape, but upper and lower frequency limits tend to vaiy with
the high and low asymptotic character of the transfer functions. If an asymptote of a
transfer function is given by 0/I = ksn, thtn the output spectra asymptotes are:

2 2n-Z
(041 .k high frequencies

kw 2n+l low ftequencies

The upper frequency limit decreases as n becomes more ncgati-v and tht lower frequency
limit increases as n becomes more positive.

To ensure there are frequency ranges of interest for all output parameters, it must be
ensured that the transfer functions for all parameters do not have frequency responses that
increase at high frequencies or decrease at low frequencies. In general, there are position,
velocity, and acceleration psrameters to be considered. However, upper frequency limits for
velocities and accelerations are ensured if the corresponding position transfer functions
decrease at least as fast as s2 (wo2) at high frequencies.

The high and low frequency asymptotes for the hinear and angular position transfer
functions derivable from the equations on Figure 4-19 are presented in Table 4-1. All vary at
high frequencies as s except for the O/WT transfer function. However, the high frequency
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gain for that transfer function is M ,, which does not actually qualify as a point lift term
since it is due to the finite time required for downwash produced by a lifting surface to
reach a trailing lifting surface. Hence, for a point lift representation, swT should not be
considered a turbulence parameter. The distributed lift effects shall be considered
separately. It may be noted that there must be an upper frequency limit to ensure a finite
output variance.

Three transfer functions on Table 4-1 do not satisfy the low frequency asymptote
requirements: h/wT, Ax/uT, and Ay/vT, parameters corresponding to inertial linear
position. These decrease with increasing frequency at low frequencies. This would appear to
invalidate a lower frequency limit. However, these transfer functions are open loop transfer
functions. Pilots apd reasonable autopilot designs can effectively eliminate the turbulence
disturbances at sufficiently low frequencies. Hence, for closed loop considerations, there is a
frequency below which the open loop spectrum is unimportant, whether or not the open
loop spectrum has a significant contribution to the open loop variances below that
frequency.

It is difficult to generalize on a frequency range of interest for all motion parameters.
Accelerations are significant at higher frequencies than displacements, and vice versa. To
define a single frequency range, the highest and lowest frequencies must be applicable for
any of the response parameters and will necessarily be conservative for any single parameter.

In the absence of structural modes, transfer functions will generally not increase much
above the short period or Dutch roll frequencies. The upper frequency limit may then be
considered as, say, a decade beyond the lesser of the short period/Dutch roll natural
frequency or the highest turbulence break frequency.

Pilot or autopilot closed loop turbulence effects are likely to be negligible below about 0.01
rad/s,.-c in the absence of lowly damped oscillatory roots near or below that frequency.

4.2. 1.3. - Distributed Lift Effects of Turbulence-Up to this point, turbulence has been
represented as though the aerodynamics of the airplane were concentrated at the airplane's
center of gravity. Alternately, the representation incorporates a uniform turbulence field
over the airplane such tl-at the components of turbulence are invariant with position: a
temporal change in turbulence at the center of gravity is accom.-)anied by identical changes
of turbulence components on all other locations or the airplane. As neither of these
descriptions is correct, the point representation is at best ar. approximation that assumes
that the airplane dimensions are "vanishingly small with respect to the wavelengths of all
significant spectral components" (Ref. 4-7). That is, the point representation may be
expected to be most valid for very long turbulence wavelengths. If the frequency range of
interest is only at low frequencies, then the point representation may well be valid.

Reference 4-7 has examined the validity of the point representation. The position is taken
that the representation is valid below some frequency. For the longitudinal spacial
frequency component of turbulence, the representation is considered valid until the
complex amplitude of the lift on a finite wing flying through a sinusoidal inclined wave of
upwash deviates too far from the response at zero frequency. From a theoretical solution, the
region of validity is given as
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U/2 <0.05

where II1 E/2 is the nondimensional or reduced frequency, k,

k = wF/2VA

Alternately, the point representation for chordwise distributions of turbulent velocities is
good for

[ 1/6- >60

For a mean chord of 20 feet, turbulence wavelengths in the longitudinal direction less than

1200 feet must not lie in the frequency range of interest.

The wavelength limitation in terms of mean chord must be considered a rough guide. The
limitation is most certainly dependent upon wing geometry. For a living with a zero taper
ratio, the specified wavelength limitation is likely valid for outboard sections but invalid for

inboard sections where the chord may be substantially larger than the mean. Also, this guide
considers distributed lift effects over the wing only; there are also strong aerodynamic
effects due to the nonuniform distribution between the wing and the tail. The length of the
aircraft is a sufficient, but perhaps not necessary, dimension fEr testing the validity of the
point representation. In any event, the order of magnitude of the maximum valid
wavelength indicates possible error by the point representation in at least the frequency
region of short period motion.!I

For the lateral spacial frequency component, the point representation is found in Reference
4-7 to be accurate within 10% up to the reduced frequency

! 2 2 b/2 < I

or

X2/b > r

Thus, the point repres-'tation for lateral distributions of turbulence is far more restrictive
than for longitudinal distributions.

The accuracy of the point approximation for vertical distributions or turbulence is not
considered in Reference 4-7 but is often assumed acceptable either through representation
of the airplane as being two-dimensional or by assuming that the effects of the vertical
distribution are negligible.

Perhaps the most rigorous method of attacking the general problem is the panel method.
The surfaces of the aircraft are divided into many small panels having dimensions
sufficiently small that the point aerodynamic representation for a single panel is accurate.
The aerodynamics of any one panel are coupled with those of all other panels through the
aerodynamic influence coefficients (downwash in panel i due to lift on panel j). The total
forces and moments are found by summing the contributions of each of the panels. The
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force and moment power spectra may then be computed from the output spectrum concept
involving input spectra for each of the panels and cospectra etween each pair of panels.

The panel method is similar to that used for load analysis and permits the inclusion of
unsteady aerodynamic effects and structural modes. A.zcuracy from this method is limited
only by the limitations of the modeling, the capabilities of the computer, the accuracy of
the mathematical routines, and the accuracy of linearization. Solution by this technique is,
however, quite laborious. A large amount of time is required for modeling, the cospectra
tend to be quite complex, and solution of the large number of simultaneous equations is
performed in the frequentcy domain and is quite slow and expensive. Seldom are the full
distributed lift effects represented, even for loads analysis. Simplification is possible,
however, through recognizing that the input power spectra are the same for each panel and
that the input cospectra for all panels separated laterally by the same distance are the same.
The cospectra for two paths separated laterally are derived and presented for the Von
Karman spectra in Reference 4-8. Physical interpretation is difficult using this method, but
Reference 4-9 provides some of the possible mathematical simplifications and some general
results.

Drect application of the panel method to simulator usage is out of the question.
Computational time and computer storage requirements are beyond the scope of digital
real-time solution, particularly for simulation of nonlinearities. The technique may lead to
the design of approximate filters or forms of force and moment spectra that could be used
in place of turbulence spectra. Such applications are not well adapted for low altitude
simulation, where rtlatively large speed changes and turbulence changes with altitude occur.
The applications would also tend to be quite configuration dependent.

A much simpler and more physically understandable technique has been developed by
Etkin. As first presented in Reference 4-10, the distribution of a turbulence component over
an airplane is expressed using a Taylor-series expansion about the center of gravity. For a
two-dimensional representation of the airplari,, the vertical component is represented by:

WTx Y)aW xw taT2 T ;x2
WT(x'Y) = 1WT0 \x \ 'x 20 + O/

/a2 WT I ( 2T
axa y L y .....

All derivatives are evaluated at the center of gravity. The zero order term corresponds to
turbulence for a point lift representation. Thus, the method superimposes the distributed
lift effects upon the point representation effects.
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The first order derivatives are equivalent to introducing angular velocity components of
turbulence, just as was done for the mean wind distributed lift effects:

awT awT
-T' PT

In Reference 4-10, the second order derivatives with respect to x and y are interpreted as
a parabolic downwash distribution anJ the second order xy derivative is described as
periodic cambering at each section, with amplitude of the camber proportional to y and
antisymmetric with respect to the airplane centerline. Interpretations of higher order
derivatives are much more difficult.

In Reference 4-10, Taylor-series derivatives up to the second order are retained, but in his
subsequent publications (Refs. 4-11, -12 and -7) Etkin has restricted his attention to the
zero and first order terms. From Reference 4-12: "Gnerally speaking, since the input
spectra corresponding to [second order derivatives] are relatively so weak, it appears that
rough estimates of the second order derivatives will serve well enough for analysis. A note of
caution must be sounded in this connection, however, when elastic modes of the aircraft are
involved, for then the second order terms may be more important." The distributed lift
effects are thus represented entirely by angular components of turbulence, implying that the
turbulence field is linearly distributed abo.t the center of gravity.

If an extension from the two-dimensional representation to the three-dimensional
description is made (accounting for the finite size of the vertical tail), the incremental
distributed lift effects are represented not only by effective angular velocities acting on the
wing, but also by using effective angular velocities acting on the vertical tail:

Wing angular velocities Vertical tail angular velocities

awT auT
qT = ax qT z

aWT v

auT avT
rT y rT ax.-

The total effective angular velocity is made up fom the wing and tail terms weighted by
their relative aerodynamic contributions. For example,
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or,

The aerodynamic (relative to the ai mass) angular velocities are made up from the angular
velocity of the airplane relative to the earth less the angular velocity of the wind relative to
the earth. For example,

PA =P PT

This is the same technique as used for the mean wind distributed lift effects.

Having determined that distributeC; lift effects may be represented by angular components
of turbulence, it remains to specify the power spectra of the angular components and their
cospectra with the linear components.

In Reference 4-12, it is shown I, hat the three-dimensional power spectrum of a displacement
derivative of a turbulence component is given by

~2

atk ak

and the cospectra are given by

ak iak O iXJ

where

i,j,k = 1,2,3

X'1  = UT

2 = VT

3 = wT
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The one-dimensional spectra are obtained by successive integrations with respect to the
transverse spacial frequencies. For the cospectra and power spectra involving derivatives
with respect to the longitudinal coordinate, the following simple relationships result:

41x ax 02 1) = S21 2 b XXk M Il

ax ax
a , 1)=is~l b?,X (a 1)

The one-dimensional expression for derivatives with respect to the transverse components
cocrdinates is more complex. One bad result from this procedure occurs: The variance of
the effective angular components of turbulence is infinite due to the S2/ 3 asymptote of the
power spectra for the turbulence component spacial derivatives. The explanation is that a
first order Taylor-series approximation is inadequate at high frequencies. A physical
interpretation is provided with the aid of Figure 4-21. At low frequencies, the linear

turbulence field representation over the airplane dimensions is accurate and, in fact, exact at
zero frequency. At short wavelengths, the linear approximation is poor and estimating the
distribution by the slope of turbulence velocities at the origin drastically overpredicts the
effects of the distribution. At low frequencies, the updraft on one wing combines with the
downdraft on the other wing. At high spacial frequencies, updrafts on one wing are

counterbalanced with downdrafts on the same wing as well as downdrafts on the opposite
wing. At infinite frequencies, the net rolling moment must be zero. The linear
approximation, however, increases the rolling moment with increasing frequencies.

To account for peta haeben trunated at the mximum f prenesentation,
the three-dimensional spectra have been truncated at the maximum frequencies before
integrating with respect to the transverse spacial frequency components in References 4-10
and 4-12. This is analogous to abruptly reducing the one-dimensional spectra to zero at
some frequency.

Truncation of the three-dimen.-ional spectra not only affects the effective angular velocity

spcctra, but also the linear velocity power spectra. That is, the lift on a finite airplane due to
a turbulence field is less than that from a point lift representation. This can be demonstrated
by a simple example using the output spectra concept. Consider a two-panel representation
of the airplane whereby a panel represents half of the wing. Over each panel, the turbulence
is considered to be uniform. The power spectrum of lift due to vertical turbulence is
given by:
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L aWT ]  WL \awT R kawTg - awT WLWR

The power spectra for turbulence on the left and right wings are equal (wT L = 4wTR)

and the derivatives of lift produced by each half of the wing with respect to vertical
turbulence are equal to each other azid half the airplane's entire lift derivative:

aLL a LR 1 CLqs
awT awT  

2  u0

Thus,

LCL ( s)2 + I'wLwR]
(LIFT =2\ 2u0 ] (D1 w

,j • The point lift representation expression is

''LIFT= 1 0 S)

The two expressions are equal only if 0wLwR = 4l This can happen only if the two panel

centers coincide. It is a sufficient approximation if the distance between the two panel
centers is close with respect to the scale uf turbulence. The cospectra for two paiallel
turbulence velocities separated laterally have been developed for the Von Karman spectia in
Reference 4-8. The analytic form of these spectra are quite complex, but they are
reproduced on Figure 4-22 for various ratios of s'.paration distance to turbulence integral
scale. A 20% error at low frequencies occurs for separation of the panel control points equal
to about 30% of the integral scale. For straight, untapered wings (mean chord at the middle
of the semispan), a significant reduction of the lift spectrum (10% error) occurs when the
wing span is greater than 60% of the integral scale.

Of course, a two-panel representation is quite crude and more panels will require knowledge
of the section lift curve si,;. -s. The equations that result from more panels are vastly more
complicated, but will reduce to the point representation for very small distances. As
previously discussed, the panel method is not considered suitable for simulation.
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The Fourier component method treats the effects of distributed lift on the force spectra by
t:.'ncating the frequencies over which integration of the three-dimensional spectra is
performed to achieve the one-dimensional spectra. That is,

lat, er Oij 21, S12, 923) d622, d23

- S2 3 - " 2

where S2 , 2 -maximum frequencies for which repre-.ntation is valid to account for the
lateral dimensions rather than

ijb f L 0ij (S21, 922, S23 ) dS22 dS23

as used for the point representation. The spectra (Pj (91) then becomes the effective
one-dimensional power spectrum associatd with the first order Fourier-series approxima-
tion. The power spectra that result from finite spanwise dimensions are prevented on Figures
4-23, -24, and -25, for the Dryden spectra, taken from Reference 4-12. The spectra are seen
to be reduced at high frequencies with decreased maximum transverse spacial frequency.
These spectra must be considered as approximate, since truncation eliminates all
contriburion. of higher frequencies while it is likely that higher frequencies have
continuously diminishing contribution to the effective turbulence velocity power spectra.
This inadequacy of truncation has been noted in Reference 4-7 with refeience to the rigid
body response to turbulence: "It is probably better, and certainly cimpler, to use the basic
(i-ot truncated) one-dimensional spectra on the grounds that including the small
contribution vith an inaccurate theory is better than leaving them out altogether."

The spectra on Figure 4-25 cannot be compared directly with that on Figure 4-22. Rather,
the effects of the spectra on Figure 4-25 plus the effects of the spectra Io" the angular
components of turbulence are compared to t' effects of the spectra on Figure 4-22.

Reference 4-7 has compared the flist order Taylor-series method to a theoretical solution
for lift, pitching momnent, and rolling moment of a wing in a turbulence field and has
concluded that without incorporating unsteady aerodynamics, the first order Taylor-series
method is accurate for

E1 < IIF" or Ai > 2iRT

S22 < 2/b or ,2>wb

7"us, the first order Taylor--eries method represents a factor of 10 improvement for
distril-tions along the x axis over the point approximton, but provides no improvement
for fpanwise disturoances. That is, althougn the effective turbulence roll rate may be

ificant, its inclusion provides no improvement over the results from assuming the
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spanwise dimensions are zero. Other, more complex methods, can be used to approximate
the spanwise distribution but tend to be heavily dependent upon airplane configuration and
flight condition. As a consequence, the spanwise lift distribution effects will not be
included. This does not mean that turbulence will not produce rolling moments; strong
rolling moments due to turbulence are produced through Lp, the dihedral effect, and the
lateral component of turbulence.

The significance of the roll component of turbulence at low frequencies can be evaluated by
examining the rolling moment spectra, assuming rolling moment is due only to roll rate and
sideslip. (Ignore yaw rate terms, the object is to compare the relative importance of roll rate
and sideslip.)

4 x =)

4 x 4  v 'v

It may be noted that no correlation between the effective turbulence roll rate and the latcral
component of turbulence is included, correctly implying that the two are perfectiy
uncorrelated.

The aerodXnamic derivatives may be written in terms of Cl1 and C (p nondimensional
roll state, p = pb/2V) to remove some of their dependence upon speed:

VA 4 Y

To conclude that the effective turbulence roll rate is insignificant in the region of validity
for the first order Taylor-series representation, it must be concluded that

7*v\c 12
2 C13

At low frequencies, 0.. _ =v 2 Lv/27r" The turbulence roll rate spectrum is presented
on Figure 4-26, as taken troin Reference 4-12. The low frequency gaiin of this spectrum has
been cross-plotted on Figure 4-27 as a function of the lateral cutoff spacial frequency. This
gain is on the order of 4,pJ2 1 = n -5 aw2/Lw. Thus
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b2 )ir lw\ 2  b2

Assuming level flight and using the requirement of isotropy at high spacial frequencies,_ Lv/Lw = (ov/aw) 3,

4 4 v 2 r~)(Ov/0w)5

At high altitudes, the integral scale of vertical turbulence will be large compared to the span
and this term will be very small. At low altitudes, the vertical turbulence integral scale may
be less than the span, but the ratio of the lateral to vertical turbulence rms levels will
increase from one to two, and the overall effect will once again produce a small term. Thus,
so long as CIA/CI is not large, the turbulence roll rate effect will be negligible at low
frequencies.

The roll damping derivative is determined by the lift distribution and the wing geometry.
Speed effects occur unly through compressibility effects. A reasonable number, for CIO,
from the data in Reference 4-11, is -0.4.

The dihedral effect has primarily two parts, one due to the geometric dihedral and another
proportional to the lift coefficieslt and due to the crossflow across the fuselage. The latter
term will usually domii,a.e at !ow speeds. A reasonable estimate for the proportionality
constant, from the data in Reti'rence 4-1I, is -0.2. Thus

-O.2 CL -- 0.2 W/S

For a wing load of 100 lb/tt 2, Cla will be about the same magnitude as Cj for a speed of
about 1 20 knots. This ignores the geometric dihedral effects, which will ten'to increase the
speed at which CIA = CI.

Reduced speeds cause increased Ch . Thus, it is concluded that the roll damping term is
unlikely to be greater than the ihedral effect for landing approach. Even though this
conclusion is reached by some very crude analysis, it is unlikely that CIA/Cj will become
sufficiently large to overcome the smallness of

Sb) I
2 -- _ " (Ov/Ow) 3

at low frequencies.
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The result is agreement that the roll rate spectrum is unlikely to have significant effects in
the range of frequencies foi which it is valid.

It remains to represent gust penetration. As stated, the turbulence pitch and yaw rate
spectrum are given by:

Dqq(S21) = aW wT = 12,
4 w(21)

ax ax

qw(fl1) = a U_ =i214 w (S2i)

ax WT

Drr(621) = 4avT avT =S212,pv(2l)

rv(92) = 4avT =ia 1 Z v(6l)

-- vT

These relationships are provided in Reference 4-12 but are accurate only for large
wavelengths and must be attenuated for decreasing wavelengths. Rather than truncating theI: spectra, they will be filtered. Reference 4-1 i suggests that the unfiltered spectra are good
for wavelengths greater than eight times the relevant length, ba.ed on eight straight lines
providing a fair approximation to a sine wave. The filter time constant is thus

. 27 27r =. -rad/ft
T 8 4R

and the pitch and yaw rate power spectra become

=12

qq 142,\ 2

a212

1+

These spectra have the same form as those in Reference 4-13 and are presented on
Figure 4-28.
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If the linear components of turbulence are produced by a temporal process, then the correct
cospcctra and power spectra are produced by

VAI + M TTV A

T s S
VA I +'.AsvT

The time rate of change of linear turbulence velocities is similar to, that of the angular
velocities:

aUTdx [s ]L
UT = x dt I + (4Q/rVA) s UT

av T dx _s ]

vT x- Tx t 1+ (49/7rV A ) s1v

aWT dx_ s11x 't I + (4./rVA)s WT

The angular turbulence velocities are combined with the angular inertial velocities to provide
angular velocities of the aircraft with respect to the air mass. These in turn are used to
compute the aerodynamic forces and moments. That is,

ACm CM qA + Cm& aA__ Cmq

Cm q - qT) + Cm - dT )

Although the forebody has aerodynamic loads, the major contributions to forces and
moments are pioduced by the wing and tail. Consequently, the relevant length, 9, should be
the dstance from the wing aerodynamic center to the tail aerodynamic center.
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An alternate method for representing gust penetration can be developcd from the panel
method. Using Taylor's hypothesis, the turbulence velocity on any point on the x axis can
be described in 'erms of the turbulence velocity at the center of gravity by:

tx = / CGe , -U UTVT,wT

x
VA

Where x is the distance from the aircraft, positive forward. This equation simply represents
a transport lag, the turbulence velocity remains constant at a fixed point with respect to the
air mass and the airplane passes that point.

