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I.   IHTRODUCTION 

A. Background 

The Northrop Corporation, under Air Force funding, has developed 

a finite element digital ccraputer code, called BR-1, for predicting the 

inelastic, large deflection, transient response of combat aircraft skin- 

rib-stringer structures when subjected to internal air blast loading. 

The finite elements considered are flat rectangular plates and beam 

stiffeners. The theory, user's manual and code listing are given in 

References 1 and 2. The Air Force Flight Dynamics Laboratory wanted 

the BR-1 code modified so that it could be used to predict the response 

of aircraft fuel tank walls when subjected to fluid pressures due to 

projectiles passing through the fuel in the tank. The intense pressure 

and momentum in the fuel due to the penetrating projectile is referred 

to as the hydraulic ram loading. This report describes the modifica- 

tions to the IBM version of the BR-1 code to account for the fluid 

(fuel) - structure (tank wall) interaction that occurs when bullets and 

metal fragments penetrate into aircraft fuel tanks. The modified code 

is called BR-lilK  The interaction between the compressible fluid and 

the structure is approximated by the piston theory. The code can also 

be used for many other compressible fluid-structure interaction problems. 

B. Piston Theory 

The total nonlinear problem of the response of a tank containing a 

fluid and subjected to a high speed penetrating projectile is extremely 

complex and presently defies analytical treatment.    In general, the 
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equations for the fluid stresses and motion are coupled to those for the 

wall stresses and motion due to the continuity at the fluid-structure 

interface (3).    One procedure for approximating the fluid-structure in- 

teraction phenomenon is the piston theory {k).    This theory has been in 

use since the early 19^0's when it was applied to the study of the 

effect of underwater explosions on ship plates.    It provides the correct 

solution to the one-dimensional propagation of stresses in an acoustic 

medium due to a moving boundary.    Several recent studies have been made 

to determine its accuracy when applied to two dimenflonal fluid-structure 

interaction problems (1+,5). 

Application of the piston theory to the interaction problem allows 

the structure equations and fluid equations to be uncoupled.    The response 

of the wall is computed using the conventional structural response equa- 

tions, with the normal pressure on the wall p given by 

p = Po + oc  (Vj^ - w) (1) 

where p   and v   are the incident pressure and velocity of the fluid at 

the wall respectively, o is the fluid density, c is the acoustic velocity 

in the fluid, and w is the wall velocity*.    The pressure, p , and 

velocity, v., are the pressure and velocity that would exist in the 

fluid if the interface was not there, i.e., p    and v. do not contain 
•   ' o    i 

any "local" reflected effects. However, effects on p and v due to 
o    i 

earlier reflections from other walls and free surfaces should be con- 

sidered. In other words, p and v axe the loading components due to 

♦A dot above a variable denotes a derivative with respect to time. 
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the free field and the scattered effects.    The loading component due to 
a 

the wall velocity w is called the radiation pressure. 

C. The NWC Hydraulic Ram Computer Code 

In order to use the piston theory to compute the tank wall response, 

it is necessary to know the incident fluid pressure p and velocity vj o i 

over the entire fluid-wall interface as a function of time.    In conjunc- 

tion with this project Lundstrom, at the Naval Weapons Center, has 

developed a digital cninputer code that predicts the fluid pressures and 

velocities p    and v   throughout a rectangular body of fluid due to a 

penetrating ballistic projectile.    The model is based upon replacing 

the projectile by a line of sources whose strength is determined by an 

energy balance between the kinetic and potential energy of the fluid and 

the energy loss due to drag forces on the projectile.    Reflections from 

the structure-fluid Interface are accounted for by considering the fluid 

boundary to be either stress free or rigid».     An extensive series of 

tests were performed at the Naval Weapons Center to obtain detailed 

pressure measurements for a variety of projectiles under a wide range of 

impact conditions.   This data allowed the selection of important para- 

meters such as tumbling distance, Jacket stripping, etc., to be entered 

into the code.    A description of the code and the instructions for 

operation are given in Reference 7.    This code provides the values for 

p    and v. at user specified locations over the structure-fluid interface 

for the time span of interest. 

