
i.ujpiliyipi^l^ 

AD/A-002 981 

PSYCKOACOUSTICS   AND PASSIVE SONAR 
DETECTION 

J.   M.   Stallard,   et al 

Naval Ordnance   Laboratory 
White  Oak,   Maryland 

9 September 1974 

V. 

DISTRIBUTED BY: 

KTü 
National Technical Information Service 
U. S. DEPARTMENT OF COMMERCE 

„.^.-■^,._.JJ->,. ^^^^iiMihiMtf^r-iif-li--tir----rviiiiih'ri' ■ -'---—-^ 



WW»äajW»3Bj|»JJtPajeas(", .—-r,-.-.- '  '     ' 
"!r"" -'■■'"■'*"' 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (Whtn Dmf Entered; 

REPORT DOCUMENTATION PAGE 
1.   REPORT NUMBER 

NOLTR 74-27 

2. GOVT ACCESSION NO. 

4.   TITLE fand Subtitle) 

PSYCHOACOUSTICS AND PASSIVE SONAR DETECTION 

7.    AL'THORf»; 

J.M.  STALLARD and C.B. LESLIE 

S.    PERFORMING ORGANIZATION NAME AND ADORESS 

NAVAL ORDNANCE LABORATORY 

SILVER SPRING, MARYLAND 20910 
11.    CONTROLLING OFFICE NAME AND ADDRESS 

U.   MONITORING AGENCY NAME » ADORESSf// dlllortnt Irom Controlling Olllct) 

I    READ INSTk'VCTION! READ INSTk'VCTIONS 
BEFORE COMPLETING FORM 

3.   RECIPIENT'S CATALOG NUMBER 

5.   TYPE OF REPORT & PERIOD COVERED 

Final 
«. PERFORMING ORG. REPORT NUMBER 

8. CONTRACT OR GRANT NUMBERf«; 

10. PROGRAM EL-EMENT, PROJECT TASK 
AREA a WORK UNIT NUMBERS 

NOL-0910/PMS-4021 

12. REPORT DATE 

9 September 1974 
13.   NUMBER OF PAGES 

(oO &£ 
IS.   SECURITY CLASS, (ol thie report; 

UNCLASSIFIED 

IS«.    OECLASSIFICATION/ DOWN GRADING 
SCHEDULE 

IS.    DISTRIBUTION STATEMENT (ol this Report) 

Approved for public release; distribution unlimited. 

17.   DISTRIBUTION STATEMENT (ol th« ebetract entered In Block 20, II different Irom Report; 

18.   SUPPLEMENTARY NOTES 

IS.    KEY WORDS (■Continue on reverse eide II neceeeary and identity by block number; 

passive sonar 
aCOUStiCS Ropioduccd by 

Dsvchoacoustics NATIONAL TECHNICAL psycnoacoustics INFORMATION SERVICE 
deteCtablllty US  Department  ol   Coi-m.,« 

Spcinu'eld,  VA.  25151 

20.    ABSTRACT ('Continue on reveree eide II neceeeary and Identify by block number; 

The initial portion of the report is a review of the statistical theory of 
signal detection, followed by the application of signal detection theory to 
psychoacoustics. The differences between the relatively simple laboratory 
tests reported in the literature and the complex problems of passive sonar 
operating in the real world are explored. The concepts of Equal Detectability 
Curves and Figure Of Merit are covered, relative to theoretical prediction of 
alertment and masking performance. It is pointed out that several relevant 
factors have been treated individually ;ln the literature but  not taken into 

FORM 
EOITION OF  1 NOV 65 IS OBSOLETE UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS PAGE fWhen Data Entered; ■ In« 



<ytiiii|i,!jj|Mffwp ...■! ^.i.J I'»P yj^pipjipii ij-jjpMIPKIKi Wpw»i**^*^'w '-gl'"^' ww»y 

«»»»«»«»«^«sSaWSS^,,.. 

UNCLASSIFIED 

-uuüWiTY CLASSIFICATION OF THIS PAGEfWhen Data En(»f»</; 

: 

account in the available Detection Threshold Curves for application fo passive 
.sonar. The combined effects of five such factors are used to yield a new 
Detection Threshold between 5 and 6 db higher than earlier works. It is 
concluded that the problem of sequential observations needs more experimental 
study. A method for handling the effects of multiple lines in a signature 
is presented in detail. A new system for calculating the effects of broadband 
noise of any bandwidth on detectability is given. ^Finally, suggestions are 
given for a number of areas where further work might be helpful in eliminating 
or reducing present uncertainties. 

i        i 

i 

UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS P AGEflHian Daia Enfnd) 

 .. J^_^_^M HKTUBtm i i     ii««MHfn i i         -„-,> A 



SP**Kta«_.__"'..; .       ' -•; ." " '[ ' "■"■'■ """^i^snjifaflrS!^^ ...... : . : ......... ... 

NOLTR 74-27 

PSYCHOACOUSTICS AND PASSIVE SONAR DETECTION 

Prepared by: 

J.M. Stallard and C.B. Leslie 

SUMMARY 

: I 

The initial portion of the report is a review of the 
statistical theory of signal detection, followed by the 
application of signal detection theory to psychoacoustics. 
The differences between the relatively simple laboratory 
tests reported in the literature and the complex problems 
of passive sonar operating in the real world are explored. 
The concepts of Equal Detectability Curves and Figure Of 
Merit are covered, relative to theoretical prediction of 
alertment and masking performance.  It is pointed out that 
several relevant factors have been treated individually in 
the literature but not taken into account in the available 
Detection Threshold Curves for application to passive sonar. 
The combined effects of five such factors are used to yield 
a new Detection Threshold between 5 and 6 db higher than 
earlier works.  It is concluded that the problem of sequential 
observations needs more experimental study.  A method for 
handling the effects of multiple lines in a signature is 
presented in detail.  A new system for calculating the 
effects of broadband noise of any bandwidth on detectability 
is given.  Finally, suggestions are given for a number of 
areas where further work might be helpful in eliminating or 
reducing present uncertainties. 
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Preface 

This report had its origins in a study of the theory 
of psychoacoustics applied to passive sonar. The results 
of the initial study prompted a further effort to advance 
this relatively new field by documeming areas of disagreement 
witn current practice and to presenlr new proposals for handling 
certain additional factors which l^ftre previously been ignored. 
The authors are indebted to the piljneers in this area, especially 
B,G. Watters and J.A. Moore. Others who have contributed to the 
advancement of the theory are J.E. Barger, F.A. Andrews, and 
CD. Hovater. 

This work has been supported by the Naval Sea Systems Command 
under Task Number NOL-0910/PMS-4021. 

ROBERT WILLIAMSON II 

yJOKN B. WILCOX 
./ By direction 

IV 

 IIMl^l* mm 



iWWBMI^p»^».^ 
7fflS»$ffi^^VT^F?5 

■■ 

NOLTR 74-27 

TABLE OF CONTENT" 

CHAPTER 1 
CHAPTER 2 
CHAPTER 3 
CHAPTER 4 

CHAPTER 5 • 

CHAPTER 6 • 

REFERENCES 

INTRODUCTION 
STATISTICAL DECISIONS AND SIGNAL DETECTABILITY 
SIGNAL DETECTABILITY AND PSYCHOACOUSTICS 
PSYCHOACOUSTICS IN THE LABORATORY AND THE 
REAL WORLD 

Yes-No vs. Forced Choice 
Slowly Increasing Signal 
Fluctuating Signal 
Uncertain Signal Frequency 
Time Uncertainty 
Combination of Effects 

DETECTION THRESHOLD AND THE SONAR 
EQUATION 
DISCUSSION 
Accomplishments 
Effect of Errors 
Areas for Further Work 

Page 

1 
3 

12 

19 
20 
21 
21 
22 
22 
23 

28 
46 
47 
48 
49 
52 

Figures 

1 
2 

3 
4 
5 

8 

9 
10 
11 
12 
13 

LIST OF ILLUSTRATIONS 

Title 

Hypothetical Values for f„(x) and fg (x) 
ROC Curves Assuming Normal Densities With 
Equal Variance 

ROC Curves on Normal-Normal Paper (d' = KN
+K

SN) 
Optimum Likelihood Ratio 
Detectability Index of Human Ear for Pulsed 
Signals 

Detectability Index for Human Ear in Passive 
Sonar Detection 

Detection Threshold fcr Tones in Passive 
Sonar Detection 

DT' for broadband Signals in Passive Sonar 
Detection 

Hypothetical Target Signature 
Equal Detectability Curves 
Hypothetical Noise Level 
Hypothetical Directivity Index 
Hypothetical Signature with Multiple Line 
Components 

v 

Page 

6 
10 
15 

18 

26 

30 

32 
35 
36 
37 
38 

42 

«■-»-*-■» ~....-~- 



r^^^gfg^^ßtF^f^r^^^ ^-■^^^■^.^^^^f^^mmm' gpp5g^ij5^™^^g^p, -.-.-.:: ■i?Kv->'--,«-'r^««"-'™c.!-^:^^:^^ ■•■r-y- ^'^:-■  ■'■■■-■,-■■■   ■■-■,,,. -,.■,• 

NOLTR 74-27 

CHAPTER 1 

INTRODUCTION 

The theoretical prediction of the detection range of an 
underwater acoustic signal received by a human operator through 
a passive sonar ha^ been a topic of considerable interest to 
the Navy. The detection range can be related to the maximum 
transmission loss a signal can suffer and still be detectable 
to the human ear. This value is called the Figure Of Merit, 
or FOM, of the system. The passive sonar equation relates 
the phenomena which must be considered in the calculation of 
the FOM: 

FOM = TL = SL - NL + DI - DT. (1-1) 

In Equation (1-1) , TL is the transmission loss, SL is the 
signal source level, NL is the noise level at the receiving 
hydrophone, DI is the directivity index of the receiving sonar, 
and DT is the detection threshold, or the signal to noise ratio 
that is just detectable.  All the quantities are expressed in 
decibels a. J the notation is after that of Urick (1967) . The 
sonar equation parameters vary considerably with frequency and 
the detection threshold will be seen to depend as well on the 
character of the source. 

