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ABSTRACT 

This paper presents en algorithm for solving interval linear programming 

problems. The algorithm is a finite iterative method, which in each iteration 

solves a full row rank interval linear progranming problem, with only one 

additional constraint. The solution and/or problem chosen appears to be 

conputationally more efficient than that in the Ben-Israel and Robers algorithm. 
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Introduction 

The general linear programming problem (LP) may be defined as: 

(LP): Max cTx 

subject to 

Ax • b 

x > 0 

where the matrix A and the vectors b and c are given. 

Every (LP) problem is equivalent to an interval linear programming 

problem (IP) of the form: 

(IP): 

subject to 

Max cTx 

b' < Ax < b 

where 

(t) -••W   "*■(«:) 
and U > 0 is sufficiently large" (e.g. non-Archimedean transcendental for the 

unbounded case). 

Because of the above reason and since the constraint system in many 

linear programiing problems arise in (IP) form (wholly or partly), special 

algorithms for (IP) problems are important, and may be more efficient for those 

particular problems than general algorithms for (LP) problems. 

0. Preliminaries and notation 

^  -  the empty set 

(x) -  the set consisting of the single element x 

{x: f(x)>--the set of x satisfying f(') 

ll....,-., . .■ .^ 
■^^»M^MMftftl 
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iff - if and only if 

nn - the n dimensional real vector space 

For any x, y e Rn: 

x ^ y - denotes x. >^ y.   1 1 i 1 n 

x JL y - denotes  .?  x.y. ■ 0 
!«!  i i 

For any subspace L of R : 

IT ■ (y: xiy, for all x c L} the orthogonal complenent of 

x+L  - the manifold (x ♦ 1, 1 e L) 

R"
1301
 - the space of m x n real matrices 

K™ - {x G R™01; rank x - r) r 

I   - the n x n id ntity matrix n 

e.   - the i  column of L. n i 

e ■ .?ei 
i-1 1 

For any A e R1"01: 

T A   - the transpose of A 

R(A) « {y e Rn : y ■ Ax for some x c Rn} the range of A 

Kr  ■  "  

# 

N(A) « {x e Rn : Ax - 0} the null space of A 
I 

A  «a right inverse of the matrix A 

An interval linear programning (IP) is defined as 

(IP):     Max cTx 

subject to 

b" < Ax < b 

  — —~-~——~-———^—*-~-~—~ MMMM^M^^MMMMMMMBBHUMaMMi J 
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where c = (Cj), b" - (b/), b+• (b^). A- (a^)    (1 < i < m;    1 < j < n) 

are given and b' < b . 

•.n 
Any x e R   satisfying (2)  is called a feasible solution of (IP).    If (IP) has 

T 
feasible solutions and {Max   ex:   x feasible} is finite then (IP) is bounded. 

Lewna 1 [1]: A feasible (IP) is bounded iff   c e N(A) 

Lemma 2  [J J: If A is of full row rank then the optimal solution x* 

of    (IP)   is given by: 

x* = I     b" A* ♦ Z  b+ A# * 5: [0.b+ + (1 - OjbJ A* + N(A) 
iU* ' i  ici* i i  JEJO ii      iJ   i      i 

where 

l" = (i: CTA* < 0} 

I+ = (i: C
T
AJ > 0} 

1° - (i: C
T
AJ = 0} 

0 < 0 < 1,  i c 1° 
and //  ' f 

A *  1th column of A 

In this paper an algorithm for solving (IP) problems in the general case where 

A is not of full row rank will be described. We shall first solve a special 

class of (IP) problems where the coefficient matrix can be separated into 

A "(iT|  where F is a full row rank matrix, and h is a single vector. 

This result forms the basis for our algorithm to solve the general 

(IP) problan, with coefficient matrix I u I i where H is any matrix. See 

also Ben-Israel and Robers [6], [7]. 

1.  -• The Subproblem 

In order to .>olve the general (IP) problem we will describe in section 2 

an iterative algorithm which will in each step make use of the method described 

below to solve subproblem^ of the form: 

■-  ■-■ ^,.__^_^^^—^^^.^„^.^—, „^„^.^„^»^a^^^^,^. 
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(1) . Max cTx 
subject to 

(2) d" < Fx < d* 

(3) g" < hTx < g+ 

where F is of full row rank. 