The transport lag may be approximated by a series of filte rs, or, for digital computers, a
logic statement can store previously computed turbulenc. velocities. To use the transport
lag, the x axis of the airplane is broken into small bands with the airplane's aerodynamics
concentrated at the centers o" each band. The aerodynamic derivatives of each band are
modified by the turbulence velocity at that point and the total forces and moments become
the sum of the contributions by each band.

Generally, the distribution of aerodynamics over the length of the airplane is not available
for simulation. However. separate wing-body and tail data are often available. The
wing-body data may then be modified by the cg turbulence and the tail data modified by
the cg turbulence velocity lagged by a time of = T/VA, where T is the distance between
the cg and tail aerodynamic center. This method requires that the tail angle of attack be
built up. The contribution of vertical turbulence to pitching moment by this method
w'iuld be:

AC- CLH (H ...
cH

WTG e ~~
[Vm,)we V CLH') wTC

or, using Lanlace transfoims,

Acm ML - L O H (I -- e 1V w TCG
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The effective airplane angle of attack is found by weighting the wing and tail angles of
attack by their aerodynamic contributions:

WTe
A&Cre = Cma V--A

[(Cma)WB CLH ( - e-VATWTe [ Cmt Cm J

A first order approximation to the transport lag is given by

SR s T  SRT SRT
2T -

eA e2VA

e " VA 2V

The effective turbulence velocity can then be found by filtering the cg tarbulence velocity:

W~t~Lj(m)CLH VH (l V)
WTe1= + sQ T WTCG

V;

At low frequencies, the expression is the same as the point representation. Since-the winig

body pitching moment slope is generally unstable (positive), the hWgh frequency effective

turbulence velocity is amplified. This effective turbulence velocity is, however, the effective
velocity for computing only pitching moment. '

The transport lag method represents the wing and the tail as points. The frequency
improvement for a perfect transport lig representation over point airplane representation is
a factor of 2 RT/Z or is valid for

rZl < 01/ZR

which may not be as good as the first order Taylor-series restriction of

I1 < 0.5[RH
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depending on the relative magnitude of the mean chord and the tail length. Actually, this
comparison is somewhat deceiving, for the criterion was developed for lift distribution over
a wing, not between wing and tail.

Additionally, the fi-.st order filter approximation to the transport lag is not perfect. If a 15*
phase error is tolera,.,le, then the first order approximation is accurate to about

21 < 1.7/T

as can be determined from Figure 4-29. Accuracy to higher frequencies can be obtained by
using higher order termn from the Pade polyncmial, shown on Figure 4-29.

The two methods (transport lag and Taylor series) may be combined. The lift distribution
over the wing and tail may be provided separately using the Taylor-series method. The
turbulence at the cg and the tail aerodynamic center would be related by the transport lag.
The tail dimensions are generally small enough that the lift distribution across the tail may
be ignored. For example, the pitching moment represented by this method would be:

VA CLH VA _7
m TG + (m) -C H I TCG V

Th m -(Cm)WB <A q)wB THcG- H H  V

This combined method is accurate for

92Z < 1/U"

and improvement over the point representation by a factor of 10 R H/ R.

If 10 rad/sec "s representative of the maximum frequency of interest, the simplest method
providing accurate representation of gust peietration may be described in terms of the
airplane's dimensions and airspeed:

TVA < 0.005 , point representation J

lT/VA < 0.05 , first order Taylor series

CR/VA <0.01 , transport lag

'R/VA <0. 1 transport lag and first order Taylor series

For most aircraft, even the best feasible method is marginal.

4.2.1.3.4 Unsteady Aerodyhamics- The lift from a surface does not change instantaneously
for an instantaneous change of angle cf attack. The lift growth over time iF subject matter
for the field of unsteady aerodynamics.
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Rigorous representation of unsteady aerodynamics is difficult given unlimited time, and can
certainly be excluded for application to real time or faster simulation. However,
approximate representation for whole wings (as opposed to panels) is possible through the
use of the KUssner and Wagner functions.

The need for two different functions reflects the difference in lift growth for angle of attack
changes due to airplane motion and winds. Both functions ale developed from two-
dimensional airfoil theory and are corrected for finite wings by the lift curve slope. Wagner's
and Kiissner's functions for the nondimensional lift time responses tACL(t))/ACL(t**)) to
step changes of inertial and gust vertical velocities, respectively, are shown on Table 4-2, as
taken from Reference 4-14.

The functions of Table 4-2 are for incompressible speeds. The aspect ratio is used merely to
reflect the three-dimensional lift curve slope. Thus, the selection of a function should be
based on lift curve slope. The normalized lift to angle of attack transfer functions have beem
derived from the temporal functions and are also listed on Table 4-2.

Although the Kfissner and Wagner functions describe the transient lift, the normalized
transfer functions may be used to filter the input. That is,

5(S) t [L w

W(s) Wagner transfer function

C L C, U

K(s) - Kiissner tr..o.sfer function

ICL (

CLC- FwW(s) - wwK(sJACL VA iA

The Wagner function modifies the inertial vertical velocity and Kiissner's function modifies
the vertical component of wind. The two are modified to form the modified vertical
velocity with respect to the air mass and this in turn letermines lift. The same procedure
can be used for nonlinear data: the modified aerodynamic angle of attack is used t-) enter
the nonlinear tables.

As shown on Table 4-2, the lift growth functions depend on the mean aerodynamic chord
and the airspeed (combined to represent the time required to travel one semichord), as well
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as the lift curve slope. The wing and tail have different chords, so there 11r different
functions for the wing and the two tails. Consequently, use of the lift growth functions
requires separate wing (or wing-body) and tail aerodynamics and the buildup of tail angle of
attack (or sideslip angle).

Angle of attack is not the only term that must be modified: pitch rate, roll rate, yaw rate,
and sideslip derivatives have contributions due to the angle of attack and sidesiip angle
distribution over the wing and tail and can be modified in the same manner as angle of
attack.

Representation of the unsteady aerodynamics has the effect of extending Lhe frequency to
which the effects of turbulence are accurately represented. Reference 4-7 states that using
unsteady aerodynamics with the first order Taylor-series representation of gust penetration
extends the maximum frequency at which total lift is correctly represented by one decade.
The Kissner and Wagner functions only approximate unsteady effects, and the improve-
ment is likely to be somewhat less.

Above some frequency, the Kiissner and Wagner functions are likely to give erroneous
answers, no matter what distributed lift effects of turbulence are used. Each panel, or region
of the wing, will have unsteady aerodynamic characteristics different from those of other
panels and different from the Kiissner-Wagner functions. Although using the same lift
growth functions for each panel may give correct effects on airplane center of gravity
motion, only by coincidence will the effects on high frequency structural modes be co)rect.

Although approximating unsteady aerodynamics increases the frequency at which the
aerodynamic representation is valid, it remains to be determined whether that frequency
improvement is necessary.

The amplitude frequency response asymptotes of the lift growth transfer functions are
plotted on Figure 4-30. The frequency at which attenuation of the lift response begins is
proportional to the airspeed to mean chord ratio and is reduced by an increasing lift curve
slope. Greater attenuation of the lift due to gust occurs at the higher frequencies. For an
aspect ratio of 6 (CLot = 1.5 r), attenuation begins at

- = 0.6VA/"

If 10 rad/sec is representative of the maximu~m frequency of interest, lift growth effects are
insignificant for

VA/C > 16.7

If an airplane has a 15-foot mean chord, lift go..wth representation is unnecessary for
approach speeds above about 150 knots. Lift growth effects become more significant at
lower altitudes due to the possible decrease in the maximum frequency of interest, caused
by the decreasing integral scales.

For many types of aircraft, whether or not to include lift grow, t" effects is likely a marginal
decision. For the Boeing 747, attenuation is expected to begin at about w = 5.2 rad/sec or
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a= 0.02 rad/ft. For the Boeing SST, a delta wing aircraft with an unusually large chord,
the frequency is about u = 4 rad/sec or El1 = 0.016 rod/ft. For a commercial STOL
configuration, the frequencie.s are w = 4.7 rad/sec or 1 I = 0.035. Although these aircraft
are radically different, their frequencies for the onset of lift growth attenuation are not
dissimilar, reflecting tendency of large mean chords and low lift curve slopes to be
associated with high approach speeds.

It is concluded that lift growth should be ircluded for the wing unless analysis reveals its
effects to be negligiblc. Lift growth need not be included for tail aerodynamics. Although
the inclusion of lift growth attenate wing lift, it cannot be concluded that excluding lift
growth is conservative, for tnat conclusion depends on the phase between wing and tail
terms. A reasonable representation of lift growth may be based on Figure 4-30, interpolating
the asymptotes using the lift curve slope.

4.2.1.3.5 Effects of Speed and Altitude-The power spectra of the linear components of
turbulence in terms of temporal frequency are found by requiring the variances for tile
spacial temporal frtvuency description to be the same:

~00 0

= t@(slo) d12 d

00

=) f -
dl

-00

The temporal frequency power spectra, normalized by the variances, are described in terms
of the temporal freq.-ency ar.d the ratio of airspeed to integral scalc (VA/L). For landing
appro.ch, changes of the integral scale are dominated by changes of altitude. If the aircraft's
response to gust input transfer functions is independent of altitude (reasonable, except for
grourd effects) and unaltered by airspeed changes (not true), then the parameters altering a
given aircraft configuration to linear turbulence components of a given level are airspeed and
altitude.

One ".omment consistently received from pilots concerning the nature of turbulence is that
the level of turbulence appears to diminish rapidly as the ground is approached (Ref. 4-15).
The description of trbulence provides for turbulence variances that increase as altitude
decreases; thos, the answer must rely to some extent on the effects of speed and scale.

The effects of the speed and integral scale on the normalized power spectra are shown on
Figure 4-31. Increasing speed and decreasing scale cause reduced low frequency power and
increased high frequency power. That is, power is removed from the frequencies of rigid
body resnonse and added to the frequencies of structural mode response. This is perhaps
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more evident on Figure 4-32 where the variance density is plotted. The variance remains
constant but is concentrated at higher frequencies as the airspeed tu scale ratio is increased.
Figure 4-32 demonstrates why it is unlikely that flightpath controllability and structural
fatigue or ride qualities due to turbulence would be critical at the same flight condition.

I~og

4__

Log (w)

FIGURE 4-32.-VARIANCE DENSITY ASYMPTOTES, EFFECT OF SPEED AND SCALE

The apparent decrease of turbulence as the ground is approached is cdused by the decrease
of integral scale, which shifts turbulence power to frequencies beyond those at which the

airplane responds. The same effect occurs when airspeed is increased. Landing approach, as
the lowest airspeed condition, tends to be the most critical for controlling airplane motion
in turbulence, not only because the task requires greater precision, but also because the
response of airplane mction to gusts tends to be greates, there.

The discussions about transferring power from the rigid body to the structural mode
frequencies can, to some extent, be extended to transferring power to different types of
rigid body motion. When power is centered about the short r"riod/Dutch roll frequencies,
dominant motion consists of angular and vertical velocities. Lo*er speeds and longer scales
cause greater speed and linear and angular displacement responses. For conventional aircraft,
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the primary concern is with the control of attitude, through which flight path is maintained.

For STOL aircraft, attitude is insufficient to control lateral and longitudinal position.

The variance density tur the turbulence angular components is somewhat different, as
shown on Figure 4-33. Increasing airspeed shifts the spectra to higher frequencies as before,
but the high pass filtering due to the spacial frequency derivative of turbulence used to form
the effective angular velocities causes the low frequency character to remain scale length
invariant. Increasing the integral scale has the effect of increasing angular velocity variance.
After the integral scale becomes large enough with respect to the aircraft's dimensions, the
increase of variance is accompanied by a decrease in low frequency power, or a decrease of
effect on airplane motion.

Generally, shifting the turbulence spt ;tra to lower frequencies increases the severity of
aircraft rigid body (or perhaps more correctly, quasi-static elastic) motiou until turbulence
power begins to fall below the frequency range of interest, as may occur with extremely
large integral scales. Turbulence level (rms or variance) is an insufficient measure of the
severity of turbulence unless speed and scale are held constant. At sufficiently high speeds
or short scales, the rigid body motion feels only the constant low frequency asymptote on
Figure 4-31, and it may be sufficient to represent turbulence with unfiltered noise having
the correct low frequency spectrum amplitude but with an infinite variance. It is
unfortunate that there is so rr.wh difficulty in measuring and so little agreement on the
character of the integral scales when their values are so significant for the aircraft's motion.

The effects of speed are made more complex by the variations of the gust transfer functions
with speed. If the approximate expressions for longitudinal characteristic motion are
exp:essed in terms of the nondimensional stability derivatives so as to separate out the
explicit dependence of airspeed, it can be shown that, assuming the nondimensional
derivatives are speed invariant, characteristic motion varies with speed as:

cisP - u0  'sp speed invariant

WOph7,. u0  tph u0

Redu'-ing speed reduces the short period natural frequency, increases phugoid natural
frequ.micy, and decreases phugoid damping. Consequently, unaugniented STOL aircraft are
more likely to have coupled short period-phugoi, motion. Furthermore, because the output
spectra are very sensitive to changes of damping ratio for low damping ratios, STOL
responses to turbulence may be dominated by the phugoid. Automatic control systems can
reduce (or amplify) much of this effect. For one STOL configuration examined by Boeing,
phugoid damping augmentation (speed 'back to thrust/drag devices) reduced the rms
normal acceleration for a fixed level of d.e. donce by 30%. For conventional aircraft, the
phugoid is assumed to have so little influence on normal acceleration that two-degree-of-
freedom analysis is used.
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The effects of speed on the gust transfer functions are by no reAns restricted to the
characteristic motion. The high frequency asymptotes of the normal a .e'elration to vertical
and horizontal gust transfer functions are given by

z U - - - I

Zw0 2(W/S)

The shapes of both transfer functions, Figure 4-34, are similar. For conventional aircraft,
CLt can be expected to be negligible, and for the approach speeds of conventional
commercial aircraft, 2/u0 is small; thus, the load factor spectrum is represented only by that

i produced by vertical gusts.

SFor two-degree-of-freedom approximation (do ongitudinal force eqainand inertial

, speed degree of freedom, but not longitudinal gust forcing function), the variation of the
"= load factor to gust frequency response for a STOL configuration with speed is shown on

~Figure 4-35. When combined with the vertical turbulence spectrum, the contribution of
I vertical gists to the load factor spectrum becomes that on Figure 4-36.

~The increase of the load factor to longitudinal gust frequency response is shown on Figure
i ~ 4-37 and the cont ribution of the longitudinal gust to the load factor power spectrum is

shown on Figure 4-38.

~The combined load factor spectrum (the sum of the spectra due to vertical and I .. ,,udial
turbulence) is shown on Figure 4-39. By conparng Figure 4-39 to Figure 4-36, it is evident

c ethat at 19w speeds the load factor spectrum is not adequately represented by just the
contribution of vertical turbulence, and tht at sufficiently low speeds the contribution of
the longitudinal turbulene will dominate. A three-degree-of-freedom analysis of the same

: configuration (including damping effects; asymptotes shown on Figures 4-35 through 4.39)
revealed a minimum rigid body motion load factor variance at about 95 knots. For the

ospeeds and integral scaes considered, the rigid body contribution to normal acceleration

dominates the structural modes contribution.

The power spectrum of rate of sink may be obtained by dividing the load factor spectrum
* by the square of a frequency and is shown on Figure '-40. The effect of speed is seen to be

even more pronounced. If the flight path angle is more relevant than rate of sink, speed
effects are even stronger, as shown on Figure 4-41.

4
The conclusion that can be drawn from this analysis is that representatioe of only the
vertical component of turbulence for landing approach speeds is insufficient, even if concern
is only with short period vertical motion. For STOL approach speeds, the use of feedbacks
to direct lift control devices to attenuate or control the responses to turbulence is likey to
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be ineffective as it would not alter the responses to longitudinal turbulence. For the same
reason, wing loading effects a.-'" bo insigniticant. For powerud lift STOL configurations,
speed feedbacks to thrust or thrust vectoring, providing augmentation of speed derivatives,
may be more effective.

4.2.2 Large Disturbance Effects of Winds

Topics that fall under the leading "large disturbance motion effects" essentially consist of
all those which violate the 3ssumptions of small disturbance analysis. Some categories are:

1) Nonlinearities of the equations of motion. The trends predicted by linear analysis
are generally not violated by equations of motion nonlinearities, but reasonable
pr-.dictions of magnitudes often require that the nonlinear equations be evaluated
semiempirically (such as by simulation).

2) Aerodynamic nonlinearitiex. The most significant aerodynamic nonlinearities have
been associated with angle of attack variations, particularly CDa (backside/
frontside of the thrust required curve), static stability, stall, control effectiveness,
and loss of directional stability at high angles of attack. Particular emphasis has
been placed on stall margins required when flying in turbuience. It is not
necessary that turbulence be prevented instantaneously from causing the stall
angle of attack to be exceeded; rather, it must not be exceeded long enough to
affect airplane inertial motion. For powered lift STOL aircraft, strong nonlinear-
ities of aerodynamics with speed are introduced. Ground effects represent an
additional important class of aerodynamic nonlinearities.

3) Coupled motion. Many aspects of coupled motion may be evaluated by linear
analysis, but because of the large number of .vimultaneous equations, it is difficult
to describe response characteristics in p,.rametric form. Dynamically coupled
motion problems tend to be speciahze -. without wide application, and require
analytic tools of greater flexibility than: arc often available for easy use. Hence,
the problems are often treated as a large disturbance problem. Dropping the
assumption of wings initially level coupled the longitudinal and lateral-directional

motion. Lateral-directional forces and moments frequently have non-zerc
variations with angle of attack. Coupling may be introduced by the multiple use
of a control surface for longitudinal and lateral-directional control. Perhaps the
greatest coupling is introduced by the pilot, whose action may also be highly
nonlinear.

4) Control system nonlinearities. Nomrinearities in the control system may eitht: be
inherent or intended and are found in the electrical, mechanicai, and hydraulic
subsystems. These nonliniearities take the form of hysteresis, breakouts, dead
zones, authority limits, switching circuits, and gain changes. Many of the
ncnlinearities are designed into the system for failure protection. Hydraulic-
actuator systems have particularly strong nonlinearities that cannot be overcome
for linear analysis, particularly when pump flow limits are exceeded and line
pressure falls. Hydraulic system design for sufficient control in turbulence is
developing as a major simulation task, particularly for supersonic aircraft, STOL
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aircraft, and aircraft with flight-critical augmentation systems. Wf, cn high control

surface hinge moments (large actuator bores) combine with high control system
rate requirements, as results when dynamic pressure is low or an augmentation
system is employed, large hydraulic systems result. Small amounts of overdesign
result in large weight penalties, and underdesign may resuilt as loss of system
pressure and control power.

5) Large altitude excursions. Large variations of altitude cause considerable variation
of the mean wind magnitude and shears, turbulence scales, and turbulence levels.
Airplane motion over large excursions, particularly airplane position, depends on
the past history of airplane motion and cannot be accurately measured using
constant wind shears and fixed-gain turbuleice filters.

The differences between the small and larg, disturbance (or linear and nonlinear) responses
are what gives rise to the need for simulation.

One particular subject under (5) relevant to autoland systems has received particular
attention and is involved in substantial controversy: The effects of mean winds and mean
wind shear on touchdown dispersion. Reference 4-16 conducts an analysis that shows a
headwind that decreases as the ground is approached causes the touchdown point to be

V long. Reference 4-6 notes that ".. . there is a lack of agreement as to what actually takes
place during an approach to landing in a headwind that is decreasing with altitude.
According to Reference... an airplane trimmed for a glide at constant airspeed and
constant altitude would touch down short of the initial aim point if no control action is
taken by the pilot." In contrast, Reference 4-17 asserts that "a trimmed airplane executing
an instrument approach in decreasing headwind would overshoot the intended point of
touchdown unless the pilot reduces power." The conclusion of the analysis in Reference 4-6
is that ... an undershoot will occur if in a wind shear the airspeed, angle of attack, and
throttle setting are kept the same. If on the other hand. the pilot changes the throttle and
control settings so that the airspeed, angle of attack, and pitch attitude are the same as in
the steady wind, an overshoot takes place."

