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CHAPTER |
INTRODUCTION

The research described in this thesis is part of a continuing effort, at the Stanford
Hand-eye project, to develop the capabilities for a machine to analyze scenes of complex ob jects
and manipulate these ob jects for tasks such as part assembly. Much of the past work in three-
dimensional scene analysis has concentrated on scenes containing polyhedral ob jects only. This
thesis is concerned with machine generation of symbolic descriptions for three-dimensional
complex, curved ob jects and their recognition based on these descriptions. The complexity of the
ob jects viewed is typified by toy animals such as a horse and a doll, and by hand tools such as a
hammer. (The reader may wish to glance through the figures in chapter 7 for a sampling of the
scenes these programs work with.) Qur concerr here will be with the shape properties of an ob ject
only. Other cues such as color and surface texture have not been used.

Previous Work:

The problem of ob ject recognition has received extensive atiention in the literature on

Pattern Recognition ([Duda)), though the emphasis has been on the recognition of two-

dimensional patterns. Analysis of three-dimensiona! scenes from their two-dimensional camera

images presents the following difficulties: the two-dimensional image of the ob ject changes with

the viewing angle; when multiple ob jects in a scene occlude each other, only parts of some ob jects

will be seen in the carera image, and also the occluding ob jects need to be separated from each

1 other. A non-convex object can partially occlude itself. Addiiionally, in our system we have

allowed parts of an object to be articulated (i.e. move with respect to the other parts). The

‘ classical pattern recognition methods have not been concerned with such variations and have only
R | considered statistical variations of a fixed pattern.

A popular paradigm in pattern recognition has been that of Template Matching.
Template matching consists of matching an input pattern with a model pattern, known as a
template, on a point to point basis. The matching is usually performed at the level of input
measurements, e.g. the intensity levels in the image or the values in a range matrix. A simple
metric, such as the root mean square of the differences, or the correlaticn of the image and the
template establishes the quality of the match. Such template matching is directly applicable only if
the image of the entire scene is invariant, eg for two-dimensional patterns. Some flexible template
matching schemes have been suggested ((Widrow][Fischler]). Parts of such a template are
allowed to be moved with respect to the others. Comparison of the observed scene with such a
template finds the best “distortion” of the template required to match with the scene. These
techniques, utilizing point to point matching of the model patiern and the scene are difficult to
eatend for the expected variations of three-dimensional scenes. Further, template matching does
not provide use‘ul similarity and difference descriptions, such as two ob jects are similar but for a
missing 1imb in one.

The early work on three-dimensional scene aralysis simplified the problem by restricting
to homogeneous polyhedral objects. In a now classical work, Roberts ([Roberts 63]) extracted edge
information from simple polyhedral scenes and compared the resulting descriptions with possible
projections of stored models for object recognition. With multiple objects in the scene, many
combinations of known models were tried. It is clear that {or an increasing number of models,

: ihese techniques soon become romputationally infeasible.
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1.0 INTRODUCTION

The attention then turned to the problem of "Body separation”, ie. scparation of
occluding bodies in a scene (See [Guzman), [Falk], and [Waltz])). Grape ({Grapel) combined the
separation of bodies with recognition, by removing parts of the scene recognized a; delonging to a
known body. All of these techniques were designed to work with polyhedral ob jecis only, and
extensively use the properties of edges and verticss. Though some impressive results have been
reported ([Waltz), [Grape]), and perhaps some useful abstractions can be made. the specific
techniques used fail to generalize to a wider class of ob jects.

Among previous work on curved ob jects, B.K.P. Horn ((Horn]) presented techniques for
extracting three dimensional depth data from a TV image, using reflection characteristics of the
surface. Krakauer ([(Krakauer)) represented ob jects by connections of brightness contours. Ambler
et al ((Ambler)) describe experiments with simple shapes, including curved ob jects, using relations
within a two-dimensional image. However, none of these efforts really addresses the problem of
"shape” representation and description. Work on outdoor scene analysis is also concerned with
non-polyhedral objects ((Bajsy), [Yakimovskyl), but again no attention has been paid to shape
analysis.

Our work is based on initial work of G.J. Agin and T.O. Binford ([Agin 72, 73],
[(Binford)). Binford proposed a new representation for complex objects by segmentation into
primitive parts described as Generalized Cylinders (and cones), which are defined by a space
curve, known as the axis, and a set of cross-sections along this curve. The shape and the size of
the cross-sections may change continuosly along the axis. Agin built a laser ranging system to
measure the three-dimensional positions of the points on an object surface. The 3-d position
information helps resolve ambiguities caused by occlusion. (This system only measures the 3-d
positions of points on the surface visible to the camera))

Agin described preliminary efforts at generating descriptions from the three-dimensional
range data. However, these description techniques were unstructured; only isolated part
descriptions were generated and not related to each other to make up a complete body. Further,
the description of individual parts had some ma jor deficiencies. In particular, some descriptions
merged nearby but distinct parts. In this thesis, we present new description techniques that are
different conceptually and in implementation. They generate adequate segmentation and part
descriptions for an object and are a major advance over the previous work. The segmentation
techniques are general and work without a priori knowledge of the the ob ject being viewed.
Structured, symbolic descriptions are generated based on these segmentations.

Approach:

The techniques described here use the same representation and laser ranging system.
These are briefly described in chapter 2 and section 3.1, to allow an independent reading of this
thesis. Th+ remainder of this thesis represents the author's own contributions. (Note that this
thesis consistently uses the first person plural.)

The chosen representation is designed to cope with the problems of 3-d scene analysis
mentioned earlier. The major comnonent of the chosen representation is the Structure of the
ob ject, defined by the connectivity pattern of 1's sub-parts. This structure is invariant with the
viewing angles, except for the absence of :ome¢ parts in a particular view due to occlusion
(computation of this structure from certain view.ng angles may be difficult). However, some
ob jects are reasonably described as having alternate structures (detaiis in chapter 6). In such cases,




1.0 INTRODUCTION 3

we just store the alternative descriptions of the same model; each description is examined
independently for recognition. The ex pected number of such alternates is small. Articulation of a
limb is easily described by its relation ‘o other limbs. Our recognition procedures use descriptions
generated from the observed data in werms of this representation.

