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I.    INTRODUCTION 

Lindquist and SÄmmons       recently published a band model formulation 

designed to handle radiance calculations for highly inhomogeneous and non- 

isothermal optical paths.    An important example of a case for which a high 

degree of inhomogeneity    pervails is the treatment of the propagation of 

infrared rauiat.'on from aircraft and missile plumes through long atmospheric 

paths.    In many cases,  the primary radiating species of the hot gaseous plume 

are H^O and CO-,  and the primary atmospheric absorbers are these same 

species.    The high degree of line position correlation between the hot gas 

emission spectrum and the cool gas absorption spectrum precludes the 

decoupling of the optical path into a source region and an absorbing region 

and performing a simple multiplication of the source band radiance by the 

atmospheric band transmittance to arrive at the transmitted radiance at a 

sensor position.    The entire optical path,  beginning at the sensor position 

and continuing through the cool intervening atmosphere and the hot gas source 

region,  must be treated as a single radiating-absorbing media,  i.e. ,  calcula- 

tions must be performed on a single highly inhomogeneous optical path. 

The original formulation by Lindquist and Simmons       considered the 

case of a band of randomly arranged pressure-broadened Lorentz lines of 

equal intensity.    The cond'.tions for which a standard treatment of inhomo- 

geneous paths with the Curtis-Godson approximation was likely to fail were 

determined,  and the success achieved by the new formulation for these con- 

ditions was demonstrated.    Here,  this band model formulation is extended to 

a randomly arrang :d band of Lorentz lines distributed exponentially in line 

strength and a randomly arranged band of Doppler lines for both constant and 

exponential line strength distributions. 

An optical path is called inhomogeneous whenever a gradient in species 

concentration,  pressure,   or temperature exists along the path. 
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II.    RADIANCE EQUATIONS 

The mean radiance in a spectral interval Av centered on v for a general 
(2  3) optical path extending from s = 0 to s = sn is   ' 

L{v) ■I 
'■'.       . d T( t-, s)  , 
(u,s)  ^-2—^ ds 

as (1) 

where L {V.B) is the Planck radiation function evaluated at the temperature 

T(8),  and  T{p, s) is the mean transmittance between the origin (s = 0) and the 

path position   s.    This expression is exact to the extent that L (p, s) is 

sensibly constant over A»'.    Practical radiance calculations are generally 

performed numerically by using the finite-difference form of the equation 

N    .c r 
Mf) = -£ L  (v,8) \f(u.a) T U, S. -.'] 

and band model approximations for the transmittance function   T^.S). 

Only a single optically active specie along the optical path is considered 

in this paper.    If more than one active specie is present,  the band transmit- 

tance function  Tiv,8] can be written as a product of the band transmittances 

of the individual species provided that the positions of lines in  /±v between 

any twc species are uncorrelated.    Then,  the general band radiance equation 

can be written 

d TAV.B) 

/, 11 * 

ds 
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where 

m  _ 
T{v.s) =  [J   Tiiv,B) 

i=l   1 

and m is the number of dctive species. 

Within the statistical band model formulation for an array of randomly 

arranged lines,  the band transmittance for a single specie can be written 
(2, 3) as ' 

T (v, s) = e -W(s)/6 (2) 

where  W(s) is the mean equivalent width of all the lines in Av,  and 6 is the 

mean line spacing in Av.    In order to provide a working model for trans- 

mittance calculations,  W(s) is generally computed by assuming an approxi- 

mate form for the distribution of line strengths S for the lines within Av.    If 

P(S,S)dS is the probability that a randomly selected line has a strength S in 

dS when tlie mean line strength in A^ ?- 3,  then 

W(s,S I. 
co 

P(S, S)W(s,S)dS 

where  W(s, S) is the equivalent width of a single isolated line of strength S. 
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III.    HOMOGENEOUS PATHS 

The equivalent width functions  W  for isolated lines of both Lorentz and 

Doppler shapes as well as the mean equivalent width function W for these 

sam^ line shapes and various assumed line strength distributions have been 

studied extensively for the case of homogeneous optical paths. ^'^'   The cases 

of interest to the present work are: 

1, Isolated Lorentz Line 

WL-^\f{^)        ' (3a) 

Y ,   = Lorentz half-width at half-height 

f(x) = xe ■X fyix) - iJ^ix)! (3b) 