Let us substitute 

(4) x - Fx 

in (1), (2), (3) in order to obtain 

(5) Max cVz 
subject to 

C6) d" i x < d* 

(7) '  f- < hVi < g4 

where F is the right inverse of the matrix F. 

Let 

(8) Jfj 

Sli - d?        if hTFj > 0 

d- - zi        if hTFj < 0 

Thus we have 

h'.i: ^   ' a,K] (-f to indices for which hV . n. then (5) can be written equivalent^ as: 

If   f*j    refers to indices i for which h F^ > 0,  [0} to those for which 
•i, * 

(10)       M« J   jF'dJ ♦ I ^[il .   £   c^ ♦ It-Dc^i 

Let us denote by ' 

(ID n(5) - I   hTpJ^ . dj) ♦ £ hTFj(d; - K.) - hTF#t 

then ♦'O 

(12) nfO) -   r hVdT ♦ r hTP^+ n(0)-   I h'FV ♦ [ hW 
♦.o 



Using (10U11),(12) we obtain an equivalent problem to (5),(6),(7) of the 

fozm: 

(13) .T^y   . r , ^JTJ* 
**l0 

clFI?i * I C-Dc^ 

subject to 

o^i^di-ii 

where n » rank (F) 

n(d4 - d") < g* 

a4) 

(15) f*- n(0) < [|hVj?<   g* .n(0) 
~i*l * 

The system (14), (IS) will be inconsistent iff either 

(16) f* < „(0) 

or 

(17) 

and we have 

Laanal:        Necessary and sufficient conditions for problom (13),(14),(15) 

to be feasible is that both n(U) * g* and n(d* - d') t g*. 

nroof:  Follows directly by substituting the upper and lower bounds of z in the 

additional constraint (IS). 

Let yi denote the ratio of the coefficients of zi in (13) and (IS), 

then Y^ can be written as: 

'M 
(18) 

|hTF'| 

M 

-M 

i e   {♦} 

i c {-> 

i e (0) and cV > 0 

i E (0) and cV < 0 

I 

*; 

^^^^.^mmm 
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wtiere M is a {positive nunbcr of dominating magnitude. 

(At this jKiint we may write down the optima1 values of z.  for i e {0} 

i t {()} ~~ > 
* 

( d+ 

1 ■  d; 1 
if cTF#  > 0 

i 
zi = 

1 

0 
if   cTF* < 0) 

Ut f cV    i e (♦,0) 

whcif ; ♦, 0} = 1♦[ u (0), 

and let (YQ\) denote the set of y.'s arranged in  decreasing order, with 

0) * (k) alSi.. if Y^J * Yk but the .orioinal in^ex of Cj) is less than the orioinai 

(i) 
index of (k) .where (i) is the ith index order of (f,^). 

i vt 

,  Ml H = Max integer  3  ^ ••) > 0; 

P = 0    if   c,   < 0. 

P 
'- i Pj = Least integer 3 Spj = f}   |h F^.^l (d*^- d'(i)) > g' - n CO) 

P. 
P2 = I^ast integers Sp2 = lZ  |hV(i)| (d^y d'^) >  g+ - n(0) 

If Sn . Z    \hV{i)\  (d*{i)-  d"ci)) > g+ - n(0), set P2 - n + 1. 

'f s
n " ß - nfO), set Pj = n + 1. If S < g' - n(0), the problem is inconsistent. 

Remark 1 

Note that since the denominator of Y* is always positive, the elements 

in {Ym> are ordered in such a way that those with positive values of a 

appear first, and those with negative values later. 

— M^^I^^Mn^aHiMMMMM«a«HnMIMMMI^aHiMMIftMiMINlHhM«iaHM^ 
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Remark 2 

.Tr» The assumption c1?. ^ 0 can always be made if desired since, if not, 

a perturbation, essentially equivalent to that introduced by Qiames[2j    for 

the simplex method, can be performed.   The perturbed problem is obtained 
T # from the original problem by replacing the vector c F   by the perturbed vector 

(23) (c^.      .^ C  *^   *   c 

where c is a sufficiently small and positive number, so that optimal solutions 

to the perturbed problem are optimal solutions of the original problem 

and (ce). J* 0    (i « 1 n). 

The optimal solution £* to (13), (14), (15) can now be written for the 

different cases in the following manner: 

Case I:    For P < Pj < Pj the optimal solution is: 

(24) 

d(i) ' d(i) 
Vl 

1 < i <?,-! 

