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Summary 

This report reviews in detail our progress on understanding the 

short-term statistics of microthermal turbulence fluctuations and optical/ 

infrared scintillations, and their interrelationship. A complete analytical 

understanding of microthermal and scintillation data-spread and confidence 

intervals has been achieved, including the effects of microthermal-envelope 

probability distributiras. integral scales, varying averaging times, and 

turbulence intermittency.  A practical definition and model of intermittent 

turbulence is given, and it is shown that the usual mathematical techniques 

may be applied. The fundamental determining factor in data spread is 

shown to be the two-point correlation of the microthermal envelope fluctua- 

tions along the propagation path, with applications to the short-term 

performance of imaging as well as illumination systems.  Supporting data 

are given. 

As an addendum to the preceding report on this program, which deals 

with turbulence effects on finite aperture laser illumination systems, 

the effective aperture size of an arbitrarily truncated gaussian beam is 

derived.  In addition, it is shown from the Huygens-Fresnel formulation 

that the normalized variance of target irradiance for a large transmitter 

or small coherence scale (PO) is unity, in agreement with recent data and 

physical reasonings. 
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reader. 

I.  INTRODUCTION 

This report describes progress on two projects, one In detail. In 

the next section (II). „e describe at length the theoretical and prelimi- 

nary experimental results of our efforts on the short-term statistics of 

turbulence and optical/Infrared propagation.  In the following section (III), 

some recent developments In the work on finite, wander-tracking laser Illumi- 

nation systems are briefly discussed. 

l1'   SHORT-TERM TURBULENCE AND PROPAGATION STATISTICS 

Significant conceptual, analytical, and experimental progress has 

been made on the description of the short-term statistics of turbulence 

and scintillation phenomena.  In the present section, this progress will 

be reviewed in a largely self-contained manner, such that little or no 

familiarity with earlier reports1 will be assumed on the part of the 

The basic topics of Interest here are the description of basic micro- 

thermal fluctuations, the short-term statistics of appropriate averaged 

quantities, short-term measures of propagation effects and their relation- 

ship to the mlcrothermal quantities, the influence of the choice of aver- 

aging times, intermittency of turbulence, ano related items. These aspects 

will be discussed in the following subsections. 
A-  Statistics of the Basic Mlcrothermal Fluctuations 

The basic mlcrothermal fluctuations associated with the turbulence 

effects of interest are known to be characterized by probability distri- 

butions which differ markedly from normality.  In particular, if the 

temperature difference fluctuations between two probes (AT ) are ob- 

served, where the probe separation Is within the Inertlal Subrange, the 

distribution is symmetric with a *tlatne8s factor which may be as high 

as 40, compared to a value of 3 for the normal distribution. A typical 

to'the^ua6*: ffCthe sLol^ "^ "^ 0f the f0Urth Central —•« 
rMrH „ ? ?       eCOnd central moment. The skewness is the squared 
l-.l.f.lT.t1  m0ment diVided ^ the cubed ""nd central moo.ent  ' 

I.  J. R. Kerr. "Propagation of Multiwavelength Laser Radiation Through 
Atmospheric Turbulence". RADC-TR-73-322. August. 1973. (^769 792) 
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/ record of such fluctuations Is shown in Fig. 1, and the probability 

distribution in Fig. 2, exhibiting a flatness factor in this case of T;/ 

Physically-, this exaggerated tail on the probability distribution relates 

to occasional fluctuations of extreme magnitude ("small-scale intermittency"), 
2 

and is fundamental to turbulence phenomena.-" 

Although the above distribution is basically amorphous, we are more 

interested in an appropriate measure of the strength of turbulence, and 

therefore in the statistics of an appropriate average or smoothed quantity. 

This quantity is the (short-term) average of the square of the temperature- 

difference fluctuations, which we obtain here through digital low-pass 

filtering techniques. 
3 

Theoretical treatments have predicted that non-negative, differential 

(or finite-difference) turbulence variables will exhibit log normal behavior 

wnen averaged over a spatial or temporal scale corresponding to the inertial 

subrange.  Probability distributions of the (log) squared temperature dif- 

ference fluctuations are shown in Fig. 3 for several smoothing or averaging 
2 

scales, and log normality is verified except at small values of (AT „) . 

This departure at small values is not due to instrumental noise, and has 

been observed in nearly all experiments on turbulent temperature and 

velocity fluctuations.  The apparent effect of the inner scale of turbulence 

is also seen in Fig. 3. 

As the averaging time or scale size is increased, one expects, based 

on the central limit theorem, to observe the approach of the distribution 
4 

to normality.  This approach is conveniently displayed on a "beta diagram", 

which is a plot of the flatness factor (ß9) vs. the skewness (8,).  The beta 
2 

diagram for (^-.o) over a range of averaging times is shown In FiR. 4.  Also 

shown is the point (0- =3, (^ = 0) corresponding to normality, and the line 

representing the family of log normal distributions.  The displacements of the 

experimental points from the log normal line, especially at small averaging 

times, is due in part to the inalility to measure the higher moments of a 

2. A.M.Yaglom, Soviet Physics-Doklady 11, 2'3-29, July 1966. 
3. A.S.Gurvich and A.M.Yaglom, Phys. of Fli ids Sjppl.,Boundary Layers aid 

Turbulence. 10, Part II, S59-S65 (1967). 
4. G.J. Hahn and S.S.Shapiro, Statistica) Models in Engineering, Wiley & 

Sons, 197 (1967). 
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Figure 2.    Cumulative   probabilit/ distribution for fluctuations of Figure 1. 
The straight line indicates a normal distribution. 
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ln(AT12) 

Figure 3.    Cumulative probability distribution for log squared temperature-difference 
fluctuations, for various averaging (smoothing) scales(s). 
(Averaging scale = averaging time x wind speed) 
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Figure 4.    Beta diagram for moments of smoothed,  squared fluctuations as in 
F;gure 3, for various smoothing times.    The wind speed was 1. 5 m/sec. 
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large-flatness-factor process with suitable accuracy. 

In order to relate these short-term measures of mean-square temperature 

fluctuations to the "strength of turbulence" as utilized in propagation 

theory, a minimum averaging time is in fact required.  Roughly speaking, 

this averaging time (spatial scale) must correspond to the lowest frequencies 

(largest scales) in the turbulence fluctuations which are of interest in 

the propagation phenomena.  For the case of scintillations (but not neces- 

sarily for phase effects), ve may designate this critical scale as the 

outer scale of the inertial subrange (L ).  If we average over a smaller 

scale, we do not obtain meaningful measures; if we average over much larger 

scales, we lose details of interest in the short-term problem.  The mean- 

square temperature-difference fluctuations, for averaging times (T) >^ (L /v), 

where v is the wind speed, will be referred to in this report as the 
2      2 

"short-term C " or C  .  It is apparent from Fig. 4 that the statistics 

of a series of measurements of C  with a given T will be log-normal-like, 

and will approach normality only If T  is sufficiently long, which is not 

the interesting case. 

We note as a side point that the integral of any stationary, ergodic 

process is known to be asymptotically gaussian.  This is true regardless 

of the probability distribution of the process, and may be taken as a 

generalization of the Central Limit Theorem. 

Further statistical properties of the mean-square fluctuations will 

be discussed in later sections. 

