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1. SUMMARY 

1.1   Purpose 

One central goal of decision theory is to provide a rational basis 

for decision making. A normative model frequently used in situations 

involving risk is the expected utility model, a linear model based on the 

decision maker's (DM) utilities for the possible outcomes of his decisions 

and the probabilities of their occurrence. The utility assessments used in 

such decisicn models are usually derived by what might be termed static 

assessment techniques (Kneppreth, Gustafson, Johnson, and Leifer, 1973). 

These techniques may not be adequate for dynamic decision tasks, particularly 

where multi-attribute utilities are involved. 

The ADDAM (Adaptive Dynamic Decision Aiding Mechanism) System 

represents the application of an adaptive technique for dynamic utility 

assessment to the problem of decision aiding in a dynamic decision environ- 

ment (Freedy, Weisbrod, Davis, May, and Weltman, 1974). This report presents 

the results of an initial experiment conducted to investigate the effective- 

ness of an adaptive model of DM behavior and the DM's acceptance of this 

model as a normative basis for decision making. Also discussed are the 

results of a pilot study conducted prior to the initial experiment. 

The work reported herein was done as part of a research project 

whose overall goals are to implement promising techniques for adaptive 

modeling of human decision making; to explore factors which influence 

effective monitoring, aiding, and automating of dynamic decision processes- 

and to establish guidelines for the application of adaptive decision systems. 

1.2  Methodology 

The basic methodology was to have the experimental subjects perform 

a dynamic decision task under controlled conditions. The task required the 
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subjects to track a fishing fleet in a simulated real-world envivonment 

by deploying sensors of varying response specificity, reliability, and 

cost. ADDAM continuously tracked the operator's (DM's) decision responses 

in real time and learned his decision strategy by performing the task in 

parallel with him. In effect, the decision maker "showed" the computer how 

to optimize on his own terms. ADDAM then continued the process and served 

as a normative model for aiding the DM. 

The initial experiment was a one-way factorial design using nine 

subjects in three groups. Each subject had four 1-1/? hour sessions. The 

first three sessions were training sessions, during which the subjects 

learned the task and ADDAM learned the subject's behavior. After the third 

session the three groups were given differential treatment. Group I, the 

control group, received no decision aiding. Group II received decision 

aiding in the form of sensor deployment recommendations derived from the 

adaptive decision model. This group was not told how the recommendations 

were derived. Group III subjects received decision aiding and were given 

a brief explanation of how the recommendations were derived from their own 

behavior. Group II subjects thus had a low degree of knowledge of the 

nature of the aiding while Group III subjects had a high degree of knowledge. 

The measures of interest were ADDAM's estimates of the operator's 

utilities; the Utility Matrix Difference (UMD) score, a measure of the 

variability of utility estimates; the accuracy of decision predictions; and 

the total numoer of decisions made by the operator. 

1.3   Results 

ADDAM was found to be highly effective in tracking and predicting 

the operator's decision behavior. The estimates of multiple dynamic utilities 

converged quickly to stable and distinct values and the model was found to 

1-2 

-.~—-^-»t«.^ ^. . ■-. , —,        -J 



«■«■■niuji wmmm*mmtmmmimmmm^*immm^^mmmri*m-mi.!i im UM iMMl,~w^im^^mmmmmmmimm^mfm^mmKmmmmmm«tm\.       -wm«» 

be very accurate in predicting the operator's decisions. During the fourth 

session, at least 95% of the unaided operator's (Group I) decisions were 

accurately predicted. 

The adaptive decision model was found to be sensitive to individual 

differences in decision strategies. One such individual difference is the 

probability at which a subject is indifferent between two different sensors 

which report more or less equivalent information. Indifference probabilities 

computed from the dynamic utility estimates wen compared with those elicited 

directly from the subjects. The correlation coefficient of 0.82 was signifi- 

cant at the 0.01 level. 

Decision aiding presented to subjects who had knowledge of the 

adaptive nature of the aiding (Group III subjects) resulted in a higher 

degree of consistency with the normative decision model. This was indicated 

by a significant reduction in the variability of ADDAM's estimates of the 

operator's utilities. On the other hand, aiding without knowledge of the 

nature of the aiding appeared to accentuate individual differences in 

behavior. 

I 
1 
I 
t Decision aiding appeared to improve the decision throughput of the 

subjects by allowing them to place sensors more quickly and by reducing the 

(amount of vacilation near the indifference points. While this improvement 

had only marginal statistical significance, decision speed was not stressed 

■ as an important performance criteria. Undoubtedly, placing emphasis on 

■ speed will accentuate the improvement in throughput. Partially or completely 

automating the decision process (subject to operator override) will also 

I        increase the rate at which decisions are made. Comparisons of the Indoctri- 

nated and unindoctrinated aiding groups (Groups III and II) suggests that 

the operator's knowledge that the automated decisions are essentially his 

own will make this form of rapid decision making both acceptable and effective. 
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1.4   Future Work 

A number of changes to the ADDAM system are currently being made to 

facilitate additional experimentation with the system. The utility estimator 

is being modified to improve the rate at which it is trained, and new 

sensors with a greater degree of decision strategy flexibility are being 

implemented. Features which give the operator his payoff score and, at the 

experimenter's option, allow him to get real-world validation of his sensor 

outputs and status decisions are being incorporated into the system. Also, 

a much more extensive facility for monitoring system performance and re- 

cording experimental data is being implemented. 

Additional experiments are being planned to further study the validity 

and sensitivity of the model and the effects of decision aiding. How well 

does the model predict behavior in a wider range of decision strategies? How 

well does it respond to changes in the operator's decision strategies? How 

long does it take to respond, and how large must these changes be before they 

are detectable? What kind of behavior is the model best able to predict? 

