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APPUCATION OF RAY THEORY TO 
LOW FREQUENCY PROPAGATION 

INTRODUCTION 

It is often said that ray theory is not applicable to low frequency propagation 
in the ocean. The purpose of this report is to demonstrate that this is not the 
case. If the word "ray" is allowed a more general meaning than that used in the 
classical sense, then ray tracing is indeed a useful means of modeling low fre- 
quency propagation. 

Early ray tracing programs were primarily concerned with integrating the 
ray tracing equations of the next section accurt.-ely and efficiently.  It is shown 
that the effect of sound-speed representations on the computed value of propa- 
gation loss is not as important as is currently believed. The most recent addi- 
tion to practical ray tracing programs is the asymptotic treatment of caustics. 

In the case of a horizontally stratified ocean, the integral representation 
may be expanded into a multipath series, each term of which corresponds to a 
particular ray type. Upon integrating, one obtains the acoustic pressure along 
the ray. It is important to note that this multipath expansion is exact. The ac- 
curacy of the final result depends on the method of solving the depth dependent 
wave equation and evaluating the ray type integrals. 

For low frequency propagation in nearly horizontally stratified oceans, the 
method of horizontal rays is recommended.  Here, the pressure is expressed as 
a summation of normal modes weighted by amplitudes satisfying horizontal ray 
tracing equations. 

RAY TRACING EQUATIONS 

Several years ago, the state of the ^rt was described in Officer's^ book on 
sound transmission. Then,  ray tracing involved approximating the solution of 
the reduced wave equation for the acoustic pressure   P 

v^ p ( (±L)    p = o 

with the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) form 

SÄi^'ü^iML^ iäMS^ätSäHäi^li •.v.,:>i!„^..■•.,:, ,;.     ,■      ; ^,.-y:;^'-?. &cit&a v ■. v.  .    ■. .   .   .,,.     .,, ■.   ., , ,. . _ 
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P = a exp (iwT) . 

The travel time  T  and amplitude   a   satisfy ehe eikonal equation 

(VT)2 = c-2 

and the transport equation 

respectively. 

y. a2VT = 0 , 

The eikonal equation may be solved by using the method of characteristics 
for first-order partial differential equations.   Characteristic curves,   better 
known as rays, are orthogonal to surfaces of constant time.   They satisfy the 
ray tracing equations 

d /i dx\     a i 

ds   \c   ds/       dx  c 

_d_ /1   dy 

ds   \c   ds 

d   /I   dz 

ds   \c 

dz\        d 

ds/       dz 

dy c 

d  1 

dz   c 

dT 

ds 

if + ds/ 

/dy\2        /dzV 
\ds) W 

=   1 

Once the rays have been found, the divergence theorem applied to the trans- 
port equation produces the geometrical spreading law for the pressure amplitude. 

a       /C0_    6a \ 

7" ~  \T~    5<r0 / 

-1/2 

or for the equivalent plane wave intensity, 

ilsBäls ■■ - 
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J or 

The subsci'ipt zero refers to a reference point (usually 1 yd away from a 
point soui'ce), and  6a   is the cross-sectional area of an infinitesimal ray tube. 
The intensity satisfies the conservation of energy law along a ray tube.   It can 
be shown that pressure, on the other hand, satisfies the law of reciprocity. 

In the case of a horizontally stratified ocean, that is, the sound speed and 
ocean boundaries are independent of both horizontal coordinates, the rays re- 
main in a vertical plane and obey Snell's law, 

1   dr 

c   ds 
-• constant   , 

where 

2 ? ^ r    =  x    i   y 

SOUND SPEED REPRESENTATIONS 

When ray theory was first implemented on digital computers, the primary 
concern wa'" to integrate the ray tracing equations accurately and efficiently. 
Pedersen2 motivated the design of many ray tracing programs by demonstrating 
the fact that discontinuities in the sound speed gradient cculd introduce anomalies 
in the computed value of geometrical spreading loss. 

