
AD/A-003 479

NATURAL COMMUNICATION WITH COMPUTERS.
VOLUME III. DISTRIBUTED COMPUTATION
RESEARCH AT BBN

William R. Sut her'land, et al

Bolt Beranek and Newman, Incorporated

Prepared for-:

Advanced Re .search Projects Agency

December 1974

DISTRIBUTED BY:

um
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

I
_

• .

tew* BERANEK ANÜ NEWMAN INC

CONSUITING D t V E I O ► M E N T

O
O

BBN Report 2976

NATÜR7VL COMMUNICATION WITH COMPUTERS

Final Report - ^olune Til

Distributed Computation Research at BBN

October 197^ to December 1974

I E S E A » C H

December 1974

Principal Investigator

Dr, William R. Sutherland
(617) 491-1850

Project Scientist

Dr. Robert H, Thomas
(617) 491-185C D D C

ffj]E®En!li2"
M JAN 17 1975

B

I
I

The views and conclusions contained in this document are
those of the authors and should not be interpreted as
necessarily representing the official policies, either
expressed or implied, of the Advanced Research Projects
Agency or the U. S. Government.

This research was supported
by the Advanced Research
Projects Agency under ARPA
Order Do. 1697; Contract
no. DAHC15-71-C-0n88.

Distribution o^ this document
is unlimited. It may be
released to the Clearinghouse,
Department of Commerce for
sale to the general public.

CAMBBIDGf WASHINGTON. DC CHICAGO HOUSTON IOS ANGCIES SAN fSANClSCO

Unclassified
Security Clf.ssiftcaUon XiUi A

DOCUMENT CONTROL DATA R&D
iSecurity Cassi tic anon ot tltlo, hody ol ebstrad ami indexing annotation must be antcrvd when the overall report Is cl»»alll9d)

1 OHIGINATINC ACTIVITY (Corpormt» »uthor) J2». RtPOWT SECURITY CLASSIFICATION

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge. Mass. 02138

3 REPORT •' l TL E

2b. GROUP
Unclassified

Distributed Compatar.ion Research at BBN

4 DESCRIPTIVE uo J ES (Typ» ol report and Incluaive date»)

Scientific
S Au T ORiS) fffrar nam«, middla Inlllml. /««(name;

Robert H. Thomas

« REPORT DATE

December 1974
71. TOTAL NO. OF PACES

70
76. NO OF REFS

I«. CONTRACT OR GRANT NO

DAHC15 71 C 0088
6. PROJEf T NO

ARPA on 1697

tfa. ORIGINATOR'S REPORT NUtSBERIS;

3BN Report K 2976, Vol. 111.

»b. OTHER REPORT NO(S) (Any othar numbar« tfiaf may 6a maa'anad
Ihla report)

!0 DlSTBIBU TION ST A T EMENT

Distribution of this document Is unlimited. It may be released to
the Clearinghouse, Department of Commerce for sale to the general
oublic.

II SUPPLEMENTARY NOTES

This research was sponsored by the
Advanced Research Projects Agency
under ARPA order No. 1697.

12 SPONSORING MILI TARY ACTIVITY

13 ABSTRACT

This report describes research activities In distributed computation
at EBN from July 1971 to October 1974. The objectives of this research
in distributed computation are threefold: to Identify and understand
fundamental problems of computing in a distributed, multi-computer
environment; to determine the impact of communications networks on
computer systems; and, to develop techniques which enable convenient
and effective, use of the resources distributed throughout a computer
network. Several working distributed software systems, which have been
used both to explore distributed computation issues and to provide
useiLl computational services in a computer network environment, are
described. This report discusses a variety of problems unique to
distributed computation as well as some techniques and approaches for
addressing these problems. Among the problem areas discussed are:
network transparency in distributed systems; distributed system relia-
bility; dynamic resource selection and job relocation; security and
privacy in distributed systems; management of distributed data bases.
The report identifies several research areas for which results would
lead to easier to use, more reliable, and more cost effective distributee
computing systems. In addition, it Includes an annotated bibliographv
of papers written as part of this distributed computation research
project.

)
^r\ fO*m 4 il "TO •«^»-AC«» DO ro DD.~«1473 O..OL.T..o-a

• «•»LA c«» DO worn* 147» I JAM •«, «MICH IB
Unclassified

Security ClaBBlflcatlon

Security Clavsification

K F v WORDS

distributed computation

distributed systems

resource sharing

computer networks

computer operating systems

distributed data bases

8«curiiy Cldtttfication

This report is one of five volumes which compose the

final report of work performed over a four year period by ßolt

Beranek and Newman Inc. under contract DAHC15-71-C-0088# Natural

Communications with Computers. This work was supported by the

Defense Advanced Research Projects Agency under ARPA order number

1697. Because of the wide spectrum of research activites per-

formed, the final report has been structured as follows:

Title Volume

Speech Understanding Research at BBN 1

Speech Compression at BBN II

Distributed Computation Research at BBN III

ARPANET TENEX IV

INTERLISP Development and Automatic

Programming V

i

Distributed Computation Research at BBN

Report No.
Volume III

2976 Bolt Beranek and Newman Inc,

Table of Contents

Introducti 3n

Page
. 1

Research /.pproach

Research Results

3.1 Working Software 9
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1

1 RSEXEC 9
2 TIPSER-RSEXEC 13
3 TIP Access Control and Accounting System 16
4 JSYS Trap Mechanism 18
5 Fork Groups 21
6 CRERPER 23
7 McROSS 24
8 Multi-TELNET 25

3.2 New Conceots, Techniques and Approaches 20
3.2.1 Network Transoarencv 26

31
35
38
42

3.2.2 Distributed System Reliability
3.2.3 Dynamic Resource Selection and Job Relocation
3.2.4 Security and Privacy in Distributed Systems
3.2.5 Management of Distributed Data Bases
3.2.6 Network Protocols 47
3.2.7 Exoloitinq the Server Process Concept 50

3.3 Distributed System Design Issues 52
3.3.1 Naming and Binding 52
3.3.2 Robustness and Reliability 53
?.3.3 Economics and Management 53
3.3.4 Authenticity and Validity of Information 54
3.3.5 User Interface 55

3.4 Areas Requiring Additional Research 56
3.4.1 Distributed Data Bases 56
3.4.2 Persistent Processes 57
3.4.3 Hot Switchover 58
3.4.4 Efficient Job Configuration 60

3.5 Annotated Bibliograohy 62

Recommendation 6*.

Report No,
Volume III

2976 Bolt Heranek and Newman Inc.

1. Introduction

This volu f the final report describes work on

distributed compL.ci.ion from July 1971 to October 1974.

The goals of our research project in distributed

computation are threefold:

. To identify and understand fundamental problems of
computing in a distributed, multi-comouter environment.

. To determine the impact of communications networks on
computer systems.

In this area our objectives are to identify new
requirements network operation olaces on computer
systems; to develop techniaues for integrating existing
computer systems into a computer network to enable
effective resource sharing among the systems; and, to
determine how "next generation" operating systems should
be structured so that they can function effectively and
efficientlv in a multi-machine environment.

. To develop techniaues which enable convenient and
effective use of the resources distributed throuchout a
computer network.

Our objective here is to develop the technology base
(concepts, techniaues and mechanisms) necessary to
support a distributed computing environment within which
the network itself is transparent. Such an environment
would enable users to access network resources without
attention to network details or even an awareness that
they are dealing with a network. In addition, our
objectives here include development of techniaues to
support the creation, execution, and debugging of
computations that reauire the coordinated behavior of
nanv computers. In this respect the goal is to achieve
network transparency while providing convenient access to
multiple computing and storage components.

To a large extent, our work has been directed toward

developing the technologv base necessary to proaress from

situations as exemplified bv the current ARPA Network, in which

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

machines are interconnected but operate independently, to

situations in which computer networks are used as a means for

coupling the operation of the machines, A user's interactions

should be in terms of the services he can access and use, rather

than the particular machines that happen to provide those

services.

When a service is requested, the "network system" should

locate a machine providing the service and connect the user to

it. The collection of machines should work together throughout

the service session to locate and provide access to data bases

and devic as reauirec3, for the successful completion of the

service s^ion. For services that are redundantly supported,

coupled operation provides for both load sharing and fail soft

operation. Such a service is available as long as at least one

of the machines providing it is operating. Furthermore, when

one of the machines fails, the users it was servicing can be

redirected to the others.

In addition to this type of behavior which can be

characterized as "real time", or "on demand" coupling, operation

of the machines can be further coupled "in the background". By

periodically exchanging and updating critical data bases, the

machines can insure that the data is accessible to users even

when one or more of the machines has failed. They can function

together to guarantee the successful completion of tasks

requiring the action of several machines, even if all of the

Report No. 2976 Bolt Beranek and Newman Inc.
s/olume III

required machines are not available when the task is initiated.

Couplinq the ooeration of network machines creates a unique

opportunity for improved resource management by makinq it

possible to centrally monitor, in real time and over the lonq

term, the loadinq and utilization of large scale network

resources. Realization of a comorehensive measurement and

monitoring capability would lead to better understanding of how

comouter resources are really used. inis understanding,

together with the ootential for controlling the operation of the

distributed resources, could result in better management of the

resources and consenuent fiscal savings.

*ve feel that our work has served to demonstrate the

soundr.ess and the feasibility of coupling the operation of

machines to create an easy to use, reliable and cost effective

network computing environment. This assessment is based partly

on the success of Mie systems we have developed and pattly on

the Increasing number of apolications using techmaues developed

:is oart of our research.

We note that achieving the degree of mdchine couplinq

necessarv to support the tyoe of distributed computing

environment sketched above is a large task. Although much has

been achieved to date, in manv wavs we have only scratched the

surface of the potential capabilities which can become

available.

Report No. 2976 Bolt B^anek and Newman Inc.
Volume III

2. Research Approach

The state-of-the-art at the time we began our distributed

computation research and the environment we found ourselves in

at that time were the primary factors that influenced our

approach.

When we began, distributed computation was a new research

area. At that time, there was little experience at BBN or

elsewhere to draw upon. The area had not been explored

sufficiently to identify promising concepts or approaches. As a

result, we felt that "paper" studies and designs were

inappropriate. We felt that we could best contribute to the

state-of-the-art by acquiring "hands on" experience with

distributed computati^ « systems.

Initial development of the TENEX operating system had just

been completed and TENEX had just been connected to the ARPANET

when we began our research. Furthermore, at the time there were

four TENEX hosts on the network with prospects for the

connection of several additional TENEX hosts, ^he existence of

the ARPANET and the growing number of TENEX systems connected to

it (over which, as implementers and maintainers, we had

significant software influence), as well as the existence of

other network hosts, represented a unique laboratory for

listributed computation research.

The approach we chose was primarily experimental. We have

mm
Report No.
Volume III

2976 Bolt Beranek and Newman Inc,

i *

designed, implenrented and studied orototype multi-computer

systems for the ARPANET. Our approach has 'loen to use these

multi-computer systems as vehicles for identifvinq and exoloring

problems of distributed computing and for validating sclutions

to those orobie-Tis.

We believe this "design, implement and evaluate" approach

has proven to be useful in several ways:

. The systems constructed were chosen carefully to
imolement important aspects of the highly coupled
distributed computing environment described in Section 1.
As a result, the systems produced are useful products in
themselves.