Least able to predict? Does aiding improve operator performance? Quality 

of decisions? Consistency? Speed? What factors influence the effectiveness 

of aiding and what forms of aiding produce optimal results? These are a 

number of the questions toward which future research will be directed. 

1.5  Organization of Report 

Chapter 2 gives a brief overview of the ADDAM system and its operation. 

It also describes the decision task. Chapter 3 describes the pilot study 

conducted with the system and the results. The initial experimental study 

and its results are described in Chapters 4 and 5, respectively. 
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2. ADDAM SYSTEM OVERVIEW 

The ADDAM (Adaptive Dynamic Decision Aiding Mechanism) System is a 

flexible vehicle for research on dynamic decision theory, adaptive decision 

models, dynamic utility estimation, and man/computer decision making. ADDAM 

combines a system for simulating a dynamic decision task (Freedy, May, 

Weisbrod, Weltman, 1974) with an adaptive decision model based on dynamic 

utility estimation (Freedy, Weisbrod, Davis, May, and Weltman, 1974). It 

also includes mechanisms for man/computer interaction and decision aiding. 

2.1   The Decision Task 

The decision task is to gather intelligence about a dynamically 

varying hierarchical organization -- a simulated fishing fleet moving in 

an expanse of ocean -- and to report its status. To gather this information 

the operator deploys a variety of sensors with different response specifici- 

ties, reliabilities, and costs. He then integrates the information he 

receives into a status report and continues to gather information about the 

objects in the environment as they move about. The decisions currently 

under study are the operator's sensor deployment decisions. 

Environment. The simulated environment is a homogeneous expanse of 

ocean which has been divided into a 25 square (five by five) spatial grid. 

This grid is referred to as the board. For the experiments reported herein, 

the fishing fleet consists of a trawler which moves from square to square and 

periodically deploys its nets. Also present is an iceberg which moves 

around the board. 

.- 

Several time-varying environmental  conditions affect the behavior of 

the trawler, nets, and iceberg.    These conditions include time of day (day 

or night), weather (clear or stormy), and phase of moon.    Proximity to the 

iceberg also affects the trawler's behavior.    The operator is not made 

I 
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explicitly aware of the environmental conditions or their effect on the 

behavior of the objects.    However, the environmental conditions are known 

to the simulated intelligence analysis experts (described below) and are 

implicitly reflected in the intelligence report which is presented to the 
operator. 

Each object on the board has several characteristics:    type (iceberg, 

trawler, trawler with nets deployed), location, and heading (north, east, 

south, west, null).    The operator cannot observe the characteristics of the 

objects directly, but can only infer them from the outputs of the sensors 
he deploys. 

Sensors.    The operator has several different kinds of sensors 

available for detecting objects in the environment.    These sensors vary in 

object sensitivity, response specificity, false alarm rate, and cost. 

Object sensitivity refers to the kind of objects a sensor can detect and 

response specificity refers to the kind of response the sensor can give to 

detected objects.    An unlimited number of sensors of each type are available 

to the operator, but he can deploy only one sensor per square on the board 

and must pay a cost for each sensor hi deploys.    A deployed sensor responds 

to objects within its immediate square only.    The sensors never fail to 

respond to an object, but sometimes they report false alarms. 

Six different kinds of sensors were available to the operators during 

the pilot study (Chapter 3) and the preliminary experiment (Chapter 4).    These 

sensors included two kinds of trawler sensors, a net sensor, an iceberg 

sensor, an "everything" sensor, and a "something" sensor.    Both the everything 

and something sensors responded to every type of object, but the something 

sensor, unlike any of the other sensors, does not identify what kind of object 

it detected.    The two trawler sensors differed from each other in cost and 

error rate.    The properties of the sensors are defined in Table 2-1.    During 

2-2 
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TABLE 2-1 

Sensor Properties 

False 
Alarm 

Type Object Sensitivity Response Specificity Rate Cost 

T1 Trawler Trawler 0.10 4.0 

T2 Trawler Trawler 0.20 2.0 

N Trawler with Net Net 0.20 2.0 

I Iceberg Iceberg 0.20 2.0 

E(Everything) Trawler/Net/Iceberg Trawler/Net/Iceberg 0.05 8.0 

S(Something) Trawler/Net/Iceberg Positive/Negative 0.30 1.0 

I 
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the pilot study the cost of a something sensor was 2.00. This, subsequently, 

was chanaed to make it more consistent with the false alarm rate. 

Decision Task Sequence. The decision task sequence (Figure 2-1) 

begins when the operator deploys his sensors. Once he has finished deploying 

his sensors, the sensor outputs are displayed in front of him. Some of the 

deployed sensors may give positive responses while others may not. On the 

basis of the sensor responses, knowledge of sensor behavior, previous sensor 

responses, etc., the operator reports what he believes is the status of the 

environment. The operator reports the object tyoe, location, and heading. 

This information, plus ,the environmental conditions are used to generate an 

intelligence analysis report based on an "expert's" assessment of the situation. 

The intelligence report is displayed to the operator on a teletype. It is 

also used by the adaptive decision model. Decision aiding information 

derived from the decision model is then displayed to the operator (depending 

on experimental conditions) and the cycle begins anew with the deployment of 

new sensors. 

