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APPLICATION OF RAY THEORY TO
LOW FREQUENCY PROPAGATION

INTRODUCTION

It is often said that ray theory is not applicable to low frequency propagation
in the ocean. The purposc of this report is to demonstrate that this is not the
case. If the word ""ray" is allowed a more gencral meaning than that used in the
classical sense, then ray tracing is indeed a useful means of modeling low fre-
quency propagation.

Early ray tracing programs were primarily concerned with integrating the
ray tracing equations of the next section accurw.ely and efficiently. It is shown
that the effect of sound-speed representations on the computed value of propa-
gation loss is not as important as is currently believed. The most recent addi~
tion to practical ray tracing programs is the asymptotic treatment of caustics.

In the case of a horizontally stratified ocean, the integral representation
may be expanded into a multipath series, each term of which corresponds to a
particular ray type. Upon integrating, one obtains the acoustic pressure along
the ray. It is important to note that this multipath expansion is exact. The ac-
curacy of the final result depends on the method of solving the depth dependent
wave equation and evaluating the ray type integrals.

For low frequency propagation in nearly horizontally stratified oceans, the
method of horizontal rays is recommended. Ilere, the pressure is expressedas
a summation of normal modes weighted by amplitudes satisfying horizontal ray
tracing equations.

RAY TRACING EQUATIONS

Several years ago, the state of the art was described in Officer's] book on
sound transmission. Then, ray tracing involved approximating the solution of
the reduced wave equation for the acoustic pressure P

V2 P (%)2 P=20

with the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) form
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P=aexp (iwl) .
The travel time T and amplitude a satisfy the eikonal cquation

(yT)2 = ¢-2
and the transport equation
v- 22yT =0,
respectively.
The eikonal ecuation may be solved by using the method of characteristics
for first-order partial differential cquations. Characteristic curves, bctter

known as rays, are orthogonal to surfaccs of constant time. They satisfy the
ray tracing equations

dx\2 dy\2 dz\ 2
—_ + {— [ —_
ds ds \ds

Once the rays have been found, the divergenccthcorem applied to the trans-
port equation produces the geomctrical spreading law for the pressure amplitude,

a o -1/2
c do
a 0

or for the equivalent planc wave intcnsity,
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The subscript zero refers to a reference point (usunily 1 yd away from a
point source), and éo is the cross-sectional arca of an iniinitesimal ray tube.
The intensity satisfics the conservation of energy law along a ray tube. Itcan
be shown that pressure, on the other hand, satisfies the law of reciprocity.

In the casc of a horizontally stratificd ocean, that is, the sound speced and
ocean boundaries arc indepcndent of both horizontal coordinates, the rays re-
main in a vertical plane and obey Snell's law,

1 dr
— — = constant ,
c ds
where
1‘2 = x2 y2 .

SOUND SPEED REPRESENTATIONS

When ray thecory was first implen.ented on digital computers, the primary
concern war to integrate the ray tracing equations accurately and efficiently.
Pedersen2 motivated the design of many ray tracing programs by demonstrating
the fact that discontinuities in the sound specedgradient cculd introducc anomalies
in the computed value of geometrical spreading loss.

This effect is illustrated by fitting the sound speed profiles of fisure 1 with
piccewise lincar,l piccewise quadratic, 2 and cubie spline3 representations.
Differcnces are more readily secen in the sound speed gradients shown in this
figure. The covresponding ray diagrams, figure 2, show that caustics due to
discontinuities in the gradient of the piecewise linear fit disappear when smoother
sound speed representations are ecmployed. Propagation losses computed ac-
cording to classical ray theory tend to accentuate this effect, but consider what
would happen if a ray theory generalized to treat caustics correctly were used
instcad. Figure 3 indicates that the effect of different sound speed representa-
tions is insignificant providing that each representation accurately deseribes the
input data to be fitted.

D
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VELOCITY (m/sec) GRADIENT (1/sec)
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Figure 1, Comparison of Sound Speed Representations and Gradients
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RANGE (km)
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Figure 2, Comparison of Ray Diagrams for :m Axial Source
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Figure 3. Comparison of 1-kHz Propagation Losses for a 40-m Receiver Depth
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As far as ray diagrams and propagation losses computed according to clas-
sical ray thecory are concerncd, past experience indicates that cubic splines
produce the best representations for analytic type sound speeds. However, as
the input data becomce more irregular, the curve fitting procedure becomes niore
difficult to automate.”t A second disadvantage of cubic splines is that the corre-
sponding ray iracing cquations cannot be integrated in ¢losed form, whieh is a
process that can be accomplished with piecewise lincar and quadratic fits.

