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ABSTRACT

This paper presents 2n algorithm for solving interval linear programming
problems. The algorithm is a finite iterative method, which in each iteration
solves a full row rank interval linear programming problem, with only one
additional constraint. The solution and/or problem chosen appears to be

computationally more efficient than that in the Ben-Israel and Robers algorithm.




Introduction

The general linear programming problem (LP) may be defined as:
(LP): Max ch
subject to
Ax = b
x>0
where the matrix A and the vectors b and ¢ are given.
Every (LP) problem is equivalent to an interval linear programming
problem (IP) of the form:
(IP): Max c'x
subject to

b” < Ax <b’

() vt )

and U > 0 is''sufficiently large" (e.g. non-Archimedean transcendental for the

where

unbounded case).

Because of the above reason and since the constraint system in many

linear programming problems arise in (IP) form (wholly or partly), special
algorithms for (IP) problems are important, and may be more efficient for those

particular problems than general algorithms for (LP) problems.

0. Preliminaries and notation

g - the empty set 13

{x} - the set consisting of the single element x ¥

{x: £(x) }-:the set of x satisfying £(-)

Ik




iff - if and only if

R® - the n dimensional real vector space

For any x, yeRn:
X >y - denotes x; >y, l1<ic<n

X 4 Y - denotes 121 xiyi =0

For any subspace L of R™:

- {r: x4y, for all x € L} the orthogonal camplement of L

x+L - the manifold {x + 1, 1 € L}
R . the space of m x n real matrices
lf:',xn-{xekmm; rank x = r}

In - the n x n id-ntity matrix

e; - the ith column of In

© 1231ei

For any A ¢ RPO%

AT - the transpose of A

R(A) = {y e R" : y = Ax for same x ¢ R"} the range of A
N(A) = {x € R : Ax = 0} the null space of A

A’ = a right inverse of the matrix A

An interval linear programming (IP) is defined as
(IP): Max ch
subject to

b <Ax <b’




138

= 2 O - *: * = 3 o 3
r wherec-(cj).b (b; )y b =(b,), A (aij) Q<ig<m 1<j<n)

are given and b~ < b'.

Any x € R" satisfying (2) is called a feasible solution of (IP). If (IP) has

feasible solutions and {Max ch: x feasible} is finite then (IP) is bounded.

Lemma 1 [1]: A feasible (IP) is bounded iff c ¢ N(A)J'
Lemna 2 [!']: If A is of full row rank then the optimal solution x*

of (IP) 1s given by:

x*= & b Al 5z bt AT x fobt e (1 -0.)b.] AT = N(A)
1Ll i 1 i€t 1 1 iE]O 11 1 1 1

where

-3
£

-3
e RS e W

> 0}

~3

I" = {i: CA 0}

and y

In this paper an algorithm for solving (IP) problems in the general case where
A is not of full row rank will be described. We shall first solve a special
class of (IP) problems where the coefficient matrix can be separated into

A= (f\T) where F is a full row rank matrix, and hT is a single vector.

This result forms the basis for our algorithm to solve the general

(IP) problem, with coefficient matrix [;] , where H is any matrix. See

also Ben-Israel and Robers [6}), [7].

1. ' - The Subproblem
i In order to »olve the general (IP) problem we will describe in .section 2

| an iterative algorithm which will in each step make use of the method described

below to solve subprobiems of the form:
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1) _ Max clx
subject to
(@) d” sFx ¢d’
| () g <hlx<gt
l where F is of full row rank.
Let us substitute
O) . z=Fx
in (1), (2), (3) in order to obtain
(5) - Max T,
’ subject to
(6) | dsz¢d
™) T g shIF:z ¢ gt

where F! is the right inverse of the matrix F,

Let
- T :
| (-4 #WH o
® -1 . Tt
i ) . .- di'zi 1thi<0
.
Thus we have
©o ) T 0T sdjf - d;
o If i+ refers to indices i for wizich hTF; > 0, [0} to those for which
h"_i; = and 7-} to indices for which hTF; <0, then (5) can be written equivalently as:
Tt - T .+ .
Max ’{o CFi(E; + d)) » [cF( - i) = |
’ .
f,- Tf ’
(10)  Max [ cTFla] + § Telat+ | TRy, + I(-1cTRY,

+,0 0’0
Let us denote by '

@D =T WG - - a1 - e,
then +0

=




Using (10),(11),(12) we obtain an equivalent problem to (5),(6),(7) of the

fom:
(13) : ax I TR, + I (-neTHE,

: e

subject to
| Q4) 0<3 <d; -d
n
(15) : g - n(0) < ZIhTF;ﬁiS 8’ - n(0) where n = rank (F)
Jel

The system (14),(1S) will be inconsistent iff either
(16) g’ <a(0)
or
a”n a@d' -d) <g"
and we have

Lema 1. Necessary and sufficient conditions for problem (13),(14),(15)
to be feasible is that both n(0) s g* and n(d* - d°) 2 g".
vroof: Follows directly by substituting the upper and lower bounds of ? in the

additional constraint (15).
Let \ denote the ratio of the coefficients of ;i in (13) and (15),

then Y; can be written as:

’ cTF!

