AD/A-003 479
NATURAL COMMUNICATION WITH COMPUTERS,
VOLUME III, DISTRIBUTED COMFUTATION
RESEARCH AT BBN

William R. Sutherland, et al

Bolt Beranek and Newman, Incorporated

—

Prepared for:

Advanced Research Projects Agency

December 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

‘\
B3NS BERANEK AND NEWMAN inc

CONSULTI NG - D EV ELO PP MENT +« rESEARCH

~af Poag e]

ADAO0347Y

BBN Report 2976 December 1974

NATURAL COMMUNICATION WITH COMPUTERS
Final Report - Volume TII
Distributed Computation Research at BBN

October 1970 to December 1974

Principal Investigator

Dr. William R, Sutherland
(617) 491-185(

Project Scientist
Dr. Pobert H. Thomas

(617) 491-185(D) D
n mf‘"m]_[]

v JAN 17 1975

U lSLEJL::U

The views and conclusions contained in this document are
those of the authors and should not Le interpreted as
necessarily representing the official policies, either
expressed or implied, of the Advanced Research Projects
Agency or the U, S. Government.

This research was supported Distributizn of this document
by the Advanced Research is unlimited. It may be
Projects Agency under ARPA released te the Clearinghouse,
Order No. 1697; Contract Department of Commerce for

no. DAECl5-71-C-('(188, sale to the general public.

CAMBRIDGE WASHINGTION, D.C. CHICAGO HOUSTON LOS ANGELES SAN FRANCISCO

T

Unclassified o AL RV)
Security Clessification f-/ﬁ! D - S //

POCUMENT CONTROL DATA-R&D

(Security c.assilication ol titlo, body ol ebstract and indexing annotation must be antered when the overall report |3 classifled)
1 ORIGINATING AZTIVITY (Covpoule IU’hOI) er. REPORT SECURITY CLASSIFICATION
Bolt Beranek and Newman Inc. o Inclassified |
50 Moulton Street b GRouP
Cambridge, Mass. 02138

3 REPONT 7ITLE

Distributed Computa:ion Research at BBN

4 DESCRIFPTIVE NOTES (Typa of report end Incluaive dates)

Scientific

3 AUT .ORI(3) (First name, middle initial, last neme)

Robert H. Thomas

4 REPORY DATE 73 YOTAL NO. OF PAGES b, NO. OF REFS .
December 1974
8a. CONTRACTY OR GRANT NO 8. ORIGINATOR'’S REPORT NUMBERI(S)
DAHC15 71 C 0088
b PROJECT NO 3BN Report N 2976, Vol. III.

ARPA on 1697

$b. OTHER REPORT NOI(S) (Any other numbers thet may be sss‘gnad
this report)

d.

10 DISTRIBUTION STATEMENT
Distribution of this document is unlimited. It may be released to
the Clearinghouse, Department of Commerce for sale to the general
sublic.

11. SUPEHLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY
This research was sponsored by the
Advanced Research Projects Agency
under ARPA order No. 1697.

13 ABSTRACT

This report describes research activities in distributed computation
at BBN from July 1971 to Octcber 1974. The objectives of this research
in distributed computation are threefold: to identifyvy and understand
fundamentcal problems of computing in a distributed, multi-computer
environment; to determine the impact of communications netwecrks on
computer systems; and, to develop techniques which enable convenient
and effective use of the resources distributed throughout a computer
network. Several working distributed software systems, which have been
used both to explore distributed computation issues and to provide
useftl computational services in a computer network environment, are
described. This report discusses a varietv of problems unique to
distributed computation as well as some techniques and approaches for
addressing these problems. Among the problem areas discussed are:
network trarsparency in distribrted systems; distributed system relia-
bility; dynamic resource selection and job relocdtion; security and
privacy in distributed systems; managcment of distributed data bases.
The report identifies several research areas for which results would
lead to easier to use, more reliable, and more cost effective distributed
computing systems. In addition, it includes an annotated bibliographvy
of mapers written as part of this distributed computation research
project.

&

oM AEPLACES OO PORM 1478, | JAN 08, WHICH 1D P
D ' oV ..1473 OBOLETE FOR A=cc o= Unclassified

Tecurity Classification

Security Classification

KEY WORODS

Linx A LIk B

LINK C

ROLE

wT ROLE wT

ROL ¢ wT

distributed computation
distributed systems
resource sharing

computer networks

computer operating systems
distributed data bases

Security Classification

J—

camingg senm—g

This report is one of five volumes which compose the
final report of work performed over a four year period by Bolt
Beranek and Newman Inc. under contract DAHC15-71-C-0@88, Natural
Communications with Computers. This work was supported by the
Defense Advanced Research Projects Agency under ARPA order number
1697. Because of the wide spectrum of research activites per-

formed, the final report has been structured as follows:

Title tolyie
Speech Understanding Research at BBN X
Speech Compression at BBN II
Distributed Computation Research at BBN I1I
ARPANET TENEX v

INTERLISP Development and Automatic

Programming \Y

Distrihbuted Computation Research at BBN

rm'wmwwmmmnmvwmm T ST

Report No.

Volume III

2976 Bolt Beranek and Newman Inc.

Table of Contents

1. INtrodUCLiodn « « o o o o o o o o o o s s o o o o o o

2. Research 1pproach .+ . « o ¢« ¢« o o o « o o o o o o o

3. Research Results 5 o 0o 0o 0 6o 0o 0 0 06 0 0 ¢

3.1 Workinq SOLLWALE o« o =+ o o o s o o o o« o o o o o o o

3.4

3.5

3.1.

oo\lc\un-l:.w-..

wwuwwww

L] L] .
r—-»—-r--n—-s——b—-r—-
5 0 o © ¢

1}
<

NNNNNI\)N'

wwuwuwuz
\Jo\w-bwwi—-

-
rf

.
\.A)l.A)LAJLA)WU]

L.vw »wwo

L
.2
.3
.4
.5

"t

w WX
. . o
L)
0 o
B W N -

.
o o

RSEXEC v ¢ ¢ ¢ o s o o o o o o o o o o o o o @
TIPSER-RSEXEC . . . 5 o 0 0o 0o O O 0 0 O 0 o
TIP Accecs Control and Accounting System . . .
JSYS Trap Mechanism . ¢ o o ¢ o ¢ o o o o o o
FOrk Groups .« o o o o o o o o s o o o o o = o
CREEPER v ¢ ¢ ¢ o o o o o s o 2 o o o o o o o
MCROSS @ ¢ o o o o s o s o o o o o o o o o o =
MULEI-TELNET ¢ ¢ o o o o o o s o o s o s o o =

Concontj, Techniaues and Approaches o o e .

Network Transparency . . .) .« .
Distrinhuted System R011ab111ty o« . e . .
Dynamic Resnurce Selection and Job Relocatlon
Security and Privacy in Distributed Systems

Manajement of Distributed Data 3ases . « « .« =«
Hetwork Protocols « o o o o« ¢ o o o o o o o
Exploiting the Server Process Concept -

ribuced System Design Issues - « « « « o o o« &

Naming and Binding . . . 5 6 0 00 0 O 0 0 ¢
Robustness ani Rallabllltv 5 o 0o 0 0 0 0 0 O C
Economics and Managemant 5 o o o0 o

Authenticity and Validity of Informatlon .
User Interface . « « o o« ¢ ¢ ¢« « &« =+ o « =

Reauiring Additional Researchi . « « « . « o
Distributed Data BasesS . « « +v o o o « o o o
Persistent ProcessesS ¢ o « v o o o o o o o o
Hot Switchover 5 0 o o o 0 o @
Efficient Job Lorflquratlon 5 6 0 0 © 0 0 ¢

Annotated Bibliogranhy . . « ¢« ¢ ¢ v ¢« o ¢ ¢« o o &

4, Recommendatbtion . ¢ v o v o o o o o o o o o s o & o o o

13
16
18
21
23
24
25

20
26
31
35
38
42
47
50

52
52
53
53
54
55

56
56
57
58
60

62

gy

Peport No. 2976 Bolt Beranek and Newman Inc.
Volume III

1. Intronduction

This volu f the final report describes work on

distributed como. .a:ion from July 1971 to October 1974.

The goals of our research project in distributed

computation are threefold:

. To 1identify and understand fundamental ©problems of
computing in a distributed, multi-comnuter environment.

. To determine the impact of coamunications networks on
computer systems,

In this area our objectives are to identify new
reaquirements network operation rlaces on computer
systems; to develop technicaues for 1inteqrating existing
computer systems into a2 computer network to enable
effective resource sharing among the systems; and, *o
determine how "next generation" onerating systems should
pe structured so that they can function effectively and
efficiently in a multi-machine environment.

. To develop techniaues which enable convenient and
effective use of the resources distributed throuchout a
computer network.

Our objective here is to develoo the technology base
(concepnts, techniques and mechanisms) necessary to
sunport a distributed computing environment within which
the network 1itself is transparent. 3Such an environment
would enable users to access network resources without
attention to network details or even an awareness that
they are dealing with a network. In addition, our
objectives here include develovment of technigues to
support the creation, execution, and debugging of
computations that reauire the coordinated behavior of
many computers. In this respect the goal is to achieve
network transparency while oroviding convenient access to
multinle comnuting and storage components.

To a large extent, our work has been directed toward
develoning the technology hase nzcessary to proaress from

situations as exempnlified by the curcrent ARPA Network, in which

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

machines are interconnected but operate indzpendently, to
situations in which computer networks are used as a means for
coupling the operation of the machines. A user’s interactions
should be in terms of the services he can access and use, rather
than the particular machines that lLiappen to pzovide those

services.

When a service is requested, the "network system" should
locate 2 machine providing the service and connect the user to
it. The collection of machines should work together throughout
the service session to locate and orovide access to data bases
and device . as reauired for the successful completion of the
service . swion, For services that are redundantly supported,
coupled operation provides for both load sharing and fail soft
operatinn. Such a service is available as iong as at least one
of the machines providing it is operating. Furthermore, when
one of the inachines fails, the users it was servicing can he

redirected to the others.

In addition tc this type of behavior which can be
characterized as "real time", or "on demand" coupling, ovperation
of the machines can be further coupled "in the background”. By
veriodically exchanging and wupdating critical data bases, the
machines can insure that the data is accessible to wusers even
when one nr more of the machines has faiied. They can function
together to quarantee the successful completion of tasks

requiring the action of several machines, even if all of the

Report No. 2976 Bolt Beranek and Newman Inc.
Volume I1I

required machines are not available when the task is initiated.

Coupling the overation of network machines creates a unique
opportunity for improved resource management hy making it
possible to centrally monitor, in real time and over the 1long
term, the 1loading and wutilization of large scale network
resources., Realization of a comorehensive measurement and
monitoring «capability would lead to better understanding of how
comouter resources are really used. rnis understanding,
together with the notential for controlling the operation of the
distributed resources, could result in better management of the

resources and conseauent fiscal savings.

we feel that our work has served to demonsc.rate the
soundress and the feasibility of coupling the operation of
machines tn create an easy to use, reliable and cost effective
network ccmputing environment. This assessment is based partly
on the success of *the systems we have developed and partly on
the increasing number of apnlications using technigues Jeveloned

as nart of our researcn.

We note that achieving the degree of wmachine coupling
necessary to suonort the tyve of Jdistributed computing
anvironment sketched above i3 a large task. Although much has
heen achieved to date, in manv wavs we have only scratched the
surface of the npotential capabilities which can become

available.

Report No. 2976 Bolt B:rranek and Newman Inc.
Volume III

2. Research Approach

The state-of-the-art at the time we began our distributed
computation research and the environment we found ourselves in
at that time were the primary factors =:hat influenced our

approach.

When we began, distributed computation wes a new research
area. At that time, there was 1little experience at BBN or
elsewhere to draw upon. The area had not been explored
sufficiently to identify vromising concepts or approaches. As a
result, we felt that "paper" studies and designs were
inappropriate. wWe felt that we could hest contribute to the
state-of-the-art by acquiring "hands on" experience with

distributed computatir systems.