Many of the statements made above are also true when the sound speed
varies withone or morehorizontal coordinates as well as depth. If, for example,
the input data ave fitted with triangular planes, the ray tracing equations may
be integrated in closed form, but anomaualies due to discontinuous gradients are
possible.

ASYMPTOTIC TRIEATMENT O CAUSTICS

In the last fewyears, significant advances inpractical ray trucing teehniques
involved the treatment of caustics rather than improvements in curve fitting
algorithms. The problem may be illustrated when the sound speed decreases
invcrsely as the square root of depth, as shown in figure 1. We sce that the
ray diagram, figurc 5, forms a well defined caustic.

VELOCITY (kyd/sec) GRADIENT (1/sec)
1 2 -2.0 -1.2 -0.4 0.4
0 ‘ - v - + ;
;
7
0.2 )( ] .
/
= 4 \
0.4
=
T \
a. 0,61 ] \
wJ )
£ a
|
E 0.84 ] \\
1.0/ ] ‘
' Iigure 4, Sound Specd and Gradient Siudied by
. Pedersen and Gordon
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RANGE (kyd)

Figure 5. Ray Diagram for a 1-kyd Source Depth
Computed by Using the Sound Speed of Figure 4

Pedersen and Gordon® compared the slassieal solution (solid line) with
Brekhovskikh's® modified ray theory (broken line) in figure 6. Classieal ray
2 theory prediets an infinite intensity at the eaustie at 3159 yd and an infinite
propagation loss in the shadow zone to the right of the eaustic. Pedersen and
i Gordon explain that the abrupt change in loss at 3130 yd oceurs at the ray that
” grazes the ocean surfaee. The modified ray theory did not apply to the left of
this ray.

The above remark points out the diffieulty of applying modified ray theories
to the simplest of eaustie geometries. Additional effeets due to the ocean bound-
aries, eusped eaustics, ete., prevent the theory from being applieable every-
where. One ean program as many speeial eases as praetical eonsiderations
suggest, but, more often, one uses classical and modified theories outside
their domain of validity. Sinee eaustie correetions are usually obtained by
ineluding additional terms of a high frequeney expansion, errois inerease 1s
the frequeney deereases.
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Figure 6. Comparison of 2-kHz Propagation Losses for a 0. 8-kyd Receiver
Depth Computed According to Classical and Modified Ray Theories
(After Pedersen and Gordon, refcrence 5.)




TR 4867

60 a \ // :\\

PROPAGATION LOSS (dB)

¥

3.10 3.1 3.4 3.6
RANGE (kyd)

Figure 7. Propagation Loss for a 0. 8-kyd Receiver Depth
Computed More Accurately Than That for Classieal or
Modified Ray Theories

Consider what would happen if a theory generalized to treat caustics correctly
were used instead. The result, figure 7, indicates that there is no discontinuity
in propagation loss at the ray that grazesthe ocean surface and also that classical
ray theory appears to be more aceurate to the right of the grazing ray than to
the left. Cunsequently, modified ray techniques should be exercised with caution,

Spofford was one of the first to implement modified ray theory in a practical
computer program. The procedure, based on the work of Ludwig, 7 assumes that
the reduced wave equation has an asymptotic solution of the form

h ., 2/3
P =cxp (iwT){ gAi (w2/3 p) + ——— Ai' (w / P)

LA
1

Bz

i A

subject to the orthogonality condition

VT -vp=0,
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where Ai is the Airy funetion of the first kind, and T, p , g, and h are to be
found. Upon substituting this ansatz into the reduced wave equation and compar-
ing similar powers of frequency, one obtains

rr a (r‘l\Q 1 'I‘_)/z ,
2/3 9% < (1, -1 )/2,

g - p 1/4 (a, + a_)/2,

p =1z (a

h = L valy/2 .

As illustrated in figure 8, subseripts + and - refer to the two rays that touch
and do not touch the eaustie before reaching the field point, respectively. There-
fore, all the quantities appearing in Ludwig's representation may be expressed

in terms of the travel times T. and amplitudes a, of classieal ray theory.

