AD/A-002 923

STRONG FENCHEL DUALITY

A. Ben-Tal

Texas University

Prepared for:

Office of Naval Research

October 1974

DISTRIBUTED BY:



| DOCUMENT CONT                                                    | ROL DATA - R & D                                                                                             |  |  |  |  |  |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| (Security classification of title, body of abstract and indexing | nnotation must be entered when the overall report is classified)                                             |  |  |  |  |  |
| I ORIGINATING ACTIVITY (Corporate author)                        | 28. REPORT SECURITY CLASSIFICATION                                                                           |  |  |  |  |  |
|                                                                  | Unclassified                                                                                                 |  |  |  |  |  |
| Center for Cybernetic Studies                                    | 28. GROUP                                                                                                    |  |  |  |  |  |
| The University of Texas                                          | ·                                                                                                            |  |  |  |  |  |
| J REPORT TITLE                                                   |                                                                                                              |  |  |  |  |  |
|                                                                  |                                                                                                              |  |  |  |  |  |
| Strong Fenchel Duality                                           |                                                                                                              |  |  |  |  |  |
|                                                                  |                                                                                                              |  |  |  |  |  |
| 4 DESCRIPTIVE NOTES (Type of report and inclusive dates)         | •                                                                                                            |  |  |  |  |  |
|                                                                  |                                                                                                              |  |  |  |  |  |
| 5. AUTHOR(S) (First name, middle initial, last name)             |                                                                                                              |  |  |  |  |  |
| A. Ben-Tal                                                       |                                                                                                              |  |  |  |  |  |
|                                                                  |                                                                                                              |  |  |  |  |  |
| `                                                                |                                                                                                              |  |  |  |  |  |
| 8. REPORT DATE                                                   | 74. TOTAL NO. OF PAGES 76. NO. OF REFS                                                                       |  |  |  |  |  |
|                                                                  | 29 8                                                                                                         |  |  |  |  |  |
| 84, CONTRACT OR GRANT NO.                                        | Se. ORIGINATOR'S REPORT NUMBER(S)                                                                            |  |  |  |  |  |
| N00014-67-A-0126-0008; 0009                                      | 74. TOTAL NO. OF PAGES  75. NO. OF REFS  8  94. ORIGINATOR'S REPORT NUMBER(S)  Center for Cybernetic Studies |  |  |  |  |  |
| 6. PROJECT NO                                                    | Research Report CCS 200                                                                                      |  |  |  |  |  |
| NR 047-021                                                       |                                                                                                              |  |  |  |  |  |
| c                                                                | 9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)                                  |  |  |  |  |  |
|                                                                  |                                                                                                              |  |  |  |  |  |
| d.                                                               |                                                                                                              |  |  |  |  |  |
| 10 DISTRIBUTION STATEMENT                                        |                                                                                                              |  |  |  |  |  |
|                                                                  |                                                                                                              |  |  |  |  |  |
| This document has been approved for publi                        | c release and sale; its distribution                                                                         |  |  |  |  |  |
| is unlimited.                                                    |                                                                                                              |  |  |  |  |  |
| 11. SUPPLEMENTARY NOTES                                          | 12. SPONSORING MILITARY ACTIVITY                                                                             |  |  |  |  |  |
| Barred and I                                                     | Office of Naval Research (Code 434)                                                                          |  |  |  |  |  |
| Reproduced from best available copy.                             | Washington, D.C.                                                                                             |  |  |  |  |  |
|                                                                  | madifuseous Dioi                                                                                             |  |  |  |  |  |

Fenchel's Duality Theorem concerns the problem of minimizing the difference of a convex function f and a concave function g. The duality resides in the connection between the above primal problem and the dual problem of minimizing the difference of the concave conjugate g\* and the convex conjugate f\*. In general a duality gap may exist between the two problems unless some regularity condition is imposed. Here a family of different duals is suggested for which a duality gap does not exist.

> NATIONAL TECHNICAL INFORMATION SERVICE

US Department of Commerce Springfield, VA. 22151

DD FORM .. 1473 (PAGE 1)

