
AD/A-003 414

EXPERIENCES WITH AN OPERATIONAL
ASSOCIATIVE PROCESSOR

D. L. Baldauf

Mitre Corporation

Prepared for:

Electronic Systems Division

November 1974

DISTRIBUTED BY:

National Technical Information Service
U.S. DEPARTMENT OF COMMERCE

L4. -

SECURITY CLASSIFICATION OF THIS PAGE (Whijn Data Enterod) /..v/& '~j4
REPORT DOCUMENTATION PAGE . READ INSTRUCTIO•?S

R FORE COMPLETING FORM
I. REPORT NL•MI[M]2. GOVT ACCESSION NO. 3. MECIPIENT'S CATALOG NUMBER

ESD-TR-74-199I
4. TITLE (od Subtitle) CS TYPE OF REPORT & PERIOD COVERED

Experiences with an Operational Associative

Processor 6, PERFORMING ORO. REPORT NUMBER
MTR-2879

7. AUTHOR(e) I. CONTRACT OR GRANT NUMBIER(e)

D. L. Baldauf F19628-73-C-0001

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10, PROG,,.AM ELEMENT, [PROJECT, TASK

The MITRE Corporation AREA A WORK UNIT NUMBERS

Box 208 PoetN.52
Bedford, Mass., 01730 PoetN.52

II- CONTROLkINU OFFICE NA E AND ADDRESS 12. REPORT DAIE
Deputy for Command and Management Systems November 19'I4
Electronic Systems Division, AFSC 1, NUMBER OF PAGES

L. G. Hanscom Field, Bedford, Mass. ,01730 .-& , 1
14, MONITORING AGEI4CY NAME & AODRESS0(I diffeiwt from Controlling Office) 15. SECURITY CLASS. (ot this report)

Unclassified
-S -, DFCLASSIFIC'ATION/DoWNL;RADiNG

SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Peport)

Approved for public release; distribution unlimited.

17. 131STRISLUTION STATEMENT (of rho abotrinci entered In Block 20, Of dillferent from, Report)

"S1. SUPPLEMENTARY NOTES
•, hpoduce by

NATIONAL TECHNICAL
INFORMATION SERVICE

US OepaIlmorI of C-ovei.
Sptipglibld, VA. 22151

19. KEY WORDS (Continue on reveres side if ncoeeeery and Idenltly by block number)

Associative Processing
Parallel Processing
Array Processor
STARAN

20. ABSTRACT (Continue ati reverae aids It necessary and Identity by block number)

A space object position prediction program was implemented on the STARAN asso-
"ciative array processor (AP) installed at the Rome Air Development Center (RADC),
New York, This document outlines the experience gained from this task. A section
is devoted to an analysis of the time and effort required to implement the program.

Emphasis is given to the program design and array layout phase. Systematic (i. e.,
independent of the specific program) and application-related capabilities and limita-
tions are discussed. An analysis of the RADCAP system from a user's viewpoint

DD I FjAN 73 1473 EDITION OF I NOV 45 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When DVae Entered)

*i
58CURITY C:LAM.P.•CATIOM OF THIS PAGS.n,. "a, _R.n.f

ima~ ~no.Telte ftepae el ihremedtosfrrproved STARAN sysema (hardlware and software) and an improved host computer

CIS)UIYCASFCTO ~TI AKI~wDaEipd)*

* L: ' "When US. Government drawings, specifications,

or other data ore tu•ed for any purpo• e other

then a definitely related government procurement

operation, the government thereby incurs no

responsiblllty nor any albiilatio'i vAutsower; and

........... the fact that the government may have formu.

leted, furnlshed, or In any way supplied the said

,,..drawings, specifications, or other data is not to be
reglarded by Implication or othewvse, as In any

manner licensing the holdet o" any other person

or corporation, or conveying any rights or per.

mission to manufacture, use, or sell any patented

invention that may in any way be related therto,.

Do not return this copy. Retain or destroy,

REVIEW AND APPROVAL

"This technical report has bein reviewed and ismpproved for publication. "

;e-,

MARVIN E. BROOKING, GS-13
Task/Project Officer

FOR THE COMMANDER

"ROBERT W. O'KEEFE, Colonel, USAF
Director, Information Systemo Technology
Applications Office
Deputy for Command & Management Sybtems

ACKNOWLEDGEMENTS

Special thanks are due to Paul Gamelin for his aid in the pro-

duction of this document. Thanks also go to Robert Fiske, Paul Gregor

and Gerald Koehr of the MITRE Corporation for their support. The

cooperation of those at the Rome Air Development Center, especially

Armand Vito, is gratefully acknowledged. The work described was

sponsored by the Air Force Systems Command/Electronic Systems Division/

Information Systems Technology Application Office.