. Many problems in distributed computation are, in their
most general case, unsolvable. The approach of
constructing working prototype systems provided a context
which served to focus attention on important special
cases which have practical utility and lend themselves to
solution.

At the early stages in the de
computation as a research a
insight gained from constructin
in developing the ability to s
inherently difficult (managing
cross network authentication)
difficult due to inadequacies i
(providing adequate access con
current communications protocol
user from one machine to anothe

velopment of distributed
rea, the experience and
q real systems was crucial
eparate problems which are
distributed data bases,
from problems which are

n current computer systems
trols for remote users) or
s (transparently Passing a
r).

The existence of orototype systems provided a unique
oooortunitv to assess the value of features and
approaches intended to facilitate use of network
resources. In this regard, there is no substitute for
feedback from real users. Furthermore, this aspect of
the research has benefitted from user recommendations.

It is aoorooriate to note two potential dangers in our

approach:

. Losing si--»', , of the larger distributed computation
research issues by becoming too involved in

Report No. 2976
Volume III

Bolt Beranek and Newman Inc,

imolementation details and the pressures of providing
operational service to users; and

. Allowing the research to be limited by what is practical
within existing network and current operating system
environments.

We believe that we have, for the most part, successfully avoided

these pitfalls.

We feel that exploratory work, such as we have done, has

resulted in the identification of important distributed

computation issueo ard the formulation of a number of promising

techniques and approaches for addressing fundamental distributed

vomputation problems. In our opinion, the state-of-the-art has

advanced sufficiently that the research eiuphasis should shift

from exploratory experimentation to in-depth, quantitative

studies of the concepts and approaches suggested by the

exploratory work.

Report No. 2976 Bolt Beranek and Newman Tnc,
Volume III

3. Research Results

The results of ou work in distributed computation fill in

several areas.

Working software.

Our research activities have been largely within the
context of two distributed systems, RSEXEC and McROSS.
Experience with these systems has motivated the
implementation of additional software designed to provide
more complete integration of TENEX into the ARPANET.
This software includes modifications and extensions to
the TENEX operating system and the implementation of
network oriented TENEX subsystems. Section 3,1 describes
the RSEXEC and McROSS distributed systems as well as
other TENEX software.

Development of concepts, techniaues and approaches for
distributed computation.

Our work has lead to the formulation of concepts,
techniaues and approaches for distributed computation and
distributed systems. The software described in Section
3.1 was implemented within the context of TENEX,
However, we believe that the concepts represented by
those implementations are not limited to TENEX but rather
ace generally applicable to the problems posed by
computation in a distributed, multi-computer environment.
Section 3.2 describes these concepts and techniques as
well as the problems they address.

Classification of distributed system design issues.

As a result of our work, we have been able to classify
the various issues facing designers of distributed
systems into five broad problem areas. Section 3.3
discusses these distributed system design issues.

Identification of areas reouiring further research.

Our work has served to identify a number of problem areas
where solutions could lead to easier to use, more
reliaole, and more cost effective distributed computing
systems. Section 3.4 describes these problem areas.

Documentation,

We have shared the results of our work with the technical
community by participating in meetings and writing

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

papers. Se-lion 3.5 is an annotated bibliography of our
technical papers, notes, and presentations.

I

<eport No. 2976 Bolt Beranek and Newman Inc.
Volume III

3.1 Working Software

This section describes software for distributed computation

which we have designed and implemented. The discussion focuses

on the capabilities supported by the software rather than on

specii'ic implementation or usage details. More detailed

description of these systems may be found in the references and

in th-- Quarterly Progress Reports for the project (see Section

3.5).

3.1.1 RSE^tC

We have developed and are continuing to enlarge the

capabilities of the Resource Sharing Executive (RSEXEC) system

[1,31.* HSEXLC is an experimental, distributed, executive-like

system which ac^s to couple the operation of ARPA network TENEX

(and some non-TEN^X) hosts. Its design goal is to provide an

environment which allows users to access network resources

without concerning themselves with network details such as

communication protocols or even being aware that they are

dealing with a network. RSEXEC has been successful both as an

operational service facility and as a vehicle for exploring the

technical problems of realising an effective environment for

resource sharing.

* Papers we have written are referenced using square brackets
and are listed in Section 3.5. Other references appear as
footnotes.

9

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

A major component of RSEXEC is a distributed file system

which spons host computer boundaries. Through the disttibuted

file system a user can maintain files within the network in a

convenient, host independent manner. For example, to reference

one oC his files, a user need not remember where within the

network the file is stored; rather, it is sufficient to specify

the file by name. In addition, RSEXRC supports the concept of

"device binding**. A user can declare a "binding** between a

device and a host such that, until otherwise specified, his

references to that device are to be directed to the specified

host. For example, by binding the line printer device to a

device port at his TIP, a TIP user can insure that his line

printer output appears locally at the TIP rather than at the

site providing RSEXEC service.

Whil^ RSEXEC attempts to make the network transparent, it

helps users take advantage of the distributed nature of the file

system. One way it does this is by allowing a user to increase

the "accessibility" of files he considers important by making i:.

easy to maintain multiple copies or "images" of them at

different sites. RSEXEC provides a means to create multi-image

files and it recognizes existing files which are multi-image.

At present, the multi-image file facility depends upon direct

user intervention for many file management operations. For

example, when a user attempts to delete a multi-image file,

RSEXEC informs him that the file is multi-image and asks whether

all or only selected images are to be deleted» We feel that

10

i • •

i i

Report No, 2976 Bolt Beranek and Newman Inc.
Volume III

more sophisticated support for multi-image files is possible and

that techniques to accomplish it can be developed.

RSEXEC will soon be extended to support the distributed

file system at the executing program level in addition to the

currently supported user command level. This extension will

enable existing application programs, such as text editors and

compilers, to operate in a context that includes the file

systems of the entire collection of network (RSEXEC) machines,

without requiring that the programs themselves be rewritten.

Another aspect of RSEXEC is its support of inter-site user

interaction functions. These functions allow users of the

individual RSEXEC sites to interact with one another as if they

were members of a single network user community. RSfcXEC

includes commands which allow a user to determine which users

are logqed in at the various RSEXEC sites, the sites a specified

user has access to, and where (if at all) a specified user has

active iobs. In addition, it allows a user to link his terminal

to that of another user on another network machine in order to

engage in an on line dialogue. All of these functions are

accomplished in a way in which the network itself is

transparent.

The RSEXEC system is supported by a distributed collection

of server processes which function together to provide service

which transcends machine boundaries. The server processes

regularly communicate with one another to exchange status

11

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

information; they can establish, break, and transfer

communication links; and, they are driven by a machine

independent, process oriented command protocol.

Coupling the TENEX hosts by RSEXEC server processes has had

the side effect of making it possible to monitor system load on

all ARPA network TENEXs remotely from one or more TENEX hosts.

Each RSEXEC server process maintains status information obtained

from the others in a dynamic data base for use by local RSEXEC

users. (The data was originally — and still is — intended to

be used for dispatching user jobs to lightly loaded hosts to

accomplish load sharing and load levelling). At the reauest of

the ARPA office, we have written a program called LDINF which

periodically records the load information from this dynamic data

base. This data provides an accurate picture of how heavily

loaded different TENEX sites are and how their load varies with

time. LDINF has been running on BBN-TENEXA since March 1973

producing daily load information files. We have written another

program called MONTH which produces weekly or monthly summaries

of TENEX load data from the daily LDINF files (20). This data

is available to those interested in studying network host usage

patterns.

Although the RSEXEC system currently runs on a collection

of relatively homogeneous processors, it is designed to permit

operation on heterogeneous machines. In fact, prototype

implementations have been developed at MIT (MULTICS) and NASA

12

ii

i
§ m

Report No. 2976
Volume III

Bolt Bctanek and Newman Inc

AMES (IBM 360/67).

RSEXEC is one of the first working examples of a general

purpose, multi-resource system. As such it exhibits significant

properties of such systems. Among these are the ability to

support uniform access to both local and remote resources,

persistence in the presence of component failure to guarantee

task completion, and the ability to manage redundant resources

to achieve increased reliabiiity.

Since its inception 13 months ago, the RSEXEC service has

been in continuous operation and available to users essentially

without interruption. Although it is not totally transparent

for all of its currently supported uses, we believe it to be the

most advanced system implenentatiDn that addresses the problems

of a general purpose operating system for a computer network.

3.1.2 TIPSER-RSEXEC

One of the most important innovations in ARPA network

services from both a practical and a theoretical standpoint is

use of the RSEXEC bv TIPs [1,3), A service program called

TIPSER, which currently runs on three ARPA network hosts, allows

TIPs to make direct, transparent use of RSEXEC as a "logical

front end". Development of the TIPSER-RSEXEC system has been

guided by the general philosophy that the TIP should be a

transparent front end component supporting only terminal device

specific functions and that access control, accounting, command

13

Report No. 297Ö Bolt Beranek and Newman Inc.
Volume III

language interpretation, and other "operating system-like"

functions should be handled by other more capable (larger)

network machines.*

At the start of a user's session, the TIP (for TIP software

versions 324 and later) automatically connects to the most

responsive RSEXEC available. After he correctly supplies his

rame and password, the user is granted access to the network and

the RSEXEC as a network command language interpreter,

preparatory to logging in to a particular host. (TIP login and

accounting is described further in Section 3.1.3.) TIP users of

RSEXEC have access to the inter-site user interaction features

and to a number of information services. These information

services include:

. NETMEWS and SCHEDULES services which allow the network
operations staff to communicate the latest network news
and service host schedules to users.

. A GRIPE service which allows users to communicate with
the ooerations staff.

. A HCSTAT service which reports the hosts in the network
that are up and available.

. A TRMIMF service orovidinq information about a user's
terminal including the TIP he is using and the TIP port
to which his terminal is attached.

As mentioned above, the TIPSER-RSEXEC is a redundantly

imolemented network service. The redundant imolementation

* N.W. Nlimno et al, "Terminal Access to the ARPA
Network—Experience and Improvements," Proceedings of the
Seventh Annual IEEE Computer Society International
Conference, February 1973.

14

i *

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

distributes the load among the multiple machines providing the

service and increases the accessibility of the service by

guaranteeing that it is available whenever at least one

TIPSER-RSEXEC sit'3 is up.

We developed two mechanisms necessary to support the

redundant implementation. The first is a "broadcast" initial

connection orotocol (ICP) developed jointly with the BBN TIP

group. This protocol enables a TIP to connect to an available

and responsive RSEXEC rather than to a ßarticular 2!le at a

specific site. The TIP uses this mechanism to broadcast

reauests for service to the known TIPSER-RSEXEC sites and then

selects the first site to respond as the one to provide the

service.

The second mechanism is used by the TIPSER-RSEXEC system to

maintain multiole images of the various information files (e.g.,

news and schedules). This mechanism allows additions to the

distributed information files to be made from any TIPSER-RSEXEC

site and guarantees that the additions are incorporated into the

file images in a consistent manner.

The importance of the TIP-RSEXEC system transcends the

particular functions it currently supports. It has demonstrated

the feasibility of having small hosts share resources of larger

hosts to provide users with features that exceed the small

hosts' own limited capacities. The users obtain these services

automatically in a network transparent manner.