1
* e —————— i ‘ {0}
Tt
{hTF! |
-J¢!
1 7
—_— ic?-)
InNFe|

(18) Yi -

M ic{O}andcTFz}_O

-M it:{O}andcTF:<0




o o

where M is a positive number of dominating magnitude.

(At this point we may write down the optimal values of ii for i € {0}:

K < m if cJET > 0

‘ ~ i i i

i e {0} =D ii =
| 0 if c'Fl< 0.
l Le
| t N

C1F: i 4 (*|0}
(19) s =
E -c]Fz ice (-}

where «+, 0} = {+}by {0},
and let (y (i)} denote the set of v J.'s arranged in decreasing order, with

(6)) 2 () a1so if Yyt Y but the original index of (j) is less than the oricinal

index of (k) where (i) is the ith index order of Cr gyt '
let
2o P = Max intcger 2
ge S @iy 2 03
P =0 if %) < 0.
(21 P, = Least integer ® Sp, = sl hVE! / - )
- 1 ger pl - i;l l (1)' (d(l)- d(l)) >g - n(O)
P,
DY = . 0 s = . T + . +
2) P, = least inte D Spp = BT . - d,. -
: BEr RS0 = IR E | Ggy= dgp) >e = nl)

If’Sn- '
1

LI o e |
—

IhTF:i)l dfsy- diy)) # g - n(0), set P, =n+ 1.

s =g - n(0), set Pp=n+1l. IfS < g - n(0), the problem is inconsistent.

R_anark 1
Note that since the denominator of Y; i; always positive, the elements

in {vy (1)} are ordered in such a way that those with positive values of « (i)

sppear first, and those with negative values later.




Remark 2

. 'l'he assumption cTF; ¥ 0 can always be made if desired since, if not,
a perturbation, essentially equivalent to that introduced by Charnes(2)  for
th;. simplex method, can be performed. The perturbed problem is obtained
from the original problem by replacing the vector cTF' by the perturbed vector
(23) () e

where ¢ is a sufficiently small and positive aumber, so that optimal solutions
to the perthrbed problem are optimal solutions of the original problem

and (), #0 (i=1,...,n).

" The optimal solution * to (13),(14),(15) can now be written for the

different cases in the following manner:
Case I: For P < P; < P, the optimal solution is:

+ = .
: P

R

8 | i 1! o, ] .
DR RS IR RO AL F(ﬂl(dzi)-d(i))lllh Fepl i-p,

0 | ) - Pi#l ¢i¢n

.

Case II: For P, < P, < P the optimal solution is:

. '+ = . .
'ﬁ(i) - d(i) ) 1<igPyl’
P-1
| .\,t. . - ot . . g + - T
@ Fm ] vy T B0 L INFG) I Cg) da)V VRSl s p

0 . _ Pz‘ls'i‘n

-

2

e aem 3 K e
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Case III: For P, < P < P, the optimal solution is:

S ol P
| diy - d4) Lgfs
AR
(26) 24) © 0 Prlcicen

b

Remark: 1In cases I and II above, the denominator of the expression defining 0

will not be zero. The reason for this is as follows:

Case 1: T / = 0= P1 = 1, since zero is a lower bound for

(P )
P

. ~ + = s . . -
Spy 2 [h P(i)”d(i)' d(i)) and P, is the least integer for which Sp; > & - n(0).

But h'F(}) = 0 also inplies that 4y 20 from the definition of y.;). i.e., P> 1.

This contradicts P < P1 for case 1I.

case 1I: hl #

=0 = P =1 (as above)
= S, =0

But g+ -n(0)> 0isa necessary condition for consistency of (14), (15). Hence

Sp, # 8" - n(0). This contradicts the definition of P,.

