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FOREWORD 

The requirement for designing geophysical surveys in such a way that 
the true continuous field may be derived to a predetermined accuracy from 
digital samples is basic to any data collection operation.  The time 
required in the collection and analysis of the reconnaissance data, which 
is necessary for the utilization of these survey design procedures, may be 
justified not only from a purely scientific standpoint but, with the 
escalating cost of shipboard operations, from an economic standpoint as 
well.  Application of the theory and algorithms presented in this report 
is expected to result in a significant improvement in survey platform 
utilization. 

2S 
Captain, U.S. Navy 
Commander 
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ABSTRACT 
A theory for designing parallel track-type geophysical surveys, as 

well as the necessary numerical .iljjorithms for implementing this 
theory, h-*s been developed which is cosily applied to many dillirent 
sampling orobisnu.    Within this context, survey design consists of 

ning the appropriate track spa k direction, and down track 
campling rate which will produce a set of discrete digital measure- 
ments describing the environment to a predetermined accuracy. 

These procedures are based primarily upon the use of one and 
two-dimensional Toin forms applied to appropriate numerical 
models of the sampling process in order tc ostimate the Variance or 
mean cquare error as well as the spectral content of the sampling 
error.   Since those error ostim computed in the spatial 
frequency domain, application of the convolution theorem is shown to 
produce a particularly efficient process for propagat'ng the error es- 
timates through a variety of linear operations performed  upon the 
survey data. 

Several practical applications are presented to illustrate the 
adaptability M the tboory. These applications include the ne«v real 
time design of hydrographic surveys utilizing a small-scale computer, 
the design of gravity surveys from which estimates of vertical deflec- 
tion and geoid undulation may be derived to a specified accuracy, and 
the design of oceanic sound speed surveys which illustrates the 
appllc&ifon of the theory to three-dimensional fields. 
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INTRODUCTION 

In any area of science which relies upon the utilization of 

discrete measurements of a spatially or temporally variable physical 

process as a primary source of information, it is highly desirable, if 

not critical, that estimates be made of the error which is introduced 

by discrete sampling.  In many cases, a requirement exists for esti- 

mating not only this primary sampling error associated with the 

original measurements, but a secondary sampling error which is the 

result of propagating the primary error through a series of linear 

operations to produce quantities computed from the sampled data. 

Examples of this type of linear operation are upward and downward ana- 

lytic continuation of potential fields, one and two-dimensional 

differentiation, and the calculation of vertical deflection components 

and geoidal undulations from measurements of the earth's gravity 

field. 

Although the appropriate estimates of sampling error may be comput- 

ed after the measurements are completed, by far the most efficient use 

of the theory and algorithms described in this report is made during 

the design phase of the data collection operation.  The application of 

these procedures to geophysical processes falls under the general 

heading of geophysical survey design.  Large scale geophysical surveys 

are presently conducted primarily by aircraft, ships, and satellites 

travelling along survey tracks laid out in some prescribed manner. 

Under these conditions, geophysical survey design consists of defining 

the appropriate track spacing, track direction, and down-track sampling 

rate which will produce a set of discrete measurements describing the 

environment to a predetermined accuracy. 
1 



Some preliminary theory for estimating sampling error has been 

developed by applying statistical methods based on one-dimensional 

covariance functions to physical geodesy.  These methods were utilized 

by Rapp (1964) to estimate numerically the error of prediction or 

interpolation of gravity anomalies.  Heiskanen and Moritz (1967) out- 

lined the procedure for propagating this covariance estimate of sam- 

pling error through the calculation of spherical harmonics of the 

gravity field and the computation of geoidal undulations.  The assump- 

tion of isotropy inherent in the application of one-dimensional 

covariance functions to two-dimensional fields, the practical problems 

of computing accurate local covariance estimates utilizing a finite 

amount of data from a process w'nich is basically non-stationary with 

respect to spatial coordinates, and the numerical complexity of 

error propagation through linear operations severely limits the 

utility of these existing procedures for survey design. 

In order to overcome these limitations, a theory of geophysical 

survey design, as well as the necessary numerical algorithm for imple~ 

menting this theory, has been developed which is quite easily applied 

to many different sampling problems.  This theory is particularly 

efficient for propagating the desired sampling error estimates through 

riety of linear operations.  These procedures are based primarily 

upcn the use of one and two-dimensional Fourier transforms applied to 

.umerical models of the sampling process in order to estimate the 

variance or mean square error as well as the spectral content of the 

sampling error.  Since these error estimates are computed in the 

spatial frequency domain, straightforward application of the convolu- 

tion theorem results in an efficient error propagation process. 

S veral practical applications are presented to demonstrate the 
2 



use of the theory and the relative ease with which it may be adapted 

to many different types of survey operations.  Although in some cases, 

sampling error may be considered to have a minor impact upon the quality 

of the results obtained from an analysis of the data, this does not 

negate the requirement for designing an efficient survey plan, especial- 

ly in light of the present cost of large scale survey operations. 



THEORY OF SURVEY DESIGN 

In order to develop a comprehensive theory which could form the 

basis for a practical procedure to design geophysical surveys, the 

following general criteria were used: 

1. The theory should be easily adaptable to a wide variety 

of survey operations, with the emphasis being placed on 

the design of large scale track-type geophysical 

surveys. 

2. Application of the theory should allow estimates to be 

made of the total variance or mean square error and the 

two-dimensional spectral content of the sampling error 

as a function of the survey pattern. 

3. The error estimates should be in a form that would 

facilitate their propagation through a variety of 

linear operations. 

A.  The computational burden associated with the numerical 

implementation of the theory should be minimized to the 

extent that survey design could be performed in near 

real-time with small scale computers. 

Utilizing these general criteria as guidelines, a procedure for 

i   t: ick-type surveys has been developed which is based upon the 

use of tnr .hnatical models of the survey process, combined with classi- 

cal sampling theory, to estimate the two-dimensional spectrum of the 

error toS^oci^tffd with the discrete sampling of a continuous two- or 

three-dimensional function which is essentially non-stationary.  The 

successful practical implementation of this theory involves the use of 

reconnaissance data to estimate the boundaries of statistically 
k 



homogeneous provinces, the design of appropriate models of the survey 

pattern, and the reliable estimation of both one- and two-dimensional 

Fourier transforms of geophysical data.  In this section, the theory, 

and the numerical formulation developed for implementation will be pre- 

sented in detail.  Fortran IV computer programs are available from the 

author for each of the algorithms required for practical utilization 

of this theory. 

Practical Problems in Spectral Estimation 

Throughout this discussion, the following definitions will be used. 

The direct Fourier transform is defined by G(üJ) = J_co g(x)e   dx, 

»oo       idjx 
and the inverse Fourier transform is defined by g(x) - -r— J_OC)G(üJ) e  du) 

The problems associated with estimating the one-dimensional auto- 

correlation function and power spectrum of a continuous function from a 

sample of finite length are presented in detail in the classical work 

by Blackman and Tukey (1958).  More recently, Lacoss (1971) applied two 

new nonlinear spectral analysis techniques to the problem of resolving 

narrow spectral peaks in seismic data.  These techniques (Maximum 

Likelihood Method developed by Capon (1969), and Maximum Entropy 

Method utilized by Burg (1967)), appear to yield results superior to 

those obtained by straightforward window modification applied to the 

estimated autocorrelation function. 

In contrast, the problem of estimating the spectral content of a 

finite length of data from geophysical processes such as the earth's 

gravity or magnetic fields is generated not by prominent spectral 

peaks but by the large amount of energy contained in wavelengths con- 

siderably longer than the length of the available data record. 

5 



Processes which possess this type of spectral character have been term- 

ed "red noise" processes by Shapiro and Ward (1960).  The generaliza- 

tion of a pure "red noise'1 spectrum as the power spectrum of a first- 

order linear Markov process has been developed by Gilman et al (1963). 

Alldredge, et al (1963) computed a one-dimensional spectrum of the 

earth's magnetic field which shows the large amount of energy in the 

field at the long wavelengths.  In a statistical sense, this long wave- 

length energy may be considered as the non-stationary component of our 

finite length sample.  Since the basis of survey design lies in esti- 

mating the Fourier transform of the error generated by sampling a 

locally stationary two- or three-dimensional function, two distinct 

problems must be addressed.  These problems are outlined as follows: 

1. A significant amount of the energy contained in the spectra of 

the earth's gravity and magnetic fields is located in wave- 

lengths much longer than the extent of any particular survey 

operation.  This long - wavelength energy causes g(x,y) to 

appear to be non-stationary with regard to spatial coordinates, 

that is, the mean and autocorrelation function of g(x,y) vary 

over the survey area. 

2. Only in rare instances are closely spaced gridded values of 

g(x,y) available for numerically computing a local two- 

dimensional spectrum which may be assumed to be free of 

sarapli-; •- er*-or. 

In practice, the second problem is generally annoying in that it 

requires LUL collection of additional survey data, but the first 

problem is often fatal unless adequate precautions are taken.  The 

first problem generates what is often referred to as spectral leakage 

(Tukey, 1967).  In one-dimension, the collection of a finite length of 
6 



data (-T/2 £x£ T/2) from a continuous function g(x) consists essential- 

ly of multiplying g(x) by a rectangular data window function w(x) 

defined by 

1, -T/2 <K<_ T/2 

0,  elsewhere 
w(x) 

It may be shown by straightforward integration that the Fourier trans- 

form of w(x) is given by 

where T is the total length of the data window. 

In the frequency domain, the effect of multiplying g(x) by w(x) to 

obtain a finite length of data is equivalent to convolving G(GJ) with 

W(OJ).  Thus, the Fourier transform which is actually computed is not 

G(ü)) but G (w), which is given by 

G (to) = I   G(u) W(w-u)du. 

Historically, many different data window functions have been proposed 

and used in an attempt to make G (to) a better approximation of G(to) 

(see e.g. Blackman and Tukey, 1958).  Prior to the current trend of 

computing spectra through utilization of the FFT (Fast Fourier Trans- 

form) developed by Cooley and Tukey (1965), these data windows were 

applied to the sample autocorrelation function.  With the development 

of the FFT as a standard analysis tool, the data windows must be 

applied directly to the sampled function.  The design of these data 

window functions involves a compromise between the "sharpness" of the 

frequency cutoff of W(to) and the magnitude of the side lobes.  For 
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example, the window function consisting of a so called cosine taper 

defined as 

wt(x) = 
l/2(l+cos ^p), - T/2 <x< T/2 

0, elsewhere 

is often used to reduce the magnitude of the side lobes at the expense 

of broadening the main lobe.  The Fourier transform of the cosine taper 

window is given by 

„   ,   .       T  Sin Ttü/2   ,   T 
Wt(L,)  =  2 W2    +Ä 

Sin   (TT-TW/2)       Sin   (TT+TCO/2) 
7T-TU)/2 TT+T(i)/2 

w(f)   wt(f) 
Figure 1 is a plot of j,  f  and —-— in which the substitution a)=2iTf 

has been made to more clearly indicate the relationships between the 

transforms of the window functions and their length (T). Note that the 

Vf) W(f) 
main lobe of —-— is much wider than that of j;  , but the magnitude 

of the first side lobe has been decreased from approximately 0.21 to 

approximately 0.01.  In practice, the use of w (x) tends to reduce the 

oscillatory character of G (u>) , but a significant amount of spectral 
c 

leakage may still be present.  As a consequence of the negative side 

lobe on the cosine taper window, negative power spectral estimates 

often occur when this window is applied to the autocorrelation function 

computed from processes exhibiting "red noise" character.  Other 

widows, such i      'he Bartlett win 'ow (Blackman and Tukey, 1958), defined 

as 

wB(x) - \ 
1-^1 , |x|<|T/2|, 

0, elsewhere 

may be used to eliminate the negative power estimates at the expense of 

increasing the magnitude of the side lobes. 

