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P 0 A s

I. INTRODUCTION

(1

Lindquist and Simmons ) recently published a band model formulation
designed to handle radiance calculations for highly inhomogeneous and non-
isothermal optical paths. An important example of a case for which a high
degree of inhomogeneity»< pervails is the treatment of the propagation of
infrared radiation from aircraft and missile plumes through long atmospheric
paths. In many cases, the primary radiating species of the hot gaseous plume
are H,0 and CO,, and the primary atmospheric absorbers are these same
species, The high degree of line position correlation between the hot gas
emission spectrum and the cool gas absorption spectrum precludes the
decounling of the optical path into a source region and an absorbing region
and performing a simple multiplication of the source band radiance by the
atmospheric band transmittance to arrive at the transmitted radiance at a
sensor position. The entire optical path, beginning at the sensor position
and continuing through the cool intervening atmosphere and the hot gas source
region, must be treated as a single radiating-absorbing media; i.e., calcula-
tions must be performed on a single highly inhomogeneous optical path,

The original formulation by Lindquist and Simmons considered the
case of a band of randomly arranged pressure-broadened Lorentz lines of
equal intensity. The conditions for which a standard treatment of inhomo-
geneous paths with the Curtis -Godson approximation was likely to fail were
determined, and the success achieved by the new formulation for these con-
ditions was demonstrated, Here, this band model formulation is extended to
a randomly arrang :d band of Lorentz lines distributed exponentially in line
strength and a randomly arranged band of Doppler lines for both constant and

exponential line strength distributions,

“An optical path is called inhomogeneous whenever a gradient in species

concentration, pressure, or temperature exists along the path.

-5~ Preceding page hiank



II. RADIANCE EQUATIONS

The mean radiance in a spectral interval Av centered on v for a general
. (2, 3)
s

optical path extending from s =0 to s = s, i

0

LYy, 8) %-';'s-) ds (1)

where L*(v. s) is the Planck radiation function evaluated at the temperature
T(s), and T(v, s) is the mean transmittance between the origin (s = 0) and the
path position s. This expression is exact to the extent that L*( v, 8) is
sensibly constant over Av. Practical radiance calculations are generally

performed numerically by using the finite-difference form of the equation

— N sk
Ewre _Z L (V'si) [?(V,si) - ?(V,si_i)]

i=1

and band model approximations for the transmittance function F(v, s).

Only a single optically active specie along the optical path is considered
in this paper. If more than one active specie is present, the band transmit-
tance function T (v, s} can be written as a product of the band transmittances
of the individual species provided that the positions of lines in Av between
any twc species are uncorrelated. Then, the general band radiance equation

can be written

d ?i( v,s)

o .0 e L4 1
T() - / L(v,8) F(v,0)) =15y —5— 99
o
0
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where

and m is the number of active species.
Within the statistical band model formulation for an array of randomly

arranged lines, the band transmittance for a single specie can be written
(2, 3)
as

T(v,8) = e'W(S)/é- ’

(2)

where W(s) is the mean equivalent width of all the lines in Av, and § is the
mean line spacing in Av, In order to provide a working model for trans-
mittance calculations, W (s) is generally computed by assuming an approxi-
mate form for the distribution of line strengths S for the lines within Av. If
P(S,S)dS is the probability that a randomly selected line has a strength S in

dS when the mean line strength in Av ic 5, then

—— — m —
W(s,s;=f P(S,5)W (s,S)dS
0

where W(s,S) is the equivalent width of a single isolated line of strength S.

-8
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III. HOMOGENEOUS PATHS

The equivalent width functions W for isolated lines of both Lorentz and
Doppler shapes as well as the mean equivalent width function W for these
same line shapee and various assumed line strength distributions have been

studied extensively for the case of homogeneous optical paths. (2-5) The cases
of interest to the present work are:

1. Isolated Lorentz Line

W_ =2n YLf(x

L L)

Yy = Lorentz half-width at half-height

f(x) = xe % [Jo(ix) . th(ix)] ,

Jn = Bessel functions of the first kind of order n

Xy, = Su/ZTI’YL
u = optical depth of the path
Band of Constant-Intensity Lorentz Lines
P(S,5) = 6(S - §)

L

5 - BLix

L)

BL = ZTTYL/6e z

*
This 6 is the dirac delta function, not the mean line spacing parameter.




effective mean line spacing in Av
= average Lorentz line width in Av
X = ku/BL
k=S8/s, .

