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Ah«tract 

An extremal principle for accounting balance of a resource value- 

transfer economy of W.   P.  Drews is developed.    Through   t. existence 

and uniqueness are completely characterized in terms of an associated 

linear programming problem of pure distribution (transportation) type. 

An existence theorem of Dantzig's (established by the Brouwer fixed 

point iheorem under economically questionable conditions» is an immediate 

special corollary.    The principle is equivalent to unconstrained minimi- 

zation of a simple strictly convex function and can be computed therebv. 

Alternately,   it is an extended geometric programming problem whose 

dual is minimization of a strictly convex function subject to the same 

distribution constraints mentioned above. 
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1.   Introduction 

Kvents of recent years in re exhaustible resources led W.  P. Drews 

to formulate a model 'which we have not seen) in which an economy is driven 

by a transfer of agreed monetary values of r resources, e.g. oil, food, 

labor, etc..  into agreed monetary receipts of s resource-owner (-goods- 

consumer) groups such that (1) total resource valuation equals total monies 

received. (2) prices of resources and sizes of owner groups adjust to drive 

consumer goods prices and industrial activity levels ' employment levels) 

so that th* value of each resource equals the sum the economy spends for 

it and the receipts of each owner-group equals the sum of its expenditures. 

The latter detail (2) we call "accounting balance. " 

A variant of Drews' model was presented and studied by Dantzig in 

f 1J.   He shows only, by making a strong (and economically au»stionable) 

assumption ona matrix relating resource use to owner group lize 

and employing   the Brouwer fixed point theorem, that relative prices and 

relative group sizes exist which satisfy the accounting balance.   No possi- 

bilities of computation are suggested, the question of uniqueness is 

untouched, and nothing is mentioned concerning the effect of the 

structure of the matrix or the agreed monetary divisions on the balance. 

In the following we completely characterize such an economy by a 

non-linear extremal principle which may be interpreted as the minimization 

of an economic potential function.   Accounting balance occurs if and only 

if there exists a point of economic equilibrium (minimum potential).    Despite 
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the non-linearity uf thi* funrtional minimi/ed. the effectM of the K'y <rx s) 

matrix \l, the resource valuations V|,..., vr and tht* owner receipts *j. • • . 6S 

«•n tli-  nature of thi* inminiuiii (non-txistftu-e. existence,  uniqueness) are rom- 

pletely rharacterlzed in terms of an sssociated linear programr.nng prohl« in of 

distribution (transportation) type with supplies v^ vr receipts 6j ts 

.inii with the non-zero entries of M des'^natinR the possible "transfer" routes. 

The extended dual theorem,  p.   182,|2|,  at 1 dual considerations are the key here 

The extremal problem is reduced to the unronstra'ned minimization 

of a strictly convex funrtion tnvolvmg onlv exponential and I'near terms. 

C'omp.ifc'tion is easslv possit>le w'th SIMT,  piecewise hnear-zation,  or anv 

other standard method.    Alternately 't can be viewed as an extended geometrir 

programmmj» problem,   whose dual is a convex programming problem with 

pure distribution constraints.    The latter formulation seems most advanlageoii?> 

to compute large systems. 

2.    Notation and Formulation 

Let ,A, A   be respectively the Ith row, jth column of the matrix A. 

T Let p  . q be the row, column vector of pri> »*>p-r unit resource, sizes of 

owner (consumer) groups; y, x the vectors of goods prices,  industry activity 

(employment) levels, R, the (rxs) matrix of resources per unit industrial 

activity, C the (mxs) matrix of goods per unit owner (consumer) group 

size, N the (nx m) matrix of industrial activity per unit good (in flj the 

inverse of a Leontiei type matrix); M ■ RNC.    We assume v,.  6. > 0 lor 

all i. j.    Note that It.   N,  C are non-negative matrices. 

(2. 1)     vrs pTHN   .     xs NCq 

(2.2) -   Vi«   '   6      i.e.  the total value is transferred 
1 J    J 

The accounting balance conditions are. 

(2.3) Vj'Pj^Mq). 6JMpTMj)qJ .alti.j 
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lemma 1    If v^  6   > 0.  for all i.jaidß.:*»  holds, then p|s«ui, q'e J > 0, for 

all i. |.   and M ha& a positive entr> in each row and each column. 

