ﬁ MNMM I e bty R C e o, e vt e e et s e s+ e st v 1 0T

AD/A-003 414

EXPERIENCES WITH AN OPERATIONAL
ASSOCIATIVE PROCESSOR

D. L. Baldauf

Mitre Corporation

Prepared for:

Electronic Systems Division

November 1974

DISTRIBUTED BY:
L
b
71 ; National Technical Information Service
; \ U. S. DEPARTMENT OF COMMERCE

e o C -~

/' SECURITY CLASSIFICATION OF THIS PAGE (Whon Duta Entared) A 2)/19 QO 2 Hitf

[" READ INSTRUCTIONS
N REPORT DOCUMENTATICN PAGE pEiiEAD INSTRUCTIONS
. [T, REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBEN
ESD-TR-74-199
& TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

x Experiences with an Operational Associative

A Processor §. PERFORMING ORG, REFORT NUMBER
) MTR-2879

o 7. AUTHOR(®) 5. CONTRACT OR GRANT NUMBER(®)

D. L. Baldauf F19628-73-C-0001
§ ® PERFONMING ORGANIZATION NAME AND ADDRESS 0. PROGAM ELENMENT, "ROJEGT, TASK
i The MITRE Corporation AREA & WORK UNIT NUMBE RS
1 Box 208
: Bedford, Mass., 01730 Project No. 572T
11, _CONTROLLING OFFICE NAWE AND ADDRESS 12, REPORT DATE

. Deputy for Command and Management Systems November 1944
! Electronic Systems Division, AFSC 15, NUMBER OF PAGES
] L. G. Hanscom Field, Bedford, Mass.,01730 3 37
| 184, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftice) 18, SECURITY CL ASS, (ot thia report)

4 Unclassified

18a.” DECL ASSIFIC ATION/ DOWNGRADING
b SCHEDULE

18. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abutract entered in Block 20, il different from Report)

168, SUPPLEMENTARY NOTES
Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US$ Osparimant of Commarce
Springlisld, VA, 22151

19. KEY WORDS (Continue on reverse aide il necesaary and Identily by block number)

Associative Processing

Parallel Processing

Array Processor

STARAN
20, ABSTRACT (Continue un reveras side if nacesasary and identily by block number)
A space object position prediction program was implemented on the STARAN asso-
ciative array processor (AP) installed at the Rome Air Development Center (RADC),
New York. This document outlines the experience gained from this task. A section
is devoted to an analysis of the time and e{fort required to implement the program. :
Emphasis is given to the program design and array layout phase. Systematic (i.e.,]
independent of the specific program) and application-related capabilities and limita-
tions are discussed. An analysis of the RADCAP system from a user's viewpoint

FORM b
7 1 4
DD 1 JAN 73]‘ 3 EDITION OF 1 NOV a3 IS OISOLETE @‘) !

.. SECURITY CLASSIFICATION OF THIS PAGE (Whan Date Entered)

'
s

b3

. SECURITY CLASSIFICATION OF THIS PAGE(When Data Bntered)

: is also presentsd. The latter part of the paper deals with recommendations for an
: ‘ mlmpmed STARAN system (hardware and software) and an improved host computer
®. .

\\\

SECURITY CLASSIFICATION OF THIS SAGE(When Data Entsred)

[
n ' s
AT P 4
; L8 - i B When U.S. Government drawings, specitications, ¥
f s et b) or other data are used for any purpose other |3
' e \ v than a definitely related government procurement ‘ :
v u‘\ e TR operation, the government thereby incurs no q
{{ URUACAE IRt : responsibility nor any oblijatiofi whatsoever; und ¥
the fact that the governmant may have formu-
g lated, furnished, or in any way supplied the said ¥
: drawings, specifications, or other data is not 1o be 8
b . regarded by implication or otheswise, at in any
X LA . manner licensing the hoide: o any other person ‘_
& or corporstion, or conveying any rights or per-
mission to manufacture, use, or sl any patented .
j. invention that may in any way be related thereto. ‘. '3
1‘.;l 1'
y
) . P
: | Do not return this copy. Retain or destroy. . > -
; it
1 . |8
N REVIEW AND APPROVAL &
"j "This technical report has been reviewed and ismpproved for publication." :
L Gt &, ﬁeu- "~ N
MARVIN E. BROOKING, GS-13 1
X Task/Project Officer b
- v FOR THE COMMANDER :
i
- /&el,%rz(L
. ! . :.‘
. ROBERT W, O'KEEFE, Colonel, USAF)
Director, Information Systems Technology i3
1 Applications Office *
{ Deputy for Command & Management Systems)
4 (
). p
t. ARt

',
3

W
N

ACKNOWLEDGEMENTS

Special thanks are due to Paul Gamelin for his aid in the pro-
duction of this document. Thanks also go to Robert Fiske, Paul Gregor
and Gerald Koehr of the MITRE Corporation for their support. The
cooperation of those at the Rome Air Development Center, especially
Armand Vito, is gratefully acknowledged. The work described was
sponsored by the Air Force Systems Command/Electronic Systems Division/
Information Systems Technology Application Office.

mTnERET LT

TrrATTEIETEETTT M

ol L STy

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

SECTION I

SECTION II

SECTION III

SECTION IV

SECTICN V

APPENDIX A

APPENDIX B

REFERENCES

INTRODUCTION

SGP4 PROBLEM DEFINITION
EQUATIONS
APPROACH TO PROBLEM
PROPOSED SOLUTIONS

IMPLEMENTATION

CAPABILITIES AND LIMITATIONS
SOFTWARE
HARDWARE

SUMMARY AND CONCLUSIONS

RADC SYSTEM DESCRIPTION
HARDWARE
AP Control Memory
AP Control Logic
Program Pager Logic
External Function Logic
Sequential Control Processor
Input/Output Options
SOFTWARE

DEFINITION OF PIO ROUTINES

P SN NV FONEY SR

CHEPUE WS

’*’

LIST OF ILLUSTRATIONS

Figure Number Page

1 Overview of RADC STARAN System 23
STARAN Array

R e i e e T e e

SECTION I

INTRODUCTION

During FY74 principal efforts of the Associative Processor Task
were directed toward implementing the SGP4 space object position pre-

. diction equations on the Rome Air Development Center Associative

Processor (RADCAP) facility. The RADCAP facility congists of a
*
STARAN() S§~1000 associative processor interfaced to an HIS-645 Mul-~

tics system. Results ol these efforts are discussed in this report.