B.  Integral Scales for Averaged Quantities 

As is apparent from the preceding discussion, we will be generally 

concerned with random processes which are defined as short-term averaged 

or smoothed versions of more fundamental random processes.  An important 

parameter for any random process is its "integral scale", which is a 

medjure of the decorrelation time for the process.  In this section, we 

will show that the integral scale for a smoothed process, where the 

averaging time is greater than the characteristic time scales of the original 

process, approaches (1/2) the averaging time itself. That this is so can 

5. H. Tennekes, J. C. Wyngaard, J. Fluid Mech. _55, 93-103 (1972). 
6. J. L. Lumley, "Stochastic Tools in Turbulence", Acad. Pr., 1970. 
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be seen intuitively by noting that smoothing corresponds to low-pass- 

filtering, and if the filter cut-off frequency is below the characteristic 

frequencies of the original process, then the lowest significant frequency 

(or reciprocal integral scale) in the smoothed process will be the filter 

cut-off frequency (Fig. 5). 

To show this formally, we generalize the development of Ref. 7.  We 

define p(t') as ihe normalized autocorrelation or autocovarümce function 

of the basic (stationary, ergodic) random process f(t), and write the 

integral scale of f as 

00 

if = r p(t')dt' (1) 
'o 

We then define the smoothed random process    gT(t)  as 

g  (t)  =    ^   / f(t+t")dt" (2) 
T T •'-T/2 

where the averaging time is T.  For simplicity, we assume that f,g have 
2 

zero mean, and defining a as the variance of f, wa write the auto- 

covariance of g  as 

(g ct+t«) gT (t)> --7 / r  f(t+t"+t')dt"f  f(t+f")dt'"\ 
T      VT/2 •>-xll ' 

2 T/2 T/2 

.£_   f r dt"dt,"p(t'+t"-t",) 
-T/2 ^72 

2 T/2 T/2-t 

-2_   r   dt f    dt"p(t'+t") 
T -T/2 -T/2-t 

We then integrate by parts: 

-10- 
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(gT(t+t') gT(t))= ■m: 
T/2 

pCt^+t^dt" 
-T/2 

T/2 

-T/2 

-    f        t  [p   (-T^-t+t')   -    P   (T/2-t+t,)]dt 

. SIVT/Z f      p(t"+t')dt"  + T/2  J p(t"+t')dt 

f  (t•,-T/2)p(t'-t")dt, 

o 

f (T/2-t")p(t,+t,,)dt 

. £? )T/2 fpU'-Odt   + T/2 Jp(t'+t)dt 

: 
+ r (T/2-t)p(t'-t)dt +j (T/2-t)p(t'+t)dt 

2       L 

?-   f   (T-t)[p(t,-t) + pCt'+Oldt 
T       / 

i 
/ 
■ 

.£_ r(i-t/T)[p(t,+t) + p(t'-t)] dt 

• 12- 
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As a special case we note that 

2 T 

(gT
2)~j(l-t/T)p(t)dt W 

0 

Also, we integrate the autocovariance of g to obtain: 

2 
/ <gT(t+t')gT(t)>dt' = ^L-If J(l-t/T)dt 

= a2lf (5) 

The integral scale of g is thus given by (5) and (4) as 
T 

I 
g 

9 

I   =  i  (6) 
X T /    2J  (l-t/T)p(t)dt 

Finally, if If << T, then the integral is equal to If, and 

lim I  = T/2  , (7) 
8^ 

which is the desired result. 

Typical temperature-difference fluctuations with various smoothing 

times (T) are shown in Fig. 6, and the autocorrelation functions in Fig. 7. 

In Fig. 8, the computer integral scales are shown as a function of T, and 

it is seen that Eq. (7) is verified. 

The decorrelation time of the unsmoothed temperature difference 

fluctuations is fundamentally on the order of the (probe spacing ♦ v) ar.d 

will normally be small compared to that corresponding with the outer scale. 

7.  S.A. Collins and G. W. Reinhardt, "Investigation of Laser Propagation 
Pnenomena", RADC-TR-71-2A8, August 1971, Electrrscience Laboratory, 

Ohio Stfte University. (AD734 547) 
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Figure 8.    Computed integral scales    IT    of the smoothed processes corresponding 
to Figures 6 and 7,  vs.   smoothing time  (T ). 
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Therefore, in practical measurements of Cn . the integral scale will be 

T/2.  The same relationship between the averaging time and integral scale 

of a short-term average will obviously also apply to propagation quantities 

such as the log amplitude variance of scintillation, which tends to have 

an integral scale which is an order of magnitude smaller than that of the 

thermal fluctuations.  For the data of Fig. 8. the unsmoothed microthermal 

scale was s 0.6 sec, while ehe optical and (10 micron) infrared scales 

were 40 and 60 msec respectively. 

C.  Large-Scale Intermittency 

The practical definition of an "intermittent" or "sporadic" random 

process is that such a process has an envelope or strength which varies 

much more slowly than the process itself, but changes significantly over 

observation times of interest. Since the concept of varying "strength" 

or "envelope" implies short-term averaging of the second moment, we may 

relate this concept to the relative time behavior of the (short-term- 

averaged) first and second moments. 

The question of long-term stationarity of a process is often unan- 

swerable and moot; for mathematical convenience, we assume ultimate 

stationarity and model the process in terms of what we learn during the 

limited period of observation.  It is apparent that intermittency or 

sporadicity as defined here is not basically related to questions of sta- 

tionarity. 
Atmospheric turbulence, as manifested in the temperature difference 

fluctuations between two probes, often exhibits intermittency. e.g.. in 

the presence of plumes, or in poorly-developed turbulence An example 

is shown in Figure 9a.  We are interested in applying .12 of the statistical 

considerations of this discussion to the intermittent case as well as to 

the simpler condition of large-scale -mlformity. 

The intermittent process has what at first are discerned to be 

peculiar properties.  The slow envelope fluctuations do not represent 

additive low frequencies in the process, but rather, are indications of 

narrow sidebands around high-frequen.y spectral components.  (Additive 

-17- 
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low frequencies may exist in single-probe microthermal measurements, and 

may relate to stationarity problems, but they do not relate to the scintil- 

lation phenomena of interest here.)  Since low frequencies are not present, 

the autocorrelation function of the process does not have a tail and does 

not ranifest the intermittency.  Hence, as will be discussed in a later 

section, the averaging-time considerations of Ref. 7 must be used with 

care in such a case. 

In order .;o exhibit the low frequencies in the envelope, we must per- 

form a nonlinear operation, such as taking the absolute value (Fig. 9b) or 

squaring.  This effectively convolves the narrow sidebands around each 

high-frequency component, resulting in additive low frequencies.  The 

autocorrelation function then exhibits the effects of the intermittency. 

As discussed in the following section, an intermittent process (z) of this 

type may be modelled as the product of (xy) of fast (x) and slow (y) 

processes, where the latter (envelope) process is always zero or positive. 

This model may in turn be related to the integral scales of interest. 