S/N 0101-807-6811

Unclassified

Security Classification

|                    | KEY WORDS |   | LINK A LINK B |     |      | LIN | N C  |    |
|--------------------|-----------|---|---------------|-----|------|-----|------|----|
|                    |           |   | ROLE          | WT  | ROLE | WT  | ROLE | wT |
|                    |           |   |               |     |      |     |      |    |
|                    |           |   |               |     |      |     |      |    |
|                    |           |   | ŀ             | l   |      |     | 1    |    |
| A 771              |           |   | 1             |     | İ    |     |      |    |
| Duality            |           |   |               |     |      | i   |      | 1  |
|                    |           |   |               |     | 1    |     |      |    |
| Convex Programming | 3         |   |               |     | ĺ    |     |      | i  |
|                    |           |   |               | ]   |      | i   |      | ļ  |
| Duality Gaps       |           |   | i             |     |      |     | 1    |    |
|                    |           |   |               |     |      |     |      |    |
|                    |           |   | 1             |     |      |     |      |    |
|                    |           |   |               |     |      |     |      | ĺ  |
|                    |           |   | i             |     |      |     |      |    |
|                    |           |   |               |     |      |     |      |    |
|                    |           |   | <u> </u>      |     |      |     |      |    |
|                    |           | ` | İ             |     |      |     |      |    |
|                    |           |   | j l           |     |      |     |      |    |
|                    |           |   | 1             |     |      |     |      |    |
| **                 |           |   |               |     |      |     |      |    |
|                    |           |   |               |     |      |     |      |    |
|                    |           |   | l İ           |     |      |     |      |    |
|                    |           |   | ļ ¦           |     |      |     |      |    |
|                    |           |   |               |     |      |     |      |    |
|                    |           | • |               |     |      |     |      |    |
|                    |           |   |               |     |      |     |      |    |
|                    |           |   |               |     |      |     | l í  |    |
|                    |           |   |               |     |      |     |      |    |
|                    |           |   |               |     |      |     |      |    |
|                    |           |   | l             |     | Ì    |     |      |    |
|                    |           |   |               | 1   |      |     |      |    |
|                    |           |   |               |     | ]    |     |      |    |
|                    |           |   |               | l   |      |     |      |    |
|                    | •         |   | ļ             |     |      |     | l    |    |
|                    |           |   |               | ĺ   | 1    |     |      |    |
|                    |           |   |               | 1   |      | ĺ   |      |    |
|                    |           | İ |               |     |      |     |      |    |
|                    |           |   |               |     | ŀ    | i   |      |    |
|                    |           |   |               |     | i    |     |      |    |
|                    |           |   | l             | 1   | į    |     |      |    |
|                    |           |   |               |     |      |     |      |    |
|                    |           |   |               | ł   | Į.   |     |      |    |
|                    |           | ļ |               | j   | i    |     | j    |    |
|                    |           |   | J             | ł   | - 1  | ł   |      |    |
|                    |           |   | Ì             |     |      |     |      |    |
|                    |           |   | 1             |     |      |     | 1    |    |
|                    |           |   |               | - 1 | 1    | Ì   | ł    |    |
|                    |           | i | ļ             |     |      | - 1 |      |    |
|                    |           |   |               | J   | - 1  | ŀ   |      |    |
|                    |           | Ī | İ             |     | l    | - 1 |      |    |
|                    |           | } |               |     | ļ    |     | İ    |    |
|                    |           | 4 | ĺ             | ſ   | I    |     | 1    |    |
|                    |           |   |               | - 1 | ļ    |     | 1    |    |
|                    |           | j | 1             | 1   | 1    |     | 1    |    |
|                    |           |   |               |     | 1    |     | - 1  |    |
|                    |           | - | ı             |     | 1    |     | 1    |    |
|                    |           | ŀ |               |     | - [  |     |      |    |
|                    |           | 1 | 1             |     | 1    |     | - 1  |    |
|                    |           |   | - 1           | i   | 4    |     | 1    |    |
|                    |           | 1 |               | 1   | i.   | i i | - 1  |    |
| *. •               |           |   |               | - 1 | }    |     |      |    |
| *. :               |           |   |               |     |      |     |      |    |

DD FORM 1473 (BACK)

Unclassified

Security Classification

A-31409

Research Report CCS 200
STRONG FENCHEL DUALITY

by

A. Ben-Tal



October 1974

This research was partly supported by project No. NR 047-021, ONR Contracts N00014-67-A-0126-0008 and NG0014-67-A-0126-0009 with the Center for Cybernetic Studies, The University of Texas. Reproduction in whole or in part is permitted for any purpose of the United States Government.

#### CENTER FOR CYBERNETIC STUDIAS

A. Charnes, Director
Business-Economics Building, 512
The University of Texas
Austin, Texas 78712
(512) 471-1821





### ABSTRACT

Fenchel'. Duality Theorem concerns the problem of minimizing the difference of a convex function f and a concave function g.

The matity resides to the connection between the above primate and a man the dual problem of minimizing the difference of the concave conjugate g\* and the convex conjugate f\*. In general a duality gap may exist between the two problem unless some regularity condition is imposed. Here a family of different dual to suggested for which a duality gap do not exist.

### 1. Introduction

Fenchel's Duality Theorem concerns the problem of minimizing

I-g where f and g are convex and concave functions, respectively.

The duality resides in the connection between minimizing f-g and maximizing g\*-f\*, where g\* and f\* are the conjugates of g and f, respectively. More precisely,

$$(+) \qquad \qquad \inf(f-g) = \max(g^*-f^*)$$

provided the following regularity condition holds:

(\*) The relative interiors of domain f and domain g possess a point in common.

For treatment of Fenchel's Duality in finite dimensions, see e.g. [2],[3], [6],[7], and [8], and in infinite dimensions, e.g. [1],[4] and [5].

If f and g are restricted to certain subfamilies of convex and concave functions, then (+) holds even without (\*) being valid. Such subfamilies are the polyhedral convex and concave functions

[6], or, more generally, the stable functions [7, chapter 5].

In this paper we are interested in finding duals, other than the Fenchel dual: (Sup (g\* - f\*)) for which a relation similar to (+) holds for every pair of convex and concave functions, whether (\*) holds or not. Such duals, called "strong Fenchels' duals", are constructed in section 3.

In section 4, the results of section 3 are applied to Rockafellar's extension of Penchel's duality [6], and to the well-known formulas for computing the conjugate function and the subdifferential of the sum of convex functions. A special duality result for a certain strong Fenchel dual is derived in section 5.

The terminology used in this paper is that of Rockafellar's book [6]. We list below some notations used in the lequel, for definitions and furth a falls consult [6, Part I].

