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Abstract

Recently developed formulations of the inverse problems

(LR tds o vemphl ety TS

in acoustics and electromagnetics are described. There are two

(i BT

types of formulations, one in the geometrical optics limit and the

i A

other, an exact formulation for the inverse source problem. Both

e PRI AR I e e e R St
peas: ARG A A AR LS 2R R DA S S 27

3 basic formulations are extended to include the realistic problem
;%, of a "limited aperture" of observations. It is also shown that

;E the inverse source formulation can be applied to the prcblem of

gf reconstruction of media inhomogeneities from remctely sensed field
féi data. The basic physical optics result is that the characteristic
,§§ function of the scattering obstacle and the phase and range normal-
;5 ized scattering amplitude are a Fourier transform pair. All other
§ formulations lead to Fredholm integral equations of the first kind.
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I. INTRODUCTION

The objective of inverse scattering methods is to obtain
information about a source distribution, a scattering obstacle
or inhomogeneity of a medium from remotely sensed field data.
Recently, we have formulated such inverse problems in acoustics
and electromagnetics in terms of Fredholm integral equations of
the First Kind. Furthermcre, some of these formulations take
account of the realistic difficulty that the f 1lds are usually
observed only over some "limited aperture", botu spatially and
temporally, rather than in all Girections and for all time.

In this paper we shall describe these formulations and
present the available evidence of their validity. This evidence
is admittedly sparse at this time, but is also extremely promising.
Our purpose is to collect these recent results and to communicate
them because we believe there is a wealth of research directions
to be explored well heyond ocur own capacities and interests.

The list of applications, non-military as well ac
military, is quite extensive. Among these are the following.

(1) Construction of images of tumors.

(2) Analysis of subsurface strata for resource
identification and recovery.

(3) Location and identification of discharges in storns
for the analysis of the storms themselves and
prediction of tornadoes from charasteristic source
patterns.

(4) Location of buried bodies--an important problem
in law enforcement.
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(5) Construction of images of airplanes, missiles,
surface vessels and submarines.

(6) Landmine detection.

(7) Aanralysis of soundspeed variation (and consequent
sonar degradacion} in the water and sea bed
sedimentary layer.

We shall see below that the method of dexiving the
integral equations is not peculiar to the wave equation or
Maxwell's equations. Thus, it is likely that for wave phenomena
governed by other equations, completely analogous formmlations
of the inverse problem are possible.

There are two distinct categories of vroblem formulation
to discuss, a physical optics (approximate) formulution and an
exact integral equation formulation. The former evolved from a
basic identity derived a number of years ago by the second author
(Rojarski, 1967, and lLewis, 1969) for the *“ime-harmonic acoustic
case. The latter evolvea from more recent work of his (Bojarski,
1973) for time harmonic wave propagation.

The physical optics identity relates tbhe range and phase
normalized back scattered (monostatic} far~field cross-section

to the Fourier transform of the characteristic function? of the

VARTEE

scattering body. This result has now been extended to the
bistatic case. In this form, much more information is extracted

Jg ot

¥

with only two stationary transmitters and an array of receivers.

P
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These results are described in Section II and a numerically

TAT Py

synthesized check on the method reporteé by the second author
(Bojarski, April 1973, February 1974) are presented in Section IV.

&

T ]

’ In another extension discussed i.. Section III, we

dispense with the far-field approximations and obtain an integral
equation for the characteristic function. This formulation would

fThe characteristic function is unity inside the scatterer and
zero outside, thus describing the scattering body.
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be appropriate when the distance between the observed remote field

W e A A W——

and the obstacle was comparable tc the length scale of the obstacle.

The consequences of limited aperature for far-field physical
optics ars discussed in Section IV. Again, numerical results by

Bojarski (April 1973) are described.

In the exact formulation, one okLtains an inhomogeneous
integral equation for a socurce distribution with the inhomogeneous
term being an integral of the data observed remotely. Bojarski's
basic integral equation for wave propagation governed by the Hemoltz
equation is described in Section V. Again, numerically synthesized

checks on the basic formulation are presented. Significant among

these is an example in which two point sources, one-half wave length

3
£

apart are resolved.