In the simplest model for intermittent turbulence, the slow envelope 

process of the preceding paragraph has only two values, 0 and 1. Although 
Q 

this has on occasion given a reasonable fit to experimental data, we find 

that in general it is not a good approximation. To explore this question 

further, we consider a typical example.  In Fig. 10a we again show the 

fluctuations of Fig. 9, and the absolute value smoothed by means of digital 

RC filtering with progressively longer averaging times.  The same is 

shown in Fig. 10b, using digital boxcar integration for smoothing.  In 

order to avoid smearing the character of the intermittent envelope, the 

maximum smoothing time shown is 0.5 sec. 

The probability distributions for the basic and smoothed processes 

of Fig. 10 are shown in Fig. 11.  The distribution function for the 

envelope, with 0.5 sec smoothing, is seen to have a slight tendency for a 

double-humped appearance, but is poorly approximated by a two-level 

function. 

8.  R. S. Lawrence, G. R. Ochs, S. F. Clifford, J. Opt. Soc. Am. 60, 826 

(1970). 
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T    =   0 

'   = 5 msec :4^u^JliJ|JljJl 

T   = 50 msec "^WVVVA^A^W»>V^^ -ULj^_ SJML*** K 

T  - 500 msec 

»■5 secj 

Figure 10a. Fluctuations of Fig.   9b.  for increasing smoothing times (T). 

a. Smoothed with digital RC filter. 
b. Smoothed wiai digital boxcar integrator. 
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Figure 11.    Cumulative probability distribution (CPD) for smoothed fluctuations 
of Fig.  10,  for various smoothiig times (T ). 
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If „e again consider the multiplicative model, we postulate that the 

fast process (x) has the high-flatness-factor statistics of the fundamental 

unsmoothed microthermal process of Sec. II-A. The envelope distribution (y) 

will be maximum at small values and will have a distribution like that 

(0.5 sec) in Fig. 11. The probability distribution (P£) of the composite 

process (z = xy) may be written as 

00 

/(8) 
P (z/y) Pv(y) i/y dy dz 
x    y 

W. therefor^pect the composite Intemlttent process to hsve a probsblUty 

dtstrlbotloo with a falrXy high Elatoess factor hut, owing to the envelope 

distribution, it  will have »ore smearing or less of a log-normal -like 

character than In the „on-lntemlttent case. , , „, 

Although » do not yet have a sufficiently long data record of Inter- 

mittent fluctuations to generate a beta diagram vs. smoothing time for 

squared fluctuatlcns, such as that of Fig. 4 for the non-lntermlttent case 

„e can speculate on the resulta of such a plot. The unsmoothed fluctuations 

„111 have a smaller flatness factor than In the non-lntermlttent case. 

For intermediate smoothing tlBes (such as 0.5 sec In Pig. 10), which exhibit 

the intermittent envelope, the same will be true. However, as discussed In 

the following section, the low freuendes relating to Intermlttency will 

cause the Integral scale of these s,uared fluctuations to be larger than 

in the non-lntermlttent case, and hence the approach to a nonaal distribu- 

tion with increased smoothing times will he more gradual.  These comparisons 

of course assume an Identical wind-speed normalizing factor. 

' „e note that the meteorological and fluid mechanical literature con- 

tains many discussions of microscale Intermlttency and, in some cases, its 

relationship to large-scale intermlttency. Many of these have been refer- 

enced in earlier reports on this program. The fieid is clearly In a state 

of flux, and there is much room for more fundamental work.  Our approach to 

„acroscale Intermlttency is a pragmatic one, in that it avoids esoteric 

",. 0. J. M« and S. S. Shapiro, -MtmHcl Mnde.s in Ennineering, 

Wiley & Sons, 1967. 
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questions of generalized stationarity, the inadequacies of the energy- 

cascade model, etc.10 A basic complication is that the behavior of inter- 

mittent microthermal envelopes cannot be expected to be universal but 

rather, will be a complicated function of meteorological and local geo- 

graphical factors. Similarly, the localized regions of stronger or 

weaker turbulence may not be expected to be Isotropie. 

Contrary to some statements in the literature, it now seems clear 

that intermittency plays no fundamental role in such propagation phenomena 

as the saturation of scintillations or the generation of log normal scin- 

tillation statistics.  We may therefore view the role of intermittency 

as simply a mechanism which increases the fluctuations in short-term- 

averaged propagation measurements or channel performance, and this can be 

quantitatively described in terms of relevant measures such as spatial 

envelope correlations and integral scales. These factors will be discussed 

further in following sections. 

D. Further Discussion of Integral Scales 

In a previous section we have shown that the integral scale of any 

smoothed process approaches one-half the averaging time as the latter 

increases. We have also pointed out that a slowly varying envelope or 

strength of a process does not have an effect on the autocorrelation, low- 

frequency content, or integral scale of that process. However, once we 

take the absolute value (rectify) or square the process, the low envelope 

frequencies will be directly manifested. An example of the enhanced low 

frequencies in the absolute value of intermittent microthermal fluctuations 

is shown in Fig. 12. 

As a prelude to the next section, in which averaging time effects in 

the presence of intermittency are discussed, we show here analytically 

how the integral scale of an intermittent process is affected by squaring. 

We again model the process as the product of a fast process (x) and slow 

envelope process (y).  Since these processes are independent, and x has 

zero mean, the composite process z = xy also has zero meau. 

10. Benoit Mandelbrot, "Intermittent Turbulence in Self Similar Cascades", 

J. Fluid Mechanics, 62, Part II, 331-358(1974). 
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To find the integral scale ot  z. we write 

/" (x(t+t')x(t)y(t+t')y(t)) dt' 

(y2)/ (x(t+f)x(t)>  dt« 

(9) 

^      This does not manifest the Intermittency. 
as expected.    This noes n ,    e rtf z2    we have 

For the integral scale of the fluctv    ions of  z  . we 

2   , ov2 

I 2 z 

/"    k2(t+f)x
2(t)y2Ct+f)y

2(t))    - (x2>  <y2> 

0 [<x*)</>     -     <^<^1 

dt' 

     (10a) 

«oting that x and y are independent, we have 

2    2 

/j(y
2(t+f)y

2(t)> (.2C.+f)x2<0>-<xl> ^> 
'dt' 

(10b) 

I 2 
X 

We expand this to write 

f\ (y
2(t+f),

2(t))(x2(t+t-^(t)-<«2)2)5"' 
I 2 - 
z 
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+    o 
/     <x2)   (y2(t+f)y

2(t)- <y
2> >  df 

0(/>-   {*i{yi\ 
(11) 

=  12.   + I 2 
z1 z2 

Let us now denote the Integral scales for the fluctuations of x and 
2 

y about their means as I 2 and I 2 respectively.  I 2 will be on the 
x       y x 

order of I , while I 2 will be much greater since y is slowly varying. x       y 
Consider the first term of Eq. (11).  The first or y-expectation will be 

/y \ for all t' such that ';he second or x-expectation is nonzero.  We 

thus have 

I 2 
zl <»4) o - <«2>2 ^)2 

I 2 
x 

(A - i 

i- 

2" V)2 

Ix
2 (1 - a). (12a) 

where ß?  is the flatness factor defined previously.* For the second 

term of   Eq. (11), we have 

*The term SJ / f \J /   i8 not identical to ß , since ^yy 4 0.  It 

be taken as a measure of intermittency.       ' 

may 
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I 2 
Z2 

(*2)2 ; v2(<y
4) - (y

2)2 

I  2 
y 

/2\2 

\y / 

x<y2> 

O V)   -   <«?>    <y
2> 

r    \^Z _ i 

a I 2. 
y 

(12b) 

To examine the behavior of these expressions, we note that ß„ >> 1, 

while \7  )   f   (v /      = 1 for no Intermlttency and is greater in the pres- 

ence of intermittency.  Hence for no intermittency,  a = 0 and I 2 = I 2 = 
/A _ z    M 

Ix2 as expected. As N^ grows, 1^ becomes 3omewhat less than j 2. 

while I 2 grows to a maximum of I 2/ß,. . Hence the Integral scale or 
z y  2 
2 y   x 

decorrelation time of an unsmoothed intermittent process when squared will 

exhibit the long integral scale of the envelope, diminished by the high 

flatness factor of the basic process.  This will be pertinent in the con- 

siderations of later sections. 

