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PSYCHOACOQUSTICS AND PASSIVE SONAR DETECTION
Prepared by:

J.M. Stallard aud C.B. Leslie
SUMMARY

The initial porticn of the report is a review of the
statistical theory of signal detection, followed by the
application of signal detection theory to psychoacoustics.
The differences between the relatively simple laboratory
tests reported in the literature and the complex problems
of passivz sonar operating in the real world are explored.
The concepts of Equal Detectability Curves and Figure Of
Merit are ccvered, relative to theoretical prediction of
alertment and masking performance. It is pointed out that
several relevant factors have been treated individuelly in
the literature but not taken into account in the available
Detection Thrcshnld Curves for application to passive sonar.,
The combined effects of five suc!. factors are used to yield
a new Detection Threshold between 5 and © db higher than
earlier works. It is concluded that the problem of sequential
observations needs more experimental study. A method for
handling the effects of multiple lines in a signature is
presented 1n detail. A new system for calculating the
effects of broadband noise of any bandwidth on detectability
is given. Firally, suggestions are given for a number of
areas where further work might be helpful in eliminating or
reducing present uncertainties.
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Preface

This report had its origins in a study of the theory
of psychoacoustics applied to passive sonar. The results
of the initial study prompted a furifier effort to advance
this relatively new field by docume@ing areas of disagreement
with current practice and to presenf new proposals for handling
certain additional factors which e previously been ignored.
The authors are indebted to the pifPneers in this area, especially
B.G. Watters and J.A. Moore. Oth:frs who have contributed to the
advancement of the theory are J.F. Barger, F.A. Andrews, and
C.D. Hovater.

This work has been supported by the Naval Sea Systems Command
under Task Number NOL-0910/PMS-4021.

ROBERT WILLIAMEON II
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CHAPTER 1

INTRODUCTION

The theoretical prediction of the detection range of an
underwater acoustic signal received by a human operator through
a passive sonar has been a topic of considerable interest to
the Navy. The detection range can be related to the maximum
transmission loss a signal can suffer and still be detectable
to the human ear. This value is called the Figure Of Merit,
or FOM, of the system. The passive sonar equation relates
the phenomena which must be considered in the calculaticin of
the FOM:

FOM = TL = SL - NL + DI - DT. (1-1)

In Equation (1-1), TL is the ctransmission loss, SL is the
signal source level, NL is the noise level at the receiving
hydrophone, DI is the directivity index of the receiving sonar,
and DT is the detection threshold, or the signal to noise ratio
that is just detectable. All the quantities are expressed in
decibels a..1 the notation is after that of Urick (1967). The
sonar equation parameters vary considerably with frequency and
the detection threshold will be seen to depend as well on the
character of the scurce.

In this paper we are concerned with the quantification of
the detection threshold of the human ear. This quantity is,
in general, somewhat higher than that of an ideal device designed
to perform a specific tasi. Despite this shortcoming, the wide
range of tasks the human ear can perform, and the fact that the
hearing mechanism includes the brain, make the human operator an
integral part of many sonars. The detection threshold of the human
ear is thus a worthy topic for discussion.

S ettt el ke

| Urick (1967)*cites a simple model for the hearing mechanism
which is essentially an ideal detector followed by a post detection
1 averager whose integratior time is generally not matched to the
signal duration. This simple physical model provides a faiily
credible replica of the detection performance cof the ear, under-
estimating the detection threshold by some 4 db, when compared to

MR G e i

*The of references at the end of the report is alphabetical.
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data gathered under closely controlled laboratory conditions. It
would appear, however, that a truly quantitative model must account
for the variation in response of the human hearin¢ mechanism to
acoustic signals of different types over a range of frequencies.

It must also take into account uncertainties inherent in the
real-world passive sonar problem, such as unknown frequency and
signal onset time. Recently, Watters and M.ore (1970} presented

a nomograph which allows the ready determination of either the
broadband or tonal signal energy which is just detectable at a
given receiver operating level when it is embedded in a background
of noise. The basis for their nomograph is a pair of measurements
from the literature which grew out of statis*ical decision theory
and the theory of signal detectability, as applied to psychoacoustics.
Barger (1971) later used this nomograph and certain assumptions to
construct two frequency curves for DT, one for tones and another

for broadband signals, both at a single operating level. Andrews

and Hovater (1971) took Barger's concept a step further and

introduced the concept of sequential observations.

This report, by necessity, contains an outline of the more
applicable points of the theory which led to the nomograph of
Watters and Moore. It also considers in detail the assumptions
and methods applied by Barger, Andrews, and Hovater. In some
areas, the present study disagrees with the latter two reports.

In those cases, alternatives are presented which appear mecre
realistic. In still other areas, new material is presented which
was not considered in these first attempts at a quantitative model.
The points of difference should not be taken as a criticism of the
methods previously used, but should rather serve to improve the

model and to point to areas where further research might eliminate
uncertainties.

o i,

i

o
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CHAPTER 2
STATISTICAL DECISIONS AND SIGNAL DETECTABILIYY

The theory of signal detectability as it has emerged in
the field of psychoacoustics is based on the pioneering work
of Peterson, Birdsall, and Fox (1954). The problem is to
distinguish between a backgrcund of noise with an embedded
signal, and the noise alone. If the statistics of the noise
(N) and of the signal plus noise (SN) are known, one can predict
the optimum behavior of any detection system. This optimum
performance can be expressed as a Receiver Operating Characteristic,
cr ROC. Swets, Tanner, and Birdsall (1961) have provided an
excellent article explicating the theory and describing experiments
that constitute the primary tests of its validity. While their
article is concerned with visual detection, a somewhat less
pedantic report by Tanner, Swets, and Green (1956) shows, through
similarly designed experiments, that the theory provides a valid
description of aural detection as well. Some of the highlights
of the theory are outlined here.

The prcbability density functions for an observation x, for
the cases when x is drawn from populations N and SN, are defired
as f£_.(x) and f‘N(x), respectively.* 1In general, these two densities
migh¥ appear a% shown in Figure 1. Depending on the a pricri
probability of the signal being present, values and costs of
correct and incorrect decisions, and the densities £, (x) and
f N(x), an operating point ¢ for the receiver is determined.
Fgr any observation x > ¢ the signal is considered present;
for any observation x < ¢ it is considered absent.

From Figure ) it can be seen that, regardless of the position
of the operating point, observations x > ¢ can be caused by either
the presernice of the signal plus noise (a true detection) or by
noise alone (a false alarm). The probability that x > c comes
frem fSN(x) is called the probability of detection and is given
by

P(D) = ./r qu(x) ax. (2-1)
3 S

*x can be multidimensional, i.e., X = (xl, Xo1 Xgy 5
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The cross hatched area below the SN curve in Figure 1 represents
P(D) graphically. Likewise, the probability that x > c comes
from fN(x) is called the probability of false alarm and is given
by

P(FA) = / fN(x) dx. (2-2)
a

The double cross hatched area below the N curve in Figure 1
represents P (FA) graphically. In general,

/ f(x) dx = 1. (2-3)

A ROC curve is defined on a graph of P(D) vs P(FA) by
letting the operating point ¢ in Figure 1 vary from minus to
plus infinity (see Figure 2). If either probability density
changes shape or if their relative separation changes, a new
and different ROC curve is defined. The parameter d' in
Figure 2 will be defined later in Equation (2-16).

The optimum operating point can be determined in the
following manner. Let the probability of a miss be given by

c
P(M) = f fSN(x) dx

1 - P(D).