J    = Bessel functions of the first kind of order n n 

xL = SU/2ITYL (3c) 

u = optical depth of the path 

2. Band of Constant-Intensity Lorentz Lines 

P(S,S) = 6(S - S) 

W, 

T = W**) 

0L = 2lTYL/6e     ' 

(4a)" 

(4b) 

(4c) 

This 5 is the dirac delta function,   not the mean line spacing parameter. 
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6    - effective mean line spacing in Av 

YL = average Lorentz line width in A v      , 

xL = ku/PL 

(4d) 

(4e) 

(4f) 

k = S/6o      . e 

3. Band of Exponentially Distributed Lorentz Lines 

(4g) 

P(SfS) = S'1 e'S/S 
(5a) 

WL 
(5b) 

Li*)* x/yrr^c (5c) 

4. Isolated Doppler Line 

w^= UL D
=

N/T^2  VDKV (6a) 

Y D = Doppler half-width at half-height 

2    /•c0 ( r -z 2n 
dz (6b) 

V     (-l)nxn+1 

/^(n+Di^rnr 
n=0 

(6c) 

ln2    ^u 
TT Y 

D 
(6d) 
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5. Band of Constant-Intensity Doppler Lines 

W, 

y^D^V   ' (7a) 

n       VD 
'D ln2     6. 

y     = average Doppler line width in Av 

xD = ku/ßD 

(7b) 

(7c) 

(7d) 

6. Band of Exponentially Distributed Doppler Lines 

W 
D — - ß^V      ' (8a) 

r*  -z ge(x) = /      e      g(xz) dz        , (8b) 

(x < 1 only) (8c) 

The function f(x) is the Ladenburg-Reiche function.    Simple approxi 

mations to this function have been discussed by Goldman. An accurate 

series expansion of about seven terms ijr large and small x for both f(x) 
nr The function a (x) e and g(x) has been given by Rodgers and Williams, 

has been studied by Malkmus,       who has given a series solution for small x 

and an asymptotic expansion for large x. 

The summation term in the large  x expression for   f(x)   in Ref.  (7) should 

be b a n 

-11. 
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The param.'ter 6    entering in these expressions is the effective mean 

line spacing parameter and is not necessarily the same as the mean line 

spacing parameter  6.    The form of the parameter 6    depends on the intensity 

distribution function assumed and is introduced to yield the correct limit for 

Wj/6   in the limit of strong line absorption. 

-12- 
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IV.    INHOMOGENE^US PATHS 

A standard procedme for extending the band model results for 

homogeneous paths to inhomogeneous paths for the case of the Lorentz line 

shape is the Curtis-Godson approximation.(3)   The net effect of this pro- 

cedure for isolated lines is to replace the line strength and line width 

parameters  S  and V L that appear in the expression for WL with appropriate 

path-averaged values of the Je parameters.    For a band of lines,  path- 

averaged values of k and  0L are used in the expression for W   .    The use 

of path-averaged values in the expression for the equivalent width for any 

line shape is referred to here as the Curtis-Godson approximation.    The 

path-average definitions for an optical path that contains a single optically 

active specie for an isolated line are 

Se(8)=^¥yy    c(s')p(s')S(s')ds' (9a) 

VeL(8) = u(8)Se(s) /    c<8' )P<8' )S(S' ) YL(8' )ds'. {9b) 

i       r 
D(8) = xx(B)Se(B)J      c(8')p(s')S(s')YD(s')ds' ,        (9c) 

Se(s)u(s) 
X.  (S)    =   •= T—r- 

1/ ZTTV        (8) 
elj 

(9d) 

r  r.1        H^"  Se(8)u(8) :D(8) = J T      v   J») (9e) 

13- 
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For bands of lines,  they are 

ke(8) = ^(7T/    c(s')p(s')k(s')d8' - dOa) 

PeL(s)=^)rTiT/8c(S')p(S')klS')0L(s')dS'      ' (lOb) 
e       '0 

ßeD(8)=u(s)^(s)   /    c(s')p(s')l:(s')ßD(s')ds' . (10c) 
e 0 

xL(s) = ke(s)u(s)/ßeL(s) , (lOd) 

xD(s) = ke(s)u(s)/ßeD(s)        . (lOe) 

The function u(s) is the optical depth 

u(s) =    /" c(s')p(s')ds' 

0 

where p(s) is the total pressure,  and c(s) is the mole fraction of the active 

gas at the path position s. 