,
i
WHTr

Again, the limited aperature problem is of great interest
and the formulation which takes account of this feature is presented

in Section VI.

Problems in which one seeks an inhomogeneity of a medium
can be reformulated as inverse source problems amenable to analysis
Yy this exact formulation. Inverse scattering problems for "trans-
lucent" obstacles (neither facoustically hard nor soft} can also ke
viewed as inhomogeneity problems and are thus reduced to inverse ¢
source problems. The "source" here is not to be confused with
"oquivalent sources" which are physically unrealizable mathematical
idealizations. These ideas are expanded upon and clarified in Sec-

tion VII.
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Extensions of the inverse source problem formulation to the
time domain are discussed in Section VIII. These time domai: formu-
lations t:v« the inherent advantages noted above. Furthermore, there
are two dictinct formulations depending nn whether or not the source
distribution decays to zero sufficiently rapidly in time. When this
is not the case, it is seen that ihe time harmonic case is not neces-

sarily equivalent to a transform of the time dependent formulation.

All of the integral equations obtained here are Fredholm
inte-nl xquations of ‘the First Kind. The problems are mathema-
ticiu.+: ill-posed, suffering both from non-uniqueness and non-

.
-

continuous dependence on the data.

As to the former difficulty, we believe that the non-
uniqueness resides in a class of non-phvsically realizable solutions
such as source distributions "at infinity" or scattered waves con-
taining cvigenmodes of annular regions, which modes are not "outgoing".

This is a conjecture to be verified or contradicted.

The ill-posedness has as practical implication, the fact
that the solutions are "noise-limited". That is, relatively small
amcunts of noise can degrade tihe solution so much that the "true"
solution is unrecognizable. The quantification of this observation

ig well worth studying.

The extension of the formulations presented here to Max-
well's equations is straightforward. They can be found in the above
cited Bojarski papers. Since the objective of this report is to

collect the basic formulations, we do not repeat those extensions

here.




3 S T RS fm 3 " TN Al e P B a3, AT (T A TR e ™ T T e T LRt e 2 YRR r AT
T R SRR R A SR IR N N R T TR TR

SN

2

Lo

8

R T

IX. PHYSICAL u.1TICS FAR-FIELD
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FiGURE 2. 1 (
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We shall briefly derive here the monostatic and bistatic ’
physical optics far-field identities. This derivation is based
on the earlier monostatic identity (Bojarcki, 1967, Lewis, 1969). 2
We suppose that the incident field I

!
V!

R TN

u = etk i k= (ki,X2,k3) , X = (X1,%2,. 1) (2.1) ,

illuminates the acoustically soft+ convex scatterer B in Figure

2.1. We define the tontal field U by

up T Uy + us (2.2)

-
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?The acoustically hard case can be treated by this method as well.
For other cases, the method of Section VII must be employed.
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with ug the scattered field. It is required that U, satisfy the
equation

192 4 k?) u, =0 (2.3

and the boundary condition

u, = 0 on 9B (2.4)

The scattered field must satisfy the same equation (2.3),
must be such that (2.4) is satisfied and be "outgoing” at infinity.
One can then derive the following integral equation for ug
(Baker and Copson, 1950).

%' dus (x')
ug (x,k) =f [us(;c',lg) %191-.(’-5 X g(x-x*) -55u-§- — | as' . (2.5)
3B

Here 9B denotes the boundary of B, 3/3n' denotes the
normal derivative and

g(x) = == : x = |x| (2.6)

is the free space outgoing Green's function.

The physical optics approximation consists of making the
following assumptions about the fields. The incident plane wave
illuminates a portion of 3B called the lit side and denoted by L

in Figure 2.1. We may characterize L analytically by the
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\ condition k-fi>o on L, with fi the outward unit nommal to B. The remainder
of 9B is denoted by D in that Figure. It is then assumed that ug satifies
the following approximate boundary conditions

d
; onL, us = _E =0, onD
g _ 9y ; i i

- W = T - ik - fiewp {ikex] @.7)

We may then substitute (2.7) into (2.5) o obtain

sieh) = for | tox {9 wx) v 18 g orxfas @

where we have used the explicit form (2.1) for Ug.

