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ABETRACT

1 Fenchel'. Duality Thcorem concerns the problem o miniimizing

the difference of & convex function £ and a c-ncave lunction g,
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1. Introduction

Fenchel's Duality Thecrem concerns the problem of minimizing
‘=g where f and g are convex and concave functions, respectively.
The duality resides in the connection between ninimizing f-g and
ma::imizing g*-f*, where g* and f* are the conjugates of g and f,
respectively. More precisely,

(+) inf(f - g) = max(g* - f*)

provided the followinc regularity condition holds:

The relative interiors of domain f and domain
g possess a point in commci.

(*)
For treatment o7 Fenchel's Duality in finite dimensions, see

e.g. 21,737, ™6],77), and 81, and in infinite dimensions, e.q.
(17,74] and 757,

I€ £ and g are re.tricted to certain .ubfamilies of convex
and concave functions, then (+) holds even without (*) being valid.
Such subfamiliecs are the polyhedral convex 'and concave functions
6], or, more generally, the stable functions [7, chapter 5].

In this paper we are interested in finding duals, other than
the Fenchel dual: (Sup (g* - {*)) for which a relaticu similar

to (+) holds for every pair of convex and concave functions,

whether (*) holds or not. Such duals, called "strong Fenchels'

duals", are constructed in section 3.

T




In section 4, the recults of section 3 are applicd to
Rockafellar's extension of Fenchel's duality 7 6], and to the
weli-known toimulac .or c¢omputing the conjugate function and the
subdi “ferential o7 the sum of convey functions. A speciel duality
result 7c¢r & tertain strong Fenchel dui.) 1s derived in s-ction 5.

The torainology used in this paper is that oL Rockafellar's
cook M6, - 11zt kelow some notations used in th- .equel, for
definftisn. and furth - ~1ls consult {6, Part I1.

L-t 8 ke &4 noncn, ty convex subset of Rn, and let 7 arid h be

convex functions: RT+ R. We denote by

i 8 -- the relative interior o’ §
rtd § -- the relative boundary o° §

aff § -- the a’fine hull of S

dim § -- thce dimension of S
8(+|x) -- the indicator function of §
f@h -- the iniimal convolution o7 7 and h, i.e

(£Q h) (x) = inZ(7() +g0x = y)

2. Fenchel'® Duality

l.et § be the set of all quadruples (f, g, Al, Az) sach that

( Al and A2 are convex stbsets of R"
f: R + R iv 71 proper convex function with com | = B
1)
T g: R »R is a proper concave function with dcm ¢ = A,
AZA nna, #g
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Consider the primal problem

(P) in“(f - g)
XEA

Let f* denote the (convex) conjugate of £, and g* the (concave)
conjugate of g, 1i.e.

E*(x*) 4 sup(<x: X - 7(x))

XNERM
!

Gr (%) 2 inT(<x¥ x> - G(x))

¥EA
2
Denote also A: 4 gom ¥, A; £ dom g* and tinally A% 2 A? n akx,
: 2
The problem
(D) sup (g* - f¥)

yR ENK

is cailed the Fenchel Dual of (P},

The following classical result relates (p)and (p),

Fenchel's Duality Theorem (e.g.{6, Theorem 31.17)

let (f, g, Al' Az)e ¢ If
" . :
(2) ri Al N ri Az #0
then
(3) inf (7 - g) = max(g¥* - €¥),
A A¥

If £ and g are closed and

(4) ri A% N ri A; ]
then
(5) min(f - g) = max(g* - f£*).

A A




There are well-known examples, where neither (2) nor (4) holds,

and in which inf (P) > sup (D), i.e. there is a duality gap.

One such example iu the following.

: Exa. plc )L (7, p. 181-183]
i elf .1\,1 = {(x, y) € R%: x =0, v = C}
Aﬁ = {(xl Y) € Rz: x>0, v~ C}
] ¢ (x,y) € A]
f(x,y) =
) otherwise
3 ' ( 1 (x,y) € A2 and xy = 1
glx,y) = Jxy (x,y) € A, and xy < 1
{ - otherwise
~hen
O y* s 0
Pe(x*,y¥) =
™ otherwise
-1 x* =0, y* =0
y*(x*,y*) =
-® otherwise

Tn rc¢ fore

inf(f - g) =0 > -] = gup(g* - %),

3. :trong Fenchel . Duality

For any .ubscts Bl' 82, «f R® such that

(6) B, € Aj, i=1, 2




let us denote the followin,:

£2 (x*) @ sup(ex? x> - £(x))
XEB

1
4 . *
gs (x*) = inf(<x, x> - g(x))
1 xeB2
A
e 8 g £r . 4 * * = B%* NB*,
B1 om Bl 82 dom 982 B 81 82