(2-4)

If the a priori probability of the signal being present is PSN
and the a priori probability of the signal being absent is 2
then of course,

P + F. = 1. (2-5)

An incorrect decision can be made in two ways, i.e., the
observer can decide a signal is present when it is not, or
he can decide a signal is not present when it is. The
probability of error, then, is given by

(€]
: "'i o, 0 _“:;".‘ sk "
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P(FA)

FIG. 2. ROC CURVES ASSUMING NORMAL DENSITIES W!TH EQUAL VARIANCE
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=

P(E) = PN « P(FA) + Pgp * P (M) (2-6)
= (1 - PSN) « P(FA) + PSN - [1 - pP(D)]
(1 - Pgy) l
=P . 1 - pP(D) - = . P(FA)
SN { J

It is desired to minimize P(E). According to Equation (2-6),
this criterion is equivalent to maximizing the term in the
square brackets. That is,

(1 = Pgy)
P(D} - ——— P(FA) = maximum. (2-7)
SN

For convenience define B8 as the coefficient of P(FA) in
Equation (2-7). Equation (2-7) is satisfied when the first
derivative is zero. That is,

dP (D) dP{FA) _ )
g = B - S =k 0. (2-8)

Rearranging,

B = =3 =¥ - (2-9}

fSN(c)
B = 3 (2-10}
ENZCS
. (b ()
*Leibnitz's rule (Wylie, 1966) says that if F(t) = Ja(t)¢(x,t)dx,

where a and b are differentiablzs functions of t, and where ¢(x,t)

3¢ (x,t) dr _ ¢b(t) 3¢ (x,t)
ot EE'!a(t) ot %

are continuous in x and t, then

+ olb(e), 6] B~ ra(e) ¢y L)

: dP(D) = 1i o 3fgyn(x) d(a) _ del = -
Thererfore, _75?1' aiﬂ[}ﬁ Sg dx + fSN(a) = fSN(C)aE] foy (©) -
dP (FA) _

dc

and

. In our case, P(D) =|fcfSN(x)dx.

Similarly

-rN(c). .
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The optimum operating point is defined, then, such that when
the likelihood ratio

£ N(X)
A= (2-11)
fNZx)
is greater than or equal to B, the signal is considered present.

The above definition of f assumes that values and costs of
correct and incorrect decisions are equal. In general, R is

given by
_ L Pgy Cap ~Cyy .
B = P ‘T T (2-12)
SN 11 12

where C,, 1is the value of a correct positive report, C is the
value oé’an incorrect negative report, C is the valué“of an
incorrect positive report, and C is theé“value of a correct
negative report (Harman, 1963; Green and Swets, 1966).

So far nothing has been said about the exact shapes of
f (x) and f_,,(x). The usual assumpticn (Green and Swets, 1966)
made is tha% they are both Gaussian with equal variances. That
is,

1 x-Hy\ 2
fN(X) = exp | -1/2{ — (2-13)
/ZnoN N
where g and oy are the mean and standard deviation, respectively,
of fN(x),
] X=Yay \ 2
foy (X) = ——— exp -1/2( = S“) (2-14)
v2mno SN
SN
and
oy = gy = O- (2-15)

If the densities are normal, the ROC curves for the ideal receiver
will he straight lines with positive slope, when plotted on

normal-normal paper. If the standard deviations are equal, the
linear ROC curves will have a positive slope of unity.

8




NOLTR 74-27

A convenient single parameter called the detectability index
which describes the relative separation betwesen the two densities
in terms of the standard deviation is

S MR

Hayn—U
gr = SN N (2-16)
N

R B WA

Kote that a given value cf 4' specifies a particular ROC curve as
shown in Figure 2. Figure 3 shows ROC curves for various 3’
plotted on normal-normal paper. For convenience, at the top
and right of Figure 3, the graph is scaled in terms of the normal

devi: te, K§ and Kg . Thus, rearranging Equation (2-16) and using
Equation (2-15),

il o M2

c- -
i = "N , Isy

Oy Ten (2-17)

C

ETORS < Mmuﬁm

A
KN + KSN'

Peterson, et al., show that for a sinuscid of known phase
in Gaussian noise, i.e., when the signal is kncwn exactly (SKE),
the assumptions of Equations (2-13) through (2-15) hold, with

Equation (2-16) becoming
_ E
a' = N (2-18)
o

for the ideal receiver, where E is the signal energy and N
the noise power per unit bandwidth.* Peterson, et al., a18o
show that if the signal itself is Gaussian, i.e., the signal

is known statistically (SKS), the same ROC curves apply for the
ideal receiver if

is

e e A s i Sl S b

&

it

z:m
3

% sl (2-19)

*A tutorial derivation of Equation (2-18) is given by Elliot (1959).
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where 5 is the signal power, N is the noise power in the signal
band, W is the signal bandwidth, and T is the signal duration.t
However, Equation (2-15) and thus Equation (2-19) are only valid
when

S
ﬁ << 1. (2—20)

Otherwise the expression for d' in terms of energy is somewhat
more complicated and the resulting ROC curves are lowered, having
slupes less than unity.

Equations (2-18) and (2-19) define d' for the ideal detector
in terms of the signal energy for two specific cases of interest
in the sonar problem. Similar relationships can be derived for
the human hearing mechanism. That is, the choosing of a suitable
operating level for the sonar operator "will define a d' which
in turn will determine the signal energy that is just detectable
to the human ear at the chosen operating level. This result can
then be plugged into the sonar equation.

In the next chapter, some of the experiments are reviewed
which test the validity of the theory of signal detectability
as a description of the auditory process. These exper:ments
include the relationships between d' and signal energy which
led to the nomograph of Watters and Moore.

+ Equation (2-19) 1s derived by equating the lower limit of the
integral in Equation (2-1) for SKE to that for SKS; then likewise

for Equation (2-2). This procedure yields two equations in d' and

a parameter related to signal energy. E

t TL.e common logarithm of Equation (2-19), i.e., 10 log < ) , is
known as the psychometric function. N /®T

11




NOLTR 74-27 .

CHAPTER 2

SIGNAL DETECTABILITY AND PSYCHOACOUSTICS

The primary test of the theory of signal detectability as
a tool to describe aural detection is to determine if the ROC
curves similar to those described in Chapter 2 adequately describe
the performance cf the bearing mechanism. Tanner, et al. (1956),
sought to determine experimentally the shape of the ROC curve in
a simple psychoacoustic task. The signal was a 1 kHz sinusoid of :
0.1 sec duration. The masking stimulus was broadband Gaussian
white noise. The noise and signal levels were held constant
throughout the experimental session. A yes-no (YN) experiment¥
was conducted at five different a iriori probabilities of the
signal being present. Two subjecte were informed or this a
priori probability and were given immediate information after
each response as to wheth:r or not the signal was actually present.
They were paid for a correct answer, fined an equal amount for an
incorrect answer, and instructed to make as much money as possible.
In this way, the parameters of Equation (2-12) were varied over a
considerable range. The resultant ROC curve was best described {
by a straight line with slope slightly less than unity. These
results wculd indicate that decision making theory provides an
adequate description of the auditory process. The straight line
on normal-normal paper verifies the assumption of normality. The
slope slightly less than unity typifies the situation where Con
increases with increasing Moy -

The experiment by Tanner, et al. (1956), did not attempt to
measure the relationship between d' obtained experimentally and
the signal energy. It merely established tha% the theory of
signal detectability adequately cCescribes the auditory process.
In general, the actual value of the detectability index d' might
be derived in twec ways. It coculd be defined by the signal and
noise levels and characteristics of the experiment through
Equations (2-18) or (2-19), or it might be measured by finding
experimentally the various combinations of detecticn rates and
false alarm rates, and then applying Equation (2-17). As will
] be shown, the more useful approach is the latter, since the ear
: is not a perfect detector and the relationships between d' and
E are not gquite those of Equaticns (2-18) and (2-19).

: *In the yes-no (YN) experiment, the signal is either present or
i absent in a single observation interval. 1In the n alternative
; forced choice (nAFC) experiment, the sigral appears in one and
3 cnly one of n successive observation intervals.