Brekhovskikh's solution lacks the term involving the Airy funetion derivative, 2

term that is important away from the caustic. As a result, Ludwig's solution

has a larger domain of validity.

CAUSTIC
/

Figure 8. Classical Rays Used to Compute a
Uniform Asymptotic Solution at a Caustic
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LOW FREQUENCY PROPAGATION IN HORIZONTALLY
STRATIFIED OCKEANS

Most of the figures discussed before were produced by a computer program
designed to model acoustic propagation in a horizontally stratified occan. For
mediums such as this, the acoustic pressure due to a unit point harmonic source
situated at (0, 0, zg) has the integral representation

o
P(r, z, 2550) = w wX Jgy (wAr) G (2, zg3\, w) dX,
0

where the Green's function G satisfies the depth dependent wave equation

[32/622 w2 { ¢ A(z) - )r)}] G(2, 23N, w) = =28 (z-2

s)

and suitable boundary conditions.

The method of solution used here, that is multipath expansion of the integral
representation, is guite old, dating back nearly 40 years to Van der PPol and
Bremmer. 8 Followiny, Leibiger and Lee, Y the Green's function is expressed
in terms of two linearly independent solutions Ty of the homogencous depth
dependent equation. The solutions [F, are normalized so that their Wronskian
cquals -2wi. Upon expauding the denominator of G intc a geometric series,
the double summation

00 4

] Pt rgo) - T8 P n agia)
v-0 n=1

is obtained. If z < zg, one sces that

\ [+ o]
U, 7, zgiw) = | dwd (@AT) F_(Z N, w) T (2gi\,w)

o}

P(
n

7;u1‘ ()\7‘-") ’ylu)Ot ()\7“')) (D ’

where Ygur and Yhot uare boundary reflection coefficients. Other terms of
the series are similar, cach integral representing a particular ray type. The
first four are illustrated in figure 9. It is important to note that, so far, the
solution is exact. The validity of the final result depends on the method of
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RANTE

Figure 9. The Principal Ray Types

solving the depth dependent wave equation and evaluating the ray type integrals.
If WKBJ and stationary phasc techniques are used, respeetively, the elassieal
ray theoretic solution is obtained. MurphylO replaced the WKBJ teehnique with
a Weber funetion representation in order to treat the two-turning-point probleni.
Brekhovskikh replaeed the method of stationary phase with an Airy integral
modifieation in order to investigate eausties.

At present, our propagation model uses the following modified WKBJ ex-
pression to solve the depth dependent wave equation:

1/2 wl/(i

F, (z;\,w)=T7 cxp{_o_in (2 zt;)\)t—ir/-'l}

g(z;\) (Bi {“’2/3 P(Z;M} '_iAi{“’Z/gp(Z;k)}),

4

_ 9\ 1/2
Q (201 243N = {C 2(()4\2} de,

i ; 2/3 CIAVARY
p(Z;)\) = -{5 Q (7, Zt;)\)> ’ and & (Z;)\) e a7

S Ay

Selo i

13

ot
g
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where

L, 1isa suitably chosen reference point

z¢ is a turning point

Bi is the Airy function of the sceond kind,

2/3_ . . R
Whenever w“/3p is a moderate to large negative number, Iy reduces to the

usual WKBJ representation
D) ) _1/‘[
Iy (Zsh,w) - {c = (z) - )C} e.\'p{Lin (Zgy z;k\)} .

t

Sinee this modificd representation is inaccurate in the vieinity of double turning
points, F. arc arbitrarily sct to zero whenever they occur. Hopefully, this
will only affeet a small interval of integration and will not introduce significant
errors in the final resull, Murphy's technique offers an alternative proecdure.

3 The method of cevaluating the ray type integrals is based on the following:
1. Segment the interval of integration into suitably chosen subintervals.

G 2. Use stationary phase to evaluate subintegrals whenever possible.

3. Integrate the remaining cases numerically.

It was originally though that the numerical integration, although lengthy

" when compared with stationary phase, would be invoked so infrequently that its
contribution to the total computer running time would be inconscquc’ﬁtial. So far,
this has not been the case. Hopefully, the running time will be reduced eventually
when the integration routine is made more cfficient.