The essence of the Curtis-Godson approximation is to use path- 

averaged values in the expressions for the equivalent widths  W and W. 

Equivalently,  through equation (2),  this substitution of averaged values is 

made directly in the expression for the band transmittance function T(j', s). 

AH pointed out by Lindquist and Simmons,        however,  it is not "f (v, s) that 

appears directly in the band radiance equation (i),  but rather the derivative 

of the transmittance dr"!^, s)/ds.    They concluded that,  if approximations have 

14- 
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to be made,  better accuracy could be obtained by making approximations to 

the transmittance derivative function rather than to the transmittance function 

itself. 

From equation (2),  the transmittance derivative is 

«^•■T(,..)i^ü 

The approximation of the transmittance derivative thus depends on the approxi- 

mation of the mean equivalent width derivative dW(s)/ds and a numerical 

integration of dW(s)/ds to obtain W(s),    Then Y(v, s) can be obtained from 

equation (2) and,  finally,  dT"(i', 8)/ds evaluated for use in equation (1).    This 

expression for the transmittance derivative is obtained simply by differentiating 

the statistical band model expression for the mean transmittance.    By starting 

from first principles for a random array of spectral lines (see Ref.   3 for 

example),  however,  it can be shown that the mean value of the transmittance 

derivative in Av is given by the same expression,   i.e. , 

driv, B)   _ drj^, s) 
ds ds 

As for W(s),  the approximation to dW(s)/ds can begin with an examina- 

tion of the equivalent width derivative for isolated lines.    The definition of the 
(3) 

equivalent width of an isolated spectral ine for a general optical path is 

W(8) = f 
-00 

1  - exp 
/ 

c(s')p(8')k(v, s')ds' 

L    0 

dr     , (U) 

where k( v, s) is the spectral absorption coefficient of the line evaluated at 

path position s.    The equivalent width derivative is thus 

^ll =  c(B)p{B)J'      k( 1^,8)  exp     -/*       C(8')p(8')k(l',s')d8' ds   ,    (12) 

15- 
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The spectral absorption coefficient for general line shapes depends on the line 

strength S(s) and width y(s).    If S(») and y{s) were replaced throughout 

equation (1?.) by the p, ;h-averaged valuep S^s) and Ye(s).  respectively,  the 

result would be the Curtis-Godson approximation.    The Lindquist-Simmons 

approximation is carr:ed out jy substituting the path-averaged values S (s) 

and ve(8) into only part of V.e expression given by equation (12).   Specifically, 

Se(s) and \e(s) are substituted only into the k( 1% s' ) term that appears in the 

exponentJai factor. 

A.        ISOLATED LINES 

The case for the Lorentz line shape was considered by Lindquist and 
(1) 

Simmons. The spectral absorption coefficient for this line shape is 

k^P, B) 
S{s) YL(s) 

{V 
 T- 

"O1    + 

(13) 

Y£<.) 

where v^ is the line center.    Substitution of equaMon (13) into (12) gives 

dW   (s) 
-^- = c(s)p(s)-' ?/ 

VL(s) 

L  (VL(S) + (^ V2 

X exp 

8 c(s')p(s')S(8')vL(s') 
ds' d(v- v0) 

Substitution of VgrJ8^ for "^L^8'^ in t^e exponential term' and use of the 

definitions for S    [equation (9a)] and x    [equation (9d)] yields 
e LJ 

The same result occurs also if Y  jjs) is subsituted for \L(8') in only the 

denominator of the exponential term. 

-16- 
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dWT(8) L(^    , ., .s(8) r \       VL(S) 
_-=c(8)p(8)_L_L   /       ^—— , 

2x   (s)YaT (s) 
^:---r-L—Lk—^^^^. „j 

By noting that the integral is even with respect to the integration over v - v  , 

and making the substitution tan (e/2) = (v - vn)/y   T ,  the final result can be 
u       eLi 

written as 

dWL{s) 
5r- = c(s)p(s)S(s)yL(xL,  pL) (14a) 

where 

yL(x, p) 2£ 
11 J   (pz + l) + 

x(l + cos 6) 
de 

(p   - i) cos e 
(14b) 

and where   pL r \L(8)/YeTj(s),    The parameter   p     is the ratio of the local 

value of the line width to "he path-averaged value of the line width up to that 

local point and is the nrimary index of the degree of inhomogeneity prevailing 

at postion  s. 

