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Abstract: 

We suggest that recent advances in the construction of artificial vision 
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discuss what we think to be some of the MlitJ and potentially useful 
theoretical concepts which have resulted frcijjfthe attempts to build 
computer vision systems. Finally we try to intej^te these two sources of 
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I 
1. INTRODUCTION 

In recent years there has been a greatly increased level of conversation 

between students of psychology, and of artificial intelligence(AI). This increase seem- 

to stem, on the one hand, from Al's partial acquiescence to the notion that 

psychological     evidence,    particularly    as    couched    if*    the    models    due    to 

I (Meisser(Neisser,1967), Norman(Norman, 1970) and others, may have a place in its own 

thinking about cognitive processes, and on the other, from a spreading appreciation on 

the part of psychologists of the potential virtues of the computational metaphor.   This 

I latter   movement   has   been    particularly   evident   in   the   literature   on   memory 

structures(e.g.Anderson I Bower,1973), but seems as yet not to have had significant 

impact upon studies of the perceptual process. That the study of the marhanisms of 

1 perception  of  real-woiid scenes (which we sharply distinguish from the  reading 

process) is not widespread in experimental psychology at the present moment seems 

partly to be a matter of fashion and, more importantly, to be due to the apparent 

unavailability of powerful information-processing concepts on a par with those 

concerning the organization of memory. 

In this essay, we wish to suggest that recent advances in the construction of 

artificial vision systems provide sone pointers to such an information-processing 

theory, and that the time is ripe for an effort to integrate computational ideas and 

empirical investigation. In attempting to further this suggestion, we outline what wa 

think to be some of the salient and potentially fruitful concepts which Al has 

generated; we review what we  take to be some pertinent investigations which have 
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appeared in the psychological literature; and we attempt to gather these two threads 

together to begin weaving the fabric of a coherent information-processing approach 

tu the perception of the visual world. 

It would be wise at this point to make clear our concern over the problem 

raised by the different hardware structures available to artif o^ and natural vision 

systems: our arguments will stress commonality of computational processes, rather 

than any features of the implementation of these processes, wither in a digital 

computer or the brain. We think it worthwhile, however, to devote some effort to 

suggesting how processing which may be essentially seria, in an artificial system may 

have its nature altered when it is considered In the context of the (at least partly) 

parallel mechanisms available to the brain. 

i—i'WMmi ------ 
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2  DFKININC, THE PROBLEMS 

In this section we attempt to set Out what we think to be the major problems 

to whose solution   an information-processing theory of perception should aspire. A 

large   number   of  these  problems  stem  from  a  realisation  that   a  large   part   of 

perception is not concerned with r*»ffiid«| objeas which may already have appeared 

in the repertoire of our experience, but rather with the description of scenes. That is 

to say, the problem is that of t.dnsforming a large body of sensory data, for example, 

intensity, colour and texture at a large set of points within the visual field. Into a 

more compact description or representation of the scene being viewed, so that this 

description   may   be   incorporated   into,   and   interact   with,   the   large   corpus   of 

information, both visual and non-visual, which may already be stored in memory. Our 

claim is that this view of the nature of perception, uncontroversial though it may 

seem   at   first   glance,   immediately   reiuces  the  usefulness  of   a  iarga   body   of 

techniques, historically labelled 'pattern classification', and largely based on template 

matching, which were developed for recognition of simple, planar geometric patterns 

such   as   alphanumeric   characters.   Furthermore,   it   suggests   the   necessity   for 

representational formalisms which capture in some smooth way the whole range of 

sensory and symbolic information to which humans have access. 

Several questions must immediately be asked of this data-description process: 

(a) just which perceptual constructs are abstracted from the sensory data; 

(b) what is the computational structure of this process of abstraction which 

gives rise to these constructs; 

m—OI—aillilMi mi mi 
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(c) how long are the retinal and edge data, etc., stored?   Are they kept in 

short-term memory during some verification process, or for calculation of motion 

parallax; 

(c) are the data discardaJ at all, in fact, or do we remember images for long 

periods'' If not, just what form does the representation in long-term memory take 

which allows the reconstruction of the mental images with which we are subjectively 

familiar'' Is the representa ion purely pictorial in nature, or purely symbolic, or does it 

have come of the characteristics of both'' We conjecture that at the basic level of 

representation, there is no sense in making a distinction between the pictorial and 

symbolic When we say 'pictorial' we do not meai to suggest that the representation 

is ioofhorphic to a retinal image; rather, that the representation is a graph-like 

structure whose nodes represent pictorial elements (e.g. edges, vertices, regions, 

volumes, Ac) These nodes mpy have verbal labels associated with them. 

We approach our task initially via a fairly detailed examination of some possible 

stages in the processing of visual information: what kinds of data are needed at the 

various stages''; what kinds of descriptive constructs can each stage generate on its 

own''; what help is needed from higher level processes' Ou» suggestion is that a 

strictly hierarchical structure, such as might be inferred for instance from the original 

ideas of Hubel and WieseKHubel fi Wiesel,!968), is not appropriate for the task in 

hand A visucl system which consists of a discrete set of analytical stages, each 

encoding its own specialized conclusions for communication to an immediate supjrior, 

cannot, we argue: perform the kinds of computations necessary for the understanding 

^"■s i      i   mum^mmamm          .■-■-.■■-. - —  
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of visual input. The alternative structure is heurauhkal, which is to lay that there is 

no strict linear order ,ig of computational steps. In a heterarchical fysiem, information 

flow can be bi-directional - advice and queries from more proximal stages can 

influence the behaviour of more distal stages. We might note in passing that soch an 

organization seems to be implied by several neurophysiological studies which have 

recently come to hand. Horn and HilKHorn & HilUSS^ demonstrated gravitational 

(presumably vestibular) effects on the properties of visual orientation detectors in 

cat striate cortex; Spinelli and his colleagues (Spinelli.Starr Ä Barrett.lSSS), in a 

series of studies, have demonstrated an inftuwcf of auditory and somaesthetic stimuli 

on the -hapes of retinal receptive fields; and other studies have shown changes in 

retinal receptive field sizes with changing activity in the oculo-motor system 

(accomodation). Such effects arc consonant with the idea that context effects can 

alter the behaviour of even the most elementary stages of perceptual analysis. 

We should also take note here '.hat several recent experimental studies have 

suggested that the hierarchical mechanisms proposed by Hubel and Wiesel to account 

for the apparent progressive specialization of properties amongst visual cor'k \ cells 

(from simple to complex to hypercomplex) may not be correct. Hoffman and 

StoneUHotfman S <itone,1971;Hoffmanp1973) in a study of correlations between 

receptive-field properties and conduction velocities of such cel.s found, firstly, that 

at least 40 percent of complex cells are activated monosynaptically by fast afferent 

fibers with delay times of 1-2 msec, while simple and hyper-ccmplex cells are not 

activated mono-synaptically by fast afferents, but some proportion ia aciivated mono- 

'-^^^■»■. mi i    i    wxmtttmtwtä 
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synapt^cally by slow fibers (3-5 msec). Secondly, they have shown that fast and slow 

flber activ.ty is relayed separately in the lateral gen,cülate nucleus. They have 

suggested that simple, complex and hypercomplex cells process visual information in 

parallel rather than in the serial manner proposed earlier. 

We actually want to mak(! the strong claim that visual analysis of scenes such 

as we see in every-day lite il much more difficult than one might at first assume, and 

that tht very richness of the information available to us imposes significant 

constramts upon the nature ») an analytical system which is able to cope with it. 