. Since it is customary to give computer programs names so that thcy may
be distinguished from others periorming similar functions, the program used

herein is called CONGRATS V, where CONGRA'LS is an acronym for Continuous
Gradient Ray Tracing System, Actually, the completed program will predict the
performance of active and pessive sonar systems and is, therefore, morc than
g just a propagation program. As shown in figures 1 through 3, CONGRATS V has
.'. the option to invoke several ray tracing procedures. The propagationlosses were
: obtained by adding the multipath contributions eoherently. CONGRATS V also
produces a plot of propagation loss using power addition, in which case the
phases ol the individual contributors arc neglected.
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A COMPARISON OF PROPAGATION MODELS

At present, the stateof the art of propagation modeling for stratified cceans
may he illustrated by two figures conmpiled by L. Jensen of NUSC. (Sce figures :
10a and 1la.) Both compare FFP, 11 rACT, 12 RAYMODE 9, 13 and Nisspi 1114 b
computer predictions for 50-112 propagation in the Pacifie. The choiee of pro- L
grams included in the comparisorn was mainly of convenience, since each is
available at NUSC, New London, and all but FACT were designed there.

Briefly, the Fast Iield Program (I'I'P) utilizes Fast Fourier Transforms 4
to cvaluate the integral representation. The Fast Asymptotic Coherent Trans- E-{
mission Model (FACT) is a constant gradient ray tracing program incorporating
sophisticated low [requency modifications. RAYMODE 9, the latest version of
the series, uses ray theory to determine which intervals dominate the integral
representation, but uses normal modzs to compute the acoustiec amplitude. The

.' Navy Interim Surface Ship Model (NISSM) II is a continuous gradient ray tracing
' program designed to prediet the performance of active sonar systems. Ail but ¥
FFP have the option to combine multipath contributions incoherently as well as 1)
- coherently, and all hut FFP use alternative procedures for surface duet propa-
E gation. i-“' '
i
B As a result, the first casce (figure 10a), which is dominated by surface duct
propagation, will show the greater variability, FACT is an order of magnitude -
faster than NISSM II and RAYMODE 9, while FFP is a good deal slower.
Upon adding CONGRATS V to the comparison (figure 10b) and invoking the B
coherent phase option, one sces good agreement with FI'P. Had the ineoherent 4
phasec option been invoked instead, CONGRATS V would have agreed with the
others. A

The seceond ease, figure 11a is dominated by convergence zone propagation.
The agreement is better than before although running times continue to differby
orders of magnitude.

i Upon adding CONGRATS V to this comparison (figure 11b), onc obtains
rcasonable agreement with FIFP. It is unusual to find agreement among models
that are bascd upon different theories and written by different programmers.

e Unfortunately, comparisons are not always this good. Hopefully, all diserep-

ancies will soon be eliminated or at least accounted for. ‘
e
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HORIZONTAL RAY THEORY FOR NEARLY HORIZONTALLY
STRATIFIED OCIEANS

i long ranges or in shallow water, the effects of horizontal variations in
the sound-speed or bottom characteristics are often large and not readily modeled
by any of the tecchniques discussed previously. A nearly hovizontally stratified
ocean is one in which the horizontal variation is slow.

This rather vague notion is quantized by introdueing a small parameter e
and asswning that the properties of the mecdium depend on the horizontal coor-
dinates X, Y only through the combinationsl?

x=¢€eX, y= €Y

This being so, let us seek solutions of the redueed wave equation in the form

P (%, ¥, 25 €)~ exp | 0(%, y)/ie} ZO A, (% y, 2) (ie)” .
yv=

Each A,, inturn, is assumed to have the form

- o
k
Ay (% Y, 2) = ]_Z_:O 'd(v %, y) Vi (X ¥ Z) s
wlere the ¢k are orthonormal eigenfunctions of the depth dependent wave equa-
tin
62‘#1{ ) 2

— t K (X% ¥, 2)Y T A \l’,

322 k k ¥k

subject to the appropriate boundary conditions.

Upon substituting our ansatz into the reduced wave equation and comparing
similar powers of ie, one finds that the phase function, @, satisfies the hori-
zontally dependent eikonal equation

2 2
(a_") ' (i"_) - 2% ),
Jx oy P

where Ap is one of the eigenvalues, N2 eomputed above.