15

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

3,1.3 TIP Access Control and Accounting System

One of the problem areas within the ARPANET is that of

controlling access both to the network and within the various

hosts. On^ problem in this area is that the TIPs themselves,

because of their size, cannot provide controlled access to the

network. In order to solve this problem and the related one of

accounting for TIP usage, together with the TIP group at BBN, we

have developed an access control and accounting system for TIPs,

This system consists of three distinct, but related,

components: network login servers; data collection servers; and,

data reduction software. The system itself is implemented

within the context of the TIP5ER-RSEXEC and the RSEXEC

distributed file system.

When a user activates a TIP port, the TIP uses the

broadcast ICP mechanism to connect to an RSEXEC which acts as a

network login server. If the user successfully supplies a valid

name and password, he is granted continued access to the TIP and

the network as well as to the standard TIPSER-RSEXEC functions.

In addition, the RSEXEC sends the user's ID code to the TIP (for

accounting and subsequent authentication purposes) and makes a

"login" entry into an "incremental" TIP accounting data file.

Should the user fail to supply a valid name and password within

the allowed time, he is denied further access to the TIP.

After the TIP receives the user ID code it starts "connect

16

Report No. 2976 öolt Beranek and Newman Inc.
Volume III

time" and (outgoing) message counters to accumulate usage data

for the user's session. These counters are "active" until the

user terminates his TIP session. Periodically, the TIP executes

an "accounting checkpoint" procedure whereby it transmits

accounting data, accumulated since the last checkpoint for its

active us^rs, to a data collection server process. The data

collection server stores the checkpoint data in an incremental

TIP accounting file for later processing.

Like the TIPSER-RSEXEC login servers, the data collection

servers are redundantly implemented to insure high availability

and to achieve load sharing. The TIP uses a reauest mechanism

similar to the broadcast ICP to select one of the servers to

acceot its checkpoint data [10). The protocol used for this

ourpose is quite general and can be used for tho collection of

data other than that for TIP accounting. Furthermore, the

protocol is designed to allow considerable flexibility in the

choice of a server. For examole, a TIP can switch from one data

collection server to another after initially choosing one in the

event that the chosen server can not complete the transaction

(due to network or host failure),

The collection of incremental accounting files created by

the data collection servers is a large, distributed and

segmented data base. The reduction of data in that distributed

data ba.^c to produce periodic accounting summaries is

accomplished by software which executes within the environment

17

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

provided by the RSEXEC distributed file system. This software

performs a complex series of data management and network access

operations in response to simple commands. When the "TIP

accountant" issues the proper commands, the software

automatically connects to the data collection sites and

selectively retrieves and processes remote (and previously

unprocessed) accounting data. This software was designed to be

consistent with the RSEXEC philosophy: to allow a user to deal

with resources (in this case accounting data) distributed

throughout the network while relieving him of the complexities

of dealing with the network

3,1.4 JSYS Trap Mechanism

The JSYS trap mecharrsm is an extension to the TENEX

operating system which provides a means whereby operating system

calls made by one process can be intercepted by another process

(41.

The intercepting process does this by specifying that it

wishes to gain control when selected system calls (JSYSs) are

executed by other (inferior) processes. When a process

monitored in this way attempts to execute such a JSYS, it is

suspended and the monitoring process is notified. After gaining

control, the monitoring process may take whatever action it sees

fit. For example, it may choose to perform the JSYS on behalf

of the process, or it may choose to check and perhaps modify the

18

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

JSYS call parameters and then allow the process to perform the

JSVS itself, etc. If the monitoring process chooses to handle

the trap by allowing the trapped process to resume execution of

the JSYS, tha trap will pass up the process hierarchy to the

next process (if any) monitoring execution of that JSYS. If

(when) there are no further processes in the hierarchy

monitoring that JSYS, the trapped process is dispatched to the

standard system code for that JSYS. Should the monitoring

process choose to handle the JSYS trap by executing the JSYS on

behalf of the trapped processes, the monitoring process itself

is subject to traps which its superior processes may have set.

The RSEXEC system will use the JSYS trap mechanism to

provide user processes with an execution environment that spans

machine boundaries. For example, RSEXEC will trap file

operations made by application programs executing "under" it

(e.g., text editors, compilers, etc.). Operations that can be

handled locally will be passed directly to the local operating

system by RSFXEC. Whenever a file operation is initiated that

requires access to a remote file, RSEXEC will send a request

across the network to a coooerating server process at the proper

host to cause it to execute the operation on behalf of the

application program. Because the trapping activity is

transparent, the application program has uniform access to all

files, both local and remote, without regard for their network

location.

19

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

While the JSYS trap mechanism was strongly motivated by the

RSEXEC application# it represents an important and powerful

addition to TENEX which is generally useful in applications

requiring a controlled process executing environment, and in

implementing and testing new virtual machine concepts.

The trap mechanism has already proven to be a powerful

debugging aid. For example, after being reassembled, one of the

TENEX network server programs, which was belxeved to have been

viebugged, began to malfunction. It would close a critical data

file for no apparent reason on the order of once a day. After

unsuccessfully studying program listings and using conventional

debugging techniques for several days, the programmer built a

simple process to trap and examine all operations that could

possibly result in closing the file. He then ran the

malfunctioning service process "under" the trapping process and

was able to intercept the operation that caused the malfunction

the first time it occurred (approximately ten hours after the

program was placed in execution), Addition of this debugging

technique to the repertoire of IDDT, the invisible debugger,

would enable a user to cause a program being debugged to "break"

on certain system calls. For example, this technique would

enable the user to gain control on all file output operations

without requiring that he remember and specify the program

location of each.

A somewhat different use of the trap mechanism would enable

20

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

a user to use programs written by others with the assurance that

doing so would not compromise the security of his data. For

example, he could encapsulate such programs in a controlled

environment which selectively inhibits output operations by

trapping them and allowing only those directed to "legitimate"

destinations to continue.

Finally, we note that the National Software Works project

requires the encapsulation of software "tools" running on "tool

bearing hosts" in order to ensure that the tools adhere to the

NSW discipline. The JSYS trap mechanism simplifies the NSW

encapsulation for TENEX hosts.

3.1.5 Fork Groups

A wide range of network services are provided on TENEX

systems by "demon" server processes which act on behalf of

remote users. (The FTP, RSEXEC and TIPSER servers are

examples.) These servers typically create a new process (fork)

for each instance of service.

This approach has been satisfactory for providing the

standard services. However, until recently, two aspects of

TENEX presented it from being used to grant remote access to a

wider range of services:

, Access Control.

To avoid compromising data (e.g., files) maintained by
the system for local users, a service process must insure
that users who access the system "indirectly" through it
be subjected to the same access controls as if they had

21

Report No, 2976 Bolt Beranek and Newman Inc.
Volume III

accessed the system directly. In most cases a service
process requires the remote user to identify himself (by
name and password) before providing service. In doinq
so, ic gains sufficient information to adjust (enlarge,
reduce, or merely modify) its own access "capabilities'1

to match those of the particular user it is serving*
unfortunately, TENEX provided no mechanism for doing
that. The access control mechanisms in TENEX were on a
"per job" rather than a "per process" basis. As a
result, different processes within the same job supplying
service to different remote users were subject to
identical access controls rather than separate controls
specific to each of the different users. Furthermore,
the access controls in effect were based on the job's
login name (typically SYSTEM) rather than on the identity
of the remote user. This required that each service
process itself implement the standard TENEX access
control procedures. This, in turn, required that service
processes run with special privileges to enable them to
access system "private" data in order to correctly
implement access control for remote users.

Terminal Interrupts.

In TENEX, terminal interrupts (e.g., EXEC "C) could
originate only from the job "controlling" terminal.
Since network service jobs ran "detached", there was no
such terminal, and even if there were, a single terminal
would have been insufficient for multiple instances of
service. Thus, each process that wished to provide the
terminal interrupt capability to remote users was forced
to simulate it.

To provide a more satisfactory execution environment for

service processes, the access control and terminal interrupt

features of TENEX were generalized by implementing the notion of

fork groups. A process and its inferiors can be designated a

"fork group" for purposes of access control and terminal

interrupts. All access control checks for processes in a group

are based on an access control context for the group rather thsn

one for the job as a whole. A "proxy" login capability was

implemented to enable the access control context for a service

22

Report No. 2976 Bolt Ber^nek and Newman Inc.
Volume III

process to be based on the identity of the remote user rather

than on that of user SYSTEM. In addition, the terminal

interrupt concept was modified to allow more that one source of

terminal interrupts per job. . An "assigned" terminal can be

designated as the source of terminal interrupts for (only) a

particular group of processes in a job. This change represents

a slight generalization of the controlling terminal concept:

each process in a job still has at most one source of terminal

interrupts, but different processes may now have different

sources.

3.1.6 CREEPER

CREEPER is a demonstration program which can migrate from

computer to computer within the ARPA network while performing

its simple task. It demonstrated the possibility of dynamically

relocating a running orogram and its execution environment

(e.g., open files, etc.) j.rom one machine to another without

interfering with the task being performed,

CREEPER led to the notion that a process can have an

existence independent of a particular machine. This is an

important concept for applications requiring load sharing and

fail soft behavior. The experience with CREEPER emphasized the

need for process oriented "login" or system access protocols and

for new methods of process authentication.

23

Report No. 2976 Bolt Beranek and Newman Inc
Volume III

3.1.7 McROSS

McROSS [6] is the first distributed system we built. It is

a multi-computer system for simulation and analysis of air

traffic situations. McROSS demonstrated the feasibility of

having a collection of host machines work together on a single

application problem (the simulation, control and display of air

traffic i complex airspaces). We believe that McROSS

represents the first attempt to build a coherent programming

system that includes consistent application oriented primitives

to support the construction and execution of multi-computer

programs.

The McROSS system provides two basic capabilities. One is

the ability to orogram air traffic simulations composed of a

number of parts which run distributed among many computers.

These distributed parts can be thought of as forming the nodes

of a "simulation network". The second is the ability of such a

simulation network to oermit programs running at other ARPANET

sites to "attach" to particular nodes in it for the purpose of

remotely monitoring and/or controlling the node's operation.

Computational responsibility for performing McROSS simulations

is truly distributed. For example, az an aircraft flies from

one airspace (simulation node) to another, the responsibility

for si-nulating its dynamics shifts from one computer to another.

The techniques for dynamic reconfiguration, developed in

CREEPER, were applied to McROSS to enable an ongoing simulation

24

I, Report No. 2976
Volume III

Bolt Beranek and Newman Inc

to redistribute its operating parts among the network hosts

without interfering with the simulation itself. Experience with

McROSS served to emphasize the interrelation of naming and

binding issues with those of reliability. Reliability

considerations require that the components of a given simulation

remain unbound to specific machines until placed in execution.

Consequently, cooperating components had to be able to locate

each other (by name) at execution time in order to communicate.

3.1.8 Multi-TELNET

MLTNET is a program which allows a user to conveniently

control a number of jobs on different comouters from a single

terminal (12). This capability has oroven so useful that many

existing and almost all planned ARPA network user TELNET

programs (e.g., those for the ANTS and ELF terminal support

systems) include or will include it.

MLTNET was motivated by the McROSS experience. It

represents at a orimitive level the capability for single user

control of multiple computer resources. Refinements to that

capability, such as the ability to start, stop and debug

multi-cornputer progtams, are requisite for an effective user

interface.

