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PREFACE

This report was prepared by Fiber Science, Inc., a subsidiary of the Edo Corporation, in
accordance with Contract DAAJ02-73-C-0025 (DA Project 1X263203D156), issued by
the Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory,
Fort Eustis, Virginia. Mr. 1. E. Figge, Sr., was the U. S. Army program technical monitor.

The activities reported herein cover the period from November 1972 to December 1973.
The FSI Project Engineer was Mr. David Wall.
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INTRODUCTION

Helicopter rotor blades fabricated from advanced composite materials offer advantages
over metallic blades by providing longer blade life, making repairs easier, giving ballistic
tolerance, and reducing radar cross section. An additional advantage of reduced cost is
obtained by the use of a wet-filament-winding process using raw materials at their lowest
possible cost level, and minimizing hand labor by the use of automated winding machines.

During this program, a 16-foot-long section, including the root end attachment fitting, of
an HLH rotor blade (40-inch chord, 486-inch span) was designed and fabricated using
filament-wound tubular elements, unidirectional (longos) nose material, and skin material
as the main structural elements.

Figures 1 and 2 show the completed blade section and cross section of the blade respectively.
Table 1 summarizes the criteria and design cross-sectional properties of the tubular compos-
ite blade from Station 138 to Station 258.

BLADE DESIGN

GENERAL CONFIGURATION

A blade section was designed and fabricated to the general configuration delineated in
Figure 3. The external geometry and attachment are identical to those of the Boeing
Company’s HLH rotor blade except that an NACA 0015 airfoil was used versus an NACA
43015 to simplify the tooling. Figure 4 shows the two airfoil shapes.

DESIGN CRITERIA

The design'goal was to match the geometry, stiffness, strength, center of gravity, and
dynamic characteristics of the Boeing Company’s HLH blade using FSI's tubular composite
blade design and the wet-filament-winding process.

Figure 3 shows the blade stations and overall dimensions.

The average blade cross-sectional properties, taken from Boeing Company data, from
Station 138.00 to Station 258.00 are as follows:

w = 1.60 lb/in.

CG = 10.44 in.

EA = 112x1061b

EIX = 385 x 106 Ib-in.2
EIY = 9000 x 106 Ib-in.2
GJ] = 255 x 106 Ib-in.2



The loading data from the Bocing Company HLH data is shown in Figures 5 through 9.

The design centrifugal force (CF) load at Station 26 is 150,000 pounds (156 rpm). The
limit rotor speed is 177 rpm, and the ultimate CF load is to be taken at 1.5 times limit.

The fatigue consideration is:

3600 hours life - 1.2 x high-speed level flight (156 rpm)
(Mcan - 3g) for material allowable

200 hours life - After detectable damage
(Mcan - 20) for material allowable

PRELIMINARY DESIGN

Twelve configurations were studied during the preliminary design phase of the program
(sce Figures 10 through 21). The properties of these configurations are summarized in
Table 2. Configuration 12A ws selected for fabrication.

COMPONENT DESIGN

The fibers and resin were selected in accordance with the structural requirements at the
lowest material cost. Candidate materials studied in the program are shown in Tables 3,
4, and 5. The materials, volume fraction, winding angles, ctc., selected for the various
blade components are presented in Table 6.

The design philosophy behind cach subcomponent of the rotor blade (see Figure 22) and
the design techniques contributing to the final configuration are discussed below.

Skin

The outside skin was made up of four layers of Kevlar 49/¢poxy helically wound at +40
degrees to the spanwise axis. The inside skin conslstul of one ply of Style 1557 E-Glass
fabric/cpoxy. A .25-inch-thick picce of 4 1b/ft3 density PVC foam (Rigicell 400)
scparated the inner and outer skins. The PVC foam was terminated at cach of the tubular
clements (spars) in order to make a dircct shear transfer from the tubes to both skins. The
purpose of making the skin a sandwich wall construction was to cnable it to transmit the
aerodynamic (air pressure) loads to the tubular spar elements. The limit airload pressure
distribution ranges from 12 psi at .35 chord to zcro at the trailing edge.

Nose Longos

The nose longo material (unidircctional S-Glass/cpoxy) scrves a primary function as balance
weight for control of the cg location and a sccondary function of adding to the strength
and stiffness of the blade. The fibers are wrapped around the root end fitting, thus making
a direct attachment to the fitting.