TJf 
(P^ - If ■ n(0) -1Il|l'Mi)l(d(i)-d(i)"/lhTF'(P1)l    i - Pj 

Pj+l < i < n 

Case II:    For Pj < P2 < P the optimal solution is: 

(25) 
«^A 

A(l) ' d(i) 1 < i < P,-l -  z 
P^-l 

(i) cpp ■ [g* - n(o) -^IhV^Kd^- d-(i))j/|hV(P2),   . . p 

P2*l s i in 

•—■■"— 1 ■ - "■  -   ■     -.  . — —1 ^^____^. .„■>__—. MMM^ 
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Case III: For P. < P < P2 the optimal solution is: 

1 < i < P 

0 P*l < i < n 
(26) 

d(i) - d(i) 

Remark: In cases I and II above, the denominator of the expression defining 0 

will not be zero. The reason for this is as follows: 

Case I: hV fpj = 0 =9 p^ * 1, since zero is a lower bound for 

1  T #    + 
Spl "^ ,h F(i)lfd(i)' ^i)^ and pi is the least integer for which Spj > g" 

But hV 

n(0) 

J
(1) = 0 also iinplies that    a > o, from the definition of Yrv    i.e., P > ] ar 

This contradicts P < P   for case I. 

Case 11:    hV(p ) = 0 P2 ~ *    (as above) 

Sp2 = 0. 

But g    - nCO) >  0 is a necessary condition for consistency of (14),   (15).    Hence 

SPT / g    *  n(0).    This contradicts the definition of P-. 
L. i. 

The corresponding optimal values of z*(i) for the three 

Case I: 

(27) WiVl)^!) 

(l)c {♦,0} 

(l)e {-} 

(i)c {♦} 

Ci)c {-> 

(i)e {♦,0} 

(i)e{-} 

cases are: 

1 < i 5 Pi-l 

1 < i < Pj-1 

l-Pj 

i «Pj 

Pj+l < i < n 

Pl*l i i i n 

**.     .:.,..■..... V.,..  .. -   ■-■  -...■..-.^.--:-. .^.•-^.^^^-.^.■..^..:...... ..■^l. 

.  . ...^ ^ . .^ ^ ^ ■ .^ ...^ .: , ^. , M^l^l^M>^Mta-t^^^i 
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Case II; 

(28) 

d(i) 

d(i) 

8(P2)*d'(P2) 

(i)"{d(P2)-6(P2) 

d(i) 

V. 
l(i) 

Case  III 

(ij 

(i)c {♦.0) 

(i)c {-> 

Ci)c {♦} 

(i)e {-} 

(l)e{*,6} 

(i)e {-) 

(i) e {+,0} 

(i) c {-} 

(i) E {+,0} 

CD e (-} 

1 < i < P2-l 

1 < i < P2-l 

i-P, 

i - P, 

Pj*! i i i n 

P2+l i i 5.n 

1 < i < P 

1 < i < P 

P + 1 < i i. n 

P + 1 < i < n 

Ranark     3 

Observe that *rp }+ d^p >    in (27) is independent of dj« > and dtp . 

To show this we set -   . 

(30)     . Vi) * d^,. [g- -+IohTFjd- - I hTF'd* -^IhVyjl (d+
(ird-(i)) 

* ■1(P1)hTF'p1),/ ^'(P!) 

Since P, c {+,0) we obtain fron (30) that 

(3i)        e(p .♦d"  }. [g-:  I     h^Jd: -I hTi{d* 
^lJ    ^lJ ic{*.0)       1 1   -        1 1 

WJ ?V1 
-JlhV^Ud^.dj^]/^ 

which is independent of d'fv , and drD % . 

 ■— > 
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in the same way we get that dtp ) ' efp ) is independent of d,p . and d« x 

and that e^ d'^ and d^) - 9^ are independent of d^ and d^^. 

For each of the three cases above the optimal solutions x* for (5), 

(6),(7)are given by 

(32)' X* - p'zVl - F#F)v 

where y is arbitrary. 