Consider some of the simplest problems; 

(a) the volume of data: at present the Hand-Eye project at Stanford uses for its 

^Wtl sensor a television camera which generates data consisting of a four-bit (i.e. 

l6 gre>-level) descnpt.on of light intensity at each of auout 330 by 260 po.nts. The 

camera generates these data at about one scan every 60th.   of a second.but it takes 

far longer to analyse it even to the fairly pnmitive level that we have achieved so 

far. The application of an edge-opera^ to each of these 80.000 points takes a 

minimum  of   150  microseconds/point  on our present  machine.  When  one  realizes 

further that th,s volume of analysis may have to be done on each of several stereo 

p.ctures (for depth by correlation), with colour, it is easy to see that processing time 

can get out of hand quite rapidly.   Compare this with the human visual system, which 

has about an order oi magnitude more resolvmg power, and yet manages to do much 

more m a small fract.on of a second. Naturally, »he human system has much more 

matcmm 
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specialized hardware, but we hope that the point will emerge that even so the data 

volume problem is considerable; 

(b) noise: the human eye is nothing like a perfect camera, but has considerable 

optical and electrical defects, anisotropies in resolution and abberation effects; 

(c) the eyes are not fixed: they move botii with the rest of *he body frame and 

independently in their orbits. Why is it then that the visual world appears to be 

stabilised under these movements1 Helmholtz Melmholtz,! 963) pointed out that 

passive movement of the eyeball causes a disconcerting shift in the per^ved field, 

and Bnndley and Merton(Brindley Ä Merton, I 9G0) showed that the apjRnt stability 

is not due to feedback from proprioceptors in the orbital muscles themselves, but 

rather to correction for the movement at a much higher level, involving direct 

interaction of the oculo-motor and visual centers; 

(d) variable view point: three-dimensional objects, un' ke characters on a 

piece of paper, can present many and varied appearances. Because of the fact 

that we are separated from them in three-space, distortions are caused by the 

phenomenon of perspective. If we are are going to design a visual system , we have to 

have some fairly sophisticated way of recognising objects from vcrious 

viewpoints, and even making predictions about the appearances of parts of 

objects that we can't see. That is to say, we must have an efficient way of mapping 

the visual appearance onto descriptions which we already nave stored. We have to 

develop ways of dealing with transformations which are trarslational and 

rotational,   and simultaneously de^ii with scale changes as we approach or recede 

■t^S^MMHHI iir ■,eii-M,dtmmilttHttilttUMmtllmUm\i,MitmMm^^kmt     imiiii iii—ümilililliillii 
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from objects. For an approach based on matching features from templates in any 

simple-minded way, in a three-dimensional world, the obscuration of one object by 

another yields yet another fatal difficulty. Just how difficult and subtle problems of 

three-dimensional visual geometry are is suggested by the fact that it was not 

until the Renaissance thit artists (da \/inci,1956;Alberti,1547) were able to 

formulate rules for the naturalistic representation of space in painting. Painting and 

art in general raise another issue, which is the inverse of the problem of everyday 

scenes - that of the cartoon. Why is it that so much visual information can be 

conveyed by a few strokes of the brush or pen? What are the mechanisms which 

allow us to fill in? Art reveals most clearly the issue of interpretation of pictures 

(see for example the excellent discussion by Gombrich(Gombrich,1960). Remember 

the duck/rabbit cartoon (Wittgenstein,!953), and Boring's Young Woman/Old Hag 

(Boring.l 942) drawing, as well as examples of figure-ground confusions which are all 

aspects of the very difficult question of multi-stable states in vision, which 

crops up both in dapth-perception and in interpreting line drawings as three 

dimensional objects. Why does the Neckar Cube apparently have two stable three- 

dimensional interpretations, as well as the perfectly simple two-dimensional one? 

Whe' are the factors which decide which of the stable states we land in, 

and why is it so difficult to switch from one state to another? 

Actually we hope fiat it will become clear later that the three-dimensionality 

of the world is a help rather than a hindrance to scene analysis. Techniques 

have been developed(Nevatia ä Binford, 1973) for   using   depth   information alone 
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for the segmentation of scenes containing curved objects and these same workers 

have proposed a volume-based representation for such objects. We discuss this in 

more detail in Section 5; 

(e) variability in lighting: light can be of many colours and intensity, and come 

from one or more sources, as well as being reflected off some surfaces onto adjacent 

ones. This again is a source both of annoyance and information. It'* annoying that 

one has to keep changing the characteristics of one's sensory mechanism all the 

time - one has to adapt for varying light levels. On the other hand, if one knows 

something about the lighting situation one can use information from shadows and 

shading to reconstruct some aspects of the shapes of objects. A later section will 

discuss some of the problems which arise in judging the co'ours of object under 

these kinds of difficulties. That too will be an example where there are ^ome quite 

good   information  processsmg  models  which are borne out by psychophy^cal data. 

Now that we have laid out some of the difficulties, we should comment on what 

we take to be the correct and incorrect methods for coping with them. The basic 

thrust of our argument will be that naive, brute-force methods such as those 

developed in the field of pattern classification for recognising printing, hand-writing, 

bubble-chamber phoi graphs and so on just will not do at all for analysing the kinds 

of scenes with which humans are normally confronted. Thore seem to be some very 

striking parallels here with attempts at machine understanding of natural 

language. At the beginning of the sixties, people in that field, and linguists of the MIT 

School, e.g. Chomsky, Fodor, Katz and their colleagues, thought that the   way   (o 

,m*mmamtm*mt^ I>«M.      I  ———aMi^ai  — .. .■■J-..^-~»~——.- 
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describe   natural   language   understanding systems (whether machine or human) was 

to write sophisticated context sensitive generative grammars of one kind or another.lt 

soon   became clear   that this purely syntactic way of going about things did not seem 

to work.    Language    is   not   wholly a system of rewriting rules applied to base 

symbols  to  produce  terminal  strings.    It    is   instead    a    system   for conveying 

information.   And   ir.'ormation is not measured in terms of bytes: its significance (its 

content) is   very   dependent   upon the   circumstances   surrounding   its   utterance 

and reception. It is dependent upon a wider kind of context than the  transformational 

grammarians   had in mind   -   the context is the state of the world pertaining a» the 

time somebody says something; and this   state of  affairs   can  involve   all   kinds   of 

non-linguistic factors. So recently there has been a   much   more   serious e"ort   to 

develop   truly i/m/mfanrfinj language   processors (e.g.Winograd.l 973).   Exactly this 

kind of historical pattern has been apparent in the psychology of   visual perception, 

but over a   longer time   icale.   It may seem paradoxical in view of their well known 

ar.tipathy that, loosely speaking, the late 19th. century behaviourists  were   akin   in 

their spirit lo the generative syntacticists, in stressing the purely atomistic structural 

features   of   their   respective  phenomena  .   The  Gestaltist   reaction  went   to   the 

opposite extreme of stressing the wholistic features of perception to the detriment 

of  the  possibility   of  partitioning the perceptual  process into pieces suitable for 

empirical investigation. 

'. 
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Before going further, we must clarify our notion of 'level of analysis'. We have 

already introduced the notion of a heterarchical system without defining what we 

mean by a 'level' or 'stage' within such a system. There seem to be two useful ways 

of formulating such a definition: 

the first involves a dependence on the type of data which a process accepts as its 

input. According to such a criterion, processes dealing with raw intensity data (retinal 

receptors.bipolars, etc.)are at the very lowest level; those which deal with edges are 

at a higher lev^l, but are themselves subordinate to processes which take more 

global input (from several regions of the visual field, for example); 

the second way depends upon the amount of 'advice' (i.e.intjraction from processes 

at its own or a higher level) that a process needs in order ouccessfully to accomplish 

its task. By this criterion, the lateral inhibition and Retinex processes that we shall 

shortly describe are at a diffferent level from, for instance, a region-association 

process.(In fact, for consietency, we rate the level derived by this criterion as 

inversely proportional to the advice it needs). 