11

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS 3

SECTION I INTRODUCTION 5

SECTION II SGP4 PROBLEM DEFINITION 7
EQUATIONS 7
APPROACH TO PROBLEM 8
PROPOSED SOLUTIONS 8

SECTION III IMPLEMENTATION 11

SECTION IV CAPABILITIES AND LIMITATIONS 14
SOFTWARE 14
HARDWARE 17

SECTION V SUMMARY AND CONCLUSIONS 20

APPENDIX A RADC SYSTEM DESCRIPTION 22 *

HARDWARE 22
AP Control Memory 25
AP Control Logic 26
Program Pager Logic 27
External Function Logic 27
Sequential Control Processor 27
Input/Output Options 27

SOFTWARE 28

APPENDIX B DEFINITION OF PIO ROUTINES 31

REFERENCES 34

2

LIST OF ILLUSTRATIONS

Figure Number page

1 Overview of RADC STARAN System 23

2 STARAN Array 24

_4

3

L2

"SECTION I

INTRODUCTION

During FY74 principal efforts of the Associative Processor Task

were directed toward implementing the SGP4 space object position pre-

diction equations on the Rome Air Development Center Associative

Processor (RADCAP) facility. The RADCAP facility consists of a

STARAN(*) S-100 associative processor interfaced to an HIS-645 Mul-

tics system. Results ol these efforts are discussed in this report.

The SGP4 (Simplified General Perturbations #4) system is used to

predict the position of orbiting space objects. Computations are

based on a simplified version of Lane and Cranford's drag theory~l

combined with a simplified version of Kozai's geopotential theory[2]

along with second order secular terms from Brouwer's geopotential

* theoryL3. The program takes a set of mean elements at an epoch time

and a drag term and uses them to generate position and velocity at

some specified future time. The SGP4 equations are typical of a class

of scientific computations with a branchless algorithm. In this type

of computation, a series of arithmetic computations are applied to

each of many data groups. For the space object tracking problem, sev-

eral hundred groups of data were processed with each data set con-

taining information pertaining to one space object. Some of the

characteristics of the STARAN were found to be systematic, i.e., they

were independent of the program being implemented. Others were found

to be directly related to the particular type of program being imple-

mented.

(*)STARAN is manufactured and marketed by Goodyear Aerospace Corpora-

tion, Akron, Ohio.

5
Preceding page blank

Systematic and application-related capabilities are pointed out

throughout the paper. A section is also devoted to an analysis of

the time and effort required to implement the program on the STARAN.These should be useful in guiding any subsequent efforts to implement

similar algorithms on the RADC system.

The SGP4 equations are characterized and results of their appli-

cation are discussed in Section ii. Section III traces the proposed

solutions, the final solution, and the time needed for all phases of
the experiment. Section IV evaluates the RADC STARAN system architec-
ture from a general user's viewpoint and from the results of the SGP4

experiment. Summary and conclusions are presented in Section V.
Appendix A presents a description of the STARAN hardware and software
available at RADC. Appendix B explains the specially developed PIO

routines.

6

SECTION II

SGP4 PROBLEM DEFINITION

EQUATIONS

The SGP4 equations (Simplifled General Perturbations #4) are

used by the Space Computation Center (SCC) for space object orbital

position prediction. There are 44 equations containing 259 multi-

plications, 30 divisions, 62 additions, 42 subtractions, 15 square

roots, 7 sines, 6 cosines and 1 arctangent. There is, of course

no "real" number of arithmetic operations for a set of equatioiis;

these are the numbers that were found for the particular way that

the equations were programmed in this project. Shortcuts such as

Newton's method for polynomials were taken wherever possible. Ex-

pressions used in one equation and needed later were saved. This

reduced the number of arithmetic operations. Each of the trigono-

metric functions were solved by computing a truncated series expan-

sion. The arithmetic operations necessary vo compute this series

were not included in the numbers above. Fourteen pieces of input

data are associated with each space object. These data contain

such information as the object identifier, epoch time, shape and

orientation of the orbit and drag coefficient. The same calcula-

tions are performed for each object. There are no branches in the

code, and 16 results are produced. These results are used in other

programs of the SCC such as ephemeris generation and look angle

reports for ground based sensors. These equations are typical of a

large class of scientific computations which exhibit the same branch-

less type algorithm. Thus, many of the items discussed in this paper

concerning this implementation are applicable to other problems.

7

APPROACH TO PROBLEM

It was assumed that several thousand space objects were to be

processed. The goal of the implementation effort was to minimize

the effective processing time per object. The intelligent use of

the parallel capabilities of the STARAN was clearly the method to be

used to achieve this. The equations were examined for possible

sources of parallelism. Matrix operations are one possible source.

DO LOOP constructions are another source of parallelism. Neither of

these were found within the equations. It was then decided to make

use of the other major source of par-.lelism - parallelism by number.

In this case, many data groups go through the same series of arith-

metic computations. For the purposes of the experiment each data

group corresponds to one space object. Many objects can be processed

simultaneously by using the parallel processing capabilities of the

arrays.

PROPOSED SOLUTIONS

Choosing the best algorithm, given the RADCAP configuration,

was the next task. Several designs were considered. All designs

assumed 32-bit floating point -.iumbers as data.