The SGP4 (Simplified General Perturbations #4) system is used to
predict the position of orbiting space objects. Computations are
based on a simplified version of Lane and Cranford's drag theory[ll
combined with a simplified version of Kozal's geopotential theorytz]
along with second order secular terms from Brouwer's geopotential
cheory[B]. The program takes a set of mean elements at an epoch time
and a drag term and uses them to generate position and velocity at
some specified future time. The SGP4 equations are typical of a class
of scientific computations with a branchless algorithm. 1In this type
of computation, a sgeries of arithmetic computations are applied to
each of many data groups. For the space object tracking problem, sev-
eral hundred groups of data were processed with each data set con-
taining information partaining to one space object. Some of the
characteristics of the STARAN were found to be systematic, i.e., they
were independent of the program being implemented. Others were found

to be directly related to the particular type of program being imple-
mented.,

*
()STARAN is manufactured and marketed by Goodyear Aerospace Corpora-
tion, Akron, Ohio.

Preseding page blank

IO e

7 i PN

PR I S I

e e

reeo

Systematic and application-related capabilities are pointed out
throughout the paper. A section is also devoted to an analysis of
the time and effort required to implement the program on the STARAN.
These should be useful in guiding any subsequent efforts to implement
similar algorithms on the RADC system.

. f The SGP4 equations are characterized and results of their appli-
:ﬂ ' ' cation are discussed in Section II. Section III traces the proposed
L ! solutions, the final solution, and the time needed for all phases of
5 l the experiment. Section IV evaluates the RADC STARAN system architec-
‘ ture from a general user's viewpoint and from the results of the SGP4
E experiment. Summary and conclusions are presented in Section V. *

Appendix A presents a description of the STARAN hardware and software
available at RADC. Appendix B explains the specially developed PIO
routines. '

SECTION II

SGP4 PROBLEM DEFINITION

EQUATIONS

The SGP4 equations (Simplified General Perturbations #4) are
used by the Space Computation Center (SCC) for space object orbital
position prediction. There are 44 equations containing 259 multi~
plications, 30 divisions, 62 additions, 42 subtractions, 15 square
roots, 7 sinea, 6 cosines and 1 arctangent. There is, of course
no "real" number of arithmetic operations for a set of equatious;
these are the numbers that were found for the particular way that
the equations were programmed in this project. Shortcuts such as
Newtou's method for polynomials were taken wherever possible. Ex-
pressions used in one equation and needed later were saved. This
reduced the number of arithmetic operations. Each of the trigono-
metric functions were solved by computing a truncated series expan-
sion. The arithmetic operations necessary to compute this series
were not included in the numbers above. TFourteen pleces of input
data are associated with each space object., These data contain
such information as the object identifier, epoch time, shape and
orlentation of the orbit and drag coefficient. The same calcula-
tions are performed for each object. There are no branches in the
code, and 16 results are produced. These results are used in other
programs of the SCC such as ephemeris generation and look angle
reports for ground baced sensors. These equations are typical of a
large class of scientific computatious which exhibit the same branch-
less type algorithm. Thus, many of the items discussed in this paper

concerning this implementation are applicable to other problems.

APPROACH TO PROBLEM

It was assumed that several thousand space objects were to be
processed., The goal of the implementation effort was to minimize
the effective processing time per object. The intelligent use of
the parallel capabilities of the STARAN was clearly the method to be
used to achieve this. The equations were examined for possible

Pl N

sources of parallelism. Matrix operations are one possible source.

DO LOOP constructions are another source of parallelism. WNeither of
these were found within the equations. It was then decided to make
; use of the other major source of par-ilelism - parallelism by number.

In this case, many data groups go through the same series of arith-~

bl St e oL e il

metic computations. For the purposes of the experiment each data
group corresponds to one space object. Many vbjects can be processed

simultaneously by using the parallel processing capahilities of the

arrays.

PROPOSED SOLUTIONS

Choosing the best algorithm, given the RADCAP configuration,
was the next task. Several designs were considered. All designs
assumed 32-bit floating point .umbers as data.

The first and most obvious approach taken was the use of one
word (256 bits) of associative memory per object. Since there are
1024 words of associative memory (4 arrays with 256 words/array)
thir would allow the processing of 1024 objects in parallel. Sev-
eral problems were presented uith tuls design. There are 14 in-
puts and 16 outputs in the SGP4 equations. Since all arrays are
being used for computation, I/0 through the parallel input/output
(PIO) channel cannot be overlapped with computation. Sixteen out-
puts from each of 1024 objects alsv requires 16K words of control
memory for storage. This is exactly the size of memory and leaves

no room for a program. In addition, many temporary variables

R AT e @

[N

4
'
Fa
it
4
b

T e w

are produced during the computations and are needed in subsequent
calculations. Two hundred fifty six bits (eight 32-bit fields) is
not suffirient storage to hold all of these variables. Some must
be written out to control memory and subsequently read in. This

operationsis very time consuming.