This cquation, like the ordinary eikonal equation, may be solved by using
ray tracing techniques. Note,however, that all depth dependence is missing.
The pressure depends on depth only through the vertical eigenfunctions. It may
also be shown that the leading amplitude, a(F?), satisfies the conservation law
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along o horizonual iy tube,

A computer program bascdonthe consideration above was written to procecd
i bwo stages. The livst determines the eigenvalnes and novrmahzed cigenfune-
tions at cach point of o vectungabine grid in the hovizontal plane. Then, duving
the second part, a sct ol horizontal vay Lracing equanions is integrated for cach
cigenvalue, and the contributions ol individual modes are combined to obtain
the total Hekd.

As inovdinary vy programs, only the leadine term ol the asvinptobic ox-
pansion oi cach mode i= found. ‘FPhe expansion then reduces te that derived by
Picrcee almost 10 years ago. 16

The program predicted propagation loss along a 1500-nmi track extending
northward from 27 30°N) 1577 30°W fo 527 30'N, 157 39'W. leven egnidistant
veloeity -depth prolites obtained from the measured data displayved in ligure 12
were entered into the computer program. Note thal the SO AR axis rises from
a depth of 795 m at 27 30'N fo about 50 m at 52 SO'N. Fack ol relevint data
prevented the inclusion ol any dependence ol seund specd oy hottom depth upon
longitude.

Figure 13 displays propagation losses from dynamite chavges detonited
500 L belnw sea level along the track to o 2500-1t recciver depth situated at
SO'N. The top eyuph vepresents obscrvavionad data, while the middie graph
shows computed results. The two are superimposed in the bottom graph. The
Ggure displays an interesting teature. The propuagition loss deerveases with in-

27

ereasing range beyond 42 N, This decrcase muay be explained by the fact that
the receiver is only 124 1t away [rom Tthe SOTAR axis, where the signal is
sirongly uffected by the amplitude of the Few lowest modes, as shownin figure 1
As the source ship moved north, the source approached the SOFAR axis causing
the ampiitude of these modes (figure 15) toincrease to such an extent that even-
tually the loss due to horizontal spreading was overcome and the total propagia-
tion loss decreased.

Ihe T, 800t receiver depth of figure 16 is well helow the turning points
of the fivst Tew modes, andso the signad therve is dominated by the higher modes,
The amplitudes ot these modes avenot greatly affected when the source approaches
the SOFAR axds; therelore, for this receiver, cevlitndrical spreading dominates
the entire track,
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1 27° 30' N —
157° 50' W

DEPTH (km)
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| | | |
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VELOCITY (km/sec) EIGENFUNCTION

Figure 14. Sound Speed-Depth Profile at 27° 30'N, 157° 50'W and the
Corresponding First Four Modes for a 31-Hz Frequency
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50° 0'N
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Figure 15. Sound Speed-Depth Profile at 50° 0'N, 157° 50'W and the
Corresponding First Four Modes for a 31-Hz Frequency
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FREQUENCY 31 Hz
SOURCE 500 ft
RECEIVER 10800 ft
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Figure 16. Propagation Loss versus Range for a 10, 800-ft Receiver Depth,
. a 500-ft Source Depth, and a 31-Hz Frequency
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SUMDMARY

Contrary to popular belief, ray thoory is an aceurate and cfficient means
of investigating low [requency acoustie propagation in the occan, Of course, in
this report ray theory has not been used in its classical sense,

Several illustrative examples proved that it is possible to design a single

propagation model that agrecs with analytic solutions and measured data, as
well as other computer programs. This effort is more difficult than one muy
;-7 realize, for once a computer program is tuned to the actual environmental con-
' % ditions of a real . _can, it may be impossible to input data for which analytic

solutions are known. The apparently simple task of compuaring programs is in

reality even more difficult than a eomparison with analytie solutions. First,
] one must have access to the programs being compared. Sccond, the programs
must treat the input data similarly. Finally, the programs must treit the out-

out data similarly. IFor example, how is one to compare cohierent nhase propa-
gation loss predictions with those of a4 random phase program ?

Although all the computer models discussed above have been designed within
the last {ew years, the theories upon which they are based are mueh older.
Therefore, it is felt that improved computing facilitics rather than improved
& acoustie theories have been responsible for improved predietion capabilities.

The future of ray theory may prove quite different. Application to unstrat-
ified media, random media, ete. is the next logical step, but these theories need
more development before they can be implemented into practical predietion
r models.
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