*i A study of the one-dimensional reflection of step pressure waves from 
typical aircraft fuel tank wallp indicates that the stress free surface 
provides the more accurate approximation (6) 

| 
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II. MODIFICATION OF THE BR-1 CODE 

A. Incorporation of the Piston Theory 

The BR-1 code has an option foi the user to input a time varying 

pressure on each panel element. In the piston theory this pressure is 

the p + pcv. of Eq. 1. The other contributor to the wall loading given 

by Eq. 1 is w, the wall velocity. Since the BR-1 code does not include 

damping effects, it is necessary to add the damping term pew to the 

equations of motion. 

The BR-1 code solves the set of equations (Eqs. 1 and 2, Ref. 1) 

[M] {q*} = {F} - {P} - [H] [q*} = [C] (2) 

for the vector of global nodal generalized displacements [q*} as a function 

of time. These generalized displacements define the motion of the walls. 

The vector [F] consists of global generalized external and body forces 

at the nodes of the elements. The matrix [M] is the mass matrix. 

The wall pressure p given by Eq. 1 causes external forces at the 

nodes. The external generalized forces at the nodes of each element in 

the local coordinate system, {f}, is given by (Eq. A-U?, Ref. 1) 

,,     iVT 

(Aout) 
T 

where L BJ  is the transpose of the matrix of shape functions [N], 

evaluated at the surface of the element, Aout is the surface of the ele- 

ment, and {T ] is the vector of applied surface tractions and moments. 

The order of {T ) is a 5x1 vector. Due to the fluid pressure loading 

Tl 
00 

" ■ 'L.WW dA (3) 
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where the subscripts denote the coordinates,  (T_ is normal to the ele- 

ment), and p is given by Eq. 1.    The fourth and fifth elements of [T } 

correspond to applied moments per unit middle surface area of the 

element, and are zero here.    The numerical intergration of Eq.  3 can 

be accomplished by Gaussian quadrature.    However, the [f] is obtained 

in the BR-1 code in a more approximate way by using a lumping approach 

at the nodes ri' the element, as is done for the mass matrix evaluation, 

in order to save computation time.    Thus, according to Eq. B-92 of 

Ref.  1, the external force vector at the rth node of the nth element 

is given by 

. (V*!) gg2m \ L9/|        () 
l*»J U^ D 1 9l/ ^ 

nr     'l 
0  I 
0 |nr 

where p is the magnitude of the pressure on the element*, and D  ■ 

f       2 2 
VCl+Q^©-)   where Q and © are the fourth and fifth local general- 

ized displacements at the rth node. They appear here because the 

pressure is defined in BR-1 as the pressure normal to the deformed 

surface. The quantities (x -x.) and (y.-y-) are the dimensions of the 

rectangular element. 

The pressure p in the piston theory is given by Eq. 1, i.e. 

n   on   r n in   r n nr 

* The assumption is made in the programming of BR-1 that the pressure 
is uniform over each element.    This is contrary to the theoretical 
presentation where the pressure is defined at each node point. 
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where 

IpC if the nth element Is in contact with the fluid 

0 if the nth element is not in contact with the fluid. 

The variables p  anl v. can be determined from the NWC computer code 
^on    in 

for each element for the time span of interest prior to the computation 

of the wall response. This data is then input as the known external 

pressure. The variable w  is an unknown dependent variable and is part 

of [q*}. hence, it must be incorporated into the equations of motion, 

Eq. 2. 