Two descriptions are matched in their .tructure as well as the details of the sub-parts.
Note that since we have segmented descriptions of the scene, the matciing proceeds directly and
does not have to try various "distortions” of the model description. Recognition i by picking the
model which matches best with the observed description. Our system has a limited amount of
indexing capability, i.e. a list of similar objects can be retrieved from the memory using the
descriptions of the current objccts, and comparison with each known model is not necessary.
Models for recognition are obtained by storing machine generated descriptions of the ob jects.
Such a structure of visual models is known as a Visual Memory.

Among the contributions of this thesis are: the techniques for segmenting the ob ject into
sub-parts from the observed data, the structure of the symbolic descriptions and techniques for
generating such descriptions; and methods for efficient recognition from these descriptions
including indexing. Working programs for the presented techniques have been written. (All of
the described programs run without human intervention.)

In the next section, we present an overview of our methods and discuss the adequacy of
our techniques.

1.1 AN OVERVIEW

The conventional input for computer vision programs has been the output of a TV
camera or a digitized photograph. A camera image is two dimensional, whereas the space viewed
is three-dimensional. The picture information is incomplete in the sense that the depth of the
points in the image cannot be directly inferred. We use a laser triangulation ranging method that
gives us direct three-dimensional information about the points in the image; this method is brietly
described in chapeer 3.

kepresentation of an object by segmenting it into simpler sub-parts represented as
generalized cones is discussed in chapter 2. Primitives other than generalized cones are also
suggested but have not been used in our system. Each sub-part will also bz referred to as a Piece;
various pieces connect at a joint. The connectivity of the sub-parts of an ob ject defines the
struciure of the ob ject.

Techniques:

The block diagram of Fig. 1.1, describes schematically the processing of the range data.
Following 1s an overview of these processes.

Canstruction of the boundaries of the cb jects in the scene has been found to be useful
in structuring the processing of the surface range data in our system. Depth discontinuities are
used to determine ob ject boundaries, and correspond to the normal notion of ob ject boundaries.
The ranging method provides us with an outer boundary that is not sensitive to gray level

T e L T Tt L Wy
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1.1 OVERVIEW 5

variations on the surface of the body. Boundary detection in TV images has proved to be a
difficult problem, even with a restriction to polyhedral objects only. The boundaries separate
different bodies in the scene; however, touching ob jects are not necessarily separated. This
important case has been ignored. In occluded (including seif-occluded) scenes, some connected
parts of an ob ject may not appear connected. (Boundary organization is discussed in chapter 3.)

Techniques for segmenting an ob ject into sub-parts and generating the descriptions for
a part as generalized cones by specifying an axis and cross-sections are not immediate from the
chosen representation itseif. Development of these techniques has been an important part of this
work. Use of object boundaries has been important in these techniques. Our segmentation
procedure starts by finding local cones, and then extends these local cones over larger areas of the
ob ject continuously, allowing the axis direction and the cross-sections to change smoothly. The
extension terminates at discontinuities. Each extended cone offers the choice of a segmented sub-
part of the ob ject. This segmentation procedure often generates multiple cone descriptions for
some areas of the body. Based on chosen simplicity criteria, preferred descriptions are selected
from the many alternatives The result is not necessarily a unique description. Multiple
description hypothesis are generated and examined by the recognition procedures. (Details are in
chapter 4.)

Symbolic descriptions of an object are generated, aiming to capture its important shape
properties. They consist of the connectivity relations of the sub-parts, and summary descriptions of
the sub-parts and their joints. Global descriptions depend on the relations of many sub-parts and
joints, e.g. bilateral symmetry. (See chapter 5 for details).

Matching routines compare two descriptions to determine their differences. Recognition
consists of choosing a previously stored description that matches best with the current description.
The matching relies heavily on the structure of the ob ject but also uses the metric properties of
the sub-parts. Partial matches are necessary to recognize objects with occluded parts.
Articulaiions of limbs are ignored; ob jects with different limb articulations are recognized to be
the same. Efficient matching betwesn two description structures results by the use of semantic
knowledge about the descriptions, e.g. the use of distinguished pieces (defined in chapter 5) and
th2 preservation of the order of the pieces at a joint (section 5.2).

The models used for recognition are not ideal models, we save a machine generated
description of the object (any major errors are removed interactively). “Learning” techniques to
generate more complete models are suggested but have not been investigated in detail.

A small number of important "features” of the symbolic descriptions are used to index
into visual memory to retrieve models with similar descriptions. Indexing is necessary if the world
of ob jects to be encountcred is large in number. In that case, we cannot afford to compare the
observed description with every other known description. Details of indexing, model acquisition
and matching are covered in chapter 6.

(NOTE: The description and recognition chapters contain some techniques that have
not been implemented in programs. These are included to provide ideas for further extensions of
this work, and to indicate the possibilities of improved performance. The techniques not
implemented are clearly delineated. The folinwing chapters of this thesis are organized so that an
introductory section contains the important o 1ep.; of the chapter and the detai's are provided in
subsequent sub-sections. Appendix 2, contains 2 concise summary of the techniques used and has
the significant program details.)
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Performance:

The results of our implementation efforts have been encouraging, We are able to
generate "clean” symbolic descriptions. The recognition programs can recogrize ob jects with limbs
articulated to varions positions (and various viewing angles). Useful descriptions result for scenes
containing multiple objects with a moderate amount of occlusion and the partially occluded
ob jects are recognized by their partial descriptions. The methods described here are applicable to
TV image processing, if suitable boundaries can be obtained.

It is our view that the important elements in judging the performance of recognition
programs for the types of scenes consicered here are the classes of scenes for which the programs
work successfully We do not have cnough data for meamngful statstical results, but instead
present the results of our programs on several different scenes (in chapter 7). We have used six
ob jects for our experiments and present results on 16 different views (3 of them containing two
objects). An analysis of the performance as related to the various scene characteristics 1s
presented. We believe that these results represent a significant break from the world of
polyhedral ob jects of the past. Section 7.2 discusses the speed and memory requirements of our
programs.

More work is needed on incorporating primitives other than generalized cones in our
programs for adequately describing many complex objscts. We think that with the suggested
additions, the programs offer potential of being usefu’ in "real” applications to tasks such as
industrial automation (particularly for "visual feedback”).