Finally, we point out that the behavior of the integral scale when a 

random process is squared can serve as a quantitative indication of the 

degree of "intermittency" of the process; I 2 depends on both the envelope 

I 
z 

distribution (a) and on the envelope seal'   (I Z), 

E. Averaging Time vs. Data Spread for Intermittent Turbulence 

Considerations of averaging time effects on measurements of random 

processes have been reviewed in Ref. 7. At first appearance, there has 

been a paradox in the application of these results to intermittent processes, 

in that data-spread is expressed in terms of the integral scale (or power 

spectrum) of the process, while the envelope-intermittency does not show 

-28. 
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up in these quantities.  Yet. It Is physically clear that intennittency 

can strongly affect the spread in measurements of short-term-avera,e 

quantities, even though the process is truly stationary in the long tern 

The purpose of this section is to resolve this seeming inconsistency, and 

to remark on the interpretation of the results for this case. 

Let us consider the stationary, intermittent process z(t)L_We denote 

any sample measurement of z
n(t) over an averaging time x by z"  The 

integral scale of the fluctuations of 2
n is again denoted by I nl and we 

assume that any such integral scale is short relative to averaging times 
of interest. 

If we now define f(t) in Ref. 7 as 2(t). and recall that M - 0 

a simple statement of the results of Eq. (8) of that reference is that 

(
Z
T)        2 Iz 

This is not a very interesting result, because the simple deviation of 

sample averages of z(t) from its true mean of zero is not interesting. 

The dependence on ^ which does not manifest the intennittency. is 

clearly appropriate in the case of this measurement. 

(13) 

that 
We no» redefine f(t) of Ref. 7 as z

2(t). We then have the reanlt 

(it        -<'2»2) 2 I 2 
z 

and' 

Var 

<?2) 

2 1^ 
z Var 

<'2> 

(14) 

y 
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This is the result of Interest, and as discussed In the previous section, 

I 2 does manifest the intermittent envelope. To apply this result, we 
z 

must know the long-term or approximate-ensemble values involved. For an 

intermittent process with slow envelope variations (large I 2)i this may 

require a very long time.  Also, the ensemble quantity / 2\ does not 

apply to a limited set of measurements, and in the presence of slow inter- 

mittency, may likewise require many samples to determine approximately. 

However, there is no formal inconsistency. 

We point out that the self-consistent averaging-time argument in 

Ref. 7 implicitly assumes that no long-term variations in the envelope 

of z(t) occur.  I.e., within a time span shorter than the long-term fluc- 

tuations in the envelope fluctuations, whose existence might not even be 

known to the experimenter, the ensemble quantities are an abstraction; 

there is no way to know their true values. 

We also point out that the condition that T is much greater than 

the relevant Integral scale is much more severe for Eq. (1A) than for (13). 

However, shorter averaging times (e.g. corresponding to the outer scale of 

turbulence) may retain more information and therefore be of interest. 

Hence, in the presence of intermittency, the averaging time may not con- 

tain many decorrelation times for the envelope. An appropriate generaliza- 

tion of the above results, not requiring T » I, may be written from 

Ref. 7: 

T 

/ 
(1- t/x) p 2 (t) dt 

z 
(14a) 

2 ■? 
where p 2 is the autocorrelation of z .  In the limit T << I *, this 

z z 

equals   p 2 (0), which will be much larger than the I 2 « T result of 

Eq. (14). 

■ 
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F.  Fourier-Stieljes Representation for Intermittent Turbulence 

As mentioned above, our operational description of intermittency 

circumvents the need for the complications of generalized stochastic 

theory.6, 10, 11' 12' Although it was not originally obvious, it may be 

easily shown that intermittency, as modelled here, does not introduce 

difficulties in the conventional spectral representation for a random 

process.  This may be shown as follows. 

The conventional Fourier-Stieljes spectral representation for a 

stationary random process f(t) is given by 

f(t) 

0 

e   dFCu)) 

where dF(w) is a random function of the increment in u. More explicitly. 

0 

/ 
eiü)tdF(to) :; lim /  eiutdF('a)) 

ft*» / 

and 

i e  dF(ü)) I*   D •1^,t |>v-'<vi'] (l5, 

where 

-0 =  (JJ
0

<(JJ
1
<U)

2 <wN=n 

W^k-i 

Au k1 max '^k'^k-l' 

Since the autocorrelation of f(t) cannot depend on t, the random variables 

F(u)) and FC^.j^) must be- uncorrelated for Uyfa^y    This £ollows from 

11. A. M. Yaglom, An Introduction to the Theory of Stationary Random 
Functions, Prentice-Hall, Inc., 1962. 

12. J.L.Doob, Stochastic Processes, Wiley & Sons, 1953. 
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writing  the autocorrelation as 

00 00 

(f(t)f*(t+f)) =(/* e^dF^) y*e-iw,(t+t,>dF(u')\ 
»—OO —00 ' 

a. 

= f   e-iw't,ei,:(u)-a,,)(dF(a))dF(u)'))   . (16) 

Hence, we have the familiar requirement that the spectrum of a (wide- 

sense) stationary process have "orthogonal increments": 

^"(uOdFOo'))  =  6(aj-(i),)(|dF(u))|2) . (17; 

Now consider the multiplicative model of an intermittent process, 

z = xy. Since x(t) and y(t) are independent stationary processes, the 

autocorrelation of z(t) may be written as 

(z(t)z(t+t'))  = (xCOxCt+t')) (y(t)y(t+t')) 

E  px(t')py(t') 

=  p (t') . (18) 
z 

Hence z(t) is trivially shown to be stationary, with a spectrum which 

also has orthogonal increments. 

The key to this result is, of course, the independence of the fast 

fluctuations and the modulating envelope.  If they are stationary but not 

independent, the probability distribution of the product (Eq. 8) involves 

a conditional probability which in turn involves the joint distribution of 
13 

x and y.  It is known that the latter may not be stationary in such a case, 

so that z = xy may not be stationary. 

13.  A. Papoulis, Probability Random Variables and Stochastic Processes, 
McGraw-Hill, 1965. 
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Most of our remarks here involve double-probe (or high-passed) 

microthermal data appropriate to scintillations, in which independence 

of the envelope and basic fluctuations is probably a valid assumption. 

However, in the case of single-probe data, which relates to optical/ 

infrared phase fluctuations and which has additive low frequencies, 

this independence is clearly violated, e.g., in the case of plumes of 

warmer, more turbulent air relative to the surroundings. 

