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FOREWORD

The requirement for designing geophysical surveys in such a way that
the true continuous field may be derived to a predetermined accuracy from
digital samples is basic to any data collection operation. The time
required in the collection and analysis of the reconnaissance data, which
is necessary for the utilization of these survey design procedures, may be
justified not only from a purely scientific standpoint but, with the
escalating cost of shipboard operations, from an economic standpoint as
well. Application of the theory and algorithms presented in this report
is expected to result in a significant improvement in survey platform
utilization.

J. E. A
Captain, U.S. Navy
Commander
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ABSTRACT

A theory for designing parallel track-tvpe geophysical surveys, as
well as the necessary numerical algorithms for implementing this
theory, has been developed which is easily applied to rnany diff2rent
sampling oroblems. Within this context, survey design consitts of
defining the appropriate track spacing. track direction, and down-track
campling rate which will produce a sel of discrete digital measure-
ments describing the environment to a predetermined accuracy.

These procedures are based primarily upon the use of one and
two-dimensional Fourier transforms applied to appropriate numerical
models of the sampling process in order to estimate the variance or
mean cquare 2rror as well as the spectral content of the sampling
error. Since these error estimates are computed in the spatial
frequency domain, application of the convolution theorem is shown to
produc2a particularly etficient process for propagating the error es-
timates through a variety of linear operations performed upon the
survey data.

Several practical applications are presented to illustrata the
adaptability of the thaory. These applications include the neer rea!-
time design of hydrographic surveys utilizing a small-scale computer,
thie design of gravity surveys from which estimates of vertical deflec-
tion and geoid undulation may be derived to a specified accuracy, and
the design nf oceanic sound speed surveys which illustrates the
a2pplicudon of the theory to three-dimensional fields.
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INTRODUCTION

In any arca of science which relies upon the utilization of
discrete measurements of a spatially or temporally variable physical
process as a primary source of information, it is highly desirable, if
not critical, that estimates be made of the error which is introduced
by discrete sampling. In many cases, a requirement exists for esti-
mating not only this primary sampling error associated with the
original measurements, but a secondary sampling error which is the
result of propagating the primary error through a series of linear
operations to produce quantities computed from the sampled data.
Examples of this type of linear operation are upward and downward ana-
lytic continuation of potential fields, one and two-dimensional
differentiation, and the calculation of vertical deflection components
and geoidal undulations from measurements of the earth's gravity
field.

Although the appropriate estimates of sampling error may be comput-
ed after the measurements are completed, by far the most efficient use
of the theory and algorithms described in this report is made during
the design phase of the data collection operation. The application of
these procedures to geophysical processes falls under the general
heading of geophysical survey design. Large scale geophysical surveys
are presently conducted primarily by aircraft, ships, and satellites
travelling along survey tracks laid out in some prescribed manner.
Under these conditions, geophysical survey design consists of defining
the appropriate track spacing, track direction, and down-track sampling
rate which will produce a set of discrete measurements describing the

environment to a predetermined accuracy.
1




Some preliminary theory for estimating sampling error has been
developed by applying statistical methods based on one-dimensional
covariance functions to physical geodesy. These methods were utilized
by Rapp (1964) to estimate numerically the error of prediction or
interpolation of gravity anomalies. Heiskanen and Moritz (1967) out~-
lined the procedure for propagating this covariance estimate of sam-
pling error through the calculationof spherical harmonics of the
gravity field and the computation of geoidal undulations. The assump-
tion of isotropy inherent in the application of one~dimensional
covariance functions to two-dimensional fields, the practical problems
of computing accurate local covariance estimates utilizing a finite
amount of data from a process wnich is basically non-stationary with
respect to spatial coordinates, and the numerical complexity of
error propagation through linear operations severely limits the
utility of these existing procedures for survey design.