Initial development of the TENEX operating system had just
been completed and TENEX had just been connected to the ARPANET
when we began our research. Furthermore, at the time there were
four TENEX hosts on the network with nprospects for the
connection of several additional TENEX hosts. Tne existence of
the ARPANET and the growing number of TENEX systems connected to
it (over which, as implementers and maintainers, we had
significant software influence), as well as the existence of
other network hosts, rerresented a unique laboratory for

Jistributed computation research.

The approach we chose was primarily experimental. We have

]
-

[RN]

[T

3

Report No. 2976 B8clt Beranek and Newman Inc.
Volume II1l
designed, implerented and studied orototvpe wmulti-computer

systems {or the ARPANET. Our approach nas »een to use these
multi-computer syst-ins as vehicles for identifying and exoloring
problems of distributed computing and for validating sclutions

to those orobiems,

We believe this "design, imuvlement and evaluate" aporoach
has oroven to he useful in several ways:

. The systems constructed were chosen carefully to
implement important asvects of the highly coupled
distributed computing environment described in Section 1.
As a result, the systems produced are useful products in
themselves,

. Many oroblems in distributed computation are, 1in their
most jenecal case, unsolvable. The awproach of
constructing working prototype systems provided a context
which served to focus attention on important special
cases which have nractical utility and lznd themselves to
solution.

. At the early stages in the development of distributed
computation as a research area, the expnerience and
insignt gained from constructing real csystems was crucial
in develooning the ability to separate problems which are
inherently difficult (managing distributed data bhases,
crnoss network authentication) from ©problems which are
dJifficult due to inadequacies in curtent computer syst2ms
(ncoviding adeaguate access controls for remote users) or
Jurrent communications pnrotocols (transparently opassing a
user from one machine to another).

. The existence of nrototypne systems orevided a uniaue
oonortunity to ASSess the value of features and
anoroaches intended to facilitate use of network
resources, In this regard, there is no substitute for
feedhack from real users. Furthermore, this aspect of
the research has henz2fitted from user recommei:dations.

It is arnrooriate tn noLe two wvotential dangers in our

anproach:

. Losing sint.. of the larger Jdistributed comoputation
research issues by becoming too involved in
5

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

1mplementation details and the pressures of providing
operational service to users; and

. Allowing the research to be limited by what is practical
within existing network and current operating system
environments.

We believe that we have, for the most part, successfully avoided

these pitfalls.

We feel that exploratory work, such as we have done, has
resulted in the identification of important distributed
computation issues ard the formulation of a number of promising
techniaues and apprcaches for addressing fundamental distributed
vomputation problems. In our opinion, the state-of-the-art has
advanced sufficiently that the research emphasis should shift
from exploratory experimentation to in-depth, guantitative
studies of the concepts and apvroaches suqgested by the

exploratory work.

Report No. 2976 Bolt Beranek and Newman TInc.
Volume III

2, Research Results

The results of ou work in distributed computation f£211 in

several areas.

. Working software.

dur research activities have been largely within the
context of two distributed systems, RSEXE(. and McROSS.
Experience with these systems has motvivated the
implementation of additional software designed to provide
more complete inteqration of TENEX into the ARPANET.
This software includes modifications and extensions to
the TENEX operating system and the implementation of
network oriented TENEX subsystems. Section 3.1 describes
the RSEXEC and McROSS distributed systems as well as
other TENEX software.

. Developmnent of concepts, techniaues and approaches for
distributed computation.

Our work has 1lead to the formulation of concepts,
techniaues and approaches for distributed computation and
distributed systems. The software described 1in Section
3.1 was implemented within the context of TENEX.
However, we believe that the concepts represented by
those implementations are not limited to TENEX but rather
2re generally applicable to the problems posed by
computation in a distributed, multi-computer environment.
Section 3.2 describes these concepts and techniques as
well as the problems they address.

. Classification of distributed system design issues.

As a result of our work, we have been akle to «classify
the various issues facing designers of distributed
systems into five bnroad problem areas. Section 3.3
discusses these distributed system design issues.

. Identification of areas reouiring further research,
Our work has served to identify a number of problem areas
where solutions could 1lead to easier to use, more
reliaole, and more cost effective distributid computing
systems. Section 3.4 describes these problem areas.

. Documentation,

We have shared the results of our work with the technical
community by participating in meetings and writing

Report No. 2976

Bolt Beranek and Newmar Inc.
Volume III

papers. Se-iion 3.5 is an annotated bibliography of our
technical papers, notes, and presentations.

!

[T

b
s

[
»

2port No. 2976 Boit Beranek and Newman Inc.
Volume I1I

2,1 wWorking Software

This section describes software for distributed computation
which we have designed and implemented. The discussion focuses
on the capabilities supported by the software rather than on
specific implementation or usage details. More detailed
description of these systems may be found in the references and
in thz Quarterly Prcqress Reports for the project (see Section

3.5).

3.1.1 RSEIEC

We have developed and are continuing to enlarge the
capabilities of the Resource Sharing Executive (RSEXEC) system
[1,3].* RSEXEC is an experimental, distributed, executive-like
system which acts to couple the operation of ARPA network TENEX
(and some non-TEN¥Y) hosts. 1Its design goal is to ©orovide an
environment which 2llows users to access network resources
without concerning themselves with network details such as
communication protocols or even being aware that they are
dealing with a network. RSEXEC has been successful both as an
operational service facility and as a vehicle for exploring the
technical problems of rez2lizing an effective environment for

resource sharing.

- e e e ew = s

* Ppapers we have written are reoferenced using saguare brackets
and are listed in Sectior 3.5. Other references appear as

footnotes.

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

A major component of RSEXEC is a distributed file svstem
which spons host computer boundaries. Through the distributed
file system a user can maintain files within the network in a
convenient, host independent manner. For ¢xample, to reference
one of his files, a user need not remember where within the
network the file is stored; rather, it is sufficient to specify
the file by name. In addition, RSEXEC supports the concept of
"device binding". A user can declare a "binding" between a
device and a host such that, until otherwise specified, his
references to that device are to be directed to the specified
host. For example, by binding the 1line oprinter device to a
device port at his TIP, a TIP user can insure that his line
orinter output appears locally at the TIP rather than at the

site providing RSEXEC secvice.

Whilr RSEXEC attempts to make the network transparent, it
helps users take advantage of the distributed nature of the file
system. One way it does this is by allowing a user to increase
the "accessibility" of files he considers important by making i.
easy to maintain multiple copies or "images" of them at
Aifferent sites. RSEXEC provides a means to create multi-image
files and it recognizes existing files which are multi-image.
At present, the multi-image file facility depends upon direct
user intervention for many file management operations. For
example, when a wuser attempts to delete a multi-image file,
RSEXEC informs him that the file is multi-image and asks whether

all or only selected images are to be deleted. We feel *that

10

Report No. 2976 Bolt Beranek and Newman Inc,
Volume III
more sophisticated support for multi-image files is possible and

that techniques to accomplish it can be developed.

RSEXEC will soon be extended to support the distributed
file system at the executing program level in addition to the
currently supported user command level. This extensiorn will
enable existing application programs, such as text editors and
compilers, to operate in a context that includes the file
systems of the entire collection of network (RSEXEC) machines,

without requiring that the programs themselves be rewritten.

Another aspect of RSEXEC is its support of inter-site user
interaction functions. These functiins allow users of the
individual RSEXEC sites to interact with one another as if they
were members of a single network user community, RSEXEC
includes commands which allow a user to determine which users
are logged in at the various RSEXEC sites, the sites a specified
user has access to, and where (if at all) a specified user has
active jobs. 1In addition, it allows a user to link his terminal
to that of another user on another network machine in order to
engage in an on line dialogue. All of these functions are
accomplished in a way in which the network itself is

transoarent.

The RSEXEC system is supported by a distributed collection
of server oprocesses which function together to provide service
which transcends machine boundaries. The server processes

reqularly communicate with one another to exchange status

11

T

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

information; they can establish, break, and transfer
communication links; and, they are driven by a machine

independent, process oriented command protocol.

Coupling the TENEX hosts by RSEXEC server processes has had
the side effect of making it possible to monitor system load on
all ARPA network TENEXs remotely from one or more TENEX hosts.
Each RSEXEC server process maintains status information obtained
from the others in a dynamic data base for use by 1local RSEXEC
users. (The deta was originally -- and still is -- intended to
be used for dispatching user jobs to 1lightly 1loaded hosts to
accomplish 1load sharing and load levelling). At the reauest of
the ARPA office, we have written a program <called LDINF which
periodically records the load information from this dynamic data
base. This dJdata orovides an acrurate picture of how heavily
loaded different TENEX sites are and how their load varies with
time. ULUDINF has been running on BBN-TENEXA since March 1973
nproducing daily load information files. We have written another
program called MONTH which oroduces weekly or monthly summaries
of TENEX 1load data from the daily UDINF files [20]. This data
is available to those interested in studying network host wusage

patterns.

Although the RSEXEC system currently runs on a collection
of relatively homogeneous processors, it is de:igned to permit
operation on heterogeneous machines. In fact, prototype

implementations have been developed at MIT (MULTICS) and NASA

12

[

L e [|

W

e A

e

Wizt

Weititalni g

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

AMES (IBM 360/67).

RSEXEC is one of the first working examples of &a general
purpose, multi—;esource system. As such it exhibits significant
properties of such systems. Among these are the ability to
support wuniform access to both local and remote resources,
persistence in the presence of component 1ailure to guarantee
task completion, and the ability to manage redundant resources

to achieve increased reliabiiity.

Since its inception i8 months ago, the RSEXEC service has
been in continuous operation and available to users essentially
without interruption. Although it is not totally transparent
for all of its currently supported uses, we believe it to be the
most advanced system implementatiin *hat addresses the oroblems

of a general purpose operating system for a computer network.

3.1.2 TIPSER-RSEXEC

One of the most important innovations in ARPA network
services from bhoth a practical and a theoretical standpoint is
use of the RSEXEC by TIPs [l,3]. A service oprogram called
TIPSER, which currently runs on three ARPA network hosts, allows
TIPs to make direct, transparent use of RSEXEC as & "logical
front end". Development of the TIPSER-RSEXEC system has been
quided by the general philosophy that the TIP should be a
transparent front end component suppo:rting only terminal device

specific functions and that access control, accounting, command

13

Report No. 2975 Bolt Beranek and Newman Inc.
Volume III

language interpretation, and other ‘"operating system-like"
functions should be handled by other more capable (larger)

network machines.*

At the start of a user’s session, the TIP (for TIP software
versions 324 and later) automatically connects to the most
responsive RSEXEC available. After he correctly supplies his
name and password, the vser is granted access to the network and
the RSEXEC as a network command language interpreter,
preparatory to logging in to a particular host. (TIP login and
accounting is described further in Section 3.1.3.) TIP users of
RSEXEC have access to the inter-site user interaction features
and to a number of information services. These 1information
services include:

. NETNEWS and SCHENULES services which allow the network

overations staff to communicate the latest network news

and service host schedules to users.

. A GRIPE service which allows users to communicate with
the operations staff.

. A HCSTAT service which reports the hosts in the network
that are up and available.

A TRMINF service providing information about a wuser’s
terminal including the TIP he is using and the TIP port
to which his terminal is attached.

As mentioned above, the TIPSER~-RSEXEC 1is a redundantly

implemented network service. The redundant imolementation

- e e e = -

* N.W. Mimno et al, "Terminal Access to the ARPA
Network--Experience and Improvements," Proceedings of the
Seventh Annual 1IEEE Computer Society International
Conference, February 1973.

14

i
]

[2

[TR |

Report No., 2976 Bolt Beranek and Newman Inc.
Volume III

distributes the load among the multiple machines providing the
service and increases the accessibility of the service by
quaranteeing that it 1is available whenever at least one

TIPSER-RSEXEC sit2 is up.