25

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

3.2 Concepts, Techniques, and Approaches

3.2.1 Network Transparency

An important (and straightforward) technique for achieving

a degree of network transparency is to provide procedures which

automate the most common interactions with the network. At the

user interface level, a command interpreter can be used to

transform requests into the network and remote host access

commands necessary to satisfy the requests. The RSEXEC file

maintenance features and the data processing components of the

TIP accounting system make use of this technique. As a result,

users of these systems can concentrate on the task at hand

rather than on the (to them) irrelevant complexities of dealing

with the network.

This technioue is equally applicable at the executing

program level. The issue at this level is how to accomplish the

linkage between executing programs and the procedures that

automate network transactions. One straightforward approach is

to augment the standard collection of system calls with ones

that perform the network functions. Programs may then use the

new system calls to invoke the network procedures directly,

while this approach serves to facilitate network interactions,

it does not, bv itself, result in a high degree of network

transparency. If a high degree of transparency is required and

it there is the additional goal of preserving (and enlarging)

26

weport NO, ijy/tj Bolt Beranek and Newman Inc,
Volume III

the value of existing software, it is important that the linkage

with the network procedures not require extensive modification

to existing programs.

We believe the trapping concept, as exemplified by JSYS

traps, represents an approach for transparently accomplishing

this linkage which is applicable to non-TENEX as well as TENEX

machines. Implementation of it for machines of, for example,

IBM or Burroughs manufacture could have tremendous payoff in

terms of integrating such existing systems into a network in a

way that supports transparent network usage. In return for the

relatively modest cost of implementing the trapping concept

along with the complementary procedures which deal with the

network and remote hosts to provide, for example, a distributed

file system, the vast inventory of application orograms written

for these machines in languages sucn as FORTRAN and COBOL could

immediately become executable in a multi-machine environment.

With no modification, these programs would be able to access and

operate on non-local as well as local data. We believe that

achieving network transparency for existing application programs

by incorporating the trapping concept into other systems (or

making use of similar capabilities which they may already have)

is a promising approach. This approach is currently being

investigated within the context of the NSW project.

Another technique for achieving network transparency is to

provide for uniform accessiblity of all network resources. That

27

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

is, there should be no logical distinction between resources

which are local and those which are remote. One approach for

achieving uniform accessibility is to extend the conventions for

naming entities to include a "network location" field. This

enaoles all resources to be referenced in the same, albeit

cumbersome, way. The RSEXEC distributed file system uses this

approach to allow a user and his programs to reference any file

in the network (that resides at a host running an RSEXEC server

process). We believe that all distributed systems should make

use of this approach.

While extension of the name space is necessary for uniform

accessibility, as suggested above, we believe that it is

insufficient, by itself, to provide a satisfactory system. Use

of "full path names" is cumbersome and, more importantly,

requires the user to learn and remember the network location of

the resources he wishes to access. We believe that distributed

systems should include cataloging functions so that a user and

his programs need not concern themselves with the network

location of items that they manipulate. The cataloging function

supports location independent access by transforming names

supplied by users into the necessary access methods. The issue

here is finding the most effective ways to accomplish the

cataloging function in a distributed environment.

The TIPSER-RSEXEC system provides site independent access

to RSEXEC processes for TIP users via the TIP "In" command. In

28

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

t^is rase the TIP performs the cataloging and access functions

by maintaining a list of known TIPSER-RSEXEC sites which it uses

for broadcasting requests for service.

The RSEXEC system uses a different approach to cataloging

in order to support site independent access to user files. When

a user enters the RSEXEC file^environment, a locally accessible

file catalog for the user is dynamically created and maintained

for the duration of the sesjion. RSEXEC creates the catalog by

acquiring file directory information from sites previously

specified oy the user and maintains it by monitoring user

initiated file ooerations. ^s a result, each RSEXEC user has a

name space tailored to his own particular usage patterns. In

this environment, commonly referenced files can be accessed in a

site independent manner and infrequently referenced ones can be

accessed uniformly via full path names. 3y locally maintaining

the file catalog information, we insure rapid access to it at

the relatively small expense of possibly maintaining out-of-date

intormation. Because rapid access is possible, user oriented,

interactive features such as, file name recognition and

completion are practical.

A concept which we have not explored in detail but which we

believe has a place in distributed systems is that of an

"information operator". An information operator is a network

service that would maintain information about other network

services such as ths machines on which they are available, how

29

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

to make contact with them, and perhaps other data which

characterizes them. The characteristics of such information

services need more detailed specification.

Site independence and uniformity of access are important

characteristics. However, when access to peripheral devices is

required, location is important. In this regard, we have found

the notion of device binding, as exemplified in RSEXEC, to be an

important one. It allows a user to define the access paths to

various devices once per session (and thereafter whenever he

finds it necessary to redefine them) such that subsequent site

independent references to a given device are directed to the

correct device. This definition can be done either explicitly

via commands or implicitly via default conventions and "user

profile" information. In a multi-machine environment the

"device driver" function (e.g., line printer driver) should be

implemented in a way that allows programs (such as the one that

produces listings) to direct output to non-local as well as

local devices. To support this capability in a general way

requires the development of machine independent protocols for

device control.

Another area where users can be relieved from attending to

network details is that of establishing and breaking connections

with various service machines. The TIPSER-RSEXEC experience has

suggested the use of a dynamic "reconnection" mechanism [9,13]

in order to transfer a user from the "logical front end" to a

30

Report No. 2976 Bolt Berarek and Newman Inc.
Volume III

service-oroviding machine after he logs into the network, and

subsequently from one service-providing machine to another as

his computing requirements change. Reconnection should be

accomplished in a transparent manner that requires no manual

intervention bv the user. In addition, it should include the

transfer of his authentication and accounting identity from

machine to machine. That is, moving a aser from service to

service should require no explicit disconnects, connects and

logins after initial connection to and authentication with the

TIPSER-RSEXEC. We have designed such a reconnection mechanism

and which we plan to validate soon in the TIPSER-RSEXEC context

[9,13].

3.2.2 Distributed System Reliability

In a distributed system successful operation requires that

multiple components function together correctly. To achieve

high reliablity, the collection of components must be organized

to be insensitive to individual component failure. (The

individual components themselves should, of course, be made as

reliable as possible.) In this section we discuss four

techniques for obtaining reliable systems; redundancy;

simplicity and modularity; persistence; and, active monitoring.

We have already mentioned the use of redundancy to achieve

reliability in the TIPSER-RSEXEC and TIP accounting systems.

For these systems the collection of redundant components (server

31

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

processes) have been organized to enable a working "system" to

be configured in the presence of individual component failures.

These systems illustrate how redundancy can be used to achieve

high system reliability. The RSEXEC multi-image file facility

demonstrates how a system can assist users in taking advantage

of redundancy by allowing the users to declare the degree of

file redundancy they require and then managing redundant copies

of files for them.

We have found that organizing redundant components to

achieve reliability requires development of:

. Mechanisms and procedures for keeping the redundant
components functionally equivalent.

These mechanisms range from ones that insure that the
software versions are consistent to ones which guarantee
that critical duplicated data bases are consistently
maintained.

. Cataloging functions.

The "system" must know where the redundant components are
to be found.

. Access protocols and selection str-.cegies.

To configure a working system, one of the redundant
components must be selected for use. The TIPSER-RSEXEC
broadcast TCP and the more sophisticated protocol used
for data collection in the TIP accounting cysten are
examples of such mechanisms.

The presence of multiple components in a distributed

system, together with the potential for redundancy, makes it

oossible to achieve reliability by constructing systems from

modules each of which is relatively simple. By using simple

32

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

modules, component failure due to malfunction of non-essential

features can be reduced. The evolution of the TIP ™d

TIPSER-RSEXEC is a good example of this approach. Use of

redundantly supported "logical" front end servers allows the

network access machine to be simple and reliable without loss of

function. The more complex "front end like" features can be

reliably provided by network service machines rather than within

the network access machine itself. The issues here are the

assignment of function among the various machines, the degree of

redundancy reouired, and the protocols used to bind the system

modules together.

There are situations in which the use of a particular

resource is required, and, therefore, for which the use of

redundancy is not applicable, A technique for obtaining

reliable behavior in these situations lies in the ability of

processes to exhibit persistence. If the resources required to

complete a task are not all available when the task is

initiated, a persistent process can be activated with the

responsibility of completing the task when the necessary

resources become available. We have found persistence to be a

useful technique in a numoer of situations.

. The various simulation components in the McROSS system
exhibit persistence. If an adjacent component is not
available when needed, a McROSS simulation node activates
a process dedicated to establishing communication with
the missinq node when it becomes available.

. The TENEX MAILER is a persistent process which guarantees
delivery of messages even if the site where the
addressee's mailbox is maintained is inaccessible when

33

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

the message id posted.

The RSEXEC system is persistent with respect to
constructing a user's dynamic file catalog. When a user
enters the distributed file environment, if a particular
site is inaccessible, a background RSEXEC process will
attempt to acquire file information from the site
throughout the course of the session. In addition,
RSEXEC exhibits persistence when a "user profile" is
modified in a way that requires verification of
information by a particular remote host. In this case
the persistence extends across individual user sessions
until the remote host becomes available or the user acts
to "cancel" the modification.

Finally, critical services and facilities require constant

monitoring. The RSEXEC servers, in effect, monitor one another

by exchanqing stacus information. If a particular server

process misses several consecutive status reports, it is

declared non-operational by trie other servers until it resumes

reporting on a regular basis. Each RSEXEC server also

continuously monitors its cwn behavior. Each server is in

reality implemented by a collection of cooperating processes.

One process has the responsibility of monitoring the others.

Each critical process, such as the one responsible for

collecting status information from other remote servers, is

expecteu to "report in" periodically. If a process fails to do

so, the monitoring process assumes that it has malfunctioned and

acts to restart it. In an early implementation of the RSEXEC

system, whenever a particular server process whose services were

required was discovered to be non-operative, an operational

server would actively and persistently att3mpt to restart the

non-opetative one. We have found that active monitoring of this

34

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

type is necessary when high reliability is a goal.

3.2,3 Dynamic Resource Selection and Job Relocation

In a distributed environment it is useful to think of a

user's "job" as the dynamically varying interconnection of

resources used to satisfy the user's requests. One of the tasks

of a distributed system is to select and configure the resources

which comprise the user's job.

We have already discussed elsewhere two aspects of this

task:

. Cataloging: maintenance of information where resources
appropriate to satisfy user requirements are located.

. Selection: choosing a particular resource for a user's
job.

With regard to the selection function, we have made use of

two techniques:

. Maintain up to date status information about the various
network machines and use it to select the machine best
suited for a task. RSEXEC server processes exchange
status information for this purpose. Although automatic
job assignment has not yet been implemented, the status
information is currently available to users who may use
it to manually select a machine and is, in principle,
available to programs for automatic resourc selection
purposes.

. Dispatch "requests for service" to th? appropriate
machines, allowing them to respond with status
information if they choose, and then make a selection on
the basis of those machines which have responded as
willing to accept a new task. This is the technique TIPs
use when it is necessary to select a responsive RSEXEC or
to select an accounting data collection server.

35

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

The first technique involves a fixed overhead - that of

exchanging and maintaining the resource stäcus information -

which is independent of the frequency of resource selection.

