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Abstract

Recently developed formulations of the inverse problems

in acoustics and electromagnetics are described. There are two

types of formulations, one in the geometrical optics limit and the

other, an exact formulation for the inverse source problem. Both

basic formulations are extended to include the realistic problem

of a "limited aperture" of observations. It is also shown that

the inverse source formulation can be applied to the problem of

reconstruction of media inhomogeneities from remotely sensed field

data. The basic physical optics result is that the characteristic

function of the scattering obstacle and the phase and range normal-

ized scattering amplitude are a Fourier transform pair. All other

formulations lead to Fredholm integral equations of the first kind.
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I. INTRODUCTION

* The objective of inverse scattering methods is to obtain

information about a source distribution, a scattering obstacle

or inhomogeneity of a medium from remotely sensed field data.
Recently, we have formulated such inverse problems in acoustics

and electromagnetics in terms of Fredholm integral equations of

the Pirst Kind. Furthermore, some of these formulations take

account of the realistic difficulty that the f ids are usually

observed only over some "limited aperture", buta spatially and

temporally, rather than in all directions and for all time.

In this paper we shall describe these formulations and

present the available evidence of their validity. This evidence
is admittedly sparse at this time, but is also extremely piomising.

Our purpose is to collect these recent results and to communicate

them because we believe there is a wealth of research directions

to be explored well beyond our own capacities and interests.

The list of applications, non-military as well ac

military, is quite extensive. Among these are the following.

(1) Construction of images of tumors.

(2) Analysis of subsurface strata for resource
identification and recovery.

(3) Location and identification of discharges in stor.n•s
for the analysis of the storms themselves and
prediction of tornadoes from charasteristic source
patterns.

(4) Location of buried bodies--an important problem
in law enforcement.



(5) Construction of images of airplanes, missiles,
surface vessels and submarines.

(6) Landmine detection.

(7) Analysis of soundspeed variation (and consequentsonar degradation) in the water and sea bed
sedimentary layer.

We shall see below that the method of deriving the

integral equations is not peculiar to the wave equation or

Maxwell's equations. Thus, it is likely that for wave phenomena

governed by other equations, completely analogous formulations

of the inverse problem are possible.

There are two distinct categories of problem formulation

to discuss, a physical Dptics (approximate) formulation and an

exact integral equation formulation. The former evolved from a

basic identity derived a number of years ago by the second author

(Bojarski, 1967, and Lewis, 1969) for the time-harmonic acoustic

case. The latter evolved from more recent work of his (Bojarski,

1973) for time harmonic wave propagation.

The physical optics identity relates the range and phase

normalized back scattered (monostatic) far-field cross-section
to the Fourier transform of the characteristic functiont of the

scattering body. This result has now been extended to the

bistatic case. In this form, much more information is extracted

with only two stationary transmitters and an array of receivers.

These results are described in Section II and a numerically

synthesized check on the method reported by the second author

(Bojarski, April 1973, February 1974) are presented in Section IV.

In another extension discussed i., Section III, we

dispense with the far-field approximations and obtain an integral

tt

, ~equation for the characteristic function. This formulation wouli

tThe characteristic function is unity inside the scatterer and

zero outside, thus describing the scattering body.
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be appropriate when the distance between the observed remote field

and the obstacle was comparable to the length scale of the obstacle.

The consequences of limited aperature for far-field physical

optiCs are discussed in Section IV. Again, numerical results by

Bojarski (April 1973) are described.

In the exact formulation, one obtains an inhomogeneous

integral equation for a source distribution with the inhomogeneous

term being an integral of the data observed remotely. Bojarski's

basic integral equation for wave propagation governed by the Hemoltz

equation is described in Section V. Again, numerically synthesized

checks on the basic formulation are presented. Significant among

these is an example in which two point sources, one-half wave length

apart are resolved.

Again, the limited aperature problem is of great interest

and the formulation which takes account of this feature is presented

in Section VI.

Problems in which one seeks an inhomogeneity of a medium

can be reformulated as inverse source problems amenable to analysis

by this exact formulation. Inverse scattering problems for "trans-

lucent" obstacles (neitherjacoustically hard nor soft) can also be

viewed as inhomogeneity problems and are thus reduced to inverse

source problems. The "source" here is not to be confused with

"e.quivalent sources" which are physically unrealizable mathematical

idealizations. These ideas are expanded upon and clarified in Sec-

tion VII.