Band of Exponentially Distributed Lorentz Lines

P(s,5) =51 ¢5/S

fe (x) = x/ /1 + 2x

Isolated Doppler Line

m

Wb =J1nz Yp&ixp)

Yp = Doppler half-width at half-height

2 [° 2
g(x) :ﬁf i - exp |:-xe-z ] dz )
0

x ot
~ (1) Xn+l

n+ D)'W\T+n

n=0




5. Band of Constant-Intensity Doppler Lines
w
= Bpelxg) (72)
Y
_ n D
bp* JTnz T, (70)
-Y-D = average Doppler line width in Av (7¢)
xp = ku/By . (7d)
6. Band of Exponentially Distributed Doppler Lines
w
~2-p g (x) (8a)
6 D®e "D
Lz
ge(x) =/ e “g(xz) dz ; (8b)
0
3 - (-1)° xn+l
= E m—-— (x <1 Only) . (8C)
n=0 !
The function f(x) is the Ladenburg-Reiche function. Simple approxi- J!
g P PP

mations to this function have been discussed by Goldman.(6) An accurate

series expansion of about seven terms ior large and small x for both f(x)

»
and g(x) has been given by Rodgers and Williams. (7)

(5)

The function ge( x)

has been studied by Malkmus, who has given a series solution for small x

and an asymptotic expansion for large x.

, Sl

-

*The summation term in the large x expression for f(x) in Ref, (7) should

be b a ",
n

-11.
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The parameaoter 6e entering in these expressions is the effective mean
line spacing parameter and is not necessarily the same as the mean line
spacing parameter §. The form of the parameter b depends on the intensity
distribution function assumed and is introduced to yield the correct limit for

V—VL/é in the limit of strcng line absorption,

-12-




IV, INHOMOGENEUUS PATHS

A standard proceduve for extending the band model results for
homogeneous paths to inhomogeneous paths for the case of the Lorentz line
shape is the Curtis-Godson approximation. (3) The net effect of this pro-
cedure for isolated lines is to replace the line strength and line width
parameters S and Yy, that appear in the expression for WL with appropriate
path-averaged values of these parameters, For a band of lines, path-
averaged values of k and By, are used in the expression for WL' The use
of path-averaged values in the expreasion for the equivalent width for any
line shape is referred to here as the Curtis-Godson approximation. The
path-average definitions for an optical path that contains a single optically

active specie for an isolated line are

8
Se(s):u(ls)f (s’ )p(s’)S(s’)ds’
0

| : ’ Y~ Y / 4
Yop(®) Wses)f c(s’)p(s’ )S(s’) v (s’ )ds’,
0

1 ,'8 ’ ’ ’ ’ ’
YeD(S) = W./ c(s’ )p(s’)S(s )YD(s ) ds
0

Se(s)u(s)

xL( 8) = erye Li 8)

S (8)u(s)
, In2 e
xD(s) = T YeD(s)




For bands of lines, they are

S
E_(s) =u(‘8)f c(s’)p(s’ )R(s’)ds’ (10a)
0
1 8
BeL(S)zu_(s_)I'Ts_)/ c(s’)p(s’ )K(s' )p (s')ds’ (10D)
‘e
0
g s =
BeD(s) = m { c(s’)p(s’ (s’ )BD(S’ )ds’ , (10¢)
XL(S) =Ee(S)U(S)/BeL(S) 5 (10d)
x(8) =k _(s)u(s)/B _~(s) . (10e)
D e eD

The function u(s) is the optical depth

S
u(s) = /c(s’)p(s’)ds’ ,
0

where p(s) is the total pressure, and c(s) is the mole fraction of the active
gas at the path position s,

The essence of the Curtis-Godson approximation is to use path-
averaged values in the expressions for the equivalent widths W and W,
Equivalently, through equation (2), this substitution of averaged values is
made directly in the expression for the band transmittance function T(v, s).