This effect is illustrated by fitting the sound speed profiles of figure i with 
piecewise linear, 1 piecewise quadratic, 2 and cubic spline^ representations. 
Differences are more readily seen in the sound speed gradients shown in this 
figure. The corresponding ray diagrams, figure 2,   show that caustics due to 
discontinuities in the gradient of thepiecewise linear fit disappear when smoother 
sound speed representations are employed.   Propagation losses computed ac- 
cording to classical ray theory tend to accentuate this effect, but consider what 
would happen if a ray theory generalized to treat caustics correctly were used 
instead.  Figure 3 inchoates that the effect of different sound speed representa- 
tions is insignificant providing that each representation accurately describes the 
input data to be fitted. 
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Figure 1#    Comparison of Sound Speed Representations and Gradients 
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Figure 3.   Comparison of 1-kHz Propagation Losses for a 40-m Receiver Depth 
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As far as ray diagrams and propagation losses computed according lo clas- 
sical ray theory are concerned, past experience indicates that cubic splines 
produce the best representations for analytic type sound speeds. However, as 
the input data become more irregular, the curve fitting procedure becomes more 
difficult to automate.^ A second disadvantage of cubic splines isthat the corre- 
sponding ray tracing equations cannot be integrated in closed form, which is a 
process that can be accomplished with piecewise linear and quadratic (its. 

Many of the statements made above are also true when the sound speed 
varies with one or more horizontal coordinates as well as depth. If, for example, 
the input data are fitted with triangular planes,   the ray tracing equations may 
be integrated in closed form, but anomalies due to discontinuous gradients are 
possible. 

ASYMPTOTIC TREATMENT OF CAUSTICS 

In the lastfewyears, significant advances in practical ray tracing techniques 
involved the treatment of caustics  rather than improvements in curve fitting 
algorithms. The problem may be illustrated when the sound speed decreases 
inversely as the square root of depth,  as shown in figure 1.   We see that the 
ray diagram,  figure 5, forms a well defined caustic. 

VELOCITY (kyd/sec) 

1 2 

GRADIENT (1/sec) 

0.2 

"^ 0.41 

s: o.64 
UJ 
Q 

0.8- 

.01 

-2.0 .2    -0.4 0.4 
—t- 

Figure 4.   Sound Speed and Gradient Studied by 
Pedersen mid Gordon 
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RANGE (kyd) 
2 

Figure 5.   Ray Diagram for a 1-kyd Source Depth 
Computed by Using the Sound Speed of Figure 4 

Pedersen and Gordon^ compared the classical solution (solid line) with 
Brekhovskikh's0 modified ray theory (broken line) in figure 6. Classical ray 
theory predicts an infinite intensity at the caustic at 3159 yd and an infinite 
propagation loss in the shadow zone to the right of the caustic. Pedersen and 
Gordon explain that the abrupt change in loss at 3130 yd occurs at the ray that 
grazes the ocean surface. The modified ray theory did not apply to the left of 
this ray. 

The above remark points out the difficulty of applying modified ray theories 
to the simplest, of caustic geometries. Additional effects due to the ocean bound- 
aries, cusped caustics, etc., prevent the theory from being applicable every- 
where.   One can program as many special cases as practical considerations 
suggest, but,  more often,   one uses classical and modified theories outside 
their domain of validity.   Since caustic corrections are usually obtained by 
including additional terms of a high frequency expansion, errors increase ns 
the frequency decreases. 

4kmmäitimlm^mmMm ^»MRawyarWf?^ 
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Figure 7.   Propagation Loss for a 0. 8-kyd Receiver Depth 
Computed More Accurately Than That for Classical or 

Modified Ray Theories 

Consider what would happen if a theory generalized to treat caustics correctly 
were used instead. The result, figure 7, indicates that there is no discontinuity 
in propagation loss at the ray that grazes the ocean surface and also that classical 
ray theory appears to be more accurate to the right of the grazing ray than to 
the left. Consequently, modified ray techniques should be exercised withcaution. 

Spofford was one of the first to implement modified ray theory in a practical 
computer program. The procedure, based on the work of Ludwig, 7 assumes that 
the reduced wave equation has an asymptotic solution of the form 

P = exp (iwT) gAi (w2/3 p) 
lOJ 1/3 

Ai ,   2/3 

subject to the orthogonality condition 

VT • y p - 0   , 

10 ■I 

ilMiiiifi*^^ i&^XtuH^-J^iv^Aii^A^^ 



^m&mimmmm^wmfmm'.    .:. 

TR 4867 

where   Ai   is the Airy function of the first kind, and  T, p , g, and h arc to be 
found.  Upon substituting this ansi.tz into the reduced wave equation and compar- 
ing similar powers of frequency, one obtains 

T - (T,   i T.)/2   , 

2/3 p3/2  - (T,  - TJ/2 , 

g  =   Pl/4 (a,  . a_)/2 , 

h   --   P_l/il (a,   i a_)/2   . 