The first and most obvious approach taken was the use of one

word (256 bits) of associative memory per object. Since there are

1024 words of associative memory (4 arrays with 256 words/array)

thir would allow the processing of 1024 objects in parallel. Sev-

eral problems were presented with tais design. There are 14 in-

puts and 16 outputs in the SGP4 equations. Since all arrays are

being used for computation, I/0 through the parallel input/output

(PlO) channel cannot be overlapped with computation. Sixteen out-

puts from each of 1024 objects also requires 16K words of control

memory for storage. This is exactly the size of memory and leaves

no room for a program. In addition, many temporary variables

are produced during the computations and are needed in subsequent

calculations. Two hundred fifty six bits (eight 32-bit fields) is

4 not suffinient storage to hold all of these variables. Some must

be written out to control memory and subuequently read in. This

operationsis very time consuming.

A second design which would eliminate the storage problem was

proposed. Instead of using one word of associative memory for each

object, two contiguous words are used. This doubles the storage

available for temporaries in the array. This also reduces the

storage needed in control memory for the 16 outputs from 16K to 8K.

However, only 512 objects can now be processed at once. Once again,

since all arrays ars being used for computation, 1/O cannot be over-

lapped with computing. A few temporaries must still be stored in

control memory but not nearly as many as would _ýnecessary with the

first design.

The third design utilizes the ability of the AP control and the

PIO control to execute simultaneously. The arrays are functionally

divided in half. Arrays 0 and 1 are computation arrays, and areays

2 and 3 are buffer areas. As in the second design, each object uses

two words of associative memory; one word is in the computation

array, the other is in the corresponding word of the buffer array.

The word in the buffer area is used both for storage of temporary

variables and for input/output operations. Arrays 2 and 3 are no

longer used for computation. Thus, for most of the time they can be

assigned to PIO control to do input/output. At the same time, arrays

0 and 1 are computing. In this manner most of the I/O is being over-

lapped with computation. In the execution of the progiam, data is

first brought into the computation arrays from control memory. Com-

putation begins while the buffer arrays continue to bring in input

variables. As more variables are needed for computation, processing
is interrupted and the variables are transferred from the buffer

arrays. Similarly, when temporary variables are not needed for a

9

L •, .

time, they are transferred from the computation arrays to the buffer

arrays. The third design was judged to be the best of those con-

silered because it:

1. Allowed AP control and PIO control to execute simultaneously.

2. Provided 16 fields of array storage.

3. Reduced control storage needed for variables.

10

SECTION III

IMPLEMENTATION

The iurst phase of the implementation effort was devoted to a

study of the RADCAP system and the SGP4 equations. This study re-

quired about 180 man-hours. This time was spent on ikivestigating

the different approaches to the solution as discussed in the previous

section. Rough estimates for time and throughput were computed for

each of the three designs. By taking the time to look into approaches

that were not immediately obvious, an increase in throughput of

approximately 50% was realized. Because of this savings it is sug-

gested tha•t this phase be emphasized in similar implementation efforts.

-• The data area map was next formulated. Since there is no higher

level language for STARAN, all memory management must be done by the
programmer. This required approximately 150 man-hours and involved

both the array area and the control memory area. A decision was made

to use 32-bit floating point numbers for all data. This meant that

there were only eight fields in each of the arrays. Since a typical

arithmetic operation involved three fields, it can be seen that the

allocation of storage in the arrays was a major concern. It became

necessary to go through the equations operation-by-operation in order

to place exactly every piece of information within the arrays. Stor-
age had to be allocated for temporary variables that were produced.

Some items had to be moved several times between control memory,

buffer arrays and computation arrays. All of these operations had to

be carefully planned to make the best use of the computation and I/0

capabilities of the system. Care had to be taken that no mistakes

were made while transforming the equations into array operations. A

missed addition, for example, would upset the carefully planned array
layout. A fix might have to be made by transferring a word in the
computation arrays to the buffer arrays. This type of time-consuming

.,•, ii

change also makes it difficult to make additions or changes to a

program that has already been programed for the STARAI. Thus, the

code produced in this type of program is rather inflexible Lo change.

Because of the importance of properly utilizing all of the recources

of the STARAN, this phasn should be important in any similar task.

The coding part of the project was relatively straightforward

once the data area mapping was complete. This required about 60 man-

hours. The code was produced almost directly from the array map. A

second pass was made to try to optimize that code relative to the 1/O

operations which were taking place. Whenever possible, I/O operations

were put together in a group. Appendix B more fully explains this

process. Also, wherever possible, input/output coumands were placed

in front of a series of arithmetic operations. Thus, when PIO control

was finished executing, AP control would still be processing the arith-

metic comands. Both of these changes allow PIO routines and AP

routines to run with little interference with each other.

It wea then necessary to break the code into sections. The

entire program was too large to assemble on the STARAN. Because of

the slow speed of the macro preprocessor, smaller, mcre manageable

pieces of code had to be assembled; otherwise, the time to find syn-

tax errors and reassemble would have been prohibitive. This division

of the code caused additional problems. Assembler directions such as

EQU statements and define field instructions had to be repeated for

each section. Certain important constants had to be made ENTRYs to

enable references from separately assembled sections of the code. An

overlay had to be generated which resulted in the later addition of

some code. The total time for these operations was fifteen hours.

The selected design could not execute properly without the addi-

tion of some input/output system software. PIO routines were needed

to transfer information between arrays 2 and 3 and control memory

while AP control was executing on arrays 0 and 1. In addition, AP

12

control programs had to be developed to call the I/0 routines. A
parameter passing standard had to be developed. Since the PIO
routines could be called in a variety of ways, it was also necessary
to develop complex macros. Chaining of commands was also allowed.
A detailed description of the PIO routines appears in Appendix B.
Approximately 130 man-hours were required to develop these routines.