In order to overcome these limitations, a theory of geophysical
survey design, as well as the necessary numerical algorithm for imple~
menting this theory, has been developed which is quite easily applied
to many different sampling problems. This theory is particularly
efficient for propagating the desired sampling error estimates through
a variety nf linear operations. These procedures are based primarily
upcn the use of one and two-dimensional Fourier transforms applied to
~umerical mcdels of the sampling process in order to estimate the
variance or mean square error as well as the spectral content of the
sampling error. Since these error estimates are computed in the
spatial frequency domain, straightforward application of the convolu-
tion theorem results in an efficient error propagation process.

Scveral practical applications are presented to demonstrate the




use of the theory and the relative ease with which it may be adapted

to many different types of survey operations. Although in some cases,
sampling error may be considered to have a minor impact upon the quality
of the results obtained from an analysis of the data, this does not
negate the requirement for designing an efficient survey plan, especial-

ly in light of the present cost of large scale survey operations.




THEORY OF SURVEY DESIGN

In order to develop a comprehensive theory which could form the
basis for a practical procedure to design geophysical surveys, the
following general criteria were used:

1. The theory should be easily adaptable to a wide variety

of survey operations, with the emphasis being placed on
the design of large scale track-type geophysical
surveys.

2. Application of the theory should allow estimates to be
made of the total variance or mean square error and the
two-dimensional spectral content of the sampling error
as a function of the survey pattern.

3. The error estimates should be in a form that would
facilitate their propagation through a variety of
linear operations.

4. The computational burden associated with the numerical
implementation of the theory should be minimized to the
extent that survey design could be performed in near
real-time with small scale computers.

Utilizing these general criteria as guidelines, a procedure for

' ', +inp track-type surveys has been developed which is based upon the
use of mcihematical models of the survey process, combined with classi-~
cal sampling theory, to estimate the two-dimensicnal spectrum of the
errnr usenciated with the discrete sampling of a continuous two- or
three-dimensional function which is essentially non-statiomary. The
successful practical implementation of this theory involves the use of

reconnaissance data to estimate the boundaries of statistically

L




homogeneous provinces, the design of appropriate models of the survey
pattern, and the reliable estimation of both one- and two-dimensional
Fourier transforms of geophysical data. In this section, the theory,
and the numerical formulation developed for implementation will be pre-
sented in detail. Fortran IV computer programs are available from the
author for each of the algorithms required for practical utilization

of this theory.
Practical Problems in Spectral Estimation

Throughout this discussion, the following definitions will be used.

mxd

X,

The direct Fourier transform is defined by G(w) = ff; g(x)e.-i
and the inverse Fourier transform is defined by g(x) = %E _mG(w) eimxdw.
The problems associated with estimating the one-dimensional auto-
correlation function and power spectrum of a continuous function from a
sample of finite length are presented in detail in the classical work
by Blackman and Tukey (1958). More recently, Lacoss (1971) applied two
new nonlinear spectral analysis techniques to the problem of resolving
narrow spectral peaks in seismic data. These techniques (Maximum
Likelihood Method developed by Capon (1969), and Maximum Entropy
Method utilized by Burg (1967)), appear to yield results superior to
those obtained by straightforward window modification applied to the
estimated autocorrelation function.
In contrast, the problem of estimating the spectral content of a
finite length of data from geophysical processes such as the earth's
gravity or magnetic fields is generated not by prominent spectral

peaks but by the large amount of energy contained in wavelengths con-

siderably longer than the length of the available data record.
5




Processes which possess this type of spectral character have been term-
ed "red noise" processes by Shapiro and Ward (1960). The generaliza-
tion of a pure "red noise'" spectrum as the power spectrum of a first-
order linear Markov process has been developed by Gilman et al (1963).
Alldredge, et al (1963) computed a one-dimensional spectrum of the
earth's magnetic field which shows the large amount of energy in the
field at the long wavelengths. In a statistical sense, this long wave-
length energy may be considered as the non-stationary component of our
finite length sample. Since the basis of survey design lies in esti-
mating the Fourier transform of the error generated by sampling a
locally stationary two- or three-dimensional function, two distinct
problems must be addressed. These problems are outlined as follows:

3; A significant amount of the energy contained in the spectra of
the earth's gravity and magnetic fields is located in wave-
lengths much longer than the extent of any particular survey
operation. This long - wavelength energy causes g(x,y) to

appear to be non-stationary with regard to spatial coordinates,

that is, the mean and autocorrelation function of g(x,y) vary

over the survey area.