We intend to subject the hypothesis of orthogonal increments to 

computer testing, for single and double-probe fluctuations exhibiting 

intermittency. 

G.  Spatial Correlations of the Microthermal Envelope 

As will be seen in a later section, the most important property of 

the spatial microthermal envelope is its two-point correlation function 

down the propagation path. This determines the number of independent 

"cells" traversed by the path, and consequently the fluctuation in the 

short-term strength of scintillations. Since measurements of the micro- 

thermal field per se are normally made with instrumentation at one or 

more points, where the wind transports the turbulence structure past 

each probe, we are also interested in the "frozen-in" or Taylor hypothesis 

philosophy as it applies to the envelope.  Similarly, since the wind 

direction is in general randomly related to the path vector, we are 

interested in the horizontal isotropy of the envelope. 

These considerations of isotropy and taylor hypothesis as applied 

to the microthermal envelope are quite different from those for the basic 

fluctuations themselves. The term "envelope" implies some degree of time 

or spatial averaging, and the temporal-spatial scales involved are larger 

than the outer scale (1^). Hence fundamental similarity arguments are 

not applicable, and universal behavior can hardly be expected. 

Consider the microthermal sensor configuration of Fig. 13a, where 

each point represents a two-meter high differential probe pair, for which 

the output is squared and short-term-averaged.  This squared, smoothed 

output is then cross-correlated with that from each other point, as a 

functxon of time lag. When little or no smoothing is used, and the point 
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separations (AL) in each direction are 1.5 .. the normalized cross corre- 

lation for adjacent points (12 or 23) is typically 0.3 at zero time lag; 

it falls monotonically for points 23 perpendicular to the wind, while 

for points 12 along the wind, it has the same zero-lag value and exhibits 

a secondary peak .f typically 0.1 at a time Ug corresponding roughly to 

the "Taylor interval" (separation divided by wind speed). However, if 

the point separation is increased to 2.5 m. the zero-lag correlation is 

very small (0.02) and independence is exhibited at all time lags. Hence, 

for the squared but unsmoothed case, where the additive low envelope fre- 

quencies are dominated by the high frequencies, a complete breakdown in 

correlation is seen for separations on the order of the outer scale.  In- 

side this scale, very good isotropy and significant frozen-in structure 

are observed. 

Now consider the envelope correlations with significant averaging 

time.  Just as the averaging time affects and can determine the integral 

scale for an autocorrelation function, it may also be expected to affect 

the isotropy and frozen-in character of the spatial envelope. Consider 

the probe-pair measurement points. 2 meters high and separated as in 

Figure 13b (eight probes total). This arrangement provides point separa- 

tions of 2.5. 4. 6. 6.5. 10. and 12.5 m. Using 0.4 sec averaging with a 

3.5 m/sec wind along the line joining the points, the respective mean- 

square fluctuations were as shown in Fig. 14. The Taylor time lag and 

decaying correlation are qualitatively evident.  Note that the averaging 

time corresponds spatially to a scale (1.4 m) on the order of Lo. 

The time-lagged, spatial correlation functions are shown for shorter 

separations in Fig. 15a and for larger separations in Fig. 15b.  The 

spatial and temporal autororrelation functions are shown in Fig. 16, 

showing a breakdown in agx ««it at approximately 8 m. Clearly, smoothing 

increases the realm of frozen-in envelope behavior substantially, by 

emphasizing the low frequencies in the envelope.  The spatial vector- 

correlation effects (isotropy) of averaging will be considered further in 

the next section. The details, of course, will depend on the behavior of 

the (two-dimensional) spatial frequencies below that determined by the 
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L— 90 sec_J 

fluctuations at points shown in Fig.  13b. 

The fluctuations are smoothed over 
3. 5 m sec. 

Figure 14.    Squared temperature-difference 1   ^ ^.j T= 0.4 sec.    The wind speed is 
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Separation     Peak Position 

x      2.5 m 
0      4 m 

1.4 m 

3.5 m 

5. 6 m 

0.4- 

0.3- 

0.2- 

0. 1- 

0:4 0:8 l'.Zl.ez.OzUz'.Bi'.Z 3\f> 4.0 4.4 4.* 5.2 5.6   r (sec) 

1.4 2.8 4.2 5.6 7.0 8.4 9.811.2 12.614. OB. 416.8 18.2 19.6 vT (m) 

Figure 15a. 
Time-lagged spatial correlation functions   C(T ) for fluctuations of 
Fig.   14. 

a. Smaller measurement-point separations 
b. Larger separations. 
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smoothing time and wind speed; in the presence of pronounced intermit- 

tency, still larger scales will predominate.  Further two-dimensional 

experiments are being conducted. 

H. Microthermal vs. Propagation Data Spread 

In this section we will directly address the problem of data spread 

for finite averaging times, for both microthermal measurements of turbulence 

strength (C 2) and optical/infrared measurements of scintillation strength 

(a2 = log amplitude variance), and their interrelationship. We begin with 

purely empirical data, and then we present an analytical treatment along 

with preliminary data of a more sophisticated nature. 

When reasonably long averaging times are used relative to the integral 

scales of the processes involved, one would hope for good agreement between 

theoretical predictions and experimental results.  In Fig. 17, we show 

the measured log amplitude variance of scintillation vs. the value aT  as 

predicted by first-order theory for a uniform path: 

aT
2 - 0.124 C 2 k

7/6 L11/6 . (19) 
T n 

where k is the optical/infrared wavenumber, L is the pathlength, and 

C 2 is determined from microthermal measurements at a point.  The averaging 

time used for determining the abscissa and ordinate of each point was 7-10 

minutes, and each two-wavelength data run was performed on a different day. 

The points for 10.6 microns are (with one exception) free from the effects 

of saturation of scintillations,  and very good agreement with theory is 

observed.  These data were not specially chosen in any way, and the only 

requirement on the meteorological conditions was that the sky be clear or 

overcast in a nominally uniform manner.  The points at 4880Ä are of course 

indicative of saturation at the 1.6 km pathlength used. 

In Fig. 18 we show a plot of most of the same 10.6 micron data of Fig.17, 

with an indication of the spread observed in short-time-averaged (10 sec) 

measurements of both a 2 and C 2 or aT . The bars indicate one standard 
E     n     i 

14.  R. S. Lawrence and J. W. Strohbehn, Proc. IEEE 58, 1523 (1970). 
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100 
0.001 0.01 

Figure 17.    Experimental vs. theoretical log amplitude variance of scintillations 

for long averaging times. 
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0.001 0.01 

Figur. 18.    Optical vs.  microthermal data-spread arui means corresponding to 
g 10. 6u data of Fig.  17.    The spreads indicated encompass 42-60 

indlv iduai measurements,  each with a 10 second averaging time. 
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deviation in a large number of independent 10 second measurements, crossing 

at the mean. We observe a much greater spread in the abscissa than the 

ordinate, as expected, since the former relates tc a microthermal measure- 

ment at a point, while the latter relates to a propagating berün which 

experiences a weighted spatial average over the randomly varying turbulence 

strength along the path.  This is also manifested in the integral scale of 

the squared optical/Infrared amplitude (the intensity) being much smaller 

than that for the squared thermal fiactuations.  Ordinate spreads in the 

saturated 4880Ä regime are comparable to the unsaturated 10.6 micron spreads. 
2 

If we consider the abscissa or 10-second C  measurements alone, for 
n 

this fixed averaging time we would expect the spread to tend to be inversely 

proportional to wind speed (v), since v determines the time scale of all 

of the fluctuation".  This tendency is supported by the data of Fig. 19, 

although the degree of variability or intermittency, and its scale, are 

important added factors. 