As pointed out by Lindquist and Simmons,“)

however, it is not T (v, s) that
appears directly in the band radiance equation (1), but rather the derivative

of the transmittance d7 (v, 8)/ds. They concluded that, if approximations have




to be made, better accuracy could be obtained by making approximations to
the transmittance derivative function rather than to the transmittance function

itself,

From equation (2), the transmittance derivative is

d7(v,8) . = 1 dW(s)
ds - Tns)ly T4,

The approximation of the transmittance derivative thus depends on the approxi-
mation of the mean equivaient width derivative dW(s)/ds and a numerical
integration of dW(s)/ds to obtain W(s). Then T (v, 8) can be obtained from
equation (2) and, finally, d¥(», s)/ds evaluated for use in equation (1). This
expression for the transmittance derivative is obtained simply by differentiating
the statistical band model expression for the mean transmittance. By starting
from first principles for a random array of spectral lines (sece Ref, 3 for
example), however, it can be shown that the mean value of the transmittance

derivative in Av is given by the same expression, i.e.,

dr(v,s) _dT(v,s)

ds ds

As for W(s), the approximation to dW(s)/ds can begin with an examina -
tion of the equivalent width derivative for isolated lines, The definition of the

equivalent width of an isclated spectral ine for a general optical path is(3)

)

wis) - f i-exp[-{

-m

c(s’)p(s’)k(u,s’)ds'] dv , (11)

where k(v, 8) is the spectral absorption coefficient of the line evaluated at

path position s, The equivalent width derivative is thus
8

-]
___dvg(:) z c(s)P(s)f k(v, 8) exp [-f c(s’)p(s’ )k(v, 8')d8']d9 ,» (12)
- 0
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The spectral absorption coefficient for general line shapes depends on the line
strength S(s) and width y(s). If S{s) and Y(8) were replaced throughout
equation (1) by the pz:h-averaged valuesp S (s) and y (s) respectively, the

result would be the Ciirtis-Godson appr0x1matxon The Lindquist -Simmons
approximation is carried out by substituting the path-averaged values S (s)
and vy (s) into only part of tlie expression given by equation (12). Specxflcally,
Se(s) and Y O(S) are substituted only into the k(v, s’ ) term that appears in the

exponentiai factor.

A. ISOLLATED LINES

The case for the Lorentz line shape was considered by Lindquist and

(1)

Simmons, The spectral absorption coefficient for this line shape is

(s)
_S(s) YL (13)
kL(V, S) = = ]

(v-vg)" + i (s)

where Yo is the line center. Substitution of equation (13) into (12) gives

@

vp(s)

dw_ (s)
o -c(s)p(s)s‘s’/

Y ()4 (v- vg)°

i

i r° c(s’)p(s’)S(s" )y (s”)
X exp (- = ds™ d(v- v,)
n 2(s’) +(v - v )2 0

0 YL )

oo

Substitution of yeL(s) for y L(s’) in the exponential term and use of the

definitions for S_ [equation (9a)] and X [equation (9d)] yields

*The same result occurs also if YeL(s) is subsituted for YL(s') in only the

denominator of the exponential term,




¥
-
k

¥

dw | (s) vy(8)
—— = c(s)p(s) 2
s s) + (v -v )
2
2x_(s)y . (s)
X exp!{ - —x L sl ) d(v-vo)

Yop(8) + (v - wg)

By noting that the integral is even with respect to the integration over v - v

and making the substitution tan (6/2) = (v - "O)IYeL’ the final result can be

written as

0’

dWL(s)
T = C(S)P(S)S(S)YL(XL, PL) ’ (143)

where

I

-x(l + cos 6)
YL(x, p) = / de ; (14b)
A (p +1)+(p - 1) cos 0

and where Py, = yL(s)/yeL(s). The parameter pp, is the ratio of the local
value of the line width to the path-averaged value of the iine width up to that
local point and is the orimary index of the degree of inhomogeneity prevailing

at postion s,

For an isolated Dopper line, the spectral absorption coefficient is

2, 2
In2  s(s) an(v-vO) /yD(s)

kD( v, S) = = W

(15)