2 Only in rare instances are closely spaced gridded values of
g(x,y) available for numerically computing a local two-
dimensional spectrum which may be assumed to be free of
samplirs error.

In practice, the second problem is generally annoying in that it
requires tne ccllection of additiona. survey data, but the first
problem is often fatal unless adequate precautions are taken. The
first problem generates what is often referred to as spectral leakage

(Tukey, 1967). In one-dimension, the collection of a finite length of

6




data (-T/2 <x< T/2) from a continuous function g(x) consists essential-
ly of multiplying g(x) by a rectangular data window function w(x)
defined by

1, -T/2 <x< T/2

w(x) =

0, elsewhere
It may be shown by straightforward integration that the Fourier trans-
form of w(x) is given by

Sin T w/2.
Tw/2 ’

Ww) =T
where T is the total length of the data window.
In the frequency domain, the effect of multiplying g(x) by w(x) to
obtain a finite length of data is equivalent to convolving G(w) with

W(w). Thus, the Fourier transform which is actually computed is not

G(w) but Gc(w), which is given by
{00}
Gc(w) = J G(u) W(w-u)du.

Historically, many different data window functions have been proposed
and used in an attempt to make Gc(w) a better approximation of G(w)
(see e.g. Blackman and Tukey, 1958). Prior to the current trend of
computing spectra through utilization of the FFT (Fast Fourier Trans-
form) developed by Cooley and Tukey (1965), these data windows were
applied to the sample autocorrelation function. With the development
of the FFT as a standard analysis tool, the data windows must be
applied directly to the sampled function. The design of these data
window functions involves a compromise between the ''sharpness" of the

frequency cutoff of W(w) and the magnitude of the side lobes. For

7




example, the window function consisting of a so called cosine taper
defined as
1/2(+eos E%), - /2 <x< 1/2

0, elsewhere

v, (x) =

is often used to reduce the magnitude of the side lobes at the expense
of broadening the main lobe. The Fourier transform of the cosine taper

window is given by

T Sin Tw/2 | T (Sin (7-Tw/2) , Sin (M+Tw/2)

L (w) =

2 Tw/2 4 m-Tw/2 T+Tw/ 2
W (f)
Figure 1 is a plot of Eéf) and tT in which the substitution w=27nf

has been made to more clearly indicate the relationships between the

transforms of the window functions and their length (T). Note that the
W (£) W(E)
T b}

of the first side lobe has been decreased from approximately 0.21 to

main lobe of is much wider than that of but the magnitude
approximately 0.01. In practice, the use of wt(x) tends to reduce the
oscillatory character of Gc(w), but a significant amount of spectral
leakage may still be present. As a conséequence of the negative side
lobe on the cosine taper window, negative power spectral estimates

often occur when this window is applied to the autocorrelation function
computed from processes exhibiting 'red noise" character. Other
wirdows, such &- the Bartlett win'ow (Blackman and Tukey, 1958), defined

as

1 - 2|x|
Vg (x) = T

s |x'<!T/2|,
0, elsewhere

may be used to eliminate the negative power estimates at the expense of

increasing the magnitude of the side lobes.

8
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For a real, asymmetric g(x), the Fourier transform is a complex
quantity of the form G(w) = E(w) + iD(w) with an even real part (E(w))
and an odd imaginary part (D(w)). The amplitude spectrum of g(x) is
defined as |G(m)| and the power spectrum or energy spectrum is defined
as IG(w)I2 (Bracewell, 1965). The computed amplitude spectrum of g(x)

multiplied by a data window is then given by

|6, @] = ([E@#*HW1* + D12,

where * denotes the convolution operation. In the case of gravity and
magnetic fields, this leakage of the long wavelength energy through the
side lobes of the window function may easily become serious enough to
distort the computed spectrum completely. In light of the ever increas-
ing utilization of the FFT, the importance of this problem cannot be
overemphasized.