12
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Other investigations have provided additional evidence that
the theory is correct while studying the effect of experimental
procedure on the detectability index. Tanner, et al., also
conducted a four Aalternative forced choice (4AFC) experirent
with the other experimental variables the same as for the ¥YN
experiment described above. The experimentally determined
values for d' from both methods were in close agreement, with
the YN value falling slightly below the FC value. 1In a later
study by Swets (1959), three observers participated in ¥YN, 2AFC,
and 4AFC experiments, each at various signal energy levels.
Again, the signal was a 1 kHz tone with 0.1 sec duration. The
estimates of @' vs. signal energy from the 2 and 4AFC experiments
were nearly identical. The YN values were very similar to,
though more variable than, the FC values. Swets also repcrted
results for 2, 3, 4, 6, and 8AFC experiments at one signal energy
level. For three different observers, & graph of the percentage
cf correct decisions P(c) vs. the number of alternatives was
nicely represented by a constant d' curve.* Egan, Schulman,
and Greenberg (1959), cbtained ROC curves using a YN procedure
in which the observers were allowed to rate their yes answers.
The signal was a 1 kHz pure tone of C.5 sec duration. The results
were straight lines with slopes slightly less than unity. Schulman
and Mitchell (19€€), compared KOC curves obtained frem YN and
ZAFC procedures. They allowed the observers to use a six point
scale of confidence ratings for each observation with each method.
The signal ir each case was a 1 kHz tone of 0.1 sec duration.
Treir results shcw thet linear RCC curves provide an adequate
description of the data. However, the operating characteristics
for the 2AFC procedure were clearly higher than those of the YN
rrecedure ancd had unit slcpes. The YN curves tended to have
slopes less than unity.

The reason why the ROC curve for the YN experiment will
irherently lie belcw that of the FC experiment can be seen by
considering Equation (2-10) in the light of human behavioral
processes. For simplicity assume that Equations (2-13) through

(2-15) are valid with uy = 0 and ¢ = 1. Then
L exp 1= § (e-an?)
g = LT (3-1)
’- I (- £ c?)
3 ——"T: exp (- 3

= exp [d'(c - % a"nj.

et e F e e e i Skt

*The relationships between d' and P(c) for Torced choice
experiments are tabulated by Flliot (1959). 1

NI e——
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Figure 4 shows fN(x), fSN(x), and g under the above conditions.

The observer tends tc rodify too extreme a judgement criterion.

If B is set at a very large value, the observer is required to
have an overwhelmingly clear indicaticn of the presence of a
signal before he ought to call it a signal. In practice, he

will instinctively move the criterion downward and give a positioun
indication of the presence of a signal if, for example, he is

99¢ sure the signal is present even though the value of B calls
for being 99.9% sure. This tendency of most observers to relax
the criterion effectively leads to a B < B optimum. On the other
hand, B small calls for a positive answer a distasteful propcrtion
of times. That is, the observer should answer positively unless
the absence of the signal is a near certainty. Most observers
will tend to move the operating point upward, leading to 8 > &2
optimum. In practice, the general trend in the YN experiment is
to move in the direction toward B = 1* or Pon = 0.5 in Equaticn (2-12)
with unit cost matrix. Equation (2-9) says”™ that R is the slope
of an appropriate ROZ curve in Figure 2. It can be seen, then,
that if B is very large, reducing B means going to a curve with

a smaller siope which can be done only by operating on the lower
RCC curve in Figure 2. Likewise for small (less than unity) 8,

B < B optimum implies a large slope, again lowering the ROC curve
or decreasing performance. These behavioral processes do not
apply in the FC case, vhere the problem is merely to decide

which slot has the signal, not whether a signal appeared at all

in the particular test.

I+ should be noted here that the detection of an underwater
acoustic signal by a passive sonar operator is a YN preccedure
while available data shown later in Tables 3-1 and 3-2, relating
d' to signal energy, have been taken using the apparently superior
FC method. It is impossible to predict an exact relationship
between d'F and 4d',,,. The gqualitative argument in the previous
paragraph pgedicts a trend but says nothing about the magnitude
of the effects at low and high values of R. It must be assumed
that behavioral prccesses will vary from observer to observer
with the result that the distance between the two curves as well
as the slope of the 4° curve will vary. However, a reasonable
engineering approximation which circumvents this difficulty is
presented in the next chapter.

Once the theory has been shown adequate, and relationships
among various experimental procedures are determined, the next
step is to determine empirically the relationship between d' and
signal energy for the hearing mechanism. Green, Birdsall, and

i i B

*Green (1960b) presents a graph of f -experimental vs. {-cptimum
for a YN experiment. The resulting straight line has slope less
than unity and crosses the ideal curve at 8 = 1.
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Tanner (1957) investigated the dependence of signal detectability
on signal intensity and duration. Agcin, the signal was a 1 kHz
tone in a background of broadband Gaussian white noise. Their
experiment brought three important points to light. For human
observers d' varies linearly with signal energy, or more like
Equation (2-19).* Secondly, *here is a limit tc signal duration
beyond which the human hearing mechanism does not integrate the
signal perfectly. Third, there is an inherent inefficiency to
the hearing mechanism, i.e., Equation (2-19) must be multiplied
by a constant to predict experimental results. The latter two
results might have been expected due to the finite capacity of
the human brain to process information. The linear variation

cf d' with signal energy for the case of a pure tone in Gaussian
noise was more surprising in the light of Equaticn (2-18).
Tanner and Birdsall (1958) present a plausible explanation for
this linear variation. Their arguments lead to the conclusion
that if particular information such as signal phase, etc.; is
not utilized by the receiver being studied, the resuits are

| the same as if uncertainty in that particular signal property
had been introduced at the transmitter. If one accepts this
reasoning, the application of the SKS model in the case of

aural detection of a sinusoidal signal in Gaussi.ir noise seems
reasonable.

Green, McKey, and Licklider (1959) .nade further investigations
designed to quantify the relationship between d' and E. 1In a
2AFC experiment, they found the efficiency "constaznt" to be,
in fact, a function of frequency as well as d'. The signal
was a tone of 0.1 sec duration at various frequencies and signal
energ.es. The noise stimulus was broadband Gaussian white noise.
Their results for three values of d' are given in Table 3-1.
Their range of frequencies was 250 to 40C0 Hz cver a wide range

of d'.
ar 10 log (E/N_) (ab)
.54 5.6 + 2.0 f (kHz)
.95 7.4 4 2.0 f
1.47 9.1+ 2.0 f

Table 3-1. Experimental Data for Detectability Index
vs. Psychometric Function for a Sinuroid

s v o
s v 1 e i

*For a pulsed sinusoid the time - bandwidth prcduct is unitv.
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All the previously described work was concerned with the
detection of a pure tone masked by noise. Green (1960a) measured
the auditory detection of a noise signal in Gaussian noise. 1In

a 2AFC experiment, he found the efficiency to be constant fcr a
given d', for various combinations of signal duration, bandwidth
and center frequency. Morecver, he found that the bandwidth of
the masking noise made little difference so long as it overlapped
the signal width. The efficiency did turn out to be a function

of d'. Green's data for three values of d' are given in Table 3-2.

{db)
d’ 1C log ( B ) ]

0

j

Table 2-2. Experimental Data for Detectability
Tndex vs Psychometric Function for a
Gaussian Signal.

Tables 3-1 ané 3-2 give values for the psychometric function
at particular values of d'. Least square fits to the experimental
data of Green, et al. (1959), and Green (1:€0a), are plctted
in Figure 5.* The psychometric function is labeled A(d') tor
convenience, i.e.,

A(d') = 10 leg| —& ) (3-2)
NOJWT

The souont after relationship between detectability index
and signal energy for human aural detection is given in Figure 5.
There remain to consider in the fcllowing chapter some of the
differences betweer the closely contrcolled lakoratory experiment
ancd detection by passive scnar in the ocean.

*Fiogure 5 differs somewhat from the nocmograph of Watters and
Mcore (1970). Dr. Moore indicated in a telephone conversaticn
that his curves were tc have been corrected for time uncertainty

in the detection interval. Inadvertently, these corrections were
applied only to the data of Green (1960a).

17




NOLTR 74-27

CHAPTER 4

PSYCHOACOUSTICS IN THE LABORATORY AND THE REAL WORLD

Aural detection in the controlled laboratory experiments
discussed here and the cdetection of an underwater acoustic
source by passive sonar are problems that exist in two different
worlds. The psychoacoustic test involves the detection of
either pure tone bursts of constant frequency, amplitude and
duration, or pure Gaussian noise of constant bandwidth, center
frequency, average power and duration, in a background of pure
Gaussian noise of constant bandwidth, center frequency and
amplitude. 1In either laboratory case, the signal is completely
specified to the observer before the experiment begins, PS is
known, and the precise time interval for the process is de?ined.