For an ioolated Dopper line,  the spectral absorption coefficient is 

kD(»', s) 
(ln2     S(8)_    -InZU-i^/y^s) 

(lb) 

-17- 
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by following a procedure similar to that for the Lorentz line,  the equivaienc 

width derivative can be derived as 

dWD(s) 
j^— = c(8)p(8)S(s)yD(xD, pD) (16a) 

where 

yD(x. P) ^f ' c        -p   z 
. -z   -xe   r . e dz (16b) 

and 

YD(*)/veD(s) 

B. BANDS OF LINES 

The derivative of the mean equivalent width is obtained from the 

derivatives for isolated lines by applying the distributic.i functions P(S,S) 

given by equations (4a) and (5a).    The application of these distribution functions 

is not,  however,  as clearly defined as for their application to W for homo- 

geneous paths.    The derivative expressions of equations (14) and (16) depend 

not only on the local line strength S(s),  but also on the path-averaged line 

strength S (s).    Thus,  both S(8) and S (s) could presumably have distributions 

about mean values S(s) and S (s),   respectively.    Ideally,  the averaging should 

be done with a distribution function of the form P(S, S, S  , 5 ).    One possioility 
e      e 

would be to write 

p(S. §. s . 5 ) . p.(s. 5)p,(s ,5 ) 

18- 
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so that independent distributions could be applied to S and S       However 
e ' 

this form implies a complete independence of the variables S and 3   .    This 
e 

is clearly unrealistic because S    is defined as the average value cf S.    Rather 

than assuming the complete independence of S and S  ,  th,- present approach 

is to assurr.;  the opposite extreme,  i.e. ,  that S and S    are completely depen- 

dent.    Although this situation is probebly not fulfilled either,  it is cei-tainly 

much more realistic than the assumption of independence.    The assumption 

of complete dependence is equivalent to the assumption that,   for each line 

in Al', 

si(»/ = C(i)Sl(i), (17) 

where C(s) is a constant independent of the line index i.    Since the only 

variation of S (s) along an optical path is with temperature,  this assumption 

implies that all lines in A^  have the same temperature dependence.    Since 

C(s) is independent of i,   equation (17) also applies to the average line S(s). 

Thus,  S (s) = C(s)S(s),    The mean equivalent width derivative is then evaluated 
e 

according to 

dW(s,S)  _ 
ds 

/ 

oo 

P(S,S)HW<9'S)dS as (18) 

where the S    term in dW/ds is replaced by C(s)S.    Note that this quantity 

is the mean value of the equivalent width derivative and not the derivative of 

the mean equivalent width,  although it is to be considered as such when com- 

puting dT/ds or W by numerical integration. 

The result of substituting equation (14a) into (18) and performing the 

integration over S for the constant-line-intensity distribution function 

[equation (4a)] is 

iawjsT 
6 ds = c(s)p(8)k(s)yL(xL, p] (19) 
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where   yL(x, p) i8 the same function as given by equation (14b), x.   = k (8)u(s)/ 

^elJS^ an^ PL = ^L ^s^^eL^S^    For a ban^ of constant-intensity Doppler lines, 
a similar procedure gives 

i   dWD(s) 

ds 
c(s)p(s)k(s)yD(xD, pD) (20) 

where : D(x, p) is the same fvmction as given by equation (16b),   xn = k (s)u(s)/ 

^eD^S^ an^ PD = ^D^S^^eD^S^'     For an exPonential distribution of line strengths 
for Lorentz lines,   a similar procedure in which the intensity distribution 

function of equation (5a) is used gives 

x   dWL(s) 

T        ds c(s)p(o)k(s)yL(xL, p   ) (21a) 

where 

y. (x, p) = -£ \SLf  de 
2        2 

'0     [(p    +l) + (p    - 1) cos e][l + x(l + cos 0)] 

(21b) 

For an exponential distribution of line strengths for Doppler lines. 