8 



FREQUENCY 

Figure 1. Fourier transform of cosine taper (wf(f)/T) 

and rectangular (w(f)/T) data windows. 



For a real, asymmetric g(x), the Fourier transform is a complex 

quantity of the form G(u)) = E(co) + iD(w) with an even real part (E(to)) 

and an odd imaginary part (D(co)).  The amplitude spectrum of g(x) is 

defined as |G(Cü) | and the power spectrum or energy spectrum is defined 
2 

as |G(CO)|  (Bracewell, 1965).  The computed amplitude spectrum of g(x) 

multiplied by a data window is then given by 

|Gc(0))| - ([E(w)*W(ü))]a + (D(<a))*W(w)]2)1/2, 

where * denotes the convolution operation.  In the case of gravity and 

magnetic fields, this leakage of the long wavelength energy through the 

side lobes of the window function may easily become serious enough to 

distort the computed spectrum completely.  In light of the ever increas- 

ing utilization of the FFT, the importance of this problem cannot be 

overemphasized. 

As a quantitative illustration of this leakage effect, a compari- 

son is made between the theoretical and numerical amplitude spectrum of 

the gravity anomaly generated by a deep-seated two-dimensional fault 

model shown in Figure 2.  The gravity anomaly along a profile perpendic- 

ular to the strike of this body for a dip angle (A) of 90° is given by 

1971) 

g(x? - UT  + 2Yp{(D+T) tan"\^) - D tan"1<|) + | In [(D^ ^ j, 

where D, ^ x. and p are defined as in Figure 2, and y is the universal 

grnvitationox constant.  Since g(x) is not absolutely integrable 

(    |g(x)|dx is not finite), the Fourier transform of g(:<) theoretical- 
J -co 

ly does not exist.  Nevertheless, a representation of the transform 

which will be sufficient for our needs is given by 

10 
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Figure 2. The two-dimensional gravity fault model. 

11 



1/2 
|G(U))| = 27ryp|(7TT(!;(a)))2+^[e"a)D-e"ü)(D+T)] *\ (Davis, 1971), where 

6 (to) is the Dirac delta function.  For w/o, this reduces to 

|G(U)| = 2üIfi|e-"D_e-"(D+T) The curve denoted by the symbol (A) in 

Figure 3 is a plot of the theoretical amplitude spectrum of the gravity 

anomaly generated by a fault model for a depth of 1 km, a thickness of 

10 km, and a density contrast of 1 g/cc.  Digital data for computing a 

numerical FFT amplitude spectrum were generated by evaluating g(x) at a 

data interval (DI) of AX = 0.5 km for the range -64 km <x< 64 km.  Note 

that all FFT spectra are computed and plotted at equal increments of 

normalized frequency with units of cycles per data interval (~/DI). 

The resulting numerical spectrum computed from this data set using the 

rectangular window function, w(x), is shown by the curve denoted by the 

symbol (D) in Figure 3.  The effect, on the computed amplitude spectrum, 

of multiplying g(x) by w(x) with the resulting convolution in the 

frequency domain is readily apparent.  The distortion of the numerical 

spectrum at the high frequency end is generated by leakage as the side 

lobes of W(o)) operate on those spectral components of G(OJ) with wave- 

lengths longer than 128 km.  This distortion is typical of that obtain- 

ed in practice from geophysical processes such as gravity or magnetic 

ds which possess a "red noise" type of spectrum. 

In practice, an alternative procedure called prewhitening (Tukey, 

1967) has been found to yield more consistently accurate spectral esti- 

mates than LuOse generally obtairib^e by applying window modifications 

to this type of "red noise" process.  In this application, prewhitening 

is considered to be a numerical process which operates on the original 

data set in such a way that the resulting amplitude spectrum is nearly 

12 
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flat (within one or two orders of magnitude for gravity or magnetic 

data) over the frequency range of interest and nearly zero outside 

this range.  The manner in which the prewhitening operation reduces 

the effect of applying a rectangular data window may be shown as 

follows: 

Define a function g(x) which possesses a flat spectrum, i.e., 

g(x) = 6(x), and G(u)   = 1. 

With a) ■ 2rcf, G(f) - 1, and the Fourier transform of the rectangular 

data window is given by 

W(f)   =  T  Sin7TfT 

TTfT 

The  computed Fourier transform  (G  (f))   is  the result  of  convolving 

G(f)  with W(f),   thus, 

G  (f)  = i »"™ni    dn 
2   (* Sinir 

and  (Gradshteyn and Ryzhik,   1965), 

G (f)  = G(F)  =  1. 
c 

As is shown by this example, the application of the rectangular data 

window to a function possessing a flat spectrum has no adverse effect 

upon the computed spectrum. 

Assuming that N equally spaced digital data values are available 

for analysis, this prewhitening process is most easily accomplished by 

applying an appropriately designed digital filter to these N data 

values,  oxace, as the example shown in Figure 3 indicates, a 
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realistic spectrum cannot generally be computed prior to prewhitening, 

the appropriate amplitude response of this filter can be obtained only 

through experience with a particular type of data.  As a practical 

matter, a technique which has been found to be particularly effective 

in this regard is to compute the spectrum of a sample set of data using 

the cosine taper window w (x) and then develop the appropriate response 

for the prewhitening filter from this first estimate.  Another equally 

effective, though slightly more time consuming method, consists of 

applying a set of contiguous numerical band-pass filters to the data 

set, and integrating the output of each filter to produce an estimate 

of the energy contained within each frequency band.  In addition, a 

priori knowledge of the expected form of the spectrum for the type of 

data being analyzed is sometimes available.  In the case of two- 

dimensional gravity or magnetic fields, the fact that the amplitude 

spectrum is generally dominated by a term of the form e  , where D is 

the depth to the disturbing body, is helpful. 

A filter possessing an amplitude response as shown in Figure 3, 

which has been set to effectively remove normalized frequencies less 

than 1/N cycles per data interval has been found to work reasonably 

well for both gravity and magnetic data.  Details concerning the design 

of this type of filter are presented in Appendix A.  Figure 3 illus- 

trates the improvement which was obtained by prewhitening the gravity 

fault model data in the space domain, computing the amplitude spectrum 

of these filtered data, then utilizing the convolution theorem to 

correct this spectrum for the effect of the filter over the frequency 

range 1/N to 0.5 cycles per data interval by dividing the computed FFT 

by the frequency response of the filter.  The final corrected FFT 

15 



spectrum (denoted by the symbol (x) is nearly identical to the theoret- 

ical curve over the entire frequency range. 

The FFT spectrum obtained through application of the cosine taper 

window (w (x)) is also presented for comparison.  Note that there is 

essentially no residual oscillation in the low frequency components of 

the prewhitened and corrected FFT while the side lobes of the cosine 

taper window operating on the 6(a)) component of G(u)) produced a signif- 

icant ripple at these frequencies. As this example illustrates, the 

design of the prewhitening filter is not particularly critical (ie. the 

prewhitened spectrum does not need to be exactly white), but the 

employment of some form of prewhitening or window modification is 

imperative if accurate spectra1, estimates are to be expected from a 

finite length of data obtained from a "red noise" process. 

One-Dimensional Sampling 

As developed here, the underlying theory utilized in geophysical 

survey design consists of combining the Shannon sampling theorem 

(Shannon, 1949) with various models of one- and two-dimensional sam- 

pling functions and Parseval's relationship (Hamming, 1962) to estimate 

the variance or mean square error and the spectral content of the 

sampling error as a function of survey track direction and track 

spacing. 

The proof of the one-dimensional Shannon sampling theorem is out- 

lined *~ D*poulis (1962).  Since this is the basis for practical survey 

design, the detailed proof is presented in Appendix B.  This theorem 

states that, given equally spaced digital values f(mT) of a continuous 

function f(t) which is band-limited to the normalized frequency range 
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-*n<oj<ir, and such that I  |F(O)) |dü) exists, f(t) may be represented by 
'-II 

r/-\    r  ct  -r\ Sin TT(t-mT) c ., 
f(t) = Z      f(mT)  *<t-»T>   for a11 '• 

In this formulation, T is the spacing between the digital samples of 

f(t).  Thus, this discrete numerical convolution of the digital samples 

of f(t) with a Sine  function  (—"—) amounts to a perfect interpola- 

tion procedure. 

Within the context of survey design, the ultimate aim is to esti- 

mate the variance and spectral content of the error generated by 

sampling a continuous function, which is band-limited for practical 

purposes, at a rate less than that required by the Shannon theorem. 

In order to generate this estimate of the so-called sampling error, 

consider that the equally spaced digital samples (f(mT)) of the 

continuous function (f(t)) are obtained by multiplying f(t) by an 

infinite sequence of unit impulses spaced a distance T apart. 

Bracewell (1965) called this sequence the shaw symbol and defines it as 

oo 
lll(t) ■  E  6(t-mT).  Hsu (1970) shows, in a straightforward manner, 

m=—°° 
that the Fourier transform of lll(t) - |^ I      6(u) - ^) . 

m--00 

As a consequence of the convolution theorem for Fourier transforms 

(see e.g. Papoulis, 1962), the multiplication of f(t) by lll(t) to 

produce the digital samples f(raT) in the time domain results in 

convolving the Fourier transform of lll(t) with the Fourier transform 

of f(t).  These relationships are shown in Figure A.  Fron this figure, 

it is clear that, as T increases, the spacing between the impulses of 

lll(ü)) becomes less.  If T is allowed to increase to the point where 

— <2A, then the convolution operation replicates F(w) in such a way 

17 



Re(F(u>) ) 

(0>) 

im (F (a, j | r 

in (t) T   t   T   Ti'J   T   T,    =>    .*, !        ?)""   t        T cu 

27T  T 

MnT) 

HI (0>) «Re (F (a) 

=> 
Hl(cu) « Im (F (d)| >>"' 

Figure 4. One-dimensional sampling. 
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that F(u)) overlaps itself at the folding frequency (±—) producing what 

is called sampling error. 

The Fourier transform of this sampling error is composed of two 

parts.  The first part may be considered to be the error of commission 

or the aliasing error.  The Fourier transform of this error component 

is defined as the difference between F(OJ) and 111 (u) * F(o)) up to the 

folding frequency.  The amplitude spectrum of this error component is 

given by 

|FA(ü))| = | 111(a)) * F((j) - F(ü>)| (1) 

The second part of the sampling error may be considered to be the 

error of omission since spectral components of F(ü)) for — <|OJ|^A are 

not recoverable from the sampled data.  The amplitude spectrum of this 

error component is simply 

|Fo(ü))| = |F(w)|  for Y <|w|< A. 

These two error components combine to form the sampling error spectrum 

defined as 

|Fs(o>)| = |FA(w)| +|FO(U>)| (2) 

This error is shown in Figure 5 for the real part of F(u). 