The debugging time consisted mainly of the time required to
debug the parallel input/output routines. Problems occurred with
finding infinite loops in the code. It was necessary to halt the
STARAN in order to reload the system when loops occurred. Since
breakpoints could not be set in PIO control, routines had to be run
until completion in order to view results. Also, registers could not
be modified to try different changes. Array and register dumps were
mainly utilized in obtaining a properly executing program. Since
the emphasis of the work was not on obtaining a "correct" answer,
time to debug logic errors Is not included. Sixty man-hours were
devoted to the debugging task.

13

SECTION IV

CAPABILITIES AND LIMITATIONS

SOFTWARE

The macro pre-processor on the STARAN is a very powerful tool

which can greatly simplify any programming task. It contains many

useful features some of which are listed below.

• Ability to nest macro calls (including recursively)

* Ability to have a macro call appear as a character

string variable

e Local and Global macro variables

a System macro variables for label field, argument

field and a SYSNDX type construction

a Arithmetic and character string literals

* Subscripts for indexing into character strings

* Substrings

e Logical and arithmetic operators

e Concatenation

e Conversion between string types

9 Ability to limit number of macro branch instructions

executed

9 Message generation facility

The STARAN assembler is very easy to use. It has the typical

assembler fields - label field, command field, operand field and

comment field. All lines are free format with the only require-

ment being that labels must start in the first column. A useful

feature is the ability to equivalence variables to registers as well

as symbols. Some registers in PlO control have the same names as

those in AP control but have different functions. The equivalence

feature allows a more mnemonic labeling of these registers. Another

14

feature is the ability to intersperse machine code with assembly

code within a program and within an instruction. This is sometimes

necessary because the assembler cannot generate all of the possible

machine language instructions. In most applicationu this would not

affect the programmer since the assembly language is sufficiently

powerful. However, in applications requiring new system software

(i.e., PIO routines) machine language must be extensively used.

A useful addition to the assembler would be a DSECT or COb4ON

type construction that would allow description of data areas which

are external to a program. This would be useful when several in-

dependently assembled programs-or sections of programs refer to a

common data area. With the existing assembler, all such variables

referenced must be made external variables.

The linker is pocwerful and easy to use. Overlays are easily

generated and used with the aid of simple assembly language state-

ments. Either high or low load locations can be specified for each

segment to allow optimal use of control memory.

The debugging facilities provided with the STARAN are generally

very good. Especially useful are the breakpoint and print table

facilities. However, more breakpoints and the ability to set PIO

breakpoints would be helpful. The print table allows pre-selected

registers and locations to be dumped upon user command. Every regis-

ter and memory location - array, AP control, PIO control and sequen-

tial processor control can be examined. Changes can be made to all

locations and registers except PIO registers. This proves to be a

handicap when debugging input/output routines. There is also a

single step mode to execute programs one instruction at a time. This

is a very helpful feature, but problems can occur. There are loop

instructions in STARAN which allow the repeating of groups of instruc-

tions up to 256 times. When debugging a program in single step mode,

each of thene instructions within the loop must be manually stepped

15

through as many times as is indicated for the loop. A mechanism to

suspend single stepping within the loop and to resume it outside of

the loop would be helpful. Another shortcoming of the present de-

bugging system is the absence of any in-line debugging aids. Items

such as snapshot dumps of registers and locations, especially array

memory, could be very useful. In addition, conversion of floating

point data to a standard output format would aid in debugging pro-

grams that use floating point arithmetic. As the system exists now,

all debugging must be on-line. Debugging in batch mode is impossible.

For remote users, this especially presents problems because of the

way that the STARAN -. host machine (Honeywell 645) interface is

handled. During on-line debugging it is necessary to know the status

of the machine at all times. A user essentially asks the machine a

question, it responds, and he deductively proceeds from there to ask

more questions. The feedback from the computer is very important.

In stand-alone debugging, this feedback is present. When remotely

accessing the STARAN, only some of the feedback occurs. No immediate

response is given when starting the AP, halting the AP, stopping at

breakpoints or reading the performance monitor. In order to verify

that these instructions have been carried out, debug mode must be

left completely. This greatly slows down the debugging effort. On

occasional system crashes no notice is given to the user. There is

elso no provision for a restart of the STAP.AN from the host computer.

This could greatli' simplify the procedure used to reload the system

after a crash. When doing any work remotely on the STARAN, the user

is locked out of any other Multics activity. For example, while

waiting for a program to assemble on STARAN a user cannot use a

Multics editor to create another program. Also, a user may wait so

long for a program to be assembled that he gets disconnected from

che STARAN and logged off the Multics system. There also does not

exist the capability of running a program on Multics that interacts

with a program on STARAN. This kind of interaction could be helpful

16

in a program that is only partially suitable for an AP. Some of the

processing could be done under Multics, information could be sent to

STARAN and a parallel task initiated. Information to guide processing

could be communicated between the two tasks. However, with the pre-

sent system this is impossible.