In a heterarchical system, as we have described it, the clean notion of level we 

have just laid out become? clouded; a better measure is perhaps the informational 

connectivity of a process, i.e. a measure on the number of sources from which it 

derives advice and instruct'on. Crudely speaking, the less advi-<5 that a process 

needs, the more likely it is to have an efficient implementation in a parallel, as 

opposed to a serial, system.  Of course, advice may itself be treated cs data. 

MtoMHIIUAtiUBM 



Information Processing Analysis of Vision Page 13 

3. AN ANALYSIS OF LOW-LEVEl MECHANISMS. 

In this section, we will look in detail at the kinds of information processing which 

might occur at some early stages in the visual pathway; in particular, we ask of each 

of these stages what it can achieve on its own, with no guidance from other 

processes occurring at the same or higher levels (using 'levels' in the rather careful 

sense that ^as laid out in the previous section). This analysis will also reflect upon 

the arguments concerning nenalism vc parallelism which we brought up in «hat 

sectkn. We may find that there are some processes which can apparently be carried 

out completely at one level (and presumably implemented efficiently in parallel 

hardware); while, in looking at other processes, we will conclude that thay cannot 

function without information from other stages, and perhaps in the last instance 

without non-visual information about the nature of the world. 

(a) Edgit 

Neurophysiological studies suggest that cells in the mammalian visual cortex 

extract edges from retinal data (e.g. Hubei Ä Wiesel,! 968). However, edges 

between regions of uniform intensity are only one useful perceptual construct. The 

surfaces of hair, leaves, feathers and foam have irregular texture, as do other 

surfaces Gibson has of course argued that textures and gradients of texture are 

important perceptual constructs (Gibson,! 950). Al has only recently begun to deal 

with   textured    scenes;   these   studies   are  discussed   in   Section   3c.    Since   our 

■ . 
_ 
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percepts goals are interpretations in terms of objects and their spatial 

relationc, stereo and motion parallax depth perception -an also provide 

information most closely related to these perceptual goals. These abilities are 

apparently developed at birth (Bower, ). Perhaps other visual learning depends on 

the segmentation structure provided by depth perception. Al studies on depth are 

discussed in Section 3d. 

Natural scenes usually  contain  objects with  well-defined   surface  boundaries. 

The retinal projections of such scenes are patchworks of areas of obscuring objects. 

Some   edges correspond   to   boundaries between objects, some to interior edges of 

objects,   others   to   surface   markings,   others    to    shadows    and reflections. All 

signify features of potential interest, but there is no   direct   connection   between 

intensity   boundaries   and the spatial interpretations which are the perceptual goal. 

Thus, it is possible to find intensity discontinuit.es on a local basis, even though  some 

edges with low contrast will be missed.     It is not possible to find the "meaningful 

dges" on a local basis, i.e. to make a   "perfect   line drawing" (This one reason why 

recent successes in the development of higher level segmentation algorithms have 

not  made the perceptual problem redundant - all have been dependent on being 

provided  with  prefect   line  drawings as input.)    Presenl    techniques    of    finding 

intensity discontinuities require extensive calculation and are not really adequate. 

We   expect   that performance approaching human visual acuity inherently can only be 

achieved at great computational cost (e.g. the re'ina has lOuO times as manv cells as 

our   TV   images   have   resolution   elements),   and   that   substantial   economies   in 

«MM  -    ■ -  -■ 
—,.— _      jt 
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computation are possible only using sampling strategies which ignore much of the 

image. Thus, iampling coarsely allows detection of extended boundaries, from which 

many finer details (but not all) can be determined. For many problems of interest, 

however, those reduced abilities ere adequate. In future, vi«ion analysis programs 

will have to devote much attention to strategies which take account o* extension in 

opa-e or continuity in time, or for which context greatly limits the resolution 

neco'joary 

In this section we prefer to discuss boundary finding (for regions without 

texturtO in »erms of computational components: local edge operators and edge 

organization procedures. In the biological system, the local edge operators are 

Hubei-Wief.el cells, defined over small disks (typically 1 degree of arc in the 

monkey). These cells are strongly directional, having an angular resolution of 5 

degrees. There are approximately 20,000 such cells in the striate cortex. A 

computational equivalent is the Hueckel operator (Hueckol, 1971), defined over a 

small disk This operator is directional in that it cal'ulates moments of the intensity 

function m a few directiono and determines the direction of best fit of a single edge 

on the dir.k. We can estimate the computational cost of sampling a picture 

coarsely with this operator We want to detect edges at all orientations. Since our 

initial concern is with features which are considerably spatially extended we can get 

away with sampling at only a few positions along edpes, but must sample at many 

positions perpendicular to an edge It is enough to apoly the Hueckel operator 

at every other point along widely separated vertical and horizontal lines Let us say 

mam ■M   - 
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we use 8 horizontal and 8 vertical lines. At about 7 msec, per application, this 

amounts to 15 seconds for a 256 by 256 image, or 90 seconds in three colors with 

jterec views. This is about a factor of 20,000 slower than comparable human 

operations, for much coarser resolution (about a 1000 times fewer points). 

What should be the design criteria for a local edge operator' Such an operator 

describes the light intensity surface over a small disk by a step function normal to 

a line through the disk. Its Uu,;tv is measured by its sensitivity and computational 

cost for a specified error rate (e^ sensitivity defined by the contrast 

required for 50'/, positive responces at a;i edge, for a threshold set for 5'/. false 

positives whe-e there is no edge). We can model light intensity at an edge by 

the edge signal with detector noise added. Detector noise may be confounded with 

surface specks and markings. The former may be readily modelled on the basis of 

electrical or electro-physiological analysis but the latter is basically a signal which 

may or may not be significant; the contrast of such specks may be arbitrarily large: to 

attempt to eliminate response to them by simply raising thresholds would lower 

sencitivity They are systematic phenomena on a local scale, but are 

characterisec' by the fact that they are not extended. It must be left to the edge 

organization process to  deal with such specks. 

There is a straight-forward tradeoff between sensitivity on the one hand, 

and computation cost and resolution on the other. This suggests the use of a range 

of sizes of operators, with sizes coverning the spectrum from the dimensions of 

specks to those for extended edges.   Unfortunately, since the Hueckel operator is 

——M——■mi ,__^—^^^-^  
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sensitive primarily to the intensity gradient, ron-uniform iNumination, predominantly 

from reflections, can cause it to return false positive results ove" an entire surface 

The biological system is known to be insensitive to smooth gradients; lateral inhibition 

serves to eliminate these effects An edge operator using this technique has been 

designed by Horn and Bmford (Horn ft Binford, 1973) A valuable elucidation of Its 

posr.ible manifestation is given by Horn and by Marr (Horn, 1974; Marr, 1974) 

To what extent is improvement in sensitivity possible for local edge 

operators'.' The Hueckel operator requires a threshold only 1,5 times optimum (we 

asoume that the difference of means across an edge is nearly optimal) If we assume 

that t.vo multiply-add operations per point is minimal, the Hueckel operator is about a 

factor of 4 slower than optimal. There seems little room for dramatic improvements 

m the computational behaviour of such edge operaiors. Finding edge fragments is 

local in the sense* that the support of the calculation is a small disk. 

One operation of tdgt organuation is also local; that of finding edge fragments 

which are near to each other and have similar slopes. Little is known from physiology 

about mechaniT-ms for the organization of edge information from Hubet-Wiesel cells. 