A second deaign which would eliminate the storage problem was
proposed. Instead of using one word of assoclative memory for each i
object, two contiguous words are used. This doubles the storage |
available for temporaries in the array. This also reduces the
storage needed in control memory for the 16 outputs from 16K to 8K.
However, only 512 objects can now be processed at once. Once again,
since all arrays are being used for computation, I/0 cannot be over-
lapped with computing. A few temporaries must still be stored in
control memory but not nearly as many as would _.: necessary with the

first design.

The third design utilizes the ability of the AP control :nd the A
P10 control to execute simultaneously. The arrays are functionally 1
divided in half. Arrays O and 1 are computation arrays, and arcays
2 and 3 are buffer areas. As in the second design, each object uses
two words of assoclative memory; one word is in the computation
array, the other is in the corresponding word of the buffer array. j: -
The word in the buffer area is used both for storage of tempcrary |
variables and for input/output operations. Arrays 2 and 3 are no 5
longer used for computation. Thus, for most of the time they can be
assigned to PIO control to do input/output. At the same time, arrays
0 and 1 are computing. In this manner most of the I/0 is being over-
lapped with computation. 1In che execution of the program, data is
first brought intc the computation arrays from control memory. Com-
putation begins while the buffer arrays continue to bring in input
variables. As more variables are needed for computation, processing 3 1
is interrupted and the variables are transferred from the buffer |

arrays. Similarly, when temporary variables are not needed for a

9

time, they are transferred from the computation arrays to the buffer

arrays. The third design was judged to be the best of those con- f
sidered because it: f

: 1. Allowed AP control and PIO control to execute simultaneously. =
2, Provided 16 ficlds of array storage.
3. Reduced control storage needed for variables.

SECTION III

IMPLEMENTATION

The first phase of the implementation effort was devoted to a
study of the RADCAP system and the SGP4 equations. This study re-
quired about 180 man-hours. This time was spent on luvestigating
the different approaches to the solution as discussed in the previous
section. Rough estimates for time and throughput were computed for
each of the three designs. By taking the time to look into approaches
that were not immediately obvious, an increase in throughput of
approximately 50% was realized. Because of this savings it is sug- 3
gested that this phase be emphasized in similar implementation efforts.

The data area map was next formulated. Since there is no higher f'
level language for STARAN, all memory management must be done by the
programmer. This required approximately 150 man-hours and involved
both the array area and the control memory area. A decision was made
to use 32-bit £floating point numbers for all data. This meant that
there were only eight fields in each of the arrays. Since a typical
arithmetic operation involved three fields, it can be seen that the
allocation of storage in the arrays was a major concern. It became
necessary to go through the equations operation-by-operation in order R
to place exactly every plece of information within the arrays. Stor- o
age had to be allocated for temporary variables that were produced. !:
Some items had to be moved several times between control memory,
buffer arrays and computation arrays. All of these operations had to
be carefully planned to make the beat use of the computation and 1/0
capabilities of the system. Care had to be taken that no mistakes
were made while transforming the equations into array operations. A
missed addition, for example, would upset the carefully planned array
layout. A fix might have to be made by transferring a word in the
computation arrays to the buffer arrays. This type of time-consuming !

11

2l R A S L T R e R TP

change also makes it difficult to make additions or changes to a
program that has already been programmed for the STARAN. Thus, the
code produced in this type of program is rather inflexible (¢ change.
Because of the importance of properly utilizing all of the recources
of the STARAN, this phasn sghould be important in any similar task.

The coding part of the project was relatively straightforward
once the data area mapping was complete. This required about 60 man-
hours. The code was produced almost directly from the array map. A
second pass was made to try to optimize that code relative to the I/0
operations which were taking place. Whenever possible, I/0 operations
were put together in a group. Appendix B more fully explains this
process. Also, wherever possible, input/output commands were placed
in front of a series of arithmetic operations. Thus, when PIO control
was finished executing, AP control would atill be processing the arith~
metic commands. Both of these changes allow PIO routines and AP
routines to run with little interference with each other.

It was then necessary to break the code into sections. The
entire program was too large to assemble on the STARAN. Because of
the slow speed of the macro preprocessor, smaller, mcre manageable
pleces of code had to be agsembled; otherwise, the time to find syn-
tax errors and reassemble would have been prohibitive. This division
of the code caused additional problems. Assembler directions such as
EQU statements and define field instructions had to be repeated for
each section, Certain important constants had to be made ENTRYs to
enable references from separately assembled sections of the code. An
overlay had to be generated which resulted in the later addition of
some code. The total time for these operations was fifteen hours.

The selected design could not execute properly without the addi-
tion of some input/output system software. PIO routines were needed
to transfer information between arrays 2 and 3 and control memory
while AP control was executing on arrays 0 and 1. In addition, AP

12

control programs had to be developed to call the I/0 routines. A
Parameter passing standard had to be developed. Since the PIO
routines could be called in a variety of ways, it was also necessary
to develop complex macros. Chaining of commands was also allowed.

A detailed description of the PIO routines appears in Appendix B.
Approximately 130 man-hours were required to develop these routines.

The debugging time consisted mainly of the time required to
debug the parallel input/output routines. Problems occurred with
finding infinite loops in the code. It was necessary to halt the
STARAN in order to reload the system when loops occurred. Since
breakpoints could not be set in PIO control, routines had to be run
until completion in order to view results. Alsc, registers could not
be modified to try different changes. Array and register dumps were
mainly utilized in obtaining a properly executing program. Since
the emphasis of the work was not on obtaining a "correct" answer,
time to debug logic errors 1s not included. Sixty man-hours were
devoted to the debugging task.