Let us now consider the analytical relationship between expected 

microthermal and optical data spread. We rewrite Eq. (19) in a form that 
2      2 

explicitly indicates the varying nature of C  and a , for any specific 

realization of the path: 

\    =     (  f<z)Cn
2 (z) dz (20) 

it 
T 

O 

where f(z) is a path-weighting function dependent on optical geometry, 

and T is the finite averaging time of the measurements.  The viewpoint 

here is that the path is statistically homogeneous, and the variations 

indicated in Eq. (20) are simply due to the short term nature of the 

averages involved. We also assume stationärity and ergodicity. For a 

spherical wave, f (z) ^ (z/L)5/6a-z)5/6. 

In order to write this relationship, it must be assumed  that the 
2 

turbulence strength C  varies slowly over a scale size on the order of 

15. V. I. Tatarski. Propagation of Waves in a Turbulent Atmosphere, Nauka, 
Moscow, 1967. 
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the outer scale L , and it Is Implicit that the mean-square microthermal 
o „ 

fluctuations (or C ) are z-averaged over at least a comparable scale 

(T>L /V).  If we think of Eq. (20) as expressing the time function a^ (t), 
— o 

it is also clear that this function will not vary significantly over a 

time scale shorter than L /v, since the integral does not contain information 

on faster fluctuations of the scintillation strength.  Of course,  x may 

be arbitrarily longer than this minimum value, and as it becomes very 

large, Eq, (20) becomes 

lim o 
T 

X->-oo 

L 

" <o2>  =  (Cn2)f  f(z)dZ * (20a) 

However, this loses the information of interest in this discussion. 
2 

Let us now consider a series of repeated measurements of a^ and 

C 2, the latter at any point on the statistically homogeneous path, with 

finite T.  The ensemble mean of a large number of such measurements will 

yield the same result as Eq. (20a).  Of interest is the relationship between 

the normalized variance (data spread) in the values obtained for these two 

parameters.  We therefore write 

({< - V))2) ll    ' WV"'2> ('nS^') 

O 
- 1 

(21) 

It is apparent that the data spread will be determined by the spatial cor- 

relation function of C 2 vs. z. for the averaging-time specified. 

We may also rewrite Eq. (21) in the form 
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2,   2' 

T.       L ^n  (zl)Cn  ^ " <Cn   ) 

.■/•■./ ■ Var C '     \X\ dz2  ^^^^ I                  Var C 2 

nr   K     Jo \ \ 

(°2)   <c„2) (22) 

2 
A useful (discrett.) approximation is to consider the z-correlation of C n 

T 
to be either total or zero, depending on whether |z -z-|< the correlation 

length, so that the overall correlation term on the right side of Eq. (22) 

is either unity or zero respectively.  If we then replace the weighting 

function integrals with corresponding discrete summations, we have 

N 

2     V  f-2 2   Var C       />   * 
Var o        n     ."^. 
 T     T      i = 1  

2 ~      2  X ' ■ 

i = 1 

(23) 

2 
where N is (1/2) the number of correlation lengths of C   in L.  For a 

nT 
uniform path-weighting function, this takes the particularly simple form: 

2     Var C 
Var aT nT  .   1 (24) 

N 

O        (O 

For a general weighting function, we may define the ratio of summations in 

Eq. (23) as N   (<N). 
^ eq — 
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In order to discuss the effects of the averaging time on the optical 

data spread, and the relation to pertinent integral scales, we first note 
2      2 

that the fundamental random variables related to C   and a  are the 
~ n      T 
3 T 

squared temperature fluctuations (AT)  and the squared log amplitude 

fluctuations (log A - (log A) )  respectively.  The integral scale (IAT2) 

of the former may he >>L , depending on the degree of intermittency, and 

the integral scale of the latter will depend on the wind direction. We 

now distinguish two cases: 

1. Wind perpendicular to the path 

In this case, the z-correlation and hence N, is unaffected by 

the averaging time t.  The integral scale of the squared 

optical fluctuations will be IAT2, and for T>I 2, both 

normalized ensemble variances or data spreads in Eqs. (22-24) 

will be ^ T  in accor^itnce with Eq. (14). 

There is a subtlety leading to an apparent contradiction 

here.  When we specify T > 1.-2, we are specifying that the 

averaging exceeds intervals over which large-scale or inter- 

mittent variations in the turbulence strength may occur.  As 

the averaging time is increased, in accordance with Fig. 5 

progressively lower frequencies, along the transverse vector, 

are emphasized.  One may expect these frequencies or long 

spatial wavelengths to possess some quasi-isotropic properties, 

i.e. to have enlarged perpendicular- or z-correlations.  This 

would imply that N is proportional to T  , so that optical 

data spread is independent of averaging time.  However, these 

residual, low-frequency components, even though emphasized 

owing to the smoothing process (T), are not correlated along 

a direction (z) perpendicular to the smoothing. 

2. Wind along the path 

In this case, if L > x > IAT2, then in accordance with the 

discussion of Sec. B, the z-correlation is equal to VT/2. 

This assumes that the turbulence strength or envelope satisfies 

the "frozen-in" viewpoint.  From Eq. (14), N = L/VT, and 
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2 
Var a 2/(j2)  will be independent of averaRinR time. This manifests the 

fact that the integral scale of the squared optical fluctuations is on 

the order of L/v. 

When T>L/V, we have N-l, and the optical spread will be ^T  . 

These new understandings of expected optical data spread are appro- 

priate for experimental confirmation.  The z-correlation length should be 

directly measured, and the microthermal and optical data spreads determined 

vs T  for different wind directions.  Preliminary results will be dis- 

cussed below. Unforumatcly, the details of z-correlations of Cn (z) will 

depend upon wind conditions, terrain, and turbulence and hence are not 

universally describable. 

It is interesting to point out that, since the path-weighting function 

[f(z) or f.] involves wavelength only as a multiplicative constant, the 

fractional spread in log amplitude variance measurements are predicted to be 

independent of wavelength.  Also, note that the representation of c^ as 

T   t  C 2      where the C 2 are independent, leads to the calculation of 

the moments of a2 distribution from those of the Cn distribution; this 
1 T 

follows from the characteristic functions «p: 

N 

^ 2 (s) = TT  *><  C 2 (s) {2b} 

a r -i "; 
i = 1   i  ' 

where ^(s) are the respective characteristic functions.  We expect that 

o? tends to a gaussian distribution in many cases.  Finally, the develop- 

ment leading to Eqs. (22-24) is also applicable to the case of saturated 

scintillations, once the appropriate weighting function (f) is known. 

It is apparent that, for a general wind direction, the maximum value 

of N is L/v x, and when vz is small and/or the turbulence strength correla- 

tion region'is large, N will be arbitrarily smaller than this value.  In 

Table I, we show preliminary data of N^L/v^, and N approximated from 

Eq. (24).  The wavelength was 10.6 y. the pathlength was 1600 meters, and 

16  H. T. Yura/'lrradiance Fluctuations of a Spherical Wave Propagating 
under Saturation Conditions", to be published in JOSA. 
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mm 

T was 10 sec. 