As a quantitative illustration of this leakage effect, a compari-
son is made between the theoretical and numerical amplitude spectrum of
the gravity anomaly generated by a deep-seated two-dimensional fault
model shown in Figure 2. The gravity anomaly along a profile perpendic-
ular to the strike of this body for a dip angle (A) of 90° is given by

"Dav "3, 1971)

-1 x -1 % 245:2)
8()() T Vi D 2‘Yp (D—l—’r) tan (__l..ﬁ) - D tan (2@) % (D+T) i ,
v b é D24x?

where D, ™ «x. and p are defined as in Figure 2, and Yy is the universal

gravitatioua. constant. Since g(x) is not absolutely integrable

([w |g(x)|dx is not finite), the Fourier transform of g(x) theoretical-
-

ly does not exist. Nevertheless, a representation of the transform

which will be sufficient for our needs is given by
10
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Figure 2. The two-dimensional gravity fault model.
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2y1/2
PLRESSGA AT ]] } (Pawds, 1571), whewe

1
le(w)| = Zﬂyp{(nTG(w))2+&;5[e
§(w) is the Dirac delta function. For wfo, this reduces to

IG(w)I = 2£¥Q’e—wn-e-w(D+T) The curve denoted by the symbol (A) in

Figure 3 is a plot of the theoretical amplitude spectrum of the gravity
anomaly generated by a fault model for a depth of 1 km, a thickness of
10 km, and a density contrast of 1 g/cc. Digital data for computing a
numerical FFT amplitude spectrum were generated by evaluating g(x) at a
data interval (DI) of AX = 0.5 km for the range -64 km <x< 64 km. Note
that all FFT spectra are computed and plotted at equal increments of
normalized frequency with units of cycles per data interval (~/DI).
The resulting numerical spectrum computed from this data set using the
rectangular window function, w(x), is shown by the curve denoted by the
symbol (@) in Figure 3. The effect, on the computed amplitude spectrum,
of multiplying g(x) by w(x) with the resulting convolution in the
frequency domain is readily apparent. The distortion of the numerical
spectrum at the high frequency end is generated by leakage as the side
lobes of W(w) operate on those spectral components of G(w) with wave-
lengths longer than 128 km. This distortion is typical of that obtain-
ed in practice from geophysical processes such as gravity or magnetic
fie_ds which possess a ''red noise" type of spectrum.

In practice, an alternative procedure called prewhitening (Tukey,
1967) has been found to yield more consistently accurate spectral esti-
mates than ..ose generally obtairable by applying window modifications

"red noise' process. In this application, prewhitening

to this type of
is considered to be a numerical process which operates on the original

data set in such a way that the resulting amplitude spectrum is nearly

12
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Figure 3. Numerical example of spectral leakage.




flat (within one or two orders of magnitude for gravity or magnetic
data) over the frequency range of interest and nearly zero outside
this range. The manner in which the prewhitening operation reduces
the effect of applying a rectangular data window may be shown as
follows:

Define a function g(x) which possesses a flat spectrum, i.e.,

g(x) = §(x), and G(w) = 1.

With ¢ = 2rf, G(f) = 1, and the Fourier transform of the rectangular

data window is given by

Stanfr

RGty =1 wfT ¢

The computed Fourier transform (Gc(f)) is the result of convolving
G(f) with W(f), thus,

G (f) - % rSin'nnT dn
c o) n

and (Gradshteyn and Ryzhik, 1965),
G_(£) = G(E) =1,

As 1s shown by this example, the application of the rectangular data
window to a function possessing a flat spectrum has no adverse effect
upon the computed spectrum.