-17~
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By following a procedure similar to that for the Lorentz line, the equivaien:t

width derivative can be derived as

dWD(s)
—3— = c(8)p(s)S(s)yp(xp. pp) (16a)
where
5 - -zz e_pZZZ
YD(xt P) = 71?/ e X dz ’ (16b)
0
and

Py, = Ypl(s)/vpls)

B. BANDS OF LINES

The derivative of the mean equivalent width is obtained from the
derivatives for isolated lines by applying the distributic.i functions P(S, S)
given by equations (4a) and (5a). The application of these distribution functions
is not, however, as clearly defined as for their application to W for homo-
geneous paths. The derivative expressions of equations (14) and (16) depend
not only on the local line strength S(s), but also on the path-averaged line
strength Se(s). Thus, both S(s) and Se(s) could presumably have distributions
about mean values S(s) and Se(s), respectively. Ideally, the averaging should
be done with a distribution function of the form P(S, S, S Se). One possibility

would be to write

P(S, S, S, se) = pl(s, S) pz(se. §e)

- 18-




so that independent distributions could be applied to S and Se' However,
this form implies a complete independence of the variables S and fSe. This
is clearly unrealistic because Se is defined as the average value ¢f S. Rather
than assuming the complete independence of S and Se, th: present zpproach

is tno assuri: the opposite extreme, i.e., that S and Se are completely depen-
dent. Although this situation is probably not fulfilled either, it is certainly
much more realistic than the assumption of irdependence. The assumption
of complete dependence is equivalent to the assumption that, for each line

in Av,
Sl(s; - C(s)sl(s), (17)

where C(s) is a constant independent of the line index i. Since the only
variation of Si(s) along an optical path is with temperature, this assumption
implies that all lines in Av have the same temperature dependence. Since
C(s) is independent of i, equation (17) also applies to the average line S(s).
Thus, §e(s) = C(s)§(s). The mean equivalent width derivative is then evaluated

according to

(18)

whers the Se term in dW/ds is replaced by C(s)S. Note that this quantity

is the mean value of the equivalent width derivative and not the derivative of
the mean equivalent width, although it is to be considered as such when com-
puting d 7/ds or W Yy numerical integration,

The result of substituting equation (14a) into (18) and performing the
integration cver S for the constant-line -intensity distribution function
[equation (4a)] is
dW _Ts)

= —f— = clelp(a)Risly, (X pp) (19)

—




where yL(x, p) is the same function as given by equation (14b), ;L = ie(s)u(s)/
peL(s) and PL = PL (s)/BeL(s). For a band of constant-intensity Doppler lines,

a similar procedure gives

g dWp(s) _ -
i e c(s)p(s)k(s)yD(an PD) ; (20)

where ;D(x, p) is the same function as given by equation (16b), ;D = Ee(s)u(s)/
peD(s) and Pp = ﬁD(s)/ﬁeD(s). For an exponential distribution of line strengths
for Lorentz lines, a similar procedure in which the intensity distribution

function of equation (5a) is used gives

, AW T3 =
5 TTas o SRp@@yIRseg) (212)

where

™
= Yy deé (21b)
VL(’"")‘?R/ &, ow b Z

0 [(p”™ + 1) +(p” - 1) cos 6][1 + x(1 + cos 8)]

For an exponential distribution of line strengths for Doppler lines,

g IWpls) =
3 “d4s  ° C(S)p(S)k(S)yD(xD. pD) : (22a)
where
«© _zz
- _ 2 e
YD(X. p) = 7?[ = BV RV dz ) (22b)
0 li + xe-p B ]