In this paper we are concerned with the quantification of 
the detection threshold of the human ear.  This quantity is, 
in general, somewhat higher than that of an ideal device designed 
to perform a specific task.  Despite this shortcoming, the wide 
range of tasks the human ear can perform, and the fact that the 
hearing mechanism includes the brain, make the human operator an 
integral part of many sonars. The detection threshold of the human 
ear is thus a worthy topic for discussion. 

Urick (1967)*cites a simple model for the hearing mechanism 
which is essentially an ideal detector followed by a post detection 
averager whose integration time is generally not matched to the 
signal duration.  This simple physical model provides a faiily 
credible replica of the detection performance of the ear, under- 
estimating the detection threshold by some 4 db, when compared to 

*The of references at the end of the report is alphabetical. 
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data gathered under closely controlled laboratory conditions.  It 
would appear, however, that a truly quantitative model must account 
for the variation in response of the human hearing mechanism to 
acoustic signals of different types over a range of frequencies. 
It must also take into account uncertainties inherent in the 
real-world passive sonar problem, such as unknown frequency and 
signal onset time. Recently, Watters and M ,ore (1970) presented 
a nomograph which allows the ready determination of either the 
broadband or tonal signal energy which is just detectable at a 
given receiver operating level when it is embedded in a background 
of noise. The basis for their nomograph is a pair of measurements 
from the literature which grew out of statistical decision theory 
and the theory of signal detectability, as applied to psychoacoustics 
Barger (1971) later used this nomograph and certain assumptions to 
construct two frequency curves for DT, one for tones and another 
for broadband signals, both at a single operating level. Andrews 
and Hovater (1971) took Bargerrs concept a step further and 
introduced the concept of sequential observations. 

This report, by necessity, contains an outline of the more 
applicable points of the theory which led to the nomograph of 
Watters and Moore. It also considers in detail the assumptions 
and methods applied by Barger, Andrews, and Hovater. In some 
areas, the present study disagrees with the latter two reports. 
In those cases, alternatives are presented which appear more 
realistic.  In still other areas, new material is presented which 
was not considered in these first attempts at a quantitative model. 
The points of difference should not be taken as a criticism of the 
methods previously used, but should rather serve to improve the 
model and to point to areas where further research might eliminate 
uncertainties. 
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CHAPTER 2 

STATISTICAL DECISIONS AND SIGNAL DFTECTABILITY 

The theory of signal detectability as it has emerged in 
the field of psychoacoustics is based on the pioneering work 
of Peterson, Birdsall, and Fox (1954) . The problem is to 
distinguish between a background of noise with an embedded 
signal, and the noise alone.  If the statistics of the noise 
(N) and of the signal plus noise (SN) are known, one can predict 
the optimum behavior of any detection system. This optimum 
performance can be expressed as a Receiver Operating Characteristic, 
cr ROC. Swets, Tanner, and Birdsall (1961) have provided an 
excellent article explicating the theory and describing experiments 
that constitute the primary tests of its validity. While their 
article is concerned with visual detection, a somewhat less 
pedantic report by Tanner, Swets, and Green (1956) shows, through 
similarly designed experiments, that the theory provides a valid 
description of aural detection as well.  Some of the highlights 
of the theory are outlined here. 

The prcbability density functions for an observation x, for 
the cases when x is drawn from populations N and SN, are defined 
as fN(x) and fgN(x), respectively.* In general, these two densities 
might appear as shown in Figure 1.  Depending on the a priori 
probability of the signal being present, values and costs of 
correct and incorrect decisions, and the densities fN(x) and 
f,,N(x), an operating point c for the receiver is determined. 
For any observation x > c the signal is considered present; 
for any observation x < c it is considered absent. 

From Figure 1 it can be seen that, regardless of the position 
of the operating point, observations x > c can be caused by either 
the presence of the signal plus noise (a true detection) or by 
noise alone (a false alarm).  The probability that x > c comes 
from f_N(x) is called the probability of detection and is given 
by 

I 

P(D) I fCM(x) dx. SN 
(2-1) 

*x can be multidimensional, i.e. x = (x 1' '3' 

am J 
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The cross hatched area below the SN curve in Figure 1 represents 
P(D) graphically. Likewise, the probability that x > c comes 
from fM(x) is called the probability of false alarm and is given 
by   N 

P(FA) ■ /; H 
(x) dx. (2-2) 

The double cross hatched area below the N curve in Figure 1 
represents P(FA) graphically. In general, 

/. 
f(x) dx = 1. (2-3) 

A ROC curve is defined on a graph of P(D) vs P(FA) by 
letting the operating point c in Figure 1 vary from minus to 
plus infinity (see Figure 2).  If either probability density 
changes shape or if their relative separation changes, a new 
and different ROC curve is defined. The parameter d' in 
Figure 2 will be defined later in Equation (2-16). 

The optimum operating point can be determined in the 
following manner. Let the probability of a miss be given by 

(M) =  / fSN(x) dx 

(2-4) 

1 - P(D). 

If the a priori probability of the signal being present is PgN 
and the a priori probability of the signal being absent is PN, 
then of course, 

P  + P = 1. (2-5) 

An incorrect decision can be made in two ways, i.e., the 
observer can decide a signal is present when it is not, or 
he can decide a signal is not present when it is. The 
probability of error, then, is given by 

  
miii 11 UM r *\im**t\sl£\Hiimm*.tm*mi.\, 
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d' = 0.0 
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FIG.  2.   ROC CURVES ASSUMING NORMAL DENSITIES WITH EQUAL VARIANCE 

-     ■-.--. — ■■ ' ■-■»■ -*--•-■"-- -        -■■■*! 



mmmqmmmmmt fw»fl»wH«,w^|P^*, rnm^'' WIR.MUU1HU.» 

NOLTR 74-27 

P(E) - FN • P(FA) + PS1, • P(M) (2-6) 

= (1 - PSN) • P(FA) + PgN • [1 - P(D)] 

= P SN 1 - 
(1 " PSN} P(D) H — • P(FA) P SN 

It is desired to minimize P(E). According to Equation (2-6), 
this criterion is equivalent to maximizing the term in the 
square brackets, That is, 

P(D) - 
(1 " PSN> 

P • P(PA) = maximum. (2-7) 
SN 

For convenience define $ as the coefficient of P(FA) in 
Equation (2-7). Equation (2-7) is satisfied when the i'irst 
derivative is zero. That is, 

dP(D)   ß  dP(FA) __ n (2-8) 

Rearranging, 

e = dP(D) 

Equation (2-9) reduces after some algebra* to 

(2-9) 

3 = -ycT- (2-10) 

,b(t) 
*Leibnitz's rule (Wylie, 1966) says that if F(t) ^- i tJ_x $ (x,t)dx, J a (t) 
where a and b are differentiable functions of t, and where <J)(x,t) 

and liijxt) are continuous in x and t, then 5| = ('b^J »♦<;'*> dx 
9t dt J a (t)   9t 

+ 4>[b(t),t]   ^^- - Ma(t),t]   --^-.     In our case,  P(D)   = J~fSN(x)dx. 

Therefore.  dp(p)   =  lim |Ya  3fSN(x)   dx ■»• f     (a)   d[a)   - f     (c)dcl  = -f     (c) inererore,   —^—      a^[Jc    —f^  ax       rSNia;   SF~        SNlc'dc~J SNtc; 

Similarly dP(FA) = -fM(c). 

  —'  rffaiHttnM«!!        —     —t-i,-  ■mrf 
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The optimum operating point is defined, then, such that when 
the likelihood ratio 

X = 
fSN(x> (2-11) 

is greater than or equal to ß, the signal is considered present. 

The above definition of ß assumes that values and costs of 
correct and incorrect decisions are equal.  In general, R is 
given by 

1 - P 
B = 

SN 

SN 

C22 " C21 
C   - C Ull  U12 

(2-12) 

where Cj1 is the value of a correct positive report, C,2 is the 
value or^an incorrect negative report, C-, is the value of an 
incorrect positive report, and C^o is the value of a correct 
negative report (Harman, 1963? Green and Swets, 1966). 

So far nothing has been said about the exact shapes of 
f„(x) and fgN(x). The usual assumption (Green and Swets, 1966) 
made is that they are both Gaussian with equal variances. That 
is, 

fN(x) - 
/2T1 

exp 
ITC N 

-1/2 (?) (2-13) 

where A*N an(^ ff
N are the mean and standard deviation, respectively, 

of fN(x), 

fSN(x) * y/Tna 
exp 

SN 
-1/2 

\   °SN / 
(2-14) 

and 

°N = °SN = °' (2-15) 

If the densities are normal, the ROC curves for the ideal receiver 
will be straight lines with positive slope, when plotted on 
normal-normal paper.  If the standard deviations are equal, the 
linear ROC curves will have a positive slope of unity. 