TABLE I lAHLE i 

Comparison of    N    determined  from relative optical/microthermal data spread 

in repeated measurements,  with N        determined  from path-vector component of 

wind speed. 

C 2(m 
-2/3) 

n v 

.«-14 

VTotal(m/sec) V (m/sec) N 
max 

N 

1.3 x 10 5.8 5.4 29.6 40.0 

1.8 x lO"13 0.8 0.8 20.0 29.6 

8.3 x io-14 2.5 2.24 71.4 22.8 

8.0 x lO"13 

,«-13 
1.8 1.8 88.9 61.5 

1.0 x 10 
,«-13 

8.0 7.8 20.5 24.2 

2.9 x 10 
,«-12 

6.0 5.0 32.0 12.1 

1.9 x 10 3.5 3.2 50.0 33.0 

3.9 x io"13 

,«-14 
1.8 1.8 88.9 80.0 

1.5 x 10 6.0 5.4 29.6 19.0 

From this table  it can be seen that  the present discussion is well supported 

qualitatively;     N    exceeded N        only twice.     The z-correlation length  (=L/2N) 

varied from 10 to 66 meters,  and  the reduction in optical data spread vs. 

microthermal spread ranged correspondingly from 80 to 12. 

It  is obviously desirable to have direct measurements of  the z-correla- 

tion when the optical and microthermal spreads are compared.     As of  this 

writing,  we have one reliable data sample,  as given in Table II.    The data 

relate to the signals and correlations shown in Figs.   14-16. 

TABLE II. 

Sample comparison of  theoretical vs.  experimental data spread. 

Weather conditions:     Clear,  T=170C,  wind along path at  3.5 m/sec 

C 2 = 1.5 x 10"14m"2/3,   A  - 48808 n 
Four probe pairs spaced at  z=0,   2.5,  6.5,   12.5m 
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1024 data points sampled at 0.4 sec intervals (6 min 50 sec total) 

Relative standard deviation in C  measured from 4 respective probes=0.025 

Averaging time:  0.4 sec 

2 Var C 2 
Measured Var o n 

 r1    = 0.0306,     s2-   -  1.99 

<°?> <^> 
Ratio - 0.0154 

2 

(\L2 n<w  /(C°>C">>   -   <C°2) 
1      I V (^n2)2 

(from Eq.   22)  = 0.0115 

In order to test the hypothesis that normalized data spreads are 

Independent of wavelength, experiments were carried out over simultaneous, 

coincident paths of 1600 m length, at 48808 and 1016 p.  Unfortunately, 

the shorter-wavelength scintillations were saturated in most conditions. 

The results are shown in Fig. 20. 

I. Data Spread and Intermittency in Imaging Applications 

Titterton 17 has raised the question of "beam breathing", related to 
18 

variations in the coherence parameter po.   In our phenomenological 

theory of beam-wave effects,18 we have not included "breathing" and see no 

noticeable deficiency.  However, although such a variation is in principle 

included in any long-term or ensemble formulation of propagation problems, 

it would be of interest to consider the short-term behavior of Po and the 

17. Paul J. Titterton, "Beam Spread Statist:)- H from Reciprocity", 
Topical Meeting on Optical Propaga ,"!.:   .ough Turbulence, Boulder, 
Colorado, July 1974. 

18. J.R.Kerr, J.R.Dunphy, "Propagation of Multiwavelength Laser Radiation 
Through Atmospheric Turbulence", RADC-TR-74-183, May 1974. (AD783 277) 
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short-term statistics of e.g. image resolution.  (By "short-term" here 

we are not referring to quasi-instantaneous image determinations, in which 
18 

image-dancing is resolved.) 

The dynamic behavior of p , including its probability distribution, 

is not described by the results of time-separated measurements; an example 

of the latter is in Ref. 19, in which p is seen to be log normally dis- 

tributed on a day-to-day sample basis.  To get at this dynamic behavior, 

we note that for a point source: 

L 

■5/3 = 1.45k2 T C :-(z)(z/L)5/3dz . (26) po ,  n 1 
We may therefore use the methods of the preceding section, but the results 

will apply to the (-5/3) power of f.ie desired variable.  As a further degree 
18 

of sophistication, one may utilize the so-called "short-term MTF",  which 

follows the centroid of a dancing image (i.e. removes the linear component 

of phase distortion). This topic comprises a possibility for future work. 

III.  RECENT RESULTS ON LASER ILLUMINATION THROUGH TURBULENCE 
18 

In the preceding report,  a comprehensive discussion was given of our 

current understanding of turbulence effects on finite laser beam illumination 

systems, including wander-cancelling systems.  Also, the first set of results 

of an ongoing experimental effort were reported.  In this section, two 

recent, further analytical results are presented. 

A.  Effective Aperture for a Truncated Gaussian Transmitter 

As discussed in Ref. 18, the results for the mean on-axis target irra- 

diance for a focused beam propagating through turbulence, with and without 

wander cancellation, can be expressed universally in terms of the ratio 

D/p as an independent variable.  The parameter D is some measure of the 

transmitter diameter, and p  is the point-source coherence length over 

the reciprocal path (i.e., from target to transmitter).  We explicitly 

considered both a uniform circular aperture, and a nontruncated gaussian 

aperture, and found that the results are practically the same in both 

cases once the proper comparative abscissas (effective diameters) have 

19.  O.L.Fried and n.F.Mevers, "Evaluation of r  for Propagation Down Through 
the Atmosphere", preprint, Nov. 1973. 
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been established.  It is then reasonable to expect that these results will 

also apply to the practical case of a truncated gaussian transmitter; the 

purpose of this section is to derive the appropriate measure of diameter 

of the beam for the general case of arbitrary truncation. 

To do this, we write 

00 

1(a) ^ j dx x f(x)e"(ax) 
5/3 

(27) 

I Q 

which is obtained from the Huygens-Fresnel formulation..  Our notation, 

which is slightly changed from Ref. 18, is as follows: 
D = 2a = l/e diameter of gaussian intensity distribution at transmitter 

D = physical diameter of truncation aperture 

X = P^DK ~  norma^ize^ difference-coordinate in transmitter plane 
a = D0

/p« g o 

The function f(x) is from the overlap integral for the particular distribution 

of illumination over the aperture.  Although the above expression could be 

worked out rigorously for each value of D/D , the near coincidence of non- 

truncated-gaussian and uniform-illumination cases suggests that we need 

merely define an appropriate "effective diameter" for the general case. 