We developed two mechanisms necessary to suppert the
redundant implementation, The first is a "broadcast" initial
connecticn protocol (ICP) developed jointly with the BBN TIP
group. This protocol enables a TIP to connect to an available
and responsive RSEXEC rather than to a particular one at a
specific site. The TIP wuses this mechanism to broadcast
reauests for service to the known TIPSER-RSEXEC sites and then

selects the first site to respond as the one to provide the

service,

The second mechanism is used by the TIPSER-RSEXEC system to
maintain multiole images of the various information files (e.q.,
news and schedule¢s). This mechanism allows additions to the
distributed information files to be made from any TIPSER-RSEXEC
site and guarantees that the additions are incorporated into the

file images in a consistent manner.

The importance of the TIP-RSEXEC system transcends the
particular functions it currently supports. It has demonstrated
the feasi»ility of having small hosts share resources of larger
hosts to nrovide users with features that exceed the small
hosts own limited capacities. The users obtain these services

automatically in a network transparent manner.

15

r\mwr- —

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

3.1.3 TIP Access Control and Accounting System

One of the problem areas withian tle ARPANET 1is that of
controlling access both to the network and within the various
hosts. Onc problem in this area is that the TIPs themselves,
because of their size, cannot provide controlled access to the
network. In order to solve this problem and the related one of
accounting for TIP usage, together with the TIP group at BBN, we

have developed an access control and accounting system for TIPs.

This system consists »f three distinct, but related,
components: network login servers; data ccllection servers; and,
data reduction software. The system itself 1is implemented
within the context of the TIPSER-RSEXEC and the RSEXEC

distributed file system.

When a wuser activates a TIP port, the TIP uses the
broadcast ICP mechanism to connect to an RSEXEC which acts as a
network login server. If the user successfully supplies a valid
name and password, he is granted continued access to the TIP and
the network as well as to the standard TIPSER-RSEXEC functions,
In addition, the RSEXEC sends the user s ID code to the TIP (for
accounting and subsequent authentication purpoces) and makes a
"login" entry into an "incremental" TIP accounting data file.
Should the user fail to supply a valid name and password within

the allowed time, he is denied further access to the TIP,

After the TIP receives the user ID code it starts "connect

16

Report No. 2976 Bolt Beranek and Newman Inc.
Volume 111

time" and (ovutgoing) message counters to accumulate usage data
for the user ‘s session. These counters are "active" until the
user terminates his TIP session. Periodically, the TIP executes
an "accounting checkpoint" procedure whereby it transmits
accounting data, accumulated since the last checkpoint for its
active us~rs, to a data collection server process. The data
collection server stores the checkpoint data in an incremental

TIP accounting file for later processing.

Like the TIPSER-RSEXEC login servers, the data collection
servers are redundantly implemented to insure high availability
and to achieve load sharing. The TIP uses a reduest mechanism
similar to the broadcast ICP to select one of the servers to
accent its checkpoint data [1A]. The worotocol used for this
ourpose is quite aeneral and can be used for the collection of
data other than that for TIP accouunting. Furthermore, the
protocol 1is designed to allow considerable flexibility in the
choice of a server. For examnle, a TIP can switch from one data
collectinn server to another after initially choosing one in the
event that the chosen server can not complete the transaction

(dJue to network or host failure),.

The collection of incremental accounting files created by
the data collection servers 1is a large, distributed and
segmented data base. The reduction of data in that distributed
data base to produce periodic accounting summaries 1is

accomplished by software which executes within the environment

17

rm..,mmm —

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

provided by the RSEXEC distributed file system. This software
performs a complex series of data management and network access
operations in response to simple commands. When the "TIP
accountant" issues the proper commands, the software
automatically connects to the data collect:ion sites and
selectively retrieves and processes remote (and previously
unprocessed) accounting data. This softwars was designed to be
consistent with the RSEXEC philosophy: to allow a user to deal
with resources (in this case accounting data) distributed
throughout the network while relieving him of the complexities

of dealing with the network

3.1.4 JSYS Trap Mechanism

The JSYS trap mechan’sm 1is an extension to the TENEX
operating system which provides a means whereby operating system
calls made by one process can be intercepted by another process

(4],

The intercepting process does this by specifying that it
wishes to gain control when selected system calls (JSYSs) are
executed by other (inferior) processes. When a process
monitored in this way attempts to execute such a JSYS, it is
suspended and the monitoring process is notified. After gaining
control, the monitoring process may take whatever action it sees
fit. For example, it may choose to perform the JSYS on behalf

of the process, or it may choose to check and perhaps modify the

18

Report No. 2976 Bolt Feranek and Newman Inc.
Volume III

JSYS call parameters and then allow the process to perform the
JSYS itsel€, etc. 1If the monitoving process chooses to handle
the trap by allowing the trapped process to resume execution of
the JSYS, tha trap will pass up the process hierarchy to the
next process (if any) monitoring execution of that JSYS. If
(when) there are no further processes in the hierarchy
monitoring that JSYS, the trapped process is dispatched to the
standard system code for that JSYS. Should the monitoring
process chocse to handle the JSYS trap by executing the JSYS on
behalf of the trapped processes, the monitoring process itself

is subject to traps which its suverior processes may have set.

The RSEXEC system will wuse the JSYS trap mechanism to
orovide user processes with an execution environment that spans
machine boundaries. For example, RSEXEC will trap file
operations made by application programs executing "under" it
(e.g., text editors, compilers, etc.). Operations that can be
handled 1locally will be passed directly to the local operating
system by RSFXEC, Whenever a file overation is 1initiaced that
requires access to a remote file, RSEXEC will send a request
across the network to a cooverating server process at the proper
host to <cause it to execute the operation on behalf of the
application nprogram, Because the trapping activity is
transparent, the application program has uniform access to all
files, both local and remote, without regard for their network

location.

19

Report No. 2976 Bolt Beranek and Newmar Inc,
Volume III

While the JSYS trap mechanism was strongly motivated by the
KSEXEC application, it represents an important and powerful
addition to TENEX which is generally useful in applications
requiring a controlled process executing environment, and in

implementing and testing new virtual machine concepts.

The trap mechanism has already proven to be a powerful
debugging aid. For example, after being reassembled, one of the
TENEX network server programs, which was bei.eved to have been
Jdebugged, began to malfunction. It would close a critical data
file for no apparent reason on the order of once a day. After
unsuccessfully studying program listings and using conventional
debugging techniques for several days, the programmer built a
simple process to trap and examine all operations that could
possibly result in closing the file, He then ran the
malfunctioning service process "under" the trapping process and
was able to intercept the operation tnat caused the malfunction
the first time it occurred (apeproximately ten hours after the
program was placed in execution). Addition of this debugging
technique to the repertoire of IDDT, the invisible debugger,
would enable a user to cause a program being debugged to "tkreak"
on certain system calls. For example, this technigue would
enable the user to gain control on all file output operations
without requiring that he remember and specify the program

location of each.

A somewhat different use of the trap mechanism would enable

20

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

a user to use programs written by others with the assurance that
doing so would not compromise the security of his data. For
example, he could encapsulate such programs in a controlled
environment which selectively inhibits output operations by
trapping them and allowing only those directed to "legitimate"

destinations to continue.

Finally, we note that the National Software Works project
requires the encapsulation of software "tools" running on "tool
bearing hosts" in order to ensure that the tools adhere tc¢ the
NSW discipline. The JSYS trap mechanism simplifies the NSW

encapsulation for TENEX hosts.

3.1.5 Fork Groups

A wide range of network services are provided on TENEX
systems by "demon" server processes which act on behalf of
remote users. (The FTP, RSEXEC and TIPSER servers are
examples.) These servers typically create a new process (fork)

for each instance of service.

This approach has been satisfactory for providing the
standard services. However, until recently, two aspects of
TENEX pre-ented it from being used to grant remote access to a
wider range of services:

. Access Control.

To avoid compromising data (e.g., files) maintained by
the system for local users, a service process must insure

that users who access the system "indirectly” thcough it
be subjected to the same access controls as if they had

21

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

accessed the system directly. 1In most cases a service
process requires the remote user to identify himself (by
name and password) before providing service. In doing
so, it gains sufficient information to adjust (enlarge,
reduce, or merely modify} its own access "capabilities"
to match those of the particular user it is serving.
Unfortunately, TEMEX provided no mechanism for doing
that. The access control mechanisms in TENEX were on a
"per job" rather than a "per process" basis. As a
result, different processes within the same job supplying
service to different remote users were subject to
identical access controls rather than separate controls
specific to each of the different users. Furthermore,
the access controls in effect were based on the job's
login name {typically SYSTEM) rather than on the identity
of the remote user. This required that each service
process 1itself implement the standard TENEX access
control procedures. This, in turn, required that service
processes run with special privileges to enable them to
access system "private" data in order to <correctly
implement access control for remote users.

. Terminal Interrupts.

In TENEX, terminal interrupts (e.g., EXEC °“C) could
originate only from the 3job "controlling" terminal.
Since network service jobs ran "detached", there was no
such terminal, and even if there were, a single terminal
would have been insufficient for multiple instances of
service. Thus, each process that wished to provide the
terminal interrupt capability to remote users was forced
to simulate it.

To provide a more satisfactoiy execution envirovnment for
service processes, the access control and terminal interrupt
features of TENEX were generalized by imolementing the notion of
fork groups. A process and its inferiors can be designated a
"fork group" for purposes of access control and termipnal
interrupts. All access control checks for processes in a group
are based on an access control context for the group rather then

one for the job as a whole. A "proxy" login capability was

implemented to enable the access control context for a service

22

P

E L |

?uu:...-w x

p————

Report No. 2976 Bolt Reranek and Newman Inc.
Volume ITI

orocess to be based on the identity of the remote user rather
than on that of wuser SYSTEM. In addition, the terminal
interrupt concept was modified to allow more that one source of
terminal interrupts per job.. An "assigned" terminal can be
designated as the source of terminal interrupts for (only) a
particular group of processes in a job. This change represents
a slight generalization of the controlling terminal concept:
each process in a job still has at most one source of terminal
interrupts, but different processes may now have different

sources.

3.1.6 CREEPER

CREEPER is a demonstration program which can migrate from
computer to comuuter within the ARPA network while performing
its simple task. It demonstrat¢d the possibility of dynamically
relocating a running orogram and 1its execution environment
(e.q., open files, etc.) .rom one machine to another without

interfering with the task being performed.

CREEPER led to the notion that a orocess can have an
existence independent of a particular machine. This is an
important concept for applications reaquiring 1load shacring and
fail soft behavior. The experience with CREEPER emphasized the
need for process oriented "login" or system access protocols and

for new methods of process authentication.

23

E

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

3.1.7 McROSS

McROSS [6] is the first distributed system we built. It is
a multi-computer system for simulation and analysis of air
traffic situations. McROSS demonstrated the feasibility of
having a collection of host machines work together on a single
application »>roblem (the simulation, control and display of air
traffic i. complex airspaces). We believe that McROSS
represents the first attempt to build a coherent programming
system that includes consistent application oriented primitives
to support the construction and execution of multi-computer

programs.

The McROSS system provides two basic capabilities. One is
the ability to orogram air traffic simulations composed of a
number of parts which run distributed among many computers.
These distributed parts can be thought of as forming the nodes
of a "simulation network". The second is the ability of such a
simulation network to permit programs running at other ARFANET
sites to "attach" to particular nodes in it for the purpose of
remotely monitoring and/or controlling the node’s operation.
Computational responsibility for performing McROSS simulations
is truly distributed. For example, a: an aircraft flies from
one airspace (simulation node) to another, the responsibility

for simulating its dynamics shifts from one computer to another.

The techniques for dynamic reconfiguration, developed in

CREEPER, were applied to McROSS to enable an ongoing simulation

24

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

to redistribute its operating parts among the network hosts
without interfering with the simulation itself. Experience with
McROSS served to emphasize the interrelation of naming and
binding issues with those of reliability. Reliability
considerations require that the components of a given simulation
remain unbound to specific machines until placed in execution.
Consequently, cooperating components had to be able to locate

each other (by name) at execution time in order to communicate.