8 
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A convenient single parameter called the detectability index 
which describes the relative separation between the two densities 
in terms of the standard deviation is 

d» = 
ySN"yN (2-16) 

Kote that a given value of d! specifies a particular ROC curve as 
shown in Figure 2. Figure 3 shows ROC curves for various d' 
plotted on normal-normal paper. For convenience, at the top 
and right of Figure 3, the graph is scaled in terms of the normal 
devitte, IC. and K_M. Thus, rearranging Equation (2-16) and using 
Equation (2-15) , ÖW 

d» = 
c-v 

'N 

N + 
ySN"C 

aSN (2-17) 

= KN + K SN* 

Peterson, et al., show that for a sinusoid of known phase 
in Gaussian noise, i.e., when the signal is kncwn exactly (SKE), 
the assumptions of Equations (2-13) through (2-15) hold, with 
Equation (2-16) becoming 

d» = N (2-18) 

for the ideal receiver, where E is the signal energy and N is 
the noise power per unit bandwidth.* Peterson, et al., also 
show that if the signal itself is Gaussian, i.e., the signal 
is known statistically (SKS), the same ROC curves apply for the 
ideal receiver if 

d« = 2. m = =-4= , N      N /HF ' (2-19) 

*A tutorial derivation of Equation (2-18) is given by Elliot (1959) 

illmiTn r-  -■"■■*"*- 
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where S is the signal power, N is the noise power in the signal 
band, W is the signal bandwidth, and T is the signal duration."1"* 
However, Equation (2-15) and thus Equation (2-19) are only valid 
when 

I«  !■ (2-20) 

Otherwise the expression for d* in terms of energy is somewhat 
more complicated and the resulting ROC curves are lowered, having 
slopes less than unity. 

Equations (2-18) and (2-19) define d* for the ideal detector 
in terms of the signal energy for two specific cases of interest 
in the sonar problem. Similar relationships can be derived for 
the human hearing mechanism. That is, the choosing of a suitable 
operating level for the sonar operator VTIII define a d' which 
in turn will determine the signal energy that is just detectable 
to the human ear at the chosen operating level. This result can 
then be plugged into the sonar equation. 

In the next chapter, some of the experiments are reviewed 
which test the validity of the theory of signal detectability 
as a description of the auditory process. These experiments 
include the relationships between d' and signal energy which 
led to the nomograph of Watters and Moore. 

+ Equation (2-19) Ts derived by equating the lower limit of the 
integral in Equation (2-1) for SKE to that for SKS; then likewise 
for Equation (2-2) .  This procedure yields two equations in d' and 
a parameter related to signal energy. 
t The common logarithm of Equation (2-19), i.e., 10 log | j , is 
known as the psychometric function. \N /Wf / 

11 

 1 
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CHAPTER 3 

SIGNAL DETECTABILITY AND PSYCHOACOUSTICS 

The primary test of the theory of signal detectability as 
a tool to describe aural detection is to determine if the ROC 
curves similar to those described in Chapter 2 adequately describe 
the performance of the hearing mechanism.  Tanner, et al. (1956), 
sought to determine experimentally the shape of the ROC curve in 
a simple psychoacoustic task.  The signal was a 1 kHz sinusoid of 
0.1 sec duration.  The masking stimulus was broadband Gaussian 
white noise.  The noise and signal levels were held constant 
throughout the experimental session. A yes-no (YN) experiment* 
was conducted at five different a priori probabilities of the 
signal being present. Two subjects were informed ot this a 
priori probability and were given immediate information after 
each response as to whether or not the signal was actually present. 
They were paid for a correct answer, fined an equal amount for an 
incorrect answer, and instructed to make as much money as possible. 
In this way, the parameters of Equation (2-12) were varied over a 
considerable range.  The resultant ROC curve was best described 
by a straight line with slope slightly less than unity.  These 
results would indicate that decision making theory provides an 
adequate description of the auditory process.  The straight line 
on normal-normal paper verifies the assumption of normality.  The 
slope slightly less than unity typifies the situation where o 
increases with increasing u SN 

SN 

The experiment by Tanner, et al. (1956) , did not attempt to 
measure the relationship between d' obtained experimentally and 
the signal energy.  It merely established that the theory of 
signal detectability adequately describes the auditory process. 
In general, the actual value of the detectability inlex d' might 
be derived in two ways.  It could be defined by the signal and 
noise levels and characteristics of the experiment through 
Equations (2-18) or (2-19), or it might be measured by finding 
experimentally the various combinations of detection rates and 
false alarm rates, and then applying Equation (2-17).  As will 
be shown, the more useful approach is the latter, since the ear 
is not a perfect detector and the relationships between d' and 
E are not quite those of Equations (2-18) and (2-19) . 

*In the yes-no(YN) experiment, the signal is either present or 
absent in a single observation interval.  In the n alternative 
forced choice 
only one of n 

(nAFC) experiment, the signal appears in one and 
successive observation intervals. 

12 
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Other investigations have provided additional evidence that 
the theory is correct while studying the effect of experimental 
procedure on the detectability index. Tanner, et al., also 
conducted a four alternative forced choice (4AFC) experiment 
with the other experimental variables the same as for the YN 
experiment described above. The experimentally determined 
values for d* from both methods were in close agreement, with 
the YN value falling slightly below the FC value.  In a later 
study by Swets (1959) , three observers participated in YN, 2AFC, 
and 4AFC experiments, each at various signal energy levels. 
Again, the signal was a 1 kHz tone with 0.1 sec duration.  The 
estimates of d' vs. signal energy from the 2 and 4AFC experiments 
were nearly identical. The YN values were very similar to, 
though more variable than, the FC values.  Swets also reported 
results for 2, 3, 4, 6, and 8AFC experiments at one signal energy 
level.  For three different observers, a graph of the percentage 
of correct decisions P(c) vs. the number of alternatives was 
nicely represented by a constant d' curve.* Egan, Schulman, 
and Greenberg (1959) , obtained ROC curves using a YN procedure 
in which the observers were allowed to rate their yes answers. 
The signal was a 1 kHz pure tone of 0.5 sec duration.  The results 
were straight lines with slopes slightly less than unity.  Schulman 
and Mitchell (1966) , compared ROC curves obtained frcm YN and 
2AFC procedures.  They allowed the observers to use a six point 
scale of confidence ratings for each observation with each method. 
The signal in each case was a 1 kHz tone of 0.1 sec duration. 
Their results shew that linear RCC curves provide an adequate 
description of the data.  However, the operating characteristics 
for the 2AFC procedure were clearly higher than those of the YN 
procedure and had unit slopes.  The YN curves tended to have 
slopes less than unity. 

The reason why the ROC curve for the YN experiment will 
inherently lie belcw that of the FC experiment can be seen by 
considering Equation (2-10) in the light of human behavioral 
processes.  For simplicity assume that Equations (2-13) through 
(2-15) are valid with u», = 0 and o = 1.  Then 

8 = 

-i- exp [- \   (c-d1)2] 
/2~TT *  

1      ,  1  2, exp (- ^ c ) 
/S? 

(3-1) 

= exp [d'(c - id')] 

*The relationships between d* and P(c) for forced choice 
experiments are tabulated by Elliot (1959) . 
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Figure 4 shows fN(x), f_N(x), and 3 under the above conditions. 
The observer tends tc irodify too extreme a judgement criterion. 
If ß is set at a very large value, the observer is required to 
have an overwhelmingly clear indication of the presence of a 
signal before he ought to call it a signal,  In practice, he 
will instinctively move the criterion downward and give a position 
indication of the presence of a signal if, for example, he is 
99% sure the signal is present even though the value of ß calls 
for being 99.9% sure. This tendency of most observers to relax 
the criterion effectively leads to a ß < ß optimum.  On the other 
hand, ß small calls for a positive answer a distasteful proportion 
of times. That is, the observer should answer positively unless 
the absence of the signal is a near certainty.  Most observers 
will tend to move the operating point upward, leading to 3 > 3 
optimum.  In practice, the general trend in the YN experiment is 
to move in the direction toward 3 = 1* or PgN = 0.5 in Equation (2-12) 
with unit cost matrix.  Equation (2-9) says that ß is the slope 
of an appropriate ROC curve in Figure 2.  It can be seen, then, 
that if ß is very large, reducing ß means going to a curve with 
a smaller slope which can be done only by operating on the lower 
ROC curve in Figure 2.  Likewise for small (less than unity) ß, 
ß < 8 optimum implies a large slope, again lowering the ROC curve 
or decreasing performance.  These behavioral processes do not 
apply in the FC case, where the problem is merely to decide 
which slot has the signal, not whether a signal appeared at all 
in the particular test. 

It should be noted here that the detection of an underwater 
acoustic signal by a passive sonar operator is a YN procedure 
while available data shown later in Tables 3-1 and 3-2, relating 
d* to signal energy, have been taken using the apparently superior 
FC method.  It is impossible to predict an exact relationship 
between d' r and d' „.  The qualitative argument in the previous 
paragraph predicts a trend but says nothing about the magnitude 
of the effects at low and high values of 8.  It must be assumed 
that behavioral processes will vary from observer to observer 
with the result that the distance between the two curves as well 
as the slope of the d' N curve will vary.  However, a reasonable 
engineering approximation which circumvents this difficulty is 
presented in the next chapter. 