One conjecture is that their output goes directly to form a Fourier transform. We 

argue later agamot the utility of that conjecture. There are many models from 

machine perception. One of these is the boundary of a connected region; mother is 

the edge-following technique, the edge at each point contains directionality 

information which enables an operator to be applied only in regions which are 

predicted to have edges traversing them 



rt^Wi mmmmm •mmmm—mmmmam 

Infürmation Processing Analysis of Vision Page 18 

Local edge operators are useful for curves which are locally straight over the 

disk nf the operator. For a large disks, the intensity surface will usually be more 

complex thiin a step-function. There are many more possibilities in the case of 

several lines, of curves, or of small textural features. One way of coping is to find 

optimal curves which maximize some local contrast function (e.g. the gradient along 

the curve). That approach is very expensive computationally because of the 

enormous number of possible enumerations of adjacent points, but by neatly 

enumerating combinatorics and by use of continuity, the expected shape of the curve, 

and heuristic search, these techniques have been made feasible in situations such as 

analysis of x-rays, in which the shape of the curve is known in advance. 

Combinatorics can be n.inimized by a two step process of local edge hypothesis 

by thresholding the output of a local edge operator followed by edge organization. 

We assume that such stages follow the Hubel-Wiesel operators in biological systems. 

There are two global techniques which work well for straight lines: clustering of edge 

fragments in the space of line parameters (angle and minimum distance) (Perkins Ä 

Binford, 1 973); and local clustering of edge fragments projected along a variety of 

directions.   For curves, no economicil equivalent has been found. 

Other techniques are loc-ii; the simplest of these is the region groiuing form of 

edge organization. Clearly, the boundary of the set of points which all satisfy a 

region-predicate is an edge. Thus region growing is a particular simple form of edge 

organisation, which lacks a notion of smoothness which would serve to bridge gaps. 

The aim of the edge organization process is to link edge fragments which are nearby 

l_1__^_ 
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and have „m.lar slopes. Th.s may be done m an edge following mode (Tenenbaum K 

Ping.e. 1971), in which the edge operator I« used to track along edges, or in its 

parallel equivalent, when the edge operator ,s applied in a raster scan; edge 

fragments as they are found are linked to one of a number of nearby unterminated 

ed^es. It appears to be d.fficult to extend thi computation of a region uniform in 

intensity to regions uniform in the spaual distribution of features We feel that these 

difficulties are related in pa.t to the mnerent computational complexity associated 

with two-dimensional Geometry. 

(b) i oloui 

G-ven a receptor .nech.imsm sensitive at three conveniently spaced 

wavelengths, such as is availabl i In the retina, one mighi think that it would be a 

relatively easy n.atter to arnvu at judgements of fhe colours of points or 

regions within a ocene. Unfortunately this i| not the case, because the mapping 

from phys.cal stimulus space d e. that containing wavelength and intensity) to 

sensation space is not an isomorphism, Two operations which are somewhat different 

are colour matching on the one hand, and colour naming on the other The former is a 

resolut.on problem, wh.le the latter involves the important phenomenon of colour 

constancy. 

One of the most elegant demonstrations that the relationship between flux 

at various wavelengths of reflected light and the associated colour sensations 

is not  straightforward was given by Edwin Land in his William James Lecturer at 

- 
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Harvard (see Land & McCann,1971). His experimental subject was a pastel drawing of 

a street scene by Jeanne Benton, which includec1 a green awning on one side and a 

red door on the other Light at a ien| wavelei gth (650nm) was shone onto the 

awning, while light of a middle wavelengto (540nm) wa: shone onto the door in such a 

way that the same long wave flux came from the centre of the awning and the 

centre of the door, and similarly for the medium wavelength. In othe. words, the 

total flux incident on the retina from tne two regions was identical in 

inter.sity and wavelength mixture. In long wavelength light alone the door appeared 

very light and the awning almost black, and the reverse was true in middle 

wavelength light alone. However in the mixture of light, the awning appeared green 

and the door appeared red! Land in his Retinex theory {opxit) proposed that the 

colour of objects is determined by their lightness computed at three distinct 

wavelengths. The lightness of a region is an estimate of its reflectance at given 

wavelength after high-pass filtering has been performed to remove slow changes in 

incident flux This is based on the intuition that changes in reflectance are abrupt (at 

object boundanse) while illumination changes are more gradual. Thus areas that 

are lighter in long wavelength and dark in middle wavelength light a/ways look red, 

independently of the actual wavelength distribution in the reflected light. Areas 

that look light at medium wavelengths and aark in long always are perceived as 

being green 

The   Retinex  operation   allows  a  deemphasising  of    shadows    and    gradual 

brightness     changes     across   uniform   coloured   regions,   and   also corrects  for 

      —"- 
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colour casts, since the colour of any one regun is not judged absolutely, but 

relative to the perceived colours of its near neighbours. A program has been 

devHopod by one of us which limuMM this model of colour analysis (Thomas,! 974). 

It looks || the scene through three filters, and uses the lightness data at these 

wavelengths to construct a colour triangle; the extremes of intensity at each 

wavelength define the vertices and the whue point. This program has had some 

success in dealing with lighting situations involving colored shadows and other difficult 

casts, and has been found to pass at least some standard tests for anomalous color 

vision 

Horn (Horn,1974) and Marr 'Marr,1974) have investigated the way in which the 

Retinex operation which we described may be implemented in artificial and natural 

visual -.ystems, and the formulation of the Retinex operation that we have above is 

essentially due to Horn Marr has suggested that one function of the retina is the 

computation of the Retinex lightness function along four channels (rod and 3 coloured 

cones) simultaneously, and has shown how thß structure of the retina may be adapted 

for this purpose. 

The Retinex operation is dearly well-adaoted to being carried out by special 

parallel-processing hardware, being essentially a one-level process, independent of 

any particular knowledge about the scene being looked at. 
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(c) Ttxturt: 

Less effort has been devoted in Al to outdoor scenes than to toy 

scenes, probably because the problems are more difficult in the former. What does 

seem clear is that schemes for handling natural scenes which depend on 

detecting the edges of uniform intensity are inadequate: what are needed are 

mechanisms for the analysis of depth and texture. The analysis of texture i a 

particularly difficult problem. 

First of all there can be a hierarchy of textures within a scene. Secondly, it is 

very difficult to arrive at satisfactory descriptors of textural features. That texture 

and related components are important in human vision is obvious from studies on 

the frequency characteristics of the visual system. Texture is a spatial-domain 

phenomenon, but there have been some proposals to treat it in the Fourier domain. A 

problem with such transformations is that they are essentially bulk descriptors: they 

smtvr out spatial information. We will treat this point further below. An ideal 

description of texture has to be multi-level, so that both small local features and 

larger ones which, say form boundaries, can be captured by it. 

Campbell and others (eg Campbell I Robson, 1963) have demonstrated 

psychophysically that visual thresholds are directly related to the spatial frequency 

components of the stimulus f.eld. They also showed that there are cells in the 

cat stnate cortex wlvch are highly selective for the spatial frequency of gratings 

over a wide range of frequencies. Polkn (Pollen | Lee,1971) demonstrated that the 
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simple cells described by Hubel and Wiesel are sensitive both to the stimulus area 

and to its brightness, the implication being that Ine data from a single simple cell 

cannot therefore provide a unique characterisation of a stimulus. He went on to 

claim that Iho visual cortex operates by a technique of strip integration which can 

be described a' an operation in the Fojiier domain. We take the view that the so- 

called 'Fourier theory of vision' is of limited utility in a visual system. 

The Fourier transform model of vision is a version of the template matching 

paradigm, which holds that the primary task of a visual system is recognition, i.e. 

matching an imape (of an isolated object) with templates from previous images. 