13

PRSI

‘_ _,_. P,
- e
- P, TP

. T—— Y g B 1 s wbee - . . e C et wieeRaz s he ettt RN Y T RTRTINT DT P A b g i SRR LR L ey

SECTION IV

CAPABILITIES AND LIMITATIONS

SOFTWARE
The macro pre-processor on the STARAN is a very powerful tool
+ Wwhich can greatly simplify any programming task. It contains many
useful features some of which are listed below.

e Ability to nest macro calls (including recursively)
Ability to have a macro call appear as a character
string variable

¢ Local and Global macro variables

System macro variables for label field, argument
field and a SYSNDX type construction

Arithmetic and character string literals
Subscripts for indexing into character strings
Subetrings

Logical and arithmetic operators

Concatenation

Conversion between string types

Abllity to limit number of macro branch instructions
executed
e Message generation facility

{ The STARAN assembler is very easy to use. It has the typical

’ assembler fields - label field, command field, operand field and

comment field. All lines are free format with the only require-

ment being that labels must start in the first column. A useful

feature is the ability to equivalence variables to reglaters as well i
as symbols. Some registers in PIO control have the same names as

those in AP control but have different functionas. The equivalence

feature allows a wore mnemonic labeling of these registers. Another

14

NI e s e L

e L AL T M KT S et

PRSPy

feature is the ability to intersperse machine code with assembly
code within a program and within an instruction. This i{s sometimes
necessary because the assembler cannot generate all of the possible
machine language instructions. In most applications this would not
affect the programmer since the assembly language is sufficiently

b oo e e

powerful. However, in applications requiring new system software
(i.e., PIO routines) machine language must be extensively used.

A useful addition to the assembler would be a DSECT or COMMON
type construction that would allow description of data areas which
are external to a program. This would be useful when several in-
dependently assembled programs'or sections of programs refer to a
common data area. With the existinp uassembler, all such variables
referenced must be made external variables.

The linker is powerful and easy to use. Overlays are easily
generated and used with the aild of simple assembly language state~
ments. Efther high or low load locations can be specified for each
segment to allow optimal use of control memory.

The debugging facilities provided with the STARAN are generally
very good. Especially useful are the breakpoint and print table
facilities. However, more breakpoints and the ability to set PIO
breakpoints would be helpful. The print table allows pre-selected
registers and locations to be dumped upon user command. Every regis-
ter and memory location - array, AP control, PIO control and sequen-
tial processor control can be examined. Changes can be made to all

locations and registers except PIO registers. This proves to be a
handicap when debugging input/output routines. There is also a

single step mode to execute programs one instruction at a time. This
is a very helpful feature, but problems can occur. There are loop
instructions in STARAN which allow the repeating of groups of instruc-
tions up to 256 times. When debugging a program in single step mode,
each of these instructions within the loop must be manually stepped

15

through as many times as is indicated for the loop. A mechanism to

suspend single stepping within the loop and to resume it outside of !
the loop would be helpful. Another shortcoming of the present de-
bugging system is the absence of any in-line debugging aids. Items
such as snapshot dumps of registers and locations, especilally array
memory, could be very useful. In addition, conversion of floating
point data to a standard output format would aid in debugging pro-
grams that use floating point arithmetic. As the system exists now,
all debugging must be on-line. Debugging in batch mode is impossible.
For remote users, this especially presents problems because of the
way that the STARAN - host machine (Honeywell 645) interface is
handled. During on-line debugging it i1s necessary to know the status
of the machine at all times. A user essentially asks the machine a
question, it responds, and he deductively proceeds from there to ask
more questions. The feedback from the computer is very important.

In stand-alone debugging, this feedback is present. When remotely i
accessing the STARAN, only some of the feedback occurs. No immediate

response is given when starting the AP, halting the AP, stopping at

breakpoints or reading the performance monitor. In order to verify .
that these instructions have been carried out, debug mode must be 3
left completely. This greatly slows down the debugging effort. On
occasional system crashes no notice is given to the user. There is
#lso no provisicn for a restart of the STARAN from the host computer.
This could greatlr simplify the procedure used to reload the system
after a crash. When doing any work remotely on the STARAN, the user
is locked out of any other Multics activity. For example, while Y
waiting for a program to assemble on STARAN a user cannot use a

Multics editor to create another program. Also, a user may wait so

long for a program to be assembled that he gets disconnected from

che STARAN and logged off the Multics system. There also does not

exist the capability of running a program on Multics that interacts

with a program on STARAN., This kind of interaction could be helpful

16

in a program that 1s only partially suitable for an AP, Some of the
processing could be done under Multics, information could be sent to
STARAN and a parallel task initiated. Information to guide processing
could be communicated between the two tasks. However, with the pre-
sent system this is impossible.

Another obvious shortcoming of the software is the lack of a
higher level programming language. The burden now is entirely on
the programmer to take his problem down to the machine level. A
higher level language could greatly aimplify his task. Also, as
mentioned before, the code produced is rather inflexible to change
because of the array allocation,

HARDWARE

The most important recommendation for a modified RADC system
is an increase in associative array word size. The storage of tem-
porary variables was the most difficult problem to deal with in the
implementation effort. Even the use of buffer arrays for additional
temporary storage did not eliminate the necessity of storing tem-
porary variables in control memory. Input/output operations to core
vere very slow when compared to arithmetic operations. The addi-
tion of more storage per array word could eliminate entirely the
need to use control memory for temporary storage. It was estimated
that doubling the word size of array memory to 512 bits would have
this effect. Since two arrays are being used in the implementation
as buffer areas, another recommendation would be to remove the logic
from several arrays and attach them to the present arrays as input/
output buffers. These recommendations are based on experience with

SGP4; it 418 not known whether a larger word or buffers would help
in different type applications.