The corresponding optimal values of z* (1) for the three cases are:

e [(ﬂ | de {+,0} 1<1isP-1
. [ﬂ ' (d)e {-} 1cisp-
- @7) (1)'4] (pl)*d(pl) ({)e {f} ia= Pl
(pl)'@[p ) (ie (-} i=p
(i] (1)e {+,0} Pi*lsicn
L9 dx {-) Pi*lsisn




Case II:

Case 111:

Remark 3

~ Observe that °(P

To show this we set

which is independent of dEP

and d(P

d)e (+,0)
d)e (-}
e {+}
(1)e (-}
(i)c'f;,é}

e (-}

(1) € {+,0}
(i) € (-}
(i) € {+,0}

(i) € {-}

d Pl) in (27) is independent of d(Pl) and d

' - - T T
30 8 +d;p \* -)h P-d h F
30) (pl) (Pl) (g *§0 i ):
T# T
’ *deph Fepl MFe)
Since P1 e {+,0} we obtain fra_n (30) that
T l +
31 h'l
‘( ) ey’ (91) B Lt 0" il
if () P,-1

()
A
b

A

N"O

—

—
| A
it
| A
-~

e
| A
fued o
I A
a~]

s
+

b
A
[
I/\
=

@) -

P -1
T.#
y'hﬁn“ﬁn day)

T.# Tt
szuﬂ@n) TORIERI N
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and that O(sz dzpz) and dzpz) - ef"z) are independent of d’a,z) and dzpz).
For each of the three cases above the optimal solutionsx* for (5),

(6),(7)are given by

(32) o xe=Flaa s Ry

where y is arbitrary.

Example .1
Solve - Max X + sz
' subject to
] . 95 3x; +xy¢9 )
X L 0s . X8
& 2 g x10x256
' ' -3 1
i In this case we choose F = . . We have
0 1
. -1/3  1/3 Il a
| He.rla CeFle (13, 73) |
i : : 0 1 ]
BT = (1,1) WF L - (-1/3, 4/3)

Thus the problem is transfoimed into

subject to

A
o.

A
[- )

: - 0s 2,

A
(-




T P s e,

i1~
~
Now let , zl-9--z1
N -'
"%

The problem to be solved is

Max -1/3(9 - 2‘1) + 7/3’%‘2 ~ Max 1/32‘1 + 7/3'2’2

subject to
0 < 2‘1 | .; 18 |
0< ‘—2'2 <8
5 < 1/3’2’1 + 4/:’:‘2’z <S
Ne have
I V- S 7+ . |
we {1 We o lyggy) = 04,0
4/3 .
P
T # + - - . - 2
leh F(i)l(d(i) diy) = 4/3-8=10% >9
Thus P~ 1, P,=1, - P=2 and
: 0 0
¢ = =
3
s 21/4
' a3 wsY /o -3/4
* * -1
z = X = F'z= =

27/4 , -0 1 27/4 27/4

~ Theorem 1

If feasible, an optimal solution to problem (5),(6),(7) is given

for the three cases I, IT, III by (27),(28)-,(29)- respectively.
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Proof: Follows directly from the way z; was constructed,
kemark 4:

I1f (5),(6),(7) is feasible it is always possible to delete a con-
straint from the set of constraints (6),(7) without affecting the optimal
solution. This follows from Remark 3 iua which .we showed that in Case I,

2" is indepr-ndent of (Pl), thus the (Pl) constraint of F can I.ae deleted.
In Case II constraint (P,) of F can be deleted, and in Case III, the additional
constraint (7) can be deleted. In each of the above cases deletion of the

suitable constraint will not change the optimal solution.

2 An Algorithm for Solving General (IP) Problems
In this section an algorithm for solving (IP) problems will be
described. The (IP) problem t: be solved is: . .
9 oM
subject to
(34) b s Ax ¢ b°

where b~ < b*, clLN(A) and A ¢ lﬂ“ . If m =71 then an optimal solution to
(33),(34) is given by (29).
For x ¢ RUT 1let

(35) CIx) = i (Ax)g > b’i or (Ax); < b} .

- Let H(0) be any set of r indices from (1,...,m} such that {a;: i e H(0))
is a linearly independent set of rows of A, and let
(36) i(0) € (,...,m} " i(0) £ H(O)
~ Proceed to the first iteration:

Iteration v > 1:  Apply the method in 1 . to determine infeasibility or

to find an optimal solution x'(v) to the following problem:

A , 4
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 Problem v:
37 Max cTx
subject to
(38) b} '5 a;x < b; i ¢ H(v-1)
L bi(v-1) € Biu-)X ¢ Pi(y-1)

If problem v is infeasible t'hen (IP) is infeasible; stop. ,
Alternately, problem (33) (34) can be 'regularized" a 1a Charnes-Cooper

so that infeasibility is determined at optimal solution if that is the case,

If I(x'(v)) = § then x‘(v) is an optimal solution of (IP); stop.
Otherwise let

(“0) B (ORS F4O))

For Case I we choose: _

(41) H) = H(-1) U (3(v-1) /1P, (%))

where / denotes deletion. |

For Case II

(42) H(v) = H(v-1) U (i(v-1) /(P (v))

(For the definition of P;(v) and P, (v) See (21),(22)). For Case 111,
(1723) H{v) = H(v-1).,.

pracend to iteration y + 1.