Tubes 1, 2, and 3

These tubes collectively form the spar of the blade. They carry the major portion of the
beamwise shear loading and approximately 31% of the torsional loading. Incorporated in
the upper and lower regions of tubes 2 and 3 are unidirectional graphite windings that
extend the full length of the blade. This graphite material accounts for approximately
58.6% of the blade’s beamwise stiffness and 30.3% of its spanwise stiffness. The unidirec-
tional graphite material wraps around a metallic fitting inside the wound tube, which in
turn transfers any tube loads into the main root end fitting.

The tubes are filament-wound S-Glass  »oxy having 80% of the fibers oriented at +30
degrees to the spanwise direction ane. % of the windings in the circumferential (hoop)
direction. The undirectional graphite waterial is interspersed between helical and hoop
layers to maximize shear arca and to increase impact resistance of the graphite material.

Tubes 4. 5, and 6

These tubes, working in conjunction with the skin, transmit the airloads on the aft portion
of the blade to the spar. The skin carries the moment and the tubes carry the shear (see
Figure 23). The tubes were made using a sandwich wall construction to m:inimize their
weights. The tube core thickness, density, strength, and facing properties were based on
loading requirements.  Conservatively, the truss action of the skin and the tubes’ spanwise
shear strengrh and stiffness were mblcctcd in the sizing analysis of the tubes.

Attachment Fitting

The root end fitting is designed to attach to the helicopter rotor hub using two pins,
similar to the Bocing Company's HLH blade. It consists of an aluminum block into which
the three spar tubes are bonded and pinned. and around which the nose longo material

is wrapped. The skin and skin doubler material feed their loads into the two attaching pins
through steel sheets that are laminated between plies. The steel sheets were necessary
because of the low bearing and shear allowables of the composite material.

The fitting used does not represent flight-weight hardware.

STIFFNESS CALCULATIONS

The cross-sectional properties (center of gravity, weight. and stiffness) were caler lated by o
computer program. Figure 24 and Table 7 show the basic blade cross section and the com-
puter output. It must be noted that the densities used by the computer were modified to

include the cffects of adhesive as well as the component weights.

9
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BLADE FABRICATION

The tubular composite rotor blade was primarily fabricated using a combination of wet-
filament-winding, molding, and laminating techniques.

The major tasks of fabrication were:

1. Filament-winding tubular elements.

2. Filament-winding and molding nose longos.

3. Machining of root end fitting.

4. Assembly of tubular elements to root end fitting.

5. Filament-winding and molding of outside skin.

6. Laminating and assembly of inside skin and core to outside skin.

7. Assembly of tubular elements and skin.

8. Winding and laminating doubler material in the blade root end transition area.

9. Laminating inboard closing rib.
Task 1. The tubular elements were fabricated by wet filament winding over plastic air-
inflated mandrels to the desired thickness. The mandrels were .05-inch-thick cellulose
acetate and were pressurized from 2 to 30 psig (pressure was increased as winding pro-
gressed) during the winding operation. All tubular elements were cured as a group in the
root end fitting while supported in the skin mold to insure fit and straightness (sce
Figures 25 through 30).
Task 2. The nose longo material was wet-wound around two spools, one simulating the
root end fitting. While still in the uncured condition, the windings were weighed and excess
resin was removed until the proper weight was obtained; at that time, it was configurated

in a mold, pretensioned, and cured. Figure 31 shows the skin (main) and nose longo molds.

Task 3. The root end fitting was machined from a solid block of aluminum (see Figures
32 and 33).

Task 4. The tubular elements, while still in the uncured condition, and the nose longo
material were attached to the root end fitting and bonded to one another while being
supported by the skin mold (see Figures 34 through 36). Shims were used in the mold to
represent the skin thickness in order to insure a proper fit when assembled with the skin.

10
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Task 5. The outside skin was fabricated by w ¢ filament winding over a 20-inch-diameter
by 17-foot-long air-inflated plastic mandrel to the desired thickness. The mandrel (sce
Figure 37) was fabricated from .09-inch-thick styrenc sheets with butt joints held together
with adhesive tape. Wooden bulkhcads were used to support the ends of the plastic man-
drel. Inside the mandrel was a support structure that was used to support and configure
the wet-wound rnaterial while being placed into the skin mold (sce Figure 38). The skin
material was fabricated twice before a suitable technique was found for handling and
bagging it to the mold. Initial handling techniques tried were to position the wound
material over the mold and gradually deflate the inside bag, allowing the skin material to
settle into the mold (see Figure 39). The principal problem with this technique was getting
sufficient material up into the nose of the mold. This problem was overcome with the
support tooling inside the mandrel, which pushed the material up into the nose and
simplificd the transferring of the material into the mold. During the winding operation the
pressure inside the mandrel ranged from .2 to 10 psi.

