AD/A-003 095

VISCOSITY OF METALS IN EXFLOSION WELDING

I. D. Zakharenko, et a¹

Foreign Technology Division Wright-Patterson Air Force Base, Ohio

19 November 1974

DISTRIBUTED BY:

Cocutty Classification	
DOC:	IMENT CONTROL DATA - R & D
Chiema tine a C tivity (Copusie autor)	IN REPORT SECURITY CLASSIFICATION
Foreign Technology Divisi	
U. S. Air Force	···
AEPOAT TITLE	
VISCOSITY OF METALS IN EX	KPLOSION WELDING
DESCRIPTIVE NOTES (Type of report and inclusive	deteej
Trans Lation Au Trickis (Piret name, middle mitiel, lest name)	·
I. D. Zakharenko and V. J	I. Mali
AEPOAT DATE	TA TATAL NO. OF PARTS
1972	6 7
CONTRACT OR GRANT NO	S. ORIGINATOR'S REPORT HUMBERIS
PROJECT NO	FTD-HT-23-1992-74
	D. OTHER REPORT HOISI (Any other numbers that may be seeigne
	(his report)
DISTRIBUTION STATEMENT	
Approved for public relea	ase; distribution unlimited.
Approved for public relea	ase; distribution unlimited.
Approved for public relea	ase; distribution unlimited.
Approved for public relea	ase; distribution unlimited. ^{12 SPONSORING MILITARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea	ase; distribution unlimited. ^{12 SPONSORING MILITARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea supplementany notes	ase; distribution unlimited. ^{12 SPONSORING MILITARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea supplementany notes Assymaty 20, 13	ase; distribution unlimited. ^{12 SPONSORING MILITARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea supplementany motes 20, 13	ase; distribution unlimited. ^{12 SPONSORING MILITARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea supplementany notes Assymact 20, 13	ase; distribution unlimited. ^{12 SPONSORING MILITARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea supplementany notes 20, 13	ase; distribution unlimited. ^{12 SPONSORING MILITARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea	ase; distribution unlimited. ^{12 SPONSORING MILITARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea supplementany notes Assymacy 20, 13	ase; distribution unlimited. ¹² #Ponsoning MILITARY ACTIVITY Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea supplementany notes 20, 13	ase; distribution unlimited. ^{12 sponsoning MILITARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea	ase; distribution unlimited. ^{12 SPONSORING MILITARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea supplementany notes 20, 13	ase; distribution unlimited. ^{12 sPonsoning MILITARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea	ase; distribution unlimited. ^{12 sPonsoning MILITARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea	ase; distribution unlimited. ^{12 SPONSORING MILITARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea supplementany motes 20, 13	ase; distribution unlimited. ^{13 SPONSORING MILITARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea	ase; distribution unlimited. ¹² SPONSORING MILITARY ACTIVITY Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea	ase; distribution unlimited. 'I SPONSONING MILITARY ACTIVITY Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea	ase; distribution unlimited. ^{12 sPensoning Millitany Activity} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea	ase; distribution unlimited. ¹² SPONSONING MILITARY ACTIVITY Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea	ase; distribution unlimited. ^{12 SPONSORING MULTIARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio
Approved for public relea	ase; distribution unlimited. ^{12 SPONSORING MULTIARY ACTIVITY} Foreign Technology Division Wright-Patterson AFB,Ohio

FTD-HT- 23-1992-74

EDITED TRANSLATION

FTD-HT-23-1992-74

19 November 1974

CSP 73193384

1

//

- -,

~

VISCOSITY OF METALS IN EXPLOSION WELDING

By: I. D. Zakharenko and V. I. Mali

English pages: 6

Source: Goreniye i Vzryv, Izd-vo Nauka, Moscow, 1972, pp. 575-578

Country of Origin: USSR Translated by: Marilyn Olgechea Requester: FTD/PDTN

Approved for public release; distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD-HT-, 23-1992-74

Date 19 Nov 19 74

All figures, graphs, tables, equations, etc. merged into this translation were extracted from the best quality copy available.