We now proceed to introduce the far-field approximations

oy e
3 s e s 4 TR

into this result. Firstly, we set

41

,,
v &
S
2

ug(x/k) = plk) exp {ik x} /4mx. (2.9)

Here, the function p(k) is known as the range-and-phase normalized
far-field amplitude.
Secondly, we expand |[x-x'| for x>>x' and use this result

glxx') =exp {ik [x-i&xlf 7/,

g (x-x') = ik®&fi exp { ik [x-iR.x']} /4mx {2.10)
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Here & is a unit vector in the direction of X.

The results (2.9) and (2.10) are substituted intec (2.8)
and the common factor exp {ikx}/dmx is cemoved to yield

p(k,R) = -fiﬁ- [k -k e fix'. [k - &)} &' (2.11)
L

Let us now illuminate the scatterer with the incident

wave,

u (X, - k) =exp {-i k - x}, (2.12)

and observe at the point -x. The range-and-phase normalized
scattering amplitude for this case is thenp (-k, -R). In this
case, ic is D that is illuminated and p{~k,-R) has a representation
similar to (2.1) except that the k and £ have changed sign:

p(-k, ~8) = jlﬁ [k - k8] exp {-ix' fk - k&] } &s" (2.13)

D

We take complex conjugate (denoted by *) in this equation and
add to (2.11) to obtain

.
Fi
2
k<.
i

S M
e Fafy

&)

oy A TR
koL 4
R,

(2.14)

HARn Al

p(k,R) + p*(k, -R) = -fiﬁ s [k - 18] e jix- [k -]} a8

L&D
The integrand here can be continued to the interior of i

AR
&

B as a regular function. Thus we may apply the divergence %

=¥
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theorem to rewrite the right side as a volume integral:

ple®) + Pk, B = k) fomp tix' fkokr] Jav: {2.15)

B
Let us denote by Y(X) the characertistic function of

the scatterer B and simply rewrite (2.15) as

ok, %) + p*(=k,~%) _
(k-kR)

(2.16}

Yoe) e fix'+ [xke ]} av

3

where now the domain of integration is all of space.

We observe from (2.11) and (%.13) that both o(k, R)
and p*(-k, -&) are functions of k -k®. Thus, let us define

(2.1.7)
and

ok, R + p*(-k,~R)

P
K

) = (2.18)

Then, (2.16) can be rewritten as

f) = [Jyx") e {ix'-x} av' (2.19)

W2 see here that the observed fields have produced the
Fourier transform of the characteristic function of the scatterer.
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If v(x) is known for all k, then we can invert (2.19) to yield

In the earlier back scattering derivation,

kR

1}
[Pa
il
(R

(2.21)

Thus, for this case one illuminates and receives at all wave
numbers and in ali diractions in order to cover all k. For
the general result in which x is given by (2.17) rather than
(2.21), the obstacle is illuminated from only two directions,
iR and at one wave number k. Then, observations in all

directions fill out a sphere in x space with center at k and
radius k, as shown in Figure 2.2.

e

FIGURE 2.2

It is well known in radar analysis that the physical
optics approximation is poor in the bistatic case if the
directions of transmission and observation are too widely
separated; i.e., if the angle between k and -% becomes too
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: large. Nonetheless, for a cone of small angle, such as is :
shown in Figure 2.3, the bistatic result (2.17, 19) stil..
i3 remains valid. In conjunction with the limited aperture :
discussion in SectionlV, this observation shouvld prove quite :
3 useful.
A FIGURE 2.3 oo
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ITI. PHYSICAL OPTICS NEAR-FIELD INVERSE SCATTERING ".1
" i In this section we shall develop an integral equation %
2P i
> { for the characteristic function of a scattering obstacle with i
%%» the aid of the physical optics approximation but under the ?
S constraint that the fields are observed too near the scatterer 3
e for the far-field approximations to be valid. %
. s;
=
4‘:‘% {
5
FIGURE 3. 1
b 3
a We suppose that the scattered field and ics normal 2
E: derivative are observed on the boundary 39 of the domain P of 5
'é Figure 3.1. As in the previous section, we assume that U is Z
s the response to the incident field u; of (2.1) subject to the !
conditions (2.2, 3, 4). The result (2.5) is still valid as
E well. Now, however, we also write down the solution representation :
sk = [lagtelk) 2% Gex') - g*ex’) 28 () oS 4ok, 3D
ar‘,' n -‘,
f dB XeP ;
F: Here (*) denotes complex conjugate and :
13 B
1 12 !
f ) I
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Ok} = - /{"S(l‘.' K A (') - gtex') S5 (x',k)} aS’
an' = on
P (3.2)