For the second technique, the overhead is incurred on a per

transaction basis and is, therefore, proportional to the

frequency of selection. Although the frequency of service

requests is relatively high in the TIPSER-RSEXEC case, the

second technique is used because it does not require the TIP tD

allocate limited (storage) resources for maintaining status

information. Another basic difference in these two techniques

is that the second allows the constituent machines to retain a

higher degree of autonomy in managing their own resources. Each

machine can choose to respond or not to particular requests for

service.

At present it is not altogether clear what information

constitutes a useful basis for job assignment. In order to be

able to configure a computation in an efficient manner it is

important to extract from the user as much information as

possible regarding the programs he expects to use, the data he

intends to access, and the manner in which the programs access

the data. Furthermore, it is not clear what a-priori status

information is useful for predicting how well a particular

machine will perform a given task. We believe further work

needs to be done in this area.

The ability to dynamically relocate a job (or parts of one,

36

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

such as an open file) is desirable for several reasons.

. Network conditions may have changed sufficiently since
the job was assigned so that it would be more effective
to use another host (e.g., a host has just been
restarted after a crash and it is lightly loaded).

. The job has run long enough to give the system a better
picture of the job's requ.lrements and another host would
be more effective.

. The host the job is running on is about to go down and
the system would like to recover as much work as
possible. We note here that the multiple data
collection components of the TIP accounting system
(running on TENEX hosts) are capable of detecting
scheduled down times and can notify the TIPs to cease
using a particular component shortly before its host
machine is taken down.

Our experience with CREEPER and McPOSS has demonstrated

that the details of moving a job (an executing orocess and its

environment) from one host to another are relatively

straightforward. The Question that needs to be addressed in

this area is when and undjr what circumstances should job

relocation occur. The issues here are:

. For what type of job is relocation appropriate?

. How often should the computational situation be
reassessed with respect to possible relocation?

. What are sufficient criteria for relocating a job?

. What are the tradeoffs between the costs of reconfiguring
a job and those of allowing it to complete with a less
than optimal configuration?

37

Report No, 2976 Bolt Beranek and Newman Inc.
Volume III

3.2.4 Security and Privacy in Distributed Systems

In many cases the goals of network transparency and ease of

access conflict with those of security and privacy. Each

security or access check places a barrier between the user (or

his program) and the desired resource. Organizational goals

must ultimately dictate the level of security necessary for the

various resourcts which require protection. Thus, it is a good

strategy to develop access control techniques which allow

flexibility in their application.

Our work has indicated the need for access controls above

and beyond those suooorted by the constituent host machines.

The BBN network qrouo has recently implemented an access control

mechanism within the subnetwork which allows the set of network

hosts with which a »articular host can communicate to be

administratively set. We have implemented access control for

the predominant network access machine (TIP), apart from the

access control of any particular host. In this regard we have

encountered one of the problems in providing security and access

control uniaue to a network environment. Most users find it

unacceptable to be required first manually to gain access to the

network, and then manually to obtain access to the ^ite they

wish to use.

In this area processes can be employed to perform the

necessary access procedures on behalf of users. For example,

the RSEXEC acts in this way to provide the necessary access

38

Report No, 2976 Bolt Beranek and Newman Inc.
Volume III

control parameters in order to establish user access to remote

files. At the service machine, "proxy login", as exemplified by

the TENEX fork group facility, represents a mechanism for

establishing the correct access control environment for

servicing such remote processes acting on behalf of users.

We believe that implementation of a uniform user

identification and authentication scheme for the network as a

whole would serve to simplify the task of making multiple access

control checks transparent to users.

However, such a step still leaves many issues unresolved.

After a user has been identified to the satisfaction of one

network machine, when he or his program needs access to another

machine, his identity for access control purposes can be passed

along to the new machine. The security problem is then in the

hands of the new machine, which must decide whether or not it

can "trust" the calling machine to provide reliable (unforged)

information. That is, after the new machine Knows who the user

claims to be, how should it decide to use mechanisms such as

proxy login to create an access control environment?

The traditional approach is for the new machine to reauire

the user's process to supply a password before allowing further

access. In a distributed environment, there are a number of

problems associated with this approach. A single password which

is sufficient to obtain access to all services is desirable for

simplicity. However, if one of the machines providing service

39

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

is untrustworthy or non-secure, the privacy of a user's data at

all machines may be compromised. Use of a separate password for

each site solves this problem, at the expense of added

complexity, by insuring that the password for a site is valid

only for access to that site. However, there are still security

problems with this approach. Unless the user is required to

supply a password himself each time one is needed (which is what

we are trying to avoid), processes acting on his behalf must be

able to access the password. This implies that the various

passwords must be stored where they are accessible to such

processes but yet protected from unauthorized access by other

processes. Within the RSEXEC system user passwords are

protected by encryption as well as by the standard TENEX

protection mechanisms. To use the RSEXEC system from any

network site, a user need only specify his name and RSEXEC

password. The RSEXEC password is used by RSEXEC as a key for

decrypting (and encrypting prior to storage) the individual user

passwords necessary to access resources at other sites. Because

the RSEXEC password is used as a key for decryption it need not

(and should not) be stored anywhere. To validate the RSEXEC

password, RSEXEC uses it to decrypt and verify the (stored and

encrypted) user password for the local system.

Because of the difficulties of insuring the privacy of

passwords, we believe that the approach of supplying a password

each time access to a resource is required is inadequate in a

distributed system. We believe that the following alternative

40

I i
Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

approach has promise. A set of (secure) sites is designated as

authentication sites. When a user initially accesses the

network, an authentication process running at such a site

(selected, for example, by a broadcast ICP) is assigned to him.

In order to gain continued access to the network and its

resources, he must supply a valid name and password. If he is

successful, the authenticator process remains as part of his job

for the duration of the session, and is called upon when it is

necessary to gain access to various network resources.

Gaining access to a resource is a three party procedure.

It involves the user's authenticator process, the process

attempting to gain the access on behalf of the user (the user

process) and the process responsible for controlling access to

the particular resource. The trusted authenticator process

supplies the user's identity (i.e., his network wide uniaue ID

code) to the resource manager and guarantees its authenticity.

This enables the resource manager to establish an access control

environment within which to provide service for the user

oroccss. We note that the interaction between the authenticator

process and the resource manager need not include the user's

password since the authenticator is a "trusted" process.

The security of this aporoach depends upon:

. The security of the authentication sites.

In this regard we note that the noninvertible password
transformation scheme suggested by Purdy* can be used to
increase the security of passwords which must be stored
at the authentication sites. A transformation of each

41

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

password is stored rather than the password itself. When
a user supplies a password, the transformation is applied
to it, and the result compared with the stored
transformation. The security of this scheme derives from
the fact that the transformation is non-invertible. The
TIP authentication system makes use of this scheme to
protect user passwords.

. The ability of the various resource managing processes to
be confident that the process they are communicating with
is, in fact, 2 valid authenticator process.

Within the ARPANET environment the subnetwork provides
reliably secure identification of the host location of a
remote process. Thus, the resource manager can reliably
determine whether the process is at an authentication
site. We have designed a mechanism for reliably
ascertaining the identity of a process within a host
which relies upon a host's ability to provide controlled
access to special host communication ports (11].

The details of the three party orotocol necessary to support

this authentication procedure need to be worked out. We believe

that the existing TIPSER-RSEXEC authenticator is an ideal

context for doing this.

3.2.5 Management of Distributed Data Bases

Our experience indicates that data tends to be distributed

for a variety of reasons.

. To insure reliability.

The accessibility of critical data can be increased by
redundantly maintaining it. RSEXEC multi-image files and
the TIP user ID data base are examples of data bases
which are redundantly distributed to achieve highly
reliable access.

* Purdy, G.B., "A High Security Log-in Procedure/
Communications of the ACM, Vol. 17, No. 8, August 1974.

42

I i
Report No. 2976 Bolt Beranek and Newman Inc.

i Volume III

4 *

. To insure efficiency of access.

Data can be more quickly and efficiently accessed if it
is "near" the accessing process. A copy of the TIP user
ID data base is maintained at each of the TIPSER-RSEXEC
sites to insure rapid, efficient access. (Reliability
considerations dictate that this data base be redundantly
maintained, and efficiency considerations dictate that a
copy be maintained at each authentication site.)

. The data is generated or collected in a way that causes
it to be naturally distributed.

The data base represented by the collection of
incremental TIP accounting files is an example of a data
base generated in this way. Individual data items are
stored at the data collection site best prepared to
handle them at the time they were generated by some TIP.
The RSEXEC distributed file system is another example of
a data base of this sort. unless otherwise specified,
files teno to be stored at the site where the process
(e.g., text editor) that creates them happens to be
running.

We have been concerned with two fundamentally different

types of distributed data bases. The first is one which is

maintained "identically" at a number of sites. The second type

consists of distributed, non-overlapping segments; that is, the

data base is a collection of segments, each of which is singly

maintained at a (possibly) different location. We recognize

that these two tyoes : ^present extremes and that applications

may call for "intermediate" types - for example, a data base

comprised of a collection of segments some, but not all, of

which are redundantly maintained.

The emphasis of our work with the first type of data base

has been to develop techniques for consistently and

automatically maintaining the redundant copies. These

43

Report No, 2976 Bolt Beranek and Newman Inc.
Volume III

techniques and the situations for which they are applicable are

described below.

. Each RSEXEC server process maintains a small data base
which contains status information about other si'-es.
Each such data base can be regarded as a copy of the
"true" site status information. Each site takes (almost)
total responsibility for maintaining its copy of this
relatively simple data base by actively acquiring the new
data necessary to keep its copy up to date. Occasionally
the set of sites for which status information is to be
maintained changes due to the addition, removal, or
change of network address of a site. When these
situations occur, systems oersonnel notify one of the
server processes which takes responsibility for
propagating the change to all other servers. It does
this by including site modification update information
with the status information it normally transmits to each
server until that server acknowledges receipt of it.

. RSEXEC maintains multi-image files for users in a
semi-automatic way. When a user modifies a multi-image
file, the system acts to incorporate the modification
into all images. However, if some images are
inaccessiole at the time, RSEXEC merely informs the user
and the system takes no further responsibility for
completing the update of those images.

. The TIPSER-RSEXEC system maintains a copy of the TIP news
file at each of tne TIPSER-RSEXEC sites. Updates to the
news file are limited to addition of new news items. The
system allows additions to the data base to be initiated
at any TIPSER-RSEXEC site and guarantees that all such
updates are transmitted to and are incorporated into all
copies of th-- data base.

. The TIP login system requires that the user ID/password
data base be maintained In a consistent manner at all
TIPSER-RSEXEC sites. Each copy of this data base is a
collection of mutually independent user entries.
Allowable updates to this data base include the addition,
modification, and removal of individual user entries. We
have designed (but not yet fully implemented) a data base
management techniaue which allows updates to be initiated
at any site and guarantees that they are consistently
incorporated into all copies of the data base. 8y
"consistently incorporated" we mean that if all updating
activity were to cease, all copies of the data base would
eventually be identical.

44

Report No. 2976 Bolt Beranek and Newman Inc.
j Volume III

The techniques used to maintain the NET news and the user

1 . ID data bases each consist of two independent parts.

. A reliable, data independent update transmission and
distribution mechanism.

Both techniques use the same transmission mechanism.
That mechanism uses persistent processes at the update
entiy sites to guarantee that all updates are delivered
to all data base sites (once, and only once).

. A data dependent update action procedure.