Cn the other hand, a real ship or torpedo signature is a
mixture of many lines of varying frequency and amplitude
superimposed on a continuous broadhand signal of varying
spectral shape and amplitude. The masking background is at
best broadband noise of varying spectral shape and amplitude
and often has line character of its own. Neither the a priori
probability of the signal being present nor the time of its
possible presence are knowr. What are the effects of these
and other differences? Answers to this question are discussed
below.

The first difficulty is the choosing of an operating level.
While the values and costs of correct and incorrect ¢z2cisione
can be estimated, a knowledge of Pgy is another matter. Certainly
in the case c© torpedo detection, for example, Pgy is small even
in the time of war unless the target has already detected the
presence of the firing ship. From Equation (2-12), when Pgy 1is
small, R becomes large. As was pointed out in Chapter 3,
fcr large f the human tends to choose an operating pcint such
that performance is less then optimum. While an operator who
has been alected might perform better, due to a higher P
(or & closer to unity), there is still no quantitative way to
determine the optimum cperating point. However, this does not
preclude the usefulness of the method. We merely live with less
than optimum performance and an inherent variability due to
differences in hehavioral process from observer to cobserver.
Ardrews and Hovater (1971) estirate that reasonable resvits
fer humans can be obtained with signal to noise ratios cuch
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that 0.4 £ d' £ 2.0. Table 4-1 gives various combinations of
P(D) and P(F2) for d' in this range, assuming Equations (2-13)
through (2-15) hold. It should be pointed out that P(D) and
P(FA) are defined for relatively short intervals, on the order
of 1 sec, and rot for the total duration of the encounter with
the ship or torpedo. The extension of these cocncepts to total
encounter times is discussed in Chapter 5.

d' = 0.5 d* = 1.0 d* = 4.5 da' = 2.0
P (D) P (FA) P (D) P (FA) P (D) P (FA) E (D) P(FA)
0.69 0.50 0.84 0.50 0.93 0.50 0.98 0.50
0.66 0.46 0.79 0.42 c.es 0.38 0.95 0.34
0.62 0.42 0=78 0.34 0.82 0.27 0.88 0.21
0.58 0.38 0.66 0.27 0.73 0.18 0.79 0.12
0.54 0.34 0518 0.21 0.62 0.12 0.66 0.053
0.50 0.31 0.50 0.16 0.50 0.07 0559 0.02

Table 4-1. Various Combinations of P(D) and P{FA)
for a Given Value of 4d°'.

Yes-No vs Forced Chceice

Once the operating level is determined, a useable
relationshlp between d'YN and d'pe must be ascertained so that
the FC data of Figure 5 may be used. Schulman and Mitchell (1966)
show theoretically and verify experimentally that

(4-1)

where D and D are the prpendicular distances from the point
P (D) EQFA) HNS to the anear ROC curves (plotted on normal-
normal paper) obtained from ihe two procedures using identical
boundary conditions. While the slope of the 1! curve will vary
from observer to observer, a reascnable approximation wculd assume
that this slope is unity. Tre result is that

L

Cz\/fd YN (4-2)

-

T LIPRS

or the detectability in the YN procedure is decreased by a
factor of

20
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Slowly Increasing Signal

When the signal is slowlv increased, as is the case in
passive sonar detection, the minimum detectable signal is
greater than if the signal is pulsed. This is especially
true if the signal and the noise are of the same general
character where the only detectable change is one of magnitude.
Horton (1959) estimated the decrement to performance due to
this effect at about 2 db. No detectability index was specified
since the theory of signal detectability was not used then.

Fluctuating Signal

Urick and Gaunaurd (1972) show that fluctuations cause
the detectability of weak signals to be higher. This phenomnenon
can be visualized as giving the signal a "pulsed" character.
They define a fluctunation index k as

o] 2711/2
k = [l + (-&—@-) ] (4-3)
N

where oy is the standard deviation of the fluctuations of the
signal. The fluctuation index can be related to V, the
coefficient of variation in amplitude of the signal by

(o]
g=-_2_ (4-4)
Hon

That is, if Ky is set equal to zero, in Equation (2-16),

2

k= [1+ (@wnt/? (4-5)

Irn the limit cof large distances, the distribution cf fluctuations
is Rayleigh (Skudrzyk, 1957), so that the coefficient cf variation
in amplitude given in Equation (4-4) is numerically equal tc 0.52.

2%
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Whitmarsh (1963) gives an experimental value of 0.14 at 3 kyds.
This is not inconsistent with Skudrzyk if the effect is roughly
proportional to distance, and large distances are assumed to
mean at least 10 kyds. Then, from Equations (4-3) and (4-5),

g
M g.52 g, (4-6)
N

For fluctuations of magnitude nop, which have period of the
order of the integration time of the ear, Equation (4-6) predicts
that, for a given P(FA), P(D) 1is increased such that

3’ A (1 + 0.52 n) at

FP (4-7)

FNP’

where FP and FNP stand for fluctuaticns present and not present,
respectively.

Uncertain Signal Frequency

There have been many studies of the effect of uncertainty
in signal frequency (Tanner, et al., 1956; Veniar, 1958; Swets,
Shipley, McKey .nd Green, 1959; Creelman, 1960; Green, 12€1;
and Gundy, 1961). 1In general, the experiments first established
a baseline for compariscon by recordina the performance when the
signal frequency was specified. All the studies reveal that
performance decreases as the number and range of possible signal
frequencies increase. Green's study in particular produced
consistent quantitative results. He found the decrease in
detectability of a gated sinusoidal signal in noise to be about
3 db at &' = 1, in the case where the range of signal frequency
uncertainty was 3.5 kHz. (The signal occurred anywhere between
500 and 4000 Hz). His results tock into consideration the
variat.ion of the psvchometric function with frequercy.

Time Uncertainty

Eaan, Greenbkerg, and Schulman (1961) and Egan, Schulman, anc
Greenberg (1961) investigated the effect of time uncertainty in
the presentation of the signral. They found that the performarce
decreased as the uncertainty in the starting time increased. For
various valuves of signal energy, they found the limit tc the effect
to be
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v — ! -
é gmg = 2d STU * (4-8)

where STS and STU stand for starting time specified and
unspecified, respectively. This limit value occur-ed for
values of starting time uncertainty between 4 and 8 sec.

Combination of Effects

Up to this point, five factors have been discussed which
would modify the relationships of Figure 5 for simple pulsed
signal tests to a passive sonar situation. The problem now
is to combine their effects. Green (1960b) in a discussion
following the ideas of Peterson, et al. (1954), argues that
the uncertainties in the signal do not add directly. His
model is that of an observer faced with the task of detecting
a signal about which there are M orthogonal uncertainties.

As Green indicates in a plot of psychometric function A(4d')
vs. M,

—5— > 0 (4-9)
but
a%a(a’)
< 0. {4-10)
aMm

That is, as M increases, its effect on A(d') decreases. Green's
graph indicates that uncertainty M has half the effect of
uncertainty M-1.

It is difficult to determine exactly how all the above
listed uncertaintizs affect the detectability index when they
are combined in the real world situation of detection by passive
sonar in the ocean without conducting an exceedingly complex
actual experiment. However, the following arguments are presented
as a reasonable way to prcceed.

First, consider the opposing effects of a slowly increasing
signal and fluctuations of that signal. Horton gave a value of
3 db less detectability for a slowly increasing, or non-pulsed
signal. Fluctuations can be shown to increase the detectability
by about the same amount in the following way. Assign the parameter
n in Equation (4-7) a value of 1.7 (1.7 oy will be exceeded 5% of
the time assuming a Gaussian distributiong, and d' a value of 2

23
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(the upper 1limit of the interval 0.4 £ d' < 2.0 given by Andrews
and Hovater (1971) as reasonable). Then Equation (4-7) says that
for d' of 2.0 with fluctuations present as in the sonar case,

the d' for fluctuations not present must be divided by a factor
of 1.9, yielding 1.1. Figure 5 shows that the db difference
along a typical curve such as for 1 kHz between 4' of 2.0 and

1.1 is 2.8 db. Since these two effects are of the opposite

sign and of the same approximate magnitude, and since no detailed
experimental evicence as to their exact effects exist, they are
assumed to cancel.