Another recommendation is that floating point hardware be devel-
oped and used in those applications that use floating point arithmetic. |

17

- e I IRy o
bt i " ’
EA WY RUNIY W NP I - ¥ ahiaddnlint b N s

P B L T T e I MR U A A L A

.
J

L
l
i
\

On the RADC STARAN, gll arithmetic is done in software. This pro- .
duces long execution times (890 ysecond for a floating point divide)
and a large code expansion (75 lines of code for a floating point

addition). Fourteen additions would produce over 1,000 words of
code. Hardware floating point could have a significant impact on
both problems.

The addition of more control memory could make similar pro-
grams easier to implement. Typically a large amount of data must
be input to and output from a program. In SGP4 there were 16 output

variables for each object. BSince 512 objects were being processed

simultaneously, 8K words of control memory had to be set aside.

Because of the software floating point code expansion, the entire

program could not fit into control memory and an overlay was needed.

T YT 2

Another important recommendation i{s the incorporation of a
‘ sequential arithmetic capability into AP control. At times, com-

}
1

putations are needed that involve just a few numbers. This is true)
especilally when a more general routine is desired. A number may be

passed as a parameter to a routine and it may be desirable to work

with this number. In the existing system this arithmetic can be

accouplished in either of two waye. The operations can be done in

P

the arrays thereby misusing the parallel power of the system, or it
can be done on the sequential processor. This involves notifying the
STARAN Program Supervisor, transferring the operands to the sequential

e S PO

processor, having the SP do the opcration(s) and transferring the
results back to AP control memory. This capability would not neces-

sarily be that desirable for other types of programs. 3

Most of the above recommendations are based mainly on the ex-
} periences gained in the experimental implementation of SGP4. Since

e o

other types of computatione have not been examined, it is impossible
to say whether or not these changes would be desirable for other

applications. The changes suggested below are believed to be changes
whick would benefit any user of a STARAM system.
18

L b b i . . e
bbbt il bcladaial e el T AV NN SR - T Y I TP oS BENY o Be

1 '
! fr
§

‘.."" ”. I OOt s ve s et mimn e

Each page is 512 words long. Larger pages would ecnable more of
a user's program to be run out of high speed semiconductor memory. \
System sottware routines such as floating point now occupy a large .
portion of the three available pages. This effectively eliminates the
use of the program pager. The paging mechanism itself could be im-
proved. Segmentation of the program into pages now is under program-
mer control. He must estimate when his segment is reaching 512 worde.
Then he must insert assembler instructions to do the actual paging.
The assembler could do this segmentation itself and insert the proper
instructions. Alternatively hardware could do paging without expli-
cit instructions.

More registers would make programming easier. Additional data
pointer (DP) registers would make transfers between control memory
and array memory easier. The DP register is used as a pointer into
control memory and can be automatically incremented or decremented
after instructions. This addition would be especially useful in
PIO control where at times the DP register performs other functions.
More field pointer (FP) registers would also be useful. They are used
to point to bit columns or words in the array. They can also be used
to hold parameters when using user-created subroutines.

Another desirable feature would be the speeding up of communica-
tions between control memory aud array memory. The performance of the
RADC configuration is limited by the transfer of datn intv and out of
array memory. This could be speeded up either by using faster control
nemory or by making a wider data path between control and array mescr-

ies.

Communications between STARAN and the Honeywell 645 would be
speeded up by widening the 12 bit path between the two macliines.
Transfer to large [iles have taken up to 20 minutes. All remote
users are affected by this time.

19

SECTION V

SUMMARY AND CONCLUSIONS

Implementation of the SGP4 equations on the RADC STARAN produced a
significant increase in throughput. Throughput was heavily dependent
on the partitioning of array memory. Because of this dependence, the
thorough investigation of the three array allocation schemes was essen-
tial. It seems likely that a similar dependence will be found for
throughput in similar problems. After array allocation, particular
attention should be paid to the ariray memory layout during processing.
This is necessary to make optimum use of the input/output and computa-
tional capabilities of the system.

Other than system software development, programming was not a
major task in the implementation of SGP4. However, this may not be
true of other programs. User-developed system software, if necessary,
will probably be a major portion of such an implementation effort. In
general, the system software was very good. If a cross assembler is
available, assenbly time should not be a major concern.

Use of a larger array word has been suggested to help alleviate
the input/output problem., This would eliminate the requirement that
temporary variables be stored in another word or in control memory.
For the type of ecientific processing dealt with in SGP4, this is the
most important recommendation. Floating point hardware should offer
a substantial increase in performance in applications requiring float-
ing point computations. In the SGP4 experiment, throughput could be
more than doubled by the use of such hardware. Applicaticns requiring
large programs or large amounts of data would benefit from the addi-
tion of more control memory.

The experimental implerentation of SGP4 on the RADC STARAN system
has produced many interesting and useful results. It is hoped that

20

Py

the information gathered can be useful to system designers looking
for an improved AP and to present and prospective RADC STARAN users.

“+
A

L aeieacen

AR L TR R " 2 L IR T S REITI T . o o vy b
: 4

APPENDIX A 1
RADC SYSTEM DESCRIPTION ;

HARDWARE

The RADC Associative Proceasor (RADCAP) Testbed Facility consists
of a Goodyear Aerospace Corporation STARAN S$-1000 associative processor
interfaced to the HIS 645 Multics system, Au overview of the system :
appears in Figure 1. The assoclative processor can be operated in
two modes, a stand-alone mode and an on-line mode to the Multics time-
sharing system. In the latter mode, a Multics user is able to control
the STARAN from his terminal as he would if he were using the STARAN
’ in stand-alone mode. He can create program and data files using the
capabilities of Multice and transmit them to STARAN., Currentliy the
assoclative processor cannot be time shared; that is, only one user
at a time may utilize the STARAN. All communications between STARAN)
and Multics are via a 12-bit parallel buffered 1/0 channel.la] !