=20«




C. DISCUSSION

In the Curtis-Godson approximation, the substitution of path-averaged
values in the expression for the equivalent width, or throughout the expression
for the derivative of the equivalent width, results in a complete separation of
the spectral and spatial integration operations, In all cases for the Lindquist-
Simmons approximation, these coordinates are not separated. This result is
demonstrated by the fact that, for each new path coordinate s, y(x, p) must
be recomputed by a 6 or z integration. Except for the case of ;;L for an
exponential line strength distribution, closed-form solutions for the y(x, p)
functions have not been found. Ir a practical application of the formulation,
the numerical reevaluation ot y(x, p) for each naw path position could con-
ceivably be excessively time consuiming even for computer application. The
approach taken in the calculation of y(x, p) for practical application has been
to perform interpolations with respect to x and p on a table of precomputed
values of y(x, p). The equivalent width derivative functions yL(x, ), yD(x, p),
and yD(x, p) are presented in Tables 1, 2, and 3, respectively. The functions
are also presented graphically in Figs, 1b, 3b, and 4b, respectively, as
functions of x for various values of p. Details of the numerical integration of
these functions, simple approximations to these functions for limiting values
of x and p, and the closed-form solution of ;L(x, p) for an exponential intensity
distribution are presented in Section V,

Inspection of the general equation

(:l—f = c(S)p(S)S(S)Y(x' P)

forces the following physical restrictions to be placed on the function y with
respect to the parameter x. ) ¥or small x, the equivalent width must grow
linearly with x, i.e., as x — 0, y — 1. Since dW/ds can never increase
faster than it does in the linear region, y must be a nonincreasing function
with x (and hence y < 1 for all x). Clearly, y must also remain positive for

all x. All of these features are evident for the y(x, p) computed in the
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Lindquist -Simmons approximation (Figs. 1b, 2b, 3b, and 4b). In the Curtis-
Godson approximation, the function y(x, p) can be derived as

dh(x) h{x)

yix, p) = (2 - p) +(p )T , (23)

where h(x) is any one of the equivalent width functions f(x), f (x), g{x), or g {x)
depending on line and distribution type considered. The functwns y(x, p) in the
Curtis -Godson approximation are plotted in Figs. fa, 2a, 3a, and 4a for com-
piarison with the appropriate functions computed in the Lindquist-Simmons
approximation. 1t is immediately evident that, for certain conditions of the
parameters x and p, the physical restraints imposed on y(x, p) are exceeded
in the Curtis-Godson approximation. The dominant failure for all cases is
that y(x, p) exceeds unity for various ranges of x whenever the inhomogeneity
factor is much greater than ~2. For any value of p, however, y(x, p)
eventually becomes less than unity for large enough x. Thus, the primary
condition for failure of the Curtis-Godson approximation is the condition of a
large inhomogeneity, resulting in a large value for p, existing near the be -
ginning (small or medium x) of the optical path. This is the condition that
would prevail, for example, in calculations for HZO or CO2 flame radiation
propagation through a cool intervening atmosphere in a band wing region,

If the condition for the ‘ailure of the Curtis-Godson approximation occurs

at any time, the condition may be self-perpetuating because, although the
dimensionless optical depth parameter x is a measure of depth into the optical
path and generally increases with the geometric path parameter s, there are
conditions for which x can decrease with increasing s, Differentiation of

equation (9d), for example, yields

de(s)
i . BeL(s)

- clelplslkls)r, pp(s)]
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Figure 1. Equivalent Width Derivative Function for an Isolated
Lorentz Line or Band of Equal-Intensity Lorentz
Lines. (a) Curtis-Godson approximation; (b)
Lindquist-Simmons approximation,
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Figure 2, Equivalent Width Derivative Function for an Expo-
nential Intensity Distribution of Lorentz Lines.
(a) Curtis- Godson approximation; (b) Lin .quist-
Simmons approximation.
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Figure 3. Equivalent Width Derivative Function for an Isolated