Example  1 

Solve Max Xj ♦ 2x2 
subject to 

-9 < -SXj^ ♦ X2 < 9 

0 5     Xj < 8 

2 5 Xj^ ♦ x2 < 6 

/-3       1\ 
In this case we choose F ■    I 1.   We have 

\ 0       1 J 

i ,       /-1/3      1/31 -, 
F1 - F^ -   ( cTF 1 -   (-1/3, 7/3) 

I   0 l] 
hT - (1.1) hV1 - (-1/3, 4/3) 

Thus the problem is transformed into 

MBX  -1/3ZJ ♦ 7/322 

' subject to 

-9 < Zj        < 9 

0 < ?2 s 8 

2 < -l/3z1 ♦ 4/3z2 < 6 

 ■  1 iniaiMi ■■!   1   i^—tM^—M—M 
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Now let ^-9. zl 

J2-z2 

>e solved is , 

Max   -1/3(9 ■V ♦ 7/3^ % Max 1/3^ ♦ 7/3?2 

subject to • 

o< % 
«i < 18 

0 < *, <8 

.     5 < 1/3^ ♦ 4/322 < S 

Ne have 

'1        I7J T,  ■      T^rr ■ 1 Z>1 
4/3 

7/4 {Y(i)>   B {7/4'1} 

JTB   i   Irj* I lh F(i)ICdCi)- d"(i)) -   4/3 • 8 - 10 f   > 9 
i-1 

Thus P, "1. P^'l. P - 2,   and 

»i 

27/4 

* 
zi 

Theorem     1 

27/4 

If feasible, an optimal solution to problem (5),(6),(7) is given 

for the three cases I, II, III by (27),(28),(29) respectively. 

,_^^^^M^^_^MM^Ml^BtfMM^^MMM^MMaMaaaAaaMaMaaiBaaHaMMHBaaMHMfa MMMMMMMMMMMi^iiMMMIMMMl 
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Proof:    Follows directly from the way z. was constructed, 

Remark     4; 

If (5), (6), (7) is feasible it is always possible to delete a con- 

straint from the set of constraints (6) ,(7) without affecting the optimal 

solution.   This follows from Remark     3 i i which we showed that in Case I, 

z   is independent of (P^), thus the (?,) constraint of F can be deleted. 

In Case II constraint C^) 0^ ^ can ^ deleted, and in Case III,, the additional 

constraint (7) can be deleted.    In each of the above cases deletion of the 

suitable constraint will not change the optimal solution. 

2 An Algorithm for Solving General  (IP) Problems 

In this section an algorithm for solving (IP) problems will be 

described.   The (IP) problem to be solved is: 

(33) Max   cTx 

subject to 

(34) b" s Ax < b"1, 

where b' < b*, ci.N(A) and A c RJ** .    If m - r then an optimal solution to 

(33),(34) is given by (29). 

For x c R13"" let 

(35) I(x) - U:    (Ax)i > b* or (Ax). < bT) . 

Let H(0) be any set of r indices from {l,...,ra) such that {ai: i e H(0)} 

is a linearly independent set of rows of A, and let 

(36) i(0) c U m)     i(0) i   H(0) 

Proceed to the first iteration: 

Iteration v > 1:  Apply the method in 1  to determine infeasibility or 

to find an optimal solution x (v) to the following problem: 

  ■■ - ■■  ■ I — -■^•"—— 1 -■ ■         1 — 1 ___^__^^-^Mi^»g«»ji^M^Mi 
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Problem v: 

(37) Max cTx 

subject to 

(38) bT < ajX < bt     i e H(v-l) 

(39) biCv-l) ^ ai(v.l)X ^ bi(v-l) 

If problem v is infeasible then (IP) is infeasible; stop. 

Alternately, problem (33) (34) can be "regularized" a lä Chames-Cooper 

so that infeasibility is determined at optimal solution if that is the case. 

If I(x*(v)) - 0 then x*(v) is an optimal solution of (IP); stop. 

Otherwise let 

(40) iCv) c I(x*(v)) 

For Case I we choose: 

(41) H(v)-H(v-1) U (Uv-m/CP^v)} 

where / denotes deletion. 

For Case II 

(42) H(v) - H(v-l) U {i(v-l))/{P2(u)) 

(For the definition of Pi(v) and P2(v) see (21),(22)).     For Case III, 

m-n H(v)   =   H(v - 1)., . 
jYi-oroo.! to iteration v + 1- 

Notice that from the definition of P, and P, the matrix with rows 

a^, i c H(v) is of full row rank.   Moreover, since the coefficient matrix 

in iteration v differs from the coefficient matrix in iteration v-1 by only 

one row, the product form of the inverse (e.g. Chames and Cooper J3]) may 

be used to compute the new inverse. 