Reference 4-17 is also up to taking other authors to task: "....certain rules are established
which supposedly tell a pilot whether he will overshoot or undershoot in a particular wind
shear situation. These rules, which may be correct for certain special circumstances, are not
correct for the typically long term wind shears which occur more frequently. Most papers
available to pilots concerning wind shear have expressed as a rule that an aircraft will
undershoot the runway and have a deficiency in thrust if a decreasing headwind shear is
encountered on approach. However, any pilot who has ever flown an ILS with a strong
headwind knows it takes a great deal more thrust to fly the glidepath than with no wind.
Then it would appear that if a shear to no wind condition should occur, there would be an
excess of thrust." The procedure recommended by Reference 4-17 is: 'As th,- pilot
advances the thrust to the required level to compensate for the rate of wind shear he must
begin a gradual reduction in thrust to compensate for the changing flight path angle."

With so much conflicting information, one begins to wonder what is going on. Can there
really be that many well-published authors who have performed erroneous analyses?

487



First, it rmay be concluded that if the required thrust level incrteses and if the thrust
provided is less than that required, the aircraft will tend to undersho:t the glideslope and
land short. Providing excessive thrust will tend to cause the airplane to land long. The

problem reduces to computing the required thrust and then comparing that to the available
thrust. Statically, the change of thrust requirements may be determined from the
approximate relationship derived in appendix A:

VA ,

The term VW cos (0 - W) is just the horizontal component of wind in the direction of the
airplane's orientation. If only wind aligned to the airplane's heading is considered, with
VW > 0 referring to a tailwind, a tailwind will require a more nose-down pitch attitude and
a headwind will req:Aire a more nose-up pitch attitude than for still air at the same airspeed.

If no attitude or thrust correction is made, a steady tafiwind will cause ar. overshoot, and a
steady headwind, as noted in Reference 4-6, will cause an undershoot. The change of pitchattitude at constant airspeed and glideslope is

AO= 02 -01 _. [

For trimmed flight and constant airspeed, the lift is the same at both conditions, and angles
of attack will be the same. Then, if condition I is still air and condition 2 is a headwind
condition,

VW 2- VWI < 0

02 - al > 0

The pitch attitude contribution to thrust is W sin 0, thus,

ATREQ = TREQ 2 - TREQI =W(sin 62 - sin 01) > 0

That is, if the attitude correction is made for a steady headwind, more thrust is required, as
noted in Reference 4-17, or the airpiane will touch down short.

For a headwind that decreases nearer the ground, the pitch attitude required will decrease,
and the thrust required for the attitude change will also decrease. If no thrust correction is
made, the attitude effect will cause an overshoot. However, this is not the only effect of a
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headwind shear. In order to hold corstant airspeed, changes in the wind speed must be
equaled by changes in inertial speed, requiring an acceleration. That is

1VA V dVA dV dVWdh

AT W dV = WV dVwATREQ g dt g dh

For a headwind that diminishes during the approach, (dVW/dh)' >0 and thrust must be
increased, as opposed to the attitude effect.

The combined effects require a thrust change of

/AT) . W (VA + VW) dVW ]

So long as the magnitude of the wind increases with altitude, the change of wind on an
approach path and the wind shear will be opposite in sign.

The discussion in Reference 4-17 concerning the advancing and retarding of a throttle refer.;
to a wind shear that goes to zero before touchdown. Thus, while the shear is non-zero, the
acceleration effect is presumed to dominate. For STOL aircraft, operating at low speeds, the
attitude effect may dominate.

The conclusion of Reference 4-6 is compatible with these results for the conditions
specified. If a constant airspeed approach is performed in a steady headwind using a still air
throttle setting and pitch attitude, an undershoot occurs. The incremental effect of the
shear is to cause an increased undershoot. If the attitude and throttle setting are set for a
steady wind of 15 knots, the effect of a constant headwind shear of 5 kt/ 100 ft while flying
a constant airspeed of 70 knots is to overshoot, relative to the steady headwind touchdown
point (attitude effect dominates).

Reference 4-16 has also performed an anaiysis for a low airspeed aircraft, but the predicted
overhoot for flying a constant airspeed approach is due not only to the dominance of the
attitude effect, but also to the fact that inertial speed changes, not airspeed changes, were
set to zero. Hence, the acceleration effect was not included.

The effects of airframe configuration on touchdown dispersion are weak except as they
affect the approach speed. Whether an overshoot or undershoot occurs will dpend on:

o Airspeed

* Mean wind magnitude, heading, wd shear

4
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0 Control procedure (constant airspeed, constant glideslope, constant attitude,

U constant throttle, or combinations)

I Initial conditions (trimmed on glideslope for still air, steady wind, or other)

If the wind speed were known at every altitude, it would be possible to determine in
advance the column and throttle inputs required at every point in time for a perfect landing.
Of course, that information is unavailable to the pilot or autopilot. Fortunately, however,
pilots and autopilots do not operate in an open loop manner. Information is supplied to
both portraying the deviations from the glideslope and localizer beams and airspeed errors.
Advanced display systems even indicate a command for correcting errors. Additionally, the
pilot has another inertial reference through 'iis out-the-window vision. Reasonably alert and
competent pilots and reasonable autopilot designs are capable of holding constant airspeed
and glid. slope without knowing the wind profik. but, of course, the closure techniques
must reflect a qualitative uders anding of th effects of winds. Closed loop performance
will not necessarily reflect a tealency to land increasingly short or long with increasing wind
speeds and wind shears, so long as control authority is not saturated. The turbulence
associated with the mean wind does, however, tend to saturate control authority.

It may be noted that constant airspeed is not required in order to hold the glideslope. A
procedure used at Boeing Flight Crew Training School for manual approaches is to increase
the initial airspeed by half the surface steady wind plus all of the difference between steady
and peak wind, up to a maximum of 20 knots. For example, surface winds reported as 10
knots gusting to 15 knots would result in an initial airspeed increase of 1/2(1 0) + (15-10) =
10 knots. The increment for the steady wind is bled off during the approach. The peak gust
ma-gin provides an additional stall margin. The steady wind margin reflects a rule of thumb
that winds at glideslope capture altitude are 50% greater than at the surface. Then, the
deficiency in thrust during the approach bleeds off the excess airspeed duing the maneuver,
reducing the required throttle activity.

Inability to hold the glideslope may not even be the dominant factor for determining
touchdown dispersions. Another factor is difficulty in performing tlhe flare. Piloted
approach simulations in winds at Boeing have produced comments indicating a (:,dency to
float or to go through a low frequency altitude oscillation just before touchdown. A
contributing factor may be the changes of the phugoid:

* Incre.ased L/D due to ground effects reduces phugoid damping

0 Reduced airspeed due to throttle chop and headwind shear decreases short period
natural frequency and increases phugoid iatural frequency

* The shear may cause an increase of phugoid natural frequency.

These lactors may combine to cause an increased response at the phugoid frequency when
the column input is made. Then, the point of touchdown performance would depend upon
the point of oscillation at which touchdown occurred.
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4.3 SORTING OUT THE AXIS SYSTEMS

The task of simulating turbulence for flight at low altitudes involves at least three axis
systems: mean wind axis, relative wind axis, and body axis.

For the mean wind axis system, the x axis is aligned to the mean wind and the z axis is
dewnward perpendicular to the earth. It is this axis system for which the statistical
p -.)perties of turbulence and the one non-zero cospectrum have been defined. This axis
system does not account for the motion and orientation of the aircraft.

The body axis is that for which the airplane's aerodynamic and inertial properties are
known. It is the relationship of this axis system with the earth that defines the airplane's
inertial motion. The axis system is attached to the airplane with the origin fixed at the
airplane's center of gravity. The x-z plane lies in the airplane's plane of symmetry (assuming
that the airplane is symmetric) with ihe z axis downward. The x axis is oriented with
respect to some physical property of the airplane such as the wing chord plane or a
waterline.

The relative wind axis also has its origin attached to the certer of gravity, but is X z plane
does not coincide with the plane of symmetry. Rather, the x axis is aligned to -te airspeed
vector. The relationship between the relative wind axis and the body axis is defineo with the
angle of attack and sideslip angle and thus, with the airspeed, defines the airplane motion
with respect to the moving air mass.

It is only in the relative wind axis that the transformation from spacial to temporal
frequency using Taylor's hypothesis (9Zi = w/VA) may be applied. It may be recalled that
the definition of turbulence began with correlation functions described as a function of
displacement vector. A spacial frequency vector resulted from the Fourier integral of the
correlation functions. Hence, the components of the spacial frequency vector are aligned to
those of the displacement vector. Integrations with respect to the transverse components of
spacial frequency were performed to eliminate the dependence of the spectra on those
components. The time-distance relationship corresponding to the spacial-temporal fre-
quency relationship is t = VAAt. That is, the airspeed vector must be aligned with the
displacement vector in older to relate spacial and temporal frequencies. The presumed
one-dimensional spectra apply only for turbulence components aligned to the relative
wind axis.

rhe problem is this: the statistical properties of turbulence are known in one axis system,
the spectra shapes in another, and the problem must be solved in a third axis system. The
misalignment of the axis systems is almost universally ignored for the simulation of
turbulence, or it is assumed that the axis systems are sufficiently aligned that the effects of
the misalignment are negligible. Consequently, turbulence is usually generated in the body
axis using the relative wind axis power spectra shapes and the mean wind axis variances and
integral scales. The existence of any cospectra in the body axis is seldom acknowledged.

A straightforward, but complex, procedure would be to transform the statistical properties
of turbulence from the mean wind axis to the relative wind axis, where they would be
inserted into the spectra and where turbulence components would be generated, and then
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I
transform the components of turbulence to the body axis, where the forces and moments
acting upon the airplane could be found. A solution to the problem using this approach is
described in the following.

4.3.1 Transformations

There are undoubtedly several methods for developing the transformation for the power
spectra, variances, and integral scales. The method proposed is based on the concept of the
output power spectrum. Reference 4-7 shows that the output spectrum of multiple filtered
random inputs (Fig. 4-42) is given by:

j - G*y~x I [ x Xj G I T

When the transfer functions are constants (frequency or time invariant), the frequency
responses are just the partial derivatives and the frequency response and its complex
conjugate are equal:

Gyix j  dx - yixj  f()

G'

yixj yixj

To apply the output spectra to the task of transformations, consider turbulence geierated in
one axis system and transformed to another. The frequency responses, or pattial derivatives,
are just the elements of the axis transformations for vectors. That is, if turbulence is
generated in the mean wind axis, the spectra i;i the body axis are given by

I iBODY '~t ~ijMEAN~ te 1

WIND

where [M to BI = mean wind axis to body axis vector transformation. Similarly, for
turbulence generated in the body axis, the spectra in the relative wind axis system are
given by:

14p$yj 1 I tE B to RJ [kxixjl I lOYe to RJTREL BODY

WIND
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FIGURE 4-42.-RESPONSE TO A SET OF RANDOM INPUTS (FROM REF. 7)

Combining the relationships, the transformation from :ze irean wind axis to the relative
wind axis system is

I [4yiyiJ I IB to KJ IM to II [J 1 EN oB B to RIT
REL. [xx N' oB
WIND WIND

The mean wind axis to body axis vector transfcrmation is identical to the we]' , nown earth
axis; to body axis transformation (Ref. 4-11 ) except that the heading transformation is from
the wind heading. The body axis to relative wind axis vector transforratio=un is ob,ained by
first rotating through -0t and then throuh 0, and is derived ii, appendix 4B. The
transformations, both of which are orthogonal, are presented on Figure 4-43, and are
undoubtedly necessary ingredients for unraveling the axis systems by hny approach.

Beginning by assuming that the only non-zeru cospev!'rum in the mean wind axis is
*umwm, the matrix expressions relating the body axis -pectra to the meal, wind axis
spectra are expanded to provide the transformation matrix on Figure 4-44. Similarly, the
transformation relating relative wind axis spectra to body axis spectra is provided on Figure
4-45. Note that the transformations have been rewritten to appear as vector transforma-
tions. To go from the mean wind axis to the relative wind axis, the transformation is the
product of the matrix on Figure 4-4: times the mtiix on ligure 4-44. These
transformations certainly cannot be considered iimple, and even though only one
cospectrum existed in the mean wind a.:is, all exist in general in both the 6ody axis and the
relative wind axis. All will exist in the body and relative wind axes ;Ven if there 'ere no
cospectra in the mean wind axis.
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MEAN WIND AND BODY AXISI

U U U U'1 IMrn wind to b fun l UM i Ma 'nd to body
IVW [xstransformatinn IvM ~ ; IV, xisM: transformation

w Mt i wMj w L (StM lj

sin ~) cos* 0 Cos ;-W) Cos 0 cos 0sin #
(MtoolStI) +cos(*-;)sln~sin# + sin ;.W) Isiflsn*

+sinfk -W) sin #co s n(#;L W) sin 0coo cl

RELATIVE WIND AND BODY AXIS

fuR odyto relative wind if 1 elative wind tobody

Vill rnfr aio axis transformation R
RiBP Sto R) 1111toBIWRl WR

coosacoof sin 0 sin acoo~ 1
1[ tSo R) (R tog)T --coesxsift Coto *sin asin p

- sin a 0 CMs U .I

FIGURE 4-43.-AXIS TRAN~br,7,?;.2 r IOfJS

The axis transformation for the spectra is not particular to spectra functions. The 10t.1.111,1
axis transformation cctiation is given in Reference 4-18 for tensors iv~ general. To transform

R a tensor from axis system B to axis system A,

TI
IXjlA= IBtoAl I1ijIB IBtoAT

thus, the transformations on Figures 4-44 and 4-45 should also, hold for the variances and
covariances. The integral scales may also be thought of as tensor quantities. Integral scales
are defined as tensor quantities in Reference 4-7:

For isotropic turbulence, where tle orientation in space of the displivcement vector does not
affect the integral scales, the "shear stress" te-rms are zero. However, at low altitudes where
statistical properties of turbulence are dependent upon the orientation of the displacement
vector (or, alternately, the direction of flight), the cross-product terms an; in general
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non-zero and integral scales are represented as a tensor. These off-diagonal integral scale
terms are defined in Reference 4-7 as "the j scale of the i velocity component."

It car be shown more rigorously that the spectra transformations do hold for the variance
and integral scales. Expanding the first row on Figure 4-44,

u= c s2 () - W cos2 0 U + sin 2 ( - W cos2 V

+ sin 2o 4wmwm - 2 cos (-W) sin 0 cos 0 4umwm

Integrating this equation with respect to S1 from -ao to co yields

.4 00
2 f 4,udn 1 = cos 2 (0 - ;W) cos 2 0 aum 2 +sin 2 ( -iW)cos2 O m2

+ sin 2 0 - 2 cos ( W) sin 0 cos 0 2• wm um wm

This integral transformation can be applied to every term on Figures 4-44 and 4-45.

The spectra are just Fourier integrals of the correlation functions; hence, Figures 4-44 andi 4-45 must also hold for the correlation functions. Since the correlation functions in turn
may be integrated with respect to the displacement vector magnitudes to yield the integral
scales, the transformation on Figures 4-44 and 4-45 hold also for the integral scales.

The selected description for the statistical properties of turbulence accepted horizontal
isotropy. Thus, the transformations on Figure 4-42 for the variances and covariances and the
integral scales may be simplified by using

_- O L, = Lv m LH
°um °vm ~0 ' Lu m L

The subscript H is used to refer to horizontal components. Similarly, the variance and
integral scale for vertical turbulence are rewritten as o2v and LV . The u-w covariance is

identified as u. 2 , but the integral scale for the covariance has not been prcvided by the
£ literature. With these changes, the transformations for the variances and .ovariances are

simplified on Figure 4-46. The same transformation applies to the integral scales. A
corresponding simp!ification does not exist for the body axis to relative wind axis tensor
transformation. Note also, that the simplified form on Figure 4-46 does not apply to the
spectra as

UmUm mvm

497



II

Ii 2i" i L

I

*.. ., - -,

_ *4 , A

498., 14"1



Figure 4-44 reveals that in the absence of pitch and bank angle rotations, the statistical
properties of turbulence are invariant with rotations in the plane of the earth, precisely the
assumption of horizontal isotropy.

To have found the required transformations does not imply that the problem has been

solved. Even though the shtistical properties of tur'.9.;uce and the cospectra are presumed 2
to be known in tLe mean wind axis system aua can be transformed to the relative wind axis
system where the , ower spectra are presumed to be known, the solution remains unknown
because the formbr of the cospectra in the relative axis system are unknown. With this
observation, th, initial approach fails. Alternate approaches must be considered or
sufficienty accurate approximations found. To gain insight, the condition of isotropy is
exauned first.

4.3.2 Isotropic Turbulence

For ilv condition of isotropy, the mean wind axis system is no longer relevant, as the
statistical properties of turbulence are independent of the orientation of the flight path.
That is, tie matrices for transforming various covariances and integral scales reduce to
identity column matrices when the variances and integral scales for each component are
equal and when the covariances are zero in, some one axis system. Additionally, there are
only two power spectra in the relative wind axis system; the parallel or longitudinal
spectrum and the nurmal or transverse spectrum. The relative wind axis spectra may be
transformed to the body axis as shown on Figure '4-47.

As seen on Figure 4-47, even though the variance and integral scales are invariant and the
covariances remain zero for an axis transformation, the spectra for the three body axis

[ components of turbulence are not the same as those for the three components of the

relative wind axis system. Furthermore, the cospectra are not zero in the body axis system
even though they were in the relative wind axis system. This is comparable to moments of

inertia: there is but one orientation of an axis system relative to the airplane for which all
the products of inertia are zero-that of the principal axis. Hence, the relative wind axis
system is the principal axis for turbulence.
The cospectra, as szen on Figure 4-48, assume both po-'itive and negative values as they must

to enable zero covariances. Even though the covariances of turbtencc are zero, the
covariances of turbulence as seen by the airplane are non-zero because the airplane filters
out the effects at high frequencies.

Figure 4-48 gives the iilusion of ,elative significance only at very !ow frequencies, but when
plotted so that the area tnder the curve is proportional to the contribution of a frequency
range to the covariance, Figure 4-49, it is seen that the intermediate frequencies have the
greatest impact on the spectra for aircraft motion. The point on Figures 4-48 and 4-49
where the cospectra cross zero (±1.339 L 1 = 1.225) divides the areas between 0 and t

into equal parts.

klthough using relative wind axis spectra for generating turbulence in the body axis is not
precisely correct, it may be sufficiently accurate if the error is small.
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FIGURE 4.47.-BODY AXIS SPECTRA, ISOTROPIC'TURBULENCE
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For the case where sideslip angle is zero, the body axis vertical spectrum may be written as:

Fw = 4N COS2a+ 4p sin2

At the high frequencies,

4N 44'p ]n!-.oo 3

The difference between the body axis and the relative wind . <is vertical turbulence power
spec ra as a fraction of the relative wind axis spectrum is

_w_ 4 -os2a + 3 sin 2  1 - -sin2 a
'b N 12, 4' 4sno

Even for an angle as large as 200, this error is only about 3%. At the low frequencies,

ON I

40P 1 21

and

...tw = cos2a + 2 sin 2a = I + sin 2 of

For an angle as large as 20, the error is only about 1 %. It can easily be shown that the

kN largest effect of the transformation is at zero frequency.

Similar analysis for the longitudinal spectra yields:
4' + sin2 x

= I usin~a

F3
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The effects at low frequencies for the longitudinal spectrum are even less than those for the
vertical spectrum. The lateral spectrum is unaltered by angle of attack rotations. If the angle
of attack were zero and sideslip non-zero

+sin2
(bP 3

'1DU sin2 P

4_vI sin2+ j3

For reasonable angles of attack and sideslip angles, generating isotropic turbulence directly
in the body axis does not introduce significant errors for most engineering applications.
Whether or not the cospectra may be ignored is a different question. However, for isotropic
turbulence, it is not necessary to generate turbulence directly in the body axis. Turbulence
components may be generated in the relative wind axis system, then transformed to the
body axis system using the transpose of the body axis to relative wind axis vector
transformation on Figure 4-43. The correct body axis power spectra and cospectra will
result. The vector transformation is not so complex that its use is prohibitive.

4.3.3 Low Altitude Turbulence

Consider the special case of !evel flight in the direction of the mean wind, wings level. For
horizontal isotropy, the variances and integral scales for the components of turbulence in
the ielative wind axis system are the same as those for the components in tile mean wind
axis system.