Once the theory has been shown adequate, and relationships 
among various experimental procedures are determined, the next 
step is to determine empirically the relationship between d' and 
signal energy for the hearing mechanism.  Green, Birdsail, and 

*Green (1960b) presents a graph of ß-experimental vs. 8-optimum 
for a YN experiment.  The resulting straight line has slope less 
than unity and crosses the ideal curve at 8 = 1. 
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= d'/2 ß LARGE i 
£ SMALL. 

P(FA) SMALL 
P(FA) LARGE 

FIG. 4.   OFTIMUM LIKELIHOOD RATIO 
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Tanner (1957) investigated the dependence of signal detectability 
on signal intensity and duration.  Agcin, the signal was a 1 kHz 
tone in a background of broadband Gaussian white noise. Their 
experiment brought three important points to light.  For human 
observers d' varies linearly with signal energy, or more like 
Equation (2-19).* Secondly, there is a limit tc signal duration 
beyond which the human hearing mechanism does not integrate the 
signal perfectly. Third, there is an inherent inefficiency to 
the hearing mechanism, i.e., Equation (2-19) must be multiplied 
by a constant to predict experimental results. The latter two 
results might have been expected due to the finite capacity of 
the human brain to process information.  The linear variation 
of d* with signal energy for the case of a pure tone in Gaussian 
noise was more surprising in the light of Equation (2-18). 
Tanner and Birdsall (1958) present a plausible explanation for 
this linear variation.  Their arguments lead to the conclusion 
that if particular information such as signal phase, etc.. is 
not utilized by the receiver being studied, the results are 
the same as if uncertainty in that particular signal property 
had been introduced at the transmitter.  If one accepts this 
reasoning, the application of the SKS model in the case of 
aural detection of a sinusoidal signal in Gaussian noise seems 
reasonable. 

Green, McKey, and Licklider (1959) *nade further investigations 
designed to quantify the relationship between d' and E.  In a 
2AFC experiment, they found the efficiency "constant" to be, 
in fact, a function of frequency as well as d'.  The signal 
was a tone of 0.1 sec duration at various frequencies and signal 
energxes. The noise stimulus was broadband Gaussian white noise. 
Their results for three values of d' are given in Table 3-1. 
Their range of frequencies was 250 to 4000 Hz over a wide range 
of d •. 

d' 10   log   (E/N   ) (db) 

.54 

.95 
1.47 

5.6   t   2.0   f 
7.4   +   2.0   f 
9.1  +   2.0   f 

(kHz) 

Table 3-1. Experimental Data for Detectability Index 
vs. Psychometric Function for a Sinuroid 

*For a pulsed sinusoid the time - bandwidth product is unitv, 
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All the previously described work was concerned with the 
detection of a pure tone masked by noise.  Green (1960a) measured 
the auditory detection of a noise signal in Gaussian noise.  In 
a 2AFC experiment, he found the efficiency to be constant for a 
given d', for various combinations of signal duration, bandwidth 
and center frequency. Moreover, he found that the bandwidth of 
the masking noise made little difference so long as it overlapped 
the signal width. The efficiency did turn out to be a function 
of d*.  Green's data for three values of d' are given in Table 3-2, 

Table 3-2. Experimental Data for Detectability 
"index vs Psychometric• Function for a 
Gaussian Signal. 

Tables 3-1 and 3-2 give values for the psychometric function 
at particular values of d*. Least square fits to the experimental 
data of Green, et al. (1959), and Green (li'60a) , are plotted 
in Figure 5.* The psychometric function is labeled A(d') for 
convenience, l .e 

A(d') = 10 leg 
( — ) ■ \ N *>WT I 

(3-2) 

The souoht after relationship between detectability index 
and signal energy for human aural detection is given in Figure 5, 
There remain to consider in the following chapter some of the 
differences between the closely controlled laboratory experiment 
and detection by passive sonar in the ocean. 

*Figure 5 differs somewhat from the nomograph of Watters and 
Moore (1970).  Dr. Moore indicated in a telephone conversation 
that his curves were to have been corrected for time uncertainty 
in the detection interval.  Inadvertently, these corrections were 
applied only to the data of Green (1960a). 
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CHAPTER 4 

PSYCHOACOUSTICS IN THE LABORATORY AND THE REAL WORLD 

Aural detection in the controlled laboratory experiments 
discussed here and the detection of an underwater acoustic 
source by passive sonar are problems that exist in two different 
worlds.  The psychoacoustic test involves the detection of 
either pure tone bursts of constant frequency, amplitude and 
duration, or pure Gaussian noise of constant bandwidth, center 
frequency, average power and duration, in a background of pure 
Gaussian noise of constant bandwidth, center frequency and 
amplitude.  In either laboratory case, the signal is completely 
specified to the observer before the experiment begins, P„ is 
known, and the precise time interval for the process is defined. 

On the other hand, a real ship or torpedo signature is a 
mixture of many lines of varying frequency and amplitude 
superimposed on a continuous broadband signal of varying 
spectral shape and amplitude. The masking background is at 
best broadband noise of varying spectral shape and amplitude 
and often has line character of its own. Neither the a priori 
probability of the signal being present nor the time of its 
possible presence are known. What are the effects of these 
and other differences? Answers to this question are discussed 
below. 

The first difficulty is the choosing of an operating level. 
While the values and costs of correct and incorrect dacisions 
can be estimated, a knowledge of PgN is another matter.  Certainly 
in the case c* torpedo detect:on, for example, P§N is small even 
in the time of war unless the target has already detected the 
presence of the firing ship.  From Equation (2-12), when PSN is 
small, ß becomes large.  As was pointed out in Chapter 3, 
for large P the human tends to choose an operating pcint such 
that performance is less then optimum. While an operator who 
has been alerted might perform better, due to a higher PgN 
(or 6 closer to unity), there is still no quantitative way to 
determine the optimum operating point.  However, this does not 
preclude the usefulness of the method.  We merely li-'e with less 
than optimum performance and an inherent variability due to 
differences in behavioral process from observer to observer. 
Andrews and Hovater (1971) estiirate that reasonable resvlts 
for humans can be obtained with siqnal to r.oise ratios f.uch 

! 
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that 0.4 < d* < 2.0. Table 4-1 gives various combinations of 
P(D) and P(FA) for d' in this range, assuming Equations (2-13) 
through (2-15) hold. It should be pointed out that P(D) and 
P(FA) are defined for relatively short intervals, on the order 
of 1 sec, and not for the total duration of the encounter with 
the ship or torpedo. The extension of these concepts to total 
encounter times is discussed in Chapter 5. 

<T = 0.5 de = = 1.0 d* = 1.5 d" = 2.0 
P(D) P(FA) P(D) P(FA) P(D) P(FA) P(D) P(FA) 

0.69 0.50 0.84 0.50 0.93 0.50 0.98 0.50 
0.66 0.46 0.79 0.42 C.88 0.38 0.95 0.34 
0.62 0.42 0.73 0.34 0.82 0.27 0.88 0.21 
0.58 0.38 0.66 0.27 0.73 0.18 0.79 0.12 
0.54 0.34 0.58 0.21 0.62 0.12 0.66 0.05 
0.50 0.31 0.50 0.16 0.50 0.07 0.50 0.02 

Table 4-1. Various Combinations of P(D) and P(FA) 
for a Given Value of d*. 

Yes-No vs Forced Choice 

Once the operating level is determined, a useable 
relationship between d*YN and d'pC must be ascertained so that 
the FC data of Figure 5 may be used.  Schulman and Mitchell (1966) 
show theoretically and verify experimentally that 

D FC = V2   D YN (4-1) 

where Dpc and Dy^ are the perpendicular distances from the point 
P(D) = PTFA) = 0.5 to the linear ROC curves (plotted on normal- 
normal paper) obtained from the two procedures using identical 
boundary conditions. While the slope of the ¥!J curve will vary 
from observer to observer, a reasonable approximation would assume 
that this slope is unity.  The result is that 

d'FC«V2-d'yN (4-2) 

or the detectability in the YN procedure is decreased by a 
factor of /?. 
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Slowly Increasing Signal 

When the signal is slowly increased, as is the case in 
passive sonar detection, the minimum detectable signal is 
greater than if the signal is pulsed.  This is especially 
true if the signal and the noise are of the same general 
character where the only detectable change is one of magnitude. 
Horton (1959) estimated the decrement to performance due to 
this effect at about 3 db. No detectability index was specified 
since the theory of signal detectability was not used then. 

Fluctuating Signal 

Urick and Gaunaurd (1972) show that fluctuations cause 
the detectability of weak signals to be higher. This phenomenon 
can be visualized as giving the signal a "pulsed" character. 
They define a fluctuation index k as 

'■['•ft)"] 
1/2 

(4-3) 

where aM is the standard deviation of the fluctuations of the 
signal.  The fluctuation index can be related to V, the 
coefficient of variation in amplitude of the signal by 

V = M 

'SN 
(4-4) 

That is, if u„ is set equal to zero, in Equation (2-16), 

2 ] /2 
k » [1 + (d'Vr]1' . (4-5) 

In the limit of large distances, the distribution of fluctuations 
is Payleigh (Skudrzyk, 1957), so that the coefficient of variation 
in amplitude given in Equation (4-4) is numerically equal to 0.52. 
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Whitmarsh (1963) gives an experimental value of 0.14 at 3 kyds. 
This is not inconsistent with Skudrzyk if the effect is roughly 
proportional to distance, and large distances are assumed to 
mean at least 10 kyds. Then, from Equations (4-3) and (4-5), 

JN 
% 0.52 d'. (4-6) 

For fluctuations of magnitude na^, which have period of the 
order of the integration time of the ear, Equation (4-6) predicts 
that, for a given P(FA), P(D) is increased such that 

FP * (1 + 0, 52 n) d' FNP' (4-7) 

where FP and FNP stand for fluctuation present and not present, 
respectively. 