Figure 40 shows the wound skin material.

Task 7. The assembly of the tubes, nose balance, and root end fitting with the precured
sandwich wall skin was made using the skin main mold o support the assembly while the
adhesive was cured. Figurc 41 shows the layup of the inside skin and core material.

Task 8. Doubler material was wet-wound over air-inflated plastic mandrels using essentially
the same process as the skin material (sce Figurc 42). This material, while still in the
uncured condition, was cut with scissors and removed from the mandrel. It was then laid
up by hand along with steel sheets in the fitting arca and vacuum bag cured (see Figurc 43).

Task 9. The inboard closing rib was fabricated from glass fabric/epoxy. First the tube ends
were bonded to a precured glass fabric/epoxy rib, which was then configurated to the shape
of the airfoil. Over this rib, layers of glass fabric/ecpoxy were laid, which tied the rib to

the outside skin surfacc.

COST ANALYSIS

The cost estimate for the production of tubular composite HLH rotor blades is shown below.
This estimate is based on a quantity of 4,000 blades, and the basc is on the 2,000th blade.
The following rates are the estimated 1973 level for production-oriented shops:

Shop Labor $4.75/hour
Quality Control Labor ~ $6.00/hour

1R



DIRECT MATERIAL COSTS

1. Purchased parts (root end fitting)
2. Raw materials
3. Subcontracted items - balancing system materials,
lcading-edge strip, painting
Total Materials
4.  Material burden - 10%
Net Materials
LABOR
Hours
Winding
Tubes 144
Nosc Longos 16
Skin 24
Reinforcing materials 32
Molding
Nose longos 24
Skin 96
Laminating
Ribs 32
Root end reinforcing 48
Assembly 240
Leading-edge protection 24
Trim and cleanup 32
Balancing 32
744
Quality assurance 144

Total manufacturing labor

12

$ 500.00

8,000.00

1.000.00
$9.500.00

950.00
$10,450.00

$3.534.00
864.00

$4,398.00



‘“WERHEAD

As applied to labor - 120% for a
production-oricnted shop

(34.398.00 x 120%) =

Total dircct cost $5.,277.00
GENERAL AND ADMINISTRATIVE
As applied to direct cost - 20% for
a production-oriented shop
($20,125.00 x 20%) = $i~.025.(')()
TOTAL COST PER BLADE $24,150.00

(3]

CONCLUDING REMARKS

A tubular composite HLH size rotor blade can be fabricated by the wet-filament-
winding process.

A method of wet filament winding over a large air-inflated flexible plastic
membrane which can later be deformed into the shape of an airfoil withour
causing the fibers to become mislocated was demonstrated.

A mcthod was developed for handling and positioning in a mold large
filament-wound tubular elements that are uncured.

The process of winding longo material interspersed with helical windings was
demonstrated. The process proved to be much casier than anticipated.

A ncw mevhod of attaching tubular clements to a root end fitting was conceived

and demeinstrated. One root end section of an HLH size blade was successfully
fabricated.

13
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Figure 5. Flap bending moment versus blade station.
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Figure 23. Aft tubes and skin free-body diagram.
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Figure 35. End view of assembled tube and nose longos.
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Figure

13.

Layup of unidirectional reinforcing material in the root ¢
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TABLE 1. BLADE CROSS-SECTIONAL PROPERTY SUMMARY

Property Criteria Design
W, 1lb/in. 1.60 1. 57
CG, in. 10. 44 10, 34
EA, 10° 1b. 112 116
EIX, 108 1b-in.2 385 415
EIY, 10% 1b-in. 2 9000 10581
GJ, 10° 1b-in, 2 255 280
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TABLE 3. FIBER PROPERTY AND COST SUMMARY