Lemma 2:   At accounting balance, 

'   v      pTMq =>> 6 
i    ' j     J 

I'hen (3) may be rewritten 

(2.4) v M. eu* * VJ  - v,.      L Mlje
l,,*vJ     ft, . all i.j 

j      ij                               i       J                   * 

Let 

(2.5) p(u.v) « T»U^eui* vj -^ VjUj - v d.v 

Then, by the Kuhn-Tucker Theorem, since fp(u. v) is convex and analytic 

in (u, v), 

Theorem T    &(u, v) has a minimum at (u. v) 
if and only if 

the accounting balance (2.4) holds 

The problem of baluii- t- may therefore be rendered by the 

Kxtremal Principle 

(2.5)    minimize    p   Mq -/.Vjlnpj -/.ft   Inq 

T with p   ,   q > 0#or equivalently • 

(2.6)    minimize   ß (u. v) * ^ M, e"'    VJ -  ^ v^u.   -T. bv T i,J     >i i     '  •      j     J   J 

without constraints . 
Note:   (2.5) may be recognised as an extended geonietnc programminf* problim. 

J.    Existence 

The necessary condition on M in l.eirnia 1 is not sufficient even 

that C(u. v) be bounded below.   To rharucterize this situation, consider the 

following "transfer" system (of "pure distribution" type in linear programming 
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x-    -    v i -I r 
jfj(i) 'J ' 

ieI(j)XÜ J'      J      

'J 

where .1(0 ^ {j:   M    > o}.  I(j> s (j:   M,   > O) 

Theorrm 2     u (u.v) is Itounded below 

if and only if 

the transfer .system f3. 1) has u solution 

t'roof     If (.'<. I> has a solution x. ,  we can rewrite 

(3.2) p(u.v»'J]M;jfcH ^j-^i-^u^Vj) 

and get 

(3.3) C(u.v)>r. x., fI-ln(xlt/M11»| 
kjleP    ,J ,J      IJ 

where P * {(i.j)     x    >   0} 
«J 

If (3. II has no solution,  we mimmi/e  T. Ox.,   subject to the transfer 

conditions.   The dual theor« m |2| implies that a sequenn   (un. vn) exists 

for which   {f (un. vn) -• -• . 

Q.K.I». 

Let IJ he the coefficient matrix of the left side of the equations in 

(3. 1).    Its maximum possible rank is r's-l.   By the ' regularization" pro- 

cedure of Charnes and Cooper |2| all cases can be reduced (also computatiunallv ' • 

to this case.   We discuss this elsewhere. 

Here we not.   that the existence of a solution to (3. 1). while sufficient 

for an infimum, is not sufficient for existence of a minimum of »(u, v). 



Thfortm 3:   £(u, v) ha» a minimum (ar« uuntnig balance) 

if and only if 

the transfer svstem (3. 1) has a solution x    whose non-zero values 

(h'signate a mib-matrix of \) of equal rank to I) 

t'roof    Suppose (3. 1) has a solution T    whose non-zero components designate 

a subntatnx of rank less than 1).    let w .-u.*v   for x    > 0.    Let 
•J     '     J 'J 

z    = u. ♦ v. if d. . > 0 and If. . » 0.    Ihin the z  . are independent variables 

i.e. the Ujj    ♦    v. cannot be expressed (linearly» in terms of the w   . 

We can now write 

(1.4) Ciu.v) *   pfw.z»«.7!      (M.e*^ - I.w   > ♦  H        Mlfle
Zk, 

r x.^O    ,J ,j   "      (%IHK  k, 

where K « {(kl)    Mkl > 0. x^^O], 

Clearly, (p (w. 7) < *(w, z) whenever z * z and some T.. < z ..   Thus 

^(u. vi has an infimum and no minimum whenever K ^ #.   If K=#. then 

(3.5) ^(u.v)» J     <MIie
W,,-«iiwil)aÄr -(M^e^J - x  w  ) • S(w) 

x.j >o    J IJ  IJ    ••J)€^      J 'J   'J 

where x^ satislies (3. 1). Q « {'i. )»    x|   > 0} c {d, j) y   >o) and 

Q designates linearly independent columns of D. hence .ndependent 

variables w. • 

Rut ^(w) '••as |w| ■• •.   Since K-0 if and only if the rank of the submatnx 

of 1) designated by x    > 0 equals that of D, the theorem follows. 