Assuming that N equally spaced digital data values are available
for analysis, this prewhitening process is most easily accomplished by
applying an appropriately designed digital filter to these N data

values. oviuce, as the example shown in Figure 3 indicates, a
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realistic spectrum cannot generally be computed prior to prewhitening,
the appropriate amplitude response of this filter can be obtained only
through experience with a particular type of data. As a practical
matter, a technique which has been found to be particularly effective
in this regard is to compute the spectrum of a sample set of data using
the cosine taper window wt(x) and then develop the appropriate response
for the prewhitening filter from this first estimate. Another equally
effective, though slightly more time consuming method, consists of
applying a set of contiguous numerical band-pass filters to the data
set, and integrating the output of each filter to produce an estimate
of the energy contained within each frequency band. In addition, a
priori knowledge of the expected form of the spectrum for the type of
data being analyzed is sometimes available. In the case of two-
dimensional gravity or magnetic fields, the fact that the amplitude
spectrum is generally dominated by a term of the form e_Dw, where D is
the depth to the disturbing body, is helpful.

A filter possessing an amplitude response as shown in Figure 3,
which has been set to effectively remove normalized frequencies less
than 1/N cycles per data interval has been found to work reasomably
well for both gravity and magnetic data. Details concerning the design
of this type of filter are presented in Appendix A. Figure 3 illus-
trates the improvement which was obtained by prewhitening the gravity
fault model data in the space domain, computing the amplitude spectrum
of these filtered data, then utilizing the convolution theorem to
correct this spectrum for the effect of the filter over the frequency
range 1/N to 0.5 cycles per data interval by dividing the computed FFT

by the frequency response of the filter. The final corrected FFT
15




spectrum (denoted by the symbol (x) is nearly identical to the theoret-
ical curve over the entire frequency range.

The FFT spectrum obtajned through application of the cosine taper
window (wt(x)) is also presented for comparison. Note that there is
essentially no residual oscillation in the low frequency components of
the prewhitened and corrected FFT while the side lobes of the cosine
taper window operating on the 6(w) component of G(w) produced a signif-
icant ripple at these frequencies. As this example illustrates, the
design of the prewhitening filter is not particularly critical (ie. the
prevhitened spectrum does not need to be exactly white), but the
employment of some form of prewhitening or window modification is
imperative if accurate spectra’ estimates are to be expected from a

finite length of data obtained from a '"red noise" process.
One-Dimensional Sampling

As developed here, the underlying theory utilized in geophysical
survey design consists of combining the Shannon sampling theorem
(Shannon, 1949) with various models of one- and two-dimensional sam-
pling functions and Parseval's relationship (Hamming, 1962) to estimate
the variance or mean square error and the spectral content of the
sampling error as a function of survey track direction and track
spacing.

The proof of the one-dimensional Shannon sampling theorem is out-
lined -~ Papoulis (1962). Since this is the basis for practical survey
design, the detailed proof is presented in Appendix B. This theorem
states that, given equally spaced digital values f(mT) of a continuous

function f(t) which is band-limited to the normalized frequency range
16




m
-m<w<iw, and such that I |F(w) |dw exists, f(t) may be represented by
=T

Sin 7 (t-mT)

f(r)y = £ f@T) s

m=--00

for all t.

In this formulation, T is the spacing between the digital samples of

f(t). Thus, this discrete numerical convolution of the digital samples

Sin' €

of £(t) with a Sinc function ( ) amounts to a perfect interpola-
tion procedure.

Within the context of survey design, the ultimate aim is to esti-
mate the variance and spectral content of the error generated by
sampling a continuous function, which is band-limited for practical
purposes, at a rate less than that required by the Shannon theorem.

In order to generate this estimate of the so-called sampling error,
consider that the equally spaced digital samples (f(mT)) of the
continuous function (f(t)) are obtained by multiplying f£(t) by an

infinite sequence of unit impulses spaced a distance T apart.