Work Station. While performing the decision task, the operator sits 

at the work station illustrated in Figure 2-2. This work station consists of 

a graphics display terminal with keyboard input and a teletypewriter. The 

board, sensor deployments and outputs, status report, and decision aiding are 

displayed on the graphics terminal (Figure 2-3) at appropriate times during 

the decision task cycle. All operator inputs, i.e., sensor decisions and 

status reports, are transmitted to ADDAM via the keyboard. The teletype is 

used to print out the intelligence report. Experimental data, in coded 

format, is also printed on the teletype. 

Intelligence Analysis Report. The intelligence analysis report is 

generated by a simulated "intelligence analysis expert". The report gives 

the probabilities of finding icebergs, trawlers, nets, and something at each 

i 

i 
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location on the board. The report is generated in the abbreviated format 

shown in Figure 2-4 in order to speed up the printing on the teletype. Only 

those locations with non-zero probabilities appear in the repcrt. 

The intelligence analysis report is based on the information in the 

operator's status report and the current environmental conditions. The 

probabilities in the report are those which would be used to generate the 

next state of the environment if the operator's status report accurately 

represented the true state of the environment. Thus, the accuracy of the 

intelligence report depends on the accuracy of the operator's status report. 

Decision Aiding. Decision aiding for the present experiment consists 

of recommendations to deploy sensors at various locations on the board. The 

recommendations are obtained by means of an adaptive maximum expected utility 

model of the decision process (see below). The model makes use of the 

dynamic estimatei of the operator's utility for information from each type 

of sensor, the probabilities obtained from the intelligence analysis report, 

and the reliability and cost of each sensor. 

The aiding information consists of a board location and a sensor type 

for each location on the board, but only those locations where the sensor 

type is non-null are displayed. The recommendations are displayed on the 

graphics display terminal. The operator can then go down the list, accepting 

or rejecting each recommendation. He can also supplement the list with 

additional sensor deployments. 

2.2   The ADDAM System 

Functional Organization. The functional organization of the ADDAM 

system is illustrated in Figure 2-5. The environment generator probabil- 

istically generates the dynamic decision environment on the basis of expert 

probabilities and an organization structure specified by the experimenter. 

2-8 
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INTELUGENCE  REPORT 
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su I T N   OBJ 

Al 48 0 0     A8 
Bl 25 0 0     25 
El 0 12 0      12 
A2 25 0 0     25 
D2 0 18 0     18 
E2 0 1 49      50 
E3 0 18 0     18 

FIGURE if-4,     INTELLIGENCE ANALYSIS REPORT 
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FIGURE 2-5.    ADDAM FUNCTIONAL ORGANIZATION 
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The environment, as seen through sensors deployed by the operator, is 

displayed on a graphic display terminal. The operator makes decisions to 

deploy new sensors and to report on the status of the environment. These 

decisions are made on the basis of censor information, the intelligence 

analysis report, organizational values (sensor costs, strategy instructions, 

etc.), and varying forms of decision aiding. 

The operator's decision behavior is analyzed in order to dynamically 

estimate his utilities for intelligence information from the sensors. These 

utilities, estimated by using pattern classification techniques, are the 

basis for decision aiding. In the current study, the only form of aiding is 

recommended sensor decisions. 

Adaptive Decision Model. The adaptive decision model is a model of 

the operator's decision behavior in deploying sensors to track objects in 

the environment (Freedy, Weisbrod, Davis, May, Weltman, 1974). A maximum 

expected utility model, based on the operator's utilities for information 

from each kind of sensor, is used. The utilities are adaptively estimated 

by using pattern classification techniques to track the operator's decision 

behavior. 

The expected utility of deploying a sensor of type k at location L 

is the sum of the utilities of true positive and true negative sensor 

responses, minus the utilities of false positive and false negative responses 

and the cost of deploying the sensor: 

Euk(L) - p(p1)H1lccpia)-ku;-(i-P1a))pskku; 

MHMU) (i-pßk) ku:] - ck       (2-1) 
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where 

M.   ■ 1 if ie{i: sensor k can report the presence of objects 

of type 1) 

■ 0 otherwise 

Q(pi) ■ 0 If p,(L) = 0 

■ 1 otherwise 

P^L) ■ P (cbject of type i at location L) 

p .   = p (false positive from a sensor of type k) 

.ut  = Utility of a positive response for an object of type i 

by a type k sensor 

.UT  = Utility of a negative response for an object of type i 

by a type k sensor 

C.   = Cost of deploying type k sensor 

The utility matrix (Figure 2-6) is divic^d into two parts. One part 

contains the utilities for information that an object is present and the other 

contains the utilities for information that an object is not present. Since 

it is not possible to obtain information about trawlers or nets from an 

iceberg sensor, for exariple, the utilities for that kind of information are 

not represented. 

It is impossible for the DM to distinguish between true and false 

alarms without additional infoi-mation (and an additional decision),. For this 

reason, the model only considers the actual sensor responses. However, the 

reliability of the sensor will affects its usage by the DM, and this will be 

reflected in the estimates of his utilities for information from that sensor. 

2-12 
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Dynamic Utility Estimator. The dynamic utility estimator, schemati- 

caliy represented in Figure 2-7, is based on the principle of a multi- 

category pattern classifier whose discriminant functions are the expected 

utilities of each sensor. The pattern vector is 

P ■ CiPit 1P2. •••kPi •••]• (2-2) 

Its components .p. are a function of the prooability that an object (fishing 

trawler, etc.) of type i is present and the reliability of the sensor, k. 

The pattern weights, which characterize the discriminant functions, correspond 

to the operator's utilities for information. 