The ff    1 due to w      is given by i nrJ nr        0 • 

. .    N,   Hn [f    I = _\ A-J HI   r  )g >       ^f (7a) 1 nr- U D \   i   J 
nr 

I  u  1 
I   0 nr 

The global force vector at the rth node, fF] , is related to {f } in 

the form 

where [J ] is the transformation matrix  from the global coordinate 

system to the nth element local coordinate system, r means a summation 

over all elements containing the node r, and » ,—. r means node o corre- 

sponds physically to node r. Since the .wall velocity in Eq. 7a is given 

in terms of the local coordinates, it must be converted to global 

coordinates. Thus, according toEqs. A-77 ana B-3 of Reference 1, 

V ■ LJnJ i*lr (8) 



where [J J is the third row of [J ]. Thus, the global external force 

vector at the rth node {F) becomes 

(pc 
r    nr 

Jr 

), [J/ fl^glZÜl  t^ 14J1 f-9 (9) 
nr <   ,    ► 1 

0 

nr 

Note that {F}    is nonlinear since 9    and Q    are part of [q.*}  .    If the 

rotations 91  and 9    are neglected in the computation of [F]  , i.e.,  if 

the pressure is not truly normal to the deformed surface,  {F} for the 

Utal R nodes of the structure    can be given in the form 

{F}  = -  [D]   {q*} 

where 

:D] = 
^1 en 

*^RJ 
and [D]  is a 6x6 matrix given by 

(10a) 

(10b) 

.T . • 3 CD]r - i! (oc)n ivi) r2-'i)n cy LVJ (10c) 

8 

u •.-•'• 



' 

B.    Method of Solution 

The BR-1 code solves for [q*} at discrete points in time using the 

explicit finite difference scheme (Eq. A-109, Ref. 1) 

{^q*) ■ {Aq*}       + At  [4«}t    ♦  (At)2  fq*) (11) 
i+1 xi 1 ^i ^i 

where At is the time interval between two time points, i.e. 

At = t - t i+1       1 

and (A^)        = {q*; - {q*} (12) 
i+1 ^i+l .1 

The acceleration {q*}t   li obtained from Eq.   (2) in the form 

(t»)t   = [M]-1 [C^ (13) 

The {q*} are due to impulsive loads wh'fch are known in the blast loading 

problem.    In the BR-1 code [F],  [P],  {q*} and [q*} are knovm at time t.. 

Hence,  {Aq*). and {q*}.        can be determined using Eqs. 11-13.    For 
i+1 i+1 

our situation,  [F}.     contains (q*}+   , which is unknown.    We could 
i 1 

approximate {q*}t    with the backward finite difference form 

{4*]t    = (Aq*]t    /At (lU) 

If we do, then (q*).    becomes known at t  ,  {F), and hence {C},  can be 

determined at t., and the procedure used in BR-1 is directly applicable. 

On the other hand, if we express fq*)+    in the central finite difference 
ti 

{4*}t    ■  | {Aq*)t - {Aq»}t    j     / (2At) (15) 

■ 



then [F]    , and hence {C)    , depends upon [Aq)        .    Consequently 
%i ti ti+l 

[Aq*] appears on both the left and right hand side of Eq.  11.    This 
ti+l 

requires a new solution procedure.    A detailed study of the accuracy 

and numerical stability of these two approacnes, and a third approach, 

when applied tc a single degree of freedom, damped oscillator is pre- 

sented in the Appendix.    The approach where [q*]  is given by the central 

difference expression, Eq.  15, is the one selected based upon the 

accuracy and stability properties of this scheme.    Its shown in the 

Appendix that the maximum value of At for a stable solution is 2/^,, where 

d, is the highest natural undamped frequency.    This is identical to the 

stability limit on the BR-1 procedure. 