Other Paradigms:

The flow of our processing of the scene proceeds in a fairly "bottom up” or Aierarchici!
fashion. The necessity of a Acterarchical control, with much interaction between different levels 1s
widely believed to be necessary for complex visual tasks (Winston 711), in agreement with current
psychological theories about human visual perception ((Gregoryl). In the chapters on description
and recognition, we indicate how such heterarchical control might be added to our programs,
particular examples are those of redescription and venfication. The lack of such heterarchical
control in the current programs 1s attributed to the large effort that had to be spent in the
construction of the current description and matching routines. The performance of the current
programs is just adequate to distinguish between a doll and a toy horse. We believe, tha. 2ddition
of verification and goal-directed low level description of such features as termination of parts wili
greatly add to the power of the system.

More recently, Freuder ([Freuder 73a,73b]) has argued for the necessity of the intimate
use of goal directed knowledge at all levels of description, in contrast to the paradigm of
generating descriptions and matching them to models. The author feels that this is desirable,
however, a princapal problem to be overcome is the selectton of the model to guide the
descriptions. In special restricted applications, such as lookiig for a specific ob ject, this knowledge
may be easily available. In = more general situation, however, we believe that descriptions of the
complexity described here need to be generated before a likely model can be retrieved from the
memory. Local descriptions can potentially match a very large number of objects and are unlikely
to be useful in guiding further descriptions.

The techniques presented here may be considered as modules that would » useful for
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adaition of other piimitives or be adapted for specific applications using a different control
structure. These modules should also be of direct use for extension to more complex scenes, siich
as heavily occluded scenes.




8
CHAPTER 2
REPRESENTATION
} We are interested in the description of the “shape” of an ob ject, and in the recognition

of an ob ject based on its shape description. The term "Shape” has intuitive meaning for us, but it
defies a precise definition. The dictionary equivalents of form or extent zre equally imprecise. V/e ;
are then interested in descriptions that capture our intuitive notions of what shape descriptions ’
should be like. An array of positions of points on the surface is a complete description of the f
ob ject and useful for some purposes, but it hardly describes what one generally thinks of as shape. \

o Among the desirable attributes for a shape representation are: the representation should :
describe a st of shapes compactly and simply, and should allow for determination of similarities
as well as dift. ences between two shapes. Incremental changes in an ob ject should reflect as :

} incremental char , ¢s in the description. Many "universal” representations have been proposed, e.g. i
expansions in o.'i “gonal series such as moments or Fourier series, or descriptions of surfaces by '
two-dimensionai sprir.es. These representations contain no sense of segmentation into parts. Local,
incrementa! change of shape does not result in a local or incremental change in its expansion 1n
an orthogonal series. It is unlikely that a single representation will be suitable for describing all
shapes, we present a representation that describes a certain, hopefully wide and useful, class of

shapes simply a.i compactly. .

It seems to us, that any intuitively appealing shape description must represent complex
ob jects by segmentation into simpler sub-parts. "Che segmentation criteria could be simplicity of
sub-parts (is a function of what a simole primitive is), articulation characteristics (each moving
volume is a separate part) or be based on our knowledge of the construction of the ob ject (such as
knowledge about certain parts having been attached to others). This segmentation and the
connectivity relations of the sub-parts comprise the "Structure” of the ob ject, hence our use of the
term “Structured Descriptions”. Segmentation allows for incremertal changes of object to be
described incrementally.

Primitives may be surface descriptions or volume descriptions (for the simpler case of
polyhedral objects, edge descriptions suffice). For three-dimensional objects, the volume
primitives provide more intuitive segmentations. Surface discontinuities are usually not a good
basis for segmentation. For some objects a particular surface 1s of special importance, e.g. many
parts might attach along a flat surface. In such cases the representation should use a combination
of surface and volume descriptions.

We use Ceneralized Cones as ma'n primitives. other primitives are allowed. The
representation chosen has been previously described in [Binford) and [Agin 72). Here, in sec. 2.1,
we present only a brief summary, reflecting our interpretation of 1it, and to allow an independent
reading of this thesis. Symbolic descriptions of these parts, their joints and the complete ob ject are

discussed in chapter 5.

'l 2.1 CENERALIZED CONE PRIMITIVES

An object is represented by segmenting it into sub-parts. Different parts attach at a
joint. A sub-part may have ils own sub-parts, depending on the amount of detail to be




2.1 GENERALIZED CONES

represented. This provides a hierarchical representation allowing for varying amount of detail to
be stored. A decomposition of a human shape is as shown in Fig. 21. The human shape is
represented as being composed of two legs attached to one end of the body and the two arms and
the head attached to the other end of the body. Arms can be further represented as consisting of

upperarm, forearm, and the fingers of the hand. |

BODY |

LEG LEG

Fig. 2.1 Segmentation of a Human Form into Sub-parts

The principal representation for the primitive parts in our system is by generalized
cones; other primitives are allowed. A generalized cone is defined by a space curve, called the axis,
and normal cross-sections along this axis. The cross-sections may be any planar area, and the
cross-section shape may change along the axis; the function describing these cross-sections is called
the cross-section function. If the cross-sections do not change along the axis then the generated
volume is a generalized cylinder. Formally, the volume described by sweeping of the cross-section
along the axis has been formulated as Generalized Translational Invariance by Binford
((Binford)). We impose the following constraints on the axis and the cross-sections:

1) The cross-sections must be normal to the local axis.

2) The axis must pass through “corresponding™ points of the cross-sectiors.

The points of the cross-sections to be used as corresponding points need to be chosen.
Intuitively, we want these points to be the "centers” of the cross-sections. The centers of gravity
seem to be appropriate and are taken to be the ideal choice for the corresponding points (note this
choice 15 being made as a matter of definition). The choice of corresponding points may follow
from zdditional constraints on the generalized translational invariance. The centers of gravity
require the knowledge of complete cross-sections for their computation. In section 4.1 we present
another choice of corresponding points that are more directly computed and approximate the

centers of gravity.

B! . e
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The constraints stated above do not necessarily determine a uninque axis, cross-section
description for a given volume. Eg. a rectangular solid could be described by axes parallel to any
of its three sides. However, for an unterminat:d straight, circular cylinder these conditions do
determine a unique description, corresponding to the usual choice of ax1s. Some axis, cross-section
descriptions are preferred to others, as discussed further in sec. 4.5 The problem of locating axis
without access to the complete cross-sections will be discussed In sec. 4.1.