This procedure is activated at the data base sites when
update commands arrive. For the NET news, the update
procedure is a relatively simple one in which updates are
appended to the data base as they arrive. For the user
ID data base a more sophisticated update procedure is
required. The nature of the data base and the operations
oermitted on it are such that recent updates to an entry
override (rather than interact with) older updates. For
example, when a user password is changed, the old
password is simoly replaced with the new one; when a
user's access to a particular TIP is revoked, the list of
TIPS he has access to is replaced by a new list with one

, . less element. The update procedure depends upon the
ability of each site to regenerate a sufficient portion
of the time sequence of update events to determine how a
particular update command is to be incorporated into the
data base. When updates are initiated they are time
stamped. Furthermore, each entry (and modifiable
subfield) in the data base retains the time stamp of the
update which resulted in its current value. When an
update command (with the exception of a deletion command)
arrives at a data base site, the command can be
incorporated or rejected simply by comparing its time
stamo with that of the data base entry it refers to.
Deletion and creation require slightly special treatment.
For example, if create and delete commands for an entry
are initiated at separate sites, the command which
creates the entry could arrive at a third site after the
one which deletes it, due to network partitioning or
system down times. To properly handle such cases the
data base update orocedure must defer "final* action on a
delete command until the site is certain that all update
commands for the entry which were initiated prior to the
delete have arrived. Only at that point is it safe to
remove the entry from the data base.

45

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

This data base update tectinique (described more fully in

[24]) depends upon time stamps to sequence data base update

commands. We believe the use of time stamps is fundamental to

the management of distributed data bases in the presence of

distributed updating. Although the individual time-of-day

clocks at sites where updates can originate are not currently

synchronized, we believe they are (barely) adequate for

generating time stamps in our application. However, we believe

that techniques for synchronizing time-of-day clocks on network

machines should be developed such that uniform time stamps can

be obtained at all sites.

Our experience with segmented distributed data bases has

been in the context of the TIP accounting system. We have been

concerned primarily with questions of data base organization and

convenient data access. For this particular application the

data base issues are:

. cataloging: it is clearly important to know where the
various data segments reside so that they can be
accessed.

. insuring that no duplicate entries occur. Because the
entries contain accounting information, it is critical
that there is no redundancy. The data collection
protocol insures that no duplicate data entries occur.

. insuring that each data base entry is processed exactly
once when accounting summaries are produced. We note
that time stamping appears to be fundamental to
guaranteeing "once only" processing.

46

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

3.2.6 Network Protocols

As discussed elsewhere, we believe that achieving a

satisfactory distributed computing environment requires that

processes acting on behalf of users take responsibility for the

many explicit human interactions currently required to deal with

the network. The existing ARPANET function oriented protocols

and the software that implements them are, in many ways,

inadequate in this regard because they were designed with a

great deal of human intervention in mind. As we have discovered

concepts and functions absent from the standard protocols, we

have augmented the protocols and in some cases designed new ones

in order to suoport our experimental research work.

We have developed and imnlemented protocol concepts in the

following areas.

. Multi-party interactions.

Situations frequently arise which require the interaction
of more than two processes. A simple example of such a
situation (which occurs often in the RSEXEC conLcXt) is
one in which a process at one site finds it necessary to
move a file from a second to a third site. A more
complex example is the three party interaction that
occurs when one process acts to authenticate another (see
Sectior. 3.2.4). The RSEXEC protocol is designed to
support such multi-oarty interactions. Furthermore, we
have been responsible for extensions to the standard File
Transfer Protocol which enables it to support multi-party
interactions [14,17] .

. Treatment of communication paths as objects.

Communication paths are the binding matter for
distributed computations. It is important that processes
be able to manipulate them as any other kind of object.
The reconnection protocol, in effect, allows a process to
reconfigure a computation by modifying the structure of

47

Report No. 2976 Bolt Beranek and Newman Inc,
Volume Til

the computation's communication paths. As an aside, we
believe that ceconnection is a fundamental notion which
belongs at the communication oriented host-host protocol
ie^el rather than at the function oriented TELNET
protocol level where it currently resides. The RSEXEC
protocol allov.'s processes to allocate and manipulate
communication paths which are used tor data transfer and,
in addition, to terminate communication paths at devices
such as terminals in order to accomplish cross network
terminal linking. In addition, we have designed a
mechanism for signature authentication of network mail
which relies upon a host's ability to treat communication
paths as protected objects.

Exchange of Host status information.

Access to host status information is necessary to make
job assignment decisions (manually or automatically by
program). The RSEXEC server programs maintain up-to-date
host status information which is available to both user
and programF at each RSEXEC site. The status exchange
function is supported by a specifically designed
protocol. The protocol includes a mechanism which
enables a server designated as "master" to control the
sites for which other servers maintain status
information. Although the protocol currently supports
the exchange of identical status information among all
sites, it would be straightforward to extend the protocol
to support exchange of different status data among
different groups of sites.

Broadcast requests for service.

As discussed in Section 3.2.2, the use of redundancy to
achieve reliability reauires protocols and strategies for
accessing and selecting components. The TIPSER-RSEXEC
broadcast ICP and the analogous broadcast protocol used
in the TIP accounting system were developed to satisfy
these requirements. As discussed in Section 3.2.1, the
broadcast ICP mechanism ?lso supports site independent
access to the RSEXEC service.

Reliable Data Collection.

In order to supoort the TIP accou» ing system, a protocol
was required which TIPs could use to reliably transmit
accounting dat^ they accumulate to a data collection site
for storage m the TIP accounting data base for later
processing. To s isfy that requirement, we developed a
general purpose data collection protocol [1.0] . While
motivated by TIP acco ting reauirements, the protocol is
generally applicable in situations involving multiple
data sources and redundantly implemented data collection

48

Report No. 2976 Bolt Beranek and Newman Inc.
Voijme III

servers.

In a number of situations the existing ARPANET host-host

protocol has forced difficult or clumsy implementation to

support functions which are conceptually quite simple. These

difficulties are largely due to the complexity of the protocol.

The situations which po^e such difficulties can be characterized

as involving brief, transaction oriented interactions.*

The exchange of host status information by RSEXEC server

processes and the TIPSER-RSEXEC broadcast ICP are good examples

of such situations. Both examples require the transmission of a

short message from a process (describing its status or making a

request) to one OL more remote processes. The standard

host-host protocol requires that the process participate in an

elaborate exchange of protocol commands, carefully remembering

the state of each exchange, in order to transmit its simple

message. For large hosts this exchange is wasteful. For small

hosts it is often imoossible to correctly implement. In this

regard, we note that we designed the data collection protocol

used in the TIP accounting system to be separate from (and exist

in parallel with) the host-host orotocol in order to make

implementation feasible for (memory) resource limited TIPs.

* Problems associated with this protocol's lack of robustness
are discussed in another volume of in this report? see also
[21,23).

49

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

3.2.7 Exploiting the Server Process Concept

As noted in Section 3.1.5, "demon" server processes running

on host machines provide a wide range of network services to

remote users. These processes are always present to act in

response to reauests from remote users.

Currently, these server processes play a largely passive

role in the sense that they act only when specifically requested

to do so. We believe that a number of important capahilities

can be realized by enlarging the role of these omni-present

server processes to include more active participation in system

operation. The following are examples of areas in which an

extension of the server process concept could be profitably

exploited.

. Network resource management.

The use of RSEXEC server processes to actively collect
host status information represents, in a rudimentary
form, 3 very powerful tool for the management of
distributed resources [20). This basic capability could
be refined to implement a comprehensive facility for real
time and long term monitoring of the loading and
utilization of large scale network resources. Such a
facility would result in more accurate information on,
and ultimately better control of, how the resources are
really used with a consequent potential for dollar
savings.

. Component monitoring and testing for system reliability.

Section 3,2.2 describes how each RSEXEC server monitors
its own behavior as well as that of others in order to
increase system reliability. Use of this technique could
be expanded by giving network server processes the
additional responsibility of regularly exercising
critical hardware and software components. Whenever one
of these critical components is seen to fail, the server
process could signal systems personnel to repair the

50

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

failed component.

. Remote system performance monitoring and tuning.

Operating system designers are often faced with the
requirement that their software run of a variety of
hardware configurations under a variety of user loads.
Faced with such requirements, designers often implement
flexible resource management mechanisms which can be
tuned to be optimal for particular configuration and load
situations. Unfortunately, the designers rarely have
acces.3 to more than a single system configuration. The
result •: often suboptimal performance for iissimilar
confi n v ions or loads. The experts simply do not have
the ort :,tunity to tune their carefully designed resource
manage;" at mechanisms for each configuration. Regularly
communicating server processes provide the basis for a
powerful tool for remote performance monitoring and
tuning. For example, the status exchanging function of
the RSEXEC server processes could be extended to allow
TENEX systems personnel to remotely enable and disable
the transmission of selected system meters in order to
monitor the performance of a particular network TENEX. h
further extension could make it possible to vary remotely
system resource management parameters in order to
experimentally determine optimal operating points for the
various configurations and loads found in the network.

. Distribution and maintenance of software.

The network has facilitated the distrioution and
maintenance of software svstems. However, software
distribution and installation remains a largely manual
procedure in which the network replaces the use of tapes
and mail as data transfer media. Distributing a new
release of the RSEXEC system via the network typically
requires several days to complete. The procedure itself
is not inherently complex. However, it requires
attention to details to insure that everything is done in
the correct order; all sites must get new copies of the
software, and the installation itself must be coordinated
to insure that the total system always consists of a
comoatible set of software modules. always present,
communicating server pioccsses, such as the RSEXEC
servers, represent a potential for automating much of the
software distribution and installation procedure. For
example, the server process at the distribution source
could be given the responsibility of transmitting new
software to servers at remote sites which would be
responsible for implementing the installation procedure
at their sites.

51

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

3.3 Distributed System Design Issues

The previous section discussed in some detail various

distributed computation problems, and techniques and approaches

we have found useful for addressing them. The particular

problems and approaches discussed are representative of more

general distributed system design issues. This section

categorizes these more general issues in a way that we have

found to be usetul.

3.3.1 Naming and Binding.

Coupling multiple hosts results in a name space that spans

many machines. By "name space" we mean the relation between the

name of an entity and its location(3) within the network.

Examples of entities ace peoole, mailboxes, services, processes,

data bases and communication paths. An effective computing

environment requires that the name space be managed in a way

that supports location independent reference to these entities.

The machines must work together to locate and establish linkages

with entities as necessary to satisfy user requests. The name

space management nroblem is complicated bv the fact that some

entities may be redundantly available at several locations while

others may not and may therefore, from time to time, be

inaccessible.

52

I *

. •

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

3.3.2 Robustness and Reliability.

A consequence of providing computing services via couoled

operation of network machines is that, in general, successful

tare completion requires that several machines function

correctly. The essence of the reliability problem is to

acknowledge that individual machines do fail and to organize the

collection of machines to be insensitive to individual machine

failure. To be robust, a collection of machines must be

programmed to detect and recover from non-fatal errors (to

restart and resynchronize), to be persistent (to insure that

important tasks eventually get done), and to anticipate and

prepare for possible failures (by multiplexing critical services

among several machines and backing up critical data on several

machines). It is also desirable to be able to move to another

machine tasks that become "trapped" in a machine that has

failed; the extent to which this is feasible is unclear and

requires further investigation.