ì

- -

Block	Italic	Transliteration	Block	Italic	Transliteration
A a	A .	A, a	Рр	Pp	R, r
Бб	Бб	В, Ъ	Cc	Cċ	S, 8
B 🔹	B •	' V, V	Ττ	T m	T, t
Гг	Γ •	G, g	Уу	Уу	U, u
Дж	Дд	D, d	Φ φ	\$	F, ſ
E •	E +	Ye, ye; E, e*	X×	XX	Kh, kh
Жж	. X x	Zh, zh	Цц	4 H	Ts, ts
3 1	3 1	Z, z	Ч ч	4 v	Ch, ch
ИИ	Ич	I, 1	шШ	211 M	Sh, sh
Я .	Я N	Y, y	Щщ	Щ щ	Shch, shch
K ×	Kĸ	K, k	Ъ Ъ	21	11
Ля	ЛА	L, 1	비비	b u	Ү, У
Мн	M M	M, m	b •	b •	1
Нж	Нж	N, n	3 3	9 1	E, e
0 0	0 0	0, 0	a Q	N p	Yu, yu
Пп	<i>11</i> M	P, p	ЯЯ	Ях	Ya, ya

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

* ye initially, after vowels, and after b, b; e elsewhere. When written as ë in Russian, transliterate as yë or ë. The use of discritical marks is preferred, but such marks may be omitted when expediency dictates.

FOLLOWING ARE THE CORRESPONDING RUSSIAN AND ENGLISH

DESIGNATIONS OF THE TRIGONOMETRIC FUNCTIONS

Russian	English
sin	sin
008	COS
tg	tan
ctg	cot
500	80 G
C088C	080
sh	sinh
ch	cosh
th	tenh
cth	coth
sch	sech
csch	csch
arc sin	sin-l
ATC COS	005-1
arc tg	tan
arc ctg	cot-1
arc sec	80C-1
arc cosec	CSC_T
arc sh	sinh ⁻¹
arc ch	cosh-1
are th	tenh-1
arc oth	coth-1
arc sch	sech-1
arc csch	csch-1
	خيزية: « « « « « « « « « « « « « « « « « « «
rot	curl
18	log

FTD-HT-23-1992-74

3

.

GREEK ALPHABET

Alpha	A	СL.	¢		Nu	N	V	
Beta	В	ß			Xi	Ξ	ξ	
Gamma	Γ	γ			Omicron	0	0	
Delta	Δ	δ			Pi	Π	π	
Epsilon	Ε	ε	e		Rho	P	ρ	•
Zeta	Z	ζ			Sigma	Σ	σ	٢
Eta	H	η			Tau	Т	τ	
Theta	Θ	θ	\$		Upsilon	Т	υ	
Iota	I	l			Phi	Φ	φ	φ
Kappa	K	n	κ	K	Chi	X	χ	
Lambda	٨	λ			Psi	Ψ	ψ	
Mu	М	ц			Omega	Ω	ω	
				•				

-

4

•

,

11

,

.

4

ø

VISCOSITY OF METALS IN EXPLOSION WELDING

I. D. Zakharenko and V. I. Mali Novosibirsk

In the glancing collision of metal plates moving at high rates two different phenomena may occur. At large contact angles a cumulative stream is formed [1]. At a smaller contact angle the stream disappears, the interface has a wavy shape [2], and welding of the plates occurs.

To describe the flow without the cumulative stream we shall, as in [3], make the following assumptions.

1. The metal of the plates prior to contact and in the same region after contact, where shear forces are not present, is considered an ideal fluid.

2. Metals flowing together after contact, i.e., behind the point of contact, are considered a viscous fluid.

The excess in the horizontal pulse component at the point of contact in the case of cumulation is compensated by the reverse stream. In the wave regime the excess in the horizontal component is compensated by the "submerged stream." Its velocity is less than

that of the contact point, and the stream is dissipated by the effect of viscous forces. By measuring residual shifts in particles we can determine the viscosity coefficient of a given metal.

Figure 1 shows the experimental scheme. The upper plate 3 was accelerated by explosion products from the detonation of explosive 5 and collided with plate 1. The impact regime was selected such that welding of the plates occurred.