, aw^y 
6    —AT-  =c(s)p(sri<(s)yD(xD,pD) (22a) 

where 

— 7.    C 
yD(x'p) = 7w   r—   2 2i2-dz 

•/0     Ll + xe-Pz   J 
(22b) 
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C.        DISCUSSION 

In the Curtis-Godson approximation, the substitution of path-averaged 

values in the expression for the equivalent width,  or throughout the expression 

for the derivative of the equivalent width,   results in a complete separation of 

the spectral and spatial integration operations.    In all cases for the Lindquist- 

Simmons approximation,  these coordinates are not separated.    This result is 

demonstrated by the fact that,   for each new path coordinate   s,  y(x, p) must 

be recomputed by a G or z integration.    Except for the case of y     for an 

exponential line strength distribution,   closed-form solutions for the y(x, p) 

functions have not been found.    Ir a practical application of the formulation, 

the numerical reevaluation ot y(x, p) for each n2w path position could con- 

ceivably be excessively time consuming even for computer application.    The 

approach taken in the calculation of y(x, p) for practical application has been 

to perform interpolations with respect to x and p on a table of precomputed 

values of y(x, p).    The equivalent width derivative functions yT (x, p),  y^Jx, p), 

and yD(x, p) are presented in Tables 1,   2, and 3,  respectively.    The functions 

are also presented graphically in Figs,   lb,   3b,  and 4b,   respectively, as 

functions of x for various values of p.    Details of the numerical integration of 

these functions,   simple approximations to these functions for limiting values 

of x and p,  and the closed-form solution of y   (x, p) for an exponential intensity 

distribution are presented in Section V, 

Inspection ot the general equation 

dW 
ds c(8)p(s)S(s)y(x, p) 

forces the following physical restrictions to be placed on the function y with 

respect to the parameter  x. For small x,  the equivalent width must grow 

linearly with x,   i.e.,  as x — 0,  y — 1.    Since dW/ds can never increase 

faster than it does in the linear region,   y must be a nonincreasing function 

with x (and hence y £ 1 for all x).    Clearly,   y must also remain positive for 

all x.    All of these features are evident for the y(x, p) computed in the 
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Lindquist-Simmons approximation (Figs,   lb,   2b,   3b.  and 4b).    In the Curtis 
Godson approximation,  the function y(x, p) can be derived as 

y(x.p) =(2-p)«Ül£U(p-l)M^ 
QX X 

(23) 

where h(x) is any one of the equivalent width functions f(x),   f (x),   g(x),   or g  (x) 

depending on line and distribution type considered.    The functions y(x, p) in the 

Curtis-Godson approximation are plotted in Figs,   la,   2a.   3a,   and 4a for com- 

parison with the appropriate functions computed in the Lindquist-Simmons 

approximation.    It is immediately evident that,   for certain conditions of the 

parameters x and p,  the physical restraints imposed on y(x. p) are exceeded 

in the Curtis-Godson approximation.    The dominant failure  for all cases is 

that y(x. p) exceeds unity for various ranges of x whenever the inhomogeneity 

factor is much greater than ~2.        For any value of p.  however,   y(x, p) 

eventually becomes less than unity for large enough x.    Thus,   the primary 

condition for failure of the Curtis-Godson approximation is the condition of a 

large inhomogeneity,   resulting in a large value for p,   existing near the be- 

ginning (small or medium x) of the optical path.    This is the condition that 

would prevail,   for example,   in calculations for I^O or CO    flame radiation 

propagation through a cool intervening atmosphere in a band wing region. 

If the condition for the ^ailure of the Curtis-Godson approximation occurs 

at any time,  the condition may be self-perpetuating because,  although the 

dimei.sionless optical depth parameter x is a measure of depth into the optical 

path and generally increases with the geometric path parameter   s,  there are 

conditions for which x can decrease with increasing s.    Differentiation of 

equation (9d),   for example,   yields 

dxT (s)        #_% /  4r#  » L        _ c(s)p(s)k(s r^ , 
ds 

-27- 
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Figure  1.    Equivalent Width Derivative Function for an Isolated 
Lorentz Line or Band of Equal-Intensity Lorentz 
Lines,    (a) Curtis-Godson approximation; (b) 
Lindquist-Simmons approximation. 
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Figure 2.    Equivalent Width Derivative Function for an Expo- 
nential Intensity Distribution of Lorentz Lines, 
(a) Curtis-Godson approximation; (b) Lin .quist- 
Simmons approximation. 
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Figure 3.    Equivalent Width Derivative Function for an Isolated 
Doppler Line or Band of Equal-Intensity Doppler 
Lines,    (a) Cui tis-Godson approximation; (b) 
Lindquist-Simmons approximation. 
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(a) Curtis-Godson approximation; (b) Lindquist- 
Simmons approximation. 
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rinis.   whenever p is greater than 2,   xL dt>rreases with increasing s and will 

not increase to a value where y is again less than unity.    Another failure of 

the Curtis-Godson approximation occurs for Dopplrr lines where y(x, p) h. - 

comes negative for certain values of  p  less than unity. 

