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1. SUMMARY

1.1 Purpose

One central goal of decision theory is to provide a rational basis
for decision making. A normative model frequently used in situations
involving risk is the expected utility model, a linear model based on the
decision maker's (DM) utilities for the possible outcomes of his decisions
and the probabilities of their occurrence. The utility assessments used in
such decisicn models are usually derived by what might be termed static
assessment techniques (Kneppreth, Gustafson, Johnson, and Leifer, 1973).
These techniques may not he adequate for dynamic decision tasks, particularly
where multi-attribute utilities are involved.

The ADDAM (Adaptive Dynamic Decision Aiding Mechanism) System
represents the application of an adaptive technique for dynamic utility
assessment to the problem of decision aiding in a dynamic decision environ-
ment (Freedy, Weisbrod, Davis, May, and Weltman, 1974). This report presents
the results of an initial experiment conducted to investigate the effective-
ness of an adaptive model of DM behavior and the DM's acceptance of this
model as a normative basis for decision making. Also discussed are the
results of a pilot study conducted prior to the initial experiment.

The work reported herein was done as part of a research project
whose overall goals are to implement promising techniques for adaptive
modeling of human decision making; to explore factors which influence
effective monitoring, aiding, and automating of dynamic decision p.ocesses:
and to establish guidelines for the application of adaptive decision systems.

1.2 Methodology

The basic methodology was to have the experimental subjects perform

2 dynamic decision task under controlled conditions. The task required the




subjects to track a fishing fleet in a simulated real-world envivronment

by deploying sensors of varying response specificity, reliability, and
cost. ADDAM continuously tracked the operator's (DM's) deci-ion responses
in real time and learned his decision strategy by performing the task in
parallel with him. In effect, the decision maker "showed" the computer how
to optimize on his own terms. ADDAM then continued the process and served
as a normative model for aiding the DM.

The initial experiment was a one-way factorial design using nine
subjects in three groups. Each subject had four 1-1/2 hour sessions. The
first three sessions were training sessions, during which the subjects
learned the task and ADDAM learned the subject's behavior. After the third
session the three groups were given differential treatment. Group I, the
control group, received no decision aiding. Group II received decision
aiding in the form of sensor deployment recommendations derived from the
adaptive decision model. This group was not told how the recommendations
were derived. Group III subjects received decision aiding and were given
a brief explanation of how the recommendations were derived from their own
behavior. Group II subjects thus had a low degree of knowledge of the
nature of the aiding while Group III subjects had a high degree of knowledge.

The measures of interest were ADDAM's estimates of the operator's
utilities; the Utility Matrix Difference (UMD) score, a measure of the
variability of utility estimates; the accuracy of decision predictions; and

the total numober of decisions made by the operator.

1.3 Results

ADDAM was found to be highly effective in tracking and predicting
the operator's decision behavior. The estimates of multiple dynamic utilities
converged quickly to stable and distinct values and the model was found to




be very accurate in predicting the operator's decisions. During the fourth
session, at least 95% of the unaided operator's (Group I) decisions were
accurately predicted.

The adaptive decision model was found to be sensitive to individual
differences in decision strategies. One such jndividual difference is the
probability at which a subject is indifferent between two divferent sensors
which report more or less equivalent information. Indifference probabilities
computed from the dynamic utility estimates vore compared with those elicited
directly from the subjects. The correlation coefficient of 0.82 was signifi-
cant at the 0.01 level.

Decision aiding presented to subjects who had knowledge of the
adaptive nature of the aiding (Group III subjects) resulted in a higner
degree of consistency with the normative decision model. This was indicated
by a significant reduction in the variability of ADDAM's estimates of the
operator's utilities. On the other hand, aiding without knowledge of the
nature of the aiding appeared to accentuate individual differences in
behavior.

Decision aiding appeared to improve the decision throughput of the
subjects by allowing them to place sensors more quickly and by reducing the
amount of vacilation near the indifference points. While this improvement
had only marginal statistical significance, decision speed was not stressed
as an important performance criteria. Undoubtedly, placing emphasis on
speed will accentuate the improvement in throughput. Partially or completely
automating the decision process (subject to operator override) will also
increase the rate at which decisions are made. Comparisons of the indoctri-
nated and unindoctrinated aiding groups (Groups 111 and IT) suggests that
the operator's knowledge that the automated decisions are essentially his
own will make this form of rapid decision making both acceptable and effective.




1.4 Future Work

A number of changes to the ADDAM system are currently being made to
facilitate additional experimentation with the system. The utility estimator
is being modified to improve the rate at whizh it is trained, and new
sensors with a greater degree of decision strategy flexibility are being
implemented. Features which give the operator his payoff score and, at the
experimenter's option, allow him to get real-world validation of his sensor
outputs and status decisions are being incorporated into the system. Also,

a much more extensive facility for monitoring system performance and re-
cording experimental data is being implemented.

Additional experiments are being planned to further study the validity
and sensitivity of the model and the effects of decision aiding. How well
does the model predict behavior in a wider range of decision strategies? How
well does it respond to changes in the operator's decision strategies? How
long does it take to respond, and how large must these changes be before they
are detectable? What kind of behavior is the model best able to predict?
Least able to predict? Does aiding impr.ve operator performance? Quality
of decisions? Consistency? Speed? What factors influence the effectiveness
of aiding and what forms of aiding produce optimal results? These are a
number of the questions toward which future research will be directed.