The integral © arises in this representation because g* does
not satisfy the radiation condition that g does. We note,
however, that © contains in it the data observed on 3D and is
thus a xnown quantity.

By subtracting (3.1) from (2.5) we obtain

ﬁ%(ﬁ"-’s’% ex') - grlex) 8 () as' = 0k xep 3
B

Here

91 (x) = glx) - g*(x) = L—;%‘k_’s (3.4)

We now make the physical optics approximations (2.7)
and obtain

fﬁ . V{gI(lc_-lc_') exp {15-5-}} @' = 0(x,k), xep (3.3
i

As in Section II we now carry out the same analysis for
the incident wave

3.
uI (&r"k) = uI* (2(_1_]_{_) = exp {-i E')_(_} ¢ 6)

13

.

S S gy el D T Ry

B I L N o IR Py BT Y ock,

0 LA

reis

M Lr m s ks

%
E}




Tv}#i o

i Rty

o y MO s i o Ty " A
[RAA . 4 it [ s

GRS
' g (I N

and cbtain

i /ﬁ~v {91(5'5.) o - -’93‘-}} ds' = O(x,k), xe P (3.7)
D

the domain of integration being D here because this is the
surface illuminated by the incident field (3.6).

We take complex conjugate in (3.7), using (3.4), and
subtract this result from (3.5) to oktain

fa.v {gI(x-x ) exp {i;-g}} &' = 0r(x,K), X €D (3.8)
B
Here

0, (x,k) = 0 *(x,~k) - 9(x,k) (3.9)

As in Section II, we can now apply the divergence
theorem to rewrite the left side of (3.8) as a voiume integral.
Indeed, here and in the previous section, it is the physical
optics approximaticn which makes this crucial step straight-
forward. The result is

jVZ {91(5-5') exp {ik 5'}} av' = (-)1(5,}5_), Xep (3.10)
B

We may rewrite this equation in the form

3
<
5
%
2
E
3
3
%
b
]
#:
P
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k1
3
7
-3
4
M
i
3

Sk AP e vV Lo b S SR s et an £

R )

Tt g e s b g 0800 L P T o v

ot Y

SR oA .




- T IaT T IT TR MPYW XYWV AT =S e Ve g i gy e e o o -
T e Lt b I L R L N

ﬁz {91(2'5') exp {il‘:i'}} Y(x') &' = 0r(x,k), X€9D (3.11)

P

This is a Fredholm integral equation of the First Kind,
the first of many to be encountered here. It is well known
that these equations are ill-posed, in general, with all three,
existence, uniqueness and continuous dependence on the data
% open to question. We expect that these difficulties can only
be resolved when Y(X) is assumed to be non-zero only over a
finite domain interior to P and D itself is a finite domain.
Indeed, because of this latter constraint, it is expected that
the result of Section II cannot be derived by simple limiting

arguments from (3.12).
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IV. LIMITED APERTURE OF OBSERVATIONS

We return now to (2.19) and assume that we have only
a "iimited aperture" of observations; that is, we assume that
92(x) is known only over some finite domain as shovn in Figure 4.1.

; A

i K|

K2

SPRPIRATAT

s
AR b

FIGURE 4.1
Domain in which (k) is known.