Also let (p: Bl' 82) denote the following problem

(p: By, B,) sup(gg - f* ).
ahene ver B, = AL, and B2 = Az they are omitted from t!ie ahove

notation, thus e f*, g* =g*, (0 A,, A,) = (D). A pair of
A Aa 1 2

1
convex subsets (Bl' 82) is called admissible il it satis“ies (6) and

(7) Bl "B, = A

2

An admissible pair is called strongly admissible if in addition

to (%) and (7) it satisfies
(8) ri Bl N ri B2 s g,

The following result is an elementary observation suggesting the

possibility of constructing duals (D; Bl' Bz) without duality gaps.

Proposition 1

Let (f, g, Ay, Az)g,o and let (Bl, 82) be an admissible pair.
Then

(9) inf(f - g) & sup(gf - €8 ) & sup(g* - £*)
A B* 2 ) A*
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Proo.
From the de:intion: of f* and g* we derive
B, B,
- *
* (x*) F <x¥ X> - (x) x e B, x*¢ 1
BJ 1 )
* (x%) ' (x) B, x¥€ B
X ® <X¥* X> - «(x X € , X
“B, 2" 72
.wnce ‘or every Xx € B, 7 82 = A and x%* ¢ B¥,
CE (%) 4 C(X) S<x? X>3 g (X%) + T(0)
B. t
...HP :-'.ll:'
(' - (XY Z g* (x®*) = f* (x¥) X € A, x¥%* ¢ R

nro ’irc that “rrst inequality in (9). To ,rove the second

tneJuality note that

£; § f* 98 z9*
B CA i " B, ~ A, > ] .
1 B* © A “ B* > B,
1 1 2
> DANEY tl At
- _ & g - £
-4 "By & g+ £
Ly

B* D Aw
“rom which 1t follows that

suplgg - 2 ) & suplg® - re)
B* ¢ 1 A*
a
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A iual problem (D; By, Bz) is called a strong Fenchel dual if

(10) inf(P) = max(p; B Bz)

for every (£, ¢, Al, Az)e ¢ . This property is closely related

to the strong admissibility of (B, Bz). as expressed in

Proposition 2

For every stron¢ly admissible pair (Bl' 82), the problem

(D: B,. 82) is a strong Fenchel dual.

Proo

The admissibility of (Bl, Bz) implics

(11) inf(€ - g) = inf(% - q)
A BlﬂBz

where
£2 5+ 518

gég- §(|8,)
clearly
("l gl Bll Bz)e 0
moreover, by the strong admissibility of (Bl' B,) it follows

trom Penchel's Duality Theorem that

(12) inf(f - g) = max(g* - £*)
(a]
B,"B,
but
E‘-f.'éf-g*
B By

—— b e e - 2 Sk i " . i bl I G s Laisiaiaan
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hence (11) and (12) implies

Sy S - " A
inf(f g) ma§(982 -Bl)

A B !

-

The existence of a strongly admissible pair, i.e. the nonemptiness

ol

A

(13) S {all strongly admissible pairs}

iz illustrated by the following simple example.

Example 2

Consider the pair

o
i
>
w
it
>

then

B =M<A,B, =ACA), B NB =ANP=A

ri B1 N ri 82 =ri ANTriA=rid#g

hence (A, A) is strongly admissible. The fact ri A # ¢ indeed
holds (in finite dimension spaces) for any nonempty convex set A.
Note that Example 2 together with Proposition 2, produce our
"irst strong duality relation
iny(f - = max{(g¥* - f*).,
( g) (gA A)

A

4. Characterization of strong admissibility

Lemma 1

For any noncmpty consex sets §, T < R" -

e v s i 10 i i b T s Lt
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T
(14) T N ris = ﬁ
iI, and only ii
(15) S§NTec rbd S
concequently
(16) risSNriT=¢g
if, and o1y i~
(17) (Ss"T ~rbds]l] V(S ANTcrbd T)

Proo!
First note that the equivalence (16)¢&>(17) follows from the

equivalence (1l4)<=> (15) since
lisnriT=@g)&rnris=@glv(snriT=g]

Indeed the implication (&= ) is trivial, and the implication (=)
follows from the fact that the condition ri S N ri T =@ ,is
nececsary and sufficient for proper separation of S and T‘(see
6, rheorem 11.3)). Now, if S N T = @, the equivalence (14) < (15)
is trivial.