1.5 Organization_of Report

Chapter 2 gives a brief overview of the ADDAM system and its operation.

It also describes the decision task. Chapter 3 describes the pilot study
conducted with the system and the results. The initial experimental study
and its results are described in Chapters 4 and 5, respectively.

1-4
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2. ADDAM SYSTEM OVERVIEW

The ADDAM (Adaptive Dynamic Decision Aiding Mechanism) System is a
flexible vehicle for research on dynamic decision theory, adaptive decision

models, dynamic utility estimation, and man/computer decision making. ADDAM
combines a system for simulating a dynamic decision task (Freedy, May,
Weisbrod, Weltman, 1974) with an adaptive decision model based on dynamic
utility estimation (Freedy, Weisbrod, Davis, May, and Weltman, 1974). It
also includes mechanisms for man/computer interaction and decision aiding.

2.1 The Decision Task

The decision task is to gather intelligence about a dynamically
varying hierarchical organization -- a simulated fishing fleet moving in
an expanse of ocean -- and to report its status. To gather this information
the operator deploys a variety of sensors with different response specifici-
ties, reliabilities, and costs. He then integrates the information he
receives into a status report and continues to gather information about the
objects in the environment as they move about. The decisions currently
under study are the operator's sensor deployment decisions.

Environment. The simulated environment is a homogeneous expanse of
ocean which has been divided into a 25 square (five by five) spatial grid.
This grid is referred to as the board. For the experiments reported herein,
the fishing fleet consists of a trawler which moves from square to square and
periodically deploys its nets. Also present is an iceberg which moves
around the board.

Several time-varying environmental conditions affect the behavior of
the trawler, nets, and iceberg. These conditions include time of day (day
or night), weather (clear or stormy), and phase of moon. Proximity to the
iceberg also affects the trawler's behavior. The operator is not made
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explicitly aware of the environmental conditions or their effect on the
behavior of the objects. However, the environmental conditions are known
to the simulated intelligence analysis experts (described below) and are

implicitly reflected in the intelligence report which is presented to the
operator.

Each object on the board has several characteristics: type (iceberg,
trawler, trawler with nets deployed), location, and heading (north, east,
south, west, null). The opérator cannot observe the characteristics of the
objects directly, but can only infer them from the outputs of the sensors
he deploys.

sensors. The operator has several different kinds of sensors
available for detecting objects in the environment. These sensors vary in
object sensitivity, response specificity, false alarm rate, and cost.
Object sensitivity refers to the kind of objects a sensor can detect and
response specificity refers to the kind of response the sensor can give to
detected objects. An unlimited number of sensors of each type are available
to the operator, but he can deploy only one sensor per square on the board
and must pay a cost for each sensor ha deploys. A deployed sensor responds
to objects within its immediate square only. The sensors never fail to
respond to an object, but sometimes they report false alarms.

Six different kinds of sensors were available to the operators during
the pilot study (Chapter 3) and the preliminary experiment {Chapter 4). These
sensors included two kinds of trawler sensors, a net sensor, an iceberg
sensor, an "everything" sensor, and a "something" sensor. Both the everything
and something sensors responded to every type of object, but the something
sensor, unlike any of the other sensors, does not identify what kind of object
it detected. The two trawler sensors differed from each other in cost and
error rate. The properties of the sensors are defined in Table 2-1. During
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Type

T

T2

N

I
E(Everything)
S(Something)

TABLE 2-1

Sensor Properties

False
Alarm
Object Sensitivity Response Specificity Rate Cost
Trawler Trawler 0.10 4.0
Trawler Trawler 0.20 2.0
Trawler with Net Net 0.20 2.0
Iceberg Iceberg 0.20 2.0
Trawler/Net/Iceberg Trawler/Net/Iceberg 0.05 8.0
Trawler/Net/Iceberg Positive/Negative 0.30 1.6




the pilot study the cost of a something sensor was 2.00. This, subsequently,
was changed to make it more consistent with the false alarm rate.

Decision Task Sequence. The decision task scquence (Figure 2-1)
begins when thc operator deploys his sensors. Once he has finished deploying
his sensors, the sensor outputs are displayed in front of him. Some of the
deployed sensors may give positive responses while others may not. On the
basis of the sensor responses, knowledge of sensor behavior, previous sensor
responses, etc., the operator reports what he believes is the status of the
environment. The operator reports the object tyne, location, and heading.
This information, plus ,the environmental conditions are used to generate an
intelligence analysis report based on an "expert's" assessment of the situation.
The intelligence report is displayed to the operator on a teletype. It is
also used by the adaptive decision model. Decision aiding information
derived from the decision model is then displayed to the operator (depending
on experimental conditions) and the cycle begins anew with the deployment of
new sensors.

Work Station. While performing the decision task, the operator sits
at the work station illustrated in Figure 2-2. This work station consists of
a graphics display terminal with keyboard input and a teletypewriter. The
board, sensor deployments and outputs, status report, and decision aiding are
displayed on the graphics terminal (Figure 2-3) at appropriate times during
the decision task cycle. A1l operator inputs, i.e., sensor decisions and
status reports, are transmitted to ADDAM via the keyboard. The teletype is
used to print out the intelligence report. Experimental data, in coded
format, is also printed on the te]etype.