Let us define the characteristic function of that
domain to be

(AP WY, R Y FTP N

.
W

B b A LA L AL L N OGNS g T AW

1 , 9 is known

i

e 0 , 9{) is not known
=3 and denote by a(x) its Fourier transform. Then, in fact, what

we really know is the function &(x)¥(k). By the Fourier
- convolution theorem, this product is the Fourier transform of
the convolution of y(x) with a(x):

ORI S W

1
‘(z—n)3f3(£> () exp[-ix-x] & =fa<>_c-§'> vix') ax'3 (4.2)
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Here, the left side is known and this is a Fredholm integral
ejquation of the First Kind with the kernel alx) being a
generalization of the cin x/x kernel whici, would arise in one
dimenaion. Again, we note t'.at, in general, these integral
equations are known to be ill-posed with difficulties as to
all three aspects of existence, uniqueness and continuous
dependence on the data. Nonetheless, for this particular
equation, the second author Bojarski (1973, 2974) has been
successful at obtaining solutions.

We remark further that once the idea of multiplication
of y(x) is introduced, it may be exploited in another way. In
particular, we note that is is not y(x) that we seek really, but
its decivatives. Indeed, it is these functions that describe
the surface of the scatterer rather than the scatterer itself.
In Bojarski (1974), this idea is exploited tc develop a check
on the method. The function p(k) is calculated from the exact
Mie series solution for scattering by a sphere. The inverse
transform of iks?(x) is calculated, this function yielding
5%; y{x). Figure 4.2 is a graph of this function in the (xi, x32)
plane.

The formulation of Section III can also be modified
o take account of limited aperture. To this end, let us
suppose that 9P in Figure 3.1 is decomposed into two parts
9P1, 3Pz as in Figure 4.3.

FIGURE 4.3
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On 9p; the aata u and

3 are observed, on dP2 they are not. 3
We return to the definition of 0 in (3.9) and decompose the é
domain of integration into 9D: + 3D2; that is, rewrite (3.2) as §
4

O{x,k) = Gm<§:_l_c) + 92%5,19 (4.3)

Here

£208 s L s PSR oy e

() =5
0 J (}_K_tlﬁ_) =ﬁ;s(£' '_)E') %g_; (1(_.5') _g*(l{._?gt)_g_g's_ (§| ,&)}GS', j=1, 2. (4.4)
aD. 2
DJ ~'§
In @ , where we do not know the data, we replacelzs and 3;5 ¥
by Y
: (%) = g™k A (x"x') - glx"-x') B (v "
A B £
=
3 =
e and b
i k!
B dug ' " 32 aus 3
35 = T LU " " %
& 3“3‘5 W g € @) 2 v,&)g " (4.6) 5
= 3
4 B 2
8 *
Z_; .;é
b As in Section III, we can make the physical optics 2
% approximations here and repeat for 0*(x,-k). The result is %
9 2)* 2
- 0" i) + ¢ (x,k) = o(I) )
v esnfagt ext) 2 (x"k) g (x"=x') @7
i == Jds és X~X XK} g X'=X H
3 [an' eox’) o 3“1' == $
3 L&D
2 :
g ot ex') 2o ;ul(g' K 3, (gc_"-gt_')s] 3
3 j
3 19
.. ¢ g




Again, we can replace the surface integral by a volume integral.

} The result is

o(i) {x,k) = ﬁ(gc_") K(x",x) av" {4.8)
D
3? Here
" - | e | * S ¢ - * [] a T | ' (4.9)
K@ = [ {o-x) B oo - griex) M x)} as
oD,

Now the integral eguation (3.11) becomes

J lva {gl‘i‘ﬁ') exp (ﬂses')} + K(x' '5)] Y(x') = 001‘) (k) , (4.10)
D .
:
o 0
o' (xk) = / ug (') o (') - 9} GRS G ast (4.11)
9

A

Equation (4.10) is again a Fredholm integral equatica
of the First Kind for §(x). It is expected that the equation
becomes more and more ill-posed as 3P, is the entire surface
9P, G? = 0 and the equation is homogeneous. 1In the opposite

limit 3D, = 3P and this equation reduces to (3.11).
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V. THE INVERSE SOURCE PROBLEM
FOR THE REDUCED WAVE EQUATION

We consider now the inhomogeneous equation

Li= @2, +k%) u= -0 (x) (5.1)

for some outgoing wave u. We as:ume that the source p(x) is
confined to the interior of some domain  (Figure 5.1) and
that both u and gﬂ are

2

FIGURE 5.1

observed over the entire boundary 3p. We seek p(x) from this
data. Here we shall derive an integral equation for p(x).