Uncertain Signal Frequency 

There have been many studies of the effect of uncertainty 
in signal frequency (Tanner, et al., 1956; Veniar, 1958; Swets, 
Shipley, McKey und Gree^., 1959; Creelman, 1960; Green, 1961; 
and Gundy, 1961).  In general, the experiments first established 
a baseline for comparison by recording the performance when the 
signal frequency was specified.  All the studies reveal that 
performance decreases as the number and range of possible signal 
frequencies increase.  Green's study in particular produced 
consistent quantitative results.  He found the decrease in 
detectability of a gated sinusoidal signal in noise to be about 
3 db at d1 = 1, in the case where the range of signal frequency 
uncertainty was 3.5 kHz.  (The signal occurred anywhere between 
500 and 4000 Hz).  His results took into consideration the 
variation of the psychometric function with frequency. 

Time Uncertainty 

Egan, Greenberg, and Schulman (1961) and Egan, Schulman, and 
Greenberg (1961) investigated the effect of time uncertainty in 
the presentation of the signal.  They found that the performance 
decreased as the uncertainty in the starting time increased.  For 
various values of signal energy, they found the limit to the effect 
to be 
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STS = 2 d' STU (4-8) 

where STS and STU stand for starting time specified and 
unspecified, respectively. This limit value occurred for 
values of starting time uncertainty between 4 and 8 sec. 

Combination of Effects 

Up to this point, five factors have been discussed which 
would modify the relationships of Figure 5 for simple pulsed 
signal tests to a passive sonar situation. The problem now 
is to combine their effects. Green (1960b) in a discussion 
following the ideas of Peterson, et al. (1954), argues that 
the uncertainties in the signal do not add directly. His 
model is that of an observer faced with the task of detecting 
a signal about which there are M orthogonal uncertainties. 
As Green indicates in a plot of psychometric function A(d') 
vs. M, 

dA<41L > n 
dM    u (4-9) 

but 

d*A(d') 

dM2 
< 0 (4-10) 

That is, as M increases, its effect on A(d*) decreases.  Green's 
graph indicates that uncertainty M has half the effect of 
uncertainty M-l. 

It is difficult to determine exactly how all the above 
listed uncertainties affect the detectability index when they 
are combined in the real world situation of detection by passive 
sonar in the ocean without conducting an exceedingly complex 
actual experiment.  However, the following arguments are presented 
as a reasonable way to proceed. 

First, consider the opposing effects of a slowly increasing 
signal and fluctuations of that signal.  Horton gave a value of 
3 db less detectability for a slowly increasing, or non-pulsed 
signal.  Fluctuations can be shown to increase the detectability 
by about the same amount in the following way.  Assign the parameter 
n in Equation (4-7) a value of 1.7 (1.7 a™  will be exceeded 51 of 
the time assuming a Gaussian distribution), and d* a value of 2 
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(the upper limit of the interval 0.4 < d* < 2.0 given by Andrews 
and Hovater (1971) as reasonable).  Then Equation (4-7) says that 
for d' of 2.0 with fluctuations present as in the sonar case, 
the d' for fluctuations not present must be divided by a factor 
of 1.9, yielding 1.1.  Figure 5 shows that the db difference 
along a typical curve such as for 1 kHz between d' of 2.0 and 
1.1 is 2.8 db. Since these two effects are of the opposite 
sign and of the same approximate magnitude, and since no detailed 
experimental evidence as to their exact effects exist, they are 
assumed to cancel. 

Secondly, it is assumed that the effect of frequency 
uncertainty, measured at d' = 1 to be 3 db, varies as does 
the effe-t of time uncertainty.  Since the effect of time 
uncertainty is to halve the detectability index and since 
at d' = 1 this is equivalent to 3 db (see change of A(d') from 
d' = 2 to d' = 1 on typical curve of Fig. 5) as in the case of 
frequency, it is assumed that the effect of frequency uncertainty 
is also to halve the detectability index when considered alone. 
Therefore, since both time and frequency uncertainties, considered 
independently, halve the detectability index, we can write 

d' = (1 + 1) d'F = (1 + 1) d'T (4-11) 

= 2 d'F = 2 d'T 

where d'rp is the detectability index for time uncertainty and 
d'p is the detectability index for frequency uncertainty. 
When both effects are considered together in the light of 
Green's arguments concerning multiple orthogonal uncertainties, 
one gets 

d'  =   (1 +  1 +  0.5)   d* FT 
(4-12) 

~~ <C> *        -J N««. FT 
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where d'TF stands for the effective detectability index with 
both time and frequency uncertainty and uncertainty M + 1 is 
assumed to have one half the effect of uncertainty M. 

Finally, in order to use the FC data in Figure 5 in the 
YN passive sonar problem, Equations (4-2) and (4-12) ars combined 
to yield 

d' = /2 • 2.5 d 
eff 

(4-13) 

= 3.5 d' eff 

where d' _- is the effective d' in the passive sonar problem. 

Equation (4-13) represents an inefficiency of the human 
ear in detecting a signal in a passive sonar situation, as 
contrasted to its ability to detect a pulsed signal in the 
n Alternative Forced Choice situation corresponding to 
Figure 5. What remains is to determine the correction to 
Figure 5.  It has already been pointed out that both pure 
tones and broad band noise tend to be detected roughly in 
accordance with Equation (2-19).  Figure 5 represents the 
best experimental modification to the theoretical relationship 
of Equation (2-19) which predicts that d' should double each 
tine the signal energy doubles.  Study of the slope of the 
pure tone curves ir. Figure 5 shows that they have on the 
average a slope of about 3 db change in A(d') per doubling 
of d', which agrees well with the linear relationship of 
Equation (2-19).  The desired relationship for passive 
sonar must have the same slope for the curves relating 
d' to A(d') as in Figure 5.  The appropriate correction to 
Figure ü, therefore, is derived from Equations (2-19), (4-13), 
and (3-2) as 

A(d') •-= 10 log 3.5 (4-14) 

= 5.4 db. 

Figure 6 has been derived from Figure 5 by shifting 
the curves over by 5.4 db to give the detectability index 
for the human ear in passive sonar detection.  The data of 
Figure 6 are used in the following chapter to derive expressions 
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for DT as a function of frequency and type of signal. The 
ordinate in Figure 6 is really d' -- from Equation (4-13), 
but the subscript has been droppea for the sake oi 
through the rest of the discussion. 

of simplicity 
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CHAPTER 5 

DETECTION THRESHOLD AND THE SONAR EQUATION 

As pointed out in Chapter 1, the sonar equation parameters 
are, in general, functions of frequency. Any complete discussion 
of the equation must, therefore, take frequency into account. 
Barger (1971) has presented a useful graphical treatment of the 
sonar equation. His method combines NL, DI, and DT in the form 
of an "Equal Detectability Curve," or EDC.  The EDC is positioned 
over a plot of SL with the frequency scales lined up. Then the 
EDC is slid downward until it just touches the SL curve. The 
FOM is the difference between the ordinate values of the SL and 
EDC curves at the point of coincidence.  Thus, the process yields 
the numerical solution of Equation (1-1). The point of intersection 
determines the frequency causing the detection.  Barger's method 
thus facilitates the calculation of detection range and points to 
the frequency location where reductions in SL would have the 
greatest effect in decreasing FOM and consequently, detection 
range. 

Barger (1971) presented two EDC's, one for tonal signatures 
and one for broadband signatures*.  In the discussion below, DT 
is derived for lines and for broadband signatures, based on the 
discussion of Chapters 3 and 4, pointing out any variance with 
the method of Barger.  The detection threshold for lines is 
defined as that ratio of signal to noise that can just be detected 
by the human ear, and is expressed in db as 

DT » 10 log j£- . (5-1) 
o 

The expression for DT can be related to the psychometric function, 
A(d'), using Equation (3-2), and the relationships E = ST and 
WT = 1.  Thus 

DT = A(d') - 10 log T. (5-2) 

*A glance at Figures "5" and 6 show that DT is a function of the 
type of signal.  The two types of signal must, therefore, be 
treated separately, using the appropriate value for DT. 
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For passive sonar detection, the non-transient signal is effectively 
a continuous one of unlimited extent so that the signal duration 
parameter, T, is irresolute. However, Green et al. (1957), found 
that there is an upper limit to T beyond which the performance of 
the hearing mechanism typifies imperfect integration. This value 
of T was estimated to be about 150 msec. Licklider and Green (1961) 
presented more thorough data pertaining to the integration time. 
They found for a 1 kHz tone that the psychometric function is 
flat for T < 0.15 sec, rises linearly with slope 1.5 db per doubling 
of time for 0.15 < T < 1.5 sec, and rises linearly at the rate of 
3 db per doubling of time for T > 1.5 sec* These findings mean 
that the detection threshold decreases with slope 3 db per doubling 
of time for T < 0.15 sec, decreases with slope 1.5 db per doubling 
of time for 0.15 < T < 1.5 sec, and is flat for T > 1.5 sec. 
Quantitatively this means that, for passive sonar detection of a 
continuous signal, the quantity (10 log T) must have a fixed value 
of 

1.5 10 log T + 10 log (0.15) + 5 log ^j= (5-3) 

= -3.2 db. 