The utility estimator computes the EU of each sensor at each location 

on the board and selects those sensors (including a "null" sensor) for which 

tne EU is maximum. The selected sensors are compared with the actual decisions 

made by the operator and if they differ the appropriate utilities are re- 

warded (increased) or punished (decreased) by the training procedure. Thus 

the utilities are trained to characterize the operator's judgmental behavior 

-- i.e., to make the utility estimator respond with the same decisions as the 

operator. 

System Implementation. The ADDAM system is implemented on an Interdata 

Model 70 minicomputer with 24k bytes of core memory. An Information Displays, 

Inc. IDIgraf graphics display terminal is the primary interface with the 

operator. A teletype is used to provide printed output. A more complete 

description of the system can be found in Freedy, Weisbrod, Davis. May, and 

Weltman (1974). 
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3.    PILOT STUDY 

3.1 Objectives 

The primary objective of the pilot study was to gain experience with 

the ADDAM System as a prelude to more formal experimental studies. In-house 

personnel gained considerable experience with the system and insights into 

its operational characteristics while performing shakedown tests and 

evaluations, but this experience did not include the reactions of naive 

operators (subjects) in an experimental setting. Specifically, the purpose 

of the pilot study was to obtain preliminary data on the following topics: 

(a) Adequacy of instructions to the operator 

(b) Operator response to task objectives and system interface 

(c) Convergence of utilities under varying operator strategies and 

instructions 

(d) Improvements to task and scenario programs. 

3.2 Description 

Subjects and Indoctrination. Three males between the age of 22-28 

served as subjects. One subject failed to complete the experiment due to 

unexpected employment commitments. The subjects wers instructed in the 

nature of the task. They were told to deploy sensors in order to locate 

and report on two objects, an iceberg and a trawler (which sometimes deployed 

nets). The intelligence report was described as a summary of the opinions of 

experts who, if told where the objects actually were, could predict where the 

objects would be during the next cycle. 
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The subjects were given a one-hour practice session in which they 

became familiar with the hardware and the input formats and abbreviations. 

The subjects learned rapidly. By the end of the first experimental session 

they were responding at their steady state decision rates. Following the 

last experimental session the subjects were given a debriefing questionnaire 

which sought to obtain information about the adequacy of the instructions, 

their reaction to the task, and any improvements they could suggest. 

Strategies. The subjects were instructed to follow one of three 

strategy rules in performing the task. Strategy rules SRI and SR2, summarized 

in Tables 3-1 and 3-2 respectively, represent organizational values externally 

imposed upon the operators. These rules specify the circumstances under 

which each type of sensor was to be used. Under SRI, if the probability of an 

iceberg (as reported by the intelligence report) is less than 20 percent, then 

an "iceberg"  sensor is to be deployed, and if it is greater than 2 percent 

a "something"  sensor is to be used. Similar rules define what to do on the 

basis of the probability of a trawler or a net. If there is a conflict 

between two or more rules, an everything  (E) sensor is used. The SRI rules 

are applied to each square for which the intelligence report probability is 

greater than percent. The strategy rules for SR2 are similar. 

The third strategy, SR3, is a free strategy. No constraints on the 

use of sensors are imposed on the operator and he is free to define his own 

rules of behavior. 

Experimental Plan. The experimental plan for the pilot study is 

summarized in Table 3-3. Each of the subjects were to be run under two sets 

of conditions. Subject 1 was run first under SRI and then under FREE 

conditions. 
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TABLE 3-1 

Strategy Rules SRI 

PROBABILITY FOR OBJECT I PROBABILITY FOR OBJECT T FOR 0PJECT N 

2-20 Use 1 2-50 Use e Use n 

21-100 Use s 51-70 Use t1 Use n 

71-100 Use t9 Use n 

Use e sensor if there is a conflict 

i . 

TABLE 3-2 

Strategy Rules SR2 

PROBABILITY FOR OBJECT I PROBABILITY FOR OBJECT T FOR OBJECT N 

2-50 Use e 2-30 Use s Use s 

51-100 Use i 31-100 Use t1 Use n 

Use e senso r if there is a conflict 
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SUBJECT 

1 

2 

3 

TABLE 3-3 

Experimental Plan 

FIRST CONDITION 

SRI 

SRI 

FREE 

SECOND CONDITION 

FREE 

SR2 

SRI 

For subject three, the conditions were reversed. Subject 2 was run 

under SRI, but then dropped out of the experiment before he could run with 

SR2. Thus, SR2 was not actually used in the pilot study. 

3.3   Results and S'scussion 

Firgures 3-1, 3-2, and 3-3 show how the utility estimates typically 

vary with time. Figure 3-1 shows one subjecL's utilities for information 

from the two kinds of trawler sensors and Figures 3-2 and 3-3 show the 

utilities for information from something and everything sensors, respectively, 

At time zero the utility estimator is untrained and assumes that all 

utilities are equal. An initial value of 1.00 was arbitrarily chosen. As 

the training progresses, the utility estimates separate into distinct levels 

and tend to stabilize at these levels (i.e., they converge). The figures 

are plotted with straight line connections between the data points. This 

was done to facilitate the visual separation of the individual curves. 

Actually, the utility estimates increase or decrease in a stepwise, rather 

than continuous, fas'iion. 

The utilities for information from something and everything sensors 

(Figure 3-1) clearly show their usage preferences. According to strategy 

SI, something sensors are used to track icebergs, but never trawlers or nets. 

The utilities for information about trawlers and nets are virtually in- 

distinguishable from each other, but clearly separated from the utility for 

3-4 
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FIGURE 3-1.    ESTIMATED UTILITIES FOR 
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information about icebergs. Similarly, everything sensors are used for 

detecting trawlers and, to a lesser extent nets (wherever there is a prob- 

ability of both a trawler and a net). They are infrequently used when 

icebergs are present (only when other objects have a probability of occurring) 

This pattern is reflected in the utilities for information from an everything 

sensor. 