We begin with the observation that

ux = [ ofx') glx-x') av', (5.2)
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with g the free space Green's function (2.6). We are justi-
fied in restricting the domain of integration to 9 here
because p(x) is non-zero only inside of P. Let us now
consider a volume integral similar to the one used to derive
(5.2), but with g replaced by g*, namely we set

o(x) = f[g*(gc_—g:_‘) Lu(x') ~ u(x') 19*(5-2&')] av’ (5.2)
P

By using the property that Lg*(x) = §(x), we find that

0(x) = u(x) -./;*Qgef) p(x') @&v', xeD {5, 4)
P

By using Green's theorem, we alsc find that

0(x) = -f{u(_:g') %g-; (x=x') = g*(x-x") %‘g—,— (gc_’)} as'.

P
Here, the integrand is known for u angd %% okserved on 9D.
We remark that a similar integral appears in the derivation of
(5.2). However, by invoking the outgoing property for both u
and g, one can show that the surface integral is zeroc in that
case; se2, for example, Morse & Feshbach (19523) or Baker &
Copson (1950). Thus, the process that yields so simple a
result, (5.2), for the direct problem, annihilates the data
that is known for the inverse problcm, while the same process
applied to {5.3) does not do this.

We use (5.2) and (5.5) in (5.4) now to obtain

(5.6)
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and this is a Fredholm integral equation of the First Kind for
p(x).

As a check on (5.6), Bojarski (1974) has carried out
two examples. In each, the function ©(x) as defined by (5.3)

is geaerated from a known source. The check then consists of 3
solving (5.6) for p(x) and comparing with the known source. i
The cechnique of solution is a2 relaxation iteration method. é
The sources treated are a point source and then two point %
sources, one-half wave length apart. Results after 8, 16 é
and 32 iterations are shown in Figures 5.2 and 5.3, respectively. Z
The second example strongly suggests that the method is not %
Raleigh diffraction limited. b
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FIGURE 5.3
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VI. LIMITED APERTURE FOR THE INVERSE SOURCE PROBLEM

We now suppose that u and %% are observed only on a
portion cf 3P, namely on 3P, in Figure 4.3. As in Section VI,
ve define 0'!) and 02} by (4.3) and (4.4) with 0(x,k) and ug
1@(5',5) replaced by 9(x) and u(x'), respectively. In the
integral over 23p; we use (5.2) to obtain an expression
completely analogous to (4.8), namely that

0l (x) = /p(gt_") K(x",x) dav", (6.1)
D

and K(x",x) is given by (4.9). We then obtain instead of
(5.3), the modified integral equation

j[gl(§~§') + K(gc_'.g)] p(x') av*' = o) (x) 3 (6.2)

>

(1) = 1199% ety -x') du(x') '
o'+ (x) [EQ)ﬁTQE) w@§)$ﬁLJ$.
3D,

&
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VII. ANALYSIS OF INHOMOGENEITY OF A MEDIUM

3 Let us suppose that in an otherwise homogeneous
medium there is a finite region of inhomogeneity.

k.

i bt )yl

L)

R S b

FIGURE 7.1
- Our objective is to analyze the inhomogeneity from remotely i
% sensed data. In this section we shall show how this problem E
;: can be reduced to the inverse source problem (5.1) and thus §
4 that the inverse problem here reduces to the study of eguation E
8 (5.6). 1
3 We suppose that the wave (2.1) (exp {i&-i}) %
k. incident on the region of inhomogeneity and that the total 3
‘; 't
3 field u + y satisfies the equation i
S :
4 ' 2. .2 .
] 2 + k%) (up +ug) = -v(x) (ug + ug) = -p(x) (7.1) i
é i Here v(x) is assumed to have finite support. j
2 ’ i
5 :
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satisfies the homogeneous Helmholt:z

5 In fact, u

I
equation in the uniform medium. Thus, (7.1) reduces to

Lot B R 2w o T

7.2) 9
(v2 + x?) ug = -p(x) ( ‘

We observe ug and %%S on 9P and cbtain the integral equatioun

(5.6) for p. W =n p is known, then ug can be calculated by :
using (5.2). Since u; is known, we can now use the right- :

hand equation in (7.1) to find v(x).