Thus suppose that

(18) SATEY

Let (14) hold. Then

(19) (SNT) NriS = (SNrXisS)NT=TNric =g

Y O S v e )
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slnce (S N T) ~ & it follows from (19) that

n

AT~Z & -ri fccl S8 -ri € = rbds.

fuppo:ie now that (15) holds. Clearly rbdS N ri § = Y

hence, by (°5), (€ N"T) nriS=¢g and, by (19), TN ri ¢ = ¢,

Corollary 1.1

The set § of all strongly admissible pairs is given by
(20) S = {convex pairs (B, By): A C B, Ay, A ¢ rbu B, i= 1,2}

Proof from Lemma 1

rl.'zlﬁ,riBz#ﬂ@BlﬁBz?frdei i=1,°

Now Ll Zact (A By © Ai, i =1, 21 is equivalent to

fB) N B, = A, Bi cA; i=1, 2] and hence the result.

O

The [ollowing lecmma will enable us to find an important subset of 8.
Lemua 2
For any non-empty convex sets &, T R" and any convex subsets

P, N cuch that

(et AT~ pPc <N aff(snm

(272) cEnNT Q7N aff(SNT)




it tollows that
239 ri pnriQy¢¥d.
Proo:

I7 ("3) is Ffalse then

flonrrip=¢g]Jvipnrin-=gl.

Thu , without 'ous 0. yenerality, suppose that

(24) QNripr=¢g

Thi. ¢ ¢gquivelant, by emma 1 to
PNQr rbd P.
s1nCe this means that P N Q is a convex suk.et o! thc relative

boundary o“ the convex set P it follows [Corollary 6.3.31 that

(25) dim(Pr M Q) < dim P.

tn e othcr hand (I1)and (22) imply
CATAPAQE (ENT) Na’f(s "T)

-

(/.('.)) S YT =p NQ

Morcover
dim 0 & dim (€ N aff(s n T)] =
g dim aff(S N T) = dim(S " T) .
' noe Ly (.06)

dim(P) = dim(P N Q)
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ntradicting (05) . Thus (21) is alse. Similarly
PNrio#g

Provine (23).
2¢-tating Temsa 2z, wo oklLain

(e S L

T etR 13

A
(27) A = {convex pairs (51'32)’ A Bi (e Aiﬁ a'f A, i=',2}

con: Lots o .tronyisy admissible pairs, i.e. A < §.

Remarks

l. P necessary condition ‘or (Bl' BZ) to be strongly admistible

ri » ~ri1 R, 1 =1,
L
Th_. Sodey s rem the ~tion (see fh, Corollary ©.5%.77):
r~B
i

=D riAcri B,
P # wkd B

Thrre arc pair. (A, A,) Tor which A =8, such as tae prir
(h‘, A) given o in Fxamole 0V,

Thire are of course -ctu (%, A,) for which A g8, consider

"ple A= 0 - ardle in the plane, A, = ~ :-{iut o7 the
'

0 i Then (Ry, R) = (M, Ay) e § but (B, n,) f A,
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Azﬂ ri Al ¥ g

then the set

A
A, = {(By, By): A~ By = A, ACB, A, alf 3}

2

.t tontained in S (and, clearly, contain:= A). This fact follows

actually ‘rom the proof of Lemma 2.

T

4, Some related rescu’ts,

Rocrs €1.ar': oxten ion of Fenchel duality

Sunpose th

(& i nonempty convex subset of R”

]

hT}

C. 1s a nonempty convex subset of RM

128) ﬁ £f: R" + R is a proper convex function, dom f = C,

g: R+ R 15 a proper concave function, dom g = C2

1

| ¥M: R » R™ ic a linear transformation with inverse -

wicre, for any & ~ R™

M~'s 2 {x: ux ¢ S} .
“uppose further thatc
A -1
(29) C = Cl'\l C, ¥ g
and
(30) C, ~ Range M

2

il




let the set of all (7, ¢, M, Cqe C?) satisfying (28) - (3U) be
lenoted by y.
Con.ider Lhe problem

(31) in“(f - aM)

The in’imum is taken eifectively on the (nonempty, convex) set C.
Note that thcre 1s no loss ol generality in a. suming (30), for

if (f, g, M, A Az) sati-{y (28), (29) but not (30), one can

ll
contider instead o~ (31) the equivalent problem
(32) inf{(f - c]n): x€ C, n M-lE,,}

vhere
= 4
g = g - §(! range M)
and
€ 4 dom «
2
Clearly then
-
- glﬂl Cll Cz) e '.
Rocka ‘ellar (see e.g. [6. Cor,llary 31.2.1) and [71) proves that

i" ( ¢ ql M: C]‘ C:.) e ‘{' ant]