For survey design operations, the interest lies not only in the 

spectrum of the sampling error but also in the mean square error or 

RMS of the error as a function of sample   spacing.  This mean square 

error estimate is readily available through the application of Parseval's 

formula (Papoulis, 1962).  This formula states that energy is conserved 

when transformations are made between the time or space domain and the 

frequency domain and is given by 
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Figure 5.  The two components of one-dimensional sampling error. 
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r°°     2    ,  r°°     2    (A     2 
|g(t)| dt = -^   |G(u)| doj =   |G(f)| df for u - 27Tf and 

g(t) bandlimited to ±A.  In practice, G(f) is computed numerically uti- 

lizing the Fast Fourier transform which produces discrete estimates of 

G(f) at a normalized frequency spacing of — cycles per data interval for 
N 

N digital values (g ) of g(t).  A numerical estimate of the mean square 

sampling error using Parsevalfs formula is then given by 

1  v   2    1 
N    ~m    XT2 m=o     N 

2      -  2    N/2-1    „  2 
|Gs(o)|  +|Gs(i)|  + 2 £  |GS(|)| (3) 

where G0(—) are the numerical FFT estimates of the sampling error spec- S N 

trura, defined by equation (2), for  J = 0,....N/2. 

With regard to the computation of the amplitude or power spectrum 

of the aliasing error through the use of equation (1), an approximation 

to |F (w)| is presented here for use in real time survey design with 
A 

small scale computers.  This technique is particularly appropriate when 

only the sampling error variance is desired, rather than the sampling 

error spectrum.  This approximation is called a power fold, and is 

developed in the following manner. 

For a real asymmetric f(x), the Fourier transform is a complex 

quantity of the form F(u) - E(ui) + i D(u)) with an even, real part 

(E(u)), and an odd, imaginary part (D(u)).  A complex quantity posses- 

sing this type of symmetry is termed Hermitian.  An explicit formula- 

tion of the power spectrum of the aliasing error component for a 

sample spacing (T) is, from equation (1), 
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111(W)*F(U))-F(üJ) — 
T 

E(u) Z 6[(u)-u)- -y^Jdu 

+ i 
,00 

2TT [   Ä/ r LD(u i Z  6[(u>-u)- ^pjdu - [E(u))+iD(a))] 

Changing the order of integration and summation, and utilizing the 

property of 6(w) given by        E(u))6(u))dco ■ E(o), yields 
J _oo 

2 

|lll(ü))*F((A))-F(a)) 

— 2:   D(W- —) 

2TT  »   _,     27TTTK 
—  5:    E(O) - —) - E(co) 

- D(0)) (A) 

In the power fold approximation, the computer storage requirement and 

computation time is essentially cut in half by approximating the actual 

power spectrum of the aliasing error component given by equation (A) 

2 

by replicating |F((X))|  rather than F(GO) . 
2 2 2 

Thus,   |lll(ü))*F(u>)-F(u>)|   ~|111(ü>)*|F(ü>)|     -   |F(U>)|    |   for 

|ü)|<=7.     Explicitly,     we have 

|lll(u>)*   |F(w)|    - |F(u))|   I —    L       E^ (w- —) \ "  E2(o)) 

{2TT    ~      ^2/       2-rm.        ^2/   si =-    Z      D2(io- —-)   -  Dz(ü)) 
m=-°° ' 

(5) 

Comparing equations (A) and (5), it is readily apparent that the 

accuracy uf this power fold approximation is a function of the ampli- 

tude of the cross terms in the product of the summations in equation 

(A).  Empirical tests on many different types of geophysical data 
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indicate that the error of this approximation is within a small percent- 

age of the total mean square sampling error except at folding frequen- 

cies equivalent to the first two or three harmonics of the sample data 

record.  Two examples of these tests are shown in Figures 6 and 7. 

Figure 6 indicates the sampling error estimates obtained from applying 

equations (A) and (5) to a 32 point numerical test function shown in 

Figure 8.  In this test, the power fold is seen to yield relatively 

accurate estimates of the sampling error except for sample spacings 

associated with the first three harmonics of the 32 point test function. 

Figure 7 shows a similar result obtained by applying equations (4) 

and (5) to a 128 point digital record of temporal variations of oceanic 

sound speed.  As in the previous example, estimates of the sampling 

error for sample spacings associated with folding frequencies equivalent 

to the first three harmonics of the 128 point data record are relative- 

ly inaccurate. 

In order to illustrate these concepts in a numerical example, a 

digital test function containing predominantly high frequency energy 

was generated utilizing equations (A-l) and (A-2) from Appendix A to 

produce a set of high-pass filter weights. The filter control para- 

meters were set to V - 0.08, H = 0.2, N ■ 15.  The numerical weight 
c 

function generated by this process is shown in Figure 8.  Note that the 

central values of this function should be scaled by the factor 100. 
2 

The power spectrum of this function ]F(U)) | , computed via the FFT, is 

shown in Figure 9 as well as the estimate of the aliased spectrum 

produced for a AX sample spacing of two data intervals.  This estimate 
2 

was produced by a numerical solution of |111((J)*F(LJ) |  for the real 
2 

and imaginary fold and 111(u)*|F(u)|  for the power fold approxima- 

tion.  In this example, with AX ■ two data intervals, the folding 
23 
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Figure 6.  Numerical one-dimensional test - Sampling error vs. sample spacing. 
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Figure 7.  Example of sampling error for temporal variations of oceanic sound speed at a 

depth of 75 meters—one data interval = 25 min. 
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Figure 9.  Numerical one-dimensional test—Aliased spectrum for AX=2DI. 
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frequency is 0.25 cycles per data interval.  Figure 10 is a plot of the 

estimated power spectrum of the sampling error obtained by a numerical 

solution of equations (4) and (5).  At this sample spacing, the sam- 

pling error spectrum produced by the power fold approximation was 

identical to that produced by folding the real and imaginary parts of 

F(u>). 

As a test of this numerical process, the original test function 

was sampled at every second data point and a cubic spline interpolation 

(Davis and Kontis, 1970) was applied to obtain values at the missing 

points.  As shown in Figure 10, the power spectrum of the difference 

between the interpolated values and the true values of the test func- 

tion is in excellent agreement vith that predicted by the theory.  The 

spectral content of the error for frequencies less than 0.25 cycles per 

data interval is the error of commission while the error for frequencies 

greater than 0.25 cycles per data interval is the error of omission. 

Utilizing equation (3), the estimated mean square sampling error 

for both the real and imaginary fold and the power fold approximation 

is 0.021201.  The actual sampling error computed from the interpolated 

data values was 0.019330.  In practice, the sampling error spectrum and 

mean square error may be estimated for any folding frequency which is a 

harmonic of the original data record.  Figure 6 is a plot of the sam- 

pling error estimates for all possible folding frequencies of this 

test function.  It is interesting to note that, with,the total sampling 

error detnniu as consisting of both the error of commission and the 

error of omission, it is perfectly feasible to generate a mean square 

sampling error that is greater than the mean square value of the 

original function.  In this particular example, the mean square value 
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Figure 10.  Numerical one-dimensional test—Spectrum of sampling error for AX=2DI. 
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of the original test function is 0.010625» Referring to Figure 6, it 

is clear that the sampling error may be expected to exceed this value 

for any sample spacing greater than 1.14 data intervals. 

Two-Dimensional Track Sampling 

At the present time, most large scale geophysical survey opera- 

tions are conducted by collecting data along nominally parallel survey 

tracks by the use of aircraft, ships, helicopters, and satellites. 

The basic concept of geophysical survey design involves determining 

the optimum track spacing, track direction, and down-track sample rate 

which will produce digital data to describe these continuous fields to 

a predetermined accuracy. 

With the current widespread use of digital recording systems and 

the utilization of the one-dimensional sampling theory for selecting the 

appropriate down-track sample rate, we can reasonably assume that the 

down-track sample rate is sufficient to define exactly a two-dimensional 

function f(x,y) along each survey track.  Under this assumption, the 

appropriate mathematical model for defining two-dimensional track-type 

surveys is the raster sampling model utilized by Bracewell (1965) as a 

model for the formation of television images.  This model is essential- 

ly a set of parallel delta function ridges generated by considering the 

one-dimensional shaw symbol as a two-dimensional function, ie: 

oo 

ST(x,y) = g(x)  E  6(y-mT) where g(x)=l for 
m=~°° 

survey tracks parallel to the x axis and spaced a distance T apart in 

the y direction. 

Since the Fourier transform of a two-dimensional function which is 
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a product of two one-dimensional functions is the product of the one- 

dimensional transforms, the Fourier transform of S (x,y) is given by 

ST(U>v) = 2TT5(U) ^    Z      6<v-^) 

where 2TT6(U) is the Fourier transform of the constant g(x)=l.  This 

model is shown in Figure 11.  The survey data D(x,y) collected along a 

set of equally spaced survey tracks oriented parallel to the x axis is 

then given by D(x,y) ■ f(x,y) S (x,y).  Since multiplication in the 

two-dimensional space domain results in a convolution in the two- 

dimensional spatial frequency domain, the result of the survey opera- 

tion is to replicate the true two-dimensional Fourier transform of 

f(x,y) in the cross-track direction by convolving F(u,v) with S (u,v)). 

As in the one-dimensional case, the two-dimensional sampling error is 

defined as consisting of an aliasing error or error of commission for 

frequencies less than the folding frequency and an error of omission for 

frequencies greater than the folding frequency.  The real part of the 

spectrum of this sampling error (F (u,v)) is shown in Figure 11. 

An explicit formulation for the two-dimensional power spectrum is 

given by 

2 2 
|FA(u,v)|     =   |F(u,v)*ST(u,v)-F(u,v)| 

.   |{*2i   ^R(u,v-^1)}-R(u,v) 

{ T 

CO 

z 
m=-oo 

_./ 2TTITK I(u,v- —) }-  Ku,v) (6) 
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where R(u,v) and I(u,v) are the real and imaginary parts of F(u,v).  As 

in the one-dimensional case, the error of omission for tracks parallel 
2 2 

to the x axis is simply |F (U,V)|  - |F(U,V)|  for v greater than the 

folding frequency.  It should be noted that, in contrast to the one- 

dimensional transform, the real and imaginary parts of the two-dimen- 

sional transform of an arbitrary f(x,y), which does not exhibit 

circular symmetry, are composed of both even and odd components.  In 

practice, the numerical evaluation of equation (6) is faciliated by 

separating both R(u,v) and I(u,v) into their respective even and odd 

components by use of the identity f(t) = —[f(t)+f(-t)] for the even com- 

ponent and f(c) = —[f (t)-f(-t)] for the odd component (Wylie, 1960). 

With the preceding definitions, the power spectrum of the sam- 

pling error for two-dimensional track type sampling is defined as 

|Fs(u,v)|  = |FA(u,v)|  + |Fo(u,v)| (7) 

As in the one-dimensional case, the estimated mean square sampling 

error is obtained by numerically solving the two-dimensional form of 

Parseval's formula.  That is, for an NxN grid of equally spaced values 

(Ax=Av =one data interval) of a two-dimensional function f   , the n,m 

mean square sampling error  is 

N=l N=l ,     N/2-1  N/2-1 

M2  n^o mh fn,m =    u  J* N     _ Z N   'V.N'N^ 
(8) 

Figure 11 illustrates the relationship which exists between the 

two-dimensional spatial and frequency domains for track-type surveys. 

Practical application of this track-sampling theory involves the 

application of a two-dimensional FFT, with appropriate prewhitening, 

33 



and the numerical solution of equations (6) - (8) to obtain an estimate 

of the mean square sampling error and the two-dimensional sampling 

error spectrum at any desired folding frequency which is a harmonic of 

the test sample field. 