3.1.8 Multi-TELNET

MLTNET is a program which allows a wuser to conveniently
control a number of jobs on different computers from a single
terminal [12]). This capability has oroven so useful that many
existing and almost all planned ARPA network user TELNET
programs (e.g., those for the ANTS and ELF terminal support

systems) include or will include it.

MLTNET was motivated by the McR(CSS experience. It
represents at a orimitive level the capability for single user
control of multiple computer resources. Refinements to that
capability, such as the ability to start, stop and debug
multi-computer programs, are requisite for an effective user

interface.

25

Report No. 2976 Bolt Beranek and Newman Inc.
Volume [II

3.2 Concepts, Techniques, and Approaches

3.2.1 Network Transparency

An important (and straightforward) techniqgue for achieving
a degree of network transparency is to provide procedures which
automate the most common interactions with the network. At the
user interface level, a command interpreter can be used to
transform requests into the network and rewmote host access
commands necessary to satisfy the reauests. The RSEXEC file
maintenance features and the data processing components of the
TIP accounting system make use of this technique. As a result,
users of these systems can concentrate on the task at hand
rather than on the (to them) irrelevant complexities of dealing

with the network.

This techniague 1is equally applicable at the execuing
program level, The issue at this level is how to accomplish the
linkage between executing programs and the procedures that
automate network transactions. One straightforward approach is
to augment the standard collection of system calls with ones
that perform the network functions. Programs may then use the
new system calls to 1invoke the network procedures directly.
While this approach serves to facilitate network interactions,
it does not, by itself, result in a high degree of network
transparency. 1f a nigh deqree of transparency is required and

it there is the additional qgoal of preserving (and enlarging)

26

Keport NO. Z2Y/6 Bolt Beranek and Newman Inc.
Volume III

the value of existing software, it is important that the linkage
with the network procedures not require extensive modification

to existing programs.

We believe the trapping concept, as exemplified by JSYS
traps, represents an approach for transparently accomplishing
this linkage which is applicable to non-TENEX as well as TENEX
machines. Implementation of it for machines of, for example,
IBM or Burroughs manufacture could have tremendous payoff in
terms of integrating such existing systems into a network in a
way that supports transparent network usage. In return for the
relatively modest cost of implementing the trapping concept
along with the complementary procedures which deal with the
network and remcte hosts to provide, for examnle, a distributed
file system, the vast inventory of application programs written
for these machines in lanquages suca as FCGRTRAN and COBOL could
immediately become executable in a multi-machine environment.
With no modification, these programs would be able to access and
operate on non-local as well as local data. We believe that
achieving network transparency for existing application programs
by incorporating the trapping concept 1into other systems (or
making use of similar capabilities which they may already have)
is a promising approach. This approach 1is currently being

investigated within the context of the NSW project.

Another technique for achieving network transparency is to

orovide for uniform accessiblity of all network resources. That

27

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

is, there should be no 1logical distinction between resources
which are 1local and those which are remote. One approach for
achieving uniform accessibility is to extend the conventions for
naming entities to include a "network location" field. This
enables all resources to be referenced in the same, albeit
cumbersome, way. The RSEXEC distributed file system uses this
approach to allow a user and his programs to reference any file
in the network (that resides at a host running an RSEXEC server
process). We believe that all distributed systems should make

use of this approach.

While extension of the name space is necessary for uniform
accessibility, as suggested above, we believe that it is
insufficient, by itself, to nrovide a satisfactory system. Use
of "full path names" is cumbersome and, more importantly,
requires the user to learn and remember the network location of
the resources he wishes to access. We believe that distributed
systems should include cataloging functions so that a user and
his wonrograms need not concern themselves with the network
location of 1tems that they manipulate. The cataloging function
supports location independent access by transforming names
sunplied by users into the necessary access methods. The issue
here 1is finding the most effective ways to accomplish the

cetaloging function in a distributed environment.

The TIPSER-RSEXEC system provides site independent access

to RSEXEC processes for TIP users via the TIP "@n" command. 1In

L

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

this ~ase the TIP periorms the cataloging and access functions
by maintaining a list of known TIPSER-RSEXEC sites which it uses

for broadcasting requests for service.

The RSEXEC system uses a different approach to cataloging
in order to support site independent access to user files. When
a user enters the RSEXEC file,environment, a locally accessible
file catalog for the user is dynamically created and maintained
for the duration of the session. RSEXEC creates the catalog by
acquiriang file directory information from sites previously
specified oy the wuser and maintains it by monitoring user
initiated file operations. As a result, each RSEXEC user has a
name space tailored to his own particular usage patterns. In
this environment, commonly referenced files can be accessed in a
site indepoendent manner and infregquently referenced ones can be
accessed uniformly via full path names. B8y locally maintaining
the file catalog information, we insure rapid zccess to it at
the relatively small expense of possibly maintaining out-of-date
intormation., Because rapid access is possible, wuser oriented,
interactive features such as, file name recognition and

completion are practical.

A concept which we have not explorad in detail but which we
believe has a place in distributed systems is that of an
"information operator". An information operator is a network
service that would maintain information about other network

services such as th2 machines on which they are available, how

29

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

to make contact with them, and perhaps other data which
characterizes them. The characteristics of such information

services need more detailed specification,

Site independence and uniformity of access are important
characteristics. However, when access to peripheral devices is
required, location is important. 1In this regard, we have found
the notion of device binding, as exemplified in RSEXEC, to be an
important one. It allows a user to define the access paths to
various devices once per session (and thereafter whenever he
finds it necessary to redefine them) such that subseauent site
independent references to a qgiven device are directed to the
correct device. This definition can be done either explicitly
via commands or implicitly wvia default conventions and "user
profile" information. In a multi-machine environment the
"device driver" function (e.g., line printer driver) should be
implemented in a way that allows programs (such as the one that
nroduces listings) to direct output to non-local as well as
local devices. To support this capability in a general way
requires the development of machine independent protocols for

device control.

Another area where users can be relieved from attending to
network deteils is that of establishing and breaking connections
with various service machines. The TIPSER~-RSEXEC experience has

suggested the use of a dynamic "reconnection" mechanism ([9,13]

in order to transfer a user from the "logical front end" to a

Report No. 2976 Bolt Berar.ek and Newman Inc.
Volume III

service-providing machine after he logs into the network, and
subsequently from one service-providing machine to another as
his computing requirements change. Reconnection should be
accomplished in a transparent manner that requires no manual
intervention by the wuser. In addition, it should include the
transfer of his authentication and accounting identity from
machine to machine. That 1is, moving a user from service to
service should require no explicit disconnects, connects and
logins after initial connection tvo and authentication with the
TIPSER-RSEXEC. We have designed such a reconnection mechanism
and which we plan to validate soon in the TIPSER-RSEXEC context

(9,13].

3.2.2 Distributed Systen Reliability

In a distributed system successful operation reguires that
multiple components functicn together correctly. To achieve
high reliablity, the collection of components must be organized
to be insensitive to individual component failure. (The
individual components themselves should, of course, be made as
reliable as possible.) In this section we discuss four
techniques for obtaining reliable systems: redundancy;

simplicity and modularity; persistence; and, active monitoring.

We have already mentioned the use of redundancy to achieve
reliability in the TIPSER-RSEXEC and TIP accounting systems.

For these systems the collection of redundant components (server

il

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

processes) have been organized to enable a working "system" to
be configured in the presence of individual component failures.
These systems illustrate how redundancy can be used to achieve
high system reliability. The RSEXEC multi-image file facility
demonstrates how a system can assist users in taking advantage
of redundancy by allowing the users to declare the degree of
file redundancy they require and then managing redundant copies

of files for them.

We have found that organizing redundant components to
achieve reliability requires development of:

. Mechanisms and procedures for keeping the redundant
components functionally equivalent.
These mechanisms range from ones that insure that the
software versions are consistent to ones which guarantee
that critical Jduplicated data bases are consistently
maintained.

. Cataloging functions.

The "system" must know where the redundant components are
to be found.

. Access rvrotocols and selection str-.cegies.
To configure a working system, one of the redundant
components must be selected for use, The TIPSER-RSEXEC
broadcast ICP and the more sophisticated protocol used
for data collection in the TIP accounting czvstem are
examples of such mechanisms.
The presence of multiple components in a distributed
system, together with the nootential for redundancy, makes it

nossible to achieve reliability by constructing systems from

modules each of which 1is relatively simple. By using simple

32

Report NMo. 2976 Bolt Beranek and Newman Inc.
Volume III

modules, component failure due to malfuviction of non-essential
features can be reduced. The evolution of the TIP and
TIPSER-RSEXEC is a good example of this approach. Use of
redundantly supported "logical" front end servers allows the
network access machine to be simple and reliable without loss of
function. The more complex "front end like" features can be
reliably provided by network service machines rather than within
the network access machine itself. The issues here are the
assignmant of function among the various machines, the degree of
redundancy required, and the protocols used to bind the system

modules together.

There are situations in which the use of a particular
resource 1is required, and, therefore, for which the use of
redundancy is not applicable. A technigque for obtaining
reliable behavior 1in these situations lies in the ability of
processes to exhihit persistence. If the resources required to
complete a task are not all available when the task 1is
initiated, a persistent process can be activated with the
responsibility of completing the task when the necessary
resources become available. We have found persistence to be a
useful technique in a number of situations.

The various simulation components in the McROSS system
exhibit persistence. If an adjacent component is not
available when needed, a McROSS simulation node activates
a process dedicated to establishing communication with
the missing node when it becomes available,

. The TENEX MAILER is a persistent process which guarantees

delivery of messages even if the site where the
addressee s mailbox is maintained is 1inaccessible when

33

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III
the message is posted.

. The RSEXEC system ,is persistent with respect to
constructing a user s dynamic file catalog. When a user
enters the distributed file environment, if a particular
site 1is inaccessible, a background RSEXEC process will
attempt t¢ acquire file information from the site
throughout the course of the session. In addition,
RSEXEC exhibits persistence when a "user profile" |is
modified in a way that requires verification of
information by a particular remote host. In this case
the npersistence extends across individual user sessions
until the remote host becomes available or the user acts
to "cancel" the mudification,

Finally, critical services and facilities require constant
monitoring. The RSEXEC servers, in effect, mcnitor one another
by exchanging stacus information, If a particular server
Drocess misses several consecutive status reports, it is
declared non-operational by tne other servers until it resumes
repor-ing on a regular basis, Each RSEXEC server also
continuously monitors its c¢wn behavior. Each server 1is in
reality implemented by a collection of cooperating processes.
One process has the respunsibility of monitoring the others.
Each critical nrocess, such as the one responsible for
collecting status information from other remote servers, is
expected to "reoort in" periodically. If a process fails to do
s¢, the monitoring process assumes that it has malfunctioned and
acts to restart it. 1In an early implementation of the RSEXEZC
system, whenever a narticular server process whose services were
required was discovered to be non-operative, an ovperational

server would actively and persistently att2mpt to restart the

non-operative one. We have found that active monitoring of this

34

Wmlm!lmmll"lllrl\lmm-m\n\:wﬂl\w“mv\mmnv

Report No. 2976 Rolt Beranek and Newman Inc.
Volume III

type is necessary when high reliability is a goal.

3.2.3 Dynamic Resource Selection and Job Relocation

In a distributed environment it is useful to think of a

user's "job" as the dynamically varying interconnection of
resources used to satisfy the user’s requests. One of the tasks

of a distributed system is to select and configure the resources

which comprise the user’s job.

We have already discussed elsewhere two aspects of this

task:

. Cataloging: maintenance of information where resources
appropriate to satisfy user requirements are located.

. Selection: choosing a particular resource for a user’s
job.