In problems in which one medium is imbedded in

= anoth~r (tumors, land mines, sea mines, buried objects in

‘ general), v(x) is discontinuous and (7.1) is valid every- :

' where except on the interface between the media. On that
interface, certain jump conditions must be satisfied. These
conditions are simply the integral form of (7.1) across the

e R L Bs

2 interface. As a consequence of this, one can verify that

2 even in this case, p(x) must satisfy (5.6). :
k- :
iE

N
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VIII. THE TIME-DEPENDENT INVERSE SOURCE PROBLEM

We suppose now that U (x,t) is a solutior. of the wave
equation

2U = V3U - 35— U, = -P(x,t), (8.1)

with U, U, and P assumed to be zero initially (sufficiently

far in the past). We assume that U and 3 are observed on 3D

on
of Figure 5.1 and that P is confined to the interior of 9.

We shall derive an integqgral equation for P.

We begin by observing, analogous to (5.2) that

U(x,t) =Z/P(§',t‘) G(x-x',t-t') avV' &t', tLr. (8.2)
)]

Here G is the "causal" Green's function. We also introduce
the "effectal" Green's function G*:

G -y '3

As in Section V, we consider the function

29
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T
¥(x,t,T) =ff {U(x',t').t’,G*(a_c_-:_g',t-—t')
o9p

(8.4)
- G*(x-x',t-t') :(.U(_:y,t')} avtdat',
and observe that
T
¥(x,t,T) = -U(x,t) +b/ /‘c*(g-:_c',t-t') P(x',t') av'dt';  (8.5)
b2 X & D, oLtsT.
As in Section V, we apply the divergence theorem
(now in x, t) and obtain
‘P(}_rtlT) = O(KIElT) + 0(_x_ltlT) (8.6)
Here
0(x,t,T) = ff {U(x ') g-G-f. (x-x',t-t")
(8.7)
-G*(x—x t-*')%u_. (x*',t' )}ds'dt'
and

oz, t,T) = - - f{v<§'.T)§-,1-, G* (x-x' ,t=T) -
o]
D (8.8)
- —Y e U ' ',
G* (x-x',t-T) % (x ,T)} av

We use (8.2, 6, 7, 8) in (8.5) and obtain

MR R T E 1 P s S 2 WL P

%%*«‘?t{v@‘f&»«{' .z;f,a‘\ »,, .“g U Fen T owra T o0 T e




2y x T TN R T o T T e et
Vg e A (O PPN TR L e g AT TR e L - d

%
T E
e f f Gy (x-x',t-t')P(x',t') Qv'dt’
4 o9 (8.9)
= = 0(xt,T) + ¢t/ T, X €D, OL<T.
% Here
Gr(x,t) = G(x,t) - G*(x,t) (8.10)
% If the source is "shut off" after a finite time or 5
A decays "sufficiently rapidly", then %ﬁ3¢==o. §
2 In this case, we may let T +»= in (8.9) and obtain the inverse ;
f transform (k = w/c) of (5.6) as the equation for the source in :
% space time. When P does not vanish for T -+~ we are faced with ;
; the additional difficulty of having only a limited aperture '
i (0, T) of observations in time. We deal with this difficulty
i as in previous sections by using (8.2) in (8.8). The result .
?, is that P(x, t) must satisfy the integral equation ;
(x-x',t-t') + K(x,x',t,t';T); P(x',t')dv'dt’ ;
== = 1= (8.11)
: 0 =0(x,t,T), X €P, OX<T
i and i
E
A K(x,x' ,t,t';T) = - ;.12. f (x'-x",T-t") _gi_ G* (x-x" , t-T)
‘i b)) (8.12)
‘
* (x-x",t~T) .9 G(x'~x",T-t' } av".
" "G (_}i_)s ’ ) -aTr—- (_ ol ’ )

=
3

One can certainly modifyv this equation further to take
account of a limited aperture of observations in space. However,

P T
Ciiad I

> T T A P T
A T Y B S A

this modification is carried out exactly as in Section IV and
VI and we shall not do so here.
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