Note that this representation has not specified an algorithm for segmentation of an
ob ject into sub-parts. Each segmented primitive 1s to be a simple ard continuous generalized cone;
the conditions for determining simpiicity and continuity will be further established in sec. 4.3.
Even with specified contiruity conditions, segmentation of an ob ject is not straight forward and

our technique is described in chapter 4.

The choice of generalized cones as primitives is attractive for describing shapes with an
axis along which the cross-section varies smoothly. This is often true of elongated shapes (but not
restricted to them). Elongated shapes are commonly found in both man-made and natural ob jects,
eg. limbs of animals, machine shafts, legs of a table, handle of a hammer etc , and a large class of
ob jects can be :onveniently described as bemng built of generalized cone parts. A program dealing
with a wider class of objects will also need additional primitives, such as planes, spheres, and

surfaces.

The shape of a primitive consists of the shapes of is axis, the shapes of the cross-
sections along this axis. A cross-section can be described by techniques of segmentation into
primitive two dimensional “cones”, 1e. the same representation methods can be scaled down from
three dimensions to two dimensions. The shape descriptions of the axis and the cross-section
function are problems of description in one dimension. Again, segmentatich into primitives,
perhaps linear or "continuous” segments, suggests 1tself. The detail of these shapes in the
representation can vary with the use that they are put to; we have not concentrated on these
details here. We have mainly been interested in the structure of an object and use only crude
descriptors to represent the shape of the individual primitives. These descriptors are discussed in

Sec. 5.1.

Ob jects with holes can be described 1n terms of the solid matter that they are made of,
but descriptions in terms of holes are simpler and carry more semantic information. The holes are
viewed as negative volumes, and can be described as negative generalized cones (or as one of the

other primitives listed in sec. 2.2):

The chosen axis, cross-section representation has similarities with the Blum medial axis
transform ([Blum)). The main differences are as follows. The Blum transform is sensitive to small
changes in the boundary or the curface (a smali disturbance causes ma jor excursions of the axis)
whereas for the generalized con® a s.all disturbance merely perturbs the local cross-sections.
Computation of the Blum transform requires knowledge of complete surface, our method s
content to compute the partial cross-sections. The Blum transform is a “transform”, 1e. 1t yields a
unique representation for given data, whereas multiple cones can describe the same volume
effectively (eg. a rectangular sohd may ke represented vy axes in any of the three orthogonal edge
directions). Non-uniqueness of the representation 1s not viewed as a disadvantage, but rather an
important advantage allowing for alternative descriptions. The Blum transform is well defined,
however, while the description mechanisms described here are sull evolving. A more detailed

comparison may be found in [Agin 72]
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2.2 OTHER PRIMITIVES

Some shapes need a complex cross-section function when dnscribed as generalized cones.
Description in terms of other primitives may be simpler. In the foilowing we suggest additional
primitives. This list is only meant to widen the class of shapes that can be well described.

Spheres: Though spheres can be represented by an axis, cross-section representation,
they do not have a preferred direction of elongation, and description as a sphere is simpler. Parts
of spheres can be described as terminat.c spheres.

Surfaces: We have argued for the desirability of volume representations. However, for
some ob jects, a particular surface has special meaning and description in terms of this surface 1s
preferred. E.g. the top of a table may be described as a thin cylinder or as a flat surface. Surface
descriptions are likely to be useful for ob jects made of thin material, such as folded sheet metal
Surfaces are also useful in describing terminations of cones.

Terminations: A cylinder (cone) terminated by a surface not normal to its axis can be
desc:ibed as a cone with a tapering cross-section function near the termination. However, a much
siznpler description 1s as a cylinder (cone) and a terminating surface.

The programs we present use generalized cone primitives exclusively. Future
incorporation of other primitives Is compatible with the methods used. These primitives suffice
for many shapes, e.g. 1oy animals, hand tools, and some machine parts (shafts). A major class of
objects that is hard to describe by primitives discussed here is that of complicated castings;
perhaps there are no simple representations for such shapes. We have not implemented
important surface descriptions, but think that with the addition of such a primitive, useful
descriptions can be generated for a large number of ob jects encountered in applications such as
industrial automation.

-
W R




L—e |

~0

CHAPTER 5

DATA ACQUISITION AND BOUNDAKY ORGANIZATION

In this chopter w2 describe the technique used to directly measure three dimensional
positions of points on the surface of an object and inference of ob ject boundaries frem this data.
Also discussed is the separation of a scene into different bocies, using the derived boundaries.

Humans are able to view photographs easily and infer depth information from a single
picture using many cues, such as texture gradients, shadows, highitghts etc However, machine
implementations of these depth inference techniques constitute significant research problems by
themselves. Our decision to use direct depth ranging was as an expedient, so that we could
investigate the problems of shape descriptions Note, that we do not have “complete” information
about an object, only the positions of points on the visible surface. Most of the "perception”
problems thus remain. It has turned out that many of the techniques developed can be applied o
TV image data, and even provide clues for attacking this problem.

In sec. 3.1, we briefly describe a laser triangulation ranging method, orig nally developed
by G.J. Agin and T.O.Binford. The geometry of the current setup 1s differcn. from that
described in [Agin 72), however the description of details 1s still applicable. A reader familiar
with Agin’s ranging method may skip sec. 3.1. A similar ranging method has also been described
tn [Shirai] Some other methods of depth ranging are discussed in [Earnest)

3.1 LASER TRIANGULATION RANGING

Ranging by laser triangulation 1s similar, in principle, to ranging using a stereo pair of
pictures, with one camera replaced by a known source of light. Consider an object illuminated by
a single light beam of known position and orientation (Fig. 3.1). The camera Image consists of
Just the one illuminated point. If the camera is cahibrated ([Sotel)), the ray from the Image to the
ob ject point is known. Since the illuminating beam is also known, the position of the ob ject point
can be directly determined by triangulation Posttion infermation for the whole object can be
obtained by scanning the object by a number of known rays However such a scan requires a
large number of beam positions and would be slow.

Consider the illuminating light beam to be replaced with a plane of light, of known
position and orientation. The plane intersects the ob ject along a planar curve, and this curve
forms an image on the camera screen. With each point on this IMmage, we can associate a ray to the
ob ject, as before. Now, the intersection of this ray with the light plane uniquely determines the
position of the ob ject point. Thus we can determine the 3-d position of each point in the image of
the illuminated part of the object. The scanning of the complete object now involves sweeping
known planes across it, which is significantly faster than scanning with a point beam.