3



IM
Extensions of the inverse source problem formulation to the

time domain are discussed in Section VIII. These time domain formu-

lations 1v i the inherent advantages noted above. Furthermore, there

arf two dictinct formulations depending nn whether or not the source

distribution decays to zero sufficiently rapidly in time. When this

is not the case, it is seen that the time harmonic case is not neces-

sarily equivalent to a transform of the time dependent formulation.

ll of the integral equations obtained here are Fredholm

int• ~,quations cf the First Kind. The problems are mathema-

tic;-',. ill-posed, suffering both from non-uniqueness and non-

continuous dependence on the data.

As to the former difficulty, we believe that the non-

uniqueness resides in a class of non-physically realizable solutions

such as source distributions "at infinity" or scattered waves con-

taining Qigenmodes of annular regions, which modes are not "outgoing".

This is a conjecture to be verified or contradicted.

The ill-posedness has as practical implication, the fact

that the solutions are "noise-limited". That is, relatively small

amounts of noise can degrade tbe solution so much that the "true"

solution is unrecognizable. The quantification of this observation

is well worth studying.

The extension of the formulations presented here to Max-

well's equations is straightforward. They can be found in the above

cited Bojarski papers. Since the objective of this report is to

collect the basic formulations, we do not repeat those extensions

f here.

4
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II. PHYSICAL GA £ICS FAR-FIELD
TIME HAPMONIC INVERSE SCATTERING

A

ik x

FIGURE Z. 1

We shall briefly deri~e here the monostatic and bistatic

physical optics far-field identities. This derivation is based

on the earlier monostatic identity (Bojarzki, 1967, Lewis, 1969).

We suppose that the incident field

ik-x '
u. e; k= (kj,k 2 ,k 3 ) , x (x,,x 2 ,. '); (2.1)

illuminates the acoustically soft% convex scatterer B in Figure

2.1. We define the total field uT by

uT =U U (2.2)

j i.The acoustically hard case can be treated by this method as well.
For other cases, the method of Section VII must be employed.

5
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with us the scattered field. It is required that uT satisfy the

equation

V2 +k 2 )u =0 (2.3)
T

and the boundary condition

uT =0 on 9B (2.4)

The scattered field must satisfy the same equation (2.3),

must be such that (2.4) is satisfied and be "outgoing" at infinity.

One can then derive the following integral equation for US

(Baker and Copson, 1950).

US0C,) fB~uS k) gx-_) g(x-x') ds' (2.5)

Here aB denotes the boundary of B, B/Dn' denotes the

normal derivative and

Ax
(Lx)= ; x =e (2.6)

is the free space outgoing Green's function.

The physical optics approximation consists of making the

following assumptions about the fields. The incident plane wave

illuminates a portion of 3B called the lit side and denoted by L

in Figure 2.1. We may characterize L analytically by the

6



condition k. i >o on L, with fi the outward uinomlto B. The remainder

the following approxdimate boundary cxnditiais

us -exp ~i k-x:

on L uS 'U -0,on D

ajj- au, -. ik fiexp {ikcxj (2.7)

We may then substitute (2.7) into (2.5) to obtain

u(xhk) =fexp ik-?x' - (-XI) + ik-fi g (Xx )dS (2.8)

where we have used the explicit form (2.1) for uS.

We now proceed to introduce the far-field approximiations

into this result. Firstly, we set

uS(x, k) p p(k) exp ~i k x} /47Tx. (2.9)

Here, the function p (k) is known as the range-and-phase nrxmalized

far-field mnplitude.

Secondly, we expand jx'Ifor x>>x' and use this result

in g:

~--g Ws• =i-ft exp A 1 [x-iR.x'jj /4rrx (2.10)

7



Here A is a unit vector in the direction of x.