Intelligence Analysis Report. The intelligence analysis report is

generated by a simulated "intelligence analysis expert". The report gives

the probabilities of finding icebergs, trawlers, nets, and something at each
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location on the board. The report is generated in the abbreviated format
shown in Figure 2-4 in order to speed up the printing on the teletype. Only
those locations with non-zero probabiiities appear in the repcrt.

The intelligence analysis report is based on the information in the
operator's status report and the current environmental conditions. The
probabilities in the report are those which would be used to generate the
next state of the environment if the operator's status report accurately
represented the true state of the environment. Thus, the accuracy of the
intelligence report depends on the accuracy of the operator's status report.

Decision Aiding. Decision aiding for the present experiment consists
of recommendations to deploy sensors at various locations on the board. The
recommendations are obtained by means of an adaptive maximum expected utility
model of the decision process (see below). The model makes use of the
dynamic estimates; of the operator's utility for information from each type
of sensor, the probabilities obtained from the intelligence analysis report,

and the reliability and cost of each sensor.

The aiding information consists of a board location and a sensor type
for each location on the board, but only those locations where the sensor
type is non-null are displayed. The recommendations are displayed on the
graphics display terminal. The operator can then go down the list, accepting
or rejecting each recommendation. He can also supplement the list with
additional sensor deployments.

2.2 The ADDAM System

Functional Organization. The functional organization of the ADDAM

system is illustrated in Figure 2-5. The environment generator probabil-
istically generates the dynamic decision environment on the basis of expert
probabilities and an organization structure specified by the experimenter.

2-8
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The environment, as seen through sensors deployed by the operator, is
displayed on a graphic display terminal. The operator makes decisions to
deploy new sensors and to report on the status of the environment. These
decisions are made on the basis of <ensor information, the intelligence

analysis report, organizatioral values (sensor costs, strategy instructions,
etc.), and varying forms of decision aiding.

The operator's decision behavior is analyzed in order to dynamically
estimate his utilities for intelligence information from the sensors. These
utilities, estimated by using pattern classification techniques, are the
basis for decision aiding. In the current study, the only form of aiding is
recommended sensor decisions.

Adaptive Decision Model. The adaptive decision model is a model of
the operator's decision behavior in deploying sensors to track objects in
the environment (Freedy, Weisbrod, Davis, May, Weltman, 1974). A maximum
expected utility model, based on the operator's utilities for information
from each kind of sensor, is used. The utilities are adaptively estimated
by using pattiern classification techniques to track the operator's decision
behavior.

The expected utility of deploying a sensor of type k at location L
is the sum of the utilities of true positive and true negative sensor
respcnses, minus the utilities of false positive and false negative responses
and the cost of deploying the sensor:

(L) = T lpy) My oyl - Ui - (-pg (L)) pgy U7

+ (1-p; (L)) (1-pg) (U3 - €, (2-1)
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where

Mik = 1 if ie{i: sensor k can report the presence of objects
of type i}
= (0 otherwise
Qlpy) = 0ifp(L) =0
= 1 otherwise
pi(L) = p (object of type i at location L)
Pak = p (false positive from a sensor of type k)
ku; = Utility of a positive response for an object of type i
by a type k sensor
kU; = Utility of a negative response for an object of type i
by a type k sensor
Ck = Cost of deploying type k sensor

The utility matrix (Figure 2-6) is divid~d into two parts. One part
contains the utilities for information that an object is present and the other
contains the utilities for information that an object is not present. Since
it is not possible to obtain information about trawlers or nets from an
iceberg sensor, for exariple, the utilities for that kind of information are
not represented.

It is impossible for the DM to distinguish between true and false
alarms without additional information (and an additional decision). For this
reason, the model cnly considers the actual sensor responses. However, the
reliability of the sensor will affects its usage by the DM, and this will be
reflected in the estimates of his utilities for information from that sensor.
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Dynamic Utility Estimator. The dynamic utility estimator, schemati-
caliy represented in Figure 2-7, is based on the principle of a multi-
category pattern classifier whose discriminant functions are the expected
utilities of each sensor. The pattera vector is

P = [1p1» 1P2s o Py sl (2-2)

Its components Py are a function of the provability that an object (fishing
trawler, etc.) of type i is present and the reliability of the sensor, k.

The pattern weighis, which characterize the discriminant functions, correspond
to the operator's utilities for information.

The utility estimator computes the EU of each sensor at each location
on the board and selects those sensors (including a "null" sensor) for which
tne EU is maximum. The selected sensors are compared with the actual decisions
made by the operator and if they differ the appropriate utilities are re-
warded (increased) or punished (decreased) by the training procedure. Thus
the utilities are trained to characterize the operator's judgmental behavior
-- i.e., to make the utility estimator respond with the same decisions as the
operator.

System Implementation. The ADDAM system is implemented on an Interdata
Model 70 minicomputer with 24k bytes of core memory. An Information Displays,
Inc. IDIgraf graphics display terminal is the primary interface with the
operator. A teletype is used to provide printed output. A more ccmplete
description of the system can be found in Freedy, Weisbrod, Davis, May, and
Weltman (1974).
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3.