Secondly, it is assumed that the effect of frequency
uncertainty, measured at d' = 1 to be 3 db, varies as does
the effe-t of time uncertainty. Since the effect of time
uncertalnty is to halve the detectability index and since
at d' = 1 this is equivalent to 3 db (see change of A(d') from
d' = 2 to d' = 1 on typical curve of Fig. 5) as in the case of
frequency, it is Aassumed that the effect of frequency uncertainty
is also to halve the detectability index when considered alone.
Therefore, since both time and frequency uncertainties, considered
independently, halve the detectability index, we can write

dl

(L+1) a'p=(1+1 a, (4-11)

2 d'F = 2 d'T

vhere d'p is the detectability index for time uncertainty and
d'p is the detectability index for frequency uncertainty.

When both effects are considered together in the light of
Green's arguments concerning multiple orthogonal uncertainties,
one gets

a’ (1 +1 + 0.5) d'FT (4-12)

2.5 &

FT
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where d' stands for the effective detectability index with
both time and frequency uncertainty and uncertainty M + 1 is
assumed to have one half the effect of uncertainty M.

Firally, in order to use the FC data in Figure 5 in the
YN passive sonar problem, Equations (4-2) and (4-12) arz combined
to yield

a' Y2 . 2.5 d'e (4-13)

ff

1]
3.54d off

where d'eff is the effective d' in the passive sonar problem.

Equation (4-13) represents an inefficiency of the human
ear in detecting a signal in a passive sonar situation, as
contrasted to its ability to detect a pulsed signal in the
n Alternative Forced Choice situation correspording to
Figure 5. What remains is to determine the correction to
Figure 5. It has already been pointed out that both pure
tones and broad band noise tend to be detected roughly in
acccrdance withh Equation (2-19). Figure 5 represents the
best experimental modification to the theoretical relationship
of Equation (2-19) which predicts that d' should double each
time the signal energy doubles. Study of the slope of the
pure tone curves ir. Figure 5 shows that they have on the
averaze a slope of about 3 db change in A(d') per doubling
of d', which agrees well with “he linear relationship of
Equation (2-19). The desired relaticnship for passive
sonar must have the same slope for the curves relating
d' to A(d') as in Figure 5. The appropriate correction to
Figure 5, therefore, is derived from Equations (2-19), (4-13),
and (3-2) as

A(d")

10 log 3.5 (4-14)

5.4 db.

Figure 6 has been derived from Figure 5 by shifting
the curves over by 5.4 db to give the detectability index
for the human ear in passive sonar detection. The data of
Figure 6 are used in the following chapter to derive expressicns

25
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for DT as a function of frequency and type of signal. The
ordinate in Figure 6 is really 4° £F from Equation (4-13),

but the subscript has been droppes for the sake of simplicity
through the rest of the discussion.

27
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CHAPTER 5 3

DETECTION THRESHOLD AND THE SONAR EQUATION

As pointed out in Chapter 1, the sonar equation parameters
are, in general, functions of frequency. Any complete discussion
of the equation must, therefore, take frequency into account.
Barger (1971) has presented a useful graphical treatment of the
sonar equation. His method combines NL, DI, and DT in the form
of an "Equal Detectability Curve," or EDC. The EDC is positioned
over a plot of SL with the frequency scales lined up. Then the
EDC is slid downward until it just touches the SL curve. The
FOM is the difference between the ordinate values of the SL and
EDC curves at the point of coincidence. Thus, the process yields
the numerical solution of Equation (1-1). The point of intersection b
determines the frequency causing the detection. Barger's method
thus facilitates the calculation of detection range and points to
the frequency location where reductions in SL wnuld have the

greatest effect in decreasing FOM and consequently, Getection ;
range. 4
;

Barger (1971) presented two EDC's, one for tonal signatures
and one for broadband signatures*. In the discussion below, DT
is derived for lines and for broadband signatures, based on the
discussion of Chapters 3 and 4, pointing out any variance with
the method of Barger. The detection threshold for lines is
defined as that ratio of signal to noise that can just be detected
by the human ear, and is expressed in db as

DT = 10 log éi . (5-1) *
O

The expression for DT can be related to the psychometric function,
A(d'), using Equation (3-2), and the relationships E = ST and
WT = 1. Thus

DT = A(d') - 10 log T. (5-2) :
] *A glance at Figures 5 and 6 show that DT is a function of the :
; type of signai. The two types of signal must, therefore, be 3

treated separately, using the appropriate value for DT.

3 28
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For passive sonar detection, the non-transient signal is effectively
a continuous one of unlimited extent sn» that the signal duration
parameter, T, is irresolute. However, Green et al. (1957), found
that there is an upper limit to T beyond which the performance of
the hearing mechanism typifies imperfact integration. This value

of T was estimated to be about 150 msec. Licklider and Green (1961)
presented more thorough data pertaining to the integration time.
They found for a 1 kHz tone that the psychometric function is

flat for T < 0.15 sec, rises linearly with slope 1.5 db per doubling
of time for 0.15 < T < 1.5 sec, and rises linearly at the rate of

3 db per doubling of time for T > 1.5 sec.* These firdings mean
that the detection threshold decreases with slope 3 db per doubling
of time for T < 0.15 sec, decreases with slope 1.5 db per doubling
of time for C.15 < T < 1.5 sec, and is flat for T > 1.5 sec.
Quantitatively this means that, for passive sonar detection of a
continuous signal, the quantity (10 log T) must have a fixed value
of

10 log T + 10 log (0.15) + 5 log b—l—l—sg (5-3)

= 23 1B

This corresponds to a limit on the fully effective integration
time for the human ear of 0.48 sec. The expression for DT, then,
is

DT = 3.2 + A(d"). (5-4)

Equation (5-4), together with the data of Figure 6, produces

the family of curves shown in Figure 7% for DT vs. frequency

for various values of 4' for detection of lines by passive sonar.
The dashed portions of the curves are extrapolations since data
were not taken at those frequencies.

*The -.ctual data do not contain these sharp discontinuities, but
the above description is an adeqguate one.

+Barger (1971) presented a curve for DT for lines using d' = 1.7
and the uncorrected values of A(d') as reported by Watters and
Moore (1970). For T he used the geometric mean of 0.15 and 1.5,
which is equivalent to the procedure of Equation (5-3). His curve
is approximestely 5.4 db lower than Figure 7 would yield.

29
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The broadband signal is not so straightforward to treat.
Here,

DT = 10 log % A (5-5)
and WT # 1, so that Equation (3-2) leads to
DT = A(d') - 5 log W - 5 log T. (5-6)

If the integration times of the ear for broadband and tonal
signals are identical*, Equations (5-3) and (5-6) lead to

DT = 1.6 + A(d') - 5 log W, (5-7)

where W is the width of the broadband signature in the

detection region. A basic problem arises in the broadband detection
case in that any EDC must be calculated for a specific bandwidth

but there is no way of knowing the bandwidth of the signal, W,

which will cause detection until after an EDC has been applied

to the SL curve. For the common case where SL is presented in
proportional bandwidths such as 1/3-octave (23%) or 1/30-octave
(2.3%), it is useful to define

DT

DT - 5 log(af/W) (5-8)

1.6 + A(d') - 5 log(af),

where a is a constant and f is frequency, with units of both
chosen to give af in Hertz. This artifice allows the handy
calculation of FOM', defined below. It does not require a
prior knowledge of the frequency region causing detection.
Equation (5-8) and the data of Figure 6 were used %o produce
the family of curves in Figure 8 which

*In a recent report, Moore (1372) would add 1 db to Equation (5-7),
quoting the data of Green (1960a). We feel that Green's data is
rather sketchy and could easily be interpreted to yield the same
value for T as that of Licklider and Green (1961). We would,
therefore, use the same value in both cases.
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gives DT' vs. frequency for a = 0,023 and various values of 4d‘'.
For constant bandwidth signatures, define

pr?t

DT + 5 log (W) (5-9)

1.6 + A(d"),
which is coustant for a given 4'.