As a numerical test of this theory, consider the contour chart 

shown in Figure 12 to be the result of a small detailed survey within a 

much larger homogeneous province.  These test data, with units of arc 

seconds (sec), actually consist of 16x16 digital values derived from a 

model of the north component of• vertical deflection at a grid spacing 

as shown in Figure 12.  In this example, the y axis is assumed to be 

oriented in the north direction.  Figure 13 is a contour chart of all 

four quadrants of the two-dimensional amplitude spectrum of this base 

data after appropriate prewhitening and correction.  This figure, as 

well as subsequent contour charts of computed two-dimensional spectra, 

indicates a region centered at F = F = 0.0 in which the spectral con- 
x   y 

tent is undefined.  This is a consequence of the prewhitening operation 

which essentially removes wavelength components longer than the data 

record, and the result of applying a two-dimensional low-pass smooth- 

ing filter to the spectral estimates in order to show the general 

character of the spectrum. 

The numerical solution of equations (6) - (8) for north-south 

tracks spaced at varying multiples of the original data spacing 

produced estimates of the sampling error as shown in Figure 14.  For 

compa^i^n, the error estimates resulting from the utilization of a 

spectrum computed without prewhitening are also shown.  In this 

particular example, the effect of spectral leakage on the estimated 

sampling error spectrum is not particularly pronounced. 
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Figure 12.  Base data for two-dimensional sampling test—16 X 16 point grid. 
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Figure 1 3.  Two-dimensional amplitude spectrum of base data. 
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At each track spacing, the solution of equations (6) and (7) pro- 

duce an estimate of the two-dimensional spectrum of the sampling error. 

Figures 15-17 are contour charts of the two-dimensional amplitude 

spectrum of the sampling error at selected track spacings.  As expected 

from the preceding discussion concerning the operations of S (u,v), and 

the general "red noise" type character of the spectrum of the base 

data (Figure 13), Figures 15-17 indicate that the maximum amplitude of 

the sampling error spectrum decreases as the spacing between tracks 

decreases, and that the maximum amplitude is located quite close to the 

folding frequency. 

As a numerical test of the accuracy of these sampling error esti- 

mates, every second column of data was extracted from the base data 

grid to simulate the survey data which would be collected along north- 

south tracks spaced two data intervals apart.  Values of the field at 

the missing grid points were generated by the application of a cubic 

spline interpolation procedure (Davis and Kontis, 1970) designed specif- 

ically for gridding data from track - type surveys.  The actual mean 

square error computed for this test case is shown in Figure 14.  The 

two-dimensional amplitude spectrum of this error is contoured in 

Figure 18.  A comparison of Figures 16 and 18 indicates the generally 

excellent agreement between the theoretical estimate of the error 

spectrum and the actual spectrum from this numerical test.  Figure 19 

is a profile through these two error spectra along the line F =F . 

The sli^- disagreement between the two curves at the lower frequen- 

cies is undoubtedly generated by two-dinensional spectral leakage 

since no prewhitening filter was applied to the sampling error 

produced by the numerical test. 
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Figure 15. Two-dimensional error spectrum, N-S track spacing=4.0 Dl. 

39 



Figure 16. Two-dimensional error spectrum, N-S track spacing = 2.0 Dl. 
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Figure 17. Two-dimensional error spectrum, N-S track spacing=1.14 Dl. 
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Figure 18. Actual error spectrum for a N-S track spacing of 2.0 Dl. 
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Figure 19.  Profile of sampling error spectrum along Fx = Fy from numerical test. 
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In the practical application of this theory, these base data are 

obtained by a detailed survey of a small test area located within a 

large homogeneous province.  Since this detailed survey should be 

designed to adequately sample the base data in all directions, a simple 

rotation of the geographic direction of the x-y grid will allow the 

survey design process to be utilized to produce contours of the esti- 

mated sampling error as a function of both track spacing and track 

direction. 

Effect of Pre-Filtering on Sampling Error 

At first glance, it would appear reasonable that low-pass filter- 

ing the digital data collected along survey tracks would be an 

efficient means of reducing the mean square sampling error,  The fact 

that this is generally not the case may be shown in the following 

manner. 

The two-dimensional filter weight function W(x,y), which represents 

the application of a one-dimensional digital filter G(y) to the track 

data assumed parallel to the y axis, is given by W(x,y) ■ <5(x)g(y). 

The two-dimensional Fourier transform of W(x,y) is 

u,v) = j      6(x)g(y)e"1(uX+Vy)dxdy = G(v). 
J _oo J -co 

W( 
J  —CO J  —CO 

Figure 20 is a plot of this model.  Notice that, although in practice 

the sampling function S (x,y) is applied first and then a one-dimensional 

filter i~   applied to this sampled data, this is identical to applying 

W(x,y) first and then sampling the result.  Thus, in this case, 

Dp(x,y) = [f(x,y)*W(x,y)] ST(x,y> - [f(x,y)S,f(x,y)]*W(x,y),       (9) 
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Figure 20.  The two-dimensional equivalent of along-track filtering. 
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where D (x,y) is the filtered data.  In the frequency domain, the right 

hand side of equation (9) is equivalent to [F(u,v)*S (u,v))W(u,v). 

Figure 21 illustrates this operation.  It is clear that the net result 

of pre-filtering the track data is to introduce an error of omission 

for frequencies in the along-track direction while having no effect on 

either the error of commission or the error of omission in the cross 

track direction.  For frequencies in other directions, the application 

of W(u,v) may reduce the sampling error to some extent, but this effect 

must be evaluated on a case by case basis in order to determine if the 

net reduction in the error of commission is significant in light of the 

increase in the error of omission. 

The inherent limitation in prefiltering track data by the applica- 

tion of a low-pass filter to the digital data should not be construed 

to mean that nothing may be done to reduce sampling error,  On the con- 

trary, in many practical situations it is possible to exert a consider- 

able amount of control over this error.  This control may be accomplish- 

ed either through the use of the inherent physical properties of the 

data which are being sampled or through the control of the two- 

dimensional frequency response of the measuring device.  For example, 

in airborne surveying of magnetic or gravity fields, the natural 

exponential decay of the two-dimensional spectrum as a function of 

height above the source (Grant and West, 1965) results in the natural 

application of a two-dimensional low-pass filter.  As the flight 

elevation is increased, the amplitude of the short wavelength compon- 

ents cf  t^e field are reduced.  Thus, while the error of omission is 

increased, the error of commission will be appreciably reduced.  This 

results in a relatively undistorted measurement of the longer wave- 

length components of the field. 
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Figure 21. The effect of along-track filtering on sampling error. 
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An example of the control of sampling error through the design of 

instrumentation may be found in the measurement of gcoid height by the 

use of a satellite mounted radar altimeter.  Adjusting the beam width 

of the receiver controls the size of the illuminated spot on the sea 

surface resulting in a two-dimensional filtering operation which 

reduces the error of commission at the expense of increasing the error 

of omission. 
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ALC0RIT1IMS FOR DETERMINING HOMOGENEOUS PROVINCES 

The successful practical application of the theory of survey design 

depends to a great extent upon the accuracy with which the determination 

of the boundaries of relatively homogeneous provinces may be made.  In 

a statistical sense, a stochastic process is defined as being stationary, 

in the wide sense, if its mean and autocorrelation function are indepen- 

dent of position (Papoulis, 1962).  This is equivalent to requiring that 

the two-dimensional amplitude or power spectrum be independent of posi- 

tion.  It is clear from the preceeding description of the way in which 

the track sampling model (S (u,v)) operates on the Fourier transform of 

the data, that the requirement for stationarity may be somewhat relaxed 

for survey design.  Within this context, a province is defined as homo- 

geneous if the sample data are nearly stationary only for those 

frequency components that will contribute to sampling error at a partic- 

ular track spacing. 

Even with this relaxation of the requirement for stationarity, a 

rigid adherence to this definition is not practically feasible since 

this would require that different province boundaries be defined for 

each track spacing and each track direction.  The particular process 

which is utilized to define these province boundaries depends upon 

several factors such as the availability and extent of reconnaissance 

data and whether the data is basically a function of two-dimensions 

such as gravity and bathymetry, or three dimensions such as oceanic 

temperature and salinity.  In addition, the appropriate orientation of 

the survey lines may, in some instances, be controlled by factors other 

than the local spectral content which is normally used to delineate 

provinces.  One example of this is the effect of errors in the 
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determination of heading and velocity for computing the Eotvos correc- 

tion to be applied to shipboard gravity survey data.  In this case, the 

Eotvos correction contains less error if the survey tracks are oriented 

east-west (Glicken, 1962).  The following discussion consists of a 

detailed description of the numerical algorithms which have been devel- 

oped for determining the location of the boundaries of homogeneous 

provinces through the use of reconnaissance data.  Fortran IV computer 

programs are available from the author for implementing each of these 

algorithms. 

Two-Dimensional Fields 

In general, the reconnaissance data which are available for delin- 

eating provinces for gravity, magnetic, or bathymetric surveys consist 

of widely spaced tracks of generally random orientation.  Since the 

application of S (u,v) results in a replication of the transform of the 

data in the cross-track direction, it is desirable that a sufficient 

amount of reconnaissance data, or related geophysical information, be 

available for determining the general direction of any major lineation 

of the field.  In order to minimize the mean square sampling error, the 

most efficient orientation of the final survey tracks is in a direction 

normal to these lineations.  This assumes, of course, that there is no 

overriding constraint on track direction such as that imposed by the 

Eotvos correction.  The object of this province selection process is to 

outline regions in which short wavelength energy in the cross-track 

direction is expected to be uniform based on the reconnaissance 

information. 

At the present time, the algorithm which has been developed for 
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this type of province selection consists of the following steps: 

1. Those reconnaissance tracks which arc most nearly parallel 

to the major lineations are selected for analysis.  Each 

of these tracks is separated into relatively straight line 

segments and, following the procedure of Davis and Kontis 

(1970), a least-squares straight line is fitted to the 

positions of the data points in each segment.  The actual 

position of each data value is then mapped onto this 

straight line and the data value is adjusted by utilizing 

the local gradient of the field.  A cubic spline is then 

applied to interpolate new data values which are equally 

spaced in terms of distance down-track.  The numerical 

details, as well as tests indicating the accuracy of this 

procedure, are given in Davis and Kontis (1970). 

2. At this point, a practical decision must be made concerning 

the maximum track spacing which one would be willing to 

allow in the final survey design.  Th/s decision is based 

on an estimate of sampling error as a function of sample 

spacing obtained by applying equations (2) and (3) to a 

segment of reconnaissance data selected in step (1).  This 

segment of data should be selected to contain a relatively 

small amount of short wavelength energy.  This maximum 

track spacing defines a folding frequency which is used in 

conjunction with equations (A-l) and (A-2), shown in 

Appendix A, to design a high-pass, one-dimensional, digital 

filter which will pass only those frequencies that will 

contribute to sampling error. 
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3. The equally spaced reconnaissance data produced in step (1) 

are high-pass filtered with the filter designed in step (2), 

and an approximation to the envelope is computed.  The 

variability of the amplitude of this envelope is used as 

a practical means for locating the boundaries of stationary 

data segments. 

Although the means for computing a mathematically 

correct envelope via the frequency domain application of a 

Hilbert transform (Papoulis, 1962) are available on a large 

scale computer, an approximation is used here for applica- 

tion to small shipboard computers.  This approximation con- 

sists simply of computing the absolute value of the high- 

passed data and applying a low-pass filter with a very low 

frequency cutoff and a small number of weights to conserve 

data. 

4. In order to generate the locations of the province boundaries 

from the envelope estimates, two additional decisions must 

be made at this point.  These are: 

A. What is the minimum size, ie. horizontal extent, of a 

province which one would be willing to accept in terms of 

modifying the track spacing? 

B. In terras of the envelope of the high-passed data, how 

much variability will be allowed within a province? 