PILOT STUDY

3.1 Objectives

The primary objective of the pilot study was to gain experience with
the ADDAM System as a prelude to more formal experimental studies. In-house
personnel gained considerable experience with the system and insights into
its operational characteristics while performing shakedown tests and
evaluations, but “his experierce did not include the reactions of naive
operators (subjects) in an experimental setting. Specifically, the purpose
of the pilot study was to obtain preliminary data on the following topics:

(a) Adequacy of instructions to the operator
(b) Operator response to task objectives and system interface

(c) Convergence of utilities under varying operator strategies and
instructions

(d) Improvements to task and scenario programs.

3.2 Description

Subjects and Indoctrination. Three males between the age of 22-28
served as subjects. One subject failed to complete the experiment due to
unexpected employment commitments. The subjects werz instructed in the
nature of the task. They were told to deploy sensors in order to locate

and report on two objects, an iceberg and a trawler (which sometimes deployed
nets). The intelligence report was described as a summary of the opinions of
experts who, if told where the objects actually were, could predict where the

objects would be during the next cycle.
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The subjects were given a one-hour practice session in which they
became familiar with the hardware and the input formats and abbreviations.
The subjects learned rapidly. By the end of the first experimental session
they were responding at their steady state decision rates. Following the
last experimental session the subjects were given a debriefing questionnaire
which sought to obtain information about the adequacy of the instructions,
their reaction to the task, and any improvements they could suggest.

Strategies. The subjects were instructed to follow one of three
strategy rules in performing the task. Strategy rules SR1 and SR2, summarized
in Tables 3-1 and 3-2 respectively, represent organizational values externally
imposed upon the operators. These rules specify the circumstances under
which each type of sensor was to be used. Under SR1, if the probability of an
iceberg (as reported by the intelligence report) is less than 20 percent, then
an "iceberg" sensor is to be deployed, and if it is greater than 2 percent
a "something" sensor is to be used. Similar rules define what to do on the
basis of the probability of a trawler or a net. If there is a conflict
between two or more rules, an everything (E) sensor is used. The SRl rules
are appiied to each square for which the intelligence report probability is
greater than percent. The strategy rules for SR2 are similar.

The third strategy, SR3, is a free strategy. No constraints on the
use of sensors are imposed on the operator and he is free to define his own

rules of behavior.

Experimental Plan. The experimental plan for the pilot study is

summarized in Table 3-3. Each of the subjects were to be run under two sets
of conditions. Subject 1 was run first under SR1 and then under FREE
conditions.




PROBABILITY
2-20
21-100

PROBABILITY
2-50
51-100

TABLE 3-1
Strategy Rules SRl

FOR OBJECT I PROBABLILITY FOR OBJECT T
Use i 2-50 Use e
Use s 51-70 Use t,
71-100 Use t,

Use e sensor if there ic a conflict

TABLE 3-2
Strategy Rules SR2

FOR OBJECT I PROBABILITY fOR OBJECT T
Use e 2-30 Use s
Use i 31-100 Use t]

Use e sensor if there is a conflict

FOR ORJECT N
Use n
Use n

Use n

FOR OBJECT N
Use s

Use n




TABLE 3-3
Experimental Plan

SUBJECT FIRST CONDITION SECOND CONDITION
1 SR1 FREE
2 SR1 SR2
3 FREC SR1

For subject three, the conditions were reversed. Subject 2 was run
under SR1, but then dropped out of the experiment before he could run with
SR2. 1hus, SR2 was not actually used in the pilot study.

3.3 Results and oiscussion

Firgures 3-1, 3-2, and 3-3 show how the utility estimates typically
vary with time. Figure 3-1 shows one subject's utilities for information
from the two kinds of trawler sensors and Figures 3-2 and 3-3 show the
utilities for information from something and everything Sensors, respectively.
At time zero the utility estimator is untrained and assumes that all
utilities are equal. An initial value of 1.00 was arbitrarily chosen. As
the training progresses, the utility estimates separate into distinct levels
and tend to stabilize at these levels (i.e., they ccnverge). The figures
are plotted with straight Tine connections between the data points. This
was done to facilitate the visual separation of the individual curves.
Actually, the utility estimates increase or decrease in a stepwise, rather
than continuous, fasiiion.

The utilities for information from something and everything Sensors
(F1gure 3-1) clearly show their usage preferences. According to strategy
S1, something sensors arve used to track icebergs, but never trawlers or nets.
The utilities for information about trawlers and nets are virtually in-
distinguishable from each other, but clearly separated from the utility for
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information about icebergs. Similarly, everything sensors are used for
detecting trawlers and, to a lesser extent nets (wherever there is a prob-
ability of both a trawler and a net). They are infrequently used when

icebergs are present (only when other objects have a probability of occurring).
This pattern is reflected in the utilities for information from an everything
sensor.