With regard to the selection function, we have made use of

two techniques:

. Maintain up to date status information about the wvariocus
network machines and wuse it to select the machine bhest
suited for a task. RSEXEC server processes exchange
status information for this purpose. Although automatic
job assignment has not yet been implemented, the status
information is currently available to users who may use
it to manually select a machine and 1is, 1in principle,

available to programs for automatic resourc selection
purposes.,

. Dispatch "requests for service" to the appropriate
machines, allowing them to r »spond with status
information if they choose, and then make a selection on
the basis of those machines which have responded as
willing to accept a new task. This is the technigue TIPs
use when it is necessary to select a responsive RSEXEC or
to select an accounting data collection server.

35

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

The first technique involves a fixed overhead - that of
exchanging and maintaining the resource stacus information -
which is independent of the frequency of resource selection.
For the second technique, the overhead is incurred on a per
transaction basis and 1is, therefore, ovroportional to the
frequency of selection. Although the frequency of service
rejquests is relatively high in the TIPSER-RSEXEC case, the
second technique is used because it does not require the TIP to
allocate limited (storage) resources for maintaining status
information. Another basic difference in these two technigues
is that the second allows the constituent machines to retain a
higher degree of autonomy in managing their own resources. Each
machine can choose to respond or not to particular requests for

service.

At present it is not altogether clear what information
constitutes a useful basis for job assignment. 1In order to be
able to cunfigure a computation in an efficient manner it is
inportant to extract frem the user as much information as
possible regarding the programs he expects to use, the data he
intends to access, and the manner in which the programs access
the data. Furthermore, it is not clear what a-priori status
information 1is uceful for predicting how well a particular
nachine will perform a given task. We btelieve further wock

needs to be done in this area.

The ability to dynamically relocate & job (or parts of one,

36

o

[

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

such as an open file) is desirable for several reasons.

. Network conditions may have changed sufficiently since
the Jjob was assigned so that it would be more effective
to use another host (e.g., a host has just been
restarted after a crash and it is lightly loaded).

. The job has run long enovgh to give the system a better
picture of the job’s requirements and another host would
be more effective.

. The host the job is running on is about to go down and
the system would like to recover as much work as
possible. We note here that the multiple data
collection components of the TIP accounting system
(running on TENEX hosts) are capable of detecting
scheduled down times and can notify the TIPs to cease
using a particular component shortly before its host
machine is taken down.

Qur experience with CREEPER and McPROSS has demonstrated
that the details of moving a job (an executing process and its
envircrnment) from one host to another are relatively
straightforward. The question that needs to be addressed in
this area is when and und:r what circumstances should job

relocation occur. The issues here are:

. For what type of job i3 relocation appropriate?

. How often should the computational situation be
reassessed with respect to possible relocation?

. What are sufficient criteria for relocating a job?
. What are the tradeoffs between the costs of reconfiguring

a job and those of allowing it to complete with a less
than optimal configuration?

37

Report No. 2976 Bolt Beranek and Newman Inc.
Volume II1

3.2.4 Security and Privacy in Distributed Systems

In many cases the goals of network transparency and ease of
access conflict with those of security and privacy. Each
security or access check places a barrier between the user (or
his program) and the desired resource. Organizational goals
must ultimately dictate the level of security necessary for the
various resources which require protection. Thus, it is a good
strategy to develop access control techniques which allow

flexibility in their application.

NDur work has indicated the need for access controls above
and beyond those supovorted by the constituent host machines.
The BBN network group has recently implemented an access control
mechanism within the subnetwork which allows the set of network
hosts with which a wparticular host can communicate to be
administratively set, We have implemented access control for
the predominant network access machine (TIP), apart from the
access control of any particular host. In this rega:d we have
encountered one of the problems in providing security and access
control unigue to a network environment. Most users find it
unacceptable to be required first manually to gain access to the
network, and then manually to obtain access to the cite they

wish to use.

In this area processes can be employed to perform the
necessary access procedures on behalf of users. For example,

the RSEXEC acts in this way to provide the necessary . access

38

[T

Revort No. 2976 Bolt Beranek and Newman Inc.
Volume 1I1I

control parameters in order to establish user access to remote
files. At the service machine, "proxy login", as exemplified by
the TENEX fork group facility, represents a mechanism for
establishing the correct access control environment fer

servicing such remote processes acting on behalf of users.

We believe that implementation of a uniform user
identification and authentication scheme for the network as a
whole would serve to simplify the task of making multiple access

control checks transpareat to users.

However, such a step still leaves many 1issues unresolved.
After a wuser has been identified to the satisfaction of one
network machine, when he or his program needs access to another
machine, his identity for access control purposes can be passed
along to the new machine. The security vroblem is then in the
hands of the new machine, which must decide whether or not it
can "trust" the calling machine to provide reliable (unforged)
information. That is, after the new machine knows who the user
claims to bhe, how should it decide to wuse mechanisms such as

proxy login to create an access control envircnment?

The traditional approach is for the new machine to require
the wuser’ s process to supply a password before allowing further
access. In a distributed environment, there are a number of
aroblems associated with this approach. A single password which
is sufficient to obtain access to all services is desirable for

simplicity. However, 1if one of the machines providing service

39

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

is untrustworthy or non-secure, the privacy of a user’s data at
all machines may be compromised. Use of a separate password for
each site solves this oroblem, at the expense of added
complexity, by insuring that the password for a site is valid
only for access to that site. However, there are still security
problems with this approach. Unless the user is required to
suoply a password himself each time one is needed (which is what
we are trying to avoid), processes acting on his behalf must be
able to access the password. This implies that the various
nasswords must be stored where they are accessible to such
processes but yet protected from unauthorized access by other
processes. Within the RSEXEC system user passwords are
protected by encryption as well as by the standard TENEX
nrotection mechanisms, To wuse the RSEXEC system from any
network site, a user need only specify his name and RSEXEC
password, The RSEXEC vpassword is used by RSEXEC as a key for
decrynting (and encrypting prior to storage) thne individual user
nasswords necessary to access resources at other sites. Because
the RSEXEC password is used as a key for decryption it need not
(and should not) be stored anywhere. To validate the RSEXEC
rassword, RSEXEC uses it to decrypt and verify the (stored and

encrypted) user password for the local system.

Because of the difficulties of insuring the o»rivacy of
nasswords, we believe that the approach of sunmplying a password
each time access to a resource is required is 1inadequate in a

distributed system. We believe that the following alternative

40

[r——

[o

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

approach has promise. A set of (secure) sites is designated as
authentication sites. When a wuser initially accesses the
network, an authentication process running at such a site
(selected, for example, by a broadcast ICP) is assigned to him.
In order to gain continued access to the network and its
resources, he must supply a valid name and password. If he is
successful, the authenticator process remains as part of his job
for the duration of the session, and is called upon when it is

necessary to gain access to various network resources.

Gaining access to a resource is a three party procedure.
It involves the wuser’s authenticator process, the process
attempting to gain the access on behalf of the user (the user
process) and the process responsible for controlling access to
the particular resource. The trusted authenticator process
supplies the user’s identity (i.e., his network wide uniaue ID
code) to the resource manager and guarantees its authenticity.
This enables the resource manager to establish an access control
anvironment within which to provide service for the user
orocess. We note that the interaction between the authenticator
process and the resource manager need not include the wuser’s

password since the authenticator is a "trusted" process.
The security of this aporoach depends upon:

. The security of the authentication sites.

In this regard we note that the noninvertible password
transformation scheme suggested by Purdy* can be used to
increase the security of passwords which must be stored
at the authentication sites. A transformation of each

41

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

password is stored rather than the password itself. When
a user supplies a password, the transformation is applied
to it, and the result compared with the stored
transformation. The security of this scheme derives from
the fact that the transformation is non-invertible. The
TIP authentication system makes use of this scheme to
protect user passwords.

The ability of the various resource managing processes to
be confident that the process they are communicating with
is, in fact, 2 valid authenticator process.

Within the ARPANET environment the subnetwork provides
reliably secure identification of the host location of a
remote process. Thus, the rescurce manager can reliably
determine whether the process 1is at an authentication
site. We have designed a mechanism for reliably
ascertaining the identity of a process within a host
which relies upon a host’s ability to provide controlled
access to special host communication ports [l1].

The details of the three party protocol necessary to support

thiz authentication procedure need to he worked out. We believe

that the existing TIPSER-RSEXEC authenticator is an ideal

context for doing this.

3.2.5 Management of Distributed Data Bases

Our experience indicates that data tends to be distributed

for a variety of reasons.

. To insure reliability.

The accessibility of critical data can be increased by
redundantly maintaining it, RSEXEC multi-image files and
the TIP user ID data base are examples of data bases
which are redundantly distributed to achieve highly
reliable access.

* Purdy, G.B., "A High Security Log-in Procedure,"
Communications of the ACM, Vol. 17, No. 8, August 1974,

42

Report No. 2976 Bolt Beranek and Newman Inc,
Volume III
. To insure efficiency of access.
Data can be more guickly and efficiently accessed if it
is "near" the accessing process. A copy of the TIP user
ID data base is maintained at each of the TIPSER-RSEXEC
sites to insure rapid, efficient access. (Reliability
considerations dictate that this data base be redundantly
maintained, and efficiency considerations dictate that a
copy be maintained at each authentication site.)

. The data is generated or collected in a way that causes
it to be naturally distributed.

The data base represented by the collection of
incremental TIP accounting files is an example of a data
base generated in this way. Individual data items are
stored at the data collection site best prepared to
handle them at the time they were generated by some TIP.
The RSEXEC distributed file system is another example of
a data base of this sort. Unless otherwise specified,
files tena to be stored at the site where the process
{e.g., text editor) that creates them happens to be
running.

We have been concerned with two fundamentally different
types of distributed data bases. The first is one which is
maintained "identicallY" at a number of sites. The second type
consists of distributed, non-overlapping segments; that is, the
data base is a collection of segments, each of which 1is singly
maintained at a (2cssibly) different location. We recognize
that these two typoes :opresent extremes and that applications
may call for "intermediate" types - for example, a data base

comprised of a collection of segments some, but not all, of

which are redundantly maintained.

The empnhasis of our work with the first type of data base
has heen to develop technigues for consistently and

automatically maintaining the redundant copies, These

43

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

techniques and the situations for which they are applicable are

described below.

. Each RSEXEC server process maintains a small data base
which contains status information about other si*es.
Bach such data base can be regarded as a copy of the
"true" site status information. Each site takes (almost)
total responsibility for maintaining its copy of this
relatively simple data base by actively acquiring the new
data necessary to keep its copy up to date. Occasionally
the set of sites for which status information is to be
maintained changes due to the addition, removal, or
change of network address of a site,. When these
situations occur, systems personnel notify one of the
server processes which takes responsibility for
propagating the change to all other servers. It does
this by including site modification update information
with the status information it normally transmits to each
server until that server acknowledges receipt of it.

. RSEXEC maintains multi-image files for users in a
semi-automatic way. When a user modifies a multi-image
file, the systim acts to 1incorporate the modification
into all images. However, if some 1mages are
inaccessipble at the time, RSEXEC merely informs the user
and the system takes no further responsibility for
completing the update of those imaqges.

. The TIPSER-RSEXEC system maintains a copy of the TIP news
file at each of tne TIPSER-RSEXEC sites. Updates to the
news file are limited to addition of new news items. The
system 21llows additions to the data base to be initiated
at any TIPSER-RSEXEC site and guarantees that all such
updates are transmitted to and are incorporated into all
copies of th= data base.

. The TIP login system reguires that the wuser ID/password
data base be maintained in a consistent manner at all
TIPSER-RSEXEC sites. Each copy of this data base is a
collection of nutually independent user entries.
Allowable updates to this data hase include the addition,
modification, and removal of individual user entries. We
have designed (but not yet fully implemented) a data base
management techniaque which allows updates to he initiated
at anv site and guarantees that they are consistently
incorporated into all copies of the data base. By
"consistently incorporated" we mean thact if all updating
activity were to cease, all copies of the data base would
eventually be identical.