During the pilot study, ADDAM proved to be very erratic in predicting 

the operator's decisions. A particular sensor might be used a few times, 

especially in low probability situations, causing small incremental jumps in 

the values of its U utilities and large jumps in its U' utilities. This 

would result in a prediction that the sensor will be deployed at most locations 

on the board, especially those where the probability of finding an object 

was zero. Subsequently, the U" utilities would be heavily punished and no 

predictions would be made, even though the operator used the sensor under 

certain circumstances. The utilities would then be rewarded until the cycle 

repeated itself again several trials later. Because of this erratic behavior 

and because of the strong interactions between the utility values for 

different sensors which characterize the adaptive training mechanism, no 

comparisons of utilities for obtaining the same information from different 

sensors were made. 

The erratic behavior of the U" utilities was caused by a singularity 

in the adaptive EU model which occurred when the probability of an object 

was zero. This singularity was corrected by introducing the Q-term (see 

equation 2-1) to the model. This term essentially switches off parts of the 

model when the probability is zero. Du ing subsequent shakedown tests, the 

corrected model was able to predict the SRI strategy approximately 9S% of the 

time once it was trained. 
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The subjects were given debriefing questionnaires following their 

last experimental session. They all seemed to agree that the instructions 

were adequate and that they understood the task by the end of the first 

experimental session. The subjects found the task very interesting and 

became quite involved in performing it. 

Both written and verbal comments were made concerning the subject's 

lack of tolerance of ambiguities in the task situation. These ambiguities 

resulted from the requirement that the subject report status after every 

trial. During the experiment a subject would sometimes find that he had 

been tracking a series of false alarms and, as a result, had completely lost 

track of the object. Because he was required to make a status report, the 

subject would make a wild guess about the location of the object. These 

guesses would only occasionally be confirmed, usually by additional false 

alarms. Since the intelligence report was also based on the incorrectly 

reported status, the resulting degree of ambiguity was apparently at the 

threshold of tolerance. 

The problem was alleviated during the full scale experiment by simply 

not requiring a status report after each trial. If a subject loses an 

object he is tracking, he does not make a status report for that object and, 

consequently, does not receive an intelligence report for that object. He 

then begins to search for the object. The utility estimation algorithm is 

able to recognize that this situation is different from normal tracking 

behavior and does not train the subject's utilities while he is in "search 

mode". 
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The pilot study helped identify a number of necessary changes and 

improveim nts to the ADPAM system. Some of the changes were implemented 

immediat.ly for use in the full scale experiment while others are currently 

being implemented and will affect future experiments. The immediate 

changes included modifications to the model and training algorithm to deal 

with the singularity at zero probabilities and related changes in the 

intelligence report generator. Long term changes include the addition of 

facilities for automatic recording and reporting of internal system 

processes for use as experimental data or computation and decision aiding 

display of cost and payoff information to subjects (at experimenter option), 

display :f real world feedback for sensor validation (at experimenter 

option), and automatic computation of convergence measures. Other changes 

are the addition of new sensors for a more balanced game and modifications 

to improve the sensitivity of the utility training algorithm. 

MO 
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4.  INITIAL STUDY OF CONVERGENCE AND DECISION AIDING 

4.1   Objectives 

The overall goals of this research program are: (1) to implement 

promising techniques for adaptive modeling of human decision behavior; (2) 

to explore in experimentally controlled environments the factors which in- 

fluence the effective monitoring, aiding, and automating of dynamic decision 

processes; and (3) to establish guidelines for the application of adaptive 

decision systems. The purpose of this initial study was to provide prelimi- 

nary data on the ability of the system to adaptively acquire decision 

strategies, to predict operator behavior, and to aid the operator in making 

decisions. 

The experiment had three major objectives. The first was to validate 

the utility estimates and the adaptive decision model. This was done by 

demonstrating that the model is capable of predicting decision maker (DM) 

behavior with a reasonable degree of accuracy in the absence of any aiding 

to the DM. It was also demonstrated that the model was sensitive to indi- 

vidual DM decision strategies. 

The second objective was to determine some of the major effects of 

aiding on the consistency of decision making. This was done by examining 

the effect of decision aiding on the variability of the operator's utilities 

The third objective was to determine what effect the subject's 

apparent degree of control has on his acceptance of decision aiding. This 

was accomplished by investigating the effect of explaining to the subject 

his control over the kind of aiding he received. 

A-i 
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4.2  Hypotheses 

The hypotheses tested in the experiment were as follows: 

(1) The adaptive expected utility model will predict decision 

maker behavior to a reasonable degree of accuracy in the 

absence of decision aiding to the subject. 

(2) The model will be sensitive to individual variations in 

decision strategy. 

(3) Aiding information in the form of sensor deployment recommenda- 

tions will cause the utility estimates to converge within 

narrower limits. 

(4) Aiding information in the form of sensor deployment recomnenda- 

tions will allow the subject to make more decisions per unit 

time. 

(5) The degree to which subjects understand the adaptive aiding 

and their contribution to it (i.e., their perceived degree 

of apparent control) will result in more frequent acceptance 

of aiding and, concurrently, more stable utility estimates. 

4.3  Expet imental Design 

A one-way experimental design with three treatment levels was used. 