The templates could be portions of images or quantitie> derived from images, such as 

moments or Fourier coefficients. The set of problems motivating this paradigm io 

classi cation of isolated, two-dimensional forms among a small set of possibilities: 

character recognition is typical. We have contended that template matching is 

inadequate for the visual requirements of a human; unfortunately, the Fourier model 

is not very effective even for template matching. A model for template matching is: 

portions of previous images are matched against similar portions of the current 

image. But what part of the original image should be taken as a template' It 

appears that the visual system is a system capable of segmentation rather than a 

template matching mechanism. The templates could be supplied by revelation, 

or inferred from another (non template matching) facility such as motion. In the 

template-matching paradigm, the chief difficulty is the computational effort in matching 

templates  to  scenes involving rotation, dilation   and translation   of  objects.     But 

fmmmjmm^,.^ 
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these are only Ih. simplest problems: we contend that real world visual problems 

iovolv. articulation, obscuration, and  iud|ments  of   similarity   of objects which are 

arbitrarily different according to non-trivial metrics of template matching   The class 

ol cups I. not identified by any unique global shapa or by enumeration, but by being 

open container    Icapaole of holding liuuid) of a cer'.ain volume.   Thus, similarity 

depends on a description ol three-dimensional form, similarity   judgments often also 

depend   on   facilities   segmentation    mi    local    description.    Even    within    the 

template  matching    paradigm,   the   Fourier    transform     model     has     ..rious 

difficulties.    The   Fourier  transform is equivalent to the original image, it is useful 

only ,f there are   great   simplifications in the frequency domain.   The   supposed 

advantage    of    the    Fourier transform is translational  invariance.  However,  the 

transform is translationally invariant   only for periodic functions.   Objects are finite 

anc, images are finite.   In this case, the transforms arc position dependent.   Another 

d,f,icu:ty   is   that if   there  are  several   objects  in a scene, the Fourier transform 

depends on   all   of   them.    The   spatial   template matching at least allows some 

localiJation to the template. 

Experiments show that linear systems analysis is useful for describing 

the response of the visual system to various stimuli. Further, there appear 

to be separate channels with about one octave width. The alternative, that the 

system aots as a single linear filter, seems like a straw man set up only to be 

kno^ed down, in view of the w,de range of tasks faang -he visual system. 

Experiments show that the detection threshold  or square waves can be predicted 

- 
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adequately from the component of the fundamental frequency Further, square 

waves are distinguishable from sine waves only at contrasts such that the third 

harmonic is above threshold. These results do not discriminate against an edge 

detection mechanism, however, since the ratios of sensitivities for square wave to 

sine wave would be very similar, and whatever means is used to 

discnmmdte between the two stimuli must give similar results, i e. must be 

dominated by the third harmonic. Any edge detector ol fixed size must have a 

frequency response with approxrnatoiy one octave width. If for example, the spatial 

weighting is unity across the detector, the response is z^ro for sine waves with 

period   half   the   width   and the response is half for sine waves with period twice 

the width. 

In the light of these misgivings, we must take some pains to separate out those 

features of a Fourier-domain description which are useful and those other 

conjectures which have little support, either theoretical or experimental. An attempt 

to define useful textural descriptors is an simultaneously an attempt to deal with 

problems of pattern grouping and proximity in an n-dimensional feature space 

Experimental studies of proximity have been carried out by Julesz (Julesz,1971), by 

Shepard (Shepard,1964), KruskaKKruskal,1964) and others. Shepard and his 

colleagues have developed some powerful scaling techniques for extracting 

important Mimulus dimensions from data about sensory judgements, and Julesz 

applied them to judgements of similarity of visual textures; his finding was »hat the 

moot   dominant   Matures    were    brightness(contrast)    and    orientation.    Bajcsy's 

MI«^»MH»»-     ____„_„    _.        ...          _ ^     „.—■■M_^»^^^,|M,    -    ■    - .        ■  ■■■. ii ndl 
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(BajcGy,1972) work   attempted to use some techniques in the Fourier domain to 

describe such important features, and derived a way of mapping the information   from 

the   power   spectrum   of   a   scene   into   texlural properties in the spatial domain. 

Obviously the power spectrum   of   a scene   is   invariant under translation (if one 

ignores  windowing effects stemming from the finite character of  images), but  not 

under rotation, so it provides a way of specifying directionality. The phase   spectrum 

on the   other hand can be used to specify position in the scene.   She was able to 

show how such a powerful set of descriptors   for  texture could be constructed and 

used in an algorithm for region growing, The decision problems are quite   difficult, 

since    what    is   essentially involved   in   expanding   regions is a large number  of 

judgments  about   proximity  in  n-space.  The  sheaf  representation  that   she    used 

allows one to formalise the transition from local judgments to more global structures, 

the whole process being imbedded in a hypothesis making/verification   paradigm.   Her 

program was able to extract  significant textural information from outdoor scenes 

involving trees, water, grass and so on, and use   this information to segment  the 

scene in natural ways. She also devoted  some  thought to the significance of texture 

gradients in the estimation of depth, along the lines suggested by Gibson (op.cit) 

(H) Depth 

The measurement of depth is another good candidate for a process which may 

essentially be carried out in parallel with little information other than the raw 

intensity data from two separate viewpoints i small angle apart.   The pioneering 

,—^^_„.„—     . , ..    
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work of Julesz(opcit )has shown clearly that stereoscopic depth information may be 

gained in the absence of monocular features by a bulk correlation between images 

from the two eyes Of course, in normal vision, many other cues interact with this 

straightforward computation (for example, monocular features, movement parallax, 

perceived size and interposition). Global features, and assumptions concerning the 

overall structure of the scene can be expected to help in removing local ambiguities. 

Blakemore, in an extremely interesting study (Blakemore,! 970) has shown that the 

cat's visual cortex has a joint feature/depth representation, in that all orientation- 

specitic columns of binocularly-driven cells are of either a constant-depth type, 

viewing a thin sheet of visual space, a few degrees wide, at a given distance, or of a 

constant-direction type viewing a cylinder of visual space directed towards the inter- 

ocular axis The bmocularly activated cells were optimally stimulated by disparities of 

about 0.3 dog. horizontally and 0 7 deg. vertically, and the receptive field sizes were 

comparable to monocularly activated cells. Adjoining columns of depth-specific cells 

differ by about 0.6 deg. while constant-direction columns differ by about 4 deg So 

there are probably about 500 constant-depth and 300 constant-direction columns 

covering the   entire visual field 

A program has been written at the Stanford Al Laboratory (Pingle Ä 

Thomas)1974) which carries out a feature-driven bulk-correlation able to achieve a 

ref.o.jtion of about 1mm. at one metre. It is envisioned that this program will 

perform a crude S-dimensional segmentation of a visual scene as a preface to further 

analysis. 

■~^—— j-'——-■  -.     
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4. TMli INTERMEDIATE LEVEL. 

In this section we move on to consider the possible behaviour of a vision 

system which has been provided with the kinds of information which we discussed 

above In particular, we will be concerned with separating the segments of objects 

from the background and from each other, and with their association into coherent 

three-dimensional bodies. The stress will be on the wealth of possible partitionings 

which are oossible for any reasonably interesting scene, and with the enormous 

computational problems which arise from a failure to introduce an adequate and 

systematic semantics for pictures, where by 'semantics' here we mean a set of 

interpretative rules consonant with the large body of facts, both intuitive and 

intellectual, which human observers bring to bear upon their percepts. 

The psychological literature on perception of scenes is rather confused, 

and is really concerned only with perception of characters (alone and in context) 

and line drawings of S-dimensional objects; only a very few studies have ever 

been done on perception of real world scenes containing large numbers of objects 

against   a complex background (eg.Biedermanl1972i Biederman,Glass A Stacy)1973) 

Some of the earliest and most significant studies of the perception of 

figures were those on perception of retinally stabilised stimuli, beginning with 

those of Pritchard et.al (Pntchard.Heron ft Hebb, 1969) and of McFarland 

(MacFarland, 1968) When images of line drawings are optically stabilised on the 

retina, so that they do not move relative to tin receptor surface when   the eyes 
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move, the figures are at first perceived normally, but soon the   perceived   image 

begins   to   disintegrate   and   eventually disappears   altogether.   This   is obviously 

because of the fatigue of the receptors. What   is   interesting   is   that   the   figures 

do   not disappear wholistically, but rat'ier the parts Disappear independently - the 

first things to go are vertices,   followed   by   line   segments.   One   might therefore 

imagine that vertices and line segments form the p.imitive structures in perception. 