44

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

The techniques used to maintain the NET news and the user

ID data bases each consist of two independent parts.

A reliable, data independent update transmission and
distribution mechanism.

Both techniques use the same transmission mechanism.
That mechanism uses persistent processes at the update
entry sites to guarantee that all updates are delivered
to all data base sites (once, and only once).

A data dependent update action procedure.

This procedure is activated at the data base sites when
update commands arrive. For the NET news, the update
procedure is a relatively simple one in which updates are
appended to the data base as they arrive. For the user
ID data base a more sophisticated update procedure is
required. The nature of the data base and the operations
permitted on it are such that recent updates to an entry
override (rather than interact with) older updates. For
example, when a user password 1is changed, the o0ld
password 1is simply replaced with the new one; when a
user ‘s access to a particular TIP is revoked, the list of
TIPS he has access to is replaced by a new list with one
less element. The undate procedure depends wupon the
ability of each site to regenerate a sufficient portion
of the time sequence of update events to determine how a
particular update command is to be incorporated into the
data base. When updates are initiated they are time
stamped. Furthermore, each entry (and modifiable
subfield) in the data base retains the time stamp of the
update whick resulted in its current value. When an
update command (with the exception of a deletion command)
arrives at a data base site, the command can be
incorporated or rejected simply by comparing its time
stamp with that of the data base entry it refers to.
Deletion and creation require slightly special treatment.
For example, 1if create and delete commnands for an entry
are initiated at separate sites, the command which
creates the entry could arrive at a third site after the
one which deletes it, due to network partitioning or
system down timesg,. To properly handle such cases the
data base update orocedure must defer "final" action on a
jelete command until the site is certain that all update
commands for the entry which were initiated prior to the
delete have arrived. Only at that point is it safe to
remove the entry from the data base.

45

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

This data base update technigue (described more fully in
[24]) depends upon time stamps to sequence data base update
commands. We believe the use of time stamps is fundamental to
the management of distributed data bases in the presence of
distributed updating. Although the individual time-of-day
clocks at sites where updates can originate are not currently
synchronized, we believe they are (barely) adequate for
generating time stamps in our application. However, we believe
that techniques for synchronizing time-of-day clocks on network
machines should be developed such that uniform time stamps can

be obtained at all sites,

Our experience with segmented distributed data bases has
been 1in the context of the TIP accounting system. We have been
concerned primarily with questions of data base organization and
convenient Jdata access, For this particular application the
data base issues are:

. cataloging: it is clearly important to know where the
various data segments reside so that they can be
accessed,

. insuring that no duplicate entries occur. Because the
entries contain accounting information, it is critical
that there 1is no redundancy. The data collection
protocol insures that no duplicate data entries occur.

. insuring that each data base entry is processed exactly
once when accounting summaries are produced. We note

that time stamping appears to be fundamental to
guaranteeing "once only" processing.

46

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

3.2.6 Network Protocols

As discussed elsewhere, we believe that achieving a
satisfactory distributed «computingy environment requires that
processes acting on behalf of users take tesponsibility for the
many explicit human interactions currently required to deal with
the network. The existing ARPANET function oriented protocols
and the software that imoplements them are, in many ways,
inadequate in this regard because they were designed with a
great deal of human intervention in mind. As we have discovered
concepts and functions absent from the standard protocols, we
have auamented the protocols and in some cases designed new ones

in order to support our experimental research work.

We have developed and imnlemented nrotocol concepts in the

following areas.

. Multi-party interactions.

Situations freguently arise which require the interaction
of more than two processes. A simple example of such a
situation (which occurs often in the RSEXEC context) |is
one inr which a nrocess at one site finds it necessary to
move a file from a second to a third site. A more
complex example 1is the three party interaction that
occurs when one process acts to authenticate another (see
Section 3.2.4). The RSEXEC protocol 1s designed to
support such multi-party interactions. Furthermore, we
have been responsible for extensions to the standard File
Transfer Protocol which enables it to support multi-varty
interactions [14,17].

. Treatment of communication paths as objects.

Communication paths are the binding matter for
distributed computations. It is important that processes
be able to manipulate them as any other kind of object.
The reconnection protocol, in effect, allows a process to
reconfigure a computation by modifying the structure of

47

Report No. 2976 Bolt Beranek and Newman Inc.
Volume TII

/

the computation’s communication paths. As an aside, we
believe that reconnection is a fundamental notion which
belongs at the communication oriented host-host protocol
level rather than at the function oriented TELNET
orotocol level where it currently resides. The RSEXEC
protocol allows processes to allocate and manipulate
communication paths which are used for 4ata transfer and,
in addition, to terminate communication paths at devices
such as termirals 1in order to accomplish cross network
terminal linking. In addition, we have designed a
mechanism for signature authentication of network mail
which relies upon a host’s ability to treat communication
paths as orotected obiects.

Exchange of Host status information.

Access to host status information is necessary to make
jub assignment decisions (manually or automatically by
program). The RSEXEC server programs maintain up-to-date
host status information which is avacilable to both user
and orograms at each RSEXEC site, The status exchange
function is supported by a specifically designed
protocol, The protocol includes a mechanism which
enables a server designated as "master" to control the
sites for which other servers maintain status
information. Although the ©orotocol currently supports
the exchange of identical status information amona all
sites, it would be straightforward to extend the protocol
to suoport exchanygye of different status data amnong
different jroups of sites,

Broadcast requests for service.

As discussed in Section 3.2.2, the use of redundancy to
achieve reliability reanires protocols and strategies for
accessing and selecting components. The TIPSER-RSEXEC
broadcast ICP and the analogous broadcast protocol used
in the TIP accounting system were developed to satisfy
these reqguirements. As discussed in Section 3.2.1, the
broadcast ICP mechanism 2lso supports site independent
access to the RSEXEC service.

Reliable Data Collection.

In order t> support the TIP accour 'ing system, a protocol
was required which TIPs could use to reliably transmit
accounting dats they accumulate tc a data collection site
for storage 1n the TIP accounting data base for later
prccessing. To ¢ isfy that requirement, we developed a
general purpose data collection protocol [18]). While
motivated by TIP accc 'ting requirements, the protocol is
generally applicable in situations involving multiple
data sources and redundantly implemented data collection

48

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

servers.

In a number of situations the existing ARPANET host-host
protocol has forced difficult or clumsy implementation to
support functions which are conceptually quite simple. These
difficulties are largely due to the complexity of the protocol.
The situations which pose such difficulties can be characterized

as involving brief, transaction oriented interactions.*

The exchange of host status information by RSEXEC server
processes and the TIPSER-RSEXEC broadcast ICP are good examples
of such situations. Both examples require the transmission of a
short message from a proc:ss (describing its status or making a
request) to one 0. more remote oprocesses. The standard
host-host protocol requires that the process vnarticinate in an
elaborate exchange of protocol commands, carefully remembering
the state of each exchange, 1in order to transmit its simple
message. For large hosts this exchange is wasteful. For small
hosts it 1is often impnossible to correctly implement. 1In this
regard, we note that we designed the data collection protocol
used in the TIP accounting system to be separate from (and exist
in parallel with) the host-host oprotocol 1in order to make

implementation feasible for (memory) resource limited TIPs.

* Droblems associated with this protozol’s lack of robustness
are discussed in another volume of in this report; see also
(21,23]).

49

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

3.2.7 Exploiting the Server Process Concept

As noted in Section 3.1.5, "demon" server processes running
on host machines provide a wide range of network services to
remote users. These processes are always present to act in

response to reaguests from remote users.

Currently, these server processes play a largely passive
role in the sense that they act only when specifically requested
to do so. We believe that a number of important capahilities
can be realized by enlarging the role of these omni-present
server processes to include more active participation in system
operation. The following are examples of areas in which an
extension of the server process concept could be profitably

exploited.

. Network resource management.

The use of RSEXEC server processes to actively collect
host status information represents, in a rudimentary
form, 13 very powerful tool for the management of
distributed resources [20). This basic capability could
be refined to implement a comprehensive facility for real
time and long term monitoring of the loading and
utilization of large scale network resources. Such a
facility would result 1in more accurate information on,
and ultimately better control of, how the resources are
really used with a consegu-nt potential for Jollar
savings.

. Component monitoring and testing for system reliability.

Section 3.2,2 describes how ecach RSEXEC server monitors
its own behavior as well as that of others in order to
increase system reliability. Use of this technique could
be expanded by giving network server processes the
additional responsinility of reqularly exercising
critical hardware and software components. Whenever one
of these critical components is seen to fail, the server
process could signal systems personnel to repair the

50

[e

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

st

failed component.
. Remote system performance monitoring and tuning.

Operating system designers are often faced with the
requirement that their software run of a variety of
hardware configurations under a variety of user 1loads.
Faced with such requirements, designers often impiement
flexible resource management mechanisms which can be
tuned to be optimal for particular configquration and locad
situations. Unfortunately, the designers rarely have
access to more than a single system configuration. The
result ‘- often suboptimal performance for Jissimilar
confi~7u-ivions or loads. The experts simply do not have
the «rn.. > zunity to tune their carefully designed resource
manager~nt mechanisms for each configuration. Regularly
communicating server processes provide the basis for a
power ful tool for remote performance monitoring and
tuning. For example, the status exchanging function of
the RSEXEC server prccesses could be extended to allow
TENEX systems personnel to remotely enable and disable
the transmission of selected system meters in order to
monitor the performance of a particular network TENEX. A
further extension could make it possible to vary remotely
system resource management parameters in order to
experimentally determine optimal cperating points for the
various configurations and loads found in the network.

. Distribution and maintenance of software.

The network has facilitated the distrinution and
maintenance of software svystems. dowever, software
distribution and installation remains a 1largely maiual
nrocedure in which the network replaces the use of tapes
and mail as data transfer media. Distributing a new
release of the RSEXEC system via the network typically
requires several days to complete. The procedure itself
is not inherently complex. However, it requires
attention to details to insure that everything is done in
the correct order; all sites must get new copies of the
software, and the installation itself must be coordinated
to insure that the total system always coasists of a
compatible set of software modules. Always rresent,
communicating server processes, such as the RSEXEC
servers, represent a potential for automating much of the
software distribution and installation prtocedure. For
example, the terver orocess at the Jdistribution source
could be given the responsibility of transmitting new
software to servers at remote sites which would be
responsible for implementing the installation nrocedure
at their sites,

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

3.3 Distributed System Design Issues

The previous section discussed 1in some detail various
distributed computation problems, and techniques and approaches
we have found useful for a&addressing them. The particular
problems and apnroaches discussed are representative of more
general distributed system design issues, This section
categorizes these more general 1issues 1in a way that we have

found to be userul.

3.3.1 Naming and Binding.

Coupling multinle hosts results in a name space that spans
many machines. B8y "name space" we mean the relation between the
name of an entity and 1its location(s) within the network.
Examples of entities are peonle, mailboxes, services, processes,
data bases and communication paths. An effective computing
environment reqgquires that the name space he managed in a way
that supports location independent reference to these entities.
The machines must work together to locate and establish linkages
with entities as necessary to satisfy user requests. The name
space manajemnent ©nroblem is complicated by the fact that some
entities may Ye redundantly available at several locations while
others may not and may therefore, from ¢time ¢to time, be

inaccessible.

52

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

3.3.2 Robustness and Reliability.

A consequence of providing computing services via coupled
operation of network machines is that, in general, successful
tas: completion requives that several machines function
correctly. The essence of the reliability problem 1is to
acknowledge that individual machines do fail and to organize the
collection of machines to be insensitive to individual maciine
failure. To be robust, a collection of machines must be
programmed to detect and recover from non-fatal errors (to
restart and resynchronize), to be npersistent (to insure that
important tasks eventually get done), and to anticipate and
prepare for possible failures (by multiplexing critical services
among several machines and backing up critical data on several
machines). It is also desirable to be able to move to another
machine tasks that becomz "trapred" 1in a machine that has
failed; the extent to which this 1is feasible 1is wunclear and

requires further investigation.