Doppler Line or Band of Equal-Intensity Doppler
Lines. (a) Curtis-Godson approximation; (b)
Lindquist-Simmons approximation.
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(a) Curtis-Godson approximation; (b) Lindquist-
Simmons approximation,
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Thus, whenever p is greater than 2, .39 decreases with increasing s and will
not increase to a value where y is again less than unity, Another failure of

the Curtis -Godson approximation occurs for Doppler lines where y(x, p) b -

comes negative for certain values of p less than unity,

Certain other features of the results for the y(x, p) functions should he
discussed. In the Lindquist-Simmons approximaii~n, the changeover from
the small x to the large x form of the function generally occurs much more
rapidly than in the Curtis-Godson approximation. This is most evident for
yL(x. p) for small p (Fig. 1), For a given line shape within the Lindquist -
Simmons approximation, the changeover from the small x to the large x form
of the function is very much more rapid for the constant line-intensity distri-
bution than for exponential distribution. This is in keeping with the same phe-
nomenon observed for the changeover of W between the weak-line and strong-
line regicus and is explained b’ the allowance of weak lines by the exponential

distribution function. (3,4)

The range of values of p for which Tables 1-3 were preparcd reflect that
the primary application of the formulation is to atmospheric transmittance
problems that involve hot gaseous emission sources. The parameter p has
the value unity wt the beginning of any optical path, The variation of p along
the path then depends on the path type and the variation of Y(s) or p(s) along
the path. In application to atmospheric slant paths, two conditions prevail
for pressure-broadened Lorentz lines., For an optical path that originates at

a high altitude and progresses deeper into the atmosphere, increases

P
gradually and generally approaches a final value of ~2. For I;;n optical path
that originates low in the atmosphere and progresses upward to low-pressure
regions, py, may decrease to values as srnali 1s 10_7 (for an atmosphere cut-
off altitude of 100 km, for example). Nearly all of this py, variation is caused

by the pressure variation of the line half-width given by

0 273
YL(S) = YLp(s) T(s) ,




where V(I)J is the line-broadening parameter for standard temperature and

pressure, Very little variation is due to the temperature variation of y . (s)

L
or of 6C(s) because of the relative isothermality of the atmosphere. The

2kT
yD(s)- 1!0\/ = In2

and is pressure independent. Thus, for a Doppler line,

Doppler half -width is

D will never vary
much from unity for an atmospheric path.

For an optical poth that progresses from a cool region into a hot region,
f may increase substantially near the boundary of the region and result in
local p values in excess of 100. Here, the primary cause of the increase in
p is the strong temperature dependence of 5e(s). For a hot gas, many more
lines will generally be important in a spectral interval Av than for a cool gas.
Consequently, the effective mean line spacing will be much smaller for the hot
gas, and the f value will be much larger., The degree of inhomogeneity en-
countered in passing from a cool region into a hot region will be ahout the
same for both Lorentz and Doppler lines because the major variation is in
50(5) rather than in the relatively less -sensitive square -root variation of half-
width with temperature. The possibility of very small p values obtained by
passing from @ hot region into a cool region is formally allowed, but is not of
much practical importance and, hence, is not considered here. This limitation
has the practical advantage of not having to consider the evaluation of y(x, p)
for Doppler lines for values of D much staaller than the minimum value
likely to be obtained for strictly atmospheric paths, i.e., about 0.5.

The variation of y(x, p) with p also requires some discussion. The
solutions for all of the y(x, p) functions display the feature that y(x, p) is
nondec reasing as p increases and that y - | as p - o». For an isolated line,
an increase in p to a large value at some point along the path means that the
local value of the line width is larger than the width averaged over all of the

previous path. If the local width is much wider than the averaged width, the
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line will continue to grow essentially as .« new line with only a small
perturbation near the line center caused by the previous path. Thus, the
equivalent width will grow nearly linearly with y near unity. For a band of
lines, the same effect with line width may occur or, as is more likely, the
mean equivalent width will grow as a new band because of the addition of many
new weak lines at the inhomogeneity, i.e., the increase in p is caused by a

large decrease in 5e rather than an increase in y.
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V. SOLUTIONS FOR y(x, p) FUNCTIONS