Kevlar Thornel Thornel Thornel Thornel
Property S-1014 49 300 400 508 75S
p. lb/in.3 .0900 0524 0614 0643 0600 .0660
Axial
Fey, psi 325,000 400,000 325,000 425,000 285000 345,000
E. 106 psi 12.6 19.0 34.0 30.0 57.0 79.0
€% 3.0 2.0 1.0 1.3 0.6
a, 10-6in./in./]oF 2.2 -3.44 -.24 -.24
M 22
Radial
Fey, psi
E, 106 psi 12.6 1.42 1.3 1.2 1.1 1.0
G, 106 psi 5u1.7 0.27 3.5 35 3.5 1.5
a, 10-6in./in./oOF 2.2 2.96 2.96
H 22
Cost
$/1b 4.10 22.00 55.00 205.00 205.00 275.00
$/in.3 0.369 1.153 3.377 13.181 12.300 18.150
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TABLE 4. HIGH-DENSITY (CERAMIC) FIBER PROPERTY

AND COST SUMMARY

- Sp.Gr. Density quulus Strength Cost
Type Gm/cc 1b /in.3 10% psi. psi $/1b  $/in.3
2 2.6 . 0939 23-25 200, 000 7.50 0,704
10 3.8 .1373 14 200, 000 7.50 1,030
15 4,6 .1662 15 = 15.00 2,493
16 9.7 . 2059 16 - 15.00 3.088
17 1.4 . 2674 18 - 20.00 5, 348
20 8.1 . 2926 = - 25.00 17.315

* Product of 3M Company (Still in research stage).
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TABLE 5. MAXIMUM STRESS AND PERCENTAGE OF SINGLE-CYCLE
STRENGTH (LIMIT LOADS)

Skin Tube Longos

Number a ~ % 8. C. S. o % S. C. S.
1 8,639 24.0 30, 873 17,2
2 8,190 22,8 29,174 16.2
3 5, 747 10. 8 43, 845 40.5
4 8,372 15. 7 24, 570 15.1
5 16,060 55, 4 28,190 15,7
6 15,834 54, 6 49,174 45.4
6A 16,127 55, 6 50, 093 46, 2
7 7, 249 17.3 25, 724 15.8

8 10, 353 35, T* 52, 352 48, 4%

9 10, 523 36. 3% 58, 028 53. 6%
10 6,053 17.8 42, 093 38.9
11 3,893 19.0 57, 008 52.7
12 3,602 17.5 52, 7128 48.7
12A 3,576 17.4 52,296 48.3

* Thornel 300 strength properties used.
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LIST OF SYMBOLS

A Area (in.2), angle (deg)

AS Skin cross-sectional area (in.2)

AT Tube cross-sectional area (in.2)

C Dimension (in.), chord length (in.)

CF Centrifugal force (lb)

CG Distance from blade lcading edge to center of gravity (in.)
E Modulus of elasticity (psi)

EA Spanwise stiffness (Ib)

ES Spanwisc modulus of clasticity of skin material (psi)

EIX Flapping bending stiffness (1b-in.2)

EIY Chordwise bending stiffness (lb-in.2)

F Allowab': strength (psi)

G Shear modulus of elasticity (psi)

GJ Torsional stiffness (Ib-in.2)

GS Shear modulus of clasticity of skin material (psi)
H Dimension from tube center to flats (in.)

I Moment of inertia (in.4)

] Torsional constant (in.4)

L Mean skin perimeter (in.)

N Number

NA Distance from leading edge to neutral axis chordwise bending (in.)
R Radius (in.)
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RI

RO

RHOS

SCS

SF

TS

Xl
X0
Yi

YO

p

g

Subscripts

f

Inside tube radius (in.)

Outside tube radius (in.)

Density (Ib/in.3)

Equivalent density of skin material (Ib/in.3)

Single cycle strength

Dimension from leading edge to end of nosc longo material (in.)
Thickness (in.)

Thickness of blade skin material (in.)

Volume ratio

Unit weight (Ib/in.), width (in.)

Dimension (in.)

Inside dimension (in.)

Outside dimension (in.)

Inside dimension (in.)

Outside dimension (in.)

Winding angle (deg), cocfficient of thermal expansion (in./in./OF)
Elongation (in./in.)

Poisson’s ratio

Density (Ib/in.3)

Unit stress (psi)

Denotes compression

Refers to fibers
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Denotes shear ultimate
Denotes tension ultimate
Denotes chordwise direction

Denotes spanwise direction
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