The apparatus used for generating scanning light planes is shown schematically in Fig.
3.2. Light from a laser is diverged to a plane beam by a cylindrical lens. The diverged beam s
reflected by a mirror which can be rotated about an axis, to generate different output planes.
These planes all pass through a common line. but near the ob ject they may be considered nearly
parallel, but displaced in position. The camera looking at the ob ject sees only the laser light, either
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Fig. 3.1 Schematic View of Triangulation Ranging =
by proper contrast ad justment or by placing an interference filter in front of the lens. The light -
plane is scanned across the object and the corresponding images on the camera screen are
recorded. The plane positions are known by a calibration procedure and three-dimensional )
positions of the points on the image can be computed. )
Surfaces that are parallel to the !“ht plane, are measured with poor accuracy. To

counter this, we choose another orientation of ne light plane, obtained by rotating the cylindrical
lens in the path of the laser beam, and sweep the object with planes of this new orientation (by
rotating the mirror). The optimum angle between the two orientations 15 90 degrees, however
hardware limitations of our apparatus frequently imit the allowed angle to about 45-60 degrees

LIS T Y

Our data input thu: consists of two series of scans; each series 0" scans consists of nearly
parallel but displaced hght planes, and the two orientations are at an angle of between 45-90
degrees. Figs. 3.3 shows the two series of scans for a doil. Each frame of a scan consists of the set o
of points in the camera image that have non-zero brightness. With each frame is associated a
transform matrix. Given an image point in the frame, this matrix can be used to generate the
threc-dimensional position of the corresponding object point (use of homogeneous coordinates
l ([Roberts 53 2taws the transformation to be a simple matrix multiplication operation, see [Agin

72] for details).
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Fig. 3.3 Laser Scans for a Doll
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The triangulation angle, ie. the angle between the light source and the camera at the
ob ject 1s typically about 45 degrees. For such - setup, the resolution of the ranging system (relative
error) is about 1 mm at a distance of | meter. This system 1s sub ject to occlusion from two angles;
the observed surface of the object must be visible from the camera view-point, and also not be in
a shadow from the laser point of view. Thus for a circular cross-section, we are able to see only
about 120 degrees of the cross-section. We have a trade-off of shadows for accuracy in deciding
on a triangulation angle.

The speed of the data acquisition is intrinsically limited by the time required to read
the TV camera for each plane position. We have not attempted to minimize the data acquisition
time and the scanning of an object typically takes a few minutes. Applicability of “grid coding”
schemes to speed up the ranging process is discussed later, in sec. 7.2.

This method of depth ranging 1s attractive because of the direct measurement of range.
The author was experimenting with stereo measurement of depth at the beginning of this
research ([Nevatia)). The problem of finding corresponding regions in two scenes is a time
consuming and error-prone operation there, and the author was easily converted to using this
ranging method so that work could concentrate on the problems of shape description. (The
description techniques to be described are equally applicable to range data obtained by other
means.) Baumgart ((Baumgart])) describes some techniques for data acquisition using multiple TV
images. Other relevant work on stereo depth measurement may be found in {(Hannah] and
[Levine)

The present implementation with a He-Ne laser, limits the hue of the ob jects whose
range can be measured. Use of a bright white light source or a multi-colored laser source would
alleviate this problem. The main disadvantage of the method is in the shadows caused bv wide
angle triangulation (a much smaller triangulation angle would still be useful). Range of the
apparatus is limited by the power required to pruject a plane, even with relatively efficient
imaging devices, such as silicon target multplying tubes.

3.2 BOUNDARY ORGANIZATION

The data from the laser scans of the scene consist of two series of scans. Each tcan
consists of several frames. Each frame 1s composed of the points of non-zero brightness in a single
TV image (corresponding to one position of the illuminating light plane). These points
correspond to the parts of the ob ject illuminated in that particular frame. The three dimensional
positions of these points are computable by use of the known calibration information.

Each frame contains a number of connected segments, corresponding to continuous
surfaces of the cbjects scanned. A discontnuity in the object surface appears as a discontinuity in
the camera image of the laser scan. The space discontinuitie. also correspond to the ob ject
boundaries (as viewed from the particular angle). Thus the outer boundaries of an ob ject can be
constructed from the extremities of the connected segments in the laser scans. The notion of a
boundary as defining the extremes cf the continuous surface, agrees with the normal concept of a
boundary (as opposed to texture or coicr boundaries for example). However, in some instances of
touching ob jects this process will result in boundaries which include parts of more than one
ob ject.
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Fig. 34 Boundary Constructed from the Scans in Fig.
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The processing of the input data requires locating the connected segments 1n a frame,
and locating their extremities. Ideally, the points in a segment woul~ connect to form & thin curve.
However, due to several factors including the finite width of the illuminating plane and vidicon
blooming, these points form an area, several raster units wide. A "thin" curve approximation to
this area is obtained (all laser scan pictures presented in this thesis display thinned scans). Some
thinning technicues were presented In [Agin 72). Alan Borning has implemented improved
thinning techr:ques and they have been used for pictures here. These thinning techniques are not
of direct interest here and no further details are provided.

T he extremities of such segments are linked (by straight lines) to form a complete outer
boundary for the objects ni the scene The details of the algorithm for constructing such
boundartes and also the likely sources of errors have been relegated to Appendix 1. The reader
may assume the laser scans and a b~undary to be the input for the algorithms described in the
succeeding chapters. An example of the boundary output is shown in Fig. 3.4 (from the laser
scans of Fig. 3.3)

The construction of such a boundary proviues a usetul and convenient way of
structuring the data. Body separation and detection of holes follow immediately from the
boundary data (details of body separation are discussed in sec. 3.3). The boundary 1s believed to
be of importance for human visuai perception ((Attneave)). The description routines presented in
the succeeding chapters rely heavily on the use of such a boundary, and this information alone is
sufficient for many applications including reccgnition of many scenes. The performance
improvements of our description routines over previous work ([Agin 72)) are strongly dependent

on our use of the boundary data (see Chapter 4). (Note that we do not generate descriptions of
the boundary per se, rather descrip:ions of the volume outlined by the boundary.)