1.3.3 Economics and Management.

Assignment and distribution of function among a collection
of machines is a question that largely involves trading off the
cost of computation against that of communication. There seem
to be two separate aspects to the problem. There is a static
aspect concerned with assignment of classes of functions to the

machines best suited ¢to perform them. For some functions the

53

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

assignment may be clear: in the ARPA network the management of
multi-billion bit data bases is the job of machines such as the
Datacomputer (s); the solution of large simultaneous differential
equations 1is the job of the ILLIAC. For other functions, such
as executive control functions, the assignment 1is 1less clear.
The second aspect of function assignment 1is & dynamic one
concerned with the selection and management of resources
required to satisfy user requests. For example, when a service
(e.g., the network message service, the TENEX wvirtual machine
service) is available on more than a single machine, the problem
is to select the machine expected to be most effective. After
the objects (e.g., files, processes) required for a particular
task ar~ located, the problem is to configure them so that the

task can be performed in an efficient manner.

3.3.4 Authenticity and Validity of Information.

The performance of a system is dependent upon the accuracy,
authenticity, and timeliness of information available to it. 1In
a distribhuted system, decisions at all levels must he based on
information from a variety of sources, not all of which are
local to the decision making entit-. Parts of the system
responsihble for such aspects as insuring robust behavior,
achieving effective dynamic resource management, insuring user
data security, and enforcing resource access controls must act
upon information for which they have neither Jdirect (local)

access nor direct control, The novroblem for the distributed

54

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III
system designer is to determine the extent to which sources are

to be trusted with respect to the information they provide.

3.3.5 User Interface.

Attention to the areas described above will result in
concepts and mechanisms which will form the technical hasis for
the development of a reliable, secure, and cost effective
distributed computing system. How well human and process users
will be able to deal with such a system will depend upon the
extent and ease with which control can be exerted over such
mechanisms. For example, initiation of what is believed to be a
simple task could easily trigger a large amount of activity in a
number of machines. To enable a user to match the expenditure
of resources required to accomplish a task with the importance
nlaced on its completion, means must be available to define the
task's scope and extent, including the persistence with which

the system should act to complete it,

Distributed computing systems can make feasible new
capabilitiez supported directly by multi-computer application
programs, To realize that potential, the system must include
tools that facilitate the creation end debugging of
nulti-computer programs and it must provide users with
convenient means for starting, controlling, and stopping such

programs,

55

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

3.4 Areas Requiring Additional Research

3.4.1 Distributed Data Bases.

Multi-computer systems introduce a new class of data base
management oroblems which result from the distributed nature of
the data. These problems occur at all levels of system design
and implementation, ranging from low level system primitives to
function oriented application software. Section 3.2.5 describes
some technicues we have developed for managing special types of

distributed data bases.

We believe that we have made progress 1in this area.
However, we feel that intensive research is required to devzalop
a coherent methodolnqgy for the design, implementation, and
management of distributed data hases. The methodolngy resulting
from this research should include:

. Technigues for evaluating alternztives for data base
organization in terms of cost, verformance, and
reliability requirements,

. Mechanisms for locating and selecting, 1in the case of
redundancy, data items in response to data base access

requests.

. Update control techniaues to insure the integrity and
consistency of distributed data bases,

. Procedures for authentication and data base access
control.

The joal »f this research effort should be to produce a

viable combhinatinon of wmethodology, princinles, and operating

56

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

procedures to enable system builders to make rational design and
implementation decisions regarding the placement, management and

access of data in a distributed environment.

3.4.2 Persistent Processes.

Section 3.2.2 discusses persistence as a technique for
achieving reliable task completion in a distributed 2nvironment.
To date, the use of persistent processes has been limited to

relatively simple situations.

We believe that progress in the following areas would
facilitate more widespread use of this potentially powerful

approach for achieving reliability.

. Lanqguages for persistent process task specification.

At oresent, in all cases of which we are aware,
persistence is accomplished by special processes that are
programmed to perform a specific task. A new special
nurpose process must be programmed each time a situation
requiring persistence arises. A more general approach
would be to develop a language for defining task programs
for general purpose persistent processes., Part of a task
nrogram would include the degree of persistence reguired
(i.e., how long or often the process should try before it
gJives up) and the actions to be taken when errors occur.
When persistence 1is required to complete a user’s
reguest, a "task request program" would be compiled and
left for execution by a general purpose persistent
process. We note that a task specification language of
this sort could be the basis for more uniform system
implementations. Since the language can, in principle,
te used to define foreground tasks as well as persistent
background tasks, a system could be structured that
compiles user and program requests into task request
programs which are placed into immediate execution.
Whenever such a program cannot b2 successfully completed
because of the 1inability to access certain network
resources, the system can either abort the task or leave

57

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

the already compiled task request program for execution
by a persistent process.

. Authentication procedures for persistent processes.

For many applications security considerations require
that a host perform certain actions only after the
requesting entity has been authenticated. While the host
on which a persistent process is running may consider the
process to be properly authenticated, other hosts whose
cooperation 1is readuired to complete a task may not. It
is unclear how to authenticate such a process 1in the
absence of a wuser without compromising the security of
the user ‘s authentication information (e.g., password).
We believe a fundamentally new approach to authentication
is required to permit more widespread application of
persistent processes. In this regard, we believe that
the three party approach to authentication described in
Section 3.2.4 may be an answer. When persistence is
required, the authenticator process that is part of the
user's job could remain after the job itself 1is
"terminated" in order to be available for authenticating
persistent Dprocesses. The precise details of how this
would be accomplished need to be worked out, and then the
security of the procedure needs to be analyzed.

3.4.3 Hot Switchover.

The use of organized redundancy to achieve reliability 1is
discussed in Section 3.2.2. The techniques described there
involve the selacticn of a particular component from a pool of
functionally equivalent ones to perform a task at the time the

task is initiated.

The use of redundancy can, at least 1in princinle, be
extended to allow the dynamic replacement of a component that
fails while it 1is 1in wuse by one which 1is functionally
eguivalent. For example, it should be possible to switch

transparently from using one image of a multi-image data base to

58

Report No. 2976 Bolt Beranek and Newman Inc,
Volume III

another if the image originally selected becomes inaccessible.
Similarly, tasks trapped in a machine that fails can, in

principle, be moved to another eaquivalent machine.

The desirability of such a "hot switchover" capability is
clear: computational services can be made extremely robust
with respect to the failure, 1loss, or destruction of the
individual comput -r systems which provide the service. Tle

extent to which the capability is practically achievable

requires investigation.

One w.y to think of hot switchover 1is to think of a
particular service as being prcvided by a single active process
together with multiple redundant inactive "images" which can be
activated whenever necessary. The orch.2m 1is to Keep the
inactive images synchronized with the active process so that one
2f tnem can be activated 1if the active process fails. This
synchronization must, of course, be accomplished without
teauiring that each image process duplicate the entire
computation, The issues to be investigated here are:

. What constitutes synchronization and its inactive

images? What state information has to be exchanged, how
often does it need to be exchanged, and what 1is the

protocol for exchanging it?

. How does the "system" decide when the active process has
failed?

. How 1is an inactive process activated? How Iis one
selected? How does it use the state infcrmation it has
which may be out of date to "catch up" to the current
computational state?

59

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

. After a switchover occurs, how are the other inactive
processes, including the old active procecs (when and if
it recovers), to be resynchronized?

. For what classes of computation 1is this a viable
approach?

We recognize that the hot switchover concept has been used
in the past to achieve reliability in very specific application
areas. The thrust of the research suggested here is to develop
general mechanisms for accomplishing hot switchover in order to

enlarge the range of situations for which it is applicable.

We note that the techniques and protoccls developed for hot
switchover are potentially appiicable for load levelling and
sharing. At the points where synchronization of the currently
active process and its images occurs, an inactive image could be

activated to redistribute the computational load.

3.4.4 Efficient Job Configuration.

The technigues we have developed to achieve network
transparency and uniform resource accessibility, form much of
the basis for a "network operating system" within which
distributed computations work «correctly regardless of the
precise configuration of the various data and process

components.

In some situations, the comnutational requirements may be

sufficiently constrained so that only a single configuration is

60

i
Ll

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

possible for a job. However, in many situations, a number of
alternative confiqurations may be possible due to the functional
equivalence of redundant comprnents (e.q., data files,
processors). For some situations any configuration may be
adequate. However, for many situations performance requirements
(e.g., responsiveness, cost) may make it necessary to carefully

choose an optimal configuration from the alternatives.

We note that the simplistic approach of configuring a job
from the most responsive individual components will not
necessarily guarantee a total job confiquration that is optimal
because it fails to take 1into account the requirement for

interactions among the components.

It is easy to wunderstand i.: a qualitative manner, the
tradeoffs between communicatioc: and computation overheads for
various configuration alternati-es. For example, groups of
entities strongly coupled by freguent interactions {process to
process, vrocess to file) should, whenever vossible, reside in
the same host to minimize communication delay. However, at
present, there is no ocuaantitative methodology for evaluating

alternative job configurations in terms of these tradeoffs.

Further research is required here to deavelop guantitative
measures for configuration effectiveness. These measuvres would
form the basis for network operating system procedures that
select job configurations which are optimal aicng various

oerformance dimensions.

61

Report No. 2976 Rolt Beranek and Newman Inc.
Volume III

3.5 Annotated Biblicgranuy

This section is an annotated L. ‘iography of papers and
notes we have written as vart of our research in distributed

computation,

1. Johnson, P.R., R.E. Scnantz and R.H. Thomas, "Interprocess
Communication to Support Distributed Computing,”
submitted to the ACM SIGCOMM-SIGOPS Interface Meeting
on Interprocess Comamunication, March 1975.

This paper focuses on the impact which distributed
computing systems have on the interproc+ss communicatior
facilities used to suppor* them. Based on tne experience o
creating distributed systems, three different tyres of machine
cooperation are described and communication facilities to couple
the machine in each case are discussed. A number of other IPC
issues related to distributed systems are raised.

2. Schantz, R.,E., (with F. Akkoyunlu and A, Bernstein),
"Interirocess Jommunication Facilities for Network
Overating Systems," IEEE COMPUTER, Volume 7, Humber b,
June 1974, »np. 46-55,

This vaper describes three aoproaches to the problem of
creating an interprocess communication facility for a network
environinent. The three approaches all exhibit the property that
a single mechanism is used for both inter-machine and
irtra machine communication. The IPC facilities are compared
with rec ct to a number of factors relevant to network
operation.

3. Thomas. R.H, "A Resource 3haring Executive for the
ARPANET," AFIPS Conference Proceedings, Vol. 42, June
1973, »n. 359-367.

This paper descrihes the 1initial implementation of the
RSEXEC, a distributed, execuvtive-iike system that creates an
environment which facilitates tne sharing of resources among
TENEX hnosts on the ARPANET. The first half of the paper
develons the user’s view of the distributed executive, which
includes a distributed file system. The second half deals with
basic issues in implementing a distributed operating system.

4. Thomas, R.H,, "JSYS Traps - A TENEX Mechanism for
Encapsulation of User Processes," submitted to the
1975 National Computer Conference, June 1975,

62

S

L

Report No. 2976 Bolt Beranek and Newman Inc.
Volume 111

The JSYS Trap mechanism 1is an extension to the TENEX
cperating system which can be usef to enlargje, restrict or
completely redefine the standard virtual machine provided by
TENEX. Although it was motivated by the distributed computation
work, trapping is a generally useful operating system function.
This paper describes the trapping mechanism and records design
and implementation dec‘sions that were made in adding it to the
existing TENEX operating system.

5. Thomas, R.H., "ARPANET TENEX ~- A Step Toward a Network
Operating System," reprint of presentation at 1974
National Computer Conference and Exposition Panel
Session, May 1974, Chicago, Illinois.