To do this, we note from Ref. 18 that the effective diameter (D rr) 
ef f 

for both the uniform case and the nouLruncated gaussian case is specified 

by the ratio of the limits: 

lim 
a-XB 

Ka) 
lira 
a-»-0 

Ka) 
eff 

(2.0%5p )' 
o 

eff 

(28) 

where Deff=D and 2D for the two cases respectively.  For the general 

case, we define 
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D2 
n = —2 

D 
g 

20 
Then from the truncated-beam-wave diffraction theory in a vacuum,  we 

write 

2 2 4 U V D ^       ,.2 

I --V- if" (l-e'n/ )                                  (29) o   ..2 16 

where U is the transmitter amplitude on beam axis. We note that, from 
o 

simple integration, the transmitter power P is given by 

n 2 

P =  -V U l    (l-e""1) . (30) 4   o 

18 
For the nontruncated case, we can write 

2 2     2  2 U V   D r 
00    2      64 

Li 

We know that I /P is controlled by the turbulence,  and  thus for the trun- 
00 

cated case this ratio must be independent 

dimens:onally that for the general case. 

cated case this ratio must be independent of D, D .  It is thus apparent 

2 2    2 2 U k   D r 
1   ■JV-   -^z2-   d"6"11) • (32) 

«>    2      64 
L 

18 
As a check, we note that this approaches the correct limit  when n-K). 

20.  G. Olaofe, J. Opt. Soc. Am. 60, 1654 (1970). 
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We now take the Ratio of Eqs. (32) and (29), and combine with (28), 

to write 

D « - 2D 
Le-n/2 

eff     8 \ Ji^r / • (33) 

The ratio Deff/2Dg is plotted in Fig. 21.  These results will be used in 

the future to unify all presentations of data.  They may also be used as 

an approximation to the effective aperture for a truncated gaussian beam, 

when second moment or irradiance fading data are presented. 

Finally, we note that the phenomenological theory given in Ref. 18 

can be written in terms of ro,Deff instead of po.Dg, with a resulting 

simplification in the numerical constants. This will be done in a forth- 

coming publication based on that report. 

B-  Limit of Irradi^ace Variance at Large Values of D/o 

In the previous report,18 it was pointed out that both the phenomeno- 

logical model and experimental data suggest that the normalized irradiance 

variance for a transmitter much larger than the coherence scale must ap- 

proach unity.  Through reciprocity, this would also be true of a large 

heterodyne reciever. Although this seems to be clearly necessary physically, 

it disagrees with earlier approximate analyses of heterodyne systems.21 

The point of the present section is to derive this limit directly from the 

Huygens-Fresnel expression for the second moment of irradiance (fourth 

moment of amplitude). 

The required Huygens-Fresnel expression is given in Ret. 22.  For a 

nontruncated gaussian beam, this may be readily reduced to the eight-fold 
integral: 

n'.i" St    '    Effects of Atmospheric Turbulence on Static and Tracking 
Optical Heterodyne Receivers/Average Gain and Antenna Gain Variation". 

„  I60;"1"1 RT" No- TR-027' 0Ptical Science Consultants, August 1971. 
II.     H. T. Yura, Applied Optics 11, 1399-1406, June 1972. 
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m£)'fflK' d^- d-> d->      exp < - 
P2  P3  P4 

exp l-ftTM^'3**'4 

2,     2.     2^    2 

D 
8 

5/3   ,    |^      *   |5/3 

,->    ■>   ,5/3        ->    -►   |5/3       1+    t   I5/3 

+   |P2-P3l -   I^2"PAI "   lpl"p3' 

exp   jCr|p1-P3 )  + C
^IP2-P4I) (34) 

where D is the - irradiance diameter, p is the i  difference-vector in 
g      e 

the transmitter plane, and C is the log amplitude covariance function. 
21 

It may be shown from physical reasoning,  or from tedious but straight- 

forward analytical calculations, that the covariance functions may be 

dropped* when we consider the limit D /p ->°°. vv go 

*It may also be shown that this is equivalent to dropping the amplitude 

term in the perturbation Green's function, as done in Ref. 23.  In the 

latter effort, the phase perturbation was assumed to be gaussian, and the 

problem under discussion here was reduced to a six-fold integral for 

numerical evaluation. Although the results in the limit of large Dg/P0 

agree with those presented here, it may be demonstrated that the dropping 

of the amplitude term results in inaccuracies at smaller values of DK/PO' 

We let x p/D   ,  a =    -S 
8 Po 

and write   (34)  as 

<i2> 

kD 

2TrL m dx dx-dx dx,     exp. -k 24x2
24oc3

2-Hc4
2X 

23.     V.  A.   Banakh,  et al,  J.   Opt.   Soc.   Am.   64,   516-518,  April  1974. 
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, exp (a) 
5/3 ■*■    ^   l 5/3 ^ |->    +   I 5/3       1+    ^   I 5/3   .   i-^    ">   1 5/3 x1-x2| + |x3-x4| + Ix^xJ + |x2-x3l 

1^    ^   15/3        i^ -    x„-x, -    X 
2    4 

We now write 

^l5'3] 

lim exp  <J -  (a) 

i.e. 

[iV^.ivg5'3]} 
6/5^r   (6/5)(a)"2  exp    5-(cx)5/3   l^-xj 5/3 > 6 (1x^X21 ) 

+ 6/5Trr(6/5)(a)"2exp)   -(a)5/3   iV^'57^ ^'iV^^ 

{      , v5/3|-^    ->   15/3) :cp   ^ -  (a)       IXj^^j        V 6(|x -x  |)  =  lim 5/6    ^ß) 

where we note that  this  satisfies the  properties of  a delta function: 

(35) 

(36) 

(37) 

/   ödx^D  dx1 =  1 

—00 

lim      6(lx,-x,h  = lim 5/6 
xl"X2 

'1    21 
0(-KO 

TTr(6/5) 

Sdx^-xjl) =  lim 5/6 
Q-HO 

^r(6/5) 
exp |-   (a)5/3Ai   = 0 

x1Vx2 

Using  (36) with (35), we have 

Trr(6/5) 
2 

a-*» 

dx-dx.dx.   exp r-(2x^-hij)j 

J-(„)5»  <V4>5/3] +((fdi:2di:3d«4 - [-Ö-^X' 

exp 
,  ,5/3   ,■*    J .5/3 
(a) (x2"x3) ] (38) 

Iterating this procedure for the term in each of the integrands of the 

form exp j-(a)
5/3 l^-Xjl573! =)6/51Tr(6/5)cx"

2 öd^-x.]) results in 
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lim 

+ JjdV*4 "^ [■2<X3+X4)] 

= .0379 

Similarly, we may write 

2/ 

lim «-©IK dx    exp - 
xfrl 

5/3  r   ■♦  15/3 
,exp j-a \xi*2^ 

Using the delta function, this becomes 

2 

lim 
Ot-H» 

(I)   ^)   (3/5) MpiJ d^2e-
2x

2 

a,t,    0/3) ^H51 

'•l377(lf) 

(39) 

(40) 

(41) 

(42) 

Finally, we write from  (40)  and   (42) 

lim    a      ■ 
a-x» 

(^-(02    1 
^>2 

This is the desired result.* 

*In order to make the development of the present section agree with that of 

Ref. 18, it is necessary to multiply I by   4 U D. 
- o g 

r 

-59- 

y 
w>'' 

^ 



IV.  FUTURE WORK 

In a follow-on effort, we will obtain more complete experimental 

results on short-term statistical effects, using the analytical understand- 

ings presented in Sec. II, and we will carry out related computer simulation 

work. 
Comprehensive experiments on finite-beam target illumination effects 

will be completed, with varying pathlengths and wavelengths.  In addition, 

our recent analytical advances in the rigorous determination of the second 

moment of irradianc^ vs. D/PO will be pursued, with supporting numerical 

calculations. 
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