Theorem 2 

The algorithm described above terminates in a finite number of 

steps either with the conclusion that (IP) is infeasible, or with an optimal 

solution to (IP). 
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Proof:   Since in iteration v the algorithm solves a full row rank problem 

with one additional constraint which was not satisfied by the optimal 

solution x (v-1), it follows from Remark 2     that 

(43) cV(v-l) > cV(v) 

which assures the finiteness. 

The qptimality is assured since at each step of the algorithm we 

find an optimal solution to a less restricted problem. 

Example 2 Solve < 

Iteration 0: 

Iteration 1:    Solve 

Hue 3^*2x2 

subject to 

0 S    x1          < 6 

0 <     Xj < 8 

• 2 < Xj ♦ Xj < 6 

-9 < -Sxj ♦ Xj < 9 

H(0) - {1.2) i(0) - 3 

Max Xj ♦ 2x2 

subject to 

0 < x1    5 6 • 

0 5    Xj S 8 • 

2 $ Xj ♦ Xj 5 6 

V1' P2 - 1. P- {Y(i)>   - {2,1) Pj- 1.    P2 - 1,    P- 2 

From (24)     x*(l) -| 0j which is the optimal solution since I(x*(l)) - 0. 

- ■■■ - ■■ - ■■-■^^-^^-^-—^-^- J 
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Example 3    [5] 

Solve Max   x, ••• 2x2 

subject to 

0 <    Xj          < 6 

■ ■ 0 <            »2 ^^ 8 

« -9 < -Sxj ♦ Xj < 9 

2 <     Xj ♦ X2 < 6 

Iteration 0: 

H(0) • {1,2} i(0) - 3 

z ■(V) 
Iteration 1: 

Solve •   Max   -z, ♦ 2Z2 

subject to 

0 <   ^       ^ < 6 

0 < \<B 

♦9 < A, ♦ lL < 27 1       2 - 

P2 - 2 

17/31 
I , and I(x"(l)) « {4) 

* 

Iteration 2: 

Solve Max x1.2x2 

subject to 
-9 < 

■^l 
+ x2 < 9 

9 

o< x2 < 8 
2 < xl + x2 < 6 

-    ■■-—-' ^^—^ ■-- - 
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«3       1   \ /-l/S       1/3 

FC?)- I    FCl1 

0       1 

.1/321 ♦ l/3z2 

Thus substituting F(2)x • I we obtain 

Max   -l/Sij ♦ 7/3z2 

subject to 

-9 <        tj             < 9 

0 <                    *2 - 8 

• 
2 < -l/Zz^A/^ < 6 

.   /9-ll\ 
substituting i ■ 1          * 1 *re obtain: 

»tax   ♦l/3,i1 ♦ 7/322 

subject to 

- 0<      \            <18 

• o <            3:2 < 8 

5 < 1/3^ +4/322 < 9 

1^(1)) -t-^f. 1) P - 2      Pj -1      P2 - 1 

\      2* -    / x*(2) - 
9-3 21 

•3 + II 

27 
T 

•3/4 

27 

and I(X2) - d). 

 i— i i iji^MM^na—MM—, 
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Iteration 3; Solve 

'-1/ 

Max x1 ♦ 2x2 

subject to 

-9 < -3x1 ♦ X2 < 9 

2 < x1 ♦ Xj < 6 

0 < Xj 

^  1/4 

< 6 

FC3) - FC3) 
1/4 "3/4 

-3  1 

1  1 

Tbus substituting F(3)x - z we obtain 

Max -1/4Z! ♦ l/4z2 ♦ 2/4Z! ♦ 6/4z2 - Max 1^ ♦ 7/4z2 

subject to 

-9 s   z,      5 9 

9-z, 

substituting 2f - 

0 < x2 5 6 

0 < -1/4ZJ ♦ l/4z2 i 6 

we obtain , 

Max 1/4(9-^) ♦ 7/4z2 

0 < 

0< lf25 6 

{Y(i)>- (7.-1) 

9/4 < 1/4^ ♦ l/4z2 < 6 ♦ 9/4 

P- 1 Pl-2 P2-2 

-^M————, 
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lCx*(3)) • 0.   This x*(3) is optimal for (IP). 

Observe that the'lumber of iterations needed in order to solve 

Example 2    was strongly influenced by the choice of index frqm I(v). 

I 

J 
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