This corresponds to a limit on the fully effective integration 
time for the human ear of 0.48 sec. The expression for DT, then, 
is 

DT = 3.2 + A(d') . (5-4) 

Equation (5-4), together with the data of Figure 6, produces 
the family of curves shown in Figure 7+ for DT vs. frequency 
for various values of d* for detection of lines by passive sonar. 
The dashed portions of the curves are extrapolations since data 
were not taken at those frequencies. 

*The -.ctual data do not contain these sharp discontinuities, but 
the above description is an adequate one. 
+Barger (1971) presented a curve for DT for lines using d' = 1.7 
and the uncorrected values of A(d') as reported by Watters and 
Moore (1970).  For T he used the geometric mean of 0.15 and 1.5, 
which is equivalent to the procedure of Equation (5-3) .  His curve 
is approximetely 5.4 db lower than Figure 7 would yield. 
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The broadband signal is not so straightforward to treat. 

DT = 10 log 2- , (5-5) 

and WT ^ 1, so that Equation (3-2) leads to 

DT = A(d') - 5 log W - 5 log T. (5-6) 

If the integration times of the ear for broadband and tonal 
signals are identical*, Equations (5-3) and (5-6) lead to 

DT = 1.6 + A(d') - 5 log W, (5-7) 

where W is the width of the broadband signature in the 
detection region. A basic problem arises in the broadband detection 
case in that any EDC must be calculated for a specific bandwidth 
but there is no way of knowing the bandwidth of the signal, W, 
which will cause detection until after an EDC has been applied 
to the SL curve. For the common case where SL is presented in 
proportional bandwidths such as 1/3-octave (23%) or 1/30-octave 
(2.3%), it is useful to define 

DT' = DT - 5 log(af/W) (5-8) 

= 1.6 + A(d') - 5 log(af) , 

where a is a constant and f is frequency, with units of both 
chosen to give af in Hertz.  This artifice allows the handy 
calculation of FOM', defined below.  It does not require a 
prior knowledge of the frequency region causing detection. 
Equation (5-8) and the data of Figure 6 were used to produce 
the family of curves in Figure 8 which 

*In a recent report, Moore (1972) would add 1 db to Equation (5-7) 
quoting the data of Green (1960a). We feel that Green's data is 
rather sketchy and could easily be interpreted to yield the same 
value for T as that of Licklider and Green (1961). We would, 
therefore, use the same value in both cases. 
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gives DT' vs. frequency for a - 0,023 and various values of d' 
For constant bandwidth signatures, define 

DT' = DT + 5 log(W) (5-9) 

= 1.6 + A(d,)f 

which is constant for a qiven d'. 

Corresponding to Equation (1-1), a similar expression can 
be set up using DT'. That is, 

FOM' = SL - NL + DI - DT'. 

Subtracting (5-10) from (1-1) gives 

FOM - FOM' = DT' - DT. 

(5-10) 

(5-11) 

Using Equations (5-7) and (5-8) for proportional bandwidth 
signatures 

FOM = FOM* + 5 log(W/af).* (5-1?) 

Using Equations (5-7) and (5-9) for constant bandwidth signatures 

FOM = FOM' + 5 log(W). (5-13) 

For proportional bandwidth signatures, the procedure is to apply 
an EDC based on any value of a, since if a is changed, the shape 
of the curve is not changed, only its absolute level. Then after 
the general area of intersection with the SL curve (presented for 
the same bandwidth) is found, and a value of FOM* determined, a 
correction according to Equation (5-12) can be calculated.** 
For constant bandwidth signatures, apply an EDC based on 
Equation (5-9) , and afterwards correct according to Equation (5-13) 

*Since W in general will be greater than af, the value of FOM is 
increased over FOM' by 5 log (number of analysis bands contained 
in the bandwidth of the signal contributing to detection, W). 
**Barger (1971) presented a curve for DT* for broadband signatures 
using d' = 1.7, a = 0.23, and the value of A(d') as reported by 
Watters and Moore (1970).  He assumed that the width of the 
broadband signature, W, responsible for detection is always 
0.23f, and thus FOM = FOM'. 
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Several words of caution are in order, before using 
Figures 7 and 8: 

1. The analysis of the signal spectrum must have been 
done on a sufficiently narrow band basis to detect 
any lines or narrow band humps of energy. If only 
1/3 octave analyses are performed, for example, both 
types of features can easily be lost with the possibly 
erroneous conclusion drawn that the detection is due 
to a full 1/3 octave band. 

2. In the case of broadband signatures, W, defined as the 
width of that portion of the signature which touches 
the EDC, must be greater than the critical bandwidth 
(Swecs, Green and Tanner, 1962)* if the data of 
Green (1960a) is to be considered valid. 

3. In the case of broadband signatures, Equations (5-12) 
or (5-13) must be applied, as appropriate, after the 
graphical manipulation. 

The following example will illustrate the graphical methci 
first described by Barger (1971) , but modified as described above, 
Figure 9 shows a hypothetical signature presented in the one- 
thirtieth octave bands. It is assumed that there is one line 
at 3.6 kHz, with the rest of the energy being broadband. 
Figure 10 shows two EDC's, one for lines and one for 2.3% 
bandwidth broadband.  The inputs to Figure 10 are: 

1. NL given by Figure 11 for lines, and by the spectrum 
level of Figure 11 corrected for 2.3% bandwidth for 
broadband. 

2. DI given by Figure 12. 

*The ear can be imagined to be like a comb filter consisting of 
a large number of narrow adjacent filter bands, called the 
critical bands of hearing.  The bandwidth of a critical band 
is then called its critical bandwidth. While the concept of 
a critical bandwidth is well accepted, there is disagreement 
on the numerical values. The most widely used values are 
about a constant 65 Hz bandwidth for signals up to 1000 Hz, 
and rising proportionally to the signal frequency above that 
(500 Hz at 8000 Hz). The range of values determined by various 
investigators cited in the reference is 40 to 160 Hz for 1000 Hz 
signals.  This indicates that W should be at least three 1/30 
octave bands wide above 1000 Hz and more below. 
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DT and DT' from Figures 7 and 8, respectively, 
corresponding to d* = 1.5 (see Table 4-1 for 
P(D) and P(FA) which correspond to d' = 1.5). 

a = 0.023. 

Using the EDC for lines, one sees that the FOM = 96.3 db and 
the frequency of detection is 3.6 kHz.  Using the EDC for broad- 
band noise, one sees that the FOM' = 87.3 db and the frequency 
of detection is 3 kHz.  From Figure 9, the wi^th of the hump at 
3 kHz is 2.2 kHz.  Therefore, 

FOM FOM' + 5 log \ (0. 
2200 

023) (3000) ) 
(5-14) 

= 87.3 + 7.5 

=94.8 db* 

The procedure given above is adequate for calculating the 
Figure Of Merit of an uncomplicated signature like the one 
given as an example.  However, when several lines appear in 
the signature, their presence must be considered.  The question 
of detecting multiple component signals was studied by Green (1958) 
He derived an expression for the detectability index of lines 
of different frequency occurring simultaneously.  For the case 
where each line is at least a critical bandwidth removed from 
every other line 

+The procedure used here for determining the width of the hump 
is simple. The edges of the band are taken as the frequencies 
where the separation between the Equal Detectability Curve and 
the signature first reaches 3 db.  In the example given, this 
occurs at 2.2 and 4.4 kHz.  The justification for this procedure 
is not rigorous.  It is based on an analogy to the normal 
bandpass filtering problem, which actually passes an amount 
of energy equal to what would go through a filter with zero 
loss within the same bandpass, and infinite less outside the 
band.  This certainly is an area deserving of more study. 
*It is interesting to note that the broadband portion of the 
signature is predicted to be only 1.5 db less detectable fan 
FOM of 94.8 db as opposed to 96.3 db) than the line which 
stands up about 9.5 db above the broadband noise.  This is 
due to the width of the broadband signal. 
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d« = 
Li=l 

(d'.) 
l 

1/2 (5-15) 

where d' is the index for line i. Green experimentally 
verifier1 Equation (5-15) for the case of two lines. Green, 
et al. (1959), later verified this Equation for 16 sinusoids. 
If the frequencies are separated by less than a critical 
bandwidth, Green's model for detecting multiple component signals 
is much more complicated, and apparently has not been tested 
experimentally.  In the case of two lines of equal magnitude, 
his complicated expression has the correct limits, approaching 
/2~ d' in the limit of large separation and approaching 2 d* 
in the limit of zero separacion. 

The concept of multiple line detection was applied by 
Barger (1971) for the case where there is more than one 
coincidence, or near coincidence, of lines with the EDC. 
Andrews and Hovater (1971) also noted the effects of the 
presence of multiple lines on detection.  The following 
method is proposed as a general method for treating the 
problem when the several lines present do not necessarily 
intersect the EDC together. 