One might go on to suggest that a good  way   of   studying   the   perception of line 

drawings would be to carry out eye-tracking studies, and this was indeed done by 

Kaufman and   Richards (Kaufman Ä Richards,1969). They  did   show that acute-angled 

vertices are better attractants of visual fixation than obtuse ones.   However   they 

also ohow«d   that in figures subtending less than 10 deg  of visual angle, very little 

scanning II  any is done. Instead the eyes tend to   fixate rigidly upon some point 

within the envelope of the figure To be more exact, fixation was predominantly upon 

that   point    which   would   form the   centre of gravity of the object, INN it three- 

tUwunstoMt. Even at this primitive stage within the visual process, prejudices about 

the interpretation of the line drawing are already affecting the perceptual mechanism. 

Other otudies have examined the notion  that three dimensionality and simplicity 

are  two  organisational  principles  which   are    somehow    inherent    in   the    visual 

process     These   two principles   are   but   facets   of the old Gestalt Pratgnanz law, 

which said that scenes are perceived according to the simplest interpretation which is 

compatible    with    the    sensory    data     Hochberg    and    N/cAlister    (Hochberg    I 

McAlister,1953) conducted some experiments on   the   perception of line drawings 

■■ 
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representing a cube in various onentat.ons (due originally to Kopfermann). The clear 

cut result of   their   study   was that   the   figure possessing   the   best   symmetry as 

a im d,mens,onal pattern was ,v,nr often seen as a tub (drawing (a) in Figure    1.) 

This leads ^o a connection with the rules of symmetry  much discussed by the Gestalt 

Psychologists   Consider the kinds   of orgamsational   groupings that   are going on in 

figure  2  (after  Attnoave.l 968)    The case  of the clusters of triangles  is  a  very 

mterestmg one  -   centered   m isolation,   any   one of these tribes can appear to 

pent in one of three directions. But when considered as clusters . all the triangles m 

a   group   appear to point in the same diction ^even though this dominant direction 

changes from time to t,me).   The   conclusion   from phenomena   such   as   these    is 

that    .he   perceptual   system   cannot s.multaneously employ more than one axis of 

symmetry   Attneave (op cit ) pointed   out   that when the triangles are viewed froni 

an acute angle, they ophcally become isosceles, but   perceptually   they   keep   the,r 

ambiguity  of  direction  He  suggested that   the reason  for  this is  that  competition 

between the various axes of symmetry ,s going on   not   at the   level   of   the   retinal 

projection but  rather within an internal model  of 3-d,:nensional  space.  He  further 

suggested that  this internal model may consist of a Cartesian framework, wherem 

groups of figures such as those above may be described in two ways: 

(a) in terms of local (figural axes) 

(W  m  terms of  the difference between the  figural    axes    and  the 

general   axes of the visual field. 

The Praegnanz principle would then dictate that  the description chosen In a 

■M—*—MM^—M—IMIII    I  ,    
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particular case would be that wlvch is simplest in terms of the orientation axes. 

Attneave has done some other studies suggesting that we do indeed have some 

representation of three dimensionality in our perceptual world models. These 

involved showing that the apparent tndimensional orientation of a cubical 

figure (represented by a line drawing) is determined by tendencies to make the 

object as simple as possible For example, a figure such as that in Fig.3 could 

represent any of a large number of possible parallelopipeds: however if one assumes 

that this figure is a slanted symmetrical ube, then quite uniquely, the perceived 

angles rt,ß and y are all equal and nght-angles. This Somogeneity of angles conveys a 

simplicity to the figure and therefore it should, according to the minimal 

complexity principle, be perceived usually as a cube (Attneave^Frost,! 969) 

Another interesting example of a possible organisational principle operating 

in the perception of polyhedra has been suggested by Perkins (Perkins,! 968) in his 

analysis of the possible configurations that may be assumed at cubical corners Some 

combinations of three lines meeting at a vertex look like corners of cubes, 

Figure   4  about here 

while others do not. Why is thaf Obviously this phenomenon is governed 

to some exter^ by context, but there is also an internal principle operating It 

seems a reasonable empirical conclusion to say that 'three lines meeting at a 

vertex form an acceptable representation of a two-faced cubical corner r and 

only   if   it contains   2 angles less than or equal to 90 deg. whose sum is greater than 

mm ■MM - 
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or equal to 90 deg' We can then   calculate   which   three   line configurations   form 

viable   corners. 

This little study by Perkins is a foretaste of Iha things we will talk about 

next; attempts by designers of art.fical vision systems to derive systematic rules for 

segmenting scenes, particularly those containing configurations of regular polyhedra. 

We hope that corollaries with the psychological evidence that has just been 

presented will become evident. 

The earliest work in this field was done by Roberts (Roberts,1965) who 

concentrated on segmenting and recognising scenes containing only blocks of various 

regular shapes The input was in the form of perfect (1 e. noiselesc) line 

drawings 

Adolfo Gu.man's work (Guzman.l 968) was a considerable advance, since it 

was the first attempt to impart some meaning to the parts of pictures 'meaning in 

terms of the relationships between parts). This approach mitigated the prrblems 

with the template matching approach which was underlying in Roberts' program. 

Guzman's program is two-pass: on the first pass it gathers local evidence about 

vertices ; the second pass attempts to use this evidence to achieve a plausible 

segmentation of the scene Again the input was a noiseless line drawing. The 

local evidence was based on certain heuristics concerning possible 

configurations of plane regions at vertices. 

Figure   5  about here 

— -  
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Each type of possible vertex contributes information about the relations 

between neighbouring regions. The "arrow" link provides evidence for some 

connection between the two regions on either side of the ihaft. The "fork" 

configuration provides evidence for linkage between the three contiguous 

regions The "TEE" junction offen evidence of occlusion. Internally, the 

relationships between faces is repreconted symbolically by associated lists. At the 

lowest level, any two regions with a link between them are considered to be part of 

the same body This can lead to trouble when fortuitous coircidences occur; the 

answer to this liberality of region association is to require that there be two link? 

between the regions before they are considered to belong to each other Some 

inhibitory heuristics were also used: for instance, there had to be compatibility of 

miorptetation between vertices belonging to the two ends oi a given line. Guzman's 

program worked quite well on scenes which contained large numbers of bodies in 

arbitrary configurations, but was bothered by holes and other non-convexities 

Further, and more important, it was very poor at segmenting pictures which .vere 

missing data, e.g. line-segments. Falk (Falk,1970) approached this proolem by 

using Guzman type heuristics for associating figts rather than regions. He was the 

able to use the verification methods we discussed earlier in connection with 

edgefollcwmg to predict the position of lines in the scene: here is a classical 

example of the kind of methodology that we have been advocating - a (fairly) 

high-level program concerned with analysing regions into bodies is able to induce 

the lowest  levels  of the vision process to look again for edges In  sensitive and 

 _^M_n.^Hi 
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crucial   locations.   For   analysing   real   pictures,   this   method   is   quite   superior to 

Guzman's 

Huffman (Huffman,1971) and Clowes have, independently, investigated in a 

systematic way the possible configurations of trihedral vertices seen from a position 

of non-nngular perspective, classifying edges as Cony«, Comraw ana Obscuring. 