Introducting that part of {F} due to w given by Eq.  10a into Eq. 2 

results in the modified equations of motion 

[M]   (q*)  ♦ [D]   [4*} = {C} (16) 

Replacing {q*} with the conventional central difference approximation 

[t»)t    = ( (q*)t -2  [q*}.     ♦ Cq*3t        ]   /(At)2 (17a) 
xi      \ i+1 xi i+l// 

is equivalent to obtaining {q*)+    from Eq. 11 with [q*} not considered, i.e. 
Ti i 

fl»)t ■ ( {Aq»}t +i - {Aq*}t J /(At)2 (17b) 

according to Eq. 12. Substituting Eq. 15 for fq*}. and Eq. 17b for 
ti 

fq*}.    into Eq. 16 leads to 
ti 

{Aq*]t        = [M + D (AtAOr1  ( [M - D (At/2)]   {Aq»}t     + {C}t   1(18) 

10 
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which is equivalent to jy,q*] given by Eqs.  11 and 13 when D is a 
ti+l 

null matrix and [q*] is not considered. 

The mass matrix [Ml is developed in BR-1 using the lumped mass 

approach and is given by (Eq. A-97, Ref. 1) 

r^ ■ 

[ly 
[M91 

where TMI  is a 6x6 matrix given by 

rV 

[M^ = v [j iT rm 1 [J 1 k r  nr 
L n   - nÄ

J L n a ^ 

(19a) 

(19b) 

and Cm 1 is a diagonal matrix of the lumped mass at the a node of the 
■ n^ 

nth element. Comparing Eq. 10b with Eq. 19a reveals that the two 

matrices rM + D (tlt/2)l and [M - D (.Lt/2)] occupy the same nonzero 6x6 

locations as the original matrix M. Thus, the same procedure used in 

BR-1 to compute [M]' can be used to compute [M + D (At/2)l' . Its 

only necessary to modify the elements of [Ml by the addition of the 

danping matrix [D] given by Eq. 10c. The other necessary change is 

the addition of the Matrix [M - D (At/2)l as a product with {^q*}t . 

Thus since 

11 
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ciy -i 

-if1- 
[M51 

-1      C 

•cv 

(20) 

Eq.  18 can be expressed in the form 

{Aq*}rt_   = [Mr +Dr  (At/S)!"1    ^  - Dr  (At/2)l   (^1»}^ (21) 

'i+1 

WrtJ r = 1,  2,...R 

12 
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C.    Program Changes and Modification Logic 

The following routines of the IBM version of BR-1 have been modified 

for BR-1HR:     MAIN, MEMBER, MTERM, QPLATE, ST0RE, DE1TT,    DEFLX, REVIV1 

and REVIV2.    Two new subroutines were created:    DPMASS and ADDAMP,    The 

core size was increased from 250k bytes to 290k bytes. 

The flow of the logic of the modifications  is as follows: 

1. Compute [M"!     in ST0RE (no change) 

2. Compute [D]     in ST0RE 

3. Compute [M]     in MTERM (no change) 

U.    Compute maximum time  interval for numerical stability in DELTT 

based on [M] (no change) 

5. Take the inverse of [M]"    to ger, [M]    in DPMASS using INVS 

6. Compute [M    + D    (At/2)]  and [M    - D    (At/2)]   in DPMASS 

7. Compute [Mr + Dr  (At/2)]'1 in T-XWASS using INVS 

8. Compute TM    + D     (At/2)l"1 TM    - D     (At/2)l   in DPMASS Lr        r        'j-Y        r 

9. Compute [M    + D     (At/A)]"1 r i    - D     (At/A)]   {Aq*}       in ADDAMP 

10.    Conpute [Aq»}.       using Eq. 21 in DEFLX    (no change) 
in 

The phrase "no change" means that the original procedure was used. 

When no damping is considered the modifications and additions are 

bypassed. 

13 

. 

•>- 



III.    USER'S INSTRUCTIONS FOR BR-1HR 

The instructions for the use of the BR-1 code are given in Ref. 2. 

All of the instructions contained in that volume also apply to the modi- 

fied program BR-1HR.    The time step for numerical stability of BR-1HR 

is identical to that of BR-1.    The additional instructions required to 

use BR-1HR are as follows: 

1. Problem Control Card (page U, acf. 2) 

IHR {15, Col. 66-70)  - IHR ■ 0, no fluid is involved; the 

original BR-1 code is used.    IHR = I, 
(follows IREV) 

fluid is involved, the modifications 

are used. 