This design is illustrated in Table 4-1. The treatments were based on levels 

of aiding and degrees of knowledge. The treatments were no aiding (control 

group), aiding without indoctrination, and aiding with indoctrination. 
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GROUP 

I. NO AIDING 

II. AIDING WITH LOW 
APPARENT CONTROL 

III. AIDING WITH HIGH 
APPARENT CONTROL 

TABLE 4-1 

EXPERIMENTAL DESIGN 

SESSION 

12       3        4 
TRAINING  TRAINING TRAINING NO AIDING 

TRAINING  TRAINING TRAINING AIDING 

TRAINING  TRAINING  TRAINING  INDOCTRINATION 
AND AIDING 

The measures of interest in the experiment are the utility values, as 

calculated by the utility estimation algorithm; the utility matrix difference 

(UMD) score, a measure of the variability of the utilities; frequency of correct 

model predictions; and the number of decisions made by the subject per unit time. 

4.4  Subjects and Procedures 

Nine male subjects, three in each group, were recruited from two local 

colleges. Their ages ranged ?rom 20 to 26 years and all were undergraduates. 

This sample resembles quite closely the potential users of computer-aided 

decision and control devices in the military. 

Each subject had four sessions of 1-1/2 hours duration. The first three 

sessions were training sessions. The training included instructions on system 

operation, "hands on" experience with the equipment to familiarize the subjects 

with the input formats and other task features, and, in general terms, strategy 

instructions. The training procedure was the same for all subjects. 

;: 

After the third session. Group III subjects were given an explanation 

of the adaptive nature of the decision model and how its sensor recommenda- 

tions (aiding) were actually controlled by the subjects' own behavior. Group 

, 
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II subjects did not receive such indoctrination and, thus, were not aware of 

the adaptive nature of the decision aiding they received. Group III subjects, 

thus, were presumed to have a high degree of apparent control ovar their 

aiding and Group II subjects a low degree. Group I subjects served as a 

control group. They received no indoctrination and no aiding. 

The subjects in this experiment were paid on an hourly basis and were 

told they would receive a bonus based upon their performance. 

4.5  Experimental Task 

The task performed by the subjects was the same as described in 

Section 2.1 with one important change which resulted from the findings of 

the pilot study. The subject was no longer required to give a status 

report on every trial. If he lost track of an object he did not report its 

status and, consequently did not receive an intelligence analysis report on 

it. 

The subjects were infomed that they were participating in human 

decision making research. Their task was to accurately track the objects 

by placing sensors, evaluating the sensor reports, and declaring the location 

of the objects. They were told their performance would be measured in terms 

of the cost of accurately tracking the objects. Also, that their final 

performance would be compared with the other participants and they would 

receive pay bonuses depending on how well they did. 

Once they had located and declared thfi status of the objects they 

would receive an intelligence report which would give the likelihood of the 

object(s) next move. They were told that the intelligence report was 

extremely accurate if they had accurately reported the object{s) location, 

i.e., the "expert" who generates the intelligence report has no knowledge 

of the location of the objects but knows with great accuracy how the 

objects behave. 

.1 
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The participants were instructed to deploy sensor according to the 

general strategy described in Table 4-2. This strategy refers to the 

probability values in the intelligence reports. Part of their decision 

task was xo  decide what probability values in the intelligence report would 

be considered high and low. Another aspect of their task, in the case of 

multiple reports, was to decide which of the sensor reports were false 

alarms. 

TABLE 4-2 

Generalized Strategy Rules 

PROBABILITY 
OF ICEBERG SENSOR TYPE 

PROBABILITY 
OF TRAWLER   SENSOR TYPE 

PROBABILITY 
OF NET SENSOR TYPE 

Low i Low         tl Low n 

High s High        t2 High n 
I 

Use the a sensor if there is the possibility that more 
than one object will be in the same location. 
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I 5.    RESULTS AND DISCUSSION 

5.1       Utility Measurement 

Utility estimates are measures of subjective quantities which 

characterize a person's judgments, and they are valid only to the extent 

that they approximate these quantities (Peterson, 1971).    Utility measures 

represent an abstraction of human judgment.    As such, they have meaning 

only within the context of a model of human judgmental behavior.    If the 

model accurately characterizes human decision making in a decision task, 

then within that context the utility estimates are intrinsically valid. 

With this in mind, two questions related to validity were examined during 

the experiment:    (1) Does the adaptive expected utility model accurately 

predict decision behavior?    (2) Are the dynamic utility estimates sensitive 

to individual variations in decision behavior? 

The adaptive nature of the decision model  used by ADDAM provides a 

means of examining the predictive validity of the utility estimates and oi- 

the model.    This p^dictive validity is a matter of degree.    That is, perfect 

predictive validity would require that the model's predictions be completely 

consistent with the operator's decision behavior (or vice versa).    Under 

such circumstances, the utility estimates would each converge to a single 

value a.» the adaptive model  learned the operator's behavior.    If the operato' 

behaves "most of the time" in a manner which is consistent with an expected 

utility (EU) model, the utility estimates will converge as the model  learns, 

but there will be some variability in the steady state estimates.    However, 

if the operator's behavior is inconsistent with an EU model, or highly 

"erratic", there will be a hirih degree of variability.    For a task as complex 

as intelligence gathering, it is highly unlikely that a human operator would 

be perfectly consistent with an expected utility model. 
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Utility Training. Figure 5-1 shows a typical plot of utility 

estimates as a function of trial for the fi'~st three sessions of the experi- 

ment. The utilities are for infonration /rom an iceb6rg sensor. The I 

curve is the utility for information thxt an iceberg is present and the I 

curve is the utility for information /nat no iceberg is present. During 

the first session, the subject (BH)/is learning the task and the adaptive 

utility estimator is learning theiubject's behavior, i.e., the adaptive 

mechanism is being trained. By /he twentieth trial (during the second 

session) the utilities hava begun to converge and only minor changes take 

place. These minor chances/re due mainly to inconsistencies in the oper- 

ator's behavior. 