Let S be a nonempty convex subset of  $R^n$ , and let  $\ell$  and h be convex functions:  $R^n \to R$ . We denote by

ri S -- the relative interior of S

rhd s -- the relative boundary of S

aff S -- the affine hull of S

dim S -- the dimension of S

8( · |x) -- the indicator function of S

f h -- the infimal convolution of 3 and h, i.e

$$(f \square h)(x) \stackrel{\wedge}{=} \inf_{Y} (f(y) + g(x - y))$$

# 2. Fenchel's Duality

Let  $\phi$  be the set of all quadruples (f, g, A<sub>1</sub>, A<sub>2</sub>) such that  $\begin{cases} A_1 & \text{and } A_2 \text{ are convex subsets of R}^n \\ f: R^n \to R \text{ is a proper convex function with dom } l = P_1 \\ g: R^n \to R \text{ is a proper concave function with dom } g = A_2 \\ A & \triangleq A_1 \cap A_2 \neq \emptyset. \end{cases}$ 

Consider the primal problem

Let f\* denote the (convex) conjugate of f, and g\* the (concave) conjugate of g, i.e.

$$\mathcal{E}^{*}(\mathbf{x}^{*}) \stackrel{\triangle}{=} \sup_{\mathbf{x} \in \mathcal{P}_{1}} (\langle \mathbf{x}^{*}, \mathbf{x} \rangle - \mathcal{E}(\mathbf{x}))$$

$$g^{*}(\mathbf{x}^{*}) \stackrel{\triangle}{=} \inf_{\mathbf{x} \in \mathcal{N}_{2}} (\langle \mathbf{x}^{*}, \mathbf{x} \rangle - g(\mathbf{x}))$$

Denote also  $A_1^* \triangleq \text{dom } I^*$ ,  $A_2^* \triangleq \text{dom } g^*$  and finally  $A^* \triangleq A_1^* \cap A_2^*$ .

The problem

•

is called the Fenchel Dual of (P).

The following classical result relates (p) and (p).

Fenchel's Duality Theorem (e.g.[6, Theorem 31.17)

Let (f, g, 
$$A_1$$
,  $A_2$ )  $\epsilon \Phi$  If

then

(3) 
$$\inf(f - g) = \max(g^* - f^*).$$
A A\*

If f and g are closed and

(4) 
$$\operatorname{ri} A_1^* \cap \operatorname{ri} A_2^* \neq \emptyset$$

then

(5) 
$$\min(f - g) = \max(g^* - f^*).$$
A A\*

There are well-known examples, where neither (2) nor (4) holds, and in which inf  $(P) > \sup (D)$ , i.e. there is a duality gap.

One such example is the following.

Example 1 [7, p. 181-183]

Let 
$$A_1 = \{(x, y) \in \mathbb{R}^2 : x = 0, v = 0\}$$
 $A_2 = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y = 0\}$ 

$$f(x,y) = \begin{cases} 0 & (x,y) \in \mathbb{A}_1 \\ \infty & \text{otherwise} \end{cases}$$

$$g(x,y) = \begin{cases} 1 & (x,y) \in \mathbb{A}_2 \text{ and } xy \ge 1 \\ \sqrt{xy} & (x,y) \in \mathbb{A}_2 \text{ and } xy \le 1 \\ -\infty & \text{otherwise} \end{cases}$$

Then

$$f(x,y) = \begin{cases} 0 & (x,y) \in \mathbb{A}_2 \text{ and } xy \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

Then

$$f(x,y) = \begin{cases} 0 & (x,y) \in \mathbb{A}_2 \text{ and } xy \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \in \mathbb{A}_2 \text{ and } xy \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \in \mathbb{A}_2 \text{ and } xy \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \in \mathbb{A}_2 \text{ and } xy \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

Then

$$f(x,y) = \begin{cases} 0 & (x,y) \in \mathbb{A}_2 \text{ and } xy \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \in \mathbb{A}_2 \text{ and } xy \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \in \mathbb{A}_2 \text{ and } xy \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \in \mathbb{A}_2 \text{ and } xy \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \in \mathbb{A}_2 \text{ and } xy \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \in \mathbb{A}_2 \text{ and } xy \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \in \mathbb{A}_2 \text{ and } xy \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \in \mathbb{A}_2 \text{ and } xy \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

Therefore

$$\inf(f - g) = 0 > -1 = \sup(g^* - f^*).$$

## 3. Atrong Fenchel . Duality

For any subsets  $B_1$ ,  $B_2$ , of  $R^n$  such that

(6) 
$$B_i \subset A_i$$
,  $i = 1, 2$ 

Let us denote the following:

$$f_{B_{1}}^{*}(x^{*}) \stackrel{\Delta}{=} \sup(\langle x^{*}, x \rangle - f(x))$$

$$\chi \in B_{1}$$

$$g_{B_{1}}^{*}(x^{*}) \stackrel{\Delta}{=} \inf(\langle x^{*}, x \rangle - g(x))$$

$$\chi \in B_{2}$$

$$g_{B_{1}}^{*} \stackrel{\Delta}{=} \dim f_{B_{1}}^{*}, \quad g_{2}^{*} \stackrel{\Delta}{=} \dim g_{B_{2}}^{*}, \quad g_{3}^{*} \stackrel{\Delta}{=} g_{1}^{*} \cap g_{2}^{*}.$$

Also let (0: B<sub>1</sub>, B<sub>2</sub>) denote the following problem

$$(p; B_1, B_2)$$
  $\sup_{\mathbf{B}^*} (g_{\mathbf{B}_2}^* - f_{\mathbf{B}_1}^*).$ 

Whenever  $B_1 = A_1$ , and  $B_2 = A_2$  they are omitted from the above notation, thus  $A_1^* = A_1^*$ ,  $A_2^* = A_2^*$ ,  $A_1^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,  $A_2^*$ ,

$$(7) B_1 \cap B_2 = A$$

An admissible pair is called strongly admissible if in addition to (5) and (7) it satisfies

(8) 
$$\operatorname{ri} B_1 \cap \operatorname{ri} B_2 \neq \emptyset.$$

The following result is an elementary observation suggesting the possibility of constructing duals (0;  $B_1$ ,  $B_2$ ) without duality gaps.