2. Rectangular Panel Card (page 8, Ref. 2) 

RH0CF (E8.U, Col. 55-62) - RH0CF is the product of vf, the 

(between RH0 and Table    fluid specific weight, and c, the 

^ ' sonic velocity of the fluid. The 

c -2    -1 
units of Vf are lb. -in. - sec. 

If the panel is not in contact 

with the fluid, RH0CF = 0. 

1U 
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IV.    SAMPI£ PROBI£M 

A simply supported square plate Is subjected to a step pressure load 

of the form 

p » o t ■ o 

p = P sin E2£ sin IÜC t ^ 0 (22) 

Due to symmetry, only one quarter of the plate is considered:    The 

parameters of the problem are: 

E = 10.U x 10   psi - Young's modulus 

M = O.O965 Ib/inT - specific weight of the plate 

u ■ 1/3 - Poisson's ratio 

h = 0.1 in. - thickness 

a = 20 in. - length and width 

P » 0.01 lb/in? 

The load is sufficiently small such that the nonlinear effects are 

negligible. The plate is modeled with four elements as shown in Fig. 1. 

The equation governing the damped motion of the plate corresponding 

to Eq. l6 is 

D^w + ^ ^ + pC^ = psin f 8in flE (23) 

where 

Eh3     k »*    ?.k        »* 

i2(i-v )    OX   ax ay  ay 

and g is the local acceleration due to gravity. The solution to Eq. 

23 is 

w" 
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SIMPLY SUPPORTED EDGE 

I 2 3 
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LINE OF SYMMETRY 
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i 
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3 

E ■ 10.4 X 10   psi 

r> 0.0965    Ib/ln3 h « 0.1 in. 

FIGURE I.       SAMPLE PROBLEM 
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w x wst ^ " e"Cu,t COS nA-T •* + v,) /cos co} i2k) 

where 

tan „ = - 5/ "N^T -c2 

w        i!!P    sin rx 8t  W1 sln^ 

K      2Yh 

'»=    2    Vh? 

when the plate is initially at rest. The displacement at the center of 

the plate given by Eq. 2k  is plotted in Figures 2, 3» and U as a function 

of time for J = 0, 0.666 and 270 corresponding to zero damping, less than 

critical damping and very heavy damping respectively. The corresponding 

values of gpc for the fluid are 0, U, and 1620 lb /(in -sec). Also 

plotted in Figs. 2-k  are the results from BR-1HR. The input data sheets 

and the print of the input data are given in Fig. 5- The execution time 

on the IBM 360/67, FORTRAI« IV - Level H, was 8 min. and 26 sec. for 200 

time steps with Q  = 270. The run with damping not considered took 

essentially the same length of time. 

17 
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EXACT SOLUTION I 

/*^. BR—IHR 
/ SOLUTION 

I. 3. 6. 
t(MSEC) 

FIGURE 3.     TRANSVERSE    DISPLACEMENT AT NODES VERSUS 
TIME,     ^»0.666 
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^   (MSEC) 

FIGURE 4.    TRANSVERSE    DISPLACEMENT  AT NODE   9   VERSUS 
TIME ,     jf =   270 
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V.    SUMMARY AND CONCLUSIONS 

The finite element digital computer code BR-1 developed by the Northrop 

Corporation for predicting the effects of internal air blast on typical 

combat aircraft skin-rib-stringer structures has been modified to include 

the effect of compressible fluid-structure interaction.    The fluid-structure 

interaction is approximated by the piston theory wherein the effect cf the 

fluid upon the structure is accounted for by introducing damping to the 

equations of motion of the structure.    The modified code is called BR-1HR. 