Bracewell (1965) called this sequence the shaw symbol and defines it as

111(t) = % §(t-mT). Hsu (1970) shows, in a straightforward manner,
m=-—w
that the Fourier transform of 111(t) = %E- % S(w - Z%m).
m=-o

As a consequence of the convolution theorem for Fourier transforms
(see e.g. Papoulis, 1962), the multiplication of f(t) by 111(t) to
produce the digital samples f(mT) in the time domain results in
convolving the Fourier transform of 111(t) with the Fourier transform
of f(t). These relationships are shown in Figure 4. From this figure,
it is clear that, as T increases, the spacing between the impulses of
111 (w) becomes less. If T is allowed to increase to the point where
2

E— <2A, then the convolution operation replicates F(w) in such a way

17
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that F(w) overlaps itself at the folding frequency (t%) producing what
is called sampling error.

The Fourier transform of this sampling error is composed of two
parts. The first part may be considered to be the error of commission
or the aliasing error. The Fourier transform of this error component
is defined as the difference between F(w) and 111 (w) * F(w) up to the
folding frequency. The amplitude spectrum of this error component is

given by
[P, @] = | 111 * F(w) - F)| (1)

The second part of the sampling error may be considered to be the
error of omission since spectral components of F(w) for ¥-<|w|§A are
not recoverable from the sampled data. The amplitude spectrum of this

error component is simply
|Fo(w)| = |F(w)| for ¥-<|wL5 A.

These two error components combine to form the sampling error spectrum
defined as

|Fg(w) | = |FA(w)|+|Fo(m)] (2)

This error is shown in Figure 5 for the real part of F(w).

For survey design operations, the interest lies not only in the
spectrum of the sampling error but also in the mean square error or
RMS of the error as a function of sample spacing. This mean square
error estimate is readily available through the application of Parseval's
formula (Papoulis, 1962). This formula states that energy is conserved
when transformations are made between the time or space domain and the

frequency domain and is given by
19
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Figure 5. The two components of one-dimensional sampling error.
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2 1 ) A 2
fm lg(t)| dt = o jw |6 (w) | dw = J |G(f)| ¢f for w = 2nf and
-0 -0 -A

g(t) bandlimited to *A. In practice, G(f) is computed numerically uti-
lizing the Fast Fourier transform which produces discrete estimates of
G(f) at a normalized frequency spacing of %-cycles per data interval for
N digital values (gm) of g(t). A numerical estimate of the mean square
sampling error using Parseval's formula is then given by

N/2-1

1| ‘ 1 ° Ky |2
g, NzlIc:s(o)l + |6 G|+ 2 I le, @1 | » (3)

N-1
L

Z

where GS(%) are the numerical FFT estimates of the sampling error spec-
trun, defined by equation (2), for J = 0,....N/2.

With regard to the computation of the amplitude or power spectrum
of the aliasing error through the use of equation (1), an approximation
to |FA(w)| is presented here for use in real time survey design with
small scale computers. This technique is particularly appropriate when
only the sampling error variance is desired, rather than the sampling
error spectrum. This approximation is called a power fold, and is
developed in the following manner.

For a real asymmetric f(x), the Fourier transform is a complex
quantity of the form F(w) = E(w) + i D(w) with an even, real part
(E(w)), and an odd, imaginary part (D(w)). A complex quantity posses-
sing this type of symmetry is termed Hermitian. An explicit formula-
tion of the power spectrum of the aliasing error component for a

sample spacing (T) is, from equation (1),

2%




|lll(w)*F(w)"F(°’) I2 - 2—“ J E(U) ;:o 6{(&)"“)" sz]dU

T

m:’—w

lee] 0 -
#1220 w0 Eau - (2@ +DwW))

m=-o0

Changing the order of integration and summation, and utilizing the

property of &(w) given by I E(w)S§(w)dw = E(o), yields
R 2
1@ @-F| = {3 £ Bw- EMY - EW
m:—m
2
2n 21m
+ ¥ E-m D(w--ﬁf~) - D(w) (4)

In the power fold approximation, the computer storage requirement and
computation time is essentially cut in half by approximatimg the actual
power spectrum of the aliasing error component given by equation (&)
by replicating |F((.o)|2 rather than F(w).