Predictive Accuracy. A comparison of the decisions of the control 

group subjects (thosf/who received no aiding from the model) with the model's 

predictions during the fourth session indicate that the trained adaptive 

decision model is highly accurate in predicting subject behavior. Table 5-1 

shows that the model predicted more than 95% of the sensors actually deployed 

by the subjects. 

TABLE 5-1 

Model Predictions of Sensors Actually 
Deployed by Control Subjects During 

the Fourth Session 

SUBJECT PERCENT OF SENSOR DEPLOYMENTS PREDICTED 

AK 97 

97 

95 
BH 

GB 

/ 

Utility Separation. The decision task is structured so that several/ 

different sensors could be used to track the same object. Because the sen/iors 

differ in reliability, cost, and usage pattern, it is to be expected thai/ the 
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estimated utility of the same information would differ from sensor to 

sensor. Figures 5-2 and 5-3 show one subject's utilities for information 

about icebergs from three different kinds of sensors. Figure 5-2 shows the 

estimates of the utilities of information that an iceberg was present and 

Figure 5-3 shows the utilities for information that an iceberg was not 

present. Only the values at the end of each session are plotted. These 

figures are typical of the separations achieved between the utilities for 

infoi-mation from different kinds of sensors. 

Indifference. One characteristic of the operator's behavior which is 

of particular interest is the point at which he is indifferent between two 

sensors which can give similar information. This indifference point 

correspond:, to the intersection between the expected utility functions of the 

two sensors and can be computed from the utility estimates which have been 

adaptively derived from observations of the operator's decision behavior. 

One indifference point is the intersection between the EU functions 

for the iceberg and something sensors. Figure 5-4 illustrates the expected 

utilities of these two sensors as a function of the probability of an iceberg. 

The EU functions are based on the utility estimates for subject JF at one 

point during the third training session. The probabilities of trawlers and 

nets are assumed to be zero. The point of indifference is at p, = 0.45. 

When Pj < 0.45 the EU of an iceberg sensor is higher than that of a something 

sensor and the iceberg sensor is preferred. Similarly, when Pj > 0.45 the 

EU of a something sensor is higher and it is preferred. 

The indifference point is determined by the value of the utility 

estimates at any given time. These values vary as the subject performs the 

task, therefore, the indifference points also vary. Figure 5-5 is a plot of 

the variations in the iceberg/something sensor indifference point during 

the third session for subject JF. 
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At the end of the third session, each subject was asked the following 

question: If you were forced to, what single probability number would you 

choose above which you would consider the probability of an iceberg to be 

high (and thus deploy a something sensor) and below which you would consider 

the probability to be low (and thus use an iceberg sensor). The reported 

iceberg/something sensor indifference point for each subject is tabulated in 

Table 5-2 as is the mean value of the indi ference point computed on the 

basis of the third session utilities. These values are also plotted in 

Figure 5-6. The P'-i-^on correlation between these two variables is 0.R2, 

which is significant at the 0.01 level. 

5.2   Decision Aiding 

During the first three sessions of the experiment the utility estimates 

are adaptively adjusted so that the decision model conforms to the operator's 

decision behavior. The convergence of the utilities is an indicator of how 

well the model describes the operator's behavici. During the fourth session, 

hov.iver, the model is used to provide normative information (decision aiding) to 

the the operator and the meaning of convergence changes. 

In evaluating the effects of decision aiding on the operator's 

decision behavior, we are essentially asking how well the operator is adhering 

to his decision model. During training, the operator's behavior is the 

standard to which the decision model is adjusted. During aiding, the decision 

model becomes a standard to which we compare the cperator's behavior. During 

this period, variations in the utility estimates reflect the operator's 

reaction to the preferred aiding. If he accepts the aiding, that is, if he 

continued to act in accord with the machine's modal of his previous decisions, 

no changes are made to the utilities. If he rejects the aiding, the utilities 

are retrained. 
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TABLE 5-2 

PREDICTED VS. STATED INDIFFERENCE POINT 
BETWEEN ICEBERG AND SOMETHING SENSORS 

Gl 

G2 

G3 

SUBJECT 

GB 

BH 

KK 

DK 

JL 

RB 

RF 

DW 

JF 

MEAN PREDICTED 
INDIFFERENCE POINT 

.211 

.260 

 .266 

.421 

.245 

.16Q  

.419 

.249 

.459 

STATED 
INDIFFERENCE POINT 

.30 

.30 

.25   

.50 

.30 

.20 

.30 

.30 

.48 

Pearson Correlation .82 
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A measure of the variability of the utilities is the Utility 

Matrix Difference (UMD) score.    This measure is computed as follows: 

uMD(t1.t2)= i iku;t2-ku;tli+1 ikv-ku:tii 

The UMD score is a measure ot the variability of the utility values from 

cycle ti to t2.1    In the following analysis a global measure is used, which 

summarizes the variability of the utilities for the entire session.    The 

session UMD score is the sum of the single-cycle UMD scores from the start 

of the session, t , to the end of the session, t .    It is defined as: 

V1 

SUMD    =      I      UMD(t, t+1) 
t=t0 (5-2) 

Results. The SUMD scores for the fourth session, the session in which 

each group received different aiding treatment, are shown in Table 5-3 for 

each subject. Group 3, the group which received aiding and an explanation 

of how the aiding was derived from their own behavior, had the lowest mean 

SUMD score and range of values. This indicates that the operator's decisions 

were extremely consistent with the model derived decisions. Group 2, the 

group which received aiding but did not receive any explanation of how the 

aiding was derived, had the same mean degree of inconsistency as Group 1, the 

group which did not receive any aiding at all. Group 2, however, had a much 

wider range of scores. A specific comparison between Group 3 and the other 

two groups (utilizing the non-parametric Mann-Whitney U test) indicated the 

observed difference was statistically reliable beyond the 0.05 level. 