NUMERICAL INTEGRATION OF Y1 (x, n)

A straightforward numerical integration of equation (14b) was performed
by dividing the region from 6 = 0 to 6 - = into N equal sized intervals, inte-
grating over each interval with a 12-point Wedle integration apprOximation.(g)
and allowing N to increase until the desired accuracy was ichieved for each
fixed x and p. The data in Table 1 are accurate to at least 1 part in 105.
WVithout some form of smoothing transformation, this integration procedure
would not be practical for an in-program computer calculation of y(x, p) for
cach new path coordinate s because, for certain extremes f x and p, the
integrand becomes very sharply peaked about 6 - 0 or & = m or both, Analysis
of the integrand reveals that, for x > (1 - pz)/Z pz, the integrand peaks around
6 - mw for x <(1 - pZ)/Z, it peaks around 6 - 0; and for x between these limits,
it peaks around both 6 = 0 and 06 = n, For extreme conditions of these cases,
the integrand becomes highly concentrated in the vegions of the peaks. Although
detrimental to straightforward numerical integration techniques, this phe-
nonema makes it possible to find asymptotic and simple approximate solutions
for y(x, p) in these extremes. For example, the asymptotic solution for y(x, p)

for large x is

P (24)

Y(x. P) =~/
2
\/Zn' [x + p_-1) 2_ 1)]

The conditions for which this expression is accurate to a given value are

summarized in Table 4. These conditions were determined by comparison

with exact numerically determined values.

The limiting form for y(x, p) as p becomes small is y(x, p) = exp(-Zx).

Combining this result with the asymptotic form yields the following approxi-

mation, which is accurate for all x to at least | percent for p < 10_4,




Table 4. Conditions of Accuracy for the Asymptotic Solution for yL(x,p)

Accuracy
(%) Minimum x
0. 01 x =2 1300 and x 2z 85, Opz
0.1 130.0 8. 7p2
1.0 14. 0 2. 5[)2
10. 0 5.3 0.33p° \
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yix, p) = e 2% 4 s - (25)

The rapid changeover from the dominance of the first term to the dominance
of the second is evident in Fig. 1b, Note that, for p - 1, y(x, p) is the same
as for the Curtis-Godson approximation, or, equivalently, y(x, 1) = df(x)/dx

by equation (23).

B. SOLUTION FOR ;L (x, p) FOR AN EXPONENTIAL

LINE-INTENSITY DISTRIBUTION

The integral of equation (21b) can be evaluated in closed form by the

method of residues. Since the integrand is even in 0, the limit of integration
16

can be extended to 6 = 2n. By introducing the complex variable z = e, the
integral can be transformed (for p # 1) into
8 2 d
y(x' P) = 5 P 5 f 5 > Z Y4 ,
infp - 1) x C [z2+22———2&1 z+1][zz+21;xz+1]2
p-1 J
(26)

where the contour C is the unit circle about z = 0, The integrand has first-

order poles at

, =Ll-p . - L1tp (27a, b)

z3:-%[(1+x)-\/1+2x] , (27¢)
z4:-§[(1+x)+ N+ 2x] . (27d)
-37-
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Only the poles zy and z, lie within the contour C. The residue at z = zy is ;
. |
Al ! . (28a) ;
4y ) (2, - 2,)°
Fp - EgNEy = Bl Wy - 2y
f
The residue at z = z, can be written :
1
z
A(3) 3 3

3
z. (z, +z Mz, +2z,) -2{(z. +2z.2z.2
-1 (7 ~Z)2(z -z)2(z -z)3[31 273 4 (3 124)]
3 | 3 2 3 4

(28b)

Thus, the solution for y(x, p) is

y(x.p)=(—z‘—"f’)—_,— [A‘_‘1’+A‘_33’] . (29)
po- x|

The solution is too complicated to be written out explicitly in terms of

x and p,

When p = 1, the resultant integral is

2 zdz
y(x, 1) = f . (30)
inx?' [22 + 2(1 t x) + x]z
X

C

Thus, only the second-order pole at z, is relevant. The resultant residue is

-(z, +2))
AP . 3 4 (31)
] oy
3

(z
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and the solution for y(x, p) in terms of x is

1+ x

yix, 1) = —377 . (32)
(1 + 2x)3 2

As a check, note that this expression is the same as for the Curtis-Godson
approximation, i.e., y(x,1) = dfe(x)/ds.