Thus, |1ll(m)*F(m)—F(w)|2:|111(w)*|1~‘(w)|2 - |F(w)l2[ for

|w[s%. Explicitly, we have

oo
ar § E? (w- 2335 - E2(w)

2 2
[112@)* [F@)| - [F@] |= {3 T

= -0

2n ¢ 2Tm
& {T_ I D¥*(w- _E_) - Dz(w)} (5)

m==00

Comparing equations (4) and (5), it is readily apparent that the
accuracy of this power fold approximation is a function of the ampli-
tude of the cross terms in the product of the summations in equation

(4). Empirical tests on many different types of geophysical data
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indicate that the error of this approximation is within a small percent-
age of the total mean square sampling error except at folding frequen-
cies equivalent to the first two or three harmonics of the sample data
record. Two examples of these tests are shown in Figures 6 and 7.
Figure 6 indicates the sampling error estimates obtained from applying
equations (4) and (5) to a 32 point numerical test function shown in
Figure 8. 1In this test, the power fold is seen to yield relatively
accurate estimates of the sampling error except for sample spacings
associated with the first three harmonics of the 32 point test function.
Figure 7 shows a similar result obtained by applying equations (4)

and (5) to a 128 point digital record of temporal variations of oceanic
sound speed. As in the previous example, estimates of the sampling
error for sample spacings associated with folding frequencies equivalent
to the first three harmonics of the 128 point data record are relative-
ly inaccurate.

In order to illustrate these concepts in a numerical example, a
digital test function containing predominantly high frequency energy
was generated utilizing equations (A-1) and (A-2) from Appendix A to
produce a set of high-pass filter weights. The filter control para-
meters were set to Vc = 0.08, H= 0.2, N = 15. The numerical weight
function generated by this process is shown in Figure 8. Note that the
central values of this function should be scaled by the factor 100.

The power spectrum of this function !F(w)[z, computed via the FFT, is
shown in Figure 9 as well as the estimate of the aliased spectrum
produced for a AX sample spacing of two data intervals. This estimate
was produced by a numerical solution of llll(w)*F(w)l2 for the real
and imaginary fold and lll(u)*]F(w)l2 for the power fold approxima-

tion. In this example, with AX = two data intervals, the folding
23
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frequency is 0.25 cycles per data interval. Figure 10 is a plot of the
estimated power spectrum of the sampling error obtained by a numerical
solution of equations (4) and (5). At this sample spacing, the sam-
pling error spectrum produced by the power fold approximation was
identical to that produced by folding the real and imaginary parts of
F(w).

As a test of this numerical process, the original test function
was sampled at every second data point and a cubic spline interpolation
(Davis and Kontis, 1970) was applied to obtain values at the missing
points. As shown in Figure 10, the power spectrum of the difference
between the interpolated values and the true values of the test func-
tion is in excellent agreement with that predicted by the theory. The
spectral content of the error for frequencies less than 0.25 cycles per
data interval is the error of commission while the error for frequencies
greater than 0.25 cycles per data interval is the error of omission.

Utilizing equation (3), the estimated mean square sampling error
for both the real and imaginary fold and the power fold approximation
is 0.021201. The actual sampling error computed from the interpolated
data values was 0.019330. 1In practice, the sampling error spectrum and
mean square error may be estimated for any folding frequency which is a
harmonic of the original data record. Figure 6 is a plot of the sam-
pling error estimates for all possible folding frequencies of this
test function. It is interesting to note that, with_ the total sampling
error deftined as consisting of both the error of commission and the
error of omission, it is perfectly feasible to generate a mean square
sampling error that is greater than the mean square value of the

original function. In this particular example, the mean square value
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of the original test function is 0.010625, Referring to Figure 6, it
is clear that the sampling error may be expected to excced this value

for any sample spacing greater than 1.14 data intervals.
Two-Dimensional Track Sampling

At the present time, most large scale geophysical survey opera-
tions are conducted by collecting data along nominally parallel survey
tracks by the use of aircraft, ships, helicopters, and satellites.

The basic concept of geophysical survey design involves determining
the optimum track spacing, track direction, and down-track sample rate
which will produce digital data to describe these continuous fields to
a predetermined accuracy.