While these are obviously rather arbitrary decisions, in 

general, the appropriate values of these control parameters 

usually become apparent after several test runs on the 

reconnaissance data.  As a point of reference, the present 
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minimum province size selected for shipboard gravity 

survey design is 32 nautical miles (NM) with an allow- 

able envelope variability of 1.5 mgals. 

5.  Utilizing the above control parameters, provinces are 

selected which are of at least minimum size and within 

which, the envelope variability is within the acceptable 

range.  If reconnaissance tracks are available at 

various orientations, these steps may be repeated to 

delineate provinces for any desired orientation of the 

final survey. 

Given these province boundaries estimated from the selected recon- 

naissance data segments, the final steps in the survey design procedure 

consist of conducting a detailed, closely-spaced, track-type survey of 

a small test area within each province and applying the previously 

defined procedure to obtain the design parameters for each type province. 

These design parameters, or decision products, consist of the mean 

square sampling error as a function of track spacing, as well as track 

direction if appropriate, and the two-dimensional spectral content of 

the sampling error at selected track spacings.  Combining these error 

estimates with a predetermined accuracy specification results in the 

final survey design.  As a consequence of having available the spectral 

content of the sampling error, it is possible to accommodate a wide 

range of accuracy specifications.  For example, if an accuracy specifi- 

cation is stated in terms of the allowable mean square sampling error 

within a particular frequency band, the application of equation (8) to 

the sampling error spectrum over this restricted frequency band will 

produce the required estimates of sampling error.  Figure 22 is a 
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Figure 22.  Survey design procedures for two-dimensional fields. 
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general flow diagram outlining the procedure which is utilized for 

designing oceanographic surveys of gravity, magnetics, or bathymetry. 

One additional point should be made with regard to selecting the 

proper track spacing for the detailed type area surveys.  At the 

present time, the most appropriate procedure appears to consist of 

selecting a section of reconnaissance track data which exhibits the 

greatest magnitude of short wavelength energy within each selected 

province.  A two-dimensional Fourier transform or equivalently, a 

Hankel transform, is applied to this selected data set which is assumed 

to possess circular symmetry.  This transform is then used with equa- 

tions (7) and (8) to select a track spacing for the type area survey 

such that a minimum amount of sampling error will be generated in the 

type area data. 

Three-Dimensional Fields 

The process which has been developed for determining the boundaries 

of homogeneous provinces for three-dimensional fields such as oceanic 

temperature, salinity, or sound speed is considerably more complex than 

the two-dimensional case.  It should be pointed out that these fields 

are, in reality, four-dimensional, since, as will be shown in a later 

example, temporal variability is quite pronounced in some ocean areas. 

Despite this fact, the present lack of appropriate data restricts the 

survey design procedure to consider only three dimensions. 

As the basis for this process, a generalized procedure has been 

developed for modeling three-dimensional fields through the utiliza- 

tion of reconnaissance data consisting of randomly spaced vertical pro- 

files.  The historical data which are available for models of oceanic 
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temperature, salinity, and sound speed are processed in the form of a 

digital data bank by the National Oceanographic Data Center (NODC, 

1964).  The pertinent information in this data bank consists of the 

latitude, longitude, and time of each ocean station along with the 

recorded values of temperature and salinity, and the computed values of 

sound speed at what are defined as standard oceanographic depths.  As a 

consequence of the large vertical gradients of these fields at the 

shallower depths, the vertical spacing between samples normally varies 

as a function of depth.  These standard oceanographic depths were deter- 

mined by the International Association of Physical Oceanography in 1936 

(Sverdrup et al, 1942) and are presented in Table (1). 

Table 1.  Standard Oceanographic Depths 

10 

20 

30 

50 

Depth (m) 

75 300 800 2000 

100 400 1000 2500 

150 500 1200 3000 

200 600 1500 and every 

1000 

thereafter 

At each standard depth, sound speed is computed via the empirically 

derived **«»1ationship equating sound speed to the measured values of 

temperature, salinity, and pressure (Wilson, 1960). 

Taking sound speed as an example, a primary three-dimensional model 

is constructed in the following manner.  To reduce the effect of 
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seasonal variations, the station data are separated into appropriately 

defined winter and summer stations.  VJorking with one vertical profile 

at a time, a cubic spline interpolation procedure is applied to the 

sound speed values at the standard depths to generate data values at an 

equal depth spacing of 50 meters.  A seven degree least squares orthog- 

onal polynomial (Van Voorhis and Davis, 1964) is then fitted to these 

equally spaced profile values over the depth range 200 to 2450 meters. 

The starting depth of 200 meters was selected because of the high 

frequency temporal variations which normally occur at the shallower 

depths.  Extensive tests indicate that a seven degree polynomial will 

generally yield an RMS residual of less than 1 m/sec.  This level of 

residual was selected on the basis of a study by Pickett (1972) which 

indicates that the error in computed sound speed is within 0.8 to 2.8 

m/sec depending on salinity and depth. 

Taking the first coefficient of the polynomial thus determined for 

each profile within a selected area, a two-dimensional gridding algo- 

rithm is applied to interpolate the value of this coefficient at 

equally spaced grid points.  As a consequence of the paucity of existing 

data, the grid spacing for sound speed is presently selected to be 30 

minutes of latitude x 30 minutes of longitude.  This two-dimensional 

gridding algorithm, which was developed by Rankin (1974), is essential- 

ly a three phase algorithm consisting of local averaging, distance 

weighting (Shepard, 1963), and cubic spline interpolation,  Applying 

this interpolation procedure to each of the eight polynomial coeffi- 

cients derived at each station produces a set of eight coefficient 

surfaces which comprise the primary three-dimensional sound speed model. 

In order to develop province boundaries from this numerical model, 
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a two-dimensional low-pass filter is applied to the gridded coefficient 

surfaces for degree one through four.  The weight function for this 

filter is derived from equation (A-3) of Appendix A with a K of 100 

data intervals and a K of 5 data intervals.  For a 30x30 minute grid 

spacing, this produces a filter which effectively removes wavelengths 

shorter than 2.5 degrees of latitude or longitude, thus reducing the 

effect of steep local horizontal gradients in the coefficient surfaces. 

These local gradients are normally generated by short terra temporal 

variations occurring at closely spaced stations, or by erroneous data. 

By restricting the two-dimensional frequency content of the polynomial 

surfaces in this way, the province boundaries are defined on more of a 

regional basis than on a local basis.  Only the degree one through four 

coefficient surfaces are used to define the sound speed province bound- 

aries since these have been found to account for most of the variability 

in acoustic propagation over this depth range. 

The next step in the process consists of applying a two-dimensional 

bicubic spline (Davis and Kontis, 1970) to each of the filtered 

coefficient surfaces in order to determine the partial derivatives 

Ojp-, T^), and the magnitude of the gradient at each grid point.  As was 

the case for provinces defined for tv;o-dimensional fields, a decision 

nrist be made as to the minimum acceptable size of a province.  Uti- 

lizing this minimum province size, an appropriate magnitude of the 

gradient is selected from the contoured gradient values to define the 

province boundaries for each coefficient surface.  A composite of these 

four boundary charts produces the final estimates of what are defined 

as secondary province boundaries for survey design.  Figure 23 is a 

general flow diagram for this province selection algorithm. 
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Figure 23. Algorithm for defining sound speed province boundaries. 
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In summary, the present technique for selecting province boundaries 

for the three-dimensional oceanic fields is based on locating those 

areas in which the overall character of a vertical profile changes 

abruptly in the horizontal direction.  This is in contrast to the two- 

dimensional case in which the province boundaries are defined by a 

prescribed change in the magnitude of the high frequency spectral 

content. 

60 



PRACTICAL APPLICATIONS 

Several practical applications are presented in order to demon- 

strate the adaptability of the preceeding theory of survey design, and 

the efficiency with which the two-dimensional frequency domain 

representation of sampling error may be propagated through various 

linear operations. 

The application of survey design to hydrographic surveying illus- 

trates the utilization of a one-dimensional modification of the two- 

dimensional theory for use with small scale computers in near 

real-time.  This modification is possible if the appropriate orienta- 

tion of the survey tracks is known a priori, and the desired accuracy 

specification is in terms of a broad-band mean square or RMS error 

rather than the spectral content of the error. 

The application of the two-dimensional theory to the design of 

gravity surveys for computing vertical deflection and geoid undulation 

was selected to illustrate one of the more intriguing and useful 

aspects of the theory.  In this application, the desired accuracy speci- 

fication is stated in terms of both a broad band mean square error, and 

the two-dimensional spectral content of the error in geoid undulation 

as well as the error in the north and east components of vertical 

deflection.  The procedure for satisfying this type of specification 

consists of propagating the two-dimensional spectrum of the sampling 

error generated by the basic gravity survey through the linear 

operations required for computing undulation and deflection components. 

This application of the survey design theory illustrates the accuracy 

and inherent efficiency of this frequency domain procedure as well as 

the effect of regional lineations on sampling error. 
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The application of the two-dimensional survey design theory to 

three-dimensional fields is illustrated by an example of a survey 

design for oceanic sound speed.  This application also illustrates the 

facility with which this sampling theory may be adapted to provide a 

very useful estimate of the sampling error as a function of depth. 

One final practical application of the two-dimensional theory 

illustrates the effect of sampling error on a classical problem of 

geophysical interpretation.  This example was specifically designed to 

show that an apparently insignificant amount of sampling error can 

severely influence an interpretation if the interpretation technique is 

sensitive to the high-frequency components of the anomalous field. 

Near Real-Time Hydrographie Survey Design 

At the present time, the U. S. Naval Oceanographic Office is in 

the process of developing a high-speed hydrographic survey and charting 

system (HYSURCH) for defining the topography of the ocean bottom in 

shallow coastal areas.  This automated system is designed to enable the 

Navy to rapidly and economically conduct hydrographic surveys to a pre- 

determined accuracy as well as on-site data evaluation and automated 

field production of contour charts.  The basis for the economy of this 

approach is the near real-time application of survey design procedures 

in the following manner. 

Figure  24  shows the general concept which is essentially a one- 

dimensional modification of the two-dimensional sampling theory 

developed for the design of gravity, magnetic, and deep ocean bathy- 

metric surveys.  The major regional trends of the field normally are 

parallel to the coastline.  On this basis, the appropriate direction of 
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Figure 24.   Near real-time hydrographic survey design (HYSURCH). 



the survey tracks is normal to the coastline.  With this constraint on 

the survey orientation, data are collected along reconnaissance lines 

run generally parallel to the coastline.  The digital data collected 

along these lines is then used to define the locations of homogeneous 

province boundaries utilizing the algorithm developed for application 

to two-dimensional fields. 

A one-dimensional Fourier transform is applied to the data within 

each of these selected provinces for each of the available reconnais- 

sance tracks.  With these spectral estimates, equations (3) and (A) are 

numerically evaluated to obtain an estimate of the sampling error as a 

function of sample spacing.  Since the actual survey tracks will be 

oriented normal to these reconnaissance lines, this sampling error is, 

in reality, a function of the survey track spacing.  Given a required 

survey accuracy specification, the appropriate sample/track spacing is 

selected for each defined province and the final survey is completed 

using the average specified track spacing for each area. 

At the conclusion of the survey operation, the track data are 

examined to determine if any significant provinces were missed by the 

preliminary reconnaissance tracks.  In this case, additional short 

survey lines will be run as necessary and the sampling error will be 

estimated at the actual track spacing achieved within each of these 

additional provinces. 