The results (2.9) and (2.10) are substituted into (2.8)

and the common factor exp {ikx}/4nx is rmwed to yield

p --,. exp fix'. _ ;-q]) dS' (2.11)

L

Let us now illuminate the scatterer with the incident
, wave$

uI (x,-k)= exp {-i k x}, (2.12)

and observe at the point -x. The range-and-phase normalized

scattering amplitude for this case is thenp (-k, -R). In this

case, ic is D that is illuminated and pJ-k,-R) has a representation

similar to (2.1) except that the k and R have changed sign:

p (-k, -R) = j - [I_- k- .. {-ix[._- ] I (, (2.13)

D

We take complex conjugate (denoted by *) in this equation and

add to (2.11) to obtain

p_• (LR)+ -k_, -A)= fif • _ R] ex ix- k9_- d] 1 (2 .14

L&D
The integrand here can be continued to the interior of

B as a regular function. Thus we may apply the divergence

8



theorem to rewrite the right side as a volume integral:

p (k $) + p(-k, R) [k--P.1 {[* W ! (2.1

B
Let us denote by Y(x) the characertistic function of

the scatterer B and simply rewrite (2.15) as

P + £*€-•,- _y(x') • {,- [-] , (2.16)
(k- Ia) J

where now the domain of integration is all of space.

We observe fcom (2.11) and (2.13) that both o(k, R)
and p*((-k, -•) are functions of k -ida. Thus, let us define

K = k-kg (2.17)

and

= p(•_,) + p*(-k,-.q) (2.18)

K

Then, (2.16) can be rewritten as

J( f t = exp {iX_'-•) dV' (2.19)

We see here that the observed fields have produzed the

Fourier transform of the characteristic function of the scatterer.

9



If Y(K) is known for all K, then we can invert (2.19) to yield

y•1x) = t1 f ?(K) exp {ix_.J dj3  (2.20)

In the earlier back scattering derivation,

k• -k; K 2k (2.21)

C Thus, for this case one illuminates and receives at all wave

•] I numbers and in all diractions in order to cover all K.- For

the general result in which K is given by (2.17) rather than

(2.21), the obstacle is illuminated from only two directions,
+- and at one wave number k. Then, observations in all

directions fill out a sphere in K space with center at k and

radius k, as shown in Figure 2.2.

*k

FIGURE 2. 2

It is well known in radar analysis that the physical

optics approximation is poor in the bistatic case if the

directions of transmission and observation are too widely

separated; i.e., if the angle between k and -R becomes too

10
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large. Nonetheless, for a cone of small angle, such as is

shown in F'igure 2.3, the bistatic result (2.17, 19) stil..

remains valid. In conjunction with the limited aperture

discussion in SectionIV, this observation shou'ld prove quite

useful.

FIGURE 2. 3

m11
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III. PHYSICAL OPTICS NER-FIELD INVERSE SCATTERING

In this section we shall develop an integral equation

for the characteristic function of a scattering obstacle with

the aid of the physical optics approximation but under the

constraint that the fields are observed too near the scatterer

for the far-field approximations to be valid.

A

-L 

D

FIGURE 3. 1

We suppose that the scattered field and ics normal

derivative are observed on the boundary aV of the domain p of

Figure 3.1. As in the previous section, we assume that is

the response to the incident field uI of (2.1) subject to the

conditions (2.2, 3, 4). The result (2.5) is still valid as

well. Now, however, we also write down the solution representation

-nS~x,k) klsy.I) ag (x-x') - g*(x-x')) x dS + O(x,k), (3.1)

aB 

x C p

Here (*) denotes complex conjugate 
and

t I2



Ge(xk) k * (x-x') - g*(x-x') (x',k)} dS'

ap (3.2)

The integral 8 arises in this representation because g* does

not satisfy the radiation condition that g does. We note,

however, that 0 contains in it the data observed on ap and is
thus a known quantity. 31

By subtracting (3.1) from (2.5) we obtain

((-x) -. gi(-') au- (x',k)}dS' = (x,k), x• e 1
fi an 1n'3

8B

Here

gr(_ - g x)_ - g*x)_ isn k x (3.4)

We now make the physical optics approximations (2.7)

and obtain

fiV g:,(x.x2) exp {ik-x.1} dI Q(x,k), x c (3.5)

L

As in Section II we now carry out the same analysis for

thu incident wave

(3.6)4
uI (x,-k) = ui* (x,k) = exp {--i k.x} (.

13



and obtain

-f'V (gi(_xx') exp {-i k_-x dS' = O(x,-k), xc 1 (3.7)

D

the domain of integration being D here because this is the

surface illuminated by the incident field (3.6).