Figure 1. Scheme of experiments: 1 lower plates, 2 - pressed plate, 3 - upper plate, 4 - pressed wire, 5 - explosive charge, 6 - detonator, 7 - wooden block.

After welding the specimens were cut in the direction of motion of the contact point and macrographs were prepared. In the photographs of the sections the horizontal displacement of fixed lines was measured. The characteristic graph representing the experimental dependence of the shift (z) as a function of distance to the interface in the welded plates (g) is shown as a solid line in Fig. 2.

Figure 2. Shift in fixed line in lower plate: solid line - experiment; dashed line - parabola $z=a(y-\delta_2)^2$. Processing the experimental curves z=z(y)for the lower, thicker plate showed that $y>\delta_1$ (δ_1 is the thickness of the upper plate) this curve is well described by the equation of the parabola

$$z=a(y-\delta_2)^2$$
(1)

 $(\delta_2$ - the thickness of the lower plate), shown in Fig. 2 by a dashed curve.

Let us examine the impact of two metal plates at subsonic velocity in a system of coordinates connected to the contact point (0 in Fig. 3). The parameters of the colliding

Figure 3. Movement of viscocity stream. plates are such that the cumulative stream is absent.

If we examine the motion of the plates as the impact of streams of an ideal fluid at constant pressure, then the velocity along the free surface is constant.

However, here the law of conservation of momentum along axis x will not be fulfilled: to the right of point 0 the pulse is greater than to the left.

We shall assume that the source of impulse is present at the contact point, and at this forms a unique submerged flow of a viscous fluid moving at a higher rate than the rate of contact (U). As we move to the right away from the contact point the submerged stream expands, covering an ever larger region of the flow (hatched region in Fig. 3). Because of the viscosity at infinity the flow rates with respect to plate thickness are never equalized.

In the unhatched region of the flow in Fig. 3, where velocity gradients are still absent and viscous forces are not active, a model of an ideal fluid can be used. The coordinate system shown in Fig. 3 was selected such that there is no vertical velocity component to the left of point 0. From the law of preservation of momentum along axis x for colliding plates we find impulse (I) accumulated at point 0

 $I = \rho_1 \delta_1 U^2 (1 - \cos v_1) + \rho_2 \delta_2 U^2 (1 - \cos v_2),$

where ρ is the density of the material.

If we know the accumulated impulse, then it is easy to determine the velocity of the plates at infinity (u^{∞}) , the expression for which in the case of plates with the same density, colliding at small angles, has the form of

$$u_{\infty} = U \frac{2\delta_1 \delta_2}{(\delta_1 + \delta_2)^2} \sin^2 \frac{1}{2}.$$

Let us study the diffusion of the horizontal velocity to the right of the contact point, which occurs as a result of viscosity. We will study the case of impact between metals of the same density and viscosity. We have the generalized Stokes equation for steadystate motion of an incompressible viscous fluid

$$U \cdot \frac{\partial u}{\partial x} = \frac{\partial}{\partial y} + \frac{\partial u}{\partial y},$$

where μ/ρ is the kinematic viscosity coefficient.

Now let us integrate this equation from $x^{m-\infty}$ to x^{mm} everywhere except the line which passes through the contact point:

$$U\int_{-\infty}^{\infty} \cdot \frac{\partial u}{\partial x} dx = \frac{\partial}{\partial y} \cdot \cdot \frac{\partial}{\partial y} \int_{-\infty}^{\infty} u dx,$$
$$U[u_{\infty} - u_{-\infty}] = U \cdot \cdot \frac{d^{2}z}{du^{2}}.$$

or

Here $\int u(x, y)dx = U_{Z}(y)$, where z(y) is the shift in the point from its original position. Since u_{∞} represents an addition to the velocity of the contact point to its left, which is equal to zero, we get

 $\mathbf{y} \cdot \frac{d^2 \mathbf{z}}{d \mathbf{y}^2} = \mathbf{K}_{\mathbf{u}},$

Then

 $z(y) = \frac{1}{2\pi} u_{B} y^{a} + A y + B,$

and constants A and B are determined from the following boundary conditions

$$\frac{\partial s}{\partial y} = 0, s = 0$$
 when $y = \delta_2$.