During the pilot study, ADDAM proved to be very erratic in predicting
the operator's decisions. A particular sensor might be used a few times,
especially in low probability situations, causing small incremental jumps in
the values of its UT utilities and large jumps in its U™ utilities. This
would result in a prediction that the sensor will be deployed at most locations
on the board, especially those where the probability of finding an object
was zero. Subsequently, the U™ utilities would be heavily punished and no
predictions would be made, even though the operator used the sensor under
certain circumstances. The utilities would then be rewarded until the cycle
repeated itself again several trials later. Because of this erratic behavior
and because of the strong interactions between the utility values for
different sensors which characterize the adaptive training mechanism, no
comparisons of utilities for obtaining the same information from different
sensors were made.

The erratic behavior of the U utilities was caused by a singularity
in the adaptive EU model which occurred when the probability of an object
was zero. This singularity was corrected by introducing the G-term (see
equation 2-1) to the model. This term essentially switches off parts of the
model when the probability is zero. Duiing subsequent shakedown tests, the
corrected model was able to predict the SR1 strategy approximately 95% of the
time once it was trained.
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The subjects were given debriefing questionnaires following their

last experimental session. They all seemed to agree that the instructions
were adecuate and that they understood the task by the end of the first
experimental session. The subjects found the task very interesting and
became quite involved in performing it.

Both written and verbal comments were made concerning the subject's
lack of tolerance of ambiguities in the task situation. These ambiguities
resulted from the requirement that the subject report status after every
trial. During the experiment a subject would sometimes find that he had
been tracking a series of false alarms and, as a result, had completely lost
track of the object. Because he was required to make a status report, the
subject would make a wild guess about the location of the object. These
guesses would only occasionally be confirmed, usually by additional false
alarms. Since the intelligence report was also based on the incorrectly
reported status, the resulting degree of ambiguity was apparently at the
threshold of tolerance. ’

The problem was alleviated during the full scale experiment by simply
not requiring a status report after each trial. If a subject loses an
object he is tracking, he does not make a status report for that object and,
consequently, does not receive an intelligence report for that object. He
then begins to search for the object. The utility estimation algorithm is
able to recognize that this situation is different from normal tracking
behavior and does not train the subject's utilities while he is in "search

mode".



The pilot study helped identify a number of necessary changes and
improvenk:nts to the ADPAM system. Some of the changes were implemented
immediat:ly for use in the full scale experiment while others are currently
being implemented and will affect future experiments. The immediate
changes included modifications to the model and training algorithm to deal
with the singularity at zero probabilities and related changes in the
intelligence report generator. Long term changes include the addition of
facilities for automatic recording and reporiihg of internal system
processes for use as experimental data or computation and decision aiding
display of cost and payoff information to subjects (at experimenter option),
display «f real world feedback for sensor validation (at experimenter
option), and automatic computation o’ convergence measures. Other changes
are the addition of new sensors for a more balanced game and modifications
to improve the sensitivity of the utility training algorithm.
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4. INITIAL STUDY OF CONVERGENCE AND DECISION ALDING

4.1 Objectives

The overall goals of this research program are: (1) to implement
promising techniques for adaptive modeling of human decision behavior; (2)
to explore in experimentally controlled environments the factors which in-
fluence the effective monitoriny, aiding, and automating of dynamic decision
processes; and (3) to establish guidelines for the application of adaptive
decision systems. The purpose of this initial study was to provide prelimi-
nary data on the ability of the system to adaptively acquire decision
strategies, to predict operator behavior, and to aid the operator in making

decisions.

The experiment had three major vbjectives. The first was to validate
the utility estimates and the adaptive decision model. This was done by
demonstrating that the model is capable of predicting decision maker (DM)
behavior with a reasonable degree of accuracy in the absence of any aiding
to the DM. It was also demonstrated that the model was sensitive to indi-

vidual DM decision strategies.

The second objective was to determine some of the major effects of
aiding on the consistency of decision making. This was done by examining
the effect of decision aiding on the variability of the operator's utilities.

The third objective was to determine what effect the subject's
apparent degree of control has on his acceptance of decision aiding. This
was accomplished by investigating the effect of explaining to the subject
his control over the kind of aiding he received.




4.2 Hypotheses
The hypotheses tested in the experiment were as follows:

(1) The adaptive expected utility model will predict decision
maker behavior to a reasonable degree of accuracy in the
absence of decision aiding to the subject.

(2) The model will be sensitive to individual variations in
decision strategy.

(3) Aiding information in the form of sensor deployment recommenda-
tions will cause the utility estimates to converge within
narrower limits.

(4) Aidirg information in the form of sensor deployment recommenda-
tions will allow the subject to make more decisions per unit
time.

(5) The degree to which subjects understand the adaptive aiding
and their contribution to it (i.e., their perceived degree
of apparent control) will resul¢ in more frequent acceptance
of aiding and, concurrently, more stable utility estimates.

4.3 Expeyimental Design

A one-way experimental design with three treatment levels was used.
This design is illustrated in Table 4-1. The treatments were based on levels
of aiding and degrees of knowledge. The treatments were no aiding (control
group), aiding without indoctrination, and aiding with indoctrination.
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TABLE 4-1
EXPERIMENTAL DESIGN

GROUP SESSION
1 2 3 4
I. NO AIDING TRAINING TRAINING  TRAINING NO AIDING
II. AIDING WITH LOW TRAINING TRAINING TRAINING AIDING
APPARENT CONTRGL
III. AIDING WITH HIGH TRAINING  TRAINING  TRAINING  INDOCTRINATION
APPARENT CONTROL AND AIDING

The measures of interest in the experiment are the utility values, as
calculated by the utility estimation algorithm; the utility matrix difference
(UMD) score, a measure of the variability of the utilities; frequency of correct
model predictions; and the number of decisions made by the subject per unit time.