We take complex conjugate in (3.7), using (3.4), and

subtract this result from (3.5) to obtain

ffi-V gi(x-x') exp {ik-x'} dS' =0i(x,k), xep (3.8)

3B

Here

0 (x,k) = 0 *(x,-k) - 0(x,k) (3.9)

As in Section II, we can now apply the divergence

theorem to rewrite the left side of (3.8) as a volume integral.
Indeed, here and in the previous section, it is the physical

optics approximation which makes this crucial step straight-

forward. The result is

(g2 (X-X') exp {ik x'dV' (x,k), x p DJ ...... 1(3.10)
B

We may rewrite this equation in the form

414



f, 2 1gx-.x') ex {ik--xi} Y(x') 0j' = a3(x_,k), xe_ (3.11)

This is a Fredholm integral equation of the First Kind,

the first of many to be encountered here. It is well known

I that these equations are ill-posed, in general, with all three,

existence, uniqueness and continuous dependence on the data

open to question. We expect that these difficulties can only

be resolved when Y(x) is assumed to be non-zero only over a

finite domain interior to P and P itself is a finite domain.

Indeed, because of this latter constraint, it is expected that

the result of Section II cannot be derived by simple limiting

arguments from (3.12).

15
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IV. LIMITED APERTURE OF OBSERVATIONS

We return now to (2.19) and assume that we have only

a "limited aperture" of observations; that is, we assume that

q(_) is known only over some finite domain as shorn in Figure 4.1.

KI

K3

,K2

FIGURE 4.1
Domain in which ?(K_) is known.

Let us define the characteristic function of that

domain to be

•-• ~I , 1;is know

.�1�= 1~)15 n(4.1)

0 ,(K) is not knoM

and denote by a(x) its Fourier transform. Then, in fact, what

we really know is the function a(K.)Y(i_). By the Fourier

convolution theorem, this product is the Fourier transform of

the convolution of y(x) with a(x):

i3f a(i' ? [ -!K x] dK3=fa(ýxlx Y(X') x' 3  (4.2)

16



Here, the left side is known and this is a Fredholm integral

equation of the First Kind with the kernel a(x) being a

generalization of the sin x/x kernel whici, would arise in one
dimension. Again, we note t•.at, in general, these integral

I equations are known to be ill-posed with difficulties as tofo all three aspects of existence, uniqueness and continuous
dependence on the data. Nonetheless, for this particular

equation, the second author Bojarski (1973, 3974) has been

successful at obtaining solutions.

We remark further that once the idea of multiplication

of f(K) is introduced, it may be exploited in another way. In
particular, we note that is is not y(x) that we seek really, but

its de:ivatives. Indeed, it is these functions that describe

the surface of the scatterer rather than the scatterer it:;elf.

In Bojarski (1974), this idea is exploited to develop a check
j on the method. The function p(K) is calculated from the exact

j Mie series solution for scattering by a sphere. The inverse
transform of irs?(K) is calculated, this function yielding

-�-�y (x). Figure 4.2 is a graph of this function in the (xI, x2 )

plane.

The formulation of Section III can also be modified
to take account of limited aperture. To this end, let us
suppose that 3p in Figure 3.1 is decomposed into two parts! aj), V 2 as in Figure 4.3.

t

S~FIGURE 4.3
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TNO-DIMENSIONAL DISPLAY OF RECONSTRUCTED SPHERE FROM SYNTHE.TIC

SCATTERING DATA

F'IG UlE -1.2
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au
On DPi the data u and a are observed, on aP2 they are not.

We return to the definition of 0 in (3.9) and decompose the

domain of integiration into DDI + 33 2; that is, rewrite (3.2) as

0 (x,k) = (x,k) + 0 (x,k) (4.3)4

Here

0(J(xtk)=f~s(X'Ik')..?.~ •a (x-x) -g*(x-x)auS (x' k)tdS' j = 1, 2. (4.4)

aDj

In 0G ; where we do not know the data, we replace u and "

by

u. (xf,k,) = Ic) .a", ..(x"-x - (x"-x (X" ,k) We- -(4.5)
an" -n" -(4.5)

B

and

aus(x'k) = U - ' -x)n (x",-x') U -n" (4.6)

As in Section III, we can make the physical optics

approximations here and repeat for 0*(x,-k). The result is

(2)* (x-k) +.. (x,-k) = ( (x,k)
I -

= - -dS' f (x"-x) U x ( x"-x' ) (4.7)
S Ln -n i

SL&D
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Again, we can replace the surface integral by a volume integral.