(+3) ric, "M l(ricy #£4g
Then
(34) inf(Z - gM) = Max(g* - f¥Mw)

where M* is tlLe adjoint o" M.
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The 1o ults o7 the previou: section can be v.cd here to derive

the ollowing,

Theorem
Let (f, ¢, M, C, C,)€ ¥, and let D, « rRP, D, € R™ be any
consex ursets sati. ying '
(35) C~D, cC ce ol c wlc
St B . 2 2
(36) C ¢ rbd D,
(37) c ¢ M 1(rbd D,)
g Then
t
- (3R) in(f - M) = max(gx - [* M*).
In worticalar, (3R) holds if
C © Dy ~ aff(C) N C,
(39) '
c = Mlp, ~ afr(c) A u‘1c2
Proc”

First we collect :ome properties of M1 needed below,

(40) s =1 =oM1s -y lp

(41) M-l(s nT) = M"le A M1

(42) M~l(s ~T) =MI1s ~ MIT

(43) Ranje M 8, S ¥ 4 =>M's ¢ 4,

Finally (see e.a.l6, Theorem €.7))




-16 -

(44) ri(M~ls) = m~1(ri f),
M~l(ri 8) o g @) :
1M 1s) = M 1(c1 s).
Now, by (42), (37) i. equivalent to
(45) C#M (¢) D) ~M1l(riD,),
hNiso

g # ri D? O C? ~ Range M, by (3%5) and (30)

Hence, by (43)

(45) Ml D) # ¢
and Lhu., Ly (44) - (4¢)
(47) C g1 (MIpa)~ ri(u'lbz) = rbd(M-:D?).

It "o~ that ¢ =D, and T = MID, are two .ubsets o. RN

ati “ying £ AT =C (ky(35))and S N T ¢# rbd ¢, S AP Zrbd T
and hence, by Lemma 1, ri € " ri T # @, or in view o! (46) and
(44) :

(48) ri o, n Ml rip, #p.

From (35) it fo)low: that

ini(fZ - gM) = inf(f - gM)

where

rh)

2 £+ 61Dy) j

)
>

Clearly

(FI (3: Ma Dl' f)') € *
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and hence (38) rollows from the validity of the regularity
condition. (43). Finally, (39) implies, by lemma 2, that
ri D N ri MID; #¢ which, again, by (46) and (44), implie:

\

(28), »rosin: the laslL assertion of the theorem,

O
Th. « njugate 07 the cum of convex functiorns
Thcorem 2
I.et (i, -h, Al, Az)g ® . Then, the infimum in E;1 c;hgz is
attained and
(49) (€ +n)" = f;10 hsz
or Ivery (B], 82)5 S (sec (20)) and, in particular, for every
(., B)e A (.ce (27))
(f + h)*(y*) = sup(<y*, x> - [+ (x) + h(x)7)
= -inf(£(x) - [<y*, x> - h(x)))
w —inf(f(x) - o(x)) {
wherc

g(x) Q<y*, x> = h(x)

Now, (7, «, Ny ﬂ?)e & , and (Bl, 82) are stron;ly admicsible

(Corottlariesn 1.3 and “.1) ,hence by propositicn 2

-in7(f - g) = -max(g® - "*
( ) (g}32 BJ_) !
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A egimple calculation shows that

gk (x*) = -hg (y* - x*)

i
12

(£ + h)* (y*) = - inf(f - g) = -max(g# - I; )
2 ]

= -max(—h;(y*- x*) - f;l(x*))
= min(j: (x%) + h;z(y* - x%)) = ("X

h)

1

Theorem 2 gcreralized (o, Theorem 16.47. The "in ima' con-

vulution formula" (17) wa: first obtained 5 Fenchel (27, sSee

also [7].

The subdifferential of the sum of convex functions

Let £ be a convex function, and S a subset of dom f. Consider

for x € §, the uset Asf(x) off all x* ¢ R" such that

f(z) > f(x) +<x¥*, 2z - x> , V2 e S

"l¢ wrice A (x) for }Jom f(x), thus actually

GE(x) = A(f(x) + §(x|S)).

Theorem 3
1
cet (7, =h, A., A)) € & . Then
1 p,

(50) A(fF + h) = :B]f(x) + aazh(x)

or .Jery (B], Bz) € § And, in particular, for every (nl. B.) ¢ A ¢

g

*“'“"-“-'-‘-*'-'-----hH-HiIin-lllllllllillluiiilI‘
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A(f + h) = ahlﬁ Az(f +h) = 381” 82(f + h)
where

f=f + d!Bl)

i h + B
i 6(|2)
thc last (quality is justified by the fact that (B, Bz) are

admissible. Now, since (f, h, Bl' Bz) e & and (Bl‘ R ) are

trongly admis.ible, it follows that (see (6, Theorem 23.8)

A £ 4+ h) = Af + ah
Bln 52(

but ’% = b f Ah = a_ h and hence (50) follows.