Figure 25 is an example of a test of the province selection process 

aoplied to survey data collected along one reconnaissance track.  The 

lower curve is a plot of the original sounding data collected at five- 

meter intervals along the track.  The upper curve is a plot of the 

original data after high-pass filtering with a frequency response set to 
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Figure 25. Example of HYSURCH province selection process. 



pass spectral components which would contribute to the sampling error 

at a maximum allowable track spacing of 2000 meters.  A plot of the 

approximation to the envelope of this high frequency energy is also 

shown.  Selecting a minimum province size of 160 meters in the hori- 

zontal dimension, and a maximum variability of the envelope within a 

province of 0.2 meters, the province selection algorithm produced posi- 

tions for the province boundaries as shown by the dashed lines.  On 

this particular test, there were three type-one provinces selected with 

envelope amplitudes within the range 0-0.2 meters, and two type-two 

provinces with amplitudes in the range 0.2-0.A meters.  Figure 26 is a 

plot of the estimated RMS of the sampling error as a function of 

sample/track spacing for the first province type one segment.  The geo- 

graphic coordinates, in x-y units, of this province are also noted. 

Figure 27 shows the relationship which exists, for this data set, 

between the FFT amplitude spectrum computed on the raw data without 

window modification or prewhitening, the spectrum of the prewhitened 

data, the rough spectrum corrected for the prewhitening operation, and 

the final smoothed corrected spectrum.  As was the case for the gravity 

example shown in Figure 3, the requirement for prewhitening is readily 

apparent. 

Survey Design for Vertical Deflection 
and Geoid Undulation 

In this example, the requirement is to design a track-type survey 

operation to produce products of a specified accuracy in which the 

accuracy requirement is placed not on the data actually being collect- 

ed, but upon two quantities (vertical deflection and geoid undulation) 
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Figure 26.  Sampling error vs. sample/track spacing for first province segment. 
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computed from these data.  In addition, although the overall broad-band 

mean square sampling error is of general interest, particular emphasis 

is placed on estimating the two-dimensional spectral content of the 

sampling error in order to provide a means for determining the mean 

square error of the computed quantities within a specified frequency 

band. 

At the present time, the vast majority of existing values of verti- 

cal deflection and geoid undulation are computed utilizing worldwide 

measurements of the earth's gravity field and the mathematical techni- 

ques of physical geodesy.  Deflection of the vertical is defined, at a 

point, as the angular difference between the normal to an equipotential 

surface of the earth1s gravity field, and the normal to a smooth mathe- 

matically defined reference ellipsoid having the same potential 

(Heiskanen and Moritz, 1967).  This vertical deflection is normally 

computed in terms of a north-south component (£) and an east-west com- 

ponent (n).  The geoid undulation is defined as the distance between 

these two equipotential surfaces measured along a line normal to the 

reference ellipsoid. 

In order to compute geoid undulation and the components of vertical 

deflection from measurements of the gravity field, Stokes integral 

(Heiskanen and Moritz, 1967) is numerically solved to produce the undul- 

ation estimate, and the Vening Meinesz integral (Vening Meinesz, 1928) 

is utilized to produce the values of the vertical deflection components. 

In each of these integrals, the integrand is infinite at the origin of 

the computation system which is centered over the point at which the 

deflection or undulation estimate is desired.  This presents some numer- 

ical difficulties which require special techniques in order to evaluate 
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this so-called Inner-zone contribution (Kontis, et al, 1974).  Excluding 

this inner-zone of some radius ft , the Vening Meinesz integral in 

spherical polar coordinates (R,ft,a) (Figure 28) is 

?p CSC i" r   f2ir 

2    U=\b    <Ja=c 
Ag(ft,a)  V(ft) 

27ryRz     ; ft=ft 

cosa 

sina 
R    sin ftdftda, (10) 

where £ and n. are the north and east deflection components, in sec, 

at the computation point, p, y is the mean value of the earth's gravity 

field, ft is the angular distance between the radius vector to p and a 

surface element of area R2 sin ftdftda, R is the mean radius of the earth, 

and a is the azimuth, measured from north, of the surface element relative 

to p.  Ag(ft,a) is the mean value of free-air gravity in each surface ele- 

ment, and v(ft) is the Vening Meinesz function given by 

v(ft) = I -cos i!//2 

_2sin2ft/2 

- 6 cos ft/2 + 8 sinft +3 sinft ln(sin2ft/2+sinft/2) 

-3(l-sin (ft/2) 
sinft 

Utilizing the same system of spherical polar coordinates, and exlud- 

ing the inner-zone, the Stokes integral for computing undulation (N ) is 

N    - p       2TryR 

•TT 77 

ft=ft    •'a=o 
Ag(ft,a)S(ft)R2   sin ftdftda, (11) 

where S(ft) is the Stokes function given by 

s(ft) ■ j — -pr - 6 sin - + 1-5 cos ft-3 cosftln(sin2 ft/2+sin ft/2) 
sin \) I •- z. 

Since the magnitude of both V(ft) and S(ft) decreases rapidly as ft 
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Figure 28. Spherical polar coordinate system. 
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increases, the gravity field close to the computation point has a much 

larger effect on the computed undulation and deflection than does the 

gravity field at greater distances.  As a result, as the computation 

point (p) is moved about to obtain a closely spaced grid of computed 

values, the high frequency spectral components of deflection and undula- 

tion are generated primarily by the local short wavelength components 

of the gravity field.  As a consequence, both V(i|») and S(IJJ) may be 

approximated locally by the so-called flat-earth approximation 

(Heiskanen and Moritz, 1967).  This approximation for V(0) may be deriv- 

ed as follows.  On a sphere of radius R, the arc distance between any 

two points is R \p.  For large R and small \J>, the arc distance may be 

approximated by the linear disLance r and the spherical surface may be 

approximated by a plane.  For small ty,   the first term in V(^) is dominant 

so that 

v(t)   ,-COs^/2      s-lg _(R>* 

4 sin2iJ;/2      i|j2 r 

With the element of surface area on the plane given by rdrdct, the flat- 

earth approximation to equation (10) is given by 

f;j =^ u*r w—• n J 2iry j 2 sincx 
. 'nJ J r   Jct        r L        J 

In cartesian coordinates, with y directed north-south, 

rdrdo ■ dxdy, cosa = ^, sin a = -, and 

Z  -csc 1" 
27TY 

Ag(x.y) 
x ;y  r3 

dxdy (12) 

where r = /x?+y2 . 
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In a similar manner, (Heiskanen and Moritz, 1967) a flat earth 

approximation may be derived for geoid undulation.  This approximation, 

in polar coordinates, is given by 

NP Z  2?f I   ASrr,C° rdrdCt 0r» in cartesian 

coordinates, by N z -±-  |   MZLiXl dxdy (13) 

It is apparent that, as the location of the computation point (P) is 

varied, both equations (12) and (13) describe a two-dimensional cross- 

correlation process between the free-air gravity observations and the 

y  x      1 
two-dimensional operators  3, —, and —.  This observation has been 

utilized as the basis for a very efficient algorithm for computing 

deflection and undulation in a large scale production operation 

(Michlik, 1973). 

This process is more readily applicable to the survey design 

problem when the cross-correlation is converted into a two-dimensional 

convolution.  This is simply accomplished by observing that the K 

v x operator (~)  and the n operator (—) are both even functions with 

respect to one coordinate axis and odd with respect to the other, and 

that the undulation operator (—) possesses circular symmetry.  Thus, 

equation (12) may be changed to a convolution operation by simply 

changing the sign and equation (13) requires no modification.  In this 

form, the convolution theorem (Bracewell, I9&5) may be used with the 

Fourier transform of these operators to convert the two-dimensional 

sampling error spectrum of the gravity survey data into the sampling 

error spectra for undulation and the vertical deflection components. 

Application of this process, along with the solution of the 
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two-dimensional form of Parseval's relationship, results in a straight- 

forward design of a gravity survey which will produce a specified 

error in the geoid undulation and the components of vertical deflection. 

The two-dimensional Fourier transform of the deflection operators 

have been developed by Shaw et al (1969) and are given by 

f 

wy = i esc 1" 

(f 2
+f V/2 

■    x       y 

(14) 

and 

%(vy ■ i esc  1" 
.  2Nl/2 
y 

L(f '+f V" u     X v 

(15) 

A contour of the first quadrant of ri (f ,f ) is shown in Figure 29.  A 

90 degree rotation of the axes in Figure 29 produces a contour of the 

second quadrant of £ (f ,f ).  Since the geoid undulation operator 

possesses circular symmetry, the two-dimensional Fourier transform 

reduces to a Hankel transform (Bracewell, 1965).  Thus, with 

No(x,y) = 2^7' then 

No(u'v>=2*r& r(u2+v2)1/2 dr 
if ,fr*W] 

Y(u2+v2) 
Y7Y  (Gradshteyn and Ryzhik, 1965) 

or, converting to normalized frequency, 

N (f ,f ) = 
o x y 

2,Y(f 2+f 2)1/2 x  y 

(16) 
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75 



where K is the length of a data interval in meters. 

As an illustration of the accuracy of the flat-earth approximations 

and, consequently, the accuracy of the spectral domain conversion of the 

sampling error in the gravity field to error in undulation and deflec- 

tion components, a theoretical gravity reference surface was developed 

from a distribution of 16 point masses.  The formulation for this 

process is given in Davis and Kontis, 1970.  Figure 30 is a contour 

chart of this reference gravity field at a contour interval of 5 mgals. 

The gravity field was computed on a one minute grid covering the entire 

80x80 minute area.  In addition, the magnitude and direction of the 

anomalous gravity vector was utilized to compute the £ and n. deflection 

components at each grid point.  Bruns formula (Heiskanen and Moritz, 

1967), together with the values for the anomalous potential, was used 

to determine the undulation reference surface. 

Figure 31 is a contour chart of the appropriately prewhitened and 

corrected two-dimensional amplitude spectrum of this gravity model 

field.  Figures 32-34 are contour charts of the actual two-dimensional 

amplitude spectra for the gridded £, n. and N reference model surfaces. 

Figures 35-37 were generated by applying the frequency responses of the 

flat-earth operators directly to the two-dimensional spectrum of the 

reference gravity field.  Except for the high frequency roundoff error 

on the computed undulation reference surface, the accuracy of the flat- 

earth approximation at these short wavelengths is readily apparent. 

In order to illustrate the effect of survey track direction and 

the utility of these frequency domain operations, these procedures were 

applied to observed free-air gravity data collected in a small test 

area from a detailed shipboard survey operation.  Figure 38 is a 
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Figure 30. Reference gravity field—81 X 81 minute grid - contour interval (5 mgals). 
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Figure 31.  Two-dimensional spectrum of model field (gravity). 
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Figure 32.  Actual two-dimensional ETA spectrum from model. 

79 



-04- 

Fx(^ DI) 

CONTOUR UNITS (SEC x Dl     ) 

Figure 33.  Actual two-dimensional XI spectrum from model. 
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Figur« 34.  Actual two-dimensional undulation spectrum from model. 
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Figure 36.  XI spectrum computed with flat-earth frequency domain operator. 

83 



-0.4 
T r 

CONTOUR  UNITS (METERS x DI 2 ) 

. Fx (-w/DI) 

Figure 37. Undulation spectrum computed with flat-earth frequency domain operator. 
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Figure 38. Gravity base data-21 X 21 point grid, 1 data interval = 1 NM, 

contour interval (5 mgals). 
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contour chart of these gridded data at a grid interval of one nautical 

mile.  These data are considered to represent a type area from a large 

homogeneous province developed in the manner outlined in Figure 22. 