3.3 BODY SEPARATION

Separation of multiple objects n a scene from the ob ject boundaries is direct. These
boundaries correspond to depth discontinuities in ob ject space. Each isolated set of boundaries
defines a body that is connecied 1 space. This set contains more than one boundary if the body
has holes. However, parts of a connected body may not always seem connected, because of
shadows or occlusion. We have a partial body separation; a body may be split in more than orie
piece, but all separate bodies have been isolated. However, bodies which touch are not necessarily
segmented. E.g consider the TV 1image in fig. 3.5, the laser scans for this scene are shown 1n fig.
36 and the boundary output in Fig. 3.7 (more examples are presented in chapter 7). The
separation of the left doli leg from the snake is difficult in the TV image, but the separation of
this snake from the upper part of the leg is immediate from the boundary data. Note that the
lower part of the leg is seen as connected to the snake, as the two objects touch and no depth
discontinuity 1s observed. (If the lower leg were not connected to the snake, it would still appear
separated from the rest of the doll.) More sophisticated segmentation techniques will be requited
for separating touching objects. The problem 1 re’ ted to that in inferring body segmentation in
monccular scenes and has not been investigated here.
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Fig. 35 A TV Picture of a Doll and a Snake
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Fig. 36 Laser Scans for the Scene of Fig. 3.5
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Fig. 37 Boundary Derived from the Scans of Fig. 36




CHAPTER ¢
BODY SEGMENTATION AND PRIMITIVE DESCRIPTIONS

Our description scheme 1s based on describin; an object in terms of simpler sub-parts
Generalized cones are used as primary primitives; other primitives such as planes and spheres are
necessary, but have not yet been implemented. Generalized cones can describe arbitrarily compiex
shapes. Simplicity criteria need to be specified to permit their use in segmentation. We segiment
an object into generalized cones with a "smooth” axis and cross-section function, ie. the axis
direction and the cross-cections along the axis change continuously. Continuity is a natural basis
for segmentation, but 1t 1s clear that the resulting segmentation into primitives will depend
strongly on the specification of the continuity conditions. We do not expect a perfect segmentation
for every object, in the sense in which humans would segment it. Context must be used to join
some segmented parts or further segment a part at some higher level. Alternate descriptions are
used when muluple description hypotheses are reasonable. (The recognition programs examine
the multiple hypotheses and select the one that matches best.)

In this chapter we discuss the techniques that generate a number of alternate
segmentations and the basis for choosing among the alternatives. The following chapter covers
further symbolic descriptions for the selected segmentations. The body separation was discussed
in sec. 3.3 in this chapter, we will be concerned with descriptions of one body.

The chosen representations do not provide a diect computational procedure for

generating segmented descriptions from the input data, unlike fransform representations, e.g the
Blum transform or the Fourier Transform. (Local descriptions can e directly computed in our
representation by fitting cones to the local data) Continuity and simplicity conditions are usable
for examining the acceptability of a cone description. However, no a priori knowledge of the axes
directions, axes shapes, the cross-section sizes or the cross-section functions 1s available.

Our segmentation technique proceeds in two parts. First, the areas of the body that can
be described by local cones are determined by the use of the "projection” technique (discussed in
Sec. 4.2). The second part improves on the axes of the local cones determined by projections and
then extends these local cones, by allowing the axes directions to change smoothly (as discussed 1n
Sec. 4.9). Such extensions allow tracing of slowly curving cones. The extensions terminate if the
cones cannot be extended continuously, either having reached the end of the object, a cross-section
discontinuity or an axis discontinuity. Other cone description methods are discussed 1n section
44

A number of local cones are generated and then extended. Lach extended cone
represents a possible segmented sub-part Many local cones are likely to extend to common parts
cf a body. Thus a number of alternate segmentations are suggested. We choose among the
suggested descriptions and retain a small set of alternate descriptions. The result 1s not necessarily
a unique description for an object, but neither do we wish to retain all possible combinations.
Simple preference criteria select preferred descri.tions. Among two descriptions for the same area
we prefer a long cone to a shoit cone and prefer cylinders to cones. Descriptions of areas
contained In areas described by other cones are eliminated. When a clear choice is not available,
alternate descriptions are made The choice of segmentations is discussed in section 4.5 The
selection procedures used are local. Larger context, eg the context of a joint for choice of local
descriptions has not been investigated. This has been satisfactory for scenes of moderate
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complexity, more global choice 1s clearly useful. In section 4.5, we also discuss techniques of
redescription of parts with more context, likely to be useful for improved descriptions.

Our description procedures use only the boundary of the ob ject. The 3-d data has been
utilized 1n constructing the boundary from the depth discontinuities. We aiso use the 3-d position
of the points on the boundary. We compute only those points of a cross-section that lie cn thys
boundary, and no assumptions are made about the shape of the cross-section apriori. The
remainder of the cross-section can be computed on demand. (See sec. 4.1 for locating the axis of a
cone from only partial knowledge of the cross-sections.) The details of the cross-sections have tiot
been useful, because of the limitations on the visible part of the cross-sections and the errors of
ranging (cee sec. 4.3). Also, we feel that the details of the interior are of secondary importance,
useful for making finer distinctions. This 1s 1n agreement with psychological evidence about
human perception; crude boundary information 1s enough for many recognition tasks ([Attneave))
The boundary does depend on the viewing angle, but the results produced are relatively
insensitive to the viewing angle over a wide range. Note that we do not make descriptions ot the
boundaries themselves (viewed as space curves), rather of the volume outhned by the boundaries.
Use of the boundary permits us to use the same techniques of analysis for processing data f1om
TV 1mages only. The boundary must now be obtained from intensity information. However,
boundaries from intensity information are difficult to obtain and unreliable. The problem of
body separation must also be solved by other means. (This problem 1s similar to the probler: ot
separating touching ob jects.)

In previous work ([Agin 72]). Agin has described procedures to generate cor
descriptions. However, major shortcomiigs of these techniques limit their performance on
moderately complex scenes, making them unusable for further extensions. His methods fut
cylinders of circular cross-sections to tne visible surface of the object. These methods had no well
defined notion of a part, and a cylinder would often include two proximate but distinct parts of
an ob ject, such as two fingers of a glove. Such errors cannot be easily corrected at a higher level
by use of context. No attempt was made to connect the separate cones to form an object in Agin's
work. Our description process 1s more structured because of its use of boundary. Our techniques
are conceptually different and their development has required a large investment of effort. They
exhibit substantially improved performance;, some examples are presented in sec. 4.3 OQOur
programs are also substantially faster, as we need to work only with the boundary of an ob ject.
Also, our methods do not assume any particular cross-section shapes, whereas Agin's methods were
restricted to circular shapes

Each cone description is represented by a list of axis points and normal cross-sections
along this axis. Summary descriptions for each cone include the length of its axis, the average
width of the cross-sections and the ratio of the length to the width. The cross-section function s
approximated by a linear function and an average cone-angle is computed. These summary
descriptions are discussed 1n more detail in section 5.1.