B] By E]

5. A special result for the strong Fenchels'’ dual (§: A, A)

It was shown in Example 2 that (A, A) is a strongly admissible

pair, and hence

inf(Z - = * - f%)
(51) 1: ( q) maX(QA A)

The following theorem adds to the validity of (50) an explicit
connection between the optimal solutions of (P) and(D: A, A).
The proof does not rely on Fenchel's Duality Theorem, or its
traditiona) proofs( e.g. (61, {7], and [4]) and in fact does not

utilize separation arguments. This is significant in deriving

generalizations of (51) for nonconvex functions.

-
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Theorem 4

L. £ - \1. A?) € & and suppose Jurther that 7, ge Ll.
Let XeA be anoptimal solution of (P). Then any x* belonging
to the interval

(Vo(X), VgXx:

1. {n opitimal ,olution o (P; A, A) and (51) is valid.

Proo

€ince f i: convex on A it satisfies th gradient inecuality

ll

(x) > (X)) + &x - X, VE(X)> X € Al

and hence, in partic. lar

(52) f;(Vf()'E)) = <Vi(X), x> - f(x) B <VE(X), x> - f(x), xXe A
and
(53) <VE(X), x - X> 8 £(x) - £(x). X € A.

. nec. sary condition Jor X to solve (P) is (see e.g. (4, Theorem 2,
e L7557

<Vi()-Vg(x), x - x>z 0 X € A
Or JoSrrmglng term:

>s <W(x), x - x> XE A

A1

(54) <V (x), x -

(53) with (54) imply

> % E(x) - 7(x)

X1

<PI(x), x -




or

<o (x), X» = £(X). 2 <Pg(X), x>~ £(x) X €A
l.e,
(55) EX(ra(X) = <yg(X), X5 - #(X).

But, =imilar to (52),

(56) ;;(Vg(i)) = <yg(X), %> - g(x).

Now, (55) and (56) show that

(57) £(x) - g(x) = 9;(‘79()-()) - f;(Vg(i))-

Since (see Proposition 1)

£(x)- g(X) > gf(x*) - £2(x*)  for every s*
it ollows from (56) that x* = Yg(x) is an optimal solution or
(D, A, A), and that (51) is valid.

Similar to (57), it can be shown that

ER)- g(R)= g VER) - £ (VER)
which proves that x* = yf(x) is also an optimal solution of
(0 A, A).
Finally, (D A, A) being a concave program implies that its
solution et i. convex, and hence every x% ¢ [vf(X), yg(X)] is

"n Hptimal solution. C]
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Corollary 4.1

Dual program (D; A, A) has a unique optimal solution only i.
primal problem (P) has an optimal solution which is a critical
point of its objective ‘unction.

Let X be an optimal solution of (P). 1If (D; A, A) has a
unique maximizer, it follows .rom Theorem'# that VE(X)= Vg(;)

i.e. V.(X)- Vg(X)= C, hence x is a critical point.

Thecorem 1 is illustrated in the following
“xample 3

-t £ and g be, respectively, a strictly convex and a strictly
concave functions: R + R such that f - g is strictly monotone.
Let dom £ N dom g = fa, b) (a < b). Clearly then

min(f - g) = f(a) - g(a)

fa,b’
and, furthermore, ' is strictly increasing, g' is strictly
decreasing and "' > g'. Hence
(58) g'(b) < g'(a) < f'(a) < £'(b).

Let Lh denote the l.egandre transform of h, i.e.

L, (x%) 2exv, nt x#)> - m(ht " (xv))

By the calculu: then




U YO A

ax* - £(a)
(59) f*(x*)= L, (x¥)
A f

bx* - f(b)

bx* - g(k)
(60) g¥*(x*)= L_(x*)
A g9

ax* - g(a)

-23-

-2 < X* s "'(a)
£f'(a) s x* < ' (¥)

£f'(b) = x*< ~

-0 ¢ x* s g'(b)
g'(b) s x* < ¢'(a)

g'(a) s x* < o

Combining the information in (58) - (60) we derive the graphical

representation of the dual objective functicn f - f; (see figur= 1)

fr m which the conclusions ofTheorem 1 are evident.

N g; _ f*

A

min( "-g) = f£(a)-g(a) slope
(a=b) <O
slope
(E-a) >0 /
; . - y %"
4 g' (b) g'(a) £'(a) £' (b)
& r J |
solution set
of the dual
FIGURE 1
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