If, in addition, the airplane is at some angle of attack but zero sideslip angle, the ratio of the
relative wind axis power spectra at low frequencies is

UR 10 IL ' O yR = 2HILH\

4)RVV IPWR \v\LV)
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or, from the condition of isotropy at high frequencies,

3
LH I°H 3

(PUR5 %
wR av WR °V

If, additionally, the Um-Wm cospectrum may be ignored, the effects of angle of attack at
low frequencies are:

os cost+2 / H sin2 0

wRJov__ _ lI--0

2 JOH\ S .os2 a + sin 2 01
4)UR S2 2 10 \ 5V

~2-)UR ft.. 2(v)

The effect of angle of attack is greatest at low altitudes where OHOV is greatest. At an
altitude of 100 feet a mean wind speed of 10 knots at the surface, and neutral atmospheric
considerations, the selected description yields

OH...7  (j
OHV 1,72, OHM = 15

7v \° "v

For the same 200 angle considered for the isotropic case,

- a-r = 4.39

U" = 0.887
) UR i00
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The change of the longitudinal spectrum is small at low frequencies, but the change of the
vertical spectrum is enormous. The entire vertical spectra ratio is shown on Figure 4-50. At
high frequencies, where turbulence at low altitudes is isotropic, the effects are again quite
small. The percentage of error of the vertical spectra ratio at low frequencies for all altitudes
is shown on Figure 4-5 1. Significant errors are not restricted to the altitude and angle
considered.

The method of generating turbulence directly in the body axis system using relative wind
axis characteristics will become very bad at low altitudes where components of the larger
horizontal turbulence variance and integral scale should introduce substantially increased
low frequency power into the vertical body axis turbulence components. This error may
well account for the lack of "patchiness" found by Reference 4-19 in conventional
turbulence generation.

If, for the same flighi condition, the angle of attack vere zero but sideslip non-zero, then at
low frequencies the effects of the sideslip angle are

. R cos2 + sin2 I

2 2

4.v R I cos2  + 2 sin 2 3I + sin 2 3
(rR I f, 1"-10

These are the same relationships as those found for isotropy, which is to be expected since
the rotation takes place in the plane of isotropy. Additional effects are introduced when the
flight path is non-zero, heauing not in the direction of the mean wind, wings nct level, and
the cospectrum in the mean wind axis nonnegligible.

4The simple analysis reveals that it is not sufficient to generate turbulence in the body axis
using niean wind axis statistical characteristics and relative wind axis spectra shapes.
Turbulence cannot be generated in the rclative axis system as for isotropic turbulence
because at low altitudes the relative wind axis cospectra are non-zero and are unknown.

Two primary effects exist. One is the change of the spectra due to the difference in shape
between the Ingitudinal and transverse spectra. The other is the change in the spectra due
to the differences between the horizontal and vertical mean wind axis variances and integral
scales. A comparison of the isotropic and restrictive low altitude analysis of the
transformations rmveals that the latter effect is by far the more powerful. That is, it is more
important to account for the orientations of the variances and integral scales than it is to

taccount for the orientations for the power spectra shapes.

The proposed method is to generate turbulence in the planc of the earth using the relative
wind axis spectra shapes but in the direction of the airspeed vectr. The components
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generated would then be transformed to the body axis system. This method would have the

following effects:

* So long as horizontal isotropy exists, the integral scales and variances would be
correctly oriented.

* The error due to the misorientation of the horizontal and vertical spectra shapes
depends or. the flight path with respect to the air (0 -or).

* Except for small (0 -at) effects, the orientation of the lateral spectra shape would
be correct.

* The effott of the u-w mean wind axis cospectrum remains unaccounted for, end
large erro,-s could result when the aircraft is not flying in the direction of the
mean wind If the u-w cospectrum is significant for any orientation.

• Body axis cospectia will result.

There still is no assurance that this method will not yield rignificant errors. It ran only be
stated that the errors will be substantially less than those produced by the other met'hods. In
particular, they will be less than those produced by the conventional method of generating
turbulence components in the body axis using relative wind axis spectra shapes and mean
wind axis variances and integral scales.

The proposed method is summarized on Figure 4-52. For lack of a better name, the axis
system used for the generation of turbulence is referred to as the "turbulence generation"
axis system.

F
4.3.4 Significance of Mean Wind Axis Cospectra

If no cospectra existed in the mean wind axis system, the three linear components of
turbulence would be uncorrelated and their statistics would be invariant for rotations in the
plane of the earth, assuming horizontal isotropy. However, the literature reveals that
cospectra do e:ist at u-w in the mean wind axis system, and Figure 4-46 shows that the
power spectra must be modified and three cospectra must, to be rigorous, be ;hatroduced for
any deviation from the mean wind heading.

The cospectra can be ignored only if it can be shown that th-ir effects are insignificant. The
cospectra have been described as diminishing more rapidly than the power spectra at high
frequencies. Thus, at high frequencies, their effects are relatively insignificant. The break
frequency of the cospectra has been previously estimated as shown on Figure 4-53. For an
extreme surface wind level, say 30 knots, and a minimum atitude of concern, say 30 feet,

SFigure 4-53 shows the cospectra break frequency to be at 9.003 VW for neutral atmospheric
stability (most likely for very high wind speeds and very low altitudes), or about 0.16
rad/sec. This is probably not below the minimum frequency of interest, so it cannot be
considered insignificant. The cospectra are likely to have weak effects, however, at least for
the majority of the cases.
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GENERATE TURBULENCE TO MATCH THE SPECTRA

_ OH H + I

UTTG x [.+ (1.339 LHf )2 ] 5 [6

0H 2LH I + 8/3 (1.339 L S21) 2
VTT G  2 [I + (1.3339 LHA) 2] T1'7

WT f 2LV 1 + 8/301.339Lva,)2
*TG 2w P + 0.339 LV 42)2]

TRANSFORM TURBULENCE GENERATION AXIS TURBULENCE COMPONENTS INTO
BODY AXIS COMPONENTS:

U co A 0 Cos 0 tin A0 cos 0 -sin0 U1 .TG

= cos &"sin Osin sin Aosin 0 sin 0 .os 0 sin VT

+sw A0 sinO sin 0 +cosA 0 cos0 TG

Wti cosAz/sinOcoso sin Ai sin 0 cos 0 cos 0 cos T+ sin Asin 0 -COSA sin w TTG)

Alp = angle from projection of airspeed vector on plane of earth to
x body axis projection on plane of earth

=tan-_1 vAA

uAp)
a5 -#for small 0, pof

JAI [cos a cos 3cos 0 + sin 3 sin 0 sin #+ sinot cos Isin 0 cos ] VA

vAP [sin icos -sin a cos sin] VA

VAV
body

x exis

IIVX YAP S p /Plane

FIGURE 4-52.-GENERA TION AND TRANSPORMA TION OF TURBULENCE COMPONENTS
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The general form of the output spectra for a parameter having a constant frequency
response has been described as:

0 a l 2 lax \2 1 aX 2 /ax \

OX1 \u (VT1 + wT \wT2JaUT u

F= T ' -VT] <iVtWTI t'I'-T] Iu

+2 F0(')-W-T) I) w
\3_WT /  w

If the effects of the cospectra on all of the force or moment spectra are insignificant, the
cospectra are insignificant, even though they may lie within the frequency range of interest.

First, none of the aerodynamic forces and moments are significant with respect to both vT
and uT or wT. Thus, the effect of the mean wind axis u-w cospectra on the body axis u-v
and v-w cospectra need not be coasidered further.

For the u-w cospectb3 to have even a weak effect on a component or force or moment, the

force or moment derivatives with respect to longitudinal and vertical gust components must
be of the same order of magnitude. If the uT derivative exceeds the wT derivative, then th-"
low frequency gain of the cospectra must be large with respect to that of the longitudinal
power spectrum:

3x\'2 \ ~aT2 4F ___:a [ X/aWT /' x/auWT\ uwj

Similarly, if the wT derivative is xarge with respect to the uT derivative, then the low
frequency cospectra must be laige with respect to the low frequency vertical power
spectrum. The same factors that tend to produce a cospectrum break frequency within the
frequency range of interest also reduce the low frequency gain (4,uw ,- 1/(I/T)) so that the
low frequency cospectra gain is of the same order of magnitude as the longitudinal, power
spectrum when the break frequency is high. It is not at all impossible for the w and u der-
ivatives of a force or moment to be of the same order of magnitude, but it is unlikely and, at
most, the effect of the cospectrum will be weak. The number of cases where the cospectra

have an effect on aircraft motion does not appear to justify the complexity required to
represent them.

4.4 NOISE GEi4ERATION FOR TURBULENCE SIMULATION

The method for generat.,,g turbulence by a temporal process is based on the output
spectrum. If a single input is filtered, the output power spectrum is defined by:

51OUT 1N(i w)12 f0N



where G(s) is the filter transfer function. Solving for the filter amplitude frequency response
gives

G~ii) OUTI 1IN

or, if the power spectrum of the input is unity over all frequencies (physically unrealizable
as it woull imply infinite variance),

IG(ia) IV 7r
That is, the filter can be designed to match the square root of the desired output power
spectrum.

It is not actually necessary for the input power spectrum to be unity over all freq,mncies

(white noise), only over the frequency range of interest.

The filtering process does not alter the amplitude distribution of the input; the input power
, spectrum and the probability density distribution are independent. Thus, the input mustF have the desired output amplitude distribution.

To meet the requirements of a random process, the correlation between any two elements
displaced in time by any amount (serial correlation) must be zero. To match the definition
of turbulence, the input random process must have a zero mean.

There aje many alternate methods for generating the input random process, both for digital
and analog simulation applications. None of them satisfy the requirements exactly. One of
the most conceptually simple methods for digital simulation is to load a table of random'
numbers for the desired probability density distribution into the computer. However, to
produce 3 minutes of random noise for three uncorrelated turbulence components and a
frame time of 40 milliseconds would require 13,667 random numbers and the same number
of storage units. This could be a significant portion of the capacit; of inost digitil
simulators, and even the keypunching time would be prohibitive. Thus, in auditional
requirement of the random process is that it must be efficient, not only in terms of storage
requirements, but also in terms of computation time. Other methods for digital, analog, and
hybrid applications will be examined.

4.4.1 Analog Computer Methods

4.4. 1.1 Analog Random Noise Generators

Semiconductor diodes, photocells, and thyratrons are sources of random noise which have
Gaussian probability density distribution. To ensure a zero mean value, the noise signal must
go throu3h a dc blocking filter with a sufficiently large time constant to allow passage of the
lowest frequency of interest. A bandpass filter selects a frequency band where the noise
power spectrum is flat. Using a frequency shifting technique, the flat power spectrum may
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start at a desired frequency. An automatic gain-control circait controlling the mean square
output will ensure a stationary noise output.

Binary noise with outputs alternating between two fixed voltages can be produced by a
flip-flop triggered by random pulses from some radioactive phenomenon. Such a signal,
which sometimes is called a random telegraph wave, may readily be filtered to produce
random noise with Gaussian probability distributions and a flat power spectrum.

There are many more random physical phenomena and application techniques which can be
used to construct elaborate analog random noise generators. The reader is referred to
Reference 4-20 for more complete descriptions.

The output of a given analog noise generator will be affected by variations in ambient
temperature, background electromagnetic fields, and any changes in the physical properties
of circuit components. The statistical characteristics of the random noise must therefore be
verified regularly by the measurement of statistical averages from sufficiently large noise
samples.

The analog random noise generator system described in Reference 4-21 is used extensively
for low frequency analog computer applications. It offers two stable outputs of
band-limited white noise which can readily be filtered to yield other reasonable power
spectra. The low frequency output has a flat power spectrum from 0 to 350 hertz, and the
high frequency output has a flat power spectrum from 10 to 35,000 hertz. Time-variable
fi!ters may be used to produce certain categories of nonstationary noise, and suitable diode

.f function generators can be used to alter the amplitude probability distribution. Since the
randomness is derived from nondeterministic physical phenomena, it is impossible to repeat

a random sequence of events exactly. This disadvantage may preclude the use of an analog
random noise generator in certain applications. Although this type of noise generator has
primarily been used with analog computers, they may be used with digital computers by
providing a suitable analog-to-digital interface.

4.4.1.2 A Hybrid Analog-Digital Pseudo-Random Noise Generator

The problem of nonrepeatability of random sequences associated with a true analog random
noise gentrator can be avoided by the use of a digital shift register sequence generator,
which produces binary pseudo-random noise sequences. A pseudo-ran~tom sequence is
produced by a deterministic process but satisfies some predetermined set of statistical tests
for randomness.

Shift register sequences have been studied quite extensively. Reference 4-20 describes the
properties of particular arrangement and shows how a shift register sequence can be applied
to produce pseudo-random analog noise. Figure 4-54, which ha? been reproduced from
Reference 4-20, is a block diagram of a piacticai pseudo-random noise generator system.

Consider an n-bit digital shift register where each bit can either havc the state 0 or 1. The
register can have 2 n different combinations of Os and Is. Starting with any n-bit sequence
except all Os, the states of the nth-bit and, say, the mth-bit are supplied to a modulo-two
adder. The output of a modulo-two adder is I if the two inputs are different and is 0 if the
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two inputs are the same. Let the modulo-two output state replace that of the first bit and
then shift the state of each bit to the next higher order bit in the sequence. Repeating this
operation will produce a periodic binary sequence of O's and 's. The maximum period
obtainable with modulo-two feedback is (2n-l) if the feedback is selected from the stages
specified in Reference 4-20. The all O's state is excluded from the sequence since it will
merely reproduce itself.

The binary sequence is used to produce a pseudo-random square wave x(t) alternating
between two values. If there is a shft pulse every At seconds, x(t) has a period of (2 n-l) At
seconds. When the simulation time is shorter than the shift regist,,r period, the first and
second order probability distributions of a pseudo-random ,quare wave are essentially the
same as those of true random binary noise generated by independent trials yielding one of
the two states with equal probability.

The one-dimensional probability distribution of a random square wave assuming one of two
equally probable values (± a) at fixed instants t = mAt consists of two probabilities (see
Fig. 4-55).

Ip(x) - for x ±a

p(x)= 0 for x a

This distribution and consequently the mean value of n(t) do not depend upon time.
However, the two-dimensional distribution of x(t)x(t+r) turns out to be time dependent.
Consider the values of x(t) and x(t+T) at t = t1 , where 1 1" <At and the time origins have
been arbitrarily chosen so that 0 < t I < At. For a given time displacement "

X(tl )x(t l + r) = a2

with a probability of I if(t I +r) < At and

It
x(tl)x(tI +r) ta"

with equal probability of 1/2 if (t, + T)< At. Therefore, for the same value of the time
displacement r, the ensemble averaged autocorrelation function may have one of two values
depending upon the value of the time tl. Thus the random function considered is
nonstationary.

If l"> At, then

x(tl)x(tI +T ) = t1
2

with equal probability of 1/2 for any value of the tirae t 1. For time displacements greater
than At and less than the shift register period (2nl) At,the pseudo-random square wave
x(t) can be considered to represent a stationary random process. The process can also be
considered ergodic since successive values of x(t) for time displacements larger than At and
less than (2n-l)At are essentially uncorrelated. The time-averaged mean value and the
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autocorrelation function derived from the pseudo-random square wave are then the same as
the equivalent ensemble averages.

Referring to Figure 4-55, the time-averaged mean valae and autocorrelation function of a
pseudo-random square wave alternating between the values +a and -a are as follows:

K ,,1(2 n -I) ;z0

Rxx(T)= a2 [I - k(2n- l)At]

when lr-k(2n-)AtI 4At, (k= 0, ±1. ±2 ....... ) and

RY V (r) - 0 otherwise

This autccorrelation function is periodic with time period (2n-l)At. For large n the period
becomes very long and a/(2n-I) tends toward zero. For n = 32 the pseudo-random sequence
will repeat after essentially 4,294,967,295 uncorrelated events.

The periodic autocorrelation can be represented by a Fourier series.

a2 -7 [sin (kcw0At/2) 2 iW
(2n - 1) k k At/2

where w = 2w/(2n-l )At is the fundamental frequency.

Transformation of the periodic autocorrelation function yields the power spectral density
function:

2  [ sin (kwO At/2) 2
=(2n"- kio ,t/2 J - kAto)( n-I)k= ]

where 6(w - kw 0 ) is the impulse function.
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The power spectrum of a periodic pseudo-random square wave is a line spectrum where the
spectral lines are separated by the fundamental frequency 2w/(2n-l)At. The power
contribution from each multiple of the fundamental frequency is proportional to

k~r/i n - 1) 2Fsin (k~rI(2n~11
k/(2n -1)]

which is constant within -0. 1 dH up to approximately .. = kwo0 = 0.5/At. The shift register
period (2n-l)At must be large compared to the required simulation time. The fundamental
frequency w0 = 2 7r/( 2 n'l)&t will then be small compared to th-. lowest frequency of
interest, and adjacent spectral lines cannot be resolved. As the period T = (2 n_ )At becomes
large, the power spectral density function approaches:

W' oA t 2
a2 At .sin .'-2

Oxx(W)="2'-

the pseudo-rardom noise approximation band limited white noise, with a specified flat
spectrum up to a frequency determined by the shift pulse frequency. The approximate flat
spectrum is then

OxxtW) -a "A"t

and the autocorrelation function is approximated by
i Rxx(') = a2 At a (T'

The shift pulse frequency which determines the bandwidth of the white noise must be large
compared to the highest frequency of interest in the simulation, but should not be larger
than of the order of ten since the power spectral density is proportional to the shift pulse
period At (Ref. 4-20).

For pseudo-random waveforms with periods greater than 210 x At (Ref. 4-20) low pass
filteing of the pseudo-random wavefcrm will yield random noise with essentially a
first-order Gaussian probability distribution, if the filter time constant is large compared to
At but does not exceed nAt. Higher order distributions are not necessarily Gaussian.

It has been shown how a suitably designed pseudo-random binary noise generator will
produce approximate band-limited white noise. This method offers many advantages which
are not shared by pure analog noise generators discussed in the previous subsection. Since a
binary shift register is used to produce the pseudo-random noise, the analog noise output is
relatively unaffected by the physical environment. By resetting the initial value of the shift
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register, a random sequence of events can be repeated identically. The bandwidth of the flat
power spectrum can easily be changed by simply changing the shift-pulse rate. Digital
multiplexing can be used to produce multiple uncorrelated noise outputs, and delayed
sequences of random noise can readily be obtained.

The mean and mean square outputs of time-invariant linear systems depend only on the
autocorrelation function of the random noise input. In the case of the pseudo-random
square wave, its triangular autocorrelation function approximates the delta autocorrelation
function of white noise very well when the shift period At is suitably selected. However, in
the case of nonlinear systems, the output will be affected by the second and higher order
probdbility distributions, which are not necessarily Gaussian.

4.4.2 Digital Computer Methods

Methods for providing sequences of random numbers for use on a digital computer can be
divided into three groups: generation by a random ohysical phenomenon, the use of a
random number table, and the use of a mathematical process to generate a sequence of
pseudo-random numbers. Random numbeis that manage to pass a predetermined set of
statistical tests for randomness, eveni though produced by a completuly deterministic
process, are called 'pseudo-random' nurrbers.

The first alternative involves attaching a mechanical or electrical random noise generator to
the digital computer. By the use of a proper interface, sequences of randomn numbers can be
produced. The analog noise generator described previously may be used for this purpose.
This method has the ;!-rious disadvantage that a given sequence of random numbers cannot
be identically repedtaI as required in debugging. The associated electronics and other
equipment of these devices must be maintained to ensure acceptable invariance of the
statistical properties of the output.

The use of random number tables has the advantage that the random number sequences can
have almost any desired statistical properties, and that any given sequence of random
numbers can be identically repeated. Since generally it would b- impractical to store the
whole random number table in the memory core, the main problem with this approach is
the time required to read the random numbers into the computer. Reference 4-22 describes
a random number generator which uses a table but overcomes this problem. The :aethod is
considered practical for large computers with buffered inputs.

