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Abstract

An extremal principle for accounting balance of a resource value -
transfer economy of W. P. Drews 1s developed. Through 't, existence
and uniquencss are completely characterized in terms of an associated
linear programming problem of pure distribution (transportation) type.

An existence theorem of Dantzig's (established by the Brouwer fixed

point theorem under economically questionable conditions) is an immediate
special corollary. The principle is equivalent to unconstrained minimi-
zation of a simple strictly convex function and can be computed thereby.
Alternately, it is an extended geometric programming problem whose

dual is minimization of a strictly convex function subject to the same

distribution constraints mentioned above.



1. Introduction

Events of recent years in re exhaustible resources led W. P. Drews
to formulate a model (which we have not seen) in which an economy is driven
by a transfer of agreed monetary values of i resources, e.g. oil, food,
labor, etc., into agreed monetary receipts of s resource-owner (:goods -
consumier) groups such that (1) total resource valuation equals total monies
received, (2) prices of resources and sizes of owner groups adjust to drive
consumer goods prices and 1ndustrial activity levels ( employment levels)
s0 that the value of each resource equals the sum the economy spends for
1t and the receipts of each owner -group equals the sum of its expenditures.
The latter detail (2) we call "accounting balance. "

A variant of Drews' model was presented and studied by Dantzig in
[1]. He shows only, by making a strong (and economically questionable)
assumption ona matrix relating resource use to owner group -ize
and employing the Brouwer fixed point theorem, that relative prices and
relative group sizes exist which satisfy the'acco;mting balance. No possi-
bilities of computation ar e suggested, the question of uniqueness is
untouched, and nothing is mentioned concerning the effect of the
structure of the matrix or the agreed monetary divisions on the halance.

In the following we completely characterize such an economy by a
non-linear extremal principle which may be interpreted as the minimization
of an economic potential function. Accounting balance occurs if and only

if there exists a point of economic equilibrium (n.:inimum potential). Despite



the non-hnearity of the functional minimized, the effects of the bey (rx s)

matrix M, the resource valuations vy, . ...v,. and the owner receipts 6;..., ¢
on the nature of the minimum (non-existence, existence, uniqueness) are com-
pletely characterized in ter:ms of an associated linear programraing problm of
distribution (trunsportation) type with supplies Vi ... ¥ receipts 6,. evenbg

and with the non-zero entries of M desienating the possible "transfer’ routes.
The extended dual theorem, p. 182,(2]), a1 dual considerations are the key here.

The extremal problem ig reduced to the unconstraned minimization

of a strictly convex function nvolving onlv exponential and linear terms.
Computetion 15 easily possible with SUMT, piecewise linearization, or anv
other stundard method. Altcrnately it can be viewed as an extended geometr: ¢
programming prablem, whose dual is a convex programming problem with

pure distribution constraints. The latter formulation seems most advantageous

to compute large systems.

2. Notation and Formulation

let jA, AJ be respectively the i"‘ row, 1"‘ column of the matrix A.
et pT. q be the row, column vector of prices pr unit resource, sizes of
owner (consumer) groups; y, x the vectors of goods prices, industry activity
(employment) levels. R, the (r x s) matrix of resources per unit industrial
activity, C the (m x s) matrix of goods per unit owner (consumer) group
size, N the {(nx m) matrix of industrial aétivity per unit good (in (1] the
inverse of a Leonticl type matrix); M3 RNC. We assume v;, bj >01or
all 1, j. Note that B, N, C are non-negutive matrices.

2.1 yT:pRN . x= NCq
(2.2) 2 vi= Y8 i e. the total value 1s transferred

The accounting balance conditions are,

(2.3)  v;* p;(;Maq), 6J=(p'MJ)qJ . alki, )
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Lemma 1: Ifv,, 6J >0, for all i,jand @3) holds, then p, zeYi, qJ‘evJ >0 for
all i,j, andM has a positive entry 1n each row and each column.

lLemma 2: At accounting balance,

r

-

A - Mq =3:6J

1
Then (3) may be rewritten

R A R R T R . alli, )
) i

l.et

. .+ 5 -
2.5 ftu,v = i.Z‘J.Mijc". RTINS

‘Then, by the Kuhn-Tucker Theorem, since c(u. v) is convex and analytic

in (u, v),

T'heorem 1: (u, v) has & minimum at (u, v)
if and only if
the accounting balance (2. 4) holds
The problem of balauce¢ may therefore be rendered by the

Extremal Principle:

(2.5) minimize pqu S ? Y;Inp; - Y.GJ lnqj
' )
with pr, q > 0,or equivalently .

{(2.6) minimize F(u.v) ] .Z M. eui’ VJ - "_‘ vu -2.86 v
L) ! i v T |

J j J

without constraints .
Note: (2.5) may be recognized as an extended geometric programming problem.

3. Existence

The necessary condition on M in Lemma 1 is not sufficient even
that C(u. v) be bounded below. To charucterize this situation, consider the

following "trunsfer'’ system (of "pure distribution" typ= in linear programming



jargon):
X, v, i=l,...,r
yedi) V) {
(3.0 .« A
Mo :ll"'ls
ety Ty
L0,
1)

where Ji) = ) M, >0}, 1 = (i M, >0}
Theorem 2 clu, v) is bounded below
if and only if
the transfer system (3.1) has a solution

Proof- 1If (3.1} has a solution iij’ we can rewrite

(.20 B s Vo, Yy - DR v)
t- l']

and get

3.3 Cuval % (1-nG /M )
(i, ))ep Y )

where P = {(i,)): ;i, > 0}

If (3. 1) has no solution, we minimize E.' 0- xi'l subject to the transfer

conditions. The dual theorem {2] implies that a sequence (uP, v?) exists

for which t (un, v") < -

Q.1.D,

l.et D be the coefficient matrix of the left side of the equations in

(3.1), Its maximum possible rank is r+s-1. By the 'regularization' pro-

cedure of Charnes and Cooper [2] all cases can be reduced (also computationally ')

to this case, We discuss this elsewhere.