### Proposition 1

Let (f, g,  $A_1$ ,  $A_2$ )  $\epsilon$   $\phi$  and let (B<sub>1</sub>, B<sub>2</sub>) be an admissible pair. Then

(9) 
$$\inf_{A} (f - g) \ge \sup_{B^{+}} (g_{B_{2}}^{+} - f_{B_{1}}^{+}) \ge \sup_{A^{+}} (g^{+} - f^{+})$$

### Proo.

From the definitions of  $f_{B_1}^*$  and  $g_{B_2}^*$  we derive

$$g_{B_{1}}^{*}(x^{*}) \leq \langle x^{*}, x \rangle - f(x)$$
  $x \in B_{1}^{*}, x^{*} \in B_{1}^{*}$   
 $g_{B_{2}}^{*}(x^{*}) \leq \langle x^{*}, x \rangle - g(x)$   $x \in B_{2}^{*}, x^{*} \in B_{2}^{*}$ 

is note for every  $x \in B_1 \cap B_2 = A$  and  $x \in B^*$ ,

$$a_{B_{1}}^{*}(x^{*}) + c(x) \le cx^{*}x > \le a_{B_{1}}^{*}(x^{*}) + f(x)$$

imp ying

$$(x' - g(x) \ge g_{B_2}^*(x^*) - f_{B_1}^*(x^*) \times \epsilon A, x^* \in B^*$$

proving that first inequality in (9). To prove the second inequality note that

$$B_{1} \subset A \Rightarrow \begin{cases} f_{B_{1}}^{*} & \text{s} & f^{*} \\ B_{1}^{*} & \text{s} & A_{1}^{*} \end{cases} \qquad B_{2} \subset A_{2} \Rightarrow \begin{cases} g_{B_{1}}^{*} \geq g^{*} \\ B_{2}^{*} \supset B_{1}^{*} \end{cases}$$

shower that

$$g_{B_j}^* - \varepsilon_{B_1}^* \ge g^* - f^*$$

4174

from which it follows that

$$\sup_{B^*} (g_{B_2}^* - f_{B_1}^*) \ge \sup_{A^*} (g^* - f^*)$$

A sual problem (9; B1, B2) is called a strong Fenchel dual if

(10) 
$$\operatorname{inf}(P) = \max(p; B_1, B_2)$$

for every (f, c,  $A_1$ ,  $A_2$ )  $\epsilon \Phi$ . This property is closely related to the strong admissibility of  $(B_1, B_2)$ , as expressed in

### Proposition 2

For every strongly admissible pair  $(B_1, B_2)$ , the problem  $(D; B_1, B_2)$  is a strong Fenchel dual.

### Proo

The admissibility of (B<sub>1</sub>, B<sub>2</sub>) implies

(11) 
$$\inf(f - g) = \inf(\hat{f} - \hat{g})$$

$$A \qquad B_1 \cap B_2$$

where

$$\hat{f} \triangleq f + \delta(|B_1|)$$

$$g \triangleq g - \delta(|B_2|)$$

clearly

$$(\hat{a}, \hat{g}, B_1, B_2) \in \Phi$$

moreover, by the strong admissibility of (B<sub>1</sub>, B<sub>2</sub>) it follows from Fenchel's Duality Theorem that

(12) 
$$\inf(\hat{f} - \hat{g}) = \max(\hat{g}^* - \hat{f}^*)$$
  
 $B_1 \cap B_2$ 

but

$$\hat{f}^* = f^*_{B_1}, \quad \hat{g}^* = g^*_{B_2}$$

hence (11) and (12) implies

$$\inf_{A} (f - g) = \max_{B} (g_{B_2}^* - f_{B_1}^*)$$

The existence of a strongly admissible pair, i.e. the nonemptiness of

(13) 
$$S = \{all \text{ strongly admissible pairs}\}$$

is illustrated by the following simple example.

### Example 2

Consider the pair

$$B_1 = A, B_2 = A$$

then

$$B_1 = \Lambda \subset A_1$$
,  $B_2 = \Lambda \subset A_2$ ,  $B_1 \cap B_2 = \Lambda \cap \Lambda = \Lambda$   
 $\text{ri } B_1 \cap \text{ri } B_2 = \text{ri } \Lambda \cap \text{ri } \Lambda = \text{ri } \Lambda \neq \emptyset$ 

hence (A, A) is strongly admissible. The fact ri  $A \neq \emptyset$  indeed holds (in finite dimension spaces) for any nonempty convex set A.