The third alternative, which will be covered ia some detail in this discussiort, is the
generation of pseudo-random number sequences by a completely specified arithmetic rule
which is so devised that certain statisticaJ tests will not detect any significant departure from
randomness. Arithmetic methods are normally based on some recurrence relation involving
integers. Each new number is generated from the previous one in such a way that the output
appears to be drawn at random from the finite population of numbers that the computer
can produce.
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4.4.2.1 Random Numters With a Uniform Distribution

Random numbers are normally classified according to their probability density distribution.
The following discussion will concentrate exclusively on tie' generation of random numbers
with a uniform probability density distribution. The cumulative distribution function for

the standardized uniform distribution is defined as

0, X <.0

P(X) X, 0<X<I

1, X ;)I

It will subsequently be shown how ,andom numbers having other distributions can be easily
obtained from uniformly distributed random umbets.

The goal is to find a relation that produces sequences of random numbers which are
statistically indepcndent, uniformly distributed, reproducible, and nc,,repeating for any
desired length. Furthermore, the method must satisfy requirements for computational speed
and minimum amount of computer memory capacity. Tle so-called congruential methods,
properly applied, have been found to satisfy most of these requirements, and consequently
there has been a strong emphasis on their use for digital computations. The fundamental
congruence relationship of these methods may be expressed as follows:

Xi=aXi.I +C(modm) , (0<Xi< m)

which means that the expression (aXi. 1 + C) is divided by m, and Xi is set equal to the
remainder. Xi is the ith :andom number and Xi+ 1 will be the next. Xi, i, a, C, and m are all
positive integers with Xi, a, and C all less than m. Given an initial value X0 , a constant
multiplier a, and an additive C, then the congruence relationship given by the above
equation will produce the sequence of random integers X1 , X2 ,..., Xi, .... where all Xi's
are less than m. The random integers in the sequence may be transformed to rational
random numbers in the interval from 0 to I by the relation ri = Xi/m, 0 < ri < 1.

The determination of the period of pseudo-random Fequnces, the statistical testing of given
sequences of numbers, and the analytic determination of the statistical properties of
sequences of pseudo-random numbers are the three main areas of interest in the studies of
arithmetical generators. The parameters which will ensure the maximum period of the
sequences have beun determined tor nost of the generators. Statistical tests of the sequences
have not beer, so successful. It is impractical to devise a safli..'t set of tests which will
ensure randomness for all applications. It is therefore necessary to compromise with
statistical properties suitable for most problems. However, cases where the generator
prop~erties are incompatible with the particular problem at hand may occur. Therefure, it is
important to examire the resuits to determine whether the simulation is giving a reaso.lable
answer to the problem. The analytic study of the statistical properties of pseudo-random
numbers is a difficult task. Significant achievements in this field are presented in References
4-23, -24, and -25.
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There are three main congruential methods used for generating pseudo-random numbers,
each being a different version of the general relationship. These methods are the
multiplicative congruential method, the mixed congruential method, and the additive
congruential method. Each of these mihods is currently being used on a number of digital
computers.

4.4.2.1.1 T e Multiplicative Method-The multiplicative congruential method (also called
the power re.,Adue method) uses the congruence relation

Xi = aXi.1 (mod m)

This is a special case where C = 0. Among the three congruential methods the multiplicative
method has been found to behave best statistically (Refs. 4-22, -26, and -27). Furthermore,
this method offers a relative advantage in terms of computational speed for most cases.
Conditions are imposed on the starting value X0 , the constant multiplier a, and the
modulus m, to ensure computational speed, a maximum period, and good statistical
properties for the sequences generated by this method.

The application of this method in both binary and decimal number systems will be
considered.

Biniry computers: The multiplicative method for generating pseudo-rar.dom numbers on a
binary computer is summarized from Reference 4-26 as follows:

(1) Choose m = 2b, where b is the number of binary bits in a computer word.

(2) Choose a -ositive odd integer as the starting value X0 .

(3) Choose an integer a = 8t .-3 as the constant multiplier, where t is a positive
integer giving a value for a close to 2

(4) Compute aX 0 using fixed-point integer arithmetic. This product will consist of 2 b

bits, from which the lower order b bits are retained and are equal to the new
number X i.

(5) Compute rI = XI/ 2b to obtain a uniformly distributed rational number from the
interval 0 to 1.

(6) Each successive random number Xi is obtained from the lower order bits of the
product aXi..

With the above selection of the modulo m, the multiplicative constant a, and the starting
value X0, the maximum period of 2b -2 will be obtained (b > 2). The full period includes
one-fourth of all the different numbers available.
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Decimal compuers: Tie multiplicative method for generating pseudo-random numbers on a

decimal computer is summariz,. from Reference 4-26 as follows:

(1) Choose in = 10 , where d is the number of decimal digits in a computer word.

(2) Choose a positive odd integer not divisible by 5 as a starting value X0 .

(3) Choose an integer a = 200 t ±p as the constant multiplier, where p is any of the
values 3, 11, 13, 19, 21, 27, 37, 53, 59, 61, 69, 77, 83, 91 and t is a positive
integer giving a value for a close to I 0 d/2.

(4) Compute aX0 using fixed-point integer arithmetic. This product will consist of 2d
digits, from which the lower order digits are retained and are equal to the
nuinber X1.

(5) Shift the de.cimal point d digits to the left to convert the random integer nuimber
X, into u uniformly distributed rational number rI from the interval 0 to 1.

(6) Each successive random number Xi is obtained from the lower order digits of the
product aXi..

With the above selection of the modtdo m, the multiplicative constant a, and the starting
value X0 , the maximum period of 5x I 0 d-2 will be obtained (d >3). The full period
includes one-fourth of all (he different numbers available.

The fact that the value of the multiplicative constant a was chosen to be close to the
square root of m in both cases is a necessary but not sufficient condition for minimizing
first order serial correlation between the numbers in the sequences. Although the
multiplicative method is considered to be the better of the three congruential methods,
Reference 4-22 points oat several shortcomings. Only empirical testing can establish
confidence in the staistical properties of a given sequence generated by the multiplicative

.. . congruence method.

4.4. 2.1.2 The Mixed Method-The mixed congruentia! method uses the fundamental
congruence relation described where C*0. The advantage of this method is that by the
propter selection of the multiplier and the additive constant C, the period will cover the full
set of m different numbers, m being the modulo. As before, the application of this
method in both binary and decimal number systems will be considered.

Binary computers: The mixed method for generating pseudo-random numbers on a binary
computei is summarized from Reference 4-26 as follows:

(1) Choose m = 2 b where b is the number of binary bits in a computer word,

(2) Choose a po-itive integer number for X0 .

(3) Choose a posi'ive odd integer number for C.
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(4) Choose an integer a = (2 S + 1) for a constant multiplier (S > 2).

(5) Compute (aX 0 + C) using fixed-point integer arithmetic. This result will consist of
2b bits, from which the lower order bits are retained and1 are equal to the

number XI.

f,, Compute rI = Xl/2b to obtain an informally distributed rational random number
from the interval 0 to 1.

(7) Each successive .mdom number Xi is obtained from the lower order bits of the
result (aXi.I + C).

With the above selectiin of the modulo m, the mivltiplicative constant a, the additive
constant C, and the starting value X0 , the maximum period of 2b will be obtained (b > 2).
The full period includes all the numbers available.

Decimal computers: The mixed method for generating pseudo-random numbers on a
decimal computer is summarized from Reference 4-26 as follows:

(1) Choose m = 10d, where d is the number of decimal digits in a computer word.

(2) Chooso a positive integer number as the sta;ting value X0 .

(3) Choose a positive odd integer number not divisible by 5 for the additive
constant C.

(4) Choose an integer a = (1OS + I) for a constant multiplier (S > 2).

(5) Compute (aX 0 + C) using fixed-point integer arithmetic. The result will consist of
2d digits. from which d digits are retained and are equal to the number X1 .

(6) Shift the decimal point d digits to the left to convert the random integer number
Xi into a uniformly distributed rational number ri from the interval 0 to I

(7) Each successive random number Xi is obtained from the lower order digits of the
result (aXi~i + C).

With the above selection of the modulo m, the multiplicative constant a, the additive
constant C, and the starting value X0 , the maximum period I0d will be achieved (d > 2).
The full period includes all the different numbers available.

Although the preceding conditions will ensure a maximum period of the pseudo-random
sequences, they are not sufficient for assuming thai the mixed congruential method will be
statistically satisfactory. The selection of a value for the constant multiplier close to the
square root of m is not sufficient for minimizing first order serial correlation for 'hese
sequences. Only empirical testing can establish confidence in the statistical properties of a
given sequence generated by the mixed congruential method. Systematic testing of mixed
congruential generators with m : 235 and m = 1010 has been described in References 4-22
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and 4-28. These tests revealed that ihe value ;i" X, has no significant influence on the
statistical properties a!though certain values of C tended to improve the st:,tistical
properties of the sequences. For m = 235, a -: (27 + 1) is a good choice of multiplier when
C = 1. For m = 10 d with d > 8, a good choice of a multiplier is a = 101 when C = l. All the
digits in the random numbers generated by this method have the full period. This makes
small word sizes and higher speeds possible when the length of the period is of little
significance.

4.4.2.1.3 The Additive Method-The additive congruential method is described by the

recursion relation

Xi = (Xil + Xin) (mod m)

where the Xis, i, n, and in are positive integers with n ; 2 and Xi < in. As for the other
congruential generators, the values normally chosen for the modulo m are 2b for binary
computers and 10d fer decimal computers where b is the maximum nun ber of bits
and d is the maximum number of decimals.

Thi- starting values X0 , X. 1, ... Xn must be provided in an original storage. This method
can produce sequences with periods longer than m since a given number is deter mined by
the combinations of two predecessors. For a binary computer the pseudo-random numbers
generated by this method will have a period equal to P x 2b-1, where Pn depends cn n and
the word size b. Several values for Pn, when b is equal to 35, are tabulated in Reference
4-29. For example, for n = 16 the period is 255 x 234. In general, n > 16 is necessary but
not sufficient to ensure good statistical characteristics. Discarding every second number
from the sequence produces reasonable random numbers with n = 6 and with a periou equal
to 63 x 234 (Ref. 4-26). Additive generators were originally proposed because addition is
faster than multiplication on most computers. However, the computational speed depends
upon the particular programming codes used, and the indexing operations tend to reduce
the speed advantage. As in the case of the two methods d-scusscd earlier, the determination
of the statistical properties of random number sequence produced by an additive

= congruential generator will require empirical testt,.

The multiplicative metl..-d ha3 generally bevn found to behave well statistically, while the
mixed and additive generators do not always do as well. Se -era) papers have been publiohed
indicating that some correlation exists between successive numbers produced by the
multiplicative and mixed generators. These conelations are suspected to occur less
frequently for the multiicative method. However, Reference 4-25 claims that the
difference in correlation results from using a less than optimum fixed multiplier for the
mixed generators, and concludes that there is no significant difference in the statistical
properties of the seqvences produced by the multiplicative and mixed generators. The
correlatioris appear as patterns and periodicities in the random number sequences and may
give poor results in protlems where order statistics are important.

44.2.1.4 Advanced Congruential Methods-Reference 4-22 maintains that the commonly
used tests for randomness in pseudo-random number sequences have little relevance to
actual applications and have therefore limited value. Instead a series ol more stringent tests
on multiplicative and mixed generators and on two improved generators were conducted. It
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was concluded that the mixed methods are not satisfactory and the multiplicative methods
are suspect at best. The alternative generators developed passed all the devised tests for
randomness.

One of the improved methods uses a stored table of random numbers derived from the Rand
Corporation table of random digits (Ref. 4-30). As a numb, r is used, it is replaced by a
transformed vers.on of itself provided by the relation

XI = aXi + C (mod m)i

so that when the original table is exhausted a new table is available. This can be repeated for
several cycles by using a different value for a and C in each cycle. Thus, the -problem of a
finite table is avoided. Reference 4-22 used the transformation

! X! (215 + 5) Xi + 3 (mod 227)

for the second run, and

X -(27 +I)X i+l(mod 227)

for the third run. This method is only practical for large computers using a buffered input.

The second improved method suggested in Reference 4-22 uses two congruential generators,
where one shufle- the order in which the numbers from the other generator are chosen.
Reference 4-22 used the following relations to describe this method

Xi = (217 + 3) Xi.1 (mod 23 5 )

Yi= (27 + l)Yi-.I + I (mod 235)

where X0 
= I- .Y0 = 0. The first 128 random numbers produced from the first relation were

stored in the memory core. The first seven bits produced by the second relation were used
as an index to pick one number from one of the 128 core locations. The location of the
chosen number was then refilled with the next number produced by the first relation. The
time used to generate a random number by this method is about twice the time required
with a single congruential generator. Reference 4-22 concludes that the method does hay?
better statistical properties than any of the other congruential generators.

4.4.2.1.5 Selected Congruential Methods--It appears that the multiplicative c3ngruential
method is a good, simple choice with few pitfalls. For some applications, the mixed method
or the additive method may be faster, but their parameters must be chosen with care to
ensure equivalent statistical properties. However, the sequences produced by these three
generators display certain nonrandom serial patterns and periodicities which may or may
not have a measurable effect on the results from turbulence simulations. For applications
where the additional computational time and storage requirements of more complex
methods are acceptable, the uee of a random number table or the combination of two
generators as suggested in Reference 4-22 should be adopted.
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4.4.2.2 Random Numbers with Nonuniform Distributions

This section discusses how uniformly distributed random numbers from the interval 0 to 1
may be tratisformed into random numbers drawn from other probability distributions.
Random numbers which are uniformly distributed between 0 and I are denoted by ri. There
are three basic methods, or some variation of them, for simulating nonuniform
distributions: the inverse transformation method, the rejection method, and the composi-
tion method. Following is a brief general description of these methods based on
Reference 4-26.

4.4.2 2.1 Inverse Transformation Method-To generate the random numbers Xi from a
particular population whose probability density function is given by f(x), it is necessary to
obtain the cumoiative distribution function

x

F(x)=f f(x) dx

F(x) is defined over the range 0 to I. Therefore, xi, which is a random number from the

distribution f(x), is uniquaely determined by the relation

=ri F(x i)

where, as before, ri is a uniformly distributed number from the interval 0 to 1. For any
value of ri it is possible to find a value xi determined by

x= F (ri)

if the inverse function F-" of the function F is known. For many probability distributions it
is impossible to obtain an analytic expression for the inverse function of the cumulative
distribution function. This problem can be overcome by the use of a numerical

approximation to the distribution function, as illustrated in Figure 4-56. This method is
very suitable for generating random numbers having empirical distributions.

4.4.2.2.2 The Rejection Methcd-If the nonuniform probability density function f(x) is
bounded and the corresponding random numbers have a finite range a . x 4 b the following
meUiod may be used:

(I) Multiply f(x) by a scale factor c, such that

cf(x) 4 I a 4 x <b

(2) Express x as a linear function for r,

x = a + (b - a)r

(3) Generate pairs of random numbers (r ! , r2 )
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0xx

ri = random number from uniform distributed

numbers in the interval 0 to 1

Xi = random number from a population with
cumulative probability distribuition F(X)

FIGURE 4-56.-NUMERICA.L APPROXIMATION TO OBTAIN THE INVERSE OF A
CUMULA TI VE DISTRIBUTION FUNCTION

(4) If a pair of random numbers that satisfy the relationship

r2 < cf[a + (b - a)r 1J

are encountered, then "accept" the pair and use x = a + (b - a)r I as the random
number generated. If this relationship is not satisfi'pd, reject the pair and continue
to generate another pair.

The theory behind this method is based on the fact that probability of

[r < cf(x)] = cf(x)

If x is selected at randoij from the range a to S according to step 3 and rejected or
accepted according to step 4, then the probability d.:nsity function of the accepted values
of x will be f(x). The mean nun'.,',r of trial befinro! a successful pair of random numbers
(r, r2) is found is I/c and therefore the method may be inefficient for certain probability
density functions.
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4.4.2.2.j The Cnmpodition Method -Random numbers having a probability density function

f(x) inay be generated by combining random numbers having simpler but properly selected
probability density functions gi(x). The proportion from each of the approximate
distributions gi(x) is such that

n
f(x) = gi(x)P i

Pi and gi(x) are slected with the purpose of minimizing the sum

T = TiPi
i=lI

Where Ti is the average computation time for generatmg random numbers from gi(x).

4.4.2.3 The Normal Distribution

In statistical work the normal distribution is the best known and most frequently used
probability density distribution. Both mathematical proof and statistical experience indicate
that this distribution is to be expected when dealing with complex natural physical
phenomena. The assumption of normally distributed gust velocities has been commonly
used in the modeling of turbulence fields. For this reason, the generation of normally
distributed random numbers will be covered in some detail in the following discussion.

If a random variable x has a probability density function

.- 1/ 2 X3
f(x) = x - < x < 0

Where ox is the standard deviation and 7 is the mean value, then x has a Gaussian or normal
probability density function. The cumulative Gaussian distribution function F(x) only exists
in integral form, but its values are tabulated in almost any book on statistics. There are four
mathods commonly used to generate normally distributed random numbers: the central
limit method, Teichrow's approximation, the direct metnod, and the composition method.

4.4.2.3.1 Central Limit Method-The central limit theorem states that the probability
distribution of the sum of n independently but identically disiributed random numbers
with respective mean values Yi and variances oi2 will approach the normal distribution
asymptotically with a mean value and variance equal to

5
I
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when n becomes large. Summing uniformly distributed numbers having the same mean
values and variances, a value for n as low as 10 will provide a good approximation to the
normal distribution for values of x less than 3 ax from the mean value.

If r1, i = 1, 2 .... n, are n uniformly distributed numbers from the interval 0.to 1, the
central limit theorem yields the foi',wing relationship

x =ux[ Ln ri - +

where x is a random number from an approximately Gaussian population with mean value
equal to V and standard deviation equal to ox . The vailue of n is normally selected to be
12 to simplify the computations, in which case this equation reduces to

x = ax ri - 2+]

This approach leads to a relatively fast program, but the value of n = 12 truncates the
distribution at ±6 ox , asid values of x greater than ±3 e x from the mean value have been
found to be unreliable (Ref. 4-26).

It can be seen from Figures 4-57, -58, and -59 that the central limit method with n = 12 will
produce probability distributions where deviations beyond three times the standard
deviation are considerably less likely than would be predicted by the Gaussian distribution.
The turbulence generated by these methods will therefore contain fewer large peak gusts
than would be predicted by the Gaussian distribution. To obtain better accuracy, larger
values of n may be considered, but in these cases the efficiency of the central limit method
decreases and other approaches should be considered.
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I
4.4.2.3.2 Teichrow's Approximation-This is a variation of the central limit method that

improves the accuracy of the sequences obtained but is fairly inefficient. From Reference
4.20 let

12
y I r-6)

then a randf 'm number x drawn from a normally distributed population with mean value
equal to 0 and standard deviation equal to 1 is given by

x =Y ya, +y2 (a3 + y2 (a5 + y2 (a7 + agy2)\)i

IU
where

a, 3.949846138

a3  = 0.252408784

a5  = 0.076542912

a7  = 0.008355968

a9  = 0.02989776
4.4.2.3.3 The Direct Method-Let r I and r2 be two independent random numbers from a

uniform distribution in the interval 0 to 1. Then

x I =(-2 loge r1 )1 /2 (cos 2" 2)

x2 = (-2 logk rI) /2 (sin 2rr2 )

are two rndom numbers from a population with a normal distribution, with men.n value
equal to 0 and standard deviation equal to 1. This transformation is exact, and the speed of
calculations compares well with that of other methods if the required frnction subroutines
are efficient.

4.4.2.3.4 Composition Method-The normally distributed random numbers are derived from
three populations having different d%,nsities, g1(x), g2(x), and g3 (x). The normal density
functioni is approximated by

f(x) = 0.95 78g I (x) + 0.395g2 (x) + 0.0279 3(x)

This method is faster than the direct method but requires approximately 500 storage
locations for specified constants. The equation implies that gl(x) is used 95.78% of the
time, g2,(x) is used 3.95% of the time, and g3(x) is used 0.27% of the time. The generation
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of random numbers from the population having density functions g (x) is fast, while the
generation of random numbers from the two populations having density functions g2(x) and
g3 (x) is relatively slow. Reference 4-31 describes this method in detail.

4.4.2.3.5 Comparison of Normal Distribution Methods-The selection of a digital method
for generating a normal distribution involves a tradeoff between accuracy, computation
time, and storage requirements. This tradeoff is a stroag function of the computer's
characteristics. Even for a given computer, the tradeoff between computation time and
storage will lead to different optimum solutions for different simdlations, depending
whether memory or computation time is most critical.IThe composition method can be rejected out of hand as it involves large computation
storage requirements without superior accuracy. A o.nparison of the computation time
requirements for the other methods is made on Table 4-3. Time required for mathematical
operations will vary tremendously from computer to computer, particularly time required
for table lookups and nonarithmetic operations. Table 4-3 is provided only as an illustration,
and the tme requirements are based on a relatively modern dig-tal computer. The linear
distribution is presumed to be generated by the multiplicative congruential method, and the
time required by nonarithmetic operations is not considered.