The result is
(

1 (x,k) =f(x_") K(x",x) d's (4.8)

D

Here

K(x",x) = {(~x) (x-x') -g* (x-.x') Sr(x-')dS
an an

Now the integral equation (3.11) becomes

V jg (_X-X') exp (k_')ý + K(x , (x') (x,k_ ), (4.10)

i)(x,k) =a (x') ng (x-x') g* (x-x"aus• (x') (4.11
Ixk = l Tz I~-' I n'Xf

Equation (4.10) is again a Fredholm integral equation

of the First Kind for 6 (x). It is expected that the equation

becomes more and more ill-posed as aV2 is the entire surface(V
ap, GI = 0 and the equation is homogeneous. In the opposite

limit a31 = a3 and this equation reduces to (3.11).

204--2
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V. THE INVERSE SOURCE PROBLEM
FOR THE REDUCED WAVE EQUATION

i$

We consider now the inhomogeneous equation

Lu= 2,+ k2 ) u =-0(x) (5.1)

for some outgoing wave u. We asLume that the source p(x) is

confined to the interior of some domain • (Figure 5.1) and AS•au
that both u and y- are

p~i)

FIGURE 5. 1
S observed over the entire boundary •Dp We seek p Ix) from this

S data. Here we shall derive an integral equation for p Ix).

• We begin with the observation that

u(x) = J p(x') g(.x') dV', (5.2)

21



with g the free space Green's function (2.6). We are justi-

fied in restricting the domain of integration to 5 here
because p(x) is non-zero only inside of 1). Let us now

consider a volume integral similar to the one used to derive

(5.2), but with g replaced by g*, namely we set

E(x) *(x-x')Lu(x') u(x') _ dV' (5.3)

By using the property that Lg*(x) 6(x), we find that

0(x) = u(x) - fg*(x-x') p(x') dV', x C D

By using Green's theorem: we also find that

0(x -fu(xI) ag (x.xI) -g*(XX) al (I)~ es'.(.5

au
Here, the integrand is known for u and a-i observed on at.Un
We remark that a similar integral appears in the derivation of

(5.2). However, by invoking the outgoing property for both u

and g, one can show that the surface integral is zero in that

case; see, for example, Morse & Feshbach (1953) or Baker &

Copson (1950). Thus, the process that yields so simple a

result, (5.2), for the direct problem, annihilates the data

that is known for the inverse problzm, while the same process

applied to (5.3) does not do this.

We use (5.2) and (5.5) in (5.4) now to obtain

]g(x-x') p(x') dV' = O(x), (5.6)

p

22
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and this is a Fredholm integral equation of the First Kind for
p Ix).

As a check on (5.6), Bojarski (1974) has carried out
two examples. In each, the function O(x) as defined by (5.5)
is generated from a known source. The check then consists of
solving (5.6) for p(x) and comparing with the known source.
The technique of solution is a relaxation iteration method.
The sources treated are a point source and then two point
sources, one-half wave length apart. Results after 8, 16
and 32 iter.ations are shown in Figures 5.2 and 5.3, respectively.
The second example strongly suggests that the method is not

Raleigh diffraction limited.

23
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RECONSTRUCTED POINT SOURCE
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VI. LIMITED APERTURE FOR THE INVERSE SOURCE PROBLEM

We now suppose that u and ynu are observed only on a

portion of ap, namely on 31i in Figure 4.3. As in Section VI,

we define 0(1) and 0(2) by (4.3) and (4.4) with 0(x,k) and uS
u,(x',k) replaced by O(x) and u(x'), respectively. In the
integral over aD2 we use (5.2) to obtain an expression
completely analogous to (4.8), namely that

0 (2)(x) = fp(x") K(x",x) dV", (6.1)

p

and K(x",x) is given by (4.9). We then obtain instead of

(5. 0), the modified integral equation

bI (x-x' + K(x',x) p(x') dV' 0( 1)(x); (6.2)

(x)(1) fx)u(x')i (x-x'- 3n' dS'.

I26
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VII. ANALYSIS OF INHOMOGENEITY OF A MEDIUM

Let us suppose that in an otherwise homogeneous

medium there is a finite region of inhomogeneity.