Figure   6   about here 

Such a   labelling system immediately imposes quite   stringent   restrictions   on 

the   possible interpretations   of IKi vertices in this cube. They were able to show 

that only six L vertex labellings and three each of   fork   and   arrow labellmgs were 

possible given the above kinds of constraints.   In his paper on   Impossible   Objects 

(op.cit),    Huffman  points   out   that   there  is  a  similarity  between  the   problem  of 

attaching realisable labels to an arbitrary  picture  and  that   of   parsing   a sentence 

in   a   language:    he   is   able   to suggest that the reason impossible objects are so 

difficult to understand is   that   they   are the embodiments of illegal parsings    Waltz 

(Waltz,! 972),in his recent thesis, developed these ideas further: he expanded the set 

of  possible labellings to   take   into   account   shadows   and   other   vagaries   of 

illumination,   and   introduced   a filtering mechanism involving resolution of conflicting 

information  from  neighbouring  edges as well  as a few heuristics concerning  legal 

lighting   situations,  etc.  which  allowed  his program   to   converge    rapidly    onto  a 

plausible  interpretation, rather  than carrying out  a depth-first  search  of    ail  the 

possible   Huffman labellings. 
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5. A GATHERING TOGETHER 

This section w.ll attempt to draw general conclusions from the detailed points 

that have been made above, will lay out some suggestions for description schemes 

for real scenes, and will go on to contend that these arguments have revelance for 

the contemporary controversy in cognitive psychology about the nature of mental 

representation. 

Given the initial point of view that the major perceptual problem is that of 

description rather than recognition, several conceptual oifficulties arise which do not 

seem to have received the attention we think fhey deserve, either in the 

psychological literature or m designs for artificial vision systems. They are. firstly. 

♦ hat of attention , the problem of decdmg at what level of analysis (in the sense of 

Sect.on 2) to .oproach a perceptual task, and. secondly, that of arriving at 

representational formalisms which capture in some smooth way the imaginai and 

symbolic aspects of human description schemata. 

JS ";{e;ai
ifti0n" W( d0 ** ****** *™ verbal descupuom. we mean an 

abstract data sructure m mkUk are represented features relaüons. functions 
'/™« " otler processes and ether infornaUon Besses represent^ twin's 
™* «Oiions between t^s. d.scuptions often contain tn/dmaiUm about ti 
r^ue importance of features to one another. ,f which  realu,ei are (0 

npatim) are "u'Tely ******* (*****> * 

The attention problem is mt.mately bound up with the particular goals of the 

system at any given moment. For example, in drivmg a car, one's attention is normally 

devoted to the road directly in front, but any unexpected motion in the peripheral 

','M'''-——**■'"■*'—*——  —*  -   
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visual field receives immediate notice In Al, this behaviour has been captured by the 

notion of a 'demon', i.e. a high-priority interrupt process which, when activated by a 

specific event (eg. motion) can stop whichever computation is presently in progress 

and cause some other process to be run to deal wiih the interrupt. This would seem 

to be easily implementable in a natural vision system where problems of scheduling 

are   reduced   by   the   inherent   parallelism.   Most   attempts   at   the  development   of 

artificial vision systems have devoted their efforts to extremely detailed analysis of 

the whole visual field, involving the actual recogmt.on of every visible object, UM*»,, 

by matching against some prolo-type which has been learned and stored in memo-y. 

This prototype-matching matching approach, which is in some ways a generalization of 

the template-matching techniques which we scorned earlier, also fails to meet  Mr 

second   criterion   of   adequacy,   in   that   it   is   not   easily   expanoed   to   a   smooth 

representational  formalism: ii  is overly concerned with localized features, at  the 

expense of understanding larger-scale characteristics of a visual scene. 

We will discuss three approaches which begin to escape these apparent 

defect?: the first, described by Binford (Nevatia&Binford,1973), involves a 

generalised volume description of curved objects; the second, due to W;nston 

(Win5ton11970) is the beginning of an attempt to describe the relations between 

objects m a scene; and the third is M nsky's recent suggestion concerning the notion 

of frames (Minsky,! 974) 

A representation useful for the work of Binford et al. with complex objects was 

chosen  to  satisfy design criteria which are relevant  to human percepton.     The 



...mil.lMM.J^I.I  ,.11 |.,,,H.   .     ... M^    ,1     I.,..,     I, „,   ..—,T™^-        .,■.„.-■,..,„,,,..,,»..„, ,,      ... 1 •"•>    ■-'     ...■-..,..-,- 

Information Processing Analysis of Vision Page 37 

representation must be generative, that is, a rich set of shapes should be 

conveniently generated from local primitivM, For that to be effective, the 

representation should have a segmentation into parts, which themselves may 

be formed of other parts. For the part/whole segmentation to be effective, the 

primitive parts must be naturally defined and computationally adequate. In this 

case it was decided to define primitive parts by continuity. This implies that 

the primitives are volume primitives and not surface primitives, since surfaces are 

discontinuous for objects with what we conveniently think of as a single part (e.g. 

a block). 

The representations depend upon segmentation to c scribe complex objects 

in terms of parts. The representations are graph-structured; nodes correspond to 

parts, while arcs correspond to relations between parts. Parts may be compound 

parts, i.e. graphs of the same form. Relations include relative position and 

orientation, degrees of freedom, symmetry and any special knowledge available. 

The topological operations of cutting and pasting are used in joining parts. 

Normally, we think of holes as made by cuts and protuberances as   made   by pasting. 

Primitive parts are arm-like, described as "generalized local cones". These 

parts are described formally in terms of "generalised local translational 

invariance", ippropnate to parts whose cross sections change slowly along some 

space curve. A general cylinder is formed by an arbitrary cross section translated 

along a straight line. A cone has a linear variation of cross section alonf this axis. If 

the scale of the cross section Is varied smoothly along the axis, we have what might 

i^*^M*<i—jMMntiMMiafcMiit   11         
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be called a local cone. If the cross section is allowed to vary by distortion or rotation, 

and the axis is allowed to be a s^ace curve, then we have "generalized local cones". 

These are the volumes swept out by taking an arbitrary cross section and 

translating it along a space curve, meanwhile varying the cross section while 

holding the cross section normal to the path. 

Figure   7  about here 

Cross sections are represented in the same fashion In two dimensions as 

objects nre in three dimensions. Again, part/whoie segmentation is crucial. It is 

required that parts be defined by continuity. Thus the parts must be area parts, not 

curve parts, since curves are discontinuous for plane figures which we normally 

think of as having a single part. The primitives are described by a cross section 

(one-dimensional) varying smoothly along a plane curve. 

Figure  8  about here 

Each element has a local coordinate system. Each joint contains the 

transformation necessary to go from the coordinate system of one element to 

that of the other. This process of segmentation allows non-unique representations, 

and permits Ub a choice of simple representations; we can regard the non- 

unqueness as an advantage in the light of our comments above about the attentional 

problem 

Figure   9  about here 

The basic philosophy of Winston's work is two-fold: 
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(a) that learning is a process of constructing compact descriptions of the 

meaningful relationships between objects in the world; and 

(b) that such description construction is not to be achieved by a statistical 

learning paradigm, but rather by judicious teaching, i.e. the choice by a teacher of 

examples which reveal the crucial features of a relation-description. Very 

importantly, it may involve exposing the learner to what Winston has called 'near- 

misses': situations which differ from the one another in some singularly crucial way. 

Figure   10  about here 

Figure 10 shows the kind of data structure that Winston's program constructs 

to describe the spatial relationships involved in a simple pedestal. One of the most 

crucial relations in this construction is that of support - a feature which is absent 

from the 'near-miss' examples. The role of the teacher in tnis case is to reinforce 

by means of such examples the crucial relationships which obtain in the scene. 

Obviously there can be a hierarchy of relations which can be exhibited by such 

examples, some of which are more crucial than others. 