Figure 39 is a contour chart of the two-dimensional amplitude spectrum 

of these data after appropriate prewhitening and correction.  This 

figure indicates that, except for a small amount of short wavelength 

energy, nearly all of the strong lineation shown in Figure 38 is con- 

tained in wavelengths much longer than the dimension of the base data. 

As a consequence, most of the lineation has been removed by the pre- 

whitening process. 

Applying equation (6) to the real and imaginary parts of this two- 

dimensional transform, with S (x,y) oriented to model north-south survey 

tracks at various spacings, results in an estimate of the two-dimensional 

spectral content of the sampling error for the measured gravity data. 

Figures 40 and Al are contour charts of the amplitude spectrum of this 

sampling error for north-south tracks spaced 16 nautical miles apart 

and 5.3 nautical miles apart.  The lack of long wavelength lineations 

in the error spectrum at the 16 mile spacing is a consequence of the 

isotropic character of the low-frequency energy in the base data.  As 

would be expected, the error of omission indicated by the contour 

levels 1, 5, and 10 is nearly identical to the energy in the base data 

at these frequencies. 

The application of equations (14)-(16) to these estimates of the 

gravity error spectrum results in straightforward propagation of the 

gravity error through equations (12) and (13) without the need for 

performing the two-dimensional convolution operations.  Figures 42 and 

43 are the resulting estimates of the sampling error spectrum for 
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Figure 39.  Spectrum of gravity base data. 
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Figure 40. Sampling error spectrum (gravity) N-S trocks— 1 6 NM spacing. 
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Figur© 41. Sampling error spectrum (gravity) N-S track»—5.3 NM spacing. 
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Figure 42.  Sampling error spectrum (XI) N-S tracks—16 NM spacing. 
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Figure 43.  Sampling error spectrum (XI) N-S tracks—5.3 NM spacing. 
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the along-track deflection component.  In this case, for north-south 

tracks, this is the XI component of deflection.  Since the frequency 

response of the XI operator attenuates all spectral components except 

those in the north-south direction, these error spectra show a pro- 

nounced lineation at all frequencies.  As was the case for the gravity 

error spectra, the error of omission is nearly the same for both track 

spacings.  Figures 44 and 45 are the error spectra for the cross-track 

(ETA) component.  As was the case with the XI operator, the frequency 

response of the ETA operator generates a strongly lineated error 

spectrum at both track spacings.  Figures 46 and 47 show the error 

spectra produced by applying the frequency response of the geoid undula- 

tion operator.  Since this operator exhibits circular symmetry, the 

undulation error spectrum is simply an attenuated version of the gravity 

error spectrum at each of the sample track spacings. 

Figures 48-55 are similar contours of the estimated error spectra 

for the case when S (x,y) is oriented to model east-west survey tracks 

at various spacings.  For this track orientation, the along-track deflec- 

tion component is the ETA component, and the cross-track component is 

the XI component.  In this area of high-frequency north-south lineations 

of the gravity field, the reduction of the sampling error occurring when 

the survey tracks are oriented normal to the trend is readily apparent. 

As in the case for north-south tracks, the effect of the frequency 

responses of the various operators is readily apparent. 

The result of applying equation (8) to each of these error spectra 

is shown in Figures 56 and 57.  As in the case of the error spectra, the 

influence of track direction on the amplitude of the sampling error is quite 
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Figur« 44. Sampling «rror spectrum (ETA) N-S trocks-16 NM spocing. 
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Figur« 45.  Sompling error spectrum (ETA) N-S trock$-5.3 NM spacing. 
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Figure 46. Sampling error spectrum (undulation) N-S tracks—16 NM spacing. 
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Figure 47.  Sampling error »pectrom (undulation) N-S tracks—5.3 NM »pacing. 
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Figure 48. Sampling error spectrum (gravity) E-VV tracks—16 NM spacing. 
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Figure 49. Sampling error spectrum (gravity) E-W tracks—5.3 NM spacing. 
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Figure 50. Sampling error spectrum (XI) E-W tracks—16 NM spacing. 
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Figure 51.  Sampling error spectrum (XI) E-W tracks-5.3 NM spacing. 
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Figure 52. Sampling error spectrum (ETA) E-W tracks—16 NM spacing. 

101 



-0.4 

-F*(^ DI) 

T 1 r 

° CONTOUR  UNITS (SEC x Dl2 ) 

Figure 53. Sampling error spectrum (ETA) E-W tracks—5.3 NM spacing. 
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Figure 54. Sampling error spectrum (undulation) E-W tracks—16 NM spacing. 
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Figure 55.  Sampling error spectrum (undulation) E-W tracks—5.3 NM spacing. 
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Figure 56. Sampling error vs. track spacing for gravity and undulation. 
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pronounced.  In addition, it should be noted that, in general, the 

along-track component of vertical deflection contains less error than 

the cross-track component.  Reference to Figures 11 and 29 indicates 

that this numerical result is entirely consistent with that predicted 

by the theory. 

Survey Design for Oceanic Sound Speed 

The procedure which has been developed for estimating the bound- 

aries of relatively homogeneous oceanic sound speed provinces from 

existing historical data is outlined in Figure 23.  Although oceanic 

sound speed is, in reality, a four-dimensional function, ie., a func- 

tion of latitude, longitude, d^pth, and time, the distribution of 

existing data, and the cost of large scale shipboard survey operations 

precludes the simultaneous consideration of all four variables on 

anything but a small test basis. 

The basic approach to the design of sound speed surveys consists 

of applying the procedure for the design of track-type surveys to 

detailed measurements made along a short survey line within each homo- 

geneous province.  In this operation, the survey "tracks" are vertical 

profiles of sound speed as a function of depth.  In order to test this 

survey design procedure, a series of measurements were made within a 

particular homogeneous winter season province which was expected to 

exhibit a significant amount of high frequency temporal variability. 

To obtain the time series test data, 17 vertical profiles of sound 

speed were collected at approximately the same geographic position in 

as short a time as the mechanics of the operation would allow.  The 

depth range of the measurements was from 25 meters to 1500 meters 

covering a time span of approximately 2900 minutes. 
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Figure 58 is a contour chart of the gridded residual data derived 

from these measurements.  This residual field is constructed by remov- 

ing the average profile from each observed profile in order to show the 

time variations in depth ranges in which the sound speed possessed a 

large vertical gradient.  The actual time of each profile or "station" 

is shown in Figure 58.  Immediately following the time series measure- 

ments, a spatial series was collected along an east-west line.  The.e 

data consist of 16 profiles collected at a nominal spacing of 15 nauti- 

cal miles covering a total distance of 210 nautical miles.  Figure 59 

is a contour chart of the gridded residual sound speed field derived 

from this set of measurements.  In both of these data sets, the grid 

interval in depth was 25 meters.  For the temporal variation data, the 

horizontal grid interval was 25 minutes, and for the spatial variation, 

the grid was 1.45 nautical miles which is roughly equivalent to 25 

minutes.  Figures 60 and 61 show the two dimensional amplitude spectra 

of these data. 

During the design phase of this, experimental survey operation, it 

was anticipated that the temporal variations would exhibit a sufficient- 

ly stationary character over the several days of survey operation so 

that the temporal variations could be separated from the spatial varia- 

tion spectrum to produce a relatively uncontaminated space series. As 

shown in Figures 60 and 61, such was not the case.  The spectral content 

of the time variations for frequencies less than 0.2 cycles/data inter- 

val was significantly larger than that obtained for the space series. 

As a consequence, stationärity could not be assumed and the space 

series was analyzed in its original form.  The result of applying the 

two-dimensional survey design procedure to each of these data sets is 
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Figure 60. Spectrum of sound speed temporal variations. 
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Figure 61. Spectrum of sound speed spatial variations. 
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shown in Figure 62.  This figure shows the estimated sampling error 

over the depth range 25-1500 meters as a function of profile spacing in 

both time and space. 

These data may also be utilized to illustrate the facility with 

which this sampling theory may be adapted to many different situations. 

In this example, if the one-dimensional Fourier transform is computed 

using data at each grid point occurring at a common depth, contours of 

the amplitude spectrum as a function of both depth and normalized 

frequency in the horizontal dimension may be obtained.  Figures 63 and 

64 illustrate the resulting spectra.  A straightforward application of 

equations (3) and (A) to these one-dimensional transforms results in a 

contour chart of estimated sampling error as a function of both depth 

and horizontal spacing as shown in Figures 65 and 66. 

By comparing the average sampling error shown in Figure 62 with 

that shown in Figure 65 at various depths, the importance of the addi- 

tional information obtained by the one-dimensional analysis is readily 

apparent.  For example, assume that a temporal variation survey is to 

be conducted in this area to a specified accuracy of 1 (m/sec)2.  Figure 

62 indicates that the required sample spacing to achieve this accuracy 

is approximately 1050 minutes.  However, Figure 65 indicates that this 

sample spacing will be expected to produce almost four times the allow- 

able error at depths less than 200 meters.  Thus, the appropriate survey 

design for this accuracy specification would consist of stations extend- 

ing to 200 meters and spaced 300 minutes apart with every fourth station 

extending to a depth of 1500 meters. 
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Figure 62. Sampling error vs. station spacing for oceanic sound speed. 
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Figure 63. Spectrum of sound speed temporal variations vs. depth. 
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Figure 64. Spectrum of sound speed spatial variations vs. depth. 
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Figure 65. Sampling error vs. depth for sound speed temporal variations. 
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Figure 66. Sampling error   vs. depth for sound speed spatial variations. 
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An Example of the Effect of Sampling Error 
on Geophysical Interpretation 

In some cases, the magnitude of the sampling error generated by a 

particular survey pattern may be quite small and yet have a significant 

effect upon operations performed on the survey data.  This example was 

designed to illustrate the effect of a very small sampling error upon 

the interpretation of the gravity anomaly associated with a two- 

dimensional fault.  The interpretation technique which was applied to 

equally spaced digital data computed along a profile normal to the 

strike of the fault model was developed by Davis (1971).  This technique 

is based on the use of characteristic curves derived through two digital 

band-pass filters.  The amplitude responses of these filters were 

selected to produce an efficient regional-residual separation by mini- 

mizing the effect of the overlap of anomaly spectrum and regional 

spectrum by retaining only enough short wavelength anomaly information 

to allow a quantitative interpretation. 

The parameters of the fault model (Figure 2) selected for this 

example are as follows:  depth = 5 km, thickness = 6 km, density con- 

trast =0.5 g/cc, dip = 60° SE, and strike = 20°.  The gravity anomaly 

generated by this model was computed for an 80x80 km area at a grid 

spacing of 1 km utilizing the formulation given in Davis (1971).  Figure 

67 is a contour chart of this model anomaly.  The two-dimensional ampli- 

tude spectrum of this field computed via the FFT and appropriate 

prewhitening is shown in Figure 68.  The strong lineation of the anomaly 

field from this model is reflected as a lineation of the two-dimensional 

spectrum rotated by 90°.  The low-amplitude lineations parallel to the 

frequency axes are a consequence of a small roundoff error in computing 

the original gridded data. 
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Figure 67.     Gravity field generated by a   two-dimensional fault model 

-contour interval (5 mgals). 
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Figure 68.     Two-dimensional spectrum of gravity  fault model. 