With the current widespread use of digital recording systems and
the utilization of the one-dimensional sanpling theory for selecting the
appropriate down-track sample rate, we can reasonably assume that the
down-track sample rate is sufficient to define exactly a two-dimensional
function f(x,y) along each survey track. Under this assumption, the
appropriate mathematical model for defining two-dimensional track-type
surveys is the raster sampling model utilized by Bracewell (1965) as a
model for the formation of television images. This model is essential-
ly a set of parallel delta function ridges generated by considering the
one-dimensional shaw symbol as a two-dimensional function, ie:

©
ST(x,y) = g(x) I O&(y-mT) where g(x)=1 for
m==—c
survey tracks parallel to the x axis and spaced a distance T apart in
the y direction.

Since the Fourier transform of a two-dimensional function which is
30




a product of two one-dimensional functions is the product of the one-

dimensional transforms, the Fourier transform of ST(x,y) is given by

- 2 7 _2mm
ST(u,v) = 218 (u) = I 6(v = )

m:—m

where 278(u) is the Fourier transform of the constant g(x)=1l. This
model is shown in Figure 11. The survey data D(x,y) collected along a
set of equally spaced survey tracks oriented parallel to the x axis is
then given by D(x,y) = f(x,y) ST(x,y). Since multiplication in the
two-dimensional space domain results in a convolution in the two-
dimensional spatial frequency domain, the result of the survey opera-
tion is to replicate the true two-dimensional Fourier transform of
f(x,y) in the cross-track direction by convolving F(u,v) with ST(u,v)).
As in the one-dimensional case, the two-dimensional sampling error is
defined as consisting of an aliasing error or error of commission for
frequencies less than the folding frequency and an error of omission for
frequencies greater than the folding frequency. The real part of the
spectrum of this sampling error (Fs(u,v))is shown in Figure 11.

An explicit formulation for the two-dimensional power spectrum is

given by
2 2
|F, (w,v)] = | F(u, v)*S,.(u,v)-F(u,) |
&,n,2 [>%) 27m ) 2
= {15— E R(u,v- —E—)I - R(u, V)
m__w
412 = 27m 2
+ T z I(u,v- '_T—) - I(u,v) (6)
m=-c
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where R(u,v) and I(u,v) are the real and imaginary parts of F(u,v). As
in the one-dimensional case, the error of omission for tracks parallel
to the x axis is simply IFo(u,v)l2 = ]F(u,v)l2 for v greater than the
folding frequency. It should be noted that, in contrast to the one-
dimensional transform, the real and imaginary parts of the two-dimen-
sional transform of an arbitrary f(x,y), which does not exhibit
circular symmetry, are composed of both even and odd components. In
practice, the numerical evaluation of equation (6) is faciliated by
separating both R(u,v) and I(u,v) into their respective even and odd
components by use of the identity f(t) = %{f(t)+f(—t)] for the even com-
ponent and f(t) = %[f(t)-f(-t)] for the odd component (Wylie, 1960).
With the preceding definitions, the power spectrum of the sam-

pling error for two-dimensional track type sampling is defined as
2 2 2
IFS(u,V)I = IFA(u,V)I + |F (W) ] (7)

As in the one-dimensional case, the estimated mean square sampling
error is obtained by numerically solving the two-dimensional form of
Parseval's formula. That is, for an NxN grid of equally spaced values
(Ax=Ay = one data interval) of a two-dimensional function fn o’ the

mean square sampling error is

N=1 N=1 N/2-1 N/2-1 2
1 2 -1 55 JK
2 néo mgo fn,m 4 > N N lFS(N'N)l (63
N N K=~E J= )

Figure 11 illustrates the relationship which exists between the
two-dimensional spatial and frequency domains for track-type surveys.
Pradtical application of this track-sampling theory involvces the

application of a two-dimensional F¥l, with appropriate prewhitening,
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and the numerical solution of equations (6) - (8) to obtain an estimate
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