Certain other features of the results  for the y(x. p)  functions  should he 

discussed.    In the Lindquist-Simmons approximation,  the changeover from 

the small x to the large x form of the function generally occurs much more 

rapidly than in the Curtis-Godson approximation.    This is most evident for 

yL(x, p)  for small   p   (Fig.    1).     For a given line shape within the Lindquist- 

Simmons approximation,  the changeover from the small x to the large x form 

of the function is very much more rapid for the constant line-intensity distri- 

bution than for exponential distribution.    This is in keeping with the same phe- 

nomenon observed for the changeover of W" between the weak-line and strong- 

line regie;.s and is explained b/ the allowance of weak lines by the exponential 
(3   4) distribution function.      ' 

The range of values of p for which Tables  1 -3 were prepared reflect that 

the primary application of the formulation is to atmospheri- transmittance 

problems that involve hot gaseous emission sources.     The parameter p has 

the value unity at the beginning of any optical path.     The variation of p along 

the path then depends on the path type and the variation of <y(a) or ß(s) along 

the path.     In application to atmospheric slant paths,  two conditions prevail 

for pressure-broadened Lorentz lines.     For an optical path that originates at 

a high altitude and progresses deeper into the atmosphere,   p     increases 

gradually and generally rpproaches a final value of ~2.    For an optical path 

thai originates low in the atmosphere and progresses upward to low-pressure 

regions.   pL   may decrease to values as srnal' is 10       (for an atmosphere cut- 

off altitude of 100 km,   for example).    Nearly all of this   p      variation is caused 

by the pressure variation of the line half-width giver by 

YL(.) VT  P(s). 
f 273 
T(s) 

32- 

_———~.. ._ 



igilDin IIWJPJU.UJI l JIUII  /m.tmm^^K^*!! mmm    -■   ••trtmm !w 'wu^i^m^v 

where \ .   is the line-broadening parameter for standard temperature and 

pressure.    Very little variation is due to the temperature variation of \     (s) 

or of 6   (s) because of the relative isothermality of the atmospherf .    The 

Doppler half-width is 

^D
(S)

   "oxrSr ln2 

and is pressure independent.    Thus,   for a Doppler line,   pn will never vary 

much  from unity for an atmospheric path. 

For an optical pith that progresses from a cool region into a hot region, 

p   may increase substantially near the boundary of the region and result in 

local p  values in excess of 100.    Here,   the primary cause of the increase in 

p is the strong temperature dependence of 6   (s).    For a hot gas,   many more 

lines will generally be important in a spectral interval A^ than for a cool gas. 

Consequently,   the effective mean line spacing will be much smaller for the hot 

gas, and the ß value will be much larger.    The degree of inhomogeneity en- 

countered in passing from a cool region into a hoi  region will be about the 

same for both Lorentz and Doppler lines because the major variation is in 

f,   (s) rather than in the relatively less-sensitive square-root variation of half- 

width with temperature.    The possibility of very small p values obtained by 

passing from      hot region into a cool region is formally allowed,   but is not of 

much practical importance and,  hence,   is not considered here.    This limitation 

has the practical advantage of not having to consider the evaluation of y(x, p) 

for Doppler lines for values of pn much smaller than the minimum value 

likely to be obtained for strictly atmospheric paths,   i.e. ,  about 0. 5. 

The variation of y(x, p) with p also requires some discussion.     The 

solutions for all of the y(x, p) functions display the feature that y(x, p) is 

nondec reasing as p increases and that y —•   1 as p -► oo.     For an isolated lino, 

an increase  in p to a large value at some point along the patli means that the 

local value of the line width is larger than the width averaged over all of the 

previous path.    If the local width is much wider than the averaged width,   the 

-33- 
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line will continue to grow essentially as a new line with only a small 

perturbation near the line center caused by the previous path.     Thus,   the 

equivalent width will grow nearly linearly with v near unity.     For a band of 

lines,   the same effect with line width may occur or,  as is more likely,  the 

mean equivalent width will grow as a new band because of the addition of many 

new weak lines at the inhomogeneity.  i.e. ,  the increase in p is caused by a 

largt- decrease in 6    rather than an increase in y. 