This code, in conjunction with the NWC code for predicting hydraulic ram 

pressures, can be used to predict tht structural response of aircraft fuel 

tanks subjected to penetrating bullets and fragments. 
■ 

All of the features of BR-1 exist in BR-1HR,  and only two additional 

numbers ere required for the input data.    The modified code is operational 

on the IBM 360/67 in FORTRAN IV, level H, and requires 290K bytes of 

storage.    A sample problem was executed to demonstrate the validity of the 

modified code for zero damping, less than critical damping, and very heavy 

damping. 
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APPENDIX - A STUDY OF THE ACCURACY AND STABILITY OF SEVERAI NUMERICAL 

INTEGRATION SCHEMES FOR THE TRANSIENT RESPONSE OF HEAVILY EAMFED 

STRUCTURES 

Many studies have been made of the accuracy and stability of 

numerical integration schemes for the equations of motion of structural 

systems.    However, most of these studies concentrate on the response of 

undamped, or lightly damped, systems.    Of interest here is the response 

of both lightly damped and heavily damped systems since both kinds of 

damping can occur when a structure is vibrating in contact with a 

compressible fluid  (6). 

The equations of motion of the system under consideration are given 

in matrix form by Eq.  16,    Three different finite difference schemes for 

the numerical solution of these equations are considered here.    Only 

explicit, non-iterative schemes are considered due to the fact that the 

BR-1 code uses an explicit solution procedure.    Two of the three schemes 

are based upon a two variable approach using {q*} and {v*}, where 

{q*} = {v») (B-l) 

Thus, Eq.  16 can be given in the form 

{>) = [M]"1 ({C}  - [Dl   {v*}) (B-2) 

First Scheme 

Substituting the first order approximations for {v») and {q*] 

{^)  ■ ((v»)t   - (V) ) /(At) (B-3a) 
xi      xl+l     ^i 

s.- 



(4*}t        - ({q»}t        - {q»}+  )/(At) - {&*).     /(At) (B-3b) 

Into Eqs. B-l and B-2 leads to 

{V»}.        = [I - hrt) U*)]   {v»V    + (At) [M]"1 {Cl. (B-Ua) 
*!♦! i ^i 

(Aqi+      ■ At {v»r (B-Ub) 

Eliminating {v*l from Eqs. B-k  results In 

{Aq*}t   • [I - M"^ (At)] {Aq*}t + (At)2 [M]"1 [Cl      (B-5) 

This Is Identical to the scheme used In BR-1 when damping Is not considered. 

It Is also equivalent to the scheme where the acceleration [q*1 Is approxi- 

mated by the conventional central difference approximation, Eq. 17a. The 

two variable approach given by Eqs. B-k  may be more desirable than Eq. B-5 

due to roundoff error considerations, i.e. (/^t) in Eq. B-5 is a very 

small number. 

Second Scheme 

The second scheme uses Eq. B-Ua and the simple forward Euler approxi- 

mation for {v»l In Eq. B-l 

{Aq*K   ■ (At) {v»} (B-6) 
tl+l % 

in place of the backward approximation of Eq. B-Ub. The solution proce- 

dure is to compute fv*"!.   using Eq. B-Ua and fAq*"L  using Eq. B-6. ti+l ti+1 

Third Schäme 

The third scheme uses the conventional central difference approxi- 
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mations for both {q*1  and fq*-', i.e. Eqs    15 and 17a.    This gives Eq.  18, 

reproduced here for convenience 

f&q*V = TM 4 D Ut/a)]'1  (rM - D (at/2)l   [L<1*\    +  (i^t)2 tC\   )    (B-7) 
1        ^+1 ' ti ti 

This scheme is also identical to the BR-1 scheme when damping is not 

considered.    A two variable version of this scheme is 

[4*n4       - ^M + D (At/2)]  ([M - D (At/2)]  r^v»]      + ^t) fC]    ) (B-8a) 
Vl zi zi 

and 

^i+l ^i+l 

This may have smaller roundoff error than Eq. B-7 since (^t)    has been 

eliminated. 