Here we not.- that the existence of a solution to (3. 1), while sufficient

for an infimum, is not sufficient for cxistence.or a minimum of e(u. v),
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Theorem 3: :‘“- v) has a minimum (saccounting balance)
if and only if
the transfer system (3. 1) has a solution iij whose non-zero values

designate a sub-matrix of ) of equal rank to D)

I’roof: Suppose (3.1) has a solution !ij whose non-zero components designate

a submatrix of rank less than ). let wiruiwJ for x'j >0, l.et

205Ut Y if dkl >0 and Xa° 0. ‘hen the z . are independent variables

kKl 'k

i.e. the u, + vy cannot be expressed (linearly) in terms of tiie Wi,

kl

We can now write

w z
. ) = ) ')': (M. A~ ) " kl
(1.4) fu,v) Clw.z) s J>oM'Jc KW, »mZ”t M

where K = {(k1). M, >0, %,-0}.
~ -
Clearly, a‘(w. 7)< B(w,z) whenever z $ z and some %,, <z,,. Thus
ki kl
((u,v) has an infimum and no minimum whenever K # 0. If K=0, then

3.5 Buvz? Me"-5 w2 e DeqM e - & w, -
.5 o
Xi) >0 131
where & satisties (3.1), Q = {ti, ) %, >0)g (. %, >0} and
~ [ ]

6 designates linearly independent columns of D, hence independent

variables wij.
But e(w) <o .3 |w| *+=. Since K=0 if and only 1f the rank of the submatrix

of ) designated by iij > 0 e¢quals that of ), the theorem follows.

Dantzig's result is the corollary,

Corollary 1: If M >0, ‘(u. v) has a minimum; )



Corollury 2 If P 5 ((i,)): Y” >0} = Q = {(i,): MiJ >0} and the columns

of D designated by P ure linearly independent, then the minimum

of ‘(u. v) takes place at wij s ui0vj= lnﬁij/Mi]). i,) eP,

4. Umgueness

Assuming a minimum exists, if pl,q is a (price, size) solution so
P T -l)q - . .
1sp 1w, q-:la for any n > 0. Uniqueness is possible at most to
relative prices and sizes. However, extending the argument in Theorem

3, we can show there exists a "'basic'' solution gij of (3.1) so that

(1.6) fuvr:=Y (M e¥'-x w, y £ L M'.ef‘l“')
i“> o l) 'J ) xl :0 J
i) J
where fijlw) 8 linear 1n the independent variables w”. Evidently

the right hand is a strictly convex function of the Wiy (Without assuming
a minimum, C(u. v) may be written in form (3. 6) plus possible addti onal
exponential terms in LW i.e. as a strictly convex function of wi; and z,.)
Theorem 4: The minimum of c(u. v) is umque in variables i of (3.6).
Theorem 5: If w = minimizes (3. 6), then the set of minimizing (4, V) is

)

the set of all solutions to

u-*vj= i) ., X >0

u ¢ vJ. : fu(wu) . xij =0

where the submatrix of 1) associated with the 9;' is a basis for (3. 1),
Questions of uniqueness and stability of the system to arbitrary but

small perturbations of the v,, 61 are closely related. Stability of solution

(3.7)

to such perturbations implies that the rank of D must be r+s-1, e.g.

Theorem 6: If no subsums of the v; and 6J are equal, then for a minimum to
cxist the rank of I) must be r+s-1. The minimum point is unique up

to relative prices and sizes.



Sometimes M may be decomposable i. e. block diagonal on suitable
interchanges of rows and of columns. [f there are B blocks, the problem
splits into B independent problems of the same form. When soluble, each
independent problem minimum can be at most unique up to a scale factor
for prices (and its reciprocal for sizes). It must be so unique if the block

problem is stable under local perturbations of its own v,. 6)‘

5. Computation

The accounting balance prices and sizes and corresponding consumer
goods prices and employment levels may he computed from (2. 6) and its
variants by any of the standard convex programming methods, e.g. SUMT
or piecewise linearization. Alternately, Newton-Ra phson schemes can be
applied to solve the balance equations directly, now that one knows the
theory of their ambient system. A third dire. tion, which may be most
convenient for large systems is through solving the geometric programming
dual to (2.5).

From (3], page 210 et geq,¥he ex.tended geometric program
(5.1) minimize pTMq + lnlp}vl. o p-:rc;:.’. .q.:s] with pT. q>0,
hus a dual
(5.2) minimize -v(8) *‘3 ch"' [in(8; /e) - InM |

subject to (3.Don the 6.1.

j is an optimal solution, then

» & & 3 r
(5.3) 6'] s Mupiq'l ‘ (i,j) e Q.
Note how (5. 3) recovers the result in (3. 7).

If 6:



Since linear programming problems of distribution type may be
computed at least 100 times faster than general linear programs, e. g.
in a few seconds on existing codes for r, s ~ 10 (and larger), and since
existing codes for distribution problems hundle by far the largest lincar

programs, this mode of solution seems most attractive for large systems.

6. Extensions

The model needs extension in the directions of more explicit
connections between employment levels, consumer-group sizes, etc.
Multi-period extensions would also be des:rable, as would 'ntroduction of
stochastic (risk or uncertaiaty) elements. The authors are currently

making such extensions.
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