-34- 
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V.    SOLUTIONS FOR y(x. p)  FUNCTIONS 

A. NUMERICAL INTEGRATION OF yT (x, p) 

A straightforward numerical integration of equation (14b) was performed 

by dividing the region from 0 :: 0 to fi      TT into N equal sized intervals,   inte- 
( 8) 

grating over each interval with a  1Z-point Wedlo integration approximation, 

and allowing N to increase until the desired accuracy was  achieved for each 
5 

fixed x and p.    The data in Table  1 are accurate to at least  1  part in 10   . 

Without some form of smoothing transformation,  this integration procedure 

would not be practical for an in-program computer calculation of y(x, p) for 

each new path coordinate s because,   for certain extremes   jf x and p,  the 

integrand becomes very sharply peaked about 0      0 or 9 - TT or both.   Analysis 
2 2 

of the integrand reveals that,   for x > (1   -  p   )/2p   ,   the integrand peaks around 
2 

0 :   IT; for x < ( 1   - p  )/2,  it peaks around 0      0; and for x between these limits, 

it peaks around both 0 = 0 and 0  = TT.     For extreme conditions of these cases, 

the integrand becomes highly concentrated in the regions of the peaks.   Although 

detrimental to straightforward numerical integration techniques,   thisphe- 

nonema makes it possible to find asymptotic and simple approximate solutions 

for y(x, p) in these extremes.     For example,   the asymptotic  solution for y(x( p) 

for large x is 

y(x. p) ~ (24) 

2TT ..it -] 
The conditions for which this expression is accurate to a given value are 

summarized in Table 4.    These conditions were determined by comparison 

with exact numerically determined values. 

The limiting form for y(x, p) as p becomes small is y(x, p) — exp( -2x). 

Combining this result with the asymptotic form yields the following approxi- 
-4 mation,   which is accurate for all   x  to at least  1  percent for   p i   10 
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Table 4.    Conditions of Accuracy for the Asymptotic Solution for y   (x.p! 

Accuracy 

(%) Minimum x 

0. 01 X > 1300 and X > HS. 0f.2 

0. 1 130. 0 8. 7f.2 

1. 0 14. 0 2.5„2 

10. 0 5. 3 0. 33 p2 
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1 

The rapid changeover from the dominance of the first term to the dominance 

of the second is evident in Fig.   lb.    Note that,   for   pi.   y(x, p) is the same 

as for the Curtis-Godson approximation,   or,   equivalently,   y(x, 1) = df(x)/dx 

by equation (23). 

B.        SOLUTION FOR y     (x, p) FOR AN EXPONENTIAL 

LINE-INTENSITY DISTRIBUTION 

The integral of equation (21b) can be evaluated in closed form by the 

method of residues.    Since the integrand is even in 0,  the limit of integration 
i6 can be extended to 9 = 2IT.    By introducing the complex variable z = e     ,  the 

integral can be transformed (for p ^  1) into 

y(x, p) -  2—G 2 
iiT(p     -   1) x 'H^THP B2 + 2/JLL«\B + 1I2 

(26) 

where the contour C is the unit circle about z      0.    The integrand has first- 

order poles at 

1  '  1 + 
1  + 

'2 '   1   - (27a,b) 

and second-order poles at 

z„  - - [(1 + x)  - ^1 + 2x1        . (27c) 

4 x 
- -[(1 + x) +   ^1  + 2x] (27d) 
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Only the poles Zj and z^ lie within the contour C.    The residue at z = z.  is 

(1) 1 
1 2 ! 

(Zj  - z2)(z1   - z3)   (zj   - z4)' 
(28a) 

The residue at z = z    can be written 

(?) 

(«3   -zj)   (z3   - z2)2(Z3  . ,4) 

Thus,   the solution for y(x, p) is 

—Trz3(z1 + z2)(z3 + z4)  - 2(z] + Zlz2z4j 
z4'    L 

(28b) 

y(X.p) = _^£_rrA(i) + A(3n 
(pd - i)x2 L "3J 

(29) 

The solution  is  too  complicated to be  written  out  explicitly  in  terms   of 

x and p. 

When   p -  1,  the resultant integral is 

y(x, 1) 
ITTX 

(30) 

Thus,   only the second-order pole at z3 is relevant.    The resultant residue is 

(3)      -(z3 + Z4) 

(«3 - z4) 
(31) 

-38- 

«HkMMjaaaMMU ■nit« IIMH iniir^iiniiiiiii umi—fMiamMti 



and the solution for y(x, p) in terms of x is 

y(x. 1) 1  + x 

(1 + 2x) 
BTT (32) 

As a check,   note that this expression is the same as for the Curtis-Godson 

approximation,   i.e.,   y(x, 1) = df (x)/ds. 