In this work, and in that of Binford, we think that there are the beginnings of a 

viable and fruitful theory of scene descriptions based on structural descriptions in 

which the topology is manifest. Developmental studies of human perception, 

particularly bj ,'ioqet and his colleagues (PiagetÄlnl-!elder,1967) have of course 

revealed that the ability to construct toplogical descriptions occurs earlier than a 

more   metric   and   geometric   ability.   Minsky(o/>.cir.)   in   an   interesting   paper,   has 

-  ■ UHMMH 
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developed the notion of a 'frame' which is essentially a generalization of Winston's 

scheme particularly adapted to revealing at its top level those features of a situation 

which are believed to be most important: 

'Jwr!^ is based on the use of Frame-Systems. A frame-system is a data- 
structure for representing a stereotype situation ■ like being in a certain kind of 
room Attached to this structure are several kinds of information. Some of this 
information is about what one expects to happen next. Some is about what to do 
if expectations are not confirmed 

Collections of related frames are linked together into Frame-systems The 
effects of important actions are mirrored by transformations between the frames 
of a system' (Minsky,lr>74) 

We do think however that the essentially non-metrical character of Minsky's 

frames is somewhat unsatisfactory. His argument seems based on the belief that 

'people do not seem to have much metrical ability vis-a-vis three dimensional 

imagery' (Minsky, op.cit.); this does not fit well with the studies of Attneave that wo 

discussed above, which seem to demonstrate the contrary. 

This difficulty leads us naturally to discuss the relationship between symbolic 

and pictorial methods of representation, and in particular the nature of mental 

imagery Of late, there has been considerable controversy in the literature 

(represented by Minsky's paper discussed above, and by an elegant discussion due to 

Pylyshyn (Pylyshyn,! 972)). We will not, in this essay, devote detailed discussion to 

this problem: a paper is forthcoming by one of us (AJT) which argues, centra Pylyshyn, 

that mental imagery is a valid phenomenological concept, and that while it may be 

true that the general nature of memory structure is that of a symbolic network, it 

——•*———  ■   -—^—~ 
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does  not   therby  follow that  either the subjective  experience of imagery  or the 

considerable body  of  structural investigation, e.g. by Shepard (Shepard.l 971)  and 

especially   by  Cooper    (Cooper(1973)   on  mental   imagery  tasks  involving  random 

three-dimensional forms, is thereby to be faulted. The argument is basically that the 

symbolic/ pictorial distinction is a functional and computational one, and that some 

form of the dual-code hypothesis advocated, for example, by Posner (Posner,1972) is 

a likely beginning of a satisfactory theory. The major question is whether it is correct 

to think of perception as a combination of a distal stimulus and a mental image 

thereof, and conversely whether the perceptual machinery is active during pictorial 

imagining.    Advocates  of  a  duai-code type of hypothesis,(e.g.  Bower,1972)  have 

argued   in  favour  of   a  commonality  of  generation  of  both  pictorial  and linguistic 

structures. Powerful   and   interesting   evidence for a role of perceptual concepts in 

linguistic  operations comes  from studies of  acquisition of    language    by   children. 

Postal's   Universal    Semantic Primitives Hypothesis (Postal,1966) makes the claim 

that linguistic   primitives   must   ref.ect closely   the   primitive relationships extant in 

the organism's world, while Bierwisch (Bierwischl1969) has made the point that not 

only must a child have   such   a  set of primitives, but he must also learn to recognise 

them for what they are. E.Clark (Clark.l 971) has  suggested   that   at   an  early stage 

a child who is just beginning to use words does not know their full meaning, but 

rather identifies them initially with   only   a   few features of the meaning, which are 

critenal  for its use of the words.   From our point of view here, the crux of her 

hypothesis lies   in   the nature of such features: 
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'...th.t first semantic ftalura that a child uses are liable to be derived from the 
encoding of his percepts,... at a later stage, as the child learns more about 
the structure of his language as a whole, he will team which percept-derived 
features play a particular linguistic role, and which are relatively 
redundant '(Opcit) 

For example studies on over-extension of relational terms (e.g. the use of the 

term 'dog' to name all four-legged animals, independently of size, Ac.) are particularly 

interesting: when two words are closely related, e.g. morelless, samel different, 

befordaftn, the tendency in confusion of use by a child is towards the use of the 

unmarked member of the pair in place of both meanings. In the st jdies by Piaget and 

others on over-extended use of synonyms eg. boy/brother, there is a suggestion 

that the tendency is to use such words synonymously until the relevant 

discriminating features are learned and added to the lexical entry. H.Clark 

{H.Clark,1971) has carried this way of thought as far as to suggest that an 

isomorpnsm exists between the linguistic and perceptual domains. He proposes that 

asymmetries seen in the use of pairs of polar adjectives e.g. big/small, tall/short, 

in front/behind are due to analogous asymmetries which exist in the visual field. It is 

as if there existed reference points within this field, about which directions 

tend to be defined as either positive or negative, depending on their 

perceptual predominance. 
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6. CONCLUDING REMARKS. 

We hope that, throughout the proceeding sections, the reader has been able to 

trace the two skeins of our argument: 

(a) that a vision system, whether natural or artificial, cannot function in the 

absence of a two-way flow of information to and from almost every stage of analysis; 

and 

(b) that the crucial problem in understanding or designing such systems must be 

the formulation of a representational formalism which captures both perceptual and 

non-perceptual information, and allows a smooth transition between them. We have 

sketched what we take to be the beginnings of such a formalism, but we find that we 

have to admit that even these beginnings are at present quite incomplete and 

unsatisfactory. 

Our hope is that this paper will have gone some way towards reducing any 

difficulty due to terminological and conceptual differences which exist between Al and 

psychology, and which have inhibited a potentially fruitful discourse. 
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FIGURE CAPTIONS 

Figure 1 

Possible configurations cf tn-hedral vertices. Only some are convincingly parts of a 
cubical bodylafter Kopfermann) 

Figure 2 

Ambiguous triangle configurations (after Attneave(1968)). The equilateral triangles 
appear in one of three orientations depending on the dominant symmetry axis of the 
whole group. 

Figure 3 

Constraints on the perception of a parallelopiped as a cube (after Attneave & 
Frost(1969» 

Figure 4 

Some furthe> constraints on the perception of cubical corners(after Perkinsd 968)) 

Figure 5 

Linking regions using Guzman's scheme (after Gu2man(1968)) 

Figure 6 

Huffman labelling bcheme for 3-dimensional polyhedra. plus marks a convex aedge 
minus a concave edge and an arrow marks edges where only one face is visible of 
the two which make up the edge.(after Huffman(1971)) 

Figure 7 

Binford Generalized Cylinder representation for a screwdriver (after Agin(1972)) 

Figure 8 

Laser ranging data for a toy doll (from IMevatiad 974)) 

Figure 9 

Segmentation of a toy doll along several axes, derived from the range data of Figure 
9 (from Nevatia(1974)) B 
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Figure 10 

A structural description of a simple pedestaKafter WinstonU970)) 
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Figure I: Kopformann cubes 
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Figure 2: Ambiguous Triangles 
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Figure 3: Permissible angles at a cubical corner 

•■MMMMHI MAMM.—M-.i  ^-^^^»^«^^ ^  



''Wl" Pk  iu i ii IPH^IILII^ mi« n „ wi mmmwrn^^^mmmm^^^*^*^ ■ in 3mi.mm*mmmmmmimmmm "■■'   " ii iinmi 11 uii i 

Fip.ure 4: Possible trihedral vertices 

MMHMHtM     -   ■    - ■  ■ 



—"■—•-"——•——-—'-—'-'—— - IM ifMimwmmvmi^mmmmmmmm ipa.iiiii        ^i«|aiiia 

mS/" 

l 4 
mrt 

pii  jiiNr i inn 
I     JUNI!ION 

Figure 5: Linking regions using Guiman's scheme 
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Figuro 6: Huffman labelling schem« 
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Figure 7: Generalized cylinder representation of a screwdriver 
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Figure 8: Laser ranging data for a toy doll 
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Figure 9: Derived axes of segmentation for a tor doll 