V4

FIGURE 7.1

Our objective is to analyze the inhomogeneity from remotely

sensed data. In this section we shall show how this problem

can be reduced to the inverse source problem (5.1) and thus

that the inverse problem here reduces to the study of equation

(5.6).

We suppose that the wave (2.1) (exp Jik-xl)

incident on the region of inhomogeneity and that the total

field u, + i satisfies the equation

2 2 (7.1)(V + k2) (uI +us) = -v(x) (uI + uS) =-p(x)

Here v(x) is assumed to have finite support.
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In fact, uI satisfies the homogeneous Helmholtz

equation in the uniform medium, Thus, (7.1) reduces to

2 2 (7.2)
(V2 + k2 ) us = -p(x)

au
We observe uS and y-S on 3P and obtain the integral equation

(5.6) for p. W• n p is known, then uS can be calculated by

using (5.2). Since uI is known, we can now use the right-

hand equation in (7.1) to find v(x).

In problems in which one medium is imbedded in

anoth-r (tumors, land mines, sea mines, buried objects in

general), v(x) is discontinuous and (7.1) is valid every-
where except on the interface between the media. On that

interface, certain jump conditions must be satisfied. These

conditions are simply the integral form of (7.1) across the

interface. As a consequence of this, one can verify that

even in this case, p(x) must satisfy (5.6).
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VIII. THE TIME-DEPENDENT INVERSE SOURCE PROBLEM

We suppose now that U (x,t) is a solution of the wave

equation

4 tt = -P(x,t), (8.1)
=C

with U, Ut and P assumed to be zero initially (sufficiently

far in the past). We assume that U and 2 are observed on 3P

of Figure 5.1 and that P is confined to the interior of p.

We shall derive an integral equation for P.

We begin by observing, analogous to (5.2) that

U(x,t) P(x',t')_ G(x-x',t-t') dV' dt', t14T. (8.2)

Here G is the "causal" Green's function. We also introduce

the "effectal" Green's function G*:

G(x,t) 6(t-x/c) G*(x,t) = 6(t + x/c) (8.3)

47rx ' -4x

As in Section V, we consider the function
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-G*(X-Xt-t't)tU(X',t')} dV'dt',

F and observe that

T (x,t,T) = -U(x,t) /f (x 'tt)P(x',t') dV'dt'; (8.5)

x& 1)1 o4tiL-T.

As in Section V, we apply the divergence theorem

(now in x, t) and obtain

'V(x,t,T) = O(x,t,T) + O(x,t,T) (8.6)

Here

O(x,t,T) = f U(x',t') ýG* (x-x',t-t')
jj Tn- wr -

OP -G*(x-xI,tt.) DU (lts)$dS~d'(87
-- (an , dt

and

O(x,t,T) = -) G*(x-x',t-T)-

p2fuW (8.8)

-G*(x-xl,t-T) 3U ' WT)} dV'.

We use (8.2, 6, 7, 8) in (8.5) and obtain
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T

f fG (x-x_',t-t' )P(x'x,t') dV'dt'

0(8.9)

= O(x,t,T) + 4(x,t,T), x el), o!5t<T.

Here

G1 (x,t) = G(x,t) - G*(x,t) (8.10)

If the source is "shut off" after a finite time or

decays "sufficiently rapidly", then T+- o.

In this case, we may let T -1 in (8.9) and obtain the inverse

transform (k = w/c) of (5.6) as the equation for the source in

space time. When P does not vanish for T -÷ we are faced with

the additional difficulty of having only a limited aperture

(0, T) of observations in time. We deal with this difficulty

as in previous sections by using (8.2) in (8.8). The result

is that P(x, t) must satisfy the integral equation

T

(x-x',t-t') + K(x,x',t,t';T) P(x',t')dV'dt'
.. (8.11)

0 )b E) (x, t,T) , x C 1, o_<t-ý5_

and

K(x,x,,t,t';T) - (x -x ,T-t') G* (x-x",t-T)
c0

(8.12)

-G* (x-x",t-T) Gx-"Tt)C1

One can certainly modify this equation further to take

account of a limited aperture of observations in space. However,

this modification is carried out exactly as in Section IV and

VI and we shall not do so here.
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