4.4 Subjects and Procedures

Nine male subjects, three in each group, were recruited from two local
colleges. Their ages ranged from 20 to 26 years and all were undergraduates.
This sample resembles quite closely the potential users of computer-aided
decision and control devices in the military.

Each subject had four sessions of 1-1/2 hours duration. The first three
sessions were training sessions. The training included instructions on system
operation, "hands on" experience with the equipment to familiarize the subjects
with the input formats and other task features, and, in general terms, strategy
instructions. The training procedure was the same for all subjects.

After the third session, Group III subjects were given an explanation
of the adaptive nature of the decision model and how its sensor recommerda-
tions (aiding) were actually controlled by the subjects' own behavior. Group
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I1 subjects did not receive such indoctrination and, thus, were not aware of
the adaptive nature of the decision aiding they received. Group III subjects,
thus, were presumed to have a high degree of apparent control over their
aiding and Group II subjects a Tow degree. Group I subjects served as a
control group. They received no indoctrination and no aiding.

The subjects in this experiment were paid on an hourly basis and were
told they would receive a bonus based upon their performance.

4.5 Experimental Task

The task performed by the subjects was the same as described in
Section 2.1 with one important change which resulted from the findings of
the pilot study. The subject was no longer required to give a status
report on every trial. If he lost track of an object he did not report its
status and, consequently did not receive an intelligence analysis report on
kG

The subjects were informed that they were participating in huinan
decision making research. Thzir task was to accurately track the objects
by placing sensors, evaluating the sensor reports, and declaring the location
of the objects. They were told their performance would be measured in terms
of the cost of accurately tracking the objects. Also, that their final
performance would be compared with the other participants and they would
receive pay bonuses depending on how well they did.

Once they had located and declared th~ status of the objects they
would receive an intelligence report which would give the likelihood of the
object(s) next move. They were told that the intelligence report was
extremely accurate if they had accurately reported the object(s) location,
i.e., the "expert" who generates the intelligence report has no knowledge
of the location of the objects but knows with great accuracy how the
objects behave.
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The participants were instructed to deploy sensor according to the
general strategy described in Table 4-2. This strategy refers to the
probability values in the intelligence reports. Part of their decision
task was vo decide what probability values in the intelligence report would
be considered high and low. Another aspect of their task, in the case of

multiple reports, was to decide which of the sensor reports were false

Use the & sensor if there is the possibility that more

alarms.
TABLE 4-2
Generalized Strategy Rules
PROBABILITY PROBABILITY PROBABILITY
OF ICEBERG SENSOR TYPE |OF TRAWLER SENSOR TYPE | OF NET SENSOR TYPE
Low i Low tl Low n
High S High t2 High n

than one object will be in the same location.




5. RESULTS AND DISCUSSION

5.1 Utility Measurement

Utility estimates are measures of subjective quantities which
characterize a person's judgments, and they are valid only to the extent
that they approximate these quantities (Peterson, 1971). Utility measures
represent an abstraction of human judgment. As such, they have meaning
only within the context of a model of human judgmental behavior. If the
model accurately characterizes human decision making in a decision task,
then within that contert the utility estimates are intrinsically valid.
With this in mind, two questions related to validity were examined during
the experiment: (1) Does the adaptive expected utility model accurately
predict decision behavior? (2) Are the dynamic utility estimates sensitive
to individual variations in decision behavior?

The adaptive nature of the decision model used by ADDAM provides a
means of examining the predictive validity of the utility estimates and of
the model. This pradictive validity is a matter of degree. That is, perfect
predictive validity would require that the model's predictions be completely
consistent with the operator's decision behavior (or vice versa). Under
such circumstances, the utility estimates would each converge to a single
value a> the adaptive model learned the operator's behavior. If the operato-
behaves "most of the time" in a manner which is consistent with an expected
utility (EU) modei, the utility estimates will converge as the model learns,
but there will be some variability in the steady state estimates. However,
if the operator's behavior is inconsistent with an EU model, or highly
"erratic", there will be a high degree of variability. For a task as complex
as intelligence gathering, it is highly unlikely that a human operator would
be perfectly consistent with an expected utility model.
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Utility Training. Figure 5-1 shows a typical plot of utility
estimates as a function of trial for the first three sessions of the experi-
ment. The utilities are for information 7rom an iceberg sensor. The *
curve is the utility for information tqzt an iceberg is present and the I”
curve is the utility for information 2ﬁat no iceberg is present. During
the first session, the subject (BH)/4S learning the task and the adaptive
utility estimator is learning the subject's behavior, i.e., the adaptive
mechanism is being trained. By /he twentieth trial (during the second
session) the utilities hava bejun to converge and only minor changes take

place. These minor chances j4re due mainly to inconsistencies in the oper-
ator's behavior.