Table 4-3 shows that the inverse transformation method requires the least time. However, a
table accurately representing the inverse of the cumulative probability requires a very large
,number of values, depending on how much of the tails is represented.

The next fastest method is the central limit methoa, depending on how the number of
elements from a linear distribution are to be used. Howevcr, as shown on Figure 4-59, the
central limit method drastically underpredicts the tails of the normal distribution.
Teichrow's method is a more accurate version of thu central limit method.

Two estimates are made for the direct method. The differences depend on whether table
lookup or series are used to compute the logarithm, square root, and cosine tunction . Table
lookups are feasible for these functions because the numK;;s operated upon are either scaled
or can be scaled to reduce the number of points required to represent the function
accurately. When storage requirements are critical, the series representations of the
functions is ,.sed. The accuracy of the direct method is limited only by the number of bits
in a word.

The figures on Table 4-3 are misleading because neither the storage requirements nor the
accuracy is held constant between the methods. This is r.ot possible, as the accuracy of the
direct method cannot be duplicated by the other methods. The choice of the optimum
method depends heavily upon how much of the normal distribution tails must be
represented.

The significance of the tails depends on both the response variable anc' the criteria applied
to that variable. For example, the infrequent high velocity samples of turbulence are more
important for acceleration variables, having a more nearly instantaneous response to
turbulence, than for the position variables. The large amplitudes have greaer influences on
the tails of the response distribution than on the amplitudes near the response mean. Hence,
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the tails are more important when performance limits (rate of sink, touchdown dispersion,
nacelle strike, etc.) cannot be exceeded more often than, say, once in 109 landings than
when performance limits cannot be exceeded more often than once in 103 landings.

It is usually desirable to have a standard noise generation technique for all simulations. An
intuitive estimate for" approach and landing is that the distribution should be accurately

represented to three standard deviations. This would rule out the central limit method using
less than 12 samples. The method that appears to be most suitabie as a standard is the direct
method. Use cf the direct method eliminates accuracy consideratism without the severe
core requirements of the inverse transformation method. The tradeoff then needs to be
performed only when constraints on time are severe. Even then, the additional lime over the
central limit method, for three turbulence components and the numbers on Table 4-3, is
only 0.00065 second.

4.4.2.4 The Power Spectira.- of a Digital Noise Generator

The preceding discussion shows how periodic sequences of pseudo-random nurmbers with a
given probability density distribution may be generated on digital computers. The following
analysis will derive expressions or the autocorrelation function and the power spectral
density function. Referring to Figure 4-60, consider a random function x(O, which
represents the random variatior.s in a particular turbulence component. The time axib is
divided into equal intervals A In successive time intervals the random function assumes
independent values which are kept constant over the time increment At. If x, is the
magnitude of x(t) at t = ti, Vie probability that x(t 1) lies between the value x, and x, +
dx I is given by

Probabilit i of x < x(t) < x + dx! =f(x) dx

' where f(x) represents the probability density functions of the random function x(t). It can
be seen that f(x) values do not depend upon the tine t I .

The two-dimensional probability density distribution of x(t) x(t + r) turns out to be time
dependent. Consid2r the values of x(t) and x(t + -r) at t = t 1, where r I< At and the time
origin has been chosen so that 0 < tI < At. For a given time displacement T, let x(t I + r)
x2. Then,

x(t I ) x(t ! + r) x 1
2

with probability

g(xI x2 ) dx1 dx2 =f(x) (x! "x2 ) dx1 dx 2,

if(t i + r) < At, i.e.,

X(t ) = X(tl -. ) x1
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and

x(t ! )x(t ! +T) =x I x2

with probability

g(xi,x 2 ) dx I dx 2  f(x1 )f(x2 ) dx1 dx 2 ,

x(t 1 )=XI,X(t I +r)=x 2

where g(xlx 2 ) dx I dx 2 is the joint probability that x(t 1) has a value between x, and x, +
dx, and x(t I + r) has a value between x2 and x2 + dx 2 . For the same time displacementr
the joint probability distribution has two different expressions, depending upon the
sampling time t1. Thus, the random function considered is nonstationary.

If r I >At, then

x(t) x(t 1 + 'T)= x1 x2

L Lwith probability

g(x 0 2 ) dx I dx 2 =fxl) f(x2) dx I dx2

for any value of the time t 1.

For time displacements greater than At and less than the period T, the periodic
pseudo-random functioi, x() can be considered to represent a stationary random process.

r The function can also be considered ergodic since successive values of x(t) for time
displacements greater than At and less than T are essentially uncorrelated. The
time-averaged mean value and the time-averaged autocorrelation derived from x(t) may be
considered the same as the equivalent ensemble averages.

The probability that x(t) = x(t + r ) is the probability that t and t + " arc both in the same
interval At, which is evidently (I -(I'1+At)) if Jr I <At and zero ifJrI > At. The
time-averaged autocorrelation function Rxx(r) of the periodic pseudo-random function x(t)
with a mean value equal to zero and variance equal to a - s

R ~(r) a o2f [1 1r- kt,1
xx x At]

when 17- ktI <At,(kO l, ±2...)

and

i Rxx(,r) = 0

otherwise.
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This autocorrelation function is periodic, having the same period T as the ,andom function
x(t). However, for the purpose of turbulei ce simulation the period T may be made
sufficiently larger than the time delays of interest so that the periodicity may be neglected.

Transforming the autocorrelation f-inction yields the power spectral density function

Ox2 At [sin .At/21
2

Oxx ( w )  2"" -- [ w At/2

This power spectrum which is shown graphically in Figures 4-60, -61, and -62 is constant
within -0.1 dB up to approximately w = 0.5/At.
The effect of the periodicity of x(t) is to make the power spectrum a line spectrum where
the spectral lines are separated by fundamental frequency wO = 2r/T. The power

contribution from each multiple of the fundamental frequency is proportional to

sin tkirAt/t)I 2

kirAt/T j

However, since the period T will be sufficiently larger than the time delays of interest, the
spectrum will appear continuous.

The pseudo-random function x(t) approximates band-limited white noise with a specified
flat spectrum up to a frequency determined by the frame time At. The approximate flat
spectrum is

ax2 At
Oxx(Wo) - ___

and the corresponding autocorrelation function is approximated by

Rxx(T) =Ox2 At 6(r)

The frame time At which determines the bandwidth of the white noise must be small
compared to the smallest time constant and oscillation period of interest in the simulation.
The power spectral density is proportional to the frame time At and the variance ox-, but is
independent of the form of the particular probability density function.

Any random process used on a digital computer or any digital pseudo-random process, even
when used with an analog computer, has the above spectrum characteristics, and the
elements of the process must be multiplied by 21r/At to give bandwidth-limited white noise.
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4.4.2.5 Digital Computer Application

Programming of digital simulators is not generally performed by the test engineer. Software
techniques for generating noise are not as well understood as analog techniques, and digital
simulation does not lend itself so well to noise spectral analyris. For these reasons, the
digital simulation test engineer often has little knowledge of noise generation. Consequently,
a brief review and discussion of pitfalls is pertinent.

The objective is to provide uncorrelated noise with a spectrum of unit amplitude over the
frequency range of interest, referred to as "band-limited white noise." There are three basic
steps required to achieve this result by softwcre, as shown on Figure 4-63:

0 Generation of a uniform distribution, having unit amplitude between C and 1.

• Generation of a normal or Gaussian distribution from samples of the linear
distribution.

* Division of the samples from the normal distribution by the square root of low
frequency unadjusted spectrum gain.

The uniform distribution generation controls the statistical randomness of the noise. The
most common methods are variations of the congruential relationship. The basic procedure

requires multiplication of the oreviously generated unadjusted random number by a
constant, to which another constant may be added. The resulting number is stored in two
registers. The unadjusted random number is equal to the lower order bits in the second
register. This number is then adjusted to provide an element from a uniform distribution
between 0 and 1. The resulting uniform noise distribution has a mean of 1/2 and a variance

k ~of 1/ 12.

The randomness of the noise may be strongly dependent upon proper selection of the

multiplicative and additive constants. When using the multiplicative congruential method

41 (power residue method, too low a multiplicative constant can introduce strong correlation
between successive samples. When a small random number occurs, a small constant will
cause the next number in the overflow register to be small compared to the size of the

i register. The overflow will then increase monotonically untils the capacity of the register is

exceeded, after which the numbers will tend to be random until ancther small number is~generated.

Correlation between successive numbers introduces high frequency harmonics, with the
frequency of the harmonics proportional to the multiplicative constant. Tnis serial
correlation appears as strong, long period "fluctuating shears," and may be observed by the
slow buildup of the signal standard deviation to the desired level when computing a
cL'mulative signal standard deviation. The effect may be masked by judicious selection of
the starting number. However, the selection of the starting number does not alter the
correlation. A more relevant test of a bias is the lack of a running standard deviation (say,
over the previous 10 seconds) to build up slowly.
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The probability density distribution of the white noise is controlled by the generation of the
normal distribution from elements of the linear distribution. If the peak output noise never
exceeds, say, twice the noise standard deviation, the error is likely to be in this step. This
step is also where the non-zero mean of the linear distribution is corrected to produce zero
rmean. The level of the noise is frequently adjusted at this step to provide output noise with
a unity standard deviation. The objective is not, however, to provide noise with a standard
deviation of one. Rather, adjustment for the noise standard deviation is more correctly
considered as part of the next step, the adjustment of the low frequency spectrum level.

The output of the Caussian generation produces a spectrum with low frequency gain of

uNAt
LIM 4'NOISE- 2r

Where At is the sampling interval and ON is the standard deviation of the Gaussian noise.
The noise spectrum is 10% within a constant spectrum up to about W At = 1.15. On digital
computers, computational stability for feedback loops exists for time constants as short asI50% greater than the frame time. Thus, the noise spectrum is essentially flat for the
maximum frequency that can be represented.

Since the noise spectrum is flat, band-limited white noise is achieved by multiplying the
unadjusted spectrum by a constant k,

)NouT  = k24NIN

k = NOUT i I 2r

4'NIN ON 22Nt UN

21r

This factor may be conveniently combined with the filter gain to give low frequency
gains of:

Componerit ,S UTI C-*0 Combined Gain

uu i2Lu/VAAt
U ON

v-- 0v J, Lv/VAA

v JLv/2VA ON Lv/VAat
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Component ____NuT __ Combined Gain

wOw Lw/27V A  UN

oN j Lw/VAAt

The combined gain should not be confused with a change of units of the spectrum being
modeled. That is, the speetrum of turbulence that eventually results has urits of
(ft/sec) 2 /(rad/sec), not (ft/sec) 2/(cycles/sec).

To provide uncorrelated turbulence components, three white noise generators are generally
specified. However, when software is used to produce the pseudo-random number, it is
undesirable to use different techniques for each component. Then, the same routine may be
used for all three components by simply using different starting numbers for generating the
uniform distributions.

Software noise generation eventually repeats, so care must be taken in the selection of the
three starting numbers so that they are not displaced over too short a time period. That is,
,he correlation between two turbulence components may be perfect if the noise sequences

' ~ ~ -"e shifted in time. If the time shift required is too short, the effective aerodynamic

,.:c upling occurs.

A s ifer and more efficient method for generating uncorrelated turbulence components is to
simly make three passes through the noise generator in one computation frame. If the
constants for the noise generator are correctly selected, the sequences for the three
components are separated in time by at least one-third the period of the noise generator.

4.5 MOD)ELING FOR SIMULATION

The mod,! providing the effects of wind is described in terms of six basic parts, as shown onI Figure 4-64:

* The probability model, which is not used on line or during the running of the
simulation, is used to determine the combinations of parameters defined
deterministically.

* Using the probabilistic parameters, the mean wind speed and mean wind shear are
determined at the airplanes altitude.

* The turbulence associated with the mean wind is generated at the airplane's
altitude and for the airplane's airspeed.

• Using the Euler angles describing the airplane's attitudes, the wind heading, and
the horizontal components of airspeed, the mean wind and the turbulence
components are transformed into components along the airplane's body axis and
are assigned to the airplane's center of gravity.
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e The airplane's inertial velocities and the components of wind ar. combined toform the parameters required for determining aerodynamic forces.

* The aerodynamic forces ire developed in a manner compatible with the technique
required to accurately reflect the effects of the wind and turbulence.

A last step, the determination of aircraft motion from the forces and moments, is unaltered
by the presence of wind and turbulence.

4.5.1 Probability Model

Frequently there are two probabilities to be dealt with, an input and an output probability.
For example, a criterion may state that for a headwind having a magnitude equal to or less
than that occurring 90% of the time, the airplane may not have a lateral dispersion greater
than such or such value for more than 1% of the landings.

The input and output criterion may be stated qualitatively, as in Reference 4-32:
analysis should show that under realistic environmental conditions... the touchdown

performance will be such that landing outside the prescribed dispersion area will be
improbable."

The output probability is used to ensure that an accident will occur very infrequently. The
use of the input probability is less clear. If a known relationship exists between the input
and the output (i.e., higher surface wind speeds cause exceeding touchdown position limits
to be more probable), the input probability may be used to reduce the number of
paiameters and/or to reduce the output probability while maintaining constant the
likelihood of an accident. This approach is most suitable when a single inpu.' is described
probabilistically and least suitable when multiple inputs are described probabilistically,
particularly when the combination of inputs that are successively more critical is unknown.

When surface conditions are severe enough, an airplan" need not land at a specific airfield,
but has recol- e to diverting to an alternate field. The input probability may be used to
reflect the s, rity of conditions that should be mnt or to restrict the sev'erity of conditions
that must be met.

The descriptions of a mean wind and turbulence that have been selected provide for three
pa-.ameters defined probabilistically: wind heading at the surface, wind speed at the surface,
and atmospheric stability measured at the surface. A fourth parameter that could have been
included is the heading shear, or the profile of wind heading. However, no analytic
e.scription, matching empirical measurements, nor any empirical description could be
found and the parameter shall not be described.

All other parameters have beer described deterministically in terms of the probabilistically
defined parameters, even though dictributions about the deterministic descriptions are
likely.
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Increases in the surface wind cause more severe wind conditions for aircraft during approach
and landing. Although more stabie atmospheric conditions cause more severe mean wind

shears up to a po~nt, they also reduce the severity of turbulence for a fixed surface wind
speed, making it difficult to define the probability of being at a more severe stability
coadition. It is 21so quite difficult to define the most an:d least severe surface wind headings
for all aircraft.

It is concluded that a ranking of combinations of probabilistically defined parameters
according to increasing severity is not possible for all aircraft. Consequently an input
probability is not used. Rather, combinations of parameters shall be provided according to
the weighting provided by the joint probability densities.

One simplification to the joint distribution func:on is immediately available: evidence that
the wind heading (as measured from the heading of the prevailing wind) is correlaled with
either the mean wind speed or atmospherc stability is very weak, and wind heading will be
assumed to be un,.nelatzd with stability and wind speed. On the cther hand, evidence that
the distribution of atmospheric stability is dependent upon the wind speed is quite strong,
and a joint description must be provided. A joint description of the surface mean wind
speed and atmosoheric ,.bility is generated by providing a unique probability density
distribution of atmospheric stability at the surface for each surface wind speed.

A means must be provided to generate the desired joint probability dcnsi-y distributions.
First, the distribution for two correlated pa:ameters is considered (such as atmospheric
stability and wind speed at th'. surface). As an example, all tl.e wind speeds are divided into
two groups, say, those that are less than 10 knots and -hose that are greater than 10 knots.
Let the probability of having a wind speed less than 10 knots be 0.65 and the probability
that the wind speed is greater than 10 knots be 0.35. Similarly, all conditions of stability are
divided into groups of stable and unstable and assigned probabilities as follows:

P R20<01 P IR20>0

V20 < ! 0 kt 0.3 0.7

V20 > 10 kt 0.45 0.55

The joint probabilities cf the four possible outcomes are computed as shown on Figure
4-65. The case of uncctrelated p;'rameters can be evaluated in the same manner, but the
result reduu-es to the joint probability equal to the prodoi of the unconditional
probabilities:

P1A, BJ =P{AJ P{B, AandBuncorrelated

The outcome of Figure 4-65 is represented if first all wind speeds or Richardson's numbers
within in interval are assigned the mean of the interval. The interval means are plotted

549



P RV0 i0

Ri201 V20 Ri20 P !0

<0 10 kts <0 0.65 x 0.3 0.195

Kz

9 ~P 1120

< lOkt > 0 0.65x 0.7 0.455

0, > 10 kt < 0 0.35 x 0.45 0.1575

0.55

>lOkt > 0 0.35 x 0.55 = 0.1925
Sum = 1.0

FIGURE 4-65.-EXAMPLE: JOINT PROBABILITY FOR CORRELA TED PARAMETERS

again!t a 0 to 1.0 argument so that the percentage of the 0 to 1.9 space occupied by an
interval wiean. is equal to the probability of the interval. The plots co-responding to the
example are shown on Fiyure 466.

A random number from a 0 to i.0 uniform distribution is generated and the first curve is
entered to obtain a V20" Depending on the "2(I obtained, a second curve is entered with a
new random number to obtain Ri20. As the procedure is repeated many times, the joint
distributions obtained are those in Figure 4-65.

The example described is quite crude, b',t better joint probability representations are
obtained as mort. intervals are used for each parameter. As the number of intervals
approadhes infinity, the curves in Figure 4-66 approach the inverses of the cumulative
proLability curves, with the 0 to 1.0 argument equal to the cumulative prob;,bility (the
exceedance probability curves could be used just as well).
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!2t Mean V20 for

2 10kt

• I

0 0.66 1.0
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> 10 kt

II

R.'i20 , , -

1.0

II

0.45 Random

number

0.3 Mean Ri20 for Ri20 < 0

FIGURE 4-66.-EXAMPL E: GENERA TION OF JOINT DISTRIBUTION
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The probability model that results is that on Figure 4-67. Th- procedure is as follows:

1) Generate three random samples from a uniform probability density distribution
defined between 0 and I.

2) Usirg the first random sample, enter the cumulative (or exccedance) probability
curve for V- 0 to find the surface wind speed.

3) Using the second random sample, enter the cumulative (or exceedance)
probability curve for Ri 2 0 to find the atmospheric stability at the surface.

4) Using the third random sample, enter the cumulative (or exceedance) probability
curve for W to find the wind heading.

5) Compute the down-runway component of mean wind at tie surface. If it exceeds
+10 knots (positive downwind component is a tai!wind), return to 1). This
corresponds to the FAA requirement (Ref. 4-32) that aircraft need demonstrate
approaches and landings for tailwinds only up to 10 knots.

The cumulative wind heading probability is derived by integrating the selected wind heading
probability density function and is provided in Figure 4-68. Wind heading is used to mean
the direction to which the wind is blowing, relative to the runway hcading (assumed to be
aligned to the prevailing wind), which is opposite the meteorological convention.

Descibing mean winds and Richardson's numbers for all cumulative (or exceedance)
probabilities between 0 and I is more difficult as the maximum surface winds ot
Richardson's numbers that ever have or ever will be reached are unknown.

The problem associated with wind speed is alleviated by the FAA requirement (Ref. 4-32)
implying that wind speeds only up to some maximum value need be consideied.
Presumably, greater winds result in a diversion to an alternate fielt or perhaps even a manual
approach. If a maximum value is specified, then random numbers associated with the greater
wind speeds sliould be discarded and a new sample ger'erated. This amounts te ratioing the
curve so that the maximum wind speed corresponds to a cumulative probability of 1.0 (that
is, use the cumulative or exceedance probabilities of surface wind speeds, given that the
surface wind speed is less than the maximum). The wind speed probabilities are presented
on Figure 4-69.

The problem associated with w-inri speed may also be alleviated by using an input
probability to determine a single surface wind speed to be used. However, as mean wind
speed increases, the Richardson's number distribution narrows and it is possib!2 that the
highest surface wind speed is not the most severe one.

Limitations on the maximum levels of atmospheric stability and instability that must be
considered are not provided. This may in part be due to relative ignorance about the effects
of atmospheric stability, the paucity and variability of empirical data, and simply the fact
that stability is not a parameter measured and reported by airport towers.
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FIGURE 4-67.-PROBABILITY MODEL SCHEMA TIC

Extreme levels of instability may result in extreme levels of turbulence, even for reasonable
nean wind speeds. It is likely that there is some extreme turbulence level in which an

approach would not be performed. Hence, a restriction resulting in a maximum level of
instability is feasible and greater instabilities need not be considered.