As illustrated in figure 8, subscripts i and - refer to the two rays that touch 
and do no', touch the caustic before reaching the field point, respectively. There- 
fore, all the quantities appearing in Ludwig's representation may be expressed 
in terms of the travel times Tt and amplitudes a i of classical ray theory. 
Brekhovskikh's solution lacks the term involving the Airy function derivative, a 
term that is important away from the caustic. As a result, Ludwig's solution 
has a larger domain of validity. 

CAUSTIC 

Figure 8. Classical Rays Used to Compute a 
Uniform Asymptotic Solution at a Caustic 

11 

miitMiu*i*iLii4i.^:~i.AM jjjfiäj&B&ii&2££jüi£i& ':-v'-'   :  ■-■:      ■■•-:\-iiii&%tä^UläiM%i mä&ii&e^di^Uii&iäii ■; 



m^mmm^m^^mmmm} 

TR 4867 

LOW FREQUENCY PROPAGATION IN HORIZONTALLY 
STRATIFIED OCEANS 

Most of the figures discussed before were produced by a computer program 
designed to model acoustic propagation in a horizontally stratified ocean. For 
mediums such as this, the acoustic pressure due to a unit point harmonic source 
situated at (0, 0, zs) has the integral representation 

P (r,  z, zs; OJ ) - w  I     wX J0 (wX r) G (/., zs;X, w) dX , 
Jo 

where the Green's function   G   satisfies the depth dependent wave equation 

FoVaz2 i co- < c V) -  *4j C(z, /.S;X,ü,) - -25 ;z-/,s) 

and suitable boundary conditions. 

The method of solution used here, that is multipathexpansion of the integral 
representation, is quite old, dating back nearly -10 years to Van der Pol and 
Brcmmcr.'s   Following Leibiger and Leo, 9 the Green's function is expressed 
in terms of two linearly independent solutions    F+    of the homogeneous depth 
dependent equation. The solutions   F.    are normalized so that their Wronskian 
equals -2cji,   Upon expanding the denominator of  G  into a geometric series, 
the double summation 

P (r, z, zs;w) 
oo •1 

T. E 
p   0 n-l 

P(v)  (r,  z,  zs; co) 

is obtained.    If  z < zs,   one sees that 

Pl ' (r, z, zs;a))=i   iu)Jü(a)Xr) F_(z;X,w)   F, (zs;X,co) 

~o 

^sur   ^'^^bot   ^dX' 

where 7sur and ~bot are boundary reflection coefficients. Other terms of 
the series are similar, each integral representing a particular ray type. The 
first four are illustrated in figure 9. It is important to note that, so far, the 
solution is exact. The validity of the final result depends on the method of 

12 
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Figure 9.   The Principal Ray Types 

solving the depth dependent wave equation and evaluating the ray type integrals. 
If WKBJ and stationary phase techniques are used, respectively, the classical 
ray theoretic solution is obtained.    MurphylO replaced the WKBJ technique with 
a Weber function representation in order to treat the two-turning-point problem. 
Brekhovskikh replaced the method of stationary phase with an Airy integral 
modification in order to investigate caustics. 

At present, our propagation model uses the following modified WKBJ ex- 
pression to solve the depth dependent wave equation: 

.l/2wl/6 
F4 (z;x,w)= T"     u" ' exp < _;_ iu)Q (z , zt;\) i i?r/4> 

,.i   2/3 
K(z;X) lUi)"2 3

P(Z;X)| 1iAi^2 3p(z;X)}), 

Q (z0, ^t:M = j      { -2.._.    .2(1/2 
c  "(0-^ 

U/2 
]        df  , 

(3 »2/3 
p(z;X) - -<- Q (z, zt;\)J ,  and   g(z;\) 

ap(z;X) 

dy- 

-1/2 
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where 

z      is a suitably chosen reference point 

z^.     is a turning point 

Bi    is the Airy function of the second land. 

Whenever w'   p   is a moderate to large negative number,  F+ reduces to the 
usual VVKBJ representation ~ 

F1 (z;X,w) - |c"2 (/.) -  X"| expi^iwQ (/.0, z;X)> . 

Since this modified representation is inaccurate in the vicinity of double turning 
points,    F^  are arbitrarily set to zero whenever they occur.   Hopefully,   this 
will only affect a small interval of integration and will not introduce significant 
errors in the final result.  Murphy's technique offers an alternative procedure. 

The method of evaluating the ray type integrals is based on the following: 

1. Segment the interval of integration into suitably chosen subintcrvals. 

2. Use stationary phase to evaluate subintegrals whenever possible. 

3. Integrate the remaining cases numerically. 

It was originally though that the numerical integration,   although lengthy 
when compared with stationary phase, would be invoked so infrequently that its 
contribution to the total computer running time would be inconsequential. So far, 
this has not been the case.  Hopefully, the running time will be reduced eventually 
when the integration routine is made more efficient. 