Finally, we get the shift in the lower plate

$$z(y) = \frac{U}{v} \frac{\delta_1 \delta_2 (y - \delta_2)^2}{(\delta_1 + \delta_2)^2} \sin^2 \frac{1}{2}.$$
 (2)

If we use the representation of (1) for $\mathbf{z}(\mathbf{y})$, which is correct for $\mathbf{y} > \delta_1$, then from (2) we get

$$\mathbf{v} = \frac{U \delta_1 \delta_2}{\sigma(\delta_1 + \delta_2)^2} \sin^2 \frac{1}{2}.$$
 (3)

FTD-HT-23-1992-74

The velocity of the contact point was measured in preliminary experiments by means of streak photography. Angle γ was calculated from the formulas given in [2]. The results of processing certain experimental data according to for aula

$$p = \frac{3l/\delta_1\delta_2}{\beta_1 + \delta_2)^2} \sin^2 \frac{1}{2}$$

are given in the table.

Material	ð,, c.#		U-10-5 cm/s	T	p-10-5 m	
		ō2, CM			y=8,	y 201
Alamdan	0,2	2	2,5	20-30-	0,65	0,65
(D16)	0,4	3	3,1	14"	0,74	0,79
Copper (M3)	0,4	1,4	1,7	21*	2,1	2,7
	0,4	2,4	4,2	14"20"	2,5	. 2,0
Steel (St3)	0.4	2,8	3,1	15"20"	3,9	4,1
	0,4	3,0	4	14*20*	4,8	4,8
Niobium	0,2	2,9	2,5	18° '	2,2	2,2
	0,2	2,85	2,1	13°10'	2,1	2,2
Titanium	0,4	3,55	2,5	22*32′	4.3	4,2
	0,4	3,55	2,7	21*	4,2	4,4
Lead	0,23	2.3	1,2	10°	0.56	0,52
	0,21	2,7	1.4	9°30'	0,55	0,53

From the data of the table it follows that the numerical values of the viscosity coefficient for steel coincide with the results of studies by A. A. Il'yushin [3] and S. M. Popov [4]; the viscosity coefficients for aluminum coincide with the results of studies by A. D. Sakharov, and others [5], V. N. Mineyev, and Ye. V. Savinov [6].

The viscosity values for copper and steel do not agree with the data of [5]. One should, however, be wary of the results of [5], since in the experiments a constant flow behind the front was not obtained. In the opinion of the authors of [5] sufficiently great values for the length and diameter of the explosive charge

and also for the diameter of the profile disk should assure a constant flow behind the shock wave front, although in using recesses with $ka_0 = 1.74$, for example, the aperture angle of the latter was $2\gamma=120^{\circ}$. In this case the stream which we observed is formed at the vertex of the recess. Thus, in the experiments of [5] after a shock wave of sinusoidal profile emerges into a wedge disturbances from the cumulative streams arrive on its surface. These disturbances, already moving through the compressed metal, have a higher velocity than the front of the first sinusoidal wave, and thus overtake it at a certain distance. In this case there is also a phase shift in the sinusoidal disturbance, which was also observed in [5].

BIBLIOGRAPHY

•

- 1. М. А. Лаврентьев. Кумулятивный заряд и принцип его работы. Услежи натем. наук, 1957, XII, 4(76). 2. А. А. Дерибас, В. М. Кудинов, Ф. И. Матвеенков. Физ. гор. и зорыва, 1957, № 1. 3. С. К. Годунов, А. А. Дерибас, И. Д. Захаревко, В. М. Маян. Физ. гор. в зарыва, 1971, № 1. 4. А. Илью шин. Уч. зап. МГУ, «Механика», 1940, рын. 39, 11. 5. С. М. Попов. Инжемерный сборник, 1941, 1, рып. 1. 6. А. Д. Сахарси, Р. М. Зайдеаь, В. Н. Минева, А. Г. Одейник. Докл. АН СССР, 1964, 139, № 5. 7. В. П. Минева, Е. В. Савинов. Ж. экспория. и теор. физ., 1967, 52, рып. 3. BLIR. 3.

FTD-HT-23-1992-74