The RADCAP STARAN basically consists of a conventionally addres-
sed control memory for program storage and data buffering, four asso-

! clative memory arrays, a control logic unit for sequencing and decod- :
ing instructions from control memory, and a control logic unit asso-~
ciated with a special parallel input/output (PIO) capability.[Sl A
typical STARAN associative array memory module is shown in Figure 2.
The associative array memories are the heart of the STARAN system. ;
The array memories provide content-addressability and parallel pro-
cessing capabilities. Each array consists of 65,536 bita of multi- 9
dimensional access (MDA) memory organized as a memory matrix of 256 i
words by 256 bits with parallel access to up to 256 bits at a time

in either word (horizontal) direction, bit-slice (vertical) mode or |
mixed mode. Mixed mode allows access to 2" bits from each of 25" o

memory words., For example, one byte (8 bits) can be taken frum each

22

[P

Coacsusson

W3ILSAS NYHVLS JAGVH 40 MIIAN3IA0 | 2ndid

< 2 1 0
ANOW3N AHONIN AHONIN ANONIN
AVHHY AvaEY AYHYY AvalY
21901 2¢
NOLLINN3
IYNH3LX3
T
(3705802 _Avidsia
| (§o <35 _08vD
| T04LNOD 108INOD
0N LNOD [_NId NI I
o1d il JAT¥A_NSIa dv
[u3iNIud /7 qHvO8A3N
AHONIN
q0HINOD
s VILN3ND3S 3
20 1
31907 180d AHOMNIN
(5#9 SIH) ¥344n8 2€ X 215 2g x 215 25 x 216 2€ X9
JOV4HILNI HOW3N
viva 0 39vd
i 2 39vd | 39vd ———
ILvis aros 3800

ANOWIN TOWLINOD

S9B'E ¥ — VI

23

o

v A g

s

e

TR R W T TTINETIT L OT T Ba TS T e T T TR T TR TN T - ¢ ST .y.n A,.!.u\.Ah.,.l,..x..u.,.azu..n.‘..1111.1.1\.14!..‘}«.v: 3

|
:
|
AVHMY NYHVLS 2 ambig
| $3d 962
£ 7 652 !
/
/ ;
AN OO O OO ERREEEEERRRNN N SNN NNNNAYN ‘e SN
/ 4 :
/ M,
30115 QUOM % 3
“ SQYOM :
\ i
7 J
32178 1i8 l"“ WH m
7
7
2 i
92 3
/]
%
—= / v ;
fa 0
g2 7“ s1|8 -0
ﬂ m
T0HLNOD CHLNOD
: Old dv
: [so0°cr-v]
E
W
m
i
j
i
i
M‘I! ——— —— [— - — - _

. -t ays e

R O AL P WO, SRR 1. -- ¥ 3

of eight words. In addition to the MDA memory, each array contains
256 bit-serial proceseing elements. Each of the 256 processing ele-
ments consists of three bite of response store and associated logic.

P

These 256 bit-serial processing elements provide the parallel proces~
sing capabilities for each array. Each PE can be considered a simple
1-bit miniprocessor with an associated memory of 256 bits and three
1-bit registers. 1In the RADC configuration of four arrays there are
1024 of these miniprocessors. Arrays can be under the control of
either the AP control logic unit or the PIO control logic unit. In
order to perform arithmetic or logical operations on the arrays, all

Lol sl ot AR . o T Le o SR

arrays would be under the control of AP control. Thus, all 1024 pro-
cessing elements would be affected. Instructions are sequenced and

decoded by the control logic and executed simultaneously by all active
processing elements. This allows bit-~serial arithmetic operations or
bit-serial search operations to be performed on all words of memory

N for all arrays in parallel. For example, if field A was defined to
be bits 0-31 of each word and field B bits 32-63, field A could be
added to field B simultaneously in all words of memory. Also field |

-k ac

A could be searched for a particular value simultaneously in all words

of memory. Processing in the STARAN system can be overlapped with
some arrays performing input/output while others are executing arich-
metic and logic instructions. This is done by assigning individual

[s 1 I TN

arrays to either AP control or F70 control.

peated

LI,

Other major elements of the RADC STARAN system are explained

below.

Tl

e s

AP Control Memory

The functions of the AP control memory are to store the AP
v application programs and to hold data for those programs. Since
' AP control memory is not directly tied to the array memory, AP con-
trol can overlap the AP control memory cycle time with the array

memory cycle time.

' RPPRC IR I NIANAROR (L SEILIA F AN i)) 2 hrai o0 et st PO . . et e err e wrea e f g atie ¥ Sed Y TN T A b A L PRI A AN WS A NS OMTIIRROCEL £V m 1 B L L ATt s kg

. Control memory is divided into several memory sections. Three ‘ A
fast semiconductor page memories can contain the current AP applica- u
tion progiram segment; the slower core memory can contain the rest of

the AP program. Each of the pages contain 512 32-bit words. Page

zero 1s typically used to contain a library of system routines such

as arithmetic subroutines. A separately controlled program pager

can be used to bring in segments from slow memory to the pages.

2 Pages one and two are used in flip-flop fashion with AP control ex-

4 ‘ ecuting instructions out of one page while the other is being loaded

by the program pager. This permits use of the page memories for

selected segments of the program or for the entire program if fast

execution 1s required.

yi The data buffer, 1like the page memories, is & semiconductor ‘
memory. It also contains 512 32-bit words. Except for the pager o
4 : bus, all buses that can access the AP control memory can also access '
' the data buffer to store data or fetch instructions that need to be)
accessed quickly by the different elements of STARAN.

h Bulk core memory uses standard core storage. The RADC config-
uration contains 16K 32-bit words. The main use of the bulk core
memory 1s to store AP application programs. Since the bulk core

memory 18 accessible to all buses 1t 1is also used for data storage
for items that do not require the high speed of the data buffer.