(B-8b) 

The Single Degree of Freedom^ Damped Oscillator 

The equation for the free vibrations of the single degree of freedom, 

damped o^cillatcr is 

mq + dq + hq = 0 (B-9) 

Applying the three schemes described above to Eq. B-9 leads to 

qt        - (2 - 2 d - i ) 4ft    +(1- 2^)^ 
^i+l ^i ^i-1 

= 0 (B-lOa) 

r *^     r 
1 0 

0 1 
L J   *- 

(Ath 

'i+l 

1 - 2^(5 -JJ) (Ath 

q 

= 0 (B-lOb) 

(1 + UK        "  (2 " m  K    + (1 " tfkft        " 0 (B-10c) 
i+l i i-1 
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where 

w (AtOiu (U Vh/m       C = d/(2»<ü) 

according to Eqs. B-5, B-Ua and B-6, and B-7f respectively. 

The solution to Eq. B-9 can be given in the form 

i-A( 
e-C<Se ^y/t2 " M X^i (A*) (B-ll) 

where A is an arbitrary constant and the superscript i denotes the ith 

power.    The solution to the three dif'-rence schemes for an arbitrary 

set of initial conditions can be obtained by assuming 

AXJ (B-12a) 

(At)v+ RX (B-12b) 

where x, A and B are unknown constants. Substituting Eqs. B-12 into 

Eqs. B-10 and solving for \  for each scheme lead to 

X,  " ! - Ci iu 
2/2 « £ \/(C + 5/2)2  -1 (B-13a^ 

ü\f (B-13b) 

When the discriminant In Eqs. B-ll and B-13 is positive the solution 

X2 - 1 - CB ' mV C - I 

X, » (1 - <D2 /2 - - ^/TTTA-I ) /(I ♦ C<S) 

consists of damped motion only. When it is negative the motion is 

damped and oscillatory. Thus, a zero discriminant defines the limit 

of the oscillatory behavior. 
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The accuracy of the three numerical schemes can be evaluated by 

comparing x,» Xp and \- with > for several values of Q  and £.  The 

values of the ratios of the numerical solution to \    are given in Table 
c 

B-l for J « 0, 0.5» 5, and 500 and g = 0.1. This value of ,5 corresponds 

to a time step of 1 u sec when w  ■ 100,000 rad/sec or a tima step of 1 

msec when „, « 100 rad/sec, etc., i.e. the solution is computed ten times 

over the time interval l/(ü or 20TT times over the undamped natural period 

2TT/(ü' The closer the ratio in Table B-l is to one, the closer the 

numerical eigenvalue is to the correct eigenvalue. 

The numerical stability of each scheme can also be determined from 

Eqs. B-13. When |x|>l the numerical solution will be unstable. The 

upper limit on $  for stability can be determined for a given value of Q 

by equating lx| to one and solving for 5. When the discriminant is 

positive \ = -1 is the limiting value and the negative sign in the * 

n—? 
applies.    When the discriminant is negative   |x| =/x    + y   where x and 

y are the real and imaginary parts reKpectfully.    The results for the 

limiting values of £ for an oscillatory solution and for numerical 

stability are given in Table B-2. 
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Scheine Oscillatory limit Stability limit 

H S ■ 2(i-c) i - H\Jf +1-0 

x2 c = i 
5 - Sc» C g 1 

'3 
i-a 5 ■ 2 \/i -c2 

TABI£ B-2    Limits on ,ü for an Oscillatory Solution and a Stable 

Solution 

Note that \    is unstable for any non-zero value of £ when ^«0 and that 

2 is the maximum limit on ,„ for all three schemes. Also note that the 

limit on \_ is the same as that on the BR-1 routine, even with damping, 

and that this is the least restrictive scheme. Consequently, based 

upon these accuracy and stability considerations the third scheme is 

selected. 
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