Corresponding to Equation (1-1), a similar expression can
be set up using DT'. That is,

FOM' = 8L - NL + DI - DT'. (5-10)
Subtracting (5-10) from (1-1) gives
FOM - FOM' = DT' - DT. (5-11)

Using Equations (5-7) and (5-8) for proportional bandwidth
signatures

FOM = FOM' + 5 log(W/af) .* (5-12)
Using Equations (5-7) and (5-9) for constant bandwidth signatures
FOM = FOM' + 5 log (W). (5-13)

For proportional bandwidth signatures, the procedure is to apply

an EDC based on any value of a, since if a is changed, the shape

of the curve is not changed, only its absolute level. Then after
the general area of intersection with the SL curve (presented for
the same bandwidth) is found, and a value of FOM' determined, a
correction according to Equation (5-12) can be calculated.**

For constant bandwidth signatures, apply an EDC based on

Equation (5-9), and afterwards ccrrect according to Equation (5-13).

*Since W in general will be greater than af, the value of FOM is
inzreased over FOM' by 5 1log (number of analysis bands contained
in the bandwidth of the signal contributing to detection, W).
**Barger (1971) presented a curve for DT' for broadband signatures
using d' = 1.7, a = 0.23, and the value of A(d') as reported by
Watters and Moore (1970). He assumed that the width of the
broadband signature, W, responsible for detection is always

0.23f, and thus FOM = FOM'.
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2 Several words of caution are in order, before using
3 Figures 7 and 8:

¢ 1. The analysis of the signal spectrum must have been

3 done on a sufficiently narrow band basis to detect

any lines or narrow band humps of energy. If only

1/3 octave analyses are performed, for example, both
types of features can easily be lost with the possibly
erroneous conclusion drawn that the detecticn is due
to a full 1/3 octave band.

2. In the case of broadband signatures, W, defined as the
width of that portion of the signature which touches
the EDC, must be greater than the critical bandwidth
(Swets, Green and Tanner, 1962)* if the data of
Green (1960a) is to be considered valid.

. 3. In the case of kroadband signatures, Equations (5-12)

or (5-13) must be applied, as appropriate, after the
; graphical manipulation.

E i The following example will illustrate the graphical methci

j first described by Barger (1971), but modified as described above.

Figure 9 shows a hypothetical signature presented in the one-

! thirtieth octave bands. It is assumed that there is one line

& at 3.6 kHz, with the rest of the energy being broadbard.

¥ Figure 10 shows two EDC's, one for lines and one for 2.3%
bandwidth broacband. The inputs to Figure 10 are:

1. NL given by Figure 11 for lines, and by the spectrum

level of Figure 11 corrected for 2.3% bandwidth for
broadband.

2. DI given by Figure 12.

R T N

*The ear can be imagined to be like a comb filter consisting of
a large number of narrow adjacent filter bands, called the
critical bands of hearing. The kandwidth of a critical band \
is then called its critical bandwidth. While the concept of :
a critical bandwidth is well accepted, there is disagreement
. on the numerical values. The most widely used values are
4 about a constant 65 Hz bandwidth for signals up to 1000 Hz,
: and rising proportionally to the signal frequency above that
(500 Hz at 8000 Hz). The range of values determined by various
investigators cited in the reference is 40 to 160 Hz for 1000 Hz
signals. This indicates that W should be at least three 1/30
octave bands wide above 1000 Hz and more below.
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3. DT and DT' from Figures 7 and 8, respectively,
corresponding to d' = 1,5 (see Table 4-1 for
P(D) and P(FA) whicih correspond to 4' = 1.5).

4. a = 0.023.

Using the EDC for lines, one sees that the FOM = 96.3 db and

the frequency of detection is 3.6 kHz. Using the EDC for broad-
band noise, one sees that the FOM' = 87.3 db and the frequency
of detection is 3+kHz. From Figure 9, the wid*h of the hump at
3 kHz is 2.2 kHz. Therefore,

- ' 2200 _
= 87.3 + 7.5
= 94.8 db*

The procedure given above is adequate for calculating the
Figure Of Merit of an uncomplicated signature like the one
given as an example. However, when several lines appear in
the signature, their presence must be considered. The question
of detecting multiple component signals was studied bv Green (1958).
He derived an expression for the detectability index of lines
of different frequency occurring simultaneously. For the case
where each line is at least a critical bandwidth removed from
every other line

+The procedure used here for determining the width of the hump
is simple. The edges of the band are taken as the frequencies
where the separation between the Equal Detectability Curve and
the signature first reaches 3 db. In the example given, this
occurs at 2.2 and 4.4 kHz. The justification for this procedure
is not rigorous. It is based on an analogy to the normal
bandpass filtering problem, which actually passes an amount

of energy equal to what would go through a filter with zerc

loss within the same bandpass, and infinite lcss outside the
band. This certainly is an area deserving of more study.

*It is interesting to note that the broadband portion of the
signature is predicted to be only 1.5 db less detectable (an

FOM of 94.8 db as opposed tc 96.3 db) than the line which

stands up about 9.5 db above the broadband noise. This is ;
due to the width of the broadband signal. 1
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2 2| 172
dr = (@) (5-15
[1{31 i ’

where d' is the index for line i. Green experimentally

verified Equation (5-15) for the case of two lines. Green,

et al. (1959), later verified this Equation for 16 sinusoids.

If the frequencies are separated by less than a critical
bandwidth, Green's model for detecting multiple compcnent signals
is much more complicated, and apparently has not been tested
experimentally. In the case of two lines of equal magnitude,

his complicated expression has the correct limits, approaching

Y2 d' in the limit of large separation and approaching 2 d'
in the limit of zero separacion.

The concept of multiple line detection was applied by
Barger (1971) for the case where there is more than one
coincidence, or near coincidence, of lines with the EDC.
Andrews and Hovater (1971) also noted the effects of the
presence of multiple lines on detection. The following
method is proposed as a general method for treating the
problem when the several lines present do not necessarily
intersect the EDC together.

Equation {5-15) provides an expression for the overall
equivalent d' for all the lines if the d'j is known for one
relationship among the d',. The (n-1) other relationships
can be defined by assuming

A(d'l) - A(d'i) = FOM, - FOMi = 6

1 (5-16)

il

where FOMj is tha Figure Of Merit calculated for line 1 using
the EDC (which assumes a particular value of d';) for line 1;
line 1 being the line of first intersection. Tﬁe d' curve
used is the one corresponding to the frequency of the primary
line, since the appliceation of the EDC has accounted for the
frequency dependence of d'.

Equation (5-16) positions the different d'., along a curve,
relative toc one another. Equatica (5-15) fixes their absolute
position. The increase is detectability, then, is given by

AFOM = A(4d') - A(d'l), (5-17)

where, acain, the A's are determined from the same @' curve.
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Al example of the above procedure will be shown based
on the hypothetical signature of Figure 13. The Equal
Detectability Curve for lines from Figure 10 is applied,
resulting in the individual FOM; values for each of the
three lines as listed in Table g-l. The second column lists
the ;7 values, as defined in Equation (5-16), relative to
Linel. Now we want to have d' = 1.5 since the line detect-
ability curve of Figure 10 is based on that value. Therefore,
we estimate a d'y = 1.1 for Line 1 on the f = 3 kHz line* of
Figure 6, corresponding to A(d’y) of 19.3 db. From Equation (5-16),
A(d',) must be 1.0 db less, or 18.3 db. Therefore, a', is
0.83. Similarly, A(d'3) is 17.0 db and d'z is 0.55. his
gives a resultant overall 4' of 1.48 from Equation (5-15)
which is very close to the target value of 1.50. The final
values listed in Table 5-1 were obtained by raising each of
the values obtained from the initial estimate by 0.02. The
value of A{d') corresponding to d' = 1.5 is 20.7 db so the
AFOM from Equation (5-17) is 1.4 db. The final FOM is increased
1.4 db by the two extra lines, over the value of 96.3 db for
the highest individual line, for a total of 97.7 db.