Predictive Accuvacy. A comparison of the decisions of the control
group subjects (thosy/hho received no aiding from the model) with the model's
predictions during the fourth session indicate that the trained adaptive
decision model is highly accurate in predicting subject behavior. Table 5-1
shows that the model predicted more than 95% of the sensors actually deployed
by the subjects.

TABLE 5-1
Model Predictions of Sensors Actually
Deployed by Control Subjects During )
the Fourth Session p
/
/
SUBJECT PERCENT OF SENSOR DEPLOYMENTS PREDICTED /
AK 97 /
/
BH 97 ¥
GB 95 /

Utility Separation. The decision task is structured so that several,
different sensors could be used to track the same object. Because the seqﬁors

differ in reliability, cost, and usage pattern, it is to be expected thay’the

/

/
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estimated utility of the same information would differ from sensor to
sensor. Figures 5-2 and 5-3 show one subject's utilities for information
about icebergs from three different kinds of sensors. Figure 5-2 shows the
estimates of the utilities of information that an iceberg was present and
Figure 5-3 shows the utilities for information that an iceberg was not
present. Only the values at the end of each session are plotted. These
figures are typical of the separations achieved between the utilities for
information from different kinds of sensors.

Indifference. One characteristic of the operator's behavior which is
of particular interest is the point at which he is indifferent between two
sensors which can give similar information. This indifference point
corresponds to the intersection between the expected utility functions of the
two sensors and can be computed from the utility estimates which have been
adaptively derived from observations of the operator's decision behavior.

One indifference point is the intersection between the EU functions
for the iceberg and something sensors. Figure 5-4 illustrates the expected
utilities of these two sensors as a function of the probability of an iceberg.
The EU functions are based on the utility estimates for subject JF at one
point during the third training session. The probabilities of trawlers and
nets are assumed to be zero. The point of indifference is at Pp = 0.45.

When Py < 0.45 the EU of an iceberg sensor is higher than that of a something
sensor and the iceherg sensor is preferred. Similarly, when P > 0.45 the
EU of a something sensor is higher and it is preferred.

The indifference point is determined hy the value of the utility
estimates at any given time. ‘These values vary as the subject performs the
task, therefore, the indifference points also vary. Figure 5-5 is a plot of
the variations in the iceberg/something sensor indifference point during

the third session for subject JF.
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At the end of the third session, each subject was asked the following
question: If you were forced to, what single probability number would you
choose above which you would consider the probability of an iceberg %o be
high (and thus deploy a something sensor) and below which you would consider
the probability to be low (and thus use an iceberg sensor). The reported
iceberg/something sensor indifference point for each subject is tabulated in
Table 5-2 as is the mean value of the indi’ference point computed on the
basis of the third session utilities. These values are also plotted in
Figure 5-6. The P-a:s0n correlation between these two variables is 0.82,
which is significant at the 0.01 Tevel.

A 5.2 Decision Aiding

During the first three sessions of the experiment the utility estimates
i are adaptively adjusted so that the decision model conforms to the operator's
decision behavior. The convergence of the utilities is an indicator of how
well the model describes the operator's behavici. During the fourth session,

hov.2ver, the model is used to provide normative information (decision aiding) to
the the operator and the meaning of convergence changes.

In evaluating the effects of decision aiding on the operator's
decision behavior, we are essentially asking how well the operator is adhering
to his decision model. During training, the operator's behavior is the
standard to which the decision model is adjusted. During aiding, the decision
model becomes a standard to which we compare the cperator's behavior. During
this period, variations in the utility estimates reflect the operator's

reaction to the preferred aiding. If he accepts the aiding, that is, if he
continued to act in accord with the machine's model of his previous decisions,
no changes are made to the utilities. If he rejects the aiding, the utilitics
are retrained.




TABLE 5-2

PREDICTED VS. STATED INDIFFERENCE POINT
BETWEEN ICEBERG AND SOMETHING SENSURS

MEAN PREDICTED STATED
SUBJECT INDIFFERENCE POINT INDIFFERENCE POINT
GB .21 .30
Gl BH .260 .30
KK . 266 .25
DK .421 .50
G2 JL .245 .30
RB .160 .20
RF .419 .30
G3 DW .249 .30
JF .459 .48

Pearson Correlation .82

L g o e
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A measure of the variability of the utilities is the Utility
Matrix Difference (UMD) score. This measure is computed as follows:

+

UMD(ty, tp) = ] Yie, * L I, - iy

+
k i Ikuitz B k
’ (5-1)

The UMD score is a measure of the variability of the utility values from
cycle t; to t,.1 In the following analysis a global measure is used, which !
summarizes the variability of the utilities for the entire session. The
session UMD score is the sum of the single-cycle UMD scores from the start
of the session, to’ to the end of the session, ty: It is defined as:

te-l

SUMD = §  UMD(t, t+1)
t=t (5-2)

]
Results. The SUMD scores for the fourth session, the session in which
eacl group received different aiding treatment, are shown in Table 5-3 for
each subject. Group 3, the group which received aiding and an explanation
of how the aiding was derived from their own behavior, had the lowest mean
SUMD score and range of values. This indicates that the operator's decisions
were extremely consistent with the model derived decisions. Group 2, the
group which received aiding but did not receive any explanation of how the
aiding was derived, had the same mean degree of inconsistency as Group 1, the J
group which did not receive any aiding at all. Group 2, however, had a much
wider range of scores. A specific comparison between Group 3 and the other
two groups (utilizing the non-parametric Mann-Whitney U test) indicated the
observed difference was statistically reliable beyond the 0.05 level.