Another obvious shortcoming of the software is the lack of a

higher level programeing language. The burden now is entirely on

the programmer to take his problem down to the machine level. A

higher level language could greatly simplify his task. Also, as

mentioned before, the code produced is rather inflexible to change

because of the array allocation.

HARDWARE

The most important reco-mendation for a modified RADC system

is an increase in associative array word size. The storage of tem-

* porary variables was the most difficult problem to deal with in the

implementation effort. Even the use of buffer arrays for additional

temporary storage did not eliminate the necessity of storing tem-

porary variables in control memory. Input/output operations to core

were very slow when compared to arithmetic operations. The addi-

tion of more storage per array word could eliminate entirely the

need to use control memory for temporary storage. It was estimated

that doubling the word size of array memory to 512 bits would have

this effect. Since two arrays are being used in the implementation

as buffer areas, another recommendation would be to remove the logic

from several arrays and attach them to the present arrays as input/

output buffers. These recommendations are based on experience with

SGP4; it is not known whether a larger word or buffers would help

in different type applications.

Another recommendation is that floating point hardware be devel-

oped and used in those applications that use floating point arithmetic.

17

On the RADC STARAN, all arithmetic is done in software. This pro-

duces long execution times (890 #second for a floating point divide)

and a large code expansion (75 lines of code for a floating point

addition). Fourteen additions would produce over 1,000 words of

code. Hardware floating point could have a significant impact on

both problems.

The addition of more control memory could make similar pro-

grams easier to implement. Typically a large amount of data must

be input to and output from a program. In SGP4 there were 16 output

variables for each object. Since 512 objects were being processed

simultaneously, 8K words of control memory had to be set aside.

Because of the software floating point code expansion, the entire

program could not fit into control memory and an overlay was needed.

Another important recomendation is the incorporation of a

sequential arithmetic capability into AP control. At times, com-

putations are needed that involve just a few numbers. This is true

especially when a more general routine is desired. A number may be

passed as a parameter to a routine and it may be desirable to work

with this number. In the existing system this arithmetic can be

accomplished in either of two ways. The operations can be done in

the arrays thereby misusing the parallel power of the system, or it

can be done on the sequential processor. This involves notifying the

STARAN Program Supervisor, transferring the operands to the sequential

processor, having the SP do the operation(s) and transferring the

results back to AP control memory. This capability would not neces-

sarily be that desirable for other types of programs.

Most of the above recommendations are based mainly on the ex-

periences gained in the experimental implementation of SGP4. Since

other types of computations have not been examined, it is impossible

to say whether or not these changes would be desirable for other

applications. The changes suggested below are believed to be changes

which would benefit any user of a STARAN system.

18

Each page is 512 words long. Larger pages would enable more of

a user's program to be run out of high speed semiconductor memory.

System soitware routines such as floating point now occupy a large

portion of the three available pages. This effectively eliminates the

use of the program pager. The paging mechanism itself could be im-

proved. Segmentation of the program into pages now is under program-

mer control. He must estimate when his segment is reaching 512 wordc.

Then he must insert assembler instructions to do the actual paging.

The assembler could do this segmentation itself and insert the proper

instructions. Alternatively hardware could do paging without expli-

cit instructions.

Move registers would make programming easier. Additional data

pointer (DP) registers would make transfers between control memory

and array memory easier. The DP register is used as a pointer into

control memory and can be automatically incremented or decremented

after instructions. This addition would be especially useful in

PIO control where at times the DP register perform* other functions.

More field pointer (PP) registers would also be useful. They are used

to point to bit columns or words in the array. They can also be used

to hold parameters when using user-created subroutines.

Another desirable feature would be the speeding up of comiunica-

tions between control memory aiWd array memory. The performance of the

RADC configuration is limited by the transfer of date into mn4 out of

array memory. This could be speeded up either by using faster control

memory or by making a wider data path between control and array mem•r-

ies.

Comunications between STARAN and the Honeywell 645 would be

speeded up by widening the 12 bit path between the two machines.

Transfer to large riles have taken up to 20 minutes. All remote

users are affected by this time.

19

SECTION V

SUMMARY AND CONCLUSIONS

Implementation of the SGP4 equations on the RADC STARAN produced a

significant increase in throughput. Throughput was heavily dependent

on the partitioning of array memory. Because of this dependence, the

thorough investigation of the three array allocation schemes was essen-

tial. It seems likely that a similar dependence will be found for

throughput in similar problems. After array allocation, particular

attention should be paid to the array memory layout during processing.

This is necessary to make optimum use of the input/output and computa-

tional capabilities of the system.

Other than system software development, programing was not a

major task in the implementation of SGP4. However, this may not be

true of other programs. User-developed system software, if necessary,

will probably be a major portion of such an implementation effort. In

general, the system software was very good. If a cross assembler is

available, assembly time should not be a major concern.

Use of a larger array word has been suggested to help alleviate

the input/output problem. This would elimiaate the requirement that

temporary variables be stored in another word or in control memory.

For the type of scientific processing dealt with in SGP4, this is the

most important recommendation. Floating point hardware should offer

a substantial increase in performance in applications requiring float-

ing point computations. In the SGP4 experiment, throughput could be

more than doubled by the use of such hardwarL. Applications requiring

large programs or large amounts of data would benefit from the addi-

tion of more control memory.