4.1 CONE DEFINITIONS

The generalized cone representation has been discusssed earlier (sec. 2.1) The
constraints on an axis, cross-section description were defined to be that: the cross-sections must be
normal to the local axis and that the axis must pass through corresponding points of the cross-
sections. Choice of centers of gravity for corresponding points was considered.
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avity of a cross-section cannot be computed without the
omplete cross-section. We see only the front of the cross-section. If cross-section
d, we could estimate the complete cross-section by fitting these various shapes.
d be to use the center of gravity of the visible cross-section. In

this implementation, we compute only the two end-points of a cross-section (those on the boundary
but with known three-dimensional positions) and use the mid-point of the hine joining these two
ives a closer approximation to the

end-points. This method of determining corresponding points gi
center of gravity for the case of circular cross-sections. Fig. 4.1(a) shows the axis obtained by

joining the centers of gravity of the visible parts of the cross-sections and Fig. 4.1(b) shows the
axes obtained from the mid-points of the ends of the visible part of the cross-sections. The axis
in Fig. 4.1(b) coincides with the desired central axis. However, in our system less than half the

cross-section is visible and the approximation is not perfect.

However, the center of gr

knowledge of the ¢
shapes were hniite
An alternative approximation woul

3

Fig. 41 Two choices for Axis Points

For computirg cone descriptions, we have taken the mid-point of the ends of the visible
part of the cross-sections as our choice of the corresponding points. This is taken to be the
definition for axis, cross-section descriptionis, (i.e. we require the axis to pass through these points).
Note that this choice of corresponding points will cause a cone axis to be located in somewhat
different positions with varying viewing angles, though the variations will be small for elongated
parts. Our recognition programs do not rely on the precise location of such axes and are

insensitive to such variations.

42 LOCAL CONE SAMPLES: METHOD OF PROJECTIONS

As the first step in finding cones describing an ob ject, we find local cones describing
small areas of the object. If two consecutive parallel cross-sections have the property that their
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mid-points join in a line which is normal to these cross-sactions, then this line and the cross-
sections comprise a local cone by our Aefinitions of 2 generalized cone. We find local cones
satisfying these conditions, by constructing cross-sections normal to eight equally spaced directions,
by using "projections” as described below.

Consider a particular projection direction, say X having a specified orientation with

respect to the object. We wish to find local cones with axis pointing along this direction. Rotate
the image (about the origin) so that X, coincides with the unrotated X-axis. Fig. 4.2 shows the

doll of fig. 3.4 so rotated by 45 degrees (X, is pointing horizontally). Now construct cross-sections
normal to the rotated X, spaced 10 raster units apart (the complete picture is 330 units wide), by

forming pairs of points on the opposite sides of the boundary. As example sce (p1,p2) and (p3,p4)
in Fig 42. Note some cross-sections in this figure are not exactly vertical; this 1s because of coarse
sampling of the boundary and lack of interpolation between boundary points. If two consecutive
cross-sections satisfy the condition that the line through their mid-points is within a spectfied
angle (22,5 degrees) of X, we have found a local cone (actually an approvimation to one). One

local cone may contain more than two cross-sections, if other consecutive cross-sections satisfy the
constraints in successive pairs. Fig. 4.3, shows the axes obtained from the cross-sections of Fig. 4.2.
(The axes are shown by double lines and the associated boundaries are shown in heavy lines)
These are the paits of the ob ject that have local cone descriptions with the axis pointing in the
chosen projection direction. Fig. 4.4, shows all local axes obtained from projection in eight
different directions for tnis ob ject (each 225 degrees apart). More program details are described
in Appendix 2.

The parameters used for this method were determir "1 empirically. The accuracy with
which the axis can be determined (within 22.5 degrees of the projection direction in the above
description) is dependent on the spacing between two neighboring cross-sections and the expected
random variations in the boundary. Also, if the aXis needs to be determitied more accurately, we
need to project in more directions. However, the techniques described 1n the next section for
refining the axes directions are more efficient Four projection directiors are usually adequate for
finding all local cones of interest (with the chosen accuracy range), cight directions provide
enough redundancy. The chioice of spacing of *he cross-sections along the projection direction is
by a trade-off between the spatial resolution with which the local cones can be deterinined and the
accuracy of the axis direction.

The resulting segmentation for an object is directly dependent on the local cones
generated by projections. The projection methods are successful in finding local cones for
elongated parts of an ob ject. Local cone generation for non-elongated parts (with length to width
ratio of less than 0.5) is not reliable.

4.3 EX TENSION OF LOCAL CONES

The projections provide us with a number of local cones and their approximate axes
directions. In this section we describe a procedure to improve the axes directions and extend the
cones as far as possible continuously (a concise description of the algorithms and more
impleme tation details are in Appendix 2). Extensions of a cone allow the axis direction to
change smoothly.
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Fig. 42 Cross-sections from Projection in a Chosen Direction
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Fig. 4.3 Local Cones Generated from Fig. 4.2
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Fig. 4.4. Local Cones Generated by Projection in Eight Directions
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Axis Refinement:

The axis refining process 1s iterative. We start from the list of axis points for the local
cones provided by the projections. A straight line is fit to these points to approximate the axis.
We construct the corresponding cross-sections, normal to the axis at the axis points, by finding
intersections with the boundary. Only the end-voints of these cross-sections are computed. The 3.
d posttions of these end-points are used. The distances from the axis of the mid-points of these
new cross-sections are computed. If the mid-points lie on the axis, then the axis and the cross-
sections satisfy the requirements of describing a cone. For real data, thius requirement can only be
expected to be satisfied approximately. We accept an axis, cross-section descriplion, if the average
distance of the mid-points from the axis is less than a threshold. (This threshold is set to the 2-d
distance corresponding to 2 raster units, and 1s related to the expected random variations In
determining the mid-points) If the threshold 1s exceeded, we fit a straight line through the mid-
points of the new cross-sections to define a new axis and iterate. The number of allowed
iterations 1s set at 5 (we accept the resulting axis, cross-sections after 5 iterations). This process
diverges when the axis direction changes to the extent thar new cross-sections can not be
generated by computing intersections with the parts of the boundary that the process began with.