< PIO control memory is an area of 512 32-bit words of semicon-
B ductor memory. It is from this area that the PIO control fetches
4 its instructions. It can also be used to hold instructions or data !
for AP control. !,
!

AP Control Logic

;{ The primary function of the AP control logic is to control
B operation of the STARAN associative array memories. All arithmetic ’

'f and logical instructions are executed within the arrays under control

26

e

FET e e

of AP control. A 32-bit data communications path betwecn control
memory and the arrays is also provided.

Program Pager Logic

The program pager loads the fast page memories from the slower
bulk core memory, While the AP control logic is executing a program
segment out of one page, the program pager can be loading the other
page with a future program segment. Whether a program is to be ex-
ecuted from bulk core memory or paged to the page memories and then
executed :is entirely under programmer control.

External Function Logic

External function logic enables the AP control, sequential con-
trol, or an external device tu control the operation of STARAN. By
issuing external functlon codes to the external function logic a
STARAN element or external element can interrogate and control the
status of the other elements. The external function logic also
provides a means of communication between a STARAN operator and
STARAN via function switches on the STARAN console.

Sequential Control Processor
The sequential contrnl portion of STARAN consists of a PDP-11/20

minicomputer vith 8K 16-bit words of memory, a keyboard-printer, a
CRT alphanumeric display, lime printer, card reader, perforated tape
reader/punch unit and cartridge-~type disk memory. The sequential
processor ailso contains logic to interface with other STARAN elements.
It runs system software programs such as the assembler and macro pre-
processor, operating system, file handling programs, diagnostic pro-

grams and debugging routines.

Input/Out 't Options

The custom input/output unit (CIOU) provides STARAN with several
extra 1/0 functions. The parallel input/output option provides an
1/0 channel up to 256 bits wide for inter-array communications. It

27

) . .,
e e I S U A S T R W iotbore b Mt el b

pr— S T R L TEE SRS 8 Vbt -

also gives an additional 32-bit data path between control memory and
associative memory. All of the PIO functions can be executed at the
same time that AP control is executing. Each array can be assigned
to be either under the control of AP control or of PIO control. The
custom interface unit implements a buffered input/output channel

for external communications with the Multics system or with STARAN
peripherals in a stand-alone mode of operation. The parallel input
output channel is implemented to provide rapid inter-array communica-
tions and to provide an interfuce to any future high-bandwidth exter-
nal storage devices such as parallel head-per-track disc systems.

A hardvare performance monitor is also supplied with the CIOU. The
monitor has an event counter and an elapsed time counter that is

accurate to one hundred nanoaeconds. Control of the monitor is from
v
within a uger program.

SOFTWARE :

The programming language used on the STARAN 13 an assembly
language called APPLE (Associative Processor Programming Languagk).
Unlike most assembly languages, some APPLE mnemonics generate more

i
|

than one machine language instruction. These mnemonica are generally
the associative instructions which do arithmetic or searching opera-
tions on the arrays. The types of the instructions are as follovm:t6

i e b ek

1. Assembler directives
2. Register loads and stores k

3. Branch instructions
4. Associative instructions 1

a) Loads
b) Stotres

¢) Parallel array searches

A emaTaata -

d) Parallel array moves

e) Parallel array arithmetic operations

28

3
(TN OR SR el ete e e ek e) msimnal ainchanintbbbiil ettt o [R S O T U L_J

oL i T e

5. Control and test instructions
{ 6. Input/output instructions

Arithmetic operations can use a value in a 32-bit register as
one operand and & value in a field of every array word as the other :
operand. Another way of doing the arithmetic is to salect two fields ‘
of every word as the operands. Add, subtract, multiply, divide, and
square root are supported by APPIE. The assembler also has a condi-
tional assembly capability. Output is in the form of relocatable or
abgolute program segments. Relocatable code gives the user the flexi-
i bility to combine his program with other programs without worrying

about control memory storage allocation.

A macro pre-processor called MAPPLE (Macro APPLE) is also
(7]

n - avallable. It contains arithmetic, logical and string manipulation
1 : capabilitieas. These provide the capability of defining user-defined
L . mnemonics. All floating point inatructions are implemented as macros.

Since no higher level language exists, all programs must be written
in a combination of MAPPLE, APPLF and machine language.

The APPLE Linker (ALINK) is a processing program that prepares
the output of the APPLE assembler (i.e., object modules) for loading
and execution. It combines object modules, relocates them, then
assigns absolute addresses. It resolves external references, generates
1 overlay structures on request, creates a load map containing the ab-
solute addresses of the load module and the entry point(s) of each ‘
object module, and produces executable code (a STARAN load module) in ?
i “ format suitable for subsequent loading into storage for execution. o

?'? The STARAN Program Supervisor (SPS) is the software interface
EE between the sequentisl controller (PDP-11) and the associative pro-

cessor control. This program allows a user to communicate with the P

sequential controller from an Al' program and vice versa.

AR < L 1 Y T I IO ST, 7 AT NCT M A1 7~ S it 0 1 ...

The STARAN Control Module (SCM) provides operator control of
STARAN by means of a aystem console. Its main function is to load
AP control menwory (page memory, data buffer and bulk core) and
parallel 1/0 control memory with instructions or data from a file
created by the APPLE Linker. It allows a user to control the execu-
tion of a program by starting, continuing and halting instructions
in either AP control, PIO control or the pager. It also allows in-
sertion of a breakpoint in an AP program and allows communication
with any element of STARAN by the issuing of External Function Com=
mands.

STARAN Debug Module (SDM) is a set of commands that allows a user
to interactively debug his program. There exist routines to examine
and change any memory location including array memory. Dumps can be
made on any desired device. A preselected table of memory locations
and/or registers can be printed on command. In addition, the STARAN's
status can be checked by displaying the status of certain areas on
a set of console lights. The performance monitor can also be read
and reset.