Since it is customary to give computer programs names so that they may 
be distinguished from others performing similar functions,   the program used 
herein is called CONGRATS V, where CONGRATS is an acronym for Continuous 
Gradient Ray Tracing System. Actually,  the completed program will predict the 
performance of active and passive sonar systems and is, therefore, more than 
just a propagation program. As shown in figures 1 through 3, CONGRATS V has 
the option to invoke several ray tracing procedures. The propagation losses were 
obtained by adding the multipath contributions coherently.   CONGRATS V also 
produces a plot of propagation loss using power addition,   in which case the 
phases of the individual contributors are neglected. 

14 
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A COMPARISON OF PROPAGATION MODELS 

At present, the state of the art of propagation modeling for stratified oceans 
may be illustrated by two figures compiled by K. Jensen of NUSC. (See figures 
10a ;Lnd lla. ) Both compare FFP, 11 FACT, 12 RAYMODE 9, 13 and NISSM il14 

computer predictions for 50-llx, propagation in the Pacific. The choice of pro- 
grams included in the comparison was mainly of convenience, since each is 
available at NUSC,  New London, and all but FACT were designed there. 

Briefly, the Fast Field Program (FFP) utilizes Fast Fourier Transforms 
to evaluate the integral representation. The Fast Asymptotic Coherent Trans- 
mission Model (FACT) is a constant gradient ray tracing program incorporating 
sophisticated low frequency modifications.  RAYMODF 9, the latest version of 
the series, uses ray theory to determine which intervals dominate the integral 
representation, but uses normal modss to compute the acoustic amplitude. The 
Navy Interim Surface Ship Model (NISSM) II is a continuous gradient ray tracing- 
program designed to predict the performance of active sonar systems.  Ail but 
FFP have the option to combine multipath contributions incoherently as well as 
coherently, and all l.uit FFP use alternative procedures for surface duct propa- 
gation. 

As a result, the first case (figure 10a), which is dominated by surface duct 
propagation, will show the greater variability. FACT is an order of magnitude 
faster than NISSM II and RAYMODE 9, while FFP is a good deal slower. 

Upon adding CONGRATS V to the comparison (figure 10b) and invoking the 
coherent phase option,   one sees good agreement with FFP. Had the incoherent 
phase option been invoked instead, CONGRATS V would have agreed with the 
others. 

The second case, figure lla is dominated by convergence zone propagation. 
The agreement is better than before although running times continue to differ by 
orders of magnitude. 

Upon adding CONGRATS V to this comparison (figure lib),   one obtains 
reasonable agreement with FFP.  It is unusual to find agreement among models 
that are based upon different thco'"es and written by different programmers. 
Unfortunately, comparisons are not always this good.  Hopefully, all discrep- 
ancies will soon be eliminated or at least accounted for. 

15 
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HORIZONTAL RAY THEORY FOR NEARLY HORIZONTALLY 
STRATIFIED OCEANS 

Ai long ranges or in shallow water, the effects of horizontal variations in 
the sound-speed or bottom cb.aracterisfics are often large and not readily modeled 
by any of the techniques discussed previously.   A nearly horizontally stratified 
ocean is one in which the horizontal variation is slow. 

This rather vague notion is quantized by introducing a small parameter e 
and assuming chat the properties of the medium depend on the horizontal coor- 
dinates X, Y only through the combinations^ 

x = e X,   y =  e Y  . 

This being so, let us seek solutions of the reduced wave equation in the form 
00 

P (x, y,  z; e)w cxp \ fl(x, y)/ie| Z-,    A^ (x, y,  z) (ie)" . 

Each A,,,   in turn, is assumed to have the form 

00 

Ap (x, y, z) -   Z    a;'(x, y) ^k (x, y, z) , 
k-0 

wl ere the i^k   are orthonormal eigenfunctions of the depth dependent wave equa- 
ti »n 

d2*k 

dz' 

2 2 
K    (x, y, z)(//k = Xk t^ 

subject to the appropriate boundary conditions. 

Upon substituting our ansatz into the reduced wave equation and comparing 
similar powers of ie,   one finds that the phase function,  fl ,   satisfies the hori- 
zontally dependent eikonal equation 

x    (x, y)   , 
'an     /89V 

.dx)       \dy/ 

where Xn is one of the eigenvalues,   \,,   computed above. 