The extremely stable conditions pfesent a different problem. As stability increases,
turbulence decreases until it disappears altogether. As discussed in the next subsection, the
mean wi,d speed and speed shear at altitude at first increase as a ratio times the wind speed
at the surface then decrease as stability increases. Also, at extremely stable conditions, the
likelihood of atmospheric discontinuities, such as low altitude inversion layers which are
difficult to model, increases, invalidating models providing continuous variations for altitude
changes.

It can be argued that, rather than discarding all random samples corresponding to
cumulative or exceedance probabilities for which Richardson's numbers are not defined, the
last stated value shotuid be used. This at least would be more representative of the more
extreme value that should be used and can be expected to frequently give the samne result in
terms of sucLess or failure. This is the suggested approach to be used wilh Figures 4-70, -7 1,
and -72. obtained from the selected descriptions. Fortunately, the most extreme levels of
stability occur at the lowest surface wind speeds, thus reducing their effect.
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4.5.2 Mean Wind Model

The descriptions of the mean wind profile and the mean wind shear, selected from
alternative descriptions provided by the literatture, are:

Iu kI n (h W+.5h+l

h 20 20)(

h h,h<d

d,h~d

Where 0(hw/I'), f(hw/R') and g(hw/£') are giveii on Figures 4-73, 4-74, 4-75, and 4-76,
which describe the functions:

h/,' < O:

=1 - 18 Ni'' (

1 > h/9' > 0:

1.0+55

f_ 4.5(1)

g(~~) + +2.25(~
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! i

h/k'> l:

= 5.5

f ~4.5 1+I kj

g(4) 5.-75

I; All other terms required for generating the mean wind profile and mean wind shear remain
'i" ,.itant throughout a simulation and may be computed prior to the running of thesimulation:

9 Combinations of V20 and Ri 20 are determined from the probability model or
may be user specified.

0 V20 presented on Figure 4-77 as a function of Ri20' which describes

V20  In 20.15) + f (20)

* I/V' presented on Figure 4-78 as a function of Ri2 0 , which describes

R '20 20
20 [1 - 18 R'2

2' = 201!-4.5R Ri2'

'2055R.

i220

120 -Lo>2 0 , ' 7 > I

d 800 V20 \ V20
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The mean wind profile and the mean wind shear could have been specified directly in terms
of Richardson's number at each altitude without introducing the explicit dependence on
h/Q'. However, it then would have been necessary to compute Richardson's number at each
altitude, a computation that would r:quire a table lookup. Using h/R' eliminates the table
lookup during the simulation, simplifying the simulation; table lookups for determining h/V'
from Ri2 0 are performed before the running of the simulation.
The detailed procedure for computing the wind and turbulence model parameters is

provided schematically on Figure 4-79 and is described as follows:

* Initial condition calculations

- Determine I/V from Ri20 using Figure 4-78

Determine (u*0/k)/V 20 from Ri2 0 us; ure 4.77

- Compute u, 0/k = [(u, 0 /k)/V20] V2 0 and u* 0 = 0.4(u, 0 /k)

- Contvte d = 800(u* 0/k)

* On-line calculations

Compute hCG/d

hCG/d, hCG <d
Compute hw/d I , hCG >d

where hW is the altitude used in the wind and turbulence models. Limiting
hW/d to one ensures that the mean wind will be constant above the
boundary layer.

- Compute I - (hw/d), hW/', and hW = (hw/d)d

The detailed calculations for determining the mean wind (used for point aerodynamic
effects) and the mean wind shear terms (used for distributed lift effects) are presented
schematically on Figure 4-80 and are described as follows:

* Compute ln(I + (20/3) hW), or use table lookup. This is the adiabatic
contribution to the mean wind.

* Determine f(hw/V'), the contribution of nonadiabatic thermal conditions to the
mean wind, from Figures 4-74 or 4-75.

* Determine g(hw/Q'), the contribution of the altitude vaiiation of shear stress to
the mean wind, from Figure 4-76.
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Idh d

dh dh

FIGURE 4-80a -MEAN WIND AND WIND SHEAR MODEL SCHEMA TIC
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0 Compute

VW=[ln; h hW hww=--11 In(; -Lhw)+fl -a- w

* Determine (kh/u*0 )(aV~y/ah), the constant shear stress nondimensional shear,
from Figur. ,-73 using hW/9'.

# Compute

d -- _u 0  kh ] dW hWW I

dh k tu*0  ahl J dhw

This is the wind speed shear.

4.5.3 Turbulence Model

Three uncorrelated comporents of mean wind axis system turbulence, all measured at the
same point, are productd by passing samples of band-limited white noise having a Gaussian
probability density distribution through gains and filters which cause tile outputs to have
power spectra approximating the Von Karman spectral snapes. The filter time conslants and
the gains are dependent upon the airspeed, integral scales, and turbulence variances. A
qualitative description of this procedure is provided oil Figure 4-8 1.

Turbulence velocity
in mean wind axis

Band-limited Variable system, Von Karman
white noise, gain and spectrum
Gaussian freouency
distribution filter

Airspeed

Turbulenre
model
parameters Calculation of

p integral scale
and variance

FIGURE 4-87.-GE VERA TION OF TURBULENCE VELOCITY SCHEMA TIC
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k
The Von Karman spectra for the components in the direction of the mean wind,

perpendicular to the right of the direction in the mean wind in the horizontal plane, and
vertically downward, respectively, are given by

OH2 LH_ _

t ir 11 + (1.339 LH 1)2 5/6

=H2 LH I + 8/3 (1.339 LHn 1 )2

rI+l 9H2)2 11/61r + (1 .339 LHSi 21/6

=V2 
LV I +8/3 (1.339 LVS2i) 2

w 2 1/I +i +(1i.339 LVn I)'" ! /

where S = w/VA, and where the variances and the power spectra are related by

00i2 = f i[1)d2

4.5.3.1 Noise Generator

Any procedure producing noise with a flat unit amplitude power spectrum over the
frequency range of interest, thus implying negligible serial correlation, and having a
probability density distribution that does not deviate significantly from a Gaussian
distrib 'ion for amplitudes up to ±3o is an acceptable noise generator.

A particular routine for use on digital binary conmputers that provides a good combination
o: efficiency (computation time and memory requirements) and accuracy is described as
follows:

(1) Generation of uniform distributio ,veen 0 and I

(a) Choose pesitive odd integer for x0

(b) Choose an integer K = 8t±3, where t is a positive integer giving a value
for k close to 2b/2 and where b is the number of binary bits in a
computer word.

(c) Compute kx 0 using fixed point integer arithmetic. The product is stored on
two registers. The lower order b bits arc retained and are equal to the new
number x i.
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(d) Compute rI = xl/ 2b. The term r, is a random number from a uniform
probability density distribution between 0 and 1.

(e) Each successive random number xi is obtained from the b lower order bits
of the product kxi.!.

(2) Generation of Gaussian distribution
From two successive samples from a uniform distribution, rl and r2 , compute a
sample from a Gaussian distribution, g, by: g = (-2 In rl)1 /2 cos(21rr 2 )

(3) Spectrum adjustment
Adjust the magnitude of g to provide a spectrum of unit amplitade by
multiplying g by 21r/At, where At is the computation frame time. The product is
the input to the turbulence filter.

(4) Multiple components of turbulence
Perform the entire process (1, 2, ari 3) three times within each computation
cycle, once for each of the three '.omponents, using six successive samples from
the uniform distribution.

The method for generating the uniform distribution is known as the "multiplicative
L, .gruential" ' or the "powcr residue method." The method for generating the Gaussian
distr:.L :ion from the w:aiform distribution is known as the "direct method."

4.5.3.2 Turbuic-ce Statistics, Mean Wind Axis

The standard dv ,tions and integral scales for the components of turbulence aligned to the
mean wind axis :/stem are generated in accordance with the selected description as
presented on Figure 4-82 and as described in the following:

Determine oV/u*(h/f') from Figures 4-83 or 4-84

Calculate aV = (oV/u*) (I - ii'd) u,0

Determine OH/OV(hW) from Figure 4-85

Calculate OH = (OH/OV)OV

Identify LV = 1W < 1000 ft

Calculate LH = LV(QH/oV) 3

4.5.3.3 Turbulence Filters

Upon assurance that the random noise has a flat spectrum of unit amplitude, it remains to
develop filters having frequency responses equal to the square roots of the turbulence power
spectra.
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TURBULENCE STATISTICS

First, it must be ensured that the spectrum being matched is two sided. That is,

0002= f ((9l) dil I

not

00

02 = (ll ) dil3
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FIGURE 4-83. -aw , VARIATION WITH STABILITY

The latter form has twice the amplitude of the former and is used when output variances are
computed from the output spectrum by numerical integration. The knowledge that the
spectrum is even is used to enable integration over half the frequency domain. The variance
is then twice the integral. However, rather than defining the variance as twice the integral
from 0 to a*, a one-sided spectrum has been defined, with twice the amplitude of the
two-sided spectrum. Unfortunately, the one-sided spectrum has been carried over to
simulation. The effect is turbulence with' twik.e the intended variance 'since, by the Fourier
integral inversion theorem,

-00

all frequencies from -oo to *a transform into time; there is no way to restrict a temporal
process to producing a half-plane power spectrum.

A second point of confusion is the units of the spectrum. The appearance of the gain of I/W
in the spectra is often erroneously assumed to represent a conversion of units from
(velocity) 2 /(rad/sec) to (velocity) 2/(cycles/sec). The Von Karman spectra presented are in
terms of l/(rad/sec).
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FIGURE 4-85.-SELECTED DESCRIPTION FOR VARIANCES OF HORIZONTAL
TURBULENCE COMPONENTS
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To convert from spacial frequency to temporal frequency, Taylor's hypothesis, 91, = WiVA'

requiring the variance to be the same in either domain, is used:

p 00 -002 
1 V

~00
02  f 4)'(w) dwo

VA 42

To approximate the Von Karnian spectra, filters must approximate

fLH I

= 
0H [I + 1.339!-t]/I]

(1+8/3 1.3 3 9 ±- )2

. () H 7 A 11 /16"
I + 1.339LHu

4
)W((A)) i+8 VA )2~/2 

1

ff_ w( ) = °V F~v i+ ..8/3 |1339 "-VA w

VA

J 2 rVA [I+( 33 LV- w,2]11/16.

These square roots of the temporal frequency Von Karman power spectra are shown onFigure 4-86.

The ultimate test as to whether a filter correctly represents a given power spectrum is to test
the contribution of each frequency to the total variance within the frequency range of

interest. This is not the same as ensuring that the total variance is the same.
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It is often assumed that the filters that exactly produce the Dryden spectra represent the
Von Karman spectra well. This does not appear to be the case, as seen on Figure 4-87, unless
the maximum frequency of interest is below

Ca < 0.05 -A

LH

and
and 

< 0.09 V A
LV

which is quite unlikely for landing approach. The Dryden spectra, although having the
correct variance, overpredicts the Von Karman spectra by as much as 25% at the frequencies
having the greatest contribution to the variance. The greater contribution io the variance at
the intermediate frequencies by the Dryden spectra is compensated by a lesser contribution
at the very high frequencies. The very high frequencies. however, will be beyond the
maximum frequency of ;nterest; they have a negligible contribution to the output response

Lor variance. It is most likely that use of the Dryden spectra will overpredict the airplane's
responses to turbulence.

Much better filter approximations are obtainable. Examples are those on Figure 4-88, whose
asymfe)tcs are shown on Figure 4-87, and which ire compared to the Von Karman spectra
en Figures 4-89 and 4-90. The error on Figures 4-89 and 4-90 is reduced to less than 3%,
except at very high frequencies. The high frequencies can be matched better as higher order
filters are used, but the filters on Figure 4-88 are expected to satisfy the simulation
requirements for almost all aircraft during approach and landing. No first order filter for the
longitudinal spectrum, comparable to the Dryden filters, could be found that would
adequately represent the right side of the peak on Figi:re 4-89. Similarly, second order
filters could not be found for the transverse spectra.

The filters must be reduced to first order lags, with the Laplace transform variable, s,
appearing only as integrator (l/s). A series of first order lags may be used, but the parallel
arrangement on Fgure 4-91, obtained by a partial fraction expansion, is preferred, as it is
considered easier to implement and check out.

4.5.4 Transfom'aations

Axis system transformations provide the interrelatiornship between the mean wind axis
system, in which the characteristics of the wind and turbulence are defined, and the
airplane's body axis system, in which aircraft motion is defined. Specifically, transforma-
tions are needed to define:

* Body axis components of the mean wind

* Body axis components of the mean wind shear

o body axis components of turbulence.
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VA VAA

j FIGURE 4-88. -TURBULENCE FILTERS

The required transformations have been discussed previously and are presented on
Figure 4-92.

4.5.5 Aerodynamic Parameters

The aerodynamic parameters are those upon which aerodynamic forces and moments are
dependent and can be represented by suitable modifications of the velocity distributions
over the airplane.

Tie velocity distribution about the airplane is represented by four parts, made up of
combinations of mean wind or turbulence, and point lift or distributed lift effects. It is
generally necessary to provide separate buildups of wing-body (where the primary body
effects are considered to come from the carryover of wing lift) and tail forces and moments
for turbulence simulation during landing approach.

The effective linear velociti-.s at the center of gravity used for wing-body aerodynamics are
made up of the sutm of the mean win, components and the turbulence components:

uWCG= uW + uT

'WCG =W + "T

wWCG wW + wT
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BODY AXIS MEAN WIND COMPONENTS
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Effective body axis wind angular velocities for wing-body terms are related to the first order
Taylor-series terms and have mean wind and turbulence contributions:

PWCG = PWCG + PT

qWCG W=cG + ciT
rWCG TWc G + rT

where

I - aWw aWw dh aw

PWcG - ' y =  cos0sin

- aWW aW dh a w
= -- d- ah sinOiCG ax ah dx

There are two contributioti, to wing-body effective yaw rate: one due to the normal force
variation in the chordwise direction and one due to the spanwise distribution of the

~~~~longitudinal force. W Wd W

aVW -V dh aVrW
(rWCG) Z -= F xx a h sin

(w ) auW auw dh auw[ ( WCG~x -W =-"vf d -- f",06 sin#

", Only the penetration distributed lift effects of turbulence are represented. Thus,

PT=0

The remaining angular turbulence terms are obtained by filtering the linear turbulence
*components:

- VA I + 2?!r'VASWT

- I s
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Linear wind accelerations are determined from the mean wind shear components and
filtered derivatives of turbulence velocities, as done for the angular components, by

recognizing that turbulence is represented as being variable only with distance:

aUW dx B u + T

iW Tx- dt =- rI + IVACG

+fW uT

sin 0 VAc G  I + 2cs/'rVACG)

LW ah sin 0 VAc G + I + 2?s/1rVAcG) T

IW= sin0VcG+ (-+ 20swVACG) T

The .sfrect of turbulence on the velocities at the tail derives from two sources: the direct
effect of the turbulence velocities plus the effect of the wing-body on the tail, as measured
in terms of downwash and sidewash.

No wing-body effect is provided for the longitudinal wind component. The turbulence at
the tail is described in terms of that at the center of gravity, delayed by the amount of time
required to traverse the distance equal to the tail length. Thus,

UWTAIL = aa -ST/VA

uWTAL [WCG - axTT+-zzT+uTe

+,aUw aiw
-" - sin 0

axw a,

a--" ----- cos O cos

Downwash and sidewash reduce the magnitude of angle of attack and sideslip at the tail and
are assumed to be linearly related to wing lift and side force, respectively. Wing lift and side
force are in turn assumed to be determined significantly only by angle-of-attack and sideslip
angle. That is, the wing-body effects on the tail due to turbulence are:

7
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e-SQT/VA

(AwT)TAIL - (AE) uT I
[CLWB WT ae WT

a (s - K(s)ac = w[ 'WB ]uT au T~

(AwT)TALe wT K(s) esRT/VA

Similarly,

(AVT)TIL -'vT K(s) e - T/ V A

The transport lag accounts for the time required for the downwash to reach the tail, and no
additional contributions of the tail to 4 and 4 derivatives are to be used. The total
expressions for the wind velocity vertical and lateral components are:

R + [ a K(s1 e-sRT/VA
VWTAIL vW - T + -ZT + - s vT

aVw aVW w avw
'' = sino , -a= h- cos 0 Co s

I aW- aLE K) -ST/VA
WWTAIL WW -W"- 'T a' ZT+ K(s)w

aww  aww  aww a~w
-a- =--'- sin 0 , --- ff COS 0COS

When the lengths from the wing.body aerodynamic center to the aerodynamic centers of the
vertical arid horizontal tails are significantly different, the side velocity should be based on
the vertical tail arm, the vertical velocity should be based on the horizontal tail arm, and
two longitudinal velocity terms should be computed. Generally, unless the horizontal and
vertical tails are on opposite ends of the airplane, the tail arms will be close enough to
warrant using an average length (for canards, tail lengths are negative).

Neither tail lift growth r'or the distribution of turbulence over the tail surfaces are
accounted fo;, as their presumed relatively small dimension' make these effects

insignificant.

588



- "'c ..4 " . . -- ,., - -.. .

One additional tail term has not yet been accounted for: de effective wind roli rate due to
the vertical distribution of the lateral component of mean wind over the vertical tail. This
term is:

a-w afw
PWTAIL = PWTAIL = ' = cos 0 cos

From the wind and inertial velocity components, the effective velocities with respect to the
air mass are de',eloped:

Linear components Angular componerts

Wing-body terms

I UAcG = uWV(s) - UWcG K(s) PAcG pW(s) - PWcG K(s)

AG= vW(s) - VWcG K(s) c = qW(s) - qw K(s))VAcG = W~)cGvC

wAcG = wW(s) - Wc G K(s) (rAcG) = rW() - (rWCG)K(S)

i I6ACG = 6iW(s) - 6W 1:(s) (rACG) Z  rW(s) - (rWcG) K(s)

= 'W(s) - 4W K(s) 4,A = 'vW(s) - w K(s)
ACC 'CG

Tail terms
UATA UTAILUW PATAIL P PWFAIL

VATAIL = VTAIL-VWTAIL

WA L = wTAIL-wWTAIL

Tail inertial and effective wind angular velocities for the use with rate derivatives, other than
roll rate, do not appear explicitly but are involved in the computation of linear velocities at
the tail.

The angle of attack and its time derivative, sideslip angle, airspeed, and dynamic pressure at
both the wing and tail are determined from the linear airspeed components by:
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Wing Tail

t u 2 2 +,, 2J AAI22
VAcG = UACG + VACG 2  ACG VATAIL + VATAIL ATAIL

qCG 'VA qTAIL 2 ATAILo 2CG = tanC WcG

UIG ta- AcG  O'TAIL =tan-I WATAIL 

CG = s in- I vA C G  snlvTI

VPcG  PTAIL =snIVATI
____ VATAIL

, UAcG ' ACG - WACG UAcG

a CG = __ __ _UACG 2 + WAC
L;

kG (IAcG 2 + wAcG2 ) ACG - VACG (UAAcG + WA AcG)
VACG UACG + WAc

The appropriate Kiissner and Wagner lift growth fifters, K(s) and W(s), are deiermined from
Table 4-2 and/or Figure 4-30, iceording to the hree-dimensional wing-body lift curve slope.
The KUssner lift growth function can correctly modify the total center of gravity wind
components, or the sum of turbulence and mea'i wind, rather than just the turbulence
component. The difference will be negligible as the mean wind along the flight path will not
change fast enough to cause significant attenuation.

The transport lags are perhaps easiest to represent in a digital computer by storing past
values. The maximum error, by this method, is an error of the time delay equal to half the
frame time. Then, if 10 rad/sed is representative of the maximum frequency of interest, the
error can be expressed as a phase angle:

A =wAt/2 = 5At

for At = 40 milliseconis and AO= 0.2 rad = 1 1.5.

An alternate technique, if it is known that large percentage changes of airspeect do not
occur, is to use two deterministic processes for generating the noise. The starting numbers
are adjusted so the noise sequences are displaced by time equal to the transport lag. Then,
one noise source is used for wing-body turbulence and the delayed source for turbulence at
the tail. This method may be particularly attractive for analog simulations using dgital shift
register noise generators.

If neither of the above transport lag methods is feasible, filter approximations to the
transport lag, such as those on Figure 4-29, may be used.
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The equations for the aerodynamic parameters for th wing-body and the tail are collected
and presented on Figures 4-93 and 4-94, respectively.

4.5.6 ArdnmcForces and Moments

KThe aerodynamic forces and moments are built up by first building up the separate
wing-body forces and moments, based on their respective aerodynamic parameters. For
example, pitching moment may be built up by

M = wB (OCG, 6CwB qWB ) + H CZH H qHSH

The subscript H ref,,rs to horizontal tail characteristics and 6cwe and 6cH refer to control
surfaces assigned to the wing-body and the tail. With the exception of the effective tail roll
rate, caused by the vertical gradient of wind over the vertical tail, tail contributions to
moments are found from the tail forces and the moment arms. The contributions of the tail
roll rate, in terms of linear derivatives are

= (Cyp) PATAILIHS

AL = (C) PATAI L HSb

AN = ( PATAIL qHSb

where the subscript V refers to the vertical tail contribution and where the coefficients ai.
based or, wing area.

There are two wing-hody yaw rate effects: the chordwise change of the wing normal force,
:rod the spanwise force distribution change due to the difference in forward speed along the
span, referred to as the Z and X effects. Wing-body yaw rate derivatives are identified as to
their source and combined by

ACIWB =2 (CiV)X (rAWB)X + (C 1W)Z (rAWB)Z

When it is determined that the aerodynamics are sufficiently linear, the inertial velocity
effects on motion may be represented by total airplane coefficients and the 1icremental
effects of winds by separate wing-body and tail effects.

Upon development of the aerlynamic forces and moments, their application in the
equation of motion is cor.ventional.
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,4.5.7 Model Simplifications

A great number of simplifying assumptions have been applied to develop the model for two

reasons:

I) Tho assumption was necessary to develop any model.

2) It was reasonably certain that making the assumption would not significantly alter
the output spectrum and the output probability density distribution within the
frequency region of concern for any aircraft.

For any particular airplane, there are undoubtedly additional suitzble assumptions. The
criteria for determining the suitability of an assumption continue to be the same: a
simplification of assumption is acceptable, provided they do not cause significant changes of
the probability distribution of the output motion nor cause significamt changes of the
output spectra for the ielevant motion parameters.

There is one assumption in particular that is used almost univeisally for simlation-the
assu.mption of neutral atmosphere. If this assumption can be made, a great number of wind
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and turbulence model simplifications become possible. Aowever, from the probability
model, a norrow distribution of atmospheric stability at the surface about neutral occurs
only for very high wind speeds. To ensure small levels of nonneutral stability, it must be
valid .thcr conside only tuc ji-iod ivd of siability at high wind speeds or to assume
that only the altitudes very close to the surface are significant.

Using only mean conditions, or conditions very near the mean, implies that interest is in the
mean response, or the responses near the mean, not in the whole of the distribution.
Assuming mean conditions implies either that interest is not in failure probabilities or the
more remote events, or it implies that the relationship between the mean response and the
rest of the response distribution is known.

For those applications that are concerned with high mean wind levels, the following
functions are simplified:

Ri =0

: 1/2' = h/9' = 0

O(h/V') =0(o) 1

f(h/Q') = f(0) =0

g(h/9') = g(O) = I

u! (Ri) 0 ) 0.20407
V20 () = V20) 20+0.15in 0.15

Ov/U,0(h/R') = OV/u*0(0) 1.3

d 800
V20 V20 = 163.3 V20

Vd20 633 2u, hWd hw

IId, 163.37,20

The model for the mean wind and the statistical turbulence parameters reduce to:

aVW IN/3 - v20k- V20 IT
= 0.20407 V 20 /h - 0.00125
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_ hw + 0. 1! hw0.20407 V201nh0.5]
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= 0.1061 V20-hw/1538.5

= I h h < 163.3 V20

163.3 V20 , h > 163.3 V20

OH  = V

OH
F- given on Figure 4-85

IV
h h< 1000

LV

(1000, h >I000

3

For those applications for which it can be shown that the winds and turbulence at the
higher altitudes have an insignificant effect, simplification results from assuming hW/d - 0.
Then, the function g(hw/Q') is not needed and h -- hW. If this assumption is combined with
the assumption of high wind levels, the mean wind, mean wind shear, and rms level for
vertical turbulence reduce to:

a = 0.20407
a hh

Vw = 0.20407 V2 0 In\ 0. 1
5

)

OV ov  = 0. 1061 V2 0

595



Two other classes of simplifcations are possible: those which can be shown to be
conservative and those which can be shown to not significantly affect aircraft response.

Simplifications that normally would be conservative include:

Deletion of lift growth (unsteady aerodynamics) representation.

* Use of the Dryden spectra.

0 Deletion of h/d effects in the mean wind, mean wind shear, and the rms turbu-
lence models.

9 Constant rms levels for horizontal turbulence equal to that at the surface, L.It
without correspoiiding changes of the horizontal integral scales.

• Assignment of the probability of exceeding Ri 20 = 1.0 to the probability of
Sincurring Ri20 = 1.0 (no turbulence exists for R~i 20 > 1.0 and the shear at any

altitude reduces for more stable conditions).

This list is not intended to be exhaustive. Conservatism imposes an economic penalty
associated with overdesign. The list does not include the assumption of integral scales
invariant with altitude. Although a single worst integral scale may be found for a single
touchdown parameter and a particular airplane, the critical integral scale will vary from
airplane to airplane, with approach speed, and with different touchdown parameters. When
normal acceleration feedbacks are in danger of saturation due to turbulence, short integral
scales are critical. When touchdown rates of sink are near those causing structural failure of
the landing gear, integral scales causing maximum turbulence power near the short period
become critical. For touchdown dispersions, critical integral scales tend to be longer. For
excessive attitudes a, touchdown, still another critical integral scale (or scales) would be
specified.

Simplications that might be shown to not significantly affect airplane response or

touchdown performance for a particular airplane include:

* Small angle approximations to the transformations.

* Separate longitudinal and latera!-directional simulations.

0 Represent gust penetration (longitudinal distributed lift effects) by effective
turbulence pitch and yaw rats rather than separate wing and tail buildups with a
transport lag or use a point representation rather than using any distributed lift
representation. Simpler distributed lift representations are possible with higher
airspeeds and shorter tail lengths.

These simplifications are generally nonconservative and would require substantiation. Linear
analysis might be sufficient for substantiating distributed lift simplifications.
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4.6 ANALYSIS OF TOUCHDOWN PERFORMANCE

Traditionally, adequate touchdown performance has been demonstrated by generating
distribution curves for each of the parameters. Then it is shown from these distribution
curves that the probability of exceeding a critical value is more remote than required. For
example, compliance for longitudinal touchdown dispersion may be shown by generating
from a simulator the probability distribution for touchdown points relative to a nominal
point. If the probability of exceeding 1500 feet from the nominal point is less than 0.01,
the airplane-autoland system is acceptable.

This procedure should then be repeated for all significant parameters:

* Longitudinal touchdown dispersion

0 Lateral touchdown dispersion

• Rate of sink at touchdown to ensure structural limits are not exceeded

Pitch attitude-excessive angles at touchdown can cause structural problems due
to the tail or the nose gear striking first

" Bank angles -excessive angles of touchdown may cause wing tip or nacelle strikes

" Crab angles-excessive angies may cause structural failure due to excessive side
loads on the landing gear.

Data for each of the parameters may be collected singly or in combination with data
collected for other parameters. A 3* longitudinal simulation may be run to collkct data for
the longitudinal parameters and another separate three-degree-of-frerdom simulation mey be
run for the lateral-directional parameters. Even further breakdowns may occur: landings in
mean wind and turbulence may be performed separately; separate landings for longitudinal
and vertical turbulence may be performed.

For each type of simulation about 2,000 runs are required. For cxample, for a longitudinal
simulation, 10 wind speeds with 100 runs each, plus 1000 runs at the maximum wind speed
is likely. This gives at least 100 points associated with probabilities more remote than 10"2.

If the simulation is broken down only into longitudinal and lateral-directional simulations,
4000 runs ire required. In order to perform this number of runs, it is necessary to use

Lanalog simulatior, so that time can be scaled. A common time scaling is 100 to I.

In theory, a simulation of any complexity can be performed with analog simulators. In
practice, the complexity of the simulation is restricted by the amount of time and
equipment available. Hence, it is necessary to use analog simulation to enable the number of
runs required, but in order to perfoim an analog simulation, it is necessary to simplify
complex simulations. The choice may well be between an insufficient number of data points
with an accurate model on a digital computer or a sufficient number of data points with an
inaccurate model. The solution often results in a simplified mod-i that is conservative.
Conservatism, however, results in overdesign, which in turn results in economic penalties.
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This procedure is objectionable because it does not account for the correlation of
parameters. For example, do excess lateral dispersions occur at the same time that excess

longitudinal dispersions occur? The acceptability of the airplane-autoland system is likely to
be much different when they occur independently than when they appear together, for the
number of unsafe landings for the number of total landings is altered.

Additionally, when the simulation is broken down into too many subsimulations, the
dependence one performance parameter has upon more than one wind parameter may be
ignored. For example, if longitudinal turbulence and the mean wind are simulated only to
determine longitudinal dispersion and vertical turbulence is used only to determine rate of
sink at touchdown, the dependence o,? dispersion upon vertical turbulence (caused because
touchdown dispersion is the measure 3f longitudinal position at a specific altitude,
altitlide = 0) and the dependence of rate of sink on the horizontal winds (drag rise causes
rate of sink to change v ith airspeed) are ignored.

All these problems may be alleviated it a sufficient number of points can be obtained
efficiently from a digital simulation for which increased complexity does not impose so
severe a problem. The following presents an approach that can be used with a digital
simulator.

Consider each landing to be measured in terms of a success or a failure rather than in termsof quantitative measures of each parameter. A success occurs when each touchdown

parameter is within its prescribed bounds. The objective is to ensure that the rate of failure
(number of failures/number of landings) does not exceed a prescribed level. This objective is
aciieved if it can be shown that the probability of an airplane having a failure rate greater
than a specified amount is remote.

Alternately, the question is: What is the probability that there will be r failures in n tests?
The question is answered by the binomial distribution, which describes the probability of
obtaining r occurrences in n tests when it is known that the average rate of occurrence for
all possible tests is b:

P(r occurrences in n tests) r!(n 4)! br( I b)n-r

Now, to devise a test whereby n successive landings must be made without a failure, r i3
set to zero and the equation is solved for n

.n! b I-b)n.
;: P = - 0-l - -- b ) n

log(P)n iog(-b)
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For example, if unsafe landings may occur only once in 100 landings (b - 0.01), and we do
not want the probability of accepting an airplane having a failure rate greater than 0.01 to
be greater than 10%,

log(0.1 ) = 229
n= log(0.99)

That is, at least 229 landings must be performed withut any failures to ensure an
accepiabie airplane-autoland system for a simulation containing six-degree-of-freedom
motion and all wind and turbulence parameters.

Figure 4-95 shows that the probability of accepting a configuration with an excessive failure
rate can be reduced substantially with a moderate rise in the number of landings that must
be performed. For example, the number of runs required for 0.01 probability is 459. A very

low probability of accepting a configuration with an excessive failure rate is not required,
for if such a configuration were erroneously accepted, the probability that the failure rate
for such a configuration was much greater than that required would be remote.

The choice of a 10% probability of accepting a configuration having an unaceiptably large
failure rate was arbitrary and implies that the probability of rejecting a configuration having
a better-than-required failure rate is as much as 90%. The s.ection of a probibility of
accepting an unsatisfactory failure rate should result by balancing the costs of overdesign
against the consequences of not meeting a specific failure rate. It is conceivable that a higher
probability is appropriate. Allowing a finite probability for accepting a configuration with
excessive failure rates is not a relaxation of requirements compared to the traditional
method; the dispersion associated with a specified exceedance probability is not known with
certainty. The probability of accepting a configuration having a greater actual dispersion at
the specified exceedance probability can be calculated.

The computer time comparison for the digital simulation example requiring 229 runs and
the analog simulation requiring 4000 runs with a 1 00-to-I time scaling is

Digital simulation time 229

Analog simulation time 4000/100

No accounting for any time scaling on digital computers was made, although some timescaling is generally possible. A time saving occurs if the tolerances on other items are run

simultaneously with the wind simulation. For example, winds and turbulence may be run

,imultaneously with a simulation of localizer and glideslope errors.

For a 130-knot approach speed on a 3* glideslope, the mean rate of sink will be 1 1 .5 ft/3ec.
For an approach begun from 500 feet, each approach and landing requires 43.5 seconds plu&
some additional time for the trim and flare. Using 50 seconds per landing, 229 runs can b..
performed in 3.18 hours. This amount of time is certainly feasible for a digital simulation,
particularly becatise no on-line monitoring is required. In fact, a number 10 or 20 times as
large would be feasible for certification.
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With a little more sophisticated thinking, the number of digital simulhtor runs required can
further be reduced. When Richardson's number at an altitude of 20 feet exceeds 1.0, there is
virtually no turbulence. Then, results are repeatable for a given wind speed, heading, and
level of stability. With a few runs, boundaries for heading, wind speed, and Richardson's
number can be determined such that inside the boundary there v ill never be a failure and
outside the boundary there will always be a failure. From the data defining the probability
distributions of heading, wind speed, and Richardson's number, the probabilities of being
inside and outside the boundary can be determined, say P1 and P2. From the data in
Section 3.3.3, 1, the probability of exceeding Ri20 = 1.0 at Cape Kennedy is 53%. Then

Probability of failure b = 0.47 P3 + 0.53(0'P1 + 'P2 )

b - 0.53P2
P3  0.47

For b -1O"2, P3 
= 0.0212 -1.129 P2 = probability of failure for Ri20< I'

If it turned out that P2 = 0.005, the number of runs required to evaluate all cases for which
R i20 < 1.0 would be

n log (0.) log (0. )

[log ( I- (0.0212- 1.129 . 0.005)] -log (0.9844)

=147 runs

If fewer than 82 runs are required to establish the probability of failure given Richardson's
number is greater than 1, a net savings in the number of runs required is realized.

The problem may also be partitioned according to wind speed. For high wind speeds, the
distribution of Richardson's r.umber at the surface is quite narrow about neutral conditions.
Then, for high wind speeds, the neutral atmospheric stability model is applicable and the
simulation model is greatly simplified. The low wind speed conditions may then be run on a
digital simulator and the high wind speed conditions would be run on either digital or analog
simulators.

In conclusion:

I) Evaluation of touchdown performance need not be performed by computing the
exceedance probabilities for each touchdown parameter. Rather, each touchdown
may be considered as a fCilure or success, depending on whether all parameters are
within specified bounds. The latter approach leads to a significant savings of the
number of landings required to ensure a satisfactory airplane-autoland system.

2) The reduced number of required runs enables the use of digital simulation.
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3) The use of digital simulators enables simultaneous evaluation of all six degrees of
freedom in the presence of all components of wind and turbulence and in the
presence of other factors influencing touchdown performance, such as beam
errors. This results in a reduction of the number of runs and time required.

4) The number o runs required can be reduced by partitioning the problem such as
according to the level of atmospheric stability.

5) The time required to perform the evaluation on a digital computer as compared to
traditional methods using an analog is efficient.
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APPENDIX 4A

DERIVATION OF GENERAL RELATIONSHIP BETWEEN
INERTIAL AND AERODYNAMIC ANGLES

The ground track velocity vector (vekocity vector in the plane of the earth) is equal toIthe u velocity component in the earth axis when heading is zero or the v velocity
component in the earth axis when heading is 90. Thus, the magnitude of velocity in the

earth axis can be found from the body axis to earth axis transformation:

VEGT ""UE[= 0 =vEJ= 9 0

= u cos 0 + v sin 0 sin + w sin 0 cos

Rate of sink is also found by transforming body axis inertial velocity componentq to the
earth axis:

1 =-wE=usin 0-vces sin0-wcosecos0

By definition:

ha = _u sin 0-vcos0 sino-wcos0 coso
VEG ucos0+vsin0 sin +wsin0 cos4

or

L sin 0 tv tan -,sin 0+wtanycoso-uj = cos0 [-u tan 'y-vsin 0-wcoso]

tan0 u tan' + v sin 0 + w cos )
u - v tan ' sin 0 - w tan ' cos 0

For components of wind defined in the body axis system (tail wind is +uW, wind from left
is +vW wind down is +ww), inertial velocity and airspeed components are related by:

A A+UW
v = A + uwv = VA+Vw

W= WAt±ww

Airspeed components can be expressed in terms of angle of attack, sideslip angle, and total
airspeed through the definition of the latter:
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LUA , -UA2t+WA2 0

tan WA 22 2
tan -u A tan a'+ wA'

sin -VA ; 2 = VA2 sin 2l3

UA2 + YA2 + WA2 = VA 2

In matrix form,

t 2  2 (

0 1 0]W21 21

Solving simultaneously for UA2, VA", and wA using Cramer's rule gives:

, UA V2 cos 2 ci cos2 /

UA2 = VA ~ CS

VA2  = VA2 sin 2 p

WA2  = VA2 sin 2 aicos2 p

Thus,

u = uW + VA cos O cosfl

v = vW+VA sinPI

w= wW+ VA sin a cos 0

The exact expression for pitch attitude is given as follows:
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K A [uW tan 'y+ vW sin + wW co: + tan -y cos cos 3

+ sin 0 sin + sin a cos 3cos ¢d1tan 0

- tan ,) (sin 3 sin ¢ + sin a cos 3 cos 0)]

For small cc, 13t,'0, ,

uW' + vWO + ww

I:I +VA

* Note that for still air conditions, this reduces to 0 = +a.

If the body axis components of mean wind are due entirely to a wind whose vector lies in
horizontal plane, the body axis components are given by:

(uw Cos(- W)Cos 0

vwj = cos(d,- w) sin 0 sin sin (0, 'W) cos VW

W W , cos ( - W ) sin 0 cos ¢ - sin (0 - €W ) sin 4

where V ¢ and 'W are the magnitude and heading of the wind, respectively ( W = 0 is a
wind from the south, to the north).

Substituting these expressions into the .,xact expression for tan 9 gives:
• cos ( , - w )

V - [tar; - cos 0 + sin 0i

t+ tan Y cos c,, + sin 3 sin + sin ot cos 3cosJtan 0 .1, co 0 -' ' ') - ' -.. . .
~os_ 26)I VA '-s ta Yza

+ cos c., coso1 - tan -j Isin 13 sin c0 + sin o., co-, 6 cosol
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This is not a closed form expression for tan 0. Assuming small a, e, 0, and ' yields:

I A 
7+ 

a

Thus, for still air or a pure crosswind, 9 = 7 + a. A tail wind reduces the pitch attitude

required to hold a glideslope (negative 7).

The exact equation for pure longitudinal motion
= = - OW = 0) reduces to

VW tan 7 = VA [sin (0 -a) - tan 7 cos (0 -a)]

or

ta sin (0 -o)
a + cos (0 -a)

E VA

and the body components of wind are

UW = VW cos O

Ww = VW sin 0

IThe differential relationship is

VWo

6Vw tno + 67 6VA (sin (00 - t)- tan 7O cos (00- aO)cos2 7,0

VA cos (00 a) V (cos (00 - a0 ) + tan 70 sin (00 - a0 )] (80- 6a)
c2 0 V67+ A0

oro

oV W tan - VA VA °  +67[ V--0 + -a)

VA 0 cos (00 o fO ) + tan sin (00 -a0 )] (66 -6a)
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APPENDIX 4B

BODY AXIS-RELATIVE WIND AXIS VECTOR TRANSFORMATION

Rotate through , from xS  xR

stability axis to
relative wind axis

xR = xS cos P+ yS sin

YR = Xsinfl+yScos3

or, YS

Xr cos P sinf : :S x

= -sin3 cos 3 0 y to R YS YR

combine transformations:

yR StoR YS = to R][Bto yI=[ toR]Iy

ZRI Z ,

1 oR !os tEZ in P sin a cos ]
-[to R]- -coscisina cosp -sin csinP

sin at 0 Cos of ..

rAngle of attack is the angle between the x body axis and the projection of the velocity

vector on the x-z body axis plane. Sideslip angle is the angle the velocity vector makes with

the x-z body axis plane. Hence there is an ordered sequence of rotations: rotate through C
first, then through P.
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Rotate through a, "
from body axis to
stability axis

z z

Xs = xcosa+zsin a

YS = Y

ZS -Xsina+zCosa

or,

YS = I 0 to

S 1: sin cosa z jz
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