In the present task, time advances in discrete steps, one step to a decision 
cycle. 
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TABLE 5-3 

UTILITY VARIATION DURING FOURTH SESSION (N=9) 

SESSION UTILITY MATRIX DIFFERENCE SCORE (SUMD) 

CONTROL 
GROUP (Gl) 

AIDING 
ALONE (G2) 

AIDING AND 
INDOCTRINATION (G3) 

SUBJECT 1 81 13 0 
SUBJECT 2 90 119 14 
SUBJECT 3 138 199 25 

MEAN 103 no 13 
RANGE 57 186 25 

G3 Is significantly different from Gl and G2 combined. 

{P=0.048 Mann-Whitney U-Test; n1=3, n2-6) 
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Table 5-4 shows the number of status reports filed in the fourth 

session. This score is a measure of the performance rate during the fourth 

session since the session length was the same for each subject. Group 2 and 

3 appear to have slightly higher performance scores than Group 1. This 

difference was marginally significant at the 0.08 level. 

Table 5-5 shows the UMD score/status report ratio for each subject. 

This score represents a normalized utility variation for the fourth session. 

As expected, these data are similar to that of Table 5-3. The Mann- 

Whitney U-test indicated that Group 3 is reliably different from Group 1 

and Group 2 beyond the 0.025 level. 

Discussion. The major findirg of the investigation was that decision 

aiding with apparent control leads to more consistent decision behavior. 

Similar results were reported by Hanes and Gebhard (1966) who used Navy 

commanders in a realistic task simulation. There was also some evidence 

that Group 2, which received aiding but had little understanding of the 

aiding process or control over it, had more extreme responses to the aiding. 

This is consistent with the postulation by Halpin, et al (1973), that a lack 

of knowledge and understanding will lead to a more extreme -- much higher or 

much lower -- evaluation and weighting of aiding suggestions than is 

appropriate. 

The better performance (in terms of the number of status reports 

filed) shown by the groups given aiding appeared to be due both to faster 

sensor placement and to less vacillation when events in the intelligence 

report fell close to the subject's indifference points. This improvement 

in performance was a byproduct of the experiment rather than a direct 

objective. It is clear that if increasing throughput were a primary goal, 

considerable improvement could be obtained. One way would be to call the 

operator's attention to the need for fast decisions. This undoubtedly 

would accentuate the effect of aiding on the speed of decision making. 
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TABLE 5-4 

PERFORMANCE RATE DURING FOURTH SESSION (N=9) 

. 

CONTROL 
GROUP (Gl 

SUBJECT 1 29 

SUBJECT 2 35 

SUBJECT 3 32 

MEAN 32.0 

RANGE 6 

NUMBER OF STATUS REPORTS FILED 

AIDING 
ALONE (G2) 

43 

42 

31 

38.7 

12 

AIDING AND 
INDOCTRINATION (G3) 

51 

39 

41.3 

17 

Gl is marginally different from G2 and G3 combined. 

(p=0.08; Mann-Whitney U-Test; N1=3, n2=6) 
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TABLE 5-5 

NORMALIZED UTILITY VARIATION DURING FOURTH SESSION (N=9) 

SUMD SCORE/STATUS REPORTS FILED 

CONTROL 
GROUP (Gl) 

AIDING 
ALONE (G2) 

SUBJECT 1 2.79 0.30 

SUBJECT 2 2.57 2.83 

SUBJECT 3 4.31 6.42 

MEAN 3.22 3.18 

RANGE 1.74 6.12 

AIDING AND 
INDOCTRINATION (G3) 

0.00 

0.28 

0.64 

0.31 

0.64 

G3 is significantly different from Gl and G2 combined. 

(P=.024; Mann-Whitney U-Test; n1=3, .i2=6) 
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Another way would be to partially or completely automate the decision 

process. The implementation of a "reject" system as suggested by Hanes 

and Gebhard (1966) would accomplish this. The recommended decisions would 

be accepted automatically, unless explicitly rejected by the operator. 

Such decision making by default would clearly improve the speed of decision 

making. Comparison of the indoctrinated and unindoctrinated aiding groups 

suggests that the operator's knowing that the automatic decisions are 

essentially his own would make this form of rapid decision making both 

acceptable ano effective. 

The acceptance of decision aiding by the operator has the effect 

of making his decisions more consistent with a normative EU model of his 

behavior. This apparently provides a mechanism which diminishes the effect 

of some biases that are incompatible with other beliefs held by the 

operator. It does not eliminate biases since they may be incorporated 

in-o the utility estimates. Also, acceptance of aiding helps the operator 

to overcome some of his limitations of memory and ability to categorize or 

group events and outcomes. 

Becoming more consistent with the normative model allows the 

operator to more readily evaluate the adequacy of his strategies and hns 

utility structure. For example, it facilitates the systematic evaluate 

of those situations which are and are not adequately handled by the model 

and by the operator's utility structure. It allows the operator to discover 

more readily the limitations of his approach to the task and the possible 

need for changing his value structure in order to improve his performance. 

In the absence of consistent behavior, it is extremely difficult for tnm 

to evaluate the adequacy of his approach because of limitations on his 

memory and his ability to group outcomes. 
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