1 [ .
In the present task, time advances in discrete steps, one step to a decision
cycle.




TABLE 5-3
} UTILITY VARIATION DURING FOURTH SESSION (N=9)

| SESSION UTILITY MATRIX DIFFERENCE SCORE (SUMD)

CONTROL AIDING AIDING AND
GROUP (G1) ALONE (G2) INDOCTRINATION (G3)
SUBJECT 1 81 13 0
SUBJECT 2 90 119 14
SUBJECT 3 138 199 25
MEAN 103 110 13
RANGE 57 186 25

G3 is significantly different from G1 and G2 combined.
(P=0.048 Mann-Whitney U-Test; n1=3, n2-6)




Table 5-4 shows the number of status reports filed in the fourth
session. This score is a measure of the performance rate during the fourth
session since the session length was the same for each subject. Group 2 and
3 appear to have slightly higher performance scores than Group 1. This
difference was marginally significant at the 0.08 level.

Table 5-5 shows the UMD score/status report ratio for each subject.
This score represents a normalized utility variation for the fourth session.
As expected, these data are similar to that of Table 5-3. The Mann-
Whitney U-test indicated that Group 3 is reliably different from Group 1
and Group 2 beyond the 0.025 level.

Discussion. The major findiig of the investigation was that decision
aiding with apparent control leads to more consistent decision behavior.
Similar results were reported by Hanes and Gebhard (1966) who used Navy
commanders in a realistic task simulation. There was also some evidence
that Group 2, which received aiding but had little understanding of the
aiding process or control over it, had more extreme responses to the aiding.
This is consistent with the postulation by Halpin, et al (1973), that a lack
of knowledge and understanding will lead to a more extreme -- much higher or
much lower -- evaluation and weighting of aiding suggestions than is
appropriate.

The better performance (in terms of the number of status reports
filed) shown by the groups given aiding appeared to be due both to faster
sensor placement and to less vacillation when events in the intelligence
report fell close to the subject's indifference points. This improvement
in performance was a byproduct of the experiment rather than a direct
objective. It is clear that if increasing throughput were a primary goal,
considerable improvement could be obtained. One wav would be to call the
operator's attention to the need for fast decisions. This undoubtedly
would accentuate the effect of aiding on the speed of decision making.
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SUBJECT 1
SUBJECT 2
SUBJECT 3

MEAN
RANGE

G1 is marginally different from G2 and G3 combined.
(p=0.08; Mann-Whitney U-Test;

TABLE 5-4

PERFORMANCE RATE DURING FOURTH SESSION (N=9)

NUMBER OF STATUS REPORTS FILED

CONTROL

GROUP (G1)

29
35
32

32.0

AIDING
ALONE (G2)

43
42
31

38.7
12

N1=3, n2=6)

5-15

AIDING AND
INDOCTRINATION (G3)
34
51
39

41.3
17




TABLE 5-5
NORMALIZED UTILITY VARIATION DURING FOURTH SESSION (N=9)

SUMD SCORE/STATUS REPORTS FILED

CONTROL AIDING AIDING AND
GROUP (G1) ALONE (G2) INDOCTRINATION (G3)
SUBJECT 1 2.79 0.30 0.00
SUBJECT 2 2.57 2.83 0.28
SUBJECT 3 4.31 6.42 0.64
MEAN 3.22 3.18 0.31
. RANGE 1.74 6.12 0.64

G3 is significantly different from G1 and G2 combined.
(P=.024; Mann-Whitney U-Test; n]=3, il2=6)




Another way would be to partially or completely automate the decision
process. The implementation of a "reject" system as suggested by Hanes

and Gebhard (1966) would accomplish this. The recommended decisions would
be accepted automatically, unless explicitly rejected by the operator.

Such decision making by default would clearly improve the speed of decision
making. Comparison of the indoctrinated and unindoctrinated aiding groups
suggests that the operator's knowing that the automatic decisions are
essentially his own woild make this form of rapid decision making both
acceptable anu effective.

The acceptance of decision aiding by the operator has the effect
of making his decisions more consistent with a normative EU model of his
behavior. This apparently provides a mechanism which diminishes the effect
of some biases that are incompatible with other beliefs held by the
operator. It does not eliminate biases since they may be incorporated
into the utility estimates. Also, acceptance of aiding helps the operator
to overcome some of his limitations of memory and ability to categorize or
group events and outcomes.

Becoming more consistent with the normative model allows the
operator to more readily evaluate the adequacy of his strategies and his
utility structure. For example, it facilitates the systematic evaluation
of those situations which are and are not adequately handled by the model
and by the operator's utility structure. It allows the operator to discover
more readily the limitations of his approach to the task and the possible
need for changing his value structure in order to improve his performance.
In the absence of consistent behavior, it is extremely difficult for him
+o evaluate the adequacy of his approach because of limitations on his
memory and his ability to group outcomes.
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