Q.K.I). 

Dantzig's result is the corollary. 

Corollary 1:  If M > 0,    ^(u, v) has a minimum*. 
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( orollary 2    Ifl* «{(i.j>    r   >©) * Q ■ {(I,J):   M|   > o) and the columns 

uf L) dcsiünatfd by I' are linearly iiKJependent,  then the minimum 

of ^(u, v) takes place at w.      u/v ^ In/ijj/MiJ.     (i,j) e P. 

4.    Unujuene.-K 

T Assuming a minimum exists,  if p ,q is a (price,  size) solution so 

T       T -I, is p       -sp   , q     (a   >q for any n > 0.    I nn^ueness is possible at most to 

relative prices und sizes.    However, extending the argument in Theorem 

*.  we t an show there exist« a "basic" solution Xjj of (3. I > so that 

M.6)      g(u.vt 'T      (M^e*'! - «. w^) *T    M-V'J^* 
Xij>0 X,j' 

where (iJw)   s linear in the independent variables w   .    Evidently 

the right hand is a strictly convex function of the w,..    (Without assuming 

a minimum, ^(u, v) may be written in form (3.6) plus possible additional 

exponential terms in z . i.e.  a« a stnctlv convex function of w    and zk|.) 

Theorem 4:   The minimum of £(u. v) is unique in variables Wj. of (3.6). 

Theorem 5:   If w    minimizes (3. 6). then the set of minimizing (u. v) is 

the set of all solutions to 

ii   ♦ v   - w .x     ^0 i       j        ii '    ij 
(3.7) J J J 

u. ♦ v   - f,Jw. )   ,  x     =0 
i       J      «J    ij     '     ij 

where the submatrix of IJ ashociated with the ft;, is a basis for (3. 1). 

Questions of uniqueness and stability of the system to arbitrary but 

small perturbations of the v.,   6   are closely related.    Stability of solution 

to such perturbations implies that the rank of D must be r+s-l,   e. g. 

Theorem 6     If no subsums of the v. and *   are equal, then for a minimum to 

exist the rank of I) must he r^s-l.    The minimum point 's unique up 

to relative prices and sizes. 



Sometimes M may be decomposable i.e.  block diagonal on suitable 

interchanges of rows and of columns.   If there are B blocks, the problem 

splits into H independent problems of the same form.    When soluble, each 

independent problem minimum can be at most unique up to a scale factor 

for prices (and its reciprocal for sizes).   It must be so unique if the block 

problem is stable under local perturbations of its own v ,  6 . 

b.   Computation 

The accounting balance prices and sizes and corresponding consumer 

^oods prices and employment levels may be computed from (2. 6) and its 

variants by any of the standard convex programming methods, e.g. SI'MT 

or piecewise linearization.   Alternately, Ncwton-Haphson schemes can be 

applied to solve the balance equations dirertly. now vhat one knows the 

theory of their ambient system.   A third dire« uon, which may be most 

convenient for large systems is through solving the geometric programming 

dual to (2.5). 

From (31,  page 210 et jeq the extended geometric program 

T -Vi J^r-Jl       -6a T (5.1) minimize p   Mq ♦ ln(pj   ... pr rq .'. .qs   ) with p   , q > 0. 

has a dual 

(5.2) minimize   -v(6) « T      6;, nnfAi./e) • InM   | 
(i.j)«gJ J IJ 

subject to (3.1)on the &,.. 

If 6 .   is an optimal solution, then 

(5.3) 6^ « lljjp'q*.        (i.j) t  Q. 

Note how (5.3) recovers the result in (3.7). 
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Since linear programming problems of distribution type may b* 

«-omputed at least 100 times faster than grneral linear programs, e.g. 

2 in a few seconds on existing «odes for r, H ^ 10   (and larger), and since 

«-Mating codes fur distribution problems handle by far the largest linear 

programs, this mode of solution seems most attractive for large Systems. 

6.   Kxtt-nsions 

The model needs extension in the directions of more explicit 

connections between employment levels, consumer'group sizes, etc. 

Multi-period extensions would also be desirable, as would introduction of 

stochastic (risk or uncertainty) elements.   The authors are currently 

making such extensions. 
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