30

e me e+ ommea e et e L .

MM.W.N_“ S U

APPENDIX B

DEFINITION OF PIO ROUTINES

Special PIO routines were developed to take advantage of the
dual control feature of STARAN. Two different categories of routines
vere involved. The first involves data movement between the computa-
tion arrays (0 and 1) and the buffer arrays (2 and 3). The other
routine moves data between control memory and the buffer arrays. All
of the operations are word-oriented; that is, 512 32-bit word trans-
fers are involved in every operation, This is because all data is in
the form of 32-bit floating point numbers. Because two arraya are
used as buffers and two arrays are used for computation, tranafers e -
take place in blocks of two arrays (512 words).

i ool
<

Input and output between the arrays and control memory is done
through Port 7 of the PIO control registera. Only 32 hits may pass
through this port at once, thus 512 load and 512 store operations :
are required. 1

; Transfers between arrays are done simply and quickly. Movement

! can take place 1024 bits in parallel, Three operations arc repeated {
: 32 times to accomplish the transfer. First a bit slice from two

arrays 1s loaded into the PIO buffer registers. Then the registers ,
are exchanged with the two other PIO buffer registers. Finally the 3
bit slice from the buffer registers is written back into the two

new arrays.

Once the information is in the arrays it i1s sometimes necessary

to transfer it to control storage. This occurs several times when

T TR e e D,

i evaluating long expressions with many intermediate, temporary results.
In these cases it is possible to reduce the time necessary to trana-
fer data from array memory to control memory. Instead of using 512
load and 512 store operatious it is possible to use 32 loads and 512

3l

:"‘A--A.—....n-’fln-‘-'n-.;“n.m‘_) » - i iy

stores. This 18 done by writing the data from the array into the

buffer register by bit slice rather than by word slice. The data as

it appears in control memury is scrambled; that is, the first 256 i
bitas stored into contxol memory are all from the most significant bit ;
of the indicated word column in the buffer array. This disregard

for the appearance of data within control memory allows the increase

in speed of the operation.

The routines actually execute through PI0O control from PIO con-
trol memory. In order to execute them, a calling sequence had to
be established from AP control. All of the commands have a similar

format:
LABEL OPERATION SOURCE, DESTINATION, CHAIN
LABEL = an optional label can appear
OPERATION - specifies the specific operation desired v
SOURCF. - where the data is to come from, either control]
memory address or bit column !
DESTINATION =~ where the data is to go, either control memory
address or bit column
CHAIN - a parameter to allow command chainiag

= null indicates no chaining
= 0 indicates same operation to follow
- 1 indicates similar operation to follow

There are two groups of similar operations; the first group is the
transfers between computation and buffer arrays and the other is the
transfers into and out of control memory.

Each command is expanded as a macro. The first instructions
store the address of the in-line parameter list iun a location access-
ible to the PIO routines. A branch is then coded to bypass the para-
meters. The parameters contain the address of the routine desired, |
the source address, the destination address and the chaining indicator.
If no chaining 18 indicated, that is the end of the parameter list.

32]

If same operation chaining i1s indicated, the parameter liat is re-
peated with the same format but with the routine address eliminated.
If ~imilar operation chaining is indicated, the parameter list is
repeated, but with the address of the appropriate new routine pre-
ceding it. Both types of chaining can be extended as many times as
desired. Without chaining, overlap of execution between AP and PIO
control is virtually impossible.

AP control must initiate all activity in PIO control. Without
chaining, each I/0 instruction would have to be started up individu-
ally. While one I/0 instruction is executing the next I/0 inatruc-
tion would wait until PIO control is free. AP control would do this
checking and so would not be able to execute other instructions,

With chaining the I/0 instructions can be queued in a parameter list.
AP control gtarts up PIO control and is then free to execute other
non-I/0 instructiona., This minimizes the amount of communication
needed between AP and PIO control. Once PIO control is gtarted it

can get all the information it needs from the parameter list. After
the parameter ligt are two instructiono to test the PIO unit to see

if it is running. If 4t is, tl machine waits for this activity to
halt. This ensures that a currently active PI0 routine will not

be interrupted. Next, if the operation is to involve transfers
between the arrays, arrays O and 1 are assigned to PIO control. Under
all circumgtances arrays 2 and 3 are under PIO control. Next, for
beth types of operations, PI0O control is enabled. The address of

the parameter list is picked up and PIO control begina executing. 1In
AP control, if the operations do not affect arrays 0 and 1 the macros
are completed and the next instruction appearing after the PIO command
18 executed. 1If the operations do affect arrays 0 and 1 (interarray
transfers) there is a wait until PIO control finishes executing.
Arrays 0 and 1 are then assigned back to AP controul.

33

e

ST TR L ey

SR AT

e AT,

P oS dy

(1]

(2]

(3]

(4]

[5]

(6]

(7]

REFERENCES

-

Lane, M., and Cranford, K., "An Improved Analytical Drag Theory
for the Artificial Satellite Problem," AIAA Paper No. 69-925, 1969.

Kozai, Y., "The Motion of a Close Earth Satellite," The Astronomi-
cal Journal, Vol. 64, No. 1274, 1959.

Brouwar, D., "Solution of the Problem of Artificial Satellite
Theory Without Drag," The Astronomical Journal, Vol. 64, No. 1274,
1959.

STARAN/HIS-645 Users Guide, GER-15641, Goodyear Aerospace Corpora-
tion, August 1973.

STARAN Users Guide, GER-15644, Goodyear Aerospace Corporation,
August 1973.

STARAN S Apple Programming Manual, GER-15637A, Goodyear Aerospace
Corporation, August 1973,

STARAN S Mucro Programming Manual, GER-15643, Goodysar Aerospace
Corporaticn, August 1973,

34