This equation, like the ordinary eikonal equation, may be solved by using 
ray tracing techniques. Note .however, that all depth dependence is missing. 
The pressure depends on depth only through the vertical eigenfunctions. It may 
also be shown that the leading amplitude,   a(0),   satisfies the conservation law 
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A (.'unvputiH' program based on the eunsideration above was writtvn topmccvd 
in two stages.  Tho lirsl dcternunes the cigunvaluca and iionnali/.od cigent'unc- 
Lions at each point of a rertangular grid in the horizontal  plane.   Than,  during 
the second part,  a sei of huiizontul ray tracing etiuauions is integrated tor each 
eigenvalue,   and the contributions of individual  modes are combined to obtain 
the total field. 

As in ordinarv ray programs, only the leading term of the asymptutic ex- 
pansion oi each mode is found. The expansion then reduces to that derived by 
Pierce almost 10 years ago. ^, 

The program predicted propagation loss along a J.jOn-nmi track exlcnding 
northward from 27 :WK, 137 fiO'W to 52 ;!0'N, 137 GU'W. i'llcvcn e<|uidistant 
velocity-depth profiles obtained from the measurcil data displayed in figure 1*J 
were entered into the computer program. Note that the SO FAR axis rises from 
a depth of 7i);j m at 27 .'lO'N to about 50 m at 52 .'iO'X, Pack of relevant data 
prevented the inclusion of any dependence of sound speed or bottom depth upon 
longitude. 

Figure VA displays propagation losses  from  dynamite charges detonated 
500 ft bepvvx sea  level  along the track to a 2500-11   receiver depth situated at 
27   .'Ul'N.  The top graph represents observational data, while the middle graph 
shows computed results.   The  two  are superimposed in the bottom graph.   The 
figure displays an interesting feature.  The propagation loss decreases with in- 
creasing range beyond   12 NT.   This decrease may be explained by the fact that 
the receiver is  only   121 ft;  away  from the SO FAR  axis,   where the  signal   is 
strongly affected by the amplitude of the few lowest modes, as shown in Cigure 1 I. 
As the source ship moved north, the source approached IheSOFAR axis causing 
the amplitude of these modes (figure J5) toincreaseto sueh an extent thateven- 
tually the loss due to horizontal spreading was overcome and the total propaga- 
tion loss decreased. 

The ".), 800-11, receiver depth of figure  10 is  well below the turning points 
of the first few modes, and so the signal there is dominated by the higher modes. 
The amplitudes of these modes arc not greatly affected when I he source approaches 
the SOFAR axis; therefore,  for tills receiver, cylindrical  spreading dominates 
the entire track. 
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Figure 14. Sound Speed-Depth Profile at 27° 30'N, 157° 50'W and the 
Corresponding First Four Modes for a 31-H/. Frequency 
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Figure 15.  Sound Speed-Depth Profile at 50° 0'N,  157" 50'W and the 
Corresponding First Four Modes for a 31-Hz Frequency 
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FREQUENCY       31  Hz 
SOURCE 500 ft 
RECEIVER       10800 ft 
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Figure 16. Propagation Loss versus Range for a 10, 800-ft Receiver Depth, 
a 500-ft Source Depth, and a 31-Hz Frequency 
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SUMMARY 

Contrary Lo pupuhir belief, ray th^iry is an accurate and efficient means 
of investigating low frequency acoustic propagation in the ocean. Of course, in 
this report ray theory has not been used in its classical sense. 

Several illustrative examples proved that it is possible  to design a single 
propagation model that agrees with analytic solutions    and measured data, as 
well as other computer programs.  Tliis effort is more difficult than one may 
realize, for once a computer program is tuned to the actual environmental con- 
ditions of a real -.ean, it may be impossible to input data for which analytic 
solutions are known.   The apparently simple task of comparing programs is in 
reality even more difficult than a comparison with analytic solutions.    First, 
one must have access to the programs being compared.   Second, the programs 
must treat the input data similarly.   Finally, the programs must treat the out- 
nut data similarly.   For example, how is one to compare coherent phase propa- 
gation loss predictions with those of a random phase program ? 

Although all the computer models discussed above have been designed within 
the last few years, the theories upon which they are based are much older. 
Therefore, it is felt that improved computing facilities  rather than improved 
acoustic theories have been responsible for improved prediction capabilities. 

The future of ray theory may prove quite different. Application to unstrai- 
ified media,  random media, etc. is the next logical step, but these theories need 
more development before they can be implemented into practical prediction 
models. 

27/2,S 
REVERSE BLANK 
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