Equation (5-15) provides an expression for the overall 
equivalent d' for all the lines if the d 
relationship among the d'.. 
can be defined by assuming 

'l  is known for one 
The (n-1) other relationships 

A(d,1) - A(d'.) = FOM. - FOM. = «. . 
x X X        XXX 

(5-16) 

where FOM^ is the Figure Of Merit calculated for line i using 
the EDC (which assumes a particular value of d'j) for line 1; 
line 1 being the line of first intersection.  The d' curve 
used is the one corresponding to the frequency of the primary 
line, since the application of the EDC has accounted for the 
frequency dependence of d'. 

Equation (5-16) positions the different d', along a curve, 
relative to one another.  Equation (5-15) fixes their absolute 
position. The increase is detectability, then, is given by 

AFOM = A(d') - Afd'jJ , (5-17) 

where, again, the A's are determined from the same d' curve. 
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AK example of the above procedure will be shown based 
on the hypothetical signature of Figure 13. The Equal 
Detectability Curve for lines from Figure 10 is applied, 
resulting in the individual FOMJ values for each of the 
three lines as listed in Table 5-1. The second column lists 
the &H  values, as defined in Equation (5-16), relative to 
Line 1.  Now we want to have d' = 1.5 since the line detect- 
ability curve of Figure 10 is based on that value. Therefore, 
we estimate a d'^ = 1.1 for Line 1 on the f = 3 kHz line* of 
Figure 6, corresponding to A(d'i) of 19.3 db. From Equation (5-16), 
A(d*2) must be 1.0 db less, or 18.3 db.  Therefore, d*? is 
0.83.  Similarly, A(d*3) is 17.0 db and d'? is 0.55. This 
gives a resultant overall d* of 1.48 from Equation (5-15) 
which is very close to the target value of 1.50.  The final 
values listed in Table 5-1 were obtained by raising each of 
the values obtained from the initial estimate by 0.02.  The 
value of A(d') corresponding to d' = 1.5 is 20.7 db so the 
AFOM from Equation (5-17) is 1.4 db.  The final FOM is increased 
1.4 db by the two extra lines, over the value of 96.3 db for 
the highest individual line, for a total of 97.7 db. 

FOMi 6ii d' . 
l 

Line 
Line 
Line 

1 
2 
3 

96.3 db 
95.3 db 
94.0 db 

0.0 db 
1.0 db 
2.3 db 

1.12 db 
0.85 db 
0.57 db 

Table 5-1. Values for Variables in Sample Calculation 
of Multiple Line Detection. 

Two well separated lines, both just touching the EDC, 
add 1.5 db to the J'OM over what either line gives by itself. 
Similarly, three independent lines all touching the EDC add 
2.2 db.  Table 5-2 has been constructed to give further 
guidance on the effect of two well separated lines.  It lists 
the increase in FOM produced by the lower of two lines when 
its effect is added to the FOM from the higher.  Table 5-3 
gives additional guidelines for when to stop considering the 
effect of multiple lines due to negligible increase in FOM 
(less than 0.1 db). Two extreme situations are covered in 
the Table.  The first is for one line touching the EDC, while 

*It makes no difference which frequency line is chosen on 
Figure 6 since they are all parallel.  The frequency dependence 
is in tht EDC of Figure 10. 
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there are anywhere from one to four lines equally far below 
the EDC. The second situation is for the line in question 
to lie below the EDC, while there are one to four other lines 
touching the EDC. In summary, an exact procedure has been 
given to handle the multiple line situation. In addition, 
several examples provide guidance as to the magnitude of the 
increase produced by multiple lines and limits below which 
their effects are negligible. With these guides, reasonable 
estimates can be made as to the effect of multiple lines in 
those cases where it is not necessary to make a more exact 
calculation. 

do Down Relative Increase in 
to Higher Line FOM 

0 db 1.5 db 
1 db 1.1 db 
2 db 0.7 db 
3 db 0.4 db 
4.  db 0.2 db 
5 db 0.1 db 

Table 5-2. Increase in FOM Due to a Second Line 
as a Function of its Relative Amplitude 

FOM, - FOM. 

NUMBER OF LINES 
ONE LINE TOUCHING EDC 
(N-l) LINES BELOW 

(N-l) LINES TOUCHING 
EDC, ONE LINE BELOW 

2 
3 
4 
5 

5.2 db 
5.9 db 
6.2 db 
6.4 db 

5.2 db 
3.8 db 
3.1 db 
2.6 db 

Table 5-3. Difference in FOM Level Necessary Before 
the ith Line Can be Neglected in Multiple 
Line Detection 

A final refinement to the procedure of predicting detection 
ranges is the concept of sequential observations. As was 
discussed earlier, most underwater acoustic sources of interest 
are continuous ones in comparison to T, the integration time. 
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This affords the sonar operator the luxury of withholding his 
decision, as to the presence öf a target, until after several 
observations. The operator can, in effect, trade time-until- 
decision for increased certainty. 

Suppose, for example, there is a variable cost for 
€.:-!h observation as well as a fixed reward (or fine) for 
a correct (or incorrect) decision. Swets and Green (1961) 
showed that the number of obt ^rvations is an inverse function 
of the cost per observation. The sonar operator is faced 
with a similar problem and will follow the same behavior 
pattern. 

One theory (Swets and Green, 1961) says that the 
detectability index following the n'th observation is 
related to the value of d*. for the first observation as 

d n    Jl/2n 
n   d I* 

(5-18) 
n N 

Equation (5-18) says that the distribution of the sum 
of n random variables has mean equal to the sum of the 
means [n(yN - yN)], and variance equal to the sum of the 
variances  (na^j . This result is equivalent to Equation (5-15) 
when all the d'. are the same. 

Experimental results generally disprove Equation (5-18) . 
Pollack (1959) found that Equation (5-18) consistently over- 
estimated his experimental results where word intelligibility 
was measured as a function of repeated presentations of a word 
in noise.  Swets and Green (1961) found that an observer's 
performance in detecting a sinusoidal signal in noise falls 
below that predicted by Equation (5-18) for n > 5. Watters 
and Moore (1970) found that the ability of their subjects to 
integrate separate clues was less than that predicted by 
Equation (5-18) , when their task was to detect a line component 
of a submarine's radiated noise signature when masked by stern 
aspect radiated noise from a torpedo.  In general, one can see 
from Equation (5-18) that as n gets inordinately large, so does 
d . which is not reasonable, n 

Another theory, advanced by Andrews and Hovater (1971), 
suggests that the effect of sequential observations is binomial, 
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i.e.,   that 

n nj m P(D) - £ üTTH^TTPD 
(1-V 

, n-ir. 

m~c 

and 

nm = E iirnSWr PpA^-PpA» 
r.-m 

(5-1S) 

(5-20) 
m-c 

where p_. and pp are the probabilities of detection and false 
alarm, respectively, for an individual observation, and c is 
sore rivitiLet of the n observations which exceed the operating 
level.  This theory allows the parameter, c, to be chosen in 
a fortuitous VT.y. The chief criticisms of this model are 
(1) a binomial process such as Equation (5-19) and (5-20) 
assumes perfect memory and (2) Andrews and Hovater do not 
test the model against experimental data. 

It seems reasonable that there will be upper limits to 
c and n beyond which the human performance will not typify 
perfect memory. These limits will probably be functions of 
d' as well. Andrews and Hovater do investigate several 
hypothetical cases with promising results. But these cases 
are not tied to the reality of an experiment and use n = 60 
and c = 10 or 20. One might suspect that human performance 
would decline before these high values are reached, as the 
results of Swets and Green (1961) indicate. 

While other models (see, for example, Boehme and Weidmann 
(1970); Iglehart (1966); and Birdsall and Roberts (1965)) have 
been proposed, it is clear that there is no established theory 
to describe the effects of sequential observations.  It is also 
clear that the effect must be considered in predicting detection 
range.  Sequential observations, therefore, remain a prime area 
for further study. 
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CHAPTER 6 

DISCUSSION 

Purpose of Study 

Before evaluating the accomplishments of this report, it 
is desirable to understand the original objective of the study 
and hew it evolved into its present form. The original objective 
was to study the field of psychoacoustics in sufficient depth 
to judge its accuracy and usefulness in predicting alertment 
and masking performance of a fleet weapon. It soon became 
clear that there were differences in predictions among the 
various works in the field.  It also appeared that several 
seemingly important factors were not being treated. The study 
progressed then to an evaluation of the importance of these 
factors and investigations as to how they could be taken into 
account. Techniques were developed to account for some of the 
factors, while others appeared to require further research before 
satisfying answers will be found. The final purpose of the 
study thus became threefold? to compile a status report on 
the field of psychacoustics applied to passive sonar, to 
attempt to advance the field by documenting areas of disagreement 
with current doctrine and presenting the authors' proposals 
for handling certain of the additional factors and finally to 
list those ar:as which appear to need further study. Many of 
the questions discussed in Chapter 4 have been studied and 
reported on individually to some degree in the literature. 
However, not all of the effects have been applied to the passive 
sonar problem. What is new here is the attempt to find ways 
to combine all these effects and determine their application 
to the detectability index.  The end result is a set of curves 
for detectability index, Figure 6, which is substantially 
different from those developed or used previously. 