3.3.3 Economics and Management.

Assignment and distribution of function among a collection

of machines is a question that largely involves trading off the

cost of computation against that of communication. There seem

to be two seoarate aspects to the problem. There is a static

aspect concerned with assignment of classes of functions to the

machines best suited to perform them. For some functions the

53

Report No. 2976 Bolt Beranek and Newman Inct
Volume III

assignment may be clear: in the ARPA network the management of

multi-billion bit data bases is the job of machines such as the

Datacomputer(s); the solution of large simultaneous differential

equations is the job of the ILLIAC. For other functions, such

as executive control functions, the assignment is less clear.

The second aspect of function assignment is a dynamic one

concerned with the selection and management of resources

required to satisfy user requests. For example, when a service

(e.g., the network message service, the TENEX virtual machine

service) is available on more than a single machine, the problem

is to select the machine expected to be most effective. After

the objects (e.g., files, processes) required for a particular

task ar^ located, the problem is to configure them so that the

task can be performed in an efficient manner.

3.3.4 Authenticity and Validity of Information.

The performance of a system is dependent upon the accuracy,

authenticity, and timeliness of information available to it. In

a distributed system, decisions at all levels must be based on

information from a variety of sources, not all of which are

local to the decision making entit-/. Parts of the system

responsible for such aspects as insuring robust behavior,

achieving effective dynamic resource management, insuring user

data security, and enforcing resource access controls must act

upon information for which they have neither direct (local)

access nor direct control. The problem for the distributed

54

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

system designer is to determine the extent to which sources are

to be trusted with resoect to the information they provide.

3.3.5 User Interface.

Attention to the areas described above will result in

concepts and mechanisms which will form the technical basis for

the development of a reliable, secure, and cost effective

distributed computing system. How well human and process users

will be able to deal with such a system will depend upon the

extent and ease with which control can be exerted over such

mechanisms. For example, initiation of what is believed to be a

simple task could easily trigger a large amount of activity in a

number of machines. To enable a user to match the expenditure

of resources required to accomplish a task with the importance

placed on its completion, means must be available to define the

task's scope and extent, including the persistence with which

the system should act to complete it.

Distributed computing systems can make feasible new

capabilitiec supported directly by multi-computer application

programs. To realize that potential, the system must include

tools that facilitate the creation und debugging of

multi-computer programs and it must provide users with

convenient means for starting, controlling, and stopping such

programs.

55

Report No. 2976 Bolt Beranek and Newman Inc,
Volume III

3.4 Areas Requiring Additional Research

3.4.1 Distributed Data Bases.

Multi-computer systems introduce a new class of data base

management problems which result from the distributed nature of

the data. These problems occur at all levels of system design

and implementation, ranging from low level system primitives to

function oriented application software. Section 3.2.S describes

some techniques we havr developed for managing special types of

distributed data bases.

We believe that we have made progress in this area.

However, we feel that intensive research is required to develop

a coherent -nethodologv for the design, implementation, and

management of distributed data bases. Tne methodology resulting

from this research should include:

. Techniaues for evaluating alternatives for data base
organization in terms of cost, performance, and
reliability requirements.

. Mechanisms for locating and selecting, in the case of
redundancy, data items in response to data base access
requests.

, update control techniaues to insure the integrity and
consistency of distributed data bases.

. Procedures for authentication and data base access
control.

The goal of this researcn effort should be to produce a

viable combination of methodology, principles, and operating

56

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

procedures to enable system builders to make rational design and

implementation decisions regarding the placement, management and

access of data in a distributed environment.

3.4.2 Persistent Processes.

Section 3.2,2 discusses persistence as a technique for

achieving reliable task completion in a distributed environment.

To date, the use of persistent processes has been limited to

relatively simple situations.

We believe that progress in the following areas would

facilitate more widespread use of this potentially powerful

approach for achieving reliability.

. Languages for persistent process task specification.

\t present, in all cases of which we are aware,
persistence is accomplished by special processes that are
programmed to perform a specific task. Ä new special
purpose process must be programmed each time a situation
requiring persistence arises. A more general approach
would be to develop a language for defining task programs
for general purpose persistent processes. Part of a task
program would include the degree of persistence required
(i.e., how long or often the process should try before it
gives up) and the actions to be taken when errors occur.
When persistence is required to complete a user's
request, a "task request program" would be compiled and
left for execution by a general purpose persistent
process. We note that a task specification language of
this sort could be the basis for more uniform system
implementations. Since the language can, in principle,
be used to define foreground tasks as well as persistent
background tasks, a system could be structured that
compiles user and program requests into cask request
programs which are placed into immediate execution.
Whenever such a program cannot be successfully completed
because of the inability to access certain network
resources, the system can either abort the task or leave

57

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

the already compiled task request program for execution
by a persistent process.

Authentication procedures for persistent processes.

For many applications security considerations require
that a host perform certain actions only after the
requesting entity has been authenticated. While the host
on which a persistent process is running may consider the
process to be properly authenticated, other hosts whose
cooperation is reauired to complete a task may not. It
is unclear how to authenticate such a process in the
absence of a user without compromising the security of
the user's authentication information (e.g., password).
We believe a fundamentally new approach to authentication
is required to permit more widespread application of
persistent processes. In this regard, we believe that
the three party approach to authentication described in
Section 3.2.4 may be an answer. When persistence is
required, the authenticator process that is part of the
user's job could remain after the job itself is
,,terminatedM in order to be available for authenticating
persistent processes. The precise details of how this
would be accomplished need to be worked out, and then the
security of the procedure needs to be analyzed.

3,4.3 Hot Switchover.

The use of organized redundancy to achieve reliability is

discussed in Section 3.2.2. The techniques described there

involve the selection of a particular component from a pool of

functionally equivalent ones to perform a task at the time the

task is initiated.

The use of redundancy can, at least in principle, be

extended to allow the dynamic replacement of a component that

fails while it is in use by one which is functionally

equivalent. For example, it should be possible to switch

transparently from using one image of a multi-image data base to

58

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

another if the image originally selected becomes inaccessible.

Similarly, tasks trapped in a machine that fails can, in

principle, be moved to another equivalent machine.

The desirability of such a "hot switchover" capability is

clear: computational services can be made extremely robust

with respect to the failure, loss, or destruction of the

individual compu^ r systems which provide the service. The

extent to which the capability is practically achievable

requires investigation.

One Wvty to think of hot switchover is to think of a

particular service as being provided by a single active process

together with multiple redundant inactive "images" which can be

activated whenever necessary. The prcK». 3m is to keep the

inactive images synchronized with the active process so that one

Df tnem can be activated if the active process fails. This

synchronization must, of course, be accomplished without

reauiring that each image process duplicate the entire

computation. The issues to be investigated here are:

. What constitutes synchronization and its inactive
images? What state information has to be exchanged, how
often does it need to be exchanged, and what is the
protocol for exchanging it?

. How does the "system" decide when the active process has
failed?

. How is an inactive process activated? How is one
selected? How does it use the state information it has
which may be out of date to "catch up" to the current
computational state?

59

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

. After a switchover occurs, how are the other inactive
processes, including the old active process (when and if
it recovers), to be resynchronized?

. For what classes of computation is this a viable
approach?

We recognize that the hot switchover concept has been used

in the past to achieve reliability in very specific application

areas. The thrust of the research suggested here is to develop

general mechanisms for accomplishing hot switchover in order to

enlarge the range of situations for which it is applicable.

We note that the techniques and protocols developed for hot

switchover are potentially applicable for load levelling and

sharing. At the points where synchronization of the currently

active process and its images occurs, an inactive image could be

activated to redistribute the comoutational load.

3.4.4 Efficient Job Configuration.

The techniques we have developed to achieve network

transparency and uniform resource accessibility, form much of

the basis for a "network operating system" within which

distributed computations work correctly regardless of the

precise configuration of the various data and process

components.

In some situations, the computational requirements may be

sufficiently constrained so that only a single configuration is

60

mm

mm

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

possible for a job. However, in many situations, a number of

alternative configurations may be possible due to the functional

equivalence of redundant components (e.g., data files,

processors). For some situations any configuration may be

adequate. However, for many situations performance requirements

(e.g., responsiveness, cost) may make it necessary to carefully

choose an optimal configuration from the alternatives.

We note that the simplistic approach of configuring a job

from the most responsive individual components will not

necessarily guarantee a total job configuration that is optimal

because it fails to take into account the requirement for

interactions among the components.

It is easy to understand i:- * qualitative manner, the

tradeoffs between communicatio. and computation overheads for

various configuration alternatives. For example, groups of

entities strongly coupled by frequent interactions (process to

process, process to file) should, whenever possible, reside in

the same host to minimize communication delay. However, at

present, there is no qjantitative methodology for evaluating

alternative job configurations in terms of these tradeoffs.

Further research is required here to develop quantitative

measures for configuration effectiveness. These measures would

form the basis for network operating system procedures that

select job configurations which are optimal along various

performance dimensions.

61

Report No. 2976 Polt Beranek and Newman Inc.
Volume III

3.5 Annotated Biblicqrannv

This section is an annotated b, 'iography of papers and

notes we have written as part of our research in distributed

computation.

1. Johnson, P.R.f R.E, Schantz and R.H. Thomas, "Interprocess
Communication to Support Distributed Computing,"
submitted to the ACM SIGCOMM-SIGOPS Interface Meeting
on Interprocess Conuiunication, March 1975.

This paper focuses on the impact which distributed
computing systems have on the interprocess communicatior
facilities used to support them. Based on tne experience oi
creating distributed systems, three different cypes of machine
cooperation are described and communication facilities to couple
the machine in each case are discussed. A number of other IPC
issues related to distributed systems are raised.

2. Schantz, R.E., (with F Akkoyunlu and A. Sernstein),
"Interprocess Communication Facilities for Network
Operating Systems," IEEE COMPUTER, Volume 7, Number 6,
June 1974, op. 46-55.

This paper describes three approaches to the problem of
creating an interprocess communication facility for a network
environment. The threo approaches /ill exhibit the property thai
a single mechanism is used for both mter-machine and
irtra marMne communication. The IfC facilities are compared
with rer ct to a number of factors relevant to network
operation.

3. Thomas, H.H. "A Resource Sharing Executive f^r the
ARPANET," AFIPS Conference Proceedings, Vol. 42, June
1973, on. 359-367.

This paper describes the initial implementation of the
RSEXEC, 3 distributed, executive-like system that creates an
environment which facilitates tne sha-ing of resources among
TEMEX hosts on th-? ARPANET. The first half of the paper
develoos the user's view of the distributed executive, which
includes a distributed file system. The second half deals with
basic issues in implementing a distributed operating system.

4. Thomas, R.H., "JSYS Traps - A TENEX Mechanism for
Encapsulation of User Processes," submitted to the
1975 National Computer Conference, June 1975.

62

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

The JSYS Trap mechanism is an extension to the TENEX
operating system which can be use^ to enlarge, restrict or
completely redefine the standard virtual machine provided by
TENEX. Although it was motivated by the distributed computation
work, trapping is a generallv useful operating system function.
This paper describes the trapping mechanism and records design
and implementation dec'sions that were made in adding it to the
existing TENEX operating system.

5. Thomas, R.H., "ARPANET TENEX - A Step Toward a Network
Operating System," reprint of presentation at 1974
National Computer Conference and Exposition Panel
Session, May 1974, Chicago, Illinois.