Note that Example 2 together with Proposition 2, produce our first strong duality relation

### 4. Characterization of strong admissibility

### Lemma 1

For any nonempty convex sets S, T  $\subset \mathbb{R}^n$ 

$$(14) T \cap ris = \emptyset$$

il, and only if

$$(15) S \cap T \subset rbd S$$

consequently

(16) 
$$ri S \cap ri T = \emptyset$$

if, and only if

(17) 
$$[S \cap T \subset rbdS] \vee [S \cap T \subset rbd T]$$

#### Proof

First note that the equivalence (16) $\iff$ (17) follows from the equivalence (14) $\iff$  (15) since

[
$$\exists i \ S \cap ri \ T = \emptyset$$
]  $\leftarrow$  [ $T \cap ri \ S = \emptyset$ ]  $V[S \cap ri \ T = \emptyset]$ 

Indeed the implication ( $\Leftarrow$ ) is trivial, and the implication ( $\Rightarrow$ ) follows from the fact that the condition ri S  $\cap$  ri T =  $\emptyset$  (is necessary and sufficient for proper separation of S and T (see [6, Theorem 11.3]). Now, if S  $\cap$  T =  $\emptyset$ , the equivalence (14)  $\Leftrightarrow$  (15) is trivial.

Thus suppose that

Let (14) hold. Then

(19) 
$$(S \cap T) \cap ris = (S \cap ris) \cap T = T \cap ris = \emptyset$$

since (S ∩ T) ⊂ S it follows from (19) that

$$S \cap T \subseteq S - ri S \subseteq cl S - ri S = rbdS$$
.

Suppose now that (15) holds. Clearly rbdS  $\cap$  ri S =  $\emptyset$  hence, by (15), (S  $\cap$  T)  $\cap$  ri S =  $\emptyset$  and, by (19), T  $\cap$  ri S =  $\emptyset$ .

### Corollary 1.1

The set S of all strongly admissible pairs is given by

(20) 
$$S = \{\text{convex pairs } (B_1, B_2): A \subset B_i \subset A_i, A \not\subset \text{rbu } B_i, i = 1,2\}$$

### Proof from Lemma 1

ri 
$$B_1 \cap ri B_2 \neq \emptyset \iff B_1 \cap B_2 \not \in rbd B_i \quad i = 1, ?$$

Now the fact  $[A \cap B_i \cap A_i, i = 1, 2]$  is equivalent to  $[B_1 \cap B_2 = A, B_i \cap A_i = 1, 2]$  and hence the result.

The following lemma will enable us to find an important subset of S.

Lemma 2

For any non-empty convex sets S, T  $\subset \mathbb{R}^n$  and any convex subsets P, O such that

it tollows that

(23) 
$$\operatorname{ri} P \cap \operatorname{ri} Q \neq \emptyset$$
.

Proo "

If (23) is false then

$$[Q \cap ri P = \emptyset] V [P \cap ri Q = \emptyset].$$

Thu , without loss or generality, suppose that

$$Q \cap ri P = \emptyset$$

This is equivalent, by Temma 1 to

P n Q rbd P.

since this means that  $P \cap Q$  is a convex sublet of the relative boundary of the convex set P it follows [Corollary 6.3.3] that

(25)  $\dim(P \cap Q) < \dim P$ .

on the other hand (11) and (22) imply

7.77 6

$$(26) S \cap T = P \cap Q$$

Morcover

$$\dim \Gamma \leq \dim [S \cap aff(S \cap T)] \leq$$

$$\leq \dim aff(S \cap T) = \dim(S \cap T).$$

Hence Ly (26)

 $\dim(P) \leq \dim(P \cap Q)$ 



ntradicting (25). Thus (24) is Calse. Similarly

$$P \cap ri Q \neq \emptyset$$

Proving (23).

Restating Temma 2, we obtain

### Corpliny 2...

m), set

(27) 
$$A = \{\text{convex pairs } (B_1, B_2): A \subset B_i \subset A_i \cap \text{ aff } A, i=1,2\}$$
consists of strongly admissible pairs, i.e.  $A \subset S$ .

### Remarks

1. A necessary condition for  $(B_1,\ B_2)$  to be strongly admissible in that

$$ri \wedge ri B_i$$
,  $i = 1, 2$ 

This wiles remark the lastion (see [6, Corollary 6.5.27):

". There are pairs  $(A_1, A_2)$  for which A = S, such as the pair  $(A_1, A_2)$  given in Example 1.

There are of course only (A<sub>1</sub>, A<sub>2</sub>) for which  $A \not\equiv S$ . Consider to the A<sub>1</sub> = a variety in the plane,  $A_2$  = a variety of the case. Then  $(B_1, B_2) = (A_1, A_2) \in S$  but  $(B_1, B_2) \not\in A$ .

3. I T

$$A_2 \cap ri A_1 \neq \emptyset$$

then the set

 $A_1 \stackrel{\Delta}{=} \{(B_1, B_2) : A \subset B_1 \subset A_1, A \subset B_2 \subset A_2 \cap aff A\}$  as contained in S (and, clearly, contains A). This fact follows actually from the proof of Lemma 2.

### 4. Some related results.

### Rocha ellar's extention of Fenchel duality

Suppose th

C<sub>1</sub> is a nonempty convex subset of 
$$R^n$$

C<sub>2</sub> is a nonempty convex subset of  $R^m$ 

f:  $R^n + R$  is a proper convex function, dom  $f = C_1$ 

g:  $R^m + R$  is a proper concave function, dom  $g = C_2$ 

M:  $R^n + R^m$  is a linear transformation with inverse  $u^{-1}$ 

where, for any S - R<sup>m</sup>

$$M^{-1}S \triangleq \{x: Mx \in S\}$$
.