Fotice that fram the definition of P, and P, the matrix with rows
3;, i e H(v) is of full row rank. Moreover, since the coefficient matrix
in iteration v differs from the coefficient matrix in iteration v-1 by only
one row, the product form of the inverse (e.g. Charnes and Cooper [3]) may
be used to campute the new inverse. )
~ Theorem 2 '
The algorithm described above teminates in a finite number of

steps either with the conclusion that (IP) is infeasible, or with an optimal

solution to (IP).




Proof: Since in iteration v the algorithm solves a full row rank problem
with one additional constraint which was not satisfied by the optimal
solution x'(v-l), it follows from Remark 2 that

(43) cIx*(o-1) > clx" (v)

which -assures the finiteness. ‘
- The optimality is assured since at each step of the algorithm we

find an optimal solution to a less restricted problem.

Bample 2 Solve

Max xl + sz
subject to
io; x <6
0< x <8

2% X +x,56
-9.?-3xl+x2_<9

Tteration 0: -
H(0) = (1,2} i(0) =3

Iteration 1: Solve

Max xl+2xz
subject to
] 0sx s 6
0<’ X, s8
% . 28X +X, 56
(Y(i)) = (2,1} Pl-l’ Pz-l, P=2

From (24) ‘ x'(l) -( 0} which is the optimal solut.ion since I(x'(l)) = f,
6 . ' .

P T U T gy T s SN .
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=1 5k
Example 3 (5]
Solve Max X, + 2,

0 < X, s 8
‘9“&1’&59
S PR
‘Iteration 0:
. H(0) = {1,2} i(0) =3
' . & 6 - xl‘)
- z-
Xz -
Iteration 1:
", L
Solve . Max Zy ¢+ Zz2
subject to
0<% _<6
0 < 3,8
| - Wl Y 7
{7(1]} - {2,'1{3]‘ P=1 P]. - 2 PZ = 2
: : 1/3 17/3
Thus ¥ . . x*@) = , and I(x"(1)) = (4)
Iteration 2: '
Solve Max Xy + sz
subject to ‘
=9 < -3x) +xy ¢ 9
0< x, <8
2 < X) + Xy g 6




-16-

and I1(xp) = (1.

-3 1 fa/3 13
FQ) = FeIl = |
, 0o 1 0 1
4 R : )
: N -1/321 + 1/:’»2.2 ‘
X = ..
Thus substituting F(2)x = z we obtain
Ma; -1/1’»21 + 7/_322
subject to
. o S U EL
E 0 < . 2y ¢ 8
2 < ~1/32;+44/325 < 6
9 = 21 .
substituting ¥ = we obtain:
z 5
- Max 01/321 + 7/3‘:‘2
subject to
0<% <18
- 0< 7, <8
S < 1/321 +4/3‘z‘2 <9
o 1/3 P=2 P, =1 P,=1
_____ _ Y(i)} = { 4 3 » 1) 1 1 2
0
P - 2 - x*(2) -
9-3 27
N T

- e w— = ———— ——




Iteration 3: Solve Max 'xl + sz
. " subject to
-9 < 'le + %y ¢ 9

2 < X) ¢+ Xy ¢ 6
0< xl | <6
. : 3 1 ey RV . iz, + iz,
1 1 ) 1 s 3 Vaz) + 3/4z,

Thus substituting F(3)x = z we obtain

Max -1(4:1 + 1/4:2 + 2/421 + 6/4:z = Max 1/4:1 + 7/4_:2
subject to '

-9 ¢ N . $9
0 . 2, S
0 < -1/4z, ¥ 1/4z, < 6

A

9-2)
substituting 7= we obtain
% .
| Max 1/4(9-%)) + 7/4%,

. 0 < 2'1 <18
0 < 22 s 6
9/4 < 1/4:“:'1 + 1/4“:'2 <6+ 9/4

(Y(i)}- (7.‘1) P=1 Pl =2 Pz -2
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1*(3)) = #. Thus x*(3) is optimal for (IP).
Observe that the’ number of iterations needed in order to solve

Example 2 was strongly influenced by the choice of index frqm 1(v).

-
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