This note describes some of the features of the ARPANET
TENEX implementation which make it well suited for computer
networking. It notes that network communication is through the
file system, anj explains the benefits of such an approach. It
also shows how the process hierarchy, interprocess communication
and system call trapping facilities are used to provide service
for remote users and an expanded execution environment for local
programs.

6. Thomas, R.H. and D.A. Henderson, "McROSS-A Multi-Computer
Programming System," AFIPS Conference Proceedings,
Vol. 40, June 1972, op. 281-293.

This paoer describes an experimental distributed
programming system which makes it possible to create
multi-computer simulation programs and to run them on computers
connected by the ARPANET. It was one of the first working
examples of a distributed system, and served to identify many of
the problems which would be encountered in more general systems.

7. Mader, E.R., "Network Debuqging Protocol," ARPA Network
Working Group RFC #643, July 1974.

This document oroposes a protocol to support a PDP-11
network bootstrap service and a cross-network debugger. The
protocol is designed for debugging processes running under an
operating system which can perform such debugging tasks as
placing and removing breakpoints, and single instruction
stepping.

8. Mader, E.R., W.W. Plummer and R.S. Tomlinson, "A Protocol
Experiment," ARPA Network Working Group RFC #700,
August 1974.

This RFC describes an experiment in which a new host-host
orotocol (Kahn fi. Cerf, INWG Note #39) was used to drive the 3BN
computer center line printer which is attached to an ARPANET
mini-host. Protocol extensions and modifirations which were
needed in the implementation are discussed, and other aspects of

63

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

the protocol which still require investigate -are noted. The
RFC also derives equations which model the dat transfer rate
for the new protocol,

9. Schantz, R.E., "A Note on Reconnection Protocol," ARPA
Network Workir/i Group RFC #671, December 1974.

This note documents the experience gained from implementing
a modifieJ, experimental version of the Telnet reconnection
protocol option within the context of the RSEXEC. The first
section defines a modified reconnection protocol. The second
section discusses general network implementation details, while
the final section describes aspects of the TENEX/RSEXEC
implementation.

10. Schantz, R.E., "A Multi-Site Data Collection Facility,"
ARPA Netwo Working Group RFC #672, December 1974.

This RFC reproduces a document prepared during the design
and imolementation of the protocols for the TIP-TENEX integrated
system for handling TIP accounting. The first section discusses
the general problem of protocols for utilizing multiple servers
with respect to reliability and data duplication. The second
section details the protocol as applied to TIP accounting data
collection.

11. Thomas, R.H., "On the Problem of Signature Authentication
for Network Mail," ARPA Network Working Grouo RFC
#644, July 1974.

This note describes the problem of signature authenticity
in the network context. It then presents a general approach in
which a problem is divided into one of local signature
authentication and then network recognition of authorized mail.
An implementation of the authentication procedure is given using
reserved host/socket pairs.

12. Thomas, R.H., "MLTNET - A Multi-TELNET Subsystem for
TENEX," ARPA Network Working Group RFC #339, May 1972.

MLTNET is a TELNET like facility for TENEX which envies a
user ho control a number of jobs running on different ARPANET
nostc It was the prototype for most new TELNET implementations
which handle multiple simultaneous transactions. This RFC
describes thr operation and features of the original
multi-TELNET system.

13. Thomas, R.H., "Reconnection Protocol," ARPA Network Working
Group RFC #426, January 1973.

This note ^scribes several situations in which it is
useful to be *e to move one or both ends of a communication
oath from one hu^t to another. It presents a mechanism to

64

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

achieve reconnectlon, sketches how the mechanism could be added
to Host-Host or TELNET protocol, and recommends a place for the
mechanism in the protocol hierarchy.

14. Thomas, R.H.. and R.C. Clements, "FTP Server-Server
Interaction," ARPA Network Working Group RFC #438,
January 1973.

This RFC suggests an extension to the File Transfer
Protocol which would allow an FTP user process at one site to
arrange for FTP server processes at other sites to act
cooperatively on its behalf. Situations where S'.'ch a facility
would be useful are given, and it is snown how the protocol
extension is used to handle these cases.

15. Thomas, R.H. (with R. Bressler), "Inter-Entity
Communication - An Experiment," ARPA Network Working
Group, RFC #441, January 1973.

This note is a status report concerned with the experiments
to provide the capability for network users to converse with
each other using their consoles. It indicates two such user
interfaces for the inter-entity communication, and details the
network protocol that was developed for these experiments.
Areas for further experimentation are noted.

16. Thomas, R.H. (with R. Bressler), "Mail Retrieval via
FTP," ARPA Network Working Group RFC #458, February
1973.

This RFC proposes two new FTP commands which would allow a
user to read his mail at one or more sites without incurring the
overhead of logging in, and without having to use several
different retrieval methods. The commands provide the user with
the ability to create a simple program to retrieve mail from
multiple sites.

17. Thomas, R.H. (with R. Bressler), "FTP Server-Server
Interaction - II," ARPA Network Working Group #478,
March 1-73.

This note deals with an apparent drawback of the protocol
soecified for FTP Server-Server interaction. By providing a new
command (PASSIVE), the need for queueing RFC's for local sockets
before they exist is eliminated. It is shown how this new
command integrates into the FTP server-server interaction
protocol exchanges.

IB. Thomas, R.H. and R.S, Tomlinson (with A. McKenzie and K.
Pogran), "A Note on Protocol Synch Sequences," ARPA
Network Working Group RFC #529, June 1973.

65

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

This note discusses the use and misuse of the TELNET
Protocol Synch Sequence. It examines the general notion of
synch sequences on communication paths, and then reflects on its
meaninq and implementation in TELNET. Suggestions for
implementing synch sequences in protocols based on TELNET are
also given.

19. Thomas, R.H., "Comments on File Access Protocol," ARPA
Network Working Group RFC #535, July 19?:.

Thi^ RFC suggests improvements to a previously proposed
file access protocol, which would permit remote access to the
contents of files. The improvements are mostly additions to
allow tor the use of file system features which may be available
locally. They include adding append access, providing for files
with "holes" in them, using multiple files simultaneously, aad
acquiring descriptive information about a file,

20. Thomas, R.H. , "TENEX Load Averages for July ,.1973," ARPA
Network Working Group RFC #546, August 1973.

This RFC presents utilization data for the BBN and ISI
TENEX systems for the month of July 1973. The data is collected
as a side effect of the Resource Sharing Executive server
programs regular communication with each other. The data
indicates a strong "East Coast time based" user population on
the ISI machine,

21. Burchfiel, J. and R. Tomlinson (with B. Cosell and D.
Waiden), "TIP/TENEX Reliability Improvements," ARPA
Network Working Group RFC #636, June 1974.

This RFC sketches the plan that was implemented for
improving the reliability of connections between TIPs and TENEXs
and for providing the TIP user with clear messages regarding
changes in the state of his connection. Reliability
improvements are made possible by specifying host-host protocol
additions to provide for connection resynchronization. The
protocol changes apply equally well to interactions between
hosts of any type.

22. Murphy, D. (with R. Bressler and D. Waiden), "A Proposed
Experiment with a Message Switching Protocol," ARPA
Network Working Group RFC #333, May 1972.

This RFC sketches the organization of a new approach to the
host-host protocol problem for the ARPANET. The approach is
based on the concept of message switching, and attempts to
achieve better system utilization and simpler network software
than could be accommodated with the connection oriented
approach. The document specifies a message switched protocol
for the ARPANET, and includes the motion of an information
operator as a general network utility.

66

Report No. 2976 Bolt 3eranek and Newman Inc.
Volume III

23. Burchfiel, J. and R. Tomlinson, "Proposed Change to
Host-Host Protocol Resynchronization of Connection
Status," ARPA Network Working Group RFC #467, February
1973.

This RFC describes changes to the Host-Host protocol in
order to achieve resynchronization on a network connection and
handle the "half-closed connection" problem. It is shown how
these changes handle the problems arising from host "allocate"
messages, host system interruptions and network partitioning.
These changes formed the basis of the TIP-TENEX reliability
improvement procedures.

24. Johnson, P.R. and R.H. Thomas, "The Maintenance of
Duplicate Databases," ARPA Network Working Group RFC
#677, January 1975.

This paper describes a techniaue for maintaining duplicate,
distributed data bases in a consistent manner in situations that
r juire a capability for distributed initiation of data base
updates. The class of data bases for which the technique is
applicable is specified; the allowable update operations are
carefully defined; and the "consistency" requirement is
carefully specified. The technique depends upon the use of
"time stamps" to prop rly sequence distributedly initiated
update commands.

The following Quarterly Progress Reports provide a

chronological description of our distributed computation

research activities.

3BN Reoort No. 11505-14, QPR No. 3, Auqust 1971 (Contract No.
DAHC15-7i-C-0C88)

8BN Report No. 11505-14, QPR No. 4, November 1971 (Contract
No. DAHC15-71-C-0088)

SEN Report No. 11505-14, QPR No. 5, January 1972 (Contract No.
OAHCi5-71-C-008ö)

BBN Report No. 2356, QPR No. 6, April 1972 (Contract No.
DAHC15-7i-C-0088)

3BN Report No. 2404, QPR No. 7, Julv 1972 (Contract No.
DAHCi5-71-C-0088)

67

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

BBN Report No. 2465, QPR No. 8, October 1972 (Contract No.
DAHC15-71-C-0088)

BBN Report No. 2501, QPR No. 9, January 1973 (Contract No.
DAHC15-71-C-0088)

3BN Report No. 2544, QPR No. 10, April 1973 (Contract No.
DAHC15-71-C-0088)

BBN Report No. 2607, QPR No. 11, July 1973 (Contract No.
DAHC15-71-C-0088)

BBN Reoort No. 2670, QPR No. 12, October 1973 (Contract No.
DAKC15-71-C-0088)

BBN Report No. 2721, QPR No. 13, January 1974 (Contract No.
DAHC15-71-C-0088)

BBN Report No. 2822, QPR No. 14, March 1974 (Contract No.
DAHCi5-71-C-0088)

BBN Report No. 2869, QPR No. 15, July 1974 (Contract No.
OAHC15-71-C-0088)

68

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

4. Recommendation

The ARPA/IPT program which resulted in the ARPANET has

demonstrated the technical and economic feasibility of

interconnecting computers via packet switched techniques. This

development of intercomputer communications is analogous to the

development of wireless communications in the early 1900's in

that it makes previously unthinkable capabilities possible.

However, just as the invention of wifeless did not automatically

lead to its effective use, the advent of computer data

communications has not resulted in immediate realization of new

capabilities. In fact, the additional complexities of

computer-computec interactions compound the already serious

problems we are having with software cost control on stand alone

computers.

The Department of Defense has a genuine need for

distributed, multi-computer systems because of the

geographically dispersed and mobile nature of its operations,

and its requirements for computing services which are reliably

and redundantly supported, A mature distributed computation

software technologv could be the basis for satisfying these

important DoD neids. Unfortunately, no such mature software

technology currently exists.

As noted earlier, the research documented in this report

can be characterized as exploratory in nature. It has provided

a glimpse of what is possible, has suggested the potential for

69

Report No. 297b Bolt Beranek and Newman Inc.
Volume III

widespread applicability of distributed computational

techniques, and has uncovered specific technical problems which

must be solved before such application is practical.

We believe that a coordinated, coherent and intensive

research program in distributed computation is required to

advance the state-of-the-art to a level capable of supporting

DoD requirements.

70