The experimental implerentation of SGP4 on the RADC ST LRAN system

has produced many interesting and useful results. It i3 hoped that

20

the information gathered can be useful to system designers looking

for an improved AP and to present and prospective RADC STARAN users.

2

12

APPENDIX A

RADC SYSTEM DESCRIPTION

HARDWARE

The RADC Associative Processor (RADCAP) Testbed Facility consists
of a Goodyear Aerospace Corporation STARAN S-1000 associative processor

interfaced to the HIS 645 Multies system, Ai overview of the system
appears in Figure 1. The associative processor can be operated in

two modes, a stand-alone mode and an on-line mode to the Multics time-

sharing system. In the latter mode, a Multics user is able to control

the STARAN from his terminal as he would if he were using the STARAN
in stand-alone mode. He can create program and data files using the

capabilities of Multics and transmit them to STARAN. Currentiy the

associative processor cannot be time shared; that is, only one user

at a time may utilize the STARAN. All communications between STARAN

and Multics are via a 12-bit parallel buffered I/O channel.[4)

The RADCAP STARAN basically consists of a conventionally addres-

sed control memory for program storage and data buffering, four asso-

ciative memory arrays, a control logic unit for sequencing and decod-
ing instructions from control memory, and a control logic unit asso-

[5)ciated with a special parallel input/output (PIO) capability. A
typical STARAN associative array memory module is shown in Figure 2.

The asbociative array memories are the heart of the STARAN system.

The array memories provide content-addressability and parallel pro-

cessing capabilities. Each array consists of 65,536 bits of multi-
dimensional access (MDA) memory organized as a memory matrix of 256

words by 256 bits with parallel access to up to 256 bits at a time
in either word (horizontal) direction, bit-slice (vertical) mode or

mixed mode. Mixed mode allows access to 2n bits from each of 28-n

memory words. For example, one byte (8 bits) can be taken frum each

22

00

N

U1. at .'Lh

LJA

N o CLL*

w x x 0-
v N L-

N .4J 0J

v 0 x: 2

0 >~

M 0

P::

>. N z

iIi

V0

23

IxI

W4

ilc

ujl

o.9z

0 0

44z

24

"...

i'4

of eight words. In addition to the HDA memory, each array contains

256 bit-serial processing elements. Each of the 256 processing ale-

ments consists of three bits of response store and associated logic.

These 256 bit-serial processing elements provide the parallel proces-

sing capabilities for each array. Each PE can be considered a simple

1-bit miniprocessor with an associated memory of 256 bits and three

1-bit registers. In the RADC configuration of four arrays there are

1024 of these miniprocessors. Arrays can be under the control of

either the AP control logic unit or the PIO control logic unit. In

order to perform arithmetic or logical operations on the arrays, all

arrays would be under the control of AP control. Thus, all 1024 pro-

ceasing elements would be affected. Instructions are sequenced and

decoded by the control logic and executed simultaneously by all active

processing elements. This allows bit-serial arithmetic operations or

bit-serial search operations to be performed on all words of memory

for all arrays in parallel. For example, if field A was defined to
be bits 0-31 of each word and field B bits 32-63, field A could be

added to field B simultaneously in all words of memory. Also field

A could be searched for a particular value simultaneously in all words

of memory. Processing in the STARAN system can be overlapped with

some arrays performing input/output while others are executing arith-

metic and logic instructions. This is done by assigning individual

arrays to either AP control or rO control.

Other major elements of the RADC STARAN system are explained

below.

AP Control Memory

The functions of the AP control memory are to store the AP

Vi application programs and to hold data for those programs. Since

AP control memory is not directly tied to the array memory, AP con-

trol can overlap the AP control memory cycle time with the array

memory cycle time.

25

Control uemory is divided into several memory sections. Three

fast semiconductor page memories can contain the current AP applica-

tion progvam segment; the slower core memory can contain the rest of

the AP program. Each of the pages contain 512 32-bit words. Page

zero is typically used to contain a library of system routines such

as arithmetic subroutines. A separately controlled program pager

can be used to bring in segments from slow memory to the pages.

Pages one and two are used in flip-flop fashion with AP control ex-

ecuting instructions out of one page while the other is being loaded

by the program pager. This permits use of the page memories for

selected segments of the program or for the entire program if fast

execution is required.

The data buffer, like the page memories, is a semiconductor

memory. It also contains 512 32-bit words. Except for the pager

bus, all buses that can access the AP control memory can also access

the data buffer to store data or fetch instructions that need to be

accessed quickly by the different elements of STARAN.

Bulk core memory uses standard core storage. The RADC config-

uration contains 16K 32-bit words. The main use of the bulk core

memory is to store AP application programs. Since the bulk core

memory is accessible to all buses it is also used for data storage

for items that do not require the high speed of the data buffer.

PIO control memory is an area of 512 32-bit words of semicon-

ductor memory. It is from this area that the PIO control fetches

its instructions. It can also be used to hold instructions or data

for AP control.