If the contour integration technique is applied to the function yL(x, p)
for an isolated Lorentz line, it is found that the integrand has an essential

_X/Zz. The residue for such a

singularity at z = 0 from a term of the form e
singularity can be obtained only from a Laurent expansion of the integrand
around the singularity. Unfortunately, this expansion procedure is quite
complicated and eventualiy yields the residue in the form of an infinite series.
Lindquist* reports that he has obtained a solution for this integral in the form

of an infinite summation of Bessel functions,

C. NUMERICAL INTEGRATION OF yD(x, p)

The integrand of the integral of equation (16b) has a single maximum at
z - 0 whenever x pZS 1 and a single maximum at 2y © p_l lr.’;'pz) whenever
xp2 > 1, The integral was evaluated numerically in a manner sunilar to the
evaluation of yL(x, p). A value of z = zm was determined such that the integral

could be accurately written as

m _pzzz
vix, p) = .TZF/ g Y e ¥ }1 ; erf(zm): : (33)
0

For an absolute accuracy less than ¢, z should satisfy

> {125

“G. H. Lindquist, private communication,
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For xp~ = 1, the integral was evaluated by numerical integration
between z = 0 and z - z_ with the error function remainder added. For
x p >1, the integrals for the regions z - 0 to z - zq and z = z, to
z 7z, Were evaluated separately and then added along vzith the remainder
term. The data in Table 2 are accurate to 1 part in 10 or better. For
p - 1, y(x, p} = dg(x)/dx.

A series solution for y(x, p) can be obtained by writing the integrand
as a product of two exponential terms, expanding the term involving x and

p into a power series, interchanging the order of summation and integration,

and performing the resulting elementary integration with respect to z, The
result is

e n

(-x)

;(n+l)!\/l+np

This expression is useful for calculating y(x, p) for small values of x.

y(x, p) =

(34)

The limiting form for y(x, p) as p becomes small is y(x, p) — e *. For
very large x and xp > 1, the first term of the asymptotic expansion for

y(x, p) is

NZ {

y(x, p) ~ 5 . (35)
(ol e)t/? \/l—n(xpz)

This expression is useful for evaluating yD(x, p) for x 2 100 and p < 2.

D. NUMERICAL SOLUTION FOR ;D(x, p) FOR AN

EXPONENTIAL LINE-INTENSITY DISTRIBUTION

The consideration of the integral of equation (22b) is almost identical

to that for yD(x, p). The integrand has a single maximum at z - 0 for

-40-
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x(Zp2 -1) =1 and a single maximum at Zg = p-iJln[x(ZpZ - 1)] for x(ZpZ 21> 1,
The integral con be written as a definite integral between the limits z = 0 and

z=2z plus an error function remainder term to an absolute accuracy ¢ for

>% 1n<2(—x)

A series expansion for x =<1 can be obtained as

— (n + 1)(-x)"
yix, p} = e
nzzo vi+ an

A useful approximation for p< 0.5 is

|
(1 +x)3/2 /1 - x(ZpZ - 1)

y(x, p) =

This approximation is accurate to at least 2 percent for all x, As p goes to

zero, y(x, p)— (1 + Zx)'i, An asymptotic solution (though not too useful) for

large x is

i, gy ~ Ly — 2 -1 ‘
’ 2

2
2p [x(Zp2 - 1)]1/9 \/ln[x(ZpZ - 1]

Finally, y(x, 1) = dge(x)/dx.
The tabular interpolation for y(x, p) is facilitated for this case by
interpolating with respect to the parameter o = p/(1 + p), which has limits

0 and 1, respectively, for p =0 and p = @,
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