Chapter 5 attempts to define the detection threshold 
for a human working with passive sonar. The choice of an 
integration time for the ear is reviewed.  Combining this 
with the curves for detectability index of Figure 6 gives 
the desired end result curves of detection threshold, Figure 7 
for lines, and Figure C for broadband noise.  Again these are 
more than trivially different from others in the literature. 
The concept of an Equal Detectability Curve is reviewed. 
This is a graphical technique for solving the sonar equation 
as a function of frequency anc! determining which feature of 

46 

tmmm 
 - - - ■  ■■ ,n 



NOLTR 74-27 

a noise signature will predict first detection or last 
unmasking.  If broadband noise is involved, a technique is 
presented for utilizing the actual width of the signal being 
heard, rather than the usual assumption that thr bandwidth 
involved is one third octave.  If lines are caubing detection, 
a system is proposed for handling the effect of multiple lines, 
each of which may be contributing to the detectability.  Finally, 
the effects of sequential observations are discussed, and the 
conclusion is reached that this question has not yet been brought 
under control. 

The model for the detection threshold of the human ear 
outlined in Chapter 5 is quite complex in comparison to the 
simple one cited by Urick (1967) .  However, the present model 
addresses many important questions such as the dependence of 
the detection threshold on type and frequency of sign il. This 
advantage far outweighs the extra complexity, for it permits 
focusing attention on those portions of an acoustic signature 
which are contributing to detection.  Thus noise reduction 
efforts can be concentrated on certain limited frequency 
bands rather than across the board.  It is important from both 
cost and time standpoints that it be possible to develop 
mathematical techniques and models for predicting alertment 
and masking for various weapons from acoustic signatures alone. 
The alternative of huge numbers of sea trials, or even simulator 
trials with human operators is simply not practical, excepting 
as a check on the adequacy of the model. 

It should be emphasized that the proposals made here are 
not considered to be the last word.  Instead they are being 
advanced for consideration and criticism by others. The 
application of psychoacoustics to passive sonar alertment 
and masking is still in an early stage of development. 

Accomplishments 

Chapters 2 and 3 are basically a review of the literature 
and contain little that is new.  Chapter 2 covers the statistical 
theory of signal detection starting with the fundamental work 
of Peterson, Birdsall and Fox (1954) .  Chapter 3 is a review 
of the literature r^gardinc, the basic application of signal 
detection theory to psychoacoustics.  Tanner, et al. (1956), 
showed rather convincingly that the theory of signal detect- 
ability is indeed the proper way to proceed in studying the 
response of the human ear to aural stimulus.  Green, et al. 
(1959) , and Green (1960a) determined just what the relationship 
is between the detectability of a signal and its energy.  It 
is possible for the reader to secure the basic education needed 
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in this field from a careful study of this summary. For those 
desiring to go further in depth into some aspect, an extensive 
bibliography of original source material is cited. 

Chapter 4 investigates some of the differences between 
the relatively simple laboratory tests reported in the literature 
and the complex problems of actual passive sonar operation.  It 
starts with the problems of choosing an operating level and 
having the observer stick tc that level. Much of the literature 
presents results for n Alternative Forced Choice tests. Sonar 
is more nearly related to the yes-no situation which reduces 
the detectability. Almost all tests are done by instantaneously 
gating the signal on and off, whereas a sonar signal as heard 
by the ear will increase relatively slowly in level, again 
making it less detectable. Working in the opposite direction, 
real signals have fluctuations due to the medium which tend 
to make them more detectable. Uncertainties in exactly what 
frequency or character the signal will have, and when ic will 
show up in time, both reduce the detectability. 

Effect of Errors 

It is desirable to have some indication of the effects of 
any errors or uncertainties in the determination of the 
detection threshold. An elementary way to get this is to 
consider the precision of the data which underlies the theory 
of detection threshold for the ear, and then to translate this 
into potential uncertainty of range in the ocean for alertment 
or masking. As an e-tample, consider the data of Green, et al. 
(1959), for tones. These are based on the results of 25 trials, 
by each of 11 observers, at 10 signal levels, for 16 different 
frequencies, or 44,000 observations.  This is a rather thorough 
experiment. Even so, the authors estimate the variance about 
a given value of P(c) to be 

a2 =  P(c) [1 - P(c)]/25, (6-1) 

where 25 is the number of observations at each point. Table 6-1 
lists the effect of this uncertainty on the detectability at 
various values of d'.  An inspection of the data of Green (1960a) 
for noise bursts reveals that similar uncertainties exist there 
also. 
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ÄDT due to AP(c) 

0.5 
1.0 
1.5 
2.0 

Table 6-1. 

2.2 db 
1.5 db 
1.6 db 
2.1 db 

Uncertainty in Detection Threshold 
Due to Uncertainty in P(c). 

To translate the db uncertainty given in Table 6-1 into 
terms more relevant to the problem of the real world, Table 6-2 
presents the uncertainty in detection range resulting from an 
uncertainty of 1.6 db in DT for d' = 1.5.  Simple spherical 
spreading has been assumed since any better assumption requires 
knowledge of local factors such as velocity profile, frequency, 
water depth, sea state, and bottom conditions.  Attenuation and 
effects of velocity gradients would combine to make the largest 
values somewhat unrealistic in the real world situation, but the 
1 - 10 kyd ranges would certainly be affected that much. 
Furthermore, Table 6-2 takes only one source of uncertainty 
into account.  There are many more.  It is important, therefore, 
to make these models as accurate as possible. 

FOM (db) 1inge (kyds) Spread (kyds) 

100 
90 
80 
70 
60 

100 
32 
10 

3.2 
1.0 

83   - -   120 
26  - -     38 

8.3  - -     12 
2.6  - -  3.8 
0.8   - -   1.2 

Table 6-2. Uncertainty in Detection Range Due to 
Uncertainty in P(c). 

Areas for Further Work 

It has already been pointed out that this report doe not 
claim to represent the last word on passive sonar detection. 
Suggestions have been made as tc how to hanJle a number of 
problems relating to the application of psychoacoustics to passive 
sonar.  However, there are a number of other areas where the 
basic experiments and knowledge available seem inadequate. 
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One very important assumption concerns the way the 
uncertainties outlined in Chapter 4 add. This assumption, 
although reasonable, is not foundeä on any experimental 
evidence since no one has considered the combined effect 
of time and frequency uncertainty, for example.  Here is 
one place where further experimental study might resolve 
an important question. 

Much of the discussion outlined in Chapters 3 through 
5 is justified by experiments using a 1 kHz tone. While it 
seems logical that these phenomena can be considered independent 
of frequency and character of signal, a recent report by Moore 
(1972) points to an example where the assumption may not be 
valid. Moore interprets the integration time for a 1 kHz tone, 
as reported by Licklinder and Green (1961), to be 0.45 sec. 
He interprets the integration time for broadband signals, as 
reported by Green (1960a), to be 0.30 sec  This difference 
in integration time would reduce the Figure Of Merit of a 
broadband signal by 1 db. As pointed out earlier, we feel 
that Green's (1960a) data does not permit determination of 
the break point to this degree of precision.  This is a good 
example of an area where additional thorough experimentation 
can better determine the dependence of integration time, if 
any, on the type and frequency of the signal. 

It T.ould seem logical that the decrement to performance 
caused by a slowly increasing signal (Horton, 1959) as well 
as that due to uncertainty in signal frequency (Green, 1961) 
would be a function of the detectability index, as were the 
other corrections. This assumption was made in the derivation 
of Equation (4-12). Also, as Horton points out, this effect 
is most pronounced when the character of the signal is like 
that of the noise.  It would seem, then, that broadband signals 
would be more adversely affected than tonal ones.  Here, again, 
detailed experimentation could answer these questions. 

What is the effect of multiple lines when their separation 
is less than one critical bandwidth? While Green (1958) presented 
a plausible approach to this question, it has not been tested 
experimentally. 

The effect of multiple bands of noise has not been defined. 
The effects of sLaply widening a single band of noise has been 
covered, but what happens when the two bands are well separated 
in frequency? Possibly the effects are additive in the same way 
that two lines separated by more than the critical bandwidth are, 
but experimental evidence of this is lacking. 
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Combining the effects of both lines and bands of noise 
also needs further investigation. This is a very important 
question since the most detectable line often will lie just 
a little bit above a broadband of nearly white noise. 

The subject of the effect of sequential observations has 
already been pointed out earlier in the report as a field 
where only theories exist as to how to handle the problem. 
These theories do not always agree, and there is little 
experimental evidence to define the best way to proceed. 

Of course, the final judgement of any model of auditory 
detection depends for validation on a real world test of it. 
Such a test could be carried out by using samples from the 
profusion of existing tapes on which are recorded the acoustic 
signatures of a variety of noise-makers, from torpedoes to 
submarines.  Facilities exist where such tapes can be combined 
if desired with background noise and the resultant shaped 
appropriately to simulate the desired NL and DI. Judicious 
use of notch filters could be employed to eliminate single 
lines or one of two separated wideband signals suspected of 
causing detection.  Such studies should be able to answer 
questions such as: 

a. Does the theory of signal detectability accurately 
predict the Figure Of Merit obtained in a real world 
experiment? 

b. Is this Figure Of Merit due to lines or broadband 
signal? 

c. Which lines are causing detection? 

d. What re< xon of the broadband signature is causing 
detection? 

e. What is the effect on FOM of removing a given line 
freu the signature, i.e., what is the effect of 
multiple line components? 

f. What are the effects of the various real world 
uncertainties out.\ned in Chapter 4  as compared 
to the controlled laboratory experiments of Green, 
et al. (1959), and Green (1960a)? 

g. Do broadband and line components in the same signature 
have the combined effect of increasing the detectability? 
If so, what is the relationship? 
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