AP Control Logic

The primary function of the AP control logic is to control

operation of the STARAN associative array memories. All arithmetic

and logical instructions are executed withn the arrays under control

26

of AP control. A 32-bit data communications path betveen control

memory and the arrays is also provided.

Program Pager Logic

The program pager loads the fast page memories from the slower

bulk core memory. While the AP control logic is executing a program

segment out of one page, the program paget can be loading the other

page with a future program segment. Whether a program is to be ex-

ecuted from bulk core memory or paged to the page memories and then

executed :is entirely under programmer control.

External Function Logic

External function logic enables the AP control, sequential con-

trol, or an external device to control the operation of STARAN. By

issuing external function codes to the external function logic a

STARAN element or external element can interrogate and control the

status of the other elements. The external function logic also

provides a means of communication between a STAMAN operator and

STARAN via function switches on the STARAN console.

Sequential Control Processor

The sequential control portion of STARAN consists of a PDP-11/20

mini.computer with 8K 16-bit words of memory, a keyboard-printer, a

CRT alphanumeric display, line printer, card reader, perforated tape

reader/punch unit and cartridge-type disk memory. The sequential

processor also contains logic to interface with other STARAN elements.

It runs system software programs such as the assembler and macro pre-

processor, operating system, file handling programs, diagnostic pro-

grams and debugging routines.

Inputl2.oLjr'ý Opýtions

The custom input/output unit (C0OU) provides STARAN with several

extra 1/O fuactions. The parallel input/output option provides an

I/O channel up to 256 bits wide for inter-array coummunications. It

27

also gives an additional 32-bit data path between control memory and

associative memory. All of the PIO functions can be executed at the

same time that AP control is executing. Each array can be assigned

to be either under the control of AP control or of PIO control. The

custom interface unit implements a buffered input/output channel

for external communications with the Multics system or with STARAN

peripherals in a stand-alone mode of operation. The parallel input

output channel is implemented to provide rapid inter-array communica-

tions and to provide an interface to any future high-bandwidth exter-

nal storage devices such as parallel head-per-track disc systems.

A hardware performance monitor is also supplied with the CIOU. The

monitor has an event counter and an elapsed time counter that is

accurate to one hundred nanoseconds. Control of the monitor is from

within a user program.

SOFTWARE

The programming language used on the STARAN is an assembly

language called APPLE (Associative Processor Programming Langua&E).

Unlike most assembly languages, some APPLE mnemonics generate more

than one machine language instruction. These mnemonics are generally

the associative instructions which do arithmetic or searching opera-

tions on the arrays. The types of the instructions are as follows:E6,

1. Assembler directives

2. Register loads and stores

3. Branch instructions

4. Associative instructions

a) Loads

b) Stores

c) Parallel array searches

d) Parallel array moves

e) Parallel array arithmetic operations

28

5. Control and test instructions

6. Input/output instructions

Arithmetic operations can use a value in a 32-bit register as

one operand and a value in a field of every array word as the other

operand. Another way of doing the arithmetic is to select two fields

of every word as the operands. Add, subtract, multiply, divide, and

square root are supported by APPLE. The assembler also has a condi-

tional assembly capability. Output is in the form of relocatable or

absolute program segments. Relocatable code gives the user the flexi-

bility to combine his program with other programs without worrying

about control memory storage allocation.

A macro pre-processor called MAPPLE (Macro APPLE) is also

available. 17" It contains arithmetic, logical and string manipulation

capabilities. These provide the capability of defining user-defined

memonics. All floating point instructions are implemented as macros.

Since no higher level language exists, all programs must be written

in a combination of MAPPLE, APPLE and machine language.

The APPLE Linker (ALINK) is a processing program that prepares

the output of the APPLE assembler (i.e., object modules) for loading

and execution. It combines object modules, relocates them, then

assigns absolute addresses. It resolves external references, generates

overlay structures on request, creates a load map containing the ab-

solute addresses of the load module and the entry point(s) of each

object module, and produces executable code (a STARAN load module) in

format suitable for subsequent loading into storage for execution.

The STAIAN Program Supervisor (SPS) is the software interface

between the sequential controller (PDP-11) and the associative pro-

cessor control. This program allows a user to communicate with the

sequential controller from an AT' program and vice versa.

29

-

The STALAN Control Module (SCN) provides operator control of

STARAN by means of a system console. Its main function is to load

AP control memory (page memory, data buffer and bulk core) and

parallel I/0 control memory with instructions or data from a file

created by the APPLE Linker. It allows a user to control the execu-

tion of a program by starting, continuing and halting instructions

in either AP control, PIO control or the pager. It also allows in-

sertion of a breakpoint in an AP program and allows commnication

with any element of STARAN by the issuing of External Function Com-

mands.

STARAN Debug Module (SDM) is a set of coumands that allows a user

to interactively debug his program. There exist routines to examine

and change any memory location including array memory. Dumps can be

made on any desired device. A preselected table of memory locations

and/or registers can be printed on command. In addition, the STARAN's

status can be checked by displaying the status of certain areas on

a set of console lights. The performance monitor can also be read

and reset.