121 



In order to illustrate the effect of sampling error on the inter- 

pretation of thi^ anomaly, equations (6)-(8) were appli<a to the real 

and .o of this tvo-dimensional spectrum, with S (x,y) 

o QO^PJ. north-south survey tracks at various spacings.  Figu e 

69 shows the resulting estimates of mean square sampling error as a 

function of north-south track spacing.  Note particularly the low level 

of sampl ■" g • rror ass^      /^  « tracl spacing if 8 

6.4 km.  Figure 70 is a contour chart of the predicted two-dimensional 

«•mrlitude spectrum of the sampl....g error for a north-south track spacing 

of I    '  km.  In this case, the cross track replication of the transform 

resulted in a slight clockwise rotation of the main lineation of the 

error spectrum with respect to -the direction of the lineation of the 

anomalous field  This rotation indicates that the lineation of the 

sampling error in the two-dimensional space domain will be at a slight 

angle to the strike of the model. 

In order to determine the effect of this sampling error on inter- 

pretation, a track-type survey vas simulated by selecting every sixth 

column of data from the model field shown in Figure 67 and utilizing a 

spline interpolation (Davis and Kontis, 1970) to produce data on a one 

km grid.  A cubic spline interpolation algorithm which was specifically 

designed to extract a profile from a set of gridded data (Vanwyckhouse, 

1973) was then utilized with this interpolated grid to obtain a sample 

profile normal to the strike of the model.  Figure 71 is a comparison 

of the true one-dimensional amplitude spectrum of a profile normal to 

the strike of the body with the spectrum of the profile generated from 

the simulated survey data.  The 70 percent response points of the two 

digital band-pass filters utilized in the interpretation are also shown 
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Figur« 69.     Moon square sampling «rror vs. N-S 

track spacing for fault modal. 
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Figure 70.     Sampling error spectrum for N-S   troclc spacing of 5.8 km. 
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Figur« 71.    Comparison of true spectrum of a profile normal to strike of model vs. 

spectrum of profile constructed from  N-S tracks spaced at 6.0 km. 
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in this figure.  Note particularly the rather small magnitude of the 

sampling error falling within the pass band of the filters.  Applying 

the interpretation technique (Davis, 1971) to the model profile which 

was uncontarainated by sampling error resulted in the following estimates: 

depth = A.9 km, thickness ■ 6.1 km, dip = 61°, and density 

contrast = 0.45 g/cc.  The interpreted quantities derived from the 

profile recovered from the simulated survey data were as follows: 

depth =6.3 km, thickness = 2.3 km, dip = 30°, and density contrast ■ 

1.10 g/cc.  This result clearly indicates the advisability of estimating 

sampling error, especially in cases where the short wavelength compon- 

ents of the survey data are of primary importance. 
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SUMMARY AND CONCLUSIONS 
• 

The requirement for designing geophysical surveys in such a way 

that the true continuous field may be derived to a predetermined accu- 

racy from digital samples is basic to any data collection operation. 

The time required in the collection and analysis of reconnaissance 

data, as well as the detailed surveys of the small type areas, may be 

justified not only from a purely scientific standpoint but, with the 

present cost of shipboard operations exceeding $2000 a day, from an 

economic standpoint as well. 

Detailed tests of the mathematical procedures applicable to the 

design of geophysical surveys which have been presented indicate the 

accuracy and efficiency with which the appropriate estimates of 

sampling error may be derived by operating in the two-dimensional 

frequency domain.  The importance of some form of prewhitening or 

window modification for computing accurate spectral estimates from a 

finite length of data obtained from a "red noise" process has been 

clearly demonstrated.  The raster sampling model consisting of a set of 

parallel delta function ridges has been shown to be an appropriate 

mathematical model for defining two-dimensional track-type surveys. 

Several practical applications have been presented to demonstrate 

the adaptability of the theory to a wide variety of survey operations 

and the relative ease with which estimates of mean square error and 

the two-dimensional spectral content of this sampling error may be 

computed.  The use of a so-called power fold approximation, combined 

with a priori knowledge of the orientation of major lineations, has 

been developed for survey design in near real-time using small scale 
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computers.  The practical procedures which are presented for designing 

surveys to produce products of a specified accuracy in which the accu- 

racy requirement is placed not on the survey data but upon quantities 

comput? ' r-om the data by two-dimensional cross correlation or convolu- 

tion operations is of particular importance from the standpoint of 

systems analysis.  Finally, an example of the effect of sampling error 

on a problem of geophysical interpretation clearly illustrate . the fact 

that, although the magnitude of the sampling error may be quite small, 

it may have a significant effect upon operations performed on the 

survey data. 

No attempt has been made to specify an allowable sampling error 

for any of the survey designs vhich have been presented here.  This 

decision can only be made on a case by case basis and will depend upon 

the ultimate use of the survey data.  The test results which have been 

presented indicate clearly that this theory will, for the first time, 

provide the individual investigator with an accurate and efficient 

technique for designing track-type geophysical surveys to meet a pre- 

determined accuracy specification. 

Future work in this area will be directed toward modifying the 

procedure for designing surveys for vertical deflections in order to 

remove the requirement for detailed type area surveys.  This modifica- 

tion should provide a basis for real-time survey design through the use 

of reconnaissance tracks normal to the survey pattern combined with an 

assumption of short wavelength isotropy to produce an estimate of the 

two-dimensional spectrum which will be accurate in the cross-track 

direction. 
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APPENDIX A 

THE DESIGN OF PREWHITENING FILTERS 

An excellent technique for the practical computation of the digital 

weight function required for one-dimensional prewhitening filters has 

been developed by Martin (1957) and evaluated by Linnette (1961).  For 

general low-pass filters, the 2N+1 filter weights, symmetric about K - 0 

to insure no phase shift, are computed from 

Co Cos (2TTKH) 
2 2 

16H K 

Sin 27TK (V +H) 
c 

TTK 
, K •= -N 0 N,        (A-l) 

where K is the weight number, H -is a parameter controlling the shape of 

the amplitude response, and V is the normalized cutoff frequency in 

cycles/data interval.  The parameter H is usually assigned a value 

between 0.01 and 0.20.  In general, for a specified value of N, the 

slope of the frequency response of the filter and the magnitude of the 

first side lobe decrease as H is increased.  The cutoff frequency is 

defined as that point where the amplitude response leaves 100 percent in 

the case of a low-pass filter or reaches zero in the case of a high-pass 

filter.  In order for the filter to have unity gain, a correction must 

be applied to the weights generated by equation (A-l) to insure that 

their sum is unity.  This correction is 

A « 1 - |L +2 I    Lj (A-2) - [s, ♦«I w] 

At values of K * 0 and K = ± H/A, equation (A-l) is of indeter- 

minate form.  Application of L'Hospital's rule to evaluate the limit as 

K approaches these values yields 
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and 

L ■ 2(V +H) for K = 0 
o     c 

Sin[2TTK(V +H)] 
4-  ^  forK=±H/4. 

The final corrected filter weights for the general low-pass digital 

filter ar given by W"K = L + ^A, 

The weights for the high-pass prewhitening filter (P ) are simply 
K. 

cjnstruted by subtracting W from an all-pass filter defined as 
K 

\- 

1, K=0 

0, K=±1....±N .  ThuS' PK=^ 
-W  K=±l ±N 

Experience has shown that, for one-dimensional prewhitening of a 

gravity or magnetic profile containing T digital values, the filter con- 

trol parameters given by V =      , H = 0.2, N = 3 produced a reason- 

ably white spectrum. 

A computational procedure for generating the two-dimensional digi- 

tal weight function for prewhitening gridded data has been developed by 

Lavin and Devane (1970). The digital filter weights possess circular 

symmetry to insure circular symmetry in the two-dimensional spatial 

frequency domain, and are given by 

aJ (27rar) J (TTrAk) 
„(r) = _L-   °        , (A-3) 

a 

1/2 
where r = (x2+y2)   , a = (K +K )/2 with K defined as the normalized 

u  1 \* 

cutoff frequency and K the normalized termination frequency in cycles 

per data interval, a = 4.80965 , and AK = K^r* 
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Equation (A-3) is undefined at r = 0 and r ■ 2 .  .  Application of 

L'Hospital's rule at these points yields W(o) = TTa2 and 

, a v  TTaAK T ,aaN . ,cu     . ,.   .  , 
W(  A ) ■ —r— JI(TT7) Ji(y)»  As in the one-dimensional case, a correc- 

tion equivalent to equation (A-2) is applied to insure unity gain, and 

the high-pass prewhitening weights are derived by subtracting equation 

(A-3) from the two-dimensional all-pass filter.  In general, an accept- 

able prewhitening filter for gridded "red noise" type processes, such as 

gravity or magnetic data, may be generated by setting 

K ■ T^TTTT^» AK ■ 0.3, and terminating equation (A-3) by setting the 
c   T+U.IT 

maximum value of x and y equal to four data intervals, ie., 

x,y = -4 0 4. 
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APPENDIX B 

THE SHANNON SA>tPLINTG THEOREM 

Shannon (1949) states that, given equally spaced digital 

values f(mT) of a continuous function f(t) which is band-limited to the 

normalized frequency range -TT<UJ<TT, and such that     |F(O)) Hco exists, 

f(t) may be represented by 

et    \     ?    £/ -rN  Sin TT(t-mT) r ,.. 
f(t) = l       f(mT)   TT(t-mT)   f°r a11 C- 

m=-co 
v     ' 

The proof of this theorem consists of showing that 

N 
I Sin T(t-mT) 

TT(t-mT) 
lim  |f(t) -  Z f(mT) :n,,'ll~   U\   ■ 0 for all t. 

To begin with, the inverse Fourier transform of the so-called boxcar 

function, defined as 

■ft 
0)   <7T 

B(d))   =  <    '    ■    '- , , elsewhere 

is required.  By definition, 

fcC _,  x   io)t, if . SinTTt 
b(t)  - — B(oj)e      da) = —        cos utdw - 

TT I TTt 

Thus, utilizing the shifting theorem for Fourier transforms (Papoulis, 

1962), we have 

Sin TT(t-mT)   1  f   itü(t-mT) . 
TT(t-mT)   =27j^G       dU)- 

Then 
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N 
0<  f(t)   -I  f(mT) 

-N 

Sin TT(t-mT) 
TT(t-mT) 

211   J-TT 
F(o))e       da) 

N N    {"       iü^t-mT), 
1_    j  f(mT) e     VL     wdu) 

"  27T -H J-* 

1_ 
27T c «'i E  f <mT)e"iMT]du> 

-N 
(B-l) 

Since F(co) is defined in the interval [-TT,TT], it may be expanded in a 

Fourier series F(to)= E c  e    where c 
m 

—00 

since f(t) is bandliraited, 

f(t) 

F(o))e ^dü).     But, 

211L. 
„, N   itjt, F(cj)e      du), 

so 

2m "  f (mT)   " 2V   I       F^)eiüÄnTdo), 
J-7T 

and 

F(w)=    £       f(mT)e 
-iwmT 

(B-2) 

Applying   the  Schwarz   inequality   (Kaplan,   1952),   given  by 

[  f(x)g(x)dx|   <   f  j|f(x)|2dx 
1/2 2     U/2 

|g(x)|   dxj        , 

to equation   (B-l)  yields 

MM** -I '<-'•■"-'] du 

**C' e do) 
1/2 

|F(w)   -     Z    f^De'^^l'dJ1 /2 - A-B, 
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where 

2*U-u I  WH 11/2 
I e        [   dco 1 

and 

6 

loot,2 

ff   |F(W)   -    5       f(«rfT)e"ltoÄT|2dJ3   \ 

Since   |e =  1,   then A =  1//2TF,  and  utilizing equation  (2),   it  is 

clear  that,  as N-*»,   B+0,   thus 

£(t)  = lim      I      COff)   S1"^(^)   for all  t. 
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