Suppose further that

(29) 
$$c \stackrel{\wedge}{=} c_1 \cap M^{-1}c_2 \neq \emptyset$$

and

Let the set of all (f, g,  $\mathbf{H}$ ,  $\mathbf{C}_1$ ,  $\mathbf{C}_2$ ) satisfying (28) - (36) be lenoted by Y.

Condider the problem

$$in''(f - qg)$$

The infimum is taken effectively on the (nonempty, convex) set C. Note that there is no loss of generality in assuming (30), for if (f, g, M,  $A_1$ ,  $A_2$ ) satisfy (28), (29) but not (30), one can consider instead of (31) the equivalent problem

(32) 
$$\inf\{(f-gM): x \in C_1 \cap M^{-1}\overline{C}_2\}$$

where

$$\bar{g} \stackrel{\Delta}{=} g - \delta(1 \text{ range M})$$

and

$$\vec{c}_2 \triangleq dom \hat{q}$$

Clearly then

Rocka ellar (see e.g. [6. Corollary 31.2.1] and [7]) proves that if (7, 9, M, C1, C2)  $\in \mathbb{Y}$  and

(33) 
$$\operatorname{ric}_{1} \cap \operatorname{M}^{-1}(\operatorname{ric}_{2}) \neq \emptyset$$

Then

(34) 
$$\inf(f - gM) = \max(g^* - f^*M^*)$$

where M\* is the adjoint of M.

The results of the previous section can be used here to derive the ollowing.

### Theorem !

Let  $(f, g, M, C_1, C_2)^{\epsilon}$   $\forall$ , and let  $D_1 \subseteq R^n$ ,  $D_2 \subseteq R^m$  be any convex wheets satisfying

(35) 
$$C \subset D_1 \subset C_1, C \subset M^{-1}D_2 \subset M^{-1}C_2$$

(37) 
$$C \not\subset M^{-1}(\text{rbd } D_2)$$

Then

(38) 
$$\operatorname{inl}(f - OM) = \max(g_{D_2}^{*} - f_{D_1}^{*}M^{*}).$$

In particular, (38) holds if

(39) 
$$c \subset D_1 \cap aff(c) \cap c_1$$

$$c \subset M^{-1}D_2 \cap aff(c) \cap M^{-1}c_2$$

### Proo "

First we collect : ome properties of m<sup>-1</sup> needed below,

$$(40) \qquad \qquad s \subset T \Longrightarrow M^{-1}s \subset M^{-1}T$$

(41) 
$$M^{-1}(S \cap T) = M^{-1}S \cap M^{-1}T$$

(42) 
$$M^{-1}(S \sim T) = M^{-1}S \sim M^{-1}T$$

(43) Range 
$$M \supset S$$
,  $S \neq \emptyset = > M^{-1}S \neq \emptyset$ ,

Finally (see e.a. 6, Theorem 6.7])

(44) 
$$M^{-1}(\text{ri }S) \neq \emptyset \Rightarrow \begin{cases} \text{ri}(M^{-1}S) = M^{-1}(\text{ri }S), \\ \text{cl}(M^{-1}S) = M^{-1}(\text{cl }S). \end{cases}$$

Now, by (42), (37) is equivalent to

(45) 
$$C \not = M^{-1}(C \cap D_2) \sim M^{-1}(ri D_2),$$

Miso

$$\emptyset \neq \text{ri } D_2 \subset D_3 \subset C_2 \subset \text{Range M, by (35) and (30)}$$

Hence, by (43)

$$\mathbf{M}^{-1}(\mathbf{r} \cdot \mathbf{D}_2) \neq \emptyset$$

and thus, by (44) - (46)

(47) 
$$C \not\in cl(M^{-1}D_2) \sim ri(M^{-1}D_2) = rbd(M^{-1}D_2).$$

It follows that  $S = D_1$  and  $T = M^{-1}D_2$  are two subsets of  $\mathbb{R}^n$  atinging  $S \cap T = C$  (ky(35)) and  $S \cap T \neq rbd$   $S \cap T \neq rbd$  T and hence, by Lemma 1, ri  $S \cap ri$   $T \neq \emptyset$ , or in view of (46) and (44):

(48) 
$$\operatorname{ri} D_1 \cap M^{-1} \operatorname{ri} D_2 \neq \emptyset.$$

From (35) it follows that

$$inf(f - gM) = inf(f - gM)$$

where

$$\hat{f} \triangleq f + \delta(|D_1|)$$

$$\hat{S} \triangleq g - \delta(|D_2|).$$

Clearly

$$(\hat{f}, \hat{g}, M, D_1, D_2) \in Y$$

and hence (38) follows from the validity of the regularity conditions (48). Finally, (39) implies, by lemma 2, that ri D  $\cap$  ri M<sup>-1</sup>D<sub>1</sub>  $\neq$  Ø which, again, by (46) and (44), implies (48), proving the last assertion of the theorem.