' FOM, B ar.
i il i

Line 1 96.3 db 0.0 db I:12 db
Line 2 95.3 db 1.0 db 0.85 db
Line 3 94.0 db 2.3 db 0.57 db

Table 5-1. Values for Variables in Sample Calculation
of Multiple Line Detection.

Two well separated lines, both just touching the EDC,
add 1.5 db to the !'OM over what either line gives by itself.
Similarly, three iidependent lines all touching the EDC add
2.2 db. Table 5-2 has been constructed to give further
guidance on the effect of two well separated lines. It lists
the increase in FOM produced by the lower of two lines when
its effect is added to the FOM from the hicher. Table 5-3
gives additional gquidelines for when to stop considering the
effect of multiple lines due to negligible increase in FOM
(less than 0.1 db). Two extreme situations are covered in
the Table. The first is for one line touching the EDC, while

*It makes no difference which frequency line is chosen on
Figure 6 since they are all parallel. The frequency dependence
is in the EDC of Figure 10.
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there are anywhere from one to four lines equally far below
the EDC. The second situation is for the line in question
to lie below the EDC, while there are one to four other lines
touching the EDC. In summary, an exact procedure has been
given to handle the multiple line situation. In addition,
several examples provide guidance as to the magnitude of the
increase produced by multiple lines and limits below which
their effects are negligible. With these guides, reasonable
estimates can be made as to the effect of multiple lines in
those cases where it is not necessary to make a more exact
calculation.

db Down Relative Increase 1in
to Higher Line FOM

0 db 1.5 db

1l db 1.1 db

2 db 0.7 db

3 db 0.4 db

4 db 0.2 db

5 db 0.1 db

Table 5-2. Increase in FOM Due to a Second Line
as a Function of its Relative Amplitude

FOM. - FOM,
1 i
ONE LINE TOUCHING EDC (N-1) LINES TOUCHING
NUMBER OF LINES (N-1) LINES BELOW EDC, ONE LINE BzLOW
2 5.2 db 5.2 ¢b
3 5.9 db 3.8 di
4 6.2 db 3.1 db
5 6.4 db 2.6 db

Table 5-3. Difference in FOM Level Necessary Before
the ith Line Can be Neglected in Multipie
Line Detection

i A final refinement to the procedure of predicting detection
- 5 ranges is the concept of sequential observations. As was

1 g discussed earlier, most underwater acoustic sources of interest
4 ; are continuous ones in comparison to T, the integration time.
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This affords the sonar operator the luxury of withholding his
decision, as to the presence of a target, until after several
observations. The operator can, in effect, trade time-until-
decision for increased certainty.

Suppose, for example, there is a variable cost for
¢.h observation as well as a fixed reward (or fine) for
a correct (or incorrect) decision. Swets and Green (1961)
showed that the number of obc-~vrvations is an inverse function
of the cost per observation. The sonar operator is faced
with a similar problem and will follow the same behavior
pattern.

One theory (Swets and Green, 1961) says that the
detectability index following the n'th observation is
related to the value of d'1 for the first observation as

_Rlugy mug) g
1 1/2 =n d
n O'N

a' 1 (5-18)

Equation (5-18) says that the distribution of the sum

of n random variables has mean equal to the sum of the

means [n(uy - BN)], and variance equal to the sum of the
variances (no4y). This result is equivalent to Equation (5-15)
when all the d'i are the same.

Experimental results generally disprove Equation (5-18).
Pollack (1959) found that Equation (5-18) consistently over-
estimated his experimental results where word intelligibility
was measured as a function of repeated presentations of a word
in noise. Swets and Green (1961) found that an observer's
performance in detecting a sinusoidal signal in noise falls
below that predicted by Equation (5-18) for n > 5. Watters
and Moore (1970) found that the ability of their subjects to
integrate separate clues was less than that predicted by
Equation (5-18), when their task was to detect a line component
of a submarine's radiated noise signature when masked by stern
aspect radiated noise from a *orpedo. In generul, one can see
from Equation (5-18) that as n gets inordinately large, so does
dn, which is not reasonable.

Another theory, advanced by Andrews and Hovater (1971),
suggests that the effect of sequential observations is binomial,
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i.e., that
P(D) = fj B! ___ o™ (1-p )P (5-15)
o8 m!(n-m)!{ D D
and
n
nl Il r-m
P(FA) = 3, “— Pp (1P, ) (5-2¢)
= n! (n-m)! “FA F2

where p and pp, are the probabilities of detection and false
alarm, respectively, for an individual cobservaticr, and c is
scre nurker of the n cbservations which exceed the operating
level. This thecry allows the parameter, c, to be chosen in
a fortuitcues vey. The chief criticisms of this model are

(1) a binomial process such as Equation (5-19) and (5-20)
assumes perfect memory and (2) Andrews and Hovater do not
test the model against experimental data.

It seems reasonable that there will be upper limits to
c and n beyond which the human performance will not typify
perfect memory. These limits will probably be functions of
d' as well. Andrews and Hovater do investigate several
hypothetical cases with promising results. But these cases
are not tied to the reality of an experiment and use n = 60
and ¢ = 10 or 20. One might suspect that human performance
would decline before these high values are reached, as the
results of Swets and Green (1961) indicate.

While other models (see, for example, Boehme and Weidmann
(1970); Iglehart (1966); and Birdsall and Roberts (1965)) have
been proposed, it is clear that there is no established theory
to describe the effects of sequential observations. It is also
clear that the effect must be considered in predicting detection
range. Sequential observations, therefore, remain a prime area
for further study.
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CHAPTER 6

DISCUSSION

Purpose of Study

Before evaluating the accomplishments of this report, it
is desirable to understand the original objective of the study
and how it evolved into its present form. The original objective
was to study the field of psychoacoustics in sufficient depth
to judge its accuracy and usefulness in predicting alertment
and masking performance of a fleet weapon. It soon became
clear that there were differences in predictions among the
various works in the field. It also appeared that several
seemingly important factors were not being treated. The study
progressed then to an evaluation of the importance of these
factors and investigations as to how they could be taken into
account. 7Techniques were developed to account for some of the
factors, while others appeared to require further researcn before
satisfying answers will be found. The final purpose of the
study thus became threefold; to compile a status report on
the field of psychacoustics applied to passive sonar, to
attempt to advance the field by documenting areas of disagreement
with current doctrine and presenting the authors' proposals
for handling certain of the additional factors and finally to
list those ar:as which appear to need further study. Many of
the questions discussed in Chapter 4 have been studied and
reported on individually to some degree in the literature.
lowever, not all of the effects have been applied to the passive
sonar problem. What is new here is the attempt to find ways
t> combine all these effects and determine their application
to the detectability index. The end result is a set of curves
for detectability index, Figure 6, which is substantially
different from those developed or used previously.

Chapter 5 attempts to define the detection threshcld
for a human working with passive sonar. The choice of an
integration time for the ear is reviewed. Combining this
with the curves for detectability index of Figure 6 gives
the desired end result curves cof detection threshold, Figure 7
for lines, and Figure 2 for broadband noise. 2gain these are
rore than trivially different from others in the literature.
Tre concept of an Equal Detectability Curve is reviewed.
This is a graphical technique for solving the sonar equation
as a function of frequency and determining which feature of
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a noise signature will predict first detection or last
unmasking. If broadband noise is involved, a technique is
presented for utilizing the actual width of the signal being
heard, rather than the usual assumption that the bandwidth
involved is one third octave. If lines are causing detection,

a system is proposed for handling the effect of multiple lines,
each of which may be contributing to the detectability. Finally,
the effects of sequential observations are discussed, and the

conclusion is reached that this question has not yet been brought
under control.