This note describes some of the features of the ARPANET
TENEX implementation which make it well suited for computer
networking. It nrtes that network communication is through the
file system, and4 explains the benefits of such an approach. It
also shows how the process hierarchy, interprocess communication
and system call trapping facilities are used to wrovide service
for remote users and an exranded execution environment for local
programs.

6. Thomas, R.H. and D.A. Henderson, "McRGSS-A Multi-Computer
Programming System," AFIPS Conference Proceedings,
Vol. 40, June 1972, op. 281-293.

This paoner describes an exverimental distributed
orogramming systen which makes it possible to create
multi-comouter simulation programs and to run them on computers
connected by the ARPANET. It was one of the first working
examples of a distributed system, and served to identify many of
the oroblems which would be encountered in more general systems.

7. Mader, E.R., "Network ©Debuaging Protocol," ARPA Network
working Group RFC #643, July 1974.

This document broposes a protocol to support a PDP-11
network bootstrap service and a cross-network debugger. The
protocol is designed for debugging processes running under an
operating system which can perform such debugging tasks as
placing and removing breakpoints, and single instruction
stepping.

2. Mader, E.R., W.W. Plummer and R.S. Tomlinson, "A Protocol
Experiment,"” ARPA Network Working Group RFC #7090,
August 1974.

This RFC describes an experiment in which 2 new host-host
orotocol (Kahn & Cerf, INWG Note #39) was used to drive the BBN
computer center line orinter which is attached to an ARPANET
mini-host. Protocol extensions and modifirations which were
needed in the implementation are discussed, and other aspects of

63

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

the protocol which still require investigatic are noted. The
RFC alsc derives equations which model the dat transfer rate
for the new protocol.

9. Schantz, R.E., "A Note on Reconnection Protocol," ARPA
Network Working Group RFC #671, December 1974.

This note documents the experience gained from implementing
a modified, experimental version of the Telnet reconnection
protocol option within the context of the RSEXEC. The first
section defines a modified reconnection protocol. The second
section discusses general network implementation details, while
the final section describes aspects of the TENEX/RSEXEC
implementation.

18, Schantz, R.E., "A Multi-Site Data Collection Facility,"
ARPA Netwo. Working Group RFC #672, December 1974.

This RFC reproduces a document prepared during the design
and imolementation of the oprotocols for the TIP-TENEX integrated
system for handling TIP accounting. The first section discusses
the general problem of orotocols for utilizing multiple servers
with respect to reliability and data duplication. The second
section details the protocol as applied to TIP accernting data
collection.

11. Thoma2s, R.H4., "On the Problem of Signature Authentication
for Network Mail," ARPA Network Working Group RFC
#644, July 1974,

This note describes the problem of signature authenticity
in the network context. 1[It then pnresents a general approach in
which a problem is divided 1into one of 1local signature
authentication and then network recognition of authorized mail.
An implementation of the authentication procedure is given using
reserved host/socket pairs.

12. Thomas, R.H., "MLTNET - A Multi-TELNET Subsystem for
TENEX," ARPA Network Working Group RFC #339, May 1972.

MLTNET 1is a TELNET like facility for TENEX which en=ules a
user *o control 2a number of jobs running on different ARPANET
nosts 1t was the prototype for most new TELNET implemantations
which handle multiple simultaneous transactions, This RFC
describes the oOperation and features of the original
Mmulti-TELNET system.

13. Thomas, R.H., "Reconnection Protocol," ARPA Network Working
Group RFC #426, January 1973.

This note Arscribes several situations in which it is

useful to be .e to move one or both ends of a communication
path from one hust to another. It presents a mechanism ¢to

64

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

achieve reconnection, sketches how the mechanism could be added
to Host-Host or TELNET protocol, and recommends a place for the
mechanism in the protocol hierarchy.

14, Thomas, R.H.. and R.C. Clements, "“FTP Server-~Server
Interaction," ARPA Network Working Group RFC #438,
January 1973.

This RFC suggests an extension to the File Transfer
Protocol which would allow an FTP user process at one site to
arrange for FTP server pvrocesses at other sites to act
cooperatively on its behalf. Situations where such a facility
would be useful are given, and it 1is snown how the protccol
extension is used to handle these cases.

15. Thomas, R.H. (with R. Bressler), "Inter-Entity
Communication - An Experiment," ARPA Network Working
Group, RFC #441, January 1973.

This note is a status report concerned with the experiments
to provide the capahility for network users to converse with
each other using their consolas. It indicates two such user
interfaces for the inter-entity communication, and details the
network protocol that was developed for these experiments.
Areas for further experimentation are noted.

16, Thomas, R.H. (with R, 3ressler), "Mail Retrieval via
FTP," ARPA nNetwork Working Group RFC #458, February
1973,

This RFC proposes two new FTP commands which would allow a
user to read his mail at one or more sites without incurring the
overhead of logging 1in, and without having to wuse several
different retrieval methods. The commands provide the user with
the ability to create a simple program to retrieve mail from
multiple sites.

17. Thomas, R.H. (with R, Bressler), "FTP Server-~Server
Interaction - 1II," ARPA Network Working Group #478,
March 1473,

This note deals with an apparent drawback of the protocol
specified for FTP Server-Server interaction. By providing a new
command (PASSIVE), the need for aucueing RFC’s for local sockets
hefore they exist 1is eliminated. It 1is shown how this new
comnmand integrates into the FTP server-server interaction
protocol exchanges.

18, Thomas, R.H. and R.S, Tomlinson (with A, McKenzie and K.

Pogran), "A Note on Protocol 5ynch Sequences," ARPA
Network Working Group RFC #529, June 1973.

65

Report No., 2976 Bolt Beranek and Newman Inc.
Volume III

This note discusses the wuse and misuse of the TELNET
Protocol Synch Sequence. It examines the general notion of
synch sequences on communication paths, and then reflects on its
meaning and implementation in TELNET. Suggestions for
implementing synch sequences in protocols based on TELNET are
also given,

19, Thomas, R.H., "Comments on File Access Protocol," ARFA
Network Working Group RFC #535, July 197C.

This RFC suggests improvements to a previously proposed
file access protocol, which would permit remote access to the
contents of files. The improvements are mostly additions to
allow ror the use of file system features which may be available
locally. They include adding append access, providing for files
with "holes" in them, using multiple files simultaneously, and
acquiring descriptive information about a file,

26. Thomas, R.H., "TENEX Load Averages for July .1973," ARPA
Network Working Group RFC #546, August 1973,

This RFC presents utilization data for the BBN and 1ISI
TENEX systems for the month of July 1973. The data is collected
as a side offect of the Resource 3haring Executive server
orograms regqular communication with each other. The data
indicates a strong "East Coast time based" wuser population on
the ISI machine.

21, Burchfiel, J. and R. Tomlinson (with B. Cosell and D,
Walden), "TIP/TENEX Reliability Improvements," ARPA
Network Working Group RFC #636, June 1974,

This RFC sketclhies the plan that was implemented for
improving the reliability of conneccions between TIPs and TENEXs
and for providing the TIP user with clear messages regarding
changes in the state of his connection. Reliability
improvements are made possible by specifying host-host protocol
additions to orovide for connection resynchronization. The
protocol changes apply eaually well to interactions between
hosts of any type.

22, Murohy, D. (with R. Bressler and D. Walden), "A Proposed
Experiment with a Message Switching Protocol," ARPA
Notwork Working Group RFC #333, May 1972.

This RFC sketches the organization of a new approach to the
host-host protocol problem for the ARPANET. The approach is
hased on the concept of message switching, and attempts to
achieve better system utilization aind simpler network software
than could bhe accommodated with the connection oriented
aporoach. The document specifies a messaje switched protocol
tor the ARPANET, and includes the motion of an information
overator as a general network utility.

66

Report No., 2976 Bolt B3eranek and Newman Inc.
Volume III

23. Burchfiel, J. and R, Tomlinson, "“Proposed Change to
Host-Host Protocol Resynchronization of Connection
Status," ARPA Network Working Group RFC #467, February
1973,

Tnis RFC describes changes to the Host-Host protorol in
order to achieve resynchronization on a network connection and
handle the "half-closed connection" problem. It is shown how
these changes handle the problems arising from host "allocate"
messages, host system interruptions and network partitioning.
These changes formed the basis of the TIP-TENEY. reliability
improvement procedures.

24. Johnson, P.R. and R.H. Thomas, "The Maintenance of
Duplicate Databases," ARPA Network Working Group RFC
#677, January 1975.

This paper describes a techniague for maintaining duplicate,
distributed data bases in a consistent manner in situations that
r Juire a capability for distributed initiation of data Dbase
updates. The c¢lass of data bhases for which the technique is
applicable is specified; the allowable update operations are
carefully defined; and the "consistency"” requirement |is
carefully svecified. The technique depends upon the wuse of
"time stamps" to orop rly sequence Jistributedly initiated
update commands.

The following Quarterliy Progress Reports provide a
chronological description of our Jdistributed computation

research activities.

38N Revort No. 11585-14, QPR No. 3, Auaust 1971 (Contract No.
DAHC15-71-C-0088)

8BN Remort No. 11585-14, QPR No. 4, November 1971 (Contract
No. DAHC15-71-C-0088)

83BN keport No. 11565-14, QPR No. 5, January 1972 (Contract No.
DAHC15-71~-C-0083)

BBN Report No. 2356, QPR No. 6, April 1972 (Contract No.
DAHC15-71-C-0088)

83BN Report No. 2404, QPR No. 7, July 1972 (Contract No.
DAHCL15-71-C-0088)

67

Report No. 2976
Volume III

BBN Report No., 2465,
DAHC15-71-C-0088)

BBN Report No. 2541,
DAHC15-71-C-0088)

BBN Report No. 254¢,
DAHC15-71-C-0088)

BBN Report No. 2607,
DAHC15-71-C-80688)

BBN Reoort No. 2674,
DAHC15-71-C-0088)

BBN Report No. 2721,
DAHC15-71-C-0088)

BBN Report No, 2822,
DAHC15-71-C-0888)

38N Report No. 2869,
DAHC15-71-C-0088)

QPR

QPR

QPR

QPR

QPR

OPR

QPR

NPR

No.

No.

No.

No.

No.

No.

NO.

No.

Bolt Beranek and Newman Inc.

8, Cctober
9, January
18, April
11, July
12, October
13, Januéry
14, March

15, July

68

1972

1973

1973

1973

1973

1974

1974

1974

(Contract

(Contract

(Contract

(Contract

(Contract

(Contract

(Contract

(Contract

Nol

No.

No.

No.

No.

No.

No.

No.

Report No. 2976 Bolt Beranek and Newman Inc.
Volume III

4., Recommendation

The ARPA/IPT program which resulted in the ARPANET has
demonstrated the technical and economic feasibility of
interconnecting computers via packet switched techniques. This
development of intercomputer communications is analogous to the
development of wireless communications in the early 19080°s in
that it makes previously unthinkable capabilities possible.
However, just as the invention of witeless did not automatically
lead to 1its effective wuse, the advent of computer data
communications has not resulted in immediate realization of new
capabilities. In fact, the additional complexities of
comouter-computer interactions compound the already serious
oroblems we are having with software cost control on stand alone

computers.

The Department of Defense haz a genuine need for
distributed, multi-computer systems because of the
geographicallyAdispersed and mobile nature of 1its operations,
and 1its requirements for computing services which are reliably
and redundantly supnorted. A mature distributed computation
software technol»agy could be the basis for satisfying these
important DoD ne=ds. Unfortunately, no such mature software

tachnolongy currently exists,

As noted earlier, the research documented in this report
can be characterized as exploratory in nature. It has provided

a glimnse of wha: is possihle, has suggested the potential for

69

Renort No. 297o Bolt Beranek and Newman Inc.
Volume III

widespread applicability of distributed computational
techniques, and has uncovered specific technical problems which

must be solved before such application is practical.

We believe that a cocrdinated, coherent and intensive
research program in distributed computation 1is required to
advance the state-of-the-art to a level capable of supporting

DoD reguirements.

70