Convergence of this iteraii ‘e process is easy to see for a circular cylinder or cone for a
wide range of starting directions. For a straight circular cylinder, consider starting with any set of
parallel cross-sections, the line joining their mid-points immediately converges to the desired axis
Similar convergence follows for a regular cone, but for more general cones the precise convergeiice
criteria have not been worked out. Empuirically, the described process has been found to converge
for elongated parts. When convergence fails, 1t 1s conc':ded that the part has no good description
as a cone with the axis in the prescribed direcion. Tius part may be later described as a cone
with some other axis. Some areas may have no good descriptions in terms of cones and no cone
descriptions might result for them. Description of such parts requires other primitives and 1s not
considered in this work.

Cone Extensions:

Once an axis, cross-section description of a part is found, we try to extend the cone
continuously over a larger part of the body. We extrapolate the axis at either end by a small
distance (the choice of step size is discussed later). A cross-section normal to the local axis 1s
constructed at this point and its intersections with the boundary are computed. If no intersections
can be found extension terminates. (This indicates an end of the object or a sharp turning of the
boundary).

Tesis are made to determine whether this cross-sestion is acceptable as follows. The
distance of its mid-point from the extrapolated axis 1s computed. If this distance is larger than a
threshold (3-d distance corresponding to 4 picture units) then we make a modified guess at the
extrapolated axis, by including this new mid-point and recompute a normal cross-section. (We
have found it satisfactory to just ac.=pt the new recomputed cross-section and not iterate on this
phase.) Fig. 4.5 shows an extended cross-section on a curving cylinder that Is n.t acceptable, but
provides a new direction for the axis and a new acceptable cross-section. This procedure allows
us to trace the axis for a sinoothly curving ob ject.

The new cross-section 1s then tested for continuity of width with the previous cross-
sections (the continuity evaluation 1s specified later). If the new cross-section 1s acceptable, further
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Fig. 4.5 Extension of a Cone

extension is attempted by iteration of the above described process. If a discontinuity is deiected
than the extension terminates. (Actually, before terminating, extension at half the initial step size
is attempted.)

As example, when the local cones of Fig. 4.4 are extended this way, cones of Fig. 46
result (the axes of the cones are shown in this figure). Note the multiplicity of cones particularly
for the head. For the other parts, various local cones have converged to nearly identical cones and
are ~arely distinguishable in the figure. Each cone offers » potential segmented sub-part (choice
of segmentations is discussed in sec. 4.5).

After termination of a piece, a check 1s made to see if the end of the object was also
reached. We check whether the part of the boundary beyond the last cross-section is largely
contained in a small extension of the cone. Part of the boundary may be beyond the last cross-
section in the 2-d image but not in three-dimensional space. One instance of this is when a cone
is terminated by a p'ane face. Example, see Figs. 4.7 (shows generated cones) and 4.8 (shows laser
scans), the plane face on the haminer head 1s detected as a termination for the cone describing the

head (piece P1).

This extension methcd is ad hoc, and the choice of parameters used determines how far
a cone will be extended. Precise properties of the extended cone are difficult to determine and the
success of the method has only been tested empirically. The following discusses some effects of the
parameter choices.

The step size used in the extension process is important. We choose the step size to be
proportional to the radius of the cylinder at this point ( 0.05 = the current radius, bounded by an
absolute minimum and maximum step size). We expect to find elongated pieces and hence wider
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Fig. 46 Axes of Extended Cones for the Doll of Fig. 4.2
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pieces are also expected to be longer. If extension fails we reduce the step size by a half and try
again. |If this fails too, we stop. Obviously, many sma.'er step sizes could be tried, at the cost of
additional computation. The local axis direction is determined by fitting a straight line to a small
number (5) of nearby axis points. These methods allow us to trace slowly curving parts of a piece,
but may fail when the curvature is large. Higher level routines evaluate such segmentations and
two disconnected parts may be connected based on context.

Evaluation of the acceptability of a new cross-section is designed to detect drastic
discontinuities and context must be used for finer distinctions. A parabola is fit to a small
number of previous cross-section widths and the width of the new cross-section is predicted. The
actual width s allowed to differ from this predicted width by a fixed proportion (0.25).
Boundaries constructed by our programs are frequently shghtly jagged, because of misalignment
of two laser scans and errors In computing segment end-points (see Appendix 1). This forces us to
relax the continuity conditions for a cone, to avoid termination because of these small bounda:y
fluctuations.

No explicit checks are made for the slope of axis to be continuous. If the cone curves
too sharply, we find no boundary intersections for the extended cross-section and the cone
terminates. Thus cones with an elbow, eg. a human arm (see sec. 52 for elbow joints), will be
segmented at the elbow depending on the curvature of the axis there. The next level programs
are able to discover a segmentation at an elbow, and generate an alternative description merging
the two (sec 4.5). The converse process of segmenting a cone at the elbow has not been used in our
system; its implementation is direct.

The thresholds for cross-section continuity and step size were picked intuttively and
ad justed empirically. A more analytical approach to such choices 1s not clear. Perhaps, single
thresholds are not sufficient and alternate descriptions with different theresholds would be
helpful. However, we believe that a general program should be insensitive to the choice of such
thresholds. At least a partial solution 1s in the use of wider context for making segmentation
decisions, such as later merging of two pieces separated at this level.

Choice of such segmentation criteria is a general problem that occurs in many domains
eg. linear approximations to a curve. We can do a better segmentation if we can look at the
whole data globally, rather than just use local continuity criteria. We will then be able to make
some use of context in decding on the segmentation points. In the present case, this may be
accomplished by using very loose constraints in cylinder tracing and then further segmenting the
resultant piece. We may use rhe techniques commonly used for fitting straight line segments
([Duda, chapter 9)), to ¢ axi- and to the cross-section function. Usually, these methods attempt
to keep the maximum error vithin a specified bound. Further segmentation decisions are
meaningful only In the context in which they are to be used and hence must be made by the
routines that use this segmentation data.

Extensions are found for all local cones suggested by initial segmentation. Thus many
parts of the body will be ircluded in more than one description. This allows us to compare
alternatives and choose on the basis of wider context (see section 4.5).
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