The model for the detection threshold of the human ear
outlined in Chapter 5 is quite complex in comparison to the
simple one cited by Urick (1967). However, the present model
addresses many important questions such as the dependence of
the detection threshold on tvpe and frequency of signil. This
advantage far outweighs the extra complexity, for it permits
focusing attention on those portions of an acoustic signature
which are contributing to detection. Thus noise reduction
efforts can be concentrated on certain limited frequency
bands rather than across the koard. It is important from both
cost and time standpoints that it be possible to develop
mathematical tachniques and models for predicting alertment
and masking for various weapons from acoustic signatures alone.
The alt~rnative of huge numbers of sea trials, or even simulator
trials with human operators is simply not practical, excepting
as a check on the adequacy of the model.

It should be emphasized that the proposals inade here are
not considered to be the last word. Instead they are being
advanced for consideration and criticism by others. The
application of psychoacoustics to passive sonar alertment
and masking is still in an early stage of development.

Accomplishments

Chapters 2 and 3 are basically a review of the literature
and contain little that is new. Chapter 2 covers the statistical
theory of signal detection starting with the fundamental work
of Peterson, Birdsall and Fox {1954). Chapter 3 is a review
of the literature r=garding the basic application of signal
detection theory to psychoacoustics. Tanner, et al. (1956),
showed rather convincingly that the theory of signal detect-
ability is indeed the proper way to proceed in studying the
response of the human ear to aural stimulus. Green, et al.
(1959), and Green (1960a) determined just what the relationship
is between the detectability of a signal and its energy. It
is possible for the reader to serure the basic education neeced
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in this field from a careful study of this summary. For those
desiring to go further in depth intc some aspect, an extensive
bibliography of original source material is cited.

Chapter 4 investigates some of the differences between
the relatively simple laboratory tests reported in the literature
and the complex problems of actual passive sorar operation. It
starts with the problems of choosing an operating level and
having the observer stick tc that level. Much of the literature
presents results for n Alternative Forced Choice tests. Sonar
is more nearly related to the yes-no situation which reduces
the detectability. Almost all tests are done by instantaneously
gating the signal on and off, whereas a sonar signal as heard
by the ear will increase relatively slowly in level, again
making it less detectable. Working in the opposite direction,
real signals have fluctuations due to the medium which tend
to make them more detectable. Uncertainties in exactly what
frequency or character the signal will have, and when ic will
show up in time, both reduce the detectability.

Effect of Errors

It is desirable to have some indicat.ion of the effects of
any errors or uncertainties in the determination of the
detection threshold. An elementary way to get this is to
consider the precision of the data which underlies the theory
of detection threshold for the ear, and then to translate this
into potential uncertainty of range in the ocean for alertment
or masking. As an example, consider the data of Green, et al.
(1959), for tones. These are based on the resul.s of 25 trials,
by each of 11 okservers, at 10 signal levels, for 16 different
frecuencies, or 44,000 observations. This is a rather thorough
experiment. Even so, the aunthors estimate the variance about
a given value of P(c) to be

0% = P(c) [1 - P(c)]/25, (6-1)

where 25 is the number of observations at each point. Table 6-1
lists the effect of this uncertainty on the detectability at
various values of 4°'. Ar. inspection of the data of Green (1960a)
for noise bursts reveals that similar uncertainties exist there i
also. ]
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a’ ADT due to AP (c)
0.5 2.2 db
1.0 1.5 db
1.5 1.6 db
2.0 2.1 db

Table 6-1. Uncertainty in Detection Threshcld E
Due to Uncertainty in P(c). 3

To translate the db uncertainty given in Table 6-1 into ]
terms more relevant to the problem of the real world, Table 6-2
presents the uncertainty in detection range resulting from an
uncertainty of 1.6 db in DT for 4' = 1.5. Simple spherical
spreading has been assumed since any better assumption requires
knowledge of local factors such as velocity profile, frequency,
water depth, sea state, and bottom conditions. Attenuation and
effects of velocity gradients would combine to make the largest
values somewhat unrealistic in the real world situation, but the i
1 - 10 kyd ranges would certainly be affected that much. 1
Furthermore, Table 6-2 takes only one source of uncertainty
into account. There are many more. It is important, therefore, 3
to make these models as accurate as possible.

W T o, §U Ve TR T

A L

FOM (db) 1 ange (kyds) Spread (kyds)
100 100 83 - 120 ]
90 32 26 - 38 ;
: 80 10 8.3 - 12 ]
- 70 3.2 2.6 - 3.8 i
f 60 1.0 0.8 - 1.2 |
4

Table 6-2. Uncertainty in Detection Range Due to
Uncertainty in P (c).

Areas for Further Work

It has already been pointed out that this report doe not
claim to represent the last word on passive sonar detection.
Sucgestiocrs have been made as tc how to hanile a number of
rroblems relating tc the application of psychoacoustics tc passive
sornar. However, there ace a number of other areas where the
basic experiments and knowledge available seem inadequate.
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One very important assumption concerns the way the
uncertainties outlined in Chapter 4 add. This assumption,
although reasonable, is not founded on any experimental
evidence since no one has considered the combined effect
of time and frequency uncertainty, for example. Here is
one place where further experimental study might resolve
an important question.

Much of the discussion outlined in Chapters 3 through
5 is justified by experiments using a 1 kHz tone. While it
seems logical that these phenomena can be considered independent
of frequency and character of signal, a recent report by Moore
(1972) points to an example where the assumption may not be
valid. Moore interprets the integration time for a 1 kHz tone,
as reported by Licklinder and Green (1961), to be 0.45 sec.
He interprets the integration time for broadband signals, as
reported by Green (1960a), to be 0.30 sec. This difference
in integration time would reduce the Figure 2¢€ Merit of a
broadband signal by 1 db. As pointed out earlier, we feel
that Green's (1960a) data does not permit determination of
the break point to this degree of precision. This i3 a good
example of an area where additional thorough experimentation
can better determine the dependence of integration time, if
any, on the type and frequency of the signal.

It .ould seem logical that the decrement to performance
caused by a slowly increasing signal (Horton, 1959) as well
as that due to uncertainty in signal frequency (Green, 1961)
would be a function of the detectability index, as were the
other corrections. This assumption was made in the derivation
of Equation (4-12). Also, as Horton points out, this effect
is most pronounced when the character of the signal is like
that of the noise. It would seem, then, that broadband signals
would be more adversely affected than tonal ones. Here, again,
detailed experimentation could answer these questions.

What is the effect of multiple lines when their separation
is less than one critical bandwidth? While Green (1958) presented
a plausible approach to this question, it has not been tested
experimentally.

The effect of multiple bands of noise has not been defined.
The effects of siuply widening a single kand of noise has been
covered, but what happens when the two bands are well separated
in frequency? Possibly the effects are additive in the same way
that two lines separated by more than the critical bandwidth are,
but experimental evidence of this is lacking.
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! Combining the effects of both lines and bands of noise

1 also needs further invastigation. This is a very important

f question since the most detectzble line often will lie just
a little bit above a broadband of nearly white noise.

The subject of the effect of sequential observations has
already been pointed out earlier in the report as a field
where only theories exist as to how to handle the problem.
These theories do not always agree, and there is little
experimental evidence to define the best way to proceed.

Of course, the final judgement of any model of auditory
detection depends for valislation on a real world test of it.
Such a test could be carried out by using samples from the
profusion of existing tapes on which are reccrded the acoustic
signatures of a variety of noise-makers, from torpedoes to
submarines. Facilities exist where such tapes can be combined
if desired with background noise and the resultant shaped
appropriately to simulate the desired NL and DI. Judicicus
use of notch filters could be employed to eliminate single
lines or one of two separated wideband signals suspected of
causing detection. Such studies should be able to answer
gquestions such as:

a. Does the theory of signal detectability accurately
predict the Figure Of Merit obtained in a real world
experiment?

b. Is this Figure Of Merit due to lines or broadband
signal?

c. Which lines are causing detection?

d. What rec.on of the broadband signature is causing
detection?

e. What is the effect on FOM of removing a given line
frcm the signature, i.e., what is the effect of
multiple line components?

f. What are the effects of the various real world
uncertainties outlined in Chapter 4 as compared
to the controlled lahoratory experiments of Green,
et al. (1959), and Green (1960a)?

g. Do broacband and line components in the same signature
have the combined effect of increasing the detectability?
If so, what is the relationship?
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