## The conjugate of the sum of convex functions

## Theorem 2

Let  $(i, -h, A_1, A_2) \in \Phi$ . Then, the infimum in  $i_{B_1}^* \square h_{B_2}^*$  is attained and

(49) 
$$(f + h)^* = f_{B_1}^* \square h_{B_2}^*$$

for every  $(B_1, B_2)_{\epsilon}$  S (sec (20)) and, in particular, for every  $(B_1, B_2)_{\epsilon}$  A (see (27))

Froc:

$$(f + h)*(y*) = \sup(\langle y*, x \rangle - [f(x) + h(x)])$$
  
=  $-\inf(f(x) - [\langle y*, x \rangle - h(x)])$   
=  $-\inf(f(x) - g(x))$ 

where

$$g(x) \stackrel{\wedge}{=} \langle y^*, x \rangle - h(x)$$

Now, (f, q,  $\Lambda_1$ ,  $\Lambda_2$ )  $\epsilon$   $\phi$ , and (B<sub>1</sub>, B<sub>2</sub>) are strongly admissible (Corollaries 1.1 and 2.1), hence by proposition 2

$$-\inf(f-g) = -\max(g_{B_2}^* - \frac{f*}{B_1})$$

A simple calculation shows that

$$g_{B_2}^*(x^*) = -h_{B_2}^*(y^* - x^*)$$

50

$$(f + h) * (y*) = -\inf(f - g) = -\max(g_{B_2}^* - f_{B_1}^*) =$$

$$= -\max(-h_B^*(y^* - x^*) - f_{B_1}^*(x*)) =$$

$$= \min(\frac{h_B^*}{h_B^*}(x*) + h_{B_2}^*(y* - x*)) = (\frac{h_B^*}{h_B^*} - h_{B_2}^*)(y*)$$

Theorem 2 generalized [6, Theorem 16.4]. The "indimar convulution formula" (49) was first obtained by Fenchel [2]. See also [7].

### The subdifferential of the sum of convex functions

Let f be a convex function, and S a subset of dom f. Consider for x  $\epsilon$  S, the set  $^{\lambda}_{S}f(x)$  off all x\*  $\epsilon$  R<sup>n</sup> such that

$$f(z) > f(x) + \langle x^*, z - x \rangle$$
,  $\forall z \in S$ 

We write  $\exists f(x)$  for  $\exists_{\text{dom } f}(x)$ , thus actually  $\exists_{S} f(x) = \exists (f(x) + \delta(x|S))$ .

### Theorem 3

Let 
$$(\ell, -h, \Lambda_1, \Lambda_2) \in \phi$$
. Then
$$\delta(\ell + h) = \lambda_{B_1} f(x) + \lambda_{B_2} h(x)$$

or every  $(B_1, B_2)$   $\epsilon$  S and, in particular, for every  $(B_1, B_2)$   $\epsilon$  A .

Proo ?

$$\partial_{1}(f + h) = \partial_{A_{1} \cap A_{2}}(f + h) = \partial_{B_{1} \cap B_{2}}(f + h)$$

where

$$\hat{f} = f + \delta(|B_1|)$$

$$\hat{h} = h + \delta(|B_2|)$$

the last equality is justified by the fact that  $(B_1, B_2)$  are admissible. Now, since  $(f, h, B_1, B_2) \in \Phi$  and  $(B_1, B_2)$  are trongly admissible, it follows that (see [6, Theorem 23.8]

$$\lambda_{B_1 \cap B_2}(\hat{f} + \hat{h}) = \lambda \hat{f} + \lambda \hat{h}$$
but 
$$\lambda \hat{f} = \lambda_{B_1} \hat{f} \qquad \lambda \hat{h} = \lambda_{B_2} \hat{h} \quad \text{and hence (50) follows.}$$

# 5. A special result for the strong Fenchels' dual (9; A, A)

It was shown in Example 2 that (A, A) is a strongly admissible pair, and hence

(51) 
$$\inf_{A} (f - g) = \max_{A} (g^* - f^*).$$

The following theorem adds to the validity of (50) an explicit connection between the optimal solutions of (P) and (D; A, A). The proof does not rely on Fenchel's Duality Theorem, or its traditional proofs (e.g. [61, [7], and [4]) and in fact does not utilize separation arguments. This is significant in deriving generalizations of (51) for nonconvex functions.

### Theorem 4

Let  $(f, a, \frac{\pi}{4}, \frac{\pi}{4}) \in \phi$  and suppose further that  $f, g \in C^1$ . Let  $\overline{x} \in A$  be an optimal solution of (P). Then any  $x^*$  belonging to the interval

$$[\nabla f(\bar{x}), \nabla g\bar{x}]$$

i. in optimal solution of (D; A, A) and (51) is valid.

#### Pron

Since f is convex on  $\lambda_1$ , it satisfies the gradient inequality

$$.(x) \Rightarrow f(\bar{x}) + \langle x - \bar{x}, \nabla f(\bar{x}) \rangle \qquad x \in A_1$$

and hence, in particular

(52) 
$$f_{A}^{*}(\nabla f(\bar{x})) = \langle \nabla f(\bar{x}), \bar{x} \rangle - f(\bar{x}) \ge \langle \nabla f(\bar{x}), \bar{x} \rangle - f(\bar{x}), \bar{x} \in A$$

and

(53) 
$$\langle \nabla f(\bar{x}), x - \bar{x} \rangle \leq f(x) - f(\bar{x}), \quad x \in A.$$

The necessary condition for  $\bar{x}$  to solve (P) is (see e.g. [4, Theorem 2, 175])

$$\langle \nabla f(\overline{x}) - \nabla g(\overline{x}), x - \overline{x} \rangle \ge 0$$
  $x \in A$ 

or rearringing terms

(54) 
$$\langle \nabla \varphi(\bar{x}), x - \bar{x} \rangle \leq \langle \nabla E(\bar{x}), x - \bar{x} \rangle \times \epsilon \lambda$$

(53) with (54) imply

$$\langle \nabla g(\bar{x}), x - \bar{x} \rangle \leq f(x) - f(\bar{x})$$

or

$$\langle \nabla g(\vec{x}), \vec{x} \rangle - f(\vec{x}) \ge \langle \nabla g(\vec{x}), x \rangle - f(x) \qquad x \in A$$

i.e.