If the contour integration technique is applied to the function y   (x, p) 

for an isolated Lorentz line,  it is found that the integrand has an essential 
-x/2z singularity at z = 0 from a term of the form e  '     '   .    The residue for such a 

singularity can be obtained only from a Laurent expansion of the 'ntegrand 

around the singularity.    Unfortunately,   this expansion procedure is quite 

complicated and eventually yields the residue in the form of an infinite series, 

Lindquist    reports that he has obtained a solution for this integral in the form 

of an infinite summation of Bessel functions. 

C.        NUMERICAL INTEGRATION OF yD(x, p) 

The integrand of the integral of equation ( 1 6b) has a single maximum at 

V li.'.'p  ) whenever 7,-0 whenever x p   S   1 and a single maximum at z_ =  p 
2 ' '" xp    > 1.    The integral was evaluated numerically in a manner similar to the 

evaluation of y   (x, p),    A value of z = z      was determined such that the integral 
1J m 

could be accurately written as 

^"•P*  =^1 ■/ 
m 2 ■z   -xe 

2   2 
p   z 

e r f (z    ) m 
33) 

: 

For an absolute accuracy less than « ,   z      should satisfy 
m 

z      > 
m ^\RF) 

G,   H.  Lindquist,   private communication. 
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2 
For xp     ^   1,   the   integral  was   evaluated  by numerical   integration 

between  z   =   0  and  z   =   ^  with  the  error   function  remainder  added.      For 

x p     > 1.   the   integrals   for  the   regions   B  =  0 to z  =  z. and z   =  z     to 

zm were evaluated separately and then added along with the remainder 

term. The data in Table 2 are accurate to 1 part in 106 or better. For 
P   -   1,   y(x, p)   =   dg(x)/dx. 

A   series   solution   for   ylx, p)   can  be  obtained by writing the   integrand 

as   a   product  of two  exponential  terms,   expanding the  term  involving  x and 

P   into  a   power   series,    interchanging  the   order  of  summation  and  integration, 

and   performing  the   resulting  elementary integration with  respect  to  z.      The 
result   is 

CO 

y(x, p) (-x)1 

n-0  (n + 1) l/l+np 
(34) 

This expression is useful for calculating y(x, p) for small values of x. 

The limiting form for y(x, p) as p becomes small is y(x, p) ^  e'X.     For 

very large x and xp    > 1,  the first term of the asymptotic expansion for 
y(x, p) is 

y(x, p)  ~ 
^/2 

,      2   .1/p' 
(xp   e)     r ln(xp   ) 

(35) 

This expression is useful foi  evaluating yD(x, p) for x  >   100 and p <   2. 

D. NUMERICAL SOLUTION FOR y   (x, p) FOR AN 

EXPONENTIAL LINE-INTENSITY DISTRIBUTION 

The consideration of the integral of equation (22b) is almost identical 

to that for yD(x( p).    The integrand has a single maximum at z      0 for 
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x(2p    - 1) < 1 and a single maximum at z    = p'  Jln[x(2p    - 1)]   for x(2p    - 1 > 1 

The integral Cc.n be written as a definite integral between the limits z = 0 and 

z = z      plus an error function remainder term to an absolute accuracy t    for 

m ^V^?) 
A series expansion for x - 1 can be obtained as 

v.p) E^ l)(-x) 
n 

n=0     v 1 + "(•' 

(36) 

A useful approximation for p < 0. 5 is 

ylx, p) 

(1 + x)3/2 Ji   - x(2p2 -  1) 

This approximation is accurate to at least 2 percent for all x.    As p goes to 

zero,   y(x, p) — (1  + 2x)     .    An asymptotic solution (though not too useful) for 

large x is 

/        \ \ (2P     -  J) y(x. p) ~ —j  —    - 
2   ' p      [x(2p2 -  l)]1^        v/ln[x(2p2  -  1 )l 

(37) 

Finally,   y(x, 1)  = dg  (x)/dx. 

The tabular interpolation for y(x, p) is facilitated for this case by 

interpolating with respect to the parameter   a - p/( 1 + p),  which has limit: 

0 and 1,   respectively,   for p = 0 and p = co. 
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