30

APPENDIX B

DEFINITION OF PIO ROUTINES

Special PIO routines were developed to take advantage of the

dual control feature of STARAN. Two different categories of routines

were involved. The first involves data movement between the computa-

tion arrays (0 and 1) and the buffer arrays (2 and 3). The other

routine moves data between control memory and the buffer arrays. All

of the operations are word-oriented; that is, 512 32-bit word trans-

faer are involved in every operation. This is because all data is in

the form of 32-bit floating point numbers. Because two arrays are

used as buffers and two arrays are used for computation, transfers

take place in blocks of two arrays (512 words).

Input and output between the arrays and control memory is done

through Port 7 of the PIO control registers. Only 32 bits may pass

through this port at once, thus 512 load and 512 store operations

are required.

Transfers between arrays are done simply and quickly. Movement

can take place 1024 bits in parallel. Three operations ate repeated

32 times to accomplish the transfer. First a bit slice from two

arrays is loaded into the PlO buffer registers. Then the registers

are exchanged with the two other PIO buffer registers. Finally the

bit slice from the buffer registers is written back into the two

new arrays.

Once the information is in the arrays it is sometimes necessary

to transfer it to control storage. This occurs several times when

evaluating long expressions with many intermediate, temporary results.

In these cases it is possible to reduce the time necessary to trant-

fer data from array memory to control memory. Instead of using 512

load and 512 store operations it is possible to use 32 loads and 512

31

stores. This is done by writing the data from the array into the

buffer register by bit slice rather than by word slice. The data as

it appears in control memory is scrambled; that is, the first 256

bits stored into control memory are all from the most signiflcant bit

of the indicated word column in the buffer array. This disregard

for the appearance of data within control memory allows the increase

in speed of the operation.

The routines actually execute through PIO control from PIO con-

trol memory. In order to execute them, a calling sequence had to

be established from AP control. All of the commands have a similar

format:

LABEL OPERATION SOURCE, DESTINATION, CHAIN

LABEL - an optional label can appear

OPERATION - specifies the specific operation desired

SOURCE - where the data is to come from, either control
memory address or bit column

DESTINATION - where the data is to go, either control memory
address or bit column

CHAIN - a parameter to allow command chaining

- null indicates no chaining

- 0 indicates same operation to follow

- 1 indicates similar operation to follow

There are two groups of similar operations; the first group is the

transfers between computation and buffer arrays and the other is the

transfers into and out of control memory.

Each command is expanded as a macro. The first instructions

store the address of the in-line parameter list in a location access-

ible to the PIO routines. A branch is then coded to bypass the para-

meters. The parameters contain the address of the routine desired,

the source address, the destination address and the chaining indicator.

If no chaining is indicated, that is the end of the parameter list.

32

.........-

If same operation chaining is indicated, the parameter list is re-

peated with the same format but with the routine address eliminated.

If -imilar operation chaining is indicated, the parameter list ix

repeated, but with the address of the appropriate nev routine pre-

ceding it. Both types of chaining can be extended as many times as

desired. Without chaining, overlap of execution between AP and PIO

control is virtually impossible.

AP control must initiate all activity in PIO control. Without

chaining, each I/O instruction would have to be started up individu-

ally. While one I/0 instruction is executing the next I/0 instruc-

tion would wait until PIO control is free. AP control would do this

checking and so would not be able to execute other instructions.

With chaining the 1/0 instructions can be queued in a parameter list.

AP control starts up PIO control and is then free to execute other

non-I/O instructions. This minimizes the amount of coemunication

needed between AP and PIO control. Once PIO control is started it

can get all the information it needs from the parameter list. After

the parameter list are two instructiono to test the PIO unit to see

if it is running. If it is, th machine waits for this activity to

halt. This ensures that a currently active PIO routine will not

be interrupted. Next, if the operation is to involve transfers

between the arrays, arrays 0 and 1 are assigned to P1O control. Under

all circumstances arrays 2 and 3 are under PIO control. Next, for

both types of operations, PIO control is enabled. The address of

the parameter list is picked up and P1O control begins executing. In

AP control, if the operations do not affect arrays 0 and 1 the macros

are completed and the next instruction appearing after the PIO command

is executed. If the operations do affect arrays 0 and 1 (interarray
transfers) there is a wait until P1O control finishes executing.

Arrays 0 and 1 are then assigned back to AP contrul.

33

iI

REFERENCES

[1] Lane, N., and Cranford, K., "An Improved Analytical Drag Theory
for the Artificial Satellite Problem," AIAA Paper No. 69-925, 1969.

(2) Koiai, Y., "The Motion of a Close Earth Satellite," The Astronomi-
cal Journal, Vol. 64, No. 1274, 1959.

[3] Brouwer, D., "Solution of the Problem of Artificial Satellite
Theory Without Drag," The Astronomical Journal, Vol. 64, No. 1274,
1959.

(4] STARAN/HIS-645 Users Guide, GER-15641, Goodyear Aerospace Corpora-
tion, August 1973.

[51 STARAN Users Guide, GER-15644, Goodyear Aerospace Corporation,
August 1973.

[6) STARAN S Apple Programing Manual, GER-15637A, Goodyear Aerospace
Corporation, August 1973.

17] STARAN S Macro Proarammina Manual, GER-15643, Goodyear Aerospace
Corporation, August 1973.

34