(55) 
$$f_{A}^{*}(\nabla g(\bar{x}) = \langle \nabla g(\bar{x}), \bar{x} \rangle - f(\bar{x}).$$

But, similar to (52),

(56) 
$$\exists_{\Lambda}^{*}(\nabla g(\bar{x})) = \langle \nabla g(\bar{x}), \bar{x} \rangle - g(\bar{x}).$$

Now, (55) and (56) show that

(57) 
$$f(\overline{x}) - g(\overline{x}) = g_{\overline{x}}^{\dagger}(\nabla g(\overline{x})) - f_{\overline{x}}^{\dagger}(\nabla g(\overline{x})).$$

Since (see Proposition 1)

 $f(\bar{x}) - g(\bar{x}) > g_{\bar{x}}(x^*) - f_{\bar{x}}^*(x^*) \quad \text{for every s*}$  it of one (56) that  $x^* = \nabla g(\bar{x})$  is an optimal solution of (0, A, A), and that (51) is valid.

Similar to (57), it can be shown that

$$f(\vec{x}) - g(\vec{x}) = g^*(\nabla f(\vec{x})) - f^*_{\vec{A}}(\nabla f(\vec{x}))$$

which proves that  $x^* = \nabla f(\bar{x})$  is also an optimal solution of (2, A, A).

Finally, ( $\mathcal{D}_i$  A, A) being a concave program implies that its solution set is convex, and hence every  $x*_{\varepsilon} [\nabla f(\bar{x}), \nabla g(\bar{x})]$  is in optimal solution.

### Corollary 4.1

Dual program (P; A, A) has a unique optimal solution only if primal problem (P) has an optimal solution which is a critical point of its objective function.

### Proof

Let  $\overline{x}$  be an optimal solution of (P). If (D; A, A) has a unique maximizer, it follows from Theorem 4 that  $\nabla f(\overline{x}) = \nabla g(\overline{x})$  i.e.  $\nabla J(\overline{x}) - \nabla g(\overline{x}) = 0$ , hence  $\overline{x}$  is a critical point.

Theorem 1 is illustrated in the following

### Example 3

Let f and g be, respectively, a strictly convex and a strictly concave functions:  $R \rightarrow R$  such that f - g is strictly monotone. Let dom  $f \cap dom g = [a, b]$  (a < b). Clearly then

 $\Box$ 

$$min(f - g) = f(a) - g(a)$$
[a,b]

and, furthermore,  $\mathbb{Z}^*$  is strictly increasing,  $g^*$  is strictly decreasing and  $\mathbb{Z}^* \geq g^*$ . Hence

(58) 
$$g'(b) < g'(a) < f'(b)$$
.

Let L denote the Legandre transform of h, i.e.

$$L_h(x^*) \stackrel{\wedge}{=} \langle x^*, h^{-1}(x^*) \rangle - h(h^{-1}(x^*))$$

By the calculus then

(59) 
$$f^*(x^*) = \begin{cases} ax^* - f(a) & -\infty < x^* \le f'(a) \\ L_f(x^*) & f'(a) \le x^* \le f'(b) \\ bx^* - f(b) & f'(b) \le x^* < \infty \end{cases}$$

(60) 
$$g^*(x^*) = \begin{cases} bx^* - g(b) & -\infty < x^* \le g^*(b) \\ L_g(x^*) & g^*(b) \le x^* \le g^*(a) \\ ax^* - g(a) & g^*(a) \le x^* < \infty \end{cases}$$

Combining the information in (58) - (60) we derive the graphical representation of the dual objective function  $f_A^* - f_A^*$  (see figure 1) from which the conclusions of Theorem 1 are evident.



FIGURE 1

#### REFERENCES

- (1) Dieter, V., "Dual Extremal Problems in locally convex linear spaces," Proceedings of the Colloquium on Convexity, Copenhagen, 1965, W.Fenchel, Editor.
- (2) Fenchel, i., "Convex Cones, Sets, and Functions," Lecture Notes, Department of Mathematics, Princeton University, Princeton New Jersey, 1953.
- (3) Karlin, S., <u>Mathematical Methods and Theory in Games, Programming, and Economics</u>, Vol. I, Addison-Wesley, Reading, Mass. 1959.
- (4) Lue berger, D. G., Optimization By Vector Space Methods, John Wiley, New York, 1969.
- (5) Moreou, J. J., "Convexity and Duality," <u>Functional Analysis and Optimization</u>, E. R. Caianello, Ed., Academic Press, New York, 1966, 145-169.
- (6) Rockalellar, R. T., <u>Convex Analysis</u>, <u>Princeton Univer</u> ty Press, <u>Princeton</u>, New Jersey, 1969.
- (7) Stoer, J. and Jitzgall, C., <u>Convexity and Optimization in</u>
  <u>Finite Dimensions I</u>, <u>Springer-Verlag</u>, New York, <u>Heidelberg</u>,
  <u>Berlin</u>, 1970.
- (8) Whinston, A., "Some Applications of the Conjugate Function Theory to Duality," Nonlinear Programming, J. Abadie (ed.)
  North Holland Publishing Company, Amsterdam, John Wiley & Sons, Inc., New York, 1967.